Causes of forbush decreases and other cosmic ray variations
NASA Technical Reports Server (NTRS)
Barouch, E.; Burlaga, L. F.
1974-01-01
The relationship between neutron monitor variations and the intensity variations of the interplanetary magnetic field is studied, using Deep River data and IMP-series satellite data. In over 80% of the cases studied, identifiable depressions of the cosmic ray intensity are associated with magnetic field enhancements of several hours duration and intensity above 10 gamma. Conversely, each magnetic field enhancement has an identifiable effect (though not necessarily a marked depression) on the cosmic ray intensity. Long lasting Forbush decreases are found to be the consequence of the successive action of several such features. An explanation is presented and discussed.
NASA Astrophysics Data System (ADS)
Corrêa, E. L.; Silva, J. O.; Vivolo, V.; Potiens, M. P. A.; Daros, K. A. C.; Medeiros, R. B.
2014-02-01
This study presents the results of the intensity variation of the radiation field in a mammographic system using the thermoluminescent dosimeter TLD-900 (CaSO4:Dy). These TLDs were calibrated and characterized in an industrial X-ray system used for instruments calibration, in the energy range used in mammography. They were distributed in a matrix of 19 lines and five columns, covering an area of 18 cm×8 cm in the center of the radiation field on the clinical equipment. The results showed a variation of the intensity probably explained by the non-uniformity of the field due to the heel effect.
An empirical model of the quiet daily geomagnetic field variation
Yamazaki, Y.; Yumoto, K.; Cardinal, M.G.; Fraser, B.J.; Hattori, P.; Kakinami, Y.; Liu, J.Y.; Lynn, K.J.W.; Marshall, R.; McNamara, D.; Nagatsuma, T.; Nikiforov, V.M.; Otadoy, R.E.; Ruhimat, M.; Shevtsov, B.M.; Shiokawa, K.; Abe, S.; Uozumi, T.; Yoshikawa, A.
2011-01-01
An empirical model of the quiet daily geomagnetic field variation has been constructed based on geomagnetic data obtained from 21 stations along the 210 Magnetic Meridian of the Circum-pan Pacific Magnetometer Network (CPMN) from 1996 to 2007. Using the least squares fitting method for geomagnetically quiet days (Kp ??? 2+), the quiet daily geomagnetic field variation at each station was described as a function of solar activity SA, day of year DOY, lunar age LA, and local time LT. After interpolation in latitude, the model can describe solar-activity dependence and seasonal dependence of solar quiet daily variations (S) and lunar quiet daily variations (L). We performed a spherical harmonic analysis (SHA) on these S and L variations to examine average characteristics of the equivalent external current systems. We found three particularly noteworthy results. First, the total current intensity of the S current system is largely controlled by solar activity while its focus position is not significantly affected by solar activity. Second, we found that seasonal variations of the S current intensity exhibit north-south asymmetry; the current intensity of the northern vortex shows a prominent annual variation while the southern vortex shows a clear semi-annual variation as well as annual variation. Thirdly, we found that the total intensity of the L current system changes depending on solar activity and season; seasonal variations of the L current intensity show an enhancement during the December solstice, independent of the level of solar activity. Copyright 2011 by the American Geophysical Union.
Archeomagnetic intensity spikes: global or regional geomagnetic field features?
NASA Astrophysics Data System (ADS)
Korte, Monika; Constable, Catherine G.
2018-03-01
Variations of the geomagnetic field prior to direct observations are inferred from archeo- and paleomagnetic experiments. Seemingly unusual variations not seen in the present day and historical field are of particular interest to constrain the full range of core dynamics. Recently, archeomagnetic intensity spikes, characterised by very high field values that appear to be associated with rapid secular variation rates, have been reported from several parts of the world. They were first noted in data from the Levant at around 900 BCE. A recent re-assessment of previous and new Levantine data, involving a rigorous quality assessment, interprets the observations as an extreme local geomagnetic high with at least two intensity spikes between the 11^{th} and 8^{th} centuries BCE. Subsequent reports of similar features from Asia, the Canary Islands and Texas raise the question of whether such features might be common occurrences, or whether they might even be part of a global magnetic field feature. Here we use spherical harmonic modelling to test two hypotheses: firstly, whether the Levantine and other potential spikes might be associated with higher dipole field intensity than shown by existing global field models around 1000 BCE, and secondly, whether the observations from different parts of the world are compatible with a westward drifting intense flux patch. Our results suggest that the spikes originate from intense flux patches growing and decaying mostly in situ, combined with stronger and more variable dipole moment than shown by previous global field models. Axial dipole variations no more than 60% higher than observed in the present field, probably within the range of normal geodynamo behaviour, seem sufficient to explain the observations.
WE-G-18C-05: Characterization of Cross-Vendor, Cross-Field Strength MR Image Intensity Variations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paulson, E; Prah, D
2014-06-15
Purpose: Variations in MR image intensity and image intensity nonuniformity (IINU) can challenge the accuracy of intensity-based image segmentation and registration algorithms commonly applied in radiotherapy. The goal of this work was to characterize MR image intensity variations across scanner vendors and field strengths commonly used in radiotherapy. Methods: ACR-MRI phantom images were acquired at 1.5T and 3.0T on GE (450w and 750, 23.1), Siemens (Espree and Verio, VB17B), and Philips (Ingenia, 4.1.3) scanners using commercial spin-echo sequences with matched parameters (TE/TR: 20/500 ms, rBW: 62.5 kHz, TH/skip: 5/5mm). Two radiofrequency (RF) coil combinations were used for each scanner: bodymore » coil alone, and combined body and phased-array head coils. Vendorspecific B1- corrections (PURE/Pre-Scan Normalize/CLEAR) were applied in all head coil cases. Images were transferred offline, corrected for IINU using the MNI N3 algorithm, and normalized. Coefficients of variation (CV=σ/μ) and peak image uniformity (PIU = 1−(Smax−Smin)/(Smax+Smin)) estimates were calculated for one homogeneous phantom slice. Kruskal-Wallis and Wilcoxon matched-pairs tests compared mean MR signal intensities and differences between original and N3 image CV and PIU. Results: Wide variations in both MR image intensity and IINU were observed across scanner vendors, field strengths, and RF coil configurations. Applying the MNI N3 correction for IINU resulted in significant improvements in both CV and PIU (p=0.0115, p=0.0235). However, wide variations in overall image intensity persisted, requiring image normalization to improve consistency across vendors, field strengths, and RF coils. These results indicate that B1- correction routines alone may be insufficient in compensating for IINU and image scaling, warranting additional corrections prior to use of MR images in radiotherapy. Conclusions: MR image intensities and IINU vary as a function of scanner vendor, field strength, and RF coil configuration. A two-step strategy consisting of MNI N3 correction followed by normalization was required to improve MR image consistency. Funding provided by Advancing a Healthier Wisconsin.« less
Geomagnetic Field Intensity during the Neolith in the Central East European Plain
NASA Astrophysics Data System (ADS)
Nachasova, I. E.; Pilipenko, O. V.; Markov, G. P.; Gribov, S. K.; Tsetlin, Yu. B.
2018-05-01
The conducted archeomagnetic studies resulted in data on variations in the geomagnetic field intensity in the central East European Plain (Sakhtysh I site area, ϕ = 56°48' N, λ = 40°33' E) during the time interval of 5-3 ka BC. The geomagnetic field intensity varied mainly within the range of 30-60 μT. In the first half of the 5th millennium BC, the mean level of geomagnetic field intensity was about 35 μT. In the second half of the 5th-early 4th millennium BC, it rose to about 50 μT and then decreased again to reach a mean value of about 40 μT in the period of 4-3 ka BC. Comparison of the geomagnetic field intensity variation based on the obtained data and the data on the Caucasus region for the same time interval demonstrates a certain similarity.
NASA Astrophysics Data System (ADS)
Gallet, Yves; Molist Montaña, Miquel; Genevey, Agnès; Clop García, Xavier; Thébault, Erwan; Gómez Bach, Anna; Le Goff, Maxime; Robert, Béatrice; Nachasova, Inga
2015-01-01
We present new archeomagnetic intensity data from two Late Neolithic archeological sites (Tell Halula and Tell Masaïkh) in Syria. These data, from 24 groups of potsherds encompassing 15 different time levels, are obtained using the Triaxe experimental protocol, which takes into account both the thermoremanent magnetization anisotropy and cooling rate effects on intensity determinations. They allow us to recover the geomagnetic intensity variations in the Middle East, between ∼7000 BC and ∼5000 BC, i.e. during the so-called pre-Halaf, proto-Halaf, Halaf and Halaf-Ubaid Transitional cultural phases. The data are compared with previous archeointensity results of similar ages from Northern Iraq (Yarim Tepe II and Tell Sotto) and Bulgaria. We find that previous dating of the Iraqi material was in error. When corrected, all northern Mesopotamian data show a relatively good consistency and also reasonably match with the Bulgarian archeointensity dataset. Using a compilation of available data, we construct a geomagnetic field intensity variation curve for the Middle East encompassing the past 9000 years, which makes it presently the longest known regional archeomagnetic intensity record. We further use this compilation to constrain variations in dipole field moment over most of the Holocene. In particular, we discuss the possibility that a significant dipole moment maximum occurred during the third millennium BC, which cannot easily be identified in available time-varying global geomagnetic field reconstructions.
The Swarm Initial Field Model for the 2014 Geomagnetic Field
NASA Technical Reports Server (NTRS)
Olsen, Nils; Hulot, Gauthier; Lesur, Vincent; Finlay, Christopher C.; Beggan, Ciaran; Chulliat, Arnaud; Sabaka, Terence J.; Floberghagen, Rune; Friis-Christensen, Eigil; Haagmans, Roger
2015-01-01
Data from the first year of ESA's Swarm constellation mission are used to derive the Swarm Initial Field Model (SIFM), a new model of the Earth's magnetic field and its time variation. In addition to the conventional magnetic field observations provided by each of the three Swarm satellites, explicit advantage is taken of the constellation aspect by including east-west magnetic intensity gradient information from the lower satellite pair. Along-track differences in magnetic intensity provide further information concerning the north-south gradient. The SIFM static field shows excellent agreement (up to at least degree 60) with recent field models derived from CHAMP data, providing an initial validation of the quality of the Swarm magnetic measurements. Use of gradient data improves the determination of both the static field and its secular variation, with the mean misfit for east-west intensity differences between the lower satellite pair being only 0.12 nT.
NASA Astrophysics Data System (ADS)
Souza, V. M. C. E. S.; Jauer, P. R.; Alves, L. R.; Padilha, A. L.; Padua, M. B.; Vitorello, I.; Alves, M. V.; Da Silva, L. A.
2017-12-01
Interplanetary structures such as Coronal Mass Ejections (CME), Shocks, Corotating Interaction Regions (CIR) and Magnetic Clouds (MC) interfere directly on Space Weather conditions and can cause severe and intense disturbances in the Earth's magnetic field as measured in space and on the ground. During magnetically disturbed periods characterized by world-wide, abrupt variations of the geomagnetic field, large and intense current systems can be induced and amplified within the Earth even at low latitudes. Such current systems are known as geomagnetically induced currents (GIC) and can cause damage to power transmission lines, transformers and the degradation of pipelines. As part of an effort to estimate GIC intensities throughout the low to equatorial latitudes of the Brazilian territory, we used the 3-D MHD SWMF/BATSRUS code to estimate spatial variations of the geomagnetic field during periods when the magnetosphere is under the influence of CME and MC structures. Specifically, we used the CalcDeltaB tool (Rastatter et al., Space Weather, 2014) to provide a proxy for the spatial variations of the geomagnetic field, with a 1 minute cadence, at 31 virtual magnetometer stations located in the proposed study region. The stations are spatially arranged in a two-dimensional network with each station being 5 degrees apart in latitude and longitude. In a preliminary analysis, we found that prior to the arrival of each interplanetary structure, there is no appreciable variation in the components of the geomagnetic field between the virtual stations. However, when the interplanetary structures reach the magnetosphere, each station perceives the magnetic field variation differently, so that it is not possible to use a single station to represent the magnetic field perturbation throughout the Brazilian region. We discuss the minimum number and spacing between stations to adequately detail the geomagnetic field variations in this region.
Camps; Prevot
1996-08-09
The statistical characteristics of the local magnetic field of Earth during paleosecular variation, excursions, and reversals are described on the basis of a database that gathers the cleaned mean direction and average remanent intensity of 2741 lava flows that have erupted over the last 20 million years. A model consisting of a normally distributed axial dipole component plus an independent isotropic set of vectors with a Maxwellian distribution that simulates secular variation fits the range of geomagnetic fluctuations, in terms of both direction and intensity. This result suggests that the magnitude of secular variation vectors is independent of the magnitude of Earth's axial dipole moment and that the amplitude of secular variation is unchanged during reversals.
NASA Astrophysics Data System (ADS)
Tema, E.; Herrero-Bervera, E.; Lanos, Ph.
2017-11-01
Hawaii is an ideal place for reconstructing the past variations of the Earth's magnetic field in the Pacific Ocean thanks to the almost continuous volcanic activity during the last 10 000 yrs. We present here an updated compilation of palaeomagnetic data from historic and radiocarbon dated Hawaiian lava flows available for the last ten millennia. A total of 278 directional and 66 intensity reference data have been used for the calculation of the first full geomagnetic field reference secular variation (SV) curves for central Pacific covering the last ten millennia. The obtained SV curves are calculated following recent advances on curve building based on the Bayesian statistics and are well constrained for the last five millennia while for older periods their error envelopes are wide due to the scarce number of reference data. The new Bayesian SV curves show three clear intensity maxima during the last 3000 yrs that are accompanied by sharp directional changes. Such short-term variations of the geomagnetic field could be interpreted as archaeomagnetic jerks and could be an interesting feature of the geomagnetic field variation in the Pacific Ocean that should be further explored by new data.
NASA Astrophysics Data System (ADS)
Goguitchaichvili, Avto; Ruiz, Rafael García; Pavón-Carrasco, F. Javier; Contreras, Juan Julio Morales; Arechalde, Ana María Soler; Urrutia-Fucugauchi, Jaime
2018-06-01
Earth's Magnetic Field variation strength may provide crucial information to understand the geodynamo mechanism and elucidate the conditions on the physics of the Earth's deep interiors. Aimed to reveal the fine characteristics of the geomagnetic field during the last three millennia in Mesoamerica, we analyzed the available absolute geomagnetic intensities associated to absolute radiometric dating as well some ages provided by historical documents. This analysis is achieved using thermoremanent magnetization carried by volcanic lava flows and burned archaeological artefacts. A total of 106 selected intensities from Mesoamerica and other 100 from the southern part of the United States represent the main core of the dataset to construct the variation curve using both combined bootstrap method and temporal penalized B-spline methods. The obtained intensity paleosecular variation curve for Mesoamerica generally disagrees with the values predicted by the global geomagnetic field models. There is rather firm evidence of eastward drift when compared to similar reference curves in Western Europe, Asia and Pacific Ocean. The recent hypothesis about the relationship between the geomagnetic field strength and paleoclimate is also critically analyzed in the light of this new data compilation.
NASA Astrophysics Data System (ADS)
Kang, Shouxin; Zhang, Hao; Liu, Bo; Lin, Wei; Zhang, Ning; Miao, Yinping
2016-01-01
A dual-parameter sensor based on a fiber-optic interferometer consisting of a non-adiabatic fiber taper and a long-period fiber grating (LPFG) integrated with magnetic nanoparticle fluids has been proposed and experimentally demonstrated. Due to the Mach-Zehnder interference induced by the concatenation of the fiber taper and long-period grating, an interferometric spectrum could be acquired within the transmission resonance spectral envelope of the LPFG. Thanks to different magnetic field and temperature sensitivities of difference interference dips, simultaneous measurement of the magnetic field intensity and environmental temperature could be achieved. Moreover, due to the variation in coupling coefficients of the fiber taper and the LPFG in response to the change of the applied magnetic field intensity, some of the interference dips would exhibit opposite magnetic-field-intensity-dependent transmission loss variation behavior. Magnetic field intensity and temperature sensitivities of 0.017 31 dB Oe-1 and 0.0315 dB K-1, and -0.024 55 dB Oe-1 and -0.056 28 dB K-1 were experimentally acquired for the experimentally monitored interference dips.
Possible psycho-physiological consequences of human long-term space missions
NASA Astrophysics Data System (ADS)
Belisheva, N. K.; Lammer, H.; Biernat, H. K.; Kachanova, T. L.; Kalashnikova, I. V.
Experiments carried out on the Earth s surface during different years and under contrast periods of solar activity have shown that the functional state of biosystems including the human organisms are controlled by global and local geocosmical agents Our finding have a close relation to space research because they demonstrate the reactions of biosystems on variations of global and local geocosmical agents and the mechanisms of modulations of biosystems state by geocosmical agents We revealed the role of variations of the geomagnetic field for the stimulation of immune systems functional state of peripheral blood human brain growth of microflora skin covers and pathogenic microorganisms The study of the psycho-physiological state of the human organism has demonstrated that an increase of the neutron intensity near the Earth s surface is associated with anxiety decrease of normal and increase of paradox reactions of examinees The analysis of the human brain functional state in dependent on the geomagnetic variation structure dose under exposure to the variations of geomagnetic field in a certain amplitude-frequency range and also the intensity of the nucleon component of secondary cosmic rays showed that the stable and unstable states of the human brain are determined by geomagnetic field variations and the intensity of the nucleon component The stable state of the brain manifested under the periodic oscillations of the geomagnetic field in a certain amplitude-frequency range The low level of geomagnetic activity associated with an
Low-energy electron intensities at large distances over the earth's polar cap
NASA Technical Reports Server (NTRS)
Yeager, D. M.; Frank, L. A.
1975-01-01
The results of the character and temporal fluctuations study of electron intensities in the energy range of hundreds of electron volts, are reported which were measured at high latitudes and altitudes on geomagnetic field lines corresponding to those of the polar cap and magnetotail lobes. It is concluded that such electron intensities are diminutive relative to those found in other regions of the magnetosphere. Severe variations of intensities were found and the magnitudes of electron intensities appear to be strongly coupled to the directions of the interplanetary magnetic fields.
A Variational Approach to Simultaneous Image Segmentation and Bias Correction.
Zhang, Kaihua; Liu, Qingshan; Song, Huihui; Li, Xuelong
2015-08-01
This paper presents a novel variational approach for simultaneous estimation of bias field and segmentation of images with intensity inhomogeneity. We model intensity of inhomogeneous objects to be Gaussian distributed with different means and variances, and then introduce a sliding window to map the original image intensity onto another domain, where the intensity distribution of each object is still Gaussian but can be better separated. The means of the Gaussian distributions in the transformed domain can be adaptively estimated by multiplying the bias field with a piecewise constant signal within the sliding window. A maximum likelihood energy functional is then defined on each local region, which combines the bias field, the membership function of the object region, and the constant approximating the true signal from its corresponding object. The energy functional is then extended to the whole image domain by the Bayesian learning approach. An efficient iterative algorithm is proposed for energy minimization, via which the image segmentation and bias field correction are simultaneously achieved. Furthermore, the smoothness of the obtained optimal bias field is ensured by the normalized convolutions without extra cost. Experiments on real images demonstrated the superiority of the proposed algorithm to other state-of-the-art representative methods.
Development of a Double-Gauss Lens Based Setup for Optoacoustic Applications
Choi, Hojong; Ryu, Jae-Myung; Yeom, Jung-Yeol
2017-01-01
In optoacoustic (photoacoustic) systems, different echo signal intensities such as amplitudes, center frequencies, and bandwidths need to be compensated by utilizing variable gain or time-gain compensation amplifiers. However, such electronic components can increase system complexities and signal noise levels. In this paper, we introduce a double-Gauss lens to generate a large field of view with uniform light intensity due to the low chromatic aberrations of the lens, thus obtaining uniform echo signal intensities across the field of view of the optoacoustic system. In order to validate the uniformity of the echo signal intensities in the system, an in-house transducer was placed at various positions above a tissue sample and echo signals were measured and compared with each other. The custom designed double-Gauss lens demonstrated negligible light intensity variation (±1.5%) across the illumination field of view (~2 cm diameter). When the transducer was used to measure echo signal from an eye of a bigeye tuna within a range of ±1 cm, the peak-to-peak amplitude, center frequency, and their −6 dB bandwidth variations were less than 2 mV, 1 MHz, and 6%, respectively. The custom designed double-Gauss lens can provide uniform light beam across a wide area while generating insignificant echo signal variations, and thus can lower the burden of the receiving electronics or signal processing in the optoacoustic system. PMID:28273794
NASA Astrophysics Data System (ADS)
Hervé, G.; Gilder, S.; Fassbinder, J.; Metzler-Nebelsick, C.; Schnepp, E.; Geisweid, L.; Putz, A.; Reuss, S.; Riedel, G.; Westhausen, I.; Wittenborn, F.
2016-12-01
This study presents new archaeointensity results obtained on 350 pottery sherds from 45 graves and pits from 12 sites around Munich (Germany). The features are dated between 1400 and 400 BCE by ceramic and metallic artifacts, radiocarbon and dendrochronology. We collected only red- or partly red-colored sherds in order to minimize mineralogical alteration during laboratory experiments. Rock magnetism analyses show that the remanent magnetization is mainly carried by titanomagnetite. Archaeointensities were determined using the Thellier-Thellier protocol with corrections of TRM anisotropy and cooling rate on one to three specimens per sherd. The experiments were completed using Triaxe and multispecimen (MSP-DSC) methods. Around 60 per cent of the sherds provide reliable results, allowing the computation of 35 mean archaeointensity values. This quadruples the number of previously published data in Western Europe. The secular variation of the geomagnetic field strength is low from 1400 to 1200 BCE with intensities close to 50 µT then the intensity increased to 70 µT around 1000-900 BCE. After a minimum 50 µT near 750 BCE, the intensity increased again to 90 µT at 650 BCE. This high secular variation rate (0.4 µT/year) is especially apparent in the sherds from a fountain dated between 750 and 650 BCE. Next, the intensity remained high until 400 BCE before rapidly decreasing to 200 BCE. As the sharp change in geomagnetic direction around 800 BCE is not contemporaneous with an intensity high, this period is probably not characterized by an archaeomagnetic jerk. The trend of secular variation with two intensity maxima is similar to the one observed in the Near East. The Virtual Axial Dipole Moments of the two regions are approximately the same after 700 BCE, but before they are systematically 1-2 × 1022 Am2 higher in the Near East. This difference may be a further proof of a geomagnetic field anomaly in this area 1000 BCE, yet there is no evidence for a geomagnetic spike in Western Europe. Finally, the fast rate of secular variation will provide an improved dating tool for archaeologists together with the available directional secular variation curves.
Electric Field Feature of Moving Magnetic Field
NASA Astrophysics Data System (ADS)
Chen, You Jun
2001-05-01
A new fundamental relationship of electric field with magnetic field has been inferred from the fundamental experimental laws and theories of classical electromagnetics. It can be described as moving magnetic field has or gives electric feature. When a field with magnetic induction of B moves in the velocity of V, it will show electric field character, the electric field intensity E is E = B x V and the direction of E is in the direction of the vector B x V. It is improper to use the time-varying electromagnetics theories as the fundamental theory of the electromagnetics and group the electromagnetic field into static kind and time-varying kind for the static is relative to motional not only time-varying. The relationship of time variation of magnetic field induction or magnetic flux with electric field caused by magnetic field is fellowship not causality. Thus time-varying magnetic field can cause electric field is not a nature principle. Sometime the time variation of magnetic flux is equal to the negative electromotive force or the time variation of magnetic field induction is equal to the negative curl of electric field caused by magnetic field motion, but not always. And not all motion of magnetic field can cause time variation of magnetic field. Therefore Faraday-Lenz`s law can only be used as mathematics tool to calculate the quantity relation of the electricity with the magnetism in some case like the magnetic field moving in uniform medium. Faraday-Lenz`s law is unsuitable to be used in moving uniform magnetic field or there is magnetic shield. Key word: Motional magnetic field, Magnetic induction, Electric field intensity, Velocity, Faraday-Lenz’s law
Control of Earth-like magnetic fields on the transformation of ferrihydrite to hematite and goethite
Jiang, Zhaoxia; Liu, Qingsong; Dekkers, Mark J.; Barrón, Vidal; Torrent, José; Roberts, Andrew P.
2016-01-01
Hematite and goethite are the two most abundant iron oxides in natural environments. Their formation is controlled by multiple environmental factors; therefore, their relative concentration has been used widely to indicate climatic variations. In this study, we aimed to test whether hematite and goethite growth is influenced by ambient magnetic fields of Earth-like values. Ferrihydrite was aged at 95 °C in magnetic fields ranging from ~0 to ~100 μT. Our results indicate a large influence of the applied magnetic field on hematite and goethite growth from ferrihydrite. The synthesized products are a mixture of hematite and goethite for field intensities <~60 μT. Higher fields favour hematite formation by accelerating ferrimagnetic ferrihydrite aggregation. Additionally, hematite particles growing in a controlled magnetic field of ~100 μT appear to be arranged in chains, which may be reduced to magnetite keeping its original configuration, therefore, the presence of magnetic particles in chains in natural sediments cannot be used as an exclusive indicator of biogenic magnetite. Hematite vs. goethite formation in our experiments is influenced by field intensity values within the range of geomagnetic field variability. Thus, geomagnetic field intensity could be a source of variation when using iron (oxyhydr-)oxide concentrations in environmental magnetism. PMID:27458091
Jiang, Zhaoxia; Liu, Qingsong; Dekkers, Mark J; Barrón, Vidal; Torrent, José; Roberts, Andrew P
2016-07-26
Hematite and goethite are the two most abundant iron oxides in natural environments. Their formation is controlled by multiple environmental factors; therefore, their relative concentration has been used widely to indicate climatic variations. In this study, we aimed to test whether hematite and goethite growth is influenced by ambient magnetic fields of Earth-like values. Ferrihydrite was aged at 95 °C in magnetic fields ranging from ~0 to ~100 μT. Our results indicate a large influence of the applied magnetic field on hematite and goethite growth from ferrihydrite. The synthesized products are a mixture of hematite and goethite for field intensities <~60 μT. Higher fields favour hematite formation by accelerating ferrimagnetic ferrihydrite aggregation. Additionally, hematite particles growing in a controlled magnetic field of ~100 μT appear to be arranged in chains, which may be reduced to magnetite keeping its original configuration, therefore, the presence of magnetic particles in chains in natural sediments cannot be used as an exclusive indicator of biogenic magnetite. Hematite vs. goethite formation in our experiments is influenced by field intensity values within the range of geomagnetic field variability. Thus, geomagnetic field intensity could be a source of variation when using iron (oxyhydr-)oxide concentrations in environmental magnetism.
Optical Limiting Using the Two-Photon Absorption Electrical Modulation Effect in HgCdTe Photodiode
Cui, Haoyang; Yang, Junjie; Zeng, Jundong; Tang, Zhong
2013-01-01
The electrical modulation properties of the output intensity of two-photon absorption (TPA) pumping were analyzed in this paper. The frequency dispersion dependence of TPA and the electric field dependence of TPA were calculated using Wherrett theory model and Garcia theory model, respectively. Both predicted a dramatic variation of TPA coefficient which was attributed into the increasing of the transition rate. The output intensity of the laser pulse propagation in the pn junction device was calculated by using function-transfer method. It shows that the output intensity increases nonlinearly with increasing intensity of incident light and eventually reaches saturation. The output saturation intensity depends on the electric field strength; the greater the electric field, the smaller the output intensity. Consequently, the clamped saturation intensity can be controlled by the electric field. The prior advantage of electrical modulation is that the TPA can be varied extremely continuously, thus adjusting the output intensity in a wide range. This large change provides a manipulate method to control steady output intensity of TPA by adjusting electric field. PMID:24198721
Synthetic observations of wave propagation in a sunspot umbra
DOE Office of Scientific and Technical Information (OSTI.GOV)
Felipe, T.; Socas-Navarro, H.; Khomenko, E.
2014-11-01
Spectropolarimetric temporal series from Fe I λ6301.5 Å and Ca II infrared triplet lines are obtained by applying the Stokes synthesis code NICOLE to a numerical simulation of wave propagation in a sunspot umbra from MANCHA code. The analysis of the phase difference between Doppler velocity and intensity core oscillations of the Fe I λ6301.5 Å line reveals that variations in the intensity are produced by opacity fluctuations rather than intrinsic temperature oscillations, except for frequencies between 5 and 6.5 mHz. On the other hand, the photospheric magnetic field retrieved from the weak field approximation provides the intrinsic magnetic fieldmore » oscillations associated to wave propagation. Our results suggest that this is due to the low magnetic field gradient of our sunspot model. The Stokes parameters of the chromospheric Ca II infrared triplet lines show striking variations as shock waves travel through the formation height of the lines, including emission self-reversals in the line core and highly abnormal Stokes V profiles. Magnetic field oscillations inferred from the Ca II infrared lines using the weak field approximation appear to be related with the magnetic field strength variation between the photosphere and the chromosphere.« less
NASA Astrophysics Data System (ADS)
Saturnino, Diana; Langlais, Benoit; Civet, François; Thébault, Erwan; Mandea, Mioara
2015-06-01
We describe the main field and secular variation candidate models for the 12th generation of the International Geomagnetic Reference Field model. These two models are derived from the same parent model, in which the main field is extrapolated to epoch 2015.0 using its associated secular variation. The parent model is exclusively based on measurements acquired by the European Space Agency Swarm mission between its launch on 11/22/2013 and 09/18/2014. It is computed up to spherical harmonic degree and order 25 for the main field, 13 for the secular variation, and 2 for the external field. A selection on local time rather than on true illumination of the spacecraft was chosen in order to keep more measurements. Data selection based on geomagnetic indices was used to minimize the external field contributions. Measurements were screened and outliers were carefully removed. The model uses magnetic field intensity measurements at all latitudes and magnetic field vector measurements equatorward of 50° absolute quasi-dipole magnetic latitude. A second model using only the vertical component of the measured magnetic field and the total intensity was computed. This companion model offers a slightly better fit to the measurements. These two models are compared and discussed.We discuss in particular the quality of the model which does not use the full vector measurements and underline that this approach may be used when only partial directional information is known. The candidate models and their associated companion models are retrospectively compared to the adopted IGRF which allows us to criticize our own choices.
Restoration of MRI data for intensity non-uniformities using local high order intensity statistics
Hadjidemetriou, Stathis; Studholme, Colin; Mueller, Susanne; Weiner, Michael; Schuff, Norbert
2008-01-01
MRI at high magnetic fields (>3.0 T) is complicated by strong inhomogeneous radio-frequency fields, sometimes termed the “bias field”. These lead to non-biological intensity non-uniformities across the image. They can complicate further image analysis such as registration and tissue segmentation. Existing methods for intensity uniformity restoration have been optimized for 1.5 T, but they are less effective for 3.0 T MRI, and not at all satisfactory for higher fields. Also, many of the existing restoration algorithms require a brain template or use a prior atlas, which can restrict their practicalities. In this study an effective intensity uniformity restoration algorithm has been developed based on non-parametric statistics of high order local intensity co-occurrences. These statistics are restored with a non-stationary Wiener filter. The algorithm also assumes a smooth non-uniformity and is stable. It does not require a prior atlas and is robust to variations in anatomy. In geriatric brain imaging it is robust to variations such as enlarged ventricles and low contrast to noise ratio. The co-occurrence statistics improve robustness to whole head images with pronounced non-uniformities present in high field acquisitions. Its significantly improved performance and lower time requirements have been demonstrated by comparing it to the very commonly used N3 algorithm on BrainWeb MR simulator images as well as on real 4 T human head images. PMID:18621568
Intensity-dependent atomic-phase effects in high-order harmonic generation
NASA Astrophysics Data System (ADS)
Peatross, J.; Meyerhofer, D. D.
1995-11-01
The far-field angular distributions of high-order harmonics of a 1054-nm laser, with orders ranging from the lower teens to the upper thirties, have been measured in thin, low-density Ar, Kr, and Xe targets. The 1.25-times-diffraction-limited, 1.4-ps-duration, Gaussian laser pulses were focused to intensities ranging from 3×1013 to 3×1014 W/cm2, using f/70 optics. A gas target localized the gas distribution near the laser focus to a thickness of about 1 mm at pressures as low as 0.3 Torr. The weak focusing geometry and the low gas pressures created experimental conditions for which the harmonics could be thought of as emerging from a plane at the laser focus rather than a three-dimensional volume. The far-field distributions of nearly all of the harmonics exhibit narrow central peaks surrounded by broad wings of about the same angular divergence as the emerging laser beam. The spatial wings are due to an intensity-dependent phase variation among the dipole moments of the individual target atoms. This phase variation gives rise to broad spatial interferences in the scattered light due to the radial and temporal variation of the laser intensity.
Exciton properties in zincblende InGaN-GaN quantum wells under the effects of intense laser fields
2012-01-01
In this work, we study the exciton states in a zincblende InGaN/GaN quantum well using a variational technique. The system is considered under the action of intense laser fields with the incorporation of a direct current electric field as an additional external probe. The effects of these external influences as well as of the changes in the geometry of the heterostructure on the exciton binding energy are discussed in detail. PMID:22937963
Exciton properties in zincblende InGaN-GaN quantum wells under the effects of intense laser fields.
Duque, Carlos M; Mora-Ramos, Miguel E; Duque, Carlos A
2012-08-31
: In this work, we study the exciton states in a zincblende InGaN/GaN quantum well using a variational technique. The system is considered under the action of intense laser fields with the incorporation of a direct current electric field as an additional external probe. The effects of these external influences as well as of the changes in the geometry of the heterostructure on the exciton binding energy are discussed in detail.
Coupled structural, thermal, phase-change and electromagnetic analysis for superconductors, volume 2
NASA Technical Reports Server (NTRS)
Felippa, Carlos A.; Farhat, Charbel; Park, K. C.; Militello, Carmelo; Schuler, James J.
1993-01-01
Two families of parametrized mixed variational principles for linear electromagnetodynamics are constructed. The first family is applicable when the current density distribution is known a priori. Its six independent fields are magnetic intensity and flux density, magnetic potential, electric intensity and flux density and electric potential. Through appropriate specialization of parameters the first principle reduces to more conventional principles proposed in the literature. The second family is appropriate when the current density distribution and a conjugate Lagrange multiplier field are adjoined, giving a total of eight independently varied fields. In this case it is shown that a conventional variational principle exists only in the time-independent (static) case. Several static functionals with reduced number of varied fields are presented. The application of one of these principles to construct finite elements with current prediction capabilities is illustrated with a numerical example.
Geomagnetic spikes on the core-mantle boundary
NASA Astrophysics Data System (ADS)
Davies, Christopher; Constable, Catherine
2017-05-01
Extreme variations of Earth's magnetic field occurred in the Levant region around 1000 BC, when the field intensity rapidly rose and fell by a factor of 2. No coherent link currently exists between this intensity spike and the global field produced by the core geodynamo. Here we show that the Levantine spike must span >60° longitude at Earth's surface if it originates from the core-mantle boundary (CMB). Several low intensity data are incompatible with this geometric bound, though age uncertainties suggest these data could have sampled the field before the spike emerged. Models that best satisfy energetic and geometric constraints produce CMB spikes 8-22° wide, peaking at O(100) mT. We suggest that the Levantine spike reflects an intense CMB flux patch that grew in place before migrating northwest, contributing to growth of the dipole field. Estimates of Ohmic heating suggest that diffusive processes likely govern the ultimate decay of geomagnetic spikes.
Spatial variations of the Sr I 4607 Å scattering polarization peak
NASA Astrophysics Data System (ADS)
Bianda, M.; Berdyugina, S.; Gisler, D.; Ramelli, R.; Belluzzi, L.; Carlin, E. S.; Stenflo, J. O.; Berkefeld, T.
2018-06-01
Context. The scattering polarization signal observed in the photospheric Sr I 4607 Å line is expected to vary at granular spatial scales. This variation can be due to changes in the magnetic field intensity and orientation (Hanle effect), but also to spatial and temporal variations in the plasma properties. Measuring the spatial variation of such polarization signal would allow us to study the properties of the magnetic fields at subgranular scales, but observations are challenging since both high spatial resolution and high spectropolarimetric sensitivity are required. Aims: We aim to provide observational evidence of the polarization peak spatial variations, and to analyze the correlation they might have with granulation. Methods: Observations conjugating high spatial resolution and high spectropolarimetric precision were performed with the Zurich IMaging POLarimeter, ZIMPOL, at the GREGOR solar telescope, taking advantage of the adaptive optics system and the newly installed image derotator. Results: Spatial variations of the scattering polarization in the Sr I 4607 Å line are clearly observed. The spatial scale of these variations is comparable with the granular size. Small correlations between the polarization signal amplitude and the continuum intensity indicate that the polarization is higher at the center of granules than in the intergranular lanes.
Dynamics in the solar chromosphere as a function of the magnetic field topology
NASA Astrophysics Data System (ADS)
Karlsen, N.; Carlsson, M.
2002-06-01
We have looked at the coupling between the magnetic field and chromospheric dynamics. Observations with the SUMER spectrograph of the continuum radiation at 1319 Å have been correlated with simultaneous MDI magnetograms and dopplergrams in high resolution mode. We have used 7 different observing runs for our analysis, all from 1996. The absolute value of the magnetic field crossing the SUMER slit lies in the range 0-100 gauss. We observe a correlation between continuum intensity and magnetic field strength all the way to the sensitivity limit of MDI (about 2 G as 3σ in the mean value). Relative intensity fluctuations at frequencies corresponding to propagating acoustic waves (>4.5 mHz) have smaller amplitudes with increasing radiation temperature (or magnetic field strength). The absolute intensity fluctuations show an increase with increasing radiation temperature. These findings are consistent with a picture where a basic intensity level is set by a magnetic heating process even in the darkest internetwork areas with superimposed intensity variations caused by acoustic waves.
Su, Li-Chien; Hsu, Yi-Hsiang; Wang, Hsiang-Yu
2012-05-01
An alternating current was used to generate an electric field to enhance the fluorescent labeling of microalgae cellular lipids with Nile red and LipidTOX. The decay of the fluorescence intensity of Chlorella vulgaris cells in 0 V/cm was more than 50% after 10 min, and the intensity variation was as high as 7% in 20s. At 2000 V/cm, the decay rate decreased to 1.22% per minute and the intensity fluctuation was less than 1% for LipidTOX-labeled cells. For Spirulina sp. cells at 0 V/cm, the fluorescence intensity increased by 10% after 10 min, whereas at 2000 V/cm, labeling was more rapid and fluorescence intensity doubled. These results show that applying an electric field can improve the quality of fluorescence detection by alleviating decay and fluctuation or by enhancing signal intensity. Copyright © 2012 Elsevier Ltd. All rights reserved.
Observation of the thunderstorm-related ground cosmic ray flux variations by ARGO-YBJ
NASA Astrophysics Data System (ADS)
Bartoli, B.; Bernardini, P.; Bi, X. J.; Cao, Z.; Catalanotti, S.; Chen, S. Z.; Chen, T. L.; Cui, S. W.; Dai, B. Z.; D'Amone, A.; Danzengluobu; De Mitri, I.; D'Ettorre Piazzoli, B.; Di Girolamo, T.; Di Sciascio, G.; Feng, C. F.; Feng, Zhaoyang; Feng, Zhenyong; Gao, W.; Gou, Q. B.; Guo, Y. Q.; He, H. H.; Hu, Haibing; Hu, Hongbo; Iacovacci, M.; Iuppa, R.; Jia, H. Y.; Labaciren; Li, H. J.; Liu, C.; Liu, J.; Liu, M. Y.; Lu, H.; Ma, L. L.; Ma, X. H.; Mancarella, G.; Mari, S. M.; Marsella, G.; Mastroianni, S.; Montini, P.; Ning, C. C.; Perrone, L.; Pistilli, P.; Salvini, P.; Santonico, R.; Shen, P. R.; Sheng, X. D.; Shi, F.; Surdo, A.; Tan, Y. H.; Vallania, P.; Vernetto, S.; Vigorito, C.; Wang, H.; Wu, C. Y.; Wu, H. R.; Xue, L.; Yang, Q. Y.; Yang, X. C.; Yao, Z. G.; Yuan, A. F.; Zha, M.; Zhang, H. M.; Zhang, L.; Zhang, X. Y.; Zhang, Y.; Zhao, J.; Zhaxiciren; Zhaxisangzhu; Zhou, X. X.; Zhu, F. R.; Zhu, Q. Q.; D'Alessandro, F.; ARGO-YBJ Collaboration
2018-02-01
A correlation between the secondary cosmic ray flux and the near-earth electric field intensity, measured during thunderstorms, has been found by analyzing the data of the ARGO-YBJ experiment, a full coverage air shower array located at the Yangbajing Cosmic Ray Laboratory (4300 m a. s. l., Tibet, China). The counting rates of showers with different particle multiplicities (m =1 , 2, 3, and ≥4 ) have been found to be strongly dependent upon the intensity and polarity of the electric field measured during the course of 15 thunderstorms. In negative electric fields (i.e., accelerating negative charges downwards), the counting rates increase with increasing electric field strength. In positive fields, the rates decrease with field intensity until a certain value of the field EFmin (whose value depends on the event multiplicity), above which the rates begin increasing. By using Monte Carlo simulations, we found that this peculiar behavior can be well described by the presence of an electric field in a layer of thickness of a few hundred meters in the atmosphere above the detector, which accelerates/decelerates the secondary shower particles of opposite charge, modifying the number of particles with energy exceeding the detector threshold. These results, for the first time to our knowledge, give a consistent explanation for the origin of the variation of the electron/positron flux observed for decades by high altitude cosmic ray detectors during thunderstorms.
NASA Astrophysics Data System (ADS)
Kapranov, Sergey V.; Kouzaev, Guennadi A.
2018-01-01
Variations of effective diffusion coefficient of polar molecules exposed to microwave electric fields in a surface potential are studied by solving coupled stochastic differential equations of motion with a deterministic component of the surface force. Being an essential tool for the simulation interpretation, a theoretical approach to effective diffusion in surface potential is first developed. The effective diffusion coefficient is represented as the product of the normal diffusion coefficient and potential-dependent correction function, whose temperature dependence is close to the Arrhenius form. The analytically found zero-diffusion condition defines the state of thermal equilibrium at the surface. The diffusion of a water-like dipole molecule in the potential of graphite surface is simulated in the field-free conditions and in the presence of the alternating electric fields of various magnitude intensities and frequencies. Temperature dependence of the correction function exhibits field-induced variations of the effective Lennard-Jones energy parameter. It demonstrates maximum departure from the zero-field value at certain frequencies and intensities, which is associated with variations in the rotational dynamics. A concept of the amplitude-frequency resonance put forward to interpret the simulation results is explained using a heuristic reasoning and is corroborated by semi-quantitative considerations in terms of the Dissado-Hill cluster theory of dielectric relaxation.
NASA Astrophysics Data System (ADS)
Nagorskiy, Petr; Zenchenko, Tatiana; Breus, Tamara; Smirnov, Sergey
The objective of this work was to study the degree of synchronization of heart rate (HR) of healthy volunteers with magnetic variations and various weather conditions in mHz - frequency range. Experimental results for synchronic registration of physiological variations, atmospheric electrical and meteorological parameters with a time resolution of 0.5-1 min are presented. The experiment was conducted in a building of IMCES SB RAS (Tomsk). 15 experiments of 60 minutes each were conducted, and four volunteers of all ages in a state of rest were examined. Meteorological parameters (atmospheric pressure, relative air humidity and temperatureas well as a wind speed) were measured using standard meteorological devices located on the roof of the same building and also on the open area. Data on geomagnetic activity on the nearest magnetic station Klyichi were obtained from the site http://ottawa.intermagnet.org/apps/download/index-eng.php # view. The electric field intensity was recorded the following way: in the room (5-storey panel ferroconcrete building) by the autonomous fluxmeter CS110 at a distance of 1.5 meters from the investigated volunteers, and on the open test - area by the stationary electric fluxmeter "Field 2". Data analysis techniques were: cross-correlation analysis, spectral analysis (Fourier transform and the calculation of the coherence function) and wavelet analysis. It was found that the dependence of the heart rate variation dynamics from the X-component of the Earth magnetic field magnitude was observed in 53% of cases, from the relative humidity - in 33%, from the atmospheric pressure, the wind speed and intensity of the electric field in an open area - in 20%, from the intensity the electric field in the room of the experiment - in 7% of cases. It was found not only coincidence of observed values of oscillation periods in physiological and geophysical series lasting 5-30 minutes, but also moments of approximate synchronicity in their appearance and disappearance. The highest degree of synchronization of HR with the variations of the geomagnetic field (in all four conducted experiments in this day) was observed in the most geomagnetically quiet day - 04.10.12 (Ap = 1), while the lowest one - in the day of the geomagnetic disturbances - 01.10.12 (Ap = 32). The characteristics of the electric field variations in the time-frequency domain in the experiments conducted indoors and outdoors differ fundamentally.
NASA Astrophysics Data System (ADS)
Salnaia, N.; Gallet, Y.; Genevey, A.; Antipov, I.; Elshin, D.
2017-12-01
We will present a synthesis of the archeointensity data spanning the past millennium that we recently acquired in the European part of Russia. These data were principally obtained from groups of architectural brick fragments sampled in the Novgorod, Moscow and Yaroslavl areas that are precisely dated between the 12th and the 19th century thanks to archives and archeological constraints. All intensity measurements were carried out using the experimental protocol developed for the Triaxe magnetometer. The reliability of the data is attested through the use of stringent selection criteria on the Triaxe data, rock magnetic experiments and by the use of two different cooling rates for laboratory thermoremanent magnetization acquisition. Altogether the new data show a progressive decrease of the geomagnetic field intensities in Northwestern-Central Russia over the past millennium. They do not exhibit large and rapid fluctuations, as those previously reported from the Balkan archeointensity dataset. They further allow us to constrain the dipole moment evolution over the past four centuries. Finally, we will discuss the consistency of the geomagnetic field intensity variations during the second millennium AD at the entire European scale. The research was supported by RSF (project No. 16-17-10097)
NASA Astrophysics Data System (ADS)
Foufoula-Georgiou, E.; Ebtehaj, A. M.; Zhang, S. Q.; Hou, A. Y.
2014-05-01
The increasing availability of precipitation observations from space, e.g., from the Tropical Rainfall Measuring Mission (TRMM) and the forthcoming Global Precipitation Measuring (GPM) Mission, has fueled renewed interest in developing frameworks for downscaling and multi-sensor data fusion that can handle large data sets in computationally efficient ways while optimally reproducing desired properties of the underlying rainfall fields. Of special interest is the reproduction of extreme precipitation intensities and gradients, as these are directly relevant to hazard prediction. In this paper, we present a new formalism for downscaling satellite precipitation observations, which explicitly allows for the preservation of some key geometrical and statistical properties of spatial precipitation. These include sharp intensity gradients (due to high-intensity regions embedded within lower-intensity areas), coherent spatial structures (due to regions of slowly varying rainfall), and thicker-than-Gaussian tails of precipitation gradients and intensities. Specifically, we pose the downscaling problem as a discrete inverse problem and solve it via a regularized variational approach (variational downscaling) where the regularization term is selected to impose the desired smoothness in the solution while allowing for some steep gradients (called ℓ1-norm or total variation regularization). We demonstrate the duality between this geometrically inspired solution and its Bayesian statistical interpretation, which is equivalent to assuming a Laplace prior distribution for the precipitation intensities in the derivative (wavelet) space. When the observation operator is not known, we discuss the effect of its misspecification and explore a previously proposed dictionary-based sparse inverse downscaling methodology to indirectly learn the observation operator from a data base of coincidental high- and low-resolution observations. The proposed method and ideas are illustrated in case studies featuring the downscaling of a hurricane precipitation field.
NASA Technical Reports Server (NTRS)
Foufoula-Georgiou, E.; Ebtehaj, A. M.; Zhang, S. Q.; Hou, A. Y.
2013-01-01
The increasing availability of precipitation observations from space, e.g., from the Tropical Rainfall Measuring Mission (TRMM) and the forthcoming Global Precipitation Measuring (GPM) Mission, has fueled renewed interest in developing frameworks for downscaling and multi-sensor data fusion that can handle large data sets in computationally efficient ways while optimally reproducing desired properties of the underlying rainfall fields. Of special interest is the reproduction of extreme precipitation intensities and gradients, as these are directly relevant to hazard prediction. In this paper, we present a new formalism for downscaling satellite precipitation observations, which explicitly allows for the preservation of some key geometrical and statistical properties of spatial precipitation. These include sharp intensity gradients (due to high-intensity regions embedded within lower-intensity areas), coherent spatial structures (due to regions of slowly varying rainfall),and thicker-than-Gaussian tails of precipitation gradients and intensities. Specifically, we pose the downscaling problem as a discrete inverse problem and solve it via a regularized variational approach (variational downscaling) where the regularization term is selected to impose the desired smoothness in the solution while allowing for some steep gradients(called 1-norm or total variation regularization). We demonstrate the duality between this geometrically inspired solution and its Bayesian statistical interpretation, which is equivalent to assuming a Laplace prior distribution for the precipitation intensities in the derivative (wavelet) space. When the observation operator is not known, we discuss the effect of its misspecification and explore a previously proposed dictionary-based sparse inverse downscaling methodology to indirectly learn the observation operator from a database of coincidental high- and low-resolution observations. The proposed method and ideas are illustrated in case studies featuring the downscaling of a hurricane precipitation field.
Time variations in geomagnetic intensity
NASA Astrophysics Data System (ADS)
Valet, Jean-Pierre
2003-03-01
After many years spent by paleomagnetists studying the directional behavior of the Earth's magnetic field at all possible timescales, detailed measurements of field intensity are now needed to document the variations of the entire vector and to analyze the time evolution of the field components. A significant step has been achieved by combining intensity records derived from archeological materials and from lava flows in order to extract the global field changes over the past 12 kyr. A second significant step was due to the emergence of coherent records of relative paleointensity using the remanent magnetization of sediments to retrace the evolution of the dipole field. A third step was the juxtaposition of these signals with those derived from cosmogenic isotopes. Contemporaneous with the acquisition of records, new techniques have been developed to constrain the geomagnetic origin of the signals. Much activity has also been devoted to improving the quality of determinations of absolute paleointensity from volcanic rocks with new materials, proper selection of samples, and investigations of complex changes in magnetization during laboratory experiments. Altogether these developments brought us from a situation where the field changes were restricted to the past 40 kyr to the emergence of a coherent picture of the changes in the geomagnetic dipole moment for at least the past 1 Myr. On longer timescales the field variability and its average behavior is relatively well documented for the past 400 Myr. Section 3 gives a summary of most methods and techniques that are presently used to track the field intensity changes in the past. In each case, current limits and potential promises are discussed. The section 4 describes the field variations measured so far over various timescales covered by the archeomagnetic and the paleomagnetic records. Preference has always been given to composite records and databases in order to extract and discuss major and global geomagnetic features. Special attention has been devoted to discussing the degree of confidence to be put in the data by considering the integration of multiple data sets involving different techniques and/or materials.
Bayesian Analysis of Hmi Images and Comparison to Tsi Variations and MWO Image Observables
NASA Astrophysics Data System (ADS)
Parker, D. G.; Ulrich, R. K.; Beck, J.; Tran, T. V.
2015-12-01
We have previously applied the Bayesian automatic classification system AutoClass to solar magnetogram and intensity images from the 150 Foot Solar Tower at Mount Wilson to identify classes of solar surface features associated with variations in total solar irradiance (TSI) and, using those identifications, modeled TSI time series with improved accuracy (r > 0.96). (Ulrich, et al, 2010) AutoClass identifies classes by a two-step process in which it: (1) finds, without human supervision, a set of class definitions based on specified attributes of a sample of the image data pixels, such as magnetic field and intensity in the case of MWO images, and (2) applies the class definitions thus found to new data sets to identify automatically in them the classes found in the sample set. HMI high resolution images capture four observables-magnetic field, continuum intensity, line depth and line width-in contrast to MWO's two observables-magnetic field and intensity. In this study, we apply AutoClass to the HMI observables for images from June, 2010 to December, 2014 to identify solar surface feature classes. We use contemporaneous TSI measurements to determine whether and how variations in the HMI classes are related to TSI variations and compare the characteristic statistics of the HMI classes to those found from MWO images. We also attempt to derive scale factors between the HMI and MWO magnetic and intensity observables.The ability to categorize automatically surface features in the HMI images holds out the promise of consistent, relatively quick and manageable analysis of the large quantity of data available in these images. Given that the classes found in MWO images using AutoClass have been found to improve modeling of TSI, application of AutoClass to the more complex HMI images should enhance understanding of the physical processes at work in solar surface features and their implications for the solar-terrestrial environment.Ulrich, R.K., Parker, D, Bertello, L. and Boyden, J. 2010, Solar Phys. , 261 , 11.
Stimulated Brillouin scattering in the field of a two-dimensionally localized pumping wave
DOE Office of Scientific and Technical Information (OSTI.GOV)
Solikhov, D. K., E-mail: davlat56@mail.ru; Dvinin, S. A., E-mail: dvinin@phys.msu.ru
2016-06-15
Stimulated Brillouin scattering of electromagnetic waves in the field of a two-dimensionally localized pump wave at arbitrary scattering angles in the regime of forward scattering is analyzed. Spatial variations in the amplitudes of interacting waves are studied for different values of the pump field and different dimensions of the pump wave localization region. The intensity of scattered radiation is determined as a function of the scattering angle and the dimensions of the pump wave localization region. It is shown that the intensity increases with increasing scattering angle.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Michael, A. T.; Opher, M.; Provornikova, E.
In the heliosheath (HS), Voyager 2 has observed a flow with constant radial velocity and magnetic flux conservation. Voyager 1, however, has observed a decrease in the flow’s radial velocity and an order of magnitude decrease in magnetic flux. We investigate the role of the 11 yr solar cycle variation of the magnetic field strength on the magnetic flux within the HS using a global 3D magnetohydrodynamic model of the heliosphere. We use time and latitude-dependent solar wind velocity and density inferred from Solar and Heliospheric Observatory/SWAN and interplanetary scintillations data and implemented solar cycle variations of the magnetic fieldmore » derived from 27 day averages of the field magnitude average of the magnetic field at 1 AU from the OMNI database. With the inclusion of the solar cycle time-dependent magnetic field intensity, the model matches the observed intensity of the magnetic field in the HS along both Voyager 1 and 2. This is a significant improvement from the same model without magnetic field solar cycle variations, which was over a factor of two larger. The model accurately predicts the radial velocity observed by Voyager 2; however, the model predicts a flow speed ∼100 km s{sup −1} larger than that derived from LECP measurements at Voyager 1. In the model, magnetic flux is conserved along both Voyager trajectories, contrary to observations. This implies that the solar cycle variations in solar wind magnetic field observed at 1 AU does not cause the order of magnitude decrease in magnetic flux observed in the Voyager 1 data.« less
Giant magneto-optical Raman effect in a layered transition metal compound
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ji, Jianting; Zhang, Anmin; Fan, Jiahe
2016-02-16
Here, we report a dramatic change in the intensity of a Raman mode with applied magnetic field, displaying a gigantic magneto-optical effect. Using the nonmagnetic layered material MoS 2 as a prototype system, we demonstrate that the application of a magnetic field perpendicular to the layers produces a dramatic change in intensity for the out-of-plane vibrations of S atoms, but no change for the in-plane breathing mode. The distinct intensity variation between these two modes results from the effect of field-induced broken symmetry on Raman scattering cross-section. A quantitative analysis on the field-dependent integrated Raman intensity provides a unique methodmore » to precisely determine optical mobility. Our analysis is symmetry-based and material-independent, and thus the observations should be general and inspire a new branch of inelastic light scattering and magneto-optical applications.« less
Saminathan, Sathiyan; Chandraraj, Varatharaj; Sridhar, C H; Manickam, Ravikumar
2012-01-01
To compare the measured and calculated individual and composite field planar dose distribution of Intensity Modulated Radiotherapy plans. The measurements were performed in Clinac DHX linear accelerator with 6 MV photons using Matrixx device and a solid water phantom. The 20 brain tumor patients were selected for this study. The IMRT plan was carried out for all the patients using Eclipse treatment planning system. The verification plan was produced for every original plan using CT scan of Matrixx embedded in the phantom. Every verification field was measured by the Matrixx. The TPS calculated and measured dose distributions were compared for individual and composite fields. The percentage of gamma pixel match for the dose distribution patterns were evaluated using gamma histogram. The gamma pixel match was 95-98% for 41 fields (39%) and 98% for 59 fields (61%) with individual fields. The percentage of gamma pixel match was 95-98% for 5 patients and 98% for other 12 patients with composite fields. Three patients showed a gamma pixel match of less than 95%. The comparison of percentage gamma pixel match for individual and composite fields showed more than 2.5% variation for 6 patients, more than 1% variation for 4 patients, while the remaining 10 patients showed less than 1% variation. The individual and composite field measurements showed good agreement with TPS calculated dose distribution for the studied patients. The measurement and data analysis for individual fields is a time consuming process, the composite field analysis may be sufficient enough for smaller field dose distribution analysis with array detectors.
High-resolution records of non-dipole variations derived from volcanic edifices
NASA Astrophysics Data System (ADS)
de Groot, Lennart; Biggin, Andrew; Dekkers, Mark
2014-05-01
Our understanding of the short-term behavior of the Earth's magnetic field is currently mainly hampered by a lack of coeval high-resolution records of geomagnetic intensity variations that are well distributed over the globe. Lavas are the only recorder of short-term fluctuations of the geomagnetic field that are available for all parts of the world and on geological time scales. Therefore, many efforts have been made to improve the methodology to obtain reliable estimates of the paleointensity from igneous rocks over the past decades. It is well known that some paleointensity methods will work on certain lavas with specific thermomagnetic behaviour, but fail for others. We therefore propose a 'multi-method paleointensity approach' that consists of Thellier-style, multispecimen-style, and calibrated pseudo-Thellier-style experiments to construct high-resolution records of regional variations in the intensity of the Earth's magnetic field. With our new approach we obtain a reliable estimate of the paleointensity for 60-70 percent of all cooling units sampled. By applying our new approach to suites of lavas from Hawaii (USA), and the Canary Islands (Spain) we obtain important constraints for short-term local geomagnetic intensity highs, and insight into their possible driving mechanisms. Our new record for Hawai'i indicates that, approximately 1000 years ago, the local field intensity increased on the order of 50% for 200 years - a qualitatively similar phenomenon observed 200 years earlier in western Europe (Gallet et al., 2005; Gomez-Paccard et al., 2012) and 500 years later in southwestern USA (Bowles et al., 2002). When these records are combined with a record for Japan (Yu, 2012), a coherent picture emerges that includes the dipole component decaying steadily since at least 1000 years ago. Superimposed onto this decay are strong but shorter-term intensity variations at a regional level whose asynchronicity necessitates a highly non-dipolar nature. Our paleointensity data obtained for Tenerife reveal high paleointensities temporally coinciding with an intensity high occurring in the Middle East around 1000 BC. If our findings are related to this 'archeomagnetic jerk', it must have extended more than 50 degrees westward in longitude. References: Gallet et al., 2005, EPSL vol. 236, pp. 339-347 Gomez-Paccard et al., 2012, EPSL, vol. 355-356, pp. 131-143 Bowles et al, 2002, EPSL, vol. 203, pp. 967-981 Yu et al., 2012, JGR, vol. 177, p. B08101
Palaeomagnetic field intensity variations suggest Mesoproterozoic inner-core nucleation
NASA Astrophysics Data System (ADS)
Biggin, A. J.; Piispa, E. J.; Pesonen, L. J.; Holme, R.; Paterson, G. A.; Veikkolainen, T.; Tauxe, L.
2015-10-01
The Earth's inner core grows by the freezing of liquid iron at its surface. The point in history at which this process initiated marks a step-change in the thermal evolution of the planet. Recent computational and experimental studies have presented radically differing estimates of the thermal conductivity of the Earth's core, resulting in estimates of the timing of inner-core nucleation ranging from less than half a billion to nearly two billion years ago. Recent inner-core nucleation (high thermal conductivity) requires high outer-core temperatures in the early Earth that complicate models of thermal evolution. The nucleation of the core leads to a different convective regime and potentially different magnetic field structures that produce an observable signal in the palaeomagnetic record and allow the date of inner-core nucleation to be estimated directly. Previous studies searching for this signature have been hampered by the paucity of palaeomagnetic intensity measurements, by the lack of an effective means of assessing their reliability, and by shorter-timescale geomagnetic variations. Here we examine results from an expanded Precambrian database of palaeomagnetic intensity measurements selected using a new set of reliability criteria. Our analysis provides intensity-based support for the dominant dipolarity of the time-averaged Precambrian field, a crucial requirement for palaeomagnetic reconstructions of continents. We also present firm evidence for the existence of very long-term variations in geomagnetic strength. The most prominent and robust transition in the record is an increase in both average field strength and variability that is observed to occur between a billion and 1.5 billion years ago. This observation is most readily explained by the nucleation of the inner core occurring during this interval; the timing would tend to favour a modest value of core thermal conductivity and supports a simple thermal evolution model for the Earth.
NASA Technical Reports Server (NTRS)
Humble, J. E.; Fenton, A. G.
1985-01-01
It has been known for some years that the intensity variations in sidereal time observed by muon detectors at moderate underground depths are sensitive to the polarity of the interplanetary magnetic field (ipmf) near the Earth. There are differences in the response to these anisotropies as observed in the Norhtern and southern hemispheres. When fully understood, the nature of the anisotropy seems likely to provide information on the 3-dimensional structure of the heliomagnetosphere, its time variations, and its linking with the local interstellar field. The summation harmonic dials for the sidereal diurnal variation during 1958 to 1982 show that there is a strong dependence on whether the ipmf near the Earth is directed outwards from the Sun or inwards it.
Tls Field Data Based Intensity Correction for Forest Environments
NASA Astrophysics Data System (ADS)
Heinzel, J.; Huber, M. O.
2016-06-01
Terrestrial laser scanning (TLS) is increasingly used for forestry applications. Besides the three dimensional point coordinates, the 'intensity' of the reflected signal plays an important role in forestry and vegetation studies. The benefit of the signal intensity is caused by the wavelength of the laser that is within the near infrared (NIR) for most scanners. The NIR is highly indicative for various vegetation characteristics. However, the intensity as recorded by most terrestrial scanners is distorted by both external and scanner specific factors. Since details about system internal alteration of the signal are often unknown to the user, model driven approaches are impractical. On the other hand, existing data driven calibration procedures require laborious acquisition of separate reference datasets or areas of homogenous reflection characteristics from the field data. In order to fill this gap, the present study introduces an approach to correct unwanted intensity variations directly from the point cloud of the field data. The focus is on the variation over range and sensor specific distortions. Instead of an absolute calibration of the values, a relative correction within the dataset is sufficient for most forestry applications. Finally, a method similar to time series detrending is presented with the only pre-condition of a relative equal distribution of forest objects and materials over range. Our test data covers 50 terrestrial scans captured with a FARO Focus 3D S120 scanner using a laser wavelength of 905 nm. Practical tests demonstrate that our correction method removes range and scanner based alterations of the intensity.
Midlatitude cooling caused by geomagnetic field minimum during polarity reversal.
Kitaba, Ikuko; Hyodo, Masayuki; Katoh, Shigehiro; Dettman, David L; Sato, Hiroshi
2013-01-22
The climatic effects of cloud formation induced by galactic cosmic rays (CRs) has recently become a topic of much discussion. The CR-cloud connection suggests that variations in geomagnetic field intensity could change climate through modulation of CR flux. This hypothesis, however, is not well-tested using robust geological evidence. Here we present paleoclimate and paleoenvironment records of five interglacial periods that include two geomagnetic polarity reversals. Marine oxygen isotope stages 19 and 31 contain both anomalous cooling intervals during the sea-level highstands and the Matuyama-Brunhes and Lower Jaramillo reversals, respectively. This contrasts strongly with the typical interglacial climate that has the temperature maximum at the sea-level peak. The cooling occurred when the field intensity dropped to <40% of its present value, for which we estimate >40% increase in CR flux. The climate warmed rapidly when field intensity recovered. We suggest that geomagnetic field intensity can influence global climate through the modulation of CR flux.
Midlatitude cooling caused by geomagnetic field minimum during polarity reversal
Kitaba, Ikuko; Hyodo, Masayuki; Katoh, Shigehiro; Dettman, David L.; Sato, Hiroshi
2013-01-01
The climatic effects of cloud formation induced by galactic cosmic rays (CRs) has recently become a topic of much discussion. The CR–cloud connection suggests that variations in geomagnetic field intensity could change climate through modulation of CR flux. This hypothesis, however, is not well-tested using robust geological evidence. Here we present paleoclimate and paleoenvironment records of five interglacial periods that include two geomagnetic polarity reversals. Marine oxygen isotope stages 19 and 31 contain both anomalous cooling intervals during the sea-level highstands and the Matuyama–Brunhes and Lower Jaramillo reversals, respectively. This contrasts strongly with the typical interglacial climate that has the temperature maximum at the sea-level peak. The cooling occurred when the field intensity dropped to <40% of its present value, for which we estimate >40% increase in CR flux. The climate warmed rapidly when field intensity recovered. We suggest that geomagnetic field intensity can influence global climate through the modulation of CR flux. PMID:23297205
A global analysis of the 1991 geomagnetic jerk
NASA Astrophysics Data System (ADS)
De Michelis, Paola; Cafarella, Lili; Meloni, Antonio
2000-12-01
A recent examination of the geomagnetic annual mean values for the European magnetic observatories has shown the existence of a sudden change in the secular acceleration in about 1991 (Cafarella & Meloni 1995; Macmillan 1996). Using first differences of the Y (east geomagnetic field component) mean values from 74 observatories, the worldwide character of the 1991 impulse has been determined (De Michelis et al. 1998). Using data from 109 observatories widely distributed all over the world, the structure of the secular variation for the X (north) and Z (vertical) magnetic field intensities around 1990 was investigated, and evidence of this most recent jerk was found. External effects were removed from the annual mean data by comparing the long-term variations of the geomagnetic field components at individual observatories with the long-term variations of two geomagnetic indices, aa and Dst, and of a solar index, the Wolf number R. A careful analysis has been carried out on the amplitude of the external disturbance, on its dependence on latitude, and on the weights of the geomagnetic indices in the evaluation of the resulting external field. The secular variation has been evaluated from the corrected annual means. Around 1990, the secular variation can be fitted at many observatories by two straight lines with a sudden and marked change in slope. In this manner the jerk occurrence time and the intensity of the step in the second time derivative (ΔX'', ΔY'' and ΔZ'') were computed. Maps of ΔX'', ΔY'' and ΔZ'' provide information on the worldwide intensity distribution of the examined event. Maps of the jerk occurrence-time distributions are also given. The mean jerk occurrence time is 1990.1+/-0.6. Finally, a spherical harmonic analysis was used to complete the quantitative description of this phenomenon in order to study the trend of the energy density spectrum as a function of the harmonic degree n.
NASA Astrophysics Data System (ADS)
Kuang, Xueyuan; Zhang, Yaocun
2005-11-01
The structure and seasonal variation of the East Asian Subtropical Westerly Jet (EAWJ) and associations with heating fields over East Asia are examined by using NCEP/NCAR reanalysis data. Obvious differences exist in the westerly jet intensity and location in different regions and seasons due to the ocean-land distribution and seasonal thermal contrast, as well as the dynamic and thermodynamic impacts of the Tibetan Plateau. In winter, the EAWJ center is situated over the western Pacific Ocean and the intensity is reduced gradually from east to west over the East Asian region. In summer, the EAWJ center is located over the north of the Tibetan Plateau and the jet intensity is reduced evidently compared with that in winter. The EAWJ seasonal evolution is characterized by the obvious longitudinal inconsistency of the northward migration and in-phase southward retreat of the EAWJ axis. A good correspondence between the seasonal variations of EAWJ and the meridional differences of air temperature (MDT) in the mid-upper troposphere demonstrates that the MDT is the basic reason for the seasonal variation of EAWJ. Correlation analyses indicate that the Kuroshio Current region to the south of Japan and the Tibetan Plateau are the key areas for the variations of the EAWJ intensities in winter and in summer, respectively. The strong sensible and latent heating in the Kuroshio Current region is closely related to the intensification of EAWJ in winter. In summer, strong sensible heating in the Tibetan Plateau corresponds to the EAWJ strengthening and southward shift, while the weak sensible heating in the Tibetan Plateau is consistent with the EAWJ weakening and northward migration.
NASA Astrophysics Data System (ADS)
Yusufzai, Mohd Zaheer Khan; Vashista, M.
2018-04-01
Barkhausen Noise analysis is a popular and preferred technique for micro-structural characterization. The root mean square value and peak value of Barkhausen Noise burst are important parameters to assess the micro-hardness and residual stress. Barkhausen Noise burst can be enveloped using a curve known as Barkhausen Noise profile. Peak position of profile changes with change in micro-structure. In the present work, raw signal of Barkhausen Noise burst was obtained from Ni based sample at various magnetic field intensity to observe the effect of variation in field intensity on Barkhausen Noise burst. Raw signal was opened using MATLAB to further process for microstructure analysis. Barkhausen Noise analysis parameters such as magnetizing frequency, number of burst, high pass and low pass filter frequency were kept constant and magnetizing field was varied in wide range between 200 Oe to 1200 Oe. The processed profiles of Barkhausen Noise burst obtained at various magnetizing field intensity clearly reveals requirement of optimum magnetic field strength for better characterization of micro-structure.
Bogaard, Amy; Hodgson, John; Nitsch, Erika; Jones, Glynis; Styring, Amy; Diffey, Charlotte; Pouncett, John; Herbig, Christoph; Charles, Michael; Ertuğ, Füsun; Tugay, Osman; Filipovic, Dragana; Fraser, Rebecca
This investigation combines two independent methods of identifying crop growing conditions and husbandry practices-functional weed ecology and crop stable carbon and nitrogen isotope analysis-in order to assess their potential for inferring the intensity of past cereal production systems using archaeobotanical assemblages. Present-day organic cereal farming in Haute Provence, France features crop varieties adapted to low-nutrient soils managed through crop rotation, with little to no manuring. Weed quadrat survey of 60 crop field transects in this region revealed that floristic variation primarily reflects geographical differences. Functional ecological weed data clearly distinguish the Provence fields from those surveyed in a previous study of intensively managed spelt wheat in Asturias, north-western Spain: as expected, weed ecological data reflect higher soil fertility and disturbance in Asturias. Similarly, crop stable nitrogen isotope values distinguish between intensive manuring in Asturias and long-term cultivation with minimal manuring in Haute Provence. The new model of cereal cultivation intensity based on weed ecology and crop isotope values in Haute Provence and Asturias was tested through application to two other present-day regimes, successfully identifying a high-intensity regime in the Sighisoara region, Romania, and low-intensity production in Kastamonu, Turkey. Application of this new model to Neolithic archaeobotanical assemblages in central Europe suggests that early farming tended to be intensive, and likely incorporated manuring, but also exhibited considerable variation, providing a finer grained understanding of cultivation intensity than previously available.
Mankinen, Edward A.; Prevot, M.; Gromme, C. Sherman; Coe, Robert S.
1985-01-01
The thick sequence of Miocene lava flows exposed on Steens Mountain in southeastern Oregon is well known for containing a detailed record of a reversed‐to‐normal geomagnetic polarity transition. Paleomagnetic samples were obtained from the sequence for a combined study of the directional and intensity variations recorded; the paleointensity study is reported in a companion paper. This effort has resulted in the first detailed history of total geomagnetic field behavior during a reversal of polarity. A comparison of the directional variation history of the reversed and normal polarity intervals on either side of the transition with the Holocene record has allowed an estimate of the duration of these periods to be made. These time estimates were then used to calculate accumulation rates for the volcanic sequence and thereby provide a means for estimating time periods within the transition itself. The polarity transition was found to consist of two phases, each with quite different characteristics. At the onset of the first phase, a one‐third decrease in magnetic field intensity may have preceded the first intermediate field directions by about 600 years. Changes in field direction were confined near the local north‐south vertical plane when the actual reversal in direction occurred and normal polarity directions may have been attained within 550±150 years. The end of the first phase of the transition was marked by a brief (possibly 100–300 years) period with normal polarity and a pretransitional intensity which suggests a quasi‐normal dipole field structure existed during this interval. The second phase of the transition was characterized by a return to very low field intensities with the changes in direction describing a long counterclockwise loop in contrast to the earlier narrowly constrained changes. This second phase lasted 2900±300 years, and both normal directions and intensities were recovered at the same time. Both directional and intensity data document very erratic geomagnetic field behavior during the polarity transition. Changes in magnetic field direction were variable and occurred either (1) in a regular, progressive manner, (2) with sudden, extremely rapid angular changes (58°±21°/year), or (3) with little or no movement for periods of the order of 600±200 years. Changes in magnetic intensity occurred in a like manner and were sometimes correlated with changes in direction, but during other periods both directional and intensity changes occurred independently. Directional changes following the polarity transition occurred in a seemingly normal manner, although intensity fluctuations attest to some instability of the newly reestablished dipole.
NASA Astrophysics Data System (ADS)
Burns, Z.; Gee, J. S.
2017-12-01
Analysis of paleomagnetic data can not only help us to understand the behavior of the ancient magnetic field but may also further our understanding of the current field, as well as of the mechanisms and constraints of the geodynamo and geomagnetic reversals. A question of particular interest is the possible relationship between reversal frequency and geomagnetic field intensity. Some research appears to indicate a correlation between low intensity and high reversal frequency, seeming to support the theory that low field intensity is what makes reversals possible. In order to study this correlation, we obtained several hundred samples from the 182 Ma Dufek Massif, in Antarctica. This intrusion was cooled slowly, at depth, during the high reversal frequency era of the early Jurassic, and most of our samples record multiple polarity intervals. This, combined with their particularly homogeneous magnetic characteristics, makes them ideally suited for recovering a record of geomagnetic field variations. On approximately 300 samples from the lower portion of the intrusion, we performed step-wise thermal demagnetization of the natural remanent magnetization (NRM), followed by thermal demagnetization of a laboratory thermoremance (TRM), imparted as partial TRMs in three orthogonal directions to assess the reliability of the remanence. These two sets of measurements can tell us about the amount and direction of magnetization acquired at each temperature step and the sample's capacity to acquire a remanence. Corrected for anisotropy, the ratio of the NRM/TRM values at each step multiplied by the value of the lab field can give us an estimate of the paleofield intensity. When convolved with a thermal cooling model for the intrusion, this yields a model of the time-varying ancient field during the intrusion's cooling period. Initial analysis of our data shows average field values of around 20 µT and a minimum of four reversals. The average at this high-latitude site is lower than the present-day equatorial value (30 µT), so the correlation between low field intensity and high reversal frequency is supported.
NASA Astrophysics Data System (ADS)
Karan, D. K.; Duggirala, P. R.
2017-12-01
The diurnal variations in daytime airglow emission intensity measurements at three wavelengths OI 777.4 nm, OI 630.0 nm, and OI 557.7 nm made from a low-latitude location, Hyderabad (Geographic 17.50 N, 78.40 E; 8.90 N Mag. Lat) in India have been investigated. The intensity patterns showed both symmetric and asymmetric behavior in their respective diurnal emission variability with respect to local noon. The asymmetric diurnal behavior is not expected considering the photochemical nature of the production mechanisms. The reason for this observed asymmetric diurnal behavior has been found to be predominantly the temporal variation in the equatorial electrodynamics. The plasma that is transported across latitudes due to the action of varying electric field strength over the magnetic equator in the daytime contributes to the asymmetric diurnal behavior in the neutral daytime airglow emissions. Independent magnetic and radio measurements support this finding. It is also noted that this asymmetric diurnal behavior in the neutral emission intensities has a solar cycle dependence with more number of days during high solar activity period showing asymmetric diurnal behavior compared to those during low-solar activity epoch. These intensity variations over long time scale demonstrate that the daytime neutral optical emissions are extremely sensitive to the changes in the eastward electric field over low- and equatorial-latitudes.
Probe of the solar magnetic field using the "cosmic-ray shadow" of the sun.
Amenomori, M; Bi, X J; Chen, D; Chen, T L; Chen, W Y; Cui, S W; Danzengluobu; Ding, L K; Feng, C F; Feng, Zhaoyang; Feng, Z Y; Gou, Q B; Guo, Y Q; Hakamada, K; He, H H; He, Z T; Hibino, K; Hotta, N; Hu, Haibing; Hu, H B; Huang, J; Jia, H Y; Jiang, L; Kajino, F; Kasahara, K; Katayose, Y; Kato, C; Kawata, K; Labaciren; Le, G M; Li, A F; Li, H J; Li, W J; Liu, C; Liu, J S; Liu, M Y; Lu, H; Meng, X R; Mizutani, K; Munakata, K; Nanjo, H; Nishizawa, M; Ohnishi, M; Ohta, I; Onuma, H; Ozawa, S; Qian, X L; Qu, X B; Saito, T; Saito, T Y; Sakata, M; Sako, T K; Shao, J; Shibata, M; Shiomi, A; Shirai, T; Sugimoto, H; Takita, M; Tan, Y H; Tateyama, N; Torii, S; Tsuchiya, H; Udo, S; Wang, H; Wu, H R; Xue, L; Yamamoto, Y; Yang, Z; Yasue, S; Yuan, A F; Yuda, T; Zhai, L M; Zhang, H M; Zhang, J L; Zhang, X Y; Zhang, Y; Zhang, Yi; Zhang, Ying; Zhaxisangzhu; Zhou, X X
2013-07-05
We report on a clear solar-cycle variation of the Sun’s shadow in the 10 TeV cosmic-ray flux observed by the Tibet air shower array during a full solar cycle from 1996 to 2009. In order to clarify the physical implications of the observed solar cycle variation, we develop numerical simulations of the Sun’s shadow, using the potential field source surface model and the current sheet source surface (CSSS) model for the coronal magnetic field. We find that the intensity deficit in the simulated Sun’s shadow is very sensitive to the coronal magnetic field structure, and the observed variation of the Sun’s shadow is better reproduced by the CSSS model. This is the first successful attempt to evaluate the coronal magnetic field models by using the Sun’s shadow observed in the TeV cosmic-ray flux.
NASA Astrophysics Data System (ADS)
Feng, Liqiang; Chu, Tianshu
2017-10-01
Intensity distributions and isolated attosecond pulse generation from the molecular high-order harmonic generation (MHHG) in H2+ and T2+ driven by the nonhomogeneous field have been theoretically investigated. (i) Generally speaking, the intensities of the harmonics driven by the homogeneous field can be enhanced as the initial vibrational state increases and much more intense harmonics can be obtained from the light nuclei. However, with the introduction of the nonhomogeneous effect, the enhanced ratios of the harmonic yields are decreased as the initial vibrational state increases. Moreover, the intensities of the harmonics from H2+ and T2+ are very sensitive to the nonhomogeneous effect of the laser field. (ii) The contributions of the MHHG from the two-H nuclei present the periodic variation as a function of the laser phase for the case of the symmetric nonhomogeneous field. However, for the case of the positive and the negative asymmetric nonhomogeneous fields, the left-H and the right-H play the dominating role in the MHHG, respectively. Moreover, as the angle between the laser polarization direction and the molecular axis increases, the intensity differences of the harmonics from the two-H nuclei are increased. (iii) By properly adding a half-cycle pulse into the positive asymmetric nonhomogeneous field, a supercontinuum with the bandwidth of 279 eV and an isolated 25 as pulse can be obtained.
Intensive Evaluation of Head Start Implementation in the Tucson Early Education Model.
ERIC Educational Resources Information Center
Rentfrow, Robert K.
As part of the national Head Start Planned Variation Study, this study used a relatively small sample in an intensive evaluation of program implementation in one field community using the Tucson Early Education Model (TEEM). A modified Solomon four-group research design formed the organization framework. Evaluation of six TEEM classrooms and two…
NASA Astrophysics Data System (ADS)
Zhou, X. X.; Wang, X. J.; Huang, D. H.; Jia, H. Y.
2016-11-01
Monte Carlo simulations are performed to study the correlation between the ground cosmic ray intensity and near-earth thunderstorms electric field at YBJ (located at YangBaJing, Tibet, China, 4300 m a. s. l.). The variations of the secondary cosmic ray intensity are found to be highly dependent on the strength and polarity of the electric field. In negative fields and in positive fields greater than 600 V/cm, the total number of ground comic ray positrons and electrons increases with increasing electric field strength. And these values increase more obviously when involving a shower with lower primary energy or a higher zenith angle. While in positive fields ranging from 0 to 600 V/cm, the total number of ground comic ray positrons and electrons declines and the amplitude is up to 3.1% for vertical showers. A decrease of intensity occurs in inclined showers within the range of 0-500 V/cm, which is accompanied by smaller amplitudes. In this paper, the intensity changes are analyzed, especially concerning those decreasing phenomena in positive electric fields. Our simulation results could be helpful in understanding the decreases observed in some ground-based experiments (such as the Carpet air shower array and ARGO-YBJ), and also be useful in understanding the acceleration mechanisms of secondary charged particles caused by an atmospheric electric field.
NASA Astrophysics Data System (ADS)
Kim, Sujin; Park, Jong-Yeop; Kim, Yeon-Han
2017-08-01
We investigate the solar cycle variation of microwave and extreme ultraviolet (EUV) intensity in latitude to compare microwave polar brightening (MPB) with the EUV polar coronal hole (CH). For this study, we used the full-sun images observed in 17 GHz of the Nobeyama Radioheliograph from 1992 July to 2016 November and in two EUV channels of the Atmospheric Imaging Assembly (AIA) 193 Å and 171 Å on the Solar Dynamics Observatory (SDO) from 2011 January to 2016 November. As a result, we found that the polar intensity in EUV is anti-correlated with the polar intensity in microwave. Since the depression of EUV intensity in the pole is mostly owing to the CH appearance and continuation there, the anti-correlation in the intensity implies the intimate association between the polar CH and the MPB. Considering the report of tet{gopal99} that the enhanced microwave brightness in the CH is seen above the enhanced photospheric magnetic field, we suggest that the pole area during the solar minimum has a stronger magnetic field than the quiet sun level and such a strong field in the pole results in the formation of the polar CH. The emission mechanism of the MPB and the physical link with the polar CH are not still fully understood. It is necessary to investigate the MPB using high resolution microwave imaging data, which can be obtained by the high performance large-array radio observatories such as the ALMA project.
High-resolution records of non-dipole variations derived from volcanic edifices
NASA Astrophysics Data System (ADS)
de Groot, L. V.; Biggin, A. J.; Dekkers, M. J.
2013-12-01
Our understanding of the short-term behavior of the Earth's magnetic field is currently mainly hampered by a lack of coeval high-resolution records of geomagnetic intensity variations that are well distributed over the globe. Lavas are the only recorder of short-term fluctuations of the geomagnetic field that are available for all parts of the world and on geological time scales. Therefore, many efforts have been made to improve the methodology to obtain reliable estimates of the paleointensity from igneous rocks over the past decades. It is well known that some paleointensity methods will work on certain lavas with specific thermomagnetic behavior, but fail for others. We therefore propose a ';multi-method paleointensity approach' that consists of Thellier-style, multispecimen-style, and calibrated pseudo-Thellier-style (AGU fall 2012 contribution GP43A-1122, submitted) experiments to construct high-resolution records of regional variations in the intensity of the Earth's magnetic field. With our new approach we obtain a reliable estimate of the paleointensity for 60-70 percent of all cooling units sampled. By applying our new approach to suites of lavas from Hawai'i (USA), and the Canary Islands (Spain) we obtain important constraints for short-term local geomagnetic intensity highs, and insight into their possible driving mechanisms. Our new record for Hawai'i indicates that, approximately 1000 years ago, the local field intensity increased on the order of 50% for 200 years - a qualitatively similar phenomenon observed 200 years earlier in western Europe (Gallet et al., 2005; Gómez-Paccard et al., 2012) and 500 years later in southwestern USA (Bowles et al., 2002). When these records are combined with a record for Japan (Yu, 2012), a coherent picture emerges that includes the dipole component decaying steadily since at least 1000 years ago. Superimposed onto this decay are strong but shorter-term intensity variations at a regional level whose asynchronicity necessitates a highly non-dipolar nature. Our paleointensity data obtained for Tenerife reveal high paleointensities temporally coinciding with an intensity high occurring in the Middle East around 1000 BC. If our findings are related to this ';archeomagnetic jerk', it must have extended more than 50 ° westward in longitude. Gallet et al., 2005, EPSL vol. 236, pp. 339-347 Gómez-Paccard et al., 2012, EPSL, vol. 355-356, pp. 131-143 Bowles et al, 2002, EPSL, vol. 203, pp. 967-981 Yu et al., 2012, JGR, vol. 177, p. B08101
NASA Astrophysics Data System (ADS)
Parker, D. G.; Ulrich, R. K.; Beck, J.
2014-12-01
We have previously applied the Bayesian automatic classification system AutoClass to solar magnetogram and intensity images from the 150 Foot Solar Tower at Mount Wilson to identify classes of solar surface features associated with variations in total solar irradiance (TSI) and, using those identifications, modeled TSI time series with improved accuracy (r > 0.96). (Ulrich, et al, 2010) AutoClass identifies classes by a two-step process in which it: (1) finds, without human supervision, a set of class definitions based on specified attributes of a sample of the image data pixels, such as magnetic field and intensity in the case of MWO images, and (2) applies the class definitions thus found to new data sets to identify automatically in them the classes found in the sample set. HMI high resolution images capture four observables-magnetic field, continuum intensity, line depth and line width-in contrast to MWO's two observables-magnetic field and intensity. In this study, we apply AutoClass to the HMI observables for images from May, 2010 to June, 2014 to identify solar surface feature classes. We use contemporaneous TSI measurements to determine whether and how variations in the HMI classes are related to TSI variations and compare the characteristic statistics of the HMI classes to those found from MWO images. We also attempt to derive scale factors between the HMI and MWO magnetic and intensity observables. The ability to categorize automatically surface features in the HMI images holds out the promise of consistent, relatively quick and manageable analysis of the large quantity of data available in these images. Given that the classes found in MWO images using AutoClass have been found to improve modeling of TSI, application of AutoClass to the more complex HMI images should enhance understanding of the physical processes at work in solar surface features and their implications for the solar-terrestrial environment. Ulrich, R.K., Parker, D, Bertello, L. and Boyden, J. 2010, Solar Phys. , 261 , 11.
NASA Astrophysics Data System (ADS)
Zender, J. J.; Kariyappa, R.; Giono, G.; Bergmann, M.; Delouille, V.; Damé, L.; Hochedez, J.-F.; Kumara, S. T.
2017-09-01
Context. The magnetic field plays a dominant role in the solar irradiance variability. Determining the contribution of various magnetic features to this variability is important in the context of heliospheric studies and Sun-Earth connection. Aims: We studied the solar irradiance variability and its association with the underlying magnetic field for a period of five years (January 2011-January 2016). We used observations from the Large Yield Radiometer (LYRA), the Sun Watcher with Active Pixel System detector and Image Processing (SWAP) on board PROBA2, the Atmospheric Imaging Assembly (AIA), and the Helioseismic and Magnetic Imager (HMI) on board the Solar Dynamics Observatory (SDO). Methods: The Spatial Possibilistic Clustering Algorithm (SPoCA) is applied to the extreme ultraviolet (EUV) observations obtained from the AIA to segregate coronal features by creating segmentation maps of active regions (ARs), coronal holes (CHs) and the quiet sun (QS). Further, these maps are applied to the full-disk SWAP intensity images and the full-disk (FD) HMI line-of-sight (LOS) magnetograms to isolate the SWAP coronal features and photospheric magnetic counterparts, respectively. We then computed full-disk and feature-wise averages of EUV intensity and line of sight (LOS) magnetic flux density over ARs/CHs/QS/FD. The variability in these quantities is compared with that of LYRA irradiance values. Results: Variations in the quantities resulting from the segmentation, namely the integrated intensity and the total magnetic flux density of ARs/CHs/QS/FD regions, are compared with the LYRA irradiance variations. We find that the EUV intensity over ARs/CHs/QS/FD is well correlated with the underlying magnetic field. In addition, variations in the full-disk integrated intensity and magnetic flux density values are correlated with the LYRA irradiance variations. Conclusions: Using the segmented coronal features observed in the EUV wavelengths as proxies to isolate the underlying magnetic structures is demonstrated in this study. Sophisticated feature identification and segmentation tools are important in providing more insights into the role of various magnetic features in both the short- and long-term changes in the solar irradiance. The movie associated to Fig. 2 is available at http://www.aanda.org
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zou Pu; Zeng Zhinan; Zheng Yinghui
2010-11-15
We propose a scheme for generating isolated attosecond pulse (IAP) via high-order harmonic generation in gases using a chirped two-color laser field of multicycle duration. In contrast to previous techniques where the stable carrier-envelope phase (CEP) of the driving laser pulses is a prerequisite for IAP generation, the proposed scheme is robust against the large variation of CEP. We show the generation of IAP with an intensity fluctuation less than 50% and an intensity contrast ratio higher than 5:1 when the CEP shift is as large as 1.35{pi}.
Electric field-induced emission enhancement and modulation in individual CdSe nanowires.
Vietmeyer, Felix; Tchelidze, Tamar; Tsou, Veronica; Janko, Boldizsar; Kuno, Masaru
2012-10-23
CdSe nanowires show reversible emission intensity enhancements when subjected to electric field strengths ranging from 5 to 22 MV/m. Under alternating positive and negative biases, emission intensity modulation depths of 14 ± 7% are observed. Individual wires are studied by placing them in parallel plate capacitor-like structures and monitoring their emission intensities via single nanostructure microscopy. Observed emission sensitivities are rationalized by the field-induced modulation of carrier detrapping rates from NW defect sites responsible for nonradiative relaxation processes. The exclusion of these states from subsequent photophysics leads to observed photoluminescence quantum yield enhancements. We quantitatively explain the phenomenon by developing a kinetic model to account for field-induced variations of carrier detrapping rates. The observed phenomenon allows direct visualization of trap state behavior in individual CdSe nanowires and represents a first step toward developing new optical techniques that can probe defects in low-dimensional materials.
Polarization characteristics of double-clad elliptical fibers.
Zhang, F; Lit, J W
1990-12-20
A scalar variational analysis based on a Gaussian approximation of the fundamental mode of a double-clad elliptical fiber with a depressed inner cladding is studied. The polarization properties and graphic results are presented; they are given in terms of three parameters: the ratio of the major axis to the minor axis of the core, the ratio of the inner cladding major axis to the core major axis, and the difference between the core index and the inner cladding index. The variations of both the spot size and the field intensity with core ellipticity are examined. It is shown that high birefringence and dispersion-free orthogonal polarization modes can be obtained within the single-mode region and that the field intensity distribution may be more confined to the fiber center than in a single-clad elliptical fiber.
Student Ratings of Instruction: Examining the Role of Academic Field, Course Level, and Class Size
ERIC Educational Resources Information Center
Laughlin, Anne M.
2014-01-01
This dissertation investigated the relationship between course characteristics and student ratings of instruction at a large research intensive university. Specifically, it examined the extent to which academic field, course level, and class size were associated with variation in mean class ratings. Past research consistently identifies…
NASA Astrophysics Data System (ADS)
Kotzé, P. B.; Korte, M.
2016-02-01
Geomagnetic field data from four observatories and annual field surveys between 2005 and 2015 provide a detailed description of Earth's magnetic field changes over South Africa, Namibia and Botswana on time scales of less than 1 year. The southern African area is characterized by rapid changes in the secular variation pattern and lies in close proximity to the South Atlantic Anomaly (SAA) where the geomagnetic field intensity is almost 30 % weaker than in other regions at similar latitudes around the globe. Several geomagnetic secular acceleration (SA) pulses (geomagnetic jerks) around 2007, 2010 and 2012 could be identified over the last decade in southern Africa. We present a new regional field model for declination and horizontal and vertical intensity over southern Africa (Southern African REGional (SAREG)) which is based on field survey and observatory data and covering the time interval from 2005 to 2014, i.e. including the period between 2010 and 2013 when no low Earth-orbiting vector field satellite data are available. A comparative evaluation between SAREG and global field models like CHAOS-5, the CHAMP, Orsted and SAC-C model of the Earth's magnetic field and International Geomagnetic Reference Field (IGRF-12) reveals that a simple regional field model based on a relatively dense ground network is able to provide a realistic representation of the geomagnetic field in this area. We particularly note that a global field model like CHAOS-5 does not always indicate similar short-period patterns in the field components as revealed by observatory data, while representing the general secular variation reasonably well during the time interval without near-Earth satellite vector field data. This investigation further shows the inhomogeneous occurrence and distribution of secular variation impulses in the different geomagnetic field components and at different locations in southern African.
Near field optical probe for critical dimension measurements
Stallard, Brian R.; Kaushik, Sumanth
1999-01-01
A resonant planar optical waveguide probe for measuring critical dimensions on an object in the range of 100 nm and below. The optical waveguide includes a central resonant cavity flanked by Bragg reflector layers with input and output means at either end. Light is supplied by a narrow bandwidth laser source. Light resonating in the cavity creates an evanescent electrical field. The object with the structures to be measured is translated past the resonant cavity. The refractive index contrasts presented by the structures perturb the field and cause variations in the intensity of the light in the cavity. The topography of the structures is determined from these variations.
The ARASE (ERG) magnetic field investigation
NASA Astrophysics Data System (ADS)
Matsuoka, Ayako; Teramoto, Mariko; Nomura, Reiko; Nosé, Masahito; Fujimoto, Akiko; Tanaka, Yoshimasa; Shinohara, Manabu; Nagatsuma, Tsutomu; Shiokawa, Kazuo; Obana, Yuki; Miyoshi, Yoshizumi; Mita, Makoto; Takashima, Takeshi; Shinohara, Iku
2018-03-01
The fluxgate magnetometer for the Arase (ERG) spacecraft mission was built to investigate particle acceleration processes in the inner magnetosphere. Precise measurements of the field intensity and direction are essential in studying the motion of particles, the properties of waves interacting with the particles, and magnetic field variations induced by electric currents. By observing temporal field variations, we will more deeply understand magnetohydrodynamic and electromagnetic ion-cyclotron waves in the ultra-low-frequency range, which can cause production and loss of relativistic electrons and ring-current particles. The hardware and software designs of the Magnetic Field Experiment (MGF) were optimized to meet the requirements for studying these phenomena. The MGF makes measurements at a sampling rate of 256 vectors/s, and the data are averaged onboard to fit the telemetry budget. The magnetometer switches the dynamic range between ± 8000 and ± 60,000 nT, depending on the local magnetic field intensity. The experiment is calibrated by preflight tests and through analysis of in-orbit data. MGF data are edited into files with a common data file format, archived on a data server, and made available to the science community. Magnetic field observation by the MGF will significantly improve our knowledge of the growth and decay of radiation belts and ring currents, as well as the dynamics of geospace storms.
NASA Astrophysics Data System (ADS)
Hervé, G.; Schnepp, E.; Metzler-Nebelsick, C.; Lhuillier, F.; Gilder, S.; Genevey, A.; Fassbinder, J.; Gallet, Y.
2017-12-01
Thirty-five mean archaeointensity data were obtained on ceramic sherds dated between 1400 and 400 BCE from sites located near Munich, Germany. The 453 sherds were collected from 52 graves, pits and wells dated by archaeological correlation, radiocarbon and/or dendrochronology. Rock magnetic analyses indicate that the remanent magnetization was mainly carried by magnetite. Data from Thellier-Thellier experiments were corrected for anisotropy and cooling rate effects. Triaxe and multispecimen (MSP-DSC) protocols were also measured on a subset of specimens. Around 60% of the samples provide reliable results when using stringent criteria selection. The 35 average archaeointensity values based on 154 pots are consistent with previous data and triple the Western Europe database between 1400 and 400 BCE. A secular variation curve for central-western Europe, built using a Bayesian approach, shows a double oscillation in geomagnetic field strength with intensity maxima of 70 μT around 1000-900 BCE and another up to 90 μT around 600-500 BCE. The maximum rate of variation was 0.25 μT/yr circa 700 BCE. The secular variation trend in Western Europe is similar to that observed in the Middle East and the Caucasus except that we find no evidence for hyper-rapid field variations (i.e. geomagnetic spikes). Virtual Axial Dipole Moments from Western Europe, the Middle East and central Asia differ by more than 20 ZA·m2 prior to 600 BCE, which signifies a departure from an axial dipole field especially between 1000 and 600 BCE. Our observations suggest that the regional Levantine Iron Age anomaly has been accompanied by an increase of the axial dipole moment together with a tilt of the dipole.
NASA Astrophysics Data System (ADS)
Hervé, Gwenaël; Faβbinder, Jörg; Gilder, Stuart A.; Metzner-Nebelsick, Carola; Gallet, Yves; Genevey, Agnès; Schnepp, Elisabeth; Geisweid, Leonhard; Pütz, Anja; Reuβ, Simone; Wittenborn, Fabian; Flontas, Antonia; Linke, Rainer; Riedel, Gerd; Walter, Florian; Westhausen, Imke
2017-09-01
Thirty-five mean archaeointensity data were obtained on ceramic sherds dated between 1400 and 400 BCE from sites located near Munich, Germany. The 453 sherds were collected from 52 graves, pits and wells dated by archaeological correlation, radiocarbon and/or dendrochronology. Rock magnetic analyses indicate that the remanent magnetization was mainly carried by magnetite. Data from Thellier-Thellier experiments were corrected for anisotropy and cooling rate effects. Triaxe and multispecimen (MSP-DSC) protocols were also measured on a subset of specimens. Around 60% of the samples provide reliable results when using stringent criteria selection. The 35 average archaeointensity values based on 154 pots are consistent with previous data and triple the Western Europe database between 1400 and 400 BCE. A secular variation curve for central-western Europe, built using a Bayesian approach, shows a double oscillation in geomagnetic field strength with intensity maxima of ∼70 μT around 1000-900 BCE and another up to ∼90 μT around 600-500 BCE. The maximum rate of variation was ∼0.25 μT/yr circa 700 BCE. The secular variation trend in Western Europe is similar to that observed in the Middle East and the Caucasus except that we find no evidence for hyper-rapid field variations (i.e. geomagnetic spikes). Virtual Axial Dipole Moments from Western Europe, the Middle East and central Asia differ by more than 2·1022 A·m2 prior to 600 BCE, which signifies a departure from an axial dipole field especially between 1000 and 600 BCE. Our observations suggest that the regional Levantine Iron Age anomaly has been accompanied by an increase of the axial dipole moment together with a tilt of the dipole.
NASA Astrophysics Data System (ADS)
Tampubolon, Togi; Hutahaean, Juniar; Siregar, Suryani N. J.
2018-03-01
Underwater research often uses geomagnets. It is one of the geophysical methods for measuring magnetic field variations. This research was done to identify how the subsurface rock structure is and determine kinds of rock based on its susceptibility value in Siogung-ogung geothermal area, Pangururan, Samosir District. The tool measurement of total magnetic field called Proton Precission Magnetometer, positioning using Global Position System, and north axis determination using geological compass. Data collection was done randomly with total 51 measuring points obtained. Data analysis started with International geomagnetics Reference Field correction to obtain the total magnetic field anomaly. Then, the data analysis of total magnetic anomaly was done by using surfer program 12. To get a magnetic anomaly cross section used Magdc For Windows program. Magnetic measurement results indicated that the variation of magnetic field strength in each point with the lowest magnetic intensity value of 41785.67 nano tesla. The highest magnetic intensity value is 43140, 33. From the results of qualitative interpretation, the magnetic anomaly value is at -200.92 to 1154.45 whereas the quantitative interpretive results of model show the existence of degradation and andesitic rocks, with the value of susceptibility
DOE Office of Scientific and Technical Information (OSTI.GOV)
Song, Y. L.; Zhang, M., E-mail: ylsong@bao.ac.cn
Many previous studies have shown that magnetic fields and sunspot structures present rapid and irreversible changes associated with solar flares. In this paper, we first use five X-class flares observed by Solar Dynamics Observatory /Helioseismic and Magnetic Imager to show that not only do magnetic fields and sunspot structures show rapid, irreversible changes, but also that these changes are closely related both spatially and temporally. The magnitudes of the correlation coefficients between the temporal variations of the horizontal magnetic field and sunspot intensity are all larger than 0.90, with a maximum value of 0.99 and an average value of 0.96.more » Then, using four active regions during quiescent periods, three observed and one simulated, we show that in sunspot penumbra regions there also exists a close correlation between sunspot intensity and horizontal magnetic field strength in addition to the well-known correlation between sunspot intensity and the normal magnetic field strength. By connecting these two observational phenomena, we show that the sunspot structure change and magnetic field change are two facets of the same phenomena of solar flares; one change might be induced by the change of the other due to a linear correlation between sunspot intensity and magnetic field strength out of a local force balance.« less
NASA Astrophysics Data System (ADS)
Mai, Fei; Chang, Chunqi; Liu, Wenqing; Xu, Weichao; Hung, Yeung S.
2009-10-01
Due to the inherent imperfections in the imaging process, fluorescence microscopy images often suffer from spurious intensity variations, which is usually referred to as intensity inhomogeneity, intensity non uniformity, shading or bias field. In this paper, a retrospective shading correction method for fluorescence microscopy Escherichia coli (E. Coli) images is proposed based on segmentation result. Segmentation and shading correction are coupled together, so we iteratively correct the shading effects based on segmentation result and refine the segmentation by segmenting the image after shading correction. A fluorescence microscopy E. Coli image can be segmented (based on its intensity value) into two classes: the background and the cells, where the intensity variation within each class is close to zero if there is no shading. Therefore, we make use of this characteristics to correct the shading in each iteration. Shading is mathematically modeled as a multiplicative component and an additive noise component. The additive component is removed by a denoising process, and the multiplicative component is estimated using a fast algorithm to minimize the intra-class intensity variation. We tested our method on synthetic images and real fluorescence E.coli images. It works well not only for visual inspection, but also for numerical evaluation. Our proposed method should be useful for further quantitative analysis especially for protein expression value comparison.
Chen, Yunjie; Zhao, Bo; Zhang, Jianwei; Zheng, Yuhui
2014-09-01
Accurate segmentation of magnetic resonance (MR) images remains challenging mainly due to the intensity inhomogeneity, which is also commonly known as bias field. Recently active contour models with geometric information constraint have been applied, however, most of them deal with the bias field by using a necessary pre-processing step before segmentation of MR data. This paper presents a novel automatic variational method, which can segment brain MR images meanwhile correcting the bias field when segmenting images with high intensity inhomogeneities. We first define a function for clustering the image pixels in a smaller neighborhood. The cluster centers in this objective function have a multiplicative factor that estimates the bias within the neighborhood. In order to reduce the effect of the noise, the local intensity variations are described by the Gaussian distributions with different means and variances. Then, the objective functions are integrated over the entire domain. In order to obtain the global optimal and make the results independent of the initialization of the algorithm, we reconstructed the energy function to be convex and calculated it by using the Split Bregman theory. A salient advantage of our method is that its result is independent of initialization, which allows robust and fully automated application. Our method is able to estimate the bias of quite general profiles, even in 7T MR images. Moreover, our model can also distinguish regions with similar intensity distribution with different variances. The proposed method has been rigorously validated with images acquired on variety of imaging modalities with promising results. Copyright © 2014 Elsevier Inc. All rights reserved.
Photophoretic trampoline—Interaction of single airborne absorbing droplets with light
NASA Astrophysics Data System (ADS)
Esseling, Michael; Rose, Patrick; Alpmann, Christina; Denz, Cornelia
2012-09-01
We present the light-induced manipulation of absorbing liquid droplets in air. Ink droplets from a printer cartridge are used to demonstrate that absorbing liquids—just like their solid counterparts—can interact with regions of high light intensity due to the photophoretic force. It is shown that droplets follow a quasi-ballistic trajectory after bouncing off a high intensity light sheet. We estimate the intensities necessary for this rebound of airborne droplets and change the droplet trajectories through a variation of the manipulating light field.
Detection of a Novel Mechanism of Acousto-Optic Modulation of Incoherent Light
Jarrett, Christopher W.; Caskey, Charles F.; Gore, John C.
2014-01-01
A novel form of acoustic modulation of light from an incoherent source has been detected in water as well as in turbid media. We demonstrate that patterns of modulated light intensity appear to propagate as the optical shadow of the density variations caused by ultrasound within an illuminated ultrasonic focal zone. This pattern differs from previous reports of acousto-optical interactions that produce diffraction effects that rely on phase shifts and changes in light directions caused by the acoustic modulation. Moreover, previous studies of acousto-optic interactions have mainly reported the effects of sound on coherent light sources via photon tagging, and/or the production of diffraction phenomena from phase effects that give rise to discrete sidebands. We aimed to assess whether the effects of ultrasound modulation of the intensity of light from an incoherent light source could be detected directly, and how the acoustically modulated (AOM) light signal depended on experimental parameters. Our observations suggest that ultrasound at moderate intensities can induce sufficiently large density variations within a uniform medium to cause measurable modulation of the intensity of an incoherent light source by absorption. Light passing through a region of high intensity ultrasound then produces a pattern that is the projection of the density variations within the region of their interaction. The patterns exhibit distinct maxima and minima that are observed at locations much different from those predicted by Raman-Nath, Bragg, or other diffraction theory. The observed patterns scaled appropriately with the geometrical magnification and sound wavelength. We conclude that these observed patterns are simple projections of the ultrasound induced density changes which cause spatial and temporal variations of the optical absorption within the illuminated sound field. These effects potentially provide a novel method for visualizing sound fields and may assist the interpretation of other hybrid imaging methods. PMID:25105880
Modulation of Bjerknes feedback on the decadal variations in ENSO predictability
NASA Astrophysics Data System (ADS)
Zheng, Fei; Fang, Xiang-Hui; Zhu, Jiang; Yu, Jin-Yi; Li, Xi-Chen
2016-12-01
Clear decadal variations exist in the predictability of the El Niño-Southern Oscillation (ENSO), with the most recent decade having the lowest ENSO predictability in the past six decades. The Bjerknes Feedback (BF) intensity, which dominates the development of ENSO, has been proposed to determine ENSO predictability. Here we demonstrate that decadal variations in BF intensity are largely a result of the sensitivity of the zonal winds to the zonal sea level pressure (SLP) gradient in the equatorial Pacific. Furthermore, the results show that during low-ENSO predictability decades, zonal wind anomalies over the equatorial Pacific are more linked to SLP variations in the off-equatorial Pacific, which can then transfer this information into surface temperature and precipitation fields through the BF, suggesting a weakening in the ocean-atmosphere coupling in the tropical Pacific. This result indicates that more attention should be paid to off-equatorial processes in the prediction of ENSO.
Tunnel effect measuring systems and particle detectors
NASA Technical Reports Server (NTRS)
Kaiser, William J. (Inventor); Waltman, Steven B. (Inventor); Kenny, Thomas W. (Inventor)
1994-01-01
Methods and apparatus for measuring gravitational and inertial forces, magnetic fields, or wave or radiant energy acting on an object or fluid in space provide an electric tunneling current through a gap between an electrode and that object or fluid in space and vary that gap with any selected one of such forces, magnetic fields, or wave or radiant energy acting on that object or fluid. These methods and apparatus sense a corresponding variation in an electric property of that gap and determine the latter force, magnetic fields, or wave or radiant energy in response to that corresponding variation, and thereby sense or measure such parameters as acceleration, position, particle mass, velocity, magnetic field strength, presence or direction, or wave or radiant energy intensity, presence or direction.
Tunnel effect measuring systems and particle detectors
NASA Technical Reports Server (NTRS)
Kaiser, William J. (Inventor); Waltman, Steven B. (Inventor); Kenny, Thomas W. (Inventor)
1993-01-01
Methods and apparatus for measuring gravitational and inertial forces, magnetic fields, or wave or radiant energy acting on an object or fluid in space provide an electric tunneling current through a gap between an electrode and that object or fluid in space and vary that gap with any selected one of such forces, magnetic fields, or wave or radiant energy acting on that object or fluid. These methods and apparatus sense a corresponding variation in an electric property of that gap and determine the latter force, magnetic fields, or wave or radiant energy in response to that corresponding variation, and thereby sense or measure such parameters as acceleration, position, particle mass, velocity, magnetic field strength, presence or direction, or wave or radiant energy intensity, presence or direction.
Tunnel effect wave energy detection
NASA Technical Reports Server (NTRS)
Kaiser, William J. (Inventor); Waltman, Steven B. (Inventor); Kenny, Thomas W. (Inventor)
1995-01-01
Methods and apparatus for measuring gravitational and inertial forces, magnetic fields, or wave or radiant energy acting on an object or fluid in space provide an electric tunneling current through a gap between an electrode and that object or fluid in space and vary that gap with any selected one of such forces, magnetic fields, or wave or radiant energy acting on that object or fluid. These methods and apparatus sense a corresponding variation in an electric property of that gap and determine the latter force, magnetic fields, or wave or radiant energy in response to that corresponding variation, and thereby sense or measure such parameters as acceleration, position, particle mass, velocity, magnetic field strength, presence or direction, or wave or radiant energy intensity, presence or direction.
InGaN/GaN quantum dots as optical probes for the electric field at the GaN/electrolyte interface
NASA Astrophysics Data System (ADS)
Teubert, J.; Koslowski, S.; Lippert, S.; Schäfer, M.; Wallys, J.; Dimitrakopulos, G.; Kehagias, Th.; Komninou, Ph.; Das, A.; Monroy, E.; Eickhoff, M.
2013-08-01
We investigated the electric-field dependence of the photoluminescence-emission properties of InGaN/GaN quantum dot multilayers in contact with an electrolyte. Controlled variations of the surface potential were achieved by the application of external electric fields using the electrolytic Schottky contact and by variation of the solution's pH value. Prior to characterization, a selective electrochemical passivation process was required to suppress leakage currents. The quantum dot luminescence is strongly affected by surface potential variations, i.e., it increases exponentially with cathodic bias and acidic pH values. The results cannot be explained by a modification of intra-dot polarization induced electric fields via the quantum confined Stark effect but are attributed to the suppression/enhancement of non-radiative recombination processes, i.e., mainly hole transfer into the electrolyte. The results establish a link between the photoluminescence intensity and the magnitude of electric fields at the semiconductor/electrolyte interface.
Cosmic ray modulation and turbulent interaction regions near 11 AU
NASA Technical Reports Server (NTRS)
Burlaga, L. F.; Mcdonald, F. B.; Goldstein, M. L.; Lazarus, A. J.
1985-01-01
When Voyager 2 was near 11 AU, the counting rate of nuclei approx 75 MeV/nucleon decreased during the interval from July, 1982 to November, 1982, and it increased thereafter until August, 1983. A decrease in cosmic ray flux was generally associated with the passage of an interaction region in which the magnetic field strength B was higher than that predicted by the spiral field model, B sub p. Several large enhancements in B/B sup p were associated with merged interaction regions which probably resulted from the interaction of two or more distinct flows. During the passage of interaction regions the cosmic ray intensity decreased at a rate proportional to (B/B sup p -1), and during the passage of rarefaction regions (where B/B sup p 1) the cosmic ray intensity increased at a constant rate. The general form of the cosmic ray intensity profile during this approx 13 month minicycle can be described by integrating these relations using the observed B(t). Latitudinal variations of the interaction regions and of the short-term cosmic ray variations were identified.
NASA Astrophysics Data System (ADS)
Herve, Gwenael; Chauvin, Annick; Lanos, Philippe
2014-05-01
At the regional scale, the dispersion between archaeomagnetic data and especially archaeointensities suggests that some of them may be biased. As a consequence, it appears necessary to perform a selection of available data before to compute mean regional secular variation curves or geomagnetic models. However the definition of suitable selection criteria is not obvious and we need to know how to manage "old" data acquired during the 60-70s. The Western Europe directional and intensity data set from 1500 BC to 200 AD allows to discuss these issues. It has recently been enhanced by 39 new archaeodirections and 23 new archaeointensities (Hervé et al., 2013a and 2013b data sets and 5 unpublished data). First, the whole Western Europe data set was selected but the strong dispersion restricted the accuracy and the reliability of the new Western Europe secular variation curves at Paris. The causes of the dispersion appear different between archaeodirections and archaeointensities. In the directional data set, the main problem comes from some age errors in the oldest published data. Since their publication their archaeological dating may have changed of 50 years or more. For intensity data that were acquired much more recently, the dispersion mainly results from the use of unreliable archaeointensity protocols. We propose a weighting approach based on the number of specimens and the use of pTRM-checks, anisotropy and cooling rate corrections. Only 63% of available archaeodirections and 32% of archaeointensities were used to build the new Western Europe secular variation curves from 1500 BC to 200 AD. These curves reveal that selecting the reference data avoids wrong estimations of the shape of the secular variation curves, the secular variation rate, the dating of archaeomagnetic jerks... Finally, it is worth pointing out that current geomagnetic global models take into account almost all the data that we decided to reject. It could partly explain why their predictions at Paris do not fit our local secular variation curves. Hervé, G., Chauvin, A. & Lanos, P., 2013a. Geomagnetic field variations in Western Europe from 1500BC to 200AD. Part I : Directional secular variation curve, Phys. Earth Planet. Inter., 218, 1-13. Hervé, G., Chauvin, A. & Lanos, P., 2013b. Geomagnetic field variations in Western Europe from 1500BC to 200AD. Part II : New intensity secular variation curve, Phys. Earth Planet. Inter., 218, 51-65.
Mora, Cordula V; Walker, Michael M
2009-09-22
How homing pigeons (Columba livia) return to their loft from distant, unfamiliar sites has long been a mystery. At many release sites, untreated birds consistently vanish from view in a direction different from the home direction, a phenomenon called the release-site bias. These deviations in flight direction have been implicated in the position determination (or map) step of navigation because they may reflect local distortions in information about location that the birds obtain from the geophysical environment at the release site. Here, we performed a post hoc analysis of the relationship between vanishing bearings and local variations in magnetic intensity using previously published datasets for pigeons homing to lofts in Germany. Vanishing bearings of both experienced and naïve birds were strongly associated with magnetic intensity variations at release sites, with 90 per cent of bearings lying within +/-29 degrees of the magnetic intensity slope or contour direction. Our results (i) demonstrate that pigeons respond in an orderly manner to the local structure of the magnetic field at release sites, (ii) provide a mechanism for the occurrence of release-site biases and (iii) suggest that pigeons may derive spatial information from the magnetic field at the release site that could be used to estimate their current position relative to their loft.
Cui, Wenchao; Wang, Yi; Lei, Tao; Fan, Yangyu; Feng, Yan
2013-01-01
This paper presents a variational level set method for simultaneous segmentation and bias field estimation of medical images with intensity inhomogeneity. In our model, the statistics of image intensities belonging to each different tissue in local regions are characterized by Gaussian distributions with different means and variances. According to maximum a posteriori probability (MAP) and Bayes' rule, we first derive a local objective function for image intensities in a neighborhood around each pixel. Then this local objective function is integrated with respect to the neighborhood center over the entire image domain to give a global criterion. In level set framework, this global criterion defines an energy in terms of the level set functions that represent a partition of the image domain and a bias field that accounts for the intensity inhomogeneity of the image. Therefore, image segmentation and bias field estimation are simultaneously achieved via a level set evolution process. Experimental results for synthetic and real images show desirable performances of our method.
Van de Moortele, Pierre-François; Auerbach, Edwards J; Olman, Cheryl; Yacoub, Essa; Uğurbil, Kâmil; Moeller, Steen
2009-06-01
At high magnetic field, MR images exhibit large, undesirable signal intensity variations commonly referred to as "intensity field bias". Such inhomogeneities mostly originate from heterogeneous RF coil B(1) profiles and, with no appropriate correction, are further pronounced when utilizing rooted sum of square reconstruction with receive coil arrays. These artifacts can significantly alter whole brain high resolution T(1)-weighted (T(1)w) images that are extensively utilized for clinical diagnosis, for gray/white matter segmentation as well as for coregistration with functional time series. In T(1) weighted 3D-MPRAGE sequences, it is possible to preserve a bulk amount of T(1) contrast through space by using adiabatic inversion RF pulses that are insensitive to transmit B(1) variations above a minimum threshold. However, large intensity variations persist in the images, which are significantly more difficult to address at very high field where RF coil B(1) profiles become more heterogeneous. Another characteristic of T(1)w MPRAGE sequences is their intrinsic sensitivity to Proton Density and T(2)(*) contrast, which cannot be removed with post-processing algorithms utilized to correct for receive coil sensitivity. In this paper, we demonstrate a simple technique capable of producing normalized, high resolution T(1)w 3D-MPRAGE images that are devoid of receive coil sensitivity, Proton Density and T(2)(*) contrast. These images, which are suitable for routinely obtaining whole brain tissue segmentation at 7 T, provide higher T(1) contrast specificity than standard MPRAGE acquisitions. Our results show that removing the Proton Density component can help in identifying small brain structures and that T(2)(*) induced artifacts can be removed from the images. The resulting unbiased T(1)w images can also be used to generate Maximum Intensity Projection angiograms, without additional data acquisition, that are inherently registered with T(1)w structural images. In addition, we introduce a simple technique to reduce residual signal intensity variations induced by transmit B(1) heterogeneity. Because this approach requires two 3D images, one divided with the other, head motion could create serious problems, especially at high spatial resolution. To alleviate such inter-scan motion problems, we developed a new sequence where the two contrast acquisitions are interleaved within a single scan. This interleaved approach however comes with greater risk of intra-scan motion issues because of a longer single scan time. Users can choose between these two trade offs depending on specific protocols and patient populations. We believe that the simplicity and the robustness of this double contrast based approach to address intensity field bias at high field and improve T(1) contrast specificity, together with the capability of simultaneously obtaining angiography maps, advantageously counter balance the potential drawbacks of the technique, mainly a longer acquisition time and a moderate reduction in signal to noise ratio.
Van de Moortele, Pierre-François; Auerbach, Edwards J.; Olman, Cheryl; Yacoub, Essa; Uğurbil, Kâmil; Moeller, Steen
2009-01-01
At high magnetic field, MR images exhibit large, undesirable signal intensity variations commonly referred to as “intensity field bias”. Such inhomogeneities mostly originate from heterogeneous RF coil B1 profiles and, with no appropriate correction, are further pronounced when utilizing rooted sum of square reconstruction with receive coil arrays. These artifacts can significantly alter whole brain high resolution T1-weighted (T1w) images that are extensively utilized for clinical diagnosis, for gray/white matter segmentation as well as for coregistration with functional time series. In T1 weighted 3D-MPRAGE sequences, it is possible to preserve a bulk amount of T1 contrast through space by using adiabatic inversion RF pulses that are insensitive to transmit B1 variations above a minimum threshold. However, large intensity variations persist in the images, which are significantly more difficult to address at very high field where RF coil B1 profiles become more heterogeneous. Another characteristic of T1w MPRAGE sequences is their intrinsic sensitivity to Proton Density and T2* contrast, which cannot be removed with post-processing algorithms utilized to correct for receive coil sensitivity. In this paper, we demonstrate a simple technique capable of producing normalized, high resolution T1w 3D-MPRAGE images that are devoid of receive coil sensitivity, Proton Density and T2* contrast. These images, which are suitable for routinely obtaining whole brain tissue segmentation at 7 Tesla, provide higher T1 contrast specificity than standard MPRAGE acquisitions. Our results show that removing the Proton Density component can help identifying small brain structures and that T2* induced artifacts can be removed from the images. The resulting unbiased T1w images can also be used to generate Maximum Intensity Projection angiograms, without additional data acquisition, that are inherently registered with T1w structural images. In addition, we introduce a simple technique to reduce residual signal intensity variations induced by Transmit B1 heterogeneity. Because this approach requires two 3D images, one divided with the other, head motion could create serious problems, especially at high spatial resolution. To alleviate such inter-scan motion problems, we developed a new sequence where the two contrast acquisitions are interleaved within a single scan. This interleaved approach however comes with greater risk of intra-scan motion issues because of a longer single scan time. Users can choose between these two trade offs depending on specific protocols and patient populations. We believe that the simplicity and the robustness of this double contrast based approach to address intensity field bias at high field and improve T1 contrast specificity, together with the capability of simultaneously obtaining angiography maps, advantageously counter balance the potential drawbacks of the technique, mainly a longer acquisition time and a moderate reduction in signal to noise ratio. PMID:19233292
Tunable electromagnetically induced transparency from a superconducting terahertz metamaterial
NASA Astrophysics Data System (ADS)
Zhang, Caihong; Wu, Jingbo; Jin, Biaobing; Jia, Xiaoqing; Kang, Lin; Xu, Weiwei; Wang, Huabing; Chen, Jian; Tonouchi, Masoyoshi; Wu, Peiheng
2017-06-01
We demonstrate in this paper the tunable electromagnetically induced transparency (EIT) made from a superconducting (SC) niobium nitride (NbN) film induced by an intense terahertz (THz) field. As the variation of the incident THz field alters the intrinsic ohmic loss of the SC NbN film, the field-dependent transmittance is observed. To elaborate the role of the bright and dark modes, a hybrid coupling model is introduced to fit the experimental transmission spectra and extract the characteristic parameters of each mode. It is shown that the resonator for the bright mode is altered greatly due to strong direct coupling to the incident intense THz field, whereas the dark mode resonator has little interaction with the incident THz field via a weak near-filed coupling to the bright-mode resonator. This implies that we can partially control a mode or a part of metamaterial by introducing the intense THz field, which offers an effective manner to selectively control the electromagnetic property of the metamaterial. This work may bring many potential applications for the tunable EIT-like metamaterial.
NASA Astrophysics Data System (ADS)
Polosukhina, N.
The detection of remarkable variations in the profile of the resonance doublet Li I 6708 Å with rotational phase of the roAp star HD 83368 (North et al. 1998) prompted us to consider the behaviour of other characteristics of this star. The observational data on magnetic field (Heff), brightness and amplitude of rapid light oscillations of HD 83368 are analyzed. A clear synchronism appears between the variations of the Li line intensity, brightness, magnetic field and pulsation amplitude with rotational phase, which can be explained in terms of a spotted rotator model. Reference: North P., Polosukhina N., Malanushenko V., Hack M., 1998, A&A 333, 644
Near field optical probe for critical dimension measurements
Stallard, B.R.; Kaushik, S.
1999-05-18
A resonant planar optical waveguide probe for measuring critical dimensions on an object in the range of 100 nm and below is disclosed. The optical waveguide includes a central resonant cavity flanked by Bragg reflector layers with input and output means at either end. Light is supplied by a narrow bandwidth laser source. Light resonating in the cavity creates an evanescent electrical field. The object with the structures to be measured is translated past the resonant cavity. The refractive index contrasts presented by the structures perturb the field and cause variations in the intensity of the light in the cavity. The topography of the structures is determined from these variations. 8 figs.
NASA Astrophysics Data System (ADS)
Amenomori, M.; Bi, X. J.; Chen, D.; Chen, T. L.; Chen, W. Y.; Cui, S. W.; Danzengluobu; Ding, L. K.; Feng, C. F.; Feng, Zhaoyang; Feng, Z. Y.; Gou, Q. B.; Guo, Y. Q.; He, H. H.; He, Z. T.; Hibino, K.; Hotta, N.; Hu, Haibing; Hu, H. B.; Huang, J.; Jia, H. Y.; Jiang, L.; Kajino, F.; Kasahara, K.; Katayose, Y.; Kato, C.; Kawata, K.; Kozai, M.; Labaciren; Le, G. M.; Li, A. F.; Li, H. J.; Li, W. J.; Liu, C.; Liu, J. S.; Liu, M. Y.; Lu, H.; Meng, X. R.; Miyazaki, T.; Munakata, K.; Nakajima, T.; Nakamura, Y.; Nanjo, H.; Nishizawa, M.; Niwa, T.; Ohnishi, M.; Ohta, I.; Ozawa, S.; Qian, X. L.; Qu, X. B.; Saito, T.; Saito, T. Y.; Sakata, M.; Sako, T. K.; Shao, J.; Shibata, M.; Shiomi, A.; Shirai, T.; Sugimoto, H.; Takita, M.; Tan, Y. H.; Tateyama, N.; Torii, S.; Tsuchiya, H.; Udo, S.; Wang, H.; Wu, H. R.; Xue, L.; Yamamoto, Y.; Yamauchi, K.; Yang, Z.; Yuan, A. F.; Zhai, L. M.; Zhang, H. M.; Zhang, J. L.; Zhang, X. Y.; Zhang, Y.; Zhang, Yi; Zhang, Ying; Zhaxisangzhu; Zhou, X. X.; Tibet ASγ Collaboration
2018-06-01
We examine the possible influence of Earth-directed coronal mass ejections (ECMEs) on the Sun’s shadow in the 3 TeV cosmic-ray intensity observed by the Tibet-III air shower (AS) array. We confirm a clear solar-cycle variation of the intensity deficit in the Sun’s shadow during ten years between 2000 and 2009. This solar-cycle variation is overall reproduced by our Monte Carlo (MC) simulations of the Sun’s shadow based on the potential field model of the solar magnetic field averaged over each solar rotation period. We find, however, that the magnitude of the observed intensity deficit in the Sun’s shadow is significantly less than that predicted by MC simulations, particularly during the period around solar maximum when a significant number of ECMEs is recorded. The χ 2 tests of the agreement between the observations and the MC simulations show that the difference is larger during the periods when the ECMEs occur, and the difference is reduced if the periods of ECMEs are excluded from the analysis. This suggests the first experimental evidence of the ECMEs affecting the Sun’s shadow observed in the 3 TeV cosmic-ray intensity.
Paleomagnetic Study of a Reversal of the Earth's Magnetic Field.
Dunn, J R; Fuller, M; Ito, H; Schmidt, V A
1971-05-21
A detailed record of a field reversal has been obtained from the natural remanent magnetization of the Tatoosh intrusion in Mount Rainier National Park, Washington. The reversal took place at 14.7 +/- 1 million years and is interpreted to be from reverse to normal. A decrease in the intensity of the field of about an order of magnitude occurs immediately before the reversal, while its orientation remains substantially unchanged. The onset of the reversal is marked by abrupt swinging of the virtual geomagnetic pole along an arc of a great circle. During the reversal the pole traces a path across the Pacific. In the last stage of the process recorded in the sections, the succession of virtual geomagnetic poles is very similar to those generated by secular variation in the recent past. Although the cooling rate of the intrusion is not sufficiently well known to permit a useful calculation of the duration of the reversal process, an estimate based on the length of the supposed secular variation cycles gives 1 to 4 x 103 years for the reversal of field direction and approximately 1 x 104 years for the time scale of the intensity changes.
[Geomagnetic field variations in the human prenatal period and cancer in adults].
Iamshanov, V A
2007-01-01
Our earlier evidence pointed to a relationship between geomagnetic field (GMF) variations in pre- and early postnatal periods and appearance in the future of oncopathology in these patients. It appears to contribute to risk for such malignancies in adults as breast, lung, liver, bladder, kidney, prostate, hypophysis cancer, ovarian carcinoma, skin melanoma, Hodgkin's disease, lymphoma, and probably stomach cancer. No link was detected between esophageal, thyroid, colorectal cancer or cervical carcinoma, on the one hand, and GMF variations in prenatal period, on the other. It is suggested that low intensity of GMF is associated with increased death of macrophages and other granulocytes as well as nitric oxide formation both in fetal and maternal organism. The latter factor induces genes responsible for detoxication. In adults, under normal or disturbed GMF conditions, detoxication processes take care of excessive blood-nitric oxide. Both in fetus and mother, due to high GMF intensity, granulocyte decay is inhibited thus causing nitric oxide levels to fall. As a consequence, detoxication fails. That accounts for excessive blood-nitric oxide formation at adult stage when GMF intensity is low or normal. Nitric oxide causes certain nitrosamines to form, which are tissue-specific carcinogens. Therefore, the lower level of GMF oscillations was in pre- and early postnatal periods than in more late terms tumors appeared (for example, the negative correlation for breast cancer took place).
An activity index for geomagnetic paleosecular variation, excursions, and reversals
NASA Astrophysics Data System (ADS)
Panovska, S.; Constable, C. G.
2017-04-01
Magnetic indices provide quantitative measures of space weather phenomena that are widely used by researchers in geomagnetism. We introduce an index focused on the internally generated field that can be used to evaluate long term variations or climatology of modern and paleomagnetic secular variation, including geomagnetic excursions, polarity reversals, and changes in reversal rate. The paleosecular variation index, Pi, represents instantaneous or average deviation from a geocentric axial dipole field using normalized ratios of virtual geomagnetic pole colatitude and virtual dipole moment. The activity level of the index, σPi, provides a measure of field stability through the temporal standard deviation of Pi. Pi can be calculated on a global grid from geomagnetic field models to reveal large scale geographic variations in field structure. It can be determined for individual time series, or averaged at local, regional, and global scales to detect long term changes in geomagnetic activity, identify excursions, and transitional field behavior. For recent field models, Pi ranges from less than 0.05 to 0.30. Conventional definitions for geomagnetic excursions are characterized by Pi exceeding 0.5. Strong field intensities are associated with low Pi unless they are accompanied by large deviations from axial dipole field directions. σPi provides a measure of geomagnetic stability that is modulated by the level of PSV or frequency of excursional activity and reversal rate. We demonstrate uses of Pi for paleomagnetic observations and field models and show how it could be used to assess whether numerical simulations of the geodynamo exhibit Earth-like properties.
Peculiarities of cosmic ray modulation in the solar minimum 23/24
NASA Astrophysics Data System (ADS)
Alania, M. V.; Modzelewska, R.; Wawrzynczak, A.
2014-06-01
We study changes of the galactic cosmic ray (GCR) intensity for the ending period of the solar cycle 23 and the beginning of the solar cycle 24 using neutron monitors experimental data. We show that an increase of the GCR intensity in 2009 is generally related with decrease of the solar wind velocity U, the strength B of the interplanetary magnetic field (IMF), and the drift in negative (A < 0) polarity epoch. We present that temporal changes of rigidity dependence of the GCR intensity variation, before reaching maximum level in 2009 and after it, do not noticeably differ from each other. The rigidity spectrum of the GCR intensity variations calculated based on neutron monitors data (for rigidities > 10 GV) is hard in the minimum and near-minimum epoch. We do not recognize any nonordinary changes in the physical mechanism of modulation of the GCR intensity in the rigidity range of GCR particles to which neutron monitors respond. We compose 2-D nonstationary model of transport equation to describe variations of the GCR intensity for 1996-2012 including the A > 0 (1996-2001) and the A < 0 (2002-2012) periods; diffusion coefficient of cosmic rays for rigidity 10-15 GV is increased by 30% in 2009 (A < 0) comparing with 1996 (A > 0). We believe that the proposed model is relatively realistic, and obtained results are satisfactorily compatible with neutron monitors data.
NASA Astrophysics Data System (ADS)
Wang, H.; Chen, K.; Wu, Z.; Guan, X.
2017-12-01
In recent years, with the prominent of water environment problem and the relative increase of point source pollution governance, especially the agricultural non-point source pollution problem caused by the extensive use of fertilizers and pesticides has become increasingly aroused people's concern and attention. In order to reveal the quantitative relationship between agriculture water and fertilizer and non-point source pollution, on the basis of elm field experiment and combined with agricultural drainage irrigation model, the agricultural irrigation water and the relationship between fertilizer and fertilization scheme and non-point source pollution were analyzed and calculated by field emission intensity index. The results show that the variation of displacement varies greatly under different irrigation conditions. When the irrigation water increased from 22cm to 42cm, the irrigation water increased by 20 cm while the field displacement increased by 11.92 cm, about 66.22% of the added value of irrigation water. Then the irrigation water increased from 42 to 68, irrigation water increased 26 cm, and the field displacement increased by 22.48 cm, accounting for 86.46% of irrigation water. So there is an "inflection point" between the irrigation water amount and field displacement amount. The load intensity increases with the increase of irrigation water and shows a significant power correlation. Under the different irrigation condition, the increase amplitude of load intensity with the increase of irrigation water is different. When the irrigation water is smaller, the load intensity increase relatively less, and when the irrigation water increased to about 42 cm, the load intensity will increase considerably. In addition, there was a positive correlation between the fertilization and load intensity. The load intensity had obvious difference in different fertilization modes even with same fertilization level, in which the fertilizer field unit load intensity increased the most in July. The results provide some basis for the field control and management of agricultural non-point source pollution.
Relative secular variations of the geomagnetic field along the Zgorzelec-Wiżajny profile, Poland
NASA Astrophysics Data System (ADS)
Wojas, Anna; Grabowska, Teresa; Mikołajczak, Mateusz
2018-03-01
The paper presents results of the study on relative secular variations of total magnetic intensity (TMI) of the geomagnetic field along the 700 km long profile crossing the area of Poland. Surveys were carried out at annual intervals between 1966 and 2016 (50 measurement series), in 31 survey sites (secular points) separated by about 22 km. The studied profile of the SW-NE direction, called Zgorzelec-Wiżajny (Z-W), crosses large parts of the main tectonic units of Europe, namely the Palaeozoic Platform of Central and Western Europe (PLZ) and the East European Craton (EEC), connected by the Teisseyre-Tornquist Zone (TTZ). Using the original methodology of analysis of measured data, reduced to the values of geomagnetic field recorded at the Central Geophysical Observatory in Belsk, the relative secular variations of TMI with the magnetic anomalies (ΔT) and the terrestrial heat flow density (Q) were graphically presented.
An electron of helium atom under a high-intensity laser field
NASA Astrophysics Data System (ADS)
Falaye, Babatunde James; Sun, Guo-Hua; Adepoju, Adenike Grace; Liman, Muhammed S.; Oyewumi, K. J.; Dong, Shi-Hai
2017-02-01
We scrutinize the behavior of eigenvalues of an electron in a helium (He) atom as it interacts with electric field directed along the z-axis and is exposed to linearly polarized intense laser field radiation. To achieve this, we freeze one electron of the He atom at its ionic ground state and the motion of the second electron in the ion core is treated via a more general case of screened Coulomb potential model. Using the Kramers-Henneberger (KH) unitary transformation, which is the semiclassical counterpart of the Block-Nordsieck transformation in the quantized field formalism, the squared vector potential that appears in the equation of motion is eliminated and the resultant equation is expressed in the KH frame. Within this frame, the resulting potential and the corresponding wave function are expanded in Fourier series and using Ehlotzky’s approximation, we obtain a laser-dressed potential to simulate intense laser field. By fitting the more general case of screened Coulomb potential model into the laser-dressed potential, and then expanding it in Taylor series up to O≤ft({{r}4},α 09\\right) , we obtain the solution (eigenvalues and wave function) of an electron in a He atom under the influence of external electric field and high-intensity laser field, within the framework of perturbation theory formalism. We found that the variation in frequency of laser radiation has no effect on the eigenvalues of a He electron for a particular electric field intensity directed along z-axis. Also, for a very strong external electric field and an infinitesimal screening parameter, the system is strongly bound. This work has potential application in the areas of atomic and molecular processes in external fields including interactions with strong fields and short pulses.
Restoration of MRI Data for Field Nonuniformities using High Order Neighborhood Statistics
Hadjidemetriou, Stathis; Studholme, Colin; Mueller, Susanne; Weiner, Michael; Schuff, Norbert
2007-01-01
MRI at high magnetic fields (> 3.0 T ) is complicated by strong inhomogeneous radio-frequency fields, sometimes termed the “bias field”. These lead to nonuniformity of image intensity, greatly complicating further analysis such as registration and segmentation. Existing methods for bias field correction are effective for 1.5 T or 3.0 T MRI, but are not completely satisfactory for higher field data. This paper develops an effective bias field correction for high field MRI based on the assumption that the nonuniformity is smoothly varying in space. Also, nonuniformity is quantified and unmixed using high order neighborhood statistics of intensity cooccurrences. They are computed within spherical windows of limited size over the entire image. The restoration is iterative and makes use of a novel stable stopping criterion that depends on the scaled entropy of the cooccurrence statistics, which is a non monotonic function of the iterations; the Shannon entropy of the cooccurrence statistics normalized to the effective dynamic range of the image. The algorithm restores whole head data, is robust to intense nonuniformities present in high field acquisitions, and is robust to variations in anatomy. This algorithm significantly improves bias field correction in comparison to N3 on phantom 1.5 T head data and high field 4 T human head data. PMID:18193095
The Effects of Earth's Outer Core's Viscosity on Geodynamo Models
NASA Astrophysics Data System (ADS)
Dong, C.; Jiao, L.; Zhang, H.
2017-12-01
Geodynamo process is controlled by mathematic equations and input parameters. To study effects of parameters on geodynamo system, MoSST model has been used to simulate geodynamo outputs under different outer core's viscosity ν. With spanning ν for nearly three orders when other parameters fixed, we studied the variation of each physical field and its typical length scale. We find that variation of ν affects the velocity field intensely. The magnetic field almost decreases monotonically with increasing of ν, while the variation is no larger than 30%. The temperature perturbation increases monotonically with ν, but by a very small magnitude (6%). The averaged velocity field (u) of the liquid core increases with ν as a simple fitted scaling relation: u∝ν0.49. The phenomenon that u increases with ν is essentially that increasing of ν breaks the Taylor-Proudman constraint and drops the critical Rayleigh number, and thus u increases under the same thermal driving force. Forces balance is analyzed and balance mode shifts with variation of ν. When compared with former studies of scaling laws, this study supports the conclusion that in a certain parameter range, the magnetic field strength doesn't vary much with the viscosity, but opposes to the assumption that the velocity field has nothing to do with the outer core viscosity.
NASA Astrophysics Data System (ADS)
Faghihi, M. J.; Tavassoly, M. K.
2012-02-01
In this paper, we study the interaction between a three-level atom and a quantized single-mode field with ‘intensity-dependent coupling’ in a ‘Kerr medium’. The three-level atom is considered to be in a Λ-type configuration. Under particular initial conditions, which may be prepared for the atom and the field, the dynamical state vector of the entire system will be explicitly obtained, for the arbitrary nonlinearity function f(n) associated with any physical system. Then, after evaluating the variation of the field entropy against time, we will investigate the quantum statistics as well as some of the nonclassical properties of the introduced state. During our calculations we investigate the effects of intensity-dependent coupling, Kerr medium and detuning parameters on the depth and domain of the nonclassicality features of the atom-field state vector. Finally, we compare our obtained results with those of V-type three-level atoms.
NASA Astrophysics Data System (ADS)
Kasapoglu, E.; Sakiroglu, S.; Sökmen, I.; Restrepo, R. L.; Mora-Ramos, M. E.; Duque, C. A.
2016-10-01
We have calculated the effects of electric and intense laser fields on the binding energies of the ground and some excited states of conduction electrons coupled to shallow donor impurities as well as the total optical absorption coefficient for transitions between 1s and 2p± electron-impurity states in a asymmetric parabolic GaAs/Ga1-x AlxAs quantum well. The binding energies were obtained using the effective-mass approximation within a variational scheme. Total absorption coefficient (linear and nonlinear absorption coefficient) for the transitions between any two impurity states were calculated from first- and third-order dielectric susceptibilities derived within a perturbation expansion for the density matrix formalism. Our results show that the effects of the electric field, intense laser field, and the impurity location on the binding energy of 1s-impurity state are more pronounced compared with other impurity states. If the well center is changed to be Lc<0 (Lc>0), the effective well width decreases (increases), and thus we can obtain the red or blue shift in the resonant peak position of the absorption coefficient by changing the intensities of the electric and non-resonant intense laser field as well as dimensions of the well and impurity positions.
Quasi-periodic changes in the 3D solar anisotropy of Galactic cosmic rays for 1965-2014
NASA Astrophysics Data System (ADS)
Modzelewska, R.; Alania, M. V.
2018-01-01
Aims: We study features of the 3D solar anisotropy of Galactic cosmic rays (GCR) for 1965-2014 (almost five solar cycles, cycles 20-24). We analyze the 27-day variations of the 2D GCR anisotropy in the ecliptic plane and the north-south anisotropy normal to the ecliptic plane. We study the dependence of the 27-day variation of the 3D GCR anisotropy on the solar cycle and solar magnetic cycle. We demonstrate that the 27-day variations of the GCR intensity and anisotropy can be used as an important tool to study solar wind, solar activity, and heliosphere. Methods: We used the components Ar, Aϕ and At of the 3D GCR anisotropy that were found based on hourly data of neutron monitors (NMs) and muon telescopes (MTs) using the harmonic analyses and spectrographic methods. We corrected the 2D diurnal ( 24-h) variation of the GCR intensity for the influence of the Earth magnetic field. We derived the north-south component of the GCR anisotropy based on the GG index, which is calculated as the difference in GCR intensities of the Nagoya multidirectional MTs. Results: We show that the behavior of the 27-day variation of the 3D anisotropy verifies a stable long-lived active heliolongitude on the Sun. This illustrates the usefulness of the 27-day variation of the GCR anisotropy as a unique proxy to study solar wind, solar activity, and heliosphere. We distinguish a tendency of the 22-yr changes in amplitude of the 27-day variation of the 2D anisotropy that is connected with the solar magnetic cycle. We demonstrate that the amplitudes of the 27-day variation of the north-south component of the anisotropy vary with the 11-yr solar cycle, but a dependence of the solar magnetic polarity can hardly be recognized. We show that the 27-day recurrences of the GG index and the At component are highly positively correlated, and both are highly correlated with the By component of the heliospheric magnetic field.
Geomagnetic spikes on the core-mantle boundary
NASA Astrophysics Data System (ADS)
Davies, C. J.; Constable, C.
2017-12-01
Extreme variations of Earth's magnetic field occurred in the Levantine region around 1000 BC, where the field intensity rose and fell by a factor of 2-3 over a short time and confined spatial region. There is presently no coherent link between this intensity spike and the generating processes in Earth's liquid core. Here we test the attribution of a surface spike to a flux patch visible on the core-mantle boundary (CMB), calculating geometric and energetic bounds on resulting surface geomagnetic features. We show that the Levantine intensity high must span at least 60 degrees in longitude. Models providing the best trade-off between matching surface spike intensity, minimizing L1 and L2 misfit to the available data and satisfying core energy constraints produce CMB spikes 8-22 degrees wide with peak values of O(100) mT. We propose that the Levantine spike grew in place before migrating northward and westward, contributing to the growth of the axial dipole field seen in Holocene field models. Estimates of Ohmic dissipation suggest that diffusive processes, which are often neglected, likely govern the ultimate decay of geomagnetic spikes. Using these results, we search for the presence of spike-like features in geodynamo simulations.
CLASP/SJ Observations of Rapid Time Variations in the Ly α Emission in a Solar Active Region
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ishikawa, Shin-nosuke; Kubo, Masahito; Katsukawa, Yukio
The Chromospheric Ly α SpectroPolarimeter (CLASP) is a sounding rocket experiment launched on 2015 September 3 to investigate the solar chromosphere and transition region. The slit-jaw (SJ) optical system captured Ly α images with a high time cadence of 0.6 s. From the CLASP/SJ observations, many variations in the solar chromosphere and transition region emission with a timescale of <1 minute were discovered. In this paper, we focus on the active region within the SJ field of view and investigate the relationship between short (<30 s) temporal variations in the Ly α emission and the coronal structures observed by Solarmore » Dynamics Observatory/Atmospheric Imaging Assembly (AIA). We compare the Ly α temporal variations at the coronal loop footpoints observed in the AIA 211 Å (≈2 MK) and AIA 171 Å (≈0.6 MK) channels with those in the regions with bright Ly α features without a clear association with the coronal loop footpoints. We find more short (<30 s) temporal variations in the Ly α intensity in the footpoint regions. Those variations did not depend on the temperature of the coronal loops. Therefore, the temporal variations in the Ly α intensity at this timescale range could be related to the heating of the coronal structures up to temperatures around the sensitivity peak of 171 Å. No signature was found to support the scenario that these Ly α intensity variations were related to the nanoflares. Waves or jets from the lower layers (lower chromosphere or photosphere) are possible causes for this phenomenon.« less
NASA Technical Reports Server (NTRS)
Markson, R.
1980-01-01
The ionospheric potential and galactic cosmic radiation, found to be inversely correlated with the solar wind velocity are examined as being germane to weather modification. Since the ionospheric potential is proportional to the fair weather electric field intensity and cosmic radiation is the dominant source of atmospheric ionization, it is concluded that the Earth's overall electric field varies in phase with atmospheric ionization and that the latter is modulated by the solar wind. A proposed mechanism, in which solar control of ionizing radiation influences atmospheric electrification and thus possibly cloud physical processes is discussed. An experimental approach to critically test the proposed mechanism through comparison of the temporal variation of the Earth's electric field with conditions in the interplanetary medium is outlined.
NASA Astrophysics Data System (ADS)
Nowaczyk, Norbert R.; Jiabo, Liu; Frank, Ute; Arz, Helge W.
2018-02-01
A total of nine sediment cores recovered from the Archangelsky Ridge in the SE Black Sea were systematically subjected to intense paleo- and mineral magnetic analyses. Besides 16 accelerator mass spectrometry (AMS) 14C ages available for another core from this area, dating was accomplished by correlation of short-term warming events during the last glacial monitored by high-resolution X-ray fluorescence (XRF) scanning as maxima in both Ca/Ti and K/Ti ratios in Black Sea sediments to the so-called 'Dansgaard-Oeschger events' recognized from Greenland ice cores. Thus, several hiatuses could be identified in the various cores during the last glacial/interglacial cycle. Finally, core sections documenting marine isotope stage (MIS) 4 at high resolution back to 69 ka were selected for detailed analyses. At 64.5 ka, according to obtained results from Black Sea sediments, the second deepest minimum in relative paleointensity during the past 69 ka occurred, with the Laschamp geomagnetic excursion at 41 ka being associated with the lowest field intensities. The field minimum during MIS 4 is associated with large declination swings beginning about 3 ka before the minimum. While a swing to 50°E is associated with steep inclinations (50-60°) according to the coring site at 42°N, the subsequent declination swing to 30°W is associated with shallow inclinations of down to 40°. Nevertheless, these large deviations from the direction of a geocentric axial dipole field (I = 61 °, D = 0 °) still can not yet be termed as 'excursional', since latitudes of corresponding virtual geomagnetic poles (VGP) only reach down to 51.5°N (120°E) and 61.5°N (75°W), respectively. However, these VGP positions at opposite sides of the globe are linked with VGP drift rates of up to 0.2° per year in between. These extreme secular variations might be the mid-latitude expression of a geomagnetic excursion with partly reversed inclinations found at several sites much further North in Arctic marine sediments between 69°N and 81°N. Thus, the pronounced intensity minimum at 64.5 ka and described directional variations might be the effect of a weak geomagnetic field with a multi-polar geometry in the middle of MIS 4.
Effect of geomagnetic storms on the daytime low-latitude thermospheric wave dynamics
NASA Astrophysics Data System (ADS)
Karan, Deepak K.; Pallamraju, Duggirala
2018-05-01
The equatorial- and low-latitude thermospheric dynamics is affected by both equatorial electrodynamics and neutral wave dynamics, the relative variation of which is dependent on the prevalent background conditions, which in turn has a seasonal dependence. Depending on the ambient thermospheric conditions, varying effects of the geomagnetic disturbances on the equatorial- and low-latitude thermosphere are observed. To investigate the effect of these disturbances on the equatorial- and low-latitude neutral wave dynamics, daytime airglow emission intensities at OI 557.7 nm, OI 630.0 nm, and OI 777.4 nm are used. These emissions from over a large field-of-view (FOV∼1000) have been obtained using a high resolution slit spectrograph, MISE (Multiwavelength Imaging Spectrograph using Echelle grating), from a low-latitude location, Hyderabad (17.50N, 78.40E; 8.90N MLAT), in India. Variations of the dayglow emission intensities are investigated during three geomagnetic disturbance events that occurred in different seasons. It is seen that the neutral dayglow emission intensities at all the three wavelengths showed different type of variations with the disturbance storm time (Dst) index in different seasons. Even though the dayglow emission intensities over low-latitude regions are sensitive to the variation in the equatorial electric fields, during periods of geomagnetic disturbances, especially in solstices, these are dependent on thermospheric O/N2 values. This shows the dominance of neutral dynamics over electrodynamics in the low-latitude upper atmosphere during geomagnetic disturbances. Further, spectral analyses have been carried out to obtain the zonal scale sizes in the gravity wave regime and their diurnal distributions are compared for geomagnetic quiet and disturbed days. Broadly, the zonal scales seem to be breaking into various scale sizes on days of geomagnetic disturbances when compared to those on quiet days. This contrast in the diurnal distribution of the zonal scale sizes brings to light, for the first time, the varying nature of the neutral wave coupling in the daytime thermosphere during periods of geomagnetic disturbances.
Estimating nonrigid motion from inconsistent intensity with robust shape features
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Wenyang; Ruan, Dan, E-mail: druan@mednet.ucla.edu; Department of Radiation Oncology, University of California, Los Angeles, California 90095
2013-12-15
Purpose: To develop a nonrigid motion estimation method that is robust to heterogeneous intensity inconsistencies amongst the image pairs or image sequence. Methods: Intensity and contrast variations, as in dynamic contrast enhanced magnetic resonance imaging, present a considerable challenge to registration methods based on general discrepancy metrics. In this study, the authors propose and validate a novel method that is robust to such variations by utilizing shape features. The geometry of interest (GOI) is represented with a flexible zero level set, segmented via well-behaved regularized optimization. The optimization energy drives the zero level set to high image gradient regions, andmore » regularizes it with area and curvature priors. The resulting shape exhibits high consistency even in the presence of intensity or contrast variations. Subsequently, a multiscale nonrigid registration is performed to seek a regular deformation field that minimizes shape discrepancy in the vicinity of GOIs. Results: To establish the working principle, realistic 2D and 3D images were subject to simulated nonrigid motion and synthetic intensity variations, so as to enable quantitative evaluation of registration performance. The proposed method was benchmarked against three alternative registration approaches, specifically, optical flow, B-spline based mutual information, and multimodality demons. When intensity consistency was satisfied, all methods had comparable registration accuracy for the GOIs. When intensities among registration pairs were inconsistent, however, the proposed method yielded pronounced improvement in registration accuracy, with an approximate fivefold reduction in mean absolute error (MAE = 2.25 mm, SD = 0.98 mm), compared to optical flow (MAE = 9.23 mm, SD = 5.36 mm), B-spline based mutual information (MAE = 9.57 mm, SD = 8.74 mm) and mutimodality demons (MAE = 10.07 mm, SD = 4.03 mm). Applying the proposed method on a real MR image sequence also provided qualitatively appealing results, demonstrating good feasibility and applicability of the proposed method. Conclusions: The authors have developed a novel method to estimate the nonrigid motion of GOIs in the presence of spatial intensity and contrast variations, taking advantage of robust shape features. Quantitative analysis and qualitative evaluation demonstrated good promise of the proposed method. Further clinical assessment and validation is being performed.« less
Estimating nonrigid motion from inconsistent intensity with robust shape features.
Liu, Wenyang; Ruan, Dan
2013-12-01
To develop a nonrigid motion estimation method that is robust to heterogeneous intensity inconsistencies amongst the image pairs or image sequence. Intensity and contrast variations, as in dynamic contrast enhanced magnetic resonance imaging, present a considerable challenge to registration methods based on general discrepancy metrics. In this study, the authors propose and validate a novel method that is robust to such variations by utilizing shape features. The geometry of interest (GOI) is represented with a flexible zero level set, segmented via well-behaved regularized optimization. The optimization energy drives the zero level set to high image gradient regions, and regularizes it with area and curvature priors. The resulting shape exhibits high consistency even in the presence of intensity or contrast variations. Subsequently, a multiscale nonrigid registration is performed to seek a regular deformation field that minimizes shape discrepancy in the vicinity of GOIs. To establish the working principle, realistic 2D and 3D images were subject to simulated nonrigid motion and synthetic intensity variations, so as to enable quantitative evaluation of registration performance. The proposed method was benchmarked against three alternative registration approaches, specifically, optical flow, B-spline based mutual information, and multimodality demons. When intensity consistency was satisfied, all methods had comparable registration accuracy for the GOIs. When intensities among registration pairs were inconsistent, however, the proposed method yielded pronounced improvement in registration accuracy, with an approximate fivefold reduction in mean absolute error (MAE = 2.25 mm, SD = 0.98 mm), compared to optical flow (MAE = 9.23 mm, SD = 5.36 mm), B-spline based mutual information (MAE = 9.57 mm, SD = 8.74 mm) and mutimodality demons (MAE = 10.07 mm, SD = 4.03 mm). Applying the proposed method on a real MR image sequence also provided qualitatively appealing results, demonstrating good feasibility and applicability of the proposed method. The authors have developed a novel method to estimate the nonrigid motion of GOIs in the presence of spatial intensity and contrast variations, taking advantage of robust shape features. Quantitative analysis and qualitative evaluation demonstrated good promise of the proposed method. Further clinical assessment and validation is being performed.
Hare, J Daniel
1980-01-01
Burr size is the major factor affecting variation in the intensity of predation by two species of insect on the seeds of the cocklebur, Xanthium strumarium. Mean burr size varied among 10 adjacent local populations studied over three years, as did intensity of seed predation. Seed predation was more intense in populations with low mean burr length and declined linearly with increasing burr length under field and experimental conditions. Seed predation thus is a selective factor influencing the evolution of both burr size and correlated protective characteristics such as burr spine length and wall thickness. As in some other plants, morphological rather than chemical features appear to pose the major barrier to attack by host-specific seed predators. The advantage of more highly developed tissues protecting seeds may occur at the expense of total seed production.
A study of astrometric distortions due to “tree rings” in CCD sensors using LSST Photon Simulator
Beamer, Benjamin; Nomerotski, Andrei; Tsybychev, Dmitri
2015-05-22
Imperfections in the production process of thick CCDs lead to circularly symmetric dopant concentration variations, which in turn produce electric fields transverse to the surface of the fully depleted CCD that displace the photogenerated charges. We use PhoSim, a Monte Carlo photon simulator, to explore and examine the likely impacts these dopant concentration variations will have on astrometric measurements in LSST. The scale and behavior of both the astrometric shifts imparted to point sources and the intensity variations in flat field images that result from these doping imperfections are similar to those previously observed in Dark Energy Camera CCDs, givingmore » initial confirmation of PhoSim's model for these effects. In addition, the organized shape distortions were observed as a result of the symmetric nature of these dopant variations, causing nominally round sources to be imparted with a measurable ellipticity either aligned with or transverse to the radial direction of this dopant variation pattern.« less
Sunlit Io Atmospheric [O I] 6300 A and the Plasma Torus
NASA Technical Reports Server (NTRS)
Oliversen, Ronald J.; Scherb, Frank; Smyth, William H.; Freed, Melanie E.; Woodward, R. Carey, Jr.; Marcone, Maximus L.; Retherford, Kurt D.; Lupie, Olivia L.; Morgenthaler, Jeffrey P.; Fisher, Richard R. (Technical Monitor)
2001-01-01
A large database of sunlit Io [O I] 6300A emission, acquired over the period 1990-1999, with extensive coverage of Io orbital phase angle phi and System III longitude lambda(sub III), exhibits significant long-term and short-term variations in [O I] 6300A emission intensities. The long-term average intensity shows a clear dependence on lambda(sub III), which establishes conclusively that the emission is produced by the interaction between Io's atmosphere and the plasma torus. Two prominent average intensity maxima, 70 deg to 90 deg wide, are centered at lambda(sub III) about 130deg. and about 295 deg. A comparison of data from October 1998 with a three-dimensional plasma torus model, based upon electron impact excitation of atomic oxygen, suggests a basis for study of the torus interaction with Io's atmosphere. The observed short-term, erratic [O I] 6300A intensity variations fluctuate approximately 20% to 50% on time scale of tens of minutes with less frequent fluctuations of a factor of about 2. The most likely candidate to produce these fluctuations is a time-variable energy flux of field-aligned nonthermal electrons identified recently in Galileo PLS data. If true, the short-term [O I] intensity fluctuations may be related to variable field-aligned currents driven by inward and outward torus plasma transport and/or transient high-latitude, field-aligned potential drops. A correlation between the intensity and emission line width indicates molecular dissociation may contribute significantly to the [O I] 6300A emission. The nonthermal electron energy flux may produce O(1-D) by electron impact dissociation of SO2 and SO, with the excess energy going into excitation of O and its kinetic energy. The [O I] 6300A emission database establishes Io as a valuable probe of the torus, responding to local conditions at Io's position.
NASA Astrophysics Data System (ADS)
Zanella, Elena; Tema, Evdokia; Lanci, Luca; Regattieri, Eleonora; Isola, Ilaria; Hellstrom, John C.; Costa, Emanuele; Zanchetta, Giovanni; Drysdale, Russell N.; Magrì, Federico
2018-03-01
Speleothems are potentially excellent archives of the Earth's magnetic field, capable of recording its past variations. Their characteristics, such as the continuity of the record, the possibility to be easily dated, the almost instantaneous remanence acquisition and the high time-resolution make them potentially unique high-quality Paleosecular Variation (PSV) recorders. Nevertheless, speleothems are commonly characterized by low magnetic intensities, which often limits their resolution. Here we present a paleomagnetic study performed on two cores from a flowstone from the Rio Martino Cave (Western Alps, Italy). U/Th dating indicates that the flowstone's deposition covers almost the entire Holocene, spanning the period ca. 0.5-9.0 ka, while an estimation of its mean growth rate is around 1 mm per 15 years. The flowstone is composed of columnar calcite, characterized by a highly magnetic detrital content from meta-ophiolites in the cave's catchment. This favorable geological context results in an intense magnetic signal that permits the preparation and measurement of thin (∼3 mm depth equivalent) samples, each representing around 45 yr. The Characteristic Remanent Magnetization (ChRM), isolated after systematic stepwise Alternating Field demagnetization, is well defined, with Maximum Angular Deviation (MAD) generally lower than 10°. Paleomagnetic directional data allow the reconstruction of the PSV path during the Holocene for the area. Comparison of the new data with archeomagnetic data from Italian archeological and volcanic records and using the predictions of the SHA.DIF.14k and pfm9k.1a global geomagnetic field models shows that the Rio Martino flowstone represents an excellent recorder of the Earth's magnetic field during the last 9,000 years. Our high resolution paleomagnetic record, anchored by a high-quality chronology, provides promising data both for the detection of short term geomagnetic field variations and for complementing existing regional PSV curves for the prehistoric period, for which well-dated data are still scarce.
Response of trapped particles to a collapsing dipole moment.
NASA Technical Reports Server (NTRS)
Heckman, H. H.; Lindstrom, P. J.
1972-01-01
Particle motion in the secularly varying geomagnetic field is investigated in terms of a dipolar magnetic field with decreasing magnetic moment M. For dM/dt equal to the rate of decay of the earth's dipole component, we find there is drift in B-L space, resulting in an inward drift of particles accompanied with increased energy and unidirectional intensity. Secular variation of the geomagnetic field appears to be a dominant mechanism for radial drift in the inner radiation belt.
NASA Technical Reports Server (NTRS)
Roos, F. W.; Riddle, D. W.
1977-01-01
Measurements of surface pressure and wake flow fluctuations were made as part of a transonic wind tunnel investigation into the nature of a supercritical airfoil flow field. Emphasis was on a range of high subsonic Mach numbers and moderate lift coefficients corresponding to the development of drag divergence and buffeting. Fluctuation data were analyzed statistically for intensity, frequency content, and spatial coherence. Variations in these parameters were correlated with changes in the mean airfoil flow field.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jang, Si Young; Liu, H. Helen; Mohan, Radhe
Because of complex dose distributions and dose gradients that are created in three-dimensional conformal radiotherapy (3D-CRT) and intensity-modulated radiation therapy (IMRT), photon- and electron-energy spectra might change significantly with spatial locations and doses. This study examined variations in photon- and electron-energy spectra in 3D-CRT and IMRT photon fields. The effects of spectral variations on water-to-material stopping-power ratios used in Monte Carlo treatment planning systems and the responses of energy-dependent dosimeters, such as thermoluminescent dosimeters (TLDs) and radiographic films were further studied. The EGSnrc Monte Carlo code was used to simulate megavoltage 3D-CRT and IMRT photon fields. The photon- and electron-energymore » spectra were calculated in 3D water phantoms and anthropomorphic phantoms based on the fluence scored in voxel grids. We then obtained the water-to-material stopping-power ratios in the local voxels using the Spencer-Attix cavity theory. Changes in the responses of films and TLDs were estimated based on the calculated local energy spectra and published data on the dosimeter energy dependency. Results showed that the photon-energy spectra strongly depended on spatial positions and doses in both the 3D-CRT and IMRT fields. The relative fraction of low-energy photons (<100 keV) increased inversely with the photon dose in low-dose regions of the fields. A similar but smaller effect was observed for electrons in the phantoms. The maximum variation of the water-to-material stopping-power ratio over the range of calculated dose for both 3D-CRT and IMRT was negligible (<1.0%) for ICRU tissue, cortical bone, and soft bone and less than 3.6% for dry air and lung. Because of spectral softening at low doses, radiographic films in the phantoms could over-respond to dose by more than 30%, whereas the over-response of TLDs was less than 10%. Thus, spatial variations of the photon- and electron-energy spectra should be considered as important factors in 3D-CRT and IMRT dosimetry.« less
Li, Hong; Liu, Mingyong; Liu, Kun; Zhang, Feihu
2017-12-25
By simulating the geomagnetic fields and analyzing thevariation of intensities, this paper presents a model for calculating the objective function ofan Autonomous Underwater Vehicle (AUV)geomagnetic navigation task. By investigating the biologically inspired strategies, the AUV successfullyreachesthe destination duringgeomagnetic navigation without using the priori geomagnetic map. Similar to the pattern of a flatworm, the proposed algorithm relies on a motion pattern to trigger a local searching strategy by detecting the real-time geomagnetic intensity. An adapted strategy is then implemented, which is biased on the specific target. The results show thereliabilityandeffectivenessofthe proposed algorithm.
NASA Astrophysics Data System (ADS)
Bourne, M. D.; Henderson, G. M.; Thomas, A. L.; Mac Niocaill, C.
2012-12-01
The Laschamp geomagnetic excursion (~41 ka) was a brief global deviation in geomagnetic field behaviour from that expected during normal secular variation. Previously published records suggest rapid changes in field direction and a concurrent substantial decrease in field intensity. We present here high-resolution palaeomagnetic records of the Laschamp excursion obtained from two Ocean Drilling Program (ODP) Sites 1061 and 1062 on the Blake-Bahama Outer Ridge (ODP Leg 172) and compare this record with previously published records of the Blake and Iceland Basin Excursions. Relatively high sedimentation rates (>10 cm kyr-1) at these locations allow the determination of transitional field behaviour during the excursion. Rather than assuming a constant sedimentation rate between assigned age tie-points, we employ measurements of 230Thxs concentration in the sediment to assess variations in the sedimentation rates through the core sections of interest. This allows us to better determine the temporal behaviour of the Laschamp excursion with greater accuracy and known uncertainty. The Laschamp excursion at this location appears to be much shorter in duration than the Blake and Iceland Basin excursions. Palaeomagnetic measurements of discrete samples from four cores reveal a single excursional feature, across an interval of 30 cm, associated with a broader palaeointensity low. The excursion is characterised by rapid transitions (less than 500 years) between a stable normal polarity and a partially-reversed, polarity. Peaks in inclination either side of the directional excursion indicate periods of time when the local field is dominated by vertical flux patches. Similar behaviour has been observed in records of the Iceland Basin Excursion from the same region. The palaeointensity record is in good agreement between the two sites. The palaeointensity record shows two minima, where the second dip in intensity is associated with a more limited directional deviation. Similar field intensity behaviour has been observed during the Blake excursion suggesting that the geomagnetic field stability may be reduced for relatively long durations, potentially up to tens of thousands of years.
Gaussian statistics for palaeomagnetic vectors
Love, J.J.; Constable, C.G.
2003-01-01
With the aim of treating the statistics of palaeomagnetic directions and intensities jointly and consistently, we represent the mean and the variance of palaeomagnetic vectors, at a particular site and of a particular polarity, by a probability density function in a Cartesian three-space of orthogonal magnetic-field components consisting of a single (unimoda) non-zero mean, spherically-symmetrical (isotropic) Gaussian function. For palaeomagnetic data of mixed polarities, we consider a bimodal distribution consisting of a pair of such symmetrical Gaussian functions, with equal, but opposite, means and equal variances. For both the Gaussian and bi-Gaussian distributions, and in the spherical three-space of intensity, inclination, and declination, we obtain analytical expressions for the marginal density functions, the cumulative distributions, and the expected values and variances for each spherical coordinate (including the angle with respect to the axis of symmetry of the distributions). The mathematical expressions for the intensity and off-axis angle are closed-form and especially manageable, with the intensity distribution being Rayleigh-Rician. In the limit of small relative vectorial dispersion, the Gaussian (bi-Gaussian) directional distribution approaches a Fisher (Bingham) distribution and the intensity distribution approaches a normal distribution. In the opposite limit of large relative vectorial dispersion, the directional distributions approach a spherically-uniform distribution and the intensity distribution approaches a Maxwell distribution. We quantify biases in estimating the properties of the vector field resulting from the use of simple arithmetic averages, such as estimates of the intensity or the inclination of the mean vector, or the variances of these quantities. With the statistical framework developed here and using the maximum-likelihood method, which gives unbiased estimates in the limit of large data numbers, we demonstrate how to formulate the inverse problem, and how to estimate the mean and variance of the magnetic vector field, even when the data consist of mixed combinations of directions and intensities. We examine palaeomagnetic secular-variation data from Hawaii and Re??union, and although these two sites are on almost opposite latitudes, we find significant differences in the mean vector and differences in the local vectorial variances, with the Hawaiian data being particularly anisotropic. These observations are inconsistent with a description of the mean field as being a simple geocentric axial dipole and with secular variation being statistically symmetrical with respect to reflection through the equatorial plane. Finally, our analysis of palaeomagnetic acquisition data from the 1960 Kilauea flow in Hawaii and the Holocene Xitle flow in Mexico, is consistent with the widely held suspicion that directional data are more accurate than intensity data.
Gaussian statistics for palaeomagnetic vectors
NASA Astrophysics Data System (ADS)
Love, J. J.; Constable, C. G.
2003-03-01
With the aim of treating the statistics of palaeomagnetic directions and intensities jointly and consistently, we represent the mean and the variance of palaeomagnetic vectors, at a particular site and of a particular polarity, by a probability density function in a Cartesian three-space of orthogonal magnetic-field components consisting of a single (unimodal) non-zero mean, spherically-symmetrical (isotropic) Gaussian function. For palaeomagnetic data of mixed polarities, we consider a bimodal distribution consisting of a pair of such symmetrical Gaussian functions, with equal, but opposite, means and equal variances. For both the Gaussian and bi-Gaussian distributions, and in the spherical three-space of intensity, inclination, and declination, we obtain analytical expressions for the marginal density functions, the cumulative distributions, and the expected values and variances for each spherical coordinate (including the angle with respect to the axis of symmetry of the distributions). The mathematical expressions for the intensity and off-axis angle are closed-form and especially manageable, with the intensity distribution being Rayleigh-Rician. In the limit of small relative vectorial dispersion, the Gaussian (bi-Gaussian) directional distribution approaches a Fisher (Bingham) distribution and the intensity distribution approaches a normal distribution. In the opposite limit of large relative vectorial dispersion, the directional distributions approach a spherically-uniform distribution and the intensity distribution approaches a Maxwell distribution. We quantify biases in estimating the properties of the vector field resulting from the use of simple arithmetic averages, such as estimates of the intensity or the inclination of the mean vector, or the variances of these quantities. With the statistical framework developed here and using the maximum-likelihood method, which gives unbiased estimates in the limit of large data numbers, we demonstrate how to formulate the inverse problem, and how to estimate the mean and variance of the magnetic vector field, even when the data consist of mixed combinations of directions and intensities. We examine palaeomagnetic secular-variation data from Hawaii and Réunion, and although these two sites are on almost opposite latitudes, we find significant differences in the mean vector and differences in the local vectorial variances, with the Hawaiian data being particularly anisotropic. These observations are inconsistent with a description of the mean field as being a simple geocentric axial dipole and with secular variation being statistically symmetrical with respect to reflection through the equatorial plane. Finally, our analysis of palaeomagnetic acquisition data from the 1960 Kilauea flow in Hawaii and the Holocene Xitle flow in Mexico, is consistent with the widely held suspicion that directional data are more accurate than intensity data.
NASA Astrophysics Data System (ADS)
Smith, A. R. A.; Beggan, C. D.; Macmillan, S.; Whaler, K. A.
2017-10-01
The auroral electrojets (AEJs) are complex and dynamic horizontal ionospheric electric currents which form ovals around Earth's poles, being controlled by the morphology of the main magnetic field and the energy input from the solar wind interaction with the magnetosphere. The strength and location of the AEJ varies with solar wind conditions and the solar cycle but should also be controlled on decadal timescales by main field secular variation. To determine the AEJ climatology, we use data from four polar Low Earth Orbit magnetic satellite missions: POGO, Magsat, CHAMP, and Swarm. A simple estimation of the AEJ strength and latitude is made from each pass of the satellites, from peaks in the along-track gradient of the magnetic field intensity after subtracting a core and crustal magnetic field model. This measure of the AEJ activity is used to study the response in different sectors of magnetic local time (MLT) during different seasons and directions of the interplanetary magnetic field (IMF). We find a season-dependent hemispherical asymmetry in the AEJ response to IMF By, with a tendency toward stronger (weaker) AEJ currents in the north than the south during By>0 (By<0) around local winter. This effect disappears during local summer when we find a tendency toward stronger currents in the south than the north. The solar cycle modulation of the AEJ and the long-term shifting of its position and strength due to the core field variation are presented as challenges to internal field modeling.
Remanent magnetic properties of unbrecciated eucrites
NASA Technical Reports Server (NTRS)
Cisowski, Stanley M.
1991-01-01
This study examines the remanent magnetic properties of five unbrecciated eucrites, ranging from the coarse-grained cumulate Moore County to the quenched melt rock ALH 81001 in order to assess the strength of the magnetic field associated with their parent body during their formation. Two of the meteorites are judged as unlikely to have preserved their primary thermal remanence because of large variations in subsample remanence intensity and direction (Ibitira), and lack of NRM resistance to AF and thermal demagnetization (PCA 82502). The lack of a strong (greater than 0.01 mT) magnetizing field during their cooling on the eucrite parent body is inferred from the low normalized NRM intensities for subsamples of ALH 81001 and Yamato 791195.
The effect of the solar field reversal on the modulation of galactic cosmic rays
NASA Technical Reports Server (NTRS)
Thomas, B. T.; Goldstein, B. E.
1983-01-01
There is now a growing awareness that solar cycle related changes in the large-scale structure of the interplanetary magnetic field (IMF) may play an important role in the modulation of galactic cosmic rays. To date, attention focussed on two aspects of the magnetic field structure: large scale compression regions produced by fast solar wind streams and solar flares, both of which are known to vary in intensity and number over the solar cycle, and the variable warp of the heliospheric current sheet. It is suggested that another feature of the solar cycle is worthy of consideration: the field reversal itself. If the Sun reverses its polarity by simply overturning the heliospheric current sheet (northern fields migrating southward and vice-versa) then there may well be an effect on cosmic ray intensity. However, such a simple picture of solar reversal seems improbable. Observations of the solar corona suggest the existence of not one but several current sheets in the heliosphere at solar maximum. The results of a simple calculation to demonstrate that the variation in cosmic ray intensities that will result can be as large as is actually observed over the solar cycle are given.
Monitoring low density avian populations: An example using Mountain Plovers
Dreitz, V.J.; Lukacs, P.M.; Knopf, F.L.
2006-01-01
Declines in avian populations highlight a need for rigorous, broad-scale monitoring programs to document trends in avian populations that occur in low densities across expansive landscapes. Accounting for the spatial variation and variation in detection probability inherent to monitoring programs is thought to be effort-intensive and time-consuming. We determined the feasibility of the analytical method developed by Royle and Nichols (2003), which uses presence-absence (detection-non-detection) field data, to estimate abundance of Mountain Plovers (Charadrius montanus) per sampling unit in agricultural fields, grassland, and prairie dog habitat in eastern Colorado. Field methods were easy to implement and results suggest that the analytical method provides valuable insight into population patterning among habitats. Mountain Plover abundance was highest in prairie dog habitat, slightly lower in agricultural fields, and substantially lower in grassland. These results provided valuable insight to focus future research into Mountain Plover ecology and conservation. ?? The Cooper Ornithological Society 2006.
The magnetic sense and its use in long-distance navigation by animals.
Walker, Michael M; Dennis, Todd E; Kirschvink, Joseph L
2002-12-01
True navigation by animals is likely to depend on events occurring in the individual cells that detect magnetic fields. Minimum thresholds of detection, perception and 'interpretation' of magnetic field stimuli must be met if animals are to use a magnetic sense to navigate. Recent technological advances in animal tracking devices now make it possible to test predictions from models of navigation based on the use of variations in magnetic intensity.
Gordon, J. J.; Gardner, J. K.; Wang, S.; Siebers, J. V.
2012-01-01
Purpose: This work uses repeat images of intensity modulated radiation therapy (IMRT) fields to quantify fluence anomalies (i.e., delivery errors) that can be reliably detected in electronic portal images used for IMRT pretreatment quality assurance. Methods: Repeat images of 11 clinical IMRT fields are acquired on a Varian Trilogy linear accelerator at energies of 6 MV and 18 MV. Acquired images are corrected for output variations and registered to minimize the impact of linear accelerator and electronic portal imaging device (EPID) positioning deviations. Detection studies are performed in which rectangular anomalies of various sizes are inserted into the images. The performance of detection strategies based on pixel intensity deviations (PIDs) and gamma indices is evaluated using receiver operating characteristic analysis. Results: Residual differences between registered images are due to interfraction positional deviations of jaws and multileaf collimator leaves, plus imager noise. Positional deviations produce large intensity differences that degrade anomaly detection. Gradient effects are suppressed in PIDs using gradient scaling. Background noise is suppressed using median filtering. In the majority of images, PID-based detection strategies can reliably detect fluence anomalies of ≥5% in ∼1 mm2 areas and ≥2% in ∼20 mm2 areas. Conclusions: The ability to detect small dose differences (≤2%) depends strongly on the level of background noise. This in turn depends on the accuracy of image registration, the quality of the reference image, and field properties. The longer term aim of this work is to develop accurate and reliable methods of detecting IMRT delivery errors and variations. The ability to resolve small anomalies will allow the accuracy of advanced treatment techniques, such as image guided, adaptive, and arc therapies, to be quantified. PMID:22894421
de Groot, L. V.; Biggin, A. J.; Dekkers, M. J.; Langereis, C. G.; Herrero-Bervera, E.
2013-01-01
The dominant dipolar component of the Earth’s magnetic field has been steadily weakening for at least the last 170 years. Prior to these direct measurements, archaeomagnetic records show short periods of significantly elevated geomagnetic intensity. These striking phenomena are not captured by current field models and their relationship to the recent dipole decay is highly unclear. Here we apply a novel multi-method archaeomagnetic approach to produce a new high-quality record of geomagnetic intensity variations for Hawaii, a crucial locality in the central Pacific. It reveals a short period of high intensity occurring ~1,000 years ago, qualitatively similar to behaviour observed 200 years earlier in Europe and 500 years later in Mesoamerica. We combine these records with one from Japan to produce a coherent picture that includes the dipole decaying steadily over the last millennium. Strong, regional, short-term intensity perturbations are superimposed on this global trend; their asynchronicity necessitates a highly non-dipolar nature. PMID:24177390
NASA Astrophysics Data System (ADS)
Toriashvili, L.; Didebulidze, G. G.; Todua, M.
2017-12-01
Peculiarities of the inter-annual distribution of atomic oxygen red OI 630.0 nm line nightglow intensity observed from Abastumani Astrophysical Observatory (41.75 N; 42.82 E) are considered, using the long-term dataset. This distribution demonstrates semi-annual and annual-like variations which occur during solar minimum, as well as maximum phases. The maximum values of the red line intensities are in Summer, however in June it is lower than in May and July, which may be due to regional effects. This phenomenon is considered as a the possible result of regional dynamical processes influencing the behavior of the ionosphere F2 layer which cause changes of electrons/ions densities in the 630.0 nm line luminous region (maximum luminous layer is at about 230-280 km). Using the red line intensities and ionosphere F2 layer electron density data of the IRI-12 model, the changes of meridional thermospheric wind velocities are estimated for this mid-latitude region. These meridional and vertical wind field changes causes of variations of the red line intensities in June can be caused by tidal wind and accompanied by atmospheric gravity waves activities.
Multispacecraft Observations of Solar Flare Particles in the Inner Heliosphere
NASA Technical Reports Server (NTRS)
Wibberenz, G.; Cane, H. V.
2007-01-01
For a number of impulsive solar particle events we examine variations of maximum intensities and times to maximum intensity as a function of longitude, using observations from the two Helios spacecraft and near the Earth. We find that electrons in the MeV range can be detected more than 80 deg. from the flare longitude, corresponding to a considerably wider "well connected" region than that (approx. 20 deg. half width) reported for He-3-rich impulsive solar events. This wide range and the decrease of peak intensities with increasing connection angle revive the concept of some propagation process in the low corona that has a diffusive nature. Delays to the intensity maximum are not systematically correlated with connection angles. We argue that interplanetary scattering parallel to the average interplanetary magnetic field, that varies with position in space, plays an important role in flare particle events. In a specific case variations of the time profiles with radial distance and with particle rigidity are used to quantitatively confirm spatial diffusion. For a few cases near the edges of the well connected region the very long times to maximum intensity might result from interplanetary lateral transport.
A Dynamic Model of Mercury's Magnetospheric Magnetic Field
Johnson, Catherine L.; Philpott, Lydia; Tsyganenko, Nikolai A.; Anderson, Brian J.
2017-01-01
Abstract Mercury's solar wind and interplanetary magnetic field environment is highly dynamic, and variations in these external conditions directly control the current systems and magnetic fields inside the planetary magnetosphere. We update our previous static model of Mercury's magnetic field by incorporating variations in the magnetospheric current systems, parameterized as functions of Mercury's heliocentric distance and magnetic activity. The new, dynamic model reproduces the location of the magnetopause current system as a function of systematic pressure variations encountered during Mercury's eccentric orbit, as well as the increase in the cross‐tail current intensity with increasing magnetic activity. Despite the enhancements in the external field parameterization, the residuals between the observed and modeled magnetic field inside the magnetosphere indicate that the dynamic model achieves only a modest overall improvement over the previous static model. The spatial distribution of the residuals in the magnetic field components shows substantial improvement of the model accuracy near the dayside magnetopause. Elsewhere, the large‐scale distribution of the residuals is similar to those of the static model. This result implies either that magnetic activity varies much faster than can be determined from the spacecraft's passage through the magnetosphere or that the residual fields are due to additional external current systems not represented in the model or both. Birkeland currents flowing along magnetic field lines between the magnetosphere and planetary high‐latitude regions have been identified as one such contribution. PMID:29263560
NASA Technical Reports Server (NTRS)
Lal, D.
1986-01-01
Temporal variations in cosmic ray intensity have been deduced from observations of products of interactions of cosmic ray particles in the Moon, meteorites, and the Earth. Of particular interest is a comparison between the information based on Earth and that based on other samples. Differences are expected at least due to: (1) differences in the extent of cosmic ray modulation, and (2) changes in the geomagnetic dipole field. Any information on the global changes in the terrestrial cosmic ray intensity is therefore of importance. In this paper a possible technique for detecting changes in cosmic ray intensity is presented. The method involves human intervention and is applicable for the past 10,000 yrs. Studies of changes over longer periods of time are possible if supplementary data on age and history of the sample are available using other methods. Also discussed are the possibilities of studying certain geophysical processes, e.g., erosion, weathering, tectonic events based on studies of certain cosmic ray-produced isotopes for the past several million years.
Advances and Limitations of Modern Macroseismic Data Gathering
NASA Astrophysics Data System (ADS)
Wald, D. J.; Dewey, J. W.; Quitoriano, V. P. R.
2016-12-01
All macroseismic data are not created equal. At about the time that the European Macroseismic Scale 1998 (EMS-98; itself a revision of EMS-92) formalized a procedure to account for building vulnerability and damage grade statistics in assigning intensities from traditional field observations, a parallel universe of internet-based intensity reporting was coming online. The divergence of intensities assigned by field reconnaissance and intensities based on volunteered reports poses unique challenges. U.S. Geological Survey's Did You Feel It? (DYFI) and its Italian (National Institute of Geophysics and Volcanology) counterpart use questionnaires based on the traditional format, submitted by volunteers. The Italian strategy uses fuzzy logic to assign integer values of intensity from questionnaire responses, whereas DYFI assigns weights to macroseismic effects and computes real-valued intensities to a 0.1 MMI unit precision. DYFI responses may be grouped together by postal code, or by smaller latitude-longitude boxes; calculated intensities may vary depending on how observations are grouped. New smartphone-based procedures depart further from tradition by asking respondents to select from cartoons corresponding to various intensity levels that best fit their experience. While nearly instantaneous, these thumbnail-based intensities are strictly integer values and do not record specific macroseismic effects. Finally, a recent variation on traditional intensity assignments derives intensities not from field surveys or questionnaires sent to target audiences but rather from media reports, photojournalism, and internet posts that may or may not constitute the representative observations needed for consistent EMS-98 assignments. We review these issues and suggest due-diligence strategies for utilizing varied macroseismic data sets within real-time applications and in quantitative hazard and engineering analyses.
NASA Astrophysics Data System (ADS)
Borra, Ermanno F.; Romney, Jonathan D.; Trottier, Eric
2018-06-01
We demonstrate that extremely rapid and weak periodic and non-periodic signals can easily be detected by using the autocorrelation of intensity as a function of time. We use standard radio-astronomical observations that have artificial periodic and non-periodic signals generated by the electronics of terrestrial origin. The autocorrelation detects weak signals that have small amplitudes because it averages over long integration times. Another advantage is that it allows a direct visualization of the shape of the signals, while it is difficult to see the shape with a Fourier transform. Although Fourier transforms can also detect periodic signals, a novelty of this work is that we demonstrate another major advantage of the autocorrelation, that it can detect non-periodic signals while the Fourier transform cannot. Another major novelty of our work is that we use electric fields taken in a standard format with standard instrumentation at a radio observatory and therefore no specialized instrumentation is needed. Because the electric fields are sampled every 15.625 ns, they therefore allow detection of very rapid time variations. Notwithstanding the long integration times, the autocorrelation detects very rapid intensity variations as a function of time. The autocorrelation could also detect messages from Extraterrestrial Intelligence as non-periodic signals.
An 84-kyr paleomagnetic record from the sediments of Lake Baikal, Siberia
Peck, J.A.; King, J.W.; Colman, Steven M.; Kravchinsky, V.A.
1996-01-01
We have conducted a paleomagnetic study of sediment cores obtained from the Selenga prodelta region of Lake Baikal, Russia. This record, which spans approximately the last 84 kyr, contributes to a better understanding of the nature of geomagnetic field behavior in Siberia and is a useful correlation and dating tool. We demonstrate that the Lake Baikal sediments are recording variations in the geomagnetic field. The directional record displays secular variation behavior with a geomagnetic excursion at 20 ka and additional excursions appearing as large-amplitude secular variation at 41, 61, and 67 ka. Smoothing of the geomagnetic excursion behavior occurs in Lake Baikal sediments owing to the intermediate sedimentation rate (13 cm kyr-1). The Lake Baikal relative paleointensity record correlates to absolute paleointensity data for the last 10 kyr and to relative paleointensity records from the Mediterranean Sea and Indian Ocean for the last 84 kyr. This correlation suggests a strong global (i.e., dipole) component to these records and further supports the reliability of sediments as recorders of relative geomagnetic paleointensity. We show that a relative geomagnetic intensity stratigraphy has a potential resolution of 7 kyr by correlating continental and marine records. The geomagnetic intensity stratigraphy helps constrain the age of the difficult to date Lake Baikal sediments.
Constrains on the South Atlantic Anomaly from Réunion Island
NASA Astrophysics Data System (ADS)
Béguin, A.; de Groot, L. V.
2017-12-01
The South Atlantic Anomaly (SAA) is a region where the geomagnetic field intensity is about half as strong as would be expected from the current geomagnetic dipole moment that arises from geomagnetic field models. Those field models predict a westward movement of the SAA and predicts its origin East of Africa around 1500 AD. The onset and evolution of the SAA, however, are poorly constrained due to a lack of full-vector paleomagnetic data from Africa and the Indian Ocean for the past centuries. Here we present a full-vector paleosecular variation (PSV) curve for Réunion Island (21°S, 55°E) located East the African continent, in the region that currently shows the fastest increase in geomagnetic field strength in contrast to the average global decay. We sampled 27 sites covering the last 700 years, and subjected them to a directional and multi-method paleointensity study. The obtained directional records reveal shallower inclinations and less variation in the declination compared to current geomagnetic field model predictions. Scrutinizing the IZZI-Thellier, Multispecimen, and calibrated pseudo-Thellier results produces a coherent paleointensity record. The predicted intensity trend from the geomagnetic field models generally agrees with the trend in our data, however, the high paleointensities are higher than the models predict, and the low paleointensities are lower than the models. This illustrates the inevitable smoothing inherent to geomagnetic field modelling. We will discuss the constraints on the onset of the SAA that arise from the new full-vector PSV curve for Réunion that we present and the implications for the past and future evolution of this geomagnetic phenomenon.
Indoor Positioning System Using Magnetic Field Map Navigation and an Encoder System
Kim, Han-Sol; Seo, Woojin; Baek, Kwang-Ryul
2017-01-01
In the indoor environment, variation of the magnetic field is caused by building structures, and magnetic field map navigation is based on this feature. In order to estimate position using this navigation, a three-axis magnetic field must be measured at every point to build a magnetic field map. After the magnetic field map is obtained, the position of the mobile robot can be estimated with a likelihood function whereby the measured magnetic field data and the magnetic field map are used. However, if only magnetic field map navigation is used, the estimated position can have large errors. In order to improve performance, we propose a particle filter system that integrates magnetic field map navigation and an encoder system. In this paper, multiple magnetic sensors and three magnetic field maps (a horizontal intensity map, a vertical intensity map, and a direction information map) are used to update the weights of particles. As a result, the proposed system estimates the position and orientation of a mobile robot more accurately than previous systems. Also, when the number of magnetic sensors increases, this paper shows that system performance improves. Finally, experiment results are shown from the proposed system that was implemented and evaluated. PMID:28327513
Indoor Positioning System Using Magnetic Field Map Navigation and an Encoder System.
Kim, Han-Sol; Seo, Woojin; Baek, Kwang-Ryul
2017-03-22
In the indoor environment, variation of the magnetic field is caused by building structures, and magnetic field map navigation is based on this feature. In order to estimate position using this navigation, a three-axis magnetic field must be measured at every point to build a magnetic field map. After the magnetic field map is obtained, the position of the mobile robot can be estimated with a likelihood function whereby the measured magnetic field data and the magnetic field map are used. However, if only magnetic field map navigation is used, the estimated position can have large errors. In order to improve performance, we propose a particle filter system that integrates magnetic field map navigation and an encoder system. In this paper, multiple magnetic sensors and three magnetic field maps (a horizontal intensity map, a vertical intensity map, and a direction information map) are used to update the weights of particles. As a result, the proposed system estimates the position and orientation of a mobile robot more accurately than previous systems. Also, when the number of magnetic sensors increases, this paper shows that system performance improves. Finally, experiment results are shown from the proposed system that was implemented and evaluated.
Remote sensing of mesospheric electric fields using MF radars
NASA Astrophysics Data System (ADS)
Meek, C. E.; Manson, A. H.; Martynenko, S. I.; Rozumenko, V. T.; Tyrnov, O. F.
2004-07-01
Large mesospheric electric fields can play an essential role in middle atmospheric electrodynamics (see, e.g., Goldberg, R. A., Middle Atmospheric Electrodynamics during MAP, Adv. Space Res. 10 (10) (1990) 209). The V/m electric fields of atmospheric origin can be the possible cause of large variations in the electron collision frequency at mesospheric altitudes, and this provides a unique opportunity to take measurements of electric fields in the lower ionosphere by using remote sensing instruments employing radiowave techniques. A technique has been proposed for making estimates of large mesospheric electric field intensities on the lower edge of the ionosphere by using MF radar data and the inherent effective electron collision frequency. To do this, data collected in Canada and Ukraine were utilized. The developed technique permits the changes in mesospheric electric field intensities to be derived from MF radar data in real time. The statistical analysis of data consistent with large mesospheric electric field intensities in the 60-67km region resulted in the following inferences. There are at least two mechanisms for the generation of large mesospheric electric fields in the mesosphere. The most likely mechanism, with a probability of 60-70%, is the summation of random fields from a large number of elementary small-scale mesospheric generators, which results in a one-parameter Rayleigh distribution of the total large mesospheric electric field intensity E with a mean value of approximately 0.7-0.9V/m in the 60-67km altitude region, or in the corresponding one-parameter exponential distribution of the intensity squared E2 of large mesospheric electric fields. The second mechanism of unknown nature, with 5-15% probability, gives rise to the sporadic appearance of large mesospheric electric field intensities E>2.5V/m with a mean of 4V/m. Statistically significant seasonal differences in the averaged large mesospheric electric field parameters have not been revealed. The probability of the absence of local large mesospheric electric fields amounts to approximately 25% for Ukraine and approximately 30% for Canada. A comparison of the Ukrainian and Canadian data indicates the possible existence of a latitudinal dependence in mean large mesospheric electric field features. Hence, the large electric fields are an additional source of electron heating that must be taken into account in studying a disturbed lower ionosphere and radio wave propagation within it.
The tunable mechanical property of water-filled carbon nanotubes under an electric field
NASA Astrophysics Data System (ADS)
Ye, Hongfei; Zhang, Zhongqiang; Zhang, Hongwu; Chen, Zhen; Zong, Zhi; Zheng, Yonggang
2014-03-01
The spring-induced compression of water-filled carbon nanotubes (CNTs) under an electric field is investigated by molecular dynamics simulations. Due to the incompressibility and polarity of water, the mechanical property of CNTs can be tuned through filling with water molecules and applying an electric field. To explore the variation of the mechanical property of water-filled CNTs, the effects of the CNT length, the filling density and the electric field intensity are examined. The simulation results indicate that the water filling and electric field can result in a slight change in the elastic property (the elastic modulus and Poisson's ratio) of water-filled CNTs. However, the yield stress and average post-buckling stress exhibit a significant response to the water density and electric field intensity. As compared to hollow CNTs, the increment in yield stress of the water-filled CNTs under an electric field of 2.0 V Å-1 is up to 35.29%, which is even higher than that resulting from metal filling. The findings from this study provide a valuable theoretical basis for designing and fabricating the controlling units at the nanoscale.
York, Larry M.; Lynch, Jonathan P.
2015-01-01
Root architecture is an important regulator of nitrogen (N) acquisition. Existing methods to phenotype the root architecture of cereal crops are generally limited to seedlings or to the outer roots of mature root crowns. The functional integration of root phenes is poorly understood. In this study, intensive phenotyping of mature root crowns of maize was conducted to discover phenes and phene modules related to N acquisition. Twelve maize genotypes were grown under replete and deficient N regimes in the field in South Africa and eight in the USA. An image was captured for every whorl of nodal roots in each crown. Custom software was used to measure root phenes including nodal occupancy, angle, diameter, distance to branching, lateral branching, and lateral length. Variation existed for all root phenes within maize root crowns. Size-related phenes such as diameter and number were substantially influenced by nodal position, while angle, lateral density, and distance to branching were not. Greater distance to branching, the length from the shoot to the emergence of laterals, is proposed to be a novel phene state that minimizes placing roots in already explored soil. Root phenes from both older and younger whorls of nodal roots contributed to variation in shoot mass and N uptake. The additive integration of root phenes accounted for 70% of the variation observed in shoot mass in low N soil. These results demonstrate the utility of intensive phenotyping of mature root systems, as well as the importance of phene integration in soil resource acquisition. PMID:26041317
USDA-ARS?s Scientific Manuscript database
The measurement of sugar concentration and dry matter in processing potatoes is a time and resource intensive activity, cannot be performed in the field, and does not easily measure within tuber variation. A proposed method to improve the phenotyping of processing potatoes is to employ hyperspectral...
Semiconductor laser-based ranging instrument for earth gravity measurements
NASA Technical Reports Server (NTRS)
Abshire, James B.; Millar, Pamela S.; Sun, Xiaoli
1995-01-01
A laser ranging instrument is being developed to measure the spatial variations in the Earth's gravity field. It will range in space to a cube corner on a passive co-orbiting sub-satellite with a velocity accuracy of 20 to 50 microns/sec by using AlGaAs lasers intensity modulated at 2 GHz.
Cui, Xiquan; Ren, Jian; Tearney, Guillermo J.; Yang, Changhuei
2010-01-01
We report the implementation of an image sensor chip, termed wavefront image sensor chip (WIS), that can measure both intensity/amplitude and phase front variations of a light wave separately and quantitatively. By monitoring the tightly confined transmitted light spots through a circular aperture grid in a high Fresnel number regime, we can measure both intensity and phase front variations with a high sampling density (11 µm) and high sensitivity (the sensitivity of normalized phase gradient measurement is 0.1 mrad under the typical working condition). By using WIS in a standard microscope, we can collect both bright-field (transmitted light intensity) and normalized phase gradient images. Our experiments further demonstrate that the normalized phase gradient images of polystyrene microspheres, unstained and stained starfish embryos, and strongly birefringent potato starch granules are improved versions of their corresponding differential interference contrast (DIC) microscope images in that they are artifact-free and quantitative. Besides phase microscopy, WIS can benefit machine recognition, object ranging, and texture assessment for a variety of applications. PMID:20721059
Dielectric Sensors Based on Electromagnetic Energy Tunneling
Siddiqui, Omar; Kashanianfard, Mani; Ramahi, Omar
2015-01-01
We show that metallic wires embedded in narrow waveguide bends and channels demonstrate resonance behavior at specific frequencies. The electromagnetic energy at these resonances tunnels through the narrow waveguide channels with almost no propagation losses. Under the tunneling behavior, high-intensity electromagnetic fields are produced in the vicinity of the metallic wires. These intense field resonances can be exploited to build highly sensitive dielectric sensors. The sensor operation is explained with the help of full-wave simulations. A practical setup consisting of a 3D waveguide bend is presented to experimentally observe the tunneling phenomenon. The tunneling frequency is predicted by determining the input impedance minima through a variational formula based on the Green function of a probe-excited parallel plate waveguide. PMID:25835188
NASA Technical Reports Server (NTRS)
Wygant, J. R.; Keiling, A.; Cattell, C. A.; Johnson, M.; Lysak, R. L.; Temerin, M.; Mozer, F. S.; Kletzing, C. A.; Scudder, J. D.; Peterson, W.;
2000-01-01
In this paper, we present measurements from two passes of the Polar spacecraft of intense electric and magnetic field structures associated with Alfven waves at and within the outer boundary of the plasma sheet at geocentric distances of 4-6 R(sub E), near local midnight. The electric field variations have maximum values exceeding 100 mV/m and are typically polarized approximately normal to the plasma sheet boundary. The electric field structures investigated vary over timescales (in the spacecraft frame.) ranging front 1 to 30 s. They are associated with strong magnetic field fluctuations with amplitudes of 10-40 nT which lie predominantly ill the plane of the plasma sheet and are perpendicular to the local magnetic field. The Poynting flux associated with the perturbation fields measured at these altitudes is about 1-2 ergs per square centimeters per second and is directed along the average magnetic field direction toward the ionosphere. If the measured Poynting flux is mapped to ionospheric altitudes along converging magnetic field lines. the resulting energy flux ranges up to 100 ergs per centimeter squared per second. These strongly enhanced Poynting fluxes appear to occur in layers which are observed when the spacecraft is magnetically conjugate (to within a 1 degree mapping accuracy) to intense auroral structures as detected by the Polar UV Imager (UVI). The electron energy flux (averaged over a spatial resolution of 0.5 degrees) deposited in the ionosphere due to auroral electron beams as estimated from the intensity in the UVI Lyman-Birge-Hopfield-long filters is 15-30 ergs per centimeter squared per second. Thus there is evidence that these electric field structures provide sufficient Poynting flux to power the acceleration of auroral electrons (as well as the energization of upflowing ions and Joule heating of the ionosphere). During some events the phasing and ratio of the transverse electric and magnetic field variations are consistent with earthward propagation of Alfven surface waves with phase velocities of 4000-10000 kilometers per second. During other events the phase shifts between electric and magnetic fields suggest interference between upward and downward propagating Alfven waves. The E/B ratios are about an order of magnitude larger than typical values of C/SIGMA(sub p), where SIGMA(sub p), is the height integrated Pedersen conductivity. The contribution to the total energy flux at these altitudes from Poynting flux associated with Alfven waves is comparable to or larger than the contribution from the particle energy flux and 1-2 orders of magnitude larger than that estimated from the large-scale steady state convection electric field and field-aligned current system.
NASA Astrophysics Data System (ADS)
Wygant, J. R.; Keiling, A.; Cattell, C. A.; Johnson, M.; Lysak, R. L.; Temerin, M.; Mozer, F. S.; Kletzing, C. A.; Scudder, J. D.; Peterson, W.; Russell, C. T.; Parks, G.; Brittnacher, M.; Germany, G.; Spann, J.
2000-08-01
In this paper, we present measurements from two passes of the Polar spacecraft of intense electric and magnetic field structures associated with Alfven waves at and within the outer boundary of the plasma sheet at geocentric distances of 4-6 RE near local midnight. The electric field variations have maximum values exceeding 100 mV/m and are typically polarized approximately normal to the plasma sheet boundary. The electric field structures investigated vary over timescales (in the spacecraft frame) ranging from 1 to 30 s. They are associated with strong magnetic field fluctuations with amplitudes of 10-40 nT which lie predominantly in the plane of the plasma sheet and are perpendicular to the local magnetic field. The Poynting flux associated with the perturbation fields measured at these altitudes is about 1-2 ergs cm-2 s-1 and is directed along the average magnetic field direction toward the ionosphere. If the measured Poynting flux is mapped to ionospheric altitudes along converging magnetic field lines, the resulting energy flux ranges up to 100 ergs cm-2s-1. These strongly enhanced Poynting fluxes appear to occur in layers which are observed when the spacecraft is magnetically conjugate (to within a 1° mapping accuracy) to intense auroral structures as detected by the Polar UV Imager (UVI). The electron energy flux (averaged over a spatial resolution of 0.5° ) deposited in the ionosphere due to auroral electron beams as estimated from the intensity in the UVI Lyman-Birge-Hopfield-long filters is 15-30 ergs cm-2s-1. Thus there is evidence that these electric field structures provide sufficient Poynting flux to power the acceleration of auroral electrons (as well as the energization of upflowing ions and Joule heating of the ionosphere). During some events the phasing and ratio of the transverse electric and magnetic field variations are consistent with earthward propagation of Alfven surface waves with phase velocities of 4000-10000 km/s. During other events the phase shifts between electric and magnetic fields suggest interference between upward and downward propagating Alfven waves. The E/B ratios are about an order of magnitude larger than typical values of c/Σp, where Σp is the height integrated Pedersen conductivity. The contribution to the total energy flux at these altitudes from Poynting flux associated with Alfven waves is comparable to or larger than the contribution from the particle energy flux and 1-2 orders of magnitude larger than that estimated from the large-scale steady state convection electric field and field-aligned current system.
Spherical Cap Harmonic Modelling of 400 Years of Secular Variation in the South-west Pacific
NASA Astrophysics Data System (ADS)
Ingham, M.; Alfheid, M.; Ingham, E. M.; Turner, G. M.
2014-12-01
Historical magnetic data recorded in ship's logs on voyages of exploration and trade in the south-west Pacific have been used as a basis for constructing a model of secular variation in the region using spherical cap harmonic (SCH) analysis. The spherical cap used is centred on colatitude 115° and longitude 160° and has a radius of 50°, thus covering New Zealand, Australia and parts of Antarctica. Gaps in the observational data have been filled by an iterative procedure started by using IGRF field values to obtain SCH models for 2000, 1950 and 1900 and assuming that the spherical cap coefficients have a linear variation in time over the 400 year time period of the model, as is observed to a first approximation for Gauss coefficients calculated from a global spherical harmonic analysis. The resulting field models have generally smooth spatial and temporal variations in declination, inclination and intensity which show some differences from the variations calculated using the global spherical harmonic model gufm1. The technique clearly shows promise for producing more refined models of secular variation in the south-west Pacific when the historical data are supplemented by archeomagnetic and paleomagnetic data.
Six centuries of geomagnetic intensity variations recorded by royal Judean stamped jar handles
NASA Astrophysics Data System (ADS)
Ben-Yosef, Erez; Millman, Michael; Shaar, Ron; Tauxe, Lisa; Lipschits, Oded
2017-02-01
Earth’s magnetic field, one of the most enigmatic physical phenomena of the planet, is constantly changing on various time scales, from decades to millennia and longer. The reconstruction of geomagnetic field behavior in periods predating direct observations with modern instrumentation is based on geological and archaeological materials and has the twin challenges of (i) the accuracy of ancient paleomagnetic estimates and (ii) the dating of the archaeological material. Here we address the latter by using a set of storage jar handles (fired clay) stamped by royal seals as part of the ancient administrative system in Judah (Jerusalem and its vicinity). The typology of the stamp impressions, which corresponds to changes in the political entities ruling this area, provides excellent age constraints for the firing event of these artifacts. Together with rigorous paleomagnetic experimental procedures, this study yielded an unparalleled record of the geomagnetic field intensity during the eighth to second centuries BCE. The new record constitutes a substantial advance in our knowledge of past geomagnetic field variations in the southern Levant. Although it demonstrates a relatively stable and gradually declining field during the sixth to second centuries BCE, the new record provides further support for a short interval of extreme high values during the late eighth century BCE. The rate of change during this “geomagnetic spike” [defined as virtual axial dipole moment > 160 ZAm2 (1021 Am2)] is further constrained by the new data, which indicate an extremely rapid weakening of the field (losing ˜27% of its strength over ca. 30 y).
NASA Astrophysics Data System (ADS)
Cromwell, G.; Tauxe, L.; Staudigel, H.; Pedersen, L. R.; Constable, C.; Pedersen, R.; Duncan, R. A.; Staudigel, P.
2009-12-01
Recent investigation of high-latitude paleomagnetic data from the Erebus Volcanic Province (EVP), Antarctica shows a departure from magnetic dipole predictions for paleointensity data for the period 0-5 Ma. The average EVP paleointensity (31.5 +/- 2.4 μT) is equivalent to low-latitude measurements (1) or approximately half the strength predicted for a dipole at high-latitude. Also, paleosecular variation models (e.g., 2,3) predict dispersions of directions that are much lower than the high latitude observations. Observed low intensity values may be the result of reduced convective flow inside the tangent cylinder of the Earth’s core or insufficient temporal sampling (1). More high-latitude paleomagnetic data are necessary in order to investigate the cause of the depressed intensity values and to provide better geographic and temporal resolution for future statistical paleosecular variation models. To address this, we carried out two field seasons, one in Spitzbergen (79°N, 14°E) and one on the young volcanic island of Jan Mayen (71°N, 8°W). The latter sampling effort was guided by age analyses of samples obtained by P. Imsland (unpublished and 4). We will present new paleodirectional and paleointensity data from a total of 25 paleomagnetic sites. These data enhance the temporal resolution of global paleomagnetic data and allow for a more complete evaluation of the time-averaged magnetic field from 0-5 Ma. We will present a new analysis of paleosecular variation based on our new data, in combination with other recently published data sets. (1) Lawrence, K.P., L.Tauxe, H. Staudigel, C.G. Constable, A. Koppers, W. MacIntosh, C.L. Johnson, Paleomagnetic field properties at high southern latitude. Geochemistry Geophysics Geosystems 10 (2009). (2) McElhinny, M.W., P.L. McFadden, Paleosecular variation over the past 5 Myr based on a new generalized database. Geophysics Journal International 131 (1997), 240-252. (3) Tauxe, L., Kent, D.V., A simplified statistical model for the geomagnetic field and the detection of shallow bias in paleomagnetic inclinations: Was the ancient magnetic field dipolar? American Geophysical Union (2004). (4) Imsland, P., The geology of the volcanic island Jan Mayen, Arctic Ocean. Nordic Volcanological Institute, University of Iceland (1978).
NASA Astrophysics Data System (ADS)
Bryson, James F. J.; Church, Nathan S.; Kasama, Takeshi; Harrison, Richard J.
2014-02-01
Nanoscale intergrowths unique to the cloudy zones (CZs) of meteoritic metal display novel magnetic behaviour with the potential to reveal new insight into the early development of magnetic fields on protoplanetary bodies. The nanomagnetic state of the CZ within the Tazewell IIICD iron meteorite has been imaged using off-axis electron holography. The CZ is revealed to be a natural nanocomposite of magnetically hard islands of tetrataenite (ordered FeNi) embedded in a magnetically soft matrix of ordered Fe3Ni. In the remanent state, each tetrataenite island acts as a uniaxial single domain particle with its [001] magnetic easy axis oriented along one of three <100> crystallographic directions of the parent taenite phase. Micromagnetic simulations demonstrate that switching occurs via the nucleation and propagation of domain walls through individual tetrataenite particles. The switching field (Hs) varies with the length scale of the matrix phase (Lm), with Hs > 1 T for Lm ∼10 nm (approaching the intrinsic switching field for isolated single domain tetrataenite) and 0.2
NASA Astrophysics Data System (ADS)
Stewart, Heather; Bradwell, Tom
2014-05-01
Multibeam backscatter intensity data acquired offshore eastern Scotland and north-eastern England have been used to map drumlin fields, large arcuate moraine ridges, smaller scale moraine ridges, and incised channels on the sea floor. The study area includes the catchments of the previously proposed, but only partly mapped, Strathmore, Forth-Tay, and Tweed palaeo-ice streams. The ice sheet glacial landsystem is extremely well preserved on the sea bed and comprehensive mapping of the seafloor geomorphology has been undertaken. The authors demonstrate the value in utilising not only digital terrain models (both NEXTMap and multibeam bathymetry derived) in undertaking geomorphological mapping, but also examining the backscatter intensity data that is often overlooked. Backscatter intensity maps were generated using FM Geocoder by the British Geological Survey. FM Geocoder corrects the backscatter intensities registered by the multibeam echosounder system, and then geometrically corrects and positions each acoustic sample in a backscatter mosaic. The backscatter intensity data were gridded at the best resolution per dataset (between 2 and 5 m). The strength of the backscattering is dependent upon sediment type, grain size, survey conditions, sea-bed roughness, compaction and slope. A combination of manual interpretation and semi-automated classification of the backscatter intensity data (a predictive method for mapping variations in surficial sea-bed sediments) has been undertaken in the study area. The combination of the two methodologies has produced a robust glacial geomorphological map for the study area. Four separate drumlin fields have been mapped in the study area indicative of fast-flowing and persistent ice-sheet flow configurations. A number of individual drumlins are also identified located outside the fields. The drumlins show as areas of high backscatter intensity compared to the surrounding sea bed, indicating the drumlins comprise mixed sediments of gravelly sands and sandy gravels compared to the surrounding sandy and muddy sediments. Moraines are indicated as areas of high backscatter intensity and comprise coarse grained sediments. A range of moraine sizes have been identified from large scale moraines reflecting both frontal still stands or re-advances of the ice-sheet margin, de geer moraines and smaller moraines that may represent annual variations. Meltwater channels and tunnel valleys are revealed as areas of low backscatter intensity reflecting post-glacial soft sediment infill of the depressions incised into coarser grained and higher strength glacial deposits by these features.
Intensity inhomogeneity correction of SD-OCT data using macular flatspace.
Lang, Andrew; Carass, Aaron; Jedynak, Bruno M; Solomon, Sharon D; Calabresi, Peter A; Prince, Jerry L
2018-01-01
Images of the retina acquired using optical coherence tomography (OCT) often suffer from intensity inhomogeneity problems that degrade both the quality of the images and the performance of automated algorithms utilized to measure structural changes. This intensity variation has many causes, including off-axis acquisition, signal attenuation, multi-frame averaging, and vignetting, making it difficult to correct the data in a fundamental way. This paper presents a method for inhomogeneity correction by acting to reduce the variability of intensities within each layer. In particular, the N3 algorithm, which is popular in neuroimage analysis, is adapted to work for OCT data. N3 works by sharpening the intensity histogram, which reduces the variation of intensities within different classes. To apply it here, the data are first converted to a standardized space called macular flat space (MFS). MFS allows the intensities within each layer to be more easily normalized by removing the natural curvature of the retina. N3 is then run on the MFS data using a modified smoothing model, which improves the efficiency of the original algorithm. We show that our method more accurately corrects gain fields on synthetic OCT data when compared to running N3 on non-flattened data. It also reduces the overall variability of the intensities within each layer, without sacrificing contrast between layers, and improves the performance of registration between OCT images. Copyright © 2017 Elsevier B.V. All rights reserved.
Dense motion estimation using regularization constraints on local parametric models.
Patras, Ioannis; Worring, Marcel; van den Boomgaard, Rein
2004-11-01
This paper presents a method for dense optical flow estimation in which the motion field within patches that result from an initial intensity segmentation is parametrized with models of different order. We propose a novel formulation which introduces regularization constraints between the model parameters of neighboring patches. In this way, we provide the additional constraints for very small patches and for patches whose intensity variation cannot sufficiently constrain the estimation of their motion parameters. In order to preserve motion discontinuities, we use robust functions as a regularization mean. We adopt a three-frame approach and control the balance between the backward and forward constraints by a real-valued direction field on which regularization constraints are applied. An iterative deterministic relaxation method is employed in order to solve the corresponding optimization problem. Experimental results show that the proposed method deals successfully with motions large in magnitude, motion discontinuities, and produces accurate piecewise-smooth motion fields.
NASA Astrophysics Data System (ADS)
Englander, J. G.; Austin, A. T.; Brandt, A. R.
2016-12-01
The need to quantify flaring by oil and gas fields is receiving more scrutiny, as there has been scientific and regulatory interest in quantifying the greenhouse gas (GHG) impact of oil and gas production. The National Oceanic and Atmospheric Administration (NOAA) has developed a method to track flaring activity using a Visible Infrared Imaging Radiometer Suite (VIIRS) satellite.[1] This reports data on the average size, power, and light intensity of each flare. However, outside of some small studies, the flaring intensity has generally been estimated at the country level.[2]While informative, country-level assessments cannot provide guidance about the sustainability of particular crude streams or products produced. In this work we generate detailed oil-field-level flaring intensities for a number of global oilfield operations. We do this by merging the VIIRS dataset with global oilfield atlases and other spatial data sources. Joining these datasets together with production data allows us to provide better estimates for the GHG intensity of flaring at the field level for these countries.[3]First, we compute flaring intensities at the field level for 75 global oil fields representing approximately 25% of global production. In addition, we examine in detail three oil producing countries known to have high rates of flaring: Egypt, Nigeria, and Venezuela. For these countries we compute the flaring rate for all fields in the country and explore within-and between-country variation. The countries' fields will be analyzed to determine the correlation of flare activity to a certain field type, crude type, region, or production method. [1] Cao, C. "Visible Infrared Imaging Radiometer Suite (VIIRS)." NOAA NPP VIIRS. NOAA, 2013. Web. 30 July 2016. [2] Elvidge, C. D. et al., "A Fifteen Year Record of Global Natural Gas Flaring Derived from Satellite Data," Energies, vol. 2, no. 3, pp. 595-622, Aug. 2009. [3] World Energy Atlas. 6th ed. London: Petroleum Economist, 2011. Print.
Measurement of sound emitted by flying projectiles with aeroacoustic sources
NASA Technical Reports Server (NTRS)
Cho, Y. I.; Shakkottai, P.; Harstad, K. G.; Back, L. H.
1988-01-01
Training projectiles with axisymmetric ring cavities that produce intense tones in an airstream were shot in a straight-line trajectory. A ground-based microphone was used to obtain the angular distribution of sound intensity produced from the flying projectile. Data reduction required calculation of Doppler and attenuation factors. Also, the directional sensitivity of the ground-mounted microphone was measured and used in the data reduction. A rapid angular variation of sound intensity produced from the projectile was found that can be used to plot an intensity contour map on the ground. A full-scale field test confirmed the validity of the aeroacoustic concept of producing a relatively intense whistle from the projectile, and the usefulness of short-range flight tests that yield acoustic data free of uncertainties associated with diffraction, reflection, and refraction at jet boundaries in free-jet tests.
Effect of signal intensity and camera quantization on laser speckle contrast analysis
Song, Lipei; Elson, Daniel S.
2012-01-01
Laser speckle contrast analysis (LASCA) is limited to being a qualitative method for the measurement of blood flow and tissue perfusion as it is sensitive to the measurement configuration. The signal intensity is one of the parameters that can affect the contrast values due to the quantization of the signals by the camera and analog-to-digital converter (ADC). In this paper we deduce the theoretical relationship between signal intensity and contrast values based on the probability density function (PDF) of the speckle pattern and simplify it to a rational function. A simple method to correct this contrast error is suggested. The experimental results demonstrate that this relationship can effectively compensate the bias in contrast values induced by the quantized signal intensity and correct for bias induced by signal intensity variations across the field of view. PMID:23304650
Variational 3D-PIV with sparse descriptors
NASA Astrophysics Data System (ADS)
Lasinger, Katrin; Vogel, Christoph; Pock, Thomas; Schindler, Konrad
2018-06-01
3D particle imaging velocimetry (3D-PIV) aims to recover the flow field in a volume of fluid, which has been seeded with tracer particles and observed from multiple camera viewpoints. The first step of 3D-PIV is to reconstruct the 3D locations of the tracer particles from synchronous views of the volume. We propose a new method for iterative particle reconstruction, in which the locations and intensities of all particles are inferred in one joint energy minimization. The energy function is designed to penalize deviations between the reconstructed 3D particles and the image evidence, while at the same time aiming for a sparse set of particles. We find that the new method, without any post-processing, achieves significantly cleaner particle volumes than a conventional, tomographic MART reconstruction, and can handle a wide range of particle densities. The second step of 3D-PIV is to then recover the dense motion field from two consecutive particle reconstructions. We propose a variational model, which makes it possible to directly include physical properties, such as incompressibility and viscosity, in the estimation of the motion field. To further exploit the sparse nature of the input data, we propose a novel, compact descriptor of the local particle layout. Hence, we avoid the memory-intensive storage of high-resolution intensity volumes. Our framework is generic and allows for a variety of different data costs (correlation measures) and regularizers. We quantitatively evaluate it with both the sum of squared differences and the normalized cross-correlation, respectively with both a hard and a soft version of the incompressibility constraint.
A portable instrument for the measurement of salinity of rainwater using FET's
NASA Astrophysics Data System (ADS)
Rao, A. M.
1985-03-01
A portable salinity meter with field effect transistors for the continuous recording of salinity of rainwater is described. The variations in salinity are converted into current variations by using a D.C. differential amplifier and is recorded on an Esterline Angus Recorder. The Meter enables us to measure rainfall intensity as well as salinity simultaneously. The chief advantages of the present instrument are that it is portable and has a range of measurement from 1×10-4 to 1×10-1 ppm on a linear scale.
Prevot, M.; Mankinen, Edward A.; Coe, Robert S.; Gromme, C. Sherman
1985-01-01
We carried out an extensive paleointensity study of the 15.5±0.3 m.y. Miocene reversed‐to‐normal polarity transition recorded in lava flows from Steens Mountain (south central Oregon). One hundred eighty‐five samples from the collection whose paleodirectional study is reported by Mankinen et al. (this issue) were chosen for paleointensity investigations because of their low viscosity index, high Curie point and reversibility, or near reversibility, of the strong field magnetization curve versus temperature. Application of the Thellier stepwise double heating method was very successful, yielding 157 usable paleointensity estimates corresponding to 73 distinct lava flows. After grouping successive lava flows that did not differ significantly in direction and intensity, we obtained 51 distinguishable, complete field vectors of which 10 are reversed, 28 are transitional, and 13 are normal. The record is complex, quite unlike that predicted by simple flooding or standing nondipole field models. It begins with an estimated several thousand years of reversed polarity with an average intensity of 31.5±8.5 μT, about one third lower than the expected Miocene intensity. This difference is interpreted as a long‐term reduction of the dipole moment prior to the reversal. When site directions and intensities are considered, truly transitional directions and intensities appear almost at the same time at the beginning of the transition, and they disappear simultaneously at the end of the reversal. Large deviations in declination occur during this approximately 4500±1000 year transition period that are compatible with roughly similar average magnitudes of zonal and nonzonal field components at the site. The transitional intensity is generally low, with an average of 10.9±4.9 μT for directions more than 45° away from the dipole field and a minimum of about 5 μT. The root‐mean‐square of the three field components X, Y, and Z are of the same order of magnitude for the transitional field and the historical nondipole field at the site latitude. However, a field intensity increase to pretransitional values occurs when the field temporarily reaches normal directions, which suggests that dipolar structure could have been briefly regenerated during the transition in an aborted attempt to reestablish a stationary field. Changes in the field vector are progressive but jerky, with at least two, and possibly three, large swings at astonishingly high rates. Each of those transitional geomagnetic impulses occurs when the field intensity is low (less than 10 μT) and is followed by an interval of directional stasis during which the magnitude of the field increases greatly. For the best documented geomagnetic impulse the rapid directional change corresponds to a vectorial intensity change of 6700±2700 nT yr−1, which is about 15–50 times larger than the maximum rate of change of the nondipole field observed during the last centuries. The occurrence of geomagnetic impulses seems to support reversal models assuming an increase in the level of turbulence within the liquid core during transitions. The record closes with an estimated several thousand years of normal polarity with an average intensity of 46.7±20.1 μT, agreeing with the expected Miocene value. However, the occurrence of rather large and apparently rapid intensity fluctuations accompanied by little change in direction suggests that the newly reestablished dipole was still somewhat unstable.
Distributed optical fiber dynamic magnetic field sensor based on magnetostriction.
Masoudi, Ali; Newson, Trevor P
2014-05-01
A distributed optical fiber sensor is introduced which is capable of quantifying multiple magnetic fields along a 1 km sensing fiber with a spatial resolution of 1 m. The operation of the proposed sensor is based on measuring the magnetorestrictive induced strain of a nickel wire attached to an optical fiber. The strain coupled to the optical fiber was detected by measuring the strain-induced phase variation between the backscattered Rayleigh light from two segments of the sensing fiber. A magnetic field intensity resolution of 0.3 G over a bandwidth of 50-5000 Hz was demonstrated.
NASA Astrophysics Data System (ADS)
Huang, Yin-Sheng; Lee, Teh-Quei; Hsu, Shu-Kun; Yang, Tein-Nan
2009-03-01
We reconstruct the earth magnetic field in the Brunhes epoch at the Banda Sea by studying the paleomagnetic data from core MD012380, collected during the International Marine Global Change Study (IMAGES) VII Cruise in 2001. Magnetic analysis is carried out for whole core with a sampling spacing of 1 cm by using u-channel. Magnetic susceptibility (χ), nature remanent magnetization (NRM), anhysteretic remanent magnetization (ARM), and isothermal remanent magnetization (IRM) are measured in our paleomagnetic experiment. Results show the low latitude geomagnetic field variation at the Banda Sea during the last ∼820 kyr. Except for the Brunhes/Matuyama boundary (BMB), there is no clear signal of reverse events in paleo- inclination and paleo-declination patterns. However, the synthetic paleointensity curve displays the asymmetrical saw-tooth pattern that can be used for determining reverse events, and shows a maximum intensity drop at the BMB. The characteristics of paleointensity provide a useful tool to identify reverse signals and improve the difficulties from only using inclination and declination patterns, especially at low latitude. With the help of paleointensity, inclination and declination, we have identified five reverse events. Furthermore if we consider the secular variation effect, we think that the strong negative inclination observed in our study may be the zonal time-averaged field with paleo secular variation, rather than non-dipole effect within the Brunhes epoch.
York, Larry M; Lynch, Jonathan P
2015-09-01
Root architecture is an important regulator of nitrogen (N) acquisition. Existing methods to phenotype the root architecture of cereal crops are generally limited to seedlings or to the outer roots of mature root crowns. The functional integration of root phenes is poorly understood. In this study, intensive phenotyping of mature root crowns of maize was conducted to discover phenes and phene modules related to N acquisition. Twelve maize genotypes were grown under replete and deficient N regimes in the field in South Africa and eight in the USA. An image was captured for every whorl of nodal roots in each crown. Custom software was used to measure root phenes including nodal occupancy, angle, diameter, distance to branching, lateral branching, and lateral length. Variation existed for all root phenes within maize root crowns. Size-related phenes such as diameter and number were substantially influenced by nodal position, while angle, lateral density, and distance to branching were not. Greater distance to branching, the length from the shoot to the emergence of laterals, is proposed to be a novel phene state that minimizes placing roots in already explored soil. Root phenes from both older and younger whorls of nodal roots contributed to variation in shoot mass and N uptake. The additive integration of root phenes accounted for 70% of the variation observed in shoot mass in low N soil. These results demonstrate the utility of intensive phenotyping of mature root systems, as well as the importance of phene integration in soil resource acquisition. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology.
NASA Astrophysics Data System (ADS)
Sellers, T.; Geissman, J. W.; Jackson, J.
2015-12-01
We are testing the hypothesis that depositional processes of the mid-Cretaceous Greenhorn Limestone were influenced by orbitally-driven climate variations using rock magnetic data. Correlation of the data, including anhysteretic remanent magnetization (ARM), magnetic susceptibility, isothermal remanent magnetization in different DC fields to saturation, and hysteresis properties, from three continuously exposed sections of the full Greenhorn Limestone provides detailed spatial distribution for the depositional processes and magnetic mineral climate encoding. The Greenhorn Limestone includes the Lincoln Limestone, Hartland Shale, and the Bridge Creek Limestone members and consists of calcareous shales and limestones representing near maximum depths in the Cretaceous interior seaway. The sections, each about 30 m thick, extend from the upper Graneros Shale, through the Greenhorn Formation, to the lower Carlisle Shale, with samples collected at a two to five cm interval and are located at Badito, CO; north of Redwing, CO; and at the Global boundary Stratotype Section and Point (GSSP) at Lake Pueblo, CO. Our over 1000 samples were hand crushed to granule size pieces and packed into 7cc IODP boxes. Bulk magnetic susceptibility, anhysteretic remanent magnetization (ARM) intensity at different peak AF levels, and isothermal remanent magnetization (IRM) intensity record variations in magnetic mineral concentration and are proxies to determine orbital scale cycles and precise stratigraphic correlation between sections. ARM intensities in a peak field of 100 mT at both sites range between 1.2 x 10-3 and 1.3 x 10-4 A/m and better define periodic variation within the Greenhorn Limestone displaying differences in ferromagnetic mineral content of detrital origin. Magnetic susceptibility, which ranges from 3.5 x 10-2 to 2.86 x 10-3, also shows periodic variation with a strong correlation among the three sections. Saturation IRM at 100 mT ranges from 3.2 x 10-1 to 1.1x 10-2 A/m shows periodic variation with the greatest variability in the Bridge Creek Member. Preliminary spectral analysis of each data set indicates a dominant cyclicity that is of considerably lower frequency than the limestone/shale couplets characteristic of Greenhorn Limestone.
Evaluation of Bogus Vortex Techniques with Four-Dimensional Variational Data Assimilation
NASA Technical Reports Server (NTRS)
Pu, Zhao-Xia; Braun, Scott A.
2000-01-01
The effectiveness of techniques for creating "bogus" vortices in numerical simulations of hurricanes is examined by using the Penn State/NCAR nonhydrostatic mesoscale model (MM5) and its adjoint system. A series of four-dimensional variational data assimilation (4-D VAR) experiments is conducted to generate an initial vortex for Hurricane Georges (1998) in the Atlantic Ocean by assimilating bogus sea-level pressure and surface wind information into the mesoscale numerical model. Several different strategies are tested for improving the vortex representation. The initial vortices produced by the 4-D VAR technique are able to reproduce many of the structural features of mature hurricanes. The vortices also result in significant improvements to the hurricane forecasts in terms of both intensity and track. In particular, with assimilation of only bogus sea-level pressure information, the response in the wind field is contained largely within the divergent component, with strong convergence leading to strong upward motion near the center. Although the intensity of the initial vortex seems to be well represented, a dramatic spin down of the storm occurs within the first 6 h of the forecast. With assimilation of bogus surface wind data only, an expected dominance of the rotational component of the wind field is generated, but the minimum pressure is adjusted inadequately compared to the actual hurricane minimum pressure. Only when both the bogus surface pressure and wind information are assimilated together does the model produce a vortex that represents the actual intensity of the hurricane and results in significant improvements to forecasts of both hurricane intensity and track.
Analysis of speckle and material properties in laider tracer
NASA Astrophysics Data System (ADS)
Ross, Jacob W.; Rigling, Brian D.; Watson, Edward A.
2017-04-01
The SAL simulation tool Laider Tracer models speckle: the random variation in intensity of an incident light beam across a rough surface. Within Laider Tracer, the speckle field is modeled as a 2-D array of jointly Gaussian random variables projected via ray tracing onto the scene of interest. Originally, all materials in Laider Tracer were treated as ideal diffuse scatterers, for which the far-field return computed uses the Lambertian Bidirectional Reflectance Distribution Function (BRDF). As presented here, we implement material properties into Laider Tracer via the Non-conventional Exploitation Factors Data System: a database of properties for thousands of different materials sampled at various wavelengths and incident angles. We verify the intensity behavior as a function of incident angle after material properties are added to the simulation.
Heat transfer enhancement of Fe3O4 ferrofluids in the presence of magnetic field
NASA Astrophysics Data System (ADS)
Fadaei, Farzad; Shahrokhi, Mohammad; Molaei Dehkordi, Asghar; Abbasi, Zeinab
2017-05-01
In this article, three-dimensional (3D) forced-convection heat transfer of magnetic nanofluids in a pipe subject to constant wall heat flux in the presence of single or double permanent magnet(s) or current-carrying wire has been investigated and compared. In this regard, laminar fluid flow and equilibrium magnetization for the ferrofluid were considered. In addition, variations of magnetic field in different media were taken into account and the assumption of having a linear relationship of magnetization with applied magnetic field intensity was also relaxed. Effects of magnetic field intensity, nanoparticle volume fraction, Reynolds number value, and the type of magnetic field source (i.e., a permanent magnet or current-carrying wire) on the forced-convection heat transfer of magnetic nanofluids were carefully investigated. It was found that by applying the magnetic field, the fluid mixing could be intensified that leads to an increase in the Nusselt number value along the pipe length. Moreover, the obtained simulation results indicate that applying the magnetic field induced by two permanent magnets with a magnetization of 3×105 (A/m) (for each one), the fully developed Nusselt number value can be increased by 196%.
NASA Astrophysics Data System (ADS)
Yamazaki, T.; Kanamatsu, T.; Mizuno, S.; Hokanishi, N.; Gaffar, E. Z.
2008-12-01
A paleomagnetic study was conducted on four piston cores newly obtained from the West Caroline Basin in the western equatorial Pacific in order to investigate variations in paleointensity and inclination during the last 400 kyr. An inclination-intensity correlation was previously reported in this region using giant piston cores, but the quality of the paleomagnetic data of the younger end, the last ca. 300 kyr, was needed to be checked because the upper part of the giant piston cores could suffer from perturbation by oversampling. Age control is based on the oxygen-isotope ratios for one core and inter-core correlation using relative paleointensity for other cores. The mean inclinations of the four cores show negative inclination anomalies ranging from -5.2 to -11.2 degree. The western equatorial Pacific is documented as a region of a large negative inclination anomalies, and the observed values are comparable to those expected from the time-averaged field (TAF) models [Johnson and Constable, 1997; Hatakeyama and Kono, 2002]. Stacked curves of paleointensity and inclination were constructed from the four cores. It was confirmed that geomagnetic variations on the order of 10 to 100 kyrs occur in inclination as well as paleointensity. A cross-correlation analysis showed that significant in-phase correlation occurs between intensity and inclination for periods longer than about 25 kyr, and power spectra of both paleointensity and inclination variations have peaks at ~100 kyr periods. The regional paleointensity stack with higher resolution than the Sint-800 stack [Guyodo and Valet, 1999] should be useful for paleointensity-assisted chronostratigraphy.
Microflaring in Low-Lying Core Fields and Extended Coronal Heating in the Quiet Sun
NASA Technical Reports Server (NTRS)
Porter, Jason G.; Falconer, D. A.; Moore, Ronald L.
1999-01-01
We have previously reported analyses of Yohkoh SXT data examining the relationship between the heating of extended coronal loops (both within and stemming from active regions) and microflaring in core fields lying along neutral lines near their footpoints (J. G. Porter, D. A. Falconer, and R. L. Moore 1998, in Solar Jets and Coronal Plumes, ed. T. Guyenne, ESA SP-421, and references therein). We found a surprisingly poor correlation of intensity variations in the extended loops with individual microflares in the compact heated areas at their feet, despite considerable circumstancial evidence linking the heating processes in these regions. Now, a study of Fe XII image sequences from SOHO EIT show that similar associations of core field structures with the footpoints of very extended coronal features can be found in the quiet Sun. The morphology is consistent with the finding of Wang et al. (1997, ApJ 484, L75) that polar plumes are rooted at sites of mixed polarity in the magnetic network. We find that the upstairs/downstairs intensity variations often follow the trend, identified in the active region observations, of a weak correspondence. Apparently much of the coronal heating in the extended loops is driven by a type of core field magnetic activity that is "cooler" than the events having the coronal signature of microflares, i.e., activity that results in little heating within the core fields themselves. This work was funded by the Solar Physics Branch of NASA's Office of Space Science through the SR&T Program and the SEC Guest Investigator Program.
First archaeointensity results from the historical period of Cambodia, Southeast Asia
NASA Astrophysics Data System (ADS)
Higa, J. T.; Cai, S.; Tauxe, L.; Hendrickson, M.
2017-12-01
Understanding variations of the geomagnetic field has applications regarding the behavior of the Earth's outer core, dating of archeological artifacts, and the phenomenon that shields life from solar radiation. However, archaeointensity studies of the Holocene have been mostly limited to localities in Europe and the Middle East; archaeomagnetic surveys from Southeast Asia are almost non-existent. This investigation aims to establish a secular variation curve of geomagnetic field intensity for Cambodia. We sampled ancient iron smelting mounds from the Khmer Empire, located in present day Cambodia, and are analyzing them for paleointensity. The specimens are thought to be from the historical period, likely between 1000-1500 CE. Our samples, which include furnace fragments, iron slag, and ceramic tuyères, contain magnetic minerals that record the paleointensity of Earth's magnetic field at the time it was fired. Using the IZZI paleointensity method (Yu et al., 2004), which gradually replaces the sample's natural remanent magnetization with a thermal remanent magnetization obtained in a known lab field, we can determine the geomagnetic intensities preserved in these specimens. Based on our preliminary experiments, the tuyères, and perhaps also the fresh slag, will in all likelihood yield the most ideal results. Following additional measurements from these best-fit samples, we will determine the paleointensities of Cambodia for the time period from which the artifacts originated. This will commence the establishment of regional geomagnetic reference curves in Southeast Asia and also improve the global model.
Analysis of Forbush decreases during strong geomagnetic disturbances in March-April 2001
NASA Astrophysics Data System (ADS)
Kravtsova, M. V.; Sdobnov, V. E.
2014-08-01
Using ground-based cosmic-ray (CR) observations on the worldwide network of neutron monitors, we have studied the variations in CR rigidity spectrum, anisotropy, and planetary system of geomagnetic cutoff rigidities during Forbush decreases in March-April 2001 by the global spectrographic method. By jointly analyzing ground-based and satellite measurements, we have determined the parameters of the CR rigidity spectrum that reflect the electromagnetic characteristics of the heliospheric fields in each hour of observations within the framework of the model of CR modulation by the heliosphere's regular electromagnetic fields. The rigidity spectra of the variations and the relative changes in the intensity of CRs with rigidities of 4 and 10 GV in the solar-ecliptic geocentric coordinate system are presented in specific periods of the investigated events.
Variation in light intensity with height and time from subsequent lightning return strokes
NASA Technical Reports Server (NTRS)
Jordan, D. M.; Uman, M. A.
1983-01-01
Photographic measurements of relative light intensity as a function of height and time have been conducted for seven return strokes in two lightning flashes at 7.8 and 8.7 km ranges, using film which possesses an approximately constant spectral response in the 300-670 nm range. The amplitude of the initial light peak is noted to decrease exponentially with height, with a decay constant of 0.6-0.8 km. The logarithm of the peak light intensity near the ground is found to be approximately proportional to the initial peak electric field intensity, implying that the current decrease with height may be much slower than the light decrease. Absolute light intensity is presently estimated through the integration of the photographic signals from individual channel segments, in order to simulate the calibrated, all-sky photoelectric data of Guo and Krider (1982).
Phase retrieval from intensity-only data by relative entropy minimization.
Deming, Ross W
2007-11-01
A recursive algorithm, which appears to be new, is presented for estimating the amplitude and phase of a wave field from intensity-only measurements on two or more scan planes at different axial positions. The problem is framed as a nonlinear optimization, in which the angular spectrum of the complex field model is adjusted in order to minimize the relative entropy, or Kullback-Leibler divergence, between the measured and reconstructed intensities. The most common approach to this so-called phase retrieval problem is a variation of the well-known Gerchberg-Saxton algorithm devised by Misell (J. Phys. D6, L6, 1973), which is efficient and extremely simple to implement. The new algorithm has a computational structure that is very similar to Misell's approach, despite the fundamental difference in the optimization criteria used for each. Based upon results from noisy simulated data, the new algorithm appears to be more robust than Misell's approach and to produce better results from low signal-to-noise ratio data. The convergence of the new algorithm is examined.
Invariance of visual operations at the level of receptive fields
Lindeberg, Tony
2013-01-01
The brain is able to maintain a stable perception although the visual stimuli vary substantially on the retina due to geometric transformations and lighting variations in the environment. This paper presents a theory for achieving basic invariance properties already at the level of receptive fields. Specifically, the presented framework comprises (i) local scaling transformations caused by objects of different size and at different distances to the observer, (ii) locally linearized image deformations caused by variations in the viewing direction in relation to the object, (iii) locally linearized relative motions between the object and the observer and (iv) local multiplicative intensity transformations caused by illumination variations. The receptive field model can be derived by necessity from symmetry properties of the environment and leads to predictions about receptive field profiles in good agreement with receptive field profiles measured by cell recordings in mammalian vision. Indeed, the receptive field profiles in the retina, LGN and V1 are close to ideal to what is motivated by the idealized requirements. By complementing receptive field measurements with selection mechanisms over the parameters in the receptive field families, it is shown how true invariance of receptive field responses can be obtained under scaling transformations, affine transformations and Galilean transformations. Thereby, the framework provides a mathematically well-founded and biologically plausible model for how basic invariance properties can be achieved already at the level of receptive fields and support invariant recognition of objects and events under variations in viewpoint, retinal size, object motion and illumination. The theory can explain the different shapes of receptive field profiles found in biological vision, which are tuned to different sizes and orientations in the image domain as well as to different image velocities in space-time, from a requirement that the visual system should be invariant to the natural types of image transformations that occur in its environment. PMID:23894283
PHASE RELATIONSHIPS OF SOLAR HEMISPHERIC TOROIDAL AND POLOIDAL CYCLES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Muraközy, J., E-mail: murakozy.judit@csfk.mta.hu
2016-08-01
The solar northern and southern hemispheres exhibit differences in their intensities and time profiles of the activity cycles. The time variation of these properties was studied in a previous article covering the data from Cycles 12–23. The hemispheric phase lags exhibited a characteristic variation: the leading role was exchanged between hemispheres every four cycles. The present work extends the investigation of this variation using the data of Staudacher and Schwabe in Cycles 1–4 and 7–10 as well as Spörer’s data in Cycle 11. The previously observed variation cannot be clearly recognized using the data of Staudacher, Schwabe, and Spörer. However,more » it is more interesting that the phase lags of the reversals of the magnetic fields at the poles follow the same variations as those of the hemispheric cycles in Cycles 12–23, i.e., one of the hemispheres leads in four cyles and the leading role jumps to the opposite hemisphere in the next four cycles. This means that this variation is a long-term property of the entire solar dynamo mechanism, for both the toroidal and poloidal fields, which hints at an unidentified component of the process responsible for the long-term memory.« less
Light scattering from liquid crystal director fluctuations in steady magnetic fields up to 25 tesla.
Challa, Pavan K; Curtiss, O; Williams, J C; Twieg, R; Toth, J; McGill, S; Jákli, A; Gleeson, J T; Sprunt, S N
2012-07-01
We report on homodyne dynamic light scattering measurements of orientational fluctuation modes in both calamitic and bent-core nematic liquid crystals, carried out in the new split-helix resistive magnet at the National High Magnetic Field Laboratory. The relaxation rate and inverse scattered intensity of director fluctuations exhibit a linear dependence on field-squared up to 25 tesla, which is consistent with strictly lowest order coupling of the tensor order parameter Q to field (Q(αβ)B(α)B(β)) in the nematic free energy. However, we also observe evidence of field dependence of certain nematic material parameters, an effect which may be expected from the mean field scaling of these quantities with the magnitude of Q and the predicted variation of Q with field.
NASA Astrophysics Data System (ADS)
Ayars, Eric James
2000-10-01
The purpose of this research is to investigate differences observed between Raman spectra when seen through a Near-field Scanning Optical Microscope (NSOM) and spectra of the same materials in conventional Raman or micro-Raman configurations. One source of differences in the observed spectra is a strong z polarized component in the near-field radiation; observations of the magnitude of this effect are compared with theoretical predictions for the field intensity near an NSOM tip. Large electric field gradients near the sharp NSOM probe may be another source of differences. This Gradient-Field Raman (GFR) effect was observed, and there is good evidence that it plays a significant role in Surface-Enhanced Raman Spectroscopy (SERS). The NSOM data seen, however, are not sufficient to prove conclusively that the spectral variations seen are due to the field gradients.
NASA Astrophysics Data System (ADS)
Malyshkov, S. Y.; Gordeev, V. F.; Polyvach, V. I.; Shtalin, S. G.; Pustovalov, K. N.
2017-04-01
Article describes the results of the atmosphere and Earth’s crust climatic and ecological parameters integrated monitoring. The estimation is made for lithospheric component share in the Earth natural pulsed electromagnetic field structure. To estimate lithospheric component we performed a round-the-clock monitoring of the Earth natural pulsed electromagnetic field background variations at the experiment location and measured the Earth natural pulsed electromagnetic field under electric shields. Natural materials in a natural environment were used for shielding, specifically lakes with varying parameters of water conductivity. Skin effect was used in the experiment - it is the tendency of electromagnetic waves amplitude to decrease with greater depths in the conductor. Atmospheric and lithospheric component the Earth natural pulsed electromagnetic field data recorded on terrain was compared against the recorded data with atmosphere component decayed by an electric shield. In summary we have demonstrated in the experiment that thunderstorm discharge originating electromagnetic field decay corresponds to the decay calculated using Maxwell equations. In the absence of close lightning strikes the ratio of field intensity recorded on terrain to shielded field intensity is inconsistent with the ratio calculated for atmospheric sources, that confirms there is a lithospheric component present to the Earth natural pulsed electromagnetic field.
Laser-induced fluorescence imaging of acetone inside evaporating and burning fuel droplets
NASA Astrophysics Data System (ADS)
Shringi, D. S.; Shaw, B. D.; Dwyer, H. A.
2009-01-01
Laser-induced fluorescence was used to visualize acetone fields inside individual droplets of pure acetone as well as droplets composed of methanol or 1-propanol initially mixed with acetone. Droplets were supported on a horizontal wire and two vaporization conditions were investigated: (1) slow evaporation in room air and (2) droplet combustion, which leads to substantially faster droplet surface regression rates. Acetone was preferentially gasified, causing its concentration in droplets to drop in time with resultant decreases in acetone fluorescence intensities. Slowly vaporizing droplets did not exhibit large spatial variations of fluorescence within droplets, indicating that these droplets were relatively well mixed. Ignition of droplets led to significant variations in fluorescence intensities within droplets, indicating that these droplets were not well mixed. Ignited droplets composed of mixtures of 1-propanol and acetone showed large time-varying changes in shapes for higher acetone concentrations, suggesting that bubble formation was occurring in these droplets.
Liu, Yunbo; Wear, Keith A; Harris, Gerald R
2017-10-01
Reliable acoustic characterization is fundamental for patient safety and clinical efficacy during high-intensity therapeutic ultrasound (HITU) treatment. Technical challenges, such as measurement variation and signal analysis, still exist for HITU exposimetry using ultrasound hydrophones. In this work, four hydrophones were compared for pressure measurement: a robust needle hydrophone, a small polyvinylidene fluoride capsule hydrophone and two fiberoptic hydrophones. The focal waveform and beam distribution of a single-element HITU transducer (1.05 MHz and 3.3 MHz) were evaluated. Complex deconvolution between the hydrophone voltage signal and frequency-dependent complex sensitivity was performed to obtain pressure waveforms. Compressional pressure (p + ), rarefactional pressure (p - ) and focal beam distribution were compared up to 10.6/-6.0 MPa (p + /p - ) (1.05 MHz) and 20.65/-7.20 MPa (3.3 MHz). The effects of spatial averaging, local non-linear distortion, complex deconvolution and hydrophone damage thresholds were investigated. This study showed a variation of no better than 10%-15% among hydrophones during HITU pressure characterization. Published by Elsevier Inc.
Linkage between the Biosphere and Geomagnetic field: Knowns and Unknowns
NASA Astrophysics Data System (ADS)
Pan, Y.; Zhu, R.
2017-12-01
The geomagnetic field extends from Earth's interior into space, and protects our planets habitability by shielding the planet from solar winds and cosmic rays. Recently, single zircon paleomagnetic study provides evidence of the field to ages as old as 4.2 Ga. Many great questions remain, including whether the emergence of life on Earth was a consequence of the field's protection, how organisms utilize the field, and if field variations (polarity reversal, excursion and secular variation) impact the evolution of the biosphere. In the past decade, great efforts have been made to probe these very complex and great challenging questions through the inter-disciplinary subject of biogeomagnetism. Numerous birds, fish, sea turtles, bats and many other organisms utilize the geomagnetic field during orientation and long-distance navigation. We recently found that bats, the second most abundant order of mammals, can use the direction of magnetic field with a weak strength comparable to polarity transitions/excursions, which is indicative of advanced magnetoreception developed in bats co-evolving with the geomagnetic field since the Eocene. Magnetotactic bacteria swim along the geomagnetic field lines by synthesizing intracellular nano-sized and chain-arranged magnetic minerals (magnetosomes). Recent field surveys in China, Europe, America and Australia have shown that these microbes are ubiquitous in aqueous habitats. Both their biogeography distribution and magnetotactic swimming speed are field intensity dependent. On the other hand, it is increasingly accepted that the geomagnetic field influences life through several indirect pathways. For example, it has been discovered that solar wind erosion enhanced the atmospheric oxygen escape during periods of weak magnetic field and global mean ionospheric electron density profiles can be affected by geomagnetic field strength variation. In addition, depletion of the ozone layer during a weak magnetic field could result in strong solar irradiation, which is harmful to many organisms. Together, newly accumulated lines of evidence strongly indicate that the geomagnetic field and its variations have important impacts on life and its evolution. In this paper we will provide an overview of recent observations, progresses and perspectives in this subject.
NASA Astrophysics Data System (ADS)
Fotin, Sergei V.; Yin, Yin; Periaswamy, Senthil; Kunz, Justin; Haldankar, Hrishikesh; Muradyan, Naira; Cornud, François; Turkbey, Baris; Choyke, Peter L.
2012-02-01
Fully automated prostate segmentation helps to address several problems in prostate cancer diagnosis and treatment: it can assist in objective evaluation of multiparametric MR imagery, provides a prostate contour for MR-ultrasound (or CT) image fusion for computer-assisted image-guided biopsy or therapy planning, may facilitate reporting and enables direct prostate volume calculation. Among the challenges in automated analysis of MR images of the prostate are the variations of overall image intensities across scanners, the presence of nonuniform multiplicative bias field within scans and differences in acquisition setup. Furthermore, images acquired with the presence of an endorectal coil suffer from localized high-intensity artifacts at the posterior part of the prostate. In this work, a three-dimensional method for fast automated prostate detection based on normalized gradient fields cross-correlation, insensitive to intensity variations and coil-induced artifacts, is presented and evaluated. The components of the method, offline template learning and the localization algorithm, are described in detail. The method was validated on a dataset of 522 T2-weighted MR images acquired at the National Cancer Institute, USA that was split in two halves for development and testing. In addition, second dataset of 29 MR exams from Centre d'Imagerie Médicale Tourville, France were used to test the algorithm. The 95% confidence intervals for the mean Euclidean distance between automatically and manually identified prostate centroids were 4.06 +/- 0.33 mm and 3.10 +/- 0.43 mm for the first and second test datasets respectively. Moreover, the algorithm provided the centroid within the true prostate volume in 100% of images from both datasets. Obtained results demonstrate high utility of the detection method for a fully automated prostate segmentation.
NASA Astrophysics Data System (ADS)
Zait, Eitan; Ben-Zvi, Guy; Dmitriev, Vladimir; Oshemkov, Sergey; Pforr, Rainer; Hennig, Mario
2006-05-01
Intra-field CD variation is, besides OPC errors, a main contributor to the total CD variation budget in IC manufacturing. It is caused mainly by mask CD errors. In advanced memory device manufacturing the minimum features are close to the resolution limit resulting in large mask error enhancement factors hence large intra-field CD variations. Consequently tight CD Control (CDC) of the mask features is required, which results in increasing significantly the cost of mask and hence the litho process costs. Alternatively there is a search for such techniques (1) which will allow improving the intrafield CD control for a given moderate mask and scanner imaging performance. Currently a new technique (2) has been proposed which is based on correcting the printed CD by applying shading elements generated in the substrate bulk of the mask by ultrashort pulsed laser exposure. The blank transmittance across a feature is controlled by changing the density of light scattering pixels. The technique has been demonstrated to be very successful in correcting intra-field CD variations caused by the mask and the projection system (2). A key application criterion of this technique in device manufacturing is the stability of the absorbing pixels against DUV light irradiation being applied during mask projection in scanners. This paper describes the procedures and results of such an investigation. To do it with acceptable effort a special experimental setup has been chosen allowing an evaluation within reasonable time. A 193nm excimer laser with pulse duration of 25 ns has been used for blank irradiation. Accumulated dose equivalent to 100,000 300 mm wafer exposures has been applied to Half Tone PSM mask areas with and without CDC shadowing elements. This allows the discrimination of effects appearing in treated and untreated glass regions. Several intensities have been investigated to define an acceptable threshold intensity to avoid glass compaction or generation of color centers in the glass. The impact of the irradiation on the mask transmittance of both areas has been studied by measurements of the printed CD on wafer using a wafer scanner before and after DUV irradiation.
Classification of Archaeological Targets by the Use of Temporary Magnetic Variations Examination
NASA Astrophysics Data System (ADS)
Finkelstein, Michael; Eppelbaum, Lev
2015-04-01
Many buried magnetized archaeological and geological objects producing significant magnetic anomalies(for instance, ancient furnaces, weapon, agricultural targets and high-magnetized basalts) may be classified without high-expensive excavations. Such a classification may be conducted on the basis of comprehensive studying temporary magnetic variations over these objects. It is especially significant for archaeogeophysical investigations in the areas of world recognized religious and cultural artifacts where all excavations are forbidden (Eppelbaum, 2010). Yanovsky's (1978) investigations laid the foundation of the magnetic variations utilization for separation of disturbing objects with high magnetic susceptibility (not depending on intensity of the studied magnetic anomalies). However, these procedures are inapplicable for studying low-intensive and negative magnetic anomalies, where an influence of residual magnetization may be sufficient one. At the same time the approach presented below may be used for investigation of the nature of magnetic anomalies with arbitrary intensity and origin. In the common case (we consider for simplicity that anomalous object is a sphere) the value of magnetic variations η could be estimated using the following expression (Finkelstein and Eppelbaum, 1997): η =f( P ))+δ Ha +δ Ho /δ Ho, where induction parameter P=α √ {κ & &gamma & ω } (Wait, 1951), Ho is the initial field of magnetic variations, Ha is the anomalous component of magnetic variations, κ is the magnetic susceptibility, &gamma is the electric conductivity, ω is the frequency of geomagnetic variations, and α is the radius of the sphere. For the approximate estimation of possible values of anomalous geomagnetic variations (AGV) over sphere within some domain T, we will use an expression of the anomalous vertical magnetic component Z for any point M (x, y, z) in the external space (for the case of vertical magnetization) (Nepomnyaschikh, 1964): Za =( {κ 1 -κ 2 } ))Z0 +( {1+4π κ 2 } ))JRZe /1+4π κ 2 +Nzz ( {κ 1 -κ 2 ))}.partial ^2/partial z^2intlimitsT {dτ /r}, where κ 1 is themagnetic susceptibility of the object, κ 2 is the magnetic susceptibility of the host medium, Z0 is the vertical component of Earth's magnetic field, JRZe is the effective component of the vector of residual magnetization, Nzz is the coefficient of the demagnetization, partial ^2/partial z^2intlimitsT {dτ /r} is the second derivative of the z-axis of the integral intlimitsT {dτ /r} , and dτ is the volume element of the domain T. Taking into account that in most cases κ 2 isnegligible compared with κ 1 of magnetic objects, as well as the fact that the residual magnetization of JRZe when exposed to an alternating field does not create additional fields, values κ 2, and JRZe in Eq. (2) can be practically ignored in the evaluation of magnetic fields from objects. Then for variations of the vertical component of the magnetizing field with objects having a high content of ferromagnetic materials according to Eq. (2) we will observe abnormal values of the magnetic variations (Finkelstein et al., 2012): δ Za =κ 1 δ Z0 /1+Nzz κ 1 .partial ^2/partial z2 intlimitsT {dτ /r}, where δ Z0 is some increment (both positive and negative) of Z0 . Solving the expression partial ^2/partial z^2intlimitsT {dτ /r} in Eq. (3) for each particular body shape, we find that the anomalous geomagnetic variations from the body of spherical form will be determined by the expression δ Za =4.2a^3κ 1 [ {( {2h^2-x^2} ))sin J-3hxcos J} )]/( {1+κ 1 NZZ ))( {h^2+x^2} ))5/2}δ Z0 , where J is the angle between the magnetization vector and the horizon, a is the radius of the sphere, x is the current coordinate, and h is the depth to its center. For a spherical body the parameter Nzz was assumed as 4/3π (Nikitsky and Glebovsky, 1990). In accordance with Eq. (4) the relationship between abnormal to normal variations (η ) were calculated: quad η =δ Za +δ Z0 /δ Z0 and plotted versus the magnetic susceptibility of a sphere with a radius a (Finkelstein et al., 2012). From Eq. (5) follows that at small values of δ Za the ratio becomes close to unity, for example granitoids - basalts, and each value of the differential function (Δ 1-2) of geomagnetic variations between the two points (1 and 2) will be close to the values of the background level, unless there are other factors creating AGV of different origin. The developed methodology includes: (a) estimation of influence of electric conductivity for studied objects and surrounding medium; (b) selection of the most optimal frequencies for observation of magnetic variation effect (f(P) should seek to the value less than 0.6); (c) revealing relationship between observed variations (their intensity and form) and parameters of disturbing objects (their geometric and physical characteristics); (d) calculation of magnetic susceptibility. Results obtained in the items (c) and (d) are applied (together with other available geological, archaeological, environmental and geophysical data) for classification of studied ancient targets. These procedures have been successfully tested in several ore deposits of the Middle Asia (mainly in Kazakhstan) and Caucasus. Some preliminary experimental observations over ancient iron-containing targets were carried out in Israel (Eppelbaum et al., 2010). References Eppelbaum, L.V., 2010. Methodology of Detailed Geophysical Examination of the Areas of World Recognized Religious and Cultural Artifacts. Trans. of the 6th EUG Meet., Geophysical Research Abstracts, Vol. 12, EGU2010-5859, Vienna, Austria, 3 pp. Eppelbaum, L.V., Khesin, B.E. and Itkis, S.E., 2010. Archaeological geophysics in arid environments: Examples from Israel. Journal of Arid Environments,74, No. 7, 849-860. Finkelstein, M. and Eppelbaum, L., 1997. Classification of the disturbing objects using interpretation of low-intensive temporary magnetic variations. Trans. of the Conference of Geological Society of America. Salt Lake City,29, No.6, p. 326. Finkelstein, M., Price, C. and Eppelbaum, L., 2012. Is the geodynamic process in preparation of strong earthquakes reflected in the geomagnetic field? Journal of Geophysics and Engineering, 9, 585-594. Nepomnyaschikh, A.A., 1964. Interpretation of Geophysical Anomalies. Nedra, Moscow (in Russian). Nikitsky, V.E. and Glebovsky, Yu.S. (Eds.), 1990. Magnetic Prospecting HandManual. Nedra, Moscow (in Russian). Yanovsky, B.M., 1978. Earth's Magnetism. Nedra, Leningrad (in Russian). Wait, J.R., 1951. A conducting sphere in a time varying magnetic field. Geophysics, 16, 12-22.
Tessaro, Lucas W E; Murugan, Nirosha J; Persinger, Michael A
2015-03-01
Previous studies have shown that exposure to extremely low-frequency electromagnetic fields (ELF-EMFs) have negative effects on the rate of growth of bacteria. In the present study, two Gram-positive and two Gram-negative species were exposed to six magnetic field conditions in broth cultures. Three variations of the 'Thomas' pulsed frequency-modulated pattern; a strong-static "puck" magnet upwards of 5000G in intensity; a pair of these magnets rotating opposite one another at ∼30rpm; and finally a strong dynamic magnetic field generator termed the 'Resonator' with an average intensity of 250μT were used. Growth rate was discerned by optical density (OD) measurements every hour at 600nm. ELF-EMF conditions significantly affected the rates of growth of the bacterial cultures, while the two static magnetic field conditions were not statistically significant. Most interestingly, the 'Resonator' dynamic magnetic field increased the rates of growth of three species (Staphylococcus epidermidis, Staphylococcus aureus, and Escherichia coli), while slowing the growth of one (Serratia marcescens). We suggest that these effects are due to individual biophysical characteristics of the bacterial species. Copyright © 2015 Elsevier GmbH. All rights reserved.
NASA Technical Reports Server (NTRS)
Takahashi, H.; Yahagi, N.
1985-01-01
The spherical harmonic analysis of cosmic ray neutron data from the worldwide network neutron monitor stations during the years, 1966 to 1969 was carried out. The second zonal harmonic component obtained from the analysis corresponds to the Pole-Equator anisotropy of the cosmic ray neutron intensity. Such an anisotropy makes a semiannual variation. In addition to this, it is shown that the Pole-Equator anisotropy makes a variation depending on the interplanetary magnetic field (IMF) sector polarities around the passages of the IMF sector boundary. A mechanism to interpret these results is also discussed.
Electric field prediction for a human body-electric machine system.
Ioannides, Maria G; Papadopoulos, Peter J; Dimitropoulou, Eugenia
2004-01-01
A system consisting of an electric machine and a human body is studied and the resulting electric field is predicted. A 3-phase induction machine operating at full load is modeled considering its geometry, windings, and materials. A human model is also constructed approximating its geometry and the electric properties of tissues. Using the finite element technique the electric field distribution in the human body is determined for a distance of 1 and 5 m from the machine and its effects are studied. Particularly, electric field potential variations are determined at specific points inside the human body and for these points the electric field intensity is computed and compared to the limit values for exposure according to international standards.
Geomagnetic field observations in the Kopaonik thrust region, Yugoslavia.
NASA Astrophysics Data System (ADS)
Bicskei, T.; Popeskov, M.
1991-09-01
In the absence of continuous registrations of the geomagnetic field variations in the surveyed region, the nearest permanent observatory records had to be used in the data reduction procedure. The proposed method estimates the differences between the hourly mean values at the particular measuring site, which are not actually known, and at the observatory on the basis of a series of instantaneous total field intensity values measured simultaneously at these two places. The application of this method to the geomagnetic field data from the wider area of the Kopaonik thrust region has revealed local field changes which show connection with pronounced seismic activity that has been going on in this region since it was affected by the M = 6.0 earthquake on May 18, 1980.
The Effect of Intense Laser Radiation on Atomic Collisions
NASA Astrophysics Data System (ADS)
Young, Stephen Michael Radley
1991-02-01
Available from UMI in association with The British Library. Requires signed TDF. We have carried out theoretical and experimental studies into the effect of intense laser radiation on atomic collisions. The first experiment used neon. Excitation by electron impact in a gas discharge demanded a pressure of at least 0.075 Torr. Measurement of the intensity of 3^1S_0to 3^1P_1 fluorescence has been made for the case where high intensity ASE wings in the laser profile and background laser scatter are unimportant, with the laser tuned to resonance. The field intensity required to produce strong field fluorescence (exemplified by the Mollow triplet) was found to give rise to complications capable of screening the effects sought. Our theoretical model has suggested that at finite detunings, line-centre fluorescence will dominate Rayleigh scatter and omega_3 fluorescence. Our measurements provide information on the saturation of neon fluorescence but not of the variation of the intense field collision rate. Absorption of weak field 253.7 nm laser photons by ground state mercury atoms yielded a high 6 ^3P_1 population at a lower pressure of 0.02 Torr. The Mollow triplet has been observed in the self-broadened mercury system. Dressing of the upper transition (6^3P_1rightarrow 7^3S_1) by an intense laser close to 435.8 nm yielded the strong field signal. Polarisation studies were made possible by the 3-level mercury system (radiation trapping in a 2-level system would depolarise fluorescence) perturbed by argon. The studies yielded results that were explainable in terms of the selective population of Stark shifted dressed states by a detuned, weak probe field. Use has been made of the electric-dipole radiation selection rule m_{J}=0 rightarrow m_{J^' } = 0 unless J=J^' to devise a 'Stark shift collision switch'. The competition between collision and radiation induced transitions within the mercury atom has then been studied. The resonant, strong lambda 435.8 nm field was used in conjunction with the weak lambda 253.7 nm field detuned by 0 to 6 cm^ {-1}. Measurement of fluorescence intensity in two perpendicular planes of polarisation has revealed the dominant | e_1> to | e_2> excitation channel as a function of the Stark shift by way of the U.V. detuning. Competition between the channels was dependent on the generalised Rabi frequency. However, we could only monitor the relative strength of the channels and were thus unable to say that the Stark shift switched collisions off. (Abstract shortened by UMI.).
NASA Astrophysics Data System (ADS)
Goguitchaichvili, Avto; Morales, Juan; Schavelzon, Daniel; Vásquez, Carlos; Gogorza, Claudia S. G.; Loponte, Daniel; Rapalini, Augusto
2015-08-01
The causes of the systematic decay of the Earth's Magnetic Field strength since eighteen century have been a matter of debate during the last decade. It is also well known that such variations may have completely different expressions under an area characterized with strong magnetic anomalies, such as the South Atlantic Magnetic Anomaly. To fully understand these atypical phenomena, it is crucial to retrieve the past evolution of Earth's magnetic field beyond the observatory records. We report on detailed rock-magnetic and archeointensity investigations from some well-studied historical buildings of Buenos Aires city, located at the heart of the South Atlantic Magnetic Anomaly. Samples consist of bricks, tiles, fireplaces and pottery, which are considered as highly suitable materials for archaeointensity studies. The dating is ascertained by historical documents complemented by archeological constraints. Eighteen out of 26 analyzed samples yield reliable absolute intensity determinations. The site-mean archaeointensity values obtained in this study range from 28.5 to 43.5 μT, with corresponding virtual axial dipole moments (VADMs) ranging from 5.3 to 8.04 × 1022 Am2. Most determinations obtained in the present study are in remarkable agreement with the values predicted by the time varying field model CALS10k.1b (Korte et al., 2011). For the older periods the recently available SHA.DIF.14 model (Pavon-Carrasco et al., 2014) seems to have greater resolution. South American archaeointensity database now includes absolute intensities from 400 to 1930 AD based on 63 selected archaeointensity determinations. The data set reveals several distinct periods of quite large fluctuations of intensity. However, most data are concentrated into a relatively narrow interval from AD 1250 to AD 1450. At the beginning of the record, values between 400 AD and 830 AD match well with ARCH3k.1 model. Some general features may be detected: the time intervals from about AD 400 to 950 and 1150 to 1280 are characterized by a quite monotonic decrease of geomagnetic intensity, while some increase is observed from AD 950 to AD 1250. In contrast, a systematic intensity decay is detected from 1550 to 1930 in excellent agreement with the model prediction. No firm evidence of correlation between the climate changes over multi-decadal time scales and geomagnetic intensity was found for South America.
A phenomenological study of the long-term cosmic ray modulation, 850-1958 AD
NASA Astrophysics Data System (ADS)
McCracken, K. G.; McDonald, F. B.; Beer, J.; Raisbeck, G.; Yiou, F.
2004-12-01
The modulation of the galactic cosmic radiation over the past 1150 years is investigated using 10Be data from Greenland and the South Pole. For this purpose, we introduce the use of 22-year averages to study the long-term modulation. After allowance for secular changes in the geomagnetic dipole, it is shown that the 22-year mean intensity of the galactic cosmic radiation (GCR) in the vicinity of 1-2 GeV/nucleon returned to approximately the same high level at the widely separated times of the Oort (1050 AD), Spoerer (1420-1540), and the latter portion of the Maunder (1645-1715) periods of low solar activity. In terms of the modulation potential, ϕ, this asymptotic intensity corresponds to a mean residual modulation of ˜84 MV. The GCR intensity was significantly less during the Wolf (˜1320) and Dalton (1810) minima, and ϕ ˜ 200 MV. The higher temporal resolution data from Greenland shows that there were large 11-year and other fluctuations superimposed upon these high intensities during the Spoerer and Maunder minima (Δϕ ≈ 200-300 MV), indicating the continued presence of a substantial and time-dependent heliomagnetic field. Throughout the Spoerer minimum, the GCR intensity repeatedly returned to a condition of very low modulation, indicating that the cosmic ray spectrum incident on the Earth approached the level of the local interstellar spectrum. These results imply the continued presence of either (or both) (1) the normal cyclic variation of the heliospheric current sheet and/or (2) a cyclic variation of the diffusion coefficients throughout these periods of low solar activity. The data indicate that the modulation (i.e., depression) of the cosmic ray intensity during the instrumental era (1933-present) has been one of the greatest in the past 1150 years. Further, approximately the same low value has been attained on five previous widely separated occasions since 850 AD, and we speculate that the heliospheric magnetic field has reached an asymptotic limit at those times. The 10Be data exhibit a previously unrecognized feature, which we have named "the precipitous decrease," in which the 1-2 GeV/nucleon intensity decreased by ˜40-45% between 1700 and 1739 corresponding to Δϕ > 500 MV, at a time of low but increasing solar activity. A lower cosmic ray intensity than that attained in 1739 was not observed again until after 1950, at a time of high solar activity. These features and the large 11-year modulation events during the Spoerer and Maunder minima indicate that the long-term variations in the GCR intensity are poorly related to sunspot number during epochs of low solar activity. It is shown that there is better agreement between the variations in the 10Be data, and the changes in the open solar magnetic flux predicted by the [2002] and [2002] models based on historic sunspot numbers. In particular, they both exhibit characteristics consistent with the precipitous decrease in the 10Be data, although the amplitudes are smaller than implied by the 10Be data.
Spectral line intensity irreversibility in circulatory plasma magnetization processes
NASA Astrophysics Data System (ADS)
Qu, Z. Q.; Dun, G. T.
2012-01-01
Spectral line intensity variation is found to be irreversible in circulatory plasma magnetization process by experiments described in this paper, i.e., the curves illustrating spectral line photon fluxes irradiated from a light source immerged in a magnetic field by increasing the magnetic induction cannot be reproduced by decreasing the magnetic induction within the errors. There are two plasma magnetization patterns found. One shows that the intensities are greater at the same magnetic inductions during the magnetic induction decreasing process after the increasing, and the other gives the opposite effect. This reveals that the magneto-induced excitation and de-excitation process is irreversible like ferromagnetic magnetization. But the two irreversible processes are very different in many aspects stated in the text.
Investigation of skin structures based on infrared wave parameter indirect microscopic imaging
NASA Astrophysics Data System (ADS)
Zhao, Jun; Liu, Xuefeng; Xiong, Jichuan; Zhou, Lijuan
2017-02-01
Detailed imaging and analysis of skin structures are becoming increasingly important in modern healthcare and clinic diagnosis. Nanometer resolution imaging techniques such as SEM and AFM can cause harmful damage to the sample and cannot measure the whole skin structure from the very surface through epidermis, dermis to subcutaneous. Conventional optical microscopy has the highest imaging efficiency, flexibility in onsite applications and lowest cost in manufacturing and usage, but its image resolution is too low to be accepted for biomedical analysis. Infrared parameter indirect microscopic imaging (PIMI) uses an infrared laser as the light source due to its high transmission in skins. The polarization of optical wave through the skin sample was modulated while the variation of the optical field was observed at the imaging plane. The intensity variation curve of each pixel was fitted to extract the near field polarization parameters to form indirect images. During the through-skin light modulation and image retrieving process, the curve fitting removes the blurring scattering from neighboring pixels and keeps only the field variations related to local skin structures. By using the infrared PIMI, we can break the diffraction limit, bring the wide field optical image resolution to sub-200nm, in the meantime of taking advantage of high transmission of infrared waves in skin structures.
Super-Eddington radiation transfer in soft gamma repeaters
NASA Technical Reports Server (NTRS)
Ulmer, Andrew
1994-01-01
Bursts from soft gamma repeaters (SGRs) have been shown to be super-Eddington by a factor of 1000 and have been persuasively associated with compact objects. Super-Eddington radiation transfer on the surface of a strongly magnetic (greater than or equal to 10(exp 13) G) neutron star is studied and related to the observational constraints on SGRs. In strong magnetic fields, Thompson scattering is suppressed in one polarization state, so super-Eddington fluxes can be radiated while the plasma remains in hydrostatic equilibrium. We discuss a model which offers a somewhat natural explanation for the observation that the energy spectra of bursts with varying intensity are similar. The radiation produced is found to be linearly polarized to one part in 1000 in a direction determined by the local magnetic field, and intensity variations between bursts are understood as a change in the radiating area on the source. The net polarization is inversely correlated with burst intensity. Further, it is shown that for radiation transfer calculations in limit of superstrong magnetic fields, it is sufficient to solve the radiation transfer for the low opacity state rather than the coupled equations for both. With this approximation, standard stellar atmosphere techniques are utilized to calculate the model energy spectrum.
Direct acceleration in intense laser fields used for bunch amplification of relativistic electrons
NASA Astrophysics Data System (ADS)
Braenzel, J.; Andreev, A. A.; Ehrentraut, L.; Schnürer, M.
2017-05-01
A method, how electrons can be directly accelerated in intense laser fields, is investigated experimentally and discussed with numerical and analytical simulation. When ultrathin foil targets are exposed with peak laser intensities of 1x1020 W/cm2 , slow electrons ( keV kinetic energy), that are emitted from the ultrathin foil target along laser propagation direction, are post-accelerated in the transmitted laser field. They received significant higher kinetic energies (MeV), when this interaction was limited in duration and an enhanced number of fast electrons were detected. The decoupling of the light field from the electron interaction we realized with a second separator foil, blocking the transmitted laser light at a particular distance and allowing the fast electrons to pass. Variation of the propagation distance in the laser field results in different energy gains for the electrons. This finding is explained with electron acceleration in the electromagnetic field of a light pulse and confirms a concept being discussed for some time. In the experiments the effect manifests in an electron number amplification of about 3 times around a peak at 1 MeV electron energy. Measurements confirmed that the overall number in the whole bunch is enhanced to about 109 electrons covering kinetic energies between 0.5 to 5 MeV. The method holds promise for ultrashort electron bunch generation at MeV energies for direct application, e.g. ultra-fast electron diffraction, or for injection into post accelerator stages for different purposes.
Low and Midlatitude Ionospheric Plasma Density Irregularities and Their Effects on Geomagnetic Field
NASA Astrophysics Data System (ADS)
Yokoyama, Tatsuhiro; Stolle, Claudia
2017-03-01
Earth's magnetic field results from various internal and external sources. The electric currents in the ionosphere are major external sources of the magnetic field in the daytime. High-resolution magnetometers onboard low-Earth-orbit satellites such as CHAMP and Swarm can detect small-scale currents in the nighttime ionosphere, where plasma density gradients often become unstable and form irregular density structures. The magnetic field variations caused by the ionospheric irregularities are comparable to that of the lithospheric contribution. Two phenomena in the nighttime ionosphere that contribute to the magnetic field variation are presented: equatorial plasma bubble (EPB) and medium-scale traveling ionospheric disturbance (MSTID). EPB is formed by the generalized Rayleigh-Taylor instability over the dip equator and grows nonlinearly to as high as 2000 km apex altitude. It is characterized by deep plasma density depletions along magnetic flux tubes, where the diamagnetic effect produced by a pressure-gradient-driven current enhances the main field intensity. MSTID is a few hundred kilometer-scale disturbance in the midlatitude ionosphere generated by the coupled electrodynamics between the ionospheric E and F regions. The field-aligned currents associated with EPBs and MSTIDs also have significant signatures in the magnetic field perpendicular to the main field direction. The empirical discovery of the variations in the magnetic field due to plasma irregularities has motivated the inclusion of electrodynamics in the physical modeling of these irregularities. Through an effective comparison between the model results and observations, the physical process involved has been largely understood. The prediction of magnetic signatures due to plasma irregularities has been advanced by modeling studies, and will be helpful in interpreting magnetic field observations from satellites.
Internal additive noise effects in stochastic resonance using organic field effect transistor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Suzuki, Yoshiharu; Asakawa, Naoki; Matsubara, Kiyohiko
Stochastic resonance phenomenon was observed in organic field effect transistor using poly(3-hexylthiophene), which enhances performance of signal transmission with application of noise. The enhancement of correlation coefficient between the input and output signals was low, and the variation of correlation coefficient was not remarkable with respect to the intensity of external noise, which was due to the existence of internal additive noise following the nonlinear threshold response. In other words, internal additive noise plays a positive role on the capability of approximately constant signal transmission regardless of noise intensity, which can be said “homeostatic” behavior or “noise robustness” against externalmore » noise. Furthermore, internal additive noise causes emergence of the stochastic resonance effect even on the threshold unit without internal additive noise on which the correlation coefficient usually decreases monotonically.« less
NASA Astrophysics Data System (ADS)
Portacio, Alfonso A.; Rodríguez, Boris A.; Villamil, Pablo
2017-04-01
The linear and nonlinear optical response in a cylindrical quantum dot (CQD) of GaAs / Ga0.6Al0.4 As with a donor impurity in a uniform magnetic field applied in the axial direction of the cylinder is studied theoretically. The calculations were carried out in approximations of effective mass and two-level quantum systems. Using the variational method, the binding energies and the wave functions of the 1s-like y 2pz-like states for different positions of the impurity inside the CQD were found. It was found that the binding energy is greatest in the center of the CQD and diminishes as the impurity moves radially and/or axially. The optical rectification, the change in the refractive index, and the optical absorption were studied as functions of the energy of a photon incident on the CQD and different intensities of the magnetic field, with an impurity located at various positions. It was found that in a CDQ with an impurity inside, the effect of the variation of the intensity of the magnetic field on the optical response is much less than the effect produced by the variation of the position of the impurity. The physical reason for this behavior is that in nanostructures with impurities the Coulomb confinement is stronger than the magnetic confinement. It was also found that when the impurity is in the center of the quantum dot, the optical rectification coefficient is zero, due to the symmetry that the wave function of the impurity exhibits at this geometric point. When the impurity moves in the axial direction, the symmetry is broken and the optical rectification coefficient is different from zero, and its value increases as the impurity moves away from the center of the CQD.
Refractive index profilometry using the total internally reflected light field.
Das, Tania; Bhattacharya, K
2017-11-20
A full-field polarization-based technique is presented for quantitative evaluation of the spatial distribution of the refractive index in macro and micro samples. The sample is mounted on a glass-air interface of a prism, illuminated by a linearly polarized collimated light beam, and two intensity frames are digitally recorded with specific orientations of an analyzer. The pair of intensity data frames captured with this simple setup is combined through an algorithm specially developed for the purpose, to yield the phase difference between the transverse electric and transverse magnetic components of the total internally reflected light field. The phase difference is then related to the refractive index of the sample. Experimental results for refractive index variations in a laser-etched glass plate and red blood corpuscles are presented. One of the salient features of the proposed technique is that the depth of measurement is dependent on the penetration depth of the sample's evanescent field, which is typically of the order of a few hundred nanometers, thereby facilitating refractive index measurements along a thin section of the sample.
Electromagnetic frozen waves with radial, azimuthal, linear, circular, and elliptical polarizations
NASA Astrophysics Data System (ADS)
Corato-Zanarella, Mateus; Zamboni-Rached, Michel
2016-11-01
Frozen waves (FWs) are a class of diffraction- and attenuation-resistant beams whose intensity pattern along the direction of propagation can be chosen arbitrarily, thus making them relevant for engineering the spatial configuration of optical fields. To date, analyses of such beams have been done essentially for the scalar case, with the vectorial nature of the electromagnetic fields often neglected. Although it is expected that the field components keep the fundamental properties of the scalar FWs, a deeper understanding of their electromagnetic counterparts is mandatory in order to exploit their different possible polarization states. The purpose of this paper is to study the properties of electromagnetic FWs with radial, azimuthal, linear, circular, and elliptical polarizations under paraxial and nonparaxial regimes in nonabsorbing media. An intensity pattern is chosen for a scalar FW, and the vectorial solutions are built after it via the use of Maxwell's equations. The results show that the field components and the longitudinal component of the time-averaged Poynting vector closely follow the pattern chosen even under highly nonparaxial conditions, showing the robustness of the FW structure to parameters variations.
Possible impact of the Earth's magnetic field on the history of ancient civilizations
NASA Astrophysics Data System (ADS)
Gallet, Yves; Genevey, Agnès; Le Goff, Maxime; Fluteau, Frédéric; Ali Eshraghi, Safar
2006-06-01
We report new archeointensity results from Iranian and Syrian archeological excavations dated from the second millennium BC. These high-temperature magnetization data were obtained using a laboratory-built triaxial vibrating sample magnetometer. Together with our previously published archeointensity results from Mesopotamia, we constructed a rather detailed geomagnetic field intensity variation curve for this region from 3000 BC to 0 BC. Four potential geomagnetic events ("archeomagnetic jerks"), marked by strong intensity increases, are observed and appear to be synchronous with cooling episodes in the North Atlantic. This temporal coincidence strengthens the recent suggestion that the geomagnetic field influences climate change over multi-decadal time scales, possibly through the modulation of cosmic ray flux interacting with the atmosphere. Moreover, the cooling periods in the North Atlantic coincide with episodes of enhanced aridity in the Middle East, when abrupt societal changes occurred in the eastern Mediterranean and Mesopotamia. Although the coincidences discussed in this paper must be considered with caution, they lead to the possibility that the geomagnetic field impacted the history of ancient civilizations through climatically driven environmental changes, triggering economic, social and political instability.
Skin dose mapping for non-uniform x-ray fields using a backscatter point spread function
NASA Astrophysics Data System (ADS)
Vijayan, Sarath; Xiong, Zhenyu; Shankar, Alok; Rudin, Stephen; Bednarek, Daniel R.
2017-03-01
Beam shaping devices like ROI attenuators and compensation filters modulate the intensity distribution of the xray beam incident on the patient. This results in a spatial variation of skin dose due to the variation of primary radiation and also a variation in backscattered radiation from the patient. To determine the backscatter component, backscatter point spread functions (PSF) are generated using EGS Monte-Carlo software. For this study, PSF's were determined by simulating a 1 mm beam incident on the lateral surface of an anthropomorphic head phantom and a 20 cm thick PMMA block phantom. The backscatter PSF's for the head phantom and PMMA phantom are curve fit with a Lorentzian function after being normalized to the primary dose intensity (PSFn). PSFn is convolved with the primary dose distribution to generate the scatter dose distribution, which is added to the primary to obtain the total dose distribution. The backscatter convolution technique is incorporated in the dose tracking system (DTS), which tracks skin dose during fluoroscopic procedures and provides a color map of the dose distribution on a 3D patient graphic model. A convolution technique is developed for the backscatter dose determination for the nonuniformly spaced graphic-model surface vertices. A Gafchromic film validation was performed for shaped x-ray beams generated with an ROI attenuator and with two compensation filters inserted into the field. The total dose distribution calculated by the backscatter convolution technique closely agreed with that measured with the film.
Cusp and LLBL as Sources of the Isolated Dayside Auroral Feature During Northward IMF
NASA Technical Reports Server (NTRS)
Chang, S.; Gallagher, D. L.; Spann, J. F., Jr.; Mende, S.; Greenwald, R.; Newell, P. T.
2004-01-01
An intense dayside proton aurora was observed by IMAGE FUV for an extensive period of northward interplanetary magnetic field (IMF) on 17 and 18 September, 2000. This aurora partially coincided with the auroral oval and intruded farther poleward into the polar cap, and it showed longitudinal motions in response to IMF $B-y$ variation. Intense magnetosheath-like electron and ion precipitations have been simultaneously detected by DMSP above the poleward portion of the high-latitude dayside aurora. They resemble the typical plasmas observed in the low-altitude cusp. However, less intense electrons and more intense energetic ions were detected over the equatorward part of the aurora. These plasmas are closer to the low-latitude boundary layer (LLBL) plasmas. Under strongly northward IMF, global ionospheric convection derived from SuperDARN radar measurements showed a 4-cell pattern with sunward convection in the middle of the dayside polar cap and the dayside aurora corresponded to two different convection cells. This result further supports two source regions for the aurora. The cusp proton aurora is on open magnetic field lines convecting sunward whereas the LLBL proton aurora is on closed field lines convecting antisunward. These IMAGE, DMSP and SuperDARN observations reveal the structure and dynamics of the aurora and provide strong evidence for magnetic merging occurring at the high-latitude magnetopause poleward from the cusp. This merging process was very likely quasi-stationary.
NASA Astrophysics Data System (ADS)
2014-05-01
Lisa Tauxe, distinguished professor of geophysics in the Geosciences Research Division and department chair and deputy director for education at Scripps Institution of Oceanography of the University of California, San Diego, received the Franklin Institute's Benjamin Franklin Medal in Earth and Environmental Science "for the development of observational techniques and theoretical models providing an improved understanding of the behavior of, and variations in intensity of, the Earth's magnetic field through geologic time."
NASA Astrophysics Data System (ADS)
Aleiferis, P. G.; Hardalupas, Y.; Taylor, A. M. K. P.; Ishii, K.; Urata, Y.
2005-11-01
Lean-burn spark-ignition engines exhibit higher efficiency and lower specific emissions in comparison with stoichiometrically charged engines. However, as the air-to-fuel (A/F) ratio of the mixture is made leaner than stoichiometric, cycle-by-cycle variations in the early stages of in-cylinder combustion, and subsequent indicated mean effective pressure (IMEP), become more pronounced and limit the range of lean-burn operation. Viable lean-burn engines promote charge stratification, the mixture near the spark plug being richer than the cylinder volume averaged value. Recent work has shown that cycle-by-cycle variations in the early stages of combustion in a stratified-charge engine can be associated with variations in both the local value of A/F ratio near the spark plug around ignition timing, as well as in the volume averaged value of the A/F ratio. The objective of the current work was to identify possible sources of such variability in A/F ratio by studying the in-cylinder field of fuel-droplet distribution during the early intake stroke. This field was visualised in an optical single-cylinder 4-valve pentroof-type spark-ignition engine by means of laser-sheet illumination in planes parallel to the cylinder head gasket 6 and 10 mm below the spark plug. The engine was run with port-injected isooctane at 1500 rpm with 30% volumetric efficiency and air-to-fuel ratio corresponding to both stoichiometric firing (A/F=15, Φ =1.0) and mixture strength close to the lean limit of stable operation (A/F=22, Φ =0.68). Images of Mie intensity scattered by the cloud of fuel droplets were acquired on a cycle-by-cycle basis. These were studied in order to establish possible correlations between the cyclic variations in size, location and scattered-light intensity of the cloud of droplets with the respective variations in IMEP. Because of the low level of Mie intensity scattered by the droplets and because of problems related to elastic scattering on the walls of the combustion chamber, as well as problems related to engine “rocking” at the operating conditions close to the misfire limit, the acquired images were processed for background subtraction by using a PIV-based data correction algorithm. After this processing, the arrival and leaving timings of fuel droplets into the illuminated plane were found not to vary significantly on a cycle-by-cycle basis but the recorded cycle-by-cycle variations in Mie intensity suggested that the amount of fuel in the cylinder could have been 6 26% greater for the “strong” cycles with IMEP 115% higher than the average IMEP, than the ones imaged for “weak” cycles at less than 85% the average IMEP. This would correspond to a maximum cyclic variability in the in-cylinder equivalence ratio Φ of the order of 0.17.
An Investigation of Magneto-Optical Effects
NASA Technical Reports Server (NTRS)
Adams, Mitzi L.; Hagyard, Mona J.; West, Edward A.
1998-01-01
We exhibit the effects of Faraday rotation on the direction of the transverse component of the magnetic field in a simple, symmetric sunspot. A set of 35 polarization filtergrams of NOAA active region 4662 (June 9, 1985) were obtained with the Marshall Space Flight Center (MSFC) vector magnetograph. These filtergrams measured the Stokes I, Q, U, and V intensities averaged over the instrument's filter bandpass (0.0125 nm) for wavelengths from 0.017 nm in the red wing to 0.017 nm in the blue wing of the Lambda525.22 nm spectral line in steps of 0.001 nm. These data were used to derive the azimuth phi of the vector field as a function of wavelength over the field of view of the sunspot. We interpret the observed variations of this azimuth with wavelength as the effects of Faraday rotation and verify this interpretation by comparing these variations with those predicted from magneto-optical theory. In the theoretical calculations we use the line-profile parameters and magnetic field strength derived in previous work by Balasubramaniam and West (Astrophys. J 382, p. 699, 1991).
An evaluation of soil sampling for 137Cs using various field-sampling volumes.
Nyhan, J W; White, G C; Schofield, T G; Trujillo, G
1983-05-01
The sediments from a liquid effluent receiving area at the Los Alamos National Laboratory and soils from an intensive study area in the fallout pathway of Trinity were sampled for 137Cs using 25-, 500-, 2500- and 12,500-cm3 field sampling volumes. A highly replicated sampling program was used to determine mean concentrations and inventories of 137Cs at each site, as well as estimates of spatial, aliquoting, and counting variance components of the radionuclide data. The sampling methods were also analyzed as a function of soil size fractions collected in each field sampling volume and of the total cost of the program for a given variation in the radionuclide survey results. Coefficients of variation (CV) of 137Cs inventory estimates ranged from 0.063 to 0.14 for Mortandad Canyon sediments, whereas CV values for Trinity soils were observed from 0.38 to 0.57. Spatial variance components of 137Cs concentration data were usually found to be larger than either the aliquoting or counting variance estimates and were inversely related to field sampling volume at the Trinity intensive site. Subsequent optimization studies of the sampling schemes demonstrated that each aliquot should be counted once, and that only 2-4 aliquots out of as many as 30 collected need be assayed for 137Cs. The optimization studies showed that as sample costs increased to 45 man-hours of labor per sample, the variance of the mean 137Cs concentration decreased dramatically, but decreased very little with additional labor.
The Archeomagnetic field in South America: Present status and perspectives (Invited)
NASA Astrophysics Data System (ADS)
Hartmann, G. A.; Trindade, R. I.; Gallet, Y.; Poletti, W.; Begnini, G. S.; Genevey, A.; Legoff, M.
2013-12-01
Geomagnetic field variations over decadal to millennial timescales can be determined from direct (i.e. observatory) and indirect (e.g. from archeological artifacts and volcanics) sources. Before the observatory era, the recovery of these variations is however still strongly penalized by the very uneven both geographical and temporal distributions of the available archeo/paleomagnetic dataset. In particular, the southern hemisphere contributes with only ~3% of the global archeomagnetic database. Moreover, most of these data present restrictions due to their poor experimental reliability and to the lack of good age control. Therefore, new intensity and directional data from the southern hemisphere are strongly requested for the next generation of archeomagnetic field models. In this presentation, we will report on intensity and inclination results obtained from different regions in Brazil. A collection of twenty-three site-mean archeointensity data were obtained by our team from architectural brick fragments dated to the past 500 years from Northeast and Southeast Brazil. This dataset was complemented by a series of new results from South Brazil. In addition, we also obtained inclination data, after reconstructing the firing position of the ancient bricks from modern analogs of historical brickyards. Thirteen site-mean inclination results dated to between 1790 AD and 1950 AD and five inclination results spanning the 1590-1920 AD time interval were so determined from Southeast and Northeast Brazil, respectively. Altogether, our data, which are geographically distributed over more than 20 degrees in latitude, allow us to discuss the large-scale influence in Brazil and South America of non-dipolar features of the geomagnetic field during the past few centuries.
ESR signals in a core from the lake Baikal: implications for climate change
NASA Astrophysics Data System (ADS)
Toyoda, S.; Hidaka, K.; Takamatsu, N.
2002-12-01
Electron spin resonance dating method has been used for obtaining ages of Quaternary events using speleothem, corals, shells, hydroxyapatite in tooth enamel, gypsum, and quartz (Ikeya, 1993). Recently, it was also found that an ESR signal in quartz of loess is useful to discuss the variation of its origin (e. g. Ono et al., 1998). The method is based on the signal intensity of the heat treated (gamma ray irradiation and heating, Toyoda and Ikeya, 1991) E 1_f center (an unpaired electron at an oxygen vacancy) correlates the original (crystallization) age of quartz (e.g. Toyoda and Hattori, 2000). If there is variation in ages of basement rocks (origin of loess), ESR signal intensity may differentiate the origins. We applied the present method to sediments taken from the core of the lake Baikal with the length of 600m. The ESR intensity of the heat treated E1_f center was determined by an ESR measurement at room temperature for about 100 mg of the bulk samples, with a microwave power of 0.01 mW, field modulation amplitude of 0.1 mT, and with a scan range of 5 mT around g=2.001 after gamma ray irradiation to 1 kGy and subsequent heating at 300C. The ESR signal of the E1_f center was clearly observed although other minerals are also included in the bulk sample. The peak to peak height was taken as the signal intensity after normalizing the height with the gain (the instrumental setting at the time of measurement), mass, and the intensity of the standard simultaneously measured with the sample. The concentrations of the quartz in the bulk samples were obtained by the X ray diffraction study, normalizing the peak intensity with a standard CeO sample. The variation of the ESR signal intensity with depth of the core will be presented together with the possible climate change which may have caused the variation. References M. Ikeya (1993) New applications of electron spin resonance, dating, dosimetry and imaging, World Scientific. Y. Ono, T. Naruse, M. Ikeya, H. Kohno, and S. Toyoda (1998) Global Planet. Change, 18, 129-135. S. Toyoda and M. Ikeya (1991) Geochem. J. 25, 437-445. S. Toyoda and W. Hattori (2000) Appl. Radiat. Isot., 52, 1351-1356.
NASA Astrophysics Data System (ADS)
Gómez-Paccard, M.; Chauvin, A.; Lanos, P.; Dufresne, P.; Kovacheva, M.; Hill, M. J.; Beamud, E.; Gutiérrez-Lloret, S.; Cañavate, V.; Blain, S.; Bouvier, A.; Oberlin, C.; Guibert, P.; Sapin, C.; Pringent, D.
2011-12-01
Available European data indicate that during the past 2500 years there have been periods of rapid intensity geomagnetic fluctuations interspersed with periods of little change. The challenge now is to precisely describe these rapid changes. The aim of this study is to obtain an improved description of the sharp geomagnetic intensity change that took place in Western Europe around 800 yrs AD as well as to investigate if this peak is observed at a continental scale. For this purpose 13 precisely dated early medieval Spanish pottery fragments, 4 archeological French kilns and a 3 collections of bricks used for the construction of different historical buildings from France and with ages ranging between 330 to 1290 AD have been studied. The material collected has been dated by archeological/historical constraints together with radiocarbon,thermoluminiscence (TL) and archeomagentic analysis. From classical Thellier experiments including TRM anisotropy and cooling rate corrections upon archeointensity estimates and conducted on 164 specimens (119 of them giving reliable results) ten new high-quality mean intensities have been obtained. The new intensity data together with a selection of the most reliable data from Western Europe have been relocated to the latitude of Paris and confirm the existence of an intensity maxima of ~85 μT centred at ~850 AD and related to intensity changes up to 20 μT per century. The results also indicate that a previous abrupt intensity change (reaching a maximum value of ~ 90 μT) took place in Western Europe around 650 AD. A selection of high-quality intensity data from Bulgaria, Italy and Greece indicate a very similar intensity trend for Eastern Europe. Although available data indicate that the duration of such periods of high intensities may be of less than one century more data are needed to infer the exact duration of these maximums. A comparison between the selected data and regional and global geomagnetic field models indicates that such models fail to reproduce the detailed evolution of geomagnetic intensity changes. These results highlight the need of new reliable and precisely dated archeointensity data if a refined description of geomagnetic field changes wants to be obtained.
NASA Technical Reports Server (NTRS)
Soula, Serge; Chauzy, Serge
1991-01-01
During the Florida 89 experiment at Kennedy Space Center, a new system was used in order to obtain the vertical distribution of the electric field underneath thunderstorms. It consists of a standard shutter field mill at ground level and five other field sensors suspended from a cable fastened to a tethered balloon located at an altitude of about 1000 meters. It also includes a reception station for telemetered information transmitted by sensors, a processing system in order to store data, and real time display on a screen to show the simultaneous field variations at each level along with the instantaneous electric field profile. The first results obtained show the great importance of the electric field vertical distribution. The field detected at a height of 600m reaches 65 kV/m while that at the surface does not exceed 5 kV/m. The field intensity in altitude is a better criterion for determining the right moment to launch a rocket devoted to flash triggering. Using Gauss's law, the simultaneous field variations at several levels are used in order to evaluate charge densities. Average values close to 1nC.m(-3) are calculated in layers up to 600 m. The calculation of different average charge densities leads to the characterization of the layer between cloud and ground just before the leader propagation in the case of cloud to ground flash.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fabbian, D.; Moreno-Insertis, F., E-mail: damian@iac.es, E-mail: fmi@iac.es
2015-04-01
The importance of magnetic fields in three-dimensional (3D) magnetoconvection models of the Sun’s photosphere is investigated in terms of their influence on the continuum intensity at different viewing inclination angles and on the intensity profile of two [O i] spectral lines. We use the RH numerical radiative transfer code to perform a posteriori spectral synthesis on the same time series of magnetoconvection models used in our publications on the effect of magnetic fields on abundance determination. We obtain a good match of the synthetic disk-center continuum intensity to the absolute continuum values from the Fourier Transform Spectrometer (FTS) observational spectrum; the matchmore » of the center-to-limb variation synthetic data to observations is also good, thanks, in part, to the 3D radiation transfer capabilities of the RH code. The different levels of magnetic flux in the numerical time series do not modify the quality of the match. Concerning the targeted [O i] spectral lines, we find, instead, that magnetic fields lead to nonnegligible changes in the synthetic spectrum, with larger average magnetic flux causing both of the lines to become noticeably weaker. The photospheric oxygen abundance that one would derive if instead using nonmagnetic numerical models would thus be lower by a few to several centidex. The inclusion of magnetic fields is confirmed to be important for improving the current modeling of the Sun, here in particular in terms of spectral line formation and of deriving consistent chemical abundances. These results may shed further light on the still controversial issue regarding the precise value of the solar oxygen abundance.« less
Variations in plasma wave intensity with distance along the electron foreshock boundary at Venus
NASA Technical Reports Server (NTRS)
Crawford, G. K.; Strangeway, R. J.; Russell, C. T.
1991-01-01
Plasma waves are observed in the solar wind upstream of the Venus bow shock by the Pioneer Venus Orbiter. These wave signatures occur during periods when the interplanetary magnetic field through the spacecraft position intersects the bow shock, thereby placing the spacecraft in the foreshock region. Wave intensity is analyzed as a function of distance along the electron foreshock boundary. It is found that the peak wave intensity may increase along the foreshock boundary from the tangent point to a maximum value at several Venus radii, then decrease in intensity with subsequent increase in distance. These observations could be associated with the instability process: the instability of the distribution function increasing with distance from the tangent point to saturation at the peak. Thermalization of the beam for distances beyond this point could reduce the distribution function instability resulting in weaker wave signatures.
Marine stratocumulus structure
NASA Technical Reports Server (NTRS)
Cahalan, Robert F.; Snider, Jack B.
1989-01-01
Thirty-three Landsat TM scenes of California stratocumulus cloud fields were acquired as part of the FIRE Marine Stratocumulus Intensive Field Observations in July 1987. They exhibit a wide variety of stratocumulus structures. Analysis has so far focused upon the July 7 scene, in which aircraft from NASA, NCAR, and the British Meteorological Office repeatedly gathered data across a stratocumulus-fair weather cumulus transition. The aircraft soundings validate the cloud base temperature threshold determined by spatial coherence analysis of the TM thermal band. Brightness variations in the stratocumulus region exhibit a -5/3 power-law decrease of the wavenumber spectra for scales larger than the cloud thickness, about 200 m, changing to a -3 power at smaller scales. Observations by an upward-looking three-channel microwave radiometer on San Nicolas Island also show the -5/3 power-law in total integrated liquid water, suggesting that the largest-scale TM brightness variations are primarily due to variations in the liquid water. The Kolmogorov 5/3 power suggests that for some purposes liquid water in turbulent stratocumulus clouds may be treated as a passive scalar, simply reflecting variations in vertical velocity. This may be tested using the velocities measured by the aircraft.
Schmitt, Randal L [Tijeras, NM; Henson, Tammy D [Albuquerque, NM; Krumel, Leslie J [Cedar Crest, NM; Hargis, Jr., Philip J.
2006-06-20
A method to determine the alignment of the transmitter and receiver fields of view of a light detection and ranging (LIDAR) system. This method can be employed to determine the far-field intensity distribution of the transmitter beam, as well as the variations in transmitted laser beam pointing as a function of time, temperature, or other environmental variables that may affect the co-alignment of the LIDAR system components. In order to achieve proper alignment of the transmitter and receiver optical systems when a LIDAR system is being used in the field, this method employs a laser-beam-position-sensing detector as an integral part of the receiver optics of the LIDAR system.
International Geomagnetic Reference Field: the 12th generation
NASA Astrophysics Data System (ADS)
Thébault, Erwan; Finlay, Christopher C.; Beggan, Ciarán D.; Alken, Patrick; Aubert, Julien; Barrois, Olivier; Bertrand, Francois; Bondar, Tatiana; Boness, Axel; Brocco, Laura; Canet, Elisabeth; Chambodut, Aude; Chulliat, Arnaud; Coïsson, Pierdavide; Civet, François; Du, Aimin; Fournier, Alexandre; Fratter, Isabelle; Gillet, Nicolas; Hamilton, Brian; Hamoudi, Mohamed; Hulot, Gauthier; Jager, Thomas; Korte, Monika; Kuang, Weijia; Lalanne, Xavier; Langlais, Benoit; Léger, Jean-Michel; Lesur, Vincent; Lowes, Frank J.; Macmillan, Susan; Mandea, Mioara; Manoj, Chandrasekharan; Maus, Stefan; Olsen, Nils; Petrov, Valeriy; Ridley, Victoria; Rother, Martin; Sabaka, Terence J.; Saturnino, Diana; Schachtschneider, Reyko; Sirol, Olivier; Tangborn, Andrew; Thomson, Alan; Tøffner-Clausen, Lars; Vigneron, Pierre; Wardinski, Ingo; Zvereva, Tatiana
2015-05-01
The 12th generation of the International Geomagnetic Reference Field (IGRF) was adopted in December 2014 by the Working Group V-MOD appointed by the International Association of Geomagnetism and Aeronomy (IAGA). It updates the previous IGRF generation with a definitive main field model for epoch 2010.0, a main field model for epoch 2015.0, and a linear annual predictive secular variation model for 2015.0-2020.0. Here, we present the equations defining the IGRF model, provide the spherical harmonic coefficients, and provide maps of the magnetic declination, inclination, and total intensity for epoch 2015.0 and their predicted rates of change for 2015.0-2020.0. We also update the magnetic pole positions and discuss briefly the latest changes and possible future trends of the Earth's magnetic field.
1984-01-01
wo 60 l s. 0 a -, 3" 0 . I, ,,. 0) 144 3.44 Y., 4 c 4 a ll.,m ._ - ,.,. .. ,. ,3k ,, -9 q!~ II W3 Q n o i i TIE 15 k USL . i jI O 1 A W.iW8 WA...stakes penetrate soil to a known depth at two points one meter apart. The potential difference between the stakes is measured with a tuned voltmeter to... soil below 100 microvolts per meter (Tables A-5, A-6 and A-12) are not listed. Variations were observed during measurements of such very low intensities
Modeling spatially localized photonic nanojets from phase diffraction gratings
NASA Astrophysics Data System (ADS)
Geints, Yu. E.; Zemlyanov, A. A.
2016-04-01
We investigated numerically the specific spatially localized intense optical structure, a photonic nanojet (PNJ), formed in the near-field scattering of optical radiation at phase diffraction gratings. The finite-difference time-domain technique was employed to study the PNJ key parameters (length, width, focal distance, and intensity) produced by diffraction gratings with the saw-tooth, rectangle, and hemispheric line profiles. Our analysis showed that each type of diffraction gratings produces a photonic jet with unique characteristics. Based on the numerical calculations, we demonstrate that the PNJ could be manipulated in a wide range through the variation of period, duty cycle, and shape of diffraction grating rulings.
The Brunhes/Matuyama polarity transition recorded as Be-10 flux changes in deep-sea sediments
NASA Astrophysics Data System (ADS)
Suganuma, Y.; Yokoyama, Y.; Yamazaki, T.
2008-12-01
Fluxes of meteoric cosmogenic radionuclide, Be-10, is thought to be varied due to changes of incoming comic-ray flux modulated by geomagnetic field intensity variation. Enhanced production rate of the nuclides during a geomagnetic polarity transition period is expected as a result of the low dipole field strength. We therefore measured Be-10 concentrations in deep-sea sediments including the Brunhes/Matuyama geomagnetic polarity transition to reconstruct the detailed structures of the geomagnetic field behavior. A piston core, MD982187 was taken from the West Caroline Basin, the western equatorial Pacific Ocean, during the IMAGES IV campaign. The water depth of the site of MD982187 core is about 4600 m, which is close to the carbonate compensation depth (CCD) in this area at present (Berger et al., 1976). Measurement of Be-10 was conducted using the accelerator mass spectrometry (AMS) of the University of Tokyo, Japan. The result shows significant increase of Be-10 concentration during the polarity transition, indicating that the geomagnetic field intensity was low during this interval. In detail, well-defined double highs of Be-10 concentration are recognized. These highs are thought to correspond to the B/M polarity boundary and the "precursor" event, 15 kyr before the M/B boundary (e.g., Hartl and Tauxe, 1996; Singer et al., 2005), respectively. This feature is very similar to the relative paleointensity record of MR982187 core by Yamazaki and Oda (2005) and other published relative paleointensity records of the Brunhes/Matuyama geomagnetic polarity transition, indicating that Be-10 concentration of the deep-sea sedimentary sequence well records the variation of the geomagnetic field intensity. However, ca. 18 cm of clear depth offset between the Be-10 concentration and the relative paleointensity record was observed from the same sedimentary sequence of MR982187 core. This indicates that the relative paleointensity record of MR982187 core is offset by ca. 18 cm below the actual level of the polarity transition, which is thought to be the paleomagnetic lock-in depth effect.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Altunbas, Cem, E-mail: caltunbas@gmail.com; Lai, Chao-Jen; Zhong, Yuncheng
Purpose: In using flat panel detectors (FPD) for cone beam computed tomography (CBCT), pixel gain variations may lead to structured nonuniformities in projections and ring artifacts in CBCT images. Such gain variations can be caused by change in detector entrance exposure levels or beam hardening, and they are not accounted by conventional flat field correction methods. In this work, the authors presented a method to identify isolated pixel clusters that exhibit gain variations and proposed a pixel gain correction (PGC) method to suppress both beam hardening and exposure level dependent gain variations. Methods: To modulate both beam spectrum and entrancemore » exposure, flood field FPD projections were acquired using beam filters with varying thicknesses. “Ideal” pixel values were estimated by performing polynomial fits in both raw and flat field corrected projections. Residuals were calculated by taking the difference between measured and ideal pixel values to identify clustered image and FPD artifacts in flat field corrected and raw images, respectively. To correct clustered image artifacts, the ratio of ideal to measured pixel values in filtered images were utilized as pixel-specific gain correction factors, referred as PGC method, and they were tabulated as a function of pixel value in a look-up table. Results: 0.035% of detector pixels lead to clustered image artifacts in flat field corrected projections, where 80% of these pixels were traced back and linked to artifacts in the FPD. The performance of PGC method was tested in variety of imaging conditions and phantoms. The PGC method reduced clustered image artifacts and fixed pattern noise in projections, and ring artifacts in CBCT images. Conclusions: Clustered projection image artifacts that lead to ring artifacts in CBCT can be better identified with our artifact detection approach. When compared to the conventional flat field correction method, the proposed PGC method enables characterization of nonlinear pixel gain variations as a function of change in x-ray spectrum and intensity. Hence, it can better suppress image artifacts due to beam hardening as well as artifacts that arise from detector entrance exposure variation.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ikegami, M.; Shioji, M.; Nishimoto, K.
1987-01-01
A laser homodyne technique is applied to measure turbulence intensities and spatial scales during compression and expansion strokes in a non-fired engine. By using this technique, relative fluid motion in a turbulent flow is detected directly without cyclic variation biases caused by fluctuation in the main flow. Experiments are performed at different engine speeds, compression ratios, and induction swirl ratios. In no-swirl cases the turbulence field near the compression end is almost uniform, whereas in swirled cases both the turbulence intensity and the scale near the cylinder axis are higher than those in the periphery. In addition, based on themore » measured results, the k-epsilon two-equation turbulence model under the influence of compression is discussed.« less
NASA Astrophysics Data System (ADS)
Nakagawa, Yujin; Ebisawa, Ken; Enoto, Teruaki
2018-03-01
The emission mechanism of magnetars is still controversial even though various observational and theoretical studies have been made. In order to investigate mechanisms of both the persistent X-ray emission and the burst emission of the magnetars, we propose a model in which the persistent X-ray emission consists of numerous micro-bursts of various sizes. If this model is correct, root mean square (rms) intensity variations of the persistent emission would exceed the values expected from the Poisson distribution. Using Suzaku archive data of 11 magnetars (22 observations), the rms intensity variations were calculated from 0.2 keV to 70 keV. As a result, we found significant excess rms intensity variations from all 11 magnetars. We suppose that numerous micro-bursts constituting the persistent X-ray emission cause the observed variations, suggesting that the persistent X-ray emission and the burst emission have identical emission mechanisms. In addition, we found that the rms intensity variations clearly increase toward higher energy bands for four magnetars (six observations). The energy-dependent rms intensity variations imply that the soft thermal component and the hard X-ray component are emitted from different regions far apart from each other.
Model-based review of Doppler global velocimetry techniques with laser frequency modulation
NASA Astrophysics Data System (ADS)
Fischer, Andreas
2017-06-01
Optical measurements of flow velocity fields are of crucial importance to understand the behavior of complex flow. One flow field measurement technique is Doppler global velocimetry (DGV). A large variety of different DGV approaches exist, e.g., applying different kinds of laser frequency modulation. In order to investigate the measurement capabilities especially of the newer DGV approaches with laser frequency modulation, a model-based review of all DGV measurement principles is performed. The DGV principles can be categorized by the respective number of required time steps. The systematic review of all DGV principle reveals drawbacks and benefits of the different measurement approaches with respect to the temporal resolution, the spatial resolution and the measurement range. Furthermore, the Cramér-Rao bound for photon shot is calculated and discussed, which represents a fundamental limit of the achievable measurement uncertainty. As a result, all DGV techniques provide similar minimal uncertainty limits. With Nphotons as the number of scattered photons, the minimal standard deviation of the flow velocity reads about 106 m / s /√{Nphotons } , which was calculated for a perpendicular arrangement of the illumination and observation direction and a laser wavelength of 895 nm. As a further result, the signal processing efficiencies are determined with a Monte-Carlo simulation. Except for the newest correlation-based DGV method, the signal processing algorithms are already optimal or near the optimum. Finally, the different DGV approaches are compared regarding errors due to temporal variations of the scattered light intensity and the flow velocity. The influence of a linear variation of the scattered light intensity can be reduced by maximizing the number of time steps, because this means to acquire more information for the correction of this systematic effect. However, more time steps can result in a flow velocity measurement with a lower temporal resolution, when operating at the maximal frame rate of the camera. DGV without laser frequency modulation then provides the highest temporal resolutions and is not sensitive with respect to temporal variations but with respect to spatial variations of the scattered light intensity. In contrast to this, all DGV variants suffer from velocity variations during the measurement. In summary, the experimental conditions and the measurement task finally decide about the ideal choice from the reviewed DGV methods.
NASA Technical Reports Server (NTRS)
Stassinopoulos, E. G.
1972-01-01
Vehicle encountered electron and proton fluxes were calculated for a set of nominal UK-5 trajectories with new computational methods and new electron environment models. Temporal variations in the electron data were considered and partially accounted for. Field strength calculations were performed with an extrapolated model on the basis of linear secular variation predictions. Tabular maps for selected electron and proton energies were constructed as functions of latitude and longitude for specified altitudes. Orbital flux integration results are presented in graphical and tabular form; they are analyzed, explained, and discussed.
Modeling of anisotropic properties of double quantum rings by the terahertz laser field.
Baghramyan, Henrikh M; Barseghyan, Manuk G; Kirakosyan, Albert A; Ojeda, Judith H; Bragard, Jean; Laroze, David
2018-04-18
The rendering of different shapes of just a single sample of a concentric double quantum ring is demonstrated realizable with a terahertz laser field, that in turn, allows the manipulation of electronic and optical properties of a sample. It is shown that by changing the intensity or frequency of laser field, one can come to a new set of degenerated levels in double quantum rings and switch the charge distribution between the rings. In addition, depending on the direction of an additional static electric field, the linear and quadratic quantum confined Stark effects are observed. The absorption spectrum shifts and the additive absorption coefficient variations affected by laser and electric fields are discussed. Finally, anisotropic electronic and optical properties of isotropic concentric double quantum rings are modeled with the help of terahertz laser field.
The 1995 revision of the joint US/UK geomagnetic field models. II: Main field
Quinn, J.M.; Coleman, R.J.; Macmillan, S.; Barraclough, D.R.
1997-01-01
This paper presents the 1995 main-field revision of the World Magnetic Model (WMM-95). It is based on Project MAGNET high-level (??? 15,000 ft.) vector aeromagnetic survey data collected between 1988 and 1994 and on scalar total intensity data collected by the Polar Orbiting Geomagnetic Survey (POGS) satellite during the period 1991 through 1993. The spherical harmonic model produced from these data describes that portion of the Earth's magnetic field generated internal to the Earth's surface at the 1995.0 Epoch. When combined with the spherical harmonic model of the Earth's secular variation described in paper I, the Earth's main magnetic field is fully characterized between the years 1995 and 2000. Regional magnetic field models for the conterminous United States, Alaska and, Hawaii were generated as by-products of the global modeling process.
THz Induced Nonlinear Effects in Materials at Intensities above 26 GW/cm2
NASA Astrophysics Data System (ADS)
Woldegeorgis, A.; Kurihara, T.; Beleites, B.; Bossert, J.; Grosse, R.; Paulus, G. G.; Ronneberger, F.; Gopal, A.
2018-04-01
Nonlinear refractive index and absorption coefficient are measured for common semiconductor material such as silicon and organic molecule such as lactose in the terahertz (THz) spectral regime extending from 0.1 to 3 THz. Terahertz pulses with field strengths in excess of 4.4 MV/cm have been employed. Transmittance and the transmitted spectrum were measured with Z-scan and single shot noncollinear electro-optic pump-probe techniques. The THz-induced change in the refractive index (Δn) shows frequency-dependence and a maximum change of - 0.128 at 1.37 THz in lactose and up to + 0.169 at 0.15 THz in silicon was measured for a peak incident THz intensity of 26 GW/cm2. Furthermore, the refractive index variation shows a quadratic dependence on the incident THz field, implying the dominance of third-order nonlinearity.
Forecasting intense geomagnetic activity using interplanetary magnetic field data
NASA Astrophysics Data System (ADS)
Saiz, E.; Cid, C.; Cerrato, Y.
2008-12-01
Southward interplanetary magnetic fields are considered traces of geoeffectiveness since they are a main agent of magnetic reconnection of solar wind and magnetosphere. The first part of this work revises the ability to forecast intense geomagnetic activity using different procedures available in the literature. The study shows that current methods do not succeed in making confident predictions. This fact led us to develop a new forecasting procedure, which provides trustworthy results in predicting large variations of Dst index over a sample of 10 years of observations and is based on the value Bz only. The proposed forecasting method appears as a worthy tool for space weather purposes because it is not affected by the lack of solar wind plasma data, which usually occurs during severe geomagnetic activity. Moreover, the results obtained guide us to provide a new interpretation of the physical mechanisms involved in the interaction between the solar wind and the magnetosphere using Faraday's law.
NASA Astrophysics Data System (ADS)
Heslar, John; Telnov, Dmitry A.; Chu, Shih-I.
2013-05-01
We present a self-interaction-free time-dependent density-functional theory (TDDFT) for the treatment of double-ionization processes of many-electron systems. The method is based on the extension of the Krieger-Li-Iafrate (KLI) treatment of the optimized effective potential (OEP) theory and the incorporation of an explicit self-interaction correction (SIC) term. In the framework of the time-dependent density functional theory, we have performed three-dimensional (3D) calculations of double ionization of He and Be atoms by intense near-infrared laser fields. We make use of the exchange-correlation potential with the integer discontinuity which improves the description of the double-ionization process. We found that a proper description of the double ionization requires the TDDFT exchange-correlation potential with the discontinuity with respect to the variation of the total particle number (TPN). The results for the intensity-dependent rates of double ionization of He and Be atoms are presented.
NASA Astrophysics Data System (ADS)
Li, Xin; Babovic, Vladan
2017-04-01
Observed studies on inter-annual variation of precipitation provide insight into the response of precipitation to anthropogenic climate change and natural climate variability. Inter-annual variation of precipitation results from the concurrent variations of precipitation frequency and intensity, understanding of the relative importance of frequency and intensity in the variability of precipitation can help fathom its changing properties. Investigation of the long-term changes of precipitation schemes has been extensively carried out in many regions across the world, however, detailed studies of the relative importance of precipitation frequency and intensity in inter-annual variation of precipitation are still limited, especially in the tropics. Therefore, this study presents a comprehensive framework to investigate the inter-annual variation of precipitation and the dominance of precipitation frequency and intensity in a tropical urban city-state, Singapore, based on long-term (1980-2013) daily precipitation series from 22 rain gauges. First, an iterative Mann-Kendall trend test method is applied to detect long-term trends in precipitation total, frequency and intensity at both annual and seasonal time scales. Then, the relative importance of precipitation frequency and intensity in inducing the inter-annual variation of wet-day precipitation total is analyzed using a dominance analysis method based on linear regression. The results show statistically significant upward trends in wet-day precipitation total, frequency and intensity at annual time scale, however, these trends are not evident during the monsoon seasons. The inter-annual variation of wet-day precipitation is mainly dominated by precipitation intensity for most of the stations at annual time scale and during the Northeast monsoon season. However, during the Southwest monsoon season, the inter-annual variation of wet-day precipitation is mainly dominated by precipitation frequency. These results have implications for water resources management practices in Singapore.
Current sheet collapse in a plasma focus.
NASA Technical Reports Server (NTRS)
Jalufka, N. W.; Lee, J. H.
1972-01-01
Collapse of the current sheets in a plasma focus has been recorded simultaneously through slits parallel and perpendicular to the symmetry axis in the streak mode. The dark period following the collapse is due to the plasma moving out of the field of view. Microdensitometric measurements of intensity variation also support this conclusion. A large anisotropy is also found in the x-ray radiation pattern. Effects of different vacuum vessels were investigated.
Unusual Cosmic Ray Variations During the Forbush Decreases of June 2015
NASA Astrophysics Data System (ADS)
Samara, E.; Smponias, A.; Lytrosyngounis, I.; Lingri, D.; Mavromichalaki, H.; Sgouropoulos, C.
2018-04-01
Although the current Solar Cycle 24 is characterized by low solar activity, an intense geomagnetic storm (G4) was recorded in June 2015. It was a complex phenomenon that began on 22 June 2015 as the result of intense solar activity, accompanied by several flares and coronal mass ejections that interacted with the Earth's magnetic field. A Forbush decrease was also recorded at the neutron monitors of the worldwide network, with an amplitude of 8.4%, and in its recovery phase, a second Forbush decrease followed, with an amplitude of 4.0% for cosmic rays of 10 GV obtained with the global survey method. The Dst index reached a minimum value of -204 nT that was detected on 23 June 2015 at 05:00 - 06:00 UT, while the Kp index reached the value eight. For our analysis, we used hourly cosmic-ray intensity data recorded by polar, mid-, and high-latitude neutron monitor stations obtained from the High Resolution Neutron Monitor Database. The cosmic-ray anisotropy variation at the ecliptic plane was also estimated and was found to be highly complex. We study and discuss the unusual and complex cosmic-ray and geomagnetic response to these solar events.
Airborne Laser Polar Nephelometer
NASA Technical Reports Server (NTRS)
Grams, Gerald W.
1973-01-01
A polar nephelometer has been developed at NCAR to measure the angular variation of the intensity of light scattered by air molecules and particles. The system has been designed for airborne measurements using outside air ducted through a 5-cm diameter airflow tube; the sample volume is that which is common to the intersection of a collimated source beam and the detector field of view within the airflow tube. The source is a linearly polarized helium-neon laser beam. The optical system defines a collimated field-of-view (0.5deg half-angle) through a series of diaphragms located behind a I72-mm focal length objective lens. A photomultiplier tube is located immediately behind an aperture in the focal plane of the objective lens. The laser beam is mechanically chopped (on-off) at a rate of 5 Hz; a two-channel pulse counter, synchronized to the laser output, measures the photomultiplier pulse rate with the light beam both on and off. The difference in these measured pulse rates is directly proportional to the intensity of the scattered light from the volume common to the intersection of the laser beam and the detector field-of-view. Measurements can be made at scattering angles from 15deg to 165deg with reference to the direction of propagation of the light beam. Intermediate angles are obtained by selecting the angular increments desired between these extreme angles (any multiple of 0.1deg can be selected for the angular increment; 5deg is used in normal operation). Pulses provided by digital circuits control a stepping motor which sequentially rotates the detector by pre-selected angular increments. The synchronous photon-counting system automatically begins measurement of the scattered-light intensity immediately after the rotation to a new angle has been completed. The instrument has been flown on the NASA Convair 990 airborne laboratory to obtain data on the complex index of refraction of atmospheric aerosols. A particle impaction device is operated simultaneously to collect particles from the same airflow tube used to make the scattered-light measurements. A size distribution function is obtained by analysis of the particles collected by the impaction device. Calculated values of the angular variation of the scattered-light intensity are obtained by applying Mie scattering theory to the observed size distribution function and assuming different values of the complex index of refraction of the particles. The calculated values are then compared with data on the actual variation of the scattered-light intensity obtained with the polar nephelometer. The most probable value of the complex refractive index is that which provides the best fit between the experimental light scattering data and the parameters calculated from the observed size distribution function.
NASA Astrophysics Data System (ADS)
Martínez-Orozco, J. C.; Mora-Ramos, M. E.; Duque, C. A.
2014-11-01
The conduction band states of GaAs-based vertically coupled double triangular quantum dots in two dimensions are investigated within the effective mass and parabolic approximation, using a diagonalization procedure to solve the corresponding Schrödinger-like equation. The effect of an externally applied static electric field is included in the calculation, and the variation of the lowest confined energy levels as a result of the change of the field strength is reported for different geometrical setups. The linear and nonlinear optical absorptions and the relative change of the refractive index, associated with the energy transition between the ground and the first excited state in the system, are studied as a function of the incident light frequency for distinct configurations of inter-dot distance and electric field intensities. The blueshift of the resonant absorption peaks is detected as a consequence of the increment in the field intensity, whereas the opposite effect is obtained from the increase of inter-dot vertical distance. It is also shown that for large enough values of the electric field there is a quenching of the optical absorption due to field-induced change of symmetry of the first excited state wavefunction, in the case of triangular dots of equal shape and size.
THE COSMIC-RAY INTENSITY NEAR THE ARCHEAN EARTH
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cohen, O.; Drake, J. J.; Kota, J.
2012-11-20
We employ three-dimensional state-of-the-art magnetohydrodynamic models of the early solar wind and heliosphere and a two-dimensional model for cosmic-ray transport to investigate the cosmic-ray spectrum and flux near the Archean Earth. We assess how sensitive the cosmic-ray spectrum is to changes in the sunspot placement and magnetic field strength, the large-scale dipole magnetic field strength, the wind ram pressure, and the Sun's rotation period. Overall, our results confirm earlier work that suggested the Archean Earth would have experienced a greatly reduced cosmic-ray flux than is the case today. The cosmic-ray reduction for the early Sun is mainly due to themore » shorter solar rotation period and tighter winding of the Parker spiral, and to the different surface distribution of the more active solar magnetic field. These effects lead to a global reduction of the cosmic-ray flux at 1 AU by up to two orders of magnitude or more. Variations in the sunspot magnetic field have more effect on the flux than variations in the dipole field component. The wind ram pressure affects the cosmic-ray flux through its influence on the size of the heliosphere via the pressure balance with the ambient interstellar medium. Variations in the interstellar medium pressure experienced by the solar system in orbit through the Galaxy could lead to order of magnitude changes in the cosmic-ray flux at Earth on timescales of a few million years.« less
Climate Variation and the Rise and Fall of an Andean Civilization
NASA Astrophysics Data System (ADS)
Binford, Michael W.; Kolata, Alan L.; Brenner, Mark; Janusek, John W.; Seddon, Matthew T.; Abbott, Mark; Curtis, Jason H.
1997-03-01
Paleolimnological and archaeological records that span 3500 years from Lake Titicaca and the surrounding Bolivian-Peruvian altiplano demonstrate that the emergence of agriculture (ca. 1500 B.C.) and the collapse of the Tiwanaku civilization (ca. A.D. 1100) coincided with periods of abrupt, profound climate change. The timing and magnitude of climate changes are inferred from stratigraphic evidence of lake-level variation recorded in 14C-dated lake-sediment cores. Paleo-lake levels provide estimates of drainage basin water balance. Archaeological evidence establishes spatial and temporal patterns of agricultural field use and abandonment. Prior to 1500 B.C., aridity in the altiplano precluded intensive agriculture. During a wetter period from 1500 B.C. to A.D. 1100, the Tiwanaku civilization and its immediate predecessors developed specialized agricultural methods that stimulated population growth and sustained large human settlements. A prolonged drier period (ca. A.D. 1100-1400) caused declining agricultural production, field abandonment, and cultural collapse.
NASA Technical Reports Server (NTRS)
Waluschka, Eugene; Xiong, Xiao-Xiong; Guenther, Bruce; Barnes, William; VanSalomonson, Vincent V.
2004-01-01
The MODIS instrument relies on solar calibration to achieve the required radiometric accuracy. This solar calibration occurs as the TERRA spacecraft comes up over the North Pole. The earth underneath the spacecraft is still dark for approximately one minute and the sun is just rising over the earth's north polar regions. During this time the sun moves through about 4 degrees, the scan mirror rotates about 19 times and about 50 frames (exposures) are made of the white solar diffuser. For some of MODIS'S bands the brightness of the screen is reduced, to prevent detector saturation, by means of a pinhole screen, which produces approximately 600 pinhole images of the sun within the field of view of any one detector. Previous attempts at creating a detailed radiometric model of this calibration scenario produced intensity variations on the focal planes with insufficient detail to be useful. The current computational approach produces results, which take into account the motion of the sun and the scan mirror and produces variations, which strongly resemble the observed focal plane intensity variations. The computational approach and results and a comparison with actual observational data are presented.
Non-lambertian reflectance modeling and shape recovery of faces using tensor splines.
Kumar, Ritwik; Barmpoutis, Angelos; Banerjee, Arunava; Vemuri, Baba C
2011-03-01
Modeling illumination effects and pose variations of a face is of fundamental importance in the field of facial image analysis. Most of the conventional techniques that simultaneously address both of these problems work with the Lambertian assumption and thus fall short of accurately capturing the complex intensity variation that the facial images exhibit or recovering their 3D shape in the presence of specularities and cast shadows. In this paper, we present a novel Tensor-Spline-based framework for facial image analysis. We show that, using this framework, the facial apparent BRDF field can be accurately estimated while seamlessly accounting for cast shadows and specularities. Further, using local neighborhood information, the same framework can be exploited to recover the 3D shape of the face (to handle pose variation). We quantitatively validate the accuracy of the Tensor Spline model using a more general model based on the mixture of single-lobed spherical functions. We demonstrate the effectiveness of our technique by presenting extensive experimental results for face relighting, 3D shape recovery, and face recognition using the Extended Yale B and CMU PIE benchmark data sets.
Intensity standardisation of 7T MR images for intensity-based segmentation of the human hypothalamus
Schreiber, Jan; Bazin, Pierre-Louis; Trampel, Robert; Anwander, Alfred; Geyer, Stefan; Schönknecht, Peter
2017-01-01
The high spatial resolution of 7T MRI enables us to identify subtle volume changes in brain structures, providing potential biomarkers of mental disorders. Most volumetric approaches require that similar intensity values represent similar tissue types across different persons. By applying colour-coding to T1-weighted MP2RAGE images, we found that the high measurement accuracy achieved by high-resolution imaging may be compromised by inter-individual variations in the image intensity. To address this issue, we analysed the performance of five intensity standardisation techniques in high-resolution T1-weighted MP2RAGE images. Twenty images with extreme intensities in the GM and WM were standardised to a representative reference image. We performed a multi-level evaluation with a focus on the hypothalamic region—analysing the intensity histograms as well as the actual MR images, and requiring that the correlation between the whole-brain tissue volumes and subject age be preserved during standardisation. The results were compared with T1 maps. Linear standardisation using subcortical ROIs of GM and WM provided good results for all evaluation criteria: it improved the histogram alignment within the ROIs and the average image intensity within the ROIs and the whole-brain GM and WM areas. This method reduced the inter-individual intensity variation of the hypothalamic boundary by more than half, outperforming all other methods, and kept the original correlation between the GM volume and subject age intact. Mixed results were obtained for the other four methods, which sometimes came at the expense of unwarranted changes in the age-related pattern of the GM volume. The mapping of the T1 relaxation time with the MP2RAGE sequence is advertised as being especially robust to bias field inhomogeneity. We found little evidence that substantiated the T1 map’s theoretical superiority over the T1-weighted images regarding the inter-individual image intensity homogeneity. PMID:28253330
Ionospheric Trend Over Wuhan During 1947-2017: Comparison Between Simulation and Observation
NASA Astrophysics Data System (ADS)
Yue, Xinan; Hu, Lianhuan; Wei, Yong; Wan, Weixing; Ning, Baiqi
2018-02-01
Since Roble and Dickinson (1989), who drew the community's attention about the greenhouse gas effect on the ionosphere, huge efforts have been implemented on ionospheric climate study. However, direct comparison between observations and simulations is still rare. Recently, the Wuhan ionosonde observations were digitized and standardized through unified method back to 1947. In this study, the NCAR-TIEGCM was driven by Mauna Loa Observatory observed CO2 level and International Geomagnetic Reference Field (IGRF) geomagnetic field to simulate their effects on ionospheric long-term trend over Wuhan. Only March equinox was considered in both data analysis and simulation. Simulation results show that the CO2 and geomagnetic field have comparable effect on hmF2 trend, while geomagnetic field effect is stronger than CO2 on foF2 trend over Wuhan. Both factors result in obvious but different diurnal variations of foF2/hmF2 long-term trends. The geomagnetic field effect is nonlinear versus years since the long-term variation of geomagnetic field intensity and orientation is complex. Mean value of foF2 and hmF2 trend is (-0.0021 MHz/yr, -0.106 km/yr) and (-0.0022 MHz/yr, -0.0763 km/yr) for observation and simulation, respectively. Regarding the diurnal variation of the trend, the simulation accords well with that of observation except hmF2 results around 12 UT. Overall, good agreement between observation and simulation illustrates the good quality of Wuhan ionosonde long-term data and the validity of ancient ionosphere reconstruction based on realistic indices driving simulation.
NASA Astrophysics Data System (ADS)
Moro, J.; Denardini, C. M.; Resende, L. C. A.; Chen, S. S.; Schuch, N. J.
2016-10-01
In this work, the seasonal dependency of the E region electric field (EEF) at the dip equator is examined. The eastward zonal (Ey) and the daytime vertical (Ez) electric fields are responsible for the overall phenomenology of the equatorial and low-latitude ionosphere, including the equatorial electrojet (EEJ) and its plasma instability. The electric field components are studied based on long-term backscatter radars soundings (348 days for both systems) collected during geomagnetic quiet days (Kp ≤ 3+), from 2001 to 2010, at the São Luís Space Observatory (SLZ), Brazil (2.33°S, 44.20°W), and at the Jicamarca Radio Observatory (JRO), Peru (11.95°S, 76.87°W). Among the results, we observe, for the first time, a seasonal difference between the EEF in these two sectors in South America based on coherent radar measurements. The EEF is more intense in summer at SLZ, in equinox at JRO, and has been highly variable with season in the Brazilian sector compared to the Peruvian sector. In addition, the secular variation on the geomagnetic field and its effect on the EEJ over Brazil resulted that as much farther away is the magnetic equator from SLZ, later more the EEJ is observed (10 h LT) and sooner it ends (16 h LT). Moreover, the time interval of type II occurrence decreased significantly after the year 2004, which is a clear indication that SLZ is no longer an equatorial station due to the secular variation of the geomagnetic field.
NASA Astrophysics Data System (ADS)
Lobzin, V. V.; Krasnoselskikh, V. V.; Musatenko, K.; Dudok de Wit, T.
2008-09-01
A new method for remote sensing of the quasiperpendicular part of the bow shock surface is presented. The method is based on analysis of high frequency electric field fluctuations corresponding to Langmuir, upshifted, and downshifted oscillations in the electron foreshock. Langmuir waves usually have maximum intensity at the upstream boundary of this region. All these waves are generated by energetic electrons accelerated by quasiperpendicular zone of the shock front. Nonstationary behavior of the shock, in particular due to rippling, should result in modulation of energetic electron fluxes, thereby giving rise to variations of Langmuir waves intensity. For upshifted and downshifted oscillations, the variations of both intensity and central frequency can be observed. For the present study, WHISPER measurements of electric field spectra obtained aboard Cluster spacecraft are used to choose 48 crossings of the electron foreshock boundary with dominating Langmuir waves and to perform for the first time a statistical analysis of nonstationary behavior of quasiperpendicular zone of the Earth's bow shock. Analysis of hidden periodicities in plasma wave energy reveals shock front nonstationarity in the frequency range 0.33 fBi
An improved level set method for brain MR images segmentation and bias correction.
Chen, Yunjie; Zhang, Jianwei; Macione, Jim
2009-10-01
Intensity inhomogeneities cause considerable difficulty in the quantitative analysis of magnetic resonance (MR) images. Thus, bias field estimation is a necessary step before quantitative analysis of MR data can be undertaken. This paper presents a variational level set approach to bias correction and segmentation for images with intensity inhomogeneities. Our method is based on an observation that intensities in a relatively small local region are separable, despite of the inseparability of the intensities in the whole image caused by the overall intensity inhomogeneity. We first define a localized K-means-type clustering objective function for image intensities in a neighborhood around each point. The cluster centers in this objective function have a multiplicative factor that estimates the bias within the neighborhood. The objective function is then integrated over the entire domain to define the data term into the level set framework. Our method is able to capture bias of quite general profiles. Moreover, it is robust to initialization, and thereby allows fully automated applications. The proposed method has been used for images of various modalities with promising results.
Flash ionization signature in coherent cyclotron emission from brown dwarfs
NASA Astrophysics Data System (ADS)
Vorgul, I.; Helling, Ch.
2016-05-01
Brown dwarfs (BDs) form mineral clouds in their atmospheres, where charged particles can produce large-scale discharges in the form of lightning resulting in substantial sudden increase of local ionization. BDs are observed to emit cyclotron radio emission. We show that signatures of strong transient atmospheric ionization events (flash ionization) can be imprinted on a pre-existing radiation. Detection of such flash ionization events will open investigations into the ionization state and atmospheric dynamics. Such events can also result from explosion shock waves, material outbursts or (volcanic) eruptions. We present an analytical model that describes the modulation of a pre-existing electromagnetic radiation by a time-dependent (flash) conductivity that is characteristic for flash ionization events like lightning. Our conductivity model reproduces the conductivity function derived from observations of terrestrial gamma-ray flashes, and is applicable to astrophysical objects with strong temporal variations in the local ionization, as in planetary atmospheres and protoplanetary discs. We show that the field responds with a characteristic flash-shaped pulse to a conductivity flash of intermediate intensity. More powerful ionization events result in smaller variations of the initial radiation, or in its damping. We show that the characteristic damping of the response field for high-power initial radiation carries information about the ionization flash magnitude and duration. The duration of the pulse amplification or the damping is consistently shorter for larger conductivity variations and can be used to evaluate the intensity of the flash ionization. Our work suggests that cyclotron emission could be probe signals for electrification processes inside BD atmosphere.
NASA Astrophysics Data System (ADS)
Johnson, Payton; Ladd, Edwin
2018-01-01
We present time- and spatially-resolved observations of the inner solar corona in the 5303 Å line of Fe XIV, taken during the 21 August 2017 solar eclipse from a field observing site in Crossville, TN. These observations are used to characterize the intensity variations in this coronal emission line, and to compare with oscillation predictions from models for heating the corona by magnetic wave dissipation.The observations were taken with two Explore Scientific ED 102CF 102 mm aperture triplet apochromatic refractors. One system used a DayStar custom-built 5 Å FWHM filter centered on the Fe XIV coronal spectral line and an Atik Titan camera for image collection. The setup produced images with a pixel size of 2.15 arcseconds (~1.5 Mm at the distance to the Sun), and a field of view of 1420 x 1060 arcseconds, covering approximately 20% of the entire solar limb centered near the emerging sunspot complex AR 2672. We obtained images with an exposure time of 0.22 seconds and a frame rate of 2.36 Hz, for a total of 361 images during totality.An identical, co-aligned telescope/camera system observed the same portion of the solar corona, but with a 100 Å FWHM Baader Planetarium solar continuum filter centered on a wavelength of 5400 Å. Images with an exposure time of 0.01 seconds were obtained with a frame rate of 4.05 Hz. These simultaneous observations are used as a control to monitor brightness variations not related to coronal line oscillations.
Recent Measurement of Energetic Particles from Voyagers 1 and 2
NASA Astrophysics Data System (ADS)
Decker, R. B.; Krimigis, S. M.; Hill, M. E.; Roelof, E. C.
2017-12-01
We review recent measurements of energetic particles made at Voyager 2 (at 116 AU, S32 deg) in the heliosheath and at Voyager 1 (at 140 AU, N35 deg) in the local interstellar medium. Voyager 2 is 31 AU beyond its termination shock crossing (84.4 AU in August 2007), showing that the heliosheath at Voyager 2 is at least 3-4 AU thicker than that traversed by Voyager 1. In the 2017 data at Voyager 2, intensities of heliosheath ions >30 keV and electrons >20 keV have levelled off, with the ions reaching values comparable to those in 2011, following a four-year step-like recovery from minima reached in early 2013. In addition, during 2014-17, variations of the lowest energy ion intensities with scales of order several months or less tend to correlate with similar variations in the solar wind density. This similarity of relatively short-term temporal variations between the thermal and suprathermal ions was not seen in the earlier heliosheath data from Voyager 2. Voyager 1 is now about 18 AU upstream of the heliopause nose. Intensities of low-energy ions and electrons and of anomalous cosmic rays, all of which were routinely measured in the heliosheath, remain at background levels at Voyager 1 through July 2017. Angular distributions of galactic cosmic ray protons >211 MeV continue to depart from isotropy, being characterized instead by broad (0.3-0.8 year) episodes of steady intensity depletions of protons gyrating nearly perpendicular to the magnetic field. Although data in the first half of 2017 continue to show departures from isotropy, the anisotropy amplitudes are generally small, comparable to periods of quasi-isotropy measured during six-month periods in 2013-14 and in 2014-15.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hsi, W; Lee, T; Schultz, T
Purpose: To evaluate the accuracy of a two-dimensional optical dosimeter on measuring lateral profiles for spots and scanned fields of proton pencil beams. Methods: A digital camera with a color image senor was utilized to image proton-induced scintillations on Gadolinium-oxysulfide phosphor reflected by a stainless-steel mirror. Intensities of three colors were summed for each pixel with proper spatial-resolution calibration. To benchmark this dosimeter, the field size and penumbra for 100mm square fields of singleenergy pencil-scan protons were measured and compared between this optical dosimeter and an ionization-chamber profiler. Sigma widths of proton spots in air were measured and compared betweenmore » this dosimeter and a commercial optical dosimeter. Clinical proton beams with ranges between 80 mm and 300 mm at CDH proton center were used for this benchmark. Results: Pixel resolutions vary 1.5% between two perpendicular axes. For a pencil-scan field with 302 mm range, measured field sizes and penumbras between two detection systems agreed to 0.5 mm and 0.3 mm, respectively. Sigma widths agree to 0.3 mm between two optical dosimeters for a proton spot with 158 mm range; having widths of 5.76 mm and 5.92 mm for X and Y axes, respectively. Similar agreements were obtained for others beam ranges. This dosimeter was successfully utilizing on mapping the shapes and sizes of proton spots at the technical acceptance of McLaren proton therapy system. Snow-flake spots seen on images indicated the image sensor having pixels damaged by radiations. Minor variations in intensity between different colors were observed. Conclusions: The accuracy of our dosimeter was in good agreement with other established devices in measuring lateral profiles of pencil-scan fields and proton spots. A precise docking mechanism for camera was designed to keep aligned optical path while replacing damaged image senor. Causes for minor variations between emitted color lights will be investigated.« less
NASA Astrophysics Data System (ADS)
Looker, N. T.; Kolka, R.; Colin, P. O.; Asbjornsen, H.
2017-12-01
The alteration of soil field-saturated hydraulic conductivity (Ksat) is a primary mechanism by which land-use/cover changes influence catchment hydrologic behavior. While previous studies have demonstrated declines in Ksat with forest cover loss, we lack a comprehensive framework for predicting the response of Ksat to increases in forest cover or to changes in land-use intensity (rather than changes in cover type per se). Variation in Ksat due to biophysical factors (e.g., climate or topography) may further obscure the effects of land cover or intensity. We assessed differences in Ksat between four cover types representative of a catchment in central Veracruz, Mexico (maize, pasture, shade coffee, and secondary cloud forest) and evaluated the factors that control variation across sites within cover types. In 38 sites distributed from 1200 m to 2900 m above sea level, we estimated Ksat at a depth of 25 cm using a Guelph permeameter. Ksat was significantly lower in soils under pasture and maize than in those under woody cover types (i.e., shade coffee and secondary forest), largely due to differences in horizon thickness. Variation in Ksat within woody cover types was associated with vegetation productivity and seasonality as inferred using remotely sensed vegetation indices. Unexpectedly, coffee and forest sites exhibited contrasting relationships between Ksat and vegetation indices. We propose possible mechanisms for these relationships and explore their implications for the regionalization of Ksat in catchment modeling applications.
Spatio-temporal Theory of Lasing Action in Optically-Pumped Rotationally Excited Molecular Gases
2011-04-11
17. A. E. Siegman , Lasers (Univ. Science Books, 1986). 18. R. Bansal (ed.), Handbook of Engineering Electromagnetics (Marcel Dekker, Inc., 2004). 19... laser emission from optically-pumped rota- tionally excited molecular gases confined in a metallic cavity. To this end, we have developed a...the operation of this class of lasers . The effect on the main lasing features of the spatial variation of the electric field intensity and the ohmic
Dynamics of magnetic-field-induced clustering in ionic ferrofluids from Raman scattering
NASA Astrophysics Data System (ADS)
Heinrich, D.; Goñi, A. R.; Thomsen, C.
2007-03-01
Using Raman spectroscopy, the authors have investigated the aggregation/disgregation of magnetic nanoparticles in dense ionic ferrofluids (IFF) into clusters due to the action of an inhomogeneous external magnetic field. Evidence for changes in particle density and/or effective cluster size were obtained from the variation of the Raman intensity in a time window from 10sto10min for magnetic fields up to 350mT and at a temperature of 28°C. Clustering sets in already at very low fields (>15mT) and the IFF samples exhibit a clear hysteresis in the Raman spectra after releasing the magnetic field, which lasts for many hours at room temperature. The authors determined the characteristic times of the two competing processes, that of field-induced cluster formation and, at room temperature, that of thermal-activated dissociation, to range from 100to150s.
In Search of a Dipole Field during the Plio-Pleistocene
NASA Astrophysics Data System (ADS)
Asefaw, H. F.; Tauxe, L.; Staudigel, H.; Shaar, R.; Cai, S.; Cromwell, G.; Behar, N.; Koppers, A. A. P.
2017-12-01
A geocentric axial dipole (GAD) field accounts for the majority of the modern field and is assumed to be a good first order approximation for the time averaged ancient field. A GAD field predicts a latitudinal dependence of intensity. Given this relationship, the intensity of the field measured at the North and South poles should be twice as strong as the intensity recorded at the equator. The current paleointensity database- archived at both http://earth.liv.ac.uk/pint/ and http://earthref.org/MagIC - shows no such dependency over the last 5 Myr (e.g. Lawrence et al., 2009, doi: 10.1029/2008GC002072; Cromwell et al., 2015; doi: 10.1002/2014JB011828). In order to investigate whether better experimental protocol or data selection approaches could resolve the problem, we: 1) applied a new data selection protocol (CCRIT) which has recovered historical field values with high precision and accuracy (Cromwell et al., 2015), 2) re-sampled the fine grained tops of lava flows in Antarctica (77.9° S) that were previously studied for paleodirections but failed to meet our strict selection criteria, 3) sampled cinder cones in the Golan Heights (33.08° N), and 4) acquired data from lava flows from the HSDP2 drill core in Hawaii (19.71° N ). New and published Ar-Ar dates demonstrate that all the samples formed in the last 5 Myr. We conducted IZZI modified Thellier-Thellier experiments and then calculated paleointensities from the samples that passed a set of strict selection criteria. After applying the CCRIT criteria to our data, we find a time averaged paleointensity of 35.7 ±6.86 μT in the Golan Heights, 34.5 μT in Hawaii, and 34.22 ±3.4 μT in Antarctica. New results from Iceland (64° N), published by Cromwell et al. (2015, doi: 10.1002/2014JB011828), also pass the CCRIT criteria and record an average intensity of 33.1 ± 8.3 μT. The average paleointensities from the Golan Heights, Antarctica, Iceland and Hawaii, that span the last 5 Myr and pass the CCRIT criteria, fail to show the variation of intensity with latitude that is expected of an ideal GAD field. The question remains as to why.
NASA Astrophysics Data System (ADS)
Fucugauchi, J. U.; Perez-Cruz, L. L.; Rebolledo-Vieyra, M.; Tikoo, S.; Zylberman, W.; Lofi, J.
2017-12-01
Drilling at Site M0077 sampled post-impact sediments overlying a peak ring consisting of impact breccias, melt rock and granitoids. Here we focus on characterizing the peak ring using magnetic properties, which vary widely and depend on mineralogy, depositional and emplacement conditions and secondary alterations. Rock magnetic properties are integrated with Multi-Sensor Core Logger (MSCL) data, vertical seismic profile, physical properties, petrographic and chemical analyses and geophysical models. We measure low-field magnetic susceptibility at low- and high-frequencies, intensity and direction of natural remanent magnetization (NRM) and laboratory-induced isothermal (IRM) and anhysteretic (ARM) magnetizations, alternating-field demagnetization of NRM, IRM and NRM, susceptibility variation with temperature, anisotropy of magnetic susceptibility, hysteresis and IRM back-field demagnetization. Post-impact carbonates show low susceptibilities and NRM intensities, variable frequency-dependent susceptibilities and multivectorial remanences residing in low and high coercivity minerals. Hysteresis loops show low coercivity saturation magnetizations and variable paramagnetic mineral contents. Impact breccias (suevites) and melt rock show higher susceptibilities, low frequency-dependent susceptibilities, high NRM, ARM and IRM intensities and moderate ARM intensity/susceptibility ratios. Magnetic signal is dominated by fine-grained magnetite and titanomagnetites with PSD domain states. Melt rocks at the base of impactite section show the highest susceptibilities and remanence intensities. Basement section is characterized by low susceptibilities in the granites and higher values in the dikes, with NRM and ARM intensities increasing towards the base. The high susceptibilities and remanence intensities correlate with high seismic velocities, density and decreased porosity and electrical resistivity. Fracturing and alteration account for the reduced seismic velocities, density and magnetic properties in the basement section. Site M0077 is in a horizontal gradient high within the semi-circular gravity low in the crater central zone. Correlation with MSCL logs and petrographic and chemical data will allow further detailed characterization of peak ring units.
Subgrid geoelectric field specification for GIC modeling
NASA Astrophysics Data System (ADS)
Butala, M.; Grawe, M.; Kamalabadi, F.; Makela, J. J.
2017-12-01
Geomagnetically induced currents (GICs) result from surface geomagnetic field (ěc{B}) variation driven by space weather disturbances. For the most intense disturbances, the consequences can range from power grid instability to even widespread failure. Modeling GICs to assess vulnerability requires the specification of the surface geoelectric field (ěc{E}) at all spatial locations coincident with the electric power system. In this study, we investigate how to best reproduce ěc{E} given the available sparse, irregularly spaced magnetometer measurements of ěc{B} and suitable electromagnetic transfer functions (EMTFs) to transform the local ěc{B} to ěc{E}. The assessment is made against ground truth from publicly available ěc{E} measurements provided by the EarthScope magnetotelluric (MT) array, a set of 7 fixed and several transportable joint ěc{B} and ěc{E} sensors. The scope of this study spans several dimensions: geomagnetic disturbance intensity, spatial interpolation scheme, and EMTF type, i.e., 1-D models based on studies of local geology and 3-D models derived from the EarthScope MT data.
NASA Astrophysics Data System (ADS)
Mohammadzadeh, Atefeh; Miri, MirFaez
2018-01-01
We study the response of a semiconductor quantum dot-metal nanoparticle system to an external field E 0 cos ( ω t ) . The borders between Fano, double peaks, weak transition, strong transition, and bistability regions of the phase diagram move considerably as one regards the multipole effects. The exciton-induced transparency is an artifact of the dipole approximation. The absorption of the nanoparticle, the population inversion of the quantum dot, the upper and lower limits of intensity where bistability occurs, the characteristic time to reach the steady state, and other features of the hybrid system change due to the multipole effects. The phase diagrams corresponding to the fields parallel and perpendicular to the axis of system are quite distinguishable. Thus, both the intensity and the polarization of the incident field can be used to control the system. In particular, the incident polarization can be used to switch on and switch off the bistable behavior. For applications such as miniaturized bistable devices and nanosensors sensitive to variations of the dielectric constant of the surrounding medium, multipole effects must be considered.
NASA Astrophysics Data System (ADS)
Tuner, H.
2013-01-01
Effects of gamma radiation on solid calcium ascorbate dihydrate were studied using electron spin resonance (ESR) spectroscopy. Irradiated samples were found to present two specific ESR lines with shoulder at low and high magnetic field sides. Structural and kinetic features of the radicalic species responsible for experimental ESR spectrum were explored through the variations of the signal intensities with applied microwave power, variable temperature, high-temperature annealing and room temperature storage time studies. Dosimetric potential of the sample was also determined using spectrum area and measured signal intensity measurements. It was concluded that three radicals with different spectroscopic and kinetic features were produced upon gamma irradiation.
NASA Astrophysics Data System (ADS)
Sato, Manabu; Nishidate, Izumi
2014-05-01
We investigated the feasibility of OCT in monitoring the viability of the brain. It was confirmed that after an overdose of pentobarbital sodium salt for an euthanasia, the OCT signal intensity increased before cardiac arrest and finally became 2.7 times, and by periodically changing the tissue temperature from 20 to 32 °C in vivo, average correlation coefficients between the ratio of signal intensity (RSI) and temperature were determined to be -0:42 to -0:50. RSI reversibly changed with subsequent variations of temperatures and finally increased rapidly just before cardiac arrest. These results indicate that RSI could correspond to decreases in viability.
Modeling spatially localized photonic nanojets from phase diffraction gratings
DOE Office of Scientific and Technical Information (OSTI.GOV)
Geints, Yu. E., E-mail: ygeints@iao.ru; Tomsk State University, 36, Lenina Avenue, Tomsk 634050; Zemlyanov, A. A.
2016-04-21
We investigated numerically the specific spatially localized intense optical structure, a photonic nanojet (PNJ), formed in the near-field scattering of optical radiation at phase diffraction gratings. The finite-difference time-domain technique was employed to study the PNJ key parameters (length, width, focal distance, and intensity) produced by diffraction gratings with the saw-tooth, rectangle, and hemispheric line profiles. Our analysis showed that each type of diffraction gratings produces a photonic jet with unique characteristics. Based on the numerical calculations, we demonstrate that the PNJ could be manipulated in a wide range through the variation of period, duty cycle, and shape of diffractionmore » grating rulings.« less
Dupoué, Andréaz; Rutschmann, Alexis; Le Galliard, Jean François; Miles, Donald B; Clobert, Jean; DeNardo, Dale F; Brusch, George A; Meylan, Sandrine
2017-12-01
Water conservation strategies are well documented in species living in water-limited environments, but physiological adaptations to water availability in temperate climate environments are still relatively overlooked. Yet, temperate species are facing more frequent and intense droughts as a result of climate change. Here, we examined variation in field hydration state (plasma osmolality) and standardized evaporative water loss rate (SEWL) of adult male and pregnant female common lizards (Zootoca vivipara) from 13 natural populations with contrasting air temperature, air humidity, and access to water. We found different patterns of geographic variation between sexes. Overall, males were more dehydrated (i.e. higher osmolality) than pregnant females, which likely comes from differences in field behaviour and water intake since the rate of SEWL was similar between sexes. Plasma osmolality and SEWL rate were positively correlated with environmental temperature in males, while plasma osmolality in pregnant females did not correlate with environmental conditions, reproductive stage or reproductive effort. The SEWL rate was significantly lower in populations without access to free standing water, suggesting that lizards can adapt or adjust physiology to cope with habitat dryness. Environmental humidity did not explain variation in water balance. We suggest that geographic variation in water balance physiology and behaviour should be taken account to better understand species range limits and sensitivity to climate change.
Full-vector geomagnetic field records from the East Eifel, Germany
NASA Astrophysics Data System (ADS)
Monster, Marilyn W. L.; Langemeijer, Jaap; Wiarda, Laura R.; Dekkers, Mark J.; Biggin, Andy J.; Hurst, Elliot A.; Groot, Lennart V. de
2018-01-01
To create meaningful models of the geomagnetic field, high-quality directional and intensity input data are needed. However, while it is fairly straightforward to obtain directional data, intensity data are much scarcer, especially for periods before the Holocene. Here, we present data from twelve flows (age range ∼ 200 to ∼ 470 ka) in the East Eifel volcanic field (Germany). These sites had been previously studied and are resampled to further test the recently proposed multi-method palaeointensity approach. Samples are first subjected to classic palaeomagnetic and rock magnetic analyses to optimise the subsequent palaeointensity experiments. Four different palaeointensity methods - IZZI-Thellier, the multispecimen method, calibrated pseudo-Thellier, and microwave-Thellier - are being used in the present study. The latter should be considered as supportive because only one or two specimens per site could be processed. Palaeointensities obtained for ten sites pass our selection criteria: two sites are successful with a single approach, four sites with two approaches, three more sites work with three approaches, and one site with all four approaches. Site-averaged intensity values typically range between 30 and 35 μT. No typically low palaeointensity values are found, in line with paleodirectional results which are compatible with regular palaeosecular variation of the Earth's magnetic field. Results from different methods are remarkably consistent and generally agree well with the values previously reported. They appear to be below the average for the Brunhes chron; there are no indications for relatively higher palaeointensities for units younger than 300 ka. However, our young sites could be close in age, and therefore may not represent the average intensity of the paleofield. Three of our sites are even considered coeval; encouragingly, these do yield the same palaeointensity within uncertainty bounds.
Variations in embodied energy and carbon emission intensities of construction materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wan Omar, Wan-Mohd-Sabki; School of Environmental Engineering, Universiti Malaysia Perlis, 02600 Arau, Perlis; Doh, Jeung-Hwan, E-mail: j.doh@griffith.edu.au
2014-11-15
Identification of parameter variation allows us to conduct more detailed life cycle assessment (LCA) of energy and carbon emission material over their lifecycle. Previous research studies have demonstrated that hybrid LCA (HLCA) can generally overcome the problems of incompleteness and accuracy of embodied energy (EE) and carbon (EC) emission assessment. Unfortunately, the current interpretation and quantification procedure has not been extensively and empirically studied in a qualitative manner, especially in hybridising between the process LCA and I-O LCA. To determine this weakness, this study empirically demonstrates the changes in EE and EC intensities caused by variations to key parameters inmore » material production. Using Australia and Malaysia as a case study, the results are compared with previous hybrid models to identify key parameters and issues. The parameters considered in this study are technological changes, energy tariffs, primary energy factors, disaggregation constant, emission factors, and material price fluctuation. It was found that changes in technological efficiency, energy tariffs and material prices caused significant variations in the model. Finally, the comparison of hybrid models revealed that non-energy intensive materials greatly influence the variations due to high indirect energy and carbon emission in upstream boundary of material production, and as such, any decision related to these materials should be considered carefully. - Highlights: • We investigate the EE and EC intensity variation in Australia and Malaysia. • The influences of parameter variations on hybrid LCA model were evaluated. • Key significant contribution to the EE and EC intensity variation were identified. • High indirect EE and EC content caused significant variation in hybrid LCA models. • Non-energy intensive material caused variation between hybrid LCA models.« less
Comparison of periodic and other characteristics of geomagnetic and meterological rocket data
NASA Technical Reports Server (NTRS)
Nastrom, G. D.; Belmont, A. D.
1976-01-01
The temporal variations in stratospheric winds and temperatures with the geomagnetic field elements were compared. From a periodic analysis of the geomagnetic field elements the amplitude and phase of the quasibiennial, annual, and semiannual waves are given for stations from 1 degree S to 89 degree N. These results are then compared with corresponding waves reported in rocketsonde wind and temperature data. The annual waves are found to be coupled as a result of the annual variation in the dynamo effect of the wind in the lower ionosphere. The semiannual waves are also found to be coupled and three possible causes for the extra tropical stratospheric semiannual wind wave are discussed. Time variance spectra for the interval from 4 days to 44 days in both zonal winds and horizontal geomagnetic field intensity are compared for years when major midwinter warmings occur and years when only minor warmings occur. The noted differences are suggested to arise from upward propagating planetary waves which are absorbed or refracted in varying amounts depending on the prevailing circulation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shalimova, M. B., E-mail: shamb@samsu.ru; Sachuk, N. V.
2015-08-15
The degradation of the characteristics of silicon metal-oxide-semiconductor (MOS) structures with oxides of rare-earth elements under the effect of electric fields with intensities of 0.1–4 MV/cm during the course of electroforming is studied. A specific feature of electroforming consists in the possibility of multiple switching of the structures from the insulating state to the low-resistivity one and back. The temporal characteristics of the degradation of MOS structures during the course of electroforming are exponential. The current-voltage characteristics follow the power law in the range of 0.2–3 V; the effect of an electric field brings about a variation in the distributionmore » of the energy density of traps responsible for currents limited by space charge. It is established that multiple cycles of electroforming lead to an increase in the density of surface states at the Si-oxide interface and to a variation in the energy position of the trap levels, which affects the charge state of the traps.« less
Electron microscopic, rock magnetic and paleomagnetic studies of mid-ocean ridge basalts
NASA Astrophysics Data System (ADS)
Wang, Daming
Mid-ocean ridge basalt (MORB) is the major source of marine magnetic anomalies which are the result of the earth's magnetic reversals recorded sequentially in progressively older oceanic crust, as embodied in the theory of sea-floor spreading. Titanomagnetite, the primary magnetic minerals in MORB, undergoes gradual low-temperature alteration to titanomaghemite after initial formation, presenting the paradoxical situation that apparently the original magnetic record stays well-preserved while carriers of this record undergo fundamental mineralogical transformations. An integrated electron microscopic, rock magnetic and paleomagnetic study of MORB has been carried out with the aim to understand the effects of low-temperaure alteration on magnetic properties of MORB. A component of this study documents the oxidation state of titanomagnetite in variably altered young (< 1 Ma) basalt. Titanomaghemites in discolored rims are, in a general sense, oxidized to a higher degree than those in the relatively unaltered gray interior. The titanomaghemite within the discolored rims appears to have oxidized relatively quickly. However, the alteration front of the discolored rims does not generally coincide with a pronounced jump in oxidation state, suggesting oxidation state of the Fe-Ti oxides and visible alteration in the discolored rims are not directly correlated. The natural remanent magnetization (NRM) of MORB shows comparatively higher intensity in early Tertiary and Cretaceous samples than in 10--30 Ma old samples. No compositional, petrological, rock-magnetic or paleomagnetic patterns are observed to account for the NRM variation trend. Geomagnetic field intensity is the only effect which can not be directly tested on the same samples, but shows a similar pattern as the measured NRM intensities. It is therefore concluded that the geomagnetic field strength was, on-average, significantly greater during the Cretaceous than during the Oligocene and Miocene. I proposed that the variability of oxidation state within a grain changes as a function of age: rapid oxidation giving rise to pronounced non-uniform oxidation within a grain during the first 10 to 20 m.y., whereupon oxidation of titanomagnetite gradually slows down due to equilibration with surrounding fluids. Meanwhile, oxidation gradients decrease gradually within a grain via diffusion. The change of oxidation state within a grain can greatly affect its internal stress, which in turn influences the magnetic stability. This stability, observed as coercivity or mean-destructive fields during alternating-field demagnetization, shows otherwise unexplained variations. These variations can only be explained by variability of oxidation degree within a given grain.
NASA Astrophysics Data System (ADS)
Chakrabarty, D.; Bagiya, Mala S.; Thampi, Smitha V.; Pathan, B. M.; Sekar, R.
2013-12-01
The present investigation brings out, in contrast to the earlier works, the changes in the equatorial electrojet (EEJ) current in response to a few moderate (M-class) and low (C and B class) intensity solar flares during 2005-2010. Special care is taken to pick these flare events in the absence of prompt electric field perturbations associated with geomagnetic storms and substorms that also affect the electrojet current. Interestingly, only the normalized (with respect to the pre-flare level) deviations of daytime EEJ (and not the deviations alone) change linearly with the increases in the EUV and X-ray fluxes. These linear relationships break down during local morning hours when the E-region electric field approaches zero before reversal of polarity. This elicits that the response of EEJ strength corresponding to less-intense flares can be appropriately gauged only when the local time variation of the quiet time E-region zonal electric field is taken into account. The flare events enhanced the EEJ strength irrespective of normal or counter electrojet (CEJ) conditions that shows that solar flares change the E-region ionization density and not the electric field. In addition, the enhancements in the X-ray and EUV fluxes, for these flares occurring during this solar minimum period, are found to be significantly correlated as opposed to the solar maximum period, indicating the differences in the solar processes in different solar epochs.
NASA Astrophysics Data System (ADS)
Tao, Zhiqiang; Wang, Xin; Wei, Yuan; Lv, Li; Wu, Deyin; Yang, Mingli
2017-02-01
Molecular structure, vibrational and electronic absorption spectra, chemical reactivity of energetic compound FOX-7, one of the most widely used explosives, were studied computationally in presence of an electrostatic field of 0.01-0.05 a.u. The Csbnd N bond, which usually triggers the decomposition of FOX-7, is shortened/elongated under a parallel/antiparallel field. The Csbnd N bond activation energy varies with the external electric field, decreasing remarkably with the field strength in regardless of the field direction. This is attributed to two aspects: the bond weakening by the field parallel to the Csbnd N bond and the stabilization effect on the transition-state structure by the field antiparallel to the bond. The variations in the structure and property of FOX-7 under the electric fields were further analyzed with its distributional polarizability, which is dependent on the charge transfer characteristics through the Csbnd N bond.
Study and optimization of key parameters of a laser ablation ion mobility spectrometer
NASA Astrophysics Data System (ADS)
Ni, Kai; Li, Jianan; Tang, Binchao; Shi, Yuan; Yu, Quan; Qian, Xiang; Wang, Xiaohao
2016-11-01
Ion Mobility Spectrometry (IMS), having an advantage in real-time and on-line detection, is an atmospheric pressure detecting technique. LA-IMS (Laser Ablation Ion Mobility Spectrometry) uses Nd-YAG laser as ionization source, whose energy is high enough to ionize metal. In this work, we tested the signal in different electric field intensity by a home-made ion mobility spectrometer, using silicon wafers the sample. The transportation of metal ions was match with the formula: Td = d/K • 1/E, when the electric field intensity is greater than 350v/cm. The relationship between signal intensity and collection angle (the angle between drift tube and the surface of the sample) was studied. With the increasing of the collection angle, signal intensity had a significant increase; while the variation of incident angle of the laser had no significant influence. The signal intensity had a 140% increase when the collection angle varied from 0 to 45 degree, while the angle between the drift tube and incident laser beam keeping the same as 90 degree. The position of ion gate in LA-IMS(Laser Ablation Ion Mobility Spectrometry) is different from the traditional ones for the kinetic energy of the ions is too big, if the distance between ion gate and sampling points less than 2.5cm the ion gate will not work, the ions could go through ion gate when it closed. The SNR had been improved by define the signal when the ion gate is closed as background signal, the signal noise including shock wave and electrical field perturbation produced during the interaction between laser beam and samples is eliminated when the signal that the ion gate opened minus the background signal.
NASA Astrophysics Data System (ADS)
Panovska, Sanja; Constable, Catherine
2015-04-01
Geomagnetic indices like Dst, K and A, have been used since the early twentieth century to characterize activity in the external part of the modern geomagnetic field and as a diagnostic for space weather. These indices reflect regional and global activity and serve as a proxy for associated physical processes. However, no such tools are yet available for the internal geomagnetic field driven by the geodynamo in Earth's liquid outer core. To some extent this reflects limited spatial and temporal sampling for longer timescales associated with paleomagnetic secular variation, but recent efforts in both paleomagnetic data gathering and modeling activity suggest that longer term characterization of the internal geomagnetic weather/climate and its variability would be useful. Specifically, we propose an index for activity in paleosecular variation, useful as both a local and global measure of field stability during so-called normal secular variation and as a means of identifying more extreme behavior associated with geomagnetic excursions and reversals. To date, geomagnetic excursions have been identified by virtual geomagnetic poles (VGPs) deviating more than some conventional limit from the geographic pole (often 45 degrees), and/or by periods of significant intensity drops below some critical value, for example 50% of the present-day field. We seek to establish a quantitative definition of excursions in paleomagnetic records by searching for synchronous directional deviations and lows in relative paleointensity. We combine paleointensity variations with deviations from the expected geocentric axial dipole (GAD) inclination in a single parameter, which we call the paleosecular variation (PSV) activity index. This new diagnostic can be used on any geomagnetic time series (individual data records, model predictions, spherical harmonic coefficients, etc.) to characterize the level of paleosecular variation activity, find excursions, or even study incipient reversals. Currently reversals can only be detected after they have occurred. A baseline for the new index is established using modern and Holocene geomagnetic field data and models to analyze 'normal' variability. We extend our analyses to the 100 ka interval where several excursions have been identified. We discuss the diminished or absent signatures of excursions in some records, the apparent transgressive behavior of detected excursions, and implications for transitional field behavior. The absence of specific excursions in some sediment records is attributed to smoothing by the sedimentary remanence acquisition process and low sedimentation rates. Overall PSV activity index is inversely correlated with dipole moment, indicating stronger impacts of non-axial-dipole secular variations during periods of low axial dipole strength. Excursional events found with the PSV activity index are analyzed in the context of global probability density functions for VGP positions. We studied the appearance of VGP clusters of the excursions to find the common characteristics of these instabilities, including the non-axial dipole features of the geomagnetic field. A better understanding of geomagnetic excursions will aid attempts to predict when such events might occur in the future.
Direct Observation of Optical Field Phase Carving in the Vicinity of Plasmonic Metasurfaces.
Dagens, B; Février, M; Gogol, P; Blaize, S; Apuzzo, A; Magno, G; Mégy, R; Lerondel, G
2016-07-13
Plasmonic surfaces are mainly used for their optical intensity concentration properties that allow for enhancement of physical interaction like in nonlinear optics, optical sensors, or tweezers. Phase response in plasmonic resonances can also play a major role, especially in a periodic assembly of plasmonic resonators like metasurfaces. Here we show that localized surface plasmons collectively excited by a guided mode in a metallic nanostructure periodic chain present nonmonotonous phase variation along the 1D metasurface, resulting from both selective Bloch mode coupling and dipolar coupling. As shown by near-field measurements, the phase profile of the highly concentrated optical field is carved out in the vicinity of the metallic metasurface, paving the way to unusual local optical functions.
Statistics of the geomagnetic secular variation for the past 5Ma
NASA Technical Reports Server (NTRS)
Constable, C. G.; Parker, R. L.
1986-01-01
A new statistical model is proposed for the geomagnetic secular variation over the past 5Ma. Unlike previous models, the model makes use of statistical characteristics of the present day geomagnetic field. The spatial power spectrum of the non-dipole field is consistent with a white source near the core-mantle boundary with Gaussian distribution. After a suitable scaling, the spherical harmonic coefficients may be regarded as statistical samples from a single giant Gaussian process; this is the model of the non-dipole field. The model can be combined with an arbitrary statistical description of the dipole and probability density functions and cumulative distribution functions can be computed for declination and inclination that would be observed at any site on Earth's surface. Global paleomagnetic data spanning the past 5Ma are used to constrain the statistics of the dipole part of the field. A simple model is found to be consistent with the available data. An advantage of specifying the model in terms of the spherical harmonic coefficients is that it is a complete statistical description of the geomagnetic field, enabling us to test specific properties for a general description. Both intensity and directional data distributions may be tested to see if they satisfy the expected model distributions.
NASA Astrophysics Data System (ADS)
Bliss, Donald; Franzoni, Linda; Rouse, Jerry; Manning, Ben
2005-09-01
An analysis method for time-dependent broadband diffuse sound fields in enclosures is described. Beginning with a formulation utilizing time-dependent broadband intensity boundary sources, the strength of these wall sources is expanded in a series in powers of an absorption parameter, thereby giving a separate boundary integral problem for each power. The temporal behavior is characterized by a Taylor expansion in the delay time for a source to influence an evaluation point. The lowest-order problem has a uniform interior field proportional to the reciprocal of the absorption parameter, as expected, and exhibits relatively slow exponential decay. The next-order problem gives a mean-square pressure distribution that is independent of the absorption parameter and is primarily responsible for the spatial variation of the reverberant field. This problem, which is driven by input sources and the lowest-order reverberant field, depends on source location and the spatial distribution of absorption. Additional problems proceed at integer powers of the absorption parameter, but are essentially higher-order corrections to the spatial variation. Temporal behavior is expressed in terms of an eigenvalue problem, with boundary source strength distributions expressed as eigenmodes. Solutions exhibit rapid short-time spatial redistribution followed by long-time decay of a predominant spatial mode.
Statistics of the geomagnetic secular variation for the past 5 m.y
NASA Technical Reports Server (NTRS)
Constable, C. G.; Parker, R. L.
1988-01-01
A new statistical model is proposed for the geomagnetic secular variation over the past 5Ma. Unlike previous models, the model makes use of statistical characteristics of the present day geomagnetic field. The spatial power spectrum of the non-dipole field is consistent with a white source near the core-mantle boundary with Gaussian distribution. After a suitable scaling, the spherical harmonic coefficients may be regarded as statistical samples from a single giant Gaussian process; this is the model of the non-dipole field. The model can be combined with an arbitrary statistical description of the dipole and probability density functions and cumulative distribution functions can be computed for declination and inclination that would be observed at any site on Earth's surface. Global paleomagnetic data spanning the past 5Ma are used to constrain the statistics of the dipole part of the field. A simple model is found to be consistent with the available data. An advantage of specifying the model in terms of the spherical harmonic coefficients is that it is a complete statistical description of the geomagnetic field, enabling us to test specific properties for a general description. Both intensity and directional data distributions may be tested to see if they satisfy the expected model distributions.
A relation between the short time variations of cosmic rays and geomagnetic field change
NASA Technical Reports Server (NTRS)
Saki, T.; Kato, M.
1985-01-01
An event is reported of approx. 37 min periodicity in cosmic ray intensity observed at Akeno(38 deg 47 N, 138 deg 30 E. 900m above s.l., cutoff 10.4 GV) during 1300 approx. 1900 UT on April 25th, 1984, just a day before Forbush decrease of April 26th. This event seemed to be followed by the periodic variations of the geomagnetic field observed at Kakioka (36 deg 23 N, 140 deg 18 E). The regression coefficient between them was obtained approx. 0.07%/10nT. It is shown that in general the power spectral density of cosmic rays in the frequency of 0.0001 approx. 0.001Hz correlates positively with the fluctuations of geomagnetic field (Dst field) around approx. 1.2x0.0001Hz. From the analysis of 47 days data (April 14th to June 13th, 1984) the regression curve was obtained as y=0.275x sup 0.343 with the correlation coefficient of 0.48, where x and y mean Fourier components of Dst field summed over 1.04 approx. 1.39x0.001Hz and cosmic ray power spectral density averaged over 0.0001 approx. 0.001Hz.
Ågren, Jon; Hellström, Frida; Toräng, Per; Ehrlén, Johan
2013-01-01
Spatial variation in the direction of selection drives the evolution of adaptive differentiation. However, few experimental studies have examined the relative importance of different environmental factors for variation in selection and evolutionary trajectories in natural populations. Here, we combine 8 y of observational data and field experiments to assess the relative importance of mutualistic and antagonistic interactions for spatial variation in selection and short-term evolution of a genetically based floral display dimorphism in the short-lived perennial herb Primula farinosa. Natural populations of this species include two floral morphs: long-scaped plants that present their flowers well above the ground and short-scaped plants with flowers positioned close to the ground. The direction and magnitude of selection on scape morph varied among populations, and so did the frequency of the short morph (median 19%, range 0–100%; n = 69 populations). A field experiment replicated at four sites demonstrated that variation in the strength of interactions with grazers and pollinators were responsible for among-population differences in relative fitness of the two morphs. Selection exerted by grazers favored the short-scaped morph, whereas pollinator-mediated selection favored the long-scaped morph. Moreover, variation in selection among natural populations was associated with differences in morph frequency change, and the experimental removal of grazers at nine sites significantly reduced the frequency of the short-scaped morph over 8 y. The results demonstrate that spatial variation in intensity of grazing and pollination produces a selection mosaic, and that changes in biotic interactions can trigger rapid genetic changes in natural plant populations. PMID:24145439
Agren, Jon; Hellström, Frida; Toräng, Per; Ehrlén, Johan
2013-11-05
Spatial variation in the direction of selection drives the evolution of adaptive differentiation. However, few experimental studies have examined the relative importance of different environmental factors for variation in selection and evolutionary trajectories in natural populations. Here, we combine 8 y of observational data and field experiments to assess the relative importance of mutualistic and antagonistic interactions for spatial variation in selection and short-term evolution of a genetically based floral display dimorphism in the short-lived perennial herb Primula farinosa. Natural populations of this species include two floral morphs: long-scaped plants that present their flowers well above the ground and short-scaped plants with flowers positioned close to the ground. The direction and magnitude of selection on scape morph varied among populations, and so did the frequency of the short morph (median 19%, range 0-100%; n = 69 populations). A field experiment replicated at four sites demonstrated that variation in the strength of interactions with grazers and pollinators were responsible for among-population differences in relative fitness of the two morphs. Selection exerted by grazers favored the short-scaped morph, whereas pollinator-mediated selection favored the long-scaped morph. Moreover, variation in selection among natural populations was associated with differences in morph frequency change, and the experimental removal of grazers at nine sites significantly reduced the frequency of the short-scaped morph over 8 y. The results demonstrate that spatial variation in intensity of grazing and pollination produces a selection mosaic, and that changes in biotic interactions can trigger rapid genetic changes in natural plant populations.
Polarimetry diagnostic on OMEGA EP using a 10-ps, 263-nm probe beam.
Davies, A; Haberberger, D; Boni, R; Ivancic, S; Brown, R; Froula, D H
2014-11-01
A polarimetry diagnostic was built and characterized for magnetic-field measurements in laser-plasma experiments on the OMEGA EP laser. This diagnostic was built into the existing 4ω (263-nm) probe system that employs a 10-ps laser pulse collected with an f/4 imaging system. The diagnostic measures the rotation of the probe beam's polarization. The polarimeter uses a Wollaston prism to split the probe beam into orthogonal polarization components. Spatially localized intensity variations between images indicate polarization rotation. Magnetic fields can be calculated by combining the polarimetry data with the measured plasma density profile obtained from angular filter refractometry.
NASA Astrophysics Data System (ADS)
Westphal, Michel; Munschy, Marc
1999-10-01
In order to test the possible saw-tooth behaviour of the Earth's magnetic field during stable polarity intervals, we selected several magnetic profiles over the East Indian Ridge, the Juan de Fuca Ridge and the East Pacific Rise. We then compared the stacked magnetic anomaly profiles with different models. It appears that neither the uniform pattern nor the saw-tooth pattern fully explain the shape of all anomalies. We propose a new magnetic field model with a gradual transition between Gauss and Matuyama periods and smaller intensities for some short episodes.
Blondin, J P; Nguyen, D H; Sbeghen, J; Goulet, D; Cardinal, C; Maruvada, P S; Plante, M; Bailey, W H
1996-01-01
The objective of this study was to assess the ability of humans to detect the presence of DC electric field and ion currents. An exposure chamber simulating conditions present in the vicinity of high-voltage DC (HVDC) lines was designed and built for this purpose. In these experiments, the facility was used to expose observers to DC electric fields up to 50 kV/m and ion current densities up to 120 nA/m2. Forty-eight volunteers (25 women and 23 men) between the ages of 18 and 57 years served as observers. Perception of DC fields was examined by using two psychophysical methods: an adaptive staircase procedure and a rating method derived from signal-detection theory. Subjects completed three different series of observations by using each of these methods; one was conducted without ion currents, and the other two involved various combinations of electric fields and ion currents. Overall, subjects were significantly more likely to detect DC fields as the intensity increased. Observers were able to detect the presence of DC fields alone, but only at high intensities; the average threshold was 45 kV/m. Except in the most sensitive individuals, ion current densities up to 60 nA/m2 did not significantly facilitate the detection of DC fields. However, higher ion current densities were associated with a substantial lowering of sensory thresholds in a large majority of observers. Data analysis also revealed large variations in perceptual thresholds among observers. Normative data indicating DC field and ion current intensities that can be detected by 50% of all observers are provided. In addition, for the most sensitive observers, several other detection proportions were derived from the distribution of individual detection capabilities. These data can form the basis for environmental guidelines relating to the design of HVDC lines.
NASA Astrophysics Data System (ADS)
Kirby, Richard; Whitaker, Ross
2016-09-01
In recent years, the use of multi-modal camera rigs consisting of an RGB sensor and an infrared (IR) sensor have become increasingly popular for use in surveillance and robotics applications. The advantages of using multi-modal camera rigs include improved foreground/background segmentation, wider range of lighting conditions under which the system works, and richer information (e.g. visible light and heat signature) for target identification. However, the traditional computer vision method of mapping pairs of images using pixel intensities or image features is often not possible with an RGB/IR image pair. We introduce a novel method to overcome the lack of common features in RGB/IR image pairs by using a variational methods optimization algorithm to map the optical flow fields computed from different wavelength images. This results in the alignment of the flow fields, which in turn produce correspondences similar to those found in a stereo RGB/RGB camera rig using pixel intensities or image features. In addition to aligning the different wavelength images, these correspondences are used to generate dense disparity and depth maps. We obtain accuracies similar to other multi-modal image alignment methodologies as long as the scene contains sufficient depth variations, although a direct comparison is not possible because of the lack of standard image sets from moving multi-modal camera rigs. We test our method on synthetic optical flow fields and on real image sequences that we created with a multi-modal binocular stereo RGB/IR camera rig. We determine our method's accuracy by comparing against a ground truth.
NASA Astrophysics Data System (ADS)
Hawdon, Aaron; McJannet, David; Wallace, Jim
2014-06-01
The cosmic-ray probe (CRP) provides continuous estimates of soil moisture over an area of ˜30 ha by counting fast neutrons produced from cosmic rays which are predominantly moderated by water molecules in the soil. This paper describes the setup, measurement correction procedures, and field calibration of CRPs at nine locations across Australia with contrasting soil type, climate, and land cover. These probes form the inaugural Australian CRP network, which is known as CosmOz. CRP measurements require neutron count rates to be corrected for effects of atmospheric pressure, water vapor pressure changes, and variations in incoming neutron intensity. We assess the magnitude and importance of these corrections and present standardized approaches for network-wide analysis. In particular, we present a new approach to correct for incoming neutron intensity variations and test its performance against existing procedures used in other studies. Our field calibration results indicate that a generalized calibration function for relating neutron counts to soil moisture is suitable for all soil types, with the possible exception of very sandy soils with low water content. Using multiple calibration data sets, we demonstrate that the generalized calibration function only applies after accounting for persistent sources of hydrogen in the soil profile. Finally, we demonstrate that by following standardized correction procedures and scaling neutron counting rates of all CRPs to a single reference location, differences in calibrations between sites are related to site biomass. This observation provides a means for estimating biomass at a given location or for deriving coefficients for the calibration function in the absence of field calibration data.
Phenotypic selection varies with pollination intensity across populations of Sabatia angularis.
Emel, Sarah L; Franks, Steven J; Spigler, Rachel B
2017-07-01
Pollinators are considered primary selective agents acting on plant traits, and thus variation in the strength of the plant-pollinator interaction might drive variation in the opportunity for selection and selection intensity across plant populations. Here, we examine whether these critical evolutionary parameters covary with pollination intensity across wild populations of the biennial Sabatia angularis. We quantified pollination intensity in each of nine S. angularis populations as mean stigmatic pollen load per population. For female fitness and three components, fruit number, fruit set (proportion of flowers setting fruit) and number of seeds per fruit, we evaluated whether the opportunity for selection varied with pollination intensity. We used phenotypic selection analyses to test for interactions between pollination intensity and selection gradients for five floral traits, including flowering phenology. The opportunity for selection via fruit set and seeds per fruit declined significantly with increasing pollen receipt, as expected. We demonstrated significant directional selection on multiple traits across populations. We also found that selection intensity for all traits depended on pollination intensity. Consistent with general theory about the relationship between biotic interaction strength and the intensity of selection, our study suggests that variation in pollination intensity drives variation in selection across S. angularis populations. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.
The dependence of solar modulation on the sign of the cosmic ray particle charge
NASA Technical Reports Server (NTRS)
Garcia-Munoz, M.; Meyer, P.; Pyle, K. R.; Simpson, J. A.; Evenson, P. A.
1985-01-01
The solar modulation of galactic cosmic ray helium and electrons at 1 AU, within the 600-1000 MV magnetic rigidity interval, are compared for the period from 1965 through 1984. The time-intensity variations during the two solar maxima around 1970 and 1981 show that after 1970 the helium intensity recovers earlier than that of the electrons, whereas after 1981 the electron intensity recovers earlier than that of helium. The flux ratio of helium to electrons (He/e) undergoes a major increases during the 1969-1971 period and a major decrease during 1979-83. These experimental results can be interpreted as due to a dependence of the solar modulation of galactic cosmic rays on the sign of the particle charge, possibly as a consequence of drifts due to gradients and curvatures in the interplanetary magnetic field. However, the comparison of the shapes of the intensity-time curves of helium and electrons in the period 1970-1981 does not support a major specific prediction of the drift model.
Archaeomagnetic studies in Mesoamerica using non-conventional materials
NASA Astrophysics Data System (ADS)
Soler-Arechalde, A.; Gogichaishvili, A.; Urrutia-Fucugauchi, J.
2004-12-01
For the first time results of an archaeomagnetic study of mural paintings and unburned lime-plasters from Mesoamerica are presented. The magnetic measurements show that at least four murals (sites: Cacaxtla, Cholula and Templo Mayor) retain a remanent magnetization carried by a mixture of hematite and magnetite grains. In most specimens, a characteristic magnetization is successfully isolated by alternating field demagnetization. The mean directions are reasonably well determined for each murals and within the range of secular variation during the last centuries. Studied Mesoamerican murals apparently retain the direction of the magnetic field at the time they were painted and are therefore an invaluable source of information concerning its secular variation. Lime-plaster samples were selected from two archaeological excavation projects in the Teopancazco residential compound of Teotihuacan and the large multi-stage structure of Templo Mayor in Tenochtitlan, where chronological information is available. The intensity of remanent magnetization and low-field susceptibility are weak reflecting low relative content of magnetic minerals. NRM directions are well grouped and alternating field demagnetization shows single or two-component magnetizations. Rock-magnetic experiments point to fine-grained titanomagnetites with pseudo-single domain behavior. Anisotropy of magnetic susceptibility measurements document a depositional fabric, with normal to free-surface minimum AMS axes. Characteristic mean site directions were correlated to the paleosecular variation curve for Mesoamerica. Our results suggest that archaeomagnetic dating can be applied to mural paintings and lime-plasters, which are materials widely employed in Mesoamerica.
Investigating the auroral electrojets using Swarm
NASA Astrophysics Data System (ADS)
Smith, Ashley; Macmillan, Susan; Beggan, Ciaran; Whaler, Kathy
2016-04-01
The auroral electrojets are large horizontal currents that flow within the ionosphere in ovals around the polar regions. They are an important aspect of space weather and their position and intensity vary with solar wind conditions and geomagnetic activity. The electrojet positions are also governed by the Earth's main magnetic field. During more active periods, the auroral electrojets typically move equatorward and become more intense. This causes a range of effects on Earth and in space, including geomagnetically induced currents in power transmission networks, disturbance to radio communications and increased drag on satellites due to expansion of the atmosphere. They are also indicative of where the aurora are visible. Monitoring of the auroral electrojets in the pre-satellite era was limited to the network of ground-based magnetic observatories, from which the traditional AE activity indices are produced. These suffer in particular from the stations' poor distribution in position and so this motivates the use of satellite-based measurements. With polar low-Earth orbit satellites carrying magnetometers, all latitudes can be sampled with excellent resolution. This poster presents an investigation using Swarm's magnetometer data to detect the electrojets as the spacecraft move above them. We compare and contrast two approaches, one which uses vector data and the other which uses scalar data (Hamilton and Macmillan 2013, Vennerstrom and Moretto, 2013). Using ideas from both approaches we determine the oval positions and intensities from Swarm and earlier satellites. The variation in latitude and intensity with solar wind conditions, geomagnetic activity and secular variation of the main field is investigated. We aim to elucidate the relative importance of these factors. Hamilton, B. and Macmillan, S., 2013. Investigation of decadal scale changes in the auroral oval positions using Magsat and CHAMP data. Poster at IAGA 12th Scientific Assembly, 2013. http://nora.nerc.ac.uk/503037/ Vennerstrom, S. and Moretto, T., 2013. Monitoring auroral electrojets with satellite data. Space Weather, VOL. 11, 509-519, doi:10.1002/swe.20090
NASA Technical Reports Server (NTRS)
Teske, R. G.
1972-01-01
Type III solar bursts occurring in the absence of solar flares were observed to be accompanied by weak X-radiation. The energy scale of an OSO-3 soft X-ray ion chamber was assessed using realistic theoretical X-ray spectra. Relationships between soft solar X-rays and solar activity were investigated. These included optical studies, the role of the Type III acceleration mechanism in establishing the soft X-ray source volume, H alpha flare intensity variations, and gross magnetic field structure.
2013-06-01
Under the influence of an electrical field, these electrons and holes migrate to their respective electrodes, where they are collected and...an electrical response which translates to an intensity reading on the detector’s readout meter. Since high-resolution detector materials are the...magnitude of three factors: inherent statistical variation of the electric signal measured at the detector’s contacts (Fano noise ∆EF), random electron
VAN RHEIN, STEPHEN L.; FLANARY, BARRY E.; JULIANO, STEVEN A.
2008-01-01
The intensity and prevalence of parasitism by Ascogregarina barretti (Vavra) in Aedes triseriatus (Say) did not differ between tires and tree holes in field samples taken in September 1996. There was significant variation in the intensity of parasitism among containers that was not significantly correlated with the pH, conductivity, or temperature of the container water. In an experiment manipulating habitat drying, treatments had a significant effect on A. barretti infection of Ae. triseriatus, only during midsummer in one of two years. Containers maintained at maximal volume had the lowest prevalence of parasitism, and containers that dried out had the greatest prevalence. In this experiment, there was also a season-dependent difference in the intensity and prevalence of infection between tree holes and tires. The first larvae to reach the fourth instar in tires in the early summer had lower intensity and prevalence of infection than did larvae in tree holes during the same period. The seasonal difference in intensity of parasitism between tires and tree holes was not related to differences in pH, conductivity, and temperature. PMID:11126556
Tectonic implications of Mars crustal magnetism
Connerney, J. E. P.; Acuña, M. H.; Ness, N. F.; Kletetschka, G.; Mitchell, D. L.; Lin, R. P.; Reme, H.
2005-01-01
Mars currently has no global magnetic field of internal origin but must have had one in the past, when the crust acquired intense magnetization, presumably by cooling in the presence of an Earth-like magnetic field (thermoremanent magnetization). A new map of the magnetic field of Mars, compiled by using measurements acquired at an ≈400-km mapping altitude by the Mars Global Surveyor spacecraft, is presented here. The increased spatial resolution and sensitivity of this map provide new insight into the origin and evolution of the Mars crust. Variations in the crustal magnetic field appear in association with major faults, some previously identified in imagery and topography (Cerberus Rupes and Valles Marineris). Two parallel great faults are identified in Terra Meridiani by offset magnetic field contours. They appear similar to transform faults that occur in oceanic crust on Earth, and support the notion that the Mars crust formed during an early era of plate tectonics. PMID:16217034
Tectonic implications of Mars crustal magnetism.
Connerney, J E P; Acuña, M H; Ness, N F; Kletetschka, G; Mitchell, D L; Lin, R P; Reme, H
2005-10-18
Mars currently has no global magnetic field of internal origin but must have had one in the past, when the crust acquired intense magnetization, presumably by cooling in the presence of an Earth-like magnetic field (thermoremanent magnetization). A new map of the magnetic field of Mars, compiled by using measurements acquired at an approximately 400-km mapping altitude by the Mars Global Surveyor spacecraft, is presented here. The increased spatial resolution and sensitivity of this map provide new insight into the origin and evolution of the Mars crust. Variations in the crustal magnetic field appear in association with major faults, some previously identified in imagery and topography (Cerberus Rupes and Valles Marineris). Two parallel great faults are identified in Terra Meridiani by offset magnetic field contours. They appear similar to transform faults that occur in oceanic crust on Earth, and support the notion that the Mars crust formed during an early era of plate tectonics.
NASA Astrophysics Data System (ADS)
Rauf, N.; Alam, D. Y.; Jamaluddin, M.; Samad, B. A.
2018-03-01
The Magnetic Resonance Imaging (MRI) is a medical imaging technique that uses the interaction between the magnetic field and the nuclear spins. MRI can be used to show disparity of pathology by transversal relaxation time (T2) weighted images. Some techniques for producing T2-weighted images are Periodically Rotated Overlapping Parallel Lines with Enhanced Reconstruction (PROPELLER) and Fluid Attenuated Inversion Recovery (FLAIR). A comparison of T2 PROPELLER and T2 FLAIR parameters in MRI image has been conducted. And improve Image Quality the image by using RadiAnt DICOM Viewer and ENVI software with method of image segmentation and Region of Interest (ROI). Brain images were randomly selected. The result of research showed that Time Repetition (TR) and Time Echo (TE) values in all types of images were not influenced by age. T2 FLAIR images had longer TR value (9000 ms), meanwhile T2 PROPELLER images had longer TE value (100.75 - 102.1 ms). Furthermore, areas with low and medium signal intensity appeared clearer by using T2 PROPELLER images (average coefficients of variation for low and medium signal intensity were 0.0431 and 0.0705, respectively). As for areas with high signal intensity appeared clearer by using T2 FLAIR images (average coefficient of variation was 0.0637).
The electromagnetic bio-field: clinical experiments and interferences
Burnei, G; Hodorogea, D; Georgescu, I; Gavriliu, Ş; Drăghici, I; Dan, D; Vlad, C; Drăghici, L
2012-01-01
Introduction: One of the most important factors is the technical and scientifically rapid development that is continually modifying the world we live in and polluting it with electromagnetic radiations. A functional and structural influence of magnetic and electromagnetic field on living organisms is presented in the literature by many performed experiments. Material and methods: The notion of bio-field represents the electromagnetic field generated by the bio-structures, not only in their normal physiological activities but also in their pathological states. There is a tight interdependency between the bio-field and the bio-structure, which respects the primary notion of an electromagnetic field given by the Maxwell-Faraday laws, in which, the electromagnetic phenomena are simplified to the field variations. These variations can be expressed in a coherent differential equation system that bounds the field vectors to different space points at different time moments. Results: The living organisms cannot contain electrostatic and magneto-static fields due to the intense activity of the bio-structures. The biochemical reactions that have high rhythms and speeds always impose the electrodynamics character of the biologic field that also corresponds to the stability of the protein molecule that can be explained only through a dynamic way. The existent energy is not considered an exciting agent, and it does not lead to any effects. Conclusions: The parameters of these elementary bio-fields cannot yet be fully known due to technical reasons. The biological structures are very complex ones and undergo continuous dynamical activity. That is why the calculus model should be related to the constant dynamics, nowadays being very difficult to express. PMID:22802878
The electromagnetic bio-field: clinical experiments and interferences.
Burnei, G; Hodorogea, D; Georgescu, I; Gavriliu, Ş; Drăghici, I; Dan, D; Vlad, C; Drăghici, L
2012-06-12
One of the most important factors is the technical and scientifically rapid development that is continually modifying the world we live in and polluting it with electromagnetic radiations. A functional and structural influence of magnetic and electromagnetic field on living organisms is presented in the literature by many performed experiments. The notion of bio-field represents the electromagnetic field generated by the bio-structures, not only in their normal physiological activities but also in their pathological states. There is a tight interdependency between the bio-field and the bio-structure, which respects the primary notion of an electromagnetic field given by the Maxwell-Faraday laws, in which, the electromagnetic phenomena are simplified to the field variations. These variations can be expressed in a coherent differential equation system that bounds the field vectors to different space points at different time moments. The living organisms cannot contain electrostatic and magneto-static fields due to the intense activity of the bio-structures. The biochemical reactions that have high rhythms and speeds always impose the electrodynamics character of the biologic field that also corresponds to the stability of the protein molecule that can be explained only through a dynamic way. The existent energy is not considered an exciting agent, and it does not lead to any effects. The parameters of these elementary bio-fields cannot yet be fully known due to technical reasons. The biological structures are very complex ones and undergo continuous dynamical activity. That is why the calculus model should be related to the constant dynamics, nowadays being very difficult to express.
Evaluation of candidate geomagnetic field models for IGRF-11
NASA Astrophysics Data System (ADS)
Finlay, C. C.; Maus, S.; Beggan, C. D.; Hamoudi, M.; Lowes, F. J.; Olsen, N.; Thébault, E.
2010-10-01
The eleventh generation of the International Geomagnetic Reference Field (IGRF) was agreed in December 2009 by a task force appointed by the International Association of Geomagnetism and Aeronomy (IAGA) Division V Working Group V-MOD. New spherical harmonic main field models for epochs 2005.0 (DGRF-2005) and 2010.0 (IGRF-2010), and predictive linear secular variation for the interval 2010.0-2015.0 (SV-2010-2015) were derived from weighted averages of candidate models submitted by teams led by DTU Space, Denmark (team A); NOAA/NGDC, U.S.A. (team B); BGS, U.K. (team C); IZMIRAN, Russia (team D); EOST, France (team E); IPGP, France (team F); GFZ, Germany (team G) and NASA-GSFC, U.S.A. (team H). Here, we report the evaluations of candidate models carried out by the IGRF-11 task force during October/November 2009 and describe the weightings used to derive the new IGRF-11 model. The evaluations include calculations of root mean square vector field differences between the candidates, comparisons of the power spectra, and degree correlations between the candidates and a mean model. Coefficient by coefficient analysis including determination of weighting factors used in a robust estimation of mean coefficients is also reported. Maps of differences in the vertical field intensity at Earth's surface between the candidates and weighted mean models are presented. Candidates with anomalous aspects are identified and efforts made to pinpoint both troublesome coefficients and geographical regions where large variations between candidates originate. A retrospective analysis of IGRF-10 main field candidates for epoch 2005.0 and predictive secular variation candidates for 2005.0-2010.0 using the new IGRF-11 models as a reference is also reported. The high quality and consistency of main field models derived using vector satellite data is demonstrated; based on internal consistency DGRF-2005 has a formal root mean square vector field error over Earth's surface of 1.0 nT. Difficulties nevertheless remain in accurately forecasting field evolution only five years into the future.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kugland, N. L.; Ryutov, D. D.; Plechaty, C.
2012-10-15
Proton imaging is commonly used to reveal the electric and magnetic fields that are found in high energy density plasmas. Presented here is an analysis of this technique that is directed towards developing additional insight into the underlying physics. This approach considers: formation of images in the limits of weak and strong intensity variations; caustic formation and structure; image inversion to obtain line-integrated field characteristics; direct relations between images and electric or magnetic field structures in a plasma; imaging of sharp features such as Debye sheaths and shocks. Limitations on spatial and temporal resolution are assessed, and similarities with opticalmore » shadowgraphy are noted. Synthetic proton images are presented to illustrate the analysis. These results will be useful for quantitatively analyzing experimental proton imaging data and verifying numerical codes.« less
NASA Astrophysics Data System (ADS)
Pasmanik, Dmitry; Demekhov, Andrei
We study the propagation of VLF waves in the Earth's ionosphere and magnetosphere in the presence of large-scale artificial plasma inhomogeneities which can be created by HF heating facilities like HAARP and ``Sura''. A region with enhanced cold plasma density can be formed due to the action of HF heating. This region is extended along geomagnetic field (up to altitudes of several thousand km) and has rather small size across magnetic field (about 1 degree). The geometric-optical approximation is used to study wave propagation. The plasma density and ion composition are calculated with the use of SAMI2 model, which was modified to take the effect of HF heating into account. We calculate ray trajectories of waves with different initial frequency and wave-normal angles and originating at altitudes of about 100 km in the region near the heating area. The source of such waves could be the lightning discharges, modulated HF heating of the ionosphere, or VLF transmitters. Variation of the wave amplitude along the ray trajectories due to refraction is considered and spatial distribution of wave intensity in the magnetosphere is analyzed. We show that the presence of such a density disturbances can lead to significant changes of wave propagation trajectories, in particular, to efficient guiding of VLF waves in this region. This can result in a drastic increase of the VLF-wave intensity in the density duct. The dependence of wave propagation properties on parameters of heating facility operation regime is considered. We study the variation of the spatial distribution of VLF wave intensity related to the slow evolution of the artificial inhomogeneity during the heating.
Evidence for OI 630.0 nm dayglow variations over low latitudes during onset of a substorm
NASA Astrophysics Data System (ADS)
Chakrabarty, D.; Sekar, R.; Sastri, J. H.; Pathan, B. M.; Reeves, G. D.; Yumoto, K.; Kikuchi, T.
2010-10-01
Observations of OI 630.0 nm dayglow intensity from Mt. Abu (magnetic latitude (MLAT): 16.2°N magnetic longitude (MLONG): 148°E) at two different directions corresponding to two different magnetic latitudes (MLATZenith: 16.2°N and MLAT20°Elevation: 22.2°N) revealed nearly simultaneous intensity enhancements on 2 February 2002 (Ap = 19) during 0554-0635 universal time (UT) (1124-1205 Indian Standard Time (IST); IST = UT + 5.5 h). This feature is found to be absent on a typical control day (3 February 2002; Ap = 4). The dayglow enhancements were concomitant with enhancements in the E-region zonal electric field inferred from deviations of the northward component of magnetic field (ΔH) obtained from a meridional chain of magnetometers encompassing the dip equatorial and low-latitude regions. Simultaneous positive bay signatures in ΔH were also recorded at all stations along the 210° magnetic meridian (MM) in the afternoon sector (˜1454-1535 magnetic local time). The changes in the solar wind parameters including the dawn-to-dusk component of IEF and ram pressure are found negligible during 0554-0635 UT. However, the variations in the auroral electrojet and ring current indices indicate the presence of a substorm during 0554-0635 UT. Sudden enhancements in the energetic particle fluxes measured by the Los Alamos National Laboratory (LANL) 1991-080 satellite at geosynchronous altitude provide evidence for the onset of the expansion phase of a magnetospheric substorm. Therefore, the present investigation adduces the response of 630.0 nm dayglow intensities over low latitudes corresponding to the onset of the expansion phase of an auroral/magnetospheric substorm.
NASA Astrophysics Data System (ADS)
Wu, Renguang; Cao, Xi
2017-06-01
The present study contrasts interannual variations in the intensity of boreal summer 10-20-day and 30-60-day intraseasonal oscillations (ISOs) over the tropical western North Pacific and their factors. A pronounced difference is found in the relationship of the two ISOs to El Niño-Southern Oscillation. The 10-20-day ISO intensity is enhanced during El Niño developing summer, whereas the 30-60-day ISO intensity is enhanced during La Niña decaying summer. The above different relationship is interpreted as follows. The equatorial central and eastern Pacific SST anomalies modify vertical wind shear, lower-level moisture, and vertical motion in a southeast-northwest oriented band from the equatorial western Pacific to the tropical western North Pacific where the 10-20-day ISOs originate and propagate. These background field changes modulate the amplitude of 10-20-day ISOs. Preceding equatorial central and eastern Pacific SST anomalies induce SST anomalies in the North Indian Ocean in summer, which in turn modify vertical wind shear and vertical motion over the tropical western North Pacific. The modified background fields influence the amplitude of the 30-60-day ISOs when they reach the tropical western North Pacific from the equatorial region. A feedback of ISO intensity on local SST change is identified in the tropical western North Pacific likely due to a net effect of ISOs on surface heat flux anomalies. This feedback is more prominent from the 10-20-day than the 30-60-day ISO intensity change.
NASA Technical Reports Server (NTRS)
Scarf, F. L.; Fredricks, R. W.; Smith, E. J.; Frandsen, A. M. A.; Serbu, G. P.
1972-01-01
On May 15, 1969, Ogo 5 crossed the plasmapause during a major storm that produced severe geomagnetic disturbances (Kp up to 8-), large and rapid variations in ring-current intensity (as measured by Dst), intense low-latitude aurora, and persistent SAR arcs. Near the highly structured plasmasphere boundary, the electric- and magnetic-field sensors on Ogo 5 detected lower-hybrid-resonance noise bursts, whistlers, ELF hiss, and other discrete signals or emissions. Some LHR noise bursts were associated with whistlers, and these high-altitude phenomena resembled the corresponding ionospheric ones. This report contains a description of the VLF observations. We also show that intense ULF magnetic signals were present near the plasmapause, and we attempt to relate these observations to the predictions of various theories of proton ring-current decay and SAR-arc formation.
NASA Astrophysics Data System (ADS)
Munakata, K.; Mizoguchi, Y.; Kato, C.; Yasue, S.; Mori, S.; Takita, M.; Kóta, J.
2010-04-01
We analyze the temporal variation of the diurnal anisotropy of sub-TeV cosmic-ray intensity observed with the Matsushiro (Japan) underground muon detector over two full solar activity cycles in 1985-2008. We find an anisotropy component in the solar diurnal anisotropy superimposed on the Compton-Getting anisotropy due to Earth's orbital motion around the Sun. The phase of this additional anisotropy is almost constant at ~15:00 local solar time corresponding to the direction perpendicular to the average interplanetary magnetic field at Earth's orbit, while the amplitude varies between a maximum (0.043% ± 0.002%) and minimum (~0.008% ± 0.002%) in a clear correlation with the solar activity. We find a significant time lag between the temporal variations of the amplitude and the sunspot number (SSN) and obtain the best correlation coefficient of +0.74 with the SSN delayed for 26 months. We suggest that this anisotropy might be interpreted in terms of the energy change due to the solar-wind-induced electric field expected for galactic cosmic rays (GCRs) crossing the wavy neutral sheet. The average amplitude of the sidereal diurnal variation over the entire period is 0.034% ± 0.003%, which is roughly one-third of the amplitude reported from air shower and deep-underground muon experiments monitoring multi-TeV GCR intensity suggesting a significant attenuation of the anisotropy due to the solar modulation. We find, on the other hand, only a weak positive correlation between the sidereal diurnal anisotropy and the solar activity cycle in which the amplitude in the "active" solar activity epoch is about twice the amplitude in the "quiet" solar activity epoch. This implies that only one-fourth of the total attenuation varies in correlation with the solar activity cycle and/or the solar magnetic cycle. We finally examine the temporal variation of the "single-band valley depth" (SBVD) quoted by the Milagro experiment and, in contrast with recent Milagro's report, we find no steady increase in the Matsushiro observations in a seven-year period between 2000 and 2007. We suggest, therefore, that the steady increase of the SBVD reported by the Milagro experiment is not caused by the decreasing solar modulation in the declining phase of the 23rd solar activity cycle.
Dynamic Change of Water Quality in Hyporheic Zone at Water Curtain Cultivation Area, Cheongju, Korea
NASA Astrophysics Data System (ADS)
Moon, S. H.; Kim, Y.
2015-12-01
There has been recently growing numbers of facilities for water curtain cultivation of strawberry and lettuce in Korea. These areas are nearly all located in the fluvial deposits near streams which can replenish water resources into exhausted groundwater aquifers during peak season. The purpose of this study is on groundwater chemistry and the change in physical and chemical properties due to stream-groundwater exchange or mixing in the representative agricultural area among the Jurassic granitic terrain of Korea. In the study area, groundwater level continuously decreased from November through March due to intensive use of groundwater, which forced stream water into aquifer. After March, groundwater level was gradually recovered to the original state. To evaluate the extent and its variations of stream water mixing into aquifer, field parameters including T, pH, EC and DO values, concentrations of major ions and oxygen and hydrogen stable isotopic ratios were used. Field measurements and water sample collections were performed several times from 2012 to 2015 mainly during peak time of groundwater use. To compare the temporal variations and areal differences, 21 wells from four cross sections perpendicular to stream line were used. While water temperature, EC values and concentrations of Ca, Mg, Si, HCO3 showed roughly gradual increase from stream line to 150 m distance, pH and DO values showed reverse phenomenon. This can be used to evaluate the extent and limit of stream water introduction into aquifer. However, individual wells showed yearly variations in those parameters and this dynamic and unstable feature indicates that mixing intensity of stream water over groundwater in this hyporheic zone varied year by year according to amounts of groundwater use and decrease of groundwater level.
2014-01-01
Two moderate magnitude (Mw = 5.6 and 5.2) earthquakes in Krn Mountains occurred in 1998 and 2004 which had maximum intensity VII-VIII and VI-VII EMS-98, respectively. Comparison of both macroseismic fields showed unexpected differences in the epicentral area which cannot be explained by site effects. Considerably, different distribution of the highest intensities can be noticed with respect to the strike of the seismogenic fault and in some localities even higher intensities have been estimated for the smaller earthquake. Although hypocentres of both earthquakes were only 2 km apart and were located on the same seismogenic Ravne fault, their focal mechanisms showed a slight difference: almost pure dextral strike-slip for the first event and a strike-slip with small reverse component on a steep fault plane for the second one. Seismotectonically the difference is explained as an active growth of the Ravne fault at its NW end. The radiation patterns of both events were studied to explain their possible impact on the observed variations in macroseismic fields and damage distribution. Radiation amplitude lobes were computed for three orthogonal directions: radial P, SV, and SH. The highest intensities of both earthquakes were systematically observed in directions of four (1998) or two (2004) large amplitude lobes in SH component (which corresponds mainly to Love waves), which have significantly different orientation for both events. On the other hand, radial P direction, which is almost purely symmetrical for the strike-slip mechanism of 1998 event, showed for the 2004 event that its small reverse component of movement has resulted in a very pronounced amplitude lobe in SW direction where two settlements are located which expressed higher intensities in the case of the 2004 event with respect to the 1998 one. Although both macroseismic fields are very complex due to influences of multiple earthquakes, retrofitting activity after 1998, site effects, and sparse distribution of settlements, unusual differences in observed intensities can be explained with different radiation patterns. PMID:24772011
Gosar, Andrej
2014-01-01
Two moderate magnitude (Mw = 5.6 and 5.2) earthquakes in Krn Mountains occurred in 1998 and 2004 which had maximum intensity VII-VIII and VI-VII EMS-98, respectively. Comparison of both macroseismic fields showed unexpected differences in the epicentral area which cannot be explained by site effects. Considerably, different distribution of the highest intensities can be noticed with respect to the strike of the seismogenic fault and in some localities even higher intensities have been estimated for the smaller earthquake. Although hypocentres of both earthquakes were only 2 km apart and were located on the same seismogenic Ravne fault, their focal mechanisms showed a slight difference: almost pure dextral strike-slip for the first event and a strike-slip with small reverse component on a steep fault plane for the second one. Seismotectonically the difference is explained as an active growth of the Ravne fault at its NW end. The radiation patterns of both events were studied to explain their possible impact on the observed variations in macroseismic fields and damage distribution. Radiation amplitude lobes were computed for three orthogonal directions: radial P, SV, and SH. The highest intensities of both earthquakes were systematically observed in directions of four (1998) or two (2004) large amplitude lobes in SH component (which corresponds mainly to Love waves), which have significantly different orientation for both events. On the other hand, radial P direction, which is almost purely symmetrical for the strike-slip mechanism of 1998 event, showed for the 2004 event that its small reverse component of movement has resulted in a very pronounced amplitude lobe in SW direction where two settlements are located which expressed higher intensities in the case of the 2004 event with respect to the 1998 one. Although both macroseismic fields are very complex due to influences of multiple earthquakes, retrofitting activity after 1998, site effects, and sparse distribution of settlements, unusual differences in observed intensities can be explained with different radiation patterns.
An experimental study of the fluid mechanics associated with porous walls
NASA Technical Reports Server (NTRS)
Ramachandran, N.; Heaman, J.; Smith, A.
1992-01-01
The fluid mechanics associated with the blowing phenomenon from porous walls is measured and characterized. The measurements indicate that the flow exiting a porous wall exhibits a lumpy velocity profile caused by the coalescence effects of smaller jets emerging from the surface. The velocity variations are spatially stable and prevail even at low flow rates. The intensity of this pseudoturbulence is found to be directly proportional to the filter rating of the porous wall and to increase linearly with the mean velocity. Beyond a critical mean velocity, the pseudoturbulence intensity shows a leveling trend with increase in the mean velocity. This critical velocity varies inversely as the filter rating and represents the onset of fully developed jetting action in the flow field. Based on the data, a more appropriate length scale for the flow field is proposed and a correlation is developed that can be used to predict the onset of fully developed jets in the flow emerging from a porous wall.
First archeointensity results from Portuguese potteries (1550-1750 AD)
NASA Astrophysics Data System (ADS)
Hartmann, Gelvam A.; Trindade, Ricardo I. F.; Goguitchaichvili, Avto; Etchevarne, Carlos; Morales, Juan; Afonso, Marisa C.
2009-01-01
Geomagnetic field variations at archeomagnetic timescales can be obtained from well-dated heated structures and archeological potsherds. Here, we present the first archeointensity results obtained on Portuguese ceramics (1550 to 1750 AD) collected at Brazilian archeological sites. The results are compared to those obtained from Western Europe and currently available geomagnetic field models. Continuous thermomagnetic and IRM acquisitions curves indicate that Ti-poor titanomagnetite is responsible for the remanence in these ceramic fragments. Five fragments (24 samples) out of twelve analyzed yielded reliable intensity estimates. The row archeointensity data were corrected for TRM anisotropy and cooling rate effect. The mean dipole moments are obtained for three different age intervals: 1550±30 AD, 1600±30 AD and 1750±50 AD. Mean intensities vary from 37.9±4.2 μT to 54.8±7.6 μT in agreement with the previously reported data for 1550 AD and 1750 AD. Relatively weaker, but still highly dispersed, values were obtained for 1600 AD ceramics.
NASA Technical Reports Server (NTRS)
Minnis, Patrick; Young, David F.; Heck, Patrick W.; Liou, Kuo-Nan; Takano, Yoshihide
1992-01-01
The First ISCCP (International Satellite Cloud Climatology Project) Regional Experiment (FIRE) Phase II Intensive Field Observations (IFO) were taken over southeastern Kansas between November 13 and December 7,1991, to determine cirrus cloud properties. The observations include in situ microphysical data; surface, aircraft, and satellite remote sensing; and measurements of divergence over meso- and smaller-scale areas using wind profilers. Satellite remote sensing of cloud characteristics is an essential aspect for understanding and predicting the role of clouds in climate variations. The objectives of the satellite cloud analysis during FIRE are to validate cloud property retrievals, develop advanced methods for extracting cloud information from satellite-measured radiances, and provide multiscale cloud data for cloud process studies and for verification of cloud generation models. This paper presents the initial results of cloud property analyses during FIRE-II using Geostationary Operational Environmental Satellite (GOES) data and NOAA Advanced Very High Resolution Radiometer (AVHRR) radiances.
NASA Astrophysics Data System (ADS)
Aslam, O. P. M.; Badruddin
2017-09-01
We analyze and compare the geomagnetic and galactic cosmic-ray (GCR) response of selected solar events, particularly the campaign events of the group International Study of Earth-affecting Solar Transients (ISEST) of the program Variability of the Sun and Its Terrestrial Impact (VarSITI). These selected events correspond to Solar Cycle 24, and we identified various of their features during their near-Earth passage. We evaluated the hourly data of geomagnetic indices and ground-based neutron monitors and the concurrent data of interplanetary plasma and field parameters. We recognized distinct features of these events and solar wind parameters when the geomagnetic disturbance was at its peak and when the cosmic-ray intensity was most affected. We also discuss the similarities and differences in the geoeffectiveness and GCR response of the solar and interplanetary structures in the light of plasma and field variations and physical mechanism(s), which play a crucial role in influencing the geomagnetic activity and GCR intensity.
NASA Astrophysics Data System (ADS)
Ahn, Hyeon-Seon; Kidane, Tesfaye; Yamamoto, Yuhji; Otofuji, Yo-ichiro
2016-01-01
Palaeointensity variation is investigated for an inferred time period spanning from 2.34 to 1.96 Ma. Twenty-nine consecutive lava flows are sampled along cliffs 350 m high generated by normal faulting on the Dobi section of Afar depression, Ethiopia. Magnetostratigraphy and K-Ar measurements indicate a lava sequence of R-N-R-N geomagnetic field polarities in ascending order; the lower normal polarity is identified as the Réunion Subchron. Reliability of palaeomagnetic data is ascertained through careful thermal demagnetization and by the reversal test. The Tsunakawa-Shaw method yielded 70 successful palaeointensity results from 24 lava flows and gave 11 acceptable mean palaeointensities. Reliability in palaeointensity data is ascertained by the similar values obtained by the IZZI-Thellier method and thus 11 reliable mean values are obtained from our combined results. After the older reverse polarity with the field intensity of 19.6 ± 7.8 μT, an extremely low palaeointensity period with an average of 6.4 μT is shown to occur prior to the Réunion Subchron. During the Réunion Subchron, the dipole field strength is shown to have returned to an average of 19.5 μT, followed by second extreme low of 3.6 μT and rejuvenation with 17.1 ± 5.3 μT in the younger reverse polarity. This `W-shape' palaeointensity variation is characterized by occurrences of two extremely weak fields lower than 8 μT prior to and during the Réunion Subchron and a relatively weak time-averaged field of approximately 15 μT. This feature is also found in sedimentary cores from the Ontong Java Plateau and the north Atlantic, indicative of a possibly global geomagnetic field phenomenon rather than a local effect on Ethiopia. Furthermore, we estimate a weak virtual axial dipole moment of 3.66 (±1.85) × 1022 Am2 during early stage of the Matuyama Chron (inferred time period of 2.34-1.96 Ma).
NASA Astrophysics Data System (ADS)
Choi, Jinhyeon; Lee, Hee Ho; Ahn, Jungil; Seo, Sang-Ho; Shin, Jang-Kyoo
2012-06-01
In this paper, we present a differential-mode biosensor using dual extended-gate metal-oxide-semiconductor field-effect transistors (MOSFETs), which possesses the advantages of both the extended-gate structure and the differential-mode operation. The extended-gate MOSFET was fabricated using a 0.6 µm standard complementary metal oxide semiconductor (CMOS) process. The Au extended gate is the sensing gate on which biomolecules are immobilized, while the Pt extended gate is the dummy gate for use in the differential-mode detection circuit. The differential-mode operation offers many advantages such as insensitivity to the variation of temperature and light, as well as low noise. The outputs were measured using a semiconductor parameter analyzer in a phosphate buffered saline (PBS; pH 7.4) solution. A standard Ag/AgCl reference electrode was used to apply the gate bias. We measured the variation of output voltage with time, temperature, and light intensity. The bindings of self-assembled monolayer (SAM), streptavidin, and biotin caused a variation in the output voltage of the differential-mode detection circuit and this was confirmed by surface plasmon resonance (SPR) experiment. Biotin molecules could be detected up to a concentration of as low as 0.001 µg/ml.
High-resolution palaeomagnetic records of the Laschamp geomagnetic excursion from the Blake Ridge
NASA Astrophysics Data System (ADS)
Mac Niocaill, C.; Bourne, M. D.; Thomas, A. L.; Henderson, G. M.
2013-05-01
Geomagnetic excursions are brief (1000s of years) deviations in geomagnetic field behaviour from that expected during 'normal secular' variation. The Laschamp excursion (~41 ka) was a global deviation in geomagnetic field behaviour. Previously published records suggest rapid changes in field direction and a concurrent substantial decrease in field intensity. Accurate dating of excursions and determinations of their durations from multiple locations is vital to our understanding to global field behaviour during these deviations. We present here high-resolution palaeomagnetic records of the Laschamp excursion obtained from two Ocean Drilling Program (ODP) Sites 1061 and 1062 on the Blake-Bahama Outer Ridge (ODP Leg 172) Relatively high sedimentation rates (~30-40 cm kyr-1) at these locations allow the determination of transitional field behaviour during the excursion. Despite their advantages, sedimentary records can be limited by the potential for unrecognized variations in sedimentation rates between widely spaced age-constrained boundaries. Rather than assuming a constant sedimentation rate between assigned age tie-points, we employ measurements of the concentration of 230Thxs in the sediment. 230Thxs is a constant flux proxy and may be used to assess variations in the sedimentation rates through the core sections of interest. Following this approach, we present a new age model for Site 1061 that allows us to better determine the temporal behaviour of the Laschamp excursion with greater accuracy and known uncertainty. Palaeomagnetic measurements of discrete samples from four cores reveal a single excursional feature, across an interval of 30 cm, associated with a broader palaeointensity low. The excursion is characterised by rapid transitions (less than 200 years) between a stable normal polarity and a partially-reversed, polarity. Peaks in inclination either side of the directional excursion indicate periods of time when the local field is dominated by vertical flux patches. Similar behaviour has been observed in records of the Iceland Basin Excursion from the same region. The palaeointensity record is in good agreement between the two sites. The palaeointensity record shows two prominent minima, the first associated with the Laschamp excursion at 41 ka and the second at ~34 ka, possibly associated with the elusive 'Mono-Lake' excursion. Similar field intensity behaviour has been observed during the Blake excursion suggesting that the geomagnetic field stability may be reduced for relatively long durations, potentially up to tens of thousands of years. Using the 230Thxs derived sedimentation rate, we determine that the directional excursion at this location was no longer than ~400 years, occurring within a palaeointensity low lasting 2000 years. We compare this record with previously published records of the Blake and Iceland Basin Excursions from nearby locations. The Laschamp excursion at this location appears to be much shorter in duration than the Blake and Iceland Basin excursions.
NASA Astrophysics Data System (ADS)
Borries, Claudia; Mahrous, Ayman M.; Ellahouny, Nada M.; Badeke, Ronny
2016-11-01
Strong ionospheric perturbations were generated by the intense geomagnetic storm on 17 March 2015. In this article, we are studying perturbations in the European-African sector observed in the total electron content (TEC). Focal points are wavelike phenomena considered as large-scale traveling ionospheric disturbances (LSTIDs). In the European-African sector, the storm produced three different types of LSTIDs: (1) a concurrent TEC perturbation at all latitudes simultaneously; (2) one LSTID propagating toward the equator, having very large wave parameters (wavelength: ≈3600 km, period: ≈120 min, and speed: ≈500 m/s); and (3) several LSTIDs propagating toward the equator with typical wave parameters (wavelength: ≈2100 km, period: ≈60 min, and speed ≈600 m/s). The third type of LSTIDs is considered to be exited as most LSTIDs either due to variations in the Joule heating or variations in the Lorentz force, whereas the first two perturbation types are rather unusual in their appearance. They occurred during the partial recovery phase when the geomagnetic perturbations were minor and the interplanetary magnetic field turned northward. A westward prompt penetration electric field is considered to excite the first perturbation signature, which indicates a sudden TEC depletion. For the second LSTID type, variations in the Lorentz force because of perturbed electric fields and a minor particle precipitation effect are extracted as possible excitation mechanisms.
NASA Astrophysics Data System (ADS)
Huang, Ping; Zhang, Jiabao; Ma, Donghao; Wen, Zhaofei; Wu, Shengjun; Garland, Gina; Pereira, Engil Isadora Pujol; Zhu, Anning; Xin, Xiuli; Zhang, Congzhi
2016-03-01
Atmospheric nitrogen (N) deposition, an important N source to agro-ecosystems, has increased intensively in China during recent decades. However, knowledge on temporal variations of total N deposition and their influencing factors is limited due to lack of systematic monitoring data. In this study, total N deposition, including dry and wet components, was monitored using the water surrogate surface method for a typical agro-ecosystem with a winter wheat (Triticum aestivum L.) and summer maize (Zea mays L.) rotation system in the Huang-Huai-Hai Plain from May 2008 to April 2012. The results indicated that annual total N deposition ranged from 23.8 kg N ha-1 (2009-2010) to 40.3 kg N ha-1 (2008-2009) and averaged 31.8 kg N ha-1. Great inter-annual variations were observed during the sampling period, due to differences in annual rainfall and gaseous N losses from farmlands. Monthly total N deposition varied greatly, from less than 0.6 kg N ha-1 (January, 2010) to over 8.0 kg N ha-1 (August, 2008), with a mean value of 2.6 kg N ha-1. In contrast to wet deposition, dry portions generally contributed more to the total, except in the precipitation-intensive months, accounting for 65% in average. NH4+ -N was the dominant species in N deposition and its contribution to total deposition varied from 6% (December, 2009) to 79% (July, 2008), averaging 53%. The role of organic N (O-N) in both dry and wet deposition was equal to or even greater than that of NO3- -N. Influencing factors such as precipitation and its seasonal distribution, reactive N sources, vegetation status, field management practices, and weather conditions were responsible for the temporal variations of atmospheric N deposition and its components. These results are helpful for reducing the knowledge gaps in the temporal variations of atmospheric N deposition and their influencing factors in different ecosystems, to improve the understandings on N budget in the typical agro-ecosystem, and to provide references and recommendations for field nutrient management in this region.
Tang, Jian; Jiang, Xiaoliang
2017-01-01
Image segmentation has always been a considerable challenge in image analysis and understanding due to the intensity inhomogeneity, which is also commonly known as bias field. In this paper, we present a novel region-based approach based on local entropy for segmenting images and estimating the bias field simultaneously. Firstly, a local Gaussian distribution fitting (LGDF) energy function is defined as a weighted energy integral, where the weight is local entropy derived from a grey level distribution of local image. The means of this objective function have a multiplicative factor that estimates the bias field in the transformed domain. Then, the bias field prior is fully used. Therefore, our model can estimate the bias field more accurately. Finally, minimization of this energy function with a level set regularization term, image segmentation, and bias field estimation can be achieved. Experiments on images of various modalities demonstrated the superior performance of the proposed method when compared with other state-of-the-art approaches.
Guo, Qing-Hua; Zhang, Chen-Jie; Wei, Chao; Xu, Min-Min; Yuan, Ya-Xian; Gu, Ren-Ao; Yao, Jian-Lin
2016-01-05
A large surface-enhanced Raman scattering (SERS) effect is critically dependent on the gap distance of adjacent nanostructures, i.e., "hot spots". However, the fabrication of dynamically controllable hot spots still remains a remarkable challenge. In the present study, we employed an external magnetic field to dynamically control the interparticle spacing of a two-dimensional monolayer film of Fe3O4@Au nanoparticles at a hexane/water interface. SERS measurements were performed to monitor the expansion and shrinkage of the nanoparticles gaps, which produced an obvious effect on SERS activities. The balance between the electrostatic repulsive force, surface tension, and magnetic attractive force allowed observation of the magnetic-field-responsive SERS effect. Upon introduction of an external magnetic field, a very weak SERS signal appeared initially, indicating weak enhancement due to a monolayer film with large interparticle spacing. The SERS intensity reached maximum after 5s and thereafter remained almost unchanged. The results indicated that the observed variations in SERS intensities were fully reversible after removal of the external magnetic field. The reduction of interparticle spacing in response to a magnetic field resulted in about one order of magnitude of SERS enhancement. The combined use of the monolayer film and external magnetic field could be developed as a strategy to construct hot spots both for practical application of SERS and theoretical simulation of enhancement mechanisms. Copyright © 2015 Elsevier B.V. All rights reserved.
New variational bounds on convective transport. I. Formulation and analysis
NASA Astrophysics Data System (ADS)
Tobasco, Ian; Souza, Andre N.; Doering, Charles R.
2016-11-01
We study the maximal rate of scalar transport between parallel walls separated by distance h, by an incompressible fluid with scalar diffusion coefficient κ. Given velocity vector field u with intensity measured by the Péclet number Pe =h2 < | ∇ u |2 >1/2 / κ (where < . > is space-time average) the challenge is to determine the largest enhancement of wall-to-wall scalar flux over purely diffusive transport, i.e., the Nusselt number Nu . Variational formulations of the problem are presented and it is determined that Nu <= cPe 2 / 3 , where c is an absolute constant, as Pe -> ∞ . Moreover, this scaling for optimal transport-possibly modulo logarithmic corrections-is asymptotically sharp: admissible steady flows with Nu >=c' Pe 2 / 3 /[ log Pe ] 2 are constructed. The structure of (nearly) maximally transporting flow fields is discussed. Supported in part by National Science Foundation Graduate Research Fellowship DGE-0813964, awards OISE-0967140, PHY-1205219, DMS-1311833, and DMS-1515161, and the John Simon Guggenheim Memorial Foundation.
Estimating radiofrequency power deposition in body NMR imaging.
Bottomley, P A; Redington, R W; Edelstein, W A; Schenck, J F
1985-08-01
Simple theoretical estimates of the average, maximum, and spatial variation of the radiofrequency power deposition (specific absorption rate) during hydrogen nuclear magnetic resonance imaging are deduced for homogeneous spheres and for cylinders of biological tissue with a uniformly penetrating linear rf field directed axially and transverse to the cylindrical axis. These are all simple scalar multiples of the expression for the cylinder in an axial field published earlier (Med. Phys. 8, 510 (1981]. Exact solutions for the power deposition in the cylinder with axial (Phys. Med. Biol. 23, 630 (1978] and transversely directed rf field are also presented, and the spatial variation of power deposition in head and body models is examined. In the exact models, the specific absorption rates decrease rapidly and monotonically with decreasing radius despite local increases in rf field amplitude. Conversion factors are provided for calculating the power deposited by Gaussian and sinc-modulated rf pulses used for slice selection in NMR imaging, relative to rectangular profiled pulses. Theoretical estimates are compared with direct measurements of the total power deposited in the bodies of nine adult males by a 63-MHz body-imaging system with transversely directed field, taking account of cable and NMR coil losses. The results for the average power deposition agree within about 20% for the exact model of the cylinder with axial field, when applied to the exposed torso volume enclosed by the rf coil. The average values predicted by the simple spherical and cylindrical models with axial fields, the exact cylindrical model with transverse field, and the simple truncated cylinder model with transverse field were about two to three times that measured, while the simple model consisting of an infinitely long cylinder with transverse field gave results about six times that measured. The surface power deposition measured by observing the incremental power as a function of external torso radius was comparable to the average value. This is consistent with the presence of a variable thickness peripheral adipose layer which does not substantially increase surface power deposition with increasing torso radius. The absence of highly localized intensity artifacts in 63-MHz body images does not suggest anomalously intense power deposition at localized internal sites, although peak power is difficult to measure.
Intensity Variations of Narrow Bands of Solar UV Radiation during Descending Phases of SACs 21-23
NASA Astrophysics Data System (ADS)
Gigolashvili, M.; Kapanadze, N.
2014-12-01
The study of variations of four narrow bands of solar spectral irradiance (SSI) in the ultraviolet (UV) range for period 1981-2008 is presented. Observational data obtained by space-flight missions SORCE, UARS, SME and daily meanings of international sunspot number (ISN) have been used. The investigated data cover the decreasing phases of the solar activity cycles (SACs) 21, 22 and 23. We have revealed a peculiar behavior of intensity variability of some solar ultraviolet spectral lines originated in the solar chromospheres for period corresponding to the declining phase of the solar cycle 23. It is found that variability of emission of different solar spectral narrow bands (289.5 nm, 300.5 nm) does not agree equally well with ISN variability during decreasing phase of the solar activity cycle 23. The negative correlations between total solar irradiance and the solar spectral narrow bands of UV emission (298.5 nm, 300.5 nm) had been revealed. The existence of the negative correlation can be explained by the sensitivity of SSI of some emission lines to the solar global magnetic field.
Accounting for range uncertainties in the optimization of intensity modulated proton therapy.
Unkelbach, Jan; Chan, Timothy C Y; Bortfeld, Thomas
2007-05-21
Treatment plans optimized for intensity modulated proton therapy (IMPT) may be sensitive to range variations. The dose distribution may deteriorate substantially when the actual range of a pencil beam does not match the assumed range. We present two treatment planning concepts for IMPT which incorporate range uncertainties into the optimization. The first method is a probabilistic approach. The range of a pencil beam is assumed to be a random variable, which makes the delivered dose and the value of the objective function a random variable too. We then propose to optimize the expectation value of the objective function. The second approach is a robust formulation that applies methods developed in the field of robust linear programming. This approach optimizes the worst case dose distribution that may occur, assuming that the ranges of the pencil beams may vary within some interval. Both methods yield treatment plans that are considerably less sensitive to range variations compared to conventional treatment plans optimized without accounting for range uncertainties. In addition, both approaches--although conceptually different--yield very similar results on a qualitative level.
Abrams, Michael J.; Ashley, R.P.; Rowan, L.C.; Goetz, A.F.H.; Kahle, A.B.
1977-01-01
Color composites of Landsat MSS ratio images that display variations in the intensity of ferric-iron absorption bands are highly effective for mapping limonitic altered rocks, but ineffective for mapping nonlimonitic altered rocks. Analysis of 0.45-2.5 ?m field and laboratory spectra shows that iron-deficient opalites in the Cuprite mining district, Nevada, have an intense OH-absorption band near 2.2 ?m owing to their clay mineral and alunite contents and that this spectral feature is absent or weak in adjacent unaltered tuff and basalt. To evaluate the usefulness of this spectral feature for discriminating between altered and unaltered rocks, we generated color-ratio composite images from multispectral (0.46-2.36 ?m) aircraft data. The altered rocks in the district can be discriminated from unaltered rocks with few ambiguities; in addition, some effects of mineralogical zoning can be discriminated within the altered area. Only variations in amounts of limonite can be discerned in shorter wavelength aircraft data, Landsat MSS bands, and color aerial photographs.
Devi, C Usha; Vasu, R M; Sood, A K
2006-01-01
We investigate the modulation of an optical field caused by its interaction with an ultrasound beam in a tissue mimicking phantom. This modulation appears as a modulation in the intensity autocorrelation, which is measured by a photon counting correlator. The factors contributing to the modulation are: 1. amplitude of vibration of the particles of the tissue, 2. refractive index modulation, and 3. absorption coefficient in the region of the tissue intercepted by the ultrasound beam and light. We show in this work that a significant part of the contribution to this modulation comes from displacement of the tissue particles, which in turn is governed by the elastic properties of the tissue. We establish, both through simulations and experiments using an optical elastography phantom, the effects of the elasticity and absorption coefficient variations on the modulation of intensity autocorrelation. In the case where there is no absorption coefficient variation, we suggest that the depth of modulation can be calibrated to measure the displacement of tissue particles that, in turn, can be used to measure the tissue elasticity.
A systematic analysis of the XMM-Newton background: III. Impact of the magnetospheric environment
NASA Astrophysics Data System (ADS)
Ghizzardi, Simona; Marelli, Martino; Salvetti, David; Gastaldello, Fabio; Molendi, Silvano; De Luca, Andrea; Moretti, Alberto; Rossetti, Mariachiara; Tiengo, Andrea
2017-12-01
A detailed characterization of the particle induced background is fundamental for many of the scientific objectives of the Athena X-ray telescope, thus an adequate knowledge of the background that will be encountered by Athena is desirable. Current X-ray telescopes have shown that the intensity of the particle induced background can be highly variable. Different regions of the magnetosphere can have very different environmental conditions, which can, in principle, differently affect the particle induced background detected by the instruments. We present results concerning the influence of the magnetospheric environment on the background detected by EPIC instrument onboard XMM-Newton through the estimate of the variation of the in-Field-of-View background excess along the XMM-Newton orbit. An important contribution to the XMM background, which may affect the Athena background as well, comes from soft proton flares. Along with the flaring component a low-intensity component is also present. We find that both show modest variations in the different magnetozones and that the soft proton component shows a strong trend with the distance from Earth.
NASA Astrophysics Data System (ADS)
Zhao, Y.; Wang, B.; Wang, Y.
2007-12-01
Recently, a new data assimilation method called “3-dimensional variational data assimilation of mapped observation (3DVM)” has been developed by the authors. We have shown that the new method is very efficient and inexpensive compared with its counterpart 4-dimensional variational data assimilation (4DVar). The new method has been implemented into the Penn State/NCAR mesoscale model MM5V1 (MM5_3DVM). In this study, we apply the new method to the bogus data assimilation (BDA) available in the original MM5 with the 4DVar. By the new approach, a specified sea-level pressure (SLP) field (bogus data) is incorporated into MM5 through the 3DVM (for convenient, we call it variational bogus mapped data assimilation - BMDA) instead of the original 4DVar data assimilation. To demonstrate the effectiveness of the new 3DVM method, initialization and simulation of a landfalling typhoon - typhoon Dan (1999) over the western North Pacific with the new method are compared with that with its counterpart 4DVar in MM5. Results show that the initial structure and the simulated intensity and track are improved more significantly using 3DVM than 4DVar. Sensitivity experiments also show that the simulated typhoon track and intensity are more sensitive to the size of the assimilation window in the 4DVar than that in the 3DVM. Meanwhile, 3DVM takes much less computing cost than its counterpart 4DVar for a given time window.
The relationship of total Birkeland currents to the merging electric field
NASA Technical Reports Server (NTRS)
Bythrow, P. F.; Potemra, T. A.
1983-01-01
Magsat data were used to examine the behavior of Birkeland currents during 1100-2000 UT in consecutive orbits passing near the dawn-dusk meridian. The field was measured with a three-axis fluxgate instrument with a resolution of within 0.5 nT, with the sampling occurring every 1/16th sec. A total of 32 crossings of the Northern Hemisphere auroral zone were available for analysis. The changes in the magnetic readings were correlated more closely with variation in the IMF parameters than to the latitudinal width of the changes. Evidence was found for a relationship between the reconnection electric field and the intensity of the large-scale Birkeland current system. The total conductance of the auroral zone was calculated to be about 18.7 mhos.
Diurnal variation of marine stratocumulus over San Nicolas Island during the FIRE IFO
NASA Technical Reports Server (NTRS)
Davies, R.; Blaskovic, M.
1990-01-01
Preliminary analysis was made of data collected at San Nicolas Island during the Intensive Field Observation (IFO) phase of the First International Satellite Cloud Climatology Program's Regional Experiment (FIRE). Of particular interest was an examination of a distinct diurnal variation in the cloud properties, despite an apparent absence of diurnal forcing from the surface. Direct or indirect radiative modulation of such clouds, as proposed by Fravalo at el. (1981) and Turton and Nicholls (1987) indeed seems likely. Preliminary observational evidence for diurnal change in the marine stratocumulus adjacent to San Nicolas Island is presented. A comparison is then made between the observed behavior and predictions from theoretical models of the interactive effect of radiation on boundary layer clouds.
Peirone, Laura S; Pereyra Irujo, Gustavo A; Bolton, Alejandro; Erreguerena, Ignacio; Aguirrezábal, Luis A N
2018-01-01
Conventional field phenotyping for drought tolerance, the most important factor limiting yield at a global scale, is labor-intensive and time-consuming. Automated greenhouse platforms can increase the precision and throughput of plant phenotyping and contribute to a faster release of drought tolerant varieties. The aim of this work was to establish a framework of analysis to identify early traits which could be efficiently measured in a greenhouse automated phenotyping platform, for predicting the drought tolerance of field grown soybean genotypes. A group of genotypes was evaluated, which showed variation in their drought susceptibility index (DSI) for final biomass and leaf area. A large number of traits were measured before and after the onset of a water deficit treatment, which were analyzed under several criteria: the significance of the regression with the DSI, phenotyping cost, earliness, and repeatability. The most efficient trait was found to be transpiration efficiency measured at 13 days after emergence. This trait was further tested in a second experiment with different water deficit intensities, and validated using a different set of genotypes against field data from a trial network in a third experiment. The framework applied in this work for assessing traits under different criteria could be helpful for selecting those most efficient for automated phenotyping.
Satellite-based assessment of yield variation and its determinants in smallholder African systems
Lobell, David B.
2017-01-01
The emergence of satellite sensors that can routinely observe millions of individual smallholder farms raises possibilities for monitoring and understanding agricultural productivity in many regions of the world. Here we demonstrate the potential to track smallholder maize yield variation in western Kenya, using a combination of 1-m Terra Bella imagery and intensive field sampling on thousands of fields over 2 y. We find that agreement between satellite-based and traditional field survey-based yield estimates depends significantly on the quality of the field-based measures, with agreement highest (R2 up to 0.4) when using precise field measures of plot area and when using larger fields for which rounding errors are smaller. We further show that satellite-based measures are able to detect positive yield responses to fertilizer and hybrid seed inputs and that the inferred responses are statistically indistinguishable from estimates based on survey-based yields. These results suggest that high-resolution satellite imagery can be used to make predictions of smallholder agricultural productivity that are roughly as accurate as the survey-based measures traditionally used in research and policy applications, and they indicate a substantial near-term potential to quickly generate useful datasets on productivity in smallholder systems, even with minimal or no field training data. Such datasets could rapidly accelerate learning about which interventions in smallholder systems have the most positive impact, thus enabling more rapid transformation of rural livelihoods. PMID:28202728
Satellite-based assessment of yield variation and its determinants in smallholder African systems.
Burke, Marshall; Lobell, David B
2017-02-28
The emergence of satellite sensors that can routinely observe millions of individual smallholder farms raises possibilities for monitoring and understanding agricultural productivity in many regions of the world. Here we demonstrate the potential to track smallholder maize yield variation in western Kenya, using a combination of 1-m Terra Bella imagery and intensive field sampling on thousands of fields over 2 y. We find that agreement between satellite-based and traditional field survey-based yield estimates depends significantly on the quality of the field-based measures, with agreement highest ([Formula: see text] up to 0.4) when using precise field measures of plot area and when using larger fields for which rounding errors are smaller. We further show that satellite-based measures are able to detect positive yield responses to fertilizer and hybrid seed inputs and that the inferred responses are statistically indistinguishable from estimates based on survey-based yields. These results suggest that high-resolution satellite imagery can be used to make predictions of smallholder agricultural productivity that are roughly as accurate as the survey-based measures traditionally used in research and policy applications, and they indicate a substantial near-term potential to quickly generate useful datasets on productivity in smallholder systems, even with minimal or no field training data. Such datasets could rapidly accelerate learning about which interventions in smallholder systems have the most positive impact, thus enabling more rapid transformation of rural livelihoods.
Varying the effective buoyancy of cells using magnetic force
NASA Astrophysics Data System (ADS)
Guevorkian, Karine; Valles, James M.
2004-06-01
We introduce a magnetic force buoyancy variation (MFBV) technique that employs intense inhomogeneous magnetic fields to vary the effective buoyancy of cells and other diamagnetic systems in solution. Nonswimming Paramecia have been suspended, forced to sediment and driven to rise in solution using MFBV. Details of their response to MFBV have been used to determine the magnetic susceptibility of a single Paramecium. The use of MFBV as a means by which to suspend cell cultures indefinitely is also described.
Extraordinary variation of pump light intensity inside a four-level solid-state laser medium
NASA Astrophysics Data System (ADS)
Qin, Hua; Fu, Rulian; Wang, Zhaoqi; Liu, Juan
2008-08-01
A theoretical investigation of the absorption of the pump light at different intensities through a four-level solid-state laser medium is presented. It is found that the variation of the pump intensity inside the laser medium cannot always simply be dominated by Beer's law. Transmission of the pump light through this laser medium is closely related to the pump intensity itself. In fact, when the pump intensity is relatively low, whose values depend on the characteristics of the medium, the variation of the pump light through the laser medium is consistent with Beer's law. However, while the pump intensity is high enough, the relationship between the transmission of the pump light and its propagation distance is demonstrated to be linear. These theoretical results have been confirmed by the experiment with a medium of YAG:Nd.
Women in Academic Science: A Changing Landscape.
Ceci, Stephen J; Ginther, Donna K; Kahn, Shulamit; Williams, Wendy M
2014-12-01
Much has been written in the past two decades about women in academic science careers, but this literature is contradictory. Many analyses have revealed a level playing field, with men and women faring equally, whereas other analyses have suggested numerous areas in which the playing field is not level. The only widely-agreed-upon conclusion is that women are underrepresented in college majors, graduate school programs, and the professoriate in those fields that are the most mathematically intensive, such as geoscience, engineering, economics, mathematics/computer science, and the physical sciences. In other scientific fields (psychology, life science, social science), women are found in much higher percentages. In this monograph, we undertake extensive life-course analyses comparing the trajectories of women and men in math-intensive fields with those of their counterparts in non-math-intensive fields in which women are close to parity with or even exceed the number of men. We begin by examining early-childhood differences in spatial processing and follow this through quantitative performance in middle childhood and adolescence, including high school coursework. We then focus on the transition of the sexes from high school to college major, then to graduate school, and, finally, to careers in academic science. The results of our myriad analyses reveal that early sex differences in spatial and mathematical reasoning need not stem from biological bases, that the gap between average female and male math ability is narrowing (suggesting strong environmental influences), and that sex differences in math ability at the right tail show variation over time and across nationalities, ethnicities, and other factors, indicating that the ratio of males to females at the right tail can and does change. We find that gender differences in attitudes toward and expectations about math careers and ability (controlling for actual ability) are evident by kindergarten and increase thereafter, leading to lower female propensities to major in math-intensive subjects in college but higher female propensities to major in non-math-intensive sciences, with overall science, technology, engineering, and mathematics (STEM) majors at 50% female for more than a decade. Post-college, although men with majors in math-intensive subjects have historically chosen and completed PhDs in these fields more often than women, the gap has recently narrowed by two thirds; among non-math-intensive STEM majors, women are more likely than men to go into health and other people-related occupations instead of pursuing PhDs. Importantly, of those who obtain doctorates in math-intensive fields, men and women entering the professoriate have equivalent access to tenure-track academic jobs in science, and they persist and are remunerated at comparable rates-with some caveats that we discuss. The transition from graduate programs to assistant professorships shows more pipeline leakage in the fields in which women are already very prevalent (psychology, life science, social science) than in the math-intensive fields in which they are underrepresented but in which the number of females holding assistant professorships is at least commensurate with (if not greater than) that of males. That is, invitations to interview for tenure-track positions in math-intensive fields-as well as actual employment offers-reveal that female PhD applicants fare at least as well as their male counterparts in math-intensive fields. Along these same lines, our analyses reveal that manuscript reviewing and grant funding are gender neutral: Male and female authors and principal investigators are equally likely to have their manuscripts accepted by journal editors and their grants funded, with only very occasional exceptions. There are no compelling sex differences in hours worked or average citations per publication, but there is an overall male advantage in productivity. We attempt to reconcile these results amid the disparate claims made regarding their causes, examining sex differences in citations, hours worked, and interests. We conclude by suggesting that although in the past, gender discrimination was an important cause of women's underrepresentation in scientific academic careers, this claim has continued to be invoked after it has ceased being a valid cause of women's underrepresentation in math-intensive fields. Consequently, current barriers to women's full participation in mathematically intensive academic science fields are rooted in pre-college factors and the subsequent likelihood of majoring in these fields, and future research should focus on these barriers rather than misdirecting attention toward historical barriers that no longer account for women's underrepresentation in academic science. © The Author(s) 2014.
Accounting for magnetic diffusion in core flow inversions from geomagnetic secular variation
NASA Astrophysics Data System (ADS)
Amit, Hagay; Christensen, Ulrich R.
2008-12-01
We use numerical dynamos to investigate the possible role of magnetic diffusion at the top of the core. We find that the contribution of radial magnetic diffusion to the secular variation is correlated with that of tangential magnetic diffusion for a wide range of control parameters. The correlation between the two diffusive terms is interpreted in terms of the variation in the strength of poloidal flow along a columnar flow tube. The amplitude ratio of the two diffusive terms is used to estimate the probable contribution of radial magnetic diffusion to the secular variation at Earth-like conditions. We then apply a model where radial magnetic diffusion is proportional to tangential diffusion to core flow inversions of geomagnetic secular variation data. We find that including magnetic diffusion does not change dramatically the global flow but some significant local variations appear. In the non frozen-flux core flow models (termed `diffusive'), the hemispherical dichotomy between the active Atlantic and quiet Pacific is weaker, a cyclonic vortex below North America emerges and the vortex below Asia is stronger. Our results have several important geophysical implications. First, our diffusive flow models contain some flow activity at low latitudes in the Pacific, suggesting a local balance between magnetic field advection and diffusion in that region. Second, the cyclone below North America in our diffusive flows reconciles the difference between mantle-driven thermal wind predictions and frozen-flux core flow models, and is consistent with the prominent intense magnetic flux patch below North America in geomagnetic field models. Finally, we hypothesize that magnetic diffusion near the core surface plays a larger role in the geomagnetic secular variation than usually assumed.
New Archeointensities from Mid Holocene Archeological Materials
NASA Astrophysics Data System (ADS)
Kapper, K.; Donadini, F.; Hirt, A. M.
2013-12-01
Paleointensity variation determined from mid Holocene archeomagnetic samples can improve the understanding of Earth's magnetic field and how it has changed during the past 10 000 years. It is important for models of Earth's magnetic field to fill gaps in archeomagnetic data records prior 1000 BC, which are prevalent in European data sets. New data help to complement regional reference curves, which are useful for dating of archeologic artifacts, e.g., pottery or displaced objects such as tiles, if the paleointensity of the object is known. Due to small temporal resolution and uncertainties in data records, the maximum intensity and maximum rate of change of the geomagnetic field is poorly understood. Stacks of intensity records are assumed to smooth out high frequency features in the secular variation curve such as archeomagnetic jerks and geomagnetic spikes. In previous studies it was shown that archeointensities could be measured from various archeological materials, if they were heated and obtain a pure thermoremanent magnetization. Ceramics or potsherds were the first materials to be used to measure the geomagnetic field intensity. They are usually heated to high temperatures and are abundant. In more recent years it was shown that copper slags can be used as well for archeointensity determinations. These are widespread in Europe, Asia and Africa from about 5000 BC onwards, carry a strong magnetization, and charcoal is usually close by or even embedded in the slag and can be used for radiocarbon dating. Samples from burned soils of archeological fires or hearth remains can have accurate archeointensities, provided that the samples carry a pure thermoremanent magnetization, which usually can be found in the center of the fireplace. But for some sites the center is difficult to locate, and relatively loose material may easily suffer from disturbances. In this study we report on results from archeointensity measurements on 91 specimens made of ceramics, slags, and hearth remains from central Europe, which cover a time period from 500 to 5200 BC. The ferromagnetic minerals in these materials were characterized by rock magnetic measurements. Archeointensities were obtained by using the Thellier method and the IZZI-protocol. We compare the new data with current geomagnetic field models and available archeomagnetic data. Furthermore, we demonstrate the value of burned cherts as a material that records the past geomagnetic field. We compare results of eight burned and unburned cherts to demonstrate that this material is useful for archeointensity determinations. Preliminary results show that the ceramics and slags provide reliable new archeointensity data. Hearth remains obtained in many cases a chemical remanent magnetization and therefore, do not provide useful data.
Intensity Biased PSP Measurement
NASA Technical Reports Server (NTRS)
Subramanian, Chelakara S.; Amer, Tahani R.; Oglesby, Donald M.; Burkett, Cecil G., Jr.
2000-01-01
The current pressure sensitive paint (PSP) technique assumes a linear relationship (Stern-Volmer Equation) between intensity ratio (I(sub 0)/I) and pressure ratio (P/P(sub 0)) over a wide range of pressures (vacuum to ambient or higher). Although this may be valid for some PSPs, in most PSPs the relationship is nonlinear, particularly at low pressures (less than 0.2 psia when the oxygen level is low). This non-linearity can be attributed to variations in the oxygen quenching (de-activation) rates (which otherwise is assumed constant) at these pressures. Other studies suggest that some paints also have non-linear calibrations at high pressures; because of heterogeneous (non-uniform) oxygen diffusion and c quenching. Moreover, pressure sensitive paints require correction for the output intensity due to light intensity variation, paint coating variation, model dynamics, wind-off reference pressure variation, and temperature sensitivity. Therefore to minimize the measurement uncertainties due to these causes, an in- situ intensity correction method was developed. A non-oxygen quenched paint (which provides a constant intensity at all pressures, called non-pressure sensitive paint, NPSP) was used for the reference intensity (I(sub NPSP)) with respect to which all the PSP intensities (I) were measured. The results of this study show that in order to fully reap the benefits of this technique, a totally oxygen impermeable NPSP must be available.
Intensity Biased PSP Measurement
NASA Technical Reports Server (NTRS)
Subramanian, Chelakara S.; Amer, Tahani R.; Oglesby, Donald M.; Burkett, Cecil G., Jr.
2000-01-01
The current pressure sensitive paint (PSP) technique assumes a linear relationship (Stern-Volmer Equation) between intensity ratio (I(sub o)/I) and pressure ratio (P/P(sub o)) over a wide range of pressures (vacuum to ambient or higher). Although this may be valid for some PSPs, in most PSPs the relationship is nonlinear, particularly at low pressures (less than 0.2 psia when the oxygen level is low). This non-linearity can be attributed to variations in the oxygen quenching (de-activation) rates (which otherwise is assumed constant) at these pressures. Other studies suggest that some paints also have non-linear calibrations at high pressures; because of heterogeneous (non-uniform) oxygen diffusion and quenching. Moreover, pressure sensitive paints require correction for the output intensity due to light intensity variation, paint coating variation, model dynamics, wind-off reference pressure variation, and temperature sensitivity. Therefore to minimize the measurement uncertainties due to these causes, an insitu intensity correction method was developed. A non-oxygen quenched paint (which provides a constant intensity at all pressures, called non-pressure sensitive paint, NPSP) was used for the reference intensity (I(sub NPSP) with respect to which all the PSP intensities (I) were measured. The results of this study show that in order to fully reap the benefits of this technique, a totally oxygen impermeable NPSP must be available.
Dynamics of Intense Currents in the Solar Wind
NASA Astrophysics Data System (ADS)
Artemyev, Anton V.; Angelopoulos, Vassilis; Halekas, Jasper S.; Vinogradov, Alexander A.; Vasko, Ivan Y.; Zelenyi, Lev M.
2018-06-01
Transient currents in the solar wind are carried by various magnetic field discontinuities that contribute significantly to the magnetic field fluctuation spectrum. Internal instabilities and dynamics of these discontinuities are believed to be responsible for magnetic field energy dissipation and corresponding charged particle acceleration and heating. Accurate modeling of these phenomena requires detailed investigation of transient current formation and evolution. By examining such evolution using a unique data set compiled from observations of the same solar wind flow by two spacecraft at Earth’s and Mars’s orbits, we show that it consists of several processes: discontinuity thinning (decrease in thickness normalized by the ion inertial length), intensification of currents normalized to the proton thermal current (i.e., the product of proton charge, density, and thermal velocity), and increase in the compressional component of magnetic field variations across discontinuities. The significant proton temperature variation around most observed discontinuities indicates possible proton heating. Plasma velocity jumps across the discontinuities are well correlated with Alfvén velocity changes. We discuss possible explanations of the observed discontinuity evolution. We also compare the observed evolution with predictions of models describing discontinuity formation due to Alfvén wave steepening. Our results show that discontinuity modeling likely requires taking into account both the effects of nonlinear Alfvén wave dynamics and solar wind expansion.
Ross, Michael B.; Ku, Jessie C.; Blaber, Martin G.; ...
2015-08-03
Bottom-up assemblies of plasmonic nanoparticles exhibit unique optical effects such as tunable reflection, optical cavity modes, and tunable photonic resonances. In this paper, we compare detailed simulations with experiment to explore the effect of structural inhomogeneity on the optical response in DNA-gold nanoparticle superlattices. In particular, we explore the effect of background environment, nanoparticle polydispersity (>10%), and variation in nanoparticle placement (~5%). At volume fractions less than 20% Au, the optical response is insensitive to particle size, defects, and inhomogeneity in the superlattice. At elevated volume fractions (20% and 25%), structures incorporating different sized nanoparticles (10-, 20-, and 40-nm diameter)more » each exhibit distinct far-field extinction and near-field properties. These optical properties are most pronounced in lattices with larger particles, which at fixed volume fraction have greater plasmonic coupling than those with smaller particles. Moreover, the incorporation of experimentally informed inhomogeneity leads to variation in far-field extinction and inconsistent electric-field intensities throughout the lattice, demonstrating that volume fraction is not sufficient to describe the optical properties of such structures. Finally, these data have important implications for understanding the role of particle and lattice inhomogeneity in determining the properties of plasmonic nanoparticle lattices with deliberately designed optical properties.« less
Periodic variations of atmospheric electric field on fair weather conditions at YBJ, Tibet
NASA Astrophysics Data System (ADS)
Xu, Bin; Zou, Dan; Chen, Ben Yuan; Zhang, Jin Ye; Xu, Guo Wang
2013-05-01
Observations of atmospheric electric field on fair weather conditions from the plateau station, YBJ, Tibet (90°31‧50″ E, 30°06‧38″ N), over the period from 2006 to 2011, are presented in this work. Its periodic modulations are analyzed in frequency-domain by Lomb-Scargle Periodogram method and in time-domain by folding method. The results show that the fair weather atmospheric electric field intensity is modulated weakly by annual cycle, solar diurnal cycle and its several harmonic components. The modulating amplitude of annual cycle is bigger than that of solar diurnal cycle. The annual minimum/maximum nearly coincides with spring/autumn equinox. The detailed spectrum analysis show that the secondary peaks (i.e. sidereal diurnal cycle and semi-sidereal diurnal cycle) nearly disappear along with their primary peaks when the primary signals are subtracted from electric field data sequence. The average daily variation curve exhibits dual-fluctuations, and has obviously seasonal dependence. The mean value is bigger in summer and autumn, but smaller in spring and winter. The daytime fluctuation is affected by the sunrise and sunset effect, the occurring time of which have a little shift with seasons. However, the nightly one has a great dependence on season conditions.
Cloud morphology and dynamics in Saturn's northern polar region
NASA Astrophysics Data System (ADS)
Antuñano, Arrate; del Río-Gaztelurrutia, Teresa; Sánchez-Lavega, Agustín; Rodríguez-Aseguinolaza, Javier
2018-01-01
We present a study of the cloud morphology and motions in the north polar region of Saturn, from latitude ∼ 70°N to the pole based on Cassini ISS images obtained between January 2009 and November 2014. This region shows a variety of dynamical structures: the permanent hexagon wave and its intense eastward jet, a large field of permanent ;puffy; clouds with scales from 10 - 500 km, probably of convective origin, local cyclone and anticyclones vortices with sizes of ∼1,000 km embedded in this field, and finally the intense cyclonic polar vortex. We report changes in the albedo of the clouds that delineate rings of circulation around the polar vortex and the presence of ;plume-like; activity in the hexagon jet, in both cases not accompanied with significant variations in the corresponding jets. No meridional migration is observed in the clouds forming and merging in the field of puffy clouds, suggesting that their mergers do not contribute to the maintenance of the polar vortex. Finally, we analyze the dominant growing modes for barotropic and baroclinic instabilities in the hexagon jet, showing that a mode 6 barotropic instability is dominant at the latitude of the hexagon.
Crustal Fracturing Field and Presence of Fluid as Revealed by Seismic Anisotropy
NASA Astrophysics Data System (ADS)
Pastori, M.; Piccinini, D.; de Gori, P.; Margheriti, L.; Barchi, M. R.; di Bucci, D.
2010-12-01
In the last three years, we developed, tested and improved an automatic analysis code (Anisomat+) to calculate the shear wave splitting parameters, fast polarization direction (φ) and delay time (∂t). The code is a set of MatLab scripts able to retrieve crustal anisotropy parameters from three-component seismic recording of local earthquakes using horizontal component cross-correlation method. The analysis procedure consists in choosing an appropriate frequency range, that better highlights the signal containing the shear waves, and a length of time window on the seismogram centered on the S arrival (the temporal window contains at least one cycle of S wave). The code was compared to other two automatic analysis code (SPY and SHEBA) and tested on three Italian areas (Val d’Agri, Tiber Valley and L’Aquila surrounding) along the Apennine mountains. For each region we used the anisotropic parameters resulting from the automatic computation as a tool to determine the fracture field geometries connected with the active stress field. We compare the temporal variations of anisotropic parameters to the evolution of vp/vs ratio for the same seismicity. The anisotropic fast directions are used to define the active stress field (EDA model), finding a general consistence between fast direction and main stress indicators (focal mechanism and borehole break-out). The magnitude of delay time is used to define the fracture field intensity finding higher value in the volume where micro-seismicity occurs. Furthermore we studied temporal variations of anisotropic parameters and vp/vs ratio in order to explain if fluids play an important role in the earthquake generation process. The close association of anisotropic and vp/vs parameters variations and seismicity rate changes supports the hypothesis that the background seismicity is influenced by the fluctuation of pore fluid pressure in the rocks.
Study of large Forbush decreases in cosmic-ray intensity observed during solar cycle 23 and 24
NASA Astrophysics Data System (ADS)
Kumar, Anand; Badruddin, B.
2016-07-01
Neutron monitors at different geomagnetic latitude and longitude of Earth measure the cosmic-ray intensity with high precision. Sudden decreases in cosmic-ray intensity within few hours and slow recovery to pre-decrease level within a few days (Forbush decreases) are observed in neutron monitor data. We identify large-amplitude Forbush decreases (FDs), using high counting rate neutron monitor data, that occurred during previous solar cycle 23 (1995-2009) and current solar cycle 24 (2010-2015). We then search for the solar sources and the interplanetary structures responsible for these decreases. We attempt to find the relative importance of various interplanetary plasma and field parameters and the physical mechanism(s) responsible for FDs of varying amplitudes. We analyze a number of interplanetary plasma and field parameters, during both the phases (main and recovery) of FDs. The interplanetary plasma and field data analyzed in this study are the solar-wind velocity, the interplanetary magnetic field, its fluctuations, interplanetary electric field and the time variation of interplanetary electric potential. For monitoring the changes in interplanetary plasma/field conditions during the development of FDs, we also utilize plasma density, temperature and plasma beta, dynamic pressure and Mach number during the passage of interplanetary structures responsible for FDs. In addition to their amplitude, we study the recovery of FDs in detail after determining the time constant during their recovery by exponential fit to the data. As the solar magnetic polarity reversed during the maximum phase of solar cycle 23 (in the year 2000), we study the differences in amplitude, time constant of recovery and plasma/field condition to search for the polarity dependent effects, if any, on the amplitude and recovery of FDs due to implication for the models suggested to explain the Forbush decrease phenomena. The implications of these results are discussed.
Temporal variations of cosmic rays over a variety of time scales
NASA Technical Reports Server (NTRS)
Jokipii, J. R.; Marti, K.
1986-01-01
The variation of the intensity of Galactic cosmic rays in the inner solar system over a wide variety of time scales is discussed, and the generally accepted physical model which can account quantitatively for these modulations is reviewed. The use of direct measurements and of nuclear reactions to study the temporal intensity variations is summarized. It is demonstrated that all of the observed variations could easily be the result of solar variations on long and short time scales.
Zhou, Peiqi; Gan, Zhikai; Huang, Xu; Mei, Chunlian; Xia, Yuxing; Wang, Hui
2017-01-01
In this article, we report a magnetic tuning lateral photovoltaic effect (LPE) in a nonmagnetic Si-based Schottky junctions. In the magnetic field intensity range of 0 to 1.6 T, the variation amplitude of LPE sensitivity is as high as 94.8%, the change of LPV is and the change rate of lateral photo-voltage even reaches 520 mV/T at 1.5 T, which is apparently higher than the results of previous reported researches in magnetic materials. This effect is attributed to the combined result of the influence of magnetic field on diffusion current and the rectification property of our anisotropic structure. This work may expand the application of LPE in magnetism field such as magnetic sensor and magnetoresistance, and it suggests a new way to investigate the carrier transport in Schottky junctions under magnetic field. PMID:28397819
The Cretaceous superchron geodynamo: Observations near the tangent cylinder
Tarduno, John A.; Cottrell, Rory D.; Smirnov, Alexei V.
2002-01-01
If relationships exist between the frequency of geomagnetic reversals and the morphology, secular variation, and intensity of Earth's magnetic field, they should be best expressed during superchrons, intervals tens of millions of years long lacking reversals. Here we report paleomagnetic and paleointensity data from lavas of the Cretaceous Normal Polarity Superchron that formed at high latitudes near the tangent cylinder that surrounds the solid inner core. The time-averaged field recorded by these lavas is remarkably strong and stable. When combined with global results available from lower latitudes, these data define a time-averaged field that is overwhelmingly dominated by the axial dipole (octupole components are insignificant). These observations suggest that the basic features of the geomagnetic field are intrinsically related. Superchrons may reflect times when the nature of core–mantle boundary heat flux allows the geodynamo to operate at peak efficiency. PMID:12388778
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chow, James C.L., E-mail: james.chow@rmp.uhn.on.ca; Department of Radiation Oncology, University of Toronto, Toronto, Ontario; Department of Physics, Ryerson University, Toronto, Ontario
2012-07-01
Dependences of mucosal dose in the oral or nasal cavity on the beam energy, beam angle, multibeam configuration, and mucosal thickness were studied for small photon fields using Monte Carlo simulations (EGSnrc-based code), which were validated by measurements. Cylindrical mucosa phantoms (mucosal thickness = 1, 2, and 3 mm) with and without the bone and air inhomogeneities were irradiated by the 6- and 18-MV photon beams (field size = 1 Multiplication-Sign 1 cm{sup 2}) with gantry angles equal to 0 Degree-Sign , 90 Degree-Sign , and 180 Degree-Sign , and multibeam configurations using 2, 4, and 8 photon beams inmore » different orientations around the phantom. Doses along the central beam axis in the mucosal tissue were calculated. The mucosal surface doses were found to decrease slightly (1% for the 6-MV photon beam and 3% for the 18-MV beam) with an increase of mucosal thickness from 1-3 mm, when the beam angle is 0 Degree-Sign . The variation of mucosal surface dose with its thickness became insignificant when the beam angle was changed to 180 Degree-Sign , but the dose at the bone-mucosa interface was found to increase (28% for the 6-MV photon beam and 20% for the 18-MV beam) with the mucosal thickness. For different multibeam configurations, the dependence of mucosal dose on its thickness became insignificant when the number of photon beams around the mucosal tissue was increased. The mucosal dose with bone was varied with the beam energy, beam angle, multibeam configuration and mucosal thickness for a small segmental photon field. These dosimetric variations are important to consider improving the treatment strategy, so the mucosal complications in head-and-neck intensity-modulated radiation therapy can be minimized.« less
NASA Astrophysics Data System (ADS)
Mavromichalaki, H.; Preka-Papadema, P.; Theodoropoulou, A.; Paouris, E.; Apostolou, Th.
2017-01-01
The biological human system is probably affected by the solar and geomagnetic disturbances as well as the cosmic ray variations. In this work, the relation between the solar activity and cosmic ray variations and the cardiac arrhythmias over the time period 1997-2009 covering the solar cycle 23, is studied. The used medical data set refers to 4741 patients with cardiac arrhythmias and 2548 of whom were diagnosed with atrial fibrillation, obtained from the 2nd Cardiological Clinic of the General Hospital of Nicaea, Piraeus, in Greece. The smoothing method on a 365-day basis and the Pearson r-coefficient were used in order to compare these records with the number of sunspots, flares, solar proton events, coronal mass ejections and cosmic ray intensity. Applying a moving correlation function to ±1500 days, it is suggested that a change of the correlation sign between the medical data and each one of the above parameters occurs during a time interval of about 2-3 years. This interval corresponds to the time span of the polarity reversal of the solar magnetic field of this solar cycle, which always takes place around the solar cycle maximum. After then a correlation analysis was carried out corresponding to the rise (1997-2001) and the decay (2002-2009) phases of the solar cycle 23. It is noticeable that the polarity reversal of the solar magnetic field coincides with the period where the sign of the correlation between the incidence of arrhythmias and the occurrence number of the solar eruptive events and the cosmic ray intensity, changes sign. The results are comparable with those obtained from the previous solar cycle 22 based on medical data from another country.
The Effects of Surfaces on the Aerodynamics and Acoustics of Jet Flows
NASA Technical Reports Server (NTRS)
Smith, Matthew J.; Miller, Steven A. E.
2013-01-01
Aircraft noise mitigation is an ongoing challenge for the aeronautics research community. In response to this challenge, low-noise aircraft concepts have been developed that exhibit situations where the jet exhaust interacts with an airframe surface. Jet flows interacting with nearby surfaces manifest a complex behavior in which acoustic and aerodynamic characteristics are altered. In this paper, the variation of the aerodynamics, acoustic source, and far-field acoustic intensity are examined as a large at plate is positioned relative to the nozzle exit. Steady Reynolds-Averaged Navier-Stokes solutions are examined to study the aerodynamic changes in the field-variables and turbulence statistics. The mixing noise model of Tam and Auriault is used to predict the noise produced by the jet. To validate both the aerodynamic and the noise prediction models, results are compared with Particle Image Velocimetry (PIV) and free-field acoustic data respectively. The variation of the aerodynamic quantities and noise source are examined by comparing predictions from various jet and at plate configurations with an isolated jet. To quantify the propulsion airframe aeroacoustic installation effects on the aerodynamic noise source, a non-dimensional number is formed that contains the flow-conditions and airframe installation parameters.
Research concerning the net flux of radiation in the atmosphere of Jupiter
NASA Technical Reports Server (NTRS)
Tomasko, M. G.
1996-01-01
The plan of the NFR (Net Flux of Radiation) team is for the data from the two solar channels (B and E) of NFR to be reduced with the goal of determining the solar heating rate. In order to determine the solar heating rate from the NFR measurements, effects due to the instrument's spatial and spectral response functions, to the temperature variation of the instrument (and associated drift of calibration), to the setting sun, and to the rotation of the probe (initially at a rate comparable to the NFR sampling frequency), all must be well modelled. In the past year, a forward modeling routine was created to simulate NFR data return in the B and E channels. The effects of varying parameters describing the atmospheric model (such as cloud location and thickness) and the descent profile (such as rotation rate) were investigated and an inversion routine was developed. For the forward modeling, existing radiative transfer codes were used to determine intensity fields within the Jovian atmosphere. A routine was developed to determine instantaneous instrument response by integrating the intensity field over the instrument response functions. A second routine was developed to determine the actual output of the NFR by integrating along an arbitrary descent trajectory. Near the top of the atmosphere, the upflux data alone are used to constrain the cloud structure of he atmosphere. To accomplish this, models are used to describe the variation in up flux between consecutive measurements in terms of variations of cloud opacity and variations in known parameters such as the solar zenith angle. This allows us to develop a zero-order model of cloud structure. Lower in the atmosphere, at levels where there is little or no azimuthal structure to the net flux measurements, both the up flux and net flux are used to derive layer transmission and reflection functions, which then determine layer opacity and single scattering albedo. A preliminary analysis of the data began in December 1995. In these data we could see the rapid oscillations expected at the beginning of the data due to probe rotation and the sun passing through the edge of the field of view. In addition, the time when this oscillation stopped was clearly visible. This sets the rough optical depth above the probe at this time.
[Evaluation and selection of species diversity index under grazing disturbance in alpine mea-dow].
Niu, Yu Jie; Yang, Si Wei; Wang, Gui Zhen; Liu, Li; Hua, Li Min
2017-06-18
The research selected the plots of six grazing intensities in an alpine meadow in north-eastern Tibet Plateau in four years (2012-2015) and studied the relation between ten species diversity indexes, including two measured indexes (Richness and Abundance) in field and two indexes of each dominance, evenness, richness, integrated indexes, and grazing intensity as well as grazing time aiming at scientific selection of biodiversity index under grazing disturbance. The results indicated that the abundance was a better index than importance value to calculate biodiversity level because it was more sensitive to grazing disturbance. Dominance indexes, including Berger-Parker and Dominance, were not sensitive to grazing intensity and grazing time because they could not clarify the effect of grazing disturbance on dominant species in plant community. Evenness indexes, including Equitability and Evenness, had not relation with grazing intensity, however, the evenness index had a negative correlation with grazing time and it was not influenced by occasional species as well as the variation coefficient of species abundance. Hereby, the evenness index could be chosen for studying evenness change at temporal scale. Richness indexes, including Menhinick and Margalef, had no relation with grazing time, however, the Margalef index had a positive correlation with grazing intensity and the index was not influenced by occasional species. Integrated index, including Shannon and Simpson indexes, had no relation with grazing intensity, however, the Shannon index had a significant positive correlation with species richness and abundance and the index was not influenced by occasional species, and it significantly increased along grazing time. Hereby, Shannon index could be used as an index of studying plant species diversity in long-term. In ten diversity indexes, only the measured indexes in field, including richness and abundance, were signifi-cantly negatively correlated with grazing intensity, and positively correlated with grazing time, and the two indexes were not influenced by occasional species. Hereby, the combination of species richness and abundance mea-sured in field could be considered as the most important indexes for studying plant species diversity under grazing disturbance. Besides, the selection of biodiversity indexes must consider the spatial-temporal feature of grazing, diversity components and research purpose.
Optical testing using the transport-of-intensity equation.
Dorrer, C; Zuegel, J D
2007-06-11
The transport-of-intensity equation links the intensity and phase of an optical source to the longitudinal variation of its intensity in the presence of Fresnel diffraction. This equation can be used to provide a simple, accurate spatial-phase measurement for optical testing of flat surfaces. The properties of this approach are derived. The experimental demonstration is performed by quantifying the surface variations induced by the magnetorheological finishing process on laser rods.
NASA Astrophysics Data System (ADS)
Shinbori, A.; Koyama, Y.; Nose, M.; Hori, T.
2017-12-01
Characteristics of seasonal variation and solar activity dependence of the X- and Y-components of the geomagnetic solar quiet (Sq) daily variation at Memanbetsu in mid-latitudes and Guam near the equator have been investigated using long-term geomagnetic field data with 1-h time resolution from 1957 to 2016. In this analysis, we defined the quiet day when the maximum value of the Kp index is less than 3 for that day. In this analysis, we used the monthly average of the adjusted daily F10.7 corresponding to geomagnetically quiet days. For identification of the monthly mean Sq variation in the X and Y components (Sq-X and Sq-Y), we first determined the baseline of the X and Y components from the average value from 22 to 2 h (LT: local time) for each quiet day. Next, we calculated a deviation from the baseline of the X- and Y-components of the geomagnetic field for each quiet day, and computed the monthly mean value of the deviation for each local time. As a result, Sq-X and Sq-Y shows a clear seasonal variation and solar activity dependence. The amplitude of seasonal variation increases significantly during high solar activities, and is proportional to the solar F10.7 index. The pattern of the seasonal variation is quite different between Sq-X and Sq-Y. The result of the correlation analysis between the solar F10.7 index and Sq-X and Sq-Y shows almost the linear relationship, but the slope and intercept of the linear fitted line varies as function of local time and month. This implies that the sensitivity of Sq-X and Sq-Y to the solar activity is different for different local times and seasons. The local time dependence of the offset value of Sq-Y at Guam and its seasonal variation suggest a magnetic field produced by inter-hemispheric field-aligned currents (FACs). From the sign of the offset value of Sq-Y, it is infer that the inter-hemispheric FACs flow from the summer to winter hemispheres in the dawn and dusk sectors and from the winter to summer hemispheres in the pre-noon to afternoon sectors. From the slope of the linear fitted line, we observe a weak solar activity dependence of the inter-hemispheric FACs, which shows that the intensity of inter-hemispheric FACs has positive and negative correlations in the morning-noon and afternoon sectors, respectively.
Radio to gamma-ray variability study of blazar S5 0716+714
Rani, B.; Krichbaum, T. P.; Fuhrmann, L.; ...
2013-03-13
In this paper, we present the results of a series of radio, optical, X-ray, and γ-ray observations of the BL Lac object S50716+714 carried out between April 2007 and January 2011. The multifrequency observations were obtained using several ground- and space-based facilities. The intense optical monitoring of the source reveals faster repetitive variations superimposed on a long-term variability trend on a time scale of ~350 days. Episodes of fast variability recur on time scales of ~60-70 days. The intense and simultaneous activity at optical and γ-ray frequencies favors the synchrotron self-Compton mechanism for the production of the high-energy emission. Twomore » major low-peaking radio flares were observed during this high optical/γ-ray activity period. The radio flares are characterized by a rising and a decaying stage and agrees with the formation of a shock and its evolution. We found that the evolution of the radio flares requires a geometrical variation in addition to intrinsic variations of the source. Different estimates yield robust and self-consistent lower limits of δ ≥ 20 and equipartition magnetic field B eq ≥ 0.36 G. Causality arguments constrain the size of emission region θ ≤ 0.004 mas. We found a significant correlation between flux variations at radio frequencies with those at optical and γ-rays. Theoptical/GeV flux variations lead the radio variability by ~65 days. The longer time delays between low-peaking radio outbursts and optical flares imply that optical flares are the precursors of radio ones. An orphan X-ray flare challenges the simple, one-zone emission models, rendering them too simple. Finally, here we also describe the spectral energy distribution modeling of the source from simultaneous data taken through different activity periods.« less
Time-dependent Ionization in a Steady Flow in an MHD Model of the Solar Corona and Wind
NASA Astrophysics Data System (ADS)
Shen, Chengcai; Raymond, John C.; Mikić, Zoran; Linker, Jon A.; Reeves, Katharine K.; Murphy, Nicholas A.
2017-11-01
Time-dependent ionization is important for diagnostics of coronal streamers and pseudostreamers. We describe time-dependent ionization calculations for a three-dimensional magnetohydrodynamic (MHD) model of the solar corona and inner heliosphere. We analyze how non-equilibrium ionization (NEI) influences emission from a pseudostreamer during the Whole Sun Month interval (Carrington rotation CR1913, 1996 August 22 to September 18). We use a time-dependent code to calculate NEI states, based on the plasma temperature, density, velocity, and magnetic field in the MHD model, to obtain the synthetic emissivities and predict the intensities of the Lyα, O VI, Mg x, and Si xii emission lines observed by the SOHO/Ultraviolet Coronagraph Spectrometer (UVCS). At low coronal heights, the predicted intensity profiles of both Lyα and O VI lines match UVCS observations well, but the Mg x and Si xii emission are predicted to be too bright. At larger heights, the O VI and Mg x lines are predicted to be brighter for NEI than equilibrium ionization around this pseudostreamer, and Si xii is predicted to be fainter for NEI cases. The differences of predicted UVCS intensities between NEI and equilibrium ionization are around a factor of 2, but neither matches the observed intensity distributions along the full length of the UVCS slit. Variations in elemental abundances in closed field regions due to the gravitational settling and the FIP effect may significantly contribute to the predicted uncertainty. The assumption of Maxwellian electron distributions and errors in the magnetic field on the solar surface may also have notable effects on the mismatch between observations and model predictions.
NASA Technical Reports Server (NTRS)
Adrian, Mark L.; Pollock, C. J.; Moore, T. E.; Kintner, P. M.; Arnoldy, R. L.; Whitaker, Ann F. (Technical Monitor)
2001-01-01
SCIFER TECHS observations of the variations in the thermal electron distribution in the 1400-km altitude cleft are associated with periods of intense ion heating and field-aligned currents. Energization of the thermal ion plasma in the mid-altitude cleft occurs within density cavities accompanied by enhanced thermal electron temperatures, large field-aligned thermal electron plasma flows and broadband low-frequency electric fields. Variations in the thermal electron contribution to field-aligned current densities indicate small scale (approximately 100's m) filamentary structure embedded within the ion energization periods. TECHS observations of the field-aligned drift velocities and temperatures of the thermal electron distribution are presented to evaluate the critical velocity thresholds necessary for the generation of electrostatic ion cyclotron and ion acoustic instabilities. This analysis suggests that, during periods of thermal ion energization, sufficient drift exists in the thermal electron distribution to excite the electrostatic ion cyclotron instability. In addition, brief periods exist within the same interval where the drift of the thermal electron distribution is sufficient to marginally excite the ion acoustic instability. In addition, the presence an enhancement in Langmuir emission at the plasma frequency at the center of the ion energization region, accompanied by the emission's second-harmonic, and collocated with observations of high-frequency electric field solitary structures suggest the presence of electron beam driven decay of Langmuir waves to ion acoustic modes as an additional free energy source for ion energization.
NASA Astrophysics Data System (ADS)
Bedrosian, Paul A.; Love, Jeffrey J.
2015-12-01
Empirical impedance tensors obtained from EarthScope magnetotelluric data at sites distributed across the midwestern United States are used to examine the feasibility of mapping magnetic storm induction of geoelectric fields. With these tensors, in order to isolate the effects of Earth conductivity structure, we perform a synthetic analysis—calculating geoelectric field variations induced by a geomagnetic field that is geographically uniform but varying sinusoidally with a chosen set of oscillation frequencies that are characteristic of magnetic storm variations. For north-south oriented geomagnetic oscillations at a period of T0=100 s, induced geoelectric field vectors show substantial geographically distributed differences in amplitude (approximately a factor of 100), direction (up to 130∘), and phase (over a quarter wavelength). These differences are the result of three-dimensional Earth conductivity structure, and they highlight a shortcoming of one-dimensional conductivity models (and other synthetic models not derived from direct geophysical measurement) that are used in the evaluation of storm time geoelectric hazards for the electric power grid industry. A hypothetical extremely intense magnetic storm having 500 nT amplitude at T0=100 s would induce geoelectric fields with an average amplitude across the midwestern United States of about 2.71 V/km, but with a representative site-to-site range of 0.15 V/km to 16.77 V/km. Significant improvement in the evaluation of such hazards will require detailed knowledge of the Earth's interior three-dimensional conductivity structure.
Cusp and LLBL as Sources of the Isolated Dayside Auroral Feature During Northward IMF
NASA Technical Reports Server (NTRS)
Chang, S.-W.; Gallagher, D. L.; Spann, J. F.; Mende, S. B.; Greenwald, R. A.; Newell, P. T.
2004-01-01
An intense dayside proton aurora was observed by Imager for Magnetopause-to- Aurora Global Exploration Far Ultra-Violet imager (IMAGE FUV) for an extensive period of northward interplanetary magnetic field (IMF) on 17 and 18 September 2000. This aurora partially coincided with the auroral oval and intruded farther poleward into the polar cap, and it showed longitudinal motions in response to IMF By variation. Intense magnetosheath-like electron and ion precipitations have been simultaneously detected by Defense Meteorological Satellite Program (DMSP) above the poleward portion of the high-latitude dayside aurora. They resemble the typical plasmas observed in the low-altitude cusp. However, less intense electrons and more energetic ions were detected over the equatonvard part of the aurora. These plasmas are closer to the low-latitude boundary layer (LLBL) plasmas. Under strongly northward IMF, global ionospheric convection derived from Super Dual Auroral Radar Network (SuperDARN) radar measurements showed a four-cell pattern with sunward convection in the middle of the dayside polar cap and the dayside aurora corresponded to two different convection cells. This result further supports two source regions for the aurora. The cusp proton aurora is on open magnetic field lines convecting sunward whereas the LLBL proton aurora is on closed field lines convecting antisunward. These IMAGE, DMSP, and SuperDARN observations reveal the structure and dynamics of the aurora and provide strong evidence for magnetic merging occurring at the high-latitude magnetopause poleward from the cusp. This merging process was very likely quasi-stationary.
Evidence of prompt penetration electric fields during HILDCAA events
NASA Astrophysics Data System (ADS)
Pereira Silva, Regia; Sobral, Jose Humberto Andrade; Koga, Daiki; Rodrigues Souza, Jonas
2017-10-01
High-intensity, long-duration continuous auroral electrojet (AE) activity (HILDCAA) events may occur during a long-lasting recovery phase of a geomagnetic storm. They are a special kind of geomagnetic activity, different from magnetic storms or substorms. Ionized particles are pumped into the auroral region by the action of Alfvén waves, increasing the auroral current system. The Dst index, however, does not present a significant downward swing as it occurs during geomagnetic storms. During the HILDCAA occurrence, the AE index presents an intense and continuous activity. In this paper, the response of Brazilian equatorial ionosphere is studied during three HILDCAA events that occurred in the year of 2006 (the descending phase of solar cycle 23) using the digisonde data located at São Luís, Brazil (2.33° S, 44.2° W; dip latitude 1.75° S). Geomagnetic indices and interplanetary parameters were used to calculate a cross-correlation coefficient between the Ey component of the interplanetary electric field and the F2 electron density peak height variations during two situations: the first of them for two sets daytime and nighttime ranges, and the second one for the time around the pre-reversal enhancement (PRE) peak. The results showed that the pumping action of particle precipitation into the auroral zone has moderately modified the equatorial F2 peak height. However, F2 peak height seems to be more sensitive to HILDCAA effects during PRE time, showing the highest variations and sinusoidal oscillations in the cross-correlation indices.
Observations of narrow microburst trains in the geomagnetic storm of August 4-6, 1972
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, R.R.
1973-04-01
In the intense geomagnetic disturbances of early August 1972, auroral zone microburst trains were observed at balloon altitude and found to be significantly narrower in burst width and spacing than microbursts found previously at the same site. These observations suggest that the spacing of microburst peaks, as well as their width, is related to variations in the power spectrum of a magnetospheric acceleration process rather than the bounce motions of electrons in the geomagnetic field or the modulation of electron precipitation by drift waves in magnetospheric plasma. In the geomagnetic activity that followed the solar flares in early August 1972,more » intense fluxes of auroral x rays were encountered during balloon flights launched from College, Alaska. Although much of the time variations of the x-ray fluxes observed during these flights represented known features of electron precipitation at auroral latitudes, one new and distinct feature was evident. In particular, it was found that the widths and spacings of auroral zone microbursts (Anderson and Milton, 1964) on this occasion were significantly smaller than those observed previously on many balloon flights from the same site. Thus, instead of microburst trains with widths at half-intensity points of ~0.2 sec and spacings of ~0.6 sec, the majority of the microbursts encountered on two flights from College had widths of ~0.1 sec and spacings of ~0.4 sec. (auth)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chung, Moses; Qin, Hong; Davidson, Ronald C.
In an uncoupled linear lattice system, the Kapchinskij-Vladimirskij (KV) distribution formulated on the basis of the single-particle Courant-Snyder invariants has served as a fundamental theoretical basis for the analyses of the equilibrium, stability, and transport properties of high-intensity beams for the past several decades. Recent applications of high-intensity beams, however, require beam phase-space manipulations by intentionally introducing strong coupling. Here in this Letter, we report the full generalization of the KV model by including all of the linear (both external and space-charge) coupling forces, beam energy variations, and arbitrary emittance partition, which all form essential elements for phase-space manipulations. Themore » new generalized KV model yields spatially uniform density profiles and corresponding linear self-field forces as desired. Finally, the corresponding matrix envelope equations and beam matrix for the generalized KV model provide important new theoretical tools for the detailed design and analysis of high-intensity beam manipulations, for which previous theoretical models are not easily applicable.« less
Exciton Emission Intensity Modulation of Monolayer MoS2 via Au Plasmon Coupling
Mukherjee, B.; Kaushik, N.; Tripathi, Ravi P. N.; Joseph, A. M.; Mohapatra, P. K.; Dhar, S.; Singh, B. P.; Kumar, G. V. Pavan; Simsek, E.; Lodha, S.
2017-01-01
Modulation of photoluminescence of atomically thin transition metal dichalcogenide two-dimensional materials is critical for their integration in optoelectronic and photonic device applications. By coupling with different plasmonic array geometries, we have shown that the photoluminescence intensity can be enhanced and quenched in comparison with pristine monolayer MoS2. The enhanced exciton emission intensity can be further tuned by varying the angle of polarized incident excitation. Through controlled variation of the structural parameters of the plasmonic array in our experiment, we demonstrate modulation of the photoluminescence intensity from nearly fourfold quenching to approximately threefold enhancement. Our data indicates that the plasmonic resonance couples to optical fields at both, excitation and emission bands, and increases the spontaneous emission rate in a double spacing plasmonic array structure as compared with an equal spacing array structure. Furthermore our experimental results are supported by numerical as well as full electromagnetic wave simulations. This study can facilitate the incorporation of plasmon-enhanced transition metal dichalcogenide structures in photodetector, sensor and light emitter applications. PMID:28134260
Chung, Moses; Qin, Hong; Davidson, Ronald C.; ...
2016-11-23
In an uncoupled linear lattice system, the Kapchinskij-Vladimirskij (KV) distribution formulated on the basis of the single-particle Courant-Snyder invariants has served as a fundamental theoretical basis for the analyses of the equilibrium, stability, and transport properties of high-intensity beams for the past several decades. Recent applications of high-intensity beams, however, require beam phase-space manipulations by intentionally introducing strong coupling. Here in this Letter, we report the full generalization of the KV model by including all of the linear (both external and space-charge) coupling forces, beam energy variations, and arbitrary emittance partition, which all form essential elements for phase-space manipulations. Themore » new generalized KV model yields spatially uniform density profiles and corresponding linear self-field forces as desired. Finally, the corresponding matrix envelope equations and beam matrix for the generalized KV model provide important new theoretical tools for the detailed design and analysis of high-intensity beam manipulations, for which previous theoretical models are not easily applicable.« less
NASA Astrophysics Data System (ADS)
Papailiou, M.; Mavromichalaki, H.; Vassilaki, A.; Kelesidis, K. M.; Mertzanos, G. A.; Petropoulos, B.
2009-02-01
There is an increasing amount of evidence linking biological effects to solar and geomagnetic disturbances. A series of studies is published referring to the changes in human physiological responses at different levels of geomagnetic activity. In this study, the possible relation between the daily variations of cosmic ray intensity, measured by the Neutron Monitor at the Cosmic Ray Station of the University of Athens (http://cosray.phys.uoa.gr) and the average daily and hourly heart rate variations of persons, with no symptoms or hospital admission, monitored by Holter electrocardiogram, is considered. This work refers to a group of persons admitted to the cardiological clinic of the KAT Hospital in Athens during the time period from 4th to 24th December 2006 that is characterized by extreme solar and geomagnetic activity. A series of Forbush decreases started on 6th December and lasted until the end of the month and a great solar proton event causing a Ground Level Enhancement (GLE) of the cosmic ray intensity on 13th December occurred. A sudden decrease of the cosmic ray intensity on 15th December, when a geomagnetic storm was registered, was also recorded in Athens Neutron Monitor station (cut-off rigidity 8.53 GV) with amplitude of 4%. It is noticed that during geomagnetically quiet days the heart rate and the cosmic ray intensity variations are positively correlated. When intense cosmic ray variations, like Forbush decreases and relativistic proton events produced by strong solar phenomena occur, cosmic ray intensity and heart rate get minimum values and their variations, also, coincide. During these events the correlation coefficient of these two parameters changes and follows the behavior of the cosmic ray intensity variations. This is only a small part of an extended investigation, which has begun using data from the year 2002 and is still in progress.
Kessler, Sudha Kilaru; Minhas, Preet; Woods, Adam J.; Rosen, Alyssa; Gorman, Casey; Bikson, Marom
2013-01-01
Transcranial direct current stimulation (tDCS) is being widely investigated in adults as a therapeutic modality for brain disorders involving abnormal cortical excitability or disordered network activity. Interest is also growing in studying tDCS in children. Limited empirical studies in children suggest that tDCS is well tolerated and may have a similar safety profile as in adults. However, in electrotherapy as in pharmacotherapy, dose selection in children requires special attention, and simple extrapolation from adult studies may be inadequate. Critical aspects of dose adjustment include 1) differences in neurophysiology and disease, and 2) variation in brain electric fields for a specified dose due to gross anatomical differences between children and adults. In this study, we used high-resolution MRI derived finite element modeling simulations of two healthy children, ages 8 years and 12 years, and three healthy adults with varying head size to compare differences in electric field intensity and distribution. Multiple conventional and high-definition tDCS montages were tested. Our results suggest that on average, children will be exposed to higher peak electrical fields for a given applied current intensity than adults, but there is likely to be overlap between adults with smaller head size and children. In addition, exposure is montage specific. Variations in peak electrical fields were seen between the two pediatric models, despite comparable head size, suggesting that the relationship between neuroanatomic factors and bioavailable current dose is not trivial. In conclusion, caution is advised in using higher tDCS doses in children until 1) further modeling studies in a larger group shed light on the range of exposure possible by applied dose and age and 2) further studies correlate bioavailable dose estimates from modeling studies with empirically tested physiologic effects, such as modulation of motor evoked potentials after stimulation. PMID:24086698
An investigation into the induced electric fields from transcranial magnetic stimulation
NASA Astrophysics Data System (ADS)
Hadimani, Ravi; Lee, Erik; Duffy, Walter; Waris, Mohammed; Siddiqui, Waquar; Islam, Faisal; Rajamani, Mahesh; Nathan, Ryan; Jiles, David; David C Jiles Team; Walter Duffy Collaboration
Transcranial magnetic stimulation (TMS) is a promising tool for noninvasive brain stimulation that has been approved by the FDA for the treatment of major depressive disorder. To stimulate the brain, TMS uses large, transient pulses of magnetic field to induce an electric field in the head. This transient magnetic field is large enough to cause the depolarization of cortical neurons and initiate a synaptic signal transmission. For this study, 50 unique head models were created from MRI images. Previous simulation studies have primarily used a single head model, and thus give a limited image of the induced electric field from TMS. This study uses finite element analysis simulations on 50 unique, heterogeneous head models to better investigate the relationship between TMS and the electric field induced in brain tissues. Results showed a significant variation in the strength of the induced electric field in the brain, which can be reasonably predicted by the distance from the TMS coil to the stimulated brain. Further, it was seen that some models had high electric field intensities in over five times as much brain volume as other models.
Continental magnetic anomaly constraints on continental reconstruction
NASA Technical Reports Server (NTRS)
Vonfrese, R. R. B.; Hinze, W. J.; Olivier, R.; Bentley, C. R.
1985-01-01
Crustal magnetic anomalies mapped by the MAGSAT satellite for North and South America, Europe, Africa, India, Australia and Antarctica and adjacent marine areas were adjusted to a common elevation of 400 km and differentially reduced to the radial pole of intensity 60,000 nT. These radially polarized anomalies are normalized for differential inclination, declination and intensity effects of the geomagnetic field, so that in principle they directly reflected the geometric and magnetic polarization attributes of sources which include regional petrologic variations of the crust and upper mantle, and crustal thickness and thermal perturbations. Continental anomalies demonstrate remarkably detailed correlation of regional magnetic sources across rifted margins when plotted on a reconstruction of Pangea. Accordingly, they suggest further fundamental constraints on the geologic evolution of the continents and their reconstructions.
Method and apparatus for millimeter-wave detection of thermal waves for materials evaluation
Gopalsami, Nachappa; Raptis, Apostolos C.
1991-01-01
A method and apparatus for generating thermal waves in a sample and for measuring thermal inhomogeneities at subsurface levels using millimeter-wave radiometry. An intensity modulated heating source is oriented toward a narrow spot on the surface of a material sample and thermal radiation in a narrow volume of material around the spot is monitored using a millimeter-wave radiometer; the radiometer scans the sample point-by-point and a computer stores and displays in-phase and quadrature phase components of thermal radiations for each point on the scan. Alternatively, an intensity modulated heating source is oriented toward a relatively large surface area in a material sample and variations in thermal radiation within the full field of an antenna array are obtained using an aperture synthesis radiometer technique.
NASA Technical Reports Server (NTRS)
Wallhead, Ian R.; Edwards, Lyndon; Poole, Peter
1994-01-01
The optical method of caustics has been successfully extended to enable stress intensity factors as low as 1MPa square root of m to be determined accurately for central fatigue cracks in 2024-T3 aluminium alloy test panels. The feasibility of using this technique to study crack closure, and to determine the effective stress intensity factor range, Delta K(sub eff), has been investigated. Comparisons have been made between the measured values of stress intensity factor, K(sub caus), and corresponding theoretical values, K(sub theo), for a range of fatigue cracks grown under different loading conditions. The values of K(sub caus) and K(sub theo) were in good agreement at maximum stress, where the cracks are fully open, while K(sub caus) exceeded K(sub theo) at minimum stress, due to crack closure. However, the levels of crack closure and values of Delta K(sub eff) obtained could not account for the variations of crack growth rate with loading conditions. It is concluded that the values of Delta K(sub eff), based on caustic measurements in a 1/square root of r stress field well outside the plastic zone, do not fully reflect local conditions which control crack tip behavior.
Chopik, A; Pasechnik, S; Semerenko, D; Shmeliova, D; Dubtsov, A; Srivastava, A K; Chigrinov, V
2014-03-15
The results of investigation of electro-optical properties of porous polyethylene terephthalate films filled with a nematic liquid crystal (5 CB) are presented. It is established that the optical response of the samples on the applied voltage drastically depends on the frequency range. At low frequencies of applied electrical field (f
Lidar Investigation of Aerosol Pollution Distribution near a Coal Power Plant
NASA Technical Reports Server (NTRS)
Mitsev, TS.; Kolarov, G.
1992-01-01
Using aerosol lidars with high spatial and temporal resolution with the possibility of real-time data interpretation can solve a large number of ecological problems related to the aerosol-field distribution and variation and the structure of convective flows. Significantly less expensive specialized lidars are used in studying anthropogenic aerosols in the planetary boundary layer. Here, we present results of lidar measurements of the mass-concentration field around a coal-fired power plant with intensive local aerosol sources. We studied the pollution evolution as a function of the emission dynamics and the presence of retaining layers. The technique used incorporates complex analysis of three types of lidar mapping: horizontal map of the aerosol field, vertical cross-section map, and a series of profiles along a selected path. The lidar-sounding cycle was performed for the time of atmosphere's quasi-stationarity.
Studies on laws of stress-magnetization based on magnetic memory testing technique
NASA Astrophysics Data System (ADS)
Ren, Shangkun; Ren, Xianzhi
2018-03-01
Metal magnetic memory (MMM) testing technique is a novel testing method which can early test stress concentration status of ferromagnetic components. Under the different maximum tensile stress, the relationship between the leakage magnetic field of at certain point of cold rolled steel specimen and the tensile stress was measured during the process of loading and unloading by repeated. It shows that when the maximum tensile stress is less than 610 MPa, the relationship between the magnetic induction intensity and the stress is linear; When the maximum tensile stress increase from 610 MPa to 653 MPa of yield point, the relationship between the magnetic induction intensity and the tensile becomes bending line. The location of the extreme point of the bending line will move rapidly from the position of smaller stress to the larger stress position, and the variation of magnetic induction intensity increases rapidly. When the maximum tensile stress is greater than the 653 MPa of yield point, the variation of the magnetic induction intensity remains large, and the position of the extreme point moves very little. In theoretical aspects, tensile stress is to be divided into ordered stress and disordered stress. In the stage of elastic stress, a microscopic model of the order stress magnetization is established, and the conclusions are in good agreement with the experimental data. In the plastic deformation stage, a microscopic model of disordered stress magnetization is established, and the conclusions are in good agreement with the experimental data, too. The research results can provide reference for the accurate quantitative detection and evaluation of metal magnetic memory testing technology.
Spatiotemporal variations of radar glacier zones in the Karakoram Mountains
NASA Astrophysics Data System (ADS)
Lund, Jewell
2017-04-01
Glaciers of the Karakoram Mountains are important climate indicators for densely populated South Central Asia. Glacial meltwater is a significant source of runoff in the Indus River Basin, upon which 60 million people rely for food security, economy and hydropower in Pakistan and India. Contrary to worldwide and also Himalayan trends, Karakoram glaciers have recently been verified in near balance, with some glaciers even gaining mass or surging. This 'Karakoram anomaly' is of interest, and many hypotheses exist for its causes. Complex climatology, coupled with the challenges of field study in this region, illicit notable uncertainties both in observation and prediction of glacial status. Constraining spatiotemporal variations in glacial mass balance will elucidate the extent and possible longevity of this anomaly, and its implications for water resources, as climate continues to change. Depending on snowpack conditions during image acquisition, different snow and ice zones on a glacier are identifiable in synthetic aperture radar (SAR) images. The identification and monitoring of radar glacier zones over time can provide indicators of relative glacial mass balance to compliment field studies in a region with sparse field measurement. We will present spatiotemporal evolution of basic radar glacier zones such as wet snow, bare ice, percolation, and firn for glaciers feeding into the Upper Indus Basin. We will incorporate both ascending and descending passes of Sentinel-1 series C -band sensors, and possibly ALOS-2 PALSAR-2 L-band images. We may also explore the impacts of these variations on timing and intensity of runoff.
Model for energy transfer in the solar wind: Model results
NASA Technical Reports Server (NTRS)
Barnes, A. A., Jr.; Hartle, R. E.
1972-01-01
A description is given of the results of solar wind flow in which the heating is due to (1) propagation and dissipation of hydromagnetic waves generated near the base of the wind, and (2) thermal conduction. A series of models is generated for fixed values of density, electron and proton temperature, and magnetic field at the base by varying the wave intensity at the base of the model. This series of models predicts the observed correlation between flow speed and proton temperature for a large range of velocities. The wave heating takes place in a shell about the sun greater than or approximately equal to 10 R thick. We conclude that large-scale variations observed in the solar wind are probably due mainly to variation in the hydromagnetic wave flux near the sun.
Lee, Mei-Ho; Comas, Louise H; Callahan, Hilary S
2014-02-01
Interactions between roots and soil microbes are critical components of below-ground ecology. It is essential to quantify the magnitude of root trait variation both among and within species, including variation due to plasticity. In addition to contextualizing the magnitude of plasticity relative to differences between species, studies of plasticity can ascertain if plasticity is predictable and whether an environmental factor elicits changes in traits that are functionally advantageous. To compare functional traits and trait plasticities in fine root tissues with natural and reduced levels of colonization by microbial symbionts, trimmed and surface-sterilized root segments of 2-year-old Acer rubrum and Quercus rubra seedlings were manipulated. Segments were then replanted into satellite pots filled with control or heat-treated soil, both originally derived from a natural forest. Mycorrhizal colonization was near zero in roots grown in heat-treated soil; roots grown in control soil matched the higher colonization levels observed in unmanipulated root samples collected from field locations. Between-treatment comparisons revealed negligible plasticity for root diameter, branching intensity and nitrogen concentration across both species. Roots from treated soils had decreased tissue density (approx. 10-20 %) and increased specific root length (approx. 10-30 %). In contrast, species differences were significant and greater than treatment effects in traits other than tissue density. Interspecific trait differences were also significant in field samples, which generally resembled greenhouse samples. The combination of experimental and field approaches was useful for contextualizing trait plasticity in comparison with inter- and intra-specific trait variation. Findings that root traits are largely species dependent, with the exception of root tissue density, are discussed in the context of current literature on root trait variation, interactions with symbionts and recent progress in standardization of methods for quantifying root traits.
Ives, Anthony R; Paull, Cate; Hulthen, Andrew; Downes, Sharon; Andow, David A; Haygood, Ralph; Zalucki, Myron P; Schellhorn, Nancy A
2017-01-01
Transgenic crops that express insecticide genes from Bacillus thuringiensis (Bt) are used worldwide against moth and beetle pests. Because these engineered plants can kill over 95% of susceptible larvae, they can rapidly select for resistance. Here, we use a model for a pyramid two-toxin Bt crop to explore the consequences of spatio-temporal variation in the area of Bt crop and non-Bt refuge habitat. We show that variability over time in the proportion of suitable non-Bt breeding habitat, Q, or in the total area of Bt and suitable non-Bt habitat, K, can increase the overall rate of resistance evolution by causing short-term surges of intense selection. These surges can be exacerbated when temporal variation in Q and/or K cause high larval densities in refuges that increase density-dependent mortality; this will give resistant larvae in Bt fields a relative advantage over susceptible larvae that largely depend on refuges. We address the effects of spatio-temporal variation in a management setting for two bollworm pests of cotton, Helicoverpa armigera and H. punctigera, and field data on landscape crop distributions from Australia. Even a small proportion of Bt fields available to egg-laying females when refuges are sparse may result in high exposure to Bt for just a single generation per year and cause a surge in selection. Therefore, rapid resistance evolution can occur when Bt crops are rare rather than common in the landscape. These results highlight the need to understand spatio-temporal fluctuations in the landscape composition of Bt crops and non-Bt habitats in order to design effective resistance management strategies.
Lam, Mie K; Huisman, Merel; Nijenhuis, Robbert J; van den Bosch, Maurice Aaj; Viergever, Max A; Moonen, Chrit Tw; Bartels, Lambertus W
2015-01-01
Magnetic resonance (MR)-guided high-intensity focused ultrasound has emerged as a clinical option for palliative treatment of painful bone metastases, with MR thermometry (MRT) used for treatment monitoring. In this study, the general image quality of the MRT was assessed in terms of signal-to-noise ratio (SNR) and apparent temperature variation. Also, MRT artifacts were scored for their occurrence and hampering of the treatment monitoring. Analyses were performed on 224 MRT datasets retrieved from 13 treatments. The SNR was measured per voxel over time in magnitude images, in the target lesion and surrounding muscle, and was averaged per treatment. The standard deviation over time of the measured temperature per voxel in MRT images, in the muscle outside the heated region, was defined as the apparent temperature variation and was averaged per treatment. The scored MRT artifacts originated from the following sources: respiratory and non-respiratory time-varying field inhomogeneities, arterial ghosting, and patient motion by muscle contraction and by gross body movement. Distinction was made between lesion type, location, and procedural sedation and analgesic (PSA). The average SNR was highest in and around osteolytic lesions (21 in lesions, 27 in surrounding muscle, n = 4) and lowest in the upper body (9 in lesions, 16 in surrounding muscle, n = 4). The average apparent temperature variation was lowest in osteolytic lesions (1.2°C, n = 4) and the highest in the upper body (1.7°C, n = 4). Respiratory time-varying field inhomogeneity MRT artifacts occurred in 85% of the datasets and hampered treatment monitoring in 81%. Non-respiratory time-varying field inhomogeneities and arterial ghosting MRT artifacts were most frequent (94% and 95%) but occurred only locally. Patient motion artifacts were highly variable and occurred less in treatments of osteolytic lesions and using propofol and esketamine as PSA. In this study, the general image quality of MRT was observed to be higher in osteolytic lesions and lower in the upper body. Respiratory time-varying field inhomogeneity was the most prominent MRT artifact. Patient motion occurrence varied between treatments and seemed to be related to lesion type and type of PSA. Clinicians should be aware of these observed characteristics when interpreting MRT images.
McBride, Cameron L; Akeroyd, Julia M; Ramsey, David J; Nambi, Vijay; Nasir, Khurram; Michos, Erin D; Bush, Ruth L; Jneid, Hani; Morris, Pamela B; Bittner, Vera A; Ballantyne, Christie M; Petersen, Laura A; Virani, Salim S
2018-06-01
The 2013 American College of Cardiology/American Heart Association cholesterol guideline recommends moderate to high-intensity statin therapy in patients with peripheral artery disease (PAD) and ischemic cerebrovascular disease (ICVD). We examined frequency and facility-level variation in any statin prescription and in guideline-concordant statin prescriptions in patients with PAD and ICVD receiving primary care in 130 facilities across the Veterans Affairs (VA) health care system between October 2013 and September 2014. Guideline-concordant statin intensity was defined as the prescription of high-intensity statins in patients with PAD or ICVD ≤75 years and at least moderate-intensity statins in those >75 years. We calculated median rate ratios (MRR) after adjusting for patient demographic factors to assess the magnitude of facility-level variation in statin prescribing patterns independent of patient characteristics. Among 194,151 PAD patients, 153,438 patients (79.0%) were prescribed any statin and 79,435 (40.9%) were prescribed a guideline-concordant intensity of statin. PAD patients without ischemic heart disease were prescribed any statin and a guideline-concordant intensity of statin therapy less frequently (69.1% and 28.9%, respectively). Among 339,771 ICVD patients, 265,491 (78.1%) were prescribed any statin and 136,430 (40.2%) were prescribed a guideline-concordant intensity of statin. ICVD patients without ischemic heart disease were prescribed any statin and a guideline-concordant intensity of statin less frequently (70.9% and 30.5%, respectively). MRRs for both PAD and ICVD patients demonstrated a 20% and 28% variation among two facilities in treating two identical patients with statin therapy and guideline-concordant intensity of statin therapy, respectively. The prescription of statins, especially guideline-recommended intensity of statin therapy, is suboptimal in PAD and ICVD patients, with significant facility-level variation not explained by patient-level factors.
THE FORMATION OF ROTATIONAL DISCONTINUITIES IN COMPRESSIVE THREE-DIMENSIONAL MHD TURBULENCE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Liping; Feng, Xueshang; Zhang, Lei
Measurements of solar wind turbulence reveal the ubiquity of discontinuities. In this study we investigate how the discontinuities, especially rotational discontinuities (RDs), are formed in MHD turbulence. In a simulation of the decaying compressive three-dimensional (3D) MHD turbulence with an imposed uniform background magnetic field, we detect RDs with sharp field rotations and little variations of magnetic field intensity, as well as mass density. At the same time, in the de Hoffman–Teller frame, the plasma velocity is nearly in agreement with the Alfvén speed, and is field-aligned on both sides of the discontinuity. We take one of the identified RDsmore » to analyze its 3D structure and temporal evolution in detail. By checking the magnetic field and plasma parameters, we find that the identified RD evolves from the steepening of the Alfvén wave with moderate amplitude, and that steepening is caused by the nonuniformity of the Alfvén speed in the ambient turbulence.« less
Proposal for generating synthetic magnetic fields in hexagonal optical lattices
NASA Astrophysics Data System (ADS)
Tian, Binbin; Endres, Manuel; Pekker, David
2015-05-01
We propose a new approach to generating synthetic magnetic fields in ultra cold atom systems that does not rely on either Raman transitions nor periodic drive. Instead, we consider a hexagonal optical lattice produced by the intersection of three laser beams at 120 degree angles, where the intensity of one or more of the beams is spatially non-uniform. The resulting optical lattice remains hexagonal, but has spatially varying hopping matrix elements. For atoms near the Dirac points, these spatial variations appear as a gauge field, similar to the fictitious gauge field that is induced for for electrons in strained graphene. We suggest that a robust way to generate a gauge field that corresponds to a uniform flux is to aligning three gaussian beams to intersect in an equilateral triangle. Using realistic experimental parameters, we show how the proposed setup can be used to observe cyclotron motion of an atom cloud - the conventional Hall effect and distinct Landau levels - the integer quantum Hall effect.
NASA Astrophysics Data System (ADS)
Miller, Kelsey; Guyon, Olivier
2016-07-01
This paper presents the early-stage simulation results of linear dark field control (LDFC) as a new approach to maintaining a stable dark hole within a stellar post-coronagraphic PSF. In practice, conventional speckle nulling is used to create a dark hole in the PSF, and LDFC is then employed to maintain the dark field by using information from the bright speckle field. The concept exploits the linear response of the bright speckle intensity to wavefront variations in the pupil, and therefore has many advantages over conventional speckle nulling as a method for stabilizing the dark hole. In theory, LDFC is faster, more sensitive, and more robust than using conventional speckle nulling techniques, like electric field conjugation, to maintain the dark hole. In this paper, LDFC theory, linear bright speckle characterization, and first results in simulation are presented as an initial step toward the deployment of LDFC on the UA Wavefront Control testbed in the coming year.
Crack problem in superconducting cylinder with exponential distribution of critical-current density
NASA Astrophysics Data System (ADS)
Zhao, Yufeng; Xu, Chi; Shi, Liang
2018-04-01
The general problem of a center crack in a long cylindrical superconductor with inhomogeneous critical-current distribution is studied based on the extended Bean model for zero-field cooling (ZFC) and field cooling (FC) magnetization processes, in which the inhomogeneous parameter η is introduced for characterizing the critical-current density distribution in inhomogeneous superconductor. The effect of the inhomogeneous parameter η on both the magnetic field distribution and the variations of the normalized stress intensity factors is also obtained based on the plane strain approach and J-integral theory. The numerical results indicate that the exponential distribution of critical-current density will lead a larger trapped field inside the inhomogeneous superconductor and cause the center of the cylinder to fracture more easily. In addition, it is worth pointing out that the nonlinear field distribution is unique to the Bean model by comparing the curve shapes of the magnetization loop with homogeneous and inhomogeneous critical-current distribution.
Ultrasound Thermal Field Imaging of Opaque Fluids
NASA Technical Reports Server (NTRS)
Andereck, C. David
1999-01-01
We have initiated an experimental program to develop an ultrasound system for non-intrusively imaging the thermal field in opaque fluids under an externally imposed temperature gradient. Many industrial processes involve opaque fluids, such as molten metals, semiconductors, and polymers, often in situations in which thermal gradients are important. For example, one may wish to understand semiconductor crystal growth dynamics in a Bridgman apparatus. Destructive testing of the crystal after the process is completed gives only indirect information about the fluid dynamics of the formation process. Knowledge of the coupled thermal and velocity fields during the growth process is then essential. Most techniques for non-intrusive velocity and temperature measurement in fluids are optical in nature, and hence the fluids studied must be transparent. In some cases (for example, LDV (laser Doppler velocimetry) and PIV (particle imaging velocimetry)) the velocities of small neutrally buoyant seed particles suspended in the fluid, are measured. Without particle seeding one can use the variation of the index of refraction of the fluid with temperature to visualize, through interferometric, Schlieren or shadowgraph techniques, the thermal field. The thermal field in turn gives a picture of the pattern existing in the fluid. If the object of study is opaque, non-optical techniques must be used. In this project we focus on the use of ultrasound, which propagates easily through opaque liquids and solids. To date ultrasound measurements have almost exclusively relied on the detection of sound scattered from density discontinuities inside the opaque material of interest. In most cases it has been used to visualize structural properties, but more recently the ultrasound Doppler velocimeter has become available. As in the optical case, it relies on seed particles that scatter Doppler shifted sound back to the detector. Doppler ultrasound techniques are, however, not useful for studying convective fluid flow in crystal growth, because particle seeding is unacceptable and flow velocities are typically too low to be resolved, and may be even lower in microgravity conditions where buoyancy forces are negligible. We will investigate a different use of ultrasound to probe the flows of opaque fluids non-intrusively and without the use of seed particles: our goal is to ultrasonically visualize the thermal field of opaque fluids with relatively high spatial resolution. The proposed technique relies upon the variation of sound speed with temperature of the fluid. A high frequency ultra-sound pulse passing through a fluid-filled chamber will traverse the chamber in a time determined by the relevant chamber dimension and the temperature of the fluid through which the pulse passes. With high time-resolution instrumentation that compares the excitation signal with the received pulse we can detect the influence of the fluid temperature on the pulse travel time. This is effectively an interferometric system, which in its optical form is an extremely sensitive approach to measuring thermal fields in fluids. Moreover, the temperature dependence of sound velocity in liquid metals is comparable to the temperature dependence of the speed of light required for accurate interferometric thermal images in transparent fluids. With an array of transducers scanned electronically a map of the thermal field over the chamber could be produced. An alternative approach would be to use the ultrasound analog of the shadowgraph technique. In the optical version, collimated light passes through the fluid, where it is focused or defocused locally by temperature field induced variations of the index of refraction. The resulting image reveals the thermal field through the spatial pattern of light intensity variations. By analogy, an ultrasound plane wave traversing an opaque fluid sample would be also locally focused or defocused depending on the speed of sound variations, giving rise to spatial variations in sound intensity that will reveal the thermal field pattern. These approaches could be applied to any situation in which temperature differences are expected to occur, and will rapidly provide information about the flow that simply cannot be obtained by any current intrusive or non-intrusive diagnostic technique. As materials processing in microgravity matures it will become increasingly important to have available simple and versatile diagnostic tools, such as we will develop, for studying the flows of opaque fluids under thermal forcing.
Multi-instrument observations of a failed flare eruption associated with MHD waves in a loop bundle
NASA Astrophysics Data System (ADS)
Nisticò, G.; Polito, V.; Nakariakov, V. M.; Del Zanna, G.
2017-04-01
Context. We present observations of a B7.9-class flare that occurred on the 24th January, 2015, using the Atmospheric Imaging Assembly (AIA) of the Solar Dynamics Observatory (SDO), the EUV Imaging Spectrometer (EIS) and the X-Ray Telescope of Hinode. The flare triggers the eruption of a dense cool plasma blob as seen in AIA 171 Å, which is unable to completely break out and remains confined within a local bundle of active region loops. During this process, transverse oscillations of the threads are observed. The cool plasma is then observed to descend back to the chromosphere along each loop strand. At the same time, a larger diffuse co-spatial loop observed in the hot wavebands of SDO/AIA and Hinode/XRT is formed, exhibiting periodic intensity variations along its length. Aims: The formation and evolution of magnetohydrodynamic (MHD) waves depend upon the values of the local plasma parameters (e.g. density, temperature and magnetic field), which can hence be inferred by coronal seismology. In this study we aim to assess how the observed MHD modes are affected by the variation of density and temperature. Methods: We combined analysis of EUV/X-ray imaging and spectroscopy using SDO/AIA, Hinode/EIS and XRT. Results: The transverse oscillations of the cool loop threads are interpreted in terms of vertically polarised kink oscillations. The fitting procedure applied to the loop displacement time series gives a period of 3.5 to 4 min, and an amplitude of 5 Mm. The oscillations are strongly damped showing very low quality factor (1.5-2), which is defined as the ratio of the damping time and the oscillation period. The weak variation of the period of the kink wave, which is estimated from the fitting analysis, is in agreement with the density variations due to the presence of the plasma blob inferred from the intensity light curve at 171 Å. The coexisting intensity oscillations along the hot loop are interpreted as a slow MHD wave with a period of 10 min and phase speed of approximately 436 km s-1. Comparison between the fast and slow modes allows for the determination of the Alfvén speed, and consequently magnetic field values. The plasma-β inferred from the analysis is estimated to be approximately 0.1-0.3. Conclusions: We show that the evolution of the detected waves is determined by the temporal variations of the local plasma parameters, caused by the flare heating and the consequent cooling. We apply coronal seismology to both waves obtaining estimates of the background plasma parameters. Movies are available at http://www.aanda.org
Erratum: Variational Principles for Stellar Structure
NASA Astrophysics Data System (ADS)
Kennedy, Dallas C.; Bludman, Sidney A.
1998-01-01
In the paper ``HST and MERLIN Observations of 3C 264--A Laboratory for Jet Physics and Unified Schemes'' by Stefi A. Baum, Christopher P. O'Dea, Gabriele Giovannini, John Biretta, William B. Cotton, Sigrid de Koff, Luigina Feretti, Daniel Golombek, Lucas Lara, Ferdinando D. Macchetto, G. K. Miley, William B. Sparks, Tiziana Venturi, and Serguei S. Komissarov (ApJ, 483, 178 [1997]), there are errors in some of the exponents in equations (18), (20), and (21). The correct equations were used in the analysis, and the results of the paper are not affected. Section 5.4 including equations (18)-(21) with the correct exponents is presented here. 5.4. Brightness Variations Combining the results of previous sections, we obtain the following equations for the proper emissivity and the observed brightness variations (intensity per unit area Iν = εν rj) along a steady relativistic jet: Predominantly parallel field (case of 3C 264): ε˜ν~(Γjvj)-(γ+2)/3r-(5γ+7)/3j ,Iν~(Γjvj)-(γ+2)/3r-(5γ+4)/3jD2+α . (18) (19) Predominantly transverse field: ε˜ν~(Γjvj)-(5γ+7)/6r-(7γ+11)/6j ,Iν~(Γjvj)-(5γ+7)/6r-(7γ+5)/6jD2+α . (20) (21)
NASA Astrophysics Data System (ADS)
Chen, Wei; de Swart, Huib E.
2018-03-01
This study investigates the longitudinal variation of lateral entrapment of suspended sediment, as is observed in some tidal estuaries. In particular, field data from the Yangtze Estuary are analysed, which reveal that in one cross-section, two maxima of suspended sediment concentration (SSC) occur close to the south and north sides, while in a cross-section 2 km down-estuary, only one SSC maximum on the south side is present. This pattern is found during both spring tide and neap tide, which are characterised by different intensities of turbulence. To understand longitudinal variation in lateral trapping of sediment, results of a new three-dimensional exploratory model are analysed. The hydrodynamic part contains residual flow due to fresh water input, density gradients and Coriolis force and due to channel curvature-induced leakage. Moreover, the model includes a spatially varying eddy viscosity that accounts for variation of intensity of turbulence over the spring-neap cycle. By imposing morphodynamic equilibrium, the two-dimensional distribution of sediment in the domain is obtained analytically by a novel procedure. Results reveal that the occurrence of the SSC maxima near the south side of both cross-sections is due to sediment entrapment by lateral density gradients, while the second SSC maximum near the north side of the first cross-section is by sediment transport due to curvature-induced leakage. Coriolis deflection of longitudinal flow also contributes the trapping of sediment near the north side. This mechanism is important in the upper estuary, where the flow due to lateral density gradients is weak.
NASA Astrophysics Data System (ADS)
Zhao, Jianlin; Zhang, Jiwei; Dai, Siqing; Di, Jianglei; Xi, Teli
2018-02-01
Surface plasmon microscopy (SPM) is widely applied for label-free detection of changes of refractive index and concentration, as well as mapping thin films in near field. Traditionally, the SPM systems are based on the detection of light intensity or phase changes. Here, we present two kinds of surface plasmon holographic microscopy (SPHM) systems for amplitude- and phase-contrast imaging simultaneously. Through recording off-axis holograms and numerical reconstruction, the complex amplitude distributions of surface plasmon resonance (SPR) images can be obtained. According to the Fresnel's formula, in a prism/ gold/ dielectric structure, the reflection phase shift is uniquely decided by refractive index of the dielectric. By measuring the phase shift difference of the reflected light exploiting prism-coupling SPHM system based on common-path interference configuration, monitoring tiny refractive index variation and imaging biological tissue are performed. Furthermore, to characterize the thin film thickness in near field, we employ a four-layer SPR model in which the third film layer is within the evanescent field. The complex reflection coefficient, including the reflectivity and reflection phase shift, is uniquely decided by the film thickness. By measuring the complex amplitude distributions of the SPR images exploiting objective-coupling SPHM system based on common-path interference configuration, the thickness distributions of thin films are mapped with sub-nanometer resolution theoretically. Owing to its high temporal stability, the recommended SPHMs show great potentials for monitoring tiny refractive index variations, imaging biological tissues and mapping thin films in near field with dynamic, nondestructive and full-field measurement capabilities in chemistry, biomedicine field, etc.
The effects of grazing intensity on soil processes in a Mediterranean protected area.
Panayiotou, Evaggelia; Dimou, Maria; Monokrousos, Nikolaos
2017-08-08
We investigated the temporal and among-site differentiation of soil functionality properties in fields under different grazing intensities (heavy and light) and compared them to those found in their adjacent hedgerows, consisting either of wooden shrubs (Rubus canescens) or of high trees (Populus sp.), during the cold and humid seasons of the year. We hypothesized that greater intensity of grazing would result in higher degradation of the soil system. The grazing factor had a significant effect on soil organic C and N, microbial biomass C, microbial biomass N, microbial activity, and β-glucosidase, while acid phosphatase and urease activity were not found to differ significantly among the management systems. The intensity of grazing affected mostly the chemical properties of soil (organic C and N) and altered significantly the composition of the soil microbial community, as lower C:N ratio of the microbial biomass indicates the dominance of bacteria over fungi in the heavily grazed fields. All estimated biological variables presented higher values in the humid period, although the pattern of differentiation was similar at both sampling times, revealing that site-specific variations were more pronounced than the time-specific ones. Our results indicate that not all C, N, and P dynamics were equally affected by grazing. Management plans applied to pastures, in order to improve soil quality properties and accelerate passive reforestation, should aim at the improvement of soil parameters related primarily to C and secondly to N cycle.
NASA Technical Reports Server (NTRS)
Kahler, S. W.; Akiyama, S.; Gopalswamy, N.
2012-01-01
The onset times and peak intensities of solar energetic particle (SEP) events at Earth have long been thought to be influenced by the open magnetic fields of coronal holes (CHs). The original idea was that a CH lying between the solar SEP source region and the magnetic footpoint of the 1 AU observer would result in a delay in onset and/or a decrease in the peak intensity of that SEP event. Recently, Gopalswamy et al. showed that CHs near coronal mass ejection (CME) source regions can deflect fast CMEs from their expected trajectories in space, explaining the appearance of driverless shocks at 1 AU from CMEs ejected near solar central meridian (CM). This suggests that SEP events originating in CME-driven shocks may show variations attributable to CH deflections of the CME trajectories. Here, we use a CH magnetic force parameter to examine possible effects of CHs on the timing and intensities of 41 observed gradual E approx 20 MeV SEP events with CME source regions within 20 deg. of CM. We find no systematic CH effects on SEP event intensity profiles. Furthermore, we find no correlation between the CME leading-edge measured position angles and SEP event properties, suggesting that the widths of CME-driven shock sources of the SEPs are much larger than the CMEs. Independently of the SEP event properties, we do find evidence for significant CME deflections by CH fields in these events
NASA Astrophysics Data System (ADS)
Contrella, Benjamin; Tustison, Nicholas J.; Altes, Talissa A.; Avants, Brian B.; Mugler, John P., III; de Lange, Eduard E.
2012-03-01
Although 3He MRI permits compelling visualization of the pulmonary air spaces, quantitation of absolute ventilation is difficult due to confounds such as field inhomogeneity and relative intensity differences between image acquisition; the latter complicating longitudinal investigations of ventilation variation with respiratory alterations. To address these potential difficulties, we present a 4-D segmentation and normalization approach for intra-subject quantitative analysis of lung hyperpolarized 3He MRI. After normalization, which combines bias correction and relative intensity scaling between longitudinal data, partitioning of the lung volume time series is performed by iterating between modeling of the combined intensity histogram as a Gaussian mixture model and modulating the spatial heterogeneity tissue class assignments through Markov random field modeling. Evaluation of the algorithm was retrospectively applied to a cohort of 10 asthmatics between 19-25 years old in which spirometry and 3He MR ventilation images were acquired both before and after respiratory exacerbation by a bronchoconstricting agent (methacholine). Acquisition was repeated under the same conditions from 7 to 467 days (mean +/- standard deviation: 185 +/- 37.2) later. Several techniques were evaluated for matching intensities between the pre and post-methacholine images with the 95th percentile value histogram matching demonstrating superior correlations with spirometry measures. Subsequent analysis evaluated segmentation parameters for assessing ventilation change in this cohort. Current findings also support previous research that areas of poor ventilation in response to bronchoconstriction are relatively consistent over time.
Ribeiro da Luz, B.
2006-01-01
??? Attenuated total reflectance (ATR) spectra of plant leaves display complex absorption features related to organic constituents of leaf surfaces. The spectra can be recorded rapidly, both in the field and in the laboratory, without special sample preparation. ??? This paper explores sources of ATR spectral variation in leaves, including compositional, positional and temporal variations. Interspecific variations are also examined, including the use of ATR spectra as a tool for species identification. ??? Positional spectral variations generally reflected the abundance of cutin and the epicuticular wax thickness and composition. For example, leaves exposed to full sunlight commonly showed more prominent cutin- and wax-related absorption features compared with shaded leaves. Adaxial vs. abaxial leaf surfaces displayed spectral variations reflecting differences in trichome abundance and wax composition. Mature vs. young leaves showed changes in absorption band position and intensity related to cutin, polysaccharide, and possibly amorphous silica development on and near the leaf surfaces. ??? Provided that similar samples are compared (e.g. adaxial surfaces of mature, sun-exposed leaves) same-species individuals display practically identical ATR spectra. Using spectral matching procedures to analyze an ATR database containing 117 individuals, including 32 different tree species, 83% of the individuals were correctly identified. ?? The Authors (2006).
Effect of Game Management on Wild Red-Legged Partridge Abundance
Díaz-Fernández, Silvia; Arroyo, Beatriz; Casas, Fabián; Martinez-Haro, Monica; Viñuela, Javier
2013-01-01
The reduction of game and fish populations has increased investment in management practices. Hunting and fishing managers use several tools to maximize harvest. Managers need to know the impact their management has on wild populations. This issue is especially important to improve management efficacy and biodiversity conservation. We used questionnaires and field bird surveys in 48 hunting estates to assess whether red-legged partridge Alectoris rufa young/adult ratio and summer abundance were related to the intensity of management (provision of supplementary food and water, predator control and releases of farm-bred partridges), harvest intensity or habitat in Central Spain. We hypothesized that partridge abundance would be higher where management practices were applied more intensively. Variation in young/adult ratio among estates was best explained by habitat, year and some management practices. Density of feeders and water points had a positive relationship with this ratio, while the density of partridges released and magpies controlled were negatively related to it. The variables with greatest relative importance were feeders, releases and year. Variations in post-breeding red-legged partridge abundance among estates were best explained by habitat, year, the same management variables that influenced young/adult ratio, and harvest intensity. Harvest intensity was negatively related to partridge abundance. The other management variables had the same type of relationship with abundance as with young/adult ratio, except magpie control. Variables with greatest relative importance were habitat, feeders, water points, releases and harvest intensity. Our study suggests that management had an overall important effect on post-breeding partridge abundance. However, this effect varied among tools, as some had the desired effect (increase in partridge abundance), whereas others did not or even had a negative relationship (such as release of farm-reared birds) and can be thus considered inefficient or even detrimental. We advise reconsidering their use from both ecological and economical points of view. PMID:23840515
NASA Astrophysics Data System (ADS)
Hoshino, N.; Fujiwara, H.; Takagi, M.; Kasaba, Y.; Takahashi, Y.
2009-12-01
The O2-1.27 μm nightglow distribution, which has the peak intensity in the depression region of the day-to-night flow, gives us information of the wind field at about 95 km in Venus. The past nightglow observations [Crisp et al., 1996] showed that the intensity of the nightglow in the brightness region changed by 20 % in about one hour, and the brightness region disappeared in less than one day. The observation results obtained by Venus Express (VEX) also showed the temporal variations of the nightglow emission. Some simulation studies suggested contributions of gravity waves generated in the cloud deck (50-70 km) to the temporal variations. However, the causes of the temporal variations are still unknown. In recent years, the importance of planetary-scale waves for the dynamics of the Venusian atmosphere has been recognized. For example, Takagi and Matsuda [2006] suggested that the atmospheric superrotation was driven by the momentum transport due to the vertical propagation of the thermal tides generated in the Venus cloud deck. In order to estimate effects of the planetary-scale waves on the temporal variations of the nightglow, we have performed numerical simulations with a general circulation model (GCM), which includes the altitude region of 80 - about 200 km. The planetary-scale waves (thermal tides, Kelvin wave and Rosbby wave) are imposed at the lower boundary. The amplitudes and phase velocities of the waves are assumed from the study by Del Genio and Rossow [1990]. The nightglow intensity and its global distribution are calculated from the GCM results assuming the chemical equilibration. In this study, we investigate contributions of the planetary-scale waves on the temporal variations of the nightglow shown by past observations. In addition, we show the characteristics of the wave propagation and the interactions between the waves in the Venusian upper atmosphere. Venus Climate Orbiter (VCO), which will be launched in 2010 as the second Japanese planetary mission, is expected to provide precious information about the atmospheric waves at the cloud top (about 70 km) and the nightglow distributions in the thermosphere. We can understand effects of the atmospheric waves on the Venusian thermosphere quantitatively by performing simulations with new information about the atmospheric waves obtained from the detailed nightglow observations.
Influence of bulk turbulence and entrance boundary layer thickness on the curved duct flow field
NASA Technical Reports Server (NTRS)
Crawford, R. A.
1988-01-01
The influence of bulk turbulence and boundary layer thickness on the secondary flow development in a square, 90 degree turning duct was investigated. A three-dimensional laser velocimetry system was utilized to measure the mean and fluctuating components of velocity at six cross-planes in the duct. The results from this investigation, with entrance boundary layer thickness of 20 percent, were compared with the thin boundary layer results documented in NASA CR-174811. The axial velocity profiles, cross-flow velocities, and turbulence intensities were compared and evaluated with regard to the influence of bulk turbulence intensity and boundary layer thickness, and the influence was significant. The results of this investigation expand the 90 degree curved duct experimental data base to higher turbulence levels and thicker entrance boundary layers. The experimental results provide a challenging benchmark data base for computational fluid dynamics code development and validation. The variation of inlet bulk turbulence intensity provides additional information to aid in turbulence model evaluation.
Aoki, Kazuhiro; Kameda, Takahiko; Yamatogi, Toshifumi; Ishida, Naoya; Hirae, Sou; Kawaguchi, Mayumi; Syutou, Toshio
2017-11-15
A massive bloom of the dinoflagellate Karenia mikimotoi appeared in 2014 in Imari Bay, Japan. Bloom dynamics and hydrographical conditions were examined by field survey. The bloom initially developed in the eastern area of Imari Bay, subsequently after rainfall during the neap tides, cell density exceeded over 10,000cellsml. Vertical distribution of K. mikimotoi was primarily controlled by the light intensity and secondarily by the water quality during the daytime. Almost all cell-density maxima occurred in depths with weak daytime light intensities of <300μmolm -2 s -1 . In some cases of weak light intensity, cell-density maxima occurred in depths with favorable hydrodynamic conditions for the growth. Spatially classified areas were identified by cluster analysis using the growth rate calculated from seawater temperature and salinity. This study quantitatively evaluated the environmental factors of the eastern area, where the bloom initially occurred, during the development of the bloom. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Sarkar, Ritabrata; Chakrabarti, Sandip K.; Pal, Partha Sarathi; Bhowmick, Debashis; Bhattacharya, Arnab
2017-09-01
Cosmic ray flux in our planetary system is primarily modulated by solar activity. Radiation effects of cosmic rays on the Earth strongly depend on latitude due to the variation of the geomagnetic field strength. To study these effects we carried out a series of measurements of the radiation characteristics in the atmosphere due to cosmic rays from various places (geomagnetic latitude: ∼14.50°N) in West Bengal, India, located near the Tropic of Cancer, for several years (2012-2016) particularly covering the solar maximum in the 24th solar cycle. We present low energy (15-140 keV) secondary radiation measurement results extending from the ground till the near space (∼40 km) using a scintillator detector on board rubber weather balloons. We also concentrate on the cosmic ray intensity at the Regener-Pfotzer maxima and find a strong anti-correlation between this intensity and the solar activity even at low geomagnetic latitudes.
Simple method for the characterization of intense Laguerre-Gauss vector vortex beams
NASA Astrophysics Data System (ADS)
Allahyari, E.; JJ Nivas, J.; Cardano, F.; Bruzzese, R.; Fittipaldi, R.; Marrucci, L.; Paparo, D.; Rubano, A.; Vecchione, A.; Amoruso, S.
2018-05-01
We report on a method for the characterization of intense, structured optical fields through the analysis of the size and surface structures formed inside the annular ablation crater created on the target surface. In particular, we apply the technique to laser ablation of crystalline silicon induced by femtosecond vector vortex beams. We show that a rapid direct estimate of the beam waist parameter is obtained through a measure of the crater radii. The variation of the internal and external radii of the annular crater as a function of the laser pulse energy, at fixed number of pulses, provides another way to evaluate the beam spot size through numerical fitting of the obtained experimental data points. A reliable estimate of the spot size is of paramount importance to investigate pulsed laser-induced effects on the target material. Our experimental findings offer a facile way to characterize focused, high intensity complex optical vector beams which are more and more applied in laser-matter interaction experiments.
NASA Astrophysics Data System (ADS)
Piriaei, D.; Yousefi, H. R.; Mahabadi, T. D.; SalarElahi, A.; Ghoranneviss, M.
2017-08-01
In this research, the effects of pre-ionization using a shunt resistor on reproducibility of x-ray emission in a Mather type plasma focus device have been studied. This technique increased the intensities of the emitted x-rays from argon as the filling gas of the device and made the x-ray yields with similar intensities reproducible. A Mirnov coil was also used to record the variations of the plasma's magnetic field, and the wavelet spectrums of these recorded signals showed the reduced instabilities due to the application of the pre-ionization technique. Moreover, it was demonstrated that this technique was capable of reducing the number of initial runaway electrons that could increase the impurities and instabilities inside the plasma. In addition to the above-mentioned features, this technique could improve the uniform formation of the current sheath during the breakdown phase that might later lead to a high quality pinch and high intensity emitted x-rays.
Imaging of the gravitational lens system PG 1115+080 with the Hubble Space Telescope
NASA Technical Reports Server (NTRS)
Kristian, Jerome; Groth, Edward J.; Shaya, Edward J.; Schneider, Donald P.; Holtzman, Jon A.; Baum, William A.; Campbell, Bel; Code, Arthur; Currie, Douglas G.; Danielson, G. E.
1993-01-01
This paper is the first of a series presenting observations of gravitational lenses and lens candidates, taken with the Wide Field/Planetary Camera of the HST. We have resolved the gravitational lens system PG 1115+080 into four point sources and a red, extended object that is presumably the lens galaxy; we present accurate relative intensities, colors, and positions of the four images, and lower accuracy intensity and position of the lens galaxy, all at the epoch 1991.2. Comparison with earlier data shows no compelling evidence for relative intensity variations between the QSO components having so far been observed. The new data agree with earlier conclusions that the system is rather simple, and can be produced by the single observed galaxy. The absence of asymmetry in the HST images implies that the emitting region of the quasar itself has an angular radius smaller than about 10 milliarcsec (100 pc for H0 = 50, q0 = 0.5).
Analysis of Electrokinetic Mixing Using AC Electric Field and Patchwise Surface Heterogeneities
NASA Astrophysics Data System (ADS)
Luo, Win-Jet; Yarn, Kao-Feng; Hsu, Shou-Ping
2007-04-01
In this paper, the authors investigate the use of an applied AC electric field and microchannel surface heterogeneities to carry out the microfluidic mixing of two-dimensional, time-dependent electroosmotic flows. The time-dependent flow fields within the microchannel are simulated using the backwards-Euler time-stepping numerical method. The mixing efficiencies obtained in microchannels with two different patchwise surface heterogeneity patterns are investigated. In general, the results show that the application of an AC electric field significantly reduces the required mixing length compared with the use of a DC electric field. Furthermore, the presence of oppositely charged surface heterogeneities on the microchannel walls results in the formation of localized flow circulation regions within the bulk flow. These circulation regions grow and decay periodically in accordance with the periodic variation of the AC electric field intensity and provide an effective means of enhancing species mixing in the microchannel. Consequently, the use of an AC electric field together with patchwise surface heterogeneities permits a significant reduction in both the mixing channel length and the retention time required to attain a homogeneous solution.
NASA Astrophysics Data System (ADS)
Jun, WU; Jian, WU; M, T. RIETVELD; I, HAGGSTROM; Haisheng, ZHAO; Zhengwen, XU
2017-12-01
An ionospheric heating experiment involving an O mode pump wave was carried out at European Incoherent Scatter Scientific Association site in Tromsø. The observation of the ultra high frequency radar illustrates the systematic variations of the enhanced ion line and plasma line in altitude and intensity as a function of the pump frequency. The analysis shows that those altitude variations are due to the thermal effect, and the intensity variations of the enhanced ion line are dependent on whether or not the enhanced ion acoustic wave satisfy the Bragg condition of radar. Moreover, a prediction that if the enhancement in electron temperature is suppressed, those systematic variations will be absent, is given.
Quan, Lei; Dong, Jie; Li, Yanjun; Zuo, Li
2012-06-01
This article is a report of a study to reduce the seasonal variation of blood pressure in patients on peritoneal dialysis through an intensive programme of nursing care. The seasonal variation of blood pressure is a common phenomenon in patients on maintenance dialysis. Whether or not this variation can be reduced through a given intervention is unknown. The programme of intensive nursing care including education on volume control, home blood pressure monitoring and intensified antihypertensive treatment, was implemented from December 2006. The blood pressure, fluid and sodium removal and defined daily doses of antihypertensive agents were measured at 1-monthly intervals and averagely quarterly for seasonal values for spring, summer, autumn and winter, respectively, before (December 2005-November 2006) and after intervention (December 2006-November 2007). A total of 76 clinically stable patients on peritoneal dialysis were enrolled and finally analysed. The mean age was 60·6 years, and dialysis duration was 23·2 months. Before intervention, there were important seasonal variations in systolic and diastolic blood pressure. After intensive nursing care was implemented, the seasonal variation of systolic blood pressure disappeared. The diastolic blood pressure still represented a season pattern, but the discrepancy between winter and summer decreased. There were no seasonal patterns of total fluid and sodium removal before and after intervention. Intensive nursing care reduced the seasonal variation of blood pressure in patients on peritoneal dialysis. These data provided an evidence for implementing nurse-centred interventions in this population. © 2011 Blackwell Publishing Ltd.
NASA Astrophysics Data System (ADS)
Kravtsova, M. V.; Sdobnov, V. E.
2015-09-01
Using data from a worldwide network of neutron monitors, we have investigated the cosmicray (CR) energy spectra and anisotropy during the CR increases attributable to the solar events of June 11 and 15, 1991, by the spectrographic global survey method. By jointly analyzing ground-based and satellite measurements, we have determined the parameters of the CR rigidity spectrum reflecting the electromagnetic characteristics of the heliospheric fields in each hour of observations within the framework of the model of CR modulation by regular heliospheric electromagnetic fields. The CR spectra and relative CR intensity variations in the solar—ecliptic geocentric coordinate system are presented at specific times of these events.
Transient cosmic ray increase associated with a geomagnetic storm
NASA Technical Reports Server (NTRS)
Kudo, S.; Wada, M.; Tanskanen, P.; Kodama, M.
1985-01-01
On the basis of worldwide network data of cosmic ray nucleonic components, the transient cosmic ray increase due to the depression of cosmic ray cutoff rigidity during a severe geomagnetic storm was investigated in terms of the longitudinal dependence. Multiple correlation analysis among isotropic and diurnal terms of cosmic ray intensity variations and Dst term of the geomagnetic field is applied to each of various station's data. It is shown that the amplitude of the transient cosmic ray increase associated with Dst depends on the local time of the station, and that its maximum phase is found in the evening sector. This fact is consistent with the theoretical estimation based on the azimuthally asymmetric ring current model for the magnetic DS field.
A MODEL FOR INTERFACE DYNAMOS IN LATE K AND EARLY M DWARFS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mullan, D. J.; MacDonald, J.; Houdebine, E. R., E-mail: mullan@udel.edu
2015-09-10
Measurements of the equivalent width EW(CaK) of emission in the Ca ii K line have been obtained by Houdebine et al. for stars with spectral types from dK5 to dM4. In order to explain the observed variations of EW(CaK) with spectral sub-type, we propose a quantitative model of interface dynamos in low-mass stars. Our model leads to surface field strengths B{sub s} which turn out to be essentially linearly proportional to EW(CaK). This result is reminiscent of the Sun, where Skumanich et al. found that the intensity of CaK emission in solar active regions is linearly proportional to the localmore » field strength.« less
Designing optical-fiber modulators by using magnetic fluids.
Horng, H E; Chieh, J J; Chao, Y H; Yang, S Y; Hong, Chin-Yih; Yang, H C
2005-03-01
To reduce interface loss between optical fibers and devices in telecommunication systems, the development of an optical-fiber-based device that can be fused directly with fibers is important. A novel optical modulator consisting of a bare fiber core surrounded by magnetic fluids instead of by a SiO2 cladding layer is proposed. Applying a magnetic field raises the refractive index of the magnetic fluid. Thus we can control the occurrence of total reflection at the interface between the fiber core and the magnetic fluid when light propagates along the fiber. As a result, the intensity of the outgoing light is modulated by variation in field strength. Details of the design, fabrication, and working properties of such a modulator are presented.
NASA Astrophysics Data System (ADS)
Malherbe, J.-M.; Roudier, T.; Stein, R.; Frank, Z.
2018-01-01
We compare horizontal velocities, vertical magnetic fields, and the evolution of trees of fragmenting granules (TFG, also named families of granules) derived in the quiet Sun at disk center from observations at solar minimum and maximum of the Solar Optical Telescope (SOT on board Hinode) and results of a recent 3D numerical simulation of the magneto-convection. We used 24-hour sequences of a 2D field of view (FOV) with high spatial and temporal resolution recorded by the SOT Broad band Filter Imager (BFI) and Narrow band Filter Imager (NFI). TFG were evidenced by segmentation and labeling of continuum intensities. Horizontal velocities were obtained from local correlation tracking (LCT) of proper motions of granules. Stokes V provided a proxy of the line-of-sight magnetic field (BLOS). The MHD simulation (performed independently) produced granulation intensities, velocity, and magnetic field vectors. We discovered that TFG also form in the simulation and show that it is able to reproduce the main properties of solar TFG: lifetime and size, associated horizontal motions, corks, and diffusive index are close to observations. The largest (but not numerous) families are related in both cases to the strongest flows and could play a major role in supergranule and magnetic network formation. We found that observations do not reveal any significant variation in TFG between solar minimum and maximum.
Peirone, Laura S.; Pereyra Irujo, Gustavo A.; Bolton, Alejandro; Erreguerena, Ignacio; Aguirrezábal, Luis A. N.
2018-01-01
Conventional field phenotyping for drought tolerance, the most important factor limiting yield at a global scale, is labor-intensive and time-consuming. Automated greenhouse platforms can increase the precision and throughput of plant phenotyping and contribute to a faster release of drought tolerant varieties. The aim of this work was to establish a framework of analysis to identify early traits which could be efficiently measured in a greenhouse automated phenotyping platform, for predicting the drought tolerance of field grown soybean genotypes. A group of genotypes was evaluated, which showed variation in their drought susceptibility index (DSI) for final biomass and leaf area. A large number of traits were measured before and after the onset of a water deficit treatment, which were analyzed under several criteria: the significance of the regression with the DSI, phenotyping cost, earliness, and repeatability. The most efficient trait was found to be transpiration efficiency measured at 13 days after emergence. This trait was further tested in a second experiment with different water deficit intensities, and validated using a different set of genotypes against field data from a trial network in a third experiment. The framework applied in this work for assessing traits under different criteria could be helpful for selecting those most efficient for automated phenotyping. PMID:29774042
Solar Surface Velocity in the Large Scale estimated by Magnetic Element Tracking Method
NASA Astrophysics Data System (ADS)
Fujiyama, M.; Imada, S.; Iijima, H.; Machida, S.
2017-12-01
The 11years variation in the solar activity is one of the important sources of decadal variation in the solar-terrestrial environment. Therefore, predicting the solar cycle activity is crucial for the space weather. To build the prediction schemes for the next solar cycle is a key for the long-term space weather study. Recently, the relationship between polar magnetic field at the solar minimum and next solar cycle activity is intensively discussed. Nowadays, many people believe that the polar magnetic field at the solar minimum is one of the best predictor for the next solar cycle. To estimate polar magnetic field, Surface Flux Transport (SFT) model have been often used. On the other hand, SFT model needs several parameters, for example Meridional circulation, differential rotation, turbulent diffusion etc.. So far, those parameters have not been fully understood, and their uncertainties may affect the accuracy of the prediction. In this study, we try to discuss the parameters which are used in SFT model. We focus on two kinds of the solar surface motions, Differential rotation and Meridional circulation. First, we have developed Magnetic Element Tracking (MET) module, which is able to obtain the surface velocity by using the magnetic field data. We have used SOHO/MDI and SDO/HMI for the magnetic field data. By using MET, we study the solar surface motion over 2 cycle (nearly 24 years), and we found that the velocity variation is related to the active region belt. This result is consistent with [Hathaway et al., 2011]. Further, we apply our module to the Hinode/SOT data which spatial resolution is high. Because of its high resolution, we can discuss the surface motion close to the pole which has not been discussed enough. Further, we discuss the relationship between the surface motion and the magnetic field strength and the location of longitude.
The Trapped Radiation Handbook. Change 5,
1977-01-21
Omnidirectional flux confidence cod• s for AE S (1975 projacted) 4-15 4-2 Omnidirectional flux confidence codes for AE 6. 4-15 5-1 Extitation ionization...exhibits a siow " s --cular" variation that is charac ... terlstically a fraction of a percent change, in intensity per year. ’I’his i! phenomenon is...3M Rz (-a (~2+ 2)/ 2 2 M(Rý - Zz 13 +(R. + ~z) 1 TIhe magnetic monient (M)I of thle Earth’ s field is app~roximalte ly M,_-8. 07 X 1 OL5 gauss cm
The Auroral Particles experiment
NASA Technical Reports Server (NTRS)
1981-01-01
An instrument for the detection of particles in the energy range of 0.1 ev to 80 Kev was designed, built, tested, calibrated, and flown onboard the spacecraft ATS-6. Data from this instrument generated the following research: intensive studies of the plasma in the vicinity of the spacecraft; global variations of plasmas; correlative studies using either other spacecraft or ground based measurements; and studies of spacecraft interactions with ambient plasmas including charging, local electric fields due to differential charging, and active control of spacecraft potential. Results from this research are presented.
Regional magnetic anomaly constraints on continental breakup
DOE Office of Scientific and Technical Information (OSTI.GOV)
von Frese, R.R.B.; Hinze, W.J.; Olivier, R.
1986-01-01
Continental lithosphere magnetic anomalies mapped by the Magsat satellite are related to tectonic features associated with regional compositional variations of the crust and upper mantle and crustal thickness and thermal perturbations. These continental-scale anomaly patterns when corrected for varying observation elevation and the global change in the direction and intensity of the geomagnetic field show remarkable correlation of regional lithospheric magnetic sources across rifted continental margins when plotted on a reconstruction of Pangea. Accordingly, these anomalies provide new and fundamental constraints on the geologic evolution and dynamics of the continents and oceans.
1993-04-01
wave buoy provided by SEATEX, Norway (Figure 3). The modified Mills-cross array was designed to provide spatial estimates of the variation in wave, wind... designed for SWADE to examine the wave physics at different spatial and temporal scales, and the usefulness of a nested system. Each grid is supposed to...field specification. SWADE Model This high-resolution grid was designed to simulate the small scale wave physics and to improve and verify the source
NASA Astrophysics Data System (ADS)
Middleton, D. P. W.; Nikolopoulos, L. A. A.
2012-11-01
In this work, single and double ionisation yields of neon under extreme ultraviolet free-electron laser (FEL) radiation tuned in the vicinity of the autoionising states (AIS) of Ne+ were studied. Density matrix equations were developed and were used to calculate the dependence of the branching ratios of singly and doubly ionised neon on the field intensity and its duration. In addition, in response to a recent experiment [M. Martins et al., Phys. Rev. A 2011, 80, 023411], a quantitative analysis was undertaken in order to reproduce the magnitude of the branching ratios by varying the FEL photon frequency in the range 41.0-42.0 eV in accordance with the experimental report. While the reported variations of the species' branching ratios as a function of the FEL field's photon energy were found, their magnitude and shape differ. In general, the branching ratios are found to be heavily dependent on the given combination of the peak intensity and the pulse duration. Furthermore, the FEL's stochastic fluctuation has been modelled by solving the average density matrix equations and it was found that stochastic effects should also affect branching ratios, mainly due to the increase in the effective bandwidth of the pulse in comparison with the AIS's decay ionisation width. Our calculations suggest that field fluctuations generally diminish the resonance features of the branching ratios.
NASA Astrophysics Data System (ADS)
Borge, Rafael; Narros, Adolfo; Artíñano, Begoña; Yagüe, Carlos; Gómez-Moreno, Francisco Javier; de la Paz, David; Román-Cascón, Carlos; Díaz, Elías; Maqueda, Gregorio; Sastre, Mariano; Quaassdorff, Christina; Dimitroulopoulou, Chrysanthi; Vardoulakis, Sotiris
2016-09-01
Poor urban air quality is one of the main environmental concerns worldwide due to its implications for population exposure and health-related issues. However, the development of effective abatement strategies in cities requires a consistent and holistic assessment of air pollution processes, taking into account all the relevant scales within a city. This contribution presents the methodology and main results of an intensive experimental campaign carried out in a complex pollution hotspot in Madrid (Spain) under the TECNAIRE-CM research project, which aimed at understanding the microscale spatio-temporal variation of ambient concentration levels in areas where high pollution values are recorded. A variety of instruments were deployed during a three-week field campaign to provide detailed information on meteorological and micrometeorological parameters and spatio-temporal variations of the most relevant pollutants (NO2 and PM) along with relevant information needed to simulate pedestrian fluxes. The results show the strong dependence of ambient concentrations on local emissions and meteorology that turns out in strong spatial and temporal variations, with gradients up to 2 μg m-3 m-1 for NO2 and 55 μg m-3 min-1 for PM10. Pedestrian exposure to these pollutants also presents strong variations temporally and spatially but it concentrates on pedestrian crossings and bus stops. The analysis of the results show that the high concentration levels found in urban hotspots depend on extremely complex dynamic processes that cannot be captured by routinely measurements made by air quality monitoring stations used for regulatory compliance assessment. The large influence from local traffic in the concentration fields highlights the need for a detailed description of specific variables that determine emissions and dispersion at microscale level. This also indicates that city-scale interventions may be complemented with local control measures and exposure management, to improve air quality and reduce air pollution health effects more effectively.
NASA Astrophysics Data System (ADS)
Zeyliger, Anatoly; Ermolaeva, Olga
2014-05-01
Efficiency of water use for the irrigation purposes is connected to the variety of circumstances, factors and processes appearing along the transportation path of water from its sources to the root zone of the plant. Water efficiency of agricultural irrigation is connected with variety of circumstances, the impacts and the processes occurring during the transportation of water from water sources to plant root zone. Agrohydrological processes occur directly at the irrigated field, these processes linked to the infiltration of the applied water subsequent redistribution of the infiltrated water within the root zone. One of them are agrohydrological processes occurring directly on an irrigated field, connected with infiltration of water applied for irrigation to the soil, and the subsequent redistribution of infiltrated water in the root zone. These processes have the strongly pronounced spatial character depending on the one hand from a spatial variation of some hydrological characteristics of soils, and from other hand with distribution of volume of irrigation water on a surface of the area of an irrigated field closely linked with irrigation technology used. The combination of water application parameters with agrohydrological characteristics of soils and agricultural vegetation in each point at the surface of an irrigated field leads to formation of a vector field of intensity of irrigation water. In an ideal situation, such velocity field on a soil surface should represent uniform set of vertically directed collinear vectors. Thus values of these vectors should be equal to infiltration intensities of water inflows on a soil surface. In soil profile the field of formed intensities of a water flow should lead to formation in it of a water storage accessible to root system of irrigated crops. In practice this ideal scheme undergoes a lot of changes. These changes have the different nature, the reasons of occurrence and degree of influence on the processes connected with formation of water flow and water storage. The major changes are formed as a result of imposing of the intensity fields on a soil surface and its field capillary infiltration rate. Excess of the first intensity over the second in each point of soil surface leads to formation of a layer of intensity of water not infiltrated in soil. Thus generate the new field of vectors of intensity which can consist of vertically directed vector of speed of evaporation, a quasi horizontal vector of intensity of a surface water flow and quasi vertical vector of intensity of a preferential flow directed downwards. Principal cause of excess of irrigation water application intensity over capillary infiltration rate can be on the one hand spatial non-uniformity of irrigation water application, and with other spatial variability of capillary infiltration rate, connected with spatial variability of water storage in the top layers of soil. As a result the spatial redistribution of irrigation water over irrigated filed forms distortions of ideal model of irrigation water storage in root zone of soil profile. The major differences consist in increasing of water storage in the depressions of a relief of an irrigated field and accordingly in their reduction on elevated zones of a relief, as well as losses of irrigation water outside of boundaries of a root zone of an irrigated field, in vertical, and horizontal directions. One of key parameters characterizing interaction between irrigation technology and soil state an irrigated field are intensity of water application, intensity and volume of a capillary infiltration, the water storage in root zone at the moment of infiltration starting and a topography of an irrigated field. Fnalyzing of spatial links between these characteristics a special research had been carried out on irrigated by sprinkler machine called Fregate at alfalfa field during the summer of 2012. This research carried out at experimental farm of the research institute VolgNIIGiM situated at a left bank of Volga River of Saratov Region of Russia (N51.384650°, E46.055890°). The digital elevation model of soil surface has been created, as well as monitoring of spatial water storage with EM 38 device and of a biomass were carried out. Layers of corresponding spatial data have been created and analyzed. The carried out analysis of spatial regresses has shown presence of links between productivity of a biomass of a alfalfa, water storage and topography. The obtained results shows the significance to include spatial characteristics of the topography and water storage to the irrigation models, as well as adaptation of sprinkler technology to allow differentiate the volume and rate of the applied water within the field. Special attention should be done to quantify relationships between uniform technology of water application by sprinkler and spatial nonuniformity of moisture storage (zoning of high soil moisture in depressions) in soil and as consequence of infiltration capacity.
New archeomagnetic intensity data from Western Russia
NASA Astrophysics Data System (ADS)
Salnaya, Natasha; Gallet, Yves; Akimova, Stanislava; Antipov, Ilya; Glazunova, Olga
2015-04-01
We recently started a new archeomagnetism research program for Western Russia. The main objective of this project is to recover the geomagnetic field intensity variations in Western Russia over the past two millennia, in order to compare these variations with those already known from Western and Eastern Europe. We sampled several ensembles of baked brick fragments precisely dated by historical constraints between the XIIth and XIVth centuries AD from the archeological site of Novgorod, south of St Petersburg, and between the XVIIth and XVIIIth centuries AD from the Monastery of New Jerusalem located close to Moscow. Most fragments, with a magnetic mineralogy dominated by magnetite, are suitable for archeointensity experiments. For some fragments from Novgorod, the magnetization is carried by a mixture of magnetite and another mineral of high coercivity and low unblocking temperature. The unblocking temperatures are close to 200°C. This mineral, most probably a form of hematite with Al substitutions, is therefore similar to that previously reported from archeological fired-clay artifacts originating from Europe and South America. Archeointensity experiments were conducted using the experimental protocol developed for the Triaxe magnetometer. We will present our first archeointensity results and a preliminary comparison with available European results, mostly from France and Bulgaria.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Andreozzi, J; Zhang, R; Glaser, A
Purpose: To evaluate treatment field heterogeneity resulting from gantry angle choice in total skin electron beam therapy (TSEBT) following a modified Stanford dual-field technique, and determine a relationship between source to surface distance (SSD) and optimized gantry angle spread. Methods: Cherenkov imaging was used to image 62 treatment fields on a sheet of 1.2m x 2.2m x 1.2cm polyethylene following standard TSEBT setup at our institution (6 MeV, 888 MU/min, no spoiler, SSD=441cm), where gantry angles spanned from 239.5° to 300.5° at 1° increments. Average Cherenkov intensity and coefficient of variation in the region of interest were compared for themore » set of composite Cherenkov images created by summing all unique combinations of angle pairs to simulate dual-field treatment. The angle pair which produced the lowest coefficient of variation was further studied using an ionization chamber. The experiment was repeated at SSD=300cm, and SSD=370.5cm. Cherenkov imaging was also implemented during TSEBT of three patients. Results: The most uniform treatment region from a symmetric angle spread was achieved using gantry angles +/−17.5° about the horizontal axis at SSD=441cm, +/−18.5° at SSD=370.5cm, and +/−19.5° at SSD=300cm. Ionization chamber measurements comparing the original treatment spread (+/−14.5°) and the optimized angle pair (+/−17.5°) at SSD=441cm showed no significant deviation (r=0.999) in percent depth dose curves, and chamber measurements from nine locations within the field showed an improvement in dose uniformity from 24.41% to 9.75%. Ionization chamber measurements correlated strongly (r=0.981) with Cherenkov intensity measured concurrently on the flat Plastic Water phantom. Patient images and TLD results also showed modest uniformity improvements. Conclusion: A decreasing linear relationship between optimal angle spread and SSD was observed. Cherenkov imaging offers a new method of rapidly analyzing and optimizing TSEBT setup geometry by providing a 2D image of the treatment plane as a sum of the two fields. This study has been funded by NIH grants R21EB17559 and R01CA109558 as well as Norris Cotton Cancer Center Pilot funding.« less
The South Atlantic Anomaly throughout the solar cycle
NASA Astrophysics Data System (ADS)
Domingos, João; Jault, Dominique; Pais, Maria Alexandra; Mandea, Mioara
2017-09-01
The Sun-Earth's interaction is characterized by a highly dynamic electromagnetic environment, in which the magnetic field produced in the Earth's core plays an important role. One of the striking characteristics of the present geomagnetic field is denoted the South Atlantic Anomaly (SAA) where the total field intensity is unusually low and the flux of charged particles, trapped in the inner Van Allen radiation belts, is maximum. Here, we use, on one hand, a recent geomagnetic field model, CHAOS-6, and on the other hand, data provided by different platforms (satellites orbiting the Earth - POES NOAA for 1998-2014 and CALIPSO for 2006-2014). Evolution of the SAA particle flux can be seen as the result of two main effects, the secular variation of the Earth's core magnetic field and the modulation of the density of the inner radiation belts during the solar cycle, as a function of the L value that characterises the drift shell, where charged particles are trapped. To study the evolution of the particle flux anomaly, we rely on a Principal Component Analysis (PCA) of either POES particle flux or CALIOP dark noise. Analysed data are distributed on a geographical grid at satellite altitude, based on a L-shell reference frame constructed from the moving eccentric dipole. Changes in the main magnetic field are responsible for the observed westward drift. Three PCA modes account for the time evolution related to solar effects. Both the first and second modes have a good correlation with the thermospheric density, which varies in response to the solar cycle. The first mode represents the total intensity variation of the particle flux in the SAA, and the second the movement of the anomaly between different L-shells. The proposed analysis allows us to well recover the westward drift rate, as well as the latitudinal and longitudinal solar cycle oscillations, although the analysed data do not cover a complete (Hale) magnetic solar cycle (around 22 yr). Moreover, the developments made here would enable us to forecast the impact of the South Atlantic Anomaly on space weather. A model of the evolution of the eccentric dipole field (magnitude, offset and tilt) would suffice, together with a model for the solar cycle evolution.
New variational bounds on convective transport. II. Computations and implications
NASA Astrophysics Data System (ADS)
Souza, Andre; Tobasco, Ian; Doering, Charles R.
2016-11-01
We study the maximal rate of scalar transport between parallel walls separated by distance h, by an incompressible fluid with scalar diffusion coefficient κ. Given velocity vector field u with intensity measured by the Péclet number Pe =h2 < | ∇ u |2 >1/2 / κ (where < . > is space-time average) the challenge is to determine the largest enhancement of wall-to-wall scalar flux over purely diffusive transport, i.e., the Nusselt number Nu . Variational formulations of the problem are studied numerically and optimizing flow fields are computed over a range of Pe . Implications of this optimal wall-to-wall transport problem for the classical problem of Rayleigh-Bénard convection are discussed: the maximal scaling Nu Pe 2 / 3 corresponds, via the identity Pe2 = Ra (Nu - 1) where Ra is the usual Rayleigh number, to Nu Ra 1 / 2 as Ra -> ∞ . Supported in part by National Science Foundation Graduate Research Fellowship DGE-0813964, awards OISE-0967140, PHY-1205219, DMS-1311833, and DMS-1515161, and the John Simon Guggenheim Memorial Foundation.
Reduction of initial shock in decadal predictions using a new initialization strategy
NASA Astrophysics Data System (ADS)
He, Yujun; Wang, Bin; Liu, Mimi; Liu, Li; Yu, Yongqiang; Liu, Juanjuan; Li, Ruizhe; Zhang, Cheng; Xu, Shiming; Huang, Wenyu; Liu, Qun; Wang, Yong; Li, Feifei
2017-08-01
A novel full-field initialization strategy based on the dimension-reduced projection four-dimensional variational data assimilation (DRP-4DVar) is proposed to alleviate the well-known initial shock occurring in the early years of decadal predictions. It generates consistent initial conditions, which best fit the monthly mean oceanic analysis data along the coupled model trajectory in 1 month windows. Three indices to measure the initial shock intensity are also proposed. Results indicate that this method does reduce the initial shock in decadal predictions by Flexible Global Ocean-Atmosphere-Land System model, Grid-point version 2 (FGOALS-g2) compared with the three-dimensional variational data assimilation-based nudging full-field initialization for the same model and is comparable to or even better than the different initialization strategies for other fifth phase of the Coupled Model Intercomparison Project (CMIP5) models. Better hindcasts of global mean surface air temperature anomalies can be obtained than in other FGOALS-g2 experiments. Due to the good model response to external forcing and the reduction of initial shock, higher decadal prediction skill is achieved than in other CMIP5 models.
Continuous millennial decrease of the Earth's magnetic axial dipole
NASA Astrophysics Data System (ADS)
Poletti, Wilbor; Biggin, Andrew J.; Trindade, Ricardo I. F.; Hartmann, Gelvam A.; Terra-Nova, Filipe
2018-01-01
Since the establishment of direct estimations of the Earth's magnetic field intensity in the first half of the nineteenth century, a continuous decay of the axial dipole component has been observed and variously speculated to be linked to an imminent reversal of the geomagnetic field. Furthermore, indirect estimations from anthropologically made materials and volcanic derivatives suggest that this decrease began significantly earlier than direct measurements have been available. Here, we carefully reassess the available archaeointensity dataset for the last two millennia, and show a good correspondence between direct (observatory/satellite) and indirect (archaeomagnetic) estimates of the axial dipole moment creating, in effect, a proxy to expand our analysis back in time. Our results suggest a continuous linear decay as the most parsimonious long-term description of the axial dipole variation for the last millennium. We thus suggest that a break in the symmetry of axial dipole moment advective sources occurred approximately 1100 years earlier than previously described. In addition, based on the observed dipole secular variation timescale, we speculate that the weakening of the axial dipole may end soon.
Aikawa, Masahide; Hiraki, Takatoshi; Tamaki, Motonori; Kasahara, Mikio; Kondo, Akira; Uno, Itsushi; Mukai, Hitoshi; Shimizu, Atsushi; Murano, Kentaro
2006-11-01
An intensive field survey, with 6-h measurement intervals, of concentrations of chemical species in particulate matter and gaseous compounds was carried out at coastal sites on the Sea of Japan during winter. The concentration variation of SO(2)(g) and HNO(3)(g) were well correlated, whereas the NH(3)(g) concentration variation had no correlation with those of SO(2)(g) and HNO(3)(g). The NH(4) (+) (p)/non-sea-salt- (nss-)SO(4) (2 -)(p) ratio in particulate matter was mainly affected by the location of the sampling site. One or more concentration peaks of nss-Ca(2 +) for survey period were observed. Backward trajectories analyses for the highest nss-Ca(2 +) concentration peaks showed some inconsistency in pathways. We consider that insufficient mixing of the atmosphere and/or insufficient time for the transported air pollutants to react with those discharged locally are the most likely explanations for the discrepancies between the measured products [HNO(3)][NH(3)] and the calculated values.
Sidereal variations deep underground in Tasmania
NASA Technical Reports Server (NTRS)
Humble, J. E.; Fenton, A. G.; Fenton, K. B.
1985-01-01
Data from the deep underground vertically directed muon telescopes at Poatina, Tasmania, have been used since 1972 for a number of investigations, including the daily intensity variations, atmospheric influences, and checking for possible effects due to the interplanetary magnetic field. These telescopes have a total sensitive area of only 3 square meters, with the result that the counting rate is low (about 1680 events per hour) and the statistical errors on the results are rather large. Consequently, it was decided several years ago to construct larger detectors for this station. The first of these telescopes has been in operation for two complete years, and the results from it are presented. Results from the new, more stable equipment at Poatina appear to confirm the existence of a first harmonic in the daily variations in sidereal time reported earlier, and are consistent with small or non-existent first harmonics in solar and anti-sidereal time. All the second harmonics appear to be small, if not zero at these energies.
EqualChance: Addressing Intra-set Write Variation to Increase Lifetime of Non-volatile Caches
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mittal, Sparsh; Vetter, Jeffrey S
To address the limitations of SRAM such as high-leakage and low-density, researchers have explored use of non-volatile memory (NVM) devices, such as ReRAM (resistive RAM) and STT-RAM (spin transfer torque RAM) for designing on-chip caches. A crucial limitation of NVMs, however, is that their write endurance is low and the large intra-set write variation introduced by existing cache management policies may further exacerbate this problem, thereby reducing the cache lifetime significantly. We present EqualChance, a technique to increase cache lifetime by reducing intra-set write variation. EqualChance works by periodically changing the physical cache-block location of a write-intensive data item withinmore » a set to achieve wear-leveling. Simulations using workloads from SPEC CPU2006 suite and HPC (high-performance computing) field show that EqualChance improves the cache lifetime by 4.29X. Also, its implementation overhead is small, and it incurs very small performance and energy loss.« less
NASA Astrophysics Data System (ADS)
Brunke, Heinz-Peter; Widmer-Schnidrig, Rudolf; Korte, Monika
2017-11-01
For frequencies above 30 mHz the instrument intrinsic noise level of typical fluxgate magnetometers used at geomagnetic observatories usually masks ambient magnetic field variations on magnetically quiet days. This is especially true for stations located at middle and low latitudes, where variations are generally smaller than at high latitudes. INTERMAGNET has set a minimum quality standard for definitive 1 s data. Natural field variations referred to as pulsations (Pc-1, Pc-2, Pi-1) fall in this band. Usually their intensity is so small that they rarely surpass the instrumental noise of fluxgate magnetometers. Moreover, high-quality magnetic field observations in the band 30 mHz-0.5 Hz contain interesting information, e.g., for the study of ionospheric electron interactions with electromagnetic ion cyclotron plasma waves. We propose a method to improve 1 Hz observatory data by merging data from the proven and tested fluxgate magnetometers currently in use with induction coil magnetometers into a single data stream. We show how measurements of both instruments can be combined without information loss or phase distortion. The result is a time series of the magnetic field vector components, combining the benefits of both instruments: long-term stability (fluxgate) and low noise at high frequencies (induction coil). This new data stream fits perfectly into the data management procedures of INTERMAGNET and meets the requirements defined in the definitive 1 s data standard. We describe the applied algorithm and validate the result by comparing power spectra of the fluxgate magnetometer output with the merged signal. Daily spectrograms from the Niemegk observatory show that the resulting data series reveal information at frequencies above 30 mHz that cannot be seen in raw fluxgate data.
Bias Corrections for Regional Estimates of the Time-averaged Geomagnetic Field
NASA Astrophysics Data System (ADS)
Constable, C.; Johnson, C. L.
2009-05-01
We assess two sources of bias in the time-averaged geomagnetic field (TAF) and paleosecular variation (PSV): inadequate temporal sampling, and the use of unit vectors in deriving temporal averages of the regional geomagnetic field. For the first temporal sampling question we use statistical resampling of existing data sets to minimize and correct for bias arising from uneven temporal sampling in studies of the time- averaged geomagnetic field (TAF) and its paleosecular variation (PSV). The techniques are illustrated using data derived from Hawaiian lava flows for 0-5~Ma: directional observations are an updated version of a previously published compilation of paleomagnetic directional data centered on ± 20° latitude by Lawrence et al./(2006); intensity data are drawn from Tauxe & Yamazaki, (2007). We conclude that poor temporal sampling can produce biased estimates of TAF and PSV, and resampling to appropriate statistical distribution of ages reduces this bias. We suggest that similar resampling should be attempted as a bias correction for all regional paleomagnetic data to be used in TAF and PSV modeling. The second potential source of bias is the use of directional data in place of full vector data to estimate the average field. This is investigated for the full vector subset of the updated Hawaiian data set. Lawrence, K.P., C.G. Constable, and C.L. Johnson, 2006, Geochem. Geophys. Geosyst., 7, Q07007, DOI 10.1029/2005GC001181. Tauxe, L., & Yamazkai, 2007, Treatise on Geophysics,5, Geomagnetism, Elsevier, Amsterdam, Chapter 13,p509
NASA Astrophysics Data System (ADS)
Olurin, Oluwaseun Tolutope
2017-12-01
Interpretation of high resolution aeromagnetic data of Ilesha and its environs within the basement complex of the geological setting of Southwestern Nigeria was carried out in the study. The study area is delimited by geographic latitudes 7°30'-8°00'N and longitudes 4°30'-5°00'E. This investigation was carried out using Euler deconvolution on filtered digitised total magnetic data (Sheet Number 243) to delineate geological structures within the area under consideration. The digitised airborne magnetic data acquired in 2009 were obtained from the archives of the Nigeria Geological Survey Agency (NGSA). The airborne magnetic data were filtered, processed and enhanced; the resultant data were subjected to qualitative and quantitative magnetic interpretation, geometry and depth weighting analyses across the study area using Euler deconvolution filter control file in Oasis Montag software. Total magnetic intensity distribution in the field ranged from -77.7 to 139.7 nT. Total magnetic field intensities reveal high-magnitude magnetic intensity values (high-amplitude anomaly) and magnetic low intensities (low-amplitude magnetic anomaly) in the area under consideration. The study area is characterised with high intensity correlated with lithological variation in the basement. The sharp contrast is enhanced due to the sharp contrast in magnetic intensity between the magnetic susceptibilities of the crystalline and sedimentary rocks. The reduced-to-equator (RTE) map is characterised by high frequencies, short wavelengths, small size, weak intensity, sharp low amplitude and nearly irregular shaped anomalies, which may due to near-surface sources, such as shallow geologic units and cultural features. Euler deconvolution solution indicates a generally undulating basement, with a depth ranging from -500 to 1000 m. The Euler deconvolution results show that the basement relief is generally gentle and flat, lying within the basement terrain.
Ma, Rui; Yuan, Nana; Sun, Shichang; Zhang, Peixin; Fang, Lin; Zhang, Xianghua; Zhao, Xuxin
2017-06-01
Under microwave irradiation, raw sludge was pyrolyzed mainly by evaporation of water, with a weight loss ratio of 84.8% and a maximum temperature not exceeding 200°C. High-temperature pyrolysis of SiC sludge could be realized, with a weight loss ratio of 93.4% and a final pyrolysis temperature of 1131.7°C. Variations between the electric field intensity distribution are the main reason for the differences of pyrolysis efficiencies. HFSS simulation showed that the electric field intensity of the raw sludge gradually decreased from 2.94×10 4 V/m to 0.88×10 4 V/m when pyrolysis ends, while that of SiC sludge decreased from 3.73×10 4 V/m at the beginning to 1.28×10 4 V/m, then increased to 4.03×10 4 V/m. The electromagnetic effect is the main factor (r≥0.91) influencing the temperature increase and weight loss of raw sludge. Both the electromagnetic effect and heat conduction effect influenced temperature rise and weight loss of SiC sludge, but the former's influence was comparatively larger. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Del Sorbo, D.; Seipt, D.; Thomas, A. G. R.; Ridgers, C. P.
2018-06-01
It has recently been suggested that two counter-propagating, circularly polarized, ultra-intense lasers can induce a strong electron spin polarization at the magnetic node of the electromagnetic field that they setup (Del Sorbo et al 2017 Phys. Rev. A 96 043407). We confirm these results by considering a more sophisticated description that integrates over realistic trajectories. The electron dynamics is weakly affected by the variation of power radiated due to the spin polarization. The degree of spin polarization differs by approximately 5% if considering electrons initially at rest or already in a circular orbit. The instability of trajectories at the magnetic node induces a spin precession associated with the electron migration that establishes an upper temporal limit to the polarization of the electron population of about one laser period.
Fast directional changes in the geomagnetic field recovered from archaeomagnetism of ancient Israel
NASA Astrophysics Data System (ADS)
Shaar, R.; Hassul, E.; Raphael, K.; Ebert, Y.; Marco, S.; Nowaczyk, N. R.; Ben-Yosef, E.; Agnon, A.
2017-12-01
Recent archaeomagnetic intensity data from the Levant revealed short-term sub-centennial changes in the geomagnetic field such as `archaeomagnetic jerks' and `geomagnetic spikes'. To fully understand the nature of these fast variations a complementary high-precision time-series of geomagnetic field direction is required. To this end we investigated 35 heat impacted archaeological objects from Israel, including cooking ovens, furnaces, and burnt walls. We combine the new dataset with previously unpublished data and construct the first archaeomagnetic compilation of Israel which, at the moment, consists of a total of 57 directions. Screening out poor quality data leaves 30 acceptable archaeomagnetic directions, 25 of which spanning the period between 1700 BCE to 400 BCE. The most striking result of this dataset is a large directional anomaly with deviation of 20°-25° from geocentric axial dipole direction during the 9th century BCE. This anomaly in field direction is contemporaneous with the Levantine Iron Age Anomaly (LIAA) - a local geomagnetic anomaly over the Levant that was characterized by a high averaged geomagnetic field (nearly twice of today's field) and short decadal-scale geomagnetic spikes.
INTEGRAL/SPI data segmentation to retrieve source intensity variations
NASA Astrophysics Data System (ADS)
Bouchet, L.; Amestoy, P. R.; Buttari, A.; Rouet, F.-H.; Chauvin, M.
2013-07-01
Context. The INTEGRAL/SPI, X/γ-ray spectrometer (20 keV-8 MeV) is an instrument for which recovering source intensity variations is not straightforward and can constitute a difficulty for data analysis. In most cases, determining the source intensity changes between exposures is largely based on a priori information. Aims: We propose techniques that help to overcome the difficulty related to source intensity variations, which make this step more rational. In addition, the constructed "synthetic" light curves should permit us to obtain a sky model that describes the data better and optimizes the source signal-to-noise ratios. Methods: For this purpose, the time intensity variation of each source was modeled as a combination of piecewise segments of time during which a given source exhibits a constant intensity. To optimize the signal-to-noise ratios, the number of segments was minimized. We present a first method that takes advantage of previous time series that can be obtained from another instrument on-board the INTEGRAL observatory. A data segmentation algorithm was then used to synthesize the time series into segments. The second method no longer needs external light curves, but solely SPI raw data. For this, we developed a specific algorithm that involves the SPI transfer function. Results: The time segmentation algorithms that were developed solve a difficulty inherent to the SPI instrument, which is the intensity variations of sources between exposures, and it allows us to obtain more information about the sources' behavior. Based on observations with INTEGRAL, an ESA project with instruments and science data centre funded by ESA member states (especially the PI countries: Denmark, France, Germany, Italy, Spain, and Switzerland), Czech Republic and Poland with participation of Russia and the USA.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mungania, J.
Olkaria Geothermal area is located in the central sector of the Kenya, Rift Valley. A 45MW Geothermal power station has been operational at Olkaria since 1985 supplied by 22 of the 26 wells drilled in the Eastern production field (EPF). Between 1988 and 1993, eight more wells referred to as {open_quote}replacement wells{close_quote} were drilled in the same field to boost steam supply to the station. Petrographic analyses of the drill cuttings is usually done to determine detail stratigraphy of the field, extends of hydrothermal activity, subsurface structures and other parameters which may influence production potential of a well. Analyses ofmore » the drill cuttings from the EPF wells show that: Variations in the whole rock alteration intensities correlate with differences in rocktypes. Permeable horizons, especially the productive feeder zones are well marked by enhanced hydrothermal minerals depositions, mainly quartz, calcite, pyrite and epidote. Other aspects of state of reservoir like boiling are signified by presence of bladed calcite.« less
Energy Conversion Mechanism for Electron Perpendicular Energy in High Guide-Field Reconnection
NASA Astrophysics Data System (ADS)
Guo, Xuehan; Horiuchi, Ritoku; Kaminou, Yasuhiro; Cheng, Frank; Ono, Yasushi
2016-10-01
The energy conversion mechanism for electron perpendicular energy, both the thermal and the kinetic energy, is investigated by means of two-dimensional, full-particle simulations in an open system. It is shown that electron perpendicular heating is mainly due to the breaking of magnetic moment conservation in separatrix region because the charge separation generates intense variation of electric field within the electron Larmor radius. Meanwhile, electron perpendicular acceleration takes place manly due to the polarization drift term as well as the curvature drift term of E . u⊥ in the downstream near the X-point. The enhanced electric field due to the charge separation there results in a significant effect of the polarization drift term on the dissipation of magnetic energy within the ion inertia length in the downstream. Japan Society for the Promotion of Science (JSPS) Fellows 15J03758.
Effects of the magnetic field direction on the Tsallis statistic
NASA Astrophysics Data System (ADS)
González-Casanova, Diego F.; Lazarian, A.; Cho, J.
2018-04-01
We extend the use of the Tsallis statistic to measure the differences in gas dynamics relative to the mean magnetic field present from natural eddy-type motions existing in magnetohydrodynamical (MHD) turbulence. The variation in gas dynamics was estimated using the Tsallis parameters on the incremental probability distribution function of the observables (intensity and velocity centroid) obtained from compressible MHD simulations. We find that the Tsallis statistic is susceptible to the anisotropy produced by the magnetic field, even when anisotropy is present the Tsallis statistic can be used to determine MHD parameters such as the Sonic Mach number. We quantize the goodness of the Tsallis parameters using the coefficient of determination to measure the differences in the gas dynamics. These parameters also determine the level of magnetization and compressibility of the medium. To further simulate realistic spectroscopic observational data, we introduced smoothing, noise, and cloud boundaries to the MHD simulations.
NASA Astrophysics Data System (ADS)
Yang, Ming; Ji, Qizheng; Gao, Zhiliang; Zhang, Shufeng; Lin, Zhaojun; Yuan, Yafei; Song, Bo; Mei, Gaofeng; Lu, Ziwei; He, Jihao
2017-11-01
For the fabricated AlGaN/GaN heterostructure field-effect transistors (HFETs) with different gate widths, the gate-channel carrier mobility is experimentally obtained from the measured current-voltage and capacitance-voltage curves. Under each gate voltage, the mobility gets lower with gate width increasing. Analysis shows that the phenomenon results from the polarization Coulomb field (PCF) scattering, which originates from the irregularly distributed polarization charges at the AlGaN/GaN interface. The device with a larger gate width is with a larger PCF scattering potential and a stronger PCF scattering intensity. As a function of gate width, PCF scattering potential shows a same trend with the mobility variation. And the theoretically calculated mobility values fits well with the experimentally obtained values. Varying gate widths will be a new perspective for the improvement of device characteristics by modulating the gate-channel carrier mobility.
Microbially assisted recording of the Earth's magnetic field in sediment.
Zhao, Xiangyu; Egli, Ramon; Gilder, Stuart A; Müller, Sebastian
2016-02-11
Sediments continuously record variations of the Earth's magnetic field and thus provide an important archive for studying the geodynamo. The recording process occurs as magnetic grains partially align with the geomagnetic field during and after sediment deposition, generating a depositional remanent magnetization (DRM) or post-DRM (PDRM). (P)DRM acquisition mechanisms have been investigated for over 50 years, yet many aspects remain unclear. A key issue concerns the controversial role of bioturbation, that is, the mechanical disturbance of sediment by benthic organisms, during PDRM acquisition. A recent theory on bioturbation-driven PDRM appears to solve many inconsistencies between laboratory experiments and palaeomagnetic records, yet it lacks experimental proof. Here we fill this gap by documenting the important role of bioturbation-induced rotational diffusion for (P)DRM acquisition, including the control exerted on the recorded inclination and intensity, as determined by the equilibrium between aligning and perturbing torques acting on magnetic particles.
NASA Astrophysics Data System (ADS)
Giannaropoulou, E.; Papailiou, M.; Mavromichalaki, H.; Gigolashvili, M.; Tvildiani, L.; Janashia, K.; Preka-Papadema, P.; Papadima, Th
2013-02-01
Over the last few years various researches have reached the conclusion that cosmic ray variations and geomagnetic disturbances are related to the condition of the human physiological state. In this study medical data concerning the number of incidents of different types of cardiac arrhythmias for the time period 1983 - 1992 which refer to 1902 patients in Tbilisi, Georgia were used. The smoothing method and the Pearson r-coefficients were used to examine the possible effect of different solar and geomagnetic activity parameters and cosmic ray intensity variations on the different types of arrhythmias. The time interval under examination was separated into two different time periods which coincided with the polarity reversal of the solar magnetic field that occurred in the years 1989-1990 and as a result a different behavior of all the above mentioned parameters as well as of the different types of arrhythmias was noticed during the two time intervals. In addition, changing of polarity sign of the solar magnetic field was found to affect the sign of correlation between the incidence of arrhythmias and the aforementioned parameters. The primary and secondary maxima observed in the solar parameters during the solar cycle 22, also appeared in several types of arrhythmias with a time lag of about five months.
Relationship between sugarcane rust severity and soil properties in louisiana.
Johnson, Richard M; Grisham, Michael P; Richard, Edward P
2007-06-01
ABSTRACT The extent of spatial and temporal variability of sugarcane rust (Puccinia melanocephala) infestation was related to variation in soil properties in five commercial fields of sugarcane (interspecific hybrids of Saccharum spp., cv. LCP 85-384) in southern Louisiana. Sugarcane fields were grid-soil sampled at several intensities and rust ratings were collected at each point over 6 to 7 weeks. Soil properties exhibited significant variability (coefficients of variation = 9 to 70.1%) and were spatially correlated in 39 of 40 cases with a range of spatial correlation varying from 39 to 201 m. Rust ratings were spatially correlated in 32 of 33 cases, with a range varying from 29 to 241 m. Rust ratings were correlated with several soil properties, most notably soil phosphorus (r = 0.40 to 0.81) and soil sulfur (r = 0.36 to 0.68). Multiple linear regression analysis resulted in coefficients of determination that ranged from 0.22 to 0.73, and discriminant analysis further improved the overall predictive ability of rust models. Finally, contour plots of soil properties and rust levels clearly suggested a link between these two parameters. These combined data suggest that sugarcane growers that apply fertilizer in excess of plant requirements will increase the incidence and severity of rust infestations in their fields.
Zhang, C. J.; Hua, J. F.; Xu, X. L.; ...
2016-07-11
A new method capable of capturing coherent electric field structures propagating at nearly the speed of light in plasma with a time resolution as small as a few femtoseconds is proposed. This method uses a few femtoseconds long relativistic electron bunch to probe the wake produced in a plasma by an intense laser pulse or an ultra-short relativistic charged particle beam. As the probe bunch traverses the wake, its momentum is modulated by the electric field of the wake, leading to a density variation of the probe after free-space propagation. This variation of probe density produces a snapshot of themore » wake that can directly give many useful information of the wake structure and its evolution. Furthermore, this snapshot allows detailed mapping of the longitudinal and transverse components of the wakefield. We develop a theoretical model for field reconstruction and verify it using 3-dimensional particle-in-cell (PIC) simulations. This model can accurately reconstruct the wakefield structure in the linear regime, and it can also qualitatively map the major features of nonlinear wakes. As a result, the capturing of the injection in a nonlinear wake is demonstrated through 3D PIC simulations as an example of the application of this new method.« less
Towards integrated assessment of the northern Adriatic Sea sediment budget using remote sensing
NASA Astrophysics Data System (ADS)
Taramelli, A.; Filipponi, F.; Valentini, E.; Zucca, F.; Gutierrez, O. Q.; Liberti, L.; Cordella, M.
2014-12-01
Understanding the factors influencing sediment fluxes is a key issue to interpret the evolution of coastal sedimentation under natural and human impact and relevant for the natural resources management. Despite river plumes represent one of the major gain in sedimentary budget of littoral cells, knowledge of factors influencing complex behavior of coastal plumes, like river discharge characteristics, wind stress and hydro-climatic variables, has not been yet fully investigated. Use of Earth Observation data allows the identification of spatial and temporal variations of suspended sediments related to river runoff, seafloor erosion, sediment transport and deposition processes. Objective of the study is to investigate sediment fluxes in northern Adriatic Sea by linking suspended sediment patterns of coastal plumes to hydrologic and climatic forcing regulating the sedimentary cell budget and geomorphological evolution in coastal systems and continental shelf waters. Analysis of Total Suspended Matter (TSM) product, derived from 2002-2012 MERIS time series, was done to map changes in spatial and temporal dimension of suspended sediments, focusing on turbid plume waters and intense wind stress conditions. From the generated multi temporal TSM maps, dispersal patterns of major freshwater runoff plumes in northern Adriatic Sea were evaluated through spatial variability of coastal plumes shape and extent. Additionally, sediment supply from river distributary mouths was estimated from TSM and correlated with river discharge rates, wind field and wave field through time. Spatial based methodology has been developed to identify events of wave-generated resuspension of sediments, which cause variation in water column turbidity, occurring during intense wind stress and extreme metocean conditions, especially in the winter period. The identified resuspension events were qualitatively described and compared with to hydro-climatic variables. The identification of spatial and temporal pattern variability highlighted the presence of seasonal sediment dynamics linked to the seasonal cycle in river discharge and wind stress. Results suggest that sediment fluxes generate geomorphological variations in northern Adriatic Sea, which are mainly controlled by river discharge rates and modulated by the winds.
Probing the gamma-ray variability in 3C 279 using broad-band observations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rani, B.; Krichbaum, T. P.; Lee, S. -S.
2016-09-27
In this study, we present the results of a broad-band radio-to-GeV observing campaign organized to get a better understanding of the radiation processes responsible for the γ-ray flares observed in 3C 279. The total intensity and polarization observations of the source were carried out between 2013 December 28 and 2014 January 03 using the Fermi-Large Area Telescope, Swift-XRT, Swift-UVOT, and Korean VLBI Network telescopes. A prominent flare observed in the optical/near-UV passbands was found to be correlated with a concurrent γ-ray flare at a confidence level >95 percent, which suggests a co-spatial origin of the two. Moreover, the flaring activitymore » in the two regimes was accompanied by no significant spectral variations. A peak in the X-ray light curve coincides with the peaks of the fractional polarization curves at 43 and 86 GHz radio bands. No prominent variation was noticed for the total intensity and the electric vector position angle observations at radio bands during this period. We noticed a possible hint of steepening of the radio spectrum with an increase in percentage polarization, which suggests that the radio polarization variations could be simply due to a spectral change. In a simple scenario, the correlated optical/γ-ray flares could be caused by the same population of emitting particles. The coincidence of the increase in radio polarization with the X-ray flux supports the picture that X-rays are produced via inverse-Compton scattering of radio photons. Finally, the observed fractional variability for the γ-ray flare ~0.23 does not exceed that in the optical regime, which is inconsistent with what we usually observe for 3C 279; it could be due to different dependencies of the magnetic field and the external radiation field energy density profiles along the jet.« less
Hudson, Janice E; Levia, Delphis F; Hudson, Sean A; Bais, Harsh P; Legates, David R
2017-01-01
The purpose of this work was to quantify the variation of subcanopy spatiotemporal light dynamics over the course of a year and to link it to the physiological ecology of the understory shrub, Lindera benzoin L. Blume (northern spicebush). Covering all seven phenoseasons of a deciduous forest, this work utilized a line quantum sensor to measure the variation in subcanopy light levels under all sky conditions at different times of the day. A total of 4,592 individual subcanopy measurements of photosynthetic photon flux density (PPFD, μmol m-2 s-1) were taken as 15-second spatially-integrated one-meter linear averages to better understand the dynamism of light exposure to L. benzoin. Both open (n = 2, one continuous and one instantaneous) and subcanopy location (n = 25) measurements of PPFD were taken on each sampling date in and near the forested plot (Maryland, USA). In addition, we explored the effect of four photointensity-photoperiod combinations on the growth of L. benzoin under controlled conditions to compare to field conditions. On average, understory PPFD was less than 2% of open PPFD during the leafed months and an average of 38.8% of open PPFD during leafless winter months, indicating that: (1) often overlooked woody surfaces intercept large amounts of light; and (2) spicebush within the plot receive limited light even in early spring before canopy leaf-out. Statistical results suggested phenoseason accounted for nearly three-quarters of the variation in incident radiation between the three plant canopy heights. Spicebush under controlled conditions exhibited the highest fitness levels at an intensity of 164.5 μmol m-2 s-1 for 12-hour duration. Similarly, spicebush growth in the field occurred at subcanopy locations receiving higher incidence of PPFD (i.e., >128 μmol m-2 s-1). Results suggest that the ecological niche for these plants is very specific in terms of light intensity.
Levia, Delphis F.; Hudson, Sean A.; Bais, Harsh P.; Legates, David R.
2017-01-01
The purpose of this work was to quantify the variation of subcanopy spatiotemporal light dynamics over the course of a year and to link it to the physiological ecology of the understory shrub, Lindera benzoin L. Blume (northern spicebush). Covering all seven phenoseasons of a deciduous forest, this work utilized a line quantum sensor to measure the variation in subcanopy light levels under all sky conditions at different times of the day. A total of 4,592 individual subcanopy measurements of photosynthetic photon flux density (PPFD, μmol m-2 s-1) were taken as 15-second spatially-integrated one-meter linear averages to better understand the dynamism of light exposure to L. benzoin. Both open (n = 2, one continuous and one instantaneous) and subcanopy location (n = 25) measurements of PPFD were taken on each sampling date in and near the forested plot (Maryland, USA). In addition, we explored the effect of four photointensity-photoperiod combinations on the growth of L. benzoin under controlled conditions to compare to field conditions. On average, understory PPFD was less than 2% of open PPFD during the leafed months and an average of 38.8% of open PPFD during leafless winter months, indicating that: (1) often overlooked woody surfaces intercept large amounts of light; and (2) spicebush within the plot receive limited light even in early spring before canopy leaf-out. Statistical results suggested phenoseason accounted for nearly three-quarters of the variation in incident radiation between the three plant canopy heights. Spicebush under controlled conditions exhibited the highest fitness levels at an intensity of 164.5 μmol m-2 s-1 for 12-hour duration. Similarly, spicebush growth in the field occurred at subcanopy locations receiving higher incidence of PPFD (i.e., >128 μmol m-2 s-1). Results suggest that the ecological niche for these plants is very specific in terms of light intensity. PMID:29023480
Auger electron intensity variations in oxygen-exposed large grain polycrystalline silver
NASA Technical Reports Server (NTRS)
Lee, W. S.; Outlaw, R. A.; Hoflund, G. B.; Davidson, M. R.
1989-01-01
Auger electron spectroscopic studies of the grains in oxygen-charged polycrystal-line silver show significant intensity variations as a function of crystallographic orientation. These intensity variations were observed by studies of the Auger images and line scans of the different grains (randomly selected) for each silver transition energy. The results can be attributed to the diffraction of the ejected Auger electrons and interpreted by corresponding changes in the electron mean-free path for inelastic scattering and by oxygen atom accumulation in the subsurface. The subsurface (second layer) octahedral sites increased in size because of surface relaxation and serve as a stable reservoir for the dissolved oxygen.
Swanson, David L; King, Marisa O; Culver, William; Zhang, Yufeng
Metabolic rates of passerine birds are flexible traits that vary both seasonally and among and within winters. Seasonal variation in summit metabolic rates (M sum = maximum thermoregulatory metabolism) in birds is consistently correlated with changes in pectoralis muscle and heart masses and sometimes with variation in cellular aerobic metabolic intensity, so these traits might also be associated with shorter-term, within-winter variation in metabolic rates. To determine whether these mechanisms are associated with within-winter variation in M sum , we examined the effects of short-term (ST; 0-7 d), medium-term (MT; 14-30 d), and long-term (LT; 30-yr means) temperature variables on pectoralis muscle and heart masses, pectoralis expression of the muscle-growth inhibitor myostatin and its metalloproteinase activators TLL-1 and TLL-2, and pectoralis and heart citrate synthase (CS; an indicator of cellular aerobic metabolic intensity) activities for two temperate-zone resident passerines, house sparrows (Passer domesticus) and dark-eyed juncos (Junco hyemalis). For both species, pectoralis mass residuals were positively correlated with ST temperature variables, suggesting that cold temperatures resulted in increased turnover of pectoralis muscle, but heart mass showed little within-winter variation for either species. Pectoralis mRNA and protein expression of myostatin and the TLLs were only weakly correlated with ST and MT temperature variables, which is largely consistent with trends in muscle masses for both species. Pectoralis and heart CS activities showed weak and variable trends with ST temperature variables in both species, suggesting only minor effects of temperature variation on cellular aerobic metabolic intensity. Thus, neither muscle or heart masses, regulation by the myostatin system, nor cellular aerobic metabolic intensity varied consistently with winter temperature, suggesting that other factors regulate within-winter metabolic variation in these birds.
NASA Astrophysics Data System (ADS)
Glen, Jonathan M. G.; Liddicoat, Joseph C.; Coe, Robert S.
1999-06-01
More than 33 m of 2.5 Ma sediment from Searles Lake, California was studied in order to construct a record of secular variation (SV) across the Gauss/Matuyama (G/M) normal-to-reverse polarity transition. The behavior of the field preceding and following the reversal is considered here, while in a companion paper [Glen et al., this issue] the details of the transition are discussed. The record encompasses an interval of roughly 183,000 years beginning 50 kyr (9 m) before and extending more than 128 kyr (23 m) beyond the transition, while the main phase of the transition lasts for nearly 5 kyr (1 m). Because the core was rotary drilled, and declinations lost, SV was characterized by the inclination and its angular dispersion. Inclination-only statistics reveal that (1) the record displays overall higher than expected values of angular dispersion (normal S˜20°; reverse S˜19°; expected S˜15.5°), suggesting that the field proximal to transitions may be more noisy than the distal field. In addition, normal data from immediately before the transition display higher S than reverse data immediately following it, implying that the postransitional field is more stable than the pretransitional field. One of the most prominent features of this record is an excursion of the field occurring roughly 4 kyr prior to the onset of the reversal. A record of the G/M transition from Chinese loess (R. Zhu et al., submitted manuscript, 1999) displays a similar event (also occurring roughly 4 kyr before the transition). This and the fact that the event is associated with anomalously low intensities suggest that the disturbance may be global in nature. The fact that comparable features are associated with other transitions [Hartl and Tauxe, 1996; Clement, 1992] intimates that the field may commonly show signs of early instability. This precursory event is actually one of a sequence of oscillations (in inclination and intensity) preceding the transition. That these fluctuations occur at roughly 4 kyr intervals leading up to the reversal (which also appears at this same interval) strongly suggests that an oscillatory disturbance in the core, active over at least 15 kyr prior to the transition, had eventually triggered the reversal. In addition, that these waveforms are absent from the postransitional record suggests the reversal process actively rejuvenates and stabilizes the field.
Sankar, A; Ayyangar, Komanduri M; Nehru, R Mothilal; Kurup, P G Gopalakrishna; Murali, V; Enke, Charles A; Velmurugan, J
2006-01-01
The quantitative dose validation of intensity-modulated radiation therapy (IMRT) plans require 2-dimensional (2D) high-resolution dosimetry systems with uniform response over its sensitive region. The present work deals with clinical use of commercially available self-developing Radio Chromic Film, Gafchromic EBT film, for IMRT dose verification. Dose response curves were generated for the films using a VXR-16 film scanner. The results obtained with EBT films were compared with the results of Kodak extended dose range 2 (EDR2) films. The EBT film had a linear response between the dose range of 0 to 600 cGy. The dose-related characteristics of the EBT film, such as post irradiation color growth with time, film uniformity, and effect of scanning orientation, were studied. There was up to 8.6% increase in the color density between 2 to 40 hours after irradiation. There was a considerable variation, up to 8.5%, in the film uniformity over its sensitive region. The quantitative differences between calculated and measured dose distributions were analyzed using DTA and Gamma index with the tolerance of 3% dose difference and 3-mm distance agreement. The EDR2 films showed consistent results with the calculated dose distributions, whereas the results obtained using EBT were inconsistent. The variation in the film uniformity limits the use of EBT film for conventional large-field IMRT verification. For IMRT of smaller field sizes (4.5 x 4.5 cm), the results obtained with EBT were comparable with results of EDR2 films.
NASA Astrophysics Data System (ADS)
de Mendonça, R. R. S.; Braga, C. R.; Echer, E.; Dal Lago, A.; Munakata, K.; Kuwabara, T.; Kozai, M.; Kato, C.; Rockenbach, M.; Schuch, N. J.; Jassar, H. K. Al; Sharma, M. M.; Tokumaru, M.; Duldig, M. L.; Humble, J. E.; Evenson, P.; Sabbah, I.
2016-10-01
The analysis of cosmic ray intensity variation seen by muon detectors at Earth's surface can help us to understand astrophysical, solar, interplanetary and geomagnetic phenomena. However, before comparing cosmic ray intensity variations with extraterrestrial phenomena, it is necessary to take into account atmospheric effects such as the temperature effect. In this work, we analyzed this effect on the Global Muon Detector Network (GMDN), which is composed of four ground-based detectors, two in the northern hemisphere and two in the southern hemisphere. In general, we found a higher temperature influence on detectors located in the northern hemisphere. Besides that, we noticed that the seasonal temperature variation observed at the ground and at the altitude of maximum muon production are in antiphase for all GMDN locations (low-latitude regions). In this way, contrary to what is expected in high-latitude regions, the ground muon intensity decrease occurring during summertime would be related to both parts of the temperature effect (the negative and the positive). We analyzed several methods to describe the temperature effect on cosmic ray intensity. We found that the mass weighted method is the one that best reproduces the seasonal cosmic ray variation observed by the GMDN detectors and allows the highest correlation with long-term variation of the cosmic ray intensity seen by neutron monitors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
De Mendonça, R. R. S.; Braga, C. R.; Echer, E.
2016-10-20
The analysis of cosmic ray intensity variation seen by muon detectors at Earth's surface can help us to understand astrophysical, solar, interplanetary and geomagnetic phenomena. However, before comparing cosmic ray intensity variations with extraterrestrial phenomena, it is necessary to take into account atmospheric effects such as the temperature effect. In this work, we analyzed this effect on the Global Muon Detector Network (GMDN), which is composed of four ground-based detectors, two in the northern hemisphere and two in the southern hemisphere. In general, we found a higher temperature influence on detectors located in the northern hemisphere. Besides that, we noticedmore » that the seasonal temperature variation observed at the ground and at the altitude of maximum muon production are in antiphase for all GMDN locations (low-latitude regions). In this way, contrary to what is expected in high-latitude regions, the ground muon intensity decrease occurring during summertime would be related to both parts of the temperature effect (the negative and the positive). We analyzed several methods to describe the temperature effect on cosmic ray intensity. We found that the mass weighted method is the one that best reproduces the seasonal cosmic ray variation observed by the GMDN detectors and allows the highest correlation with long-term variation of the cosmic ray intensity seen by neutron monitors.« less
Magnetic studies on Shergotty and other SNC meteorites
NASA Technical Reports Server (NTRS)
Cisowski, S. M.
1986-01-01
The results of a study of basic magnetic properties of meteorites within the SNC group, including the four known shergottites and two nakhlites, are presented. An estimate is made of the strength of the magnetic field which produced the remanent magnetization of the Shergotty meteorite, for the purpose of constraining the choices for the parent body of these SNC meteorites. Remanence measurements in several subsamples of Shergotty and Zagami meteorites reveal a large variation in intensity that does not seem to be related to the abundance of remanence carriers. The other meteorites carry only weak remanence, suggesting weak magnetizing fields as the source of their magnetic signal. A paleointensity experiment on a weakly magnetized subsample of Shergotty revealed a low temperature component of magnetization acquired in a field of 2000 gammas, and a high temperature component reflecting a paleofield strength of between 250 and 1000 gammas. The weak field environment that these meteorites seem to reflect is consistent with either a Martian or asteroidal origin, but inconsistent with a terrestrial origin.
Zharov, Alexander A; Zharov, Alexander A; Zharova, Nina A
2014-08-01
We show that transverse electromagnetic waves propagating along an external static electric field in liquid metacrystal (LMC) can provoke spontaneous rearrangement of elongated meta-atoms that changes the direction of the anisotropy axis of the LMC. This kind of instability may reorient the meta-atoms from the equilibrium state parallel to a static field to the state along a high-frequency field and back at the different threshold intensities of electromagnetic waves in such a way that bistability in the system takes place. Reorientation of meta-atoms causes a change in the effective refraction index of LMC that creates, in turn, the conditions for the formation of bright spatial solitons. Such spatial solitons are the self-consistent domains of redirected meta-atoms with trapped photons. We find that the instability thresholds as well as energy flux captured by the spatial soliton can be easily managed by variation of the static electric field applied to the LMC. We study the effects of soliton excitation and collisions via numerical simulations.
High-yield maize with large net energy yield and small global warming intensity
Grassini, Patricio; Cassman, Kenneth G.
2012-01-01
Addressing concerns about future food supply and climate change requires management practices that maximize productivity per unit of arable land while reducing negative environmental impact. On-farm data were evaluated to assess energy balance and greenhouse gas (GHG) emissions of irrigated maize in Nebraska that received large nitrogen (N) fertilizer (183 kg of N⋅ha−1) and irrigation water inputs (272 mm or 2,720 m3 ha−1). Although energy inputs (30 GJ⋅ha−1) were larger than those reported for US maize systems in previous studies, irrigated maize in central Nebraska achieved higher grain and net energy yields (13.2 Mg⋅ha−1 and 159 GJ⋅ha−1, respectively) and lower GHG-emission intensity (231 kg of CO2e⋅Mg−1 of grain). Greater input-use efficiencies, especially for N fertilizer, were responsible for better performance of these irrigated systems, compared with much lower-yielding, mostly rainfed maize systems in previous studies. Large variation in energy inputs and GHG emissions across irrigated fields in the present study resulted from differences in applied irrigation water amount and imbalances between applied N inputs and crop N demand, indicating potential to further improve environmental performance through better management of these inputs. Observed variation in N-use efficiency, at any level of applied N inputs, suggests that an N-balance approach may be more appropriate for estimating soil N2O emissions than the Intergovernmental Panel on Climate Change approach based on a fixed proportion of applied N. Negative correlation between GHG-emission intensity and net energy yield supports the proposition that achieving high yields, large positive energy balance, and low GHG emissions in intensive cropping systems are not conflicting goals. PMID:22232684
Dependence of the muon intensity on the atmospheric temperature measured by the GRAPES-3 experiment
NASA Astrophysics Data System (ADS)
Arunbabu, K. P.; Ahmad, S.; Chandra, A.; Dugad, S. R.; Gupta, S. K.; Hariharan, B.; Hayashi, Y.; Jagadeesan, P.; Jain, A.; Jhansi, V. B.; Kawakami, S.; Kojima, H.; Mohanty, P. K.; Morris, S. D.; Nayak, P. K.; Oshima, A.; Rao, B. S.; Reddy, L. V.; Shibata, S.; Tanaka, K.; Zuberi, M.
2017-09-01
The large area (560 m2) GRAPES-3 tracking muon telescope has been operating uninterruptedly at Ooty, India since 2001. Every day, it records 4 × 109 muons of ≥1 GeV with an angular resolution of ∼4°. The variation of atmospheric temperature affects the rate of decay of muons produced by the galactic cosmic rays (GCRs), which in turn modulates the muon intensity. By analyzing the GRAPES-3 data of six years (2005-2010), a small (amplitude ∼0.2%) seasonal variation (1 year (Yr) period) in the intensity of muons could be measured. The effective temperature 'Teff' of the upper atmosphere also displays a periodic variation with an amplitude of ∼1 K which was responsible for the observed seasonal variation in the muon intensity. At GeV energies, the muons detected by the GRAPES-3 are expected to be anti-correlated with Teff. The anti-correlation between the seasonal variation of Teff, and the muon intensity was used to measure the temperature coefficient αT by fast Fourier transform (FFT) technique. The magnitude of αT was found to scale with the assumed attenuation length 'λ' of the hadrons in the range λ = 80-180 g cm-2. However, the magnitude of the correction in the muon intensity was found to be almost independent of the value of λ used. For λ = 120 g cm-2 the value of temperature coefficient αT was found to be (- 0.17 ± 0.02)% K-1.
NASA Astrophysics Data System (ADS)
Kodaira, K.; Ichimura, K.
Sixty-three image-tube spectrograms of YY Gem (4 Å mm-1, λλ4820-4900 Å) are analyzed to yield the radial-velocity curves and the variations in the intensities and the widths of Hβ emission lines during the quiescent phase at epochs 1980 February 11-16, 1981 January 14-15, and 1981 March 11. The emission-line intensity of component A varied in a single-wave mode over an orbital period, with an apparent phase drift, -0.006019 fraction of the period per day from one epoch to another. The pattern of the intensity variation of component B changed within a few years. The ratio of the amplitudes of radial-velocity curves (KA/KB) of Hβ emission was found to be 0.91 in February 1980 but 1.01 in January 1981. This modulation in the ratio is interpreted as the results of the varying inhomogeneous distributions of emission intensities over the stellar surfaces which are inferred from the observed intensity variations under the assumption of synchronous rotation. A ratio KA/KB = 1.00±001 is proposed as the actual value which would be observed if the effects of inhomogeneities were negligible. The double-wave mode of the line-width variation over a period, which was found by Kodaira and Ichimura (1980), persisted for component A but changed into a single-wave mode for component B. No appreciable changes were detected in the average levels of both the intensity and width of Hβ emission lines within the last few years.
Cosmic ray modulation by high-speed solar wind fluxes
NASA Technical Reports Server (NTRS)
Dorman, L. I.; Kaminer, N. S.; Kuzmicheva, A. E.; Mymrina, N. V.
1985-01-01
Cosmic ray intensity variations connected with recurrent high-speed fluxes (HSF) of solar wind are investigated. The increase of intensity before the Earth gets into a HSF, north-south anisotropy and diurnal variation of cosmic rays inside a HSF as well as the characteristics of Forbush decreases are considered.
Probing the Quiet Solar Atmosphere from the Photosphere to the Corona
NASA Astrophysics Data System (ADS)
Kontogiannis, Ioannis; Gontikakis, Costis; Tsiropoula, Georgia; Tziotziou, Kostas
2018-04-01
We investigate the morphology and temporal variability of a quiet-Sun network region in different solar layers. The emission in several extreme ultraviolet (EUV) spectral lines through both raster and slot time-series, recorded by the EUV Imaging Spectrometer (EIS) on board the Hinode spacecraft is studied along with Hα observations and high-resolution spectropolarimetric observations of the photospheric magnetic field. The photospheric magnetic field is extrapolated up to the corona, showing a multitude of large- and small-scale structures. We show for the first time that the smallest magnetic structures at both the network and internetwork contribute significantly to the emission in EUV lines, with temperatures ranging from 8× 104 K to 6× 105 K. Two components of transition region emission are present, one associated with small-scale loops that do not reach coronal temperatures, and another component that acts as an interface between coronal and chromospheric plasma. Both components are associated with persistent chromospheric structures. The temporal variability of the EUV intensity at the network region is also associated with chromospheric motions, pointing to a connection between transition region and chromospheric features. Intensity enhancements in the EUV transition region lines are preferentially produced by Hα upflows. Examination of two individual chromospheric jets shows that their evolution is associated with intensity variations in transition region and coronal temperatures.
Explaining variation in hospice visit intensity for routine home care.
Stearns, Sally C; Sheingold, Steven; Zuckerman, Rachael B
2014-01-01
Medicare pays a flat per diem rate by level of hospice service without case-mix adjustment, although previous research shows that visit intensity varies considerably over the course of hospice episodes. Concerns pertain to the inherent financial incentives for routine home care, the most frequently used level, and whether payment efficiency can be improved using case-mix adjustment. The aim of this study was to assess variation in hospice visit intensity during hospice episodes by patient, hospice, and episode characteristics to inform policy discussions regarding hospice payment methods. This observational study used Medicare claims for hospice episodes in 2010. Multiple observations were constructed per episode phase (eg, days 1-14, 15-30, etc.). Episode phase and observed characteristics were regressed on average routine home care visit intensity per day; patient and hospice fixed effects controlled for unobserved characteristics. Visit intensity was constructed using national wages to weight visits by provider type. Observed patient characteristics included age, sex, race, diagnoses, venue of care, use of other hospice levels of care, and discharge status; hospice characteristics included ownership, affiliation, size, and urban/state location. Visit intensity varied substantially by episode phase. This pattern was largely invariant to observed patient and hospice characteristics, which explained <4% of variation in visit intensity per day after adjusting for episode phase. Unobserved patient characteristics explained approximately 85% of remaining variation. These results show that case-mix adjustment based on commonly observed factors would only minimally improve hospice payment methodology.
Crustal evolution inferred from Apollo magnetic measurements
NASA Technical Reports Server (NTRS)
Dyal, P.; Daily, W. D.; Vanian, L. L.
1978-01-01
The topology of lunar remanent fields is investigated by analyzing simultaneous magnetometer and solar wind spectrometer data. The diffusion model proposed by Vanyan (1977) to describe the field-plasma interaction at the lunar surface is extended to describe the interaction with fields characterized by two scale lengths, and the extended model is compared with data from three Apollo landing sites (Apollo 12, 15 and 16) with crustal fields of differing intensity and topology. Local remanent field properties from this analysis are compared with high spatial resolution magnetic maps obtained from the electron reflection experiment. It is concluded that remanent fields over most of the lunar surface are characterized by spatial variations as small as a few kilometers. Large regions (50 to 100 km) of the lunar crust were probably uniformly magnetized early in the evolution of the crust. Smaller scale (5 to 10 km) magnetic sources close to the surface were left by bombardment and subsequent gardening of the upper layers of these magnetized regions. The small scale sized remanent fields of about 100 gammas are measured by surface experiments, whereas the larger scale sized fields of about 0.1 gammas are measured by the orbiting subsatellite experiments.
Fast torsional waves and strong magnetic field within the Earth's core.
Gillet, Nicolas; Jault, Dominique; Canet, Elisabeth; Fournier, Alexandre
2010-05-06
The magnetic field inside the Earth's fluid and electrically conducting outer core cannot be directly probed. The root-mean-squared (r.m.s.) intensity for the resolved part of the radial magnetic field at the core-mantle boundary is 0.3 mT, but further assumptions are needed to infer the strength of the field inside the core. Recent diagnostics obtained from numerical geodynamo models indicate that the magnitude of the dipole field at the surface of a fluid dynamo is about ten times weaker than the r.m.s. field strength in its interior, which would yield an intensity of the order of several millitesla within the Earth's core. However, a 60-year signal found in the variation in the length of day has long been associated with magneto-hydrodynamic torsional waves carried by a much weaker internal field. According to these studies, the r.m.s. strength of the field in the cylindrical radial direction (calculated for all length scales) is only 0.2 mT, a figure even smaller than the r.m.s. strength of the large-scale (spherical harmonic degree n
Intraguild predation and native lady beetle decline.
Gardiner, Mary M; O'Neal, Matthew E; Landis, Douglas A
2011-01-01
Coccinellid communities across North America have experienced significant changes in recent decades, with declines in several native species reported. One potential mechanism for these declines is interference competition via intraguild predation; specifically, increased predation of native coccinellid eggs and larvae following the introduction of exotic coccinellids. Our previous studies have shown that agricultural fields in Michigan support a higher diversity and abundance of exotic coccinellids than similar fields in Iowa, and that the landscape surrounding agricultural fields across the north central U.S. influences the abundance and activity of coccinellid species. The goal of this study was to quantify the amount of egg predation experienced by a native coccinellid within Michigan and Iowa soybean fields and explore the influence of local and large-scale landscape structure. Using the native lady beetle Coleomegilla maculata as a model, we found that sentinel egg masses were subject to intense predation within both Michigan and Iowa soybean fields, with 60.7% of egg masses attacked and 43.0% of available eggs consumed within 48 h. In Michigan, the exotic coccinellids Coccinella septempunctata and Harmonia axyridis were the most abundant predators found in soybean fields whereas in Iowa, native species including C. maculata, Hippodamia parenthesis and the soft-winged flower beetle Collops nigriceps dominated the predator community. Predator abundance was greater in soybean fields within diverse landscapes, yet variation in predator numbers did not influence the intensity of egg predation observed. In contrast, the strongest predictor of native coccinellid egg predation was the composition of edge habitats bordering specific fields. Field sites surrounded by semi-natural habitats including forests, restored prairies, old fields, and pasturelands experienced greater egg predation than fields surrounded by other croplands. This study shows that intraguild predation by both native and exotic predators may contribute to native coccinellid decline, and that landscape structure interacts with local predator communities to shape the specific outcomes of predator-predator interactions.
Solar Wind Plasma Flows and Space Weather Aspects Recent Solar Cycle
NASA Astrophysics Data System (ADS)
Kaushik, Sonia; Kaushik, Subhash Chandra
2016-07-01
Solar transients are responsible for initiating short - term and long - term variations in earth's magnetosphere. These variations are termed as geomagnetic disturbances, and driven by the interaction of solar wind features with the geo-magnetosphere. The strength of this modulation process depends upon the magnitude and orientation of the Interplanetary Magnetic Field and solar wind parameters. These interplanetary transients are large scale structures containing plasma and magnetic field expelled from the transient active regions of solar atmosphere. As they come to interplanetary medium the interplanetary magnetic field drape around them. This field line draping was thought as possible cause of the characteristic eastward deflection and giving rise to geomagnetic activities as well as a prime factor in producing the modulation effects in the near Earth environment. The Solar cycle 23 has exhibited the unique extended minima and peculiar effects in the geomagnetosphere. Selecting such transients, occurred during this interval, an attempt has been made to determine quantitative relationships of these transients with solar/ interplanetary and Geophysical Parameters. In this work we used hourly values of IMF data obtained from the NSSD Center. The analysis mainly based on looking into the effects of these transients on earth's magnetic field. The high-resolution data IMF Bz and solar wind data obtained from WDC-A, through its omniweb, available during the selected period. Dst and Ap obtained from WDC-Kyoto are taken as indicator of geomagnetic activities. It is found that Dst index, solar wind velocity, proton temperature and the Bz component of magnetic field have higher values and increase just before the occurrence of these events. Larger and varying magnetic field mainly responsible for producing the short-term changes in geomagnetic intensity are observed during these events associated with coronal holes.
Longitudinal Variation of the Lunar Tide in the Equatorial Electrojet
NASA Astrophysics Data System (ADS)
Yamazaki, Yosuke; Stolle, Claudia; Matzka, Jürgen; Siddiqui, Tarique A.; Lühr, Hermann; Alken, Patrick
2017-12-01
The atmospheric lunar tide is one known source of ionospheric variability. The subject received renewed attention as recent studies found a link between stratospheric sudden warmings and amplified lunar tidal perturbations in the equatorial ionosphere. There is increasing evidence from ground observations that the lunar tidal influence on the ionosphere depends on longitude. We use magnetic field measurements from the CHAMP satellite during July 2000 to September 2010 and from the two Swarm satellites during November 2013 to February 2017 to determine, for the first time, the complete seasonal-longitudinal climatology of the semidiurnal lunar tidal variation in the equatorial electrojet intensity. Significant longitudinal variability is found in the amplitude of the lunar tidal variation, while the longitudinal variability in the phase is small. The amplitude peaks in the Peruvian sector (˜285°E) during the Northern Hemisphere winter and equinoxes, and in the Brazilian sector (˜325°E) during the Northern Hemisphere summer. There are also local amplitude maxima at ˜55°E and ˜120°E. The longitudinal variation is partly due to the modulation of ionospheric conductivities by the inhomogeneous geomagnetic field. Another possible cause of the longitudinal variability is neutral wind forcing by nonmigrating lunar tides. A tidal spectrum analysis of the semidiurnal lunar tidal variation in the equatorial electrojet reveals the dominance of the westward propagating mode with zonal wave number 2 (SW2), with secondary contributions by westward propagating modes with zonal wave numbers 3 (SW3) and 4 (SW4). Eastward propagating waves are largely absent from the tidal spectrum. Further study will be required for the relative importance of ionospheric conductivities and nonmigrating lunar tides.
Extended Red Emission in the Evil Eye Galaxy (NGC 4826)
NASA Astrophysics Data System (ADS)
Pierini, D.; Majeed, A.; Boroson, T. A.; Witt, A. N.
2002-04-01
NGC 4826 (M64) is a nearby Sab galaxy with an outstanding, absorbing dust lane (called the Evil Eye) asymmetrically placed across its prominent bulge. In addition, its central region is associated with several regions of ongoing star formation activity. We obtained accurate low-resolution (4.3 Å pixel-1) long-slit spectroscopy (KPNO 4 m) of NGC 4826 in the 5300-9100 Å spectral range, with a slit of 4.4‧ length, encompassing the galaxy's bulge size, positioned across its nucleus. The wavelength-dependent effects of absorption and scattering by the dust in the Evil Eye are evident when comparing the observed stellar spectral energy distributions (SEDs) of pairs of positions symmetrically located with respect to the nucleus, one on the dust lane side and one on the symmetrically opposite side of the bulge, under the assumption that the intrinsic (i.e., unobscured) radiation field is to first-order axisymmetric. We analyzed the SED ratios for a given number of pairs of positions through the multiple-scattering radiative transfer model of Witt & Gordon. As a main result, we discovered strong residual extended red emission (ERE) from a region of the Evil Eye within a projected distance of about 13" from the nucleus, adjacent to a broad, bright H II region, intercepted by the spectrograph slit. ERE is an established phenomenon well-covered in the literature and interpreted as originating from photoluminescence by nanometer-sized clusters, illuminated by UV/optical photons of the local radiation field. In the innermost part of the Evil Eye, the ERE band extends from about 5700 to 9100 Å, with an estimated peak intensity of ~3.7×10-6 ergs s -1 Å-1 cm-2 sr-1 near 8300 Å and with an ERE to scattered light band integrated intensity ratio, I(ERE)/I(sca), of about 0.7. At farther distances, approaching the broad, bright H II region, the ERE band and peak intensity shift toward longer wavelengths, while the ERE band-integrated intensity, I(ERE), diminishes and, eventually, vanishes at the inner edge of this H II region. The radial variation of I(ERE) and I(ERE)/I(sca) does not match that of the optical depth of the model derived for the dust lane. By contrast, the radial variation of I(ERE), I(ERE)/I(sca) and of the ERE spectral domain seems to depend strongly on the strength and hardness of the illuminating radiation field. In fact, I(ERE) and I(ERE)/I(sca) diminish and the ERE band shifts toward longer wavelengths when both the total integrated Lyman continuum photon rate, Q(H0)TOT, and the characteristic effective temperature, Teff, of the illuminating OB stars increase. Q(H0)TOT and Teff are estimated from the extinction-corrected Hα (λ=6563 Å) line intensity and line intensity ratios [N II] (λ6583)/Hα and [S II](λλ6716+6731)/Hα, respectively, and are consistent with model and observed values typical of OB associations. Unfortunately, we do not have data shortward of 5300 Å, so that the census of the UV/optical flux is incomplete. The complex radial variation of the ERE peak intensity and peak wavelength of I(ERE) and I(ERE)/I(sca) with optical depth and strength of the UV/optical radiation field is reproduced in a consistent way through the theoretical interpretation of the photophysics of the ERE carrier by Smith & Witt, which attributes a key role to the experimentally established recognition that photoionization quenches the luminescence of nanoparticles. When examined within the context of ERE observations in the diffuse interstellar medium (ISM) of our Galaxy and in a variety of other dusty environments, such as reflection nebulae, planetary nebulae, and the Orion Nebula, we conclude that the ERE photon conversion efficiency in NGC 4826 is as high as found elsewhere but that the size of the actively luminescing nanoparticles in NGC 4826 is about twice as large as those thought to exist in the diffuse ISM of our Galaxy.
NASA Astrophysics Data System (ADS)
Papailiou, M.; Dimitrova, S.; Babayev, E. S.; Mavromichalaki, H.
2010-01-01
Collaborating scientific groups from Athens (Greece), Baku (Azerbaijan) and Sofia (Bulgaria) have conducted a research work on the possible effects of geomagnetic field disturbances (GMF) and cosmic ray intensity (CRI) variations on human homeostasis, particularly, the cardio-health state. Electrocardiograms (ECGs) of seven functionally healthy persons were digitally registered at the joint Laboratory of Heliobiology located in the Medical Centre INAM, Baku, on working days and Saturdays. Heart rate values, estimated from ECGs, were analysed in relation to daily values of CRI, as measured by the Neutron Monitor of the University of Athens and daily variations of Dst and Ap geomagnetic indices and some significant results had been revealed in previous studies. Researches were continued by study of additional cardiologic parameters estimated from the same ECG data. In this study digital data of RR interval (the time elapsing between two consecutive R waves in the ECG), namely RRminimum, RRmaximum and RRaverage were analyzed taking into consideration different levels of GMF disturbances (estimated through variations of Dst and Ap indices) and cosmic ray activity (through CRI variations). The data refer to the time period 15 July 2006-31 March 2008. Variations of RR intervals show connection to GMF disturbances and CRI variations. The revealed effects are more pronounced for high levels of geomagnetic activity (when geomagnetic storms occur) and large CRI decreases as well as on the days before and after these variations.
Are U-channels measurements appropriate for reversal or excursion records ?
NASA Astrophysics Data System (ADS)
Philippe, E. G. H.; Valet, J. P.
2017-12-01
Sampling of sediment cores by U-channel plastic tubes is a very successful technique that allows to perform measurements of the magnetic remanence and demagnetization of long sections of sediment. This approach made possible the acquisition of detailed records of paleosecular variation, geomagnetic polarity and relative paleointensity over the past million years and yielded significant advances in our knowledge of the geomagnetic field changes. The major pitfall is that the resolution of the signal which is imposed by the deposition rate of the sediment is also attenuated by the response curve of the magnetic sensors used for measurements. This is not so critical to document the dipole field changes, but may have a significant impact to recover fast field changes typical of the non-dipole field that prevail during reversals and excursions. We have investigated possible consequences by comparing 150 successive individual directions of 1 cm side successive single samples with the measurement of the 1.5m equivalent U-channel obtained by placing the same samples adjacent to each other. We compared different transition lengths and generated transitional directions that produce records with similar characteristics as those derived from volcanic records of reversals with a magnetization intensity dropping to 5% of the full polarity value during the transition. The results show that even with transitional intervals as long as 30 cm and therefore associated with deposition rates as high as 10 cm/ka the U-channels considerably smooth all variations with significant consequences on the VGP paths that become more constrained in longitude. Despite little similarity with the global structure of the transition, the U-channels fail to reproduce the complexity of the transitional period. The transitional VGPs never duplicate the variations of the non-dipole field even within several centimeters and generate artificial clusters or periods of apparent fast changes. We are currently testing whether deconvolution techniques can recover the original directions.
Spatial and temporal dependence of the convective electric field in Saturn’s inner magnetosphere
NASA Astrophysics Data System (ADS)
Andriopoulou, M.; Roussos, E.; Krupp, N.; Paranicas, C.; Thomsen, M.; Krimigis, S.; Dougherty, M. K.; Glassmeier, K.-H.
2014-02-01
The recently established presence of a convective electric field in Saturn’s inner and middle magnetosphere, with an average pointing approximately towards midnight and an intensity less than 1 mV/m, is one of the most puzzling findings by the Cassini spacecraft. In order to better characterize the properties of this electric field, we augmented the original analysis method used to identify it (Andriopoulou et al., 2012) and applied it to an extended energetic electron microsignature dataset, constructed from observations at the vicinity of four saturnian moons. We study the average characteristics of the convective pattern and additionally its temporal and spatial variations. In our updated dataset we include data from the recent Cassini orbits and also microsignatures from the two moons, Rhea and Enceladus, allowing us to further extend this analysis to cover a greater time period as well as larger radial distances within the saturnian magnetosphere. When data from the larger radial range and more recent orbits are included, we find that the originally inferred electric field pattern persists, and in fact penetrates at least as far in as the orbit of Enceladus, a region of particular interest due to the plasma loading that takes place there. We perform our electric field calculations by setting the orientation of the electric field as a free, time-dependent parameter, removing the pointing constraints from previous works. Analytical but also numerical techniques have been employed, that help us overcome possible errors that could have been introduced from simplified assumptions used previously. We find that the average electric field pointing is not directed exactly at midnight, as we initially assumed, but is found to be stably displaced by approximately 12-32° from midnight, towards dawn. The fact, however, that the field’s pointing is much more variable in short time scales, in addition to our observations that it penetrates inside the orbit of Enceladus (∼4 Rs), may suggest that the convective pattern is dominating all the way down to the main rings (2.2 Rs), when data from the Saturn Orbit Insertion are factored in. We also report changes of the electric field strength and pointing over the course of time, possibly related to seasonal effects, with the largest changes occurring during a period that envelopes the saturnian equinox. Finally, the average electric field strength seems to be sensitive to radial distance, exhibiting a drop as we move further out in the magnetosphere, confirming earlier results. This drop-off, however, appears to be more intense in the earlier years of the mission. Between 2010 and 2012 the electric field is quasi-uniform, at least between the L-shells of Tethys and Dione. These new findings provide constraints in the possible electric field sources that might be causing such a convection pattern that has not been observed before in other planetary magnetospheres. The very well defined values of the field’s average properties may suggest a periodic variation of the convective pattern, which can average out very effectively the much larger changes in both pointing and intensity over short time scales, although this period cannot be defined. The slight evidence of changes in the properties across the equinox (seasonal control), may also hint that the source of the electric field resides in the planet’s atmosphere/ionosphere system.
When less is best: female brown-headed cowbirds prefer less intense male displays.
O'Loghlen, Adrian L; Rothstein, Stephen I
2012-01-01
Sexual selection theory predicts that females should prefer males with the most intense courtship displays. However, wing-spread song displays that male brown-headed cowbirds (Molothrus ater) direct at females are generally less intense than versions of this display that are directed at other males. Because male-directed displays are used in aggressive signaling, we hypothesized that females should prefer lower intensity performances of this display. To test this hypothesis, we played audiovisual recordings showing the same males performing both high intensity male-directed and low intensity female-directed displays to females (N = 8) and recorded the females' copulation solicitation display (CSD) responses. All eight females responded strongly to both categories of playbacks but were more sexually stimulated by the low intensity female-directed displays. Because each pair of high and low intensity playback videos had the exact same audio track, the divergent responses of females must have been based on differences in the visual content of the displays shown in the videos. Preferences female cowbirds show in acoustic CSD studies are correlated with mate choice in field and captivity studies and this is also likely to be true for preferences elucidated by playback of audiovisual displays. Female preferences for low intensity female-directed displays may explain why male cowbirds rarely use high intensity displays when signaling to females. Repetitive high intensity displays may demonstrate a male's current condition and explain why these displays are used in male-male interactions which can escalate into physical fights in which males in poorer condition could be injured or killed. This is the first study in songbirds to use audiovisual playbacks to assess how female sexual behavior varies in response to variation in a male visual display.
Berger, Thomas; Petersen, Jørgen Breede Baltzer; Lindegaard, Jacob Christian; Fokdal, Lars Ulrik; Tanderup, Kari
2017-11-01
Density changes occurring during fractionated radiotherapy in the pelvic region may degrade proton dose distributions. The aim of the study was to quantify the dosimetric impact of gas cavities and body outline variations. Seven patients with locally advanced cervical cancer (LACC) were analyzed through a total of 175 daily cone beam computed tomography (CBCT) scans. Four-beams intensity-modulated proton therapy (IMPT) dose plans were generated targeting the internal target volume (ITV) composed of: primary tumor, elective and pathological nodes. The planned dose was 45 Gy [Relative-Biological-Effectiveness-weighted (RBE)] in 25 fractions and simultaneously integrated boosts of pathologic lymph nodes were 55-57.5 Gy (RBE). In total, 475 modified CTs were generated to evaluate the effect of: 1/gas cavities, 2/outline variations and 3/the two combined. The anatomy of each fraction was simulated by propagating gas cavities contours and body outlines from each daily CBCT to the pCT. Hounsfield units corresponding to gas and fat were assigned to the propagated contours. D98 (least dose received by the hottest 98% of the volume) and D99.9 for targets and V43Gy(RBE) (volume receiving ≥43 Gy(RBE)) for organs at risk (OARs) were recalculated on each modified CT, and total dose was evaluated through dose volume histogram (DVH) addition across all fractions. Weight changes during radiotherapy were between -3.1% and 1.2%. Gas cavities and outline variations induced a median [range] dose degradation for ITV45 of 1.0% [0.5-3.5%] for D98 and 2.1% [0.8-6.4%] for D99.9. Outline variations had larger dosimetric impact than gas cavities. Worst nodal dose degradation was 2.0% for D98 and 2.3% for D99.9. The impact on bladder, bowel and rectum was limited with V43Gy(RBE) variations ≤3.5 cm 3 . Bowel gas cavities and outline variations had minor impact on accumulated dose in targets and OAR of four-field IMPT in a LACC population of moderate weight changes.
Radiation environment for ATS-F. [including ambient trapped particle fluxes
NASA Technical Reports Server (NTRS)
Stassinopoulos, E. G.
1974-01-01
The ambient trapped particle fluxes incident on the ATS-F satellite were determined. Several synchronous circular flight paths were evaluated and the effect of parking longitude on vehicle encountered intensities was investigated. Temporal variations in the electron environment were considered and partially accounted for. Magnetic field calculations were performed with a current field model extrapolated to a later epoch with linear time terms. Orbital flux integrations were performed with the latest proton and electron environment models using new improved computational methods. The results are presented in graphical and tabular form; they are analyzed, explained, and discussed. Estimates of energetic solar proton fluxes are given for a one year mission at selected integral energies ranging from 10 to 100 Mev, calculated for a year of maximum solar activity during the next solar cycle.
NASA Astrophysics Data System (ADS)
Ysard, N.; Köhler, M.; Jones, A.; Miville-Deschênes, M.-A.; Abergel, A.; Fanciullo, L.
2015-05-01
Context. The Planck-HFI all-sky survey from 353 to 857 GHz combined with the IRAS data at 100 μm (3000 GHz, IRIS version of the data) show that the dust properties vary from line of sight to line of sight in the diffuse interstellar medium (ISM) at high Galactic latitude (1019 ≤ NH ≤ 2.5 × 1020 H/cm2, for a sky coverage of ~12%). Aims: These observations contradict the usual thinking of uniform dust properties, even in the most diffuse areas of the sky. Thus, our aim is to explain these variations with changes in the ISM properties and with evolution of the grain properties. Methods: Our starting point is the latest core-mantle dust model. This model consists of small aromatic-rich carbon grains, larger amorphous carbonaceous grains with an aliphatic-rich core and an aromatic-rich mantle, and amorphous silicates (mixture of olivine and pyroxene types) with Fe/FeS nano-inclusions covered by aromatic-rich carbon mantles. We explore whether variations in the radiation field or in the gas density distribution in the diffuse ISM could explain the observed variations. The dust properties are also varied in terms of their mantle thickness, metallic nano-inclusions, carbon abundance locked in the grains, and size distributions. Results: We show that variations in the radiation field intensity and gas density distribution cannot explain variations observed with Planck-HFI but that radiation fields harder than the standard ISRF may participate in creating part of the observed variations. We further show that variations in the mantle thickness on the grains coupled with changes in their size distributions can reproduce most of the observations. We concurrently put a limit on the mantle thickness of the silicates, which should not exceed ~ 10 to 15 nm, and find that aromatic-rich mantles are definitely needed for the carbonaceous grain population with a thickness of at least 5 to 7.5 nm. We also find that changes in the carbon cosmic abundance included in the grains could explain part of the variations in dust observations. Finally, we show that varying the composition of metallic nano-inclusions in the silicates cannot account for the variations, at the same time showing that the amount of FeS they contain cannot be > 50% by volume. Conclusions: With small variations in the dust properties, we are able to explain most of the variations in the dust emission observed by Planck-HFI in the diffuse ISM. We also find that the small realistic changes in the dust properties that we consider almost perfectly match the anti-correlation and scatter in the observed β - T relation.
NASA Astrophysics Data System (ADS)
Giannaropoulou, E.; Papailiou, M.; Mavromichalaki, H.; Tsipis, A.
2010-07-01
Over the last few years many studies have been conducted concerning the possible influence of geomagnetic and solar activity and cosmic ray activity on human physiological state and in particular on human cardio - health state. As it is shown the human organism is sensitive to environmental changes and reacts to them through a series of variations of its physiological parameters such as heart rate, arterial systolic and diastolic blood pressure, etc. In this paper daily mean values of heart rate, as they were registered for a group of 2.028 volunteers during medical examinations in the Polyclinico Tor Vergata, Rome, Italy are analyzed in relation to daily cosmic ray intensity variations, as measured by the Neutron Monitor of the University of Athens and daily variations of the geomagnetic indices Dst, Ap and Kp. The results from this study show that geomagnetic activity changes and cosmic rays intensity variations may regulate the human homeostasis.
NASA Astrophysics Data System (ADS)
Fanciullo, L.; Guillet, V.; Aniano, G.; Jones, A. P.; Ysard, N.; Miville-Deschênes, M.-A.; Boulanger, F.; Köhler, M.
2015-08-01
Aims: We compare the performance of several dust models in reproducing the dust spectral energy distribution (SED) per unit extinction in the diffuse interstellar medium (ISM). We use our results to constrain the variability of the optical properties of big grains in the diffuse ISM, as published by the Planck collaboration. Methods: We use two different techniques to compare the predictions of dust models to data from the Planck HFI, IRAS, and SDSS surveys. First, we fit the far-infrared emission spectrum to recover the dust extinction and the intensity of the interstellar radiation field (ISRF). Second, we infer the ISRF intensity from the total power emitted by dust per unit extinction, and then predict the emission spectrum. In both cases, we test the ability of the models to reproduce dust emission and extinction at the same time. Results: We identify two issues. Not all models can reproduce the average dust emission per unit extinction: there are differences of up to a factor ~2 between models, and the best accord between model and observation is obtained with the more emissive grains derived from recent laboratory data on silicates and amorphous carbons. All models fail to reproduce the variations in the emission per unit extinction if the only variable parameter is the ISRF intensity: this confirms that the optical properties of dust are indeed variable in the diffuse ISM. Conclusions: Diffuse ISM observations are consistent with a scenario where both ISRF intensity and dust optical properties vary. The ratio of the far-infrared opacity to the V band extinction cross-section presents variations of the order of ~20% (40-50% in extreme cases), while ISRF intensity varies by ~30% (~60% in extreme cases). This must be accounted for in future modelling. Appendices are available in electronic form at http://www.aanda.org
Guoxiao, Wei; Yibo, Wang; Yan Lin, Wang
2008-12-01
Characteristics of soil organic carbon (SOC) and total nitrogen (total N) are important for determining the overall quality of soils. Studies on spatial and temporal variation in SOC and total N are of great importance because of global environmental concerns. Soil erosion is one of the major processes affecting the redistribution of SOC and total N in the test fields. To characterize the distribution and dynamics of SOC and N in the intensively eroded soil of the headwaters of the Yangtze River, China, we measured profiles of soil organic C, total N stocks, and (137)Cs in a control plot and a treatment plot. The amounts of SOC, (137)Cs of sampling soil profiles increased in the following order, lower>middle>upper portions on the control plot, and the amounts of total N of sampling soil profile increase in the following order: upper>middle>lower on the control plot. Intensive soil erosion resulted in a significant decrease of SOC amounts by 34.9%, 28.3% and 52.6% for 0-30cm soil layer at upper, middle and lower portions and (137)Cs inventory decreased by 68%, 11% and 85% at upper, middle and lower portions, respectively. On the treatment plot total N decreased by 50.2% and 14.6% at the upper and middle portions and increased by 48.9% at the lower portion. Coefficients of variation (CVs) of SOC decreased by 31%, 37% and 30% in the upper, middle and lower slope portions, respectively. Similar to the variational trend of SOC, CVs of (137)Cs decreased by 19.2%, 0.5% and 36.5%; and total N decreased by 45.7%, 65.1% and 19% in the upper, middle and lower slope portions, respectively. The results showed that (137)Cs, SOC and total N moved on the sloping land almost in the same physical mechanism during the soil erosion procedure, indicating that fallout of (137)Cs could be used directly for quantifying dynamic SOC and total N redistribution as the soil was affected by intensive soil erosion.
Caddigan, Sara C; Barkauskas, Rima T; Sparkes, Timothy C
2014-11-01
The acanthocephalan parasite Acanthocephalus dirus infects the freshwater isopod Caecidotea intermedius as an intermediate host before completing its life cycle in a fish. Male C. intermedius infected by A. dirus parasites are less likely to engage in mating behavior than uninfected males but there is a significant intra-population variation in the occurrence of this behavioral change. Previous studies on uninfected isopods have shown that glycogen content is a predictor of male mating behavior and we examined whether the intra-population variation in the mating behavior of infected male C. intermedius could be explained by this relationship. A field-based behavioral experiment was used to quantify intra-population variation in male mating behavior, which showed that 50% of infected males were responsive to females and 50% were not responsive. Biochemical analysis of responsive and non-responsive males revealed that glycogen content was a predictor of the mating behavior for uninfected males but was not a predictor of mating behavior for infected males. For infected males, parasite intensity was a predictor of mating behavior. Males that contained more A. dirus parasites were less likely to undergo modification of mating behavior. We propose that the intra-population variation in the mating behavior of infected C. intermedius identified in nature was not mediated by host condition.
Correlated time-variation of bulk microstructure and rheology in asphalt binders.
Ramm, A; Sakib, N; Bhasin, A; Downer, M C
2018-05-22
We use near-infrared dark-field optical microscopy to probe isothermal time variation of the volume fraction of naturally-occurring, subsurface microstructures in PG 64-22 asphalt binders at temperature T=30∘C, following a rapid heating (cooling) increment |ΔT|=20∘C from initial temperature T0=10∘C(50∘C). We compare these microstructure variations with isothermal time variations of the magnitude |G30∗(t)| of the bulk complex shear modulus measured for identical sample conditions with a Dynamic Shear Rheometer. The main findings are: (1) Microstructure volume fraction (inferred from intensity I(t) of near-infrared optical scatter) and |G∗(t)| both continue to change appreciably long after measurable changes of binder temperature cease. Moreover, delayed time variations in I(t) and |G∗(t)| (2) correlate closely with each other; (3) evolve on three distinct time scales - several minutes, ∼1 h, >1 day; (4) depend on binder aging; (5) are more pronounced after a cooling step (ΔT=-20∘C) than after a heating step (ΔT=+20∘C); and (6) account for hysteresis in I(t) and |G∗(t)| curves observed during heating-cooling cycles. © 2018 The Authors Journal of Microscopy © 2018 Royal Microscopical Society.
Sahlsten, Hanna; Virtanen, Juuso; Joutsa, Juho; Niinivirta-Joutsa, Katri; Löyttyniemi, Eliisa; Johansson, Reijo; Paavola, Janika; Taiminen, Tero; Sjösten, Noora; Salonen, Jaakko; Holm, Anu; Rauhala, Esa; Jääskeläinen, Satu K
2017-09-01
Repetitive transcranial magnetic stimulation (rTMS) may alleviate tinnitus. We evaluated effects of electric field (E-field) navigated rTMS targeted according to tinnitus pitch. No controlled studies have investigated anatomically accurate E-field-rTMS for tinnitus. Effects of E-field-rTMS were evaluated in a prospective randomised placebo-controlled 6-month follow-up study on parallel groups. Patients received 10 sessions of 1 Hz rTMS or placebo targeted to the left auditory cortex corresponding to tonotopic representation of tinnitus pitch. Effects were evaluated immediately after treatment and at 1, 3 and 6 months. Primary outcome measures were visual analogue scores (VAS 0-100) for tinnitus intensity, annoyance and distress, and the Tinnitus Handicap Inventory (THI). Thirty-nine patients (mean age 50.3 years). The mean tinnitus intensity (F 3 = 15.7, p < 0.0001), annoyance (F 3 = 8.8, p = 0.0002), distress (F 3 = 9.1, p = 0.0002) and THI scores (F 4 = 13.8, p < 0.0001) decreased in both groups over time with non-significant differences between the groups. After active rTMS, 42% and 37% of the patients showed excellent response at 1 and 3 months against 15% and 10% in the placebo group (p = 0.082 and p = 0.065). Despite the significant effects of rTMS on tinnitus, differences between active and placebo groups remained non-significant, due to large placebo-effect and wide inter-individual variation.
NASA Astrophysics Data System (ADS)
Singh, Y. P.; Badruddin
2007-02-01
Interplanetary manifestations of coronal mass ejections (CMEs) with specific plasma and field properties, called ``interplanetary magnetic clouds,'' have been observed in the heliosphere since the mid-1960s. Depending on their associated features, a set of observed magnetic clouds identified at 1 AU were grouped in four different classes using data over 4 decades: (1) interplanetary magnetic clouds moving with the ambient solar wind (MC structure), (2) magnetic clouds moving faster than the ambient solar wind and forming a shock/sheath structure of compressed plasma and field ahead of it (SMC structure), (3) magnetic clouds ``pushed'' by the high-speed streams from behind, forming an interaction region between the two (MIH structure), and (4) shock-associated magnetic clouds followed by high-speed streams (SMH structure). This classification into different groups led us to study the role, effect, and the relative importance of (1) closed field magnetic cloud structure with low field variance, (2) interplanetary shock and magnetically turbulent sheath region, (3) interaction region with large field variance, and (4) the high-speed solar wind stream coming from the open field regions, in modulating the galactic cosmic rays (GCRs). MC structures are responsible for transient decrease with fast recovery. SMC structures are responsible for fast decrease and slow recovery, MIH structures produce depression with slow decrease and slow recovery, and SMH structures are responsible for fast decrease with very slow recovery. Simultaneous variations of GCR intensity, solar plasma velocity, interplanetary magnetic field strength, and its variance led us to study the relative effectiveness of different structures as well as interplanetary plasma/field parameters. Possible role of the magnetic field, its topology, field turbulence, and the high-speed streams in influencing the amplitude and time profile of resulting decreases in GCR intensity have also been discussed.
In-flight gust monitoring and aeroelasticity studies
NASA Astrophysics Data System (ADS)
Alvarez-Salazar, Oscar Salvador
An in-flight gust monitoring and aeroelasticity study was conducted on board NASA Dryden's F15-B/FTF-II test platform (``FTF''). A total of four flights were completed. This study is the first in a series of flight experiments being conducted jointly by NASA Dryden Flight Research Center and UCLA's Flight Systems Research Center. The first objective of the in-flight gust- monitoring portion of the study was to demonstrate for the first time anywhere the measurability of intensity variations of a collimated Helium-Neon laser beam due to atmospheric air turbulence while having both the source and target apertures mounted outside an airborne aircraft. Intensity beam variations are the result of forward scattering of the beam by variations in the air's index of refraction, which are carried across the laser beam's path by a cross flow or air (i.e., atmospheric turbulence shifting vertically in the atmosphere). A laser beam was propagated parallel to the direction of flight for 1/2 meter outside the flight test fixture and its intensity variations due to atmospheric turbulence were successfully measured by a photo- detector. When the aircraft did not fly through a field of atmospheric turbulence, the laser beam proved to be insensitive to the stream velocity's cross component to the path of the beam. The aeroelasticity portion of the study consisted of measurements of the dynamic response of a straight, 18.25 inch span, 4.00 inch chord, NACA 0006 airfoil thickness profile, one sided wing to in-flight aircraft maneuvers, landing gear buffeting, unsteady aerodynamics, atmospheric turbulence, and aircraft vibration in general. These measurements were accomplished through the use of accelerometers, strain gauges and in-flight video cameras. Data collected will be used to compute in-flight root loci for the wing as functions of the aircraft's stream velocity. The data may also be used to calibrate data collected by the gust-monitoring system flown, and help verify the accuracy of various aeroelastic modeling techniques for estimating the stability boundary of a flexible wing in flight (i.e., flutter).
Guo, Ming-ming; Wang, Wen-long; Li, Jian-ming; Huang, Peng-fei; Zhu, Bao-cai; Wang, Zhen; Luo, Ting
2015-02-01
Non-hardened roads formed in the production of the Shenfu Coalfield have a unique condition of underlying surface. The road surface is composed of a regolith layer with a certain thickness resulted from long-term rolling and thus, is characterized by weakened anti-scourabilty and anti-erodibility. In contrast, soil layer below the regolith has a higher bulk density and anti-erodibility. The processes of soil erosion on the non-hardened roads exhibit some differences under rainfall condition. The process of sediment transport and the relationship between sediment transport rate and erosion factors at different erosion stages were studied on non-hardened roads with slope degrees ranging from 3° to 12° (3°, 6°, 9°, 12°) by a field experiment under artificial rainfall. Results showed that the first peak of sediment transport on the regolith surface was observed at the sheet erosion stage. Sheet erosion occurred only at 3° slope degree, with an average variation coefficient of 0.07 for sediment transport rate. Rills in every testing began to develop at slope degrees of 6° to 12° about 15 min after runoff initiation. At the sheet erosion stage, the process of sediment transport fluctuated considerably at rainfall intensities of > 1.5 mm · min(-1), but the differences in its variation were little at the three slope degrees, with average variation coefficients of 0.20, 0.19 and 0.16, respectively. Rainfall intensity had a more significant impact on sediment transport rate than slope degree. The process of sediment transport at the rill erosion stage fluctuated, but the fluctuation was obviously smaller than that at the sheet erosion stage, with average variation coefficients of 0.05, 0.09 and 0.10 at the three slope degrees. Many wide and shallow rills evolved at the rill erosion stage. The sediment transport rate could be well predicted by a power function of rainfall intensity and slope degree at the sheet and rill erosion stages. The stable sediment transport rate for all the tests was linearly related to runoff rate and sediment concentration.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taneja, S; Bartol, L; Culberson, W
2015-06-15
Purpose: The calibration of radiation protection instrumentation including ionization chambers, scintillators, and Geiger Mueller (GM) counters used as survey meters are often done using {sup 137}Cs irradiators. During calibration, irradiators use a combination of attenuators with various thicknesses to modulate the beam to a known air-kerma rate. The variations in energy spectra as a result of these attenuators are not accounted for and may play a role in the energy-dependent response of survey meters. This study uses an experimentally validated irradiator geometry modeled in the MCNP5 transport code to characterize the effects of attenuation on the energy spectrum. Methods: Amore » Hopewell Designs G-10 {sup 137}Cs irradiator with lead attenuators of thicknesses of 0.635, 1.22, 2.22, and 4.32 cm, was used in this study. The irradiator geometry was modeled in MCNP5 and validated by comparing measured and simulated percent depth dose (PDD) and cross-field profiles. Variations in MCNP5 simulated spectra with increasing amounts of attenuation were characterized using the relative intensity of the 662 keV peak and the average energy. Results: Simulated and measured PDDs and profiles agreed within the associated uncertainty. The relative intensity of the 662 keV peak for simulated spectra normalized to the intensity of the unattenuated spectra ranged from 0.16% to 100% based on attenuation thickness. The average energy for simulated spectra for attenuators ranged from 582 keV with no attenuation to 653 keV with 5.54 cm of attenuation. Statistical uncertainty for MCNP5 simulations ranged from 0.11% to 3.69%. Conclusion: This study successfully used MCNP5 to validate a {sup 137}Cs irradiator geometry and characterize variations in energy spectra between different amounts of attenuation. Variations in the average energy of up to 12% were determined through simulations, and future work will aim to determine the effects of these differences on survey meter response and calibration.« less
Spatial and temporal variability of chorus and hiss
NASA Astrophysics Data System (ADS)
Santolik, O.; Hospodarsky, G. B.; Kurth, W. S.; Kletzing, C.
2017-12-01
Whistler-mode electromagnetic waves, especially natural emissions of chorus and hiss, have been shown to influence the dynamics of the Van Allen radiation belts via quasi-linear or nonlinear wave particle interactions, transferring energy between different electron populations. Average intensities of chorus and hiss emissions have been found to increase with increasing levels of geomagnetic activity but their stochastic variations in individual spacecraft measurements are usually larger these large-scale temporal effects. To separate temporal and spatial variations of wave characteristics, measurements need to be simultaneously carried out in different locations by identical and/or well calibrated instrumentation. We use two-point survey measurements of the Waves instruments of the Electric and Magnetic Field Instrument Suite and Integrated Science (EMFISIS) onboard two Van Allen Probes to asses spatial and temporal variability of chorus and hiss. We take advantage of a systematic analysis of this large data set which has been collected during 2012-2017 over a range of separation vectors of the two spacecraft. We specifically address the question whether similar variations occur at different places at the same time. Our results indicate that power variations are dominated by separations in MLT at scales larger than 0.5h.
On searching for observational manifestations of Alfvén waves in solar faculae
NASA Astrophysics Data System (ADS)
Kobanov, N. I.; Chupin, S. A.; Chelpanov, A. A.
2017-12-01
In an effort to detect torsional oscillations, we have studied the periodic half-width variations for several spectral lines in solar faculae. The duration of the series being analyzed was from 40 to 150 min. We have determined the dominant frequencies and amplitudes of the half-width oscillations and considered their phase relations to the intensity and line-of-sight velocity oscillations. Five-minute profile halfwidth oscillations with a peak-to-peak amplitude of ˜10 m ˚A are recorded with confidence in the upperphotospheric Si I 10 827 ˚A line in faculae. The chromospheric He I 10 830 A˚ and Hα line profiles shows ˜40-60 m ˚A variations in two frequency bands, 2.5-4 and 1-1.9 mHz. No center-to-limb dependence that, according to the theory, must accompany the torsional oscillations has been revealed in the behavior of the oscillation amplitudes. According to present views, these variations cannot be caused by periodic temperature and magnetic field changes. Our observations do not allow us to explain these variations by the sausage mode action either, which should manifest itself at the double frequency.
Effect of spanwise variations in gust intensity on the lift due to atmospheric turbulence
NASA Technical Reports Server (NTRS)
Diederich, Franklin W; Drischler, Joseph A
1957-01-01
The effect of spanwise variations in gust intensity on the power spectrum directly due to atmospheric turbulence is calculated for several analytic approximations to the correlation function or power spectra of atmospheric turbulence, for several spanwise weighing functions (span loadings), and for various angles of sweepback.
NASA Astrophysics Data System (ADS)
Gannon, J. L.; Birchfield, A. B.; Shetye, K. S.; Overbye, T. J.
2017-11-01
Geomagnetically induced currents (GICs) are a result of the changing magnetic fields during a geomagnetic disturbance interacting with the deep conductivity structures of the Earth. When assessing GIC hazard, it is a common practice to use layer-cake or one-dimensional conductivity models to approximate deep Earth conductivity. In this paper, we calculate the electric field and estimate GICs induced in the long lines of a realistic system model of the Pacific Northwest, using the traditional 1-D models, as well as 3-D models represented by Earthscope's Electromagnetic transfer functions. The results show that the peak electric field during a given event has considerable variation across the analysis region in the Pacific Northwest, but the 1-D physiographic approximations may accurately represent the average response of an area, although corrections are needed. Rotations caused by real deep Earth conductivity structures greatly affect the direction of the induced electric field. This effect may be just as, or more, important than peak intensity when estimating GICs induced in long bulk power system lines.
Cooperating or fighting with control noise in the optimal manipulation of quantum dynamics
NASA Astrophysics Data System (ADS)
Shuang, Feng; Rabitz, Herschel
2004-11-01
This paper investigates the impact of control field noise on the optimal manipulation of quantum dynamics. Simulations are performed on several multilevel quantum systems with the goal of population transfer in the presence of significant control noise. The noise enters as run-to-run variations in the control amplitude and phase with the observation being an ensemble average over many runs as is commonly done in the laboratory. A genetic algorithm with an improved elitism operator is used to find the optimal field that either fights against or cooperates with control field noise. When seeking a high control yield it is possible to find fields that successfully fight with the noise while attaining good quality stable results. When seeking modest control yields, fields can be found which are optimally shaped to cooperate with the noise and thereby drive the dynamics more efficiently. In general, noise reduces the coherence of the dynamics, but the results indicate that population transfer objectives can be met by appropriately either fighting or cooperating with noise, even when it is intense.
Cooperating or fighting with control noise in the optimal manipulation of quantum dynamics.
Shuang, Feng; Rabitz, Herschel
2004-11-15
This paper investigates the impact of control field noise on the optimal manipulation of quantum dynamics. Simulations are performed on several multilevel quantum systems with the goal of population transfer in the presence of significant control noise. The noise enters as run-to-run variations in the control amplitude and phase with the observation being an ensemble average over many runs as is commonly done in the laboratory. A genetic algorithm with an improved elitism operator is used to find the optimal field that either fights against or cooperates with control field noise. When seeking a high control yield it is possible to find fields that successfully fight with the noise while attaining good quality stable results. When seeking modest control yields, fields can be found which are optimally shaped to cooperate with the noise and thereby drive the dynamics more efficiently. In general, noise reduces the coherence of the dynamics, but the results indicate that population transfer objectives can be met by appropriately either fighting or cooperating with noise, even when it is intense.
NASA Astrophysics Data System (ADS)
Peatross, Justin Bruce
The far-field angular distributions of high-order optical harmonics have been measured. Harmonics up to the 41st order were observed in the light scattered from noble gas targets subjected to very intense pulses of laser radiation with wavelength 1053nm. The experimental conditions minimized collective effects such as phase-mismatch due to propagation or refractive index effects caused, for example, by free electrons arising in the ionization of the target Ar, Kr, or Xe atoms. The angular distributions of many harmonic orders, ranging from the low teens to the upper thirties, all of which emerge collinear to the laser beam, could be distinguished and recorded simultaneously. Gaussian laser pulses, 1.25 -times-diffraction-limited and 1.4ps duration, were focused to intensities ranging from 1times 10^ {13} W/cm^2 to 5times 10^{14} W/cm ^2 using f/70 optics. A novel gas target localized the gas distribution to a thickness of about 1mm, less than one tenth of the laser confocal parameter, at pressures of 1 Torr and less. The narrow and low-density gas distribution employed in these experiments allows the harmonics to be thought of as emerging from atoms lying in a single plane in the interaction region. This is in contrast with previously reported harmonic generation experiments in which propagation effects played strong roles. At these pressures, an order of magnitude below pressures used in other experiments, free electrons created by ionization of target atoms had a negligible effect on the far-field harmonic profiles. We have found that the far-field distributions of nearly all of the harmonics exhibit a narrow central peak surrounded by broad wings of about the same width as the emerging laser beam. The relative widths and strengths of the wings have been found to vary with harmonic order, laser intensity, and atomic species. Since the intensity varies radially across the laser beam in the atomic source plane, an intensity-dependent phase variation among the dipole moments of the individual atoms can give rise to constructive and destructive interferences in the scattered light. This appears to be the fundamental cause of the broad wings observed.
Li, Xiao-Bing; Wang, Dong-Sheng; Lu, Qing-Chang; Peng, Zhong-Ren; Lu, Si-Jia; Li, Bai; Li, Chao
2017-05-01
Potential utilities of instrumented lightweight unmanned aerial vehicles (UAVs) to quickly characterize tropospheric ozone pollution and meteorological factors including air temperature and relative humidity at three-dimensional scales are highlighted in this study. Both vertical and horizontal variations of ozone within the 1000 m lower troposphere at a local area of 4 × 4 km 2 are investigated during summer and autumn times. Results from field measurements show that the UAV platform has a sufficient reliability and precision in capturing spatiotemporal variations of ozone and meteorological factors. The results also reveal that ozone vertical variation is mainly linked to the vertical distribution patterns of air temperature and the horizontal transport of air masses from other regions. In addition, significant horizontal variations of ozone are also observed at different levels. Without major exhaust sources, ozone horizontal variation has a strong correlation with the vertical convection intensity of air masses within the lower troposphere. Higher air temperatures are usually related to lower ozone horizontal variations at the localized area, whereas underlying surface diversity has a week influence. Three-dimensional ozone maps are obtained using an interpolation method based on UAV collected samples, which are capable of clearly demonstrating the diurnal evolution processes of ozone within the 1000 m lower troposphere. Copyright © 2017 Elsevier Ltd. All rights reserved.
Noro, Takahiko; Nakamoto, Kenji; Sato, Makoto; Yasuda, Noriko; Ito, Yoshinori; Ogawa, Shumpei; Nakano, Tadashi; Tsuneoka, Hiroshi
2014-10-01
We retrospectively examined intraocular pressure variations after visual field examination in primary open angle glaucoma (POAG), together with its influencing factors and its association with 24-hour intraocular pressure variations. Subjects were 94 eyes (52 POAG patients) subjected to measurements of 24-hour intraocular pressure and of changes in intraocular pressure after visual field examination using a Humphrey Visual Field Analyzer. Subjects were classified into three groups according to the magnitude of variation (large, intermediate and small), and 24-hour intraocular pressure variations were compared among the three groups. Factors influencing intraocular pressure variations after visual field examination and those associated with the large variation group were investigated. Average intraocular pressure variation after visual field examination was -0.28 ± 1.90 (range - 6.0(-) + 5.0) mmHg. No significant influencing factors were identified. The intraocular pressure at 3 a.m. was significantly higher in the large variation group than other two groups (p < 0.001). Central corneal thickness was correlated with the large variation group (odds ratio = 1.04; 95% confidence interval, 1.01-1.07 ; p = 0.02). No particular tendencies in intraocular pressure variations were found after visual field examination. Increases in intraocular pressure during the night might be associated with large intraocular pressure variations after visual field examination.
Geomagnetic fluctuations during a polarity transition
NASA Astrophysics Data System (ADS)
Audunsson, Haraldur; Levi, Shaul
1997-01-01
The extensive Roza Member of the Columbia River Basalt Group (Washington State) has intermediate paleomagnetic directions, bracketed by underlying normal and overlying reverse polarity flows. A consistent paleomagnetic direction was measured at 11 widely distributed outcrops; the average direction has a declination of 189° and an inclination of -5°, with greater variation in the inclination [Rietman, 1966]. In this study the Roza Member was sampled in two Pasco Basin drillcores, where it is a single cooling unit and its thickness exceeds 50 m. Excellent core recovery allowed uniform and dense sampling of the drillcores. During its protracted cooling, the Roza flow in the drillcores recorded part of a 15.5 Ma geomagnetic polarity transition. The inclination has symmetric, quasicyclic intraflow variation, while the declination is nearly constant, consistent with the results from the outcrops. Thermal models of the cooling flow provide the timing for remanence acquisition. The inclination is inferred to have progressed from 0° to -15° and back to -3°over a period of 15 to 60 years, at rates of 1.6° to 0.5°/yr. Because the geomagnetic intensity was probably weak during the transition, these apparently high rates of change are not significantly different from present-day secular variation. These results agree with the hypothesis that normal secular variation persists through geomagnetic transitions. The Iow-amplitude quasicyclical fluctuations of the field over tens of years, recorded by Roza, suggest that the geomagnetic field reverses in discrete steps, and that more than 15-60 years were required to complete this reversal.
NASA Astrophysics Data System (ADS)
DYMENT, J.; HEMOND, C.
2001-12-01
The sequence of geomagnetic field reversals is widely used to date events younger than 160 Ma, with a resolution of a million years. In oceanic domains, Vine and Matthews (1963) magnetic anomalies have been successfully used for more than 35 years. The major limitation of this chronometer is its low temporal resolution, especially for the recent times: the youngest polarity reversal, between Brunhes normal and Matuyama reversed periods, is dated ~800 ka. Studies of pelagic sedimentary cores have shown the existence of consistent variations of the geomagnetic field intensity within this period. If accurately dated, these variations may refine the magnetic geochronometer to a much higher resolution of 10-100 ka. Recent studies have demonstrated that the "tiny wiggles" of lower amplitude and shorter wavelength superimposed to the Vine and Matthews anomalies are of geomagnetic origin and correspond to the paleointensity variations identified on sediment cores. Using a large set of magnetic data acquired in 1996 on the Mid-Atlantic Ridge at 21° N (surface and submersible magnetic anomalies, natural remanent magnetization and absolute paleointensities measured on samples), we have shown that the oceanic crust confidently records the geomagnetic intensity variations. It was unfortunately impossible to date the samples, made of basalt too depleted in K2O and in trace elements required by the various methods of radiochronology. In 2000 we have collected a similar data set at the Central Indian Ridge axis at 19° S (surface, deep-tow, and submersible magnetic anomalies, natural remanent magnetization and absolute paleointensities measured on samples). This area offers the advantages of 1) a faster spreading rate, and therefore a higher temporal resolution of the geomagnetic signal, and 2) the presence of moderately enriched basalt as a consequence of the interaction of the ridge with the nearby Reunion hotspot, making possible radiochronologic dating. Our first evaluation of the data confirms the quality of the oceanic crust as a recorder of the geomagnetic variations. Future work in the framework of Project GIMNAUT include 1) the processing and interpretation of the available magnetic signals to obtain a detailed sequence of the geomagnetic fluctuations for the last 800 ka; 2) the dating of collected samples with different radiochronologic methods such as K-Ar and Ar-Ar for samples older than 100-150 ka and 230Th-238U for samples aged between 300-10 ka; and 3) the calibration of the geomagnetic intensity variation sequence as a high resolution geochronometer for the last 800 ka. Such a magnetic geochronometer would present an obvious interest for mid-ocean ridge studies, because of its low cost and simplicity of operation: it would only require the addition of a deep-sea magnetometer onto existing means of investigation such as submersibles, ROVs or AUVs. Beyond this application, this magnetic geochronometer could also be used for accurate dating of pelagic sedimentary sequences, through the analysis of relative paleointensities on cores, or of continental or island volcanic flows, through the determination of absolute paleointensities by the Thellier-Thellier method. (*) N. Arnaud, C. Bassoullet, M.. Benoit, A. Briais, F. Chabaux, A.K. Chaubey, A. Chauvin, P. Gente, H. Guillou, H. Horen, M. Kitazawa, B. Le Gall, M. Maia, M. Ravilly
NASA Astrophysics Data System (ADS)
Shi, Pu; Thorlacius, Sigurdur; Keller, Thomas; Keller, Martin; Schulin, Rainer
2017-04-01
Soil aggregate breakdown under rainfall impact is an important process in interrill erosion, but is not represented explicitly in water erosion models. Aggregate breakdown not only reduces infiltration through surface sealing during rainfall, but also determines the size distribution of the disintegrated fragments and thus their availability for size-selective sediment transport and re-deposition. An adequate representation of the temporal evolution of fragment mass size distribution (FSD) during rainfall events and the dependence of this dynamics on factors such as rainfall intensity and soil moisture content may help improve mechanistic erosion models. Yet, little is known about the role of those factors in the dynamics of aggregate breakdown under field conditions. In this study, we conducted a series of artificial rainfall experiments on a field silt loam soil to investigate aggregate breakdown dynamics at different rainfall intensity (RI) and initial soil water content (IWC). We found that the evolution of FSD in the course of a rainfall event followed a consistent two-stage pattern in all treatments. The fragment mean weight diameter (MWD) drastically decreased in an approximately exponential way at the beginning of a rainfall event, followed by a further slow linear decrease in the second stage. We proposed an empirical model that describes this temporal pattern of MWD decrease during a rainfall event and accounts for the effects of RI and IWC on the rate parameters. The model was successfully tested using an independent dataset, showing its potential to be used in erosion models for the prediction of aggregate breakdown. The FSD at the end of the experimental rainfall events differed significantly among treatments, indicating that different aggregate breakdown mechanisms responded differently to the variation in initial soil moisture and rainfall intensity. These results provide evidence that aggregate breakdown dynamics needs to be considered in a case-specific manner in modelling sediment mobilization and transport during water erosion events.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, J; Molecular Imaging Program at Stanford, Stanford, CA; Bio-X Program, Stanford, CA
2015-06-15
Purpose: To evaluate radiation responses of the medulloblastoma cell line Daoy in intensity-modulated radiation therapy (IMRT), quantitative variations to variable radiation dosimetic parameters were tracked by bioluminescent images (BLIs). Methods: The luciferase and green fluorescent protein positive Daoy cells were cultured on dishes. The medulloblastoma cells irradiated to different dose rate, interval of fractionated doses, field margin and misalignment, and dose uniformity in IMRT were monitored using bioluminescent images. The cultured cells were placed into a dedicated acrylic phantom to deliver intensity-modulated fluences and calculate accurate predicted dose distribution. The radiation with dose rate from 0.5 Gy/min to 15 Gy/minmore » was irradiated by adjusting monitor unit per minute and source-to-surface distances. The intervals of fractionated dose delivery were changed considering the repair time of double strand breaks (DSB) revealed by straining of gamma-H2AX.The effect of non-uniform doses on the cells were visualized by registering dose distributions and BLIs. The viability according to dosimetric parameters was correlated with bioluminescent intensities for cross-check of radiation responses. Results: The DSB and cell responses due to the first fractionated dose delivery significantly affected final tumor control rather than other parameters. The missing tumor volumes due to the smaller field margin than the tumor periphery or field misalignment caused relapse of cell responses on BLIs. The dose rate and gradient had effect on initial responses but could not bring out the distinguishable killing effect on cancer cells. Conclusion: Visualized and quantified bioluminescent images were useful to correlate the dose distributions with spatial radiation effects on cells. This would derive the effective combination of dose delivery parameters and fractionation. Radiation responses in particular IMRT configuration could be reflected to image based-dose re-optimization.« less
Frequent ultraviolet brightenings observed in a solar active region with solar maximum mission
NASA Technical Reports Server (NTRS)
Porter, J. G.; Toomre, J.; Gebbie, K. B.
1984-01-01
Observations of the temporal behavior of ultraviolet emission from bright points within an active region of the sun are reported. Frequent and rapid brightenings in Si IV and O IV line emission are seen. The observations suggest that intermittent heating events of modest amplitude are occurring at many sites within an active region. By selecting the brightest site at any given time within an active region and then sampling its behavior in detail within a 120 s interval, it is found that about two-thirds of the samples show variations of the Si IV line intensity. The brightenings typically last about 40-60 s; intensity increases of about 20-100 percent are frequently observed. The results suggest that heating due to magnetic field reconnection within an active region is proceeding almost stochastically. Events involving only a modest release of energy occur the most frequently.
NASA Astrophysics Data System (ADS)
Mozer, F. S.; Agapitov, O. V.; Blake, J. B.; Vasko, I. Y.
2018-01-01
On 11 December 2016 at 00:12:30 UT, Van Allen Probe-B, at the equator and near midnight, and AC6-B, in the ionosphere, were on magnetic field lines whose 100 km altitude foot points were separated by 600 km. Van Allen Probe-B observed a 30 s burst of lower band chorus waves (with maximum amplitudes >1 nT) at the same time that AC6-B observed intense microburst electrons in the loss cone. One second averaged variations of the chorus intensity and the microburst electron flux were well correlated. The low-altitude electron flux expected from quasi-linear diffusion of the equatorial electrons by the equatorial chorus is in excellent agreement with the observed, 1 s averaged, low-altitude electron flux. However, the large-amplitude, <0.5 s duration, low-altitude electron pulses require nonlinear processes for their explanation.
Spectral variations of LMC X-3 observed with Ginga
NASA Technical Reports Server (NTRS)
Ebisawa, Ken; Makino, Fumiyoshi; Mitsuda, Kazuhisa; Belloni, Tomaso; Cowley, Anne P.; Schmidtke, Paul C.; Treves, Aldo
1993-01-01
The prime black hole candidate LMC X-3 was observed over three years with the Ginga satellite, and a characteristic spectral variation was found accompanying the periodic intensity variation of about 198 (or possibly about 99) days (Cowley et al., 1991). The energy spectrum of LMC X-3 consists of the soft, thermal component and the hard, power-law component, which are respectively dominant below and above about 9 keV. The soft component, which carries most of the X-ray intensity, shows a clear correlation between the intensity and the hardness, while the hard component varies independently of the soft component. It was found that the spectral variation of the soft component is well described by an optically thick accretion disk model with a remarkably constant innermost radius and variable mass accretion rate. The constancy of the innermost radius suggests it is related to the mass of the central object.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Freon, A.; Berry, J.; Coste, J.-P.
1959-02-01
Some recordings of the variations of intensity of cosmic neutrons, made since October 1956 at the observatory of the Pic du Midi and since July 1957 on the Kerguelen Islands, have shown the existence, since the beginning of the observations and during at least 20 solar rotations, of a cyclic variation with a stable period equal to 27.35 plus or minus 0.1 solar days and a maximum amplitude of 2.2% attained in October 1957. (tr-auth)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stock, D. J.; Peeters, E.; Otaguro, J. N.
The spatial variations in polycyclic aromatic hydrocarbon (PAH) band intensities are normally attributed to the physical conditions of the emitting PAHs, however in recent years it has been suggested that such variations are caused mainly by extinction. To resolve this question, we have obtained near-infrared (NIR), mid-infrared (MIR), and radio observations of the compact H II region IRAS 12063-6259. We use these data to construct multiple independent extinction maps and also to measure the main PAH features (6.2, 7.7, 8.6, and 11.2 {mu}m) in the MIR. Three extinction maps are derived: the first using the NIR hydrogen lines and casemore » B recombination theory; the second combining the NIR data with radio data; and the third making use of the Spitzer/IRS MIR observations to measure the 9.8 {mu}m silicate absorption feature using the Spoon method and PAHFIT (as the depth of this feature can be related to overall extinction). The silicate absorption over the bright, southern component of IRAS 12063-6259 is almost absent while the other methods find significant extinction. While such breakdowns of the relationship between the NIR extinction and the 9.8 {mu}m absorption have been observed in molecular clouds, they have never been observed for H II regions. We then compare the PAH intensity variations in the Spitzer/IRS data after dereddening to those found in the original data. It was found that in most cases, the PAH band intensity variations persist even after dereddening, implying that extinction is not the main cause of the PAH band intensity variations.« less
Short term variations in Jupiter's synchrotron radiation derived from VLA data analysis
NASA Astrophysics Data System (ADS)
Kita, H.; Misawa, H.; Tsuchiya, F.; Morioka, A.
2011-12-01
Jupiter's synchrotron radiation (JSR) is the emission from relativistic electrons in the strong magnetic field of the inner magnetosphere, and it is the most effective prove for remote sensing of Jupiter's radiation belt from the Earth. Although JSR has been thought to be stable for a long time, intensive observations for JSR have made after the collisions of comet P/SL9 to Jupiter in 1994, and these observations revealed short term variations of JSR on time scale of days to weeks. However, the mechanisms which cause the short term variations of total flux density and brightness distribution have not been revealed well. In order to reveal the mechanism of short term variations of JSR more precisely, we have made radio image analysis using the NRAO (National Radio Astronomy Observatory) archived data of the VLA [*]. Brice and McDonough [1973, Icarus] proposed a scenario for the short term variations: i.e, the solar UV/EUV heating for Jupiter's upper atmosphere drives neutral wind perturbations and then the induced dynamo electric field leads to enhancement of radial diffusion. It is also suggested that induced dynamo electric field produce dawn-dusk electric potential difference, which cause dawn-dusk asymmetry in electron spatial distribution and emission distribution. So far the following results have been indicated for the short term variations. Miyoshi et al. [1999, GRL] showed that a short term variation event at 2.3GHz is well correlate to solar UV/EUV flux variations. Tsuchiya et al. [2010, Adv. Geosci.] showed that JSR at 325MHz and 785MHz have short term variations. These JSR observations confirmed the existence of the short term variation which is caused by solar UV/EUV. However, the effect of solar UV/EUV heating on the spatial distribution of JSR has never been confirmed, so this study is the first attempt to confirm the solar UV/EUV effect on spatial distribution of JSR. We have selected the data observed from 28th Jan. to 5th Feb. 2000 at 327MHz. During the period, solar UV/EUV flux expected on Jupiter showed almost monotonic increase. It is expected from the analysis for the period that the enhancement of radial diffusion caused by solar UV/EUV heating produces total flux enhancement and dawn-dusk asymmetry of the emission distribution of the JSR. We can therefore examine the scenario by measuring total flux density and dawn-dusk peak emission ratio of JSR, and their relationships to the variation of solar UV/EUV activity. A preliminary result shows that total flux density variations occurred corresponding to the solar UV/EUV variations, but we couldn't find variations in the dawn-dusk asymmetry above the one rms level calculated from the background image. *The National Radio Astronomy Observatory is a facility of the National Science Foundation operated under cooperative agreement by Associated Universities, Inc.