Sample records for field ionization method

  1. Systems and methods for cylindrical hall thrusters with independently controllable ionization and acceleration stages

    DOEpatents

    Diamant, Kevin David; Raitses, Yevgeny; Fisch, Nathaniel Joseph

    2014-05-13

    Systems and methods may be provided for cylindrical Hall thrusters with independently controllable ionization and acceleration stages. The systems and methods may include a cylindrical channel having a center axial direction, a gas inlet for directing ionizable gas to an ionization section of the cylindrical channel, an ionization device that ionizes at least a portion of the ionizable gas within the ionization section to generate ionized gas, and an acceleration device distinct from the ionization device. The acceleration device may provide an axial electric field for an acceleration section of the cylindrical channel to accelerate the ionized gas through the acceleration section, where the axial electric field has an axial direction in relation to the center axial direction. The ionization section and the acceleration section of the cylindrical channel may be substantially non-overlapping.

  2. Angle-dependent strong-field molecular ionization rates with tuned range-separated time-dependent density functional theory.

    PubMed

    Sissay, Adonay; Abanador, Paul; Mauger, François; Gaarde, Mette; Schafer, Kenneth J; Lopata, Kenneth

    2016-09-07

    Strong-field ionization and the resulting electronic dynamics are important for a range of processes such as high harmonic generation, photodamage, charge resonance enhanced ionization, and ionization-triggered charge migration. Modeling ionization dynamics in molecular systems from first-principles can be challenging due to the large spatial extent of the wavefunction which stresses the accuracy of basis sets, and the intense fields which require non-perturbative time-dependent electronic structure methods. In this paper, we develop a time-dependent density functional theory approach which uses a Gaussian-type orbital (GTO) basis set to capture strong-field ionization rates and dynamics in atoms and small molecules. This involves propagating the electronic density matrix in time with a time-dependent laser potential and a spatial non-Hermitian complex absorbing potential which is projected onto an atom-centered basis set to remove ionized charge from the simulation. For the density functional theory (DFT) functional we use a tuned range-separated functional LC-PBE*, which has the correct asymptotic 1/r form of the potential and a reduced delocalization error compared to traditional DFT functionals. Ionization rates are computed for hydrogen, molecular nitrogen, and iodoacetylene under various field frequencies, intensities, and polarizations (angle-dependent ionization), and the results are shown to quantitatively agree with time-dependent Schrödinger equation and strong-field approximation calculations. This tuned DFT with GTO method opens the door to predictive all-electron time-dependent density functional theory simulations of ionization and ionization-triggered dynamics in molecular systems using tuned range-separated hybrid functionals.

  3. Angle-dependent strong-field molecular ionization rates with tuned range-separated time-dependent density functional theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sissay, Adonay; Abanador, Paul; Mauger, François

    2016-09-07

    Strong-field ionization and the resulting electronic dynamics are important for a range of processes such as high harmonic generation, photodamage, charge resonance enhanced ionization, and ionization-triggered charge migration. Modeling ionization dynamics in molecular systems from first-principles can be challenging due to the large spatial extent of the wavefunction which stresses the accuracy of basis sets, and the intense fields which require non-perturbative time-dependent electronic structure methods. In this paper, we develop a time-dependent density functional theory approach which uses a Gaussian-type orbital (GTO) basis set to capture strong-field ionization rates and dynamics in atoms and small molecules. This involves propagatingmore » the electronic density matrix in time with a time-dependent laser potential and a spatial non-Hermitian complex absorbing potential which is projected onto an atom-centered basis set to remove ionized charge from the simulation. For the density functional theory (DFT) functional we use a tuned range-separated functional LC-PBE*, which has the correct asymptotic 1/r form of the potential and a reduced delocalization error compared to traditional DFT functionals. Ionization rates are computed for hydrogen, molecular nitrogen, and iodoacetylene under various field frequencies, intensities, and polarizations (angle-dependent ionization), and the results are shown to quantitatively agree with time-dependent Schrödinger equation and strong-field approximation calculations. This tuned DFT with GTO method opens the door to predictive all-electron time-dependent density functional theory simulations of ionization and ionization-triggered dynamics in molecular systems using tuned range-separated hybrid functionals.« less

  4. Laser-based methods for the analysis of low molecular weight compounds in biological matrices.

    PubMed

    Kiss, András; Hopfgartner, Gérard

    2016-07-15

    Laser-based desorption and/or ionization methods play an important role in the field of the analysis of low molecular-weight compounds (LMWCs) because they allow direct analysis with high-throughput capabilities. In the recent years there were several new improvements in ionization methods with the emergence of novel atmospheric ion sources such as laser ablation electrospray ionization or laser diode thermal desorption and atmospheric pressure chemical ionization and in sample preparation methods with the development of new matrix compounds for matrix-assisted laser desorption/ionization (MALDI). Also, the combination of ion mobility separation with laser-based ionization methods starts to gain popularity with access to commercial systems. These developments have been driven mainly by the emergence of new application fields such as MS imaging and non-chromatographic analytical approaches for quantification. This review aims to present these new developments in laser-based methods for the analysis of low-molecular weight compounds by MS and several potential applications. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Forensic applications of ambient ionization mass spectrometry.

    PubMed

    Ifa, Demian R; Jackson, Ayanna U; Paglia, Giuseppe; Cooks, R Graham

    2009-08-01

    This review highlights and critically assesses forensic applications in the developing field of ambient ionization mass spectrometry. Ambient ionization methods permit the ionization of samples outside the mass spectrometer in the ordinary atmosphere, with minimal sample preparation. Several ambient ionization methods have been created since 2004 and they utilize different mechanisms to create ions for mass-spectrometric analysis. Forensic applications of these techniques--to the analysis of toxic industrial compounds, chemical warfare agents, illicit drugs and formulations, explosives, foodstuff, inks, fingerprints, and skin--are reviewed. The minimal sample pretreatment needed is illustrated with examples of analysis from complex matrices (e.g., food) on various substrates (e.g., paper). The low limits of detection achieved by most of the ambient ionization methods for compounds of forensic interest readily offer qualitative confirmation of chemical identity; in some cases quantitative data are also available. The forensic applications of ambient ionization methods are a growing research field and there are still many types of applications which remain to be explored, particularly those involving on-site analysis. Aspects of ambient ionization currently undergoing rapid development include molecular imaging and increased detection specificity through simultaneous chemical reaction and ionization by addition of appropriate chemical reagents.

  6. High pressure xenon ionization detector

    DOEpatents

    Markey, J.K.

    1989-11-14

    A method is provided for detecting ionization comprising allowing particles that cause ionization to contact high pressure xenon maintained at or near its critical point and measuring the amount of ionization. An apparatus is provided for detecting ionization, the apparatus comprising a vessel containing a ionizable medium, the vessel having an inlet to allow high pressure ionizable medium to enter the vessel, a means to permit particles that cause ionization of the medium to enter the vessel, an anode, a cathode, a grid and a plurality of annular field shaping rings, the field shaping rings being electrically isolated from one another, the anode, cathode, grid and field shaping rings being electrically isolated from one another in order to form an electric field between the cathode and the anode, the electric field originating at the anode and terminating at the cathode, the grid being disposed between the cathode and the anode, the field shaping rings being disposed between the cathode and the grid, the improvement comprising the medium being xenon and the vessel being maintained at a pressure of 50 to 70 atmospheres and a temperature of 0 to 30 C. 2 figs.

  7. High pressure xenon ionization detector

    DOEpatents

    Markey, John K.

    1989-01-01

    A method is provided for detecting ionization comprising allowing particles that cause ionization to contact high pressure xenon maintained at or near its critical point and measuring the amount of ionization. An apparatus is provided for detecting ionization, the apparatus comprising a vessel containing a ionizable medium, the vessel having an inlet to allow high pressure ionizable medium to enter the vessel, a means to permit particles that cause ionization of the medium to enter the vessel, an anode, a cathode, a grid and a plurality of annular field shaping rings, the field shaping rings being electrically isolated from one another, the anode, cathode, grid and field shaping rings being electrically isolated from one another in order to form an electric field between the cathode and the anode, the electric field originating at the anode and terminating at the cathode, the grid being disposed between the cathode and the anode, the field shaping rings being disposed between the cathode and the grid, the improvement comprising the medium being xenon and the vessel being maintained at a pressure of 50 to 70 atmospheres and a temperature of 0.degree. to 30.degree. C.

  8. High-frequency, high-intensity photoionization

    NASA Astrophysics Data System (ADS)

    Reiss, H. R.

    1996-02-01

    Two analytical methods for computing ionization by high-frequency fields are compared. Predicted ionization rates compare well, but energy predictions for the onset of ionization differ radically. The difference is shown to arise from the use of a transformation in one of the methods that alters the zero from which energy is measured. This alteration leads to an apparent energy threshold for ionization that can, especially in the stabilization regime, differ strongly from the laboratory measurement. It is concluded that channel closings in intense-field ionization can occur at high as well as low frequencies. It is also found that the stabilization phenomenon at high frequencies, very prominent for hydrogen, is absent in a short-range potential.

  9. Direct Simulation of Reentry Flows with Ionization

    NASA Technical Reports Server (NTRS)

    Carlson, Ann B.; Hassan, H. A.

    1989-01-01

    The Direct Simulation Monte Carlo (DSMC) method is applied in this paper to the study of rarefied, hypersonic, reentry flows. The assumptions and simplifications involved with the treatment of ionization, free electrons and the electric field are investigated. A new method is presented for the calculation of the electric field and handling of charged particles with DSMC. In addition, a two-step model for electron impact ionization is implemented. The flow field representing a 10 km/sec shock at an altitude of 65 km is calculated. The effects of the new modeling techniques on the calculation results are presented and discussed.

  10. Ionization chamber-based reference dosimetry of intensity modulated radiation beams.

    PubMed

    Bouchard, Hugo; Seuntjens, Jan

    2004-09-01

    The present paper addresses reference dose measurements using thimble ionization chambers for quality assurance in IMRT fields. In these radiation fields, detector fluence perturbation effects invalidate the application of open-field dosimetry protocol data for the derivation of absorbed dose to water from ionization chamber measurements. We define a correction factor C(Q)IMRT to correct the absorbed dose to water calibration coefficient N(D, w)Q for fluence perturbation effects in individual segments of an IMRT delivery and developed a calculation method to evaluate the factor. The method consists of precalculating, using accurate Monte Carlo techniques, ionization chamber, type-dependent cavity air dose, and in-phantom dose to water at the reference point for zero-width pencil beams as a function of position of the pencil beams impinging on the phantom surface. These precalculated kernels are convolved with the IMRT fluence distribution to arrive at the dose-to-water-dose-to-cavity air ratio [D(a)w (IMRT)] for IMRT fields and with a 10x10 cm2 open-field fluence to arrive at the same ratio D(a)w (Q) for the 10x10 cm2 reference field. The correction factor C(Q)IMRT is then calculated as the ratio of D(a)w (IMRT) and D(a)w (Q). The calculation method was experimentally validated and the magnitude of chamber correction factors in reference dose measurements in single static and dynamic IMRT fields was studied. The results show that, for thimble-type ionization chambers the correction factor in a single, realistic dynamic IMRT field can be of the order of 10% or more. We therefore propose that for accurate reference dosimetry of complete n-beam IMRT deliveries, ionization chamber fluence perturbation correction factors must explicitly be taken into account.

  11. Nonsequential double ionization with mid-infrared laser fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Ying -Bin; Wang, Xu; Yu, Ben -Hai

    Using a full-dimensional Monte Carlo classical ensemble method, we present a theoretical study of atomic nonsequential double ionization (NSDI) with mid-infrared laser fields, and compare with results from near-infrared laser fields. Unlike single-electron strong-field processes, double ionization shows complex and unexpected interplays between the returning electron and its parent ion core. As a result of these interplays, NSDI for mid-IR fields is dominated by second-returning electron trajectories, instead of first-returning trajectories for near-IR fields. Here, some complex NSDI channels commonly happen with near-IR fields, such as the recollision-excitation-with-subsequent-ionization (RESI) channel, are virtually shut down by mid-IR fields. Besides, the finalmore » energies of the two electrons can be extremely unequal, leading to novel e-e momentum correlation spectra that can be measured experimentally.« less

  12. Nonsequential double ionization with mid-infrared laser fields

    DOE PAGES

    Li, Ying -Bin; Wang, Xu; Yu, Ben -Hai; ...

    2016-11-18

    Using a full-dimensional Monte Carlo classical ensemble method, we present a theoretical study of atomic nonsequential double ionization (NSDI) with mid-infrared laser fields, and compare with results from near-infrared laser fields. Unlike single-electron strong-field processes, double ionization shows complex and unexpected interplays between the returning electron and its parent ion core. As a result of these interplays, NSDI for mid-IR fields is dominated by second-returning electron trajectories, instead of first-returning trajectories for near-IR fields. Here, some complex NSDI channels commonly happen with near-IR fields, such as the recollision-excitation-with-subsequent-ionization (RESI) channel, are virtually shut down by mid-IR fields. Besides, the finalmore » energies of the two electrons can be extremely unequal, leading to novel e-e momentum correlation spectra that can be measured experimentally.« less

  13. Dynamic target ionization using an ultrashort pulse of a laser field

    NASA Astrophysics Data System (ADS)

    Makarov, D. N.; Matveev, V. I.; Makarova, K. A.

    2014-09-01

    Ionization processes under the interaction of an ultrashort pulse of an electromagnetic field with atoms in nonstationary states are considered. As an example, the ionization probability of the hydrogen-like atom upon the decay of quasi-stationary state is calculated. The method developed can be applied to complex systems, including targets in collisional states and various chemical reactions.

  14. Correlated electron and nuclear dynamics in strong field photoionization of H(2)(+).

    PubMed

    Silva, R E F; Catoire, F; Rivière, P; Bachau, H; Martín, F

    2013-03-15

    We present a theoretical study of H(2)(+) ionization under strong IR femtosecond pulses by using a method designed to extract correlated (2D) photoelectron and proton kinetic energy spectra. The results show two distinct ionization mechanisms-tunnel and multiphoton ionization-in which electrons and nuclei do not share the energy from the field in the same way. Electrons produced in multiphoton ionization share part of their energy with the nuclei, an effect that shows up in the 2D spectra in the form of energy-conservation fringes similar to those observed in weak-field ionization of diatomic molecules. In contrast, tunneling electrons lead to fringes whose position does not depend on the proton kinetic energy. At high intensity, the two processes coexist and the 2D plots show a very rich behavior, suggesting that the correlation between electron and nuclear dynamics in strong field ionization is more complex than one would have anticipated.

  15. Coupled-cluster treatment of molecular strong-field ionization

    NASA Astrophysics Data System (ADS)

    Jagau, Thomas-C.

    2018-05-01

    Ionization rates and Stark shifts of H2, CO, O2, H2O, and CH4 in static electric fields have been computed with coupled-cluster methods in a basis set of atom-centered Gaussian functions with a complex-scaled exponent. Consideration of electron correlation is found to be of great importance even for a qualitatively correct description of the dependence of ionization rates and Stark shifts on the strength and orientation of the external field. The analysis of the second moments of the molecular charge distribution suggests a simple criterion for distinguishing tunnel and barrier suppression ionization in polyatomic molecules.

  16. Comparison of Atmospheric Pressure Chemical Ionization and Field Ionization Mass Spectrometry for the Analysis of Large Saturated Hydrocarbons.

    PubMed

    Jin, Chunfen; Viidanoja, Jyrki; Li, Mingzhe; Zhang, Yuyang; Ikonen, Elias; Root, Andrew; Romanczyk, Mark; Manheim, Jeremy; Dziekonski, Eric; Kenttämaa, Hilkka I

    2016-11-01

    Direct infusion atmospheric pressure chemical ionization mass spectrometry (APCI-MS) was compared to field ionization mass spectrometry (FI-MS) for the determination of hydrocarbon class distributions in lubricant base oils. When positive ion mode APCI with oxygen as the ion source gas was employed to ionize saturated hydrocarbon model compounds (M) in hexane, only stable [M - H] + ions were produced. Ion-molecule reaction studies performed in a linear quadrupole ion trap suggested that fragment ions of ionized hexane can ionize saturated hydrocarbons via hydride abstraction with minimal fragmentation. Hence, APCI-MS shows potential as an alternative of FI-MS in lubricant base oil analysis. Indeed, the APCI-MS method gave similar average molecular weights and hydrocarbon class distributions as FI-MS for three lubricant base oils. However, the reproducibility of APCI-MS method was found to be substantially better than for FI-MS. The paraffinic content determined using the APCI-MS and FI-MS methods for the base oils was similar. The average number of carbons in paraffinic chains followed the same increasing trend from low viscosity to high viscosity base oils for the two methods.

  17. Soft ionization device with characterization systems and methods of manufacture

    NASA Technical Reports Server (NTRS)

    Hartley, Frank T. (Inventor)

    2004-01-01

    Various configurations of characterization systems such as ion mobility spectrometers and mass spectrometers are disclosed that are coupled to an ionization device. The ionization device is formed of a membrane that houses electrodes therein that are located closer to one another than the mean free path of the gas being ionized. Small voltages across the electrodes generate large electric fields which act to ionize substantially all molecules passing therethrough without fracture. Methods to manufacture the mass spectrometer and ion mobility spectrometer systems are also described.

  18. Study of np{sup 2}P{sub 1/2,3/2} Rydberg series of AlI by the method of laser stepwise excitation and ionization by electric field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kasimov, A.K.; Tursunov, A.T.; Tukhlibaev, O.

    Frequencies of the 4s{sup 2}S{sub 1/2}-np{sup 2}P{sub 1/2, 3/2} transitions are measured and the energies of high-lying P states, as well as the ionization energy of aluminum atoms, are determined by the method of two-step laser excitation and ionization of excited atoms of AlI by an electric field. 4 refs., 3 figs., 1 tab.

  19. Radial arrays of nano-electrospray ionization emitters and methods of forming electrosprays

    DOEpatents

    Kelly, Ryan T [West Richland, WA; Tang, Keqi [Richland, WA; Smith, Richard D [Richland, WA

    2010-10-19

    Electrospray ionization emitter arrays, as well as methods for forming electrosprays, are described. The arrays are characterized by a radial configuration of three or more nano-electrospray ionization emitters without an extractor electrode. The methods are characterized by distributing fluid flow of the liquid sample among three or more nano-electrospray ionization emitters, forming an electrospray at outlets of the emitters without utilizing an extractor electrode, and directing the electrosprays into an entrance to a mass spectrometry device. Each of the nano-electrospray ionization emitters can have a discrete channel for fluid flow. The nano-electrospray ionization emitters are circularly arranged such that each is shielded substantially equally from an electrospray-inducing electric field.

  20. Lattice Boltzmann method for weakly ionized isothermal plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li Huayu; Ki, Hyungson

    2007-12-15

    In this paper, a lattice Boltzmann method (LBM) for weakly ionized isothermal plasmas is presented by introducing a rescaling scheme for the Boltzmann transport equation. Without using this rescaling, we found that the nondimensional relaxation time used in the LBM is too large and the LBM does not produce physically realistic results. The developed model was applied to the electrostatic wave problem and the diffusion process of singly ionized helium plasmas with a 1-3% degree of ionization under an electric field. The obtained results agree well with theoretical values.

  1. Separation of Opiate Isomers Using Electrospray Ionization and Paper Spray Coupled to High-Field Asymmetric Waveform Ion Mobility Spectrometry

    NASA Astrophysics Data System (ADS)

    Manicke, Nicholas E.; Belford, Michael

    2015-05-01

    One limitation in the growing field of ambient or direct analysis methods is reduced selectivity caused by the elimination of chromatographic separations prior to mass spectrometric analysis. We explored the use of high-field asymmetric waveform ion mobility spectrometry (FAIMS), an ambient pressure ion mobility technique, to separate the closely related opiate isomers of morphine, hydromorphone, and norcodeine. These isomers cannot be distinguished by tandem mass spectrometry. Separation prior to MS analysis is, therefore, required to distinguish these compounds, which are important in clinical chemistry and toxicology. FAIMS was coupled to a triple quadrupole mass spectrometer, and ionization was performed using either a pneumatically assisted heated electrospray ionization source (H-ESI) or paper spray, a direct analysis method that has been applied to the direct analysis of dried blood spots and other complex samples. We found that FAIMS was capable of separating the three opiate structural isomers using both H-ESI and paper spray as the ionization source.

  2. Relativistic Ionization with Intense Linearly Polarized Light

    NASA Astrophysics Data System (ADS)

    Crawford, Douglas Plummer

    The Strong Field Approximation (SFA) method is used to derive relativistic ionization rate expressions for ground state hydrogen-like atoms in the presence of an intense electromagnetic field. The emitted particle, which is initially bound to a hydrogen nucleus, is either an electron described by the Dirac equation, with spin effects fully included, or a spinless "electron" described by the Klein-Gordon equation. The derivations and subsequent calculations for both particles are made assuming a linearly polarized electromagnetic field which is monochromatic and which exhibits neither diffraction nor temporal dependence. From each of the relativistic ionization rate expressions, the corresponding expression in the nonrelativistic limit is derived. The resultant expressions are found to be equivalent to those derived using the SFA with the nonrelativistic formalism. This comparison provides the first check of the validity for the core results of this dissertation. Intensity-dependent ionization rates are then calculated for two ultraviolet frequencies using a numerical implementation of the derived expressions. Calculations of ionization rates and related phenomena demonstrate that there are negligible differences between relativistic and nonrelativistic predictions for low intensities. In addition, the differences in behavior between linearly and circularly polarized ionizing fields and between particles with and without spin are explored. The spin comparisons provide additional confidence in the derivations by showing negligible differences between ionization rates for Dirac and Klein -Gordon particles in strong linearly-polarized fields. Also of interest are the differential transition rates which exhibit dynamic profiles as the intensity is increased. This behavior is interpreted as an indication of more atomic influence for linearly polarized electromagnetic (em) fields than for circularly polarized em fields.

  3. Processes of ionization of atoms in nonstationary states by the field of an attosecond pulse

    NASA Astrophysics Data System (ADS)

    Makarov, D. N.; Matveev, V. I.

    2015-02-01

    Processes of ionization at the interaction of attosecond pulses of an electromagnetic field with atoms in nonstationary states have been considered. The probabilities and ionization cross section at the radiative relaxation of an excited state of a single-electron atom and at the Auger decay of the autoionization state of a two-electron atom have been calculated. The developed method allows the expansion to the case of more complex targets, including those in the collision state, and to various chemical reactions.

  4. Capillary atmospheric pressure electron capture ionization (cAPECI): a highly efficient ionization method for nitroaromatic compounds.

    PubMed

    Derpmann, Valerie; Mueller, David; Bejan, Iustinian; Sonderfeld, Hannah; Wilberscheid, Sonja; Koppmann, Ralf; Brockmann, Klaus J; Benter, Thorsten

    2014-03-01

    We report on a novel method for atmospheric pressure ionization of compounds with elevated electron affinity (e.g., nitroaromatic compounds) or gas phase acidity (e.g., phenols), respectively. The method is based on the generation of thermal electrons by the photo-electric effect, followed by electron capture of oxygen when air is the gas matrix yielding O2(-) or of the analyte directly with nitrogen as matrix. Charge transfer or proton abstraction by O2(-) leads to the ionization of the analytes. The interaction of UV-light with metals is a clean method for the generation of thermal electrons at atmospheric pressure. Furthermore, only negative ions are generated and neutral radical formation is minimized, in contrast to discharge- or dopant assisted methods. Ionization takes place inside the transfer capillary of the mass spectrometer leading to comparably short transfer times of ions to the high vacuum region of the mass spectrometer. This strongly reduces ion transformation processes, resulting in mass spectra that more closely relate to the neutral analyte distribution. cAPECI is thus a soft and selective ionization method with detection limits in the pptV range. In comparison to standard ionization methods (e.g., PTR), cAPECI is superior with respect to both selectivity and achievable detection limits. cAPECI demonstrates to be a promising ionization method for applications in relevant fields as, for example, explosives detection and atmospheric chemistry.

  5. FIELD ANALYTICAL SCREENING PROGRAM: PCP METHOD - INNOVATIVE TECHNOLOGY EVALUATION REPORT

    EPA Science Inventory

    The Field Analytical Screening Program (FASP) pentachlorophenol (PCP) method uses a gas chromatograph (GC) equipped with a megabore capillary column and flame ionization detector (FID) and electron capture detector (ECD) to identify and quantify PCP. The FASP PCP method is design...

  6. Determination of structure parameters in strong-field tunneling ionization theory of molecules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao Songfeng; Jin Cheng; College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou, Gansu 730070

    2010-03-15

    In the strong field molecular tunneling ionization theory of Tong et al. [Phys. Rev. A 66, 033402 (2002)], the ionization rate depends on the asymptotic wave function of the molecular orbital from which the electron is removed. The orbital wave functions obtained from standard quantum chemistry packages in general are not good enough in the asymptotic region. Here we construct a one-electron model potential for several linear molecules using density functional theory. We show that the asymptotic wave function can be improved with an iteration method and after one iteration accurate asymptotic wave functions and structure parameters are determined. Withmore » the new parameters we examine the alignment-dependent tunneling ionization probabilities for several molecules and compare with other calculations and with recent measurements, including ionization from inner molecular orbitals.« less

  7. Dark Matter Detection Using Helium Evaporation and Field Ionization

    NASA Astrophysics Data System (ADS)

    Maris, Humphrey J.; Seidel, George M.; Stein, Derek

    2017-11-01

    We describe a method for dark matter detection based on the evaporation of helium atoms from a cold surface and their subsequent detection using field ionization. When a dark matter particle scatters off a nucleus of the target material, elementary excitations (phonons or rotons) are produced. Excitations which have an energy greater than the binding energy of helium to the surface can result in the evaporation of helium atoms. We propose to detect these atoms by ionizing them in a strong electric field. Because the binding energy of helium to surfaces can be below 1 meV, this detection scheme opens up new possibilities for the detection of dark matter particles in a mass range down to 1 MeV /c2 .

  8. Dark Matter Detection Using Helium Evaporation and Field Ionization.

    PubMed

    Maris, Humphrey J; Seidel, George M; Stein, Derek

    2017-11-03

    We describe a method for dark matter detection based on the evaporation of helium atoms from a cold surface and their subsequent detection using field ionization. When a dark matter particle scatters off a nucleus of the target material, elementary excitations (phonons or rotons) are produced. Excitations which have an energy greater than the binding energy of helium to the surface can result in the evaporation of helium atoms. We propose to detect these atoms by ionizing them in a strong electric field. Because the binding energy of helium to surfaces can be below 1 meV, this detection scheme opens up new possibilities for the detection of dark matter particles in a mass range down to 1  MeV/c^{2}.

  9. Two-color ionization injection using a plasma beatwave accelerator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schroeder, C. B.; Benedetti, C.; Esarey, E.

    Two-color laser ionization injection is a method to generate ultra-low emittance (sub-100 nm transverse normalized emittance) beams in a laser-driven plasma accelerator. A plasma beatwave accelerator is proposed to drive the plasma wave for ionization injection, where the beating of the lasers effectively produces a train of long-wavelength pulses. The plasma beatwave accelerator excites a large amplitude plasma wave with low peak laser electric fields, leaving atomically-bound electrons with low ionization potential. A short-wavelength, low-amplitude ionization injection laser pulse (with a small ponderomotive force and large peak electric field) is used to ionize the remaining bound electrons at a wakemore » phase suitable for trapping, generating an ultra-low emittance electron beam that is accelerated in the plasma wave. Using a plasma beatwave accelerator for wakefield excitation, compared to short-pulse wakefield excitation, allows for a lower amplitude injection laser pulse and, hence, a lower emittance beam may be generated.« less

  10. Two-color ionization injection using a plasma beatwave accelerator

    DOE PAGES

    Schroeder, C. B.; Benedetti, C.; Esarey, E.; ...

    2018-01-10

    Two-color laser ionization injection is a method to generate ultra-low emittance (sub-100 nm transverse normalized emittance) beams in a laser-driven plasma accelerator. A plasma beatwave accelerator is proposed to drive the plasma wave for ionization injection, where the beating of the lasers effectively produces a train of long-wavelength pulses. The plasma beatwave accelerator excites a large amplitude plasma wave with low peak laser electric fields, leaving atomically-bound electrons with low ionization potential. A short-wavelength, low-amplitude ionization injection laser pulse (with a small ponderomotive force and large peak electric field) is used to ionize the remaining bound electrons at a wakemore » phase suitable for trapping, generating an ultra-low emittance electron beam that is accelerated in the plasma wave. Using a plasma beatwave accelerator for wakefield excitation, compared to short-pulse wakefield excitation, allows for a lower amplitude injection laser pulse and, hence, a lower emittance beam may be generated.« less

  11. Efficient and scalable ionization of neutral atoms by an orderly array of gold-doped silicon nanowires

    NASA Astrophysics Data System (ADS)

    Bucay, Igal; Helal, Ahmed; Dunsky, David; Leviyev, Alex; Mallavarapu, Akhila; Sreenivasan, S. V.; Raizen, Mark

    2017-04-01

    Ionization of atoms and molecules is an important process in many applications and processes such as mass spectrometry. Ionization is typically accomplished by electron bombardment, and while it is scalable to large volumes, is also very inefficient due to the small cross section of electron-atom collisions. Photoionization methods can be highly efficient, but are not scalable due to the small ionization volume. Electric field ionization is accomplished using ultra-sharp conducting tips biased to a few kilovolts, but suffers from a low ionization volume and tip fabrication limitations. We report on our progress towards an efficient, robust, and scalable method of atomic and molecular ionization using orderly arrays of sharp, gold-doped silicon nanowires. As demonstrated in earlier work, the presence of the gold greatly enhances the ionization probability, which was attributed to an increase in available acceptor surface states. We present here a novel process used to fabricate the nanowire array, results of simulations aimed at optimizing the configuration of the array, and our progress towards demonstrating efficient and scalable ionization.

  12. [About the regulation of ionizing radiation using for food treatment in the international legislation].

    PubMed

    Shatrov, G N; Bagriantseva, O V

    2012-01-01

    The international and European legislation in the field of ionizing irradiation (gamma rays, electrons or X-rays) using for food treatment for improving food safety, for disinfestation of plants or plant products and improving of technological characteristics of food are discussed in this article. Obtained data can be used for foundation of Russian legislation and normative documents in the field of radiation methods using in the food industry.

  13. Quantum control via a genetic algorithm of the field ionization pathway of a Rydberg electron

    NASA Astrophysics Data System (ADS)

    Gregoric, Vincent C.; Kang, Xinyue; Liu, Zhimin Cheryl; Rowley, Zoe A.; Carroll, Thomas J.; Noel, Michael W.

    2017-08-01

    Quantum control of the pathway along which a Rydberg electron field ionizes is experimentally and computationally demonstrated. Selective field ionization is typically done with a slowly rising electric field pulse. The (1/n*)4 scaling of the classical ionization threshold leads to a rough mapping between arrival time of the electron signal and principal quantum number of the Rydberg electron. This is complicated by the many avoided level crossings that the electron must traverse on the way to ionization, which in general leads to broadening of the time-resolved field ionization signal. In order to control the ionization pathway, thus directing the signal to the desired arrival time, a perturbing electric field produced by an arbitrary wave-form generator is added to a slowly rising electric field. A genetic algorithm evolves the perturbing field in an effort to achieve the target time-resolved field ionization signal.

  14. Use of non-ionizing electromagnetic fields for the treatment of cancer.

    PubMed

    Jimenez, Hugo; Blackman, Carl; Lesser, Glenn; Debinski, Waldemar; Chan, Michael; Sharma, Sambad; Watabe, Kounosuke; Lo, Hui-Wen; Thomas, Alexandra; Godwin, Dwayne; Blackstock, William; Mudry, Albert; Posey, James; O'Connor, Rodney; Brezovich, Ivan; Bonin, Keith; Kim-Shapiro, Daniel; Barbault, Alexandre; Pasche, Boris

    2018-01-01

    Cancer treatment and treatment options are quite limited in circumstances such as when the tumor is inoperable, in brain cancers when the drugs cannot penetrate the blood-brain-barrier, or when there is no tumor-specific target for generation of effective therapeutic antibodies. Despite the fact that electromagnetic fields (EMF) in medicine have been used for therapeutic or diagnostic purposes, the use of non-ionizing EMF for cancer treatment is a new emerging concept. Here we summarize the history of EMF from the 1890's to the novel and new innovative methods that target and treat cancer by non-ionizing radiation.

  15. TH-CD-BRA-05: First Water Calorimetric Dw Measurement and Direct Measurement of Magnetic Field Correction Factors, KQ,B, in a 1.5 T B-Field of An MRI Linac

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prez, L de; Pooter, J de; Jansen, B

    2016-06-15

    Purpose: Reference dosimetry in MR-guided radiotherapy is performed in the presence of a B-field. As a consequence the response of ionization chambers changes considerably and depends on parameters not considered in traditional reference dosimetry. Therefore future Codes of Practices need ionization chamber correction factors to correct for both the change in beam quality and the presence of a B-field. The objective was to study the feasibility of water calorimetric absorbed-dose measurements in a 1.5 T B-field of an MRLinac and the direct measurement of kQ,B calibration of ionization chambers. Methods: Calorimetric absorbed dose to water Dw was measured with amore » new water calorimeter in the bore of an MRLinac (TPR20,10 of 0.702). Two waterproof ionization chambers (PTW 30013, IBA FC-65G) were calibrated inside the calorimeter phantom (ND,w,Q,B). Both measurements were normalized to a monitor ionization chamber. Ionization chamber measurements were corrected for conventional influence parameter. Based on the chambers’ Co-60 calibrations (ND,w,Q0), measured directly against the calorimeter. In this study the correction factors kQ,B was determined as the ratio of the calibration coefficients in the MRLinac and in Co-60. Additionally, kB was determined based on kQ values obtained with the IAEA TRS-398 Code of Practice. Results: The kQ,B factors of the ionization chambers mentioned above were respectively 0.9488(8) and 0.9445(8) with resulting kB factors of 0.961(13) and 0.952(13) with standard uncertainties on the least significant digit(s) between brackets. Conclusion: Calorimetric Dw measurements and calibration of waterproof ionization chambers were successfully carried out in the 1.5 T B-field of an MRLinac with a standard uncertainty of 0.7%. Preliminary kQ,B and kB factors were determined with standard uncertainties of respectively 0.8% and 1.3%. The kQ,B agrees with an alternative method within 0.4%. The feasibility of water calorimetry in the presence of B-fields was demonstrated by the direct determination of Dw and kQ,B. This work was supported by EMRP grant HLT06. The EMRP is jointly funded by the EMRP participating countries within EURAMET and the European Union.« less

  16. Method and apparatus for generating radiation utilizing DC to AC conversion with a conductive front

    DOEpatents

    Dawson, John M.; Mori, Warren B.; Lai, Chih-Hsiang; Katsouleas, Thomas C.

    1998-01-01

    Method and apparatus for generating radiation of high power, variable duration and broad tunability over several orders of magnitude from a laser-ionized gas-filled capacitor array. The method and apparatus convert a DC electric field pattern into a coherent electromagnetic wave train when a relativistic ionization front passes between the capacitor plates. The frequency and duration of the radiation is controlled by the gas pressure and capacitor spacing.

  17. An historical overview of the activities in the field of exposure and risk assessment of non-ionizing radiation in Bulgaria.

    PubMed

    Israel, Michel

    2015-09-01

    The exposure and risk evaluation process in Bulgaria concerning non-ionizing radiation health and safety started in the early 1970s. Then, the first research laboratory "Electromagnetic fields in the working environment" was founded in the framework of the Centre of Hygiene, belonging to the Medical Academy, Sofia. The main activities were connected with developing legislation, new equipment for measurement of electromagnetic fields, new methods for measurement and exposure assessment, in vivo and human studies for developing methods, studying the effect of non-ionizing radiation on human body, developing exposure limits. Most of the occupations as metal industry, plastic welding, energetics, physiotherapy, broadcasting, telephone stations, computer industry, etc., have been covered by epidemiological investigations and risk evaluation. In 1986, the ANSI standard for safe use of lasers has been implemented as national legislation that gave the start for studies in the field of risk assessment concerning the use of lasers in industry and medicine. The environmental exposure studies started in 1991 following the very fast implementation of the telecommunication technologies. Now, funds for research are very insignificant, and studies in the field of risk assessment are very few. Nevertheless, Bulgaria has been an active member of the WHO International EMF Project, since 1997, and that gives good opportunity for collaboration with other Member states, and for implementation of new approach in the EMF policy for workers and people's protection against non-ionizing radiation exposure.

  18. Medical gamma ray imaging

    DOEpatents

    Osborne, Louis S.; Lanza, Richard C.

    1984-01-01

    A method and apparatus for determining the distribution of a position-emitting radioisotope into an object, the apparatus consisting of a wire mesh radiation converter, an ionizable gas for propagating ionization events caused by electrodes released by the converter, a drift field, a spatial position detector and signal processing circuitry for correlating near-simultaneous ionization events and determining their time differences, whereby the position sources of back-to-back collinear radiation can be located and a distribution image constructed.

  19. METHOD AND APPARATUS FOR TRAPPING IONS IN A MAGNETIC FIELD

    DOEpatents

    Luce, J.S.

    1962-04-17

    A method and apparatus are described for trapping ions within an evacuated container and within a magnetic field utilizing dissociation and/or ionization of molecular ions to form atomic ions and energetic neutral particles. The atomic ions are magnetically trapped as a result of a change of charge-to- mass ratio. The molecular ions are injected into the container and into the path of an energetic carbon arc discharge which dissociates and/or ionizes a portion of the molecular ions into atomic ions and energetic neutrals. The resulting atomic ions are trapped by the magnetic field to form a circulating beam of atomic ions, and the energetic neutrals pass out of the system and may be utilized in a particle accelerator. (AEC)

  20. A highly sensitive electron spectrometer for crossed-beam collisional ionization: A retarding-type magnetic bottle analyzer and its application to collision-energy resolved Penning ionization electron spectroscopy

    NASA Astrophysics Data System (ADS)

    Yamakita, Yoshihiro; Tanaka, Hideyasu; Maruyama, Ryo; Yamakado, Hideo; Misaizu, Fuminori; Ohno, Koichi

    2000-08-01

    A highly sensitive electron energy analyzer which utilizes a "magnetic bottle" combined with a retarding electrostatic field has been developed for Penning ionization electron spectroscopy. A beam of metastable rare-gas atoms is crossed with a continuous supersonic sample beam in the source region of the analyzer. The emitted electrons are collected by an inhomogeneous magnetic field (the magnetic bottle effect) with a high efficiency of nearly 4π solid angle, which is more than 103 times higher than that of a conventional hemispherical analyzer. The kinetic energy of electrons is analyzed by scanning the retarding field in a flight tube of the analyzer in the presence of a weak magnetic field. The velocity of the metastable atoms can also be resolved by a time-of-flight method in the present instrument. Examples of Penning ionization electron energy spectra as a function of collision energy are presented for Ar and N2 with metastable He*(2 3S) atoms. This instrument has opened the possibility for extensive studies of Penning ionization electron spectroscopy for low-density species, such as clusters, ions, electronically excited species, unstable or transient species, and large molecules with low volatility.

  1. Temperature dependence of electron impact ionization coefficient in bulk silicon

    NASA Astrophysics Data System (ADS)

    Ahmed, Mowfaq Jalil

    2017-09-01

    This work exhibits a modified procedure to compute the electron impact ionization coefficient of silicon for temperatures between 77 and 800K and electric fields ranging from 70 to 400 kV/cm. The ionization coefficients are computed from the electron momentum distribution function through solving the Boltzmann transport equation (BTE). The arrangement is acquired by joining Legendre polynomial extension with BTE. The resulting BTE is solved by differences-differential method using MATLAB®. Six (X) equivalent ellipsoidal and non-parabolic valleys of the conduction band of silicon are taken into account. Concerning the scattering mechanisms, the interval acoustic scattering, non-polar optical scattering and II scattering are taken into consideration. This investigation showed that the ionization coefficients decrease with increasing temperature. The overall results are in good agreement with previous experimental and theoretical reported data predominantly at high electric fields.

  2. Method and apparatus for generating radiation utilizing DC to AC conversion with a conductive front

    DOEpatents

    Dawson, J.M.; Mori, W.B.; Lai, C.H.; Katsouleas, T.C.

    1998-07-14

    Method and apparatus ar disclosed for generating radiation of high power, variable duration and broad tunability over several orders of magnitude from a laser-ionized gas-filled capacitor array. The method and apparatus convert a DC electric field pattern into a coherent electromagnetic wave train when a relativistic ionization front passes between the capacitor plates. The frequency and duration of the radiation is controlled by the gas pressure and capacitor spacing. 4 figs.

  3. Novel high power impulse magnetron sputtering enhanced by an auxiliary electrical field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Chunwei, E-mail: lcwnefu@126.com, E-mail: xiubotian@163.com; State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001; Tian, Xiubo, E-mail: lcwnefu@126.com, E-mail: xiubotian@163.com

    2016-08-15

    The high power impulse magnetron sputtering (HIPIMS) technique is a novel highly ionized physical vapor deposition method with a high application potential. However, the electron utilization efficiency during sputtering is rather low and the metal particle ionization rate needs to be considerably improved to allow for a large-scale industrial application. Therefore, we enhanced the HIPIMS technique by simultaneously applying an electric field (EF-HIPIMS). The effect of the electric field on the discharge process was studied using a current sensor and an optical emission spectrometer. Furthermore, the spatial distribution of the electric potential and electric field during the EF-HIPIMS process wasmore » simulated using the ANSYS software. The results indicate that a higher electron utilization efficiency and a higher particle ionization rate could be achieved. The auxiliary anode obviously changed the distribution of the electric potential and the electric field in the discharge region, which increased the plasma density and enhanced the degree of ionization of the vanadium and argon gas. Vanadium films were deposited to further compare both techniques, and the morphology of the prepared films was investigated by scanning electron microscopy. The films showed a smaller crystal grain size and a denser growth structure when the electric field was applied during the discharge process.« less

  4. Vortex focusing of ions produced in corona discharge.

    PubMed

    Kolomiets, Yuri N; Pervukhin, Viktor V

    2013-06-15

    Completeness of the ion transportation into an analytical path defines the efficiency of ionization analysis techniques. This is of particular importance for atmospheric pressure ionization sources like corona discharge, electrospray, ionization with radioactive ((3)H, (63)Ni) isotopes that produce nonuniform spatial distribution of sample ions. The available methods of sample ion focusing are either efficient at reduced pressure (~1Torr) or feature high sample losses. This paper deals with experimental research into atmospheric pressure focusing of unipolar (positive) ions using a highly swirled air stream with a well-defined vortex core. Effects of electrical fields from corona needle and inlet capillary of mass spectrometer on collection efficiency is considered. We used a corona discharge to produce an ionized unipolar sample. It is shown experimentally that with an electrical field barrier efficient transportation and focusing of an ionized sample are possible only when a metal plate restricting the stream and provided with an opening covered with a grid is used. This gives a five-fold increase of the transportation efficiency. It is shown that the electric field barrier in the vortex sampling region reduces the efficiency of remote ionized sample transportation two times. The difference in the efficiency of light ion focusing observed may be explained by a high mobility and a significant effect of the electric field barrier upon them. It is possible to conclude based on the experimental data that the presence of the field barrier narrows considerably (more than by one and half) the region of the vortex sample ion focusing. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. F--Ray: A new algorithm for efficient transport of ionizing radiation

    NASA Astrophysics Data System (ADS)

    Mao, Yi; Zhang, J.; Wandelt, B. D.; Shapiro, P. R.; Iliev, I. T.

    2014-04-01

    We present a new algorithm for the 3D transport of ionizing radiation, called F2-Ray (Fast Fourier Ray-tracing method). The transfer of ionizing radiation with long mean free path in diffuse intergalactic gas poses a special challenge to standard numerical methods which transport the radiation in position space. Standard methods usually trace each individual ray until it is fully absorbed by the intervening gas. If the mean free path is long, the computational cost and memory load are likely to be prohibitive. We have developed an algorithm that overcomes these limitations and is, therefore, significantly more efficient. The method calculates the transfer of radiation collectively, using the Fast Fourier Transform to convert radiation between position and Fourier spaces, so the computational cost will not increase with the number of ionizing sources. The method also automatically combines parallel rays with the same frequency at the same grid cell, thereby minimizing the memory requirement. The method is explicitly photon-conserving, i.e. the depletion of ionizing photons is guaranteed to equal the photoionizations they caused, and explicitly obeys the periodic boundary condition, i.e. the escape of ionizing photons from one side of a simulation volume is guaranteed to be compensated by emitting the same amount of photons into the volume through the opposite side. Together, these features make it possible to numerically simulate the transfer of ionizing photons more efficiently than previous methods. Since ionizing radiation such as the X-ray is responsible for heating the intergalactic gas when first stars and quasars form at high redshifts, our method can be applied to simulate thermal distribution, in addition to cosmic reionization, in three-dimensional inhomogeneous cosmological density field.

  6. Attosecond Electron Correlation Dynamics in Double Ionization of Benzene Probed with Two-Electron Angular Streaking

    NASA Astrophysics Data System (ADS)

    Winney, Alexander H.; Lee, Suk Kyoung; Lin, Yun Fei; Liao, Qing; Adhikari, Pradip; Basnayake, Gihan; Schlegel, H. Bernhard; Li, Wen

    2017-09-01

    With a novel three-dimensional electron-electron coincidence imaging technique and two-electron angular streaking method, we show that the emission time delay between two electrons can be measured from tens of attoseconds to more than 1 fs. Surprisingly, in benzene, the double ionization rate decays as the time delay between the first and second electron emission increases during the first 500 as. This is further supported by the decay of the Coulomb repulsion in the direction perpendicular to the laser polarization. This result reveals that laser-induced electron correlation plays a major role in strong field double ionization of benzene driven by a nearly circularly polarized field.

  7. Triple ionization chamber method for clinical dose monitoring with a Be-covered Li BNCT field.

    PubMed

    Nguyen, Thanh Tat; Kajimoto, Tsuyoshi; Tanaka, Kenichi; Nguyen, Chien Cong; Endo, Satoru

    2016-11-01

    Fast neutron, gamma-ray, and boron doses have different relative biological effectiveness (RBE). In boron neutron capture therapy (BNCT), the clinical dose is the total of these dose components multiplied by their RBE. Clinical dose monitoring is necessary for quality assurance of the irradiation profile; therefore, the fast neutron, gamma-ray, and boron doses should be separately monitored. To estimate these doses separately, and to monitor the boron dose without monitoring the thermal neutron fluence, the authors propose a triple ionization chamber method using graphite-walled carbon dioxide gas (C-CO 2 ), tissue-equivalent plastic-walled tissue-equivalent gas (TE-TE), and boron-loaded tissue-equivalent plastic-walled tissue-equivalent gas [TE(B)-TE] chambers. To use this method for dose monitoring for a neutron and gamma-ray field moderated by D 2 O from a Be-covered Li target (Be-covered Li BNCT field), the relative sensitivities of these ionization chambers are required. The relative sensitivities of the TE-TE, C-CO 2 , and TE(B)-TE chambers to fast neutron, gamma-ray, and boron doses are calculated with the particle and heavy-ion transport code system (PHITS). The relative sensitivity of the TE(B)-TE chamber is calculated with the same method as for the TE-TE and C-CO 2 chambers in the paired chamber method. In the Be-covered Li BNCT field, the relative sensitivities of the ionization chambers to fast neutron, gamma-ray, and boron doses are calculated from the kerma ratios, mass attenuation coefficient tissue-to-wall ratios, and W-values. The Be-covered Li BNCT field consists of neutrons and gamma-rays which are emitted from a Be-covered Li target, and this resultant field is simulated by using PHITS with the cross section library of ENDF-VII. The kerma ratios and mass attenuation coefficient tissue-to-wall ratios are determined from the energy spectra of neutrons and gamma-rays in the Be-covered Li BNCT field. The W-value is calculated from recoil charged particle spectra by the collision of neutrons and gamma-rays with the wall and gas materials of the ionization chambers in the gas cavities of TE-TE, C-CO 2 , and TE(B)-TE chambers ( 10 B concentrations of 10, 50, and 100 ppm in the TE-wall). The calculated relative sensitivity of the C-CO 2 chamber to the fast neutron dose in the Be-covered Li BNCT field is 0.029, and those of the TE-TE and TE(B)-TE chambers are both equal to 0.965. The relative sensitivities of the C-CO 2 , TE-TE, and TE(B)-TE chambers to the gamma-ray dose in the Be-covered Li BNCT field are all 1 within the 1% calculation uncertainty. The relative sensitivities of TE(B)-TE to boron dose with concentrations of 10, 50, and 100 ppm 10 B are calculated to be 0.865 times the ratio of the in-tumor to in-chamber wall boron concentration. The fast neutron, gamma-ray, and boron doses of a tumor in-air can be separately monitored by the triple ionization chamber method in the Be-covered Li BNCT field. The results show that these doses can be easily converted to the clinical dose with the depth correction factor in the body and the RBE.

  8. Time-dependent density-functional theory with optimized effective potential and self-interaction correction and derivative discontinuity for the treatment of double ionization of He and Be atoms in intense laser fields

    NASA Astrophysics Data System (ADS)

    Heslar, John; Telnov, Dmitry A.; Chu, Shih-I.

    2013-05-01

    We present a self-interaction-free time-dependent density-functional theory (TDDFT) for the treatment of double-ionization processes of many-electron systems. The method is based on the extension of the Krieger-Li-Iafrate (KLI) treatment of the optimized effective potential (OEP) theory and the incorporation of an explicit self-interaction correction (SIC) term. In the framework of the time-dependent density functional theory, we have performed three-dimensional (3D) calculations of double ionization of He and Be atoms by intense near-infrared laser fields. We make use of the exchange-correlation potential with the integer discontinuity which improves the description of the double-ionization process. We found that a proper description of the double ionization requires the TDDFT exchange-correlation potential with the discontinuity with respect to the variation of the total particle number (TPN). The results for the intensity-dependent rates of double ionization of He and Be atoms are presented.

  9. Temporal correlation and correlated momentum distribution in nonsequential double ionization of Mg by circularly polarized laser fields

    NASA Astrophysics Data System (ADS)

    Xu, Tong-Tong; Ben, Shuai; Guo, Pei-Ying; Song, Kai-Li; Zhang, Jun; Liu, Xue-Shen

    2017-07-01

    We use the classical ensemble method to investigate the nonsequential double ionization (NSDI) process of Mg atoms in circularly polarized laser fields at a lower laser intensity. We illustrate the temporal correlation of the ‘side-by-side’ and the ‘back-to-back emission’. It indicates that the two electrons are more likely to be emitted at the same time for the ‘side-by-side emission’. We demonstrate the electronic trajectories from recollision-induced ionization (RII) and recollision-induced excitation with subsequent ionization (RESI). The distribution of the angle between the two ionized directions of the two electrons and the ion momentum distribution show that the anticorrelation distribution is dominant in the RESI mechanism and correlation distribution is dominant in the RII mechanism. The momentum distributions of Mg atoms for the slow and the fast electrons present a similar structure to the experimental observation of Ar atoms by Liu et al 2014 (Phys. Rev. Lett. 112 013003).

  10. Unraveling nonadiabatic ionization and Coulomb potential effect in strong-field photoelectron holography.

    PubMed

    Song, Xiaohong; Lin, Cheng; Sheng, Zhihao; Liu, Peng; Chen, Zhangjin; Yang, Weifeng; Hu, Shilin; Lin, C D; Chen, Jing

    2016-06-22

    Strong field photoelectron holography has been proposed as a means for interrogating the spatial and temporal information of electrons and ions in a dynamic system. After ionization, part of the electron wave packet may directly go to the detector (the reference wave), while another part may be driven back and scatters off the ion(the signal wave). The interference hologram of the two waves may be used to extract target information embedded in the collision process. Unlike conventional optical holography, however, propagation of the electron wave packet is affected by the Coulomb potential as well as by the laser field. In addition, electrons are emitted over the whole laser pulse duration, thus multiple interferences may occur. In this work, we used a generalized quantum-trajectory Monte Carlo method to investigate the effect of Coulomb potential and the nonadiabatic subcycle ionization on the photoelectron hologram. We showed that photoelectron hologram can be well described only when the effect of nonadiabatic ionization is accounted for, and Coulomb potential can be neglected only in the tunnel ionization regime. Our results help paving the way for establishing photoelectron holography for probing spatial and dynamic properties of atoms and molecules.

  11. Unraveling nonadiabatic ionization and Coulomb potential effect in strong-field photoelectron holography

    PubMed Central

    Song, Xiaohong; Lin, Cheng; Sheng, Zhihao; Liu, Peng; Chen, Zhangjin; Yang, Weifeng; Hu, Shilin; Lin, C. D.; Chen, Jing

    2016-01-01

    Strong field photoelectron holography has been proposed as a means for interrogating the spatial and temporal information of electrons and ions in a dynamic system. After ionization, part of the electron wave packet may directly go to the detector (the reference wave), while another part may be driven back and scatters off the ion(the signal wave). The interference hologram of the two waves may be used to extract target information embedded in the collision process. Unlike conventional optical holography, however, propagation of the electron wave packet is affected by the Coulomb potential as well as by the laser field. In addition, electrons are emitted over the whole laser pulse duration, thus multiple interferences may occur. In this work, we used a generalized quantum-trajectory Monte Carlo method to investigate the effect of Coulomb potential and the nonadiabatic subcycle ionization on the photoelectron hologram. We showed that photoelectron hologram can be well described only when the effect of nonadiabatic ionization is accounted for, and Coulomb potential can be neglected only in the tunnel ionization regime. Our results help paving the way for establishing photoelectron holography for probing spatial and dynamic properties of atoms and molecules. PMID:27329071

  12. Unraveling nonadiabatic ionization and Coulomb potential effect in strong-field photoelectron holography

    DOE PAGES

    Song, Xiaohong; Lin, Cheng; Sheng, Zhihao; ...

    2016-06-22

    Strong field photoelectron holography has been proposed as a means for interrogating the spatial and temporal information of electrons and ions in a dynamic system. After ionization, part of the electron wave packet may directly go to the detector (the reference wave), while another part may be driven back and scatters off the ion(the signal wave). The interference hologram of the two waves may be used to extract target information embedded in the collision process. Unlike conventional optical holography, however, propagation of the electron wave packet is affected by the Coulomb potential as well as by the laser field. Inmore » addition, electrons are emitted over the whole laser pulse duration, thus multiple interferences may occur. In this work, we used a generalized quantum-trajectory Monte Carlo method to investigate the effect of Coulomb potential and the nonadiabatic subcycle ionization on the photoelectron hologram. Here, we showed that photoelectron hologram can be well described only when the effect of nonadiabatic ionization is accounted for, and Coulomb potential can be neglected only in the tunnel ionization regime. Our results help paving the way for establishing photoelectron holography for probing spatial and dynamic properties of atoms and molecules.« less

  13. Improving the accuracy of ionization chamber dosimetry in small megavoltage x-ray fields

    NASA Astrophysics Data System (ADS)

    McNiven, Andrea L.

    The dosimetry of small x-ray fields is difficult, but important, in many radiation therapy delivery methods. The accuracy of ion chambers for small field applications, however, is limited due to the relatively large size of the chamber with respect to the field size, leading to partial volume effects, lateral electronic disequilibrium and calibration difficulties. The goal of this dissertation was to investigate the use of ionization chambers for the purpose of dosimetry in small megavoltage photon beams with the aim of improving clinical dose measurements in stereotactic radiotherapy and helical tomotherapy. A new method for the direct determination of the sensitive volume of small-volume ion chambers using micro computed tomography (muCT) was investigated using four nominally identical small-volume (0.56 cm3) cylindrical ion chambers. Agreement between their measured relative volume and ionization measurements (within 2%) demonstrated the feasibility of volume determination through muCT. Cavity-gas calibration coefficients were also determined, demonstrating the promise for accurate ion chamber calibration based partially on muCT. The accuracy of relative dose factor measurements in 6MV stereotactic x-ray fields (5 to 40mm diameter) was investigated using a set of prototype plane-parallel ionization chambers (diameters of 2, 4, 10 and 20mm). Chamber and field size specific correction factors ( CSFQ ), that account for perturbation of the secondary electron fluence, were calculated using Monte Carlo simulation methods (BEAM/EGSnrc simulations). These correction factors (e.g. CSFQ = 1.76 (2mm chamber, 5mm field) allow for accurate relative dose factor (RDF) measurement when applied to ionization readings, under conditions of electronic disequilibrium. With respect to the dosimetry of helical tomotherapy, a novel application of the ion chambers was developed to characterize the fan beam size and effective dose rate. Characterization was based on an adaptation of the computed tomography dose index (CTDI), a concept normally used in diagnostic radiology. This involved experimental determination of the fan beam thickness using the ion chambers to acquire fan beam profiles and extrapolation to a 'zero-size' detector. In conclusion, improvements have been made in the accuracy of small field dosimetry measurements in stereotactic radiotherapy and helical tomotherapy. This was completed through introduction of an original technique involving micro-CT imaging for sensitive volume determination and potentially ion chamber calibration coefficients, the use of appropriate Monte Carlo derived correction factors for RDF measurement, and the exploitation of the partial volume effect for helical tomotherapy fan beam dosimetry. With improved dosimetry for a wide range of challenging small x-ray field situations, it is expected that the patient's radiation safety will be maintained, and that clinical trials will adopt calibration protocols specialized for modern radiotherapy with small fields or beamlets. Keywords. radiation therapy, ionization chambers, small field dosimetry, stereotactic radiotherapy, helical tomotherapy, micro-CT.

  14. Plasma channel created by ionization of gas by a surface wave

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Konovalov, V. N.; Kuz’min, G. P.; Minaev, I. M., E-mail: minaev1945@mail.ru

    2015-09-15

    Conditions for gas ionization in the field of a slow surface wave excited by a microwave source are considered. The gas ionization rate and the plasma density distribution over the radius of the discharge tube were studied by the optical method. The experiments were conducted in a dielectric tube with a radius much smaller than the tube length, the gas pressure being ∼1–3 Torr. It is shown that the stationary distribution of the plasma density is determined by diffusion processes.

  15. Standardization of terminology in field of ionizing radiations and their measurements

    NASA Astrophysics Data System (ADS)

    Yudin, M. F.; Karaveyev, F. M.

    1984-03-01

    A new standard terminology was introduced on 1 January 1982 by the Scientific-Technical Commission on All-Union State Standards to cover ionizing radiations and their measurements. It is based on earlier standards such as GOST 15484-74/81, 18445-70/73, 19849-74, 22490-77 as well as the latest recommendations by international committees. One hundred eighty-six terms and definitions in 14 paragraphs are contained. Fundamental concepts, sources and forms of ionizing radiations, characteristics and parameters of ionizing radiations, and methods of measuring their characteristics and parameters are covered. New terms have been added to existing ones. The equivalent English, French, and German terms are also given. The terms measurement of ionizing radiation and transfer of ionizing particles (equivalent of particle fluence of energy fluence) are still under discussion.

  16. Linear electric field time-of-flight ion mass spectrometer

    DOEpatents

    Funsten, Herbert O [Los Alamos, NM; Feldman, William C [Los Alamos, NM

    2008-06-10

    A linear electric field ion mass spectrometer having an evacuated enclosure with means for generating a linear electric field located in the evacuated enclosure and means for injecting a sample material into the linear electric field. A source of pulsed ionizing radiation injects ionizing radiation into the linear electric field to ionize atoms or molecules of the sample material, and timing means determine the time elapsed between ionization of atoms or molecules and arrival of an ion out of the ionized atoms or molecules at a predetermined position.

  17. Double-frequency microwave ionization of Na

    NASA Astrophysics Data System (ADS)

    Ruff, G. A.; Dietrick, K. M.; Gallagher, T. F.

    1990-11-01

    We report the ionization of Na atoms by the simultaneous application of microwave fields of two different frequencies. We conclude that the salient features of double-frequency ionization can be readily understood. Both the hydrogenlike ||m||=2 states and the nonhydrogenic ||m||=0 and 1 states ionize when the sum of the field amplitudes, the peak field, reaches the field required for ionization by a single microwave frequency, E=1/9n4 and E=1/3n5, respectively.

  18. SU-F-T-293: Experimental Comparisons of Ionization Chambers with Different Volumes for CyberKnife Delivery Quality Assurance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nakayama, M; Kobe University Graduate School of Medicine, Kobe, Hyogo; Munetomo, Y

    2016-06-15

    Purpose: To evaluate the practicality use of ionization chambers with different volumes for delivery quality assurance of CyberKnife plans, Methods: Dosimetric measurements with a spherical solid water phantom and three ionization chambers with volumes of 0.13, 0.04, and 0.01 cm3 (IBA CC13, CC04, and CC01, respectively) were performed for various CyberKnife clinical treatment plans including both isocentric and nonisocentric delivery. For each chamber, the ion recombination correction factors Ks were calculated using the Jaffe plot method and twovoltage method at a 10-cm depth for a 60-mm collimator field in a water phantom. The polarity correction factors Kpol were determined formore » 5–60-mm collimator fields in same experimental setup. The measured doses were compared to the doses for the detectors calculated using a treatment planning system. Results: The differences in the Ks between the Jaffe plot method and two-voltage method were −0.12, −0.02, and 0.89% for CC13, CC04, and CC01, respectively. The changes in Kpol for the different field sizes were 0.2, 0.3, and 0.8% for CC13, CC04, and CC01, respectively. The measured doses for CC04 and CC01 were within 3% of the calculated doses for the clinical treatment plans with isocentric delivery with collimator fields greater than 12.5 mm. Those for CC13 had differences of over 3% for the plans with isocentric delivery with collimator fields less than 15 mm. The differences for the isocentric plans were similar to those for the single beam plans. The measured doses for each chamber were within 3% of the calculated doses for the non-isocentric plans except for that with a PTV volume less than 1.0 cm{sup 3}. Conclusion: Although there are some limitations, the ionization chamber with a smaller volume is a better detector for verification of the CyberKnife plans owing to the high spatial resolution.« less

  19. Transport equations for partially ionized reactive plasma in magnetic field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhdanov, V. M.; Stepanenko, A. A.

    2016-06-08

    Transport equations for partially ionized reactive plasma in magnetic field taking into account the internal degrees of freedom and electronic excitation of plasma particles are derived. As a starting point of analysis the kinetic equation with a binary collision operator written in the Wang-Chang and Uhlenbeck form and with a reactive collision integral allowing for arbitrary chemical reactions is used. The linearized variant of Grad’s moment method is applied to deduce the systems of moment equations for plasma and also full and reduced transport equations for plasma species nonequilibrium parameters.

  20. Nonsequential double ionization channels control of Ar with few-cycle elliptically polarized laser pulse by carrier-envelope-phase.

    PubMed

    Ben, Shuai; Wang, Tian; Xu, Tongtong; Guo, Jing; Liu, Xueshen

    2016-04-04

    The carrier-envelop-phase (CEP) dependence of nonsequential double ionization (NSDI) of atomic Ar with few-cycle elliptically polarized laser pulse is investigated using 2D classical ensemble method. We distinguish two particular recollision channels in NSDI, which are recollision-impact ionization (RII) and recollision-induced excitation with subsequent ionization (RESI). We separate the RII and RESI channels according to the delay time between recollision and final double ionization. By tracing the history of the trajectories, we find the electron correlation spectra as well as the competition between the two channels are sensitively dependent on the laser field CEP. Finally, control can be achieved between the two channels by varying the CEP.

  1. Proton-transfer-reaction/ion-mobility-spectrometer and method of using the same

    NASA Technical Reports Server (NTRS)

    Kanik, Isik (Inventor); Beegle, Luther W. (Inventor)

    2004-01-01

    A high-pressure hollow cathode ionizer is combined with an ion-mobility-spectrometer (IMS) for the detection of trace amounts of organic compounds in gas. The ionizer uses H.sub.3 0.sup.+, ions which do not react with air to ionize the organic compounds and the organic compounds are soft ionized. The ionized organic compounds are detected in the IMS at levels of parts per billion and identified using calibrated reference tables. Applications include but are not limited to the fields of: (1) medicine as a breath analyzer for detection of lung cancer, diabetes, liver cirrhosis, (2) law enforcement in drug interdiction and explosives detection, (3) food monitoring and control, (4) environmental monitoring and (5) space applications.

  2. Time-dependent quantum chemistry of laser driven many-electron molecules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nguyen-Dang, Thanh-Tung; Couture-Bienvenue, Étienne; Viau-Trudel, Jérémy

    2014-12-28

    A Time-Dependent Configuration Interaction approach using multiple Feshbach partitionings, corresponding to multiple ionization stages of a laser-driven molecule, has recently been proposed [T.-T. Nguyen-Dang and J. Viau-Trudel, J. Chem. Phys. 139, 244102 (2013)]. To complete this development toward a fully ab-initio method for the calculation of time-dependent electronic wavefunctions of an N-electron molecule, we describe how tools of multiconfiguration quantum chemistry such as the management of the configuration expansion space using Graphical Unitary Group Approach concepts can be profitably adapted to the new context, that of time-resolved electronic dynamics, as opposed to stationary electronic structure. The method is applied tomore » calculate the detailed, sub-cycle electronic dynamics of BeH{sub 2}, treated in a 3–21G bound-orbital basis augmented by a set of orthogonalized plane-waves representing continuum-type orbitals, including its ionization under an intense λ = 800 nm or λ = 80 nm continuous-wave laser field. The dynamics is strongly non-linear at the field-intensity considered (I ≃ 10{sup 15} W/cm{sup 2}), featuring important ionization of an inner-shell electron and strong post-ionization bound-electron dynamics.« less

  3. Fundamental Studies of Molecular Secondary Ion Mass Spectrometry Ionization Probability Measured With Femtosecond, Infrared Laser Post-Ionization

    NASA Astrophysics Data System (ADS)

    Popczun, Nicholas James

    The work presented in this dissertation is focused on increasing the fundamental understanding of molecular secondary ion mass spectrometry (SIMS) ionization probability by measuring neutral molecule behavior with femtosecond, mid-infrared laser post-ionization (LPI). To accomplish this, a model system was designed with a homogeneous organic film comprised of coronene, a polycyclic hydrocarbon which provides substantial LPI signal. Careful consideration was given to signal lost to photofragmentation and undersampling of the sputtered plume that is contained within the extraction volume of the mass spectrometer. This study provided the first ionization probability for an organic compound measured directly by the relative secondary ions and sputtered neutral molecules using a strong-field ionization (SFI) ionization method. The measured value of ˜10-3 is near the upper limit of previous estimations of ionization probability for organic molecules. The measurement method was refined, and then applied to a homogeneous guanine film, which produces protonated secondary ions. This measurement found the probability of protonation to occur to be on the order of 10-3, although with less uncertainty than that of the coronene. Finally, molecular depth profiles were obtained for SIMS and LPI signals as a function of primary ion fluence to determine the effect of ionization probability on the depth resolution of chemical interfaces. The interfaces chosen were organic/inorganic interfaces to limit chemical mixing. It is shown that approaching the inorganic chemical interface can enhance or suppress the ionization probability for the organic molecule, which can lead to artificially sharpened or broadened depths, respectively. Overall, the research described in this dissertation provides new methods for measuring ionization efficiency in SIMS in both absolute and relative terms, and will inform both innovation in the technique, as well as increase understanding of depth-dependent experiments.

  4. A convolution model for obtaining the response of an ionization chamber in static non standard fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gonzalez-Castano, D. M.; Gonzalez, L. Brualla; Gago-Arias, M. A.

    2012-01-15

    Purpose: This work contains an alternative methodology for obtaining correction factors for ionization chamber (IC) dosimetry of small fields and composite fields such as IMRT. The method is based on the convolution/superposition (C/S) of an IC response function (RF) with the dose distribution in a certain plane which includes chamber position. This method is an alternative to the full Monte Carlo (MC) approach that has been used previously by many authors for the same objective. Methods: The readout of an IC at a point inside a phantom irradiated by a certain beam can be obtained as the convolution of themore » dose spatial distribution caused by the beam and the IC two-dimensional RF. The proposed methodology has been applied successfully to predict the response of a PTW 30013 IC when measuring different nonreference fields, namely: output factors of 6 MV small fields, beam profiles of cobalt 60 narrow fields and 6 MV radiosurgery segments. The two-dimensional RF of a PTW 30013 IC was obtained by MC simulation of the absorbed dose to cavity air when the IC was scanned by a 0.6 x 0.6 mm{sup 2} cross section parallel pencil beam at low depth in a water phantom. For each of the cases studied, the results of the IC direct measurement were compared with the corresponding obtained by the C/S method. Results: For all of the cases studied, the agreement between the IC direct measurement and the IC calculated response was excellent (better than 1.5%). Conclusions: This method could be implemented in TPS in order to calculate dosimetry correction factors when an experimental IMRT treatment verification with in-phantom ionization chamber is performed. The miss-response of the IC due to the nonreference conditions could be quickly corrected by this method rather than employing MC derived correction factors. This method can be considered as an alternative to the plan-class associated correction factors proposed recently as part of an IAEA work group on nonstandard field dosimetry.« less

  5. A single-electron picture based on the multiconfiguration time-dependent Hartree-Fock method: application to the anisotropic ionization and subsequent high-harmonic generation of the CO molecule

    NASA Astrophysics Data System (ADS)

    Ohmura, S.; Kato, T.; Oyamada, T.; Koseki, S.; Ohmura, H.; Kono, H.

    2018-02-01

    The mechanisms of anisotropic near-IR tunnel ionization and high-order harmonic generation (HHG) in a CO molecule are theoretically investigated by using the multiconfiguration time-dependent Hartree-Fock (MCTDHF) method developed for the simulation of multielectron dynamics of molecules. The multielectron dynamics obtained by numerically solving the equations of motion (EOMs) in the MCTDHF method is converted to a single orbital picture in the natural orbital representation where the first-order reduced density matrix is diagonalized. The ionization through each natural orbital is examined and the process of HHG is classified into different optical paths designated by a combinations of initial, intermediate and final natural orbitals. The EOMs for natural spin-orbitals are also derived within the framework of the MCTDHF, which maintains the first-order reduced density matrix to be a diagonal one throughout the time propagation of a many-electron wave function. The orbital dependent, time-dependent effective potentials that govern the dynamics of respective time-dependent natural orbitals are deduced from the derived EOMs, of which the temporal variation can be used to interpret the motion of the electron density associated with each natural spin-orbital. The roles of the orbital shape, multiorbital ionization, linear Stark effect and multielectron interaction in the ionization and HHG of a CO molecule are revealed by the effective potentials obtained. When the laser electric field points to the nucleus O from C, tunnel ionization from the C atom side is enhanced; a hump structure originating from multielectron interaction is then formed on the top of the field-induced distorted barrier of the HOMO effective potential. This hump formation, responsible for the directional anisotropy of tunnel ionization, restrains the influence of the linear Stark effect on the energy shifts of bound states.

  6. Structure factors for tunneling ionization rates of molecules: General Hartree-Fock-based integral representation

    NASA Astrophysics Data System (ADS)

    Madsen, Lars Bojer; Jensen, Frank; Dnestryan, Andrey I.; Tolstikhin, Oleg I.

    2017-07-01

    In the leading-order approximation of the weak-field asymptotic theory (WFAT), the dependence of the tunneling ionization rate of a molecule in an electric field on its orientation with respect to the field is determined by the structure factor of the ionizing molecular orbital. The WFAT yields an expression for the structure factor in terms of a local property of the orbital in the asymptotic region. However, in general quantum chemistry approaches molecular orbitals are expanded in a Gaussian basis which does not reproduce their asymptotic behavior correctly. This hinders the application of the WFAT to polyatomic molecules, which are attracting increasing interest in strong-field physics. Recently, an integral-equation approach to the WFAT for tunneling ionization of one electron from an arbitrary potential has been developed. The structure factor is expressed in an integral form as a matrix element involving the ionizing orbital. The integral is not sensitive to the asymptotic behavior of the orbital, which resolves the difficulty mentioned above. Here, we extend the integral representation for the structure factor to many-electron systems treated within the Hartree-Fock method and show how it can be implemented on the basis of standard quantum chemistry software packages. We validate the methodology by considering noble-gas atoms and the CO molecule, for which accurate structure factors exist in the literature. We also present benchmark results for CO2 and for NH3 in the pyramidal and planar geometries.

  7. Experimental optimization of directed field ionization

    NASA Astrophysics Data System (ADS)

    Liu, Zhimin Cheryl; Gregoric, Vincent C.; Carroll, Thomas J.; Noel, Michael W.

    2017-04-01

    The state distribution of an ensemble of Rydberg atoms is commonly measured using selective field ionization. The resulting time resolved ionization signal from a single energy eigenstate tends to spread out due to the multiple avoided Stark level crossings atoms must traverse on the way to ionization. The shape of the ionization signal can be modified by adding a perturbation field to the main field ramp. Here, we present experimental results of the manipulation of the ionization signal using a genetic algorithm. We address how both the genetic algorithm and the experimental parameters were adjusted to achieve an optimized result. This work was supported by the National Science Foundation under Grants No. 1607335 and No. 1607377.

  8. Multiphoton ionization of many-electron atoms and highly-charged ions in intense laser fields: a relativistic time-dependent density functional theory approach

    NASA Astrophysics Data System (ADS)

    Tumakov, Dmitry A.; Telnov, Dmitry A.; Maltsev, Ilia A.; Plunien, Günter; Shabaev, Vladimir M.

    2017-10-01

    We develop an efficient numerical implementation of the relativistic time-dependent density functional theory (RTDDFT) to study multielectron highly-charged ions subject to intense linearly-polarized laser fields. The interaction with the electromagnetic field is described within the electric dipole approximation. The resulting time-dependent relativistic Kohn-Sham (RKS) equations possess an axial symmetry and are solved accurately and efficiently with the help of the time-dependent generalized pseudospectral method. As a case study, we calculate multiphoton ionization probabilities of the neutral argon atom and argon-like xenon ion. Relativistic effects are assessed by comparison of our present results with existing non-relativistic data.

  9. High Resolution Laser Mass Spectrometry Bioimaging

    PubMed Central

    Murray, Kermit K.; Seneviratne, Chinthaka A.; Ghorai, Suman

    2016-01-01

    MSI (MSI) was introduced more than five decades ago with secondary ion mass spectrometry (SIMS) and a decade later with laser desorption/ionization (LDI) mass spectrometry (MS). Large biomolecule imaging by matrix-assisted laser desorption/ionization (MALDI) was developed in the 1990s and ambient laser MS a decade ago. Although SIMS has been capable of imaging with a moderate mass range at sub-micrometer lateral resolution from its inception, laser MS requires additional effort to achieve a lateral resolution of 10 μm or below which is required to image at the size scale of single mammalian cells. This review covers untargeted large biomolecule MSI using lasers for desorption/ionization or laser desorption and post-ionization. These methods include laser microprobe (LDI) MSI, MALDI MSI, laser ambient and atmospheric pressure MSI, and near-field laser ablation MS. Novel approaches to improving lateral resolution are discussed, including oversampling, beam shaping, transmission geometry, reflective and through-hole objectives, microscope mode, and near-field optics. PMID:26972785

  10. High resolution laser mass spectrometry bioimaging.

    PubMed

    Murray, Kermit K; Seneviratne, Chinthaka A; Ghorai, Suman

    2016-07-15

    Mass spectrometry imaging (MSI) was introduced more than five decades ago with secondary ion mass spectrometry (SIMS) and a decade later with laser desorption/ionization (LDI) mass spectrometry (MS). Large biomolecule imaging by matrix-assisted laser desorption/ionization (MALDI) was developed in the 1990s and ambient laser MS a decade ago. Although SIMS has been capable of imaging with a moderate mass range at sub-micrometer lateral resolution from its inception, laser MS requires additional effort to achieve a lateral resolution of 10μm or below which is required to image at the size scale of single mammalian cells. This review covers untargeted large biomolecule MSI using lasers for desorption/ionization or laser desorption and post-ionization. These methods include laser microprobe (LDI) MSI, MALDI MSI, laser ambient and atmospheric pressure MSI, and near-field laser ablation MS. Novel approaches to improving lateral resolution are discussed, including oversampling, beam shaping, transmission geometry, reflective and through-hole objectives, microscope mode, and near-field optics. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. From pixel to voxel: a deeper view of biological tissue by 3D mass spectral imaging

    PubMed Central

    Ye, Hui; Greer, Tyler; Li, Lingjun

    2011-01-01

    Three dimensional mass spectral imaging (3D MSI) is an exciting field that grants the ability to study a broad mass range of molecular species ranging from small molecules to large proteins by creating lateral and vertical distribution maps of select compounds. Although the general premise behind 3D MSI is simple, factors such as choice of ionization method, sample handling, software considerations and many others must be taken into account for the successful design of a 3D MSI experiment. This review provides a brief overview of ionization methods, sample preparation, software types and technological advancements driving 3D MSI research of a wide range of low- to high-mass analytes. Future perspectives in this field are also provided to conclude that the positive and promises ever-growing applications in the biomedical field with continuous developments of this powerful analytical tool. PMID:21320052

  12. Weakly ionized cosmic gas: Ionization and characterization

    NASA Technical Reports Server (NTRS)

    Rosenberg, M.; Mendis, D. A.; Chow, V. W.

    1994-01-01

    Since collective plasma behavior may determine important transport processes (e.g., plasma diffusion across a magnetic field) in certain cosmic environments, it is important to delineate the parameter space in which weakly ionized cosmic gases may be characterized as plasmas. In this short note, we do so. First, we use values for the ionization fraction given in the literature, wherein the ionization is generally assumed to be due primarily to ionization by cosmic rays. We also discuss an additional mechanism for ionization in such environments, namely, the photoelectric emission of electrons from cosmic dust grains in an interstellar Far Ultra Violet (FUV) radiation field. Simple estimates suggest that under certain conditions this mechanism may dominate cosmic ray ionization, and possibly also the photoionization of metal atoms by the interstellar FUV field, and thereby lead to an enhanced ionization level.

  13. Tunneling exit characteristics from classical backpropagation of an ionized electron wave packet

    NASA Astrophysics Data System (ADS)

    Ni, Hongcheng; Saalmann, Ulf; Rost, Jan-Michael

    2018-01-01

    We investigate tunneling ionization of a single active electron with a strong and short laser pulse, circularly polarized. With the recently proposed backpropagation method, we can compare different criteria for the tunnel exit as well as popular approximations in strong-field physics on the same footing. Thereby, we trace back discrepancies in the literature regarding the tunneling time to inconsistent tunneling exit criteria. The main source of error is the use of a static ionization potential, which is, however, time dependent for a short laser pulse. A vanishing velocity in the instantaneous field direction as tunneling exit criterion offers a consistent alternative, since it does not require the knowledge of the instantaneous binding energy. Finally, we propose a mapping technique that links observables from attoclock experiments to the intrinsic tunneling exit time.

  14. Ionization Study of Isomeric Molecules in Strong-field Laser Pulses

    DOE PAGES

    Zigo, Stefan; Le, Anh-Thu; Timilsina, Pratap; ...

    2017-02-10

    Through the use of the technique of time-of-flight mass spectroscopy, we obtain strong-field ionization yields for randomly oriented 1,2-dichloroethylene (1,2-DCE) (C 2H 2Cl 2) and 2-butene (C 4H 8). Here, we are interested in studying the effect of conformal structure in strong-field ionization and, in particular, the role of molecular polarity. That is, we can perform strong-field ionization studies in polar vs non-polar molecules that have the same chemical composition. Here, we report our findings through the ionization yields and the ratio (trans/cis) of each stereoisomer pair as a function of intensity.

  15. Fast Atom Ionization in Strong Electromagnetic Radiation

    NASA Astrophysics Data System (ADS)

    Apostol, M.

    2018-05-01

    The Goeppert-Mayer and Kramers-Henneberger transformations are examined for bound charges placed in electromagnetic radiation in the non-relativistic approximation. The consistent inclusion of the interaction with the radiation field provides the time evolution of the wavefunction with both structural interaction (which ensures the bound state) and electromagnetic interaction. It is shown that in a short time after switching on the high-intensity radiation the bound charges are set free. In these conditions, a statistical criterion is used to estimate the rate of atom ionization. The results correspond to a sudden application of the electromagnetic interaction, in contrast with the well-known ionization probability obtained by quasi-classical tunneling through classically unavailable non-stationary states, or other equivalent methods, where the interaction is introduced adiabatically. For low-intensity radiation the charges oscillate and emit higher-order harmonics, the charge configuration is re-arranged and the process is resumed. Tunneling ionization may appear in these circumstances. Extension of the approach to other applications involving radiation-induced charge emission from bound states is discussed, like ionization of molecules, atomic clusters or proton emission from atomic nuclei. Also, results for a static electric field are included.

  16. Nonlinear optical response in narrow graphene nanoribbons

    NASA Astrophysics Data System (ADS)

    Karimi, Farhad; Knezevic, Irena

    We present an iterative method to calculate the nonlinear optical response of armchair graphene nanoribbons (aGNRs) and zigzag graphene nanoribbons (zGNRs) while including the effects of dissipation. In contrast to methods that calculate the nonlinear response in the ballistic (dissipation-free) regime, here we obtain the nonlinear response of an electronic system to an external electromagnetic field while interacting with a dissipative environment (to second order). We use a self-consistent-field approach within a Markovian master-equation formalism (SCF-MMEF) coupled with full-wave electromagnetic equations, and we solve the master equation iteratively to obtain the higher-order response functions. We employ the SCF-MMEF to calculate the nonlinear conductance and susceptibility, as well as to calculate the dependence of the plasmon dispersion and plasmon propagation length on the intensity of the electromagnetic field in GNRs. The electron scattering mechanisms included in this work are scattering with intrinsic phonons, ionized impurities, surface optical phonons, and line-edge roughness. Unlike in wide GNRs, where ionized-impurity scattering dominates dissipation, in ultra-narrow nanoribbons on polar substrates optical-phonon scattering and ionized-impurity scattering are equally prominent. Support by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering under Award DE-SC0008712.

  17. Touch Spray Mass Spectrometry for In Situ Analysis of Complex Samples

    PubMed Central

    Kerian, Kevin S.; Jarmusch, Alan K.; Cooks, R. Graham

    2014-01-01

    Touch spray, a spray-based ambient in-situ ionization method, uses a small probe, e.g. a teasing needle to pick up sample and the application of voltage and solvent to cause field-induced droplet emission. Compounds extracted from the microsample are incorporated into the sprayed micro droplets. Performance tests include disease state of tissue, microorganism identification, and therapeutic drug quantitation. Chemical derivatization is performed simultaneously with ionization. PMID:24756256

  18. Dependence of the High Latitude Middle Atmosphere Ionization on Structures in Interplanetary Space

    NASA Technical Reports Server (NTRS)

    Bremer, J.; Lauter, E. A.

    1984-01-01

    The precipitation of high energetic electrons during and after strong geomagnetic storms into heights below 100 km in middle and subauroral latitudes is markedly modulated by the structure of the interplanetary magnetic field (IMF). Under relative quiet conditions the D-region ionization caused by high energetic particle precipitation (energies greater than 20 to 50 keV) depends on changes of the interplanetary magnetic field and also on the velocity of the solar wind. To test this assumption, the influence of the IMF-sector boundary crossings on ionospheric absorption data of high and middle latitudes by the superposed-epoch method was investigated.

  19. MEANS AND METHOD FOR PRODUCING A VACUUM

    DOEpatents

    Otavka, M.A.

    1960-08-01

    A new method is given for starting the operation of evapor-ion vacuum pumps. Ordinarily this type of pump is started by inducing an electric field with the vacuum chamber; however, by placing such an electric field in the chamber at the outset, a glow discharge may be initiated which is harmful to the pump. The procedure consists of using a negative electric field during which time only gettering action takes place; subsequently when the field reverses after a sufficient reduction of the number of gaseous particles in the chamber both gettering and ionizing takes place.

  20. Continuous time-of-flight ion mass spectrometer

    DOEpatents

    Funsten, Herbert O.; Feldman, William C.

    2004-10-19

    A continuous time-of-flight mass spectrometer having an evacuated enclosure with means for generating an electric field located in the evacuated enclosure and means for injecting a sample material into the electric field. A source of continuous ionizing radiation injects ionizing radiation into the electric field to ionize atoms or molecules of the sample material, and timing means determine the time elapsed between arrival of a secondary electron out of said ionized atoms or molecules at a first predetermined location and arrival of a sample ion out of said ionized atoms or molecules at a second predetermined location.

  1. Extreme ionization of Xe clusters driven by ultraintense laser fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heidenreich, Andreas; Last, Isidore; Jortner, Joshua

    We applied theoretical models and molecular dynamics simulations to explore extreme multielectron ionization in Xe{sub n} clusters (n=2-2171, initial cluster radius R{sub 0}=2.16-31.0 A ring ) driven by ultraintense infrared Gaussian laser fields (peak intensity I{sub M}=10{sup 15}-10{sup 20} W cm{sup -2}, temporal pulse length {tau}=10-100 fs, and frequency {nu}=0.35 fs{sup -1}). Cluster compound ionization was described by three processes of inner ionization, nanoplasma formation, and outer ionization. Inner ionization gives rise to high ionization levels (with the formation of (Xe{sup q+}){sub n} with q=2-36), which are amenable to experimental observation. The cluster size and laser intensity dependence of themore » inner ionization levels are induced by a superposition of barrier suppression ionization (BSI) and electron impact ionization (EII). The BSI was induced by a composite field involving the laser field and an inner field of the ions and electrons, which manifests ignition enhancement and screening retardation effects. EII was treated using experimental cross sections, with a proper account of sequential impact ionization. At the highest intensities (I{sub M}=10{sup 18}-10{sup 20} W cm{sup -2}) inner ionization is dominated by BSI. At lower intensities (I{sub M}=10{sup 15}-10{sup 16} W cm{sup -2}), where the nanoplasma is persistent, the EII contribution to the inner ionization yield is substantial. It increases with increasing the cluster size, exerts a marked effect on the increase of the (Xe{sup q+}){sub n} ionization level, is most pronounced in the cluster center, and manifests a marked increase with increasing the pulse length (i.e., becoming the dominant ionization channel (56%) for Xe{sub 2171} at {tau}=100 fs). The EII yield and the ionization level enhancement decrease with increasing the laser intensity. The pulse length dependence of the EII yield at I{sub M}=10{sup 15}-10{sup 16} W cm{sup -2} establishes an ultraintense laser pulse length control mechanism of extreme ionization products.« less

  2. Directed Field Ionization

    NASA Astrophysics Data System (ADS)

    Gregoric, Vincent C.; Kang, Xinyue; Liu, Zhimin Cheryl; Rowley, Zoe A.; Carroll, Thomas J.; Noel, Michael W.

    2017-04-01

    Selective field ionization is an important experimental technique used to study the state distribution of Rydberg atoms. This is achieved by applying a steadily increasing electric field, which successively ionizes more tightly bound states. An atom prepared in an energy eigenstate encounters many avoided Stark level crossings on the way to ionization. As it traverses these avoided crossings, its amplitude is split among multiple different states, spreading out the time resolved electron ionization signal. By perturbing the electric field ramp, we can change how the atoms traverse the avoided crossings, and thus alter the shape of the ionization signal. We have used a genetic algorithm to evolve these perturbations in real time in order to arrive at a target ionization signal shape. This process is robust to large fluctuations in experimental conditions. This work was supported by the National Science Foundation under Grants No. 1607335 and No. 1607377 and used the Extreme Science and Engineering Discovery Environment (XSEDE), which is supported by National Science Foundation Grant Number OCI-1053575.

  3. Method and apparatus for confinement of ions in the presence of a neutral gas

    DOEpatents

    Peurrung, Anthony J.; Barlow, Stephan E.

    1999-01-01

    The present invention is an apparatus and method for combining ions with a neutral gas and flowing the mixture with a radial flow component through a magnetic field so that the weakly ionized gas is confined by the neutral gas. When the weakly ionized gas is present in sufficient density, a weakly ionized non-neutral plasma is formed that may be trapped in accordance with the present invention. Applications for a weakly ionized non-neutral plasma exploit the trap's ability to store and manipulate ionic species in the presence of neutral gas. The trap may be connected to a mass spectrometer thereby permitting species identification after a fixed period of time. Delicate and/or heavy particles such as clusters may be held and studied in a "gentle" environment. In addition, the trap can provide a relatively intense, low-energy source of a particular ion species for surface implantation or molecular chemistry. Finally, a long trap may permit spectroscopy of unprecedented accuracy to be performed on ionic species.

  4. [Investigation of non-ionizing radiation hazards from physiotherapy equipment in 16 medical institutions].

    PubMed

    He, Jia-xi; Zhou, Wei; Qiu, Hai-li; Yang, Guang-tao

    2013-12-01

    To investigate the non-ionizing radiation hazards from physiotherapy equipment in medical institutions and to explore feasible control measures for occupational diseases. On-site measurement and assessment of ultra-high-frequency radiation, high-frequency electromagnetic field, microwave radiation, and laser radiation were carried out in 16 medical institutions using the methods in the Measurement of Physical Agents in Workplace (GBZ/T189-2007). All the investigated medical institutions failed to take effective protective measures against non-ionizing radiation. Of the 17 ultra-short wave therapy apparatus, 70.6%, 47.1%, and 17.64% had a safe intensity of ultra-high-frequency radiation on the head, chest, and abdomen, respectively. Of the 4 external high-frequency thermotherapy apparatus, 100%, 75%, and 75%had a safe intensity of high-frequency electromagnetic field on the head, chest, and abdomen, respectively. In addition, the intensities of microwave radiation and laser radiation produced by the 18 microwave therapy apparatus and 12 laser therapeutic apparatus met national health standards. There are non-ionizing radiation hazards from physiotherapy equipment in medical institutions, and effective prevention and control measures are necessary.

  5. Ambient mass spectrometry: Direct analysis of dimethoate, tebuconazole, and trifloxystrobin on olive and vine leaves by desorption electrospray ionization interface.

    PubMed

    Mainero Rocca, Lucia; Cecca, Juri; L'Episcopo, Nunziata; Fabrizi, Giovanni

    2017-11-01

    A new field of application for a relatively new mass-spectrometric interface such as desorption electrospray ionization was evaluated. For this purpose, its behavior was tested versus quantitative analysis of dimethoate, trifloxystrobin, and tebuconazole directly on olive and vine leaves surface. The goal was workers exposure assessment during field re-entry operations since evidence suggests an association between chronic occupational exposure to some agrochemicals and severe adverse effects. Desorption electrospray ionization gave good response working in positive ionization mode, while numerous test were necessary for the choice of a unique blend of spray solvents suitable for all 3 substances. The best compromise, in terms of signal to noise ratios, was obtained with the CH 3 OH/H 2 O (80:20) mixture. The obvious difficulties related to the impossibility to use the internal standard were overcome through an accurate validation. Limits of detection and quantitation, dynamic ranges, matrix effects, and intraday precisions were calculated, and a small monitoring campaign was arranged to test method applicability and to evaluate potential dermal exposure. This protocol was developed in work safety field, but after a brief investigation, it was find to be suitable also for food residue evaluation. Copyright © 2017 John Wiley & Sons, Ltd.

  6. Possible standoff detection of ionizing radiation using high-power THz electromagnetic waves

    NASA Astrophysics Data System (ADS)

    Nusinovich, Gregory S.; Sprangle, Phillip; Romero-Talamas, Carlos A.; Rodgers, John; Pu, Ruifeng; Kashyn, Dmytro G.; Antonsen, Thomas M., Jr.; Granatstein, Victor L.

    2012-06-01

    Recently, a new method of remote detection of concealed radioactive materials was proposed. This method is based on focusing high-power short wavelength electromagnetic radiation in a small volume where the wave electric field exceeds the breakdown threshold. In the presence of free electrons caused by ionizing radiation, in this volume an avalanche discharge can then be initiated. When the wavelength is short enough, the probability of having even one free electron in this small volume in the absence of additional sources of ionization is low. Hence, a high breakdown rate will indicate that in the vicinity of this volume there are some materials causing ionization of air. To prove this concept a 0.67 THz gyrotron delivering 200-300 kW power in 10 microsecond pulses is under development. This method of standoff detection of concealed sources of ionizing radiation requires a wide range of studies, viz., evaluation of possible range, THz power and pulse duration, production of free electrons in air by gamma rays penetrating through container walls, statistical delay time in initiation of the breakdown in the case of low electron density, temporal evolution of plasma structure in the breakdown and scattering of THz radiation from small plasma objects. Most of these issues are discussed in the paper.

  7. Charge Assisted Laser Desorption/Ionization Mass Spectrometry of Droplets

    PubMed Central

    Jorabchi, Kaveh; Westphall, Michael S.; Smith, Lloyd M.

    2008-01-01

    We propose and evaluate a new mechanism to account for analyte ion signal enhancement in ultraviolet-laser desorption mass spectrometry of droplets in the presence of corona ions. Our new insights are based on timing control of corona ion production, laser desorption, and peptide ion extraction achieved by a novel pulsed corona apparatus. We demonstrate that droplet charging rather than gas-phase ion-neutral reactions is the major contributor to analyte ion generation from an electrically isolated droplet. Implications of the new mechanism, termed charge assisted laser desorption/ionization (CALDI), are discussed and contrasted to those of the laser desorption atmospheric pressure chemical ionization method (LD-APCI). It is also demonstrated that analyte ion generation in CALDI occurs with external electric fields about one order of magnitude lower than those needed for atmospheric pressure matrix assisted laser desorption/ionization or electrospray ionization of droplets. PMID:18387311

  8. Development and Applications of Liquid Sample Desorption Electrospray Ionization Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Zheng, Qiuling; Chen, Hao

    2016-06-01

    Desorption electrospray ionization mass spectrometry (DESI-MS) is a recent advance in the field of analytical chemistry. This review surveys the development of liquid sample DESI-MS (LS-DESI-MS), a variant form of DESI-MS that focuses on fast analysis of liquid samples, and its novel analy-tical applications in bioanalysis, proteomics, and reaction kinetics. Due to the capability of directly ionizing liquid samples, liquid sample DESI (LS-DESI) has been successfully used to couple MS with various analytical techniques, such as microfluidics, microextraction, electrochemistry, and chromatography. This review also covers these hyphenated techniques. In addition, several closely related ionization methods, including transmission mode DESI, thermally assisted DESI, and continuous flow-extractive DESI, are briefly discussed. The capabilities of LS-DESI extend and/or complement the utilities of traditional DESI and electrospray ionization and will find extensive and valuable analytical application in the future.

  9. Scaling-law equilibria for calcium in canopy-type models of the solar chromosphere

    NASA Technical Reports Server (NTRS)

    Jones, H. P.

    1982-01-01

    Scaling laws for resonance line formation are used to obtain approximate excitation and ionization equilibria for a three-level model of singly ionized calcium. The method has been developed for and is applied to the study of magnetograph response in the 8542 A infrared triplet line to magnetostatic canopies which schematically model diffuse, nearly horizontal fields in the low solar chromosphere. For this application, the method is shown to be efficient and semi-quantitative, and the results indicate the type and range of effects on calcium-line radiation which result from reduced gas pressure inside the magnetic regions.

  10. Density-Functional Theory with Optimized Effective Potential and Self-Interaction Correction for the Double Ionization of He and Be Atoms

    NASA Astrophysics Data System (ADS)

    Heslar, John; Telnov, Dmitry; Chu, Shih-I.

    2012-06-01

    We present a self-interaction-free (SIC) time-dependent density-functional theory (TDDFT) for the treatment of double ionization processes of many-electron systems. The method is based on the Krieger-Li-Iafrate (KLI) treatment of the optimized effective potential (OEP) theory and the incorporation of an explicit self-interaction correction (SIC) term. In the framework of the time-dependent density functional theory, we have performed 3D calculations of double ionization of He and Be atoms by strong near-infrared laser fields. We make use of the exchange-correlation potential with the integer discontinuity which improves the description of the double ionization process. We found that proper description of the double ionization requires the TDDFT exchange-correlation potential with the discontinuity with respect to the variation of the spin particle numbers (SPN) only. The results for the intensity-dependent probabilities of single and double ionization are presented and reproduce the famous ``knee'' structure.

  11. Influence of field ionization effect on the divergence of laser-driven fast electrons

    NASA Astrophysics Data System (ADS)

    Lang, Y.; Yang, X. H.; Xu, H.; Jin, Z.; Zhuo, H. B.

    2018-07-01

    The effect of field ionization on the divergence of fast electrons (E k ≥ 50 keV), driven by ultrashort-ultraintense laser pulse interaction with plasma, is studied by using 2D3V particle-in-cell simulations. It is found that, due to temperature anisotropy of the fast electrons in the ionizing target, strong fluctuant magnetic fields in the preplasma region is generated through Weibel instability. In turn, the field induces an enhancement of the hot electron divergence for the target with ionization process. Meanwhile, compared with the target without an ionization process, larger divergence of hot electrons can also be seen in the ionizing target with laser intensity varying from 5 × 1019 W/cm2 to 5 × 1020 W/cm2 and the divergence is weakly dependent on target materials for a fixed profile of preplasma. The results here are useful for the application of laser-driven fast electron beams.

  12. The effect of the earth's and stray magnetic fields on mobile mass spectrometer systems.

    PubMed

    Bell, Ryan J; Davey, Nicholas G; Martinsen, Morten; Short, R Timothy; Gill, Chris G; Krogh, Erik T

    2015-02-01

    Development of small, field-portable mass spectrometers has enabled a rapid growth of in-field measurements on mobile platforms. In such in-field measurements, unexpected signal variability has been observed by the authors in portable ion traps with internal electron ionization. The orientation of magnetic fields (such as the Earth's) relative to the ionization electron beam trajectory can significantly alter the electron flux into a quadrupole ion trap, resulting in significant changes in the instrumental sensitivity. Instrument simulations and experiments were performed relative to the earth's magnetic field to assess the importance of (1) nonpoint-source electron sources, (2) vertical versus horizontal electron beam orientation, and (3) secondary magnetic fields created by the instrument itself. Electron lens focus effects were explored by additional simulations, and were paralleled by experiments performed with a mass spectrometer mounted on a rotating platform. Additionally, magnetically permeable metals were used to shield (1) the entire instrument from the Earth's magnetic field, and (2) the electron beam from both the Earth's and instrument's magnetic fields. Both simulation and experimental results suggest the predominant influence on directionally dependent signal variability is the result of the summation of two magnetic vectors. As such, the most effective method for reducing this effect is the shielding of the electron beam from both magnetic vectors, thus improving electron beam alignment and removing any directional dependency. The improved ionizing electron beam alignment also allows for significant improvements in overall instrument sensitivity.

  13. Ionization-Induced Self-Channeling of an Ultrahigh-Power Subnanosecond Microwave Beam in a Neutral Gas

    NASA Astrophysics Data System (ADS)

    Shafir, G.; Krasik, Ya. E.; Bliokh, Y. P.; Levko, D.; Cao, Y.; Leopold, J. G.; Gad, R.; Bernshtam, V.; Fisher, A.

    2018-03-01

    Ionization-induced self-channeling of a ≤500 MW , 9.6 GHz, <1 ns microwave beam injected into air at ˜4.5 ×103 Pa or He at ˜103 Pa is experimentally demonstrated for the first time. The plasma, generated by the impact ionization of the gas driven by the microwave beam, has a radial density distribution reducing towards the beam axis, where the microwave field is highest, because the ionization rate is a decreasing function of the microwave amplitude. This forms a plasma channel which prevents the divergence of the microwave beam. The experimental data obtained using various diagnostic methods are in good agreement with the results of analytical calculations, as well as particle in cell Monte Carlo collisional modeling.

  14. Low-Pressure, Field-Ionizing Mass Spectrometer

    NASA Technical Reports Server (NTRS)

    Hartley, Frank; Smith, Steven

    2009-01-01

    A small mass spectrometer utilizing a miniature field ionization source is now undergoing development. It is designed for use in a variety of applications in which there are requirements for a lightweight, low-power-consumption instrument that can analyze the masses of a wide variety of molecules and ions. The device can operate without need for a high-vacuum, carrier-gas feed radioactive ionizing source, or thermal ionizer. This mass spectrometer can operate either in the natural vacuum of outer space or on Earth at any ambient pressure below 50 torr (below about 6.7 kPa) - a partial vacuum that can easily be reached by use of a small sampling pump. This mass spectrometer also has a large dynamic range - from singly charged small gas ions to deoxyribonucleic acid (DNA) fragments larger than 104 atomic mass units - with sensitivity adequate for detecting some molecules and ions at relative abundances of less than one part per billion. This instrument (see figure) includes a field ionizer integrated with a rotating-field mass spectrometer (RFMS). The field ionizer effects ionization of a type characterized as "soft" in the art because it does not fragment molecules or initiate avalanche arcing. What makes the "soft" ionization mode possible is that the distance between the ionizing electrodes is less than mean free path for ions at the maximum anticipated operating pressure, so that the ionizer always operates on the non-breakdown side of the applicable Paschen curve (a standard plot of breakdown potential on the ordinate and pressure electrode separation on the abscissa). The field ionizer in this instrument is fabricated by micromachining a submicron-thick membrane out of an electrically nonconductive substrate, coating the membrane on both sides to form electrodes, then micromachining small holes through the electrodes and membrane. Because of the submicron electrode separation, even a potential of only 1 V applied between the electrodes gives rise to an electric field with a strength of in excess of a megavolt per meter strong enough to ionize any gas molecules passing through the holes. An accelerator grid and an electrostatic deflector focus the ions from the field ionizer into the rotating-field cell of the RFMS. The potentials applied to the electrodes of the cell to generate the rotating electric field typically range from 1 to 13 V. The ions travel in well-defined helices within this cell, after which they are collected in a Faraday cup. The mass of most of the molecules reaching the Faraday cup decreases with increasing frequency of rotation of the electric field in the cell. Therefore, the frequency of rotation of the electric field is made to vary in order to scan through a desired range of ion masses: For example, lightweight gas molecules are scanned at frequencies in the megahertz range, while DNA and other large organic molecules are scanned at kilohertz frequencies.

  15. Probing electron delays in above-threshold ionization

    DOE PAGES

    Zipp, Lucas J.; Natan, Adi; Bucksbaum, Philip H.

    2014-11-21

    Recent experiments have revealed attosecond delays in the emission of electrons from atoms ionized by extreme UV light, offering a glimpse into the ultrafast nature of light-induced electron dynamics. In this work, we extend these measurements to the strong-field above-threshold ionization (ATI) regime, by measuring delays in the photoemission of electrons from argon in the presence of an intense laser field. We probe the ATI process with a weak coherent reference, at half the laser frequency. The interfering ionization signal reveals the relative spectral phase of adjacent ATI channels, with an equivalent resolution of a few attoseconds. These relative delaysmore » depend on the strong field, and approach zero at higher intensity. Our phase measurements of ATI electrons show how strong fields alter ionization dynamics in atoms.« less

  16. Magnetic field and dielectric environment effects on an exciton trapped by an ionized donor in a spherical quantum dot

    NASA Astrophysics Data System (ADS)

    Aghoutane, N.; Feddi, E.; El-Yadri, M.; Bosch Bailach, J.; Dujardin, F.; Duque, C. A.

    2017-11-01

    Magnetic field and host dielectric environment effects on the binding energy of an exciton trapped by an ionized donor in spherical quantum dot are investigated. In the framework of the effective mass approximation and by using a variational method, the calculations have been performed by developing a robust ten-terms wave function taking into account the different inter-particles correlations and the distortion of symmetry induced by the orientation of the applied magnetic field. The binding and the localization energies are determined as functions of dot size and magnetic field strength. It appears that the variation of magnetic shift obeys a quadratic law for low magnetic fields regime while, for strong magnetic fields, this shift tends to be linear versus the magnetic field strength. The stability of this complex subjected to a magnetic field is also discussed according to the electron-hole ratio and the dielectric constant of the surrounding medium. A last point to highlight is that the Haynes' rule remains valid even in the presence of an applied magnetic field.

  17. Size dependence of the polarizability and Haynes rule for an exciton bound to an ionized donor in a single spherical quantum dot

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feddi, E., E-mail: e.feddi@um5s.net.ma; Zouitine, A.; Oukerroum, A.

    We study the effect of an external electric field on an exciton bound to an ionized donor (D{sup +}, X) confined in a spherical quantum dot using a perturbative-variational method where the wave function and energy are developed in series of powers of the electric field strength. After testing this new approach in the determination of the band gap for some semiconductor materials, we generalize it to the case of (D{sup +}, X) in the presence of the electric field and for several materials ZnO, PbSe, and InAs, with significant values of the mass ratio. Three interesting results can bemore » deduced: First, we show that the present method allows to determine the ground state energy in the presence of a weak electric field in a simple way (E = E{sub 0} − αf{sup 2}) using the energy without electric field E{sub 0} and the polarizability α. The second point is that our theoretical predictions show that the polarizability of (D{sup +}, X) varies proportionally to R{sup 3.5} and follows an ordering α{sub D{sup 0}}« less

  18. Mass spectrometry imaging under ambient conditions.

    PubMed

    Wu, Chunping; Dill, Allison L; Eberlin, Livia S; Cooks, R Graham; Ifa, Demian R

    2013-01-01

    Mass spectrometry imaging (MSI) has emerged as an important tool in the last decade and it is beginning to show potential to provide new information in many fields owing to its unique ability to acquire molecularly specific images and to provide multiplexed information, without the need for labeling or staining. In MSI, the chemical identity of molecules present on a surface is investigated as a function of spatial distribution. In addition to now standard methods involving MSI in vacuum, recently developed ambient ionization techniques allow MSI to be performed under atmospheric pressure on untreated samples outside the mass spectrometer. Here we review recent developments and applications of MSI emphasizing the ambient ionization techniques of desorption electrospray ionization (DESI), laser ablation electrospray ionization (LAESI), probe electrospray ionization (PESI), desorption atmospheric pressure photoionization (DAPPI), femtosecond laser desorption ionization (fs-LDI), laser electrospray mass spectrometry (LEMS), infrared laser ablation metastable-induced chemical ionization (IR-LAMICI), liquid microjunction surface sampling probe mass spectrometry (LMJ-SSP MS), nanospray desorption electrospray ionization (nano-DESI), and plasma sources such as the low temperature plasma (LTP) probe and laser ablation coupled to flowing atmospheric-pressure afterglow (LA-FAPA). Included are discussions of some of the features of ambient MSI for example the ability to implement chemical reactions with the goal of providing high abundance ions characteristic of specific compounds of interest and the use of tandem mass spectrometry to either map the distribution of targeted molecules with high specificity or to provide additional MS information on the structural identification of compounds. We also describe the role of bioinformatics in acquiring and interpreting the chemical and spatial information obtained through MSI, especially in biological applications for tissue diagnostic purposes. Finally, we discuss the challenges in ambient MSI and include perspectives on the future of the field. Copyright © 2012 Wiley Periodicals, Inc.

  19. Mass Spectrometry Imaging under Ambient Conditions

    PubMed Central

    Wu, Chunping; Dill, Allison L.; Eberlin, Livia S.; Cooks, R. Graham; Ifa, Demian R.

    2012-01-01

    Mass spectrometry imaging (MSI) has emerged as an important tool in the last decade and it is beginning to show potential to provide new information in many fields owing to its unique ability to acquire molecularly specific images and to provide multiplexed information, without the need for labeling or staining. In MSI, the chemical identity of molecules present on a surface is investigated as a function of spatial distribution. In addition to now standard methods involving MSI in vacuum, recently developed ambient ionization techniques allow MSI to be performed under atmospheric pressure on untreated samples outside the mass spectrometer. Here we review recent developments and applications of MSI emphasizing the ambient ionization techniques of desorption electrospray ionization (DESI), laser ablation electrospray ionization (LAESI), probe electrospray ionization (PESI), desorption atmospheric pressure photoionization (DAPPI), femtosecond laser desorption ionization (fs-LDI), laser electrospray mass spectrometry (LEMS), infrared laser ablation metastable-induced chemical ionization (IR-LAMICI), liquid microjunction surface sampling probe mass spectrometry (LMJ-SSP MS), nanospray desorption electrospray ionization (nano-DESI), and plasma sources such as the low temperature plasma (LTP) probe and laser ablation coupled to flowing atmospheric-pressure afterglow (LA-FAPA). Included are discussions of some of the features of ambient MSI including the ability to implement chemical reactions with the goal of providing high abundance ions characteristic of specific compounds of interest and the use of tandem mass spectrometry to either map the distribution of targeted molecules with high specificity or to provide additional MS information in the structural identification of compounds. We also describe the role of bioinformatics in acquiring and interpreting the chemical and spatial information obtained through MSI, especially in biological applications for tissue diagnostic purposes. Finally, we discuss the challenges in ambient MSI and include perspectives on the future of the field. PMID:22996621

  20. Interpretation of the electric fields measured in an ionospheric critical ionization velocity experiment

    NASA Technical Reports Server (NTRS)

    Brenning, N.; Faelthammar, C.-G.; Marklund, G.; Haerendel, G.; Kelley, M. C.; Pfaff, R.

    1991-01-01

    The quasi-dc electric fields measured in the CRIT I ionospheric release experiment are studied. In the experiment, two identical barium shaped charges were fired toward a main payload, and three-dimensional measurements of the electric field inside the streams were made. The relevance of proposed mechanisms for electron heating in the critical ionization velocity (CIV) mechanism is addressed. It is concluded that both the 'homogeneous' and the 'ionizing front' models probably are valid, but in different parts of the streams. It is also possible that electrons are directly accelerated by a magnetic field-aligned component of the electric field. The coupling between the ambient ionosphere and the ionized barium stream is more complicated that is usually assumed in CIV theories, with strong magnetic-field-aligned electric fields and probably current limitation as important processes.

  1. Nyx: Adaptive mesh, massively-parallel, cosmological simulation code

    NASA Astrophysics Data System (ADS)

    Almgren, Ann; Beckner, Vince; Friesen, Brian; Lukic, Zarija; Zhang, Weiqun

    2017-12-01

    Nyx code solves equations of compressible hydrodynamics on an adaptive grid hierarchy coupled with an N-body treatment of dark matter. The gas dynamics in Nyx use a finite volume methodology on an adaptive set of 3-D Eulerian grids; dark matter is represented as discrete particles moving under the influence of gravity. Particles are evolved via a particle-mesh method, using Cloud-in-Cell deposition/interpolation scheme. Both baryonic and dark matter contribute to the gravitational field. In addition, Nyx includes physics for accurately modeling the intergalactic medium; in optically thin limits and assuming ionization equilibrium, the code calculates heating and cooling processes of the primordial-composition gas in an ionizing ultraviolet background radiation field.

  2. Virtual detector theory for strong-field atomic ionization

    NASA Astrophysics Data System (ADS)

    Wang, Xu; Tian, Justin; Eberly, J. H.

    2018-04-01

    A virtual detector (VD) is an imaginary device located at a fixed position in space that extracts information from the wave packet passing through it. By recording the particle momentum and the corresponding probability current at each time, the VDs can accumulate and build the differential momentum distribution of the particle, in a way that resembles real experiments. A mathematical proof is given for the equivalence of the differential momentum distribution obtained by the VD method and by Fourier transforming the wave function. In addition to being a tool for reducing the computational load, VDs have also been found useful in interpreting the ultrafast strong-field ionization process, especially the controversial quantum tunneling process.

  3. Method for analyzing the mass of a sample using a cold cathode ionization source mass filter

    DOEpatents

    Felter, Thomas E.

    2003-10-14

    An improved quadrupole mass spectrometer is described. The improvement lies in the substitution of the conventional hot filament electron source with a cold cathode field emitter array which in turn allows operating a small QMS at much high internal pressures then are currently achievable. By eliminating of the hot filament such problems as thermally "cracking" delicate analyte molecules, outgassing a "hot" filament, high power requirements, filament contamination by outgas species, and spurious em fields are avoid all together. In addition, the ability of produce FEAs using well-known and well developed photolithographic techniques, permits building a QMS having multiple redundancies of the ionization source at very low additional cost.

  4. Fluctuations of the intergalactic ionization field at redshift z ~ 2

    NASA Astrophysics Data System (ADS)

    Agafonova, I. I.; Levshakov, S. A.; Reimers, D.; Hagen, H.-J.; Tytler, D.

    2013-04-01

    Aims: To probe the spectral energy distribution (SED) of the ionizing background radiation at z ≲ 2 and to specify the sources contributing to the intergalactic radiation field. Methods: The spectrum of a bright quasar HS 1103+6416 (zem = 2.19) contains five successive metal-line absorption systems at zabs = 1.1923, 1.7193, 1.8873, 1.8916, and 1.9410. The systems are optically thin and reveal multiple lines of different metal ions with the ionization potentials lying in the extreme ultraviolet (EUV) range (~1 Ryd to ~0.2 keV). For each system, the EUV SED of the underlying ionization field is reconstructed by means of a special technique developed for solving the inverse problem in spectroscopy. For the zabs = 1.8916 system, the analysis also involves the He I resonance lines of the Lyman series and the He iλ504 Å continuum, which are seen for the first time in any cosmic object except the Sun. Results: From one system to another, the SED of the ionizing continuum changes significantly, indicating that the intergalactic ionization field at z ≲ 2 fluctuates at the scale of at least Δz ~ 0.004. This is consistent with Δz ≲ 0.01 estimated from He II and H I Lyman-α forest measurements between the redshifts 2 and 3. A radiation intensity break by approximately an order of magnitude at E = 4 Ryd in SEDs restored for the zabs = 1.1923, 1.8873, 1.8916, and 1.9410 systems points to quasars as the main sources of the ionizing radiation. The SED variability is mostly caused by a small number of objects contributing at any given redshift to the ionizing background; at scales Δz ≳ 0.05, the influence of local radiation sources becomes significant. A remarkable SED restored for the zabs = 1.7193 system, with a sharp break shifted to E ~ 3.5 Ryd and a subsequent intensity decrease by ~1.5 dex, indicates a source with comparable inputs of both hard (active galactic nuclei, AGN) and soft (stellar) radiation components. Such a continuum can be emitted by (ultra) luminous infrared galaxies, many of which reveal both a strong AGN activity and intense star formation in the circumnuclear regions.

  5. A laser-based FAIMS detector for detection of ultra-low concentrations of explosives

    NASA Astrophysics Data System (ADS)

    Akmalov, Artem E.; Chistyakov, Alexander A.; Kotkovskii, Gennadii E.; Sychev, Alexey V.; Tugaenko, Anton V.; Bogdanov, Artem S.; Perederiy, Anatoly N.; Spitsyn, Eugene M.

    2014-06-01

    A non-contact method for analyzing of explosives traces from surfaces was developed. The method is based on the laser desorption of analyzed molecules from the surveyed surfaces followed by the laser ionization of air sample combined with the field asymmetric ion mobility spectrometry (FAIMS). The pulsed radiation of the fourth harmonic of a portable GSGG: Cr3+ :Nd3+ laser (λ = 266 nm) is used. The laser desorption FAIMS analyzer have been developed. The detection limit of the analyzer equals 40 pg for TNT. The results of detection of trinitrotoluene (TNT), cyclotrimethylenetrinitramine (RDX) and cyclotetramethylenetetranitramine (HMX) are presented. It is shown that laser desorption of nitro-compounds from metals is accompanied by their surface decomposition. A method for detecting and analyzing of small concentrations of explosives in air based on the laser ionization and the FAIMS was developed. The method includes a highly efficient multipass optical scheme of the intracavity fourthharmonic generation of pulsed laser radiation (λ = 266 nm) and the field asymmetric ion mobility (FAIM) spectrometer disposed within a resonator. The ions formation and detection proceed inside a resonant cavity. The laser ion source based on the multi-passage of radiation at λ = 266 nm through the ionization region was elaborated. On the basis of the method the laser FAIMS analyzer has been created. The analyzer provides efficient detection of low concentrations of nitro-compounds in air and shows a detection limit of 10-14 - 10-15 g/cm3 both for RDX and TNT.

  6. Observation of ionization enhancement in two-color circularly polarized laser fields

    NASA Astrophysics Data System (ADS)

    Mancuso, Christopher A.; Dorney, Kevin M.; Hickstein, Daniel D.; Chaloupka, Jan L.; Tong, Xiao-Min; Ellis, Jennifer L.; Kapteyn, Henry C.; Murnane, Margaret M.

    2017-08-01

    When atoms are irradiated by two-color circularly polarized laser fields the resulting strong-field processes are dramatically different than when the same atoms are irradiated by a single-color ultrafast laser. For example, electrons can be driven in complex two-dimensional trajectories before rescattering or circularly polarized high harmonics can be generated, which was once thought impossible. Here, we show that two-color circularly polarized lasers also enable control over the ionization process itself and make a surprising finding: the ionization rate can be enhanced by up to 700 % simply by switching the relative helicity of the two-color circularly polarized laser field. This enhancement is experimentally observed in helium, argon, and krypton over a wide range of intensity ratios of the two-color field. We use a combination of advanced quantum and fully classical calculations to explain this ionization enhancement as resulting in part due to the increased density of excited states available for resonance-enhanced ionization in counter-rotating fields compared with co-rotating fields. In the future, this effect could be used to probe the excited state manifold of complex molecules.

  7. Level crossings in the ionization of H(2) Rydberg molecules at a metal surface.

    PubMed

    McCormack, E A; Ford, M S; Softley, T P

    2010-10-28

    The ionization of H(2) Rydberg states at a metal surface is investigated using a molecular beam incident at grazing incidence on a gold surface. The H(2) molecules, excited by stepwise two-color laser excitation, are selected in each of the accessible Stark eigenstates of the N(+) = 2, n = 17 Rydberg manifold in turn and the ionization at the surface is characterized by applying a field to extract the ions formed. Profiles of extracted ion signal versus applied field show resonances that can be simulated by assuming an enhancement of surface ionization at fields corresponding to energy-level crossings between the populated N(+) = 2 manifold and the near-degenerate N(+) = 0 Stark manifolds. It is concluded that the slow (microsecond time scale) rotation-electronic energy transfer to N(+) = 0 states occurring at these crossings takes place in the time interval following application of the field ramp when the molecule is still distant from, and unperturbed by, the surface. However, the energy levels are strongly perturbed by image-dipole interactions as the molecule approaches close to the surface, leading to additional energy-level crossings. Adiabatic behavior at such crossings affects the intensity of the observed resonances in the surface ionization signal but not their field positions. Resonances are also observed in the surface ionization profiles at fields above the field-ionization threshold; some of these show asymmetric "Fano-type" line shapes due to quantum interference in the nonradiative coupling to degenerate bound and continuum states.

  8. Three species one-dimensional kinetic model for weakly ionized plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gonzalez, J., E-mail: jorge.gonzalez@upm.es; Donoso, J. M.; Tierno, S. P.

    2016-06-15

    A three species one-dimensional kinetic model is presented for a spatially homogeneous weakly ionized plasma subjected to the action of a time varying electric field. Planar geometry is assumed, which means that the plasma evolves in the privileged direction of the field. The energy transmitted to the electric charges is channelized to the neutrals thanks to collisions, a mechanism that influences the plasma dynamics. Charge-charge interactions have been designed as a one-dimensional collision term equivalent to the Landau operator used for fully ionized plasmas. Charge-neutral collisions are modelled by a conservative drift-diffusion operator in the Dougherty's form. The resulting setmore » of coupled integro-differential equations is solved with the stable and robust propagator integral method. This semi–analytical method feasibility accounts for non–linear effects without appealing to linearisation or simplifications, providing conservative physically meaningful solutions even for initial or emerging sharp velocity distribution function profiles. It is found that charge-neutral collisions exert a significant effect since a quite different plasma evolution arises if compared to the collisionless limit. In addition, substantial differences in the system motion are found for constant and temperature dependent collision frequencies cases.« less

  9. Ionization of Rydberg atoms colliding with a metal surface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sjakste, J.; Borisov, A. G.; Gauyacq, J. P.

    2006-04-15

    We report on a theoretical study of the ionization process of Xe* Rydberg atoms colliding with a metal surface, in the presence of an external electric field. The evolution of the Xe* outer electron is studied by a wave packet propagation approach, allowing to include all dynamical aspects of the collision, in particular nonadiabatic inter-Rydberg transitions. We investigate how the different Xe* Stark states formed in the external field couple together and ionize on the surface and how the different polarizations of the electronic cloud in the Xe* states are reflected in their ionization properties. We show that the presencemore » of the external electric field can significantly perturb the dynamics of the ionization process. Our results account for recent results from Dunning et al. [Nucl. Inst. Meth. B 203, 69 (2003)]. In particular, it is explained how the external electric field present in the experimental procedure of Dunning et al. leads to the apparent absence of a polarization effect in the ionization process.« less

  10. Computational modeling of electrically-driven deposition of ionized polydisperse particulate powder mixtures in advanced manufacturing processes

    NASA Astrophysics Data System (ADS)

    Zohdi, T. I.

    2017-07-01

    A key part of emerging advanced additive manufacturing methods is the deposition of specialized particulate mixtures of materials on substrates. For example, in many cases these materials are polydisperse powder mixtures whereby one set of particles is chosen with the objective to electrically, thermally or mechanically functionalize the overall mixture material and another set of finer-scale particles serves as an interstitial filler/binder. Often, achieving controllable, precise, deposition is difficult or impossible using mechanical means alone. It is for this reason that electromagnetically-driven methods are being pursued in industry, whereby the particles are ionized and an electromagnetic field is used to guide them into place. The goal of this work is to develop a model and simulation framework to investigate the behavior of a deposition as a function of an applied electric field. The approach develops a modular discrete-element type method for the simulation of the particle dynamics, which provides researchers with a framework to construct computational tools for this growing industry.

  11. Shock-wave structure in a partially ionized gas

    NASA Technical Reports Server (NTRS)

    Lu, C. S.; Huang, A. B.

    1974-01-01

    The structure of a steady plane shock in a partially ionized gas has been investigated using the Boltzmann equation with a kinetic model as the governing equation and the discrete ordinate method as a tool. The effects of the electric field induced by the charge separation on the shock structure have also been studied. Although the three species of an ionized gas travel with approximately the same macroscopic velocity, the individual distribution functions are found to be very different. In a strong shock the atom distribution function may have double peaks, while the ion distribution function has only one peak. Electrons are heated up much earlier than ions and atoms in a partially ionized gas. Because the interactions of electrons with atoms and with ions are different, the ion temperature can be different from the atom temperature.

  12. SU-F-T-472: Validation of Absolute Dose Measurements for MR-IGRT With and Without Magnetic Field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Green, O; Li, H; Goddu, S

    Purpose: To validate absolute dose measurements for a MR-IGRT system without presence of the magnetic field. Methods: The standard method (AAPM’s TG-51) of absolute dose measurement with ionization chambers was tested with and without the presence of the magnetic field for a clinical 0.32-T Co-60 MR-IGRT system. Two ionization chambers were used - the Standard Imaging (Madison, WI) A18 (0.123 cc) and the PTW (Freiburg, Germany). A previously reported Monte Carlo simulation suggested a difference on the order of 0.5% for dose measured with and without the presence of the magnetic field, but testing this was not possible until anmore » engineering solution to allow the radiation system to be used without the nominal magnetic field was found. A previously identified effect of orientation in the magnetic field was also tested by placing the chamber either parallel or perpendicular to the field and irradiating from two opposing angles (90 and 270). Finally, the Imaging and Radiation Oncology Core provided OSLD detectors for five irradiations each with and without the field - with two heads at both 0 and 90 degrees, and one head at 90 degrees only as it doesn’t reach 0 (IEC convention). Results: For the TG-51 comparison, expected dose was obtained by decaying values measured at the time of source installation. The average measured difference was 0.4%±0.12% for A18 and 0.06%±0.15% for Farmer chamber. There was minimal (0.3%) orientation dependence without the magnetic field for the A18 chamber, while previous measurements with the magnetic field had a deviation of 3.2% with chamber perpendicular to magnetic field. Results reported by IROC for the OSLDs with and without the field had a maximum difference of 2%. Conclusion: Accurate absolute dosimetry was verified by measurement under the same conditions with and without the magnetic field for both ionization chambers and independently-verifiable OSLDs.« less

  13. Stefan-Maxwell Relations and Heat Flux with Anisotropic Transport Coefficients for Ionized Gases in a Magnetic Field with Application to the Problem of Ambipolar Diffusion

    NASA Astrophysics Data System (ADS)

    Kolesnichenko, A. V.; Marov, M. Ya.

    2018-01-01

    The defining relations for the thermodynamic diffusion and heat fluxes in a multicomponent, partially ionized gas mixture in an external electromagnetic field have been obtained by the methods of the kinetic theory. Generalized Stefan-Maxwell relations and algebraic equations for anisotropic transport coefficients (the multicomponent diffusion, thermal diffusion, electric and thermoelectric conductivity coefficients as well as the thermal diffusion ratios) associated with diffusion-thermal processes have been derived. The defining second-order equations are derived by the Chapman-Enskog procedure using Sonine polynomial expansions. The modified Stefan-Maxwell relations are used for the description of ambipolar diffusion in the Earth's ionospheric plasma (in the F region) composed of electrons, ions of many species, and neutral particles in a strong electromagnetic field.

  14. Investigating tunneling process of atom exposed in circularly polarized strong-laser field

    NASA Astrophysics Data System (ADS)

    Yuan, MingHu; Xin, PeiPei; Chu, TianShu; Liu, HongPing

    2017-03-01

    We propose a method for studying the tunneling process by analyzing the instantaneous ionization rate of a circularly polarized laser. A numerical calculation shows that, for an atom exposed to a long laser pulse, if its initial electronic state wave function is non-spherical symmetric, the delayed phase shift of the ionization rate vs the laser cycle period in real time in the region close to the peak intensity of the laser pulse can be used to probe the tunneling time. In this region, an obvious time delay phase shift of more than 190 attoseconds is observed. Further study shows that the atom has a longer tunneling time in the ionization under a shorter wavelength laser pulse. In our method, a Wigner rotation technique is employed to numerically solve the time-dependent Schrödinger equation of a single-active electron in a three-dimensional spherical coordinate system.

  15. Sensitive ion detection device and method for analysis of compounds as vapors in gases

    DOEpatents

    Denton, M. Bonner; Sperline, Roger P.

    2015-09-15

    An ion mobility spectrometer (IMS) for the detection of trace gaseous molecular compounds dissolved or suspended in a carrier gas, particularly in ambient air, without preconcentration or the trapping of analyte particles. The IMS of the invention comprises an ionization volume of greater than 5 cm.sup.3 and preferably greater than 100 cm.sup.3. The larger size ionizers of this invention enable analysis of trace (<1 ppb) of sample compounds in the gas phase. To facilitate efficient ion motion through the large volume ionization and reaction regions of the IMS, an electric field gradient can be provided in the ionization region or in both the ionization and reaction regions. The systems can be implemented with radioactive ionization sources, corona discharge ion sources or ions can be formed by photoionization. In specific embodiments, particularly when the sample gas is ambient air, the sample gas is heater prior to entry into the instrument, the instrument is run at temperatures above ambient, and the instrument can be heated by contact with heated sample gas exiting the instrument.

  16. Sensitive ion detection device and method for analysis of compounds as vapors in gases

    DOEpatents

    Denton, M. Bonner; Sperline, Roger P

    2014-02-18

    An ion mobility spectrometer (IMS) for the detection of trace gaseous molecular compounds dissolved or suspended in a carrier gas, particularly in ambient air, without preconcentration or the trapping of analyte particles. The IMS of the invention comprises an ionization volume of greater than 5 cm.sup.3 and preferably greater than 100 cm.sup.3. The larger size ionizers of this invention enable analysis of trace (<1 ppb) of sample compounds in the gas phase. To facilitate efficient ion motion through the large volume ionization and reaction regions of the IMS, an electric field gradient can be provided in the ionization region or in both the ionization and reaction regions. The systems can be implemented with radioactive ionization sources, corona discharge ion sources or ions can be formed by photoionization. In specific embodiments, particularly when the sample gas is ambient air, the sample gas is heater prior to entry into the instrument, the instrument is run at temperatures above ambient, and the instrument can be heated by contact with heated sample gas exiting the instrument.

  17. Effects of the magnetic field gradient on the wall power deposition of Hall thrusters

    NASA Astrophysics Data System (ADS)

    Ding, Yongjie; Li, Peng; Zhang, Xu; Wei, Liqiu; Sun, Hezhi; Peng, Wuji; Yu, Daren

    2017-04-01

    The effect of the magnetic field gradient in the discharge channel of a Hall thruster on the ionization of the neutral gas and power deposition on the wall is studied through adopting the 2D-3V particle-in-cell (PIC) and Monte Carlo collisions (MCC) model. The research shows that by gradually increasing the magnetic field gradient while keeping the maximum magnetic intensity at the channel exit and the anode position unchanged, the ionization region moves towards the channel exit and then a second ionization region appears near the anode region. Meanwhile, power deposition on the walls decreases initially and then increases. To avoid power deposition on the walls produced by electrons and ions which are ionized in the second ionization region, the anode position is moved towards the channel exit as the magnetic field gradient is increased; when the anode position remains at the zero magnetic field position, power deposition on the walls decreases, which can effectively reduce the temperature and thermal load of the discharge channel.

  18. Method and apparatus for confinement of ions in the presence of a neutral gas

    DOEpatents

    Peurrung, A.J.; Barlow, S.E.

    1999-08-03

    The present invention is an apparatus and method for combining ions with a neutral gas and flowing the mixture with a radial flow component through a magnetic field so that the weakly ionized gas is confined by the neutral gas. When the weakly ionized gas is present in sufficient density, a weakly ionized non-neutral plasma is formed that may be trapped in accordance with the present invention. Applications for a weakly ionized non-neutral plasma exploit the trap`s ability to store and manipulate ionic species in the presence of neutral gas. The trap may be connected to a mass spectrometer thereby permitting species identification after a fixed period of time. Delicate and/or heavy particles such as clusters may be held and studied in a ``gentle`` environment. In addition, the trap can provide a relatively intense, low-energy source of a particular ion species for surface implantation or molecular chemistry. Finally, a long trap may permit spectroscopy of unprecedented accuracy to be performed on ionic species. 4 figs.

  19. Prebreakdown characteristics of weakly ionized liquid and gaseous media in the strongly nonuniform electric field

    NASA Astrophysics Data System (ADS)

    Apfelbaum, M. S.; Syrovatka, R. A.; Vladimirov, V. I.

    2018-01-01

    A theoretical model of electrohydrodynamic prebreakdown phenomena in slightly ionized (weakly conductive) media is proposed. The electric high voltage conduction of weakly conductive liquids and slightly ionized gases in intense electric fields using this model is considered. The formula for the calculations of volt-ampere characteristics under high voltage spherical capacitor field is analytically obtained. The experimental corona discharge volt-ampere characteristics of air are presented. It was found that the size of the ionization region in the case of corona discharge in air increases monotonically with increasing discharge voltage.

  20. Ultrafast multiphoton ionization dynamics and control of NaK molecules

    NASA Astrophysics Data System (ADS)

    Davidsson, Jan; Hansson, Tony; Mukhtar, Emad

    1998-12-01

    The multiphoton ionization dynamics of NaK molecules is investigated experimentally using one-color pump-probe femtosecond spectroscopy at 795 nm and intermediate laser field strengths (about 10 GW/cm2). Both NaK+ and Na+ ions are detected as a function of pulse separation time, pulse intensities, and strong pulse-weak pulse order. To aid in the analysis, the potential energy curves of the two lowest electronic states of NaK+ and the electronic transition dipole moment between them are calculated by the GAUSSIAN94 UCIS method. Different ionization pathways are identified by Franck-Condon analysis, and vibrational dynamics in the A 1Σ+ and 3 1Π states, as well as in the ground state, is observed. Further, the existence of a highly excited (above the adiabatic ionization limit) neutral state of NaK is proposed. By changing the strong pulse-weak pulse order of the pulses, the ionization pathways for production of both ions can be varied and thus controlled.

  1. Selectivity of Electronic Coherence and Attosecond Ionization Delays in Strong-Field Double Ionization

    NASA Astrophysics Data System (ADS)

    Kobayashi, Yuki; Reduzzi, Maurizio; Chang, Kristina F.; Timmers, Henry; Neumark, Daniel M.; Leone, Stephen R.

    2018-06-01

    Experiments are presented on real-time probing of coherent electron dynamics in xenon initiated by strong-field double ionization. Attosecond transient absorption measurements allow for characterization of electronic coherences as well as relative ionization timings in multiple electronic states of Xe+ and Xe2 + . A high degree of coherence g =0.4 is observed between P3 2 0-P3 0 0 of Xe2 + , whereas for other possible pairs of states the coherences are below the detection limits of the experiments. A comparison of the experimental results with numerical simulations based on an uncorrelated electron-emission model shows that the coherences produced by strong-field double ionization are more selective than predicted. Surprisingly short ionization time delays, 0.85 fs, 0.64 fs, and 0.75 fs relative to Xe+ formation, are also measured for the P2 3 , P0 3 , and P1 3 states of Xe2 + , respectively. Both the unpredicted selectivity in the formation of coherence and the subfemtosecond time delays of specific states provide new insight into correlated electron dynamics in strong-field double ionization.

  2. Local shear instabilities in weakly ionized, weakly magnetized disks

    NASA Technical Reports Server (NTRS)

    Blaes, Omer M.; Balbus, Steven A.

    1994-01-01

    We extend the analysis of axisymmetric magnetic shear instabilities from ideal magnetohydrodynamic (MHD) flows to weakly ionized plasmas with coupling between ions and neutrals caused by collisions, ionization, and recombination. As part of the analysis, we derive the single-fluid MHD dispersion relation without invoking the Boussinesq approximation. This work expands the range of applications of these instabilities from fully ionized accretion disks to molecular disks in galaxies and, with somewhat more uncertainty, to protostellar disks. Instability generally requires the angular velocity to decrease outward, the magnetic field strengths to be subthermal, and the ions and neutrals to be sufficiently well coupled. If ionization and recombination processes can be neglected on an orbital timescale, adequate coupling is achieved when the collision frequency of a given neutral with the ions exceeds the local epicyclic freqency. When ionization equilibrium is maintained on an orbital timescale, a new feature is present in the disk dynamics: in contrast to a single-fluid system, subthermal azimuthal fields can affect the axisymmetric stability of weakly ionized two-fluid systems. We discuss the underlying causes for this behavior. Azimuthal fields tend to be stabilizing under these circumstances, and good coupling between the neutrals and ions requires the collision frequency to exceed the epicyclic frequency by a potentially large secant factor related to the magnetic field geometry. When the instability is present, subthermal azimuthal fields may also reduce the growth rate unless the collision frequency is high, but this is important only if the field strengths are very subthermal and/or the azimuthal field is the dominant field component. We briefly discuss our results in the context of the Galactic center circumnuclear disk, and suggest that the shear instability might be present there, and be responsible for the observed turbulent motions.

  3. Experimental validation of beam quality correction factors for proton beams

    NASA Astrophysics Data System (ADS)

    Gomà, Carles; Hofstetter-Boillat, Bénédicte; Safai, Sairos; Vörös, Sándor

    2015-04-01

    This paper presents a method to experimentally validate the beam quality correction factors (kQ) tabulated in IAEA TRS-398 for proton beams and to determine the kQ of non-tabulated ionization chambers (based on the already tabulated values). The method is based exclusively on ionometry and it consists in comparing the reading of two ionization chambers under the same reference conditions in a proton beam quality Q and a reference beam quality 60Co. This allows one to experimentally determine the ratio between the kQ of the two ionization chambers. In this work, 7 different ionization chamber models were irradiated under the IAEA TRS-398 reference conditions for 60Co beams and proton beams. For the latter, the reference conditions for both modulated beams (spread-out Bragg peak field) and monoenergetic beams (pseudo-monoenergetic field) were studied. For monoenergetic beams, it was found that the experimental kQ values obtained for plane-parallel chambers are consistent with the values tabulated in IAEA TRS-398; whereas the kQ values obtained for cylindrical chambers are not consistent—being higher than the tabulated values. These results support the suggestion (of previous publications) that the IAEA TRS-398 reference conditions for monoenergetic proton beams should be revised so that the effective point of measurement of cylindrical ionization chambers is taken into account when positioning the reference point of the chamber at the reference depth. For modulated proton beams, the tabulated kQ values of all the ionization chambers studied in this work were found to be consistent with each other—except for the IBA FC65-G, whose experimental kQ value was found to be 0.6% lower than the tabulated one. The kQ of the PTW Advanced Markus chamber, which is not tabulated in IAEA TRS-398, was found to be 0.997 ± 0.042 (k = 2), based on the tabulated value of the PTW Markus chamber.

  4. Carrier-envelope phase-dependent ionization of Xe in intense, ultrafast (two-cycle) laser fields

    NASA Astrophysics Data System (ADS)

    Vasa, Parinda; Dharmadhikari, Aditya K.; Mathur, Deepak

    2018-01-01

    We report an experimental study that shows the dependence of the tunnel ionization of Xe by two-cycle, intense, near infrared light on the carrier-envelope-phase (CEP) of incident laser pulses. At low values of the optical field (E), the ionization yield is found to be maximum for cos-like pulses; the CEP dependence of the ion yield becomes stronger for higher charge states. At higher E-values, the CEP dependence either washes out or flips. A simple phenomenological model is used to confirm that our results fall within the ambit of the current understanding of ionization dynamics in strong, ultrashort optical fields. In the observed tunnel ionization of Xe, CEP effects appear to persist for longer, eight-cycle, pulses. Electron rescattering is observed to play a relatively unimportant role in the observed CEP dependence. These results provide fresh perspectives in the ionization mechanisms of multielectron systems in the few-cycle regime.

  5. The inception of pulsed discharges in air: simulations in background fields above and below breakdown

    NASA Astrophysics Data System (ADS)

    Sun, Anbang; Teunissen, Jannis; Ebert, Ute

    2014-11-01

    We investigate discharge inception in air, in uniform background electric fields above and below the breakdown threshold. We perform 3D particle simulations that include a natural level of background ionization in the form of positive and \\text{O}2- ions. In background fields below breakdown, we use a strongly ionized seed of electrons and positive ions to enhance the field locally. In the region of enhanced field, we observe the growth of positive streamers, as in previous simulations with 2D plasma fluid models. The inclusion of background ionization has little effect in this case. When the background field is above the breakdown threshold, the situation is very different. Electrons can then detach from \\text{O}2- and start ionization avalanches in the whole volume. These avalanches together create one extended discharge, in contrast to the ‘double-headed’ streamers found in many fluid simulations.

  6. Benchmark calculations of nonconservative charged-particle swarms in dc electric and magnetic fields crossed at arbitrary angles.

    PubMed

    Dujko, S; White, R D; Petrović, Z Lj; Robson, R E

    2010-04-01

    A multiterm solution of the Boltzmann equation has been developed and used to calculate transport coefficients of charged-particle swarms in gases under the influence of electric and magnetic fields crossed at arbitrary angles when nonconservative collisions are present. The hierarchy resulting from a spherical-harmonic decomposition of the Boltzmann equation in the hydrodynamic regime is solved numerically by representing the speed dependence of the phase-space distribution function in terms of an expansion in Sonine polynomials about a Maxwellian velocity distribution at an internally determined temperature. Results are given for electron swarms in certain collisional models for ionization and attachment over a range of angles between the fields and field strengths. The implicit and explicit effects of ionization and attachment on the electron-transport coefficients are considered using physical arguments. It is found that the difference between the two sets of transport coefficients, bulk and flux, resulting from the explicit effects of nonconservative collisions, can be controlled either by the variation in the magnetic field strengths or by the angles between the fields. In addition, it is shown that the phenomena of ionization cooling and/or attachment cooling/heating previously reported for dc electric fields carry over directly to the crossed electric and magnetic fields. The results of the Boltzmann equation analysis are compared with those obtained by a Monte Carlo simulation technique. The comparison confirms the theoretical basis and numerical integrity of the moment method for solving the Boltzmann equation and gives a set of well-established data that can be used to test future codes and plasma models.

  7. High-order above-threshold photoemission from nanotips controlled with two-color laser fields

    NASA Astrophysics Data System (ADS)

    Seiffert, Lennart; Paschen, Timo; Hommelhoff, Peter; Fennel, Thomas

    2018-07-01

    We investigate the process of phase-controlled high-order above-threshold photoemission from metallic nanotips under bichromatic laser fields. Experimental photoelectron spectra resulting from two-color excitation with a moderately intense near-infrared fundamental field (1560 nm) and its weak second harmonic show a strong sensitivity on the relative phase and clear indications for a plateau-like structure that is attributed to elastic backscattering. To explore the relevant control mechanisms, characteristic features, and particular signatures from the near-field inhomogeneity, we performed systematic quantum simulations employing a one-dimensional nanotip model. Besides rich phase-dependent structures in the simulated above-threshold ionization photoelectron spectra we find ponderomotive shifts as well as substantial modifications of the rescattering cutoff as function of the decay length of the near-field. To explore the quantum or classical nature of the observed features and to discriminate the two-color effects stemming from electron propagation and from the ionization rate we compare the quantum results to classical trajectory simulations. We show that signatures from direct electrons as well as the modulations in the plateau region mainly stem from control of the ionization probability, while the modulation in the cutoff region can only be explained by the impact of the two-color field on the electron trajectory. Despite the complexity of the phase-dependent features that render two-color strong-field photoemission from nanotips intriguing for sub-cycle strong-field control, our findings support that the recollision features in the cutoff region provide a robust and reliable method to calibrate the relative two-color phase.

  8. Calculation of femtosecond pulse laser induced damage threshold for broadband antireflective microstructure arrays.

    PubMed

    Jing, Xufeng; Shao, Jianda; Zhang, Junchao; Jin, Yunxia; He, Hongbo; Fan, Zhengxiu

    2009-12-21

    In order to more exactly predict femtosecond pulse laser induced damage threshold, an accurate theoretical model taking into account photoionization, avalanche ionization and decay of electrons is proposed by comparing respectively several combined ionization models with the published experimental measurements. In addition, the transmittance property and the near-field distribution of the 'moth eye' broadband antireflective microstructure directly patterned into the substrate material as a function of the surface structure period and groove depth are performed by a rigorous Fourier model method. It is found that the near-field distribution is strongly dependent on the periodicity of surface structure for TE polarization, but for TM wave it is insensitive to the period. What's more, the femtosecond pulse laser damage threshold of the surface microstructure on the pulse duration taking into account the local maximum electric field enhancement was calculated using the proposed relatively accurate theoretical ionization model. For the longer incident wavelength of 1064 nm, the weak linear damage threshold on the pulse duration is shown, but there is a surprising oscillation peak of breakdown threshold as a function of the pulse duration for the shorter incident wavelength of 532 nm.

  9. Implementation of the infinite-range exterior complex scaling to the time-dependent complete-active-space self-consistent-field method

    NASA Astrophysics Data System (ADS)

    Orimo, Yuki; Sato, Takeshi; Scrinzi, Armin; Ishikawa, Kenichi L.

    2018-02-01

    We present a numerical implementation of the infinite-range exterior complex scaling [Scrinzi, Phys. Rev. A 81, 053845 (2010), 10.1103/PhysRevA.81.053845] as an efficient absorbing boundary to the time-dependent complete-active-space self-consistent field method [Sato, Ishikawa, Březinová, Lackner, Nagele, and Burgdörfer, Phys. Rev. A 94, 023405 (2016), 10.1103/PhysRevA.94.023405] for multielectron atoms subject to an intense laser pulse. We introduce Gauss-Laguerre-Radau quadrature points to construct discrete variable representation basis functions in the last radial finite element extending to infinity. This implementation is applied to strong-field ionization and high-harmonic generation in He, Be, and Ne atoms. It efficiently prevents unphysical reflection of photoelectron wave packets at the simulation boundary, enabling accurate simulations with substantially reduced computational cost, even under significant (≈50 % ) double ionization. For the case of a simulation of high-harmonic generation from Ne, for example, 80% cost reduction is achieved, compared to a mask-function absorption boundary.

  10. Comparison of secondary neutron dose in proton therapy resulting from the use of a tungsten alloy MLC or a brass collimator system.

    PubMed

    Diffenderfer, Eric S; Ainsley, Christopher G; Kirk, Maura L; McDonough, James E; Maughan, Richard L

    2011-11-01

    To apply the dual ionization chamber method for mixed radiation fields to an accurate comparison of the secondary neutron dose arising from the use of a tungsten alloy multileaf collimator (MLC) as opposed to a brass collimator system for defining the shape of a therapeutic proton field. Hydrogenous and nonhydrogenous ionization chambers were constructed with large volumes to enable measurements of absorbed doses below 10(-4) Gy in mixed radiation fields using the dual ionization chamber method for mixed-field dosimetry. Neutron dose measurements were made with a nominal 230 MeV proton beam incident on a closed tungsten alloy MLC and a solid brass block. The chambers were cross-calibrated against a (60)Co-calibrated Farmer chamber in water using a 6 MV x-ray beam and Monte Carlo simulations were performed to account for variations in ionization chamber response due to differences in secondary neutron energy spectra. The neutron and combined proton plus γ-ray absorbed doses are shown to be nearly equivalent downstream from either a closed tungsten alloy MLC or a solid brass block. At 10 cm downstream from the distal edge of the collimating material the neutron dose from the closed MLC was (5.3 ± 0.4) × 10(- 5) Gy/Gy. The neutron dose with brass was (6.4 ± 0.7) × 10(- 5) Gy/Gy. Further from the secondary neutron source, at 50 cm, the neutron doses remain close for both the MLC and brass block at (6.9 ± 0.6) × 10(- 6) Gy/Gy and (6.3 ± 0.7) × 10(- 6) Gy/Gy, respectively. The dual ionization chamber method is suitable for measuring secondary neutron doses resulting from proton irradiation. The results of measurements downstream from a closed tungsten alloy MLC and a brass block indicate that, even in an overly pessimistic worst-case scenario, secondary neutron production in a tungsten alloy MLC leads to absorbed doses that are nearly equivalent to those seen from brass collimators. Therefore, the choice of tungsten alloy in constructing the leaves of a proton MLC is appropriate, and does not lead to a substantial increase in the secondary neutron dose to the patient compared to that generated in a brass collimator.

  11. Mechanisms of two-color laser-induced field-free molecular orientation.

    PubMed

    Spanner, Michael; Patchkovskii, Serguei; Frumker, Eugene; Corkum, Paul

    2012-09-14

    Two mechanisms of two-color (ω+2ω) laser-induced field-free molecular orientation, based on the hyperpolarizability and ionization depletion, are explored and compared. The CO molecule is used as a computational example. While the hyperpolarizability mechanism generates small amounts of orientation at intensities below the ionization threshold, ionization depletion quickly becomes the dominant mechanism as soon as ionizing intensities are reached. Only the ionization mechanism leads to substantial orientation (e.g., on the order of ≳0.1). For intensities typical of laser-induced molecular alignment and orientation experiments, the two mechanisms lead to robust, characteristic timings of the field-free orientation wave-packet revivals relative to the alignment revivals and the revival time. The revival timings can be used to detect the active orientation mechanism experimentally.

  12. Sequential and direct ionic excitation in the strong-field ionization of 1-butene molecules.

    PubMed

    Schell, Felix; Boguslavskiy, Andrey E; Schulz, Claus Peter; Patchkovskii, Serguei; Vrakking, Marc J J; Stolow, Albert; Mikosch, Jochen

    2018-05-18

    We study the Strong-Field Ionization (SFI) of the hydrocarbon 1-butene as a function of wavelength using photoion-photoelectron covariance and coincidence spectroscopy. We observe a striking transition in the fragment-associated photoelectron spectra: from a single Above Threshold Ionization (ATI) progression for photon energies less than the cation D0-D1 gap to two ATI progressions for a photon energy greater than this gap. For the first case, electronically excited cations are created by SFI populating the ground cationic state D0, followed by sequential post-ionization excitation. For the second case, direct sub-cycle SFI to the D1 excited cation state contributes significantly. Our experiments access ionization dynamics in a regime where strong-field and resonance-enhanced processes can interplay.

  13. Optimizing the 391-nm lasing intensity from ionized nitrogen molecules in 800-nm femtosecond laser fields

    NASA Astrophysics Data System (ADS)

    Zhong, Xunqi; Miao, Zhiming; Zhang, Linlin; Jiang, Hongbing; Liu, Yunquan; Gong, Qihuang; Wu, Chengyin

    2018-03-01

    We investigate the 391-nm lasing dynamics from ionized nitrogen molecules in 800-nm femtosecond laser fields. By comparing the radiation intensity, spectrum shape, and temporal profile of the 391-nm lasing at various experimental conditions, we conclude that the lasing dynamics contains not only the generation and the decay of ionized nitrogen molecules, but also the seed-built coherence among emitters as well as the propagation effect in the plasma filamentation. These results provide reliable guidance for optimizing the 391-nm lasing from ionized nitrogen molecules in 800-nm femtosecond laser fields, which have potential applications for remote sensing in the atmosphere.

  14. Critical factors determining the quantification capability of matrix-assisted laser desorption/ionization– time-of-flight mass spectrometry

    PubMed Central

    Wang, Chia-Chen; Lai, Yin-Hung; Ou, Yu-Meng; Chang, Huan-Tsung; Wang, Yi-Sheng

    2016-01-01

    Quantitative analysis with mass spectrometry (MS) is important but challenging. Matrix-assisted laser desorption/ionization (MALDI) coupled with time-of-flight (TOF) MS offers superior sensitivity, resolution and speed, but such techniques have numerous disadvantages that hinder quantitative analyses. This review summarizes essential obstacles to analyte quantification with MALDI-TOF MS, including the complex ionization mechanism of MALDI, sensitive characteristics of the applied electric fields and the mass-dependent detection efficiency of ion detectors. General quantitative ionization and desorption interpretations of ion production are described. Important instrument parameters and available methods of MALDI-TOF MS used for quantitative analysis are also reviewed. This article is part of the themed issue ‘Quantitative mass spectrometry’. PMID:27644968

  15. Directed Field Ionization: A Genetic Algorithm for Evolving Electric Field Pulses

    NASA Astrophysics Data System (ADS)

    Kang, Xinyue; Rowley, Zoe A.; Carroll, Thomas J.; Noel, Michael W.

    2017-04-01

    When an ionizing electric field pulse is applied to a Rydberg atom, the electron's amplitude traverses many avoided crossings among the Stark levels as the field increases. The resulting superposition determines the shape of the time resolved field ionization spectrum at a detector. An engineered electric field pulse that sweeps back and forth through avoided crossings can control the phase evolution so as to determine the electron's path through the Stark map. In the region of n = 35 in rubidium there are hundreds of potential avoided crossings; this yields a large space of possible pulses. We use a genetic algorithm to search this space and evolve electric field pulses to direct the ionization of the Rydberg electron in rubidium. We present the algorithm along with a comparison of simulated and experimental results. This work was supported by the National Science Foundation under Grants No. 1607335 and No. 1607377 and used the Extreme Science and Engineering Discovery Environment (XSEDE), which is supported by National Science Foundation Grant Number OCI-1053575.

  16. Identifying the Tunneling Site in Strong-Field Ionization of H_{2}^{+}.

    PubMed

    Liu, Kunlong; Barth, Ingo

    2017-12-15

    The tunneling site of the electron in a molecule exposed to a strong laser field determines the initial position of the ionizing electron and, as a result, has a large impact on the subsequent ultrafast electron dynamics on the polyatomic Coulomb potential. Here, the tunneling site of the electron of H_{2}^{+} ionized by a strong circularly polarized (CP) laser pulse is studied by numerically solving the time-dependent Schrödinger equation. We show that the electron removed from the down-field site is directly driven away by the CP field and the lateral photoelectron momentum distribution (LPMD) exhibits a Gaussian-like distribution, whereas the corresponding LPMD of the electron removed from the up-field site differs from the Gaussian shape due to the Coulomb focusing and scattering by the down-field core. Our current study presents the direct evidence clarifying a long-standing controversy over the tunneling site in H_{2}^{+} and raises the important role of the tunneling site in strong-field molecular ionization.

  17. Circular states of atomic hydrogen

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lutwak, R.; Holley, J.; Chang, P.P.

    1997-08-01

    We describe the creation of circular states of hydrogen by adiabatic transfer of a Rydberg state in crossed electric and magnetic fields, and also by adiabatic passage in a rotating microwave field. The latter method permits rapid switching between the two circular states of a given n manifold. The two methods are demonstrated experimentally, and results are presented of an analysis of the field ionization properties of the circular states. An application for the circular states is illustrated by millimeter-wave resonance in hydrogen of the n=29{r_arrow}n=30 transition. {copyright} {ital 1997} {ital The American Physical Society}

  18. Optical measurements and analytical modeling of magnetic field generated in a dieletric target

    NASA Astrophysics Data System (ADS)

    Yafeng, BAI; Shiyi, ZHOU; Yushan, ZENG; Yihan, LIANG; Rong, QI; Wentao, LI; Ye, TIAN; Xiaoya, LI; Jiansheng, LIU

    2018-01-01

    Polarization rotation of a probe pulse by the target is observed with the Faraday rotation method in the interaction of an intense laser pulse with a solid target. The rotation of the polarization plane of the probe pulse may result from a combined action of fused silica and diffused electrons. After the irradiation of the main pulse, the rotation angle changed significantly and lasted ∼2 ps. These phenomena may imply a persistent magnetic field inside the target. An analytical model is developed to explain the experimental observation. The model indicates that a strong toroidal magnetic field is induced by an energetic electron beam. Meanwhile, an ionization channel is observed in the shadowgraph and extends at the speed of light after the irradiation of the main beam. The formation of this ionization channel is complex, and a simple explanation is given.

  19. Strong field control of the interatomic Coulombic decay process in quantum dots

    NASA Astrophysics Data System (ADS)

    Haller, Anika; Chiang, Ying-Chih; Menger, Maximilian; Aziz, Emad F.; Bande, Annika

    2017-01-01

    In recent years the laser-induced interatomic Coulombic decay (ICD) process in paired quantum dots has been predicted (Bande, 2013). In this work we target the enhancement of ICD by scanning over a range of strong-field laser intensities. The GaAs quantum dots are modeled by a one-dimensional double-well potential in which simulations are done with the space-resolved multi-configuration time-dependent Hartree method including antisymmetrization to account for the fermions. As a novelty a complementary state-resolved ansatz is developed to consolidate the interpretation of transient state populations, widths obtained for the ICD and the competing direct ionization channel, and Fano peak profiles in the photoelectron spectra. The major results are that multi-photon processes are unimportant even for the strongest fields. Further, below- π to π pulses display the highest ICD efficiency while the direct ionization becomes less dominant.

  20. Performance parameters of a liquid filled ionization chamber array

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Poppe, B.; Stelljes, T. S.; Looe, H. K.

    2013-08-15

    Purpose: In this work, the properties of the two-dimensional liquid filled ionization chamber array Octavius 1000SRS (PTW-Freiburg, Germany) for use in clinical photon-beam dosimetry are investigated.Methods: Measurements were carried out at an Elekta Synergy and Siemens Primus accelerator. For measurements of stability, linearity, and saturation effects of the 1000SRS array a Semiflex 31013 ionization chamber (PTW-Freiburg, Germany) was used as a reference. The effective point of measurement was determined by TPR measurements of the array in comparison with a Roos chamber (type 31004, PTW-Freiburg, Germany). The response of the array with varying field size and depth of measurement was evaluatedmore » using a Semiflex 31010 ionization chamber as a reference. Output factor measurements were carried out with a Semiflex 31010 ionization chamber, a diode (type 60012, PTW-Freiburg, Germany), and the detector array under investigation. The dose response function for a single detector of the array was determined by measuring 1 cm wide slit-beam dose profiles and comparing them against diode-measured profiles. Theoretical aspects of the low pass properties and of the sampling frequency of the detector array were evaluated. Dose profiles measured with the array and the diode detector were compared, and an intensity modulated radiation therapy (IMRT) field was verified using the Gamma-Index method and the visualization of line dose profiles.Results: The array showed a short and long term stability better than 0.1% and 0.2%, respectively. Fluctuations in linearity were found to be within ±0.2% for the vendor specified dose range. Saturation effects were found to be similar to those reported in other studies for liquid-filled ionization chambers. The detector's relative response varied with field size and depth of measurement, showing a small energy dependence accounting for maximum signal deviations of ±2.6% from the reference condition for the setup used. The σ-values of the Gaussian dose response function for a single detector of the array were found to be (0.72 ± 0.25) mm at 6 MV and (0.74 ± 0.25) mm at 15 MV and the corresponding low pass cutoff frequencies are 0.22 and 0.21 mm{sup −1}, respectively. For the inner 5 × 5 cm{sup 2} region and the outer 11 × 11 cm{sup 2} region of the array the Nyquist theorem is fulfilled for maximum sampling frequencies of 0.2 and 0.1 mm{sup −1}, respectively. An IMRT field verification with a Gamma-Index analysis yielded a passing rate of 95.2% for a 3 mm/3% criterion with a TPS calculation as reference.Conclusions: This study shows the applicability of the Octavius 1000SRS in modern dosimetry. Output factor and dose profile measurements illustrated the applicability of the array in small field and stereotactic dosimetry. The high spatial resolution ensures adequate measurements of dose profiles in regular and intensity modulated photon-beam fields.« less

  1. Transition energy and potential energy curves for ionized inner-shell states of CO, O2 and N 2 calculated by several inner-shell multiconfigurational approaches.

    PubMed

    Moura, Carlos E V de; Oliveira, Ricardo R; Rocha, Alexandre B

    2013-05-01

    Potential energy curves and inner-shell ionization energies of carbon monoxide, oxygen and nitrogen molecules were calculated using several forms of the inner-shell multiconfigurational self-consistent field (IS-MCSCF) method-a recently proposed protocol to obtain specifically converged inner-shell states at this level. The particular forms of the IS-MCSCF method designated IS-GVB-PP, IS-FVBL and IS-CASSCF stand for perfect pairing generalized valence bond, full valence bond-like MCSCF and complete active space self consistent field, respectively. A comparison of these different versions of the IS-MCSCF method was carried out for the first time. The results indicate that inner-shell states are described accurately even for the simplest version of the method (IS-GVB-PP). Dynamic correlation was recovered by multireference configuration interaction or multireference perturbation theory. For molecules not having equivalent atoms, all methods led to comparable and accurate transition energies. For molecules with equivalent atoms, the most accurate results were obtained by multireference perturbation theory. Scalar relativistic effects were accounted for using the Douglas-Kroll-Hess Hamiltonian.

  2. The combination of the error correction methods of GAFCHROMIC EBT3 film

    PubMed Central

    Li, Yinghui; Chen, Lixin; Zhu, Jinhan; Liu, Xiaowei

    2017-01-01

    Purpose The aim of this study was to combine a set of methods for use of radiochromic film dosimetry, including calibration, correction for lateral effects and a proposed triple-channel analysis. These methods can be applied to GAFCHROMIC EBT3 film dosimetry for radiation field analysis and verification of IMRT plans. Methods A single-film exposure was used to achieve dose calibration, and the accuracy was verified based on comparisons with the square-field calibration method. Before performing the dose analysis, the lateral effects on pixel values were corrected. The position dependence of the lateral effect was fitted by a parabolic function, and the curvature factors of different dose levels were obtained using a quadratic formula. After lateral effect correction, a triple-channel analysis was used to reduce disturbances and convert scanned images from films into dose maps. The dose profiles of open fields were measured using EBT3 films and compared with the data obtained using an ionization chamber. Eighteen IMRT plans with different field sizes were measured and verified with EBT3 films, applying our methods, and compared to TPS dose maps, to check correct implementation of film dosimetry proposed here. Results The uncertainty of lateral effects can be reduced to ±1 cGy. Compared with the results of Micke A et al., the residual disturbances of the proposed triple-channel method at 48, 176 and 415 cGy are 5.3%, 20.9% and 31.4% smaller, respectively. Compared with the ionization chamber results, the difference in the off-axis ratio and percentage depth dose are within 1% and 2%, respectively. For the application of IMRT verification, there were no difference between two triple-channel methods. Compared with only corrected by triple-channel method, the IMRT results of the combined method (include lateral effect correction and our present triple-channel method) show a 2% improvement for large IMRT fields with the criteria 3%/3 mm. PMID:28750023

  3. Particle-In-Cell simulation concerning heat-flux mitigation using electromagnetic fields

    NASA Astrophysics Data System (ADS)

    Lüskow, Karl Felix; Duras, Julia; Kemnitz, Stefan; Kahnfeld, Daniel; Matthias, Paul; Bandelow, Gunnas; Schneider, Ralf; Konigorski, Detlev

    2016-10-01

    In space missions enormous amount of money is spent for the thermal protection system for re-entry. To avoid complex materials and save money one idea is to reduce the heat-flux towards the spacecraft. The partially-ionized gas can be controlled by electromagnetic fields. For first-principle tests partially ionized argon flow from an arc-jet was used to measure the heat-flux mitigation created by an external magnetic field. In the successful experiment a reduction of 85% was measured. In this work the Particle-in-Cell (PIC) method was used to simulate this experiment. PIC is able to reproduce the heat flux mitigation qualitatively. The main mechanism is identified as a changed electron transport and by this, modified electron density due to the reaction to the applied magnetic field. Ions follow due to quasi-neutrality and influence then strongly by charge exchange collisions the neutrals dynamics and heat deposition. This work was supported by the German Space Agency DLR through Project 50RS1508.

  4. A method for achieving ignition of a low voltage gas discharge device

    DOEpatents

    Kovarik, Vincent J.; Hershcovitch, Ady; Prelec, Krsto

    1988-01-01

    An electronic device of the type wherein current flow is conducted by an ionized gas comprising a cathode of the type heated by ionic bombardment, an anode, means for maintaining a predetermined pressure in the region between the anode and the cathode and means for maintaining a field in the region. The field, which is preferably a combined magnetic and electric field, is oriented so that the mean distance traveled by electrons before reaching the anode is increased. Because of this increased distance traveled electrons moving to the anode will ionize a larger number of gas atoms, thus reducing the voltage necesary to initiate gas breakdown. In a preferred embodiment the anode is a main hollow cathode and the cathode is a smaller igniter hollow cathode located within and coaxial with the main hollow cathode. An axial magnetic field is provided in the region between the hollow cathodes in order to facilitate gas breakdown in that region and initiate plasma discharge from the main hollow cathode.

  5. Strong-field ionization of H{sub 2} from ultraviolet to near-infrared wavelengths: Photoelectron energy and angular identifications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilbois, Timo; Helm, Hanspeter

    2011-11-15

    Strong-field ionization of molecular hydrogen is studied at wavelengths ranging from 300 to 800 nm using pulses of 100-fs duration. We find that over this wide wavelength range, from nominally 4-photon to 11-photon ionization, resonance features dominate the ionization probability at intensities below 10{sup 14} W/cm{sup 2}. Photoelectron momentum maps recorded by an imaging spectrometer are analyzed to identify the wavelength-dependent ionization pathways in single ionization of molecular hydrogen. A number of models, some empirical, which are appropriate for a quantitative interpretation of the spectra and the ionization yield are introduced. A near-absolute comparison of measured ionization yields at 398more » nm is made with the predictions based on a numerical solution [Y. V. Vanne and A. Saenz, Phys. Rev. A 79, 023421 (2009)] of the time-dependent Schroedinger equation for two correlated electrons.« less

  6. Partially ionized hydrogen plasma in strong magnetic fields.

    PubMed

    Potekhin, A Y; Chabrier, G; Shibanov, Y A

    1999-08-01

    We study the thermodynamic properties of a partially ionized hydrogen plasma in strong magnetic fields, B approximately 10(12)-10(13) G, typical of neutron stars. The properties of the plasma depend significantly on the quantum-mechanical sizes and binding energies of the atoms, which are strongly modified by thermal motion across the field. We use new fitting formulas for the atomic binding energies and sizes, based on accurate numerical calculations and valid for any state of motion of the atom. In particular, we take into account decentered atomic states, neglected in previous studies of thermodynamics of magnetized plasmas. We also employ analytic fits for the thermodynamic functions of nonideal fully ionized electron-ion Coulomb plasmas. This enables us to construct an analytic model of the free energy. An ionization equilibrium equation is derived, taking into account the strong magnetic field effects and the nonideality effects. This equation is solved by an iteration technique. Ionization degrees, occupancies, and the equation of state are calculated.

  7. Ion Densities in the Nightside Ionosphere of Mars: Effects of Electron Impact Ionization

    NASA Astrophysics Data System (ADS)

    Girazian, Z.; Mahaffy, P.; Lillis, R. J.; Benna, M.; Elrod, M.; Fowler, C. M.; Mitchell, D. L.

    2017-11-01

    We use observations from the Mars Atmosphere and Volatile EvolutioN (MAVEN) mission to show how superthermal electron fluxes and crustal magnetic fields affect ion densities in the nightside ionosphere of Mars. We find that due to electron impact ionization, high electron fluxes significantly increase the CO2+, O+, and O2+ densities below 200 km but only modestly increase the NO+ density. High electron fluxes also produce distinct peaks in the CO2+, O+, and O2+ altitude profiles. We also find that superthermal electron fluxes are smaller near strong crustal magnetic fields. Consequently, nightside ion densities are also smaller near strong crustal fields because they decay without being replenished by electron impact ionization. Furthermore, the NO+/O2+ ratio is enhanced near strong crustal fields because, in the absence of electron impact ionization, O2+ is converted into NO+ and not replenished. Our results show that electron impact ionization is a significant source of CO2+, O+, and O2+ in the nightside ionosphere of Mars.

  8. Tunneling ionization and Wigner transform diagnostics in OSIRIS

    NASA Astrophysics Data System (ADS)

    Martins, S.; Fonseca, R. A.; Silva, L. O.; Deng, S.; Katsouleas, T.; Tsung, F.; Mori, W. B.

    2004-11-01

    We describe the ionization module implemented in the PIC code OSIRIS [1]. Benchmarks with previously published tunnel ionization results were made. Our ionization module works in 1D, 2D and 3D simulations with barrier suppression ionization or the ADK ionization model, and allows for moving ions. Several illustrative 3D numerical simulations were performed, namely of the propagation of a SLAC beam in a Li gas cell, for the parameters of [2]. We compare the performance of OSIRIS with/without the ionization module, concluding that much less simulation time is usually required when using the ionization module. A novel diagnostic over the electric field is implemented, the Wigner transform, that provides information on the local spectral content of the field. This diagnostic is applied to the analysis of the chirp induced in an ionizing laser pulse. [1] R. A. Fonseca et al., LNCS 2331, 342-351, (Springer, Heidelberg, 2002). [2] S. Deng et al., Phys. Rev. E 68, 047401 (2003).

  9. Dosimetry for Small and Nonstandard Fields

    NASA Astrophysics Data System (ADS)

    Junell, Stephanie L.

    The proposed small and non-standard field dosimetry protocol from the joint International Atomic Energy Agency (IAEA) and American Association of Physicist in Medicine working group introduces new reference field conditions for ionization chamber based reference dosimetry. Absorbed dose beam quality conversion factors (kQ factors) corresponding to this formalism were determined for three different models of ionization chambers: a Farmer-type ionization chamber, a thimble ionization chamber, and a small volume ionization chamber. Beam quality correction factor measurements were made in a specially developed cylindrical polymethyl methacrylate (PMMA) phantom and a water phantom using thermoluminescent dosimeters (TLDs) and alanine dosimeters to determine dose to water. The TLD system for absorbed dose to water determination in high energy photon and electron beams was fully characterized as part of this dissertation. The behavior of the beam quality correction factor was observed as it transfers the calibration coefficient from the University of Wisconsin Accredited Dosimetry Calibration Laboratory (UWADCL) 60Co reference beam to the small field calibration conditions of the small field formalism. TLD-determined beam quality correction factors for the calibration conditions investigated ranged from 0.97 to 1.30 and had associated standard deviations from 1% to 3%. The alanine-determined beam quality correction factors ranged from 0.996 to 1.293. Volume averaging effects were observed with the Farmer-type ionization chamber in the small static field conditions. The proposed small and non-standard field dosimetry protocols new composite-field reference condition demonstrated its potential to reduce or remove ionization chamber volume dependancies, but the measured beam quality correction factors were not equal to the standard CoP's kQ, indicating a change in beam quality in the small and non-standard field dosimetry protocols new composite-field reference condition relative to the standard broad beam reference conditions. The TLD- and alanine-determined beam quality correction factors in the composite-field reference conditions were approximately 3% greater and differed by more than one standard deviation from the published TG-51 kQ values for all three chambers.

  10. Resolution-of-identity stochastic time-dependent configuration interaction for dissipative electron dynamics in strong fields.

    PubMed

    Klinkusch, Stefan; Tremblay, Jean Christophe

    2016-05-14

    In this contribution, we introduce a method for simulating dissipative, ultrafast many-electron dynamics in intense laser fields. The method is based on the norm-conserving stochastic unraveling of the dissipative Liouville-von Neumann equation in its Lindblad form. The N-electron wave functions sampling the density matrix are represented in the basis of singly excited configuration state functions. The interaction with an external laser field is treated variationally and the response of the electronic density is included to all orders in this basis. The coupling to an external environment is included via relaxation operators inducing transition between the configuration state functions. Single electron ionization is represented by irreversible transition operators from the ionizing states to an auxiliary continuum state. The method finds its efficiency in the representation of the operators in the interaction picture, where the resolution-of-identity is used to reduce the size of the Hamiltonian eigenstate basis. The zeroth-order eigenstates can be obtained either at the configuration interaction singles level or from a time-dependent density functional theory reference calculation. The latter offers an alternative to explicitly time-dependent density functional theory which has the advantage of remaining strictly valid for strong field excitations while improving the description of the correlation as compared to configuration interaction singles. The method is tested on a well-characterized toy system, the excitation of the low-lying charge transfer state in LiCN.

  11. Resolution-of-identity stochastic time-dependent configuration interaction for dissipative electron dynamics in strong fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klinkusch, Stefan; Tremblay, Jean Christophe

    In this contribution, we introduce a method for simulating dissipative, ultrafast many-electron dynamics in intense laser fields. The method is based on the norm-conserving stochastic unraveling of the dissipative Liouville-von Neumann equation in its Lindblad form. The N-electron wave functions sampling the density matrix are represented in the basis of singly excited configuration state functions. The interaction with an external laser field is treated variationally and the response of the electronic density is included to all orders in this basis. The coupling to an external environment is included via relaxation operators inducing transition between the configuration state functions. Single electronmore » ionization is represented by irreversible transition operators from the ionizing states to an auxiliary continuum state. The method finds its efficiency in the representation of the operators in the interaction picture, where the resolution-of-identity is used to reduce the size of the Hamiltonian eigenstate basis. The zeroth-order eigenstates can be obtained either at the configuration interaction singles level or from a time-dependent density functional theory reference calculation. The latter offers an alternative to explicitly time-dependent density functional theory which has the advantage of remaining strictly valid for strong field excitations while improving the description of the correlation as compared to configuration interaction singles. The method is tested on a well-characterized toy system, the excitation of the low-lying charge transfer state in LiCN.« less

  12. Recollision induced excitation-ionization with counter-rotating two-color circularly polarized laser field

    NASA Astrophysics Data System (ADS)

    Ben, Shuai; Guo, Pei-Ying; Pan, Xue-Fei; Xu, Tong-Tong; Song, Kai-Li; Liu, Xue-Shen

    2017-07-01

    Nonsequential double ionization of Ar by a counter-rotating two-color circularly polarized laser field is theoretically investigated. At the combined intensity in the "knee" structure range, the double ionization occurs mainly through recollision induced excitation followed by subsequent ionization of Ar+∗ . By tracing the history of the recollision trajectories, we explain how the relative intensity ratio of the two colors controls the correlated electron dynamics and optimizes the ionization yields. The major channels contributing to enhancing the double ionization are through the elliptical trajectories with smaller travel time but not through the triangle shape or the other long cycle trajectories. Furthermore, the correlated electron dynamics could be limited to the attosecond time scale by adjusting the relative intensity ratio. Finally, the double ionization from doubly excited complex at low laser intensity is qualitatively discussed.

  13. Matrix-Assisted Laser Desorption Ionization Time-of-Flight Mass Spectrometry in Clinical Microbiology: What Are the Current Issues?

    PubMed Central

    Welker, Martin; Pincus, David; Charrier, Jean-Philippe; Girard, Victoria

    2017-01-01

    Matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) has revolutionized the identification of microbial species in clinical microbiology laboratories. MALDI-TOF-MS has swiftly become the new gold-standard method owing to its key advantages of simplicity and robustness. However, as with all new methods, adoption of the MALDI-TOF MS approach is still not widespread. Optimal sample preparation has not yet been achieved for several applications, and there are continuing discussions on the need for improved database quality and the inclusion of additional microbial species. New applications such as in the field of antimicrobial susceptibility testing have been proposed but not yet translated to the level of ease and reproducibility that one should expect in routine diagnostic systems. Finally, during routine identification testing, unexpected results are regularly obtained, and the best methods for transmitting these results into clinical care are still evolving. We here discuss the success of MALDI-TOF MS in clinical microbiology and highlight fields of application that are still amenable to improvement. PMID:28840984

  14. Matrix-Assisted Laser Desorption Ionization Time-of-Flight Mass Spectrometry in Clinical Microbiology: What Are the Current Issues?

    PubMed

    van Belkum, Alex; Welker, Martin; Pincus, David; Charrier, Jean Philippe; Girard, Victoria

    2017-11-01

    Matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) has revolutionized the identification of microbial species in clinical microbiology laboratories. MALDI-TOF-MS has swiftly become the new gold-standard method owing to its key advantages of simplicity and robustness. However, as with all new methods, adoption of the MALDI-TOF MS approach is still not widespread. Optimal sample preparation has not yet been achieved for several applications, and there are continuing discussions on the need for improved database quality and the inclusion of additional microbial species. New applications such as in the field of antimicrobial susceptibility testing have been proposed but not yet translated to the level of ease and reproducibility that one should expect in routine diagnostic systems. Finally, during routine identification testing, unexpected results are regularly obtained, and the best methods for transmitting these results into clinical care are still evolving. We here discuss the success of MALDI-TOF MS in clinical microbiology and highlight fields of application that are still amenable to improvement. © The Korean Society for Laboratory Medicine.

  15. Strong-field ionization of Li and Be: a time-dependent density functional theory with self-interaction correction

    NASA Astrophysics Data System (ADS)

    Telnov, Dmitry A.; Heslar, John T.; Chu, Shih-I.

    2011-11-01

    In the framework of the time-dependent density functional theory, we have performed 3D calculations of multiphoton ionization of Li and Be atoms by strong near-infrared laser fields. The results for the intensity-dependent probabilities of single and double ionization are presented. We make use of the time-dependent Krieger-Li-Iafrate exchange-correlation potential with self-interaction correction (TD-KLI-SIC). Such a potential possesses an integer discontinuity which improves description of the ionization process. However, we have found that the discontinuity of the TD-KLI-SIC potential is not sufficient to reproduce characteristic feature of double ionization.

  16. Tunnel ionization of highly excited atoms in a noncoherent laser radiation field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krainov, V.P.; Todirashku, S.S.

    1982-10-01

    A theory is developed of the ionization of highly excited atomic states by a low-frequency field of noncoherent laser radiation with a large number of modes. Analytic formulas are obtained for the probability of the tunnel ionization in such a field. An analysis is made of the case of the hydrogen atom when the parabolic quantum numbers are sufficiently good in the low-frequency limit, as well as of the case of highly excited states of complex atoms when these states are characterized by a definite orbital momentum and parity. It is concluded that the statistical factor representing the ratio ofmore » the probability in a stochastic field to the probability in a monochromatic field decreases, compared with the case of a short-range potential, if the ''Coulomb tail'' is included. It is shown that at a given field intensity the statistical factor decreases on increase in the principal quantum number of the state being ionized.« less

  17. Trace detection of organic compounds in complex sample matrixes by single photon ionization ion trap mass spectrometry: real-time detection of security-relevant compounds and online analysis of the coffee-roasting process.

    PubMed

    Schramm, Elisabeth; Kürten, Andreas; Hölzer, Jasper; Mitschke, Stefan; Mühlberger, Fabian; Sklorz, Martin; Wieser, Jochen; Ulrich, Andreas; Pütz, Michael; Schulte-Ladbeck, Rasmus; Schultze, Rainer; Curtius, Joachim; Borrmann, Stephan; Zimmermann, Ralf

    2009-06-01

    An in-house-built ion trap mass spectrometer combined with a soft ionization source has been set up and tested. As ionization source, an electron beam pumped vacuum UV (VUV) excimer lamp (EBEL) was used for single-photon ionization. It was shown that soft ionization allows the reduction of fragmentation of the target analytes and the suppression of most matrix components. Therefore, the combination of photon ionization with the tandem mass spectrometry (MS/MS) capability of an ion trap yields a powerful tool for molecular ion peak detection and identification of organic trace compounds in complex matrixes. This setup was successfully tested for two different applications. The first one is the detection of security-relevant substances like explosives, narcotics, and chemical warfare agents. One test substance from each of these groups was chosen and detected successfully with single photon ionization ion trap mass spectrometry (SPI-ITMS) MS/MS measurements. Additionally, first tests were performed, demonstrating that this method is not influenced by matrix compounds. The second field of application is the detection of process gases. Here, exhaust gas from coffee roasting was analyzed in real time, and some of its compounds were identified using MS/MS studies.

  18. Ultra-low emittance electron beam generation using ionization injection in a plasma beatwave accelerator

    NASA Astrophysics Data System (ADS)

    Schroeder, Carl; Benedetti, Carlo; Esarey, Eric; Leemans, Wim

    2017-10-01

    Ultra-low emittance beams can be generated using ionization injection of electrons into a wakefield excited by a plasma beatwave accelerator. This all-optical method of electron beam generation uses three laser pulses of different colors. Two long-wavelength laser pulses, with frequency difference equal to the plasma frequency, resonantly drive a plasma wave without fully ionizing a gas. A short-wavelength injection laser pulse (with a small ponderomotive force and large peak electric field), co-propagating and delayed with respect to the beating long-wavelength lasers, ionizes a fraction of the remaining bound electrons at a trapped wake phase, generating an electron beam that is accelerated in the wakefield. Using the beating of long-wavelength pulses to generate the wakefield enables atomically-bound electrons to remain at low ionization potentials, reducing the required amplitude of the ionization pulse, and, hence, the initial transverse momentum and emittance of the injected electrons. An example is presented using two lines of a CO2 laser to form a plasma beatwave accelerator to drive the wake and a frequency-doubled Ti:Al2O3 laser for ionization injection. Supported by the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.

  19. Acanthocephalan fish parasites (Rhadinorhynchidae Lühe, 1912) as potential biomarkers: Molecular-chemical screening by pyrolysis-field ionization mass spectrometry

    NASA Astrophysics Data System (ADS)

    Kleinertz, S.; Eckhardt, K.-U.; Theisen, S.; Palm, H. W.; Leinweber, P.

    2016-07-01

    The present study represents the first molecular-chemical screening by pyrolysis-field ionization mass spectrometry applied on fish parasites. A total of 71 fishes from Balinese fish markets, 36 Auxis rochei (Risso, 1810) and 35 A. thazard (Lacepède, 1800), were studied for their acanthocephalan parasites. This is the first record of Rhadinorhynchus zhukovi in Balinese waters, Indonesia, and we describe for the first time A. rochei and A. thazard as R. zhukovi hosts. Using this method, small scale variations within the chemical compounds of acanthocephalans could be detected. Using this methodology it will be possible to generate additional, pollutant specific information from aquatic habitats in future with the potential of a new bioindicator application for parasite/host origin and/or environmental pollution.

  20. A Robust Strategy for Total Ionizing Dose Testing of Field Programmable Gate Arrays

    NASA Technical Reports Server (NTRS)

    Wilcox, Edward; Berg, Melanie; Friendlich, Mark; Lakeman, Joseph; KIm, Hak; Pellish, Jonathan; LaBel, Kenneth

    2012-01-01

    We present a novel method of FPGA TID testing that measures propagation delay between flip-flops operating at maximum speed. Measurement is performed on-chip at-speed and provides a key design metric when building system-critical synchronous designs.

  1. SU-E-T-414: Experimental Correction of High-Z Electrode Effect in Mini-Ionization Chambers for Small Beam Dosimetry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Larraga-Gutierrez, J

    Purpose: To correct for the over-response of mini-ionization chambers with high-Z central electrodes. The hypothesis is that by applying a negative/reverse voltage, it is possible to suppress the signal generated in the high-Z central electrode by low-energy photons. Methods: The mini-ionization chambers used in the experiments were a PTW-31014, PTW-31006 and IBA-CC01. The PTW-31014 has an aluminum central electrode while the PTW-31006 and IBA-CC01 have a steel one. Total scatter factors (Scp) were measured for a 6 MV photon beam down to a square field size of 0.5 cm. The measurements were performed in water at 10 cm depth withmore » SAD of 100 cm. The Scp were measured with the dosimeters with +400V bias voltage. In the case of the PTW-31006 and IBA-CC01, the measurements were repeated with −400V bias voltage. Also, the field factors in water were calculated with Monte Carlo simulations for comparison. Results: The measured Scp at +400V with the PTW-31006 and IBA-CC01 detectors were in agreement within 0.2% down to a field size of 1.5 cm. Both dosimeters shown a systematic difference about 2.5% with the Scp measured with the PTW-31014 and the Monte Carlo calculated field factors. The measured Scp at −400V with the PTW-31006 and IBA-CC01 detectors were in close agreement with the PTW-31014 measured Scp and the field factors within 0.3 and 1.0%, respectively. In the case of the IBA-CC01 it was found a good agreement (1%) down to field size of 1.0 cm. All the dosimeters shown differences up to 17% between the measured Scp and the field factor for the 0.5 cm field size. Conclusion: By applying a negative/reverse voltage to the mini-ionization chambers with high-Z central electrode it was possible to correct for their over-response to low energy photons.« less

  2. FAST TRACK COMMUNICATION: The origin of Bohm diffusion, investigated by a comparison of different modelling methods

    NASA Astrophysics Data System (ADS)

    Bultinck, E.; Mahieu, S.; Depla, D.; Bogaerts, A.

    2010-07-01

    'Bohm diffusion' causes the electrons to diffuse perpendicularly to the magnetic field lines. However, its origin is not yet completely understood: low and high frequency electric field fluctuations are both named to cause Bohm diffusion. The importance of including this process in a Monte Carlo (MC) model is demonstrated by comparing calculated ionization rates with particle-in-cell/Monte Carlo collisions (PIC/MCC) simulations. A good agreement is found with a Bohm diffusion parameter of 0.05, which corresponds well to experiments. Since the PIC/MCC method accounts for fast electric field fluctuations, we conclude that Bohm diffusion is caused by fast electric field phenomena.

  3. Unprecedented Ionization Processes in Mass Spectrometry Provide Missing Link between ESI and MALDI.

    PubMed

    Trimpin, Sarah; Lee, Chuping; Weidner, Steffen M; El-Baba, Tarick J; Lutomski, Corinne A; Inutan, Ellen D; Foley, Casey D; Ni, Chi-Kung; McEwen, Charles N

    2018-03-05

    In the field of mass spectrometry, producing intact, highly-charged protein ions from surfaces is a conundrum with significant potential payoff in application areas ranging from biomedical to clinical research. Here, we report on the ability to form intact, highly-charged protein ions on high vacuum time-of-flight mass spectrometers in the linear and reflectron modes achievable using experimental conditions that allow effective matrix removal from both the sample surfaces and from the charged clusters formed by the laser ablation event. The charge states are the highest reported on high vacuum mass spectrometers, yet they remain at only around a third of the highest charge obtained using laser ablation with a suitable matrix at atmospheric pressure. Other than physical instrument modifications, the key to forming abundant and stable highly-charged ions appears to be the volatility of the matrix used. Cumulative results suggest mechanistic links between the ionization process reported here and traditional ionization methods of electrospray ionization and matrix-assisted laser desorption/ionization. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Fully coupled simulation of cosmic reionization. I. numerical methods and tests

    DOE PAGES

    Norman, Michael L.; Reynolds, Daniel R.; So, Geoffrey C.; ...

    2015-01-09

    Here, we describe an extension of the Enzo code to enable fully coupled radiation hydrodynamical simulation of inhomogeneous reionization in large similar to(100 Mpc)(3) cosmological volumes with thousands to millions of point sources. We solve all dynamical, radiative transfer, thermal, and ionization processes self-consistently on the same mesh, as opposed to a postprocessing approach which coarse-grains the radiative transfer. But, we employ a simple subgrid model for star formation which we calibrate to observations. The numerical method presented is a modification of an earlier method presented in Reynolds et al. differing principally in the operator splitting algorithm we use tomore » advance the system of equations. Radiation transport is done in the gray flux-limited diffusion (FLD) approximation, which is solved by implicit time integration split off from the gas energy and ionization equations, which are solved separately. This results in a faster and more robust scheme for cosmological applications compared to the earlier method. The FLD equation is solved using the hypre optimally scalable geometric multigrid solver from LLNL. By treating the ionizing radiation as a grid field as opposed to rays, our method is scalable with respect to the number of ionizing sources, limited only by the parallel scaling properties of the radiation solver. We test the speed and accuracy of our approach on a number of standard verification and validation tests. We show by direct comparison with Enzo's adaptive ray tracing method Moray that the well-known inability of FLD to cast a shadow behind opaque clouds has a minor effect on the evolution of ionized volume and mass fractions in a reionization simulation validation test. Finally, we illustrate an application of our method to the problem of inhomogeneous reionization in a 80 Mpc comoving box resolved with 3200(3) Eulerian grid cells and dark matter particles.« less

  5. Ambient Ionization Mass Spectrometry for Cancer Diagnosis and Surgical Margin Evaluation

    PubMed Central

    Ifa, Demian R.; Eberlin, Livia S.

    2017-01-01

    Background There is a clinical need for new technologies that would enable rapid disease diagnosis based on diagnostic molecular signatures. Ambient ionization mass spectrometry has revolutionized the means by which molecular information can be obtained from tissue samples in real time and with minimal sample pretreatment. New developments in ambient ionization techniques applied to clinical research suggest that ambient ionization mass spectrometry will soon become a routine medical tool for tissue diagnosis. Content This review summarizes the main developments in ambient ionization techniques applied to tissue analysis, with focus on desorption electrospray ionization mass spectrometry, probe electrospray ionization, touch spray, and rapid evaporative ionization mass spectrometry. We describe their applications to human cancer research and surgical margin evaluation, highlighting integrated approaches tested for ex vivo and in vivo human cancer tissue analysis. We also discuss the challenges for clinical implementation of these tools and offer perspectives on the future of the field. Summary A variety of studies have showcased the value of ambient ionization mass spectrometry for rapid and accurate cancer diagnosis. Small molecules have been identified as potential diagnostic biomarkers, including metabolites, fatty acids, and glycerophospholipids. Statistical analysis allows tissue discrimination with high accuracy rates (>95%) being common. This young field has challenges to overcome before it is ready to be broadly accepted as a medical tool for cancer diagnosis. Growing research in new, integrated ambient ionization mass spectrometry technologies and the ongoing improvements in the existing tools make this field very promising for future translation into the clinic. PMID:26555455

  6. Unified solution of the Boltzmann equation for electron and ion velocity distribution functions and transport coefficients in weakly ionized plasmas

    NASA Astrophysics Data System (ADS)

    Konovalov, Dmitry A.; Cocks, Daniel G.; White, Ronald D.

    2017-10-01

    The velocity distribution function and transport coefficients for charged particles in weakly ionized plasmas are calculated via a multi-term solution of Boltzmann's equation and benchmarked using a Monte-Carlo simulation. A unified framework for the solution of the original full Boltzmann's equation is presented which is valid for ions and electrons, avoiding any recourse to approximate forms of the collision operator in various limiting mass ratio cases. This direct method using Lebedev quadratures over the velocity and scattering angles avoids the need to represent the ion mass dependence in the collision operator through an expansion in terms of the charged particle to neutral mass ratio. For the two-temperature Burnett function method considered in this study, this amounts to avoiding the need for the complex Talmi-transformation methods and associated mass-ratio expansions. More generally, we highlight the deficiencies in the two-temperature Burnett function method for heavy ions at high electric fields to calculate the ion velocity distribution function, even though the transport coefficients have converged. Contribution to the Topical Issue "Physics of Ionized Gases (SPIG 2016)", edited by Goran Poparic, Bratislav Obradovic, Dragana Maric and Aleksandar Milosavljevic.

  7. Quasistatic limit of the strong-field approximation describing atoms in intense laser fields: Circular polarization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bauer, Jaroslaw H.

    2011-03-15

    In the recent work of Vanne and Saenz [Phys. Rev. A 75, 063403 (2007)] the quasistatic limit of the velocity gauge strong-field approximation describing the ionization rate of atomic or molecular systems exposed to linearly polarized laser fields was derived. It was shown that in the low-frequency limit the ionization rate is proportional to the laser frequency {omega} (for a constant intensity of the laser field). In the present work I show that for circularly polarized laser fields the ionization rate is proportional to {omega}{sup 4} for H(1s) and H(2s) atoms, to {omega}{sup 6} for H(2p{sub x}) and H(2p{sub y})more » atoms, and to {omega}{sup 8} for H(2p{sub z}) atoms. The analytical expressions for asymptotic ionization rates (which become nearly accurate in the limit {omega}{yields}0) contain no summations over multiphoton contributions. For very low laser frequencies (optical or infrared) these expressions usually remain with an order-of-magnitude agreement with the velocity gauge strong-field approximation.« less

  8. Miniature Bipolar Electrostatic Ion Thruster

    NASA Technical Reports Server (NTRS)

    Hartley, Frank T.

    2006-01-01

    The figure presents a concept of a bipolar miniature electrostatic ion thruster for maneuvering a small spacecraft. The ionization device in the proposed thruster would be a 0.1-micron-thick dielectric membrane with metal electrodes on both sides. Small conical holes would be micromachined through the membrane and electrodes. An electric potential of the order of a volt applied between the membrane electrodes would give rise to an electric field of the order of several mega-volts per meter in the submicron gap between the electrodes. An electric field of this magnitude would be sufficient to ionize all the molecules that enter the holes. In a thruster-based on this concept, one or more propellant gases would be introduced into such a membrane ionizer. Unlike in larger prior ion thrusters, all of the propellant molecules would be ionized. This thruster would be capable of bipolar operation. There would be two accelerator grids - one located forward and one located aft of the membrane ionizer. In one mode of operation, which one could denote the forward mode, positive ions leaving the ionizer on the backside would be accelerated to high momentum by an electric field between the ionizer and an accelerator grid. Electrons leaving the ionizer on the front side would be ejected into free space by a smaller accelerating field. The equality of the ion and electron currents would eliminate the need for an additional electron- or ion-emitting device to keep the spacecraft charge-neutral. In another mode of operation, which could denote the reverse mode, the polarities of the voltages applied to the accelerator grids and to the electrodes of the membrane ionizer would be the reverse of those of the forward mode. The reversal of electric fields would cause the ion and electrons to be ejected in the reverse of their forward mode directions, thereby giving rise to thrust in the direction opposite that of the forward mode.

  9. Identification of multiply charged proteins and amino acid clusters by liquid nitrogen assisted spray ionization mass spectrometry.

    PubMed

    Kumar Kailasa, Suresh; Hasan, Nazim; Wu, Hui-Fen

    2012-08-15

    The development of liquid nitrogen assisted spray ionization mass spectrometry (LNASI MS) for the analysis of multiply charged proteins (insulin, ubiquitin, cytochrome c, α-lactalbumin, myoglobin and BSA), peptides (glutathione, HW6, angiotensin-II and valinomycin) and amino acid (arginine) clusters is described. The charged droplets are formed by liquid nitrogen assisted sample spray through a stainless steel nebulizer and transported into mass analyzer for the identification of multiply charged protein ions. The effects of acids and modifier volumes for the efficient ionization of the above analytes in LNASI MS were carefully investigated. Multiply charged proteins and amino acid clusters were effectively identified by LNASI MS. The present approach can effectively detect the multiply charged states of cytochrome c at 400 nM. A comparison between LNASI and ESI, CSI, SSI and V-EASI methods on instrumental conditions, applied temperature and observed charge states for the multiply charged proteins, shows that the LNASI method produces the good quality spectra of amino acid clusters at ambient conditions without applied any electric field and heat. To date, we believe that the LNASI method is the most simple, low cost and provided an alternative paradigm for production of multiply charged ions by LNASI MS, just as ESI-like ions yet no need for applying any electrical field and it could be operated at low temperature for generation of highly charged protein/peptide ions. Copyright © 2012 Elsevier B.V. All rights reserved.

  10. Simulation study of the ionizing front in the critical ionization velocity phenomenon

    NASA Technical Reports Server (NTRS)

    Machida, S.; Goertz, C. K.; Lu, G.

    1988-01-01

    The simulation of the critical ionization velocity for a neutral gas cloud moving across the static magnetic field is presented. A low-beta plasma is studied, using a two and a half-dimensional electrostatic code linked with the Plasma and Neutral Interaction Code (Goertz and Machida, 1987). The physics of the ionizing front and the instabilities which occur there are discussed. Results are presented from four numerical runs designed so that the effects of the charge separation field can be distinguished from the wave heating.

  11. Robust generation of Fourier-synthesized laser fields and their estimation of the optical phase by using quantum control of molecular tunneling ionization

    NASA Astrophysics Data System (ADS)

    Yoshida, Tsuyoshi; Saito, Naoaki; Ohmura, Hideki

    2018-03-01

    Intense (5.0 × 1012 W cm-2) nanosecond Fourier-synthesized laser fields consisting of fundamental, second-, third-, and fourth-harmonic light generated by an interferometer-free Fourier-synthesized laser field generator induce orientation-selective ionization based on directionally asymmetric molecular tunneling ionization (TI). The laser field generator ensures adjustment-free operation, high stability, and high reproducibility. Phase-sensitive, orientation-selective molecular TI provides a simple way to estimate the relative phase differences between the fundamental light and each harmonic by data-fitting analysis. This application of Fourier-synthesized laser fields will facilitate not only lightwave engineering but also the control of matter.

  12. ROTATING PLASMA DEVICE

    DOEpatents

    Boyer, K.; Hammel, J.E.; Longmire, C.L.; Nagle, D.E.; Ribe, F.L.; Tuck, J.L.

    1961-10-24

    ABS>A method and device are described for obtaining fusion reactions. The basic concept is that of using crossed electric and magnetic fields to induce a plasma rotation in which the ionized particles follow a circumferential drift orbit on wldch a cyclotron mode of motion is superimposed, the net result being a cycloidal motion about the axis of symmetry. The discharge tube has a radial electric field and a longitudinal magnetic field. Mirror machine geometry is utilized. The device avoids reliance on the pinch effect and its associated instability problems. (AEC)

  13. Asymmetric Flow Field Flow Fractionation of Aqueous C60 Nanoparticles with Size Determination by Dynamic Light Scattering and Quantification by Liquid Chromatography Atmospheric Pressure Photo-Ionization Mass Spectrometry

    EPA Science Inventory

    A size separation method was developed for aqueous C60 fullerene aggregates (aqu/C60) using asymmetric flow field flow fractionation (AF4) coupled to a dynamic light scattering detector in flow through mode. Surfactants, which are commonly used in AF4, were avoided as they may al...

  14. Internuclear separation dependent ionization of the valence orbitals of I2 by strong laser fields.

    PubMed

    Chen, H; Tagliamonti, V; Gibson, G N

    2012-11-09

    Using a pump-dump-probe technique and Fourier-transform spectroscopy, we study the internuclear separation R dependence and relative strength of the ionization rates of the π and σ electrons of I2, whose valence orbitals are σ(g)(2)π(u)(4)π(g)(4)σ(u)(0). We find that ionization of the highest occupied molecular orbital (HOMO)-2 (σ(g)) has a strong dependence on R while the HOMO and HOMO-1 do not. Surprisingly, the ionization rate of the HOMO-2 exceeds the combined ionization rate of the less bound orbitals and this branching ratio increases with R. Since our technique produces target molecules that are highly aligned with the laser polarization, the σ orbitals will be preferentially ionized and undergo enhanced ionization at larger R compared to the π orbitals. Nevertheless, it is highly unusual that an inner orbital provides the dominant strong field ionization pathway in a small molecule.

  15. Internuclear Separation Dependent Ionization of the Valence Orbitals of I2 by Strong Laser Fields

    NASA Astrophysics Data System (ADS)

    Chen, H.; Tagliamonti, V.; Gibson, G. N.

    2012-11-01

    Using a pump-dump-probe technique and Fourier-transform spectroscopy, we study the internuclear separation R dependence and relative strength of the ionization rates of the π and σ electrons of I2, whose valence orbitals are σg2πu4πg4σu0. We find that ionization of the highest occupied molecular orbital (HOMO)-2 (σg) has a strong dependence on R while the HOMO and HOMO-1 do not. Surprisingly, the ionization rate of the HOMO-2 exceeds the combined ionization rate of the less bound orbitals and this branching ratio increases with R. Since our technique produces target molecules that are highly aligned with the laser polarization, the σ orbitals will be preferentially ionized and undergo enhanced ionization at larger R compared to the π orbitals. Nevertheless, it is highly unusual that an inner orbital provides the dominant strong field ionization pathway in a small molecule.

  16. The kinematics of the diffuse ionized gas in NGC 4666

    NASA Astrophysics Data System (ADS)

    Voigtländer, P.; Kamphuis, P.; Marcelin, M.; Bomans, D. J.; Dettmar, R.-J.

    2013-06-01

    Context. The global properties of the interstellar medium with processes such as infall and outflow of gas and a large scale circulation of matter and its consequences for star formation and chemical enrichment are important for the understanding of galaxy evolution. Aims: In this paper we studied the kinematics and morphology of the diffuse ionized gas (DIG) in the disk and in the halo of the star forming spiral galaxy NGC 4666 to derive information about its kinematical properties. Especially, we searched for infalling and outflowing ionized gas. Methods: We determined surface brightness, radial velocity, and velocity dispersion of the warm ionized gas via high spectral resolution (R ≈ 9000) Fabry-Pérot interferometry. This allows the determination of the global velocity field and the detection of local deviations from this velocity field. We calculated models of the DIG distribution and its kinematics for comparison with the measured data. In this way we determined fundamental parameters such as the inclination and the scale height of NGC 4666, and established the need for an additional gas component to fit our observed data. Results: We found individual areas, especially along the minor axis, with gas components reaching into the halo which we interpret as an outflowing component of the DIG. As the main result of our study, we were able to determine that the vertical structure of the DIG distribution in NGC 4666 is best modeled with two components of ionized gas, a thick and a thin disk with 0.8 kpc and 0.2 kpc scale height, respectively. Therefore, the enhanced star formation in NGC 4666 drives an outflow and also maintains a thick ionized gas layer reminiscent of the Reynold's layer in the Milky Way.

  17. Two years experience with quality assurance protocol for patient related Rapid Arc treatment plan verification using a two dimensional ionization chamber array

    PubMed Central

    2011-01-01

    Purpose To verify the dose distribution and number of monitor units (MU) for dynamic treatment techniques like volumetric modulated single arc radiation therapy - Rapid Arc - each patient treatment plan has to be verified prior to the first treatment. The purpose of this study was to develop a patient related treatment plan verification protocol using a two dimensional ionization chamber array (MatriXX, IBA, Schwarzenbruck, Germany). Method Measurements were done to determine the dependence between response of 2D ionization chamber array, beam direction, and field size. Also the reproducibility of the measurements was checked. For the patient related verifications the original patient Rapid Arc treatment plan was projected on CT dataset of the MatriXX and the dose distribution was calculated. After irradiation of the Rapid Arc verification plans measured and calculated 2D dose distributions were compared using the gamma evaluation method implemented in the measuring software OmniPro (version 1.5, IBA, Schwarzenbruck, Germany). Results The dependence between response of 2D ionization chamber array, field size and beam direction has shown a passing rate of 99% for field sizes between 7 cm × 7 cm and 24 cm × 24 cm for measurements of single arc. For smaller and larger field sizes than 7 cm × 7 cm and 24 cm × 24 cm the passing rate was less than 99%. The reproducibility was within a passing rate of 99% and 100%. The accuracy of the whole process including the uncertainty of the measuring system, treatment planning system, linear accelerator and isocentric laser system in the treatment room was acceptable for treatment plan verification using gamma criteria of 3% and 3 mm, 2D global gamma index. Conclusion It was possible to verify the 2D dose distribution and MU of Rapid Arc treatment plans using the MatriXX. The use of the MatriXX for Rapid Arc treatment plan verification in clinical routine is reasonable. The passing rate should be 99% than the verification protocol is able to detect clinically significant errors. PMID:21342509

  18. Bound and continuum energy distributions of nuclear fragments resulting from tunneling ionization of molecules

    NASA Astrophysics Data System (ADS)

    Svensmark, Jens; Tolstikhin, Oleg I.; Madsen, Lars Bojer

    2018-03-01

    We present the theory of tunneling ionization of molecules with both electronic and nuclear motion treated quantum mechanically. The theory provides partial rates for ionization into the different final states of the molecular ion, including both bound vibrational and dissociative channels. The exact results obtained for a one-dimensional model of H2 and D2 are compared with two approximate approaches, the weak-field asymptotic theory and the Born-Oppenheimer approximation. The validity ranges and compatibility of the approaches are identified formally and illustrated by the calculations. The results quantify that at typical field strengths considered in strong-field physics, it is several orders of magnitude more likely to ionize into bound vibrational ionic channels than into the dissociative channel.

  19. Coherent control of strong-field two-pulse ionization of Rydberg atoms.

    PubMed

    Fedorov, M; Poluektov, N

    2000-02-28

    Strong-field ionization of Rydberg atoms is investigated in its dependence on phase features of the initial coherent population of Rydberg levels. In the case of a resonance between Rydberg levels and some lower-energy atomic level (V-type transitions), this dependence is shown to be very strong: by a proper choice of the initial population an atom can be made either completely or very little ionized by a strong laser pulse. It is shown that phase features of the initial coherent population of Rydberg levels and the ionization yield can be efficiently controlled in a scheme of ionization by two strong laser pulses with a varying delay time between them.

  20. Radiation Interaction with Therapeutic Drugs and Cell Membranes

    NASA Astrophysics Data System (ADS)

    Martin, Diana I.; Manaila, Elena N.; Moisescu, Mihaela I.; Savopol, Tudor D.; Kovacs, Eugenia A.; Cinca, Sabin A.; Matei, Constantin I.; Margaritescu, Irina D.; Iacob, Nicusor I.; Ighigeanu, Daniel I.; Craciun, Gabriela D.

    2007-04-01

    This transient permeabilized state of the cell membrane, named the ``cell electroporation'' (CE) can be used to increase cells uptake of drugs that do not readily pass cell membrane, thus enabling their cytotoxicity. The anticancer drugs, such as bleomycin (BL) and cisplatin, are the most candidates for the combined use with ionizing and non-ionizing radiation fields. The methods and installations for the cell electroporation by electron beam (EB) and microwave (MW) irradiation are presented. The viability tests of the human leukocytes under EB and MW exposure with/without the BL in the cell cultures are discussed.

  1. Miniature Oxidizer Ionizer for a Fuel Cell

    NASA Technical Reports Server (NTRS)

    Hartley, Frank

    2006-01-01

    A proposed miniature device for ionizing the oxygen (or other oxidizing gas) in a fuel cell would consist mostly of a membrane ionizer using the same principles as those of the device described in the earlier article, Miniature Bipolar Electrostatic Ion Thruster (NPO-21057). The oxidizing gas would be completely ionized upon passage through the holes in the membrane ionizer. The resulting positively charged atoms or molecules of oxidizing gas could then, under the influence of the fringe fields of the ionizer, move toward the fuel-cell cathode that would be part of a membrane/electrode assembly comprising the cathode, a solid-electrolyte membrane, and an anode. The electro-oxidized state of the oxidizer atoms and molecules would enhance transfer of them through the cathode, thereby reducing the partial pressure of the oxidizer gas between the ionizer and the fuel-cell cathode, thereby, in turn, causing further inflow of oxidizer gas through the holes in the membrane ionizer. Optionally the ionizer could be maintained at a positive electric potential with respect to the cathode, in which case the resulting electric field would accelerate the ions toward the cathode.

  2. Hot interstellar gas and ionization of embedded clouds

    NASA Technical Reports Server (NTRS)

    Cheng, K.-P.; Bruhweiler, F.

    1990-01-01

    Researchers present detailed photoionization calculations for the instellar cloud in which the Sun is embedded. They consider the EUV radiation field with contribution from discrete stellar sources and from a thermal bremsstrahlung-radiative recombination spectrum emitted from the surrounding 10 to the 6th power k coronal substrate. They establish lower limits to the fractional ionization of hydrogen and helium of 0.17 and 0.29 respectively. The high He ionization fraction results primarily from very strong line emission below 500 A originating in the surrounding coronal substrate while the H ionization is dominated by the EUV radiation from the discrete stellar sources. The dual effects of thermal conduction and the EUV spectrum of the 10 to the 6th k plasma on ionization in the cloud skin are explored. The EUV radiation field and Auger ionization have insignificant effects on the resulting ionic column densities of Si IV, C IV, N V and O VI through the cloud skin. Calculations show that the abundances of these species are dominated by collisional ionization in the thermal conduction front. Because of a low charge exchange rate with hydrogen, the ionic column density ratios of N (CIII)/N (CII) and N (NII)/N (NI) are dominated by the EUV radiation field in the local interstellar medium. These ratios should be important diagnostics for the EUV radiation field and serve as surrogate indicators of the interstellar He and H ionization fraction respectively. Spacecraft such as Lyman which is designed to obtain high resolution spectral data down to the Lyman limit at 912 A could sample interstellar lines of these ions.

  3. High-resolution electron spectroscopy of lanthanide (Ce, Pr, and Nd) complexes of cyclooctatetraene: the role of 4f electrons.

    PubMed

    Kumari, Sudesh; Roudjane, Mourad; Hewage, Dilrukshi; Liu, Yang; Yang, Dong-Sheng

    2013-04-28

    Cerium, praseodymium, and neodymium complexes of 1,3,5,7-cyclooctatetraene (COT) complexes were produced in a laser-vaporization metal cluster source and studied by pulsed-field ionization zero electron kinetic energy spectroscopy and quantum chemical calculations. The computations included the second-order Møller-Plesset perturbation theory, the coupled cluster method with single, double, and perturbative triple excitations, and the state-average complete active space self-consistent field method. The spectrum of each complex exhibits multiple band systems and is assigned to ionization of several low-energy electronic states of the neutral complex. This observation is different from previous studies of M(COT) (M = Sc, Y, La, and Gd), for which a single band system was observed. The presence of the multiple low-energy electronic states is caused by the splitting of the partially filled lanthanide 4f orbitals in the ligand field, and the number of the low-energy states increases rapidly with increasing number of the metal 4f electrons. On the other hand, the 4f electrons have a small effect on the geometries and vibrational frequencies of these lanthanide complexes.

  4. Radiology Residents' Awareness about Ionizing Radiation Doses in Imaging Studies and Their Cancer Risk during Radiological Examinations

    PubMed Central

    Divrik Gökçe, Senem; Coşkun, Melek

    2012-01-01

    Objective Imaging methods that use ionizing radiation have been more frequent in various medical fields with advances in imaging technology. The aim of our study was to make residents be aware of the radiation dose they are subjected to when they conduct radiological imaging methods, and of cancer risk. Materials and Methods A total of 364 residents participated in this descriptive study which was conducted during the period between October, 2008 and January, 2009. The questionnaires were completed under strict control on a one-to-one basis from each department. A χ2-test was used for the evaluation of data obtained. Results Only 7% of residents correctly answered to the question about the ionizing radiation dose of a posteroanterior (PA) chest X-ray. The question asking about the equivalent number of PA chest X-rays to the ionizing dose of a brain CT was answered correctly by 24% of residents; the same question regarding abdominal CT was answered correctly by 16% of residents, thorax CT by 16%, thyroid scintigraphy by 15%, intravenous pyelography by 9%, and lumbar spine radiography by 2%. The risk of developing a cancer throughout lifetime by a brain and abdominal CT were 33% and 28%, respectively. Conclusion Radiologic residents should have updated knowledge about radiation dose content and attendant cancer risks of various radiological imaging methods during both basic medical training period and following practice period. PMID:22438688

  5. Double ionization of nitrogen molecules in orthogonal two-color femtosecond laser fields

    NASA Astrophysics Data System (ADS)

    Song, Qiying; Li, Hui; Wang, Junping; Lu, Peifen; Gong, Xiaochun; Ji, Qinying; Lin, Kang; Zhang, Wenbin; Ma, Junyang; Li, Hanxiao; Zeng, Heping; He, Feng; Wu, Jian

    2018-04-01

    Double ionization of nitrogen molecules in orthogonally polarized two-color femtosecond laser fields is investigated by varying the relative intensity between the fundamental wave (FW) and its second harmonic (SH) components. The yield ratios of the double ionization channels, i.e., the non-dissociative {{{{N}}}2}2+ and Coulomb exploded (N+, N+), to the singly charged N2 + channel exhibit distinct dependences on the relative strength between the FW and SH fields. As the intensity ratio of SH to FW increases, the yield ratio of (N+, N+)/N2 + gradually increases, while the ratio of {{{{N}}}2}2+/N2 + first descends and then increases constituting a valley shape which is similar to the behavior of Ar2+/Ar+ observed in the same experimental condition. Based on the classical trajectory simulations, we found that the different characteristics of the two doubly ionized channels stem from two mechanisms, i.e., the {{{{N}}}2}2+ is mostly accessed by the (e, 2e) impact ionization while the recollision-induced excitation with subsequent ionization plays an important role in producing the (N+, N+) channel.

  6. Comparison study for multiple ionization of carbonyl sulfide by linearly and circularly polarized intense femtosecond laser fields using Coulomb explosion imaging

    NASA Astrophysics Data System (ADS)

    Ma, Pan; Wang, Chuncheng; Luo, Sizuo; Yu, Xitao; Li, Xiaokai; Wang, Zhenzhen; Hu, Wenhui; Yu, Jiaqi; Yang, Yizhang; Tian, Xu; Cui, Zhonghua; Ding, Dajun

    2018-05-01

    We studied the relative yields and dissociation dynamics for two- and three-body Coulomb explosion (CE) channels from highly charged carbonyl sulfide molecules in intense laser fields using the CE imaging technique. The electron recollision contributions are evaluated by comparing the relative yields for the multiple ionization process in linearly polarized and circularly polarized (LP and CP) laser fields. The nonsequential multiple ionization is only confirmed for the charge states of 2 to 4 because the energy for further ionization from the inner orbital is much larger than the maximum recollision energy, 3.2U p . The novel deviations of kinetic energy releases distributions between LP and CP pulses are observed for the charge states higher than 4. It can be attributed to the stronger molecular bending in highly charged states before three-body CE with CP light, in which the bending wave packet is initialed by the triple or quartic ionization and spread along their potential curves. Compared to LP light, CP light ionizes a larger fraction of bending molecules in the polarization plane.

  7. Approaches for the analysis of low molecular weight compounds with laser desorption/ionization techniques and mass spectrometry.

    PubMed

    Bergman, Nina; Shevchenko, Denys; Bergquist, Jonas

    2014-01-01

    This review summarizes various approaches for the analysis of low molecular weight (LMW) compounds by different laser desorption/ionization mass spectrometry techniques (LDI-MS). It is common to use an agent to assist the ionization, and small molecules are normally difficult to analyze by, e.g., matrix assisted laser desorption/ionization mass spectrometry (MALDI-MS) using the common matrices available today, because the latter are generally small organic compounds themselves. This often results in severe suppression of analyte peaks, or interference of the matrix and analyte signals in the low mass region. However, intrinsic properties of several LDI techniques such as high sensitivity, low sample consumption, high tolerance towards salts and solid particles, and rapid analysis have stimulated scientists to develop methods to circumvent matrix-related issues in the analysis of LMW molecules. Recent developments within this field as well as historical considerations and future prospects are presented in this review.

  8. Correction factors for ionization chamber measurements with the ‘Valencia’ and ‘large field Valencia’ brachytherapy applicators

    NASA Astrophysics Data System (ADS)

    Gimenez-Alventosa, V.; Gimenez, V.; Ballester, F.; Vijande, J.; Andreo, P.

    2018-06-01

    Treatment of small skin lesions using HDR brachytherapy applicators is a widely used technique. The shielded applicators currently available in clinical practice are based on a tungsten-alloy cup that collimates the source-emitted radiation into a small region, hence protecting nearby tissues. The goal of this manuscript is to evaluate the correction factors required for dose measurements with a plane-parallel ionization chamber typically used in clinical brachytherapy for the ‘Valencia’ and ‘large field Valencia’ shielded applicators. Monte Carlo simulations have been performed using the PENELOPE-2014 system to determine the absorbed dose deposited in a water phantom and in the chamber active volume with a Type A uncertainty of the order of 0.1%. The average energies of the photon spectra arriving at the surface of the water phantom differ by approximately 10%, being 384 keV for the ‘Valencia’ and 343 keV for the ‘large field Valencia’. The ionization chamber correction factors have been obtained for both applicators using three methods, their values depending on the applicator being considered. Using a depth-independent global chamber perturbation correction factor and no shift of the effective point of measurement yields depth-dose differences of up to 1% for the ‘Valencia’ applicator. Calculations using a depth-dependent global perturbation factor, or a shift of the effective point of measurement combined with a constant partial perturbation factor, result in differences of about 0.1% for both applicators. The results emphasize the relevance of carrying out detailed Monte Carlo studies for each shielded brachytherapy applicator and ionization chamber.

  9. Influence of field emission on the propagation of cylindrical fast ionization wave in atmospheric-pressure nitrogen

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Levko, Dmitry; Raja, Laxminarayan L.

    2016-04-21

    The influence of field emission of electrons from surfaces on the fast ionization wave (FIW) propagation in high-voltage nanosecond pulse discharge in the atmospheric-pressure nitrogen is studied by a one-dimensional Particle-in-Cell Monte Carlo Collisions model. A strong influence of field emission on the FIW dynamics and plasma parameters is obtained. Namely, the accounting for the field emission makes possible the bridging of the cathode–anode gap by rather dense plasma (∼10{sup 13 }cm{sup −3}) in less than 1 ns. This is explained by the generation of runaway electrons from the field emitted electrons. These electrons are able to cross the entire gap pre-ionizingmore » it and promoting the ionization wave propagation. We have found that the propagation of runaway electrons through the gap cannot be accompanied by the streamer propagation, because the runaway electrons align the plasma density gradients. In addition, we have obtained that the field enhancement factor allows controlling the speed of ionization wave propagation.« less

  10. Direct analysis of samples under ambient condition by high-voltage-assisted laser desorption ionization mass spectrometry in both positive and negative ion mode.

    PubMed

    Ren, Xinxin; Liu, Jia; Zhang, Chengsen; Luo, Hai

    2013-03-15

    With the rapid development of ambient mass spectrometry, the hybrid laser-based ambient ionization methods which can generate multiply charged ions of large biomolecules and also characterize small molecules with good signal-to-noise in both positive and negative ion modes are of particular interest. An ambient ionization method termed high-voltage-assisted laser desorption ionization (HALDI) is developed, in which a 1064 nm laser is used to desorb various liquid samples from the sample target biased at a high potential without the need for an organic matrix. The pre-charged liquid samples are desorbed by the laser to form small charged droplets which may undergo an electrospray-like ionization process to produce multiply charged ions of large biomolecules. Various samples including proteins, oligonucleotides (ODNs), drugs, whole milk and chicken eggs have been analyzed by HALDI-MS in both positive and negative ion mode with little or no sample preparation. In addition, HALDI can generate intense signals with better signal-to-noise in negative ion mode than laser desorption spay post-ionization (LDSPI) from the same samples, such as ODNs and some carboxylic-group-containing small drug molecules. HALDI-MS can directly analyze a variety of liquid samples including proteins, ODNs, pharmaceuticals and biological fluids in both positive and negative ion mode without the use of an organic matrix. This technique may be further developed into a useful tool for rapid analysis in many different fields such as pharmaceutical, food, and biological sciences. Copyright © 2013 John Wiley & Sons, Ltd.

  11. Radiation Effects on Optoelectronic Devices in Space Missions

    NASA Technical Reports Server (NTRS)

    Johnston, Allan H.

    2006-01-01

    Radiation degradation of optoelectronic devices is discussed, including effects on optical emitters, detectors and optocouplers. The importance of displacement damage is emphasized, including the limitations of non-ionizing energy loss (NIEL) in normalizing damage. Failures of optoelectronics in fielded space systems are discussed, along with testing and qualification methods.

  12. Portable Intelligent Tritium in Air Monitor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Purghel, L.; Calin, M.R.; Bartos, D.

    2005-07-15

    The tritium detection method used for this monitor is original, patented in Romania. The detection unit consists of a single ionization chamber, a special fast preamplifier and a dedicated software associated to the detection unit, for signals processing. Some results concerning the tritium in relative strong gamma-ray fields are presented.

  13. Interplay between Coulomb-focusing and non-dipole effects in strong-field ionization with elliptical polarization

    NASA Astrophysics Data System (ADS)

    Daněk, J.; Klaiber, M.; Hatsagortsyan, K. Z.; Keitel, C. H.; Willenberg, B.; Maurer, J.; Mayer, B. W.; Phillips, C. R.; Gallmann, L.; Keller, U.

    2018-06-01

    We study strong-field ionization and rescattering beyond the long-wavelength limit of the dipole approximation with elliptically polarized mid-IR laser pulses. Full three-dimensional photoelectron momentum distributions (PMDs) measured with velocity map imaging and tomographic reconstruction revealed an unexpected sharp ridge structure in the polarization plane (2018 Phys. Rev. A 97 013404). This thin line-shaped ridge structure for low-energy photoelectrons is correlated with the ellipticity-dependent asymmetry of the PMD along the beam propagation direction. The peak of the projection of the PMD onto the beam propagation axis is shifted from negative to positive values when the sharp ridge fades away with increasing ellipticity. With classical trajectory Monte Carlo simulations and analytical analysis, we study the underlying physics of this feature. The underlying physics is based on the interplay between the lateral drift of the ionized electron, the laser magnetic field induced drift in the laser propagation direction, and Coulomb focusing. To apply our observations to emerging techniques relying on strong-field ionization processes, including time-resolved holography and molecular imaging, we present a detailed classical trajectory-based analysis of our observations. The analysis leads to the explanation of the fine structure of the ridge and its non-dipole behavior upon rescattering while introducing restrictions on the ellipticity. These restrictions as well as the ionization and recollision phases provide additional observables to gain information on the timing of the ionization and recollision process and non-dipole properties of the ionization process.

  14. New upper limits on the local metagalactic ionizing radiation density

    NASA Technical Reports Server (NTRS)

    Vogel, Stuart N.; Weymann, Ray; Rauch, Michael; Hamilton, Tom

    1995-01-01

    We have obtained H-alpha observations with the Maryland-Caltech Fabry-Perot Spectrometer attached to the Cassegrain focus of the 1.5 m telescope at Palomer Observatory in order to set limits on the number of ionizing photons from the local metagalactic radiation field. We have observed the SW component of the Haynes-Giovanelli cloud H I 1225+01, an intergalactic cloud which should be optimum for measuring the metagalactic flux because it is nearly opaque to ionizing photons, it does not appear to be significantly shielded from the metagalactic radiation field, and the limits on embedded or nearby ionizing sources are unusually low. For the area of the cloud with an H I column density greater than 10(exp 19)/sq cm we set a 2 sigma limit of 1.1 x 10(exp -19) ergs/sq cm/s/sq arcsec (20 mR) for the surface brightness of diffuse H-alpha. This implies a 2 sigma upper limit on the incident one-sided ionizing flux of Phi(sub ex) is less than 3 x 10(exp 4)/sq cm/s. For a radiation field of the form J(sub nu) is approximately nu(exp -1.4), this yields a firm 2 sigma upper limit on the local metagalactic photoionization rate of Gamma is less than 2 x 10(exp -13)/s, and an upper limit for the radiation field J(sub nu) at the Lyman limit of J(sub nu0) is less than 8 x 10(exp -23) ergs/sq cm/Hz/sr. We discuss previous efforts to constrain the metagalactic ionizing flux using H-alpha surface brightness observations and also other methods, and conclude that our result places the firmest upper limit on this flux. We also observed the 7 min diameter region centered on 3C 273 in which H-alpha emission at a velocity of approximately 1700 km/s was initially reported by Williams and Schommer. In agreement with T. B. Williams (private communication) we find the initial detection was spurious. We obtain a 2 sigma upper limit of 1.8 x 10(exp -19) ergs/sq cm/s/sq arcsec (32 mR) for the mean surface brightness of diffuse H-alpha, about a factor of 6 below the published value.

  15. MO-FG-CAMPUS-IeP1-05: New Ionization Chamber Dosimetry of Absorbed Dose to Water in Diagnostic KV X-Ray Beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Araki, F; Ohno, T

    Purpose: To develop new ionization chamber dosimetry of absorbed dose to water in diagnostic kV x-ray beams, by using a beam quality conversion factor, kQ, for Co-60 to kV x-ray and an ionization conversion factor for a water-substitute plastic phantom. Methods: kQ was calculated for aluminum half value-layers (Al-HVLs) of 1.5 mm to 8 mm which were generated by kV x-ray beams of 50 to 120 kVp. Twenty-two energy spectra for ten effective energies (Eeff) were calculated by a SpecCalc program. Depth doses in water were calculated at 5 × 5 to 30 × 30 cm{sup 2} fields. Output factorsmore » were also obtained from the dose ratio for a 10 × 10 cm{sup 2} field. kQ was obtained for a PTW30013 Former ion chamber. In addition, an ionization conversion factor of the PWDT phantom to water was calculated. All calculations were performed with EGSnrc/cavity code and egs-chamber codes. Results: The x-ray beam energies for 1.5 mm to 8 mm Al-HVLs ranged in Eeff of 25.7 to 54.3 keV. kQ for 1.5 mm to 8 mm Al-HVLs were 0.831 to 0.897, at 1 and 2 cm depths for a 10 × 10 cm2 field. Similarly, output factors for 5 × 5 to 30 × 30 cm{sup 2} fields were 0.937 to 1.033 for 25.7 keV and 0.857 to 1.168 for 54.3 keV. The depth dose in a PWDT phantom decreased up to 5% compared to that in water at depth of ten percent of maximum dose for 1.5 mm Al-HVL. The ionization ratios of water/PWDT phantoms for the PTW30013 chamber were 1.012 to 1.007 for 1.5 mm to 8 mm Al-HVLs at 1 cm depth. Conclusion: It became possible to directly measure the absorbed dose to water with the ionization chamber in diagnostic kV x-ray beams, by using kQ and the PWDT phantom.« less

  16. Numerical Exposure Assessment Method for Low Frequency Range and Application to Wireless Power Transfer.

    PubMed

    Park, SangWook; Kim, Minhyuk

    2016-01-01

    In this paper, a numerical exposure assessment method is presented for a quasi-static analysis by the use of finite-difference time-domain (FDTD) algorithm. The proposed method is composed of scattered field FDTD method and quasi-static approximation for analyzing of the low frequency band electromagnetic problems. The proposed method provides an effective tool to compute induced electric fields in an anatomically realistic human voxel model exposed to an arbitrary non-uniform field source in the low frequency ranges. The method is verified, and excellent agreement with theoretical solutions is found for a dielectric sphere model exposed to a magnetic dipole source. The assessment method serves a practical example of the electric fields, current densities, and specific absorption rates induced in a human head and body in close proximity to a 150-kHz wireless power transfer system for cell phone charging. The results are compared to the limits recommended by the International Commission on Non-Ionizing Radiation Protection (ICNIRP) and the IEEE standard guidelines.

  17. Numerical Exposure Assessment Method for Low Frequency Range and Application to Wireless Power Transfer

    PubMed Central

    Kim, Minhyuk

    2016-01-01

    In this paper, a numerical exposure assessment method is presented for a quasi-static analysis by the use of finite-difference time-domain (FDTD) algorithm. The proposed method is composed of scattered field FDTD method and quasi-static approximation for analyzing of the low frequency band electromagnetic problems. The proposed method provides an effective tool to compute induced electric fields in an anatomically realistic human voxel model exposed to an arbitrary non-uniform field source in the low frequency ranges. The method is verified, and excellent agreement with theoretical solutions is found for a dielectric sphere model exposed to a magnetic dipole source. The assessment method serves a practical example of the electric fields, current densities, and specific absorption rates induced in a human head and body in close proximity to a 150-kHz wireless power transfer system for cell phone charging. The results are compared to the limits recommended by the International Commission on Non-Ionizing Radiation Protection (ICNIRP) and the IEEE standard guidelines. PMID:27898688

  18. Long-term biological effects induced by ionizing radiation--implications for dose mediated risk.

    PubMed

    Miron, S D; Astărăstoae, V

    2014-01-01

    Ionizing radiations are considered to be risk agents that are responsible for the effects on interaction with living matter. The occurring biological effects are due to various factors such as: dose, type of radiation, exposure time, type of biological tissue, health condition and the age of the person exposed. The mechanisms involved in the direct modifications of nuclear DNA and mitochondrial DNA are reviewed. Classical target theory of energy deposition in the nucleus that causes DNA damages, in particular DNA double-strand breaks and that explanation of the biological consequences of ionizing radiation exposure is a paradigm in radiobiology. Recent experimental evidences have demonstrated the existence of a molecular mechanism that explains the non-targeted effects of ionizing radiation exposure. Among these novel data, genomic instability and a variety of bystander effects are discussed here. Those bystander effects of ionizing radiation are fulfilled by cellular communication systems that give rise to non-targeted effects in the neighboring non irradiated cells. This paper provides also a commentary on the synergistic effects induced by the co-exposures to ionizing radiation and various physical agents such as electromagnetic fields and the co-exposures to ionizing radiation and chemical environmental contaminants such as metals. The biological effects of multiple stressors on genomic instability and bystander effects are also discussed. Moreover, a brief presentation of the methods used to characterize cyto- and genotoxic damages is offered.

  19. CIFOG: Cosmological Ionization Fields frOm Galaxies

    NASA Astrophysics Data System (ADS)

    Hutter, Anne

    2018-03-01

    CIFOG is a versatile MPI-parallelised semi-numerical tool to perform simulations of the Epoch of Reionization. From a set of evolving cosmological gas density and ionizing emissivity fields, it computes the time and spatially dependent ionization of neutral hydrogen (HI), neutral (HeI) and singly ionized helium (HeII) in the intergalactic medium (IGM). The code accounts for HII, HeII, HeIII recombinations, and provides different descriptions for the photoionization rate that are used to calculate the residual HI fraction in ionized regions. This tool has been designed to be coupled to semi-analytic galaxy formation models or hydrodynamical simulations. The modular fashion of the code allows the user to easily introduce new descriptions for recombinations and the photoionization rate.

  20. Ionizing potential waves and high-voltage breakdown streamers.

    NASA Technical Reports Server (NTRS)

    Albright, N. W.; Tidman, D. A.

    1972-01-01

    The structure of ionizing potential waves driven by a strong electric field in a dense gas is discussed. Negative breakdown waves are found to propagate with a velocity proportional to the electric field normal to the wavefront. This causes a curved ionizing potential wavefront to focus down into a filamentary structure, and may provide the reason why breakdown in dense gases propagates in the form of a narrow leader streamer instead of a broad wavefront.

  1. Signature of charge migration in modulations of double ionization

    NASA Astrophysics Data System (ADS)

    Mauger, François; Abanador, Paul M.; Bruner, Adam; Sissay, Adonay; Gaarde, Mette B.; Lopata, Kenneth; Schafer, Kenneth J.

    2018-04-01

    We present a theoretical investigation of charge migration following strong-field ionization in a multielectron system. We study a model homonuclear molecule with two electrons, each restricted to one dimension (1 +1 D ), interacting with a strong, static electric field. We show that in this system charge migration results from the interplay between multiple ionization channels that overlap in space, creating a coherent electron-hole wave packet in the cation. We also find that, in our case, charge migration following the first ionization manifests as a modulation of the subsequent double-ionization signal. We derive a parametrized semiclassical model from the full multielectron system and we discuss the importance of the choice of cation electronic-structure basis for the efficacy of the semiclassical representation. We use the ab initio solution of the full 1 +1 D system as a reference for the qualitative and quantitative results of the parametrized semiclassical model. We discuss the extension of our model to long-wavelength time-dependent fields with full-dimension, many-electron targets.

  2. Ionization in the local interstellar and intergalactic media

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, K.

    1990-01-01

    Detailed photoionization calculations for the local interstellar medium (LISM) and the intergalactic medium (IGM) are presented. Constraints in the LISM are imposed by H I column density derived from IUE and Copernicus data toward nearby B stars and hot white dwarfs. The EUV radiation field is modeled including contributions from discrete stellar sources and from a thermal bremsstrahlung-radiative recombination spectrum emitted from the surrounding 10(exp 6) K coronal substrate. Lower limits to the fractional ionization of hydrogen and helium of 0.17 and 0.30 respectively are established. The derived limits have important implications for the interpretation of the H I andmore » He I backscattering results. The high He ionization fraction results primarily from very strong line emission below 500 A originating in the surrounding coronal substrate while the H ionization is dominated by the EUV radiation from the discrete stellar sources. The dual effects of thermal conduction and the EUV spectrum of the 10(exp 6) K plasma on ionization in the cloud skin are explored. The EUV radiation field and Auger ionization have insignificant effects on the resulting ionic column densities of Si IV, C IV, N V and O VI through the cloud skin. Calculations show that the abundances of these species are dominated by collisional ionization in the thermal conduction front. Because of a low charge exchange rate with hydrogen, the ionic column density ratios of N(C III)/N(C II) and N(N II)/N(N I) are dominated by the EUV radiation field in the local interstellar medium. These ratios should be important diagnostics for the EUV radiation field and serve as surrogate indicators of the interstellar He and H ionization fraction respectively. The same photoionization model is applied to the intergalactic medium.« less

  3. L. V. Keldysh’s “Ionization in the Field of a Strong Electromagnetic Wave” and modern physics of atomic interaction with a strong laser field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fedorov, M. V., E-mail: fedorov@gmail.com

    2016-03-15

    Basic premises, approximations, and results of L.V. Keldysh’s 1964 work on multiphoton ionization of atoms are discussed, as well as its influence on the modern science of the interaction of atomic–molecular systems with a strong laser field.

  4. SU-G-TeP1-03: Beam Quality Correction Factors for Linear Accelerator with and Without Flattening Filter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Czarnecki, D; Voigts-Rhetz, P von; Zink, K

    2016-06-15

    Purpose: The impact of removing the flattening filter on absolute dosimetry based on IAEA’s TPR-398 and AAPM’s TG-51 was investigated in this study using Monte Carlo simulations. Methods: The EGSnrc software package was used for all Monte Carlo simulations performed in this work. Five different ionization chambers and nine linear accelerator heads have been modeled according to technical drawings. To generate a flattening filter free radiation field the flattening filter was replaced by a 2 mm thick aluminum layer. Dose calculation in a water phantom were performed to calculate the beam quality correction factor k{sub Q} as a function ofmore » the beam quality specifiers %dd(10){sub x}, TPR{sub 20,10} and mean photon and electron energies at the point of measurement in photon fields with (WFF) and without flattening filter (FFF). Results: The beam quality correction factor as a function of %dd(10){sub x} differs systematically between FFF and WFF beams for all investigated ionization chambers. The largest difference of 1.8% was observed for the largest investigated Farmer-type ionization chamber with a sensitive volume of 0.69 cm{sup 3}. For ionization chambers with a smaller nominal sensitive volume (0.015 – 0.3 cm{sup 3}) the deviation was less than 0.4% between WFF and FFF beams for %dd(10){sub x} > 62%. The specifier TPR{sub 20,10} revealed only a good correlation between WFF and FFF beams (< 0.3%) for low energies. Conclusion: The results confirm that %dd(10){sub x} is a suitable beam quality specifier for FFF beams with an acceptable bias. The deviation depends on the volume of the ionization chamber. Using %dd(10){sub x} to predict k{sub Q} for a large volume chamber in a FFF photon field may lead to not acceptable errors according to the results of this study. This bias may be caused by the volume effect due to the inhomogeneous photon fields of FFF linear accelerators.« less

  5. Measurements of the time constant for steady ionization in shaped-charge barium releases

    NASA Technical Reports Server (NTRS)

    Hoch, Edward L.; Hallinan, Thomas J.

    1993-01-01

    Quantitative measurements of three solar illuminated shaped-charge barium releases injected at small angles to the magnetic field were made using a calibrated color television camera. Two of the releases were from 1989. The third release, a reanalysis of an event included in Hallinan's 1988 study of three 1986 releases, was included to provide continuity between the two studies. Time constants for ionization, measured during the first 25 s of each release, were found to vary considerably. The two 1989 time constants differed substantially, and both were significantly less than any of the 1986 time constants. On the basis of this variability, we conclude that the two 1989 releases showed evidence of continuous nonsolar ionization. One release showed nonsolar ionization which could not he attributed to Alfven's critical ionization velocity process, which requires a component of velocity perpendicular to the magnetic field providing a perpendicular energy greater than the ionization potential.

  6. An analysis of the temperature dependence of the gate current in complementary heterojunction field-effect transistors

    NASA Technical Reports Server (NTRS)

    Cunningham, Thomas J.; Fossum, Eric R.; Baier, Steven M.

    1992-01-01

    The temperature dependence of the gate current versus the gate voltage in complementary heterojunction field-effect transistors (CHFET's) is examined. An analysis indicates that the gate conduction is due to a combination of thermionic emission, thermionic-field emission, and conduction through a temperature-activated resistance. The thermionic-field emission is consistent with tunneling through the AlGaAs insulator. The activation energy of the resistance is consistent with the ionization energy associated with the DX center in the AlGaAs. Methods reducing the gate current are discussed.

  7. EFFECTS OF LASER RADIATION ON MATTER: Spectrum of the barium atom in a laser radiation field

    NASA Astrophysics Data System (ADS)

    Bondar', I. I.; Suran, V. V.

    1990-08-01

    An experimental investigation was made of the influence of a laser radiation field on the spectrum of barium atoms. The investigation was carried out by the method of three-photon ionization spectroscopy using dye laser radiation (ω = 14 800-18 700 cm - 1). The electric field intensity of the laser radiation was 103-106 V/cm. This laser radiation field had a strong influence on a number of bound and autoionizing states. The nature of this influence depended on the ratio of the excitation frequencies of bound and autoionizing states.

  8. Ionization Capabilities of Hydronium Ions and High Electric Fields Produced by Atmospheric Pressure Corona Discharge.

    PubMed

    Sato, Natsuhiko; Sekimoto, Kanako; Takayama, Mitsuo

    2016-01-01

    Atmospheric pressure corona discharge (APCD) was applied to the ionization of volatile organic compounds. The mass spectra of analytes having aromatic, phenolic, anilinic, basic and aliphatic in nature were obtained by using vapor supply and liquid smear supply methods. The vapor supply method mainly gave protonated analytes [A+H] + caused by proton transfer from hydronium ion H 3 O + , except for benzene, toluene and n -hexane that have lower proton affinity. The use of the liquid smear supply method resulted in the formation of molecular ion A ·+ and/or dehydride analyte [A-H] + , according to the nature of analytes used. The formation of A ·+ without fragment ions could be explained by the electron tunneling via high electric fields 10 8  V/m at the tip of the corona needle. The dehydride analytes [A-H] + observed in the mass spectra of n -hexane, di- and tributylamines may be explained by the hydride abstraction from the alkyl chains by the hydronium ion. The hydronium ion can play the two-roles for analytes, i.e. , the proton donor to form [A+H] + and the hydride acceptor to form [A-H] + .

  9. Ionization Capabilities of Hydronium Ions and High Electric Fields Produced by Atmospheric Pressure Corona Discharge

    PubMed Central

    Sato, Natsuhiko; Sekimoto, Kanako; Takayama, Mitsuo

    2016-01-01

    Atmospheric pressure corona discharge (APCD) was applied to the ionization of volatile organic compounds. The mass spectra of analytes having aromatic, phenolic, anilinic, basic and aliphatic in nature were obtained by using vapor supply and liquid smear supply methods. The vapor supply method mainly gave protonated analytes [A+H]+ caused by proton transfer from hydronium ion H3O+, except for benzene, toluene and n-hexane that have lower proton affinity. The use of the liquid smear supply method resulted in the formation of molecular ion A·+ and/or dehydride analyte [A−H]+, according to the nature of analytes used. The formation of A·+ without fragment ions could be explained by the electron tunneling via high electric fields 108 V/m at the tip of the corona needle. The dehydride analytes [A−H]+ observed in the mass spectra of n-hexane, di- and tributylamines may be explained by the hydride abstraction from the alkyl chains by the hydronium ion. The hydronium ion can play the two-roles for analytes, i.e., the proton donor to form [A+H]+ and the hydride acceptor to form [A−H]+. PMID:28616372

  10. SU-F-T-488: Comparison of the TG-51 and TG-51 Addendum Calibration Protocols

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCaw, T; Hwang, M; Jang, S

    Purpose: To quantify differences between the TG51 and TG51 addendum calibration protocols. Methods: Beam energies of 6X, 6XSRS, 10X, 15X, 23X, 6XFFF, and 10XFFF were calibrated following both the TG51 and TG51 addendum protocols using both a Farmer and a scanning ionization chamber with traceable absorbed dose-to-water calibrations. For the TG51 addendum procedure, the collimating jaws were positioned to define a 10×10cm{sup 2} radiation field, a lead foil was only used for kQ measurements of FFF energies, and a volume-averaging correction was applied based on crossline and inline dose profiles. For the TG51 procedure, the collimating jaws were set tomore » 10×10cm{sup 2} according to the digital readout, and a lead foil was used for kQ measurements of energies greater than 10MV. Results: For beam energies with a flattening filter, absorbed dose-to-water determined by the two protocols differed by 0.1%–0.3%. For FFF beam energies, differences between the protocols were up to 0.2% and 0.8% for the scanning and Farmer ionization chambers, respectively. Differences between the protocols were due to kQ determination, volume-averaging correction, and measurement of raw ionization. Differences in kQ values between the two protocols were up to 0.4% and 0.2% for the scanning and Farmer ionization chambers, respectively. Volume-averaging corrections were less than 0.1% for the scanning ionization chamber, and up to 0.4% and 0.6% for the Farmer ionization chamber in beams with a flattening filter and FFF beams, respectively. Raw ionization measurements differed up to 0.3%±0.07% due to differences in jaw settings. Conclusion: The TG51 and TG51 addendum calibration protocols differed less than 0.3% for the scanning ionization chamber. For the Farmer chamber in FFF energies, volume-averaging corrections of up to 0.6% contributed to calibration differences of up to 0.8%. Failure to verify the radiation field size can produce calibration differences of up to 0.3%.« less

  11. Effects of the Discharge Parameters on the Efficiency and Stability of Ambient Metastable-Induced Desorption Ionization

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaotian; Chen, Chilai; Liu, Youjiang; Wang, Hongwei; Zhang, Lehua; Kong, Deyi; Mario, Chavarria

    2015-12-01

    Ionization efficiency is an important factor for ion sources in mass spectrometry and ion mobility spectrometry. Using helium as the discharge gas, acetone as the sample, and high-field asymmetric ion mobility spectrometry (FAIMS) as the ion detection method, this work investigates in detail the effects of discharge parameters on the efficiency of ambient metastable-induced desorption ionization (AMDI) at atmospheric pressure. The results indicate that the discharge power and gas flow rate are both significantly correlated with the ionization efficiency. Specifically, an increase in the applied discharge power leads to a rapid increase in the ionization efficiency, which gradually reaches equilibrium due to ion saturation. Moreover, when the discharge voltage is fixed at 2.1 kV, a maximum efficiency can be achieved at the flow rate of 9.0 m/s. This study provides a foundation for the design and application of AMDI for on-line detection with mass spectrometry and ion mobility spectrometry. supported by National Natural Science Foundation of China (No. 61374016), the Changzhou Science and Technology Support Program, China (No. CE20120081) and the External Cooperation Program of Chinese Academy of Sciences (No. GJHZ1218)

  12. Apparatus and procedure to characterize the surface quality of conductors by measuring the rate of cathode emission as a function of surface electric field strength

    DOEpatents

    Mestayer, Mac; Christo, Steve; Taylor, Mark

    2014-10-21

    A device and method for characterizing quality of a conducting surface. The device including a gaseous ionizing chamber having centrally located inside the chamber a conducting sample to be tested to which a negative potential is applied, a plurality of anode or "sense" wires spaced regularly about the central test wire, a plurality of "field wires" at a negative potential are spaced regularly around the sense, and a plurality of "guard wires" at a positive potential are spaced regularly around the field wires in the chamber. The method utilizing the device to measure emission currents from the conductor.

  13. Field ionizing elements and applications thereof

    NASA Technical Reports Server (NTRS)

    Hartley, Frank T. (Inventor)

    2003-01-01

    A field ionizing element formed of a membrane that houses electrodes therein that are located closer to one another than the mean free path of the gas being ionized. The membrane includes a supporting portion, and a non supporting portion where the ions are formed. The membrane may be used as the front end for a number of different applications including a mass spectrometer, a thruster, an ion mobility element, or an electrochemical device such as a fuel cell.

  14. Impact ionization and transport properties of hexagonal boron nitride in a constant-voltage measurement

    NASA Astrophysics Data System (ADS)

    Hattori, Yoshiaki; Taniguchi, Takashi; Watanabe, Kenji; Nagashio, Kosuke

    2018-01-01

    The electrical evaluation of the crystallinity of hexagonal boron nitride (h -BN) is still limited to the measurement of dielectric breakdown strength, in spite of its importance as the substrate for two-dimensional van der Waals heterostructure devices. In this study, physical phenomena for degradation and failure in exfoliated single-crystal h -BN films were investigated using the constant-voltage stress test. At low electrical fields, the current gradually reduced and saturated with time, while the current increased at electrical fields higher than ˜8 MV /cm and finally resulted in the catastrophic dielectric breakdown. These transient behaviors may be due to carrier trapping to the defect sites in h -BN because trapped carriers lower or enhance the electrical fields in h -BN depending on their polarities. The key finding is the current enhancement with time at the high electrical field, suggesting the accumulation of electrons generated by the impact ionization process. Therefore, a theoretical model including the electron generation rate by an impact ionization process was developed. The experimental data support the expected degradation mechanism of h -BN. Moreover, the impact ionization coefficient was successfully extracted, which is comparable to that of Si O2 , even though the fundamental band gap for h -BN is smaller than that for Si O2 . Therefore, the dominant impact ionization in h -BN could be band-to-band excitation, not defect-assisted impact ionization.

  15. Dissociative Ionization and Product Distributions of Benzene and Pyridine by Electron Impact

    NASA Technical Reports Server (NTRS)

    Dateo, Christopher E.; Huo, Winifred M.; Fletcher, Graham D.

    2003-01-01

    We report a theoretical study of the dissociative ionization (DI) and product distributions of benzene (C6H6) and pyridine (C5H5N) from their low-lying ionization channels. Our approach makes use of the fact that electronic motion is much faster than nuclear motion allowing DI to be treated as a two-step process. The first step is the electron-impact ionization resulting in an ion with the same nuclear geometry as the neutral molecule. In the second step, the nuclei relax from the initial geometry and undergo unimolecular dissociation. For the ionization process we use the improved binary-encounter dipole (iBED) model [W.M. Huo, Phys. Rev. A64,042719-I (2001)]. For the unimolecular dissociation, we use multiconfigurational self-consistent field (MCSCF) methods to determine the steepest descent pathways to the possible product channels. More accurate methods are then used to obtain better energetics of the paths which are used to determine unimolecular dissociation probabilities and product distributions. Our analysis of the dissociation products and the thresholds of their productions for benzene are compared with the recent dissociative photoionization meausurements of benzene by Feng et al. [R. Feng, G. Cooper, C.E. Brion, J. Electron Spectrosc. Relat. Phenom. 123,211 (2002)] and the dissociative photoionization measurements of pyridine by Tixier et al. [S. Tixier, G. Cooper, R. Feng, C.E. Brion, J. Electron Spectrosc. Relat. Phenom. 123,185 (2002)] using dipole (e,e+ion) coincidence spectroscopy.

  16. Avalanche multiplication and impact ionization in amorphous selenium photoconductive target

    NASA Astrophysics Data System (ADS)

    Park, Wug-Dong; Tanioka, Kenkichi

    2014-03-01

    The avalanche multiplication factor and the hole ionization coefficient in the amorphous selenium (a-Se) high-gain avalanche rushing amorphous photoconductor (HARP) target depend on the electric field. The phenomenon of avalanche multiplication and impact ionization in the 0.4-µm-thick a-Se HARP target is investigated. The hot carrier energy in the 0.4-µm-thick a-Se HARP target increases linearly as the target voltage increases. The energy relaxation length of hot carriers in the a-Se photoconductor of the 0.4-µm-thick HARP target saturates as the electric field increases. The average energy Eav of a hot carrier and the energy relaxation length λE in the a-Se photoconductor of the 0.4-µm-thick HARP target at 1 × 108 V/m were 0.25 eV and 2.5 nm, respectively. In addition, the hole ionization coefficient β and the avalanche multiplication factor M are derived as a function of the electric field, the average energy of a hot carrier, and the impact ionization energy. The experimental hole ionization coefficient β and the avalanche multiplication factor M in the 0.4-µm-thick a-Se HARP target agree with the theoretical results.

  17. SU-E-T-586: Field Size Dependence of Output Factor for Uniform Scanning Proton Beams: A Comparison of TPS Calculation, Measurement and Monte Carlo Simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng, Y; Singh, H; Islam, M

    2014-06-01

    Purpose: Output dependence on field size for uniform scanning beams, and the accuracy of treatment planning system (TPS) calculation are not well studied. The purpose of this work is to investigate the dependence of output on field size for uniform scanning beams and compare it among TPS calculation, measurements and Monte Carlo simulations. Methods: Field size dependence was studied using various field sizes between 2.5 cm diameter to 10 cm diameter. The field size factor was studied for a number of proton range and modulation combinations based on output at the center of spread out Bragg peak normalized to amore » 10 cm diameter field. Three methods were used and compared in this study: 1) TPS calculation, 2) ionization chamber measurement, and 3) Monte Carlos simulation. The XiO TPS (Electa, St. Louis) was used to calculate the output factor using a pencil beam algorithm; a pinpoint ionization chamber was used for measurements; and the Fluka code was used for Monte Carlo simulations. Results: The field size factor varied with proton beam parameters, such as range, modulation, and calibration depth, and could decrease over 10% from a 10 cm to 3 cm diameter field for a large range proton beam. The XiO TPS predicted the field size factor relatively well at large field size, but could differ from measurements by 5% or more for small field and large range beams. Monte Carlo simulations predicted the field size factor within 1.5% of measurements. Conclusion: Output factor can vary largely with field size, and needs to be accounted for accurate proton beam delivery. This is especially important for small field beams such as in stereotactic proton therapy, where the field size dependence is large and TPS calculation is inaccurate. Measurements or Monte Carlo simulations are recommended for output determination for such cases.« less

  18. Optical field ionization of atoms and ions using ultrashort laser pulses

    NASA Astrophysics Data System (ADS)

    Fittinghoff, D. N.

    1993-12-01

    This dissertation research is an investigation of the strong optical field ionization of atoms and ions by 120-fs, 614-run laser pulses and 130-fs, 800-nm laser pulses. The experiments have shown ionization that is enhanced above the predictions of sequential tunneling models for He(+2), Ne(+2), and Ar(+2). The ion yields for He(+1), Ne(sup +1) and Ar(sup +1) agree well with the theoretical predictions of optical tunneling models. Investigation of the polarization dependence of the ionization indicates that the enhancements are consistent with a nonsequential ionization mechanism in which the linearly polarized field drives the electron wavefunction back toward the ion core and causes double ionization through inelastic e-2e scattering. These investigations have initiated a number of other studies by other groups and are of current scientific interest in the fields of high-irradiance laser-matter interactions and production of high-density plasmas. This work involved the following: (1) Understanding the characteristic nature of the ion yields produced by tunneling ionization through investigation of analytic solutions for tunneling at optical frequencies. (2) Extensive characterization of the pulses produced by 614-nm and 800-ran ultrashort pulse lasers. Absolute calibration of the irradiance scale produced shows the practicality of the inverse problem--measuring peak laser irradiance using ion yields. (3) Measuring the ion yields for three noble gases using linear, circular and elliptical polarizations of laser pulses at 614-nm and 800-nm. The measurements are some of the first measurements for pulse widths as low as 120-fs.

  19. Desalting by crystallization: detection of attomole biomolecules in picoliter buffers by mass spectrometry.

    PubMed

    Gong, Xiaoyun; Xiong, Xingchuang; Wang, Song; Li, Yanyan; Zhang, Sichun; Fang, Xiang; Zhang, Xinrong

    2015-10-06

    Sensitive detection of biomolecules in small-volume samples by mass spectrometry is, in many cases, challenging because of the use of buffers to maintain the biological activities of proteins and cells. Here, we report a highly effective desalting method for picoliter samples. It was based on the spontaneous separation of biomolecules from salts during crystallization of the salts. After desalting, the biomolecules were deposited in the tip of the quartz pipet because of the evaporation of the solvent. Subsequent detection of the separated biomolecules was achieved using solvent assisted electric field induced desorption/ionization (SAEFIDI) coupled with mass spectrometry. It allowed for direct desorption/ionization of the biomolecules in situ from the tip of the pipet. The organic component in the assistant solvent inhibited the desorption/ionization of salts, thus assured successful detection of biomolecules. Proteins and peptides down to 50 amol were successfully detected using our method even if there were 3 × 10(5) folds more amount of salts in the sample. The concentration and ion species of the salts had little influence on the detection results.

  20. Method of and system for producing electrical power

    DOEpatents

    Carabetta, Ralph A.; Staats, Gary E.; Cutting, John C.

    1993-01-01

    A method and system for converting the chemical energy of methane to electrical energy. Methane is thermally decomposed to hydrogen and carbon in a decomposing unit at a temperature not less than 1200.degree. K. and at a pressure above atmospheric pressure. Carbon and substantially pure oxygen and a cesium or potassium seed material is transmitted to a combustor which is maintained at a pressure of at least 50 atmospheres to combust the carbon and oxygen and provide an ionized plasma having a temperature not less than 2900.degree. K. The ionized plasma is accelerated to a velocity not less than 1000 m/sec and transported through an MHD generator having a magnetic field in the range of from 4 to 6 Tesla to generate dc power. The ionized plasma is decelerated and passed from the MHD generator in heat exchange relationship with the methane to heat the methane for decomposition, and thereafter any cesium or potassium seed material is recovered and transported to the combustor, and the dc power from the MHD generator is converted to ac power.

  1. Method of and system for producing electrical power

    DOEpatents

    Carabetta, Ralph A.; Staats, Gary E.; Cutting, John C.

    1993-01-01

    A method and system for converting the chemical energy of methane to electrical energy. Methane is thermally decomposed to hydrogen and carbon in a decomposing unit at a temperature not less than about 1200.degree. K. and at a pressure at least slightly above atmospheric pressure. Carbon and substantially pure oxygen and a cesium or potassium seed material is transmitted to a combustor which is maintained at a pressure of at least about 50 atmospheres to combust the carbon and oxygen and provide an ionized plasma having a temperature not less than about 2800.degree. K. The ionized plasma is accelerated to a velocity not less than about 1000 m/sec and transported through an MHD generator having a magnetic field in the range of from about 4 to about 6 Tesla to generate dc power. The ionized plasma is de-accelerated and passed from the MHD generator in heat exchange relationship with the methane to heat same for decomposition and or reaction, and thereafter any cesium or potassium seed material is recovered and transported to the combustor, and the dc power from the MHD generator is converted to ac power.

  2. May the Best Molecule Win: Competition ESI Mass Spectrometry

    PubMed Central

    Laughlin, Sarah; Wilson, W. David

    2015-01-01

    Electrospray ionization mass spectrometry has become invaluable in the characterization of macromolecular biological systems such as nucleic acids and proteins. Recent advances in the field of mass spectrometry and the soft conditions characteristic of electrospray ionization allow for the investigation of non-covalent interactions among large biomolecules and ligands. Modulation of genetic processes through the use of small molecule inhibitors with the DNA minor groove is gaining attention as a potential therapeutic approach. In this review, we discuss the development of a competition method using electrospray ionization mass spectrometry to probe the interactions of multiple DNA sequences with libraries of minor groove binding molecules. Such an approach acts as a high-throughput screening method to determine important information including the stoichiometry, binding mode, cooperativity, and relative binding affinity. In addition to small molecule-DNA complexes, we highlight other applications in which competition mass spectrometry has been used. A competitive approach to simultaneously investigate complex interactions promises to be a powerful tool in the discovery of small molecule inhibitors with high specificity and for specific, important DNA sequences. PMID:26501262

  3. Plasma-gun-assisted field-reversed configuration formation in a conical θ-pinch

    NASA Astrophysics Data System (ADS)

    Weber, T. E.; Intrator, T. P.; Smith, R. J.

    2015-04-01

    Injection of plasma via an annular array of coaxial plasma guns during the pre-ionization phase of field-reversed configuration (FRC) formation is shown to catalyze the bulk ionization of a neutral gas prefill in the presence of a strong axial magnetic field and change the character of outward flux flow during field-reversal from a convective process to a much slower resistive diffusion process. This approach has been found to significantly improve FRC formation in a conical θ-pinch, resulting in a ˜350% increase in trapped flux at typical operating conditions, an expansion of accessible formation parameter space to lower densities and higher temperatures, and a reduction or elimination of several deleterious effects associated with the pre-ionization phase.

  4. Efficient pre-ionization by direct X-B mode conversion in VEST

    NASA Astrophysics Data System (ADS)

    Jo, JongGab; Lee, H. Y.; Kim, S. C.; Kim, S. H.; An, Y. H.; Hwang, Y. S.

    2017-01-01

    Pre-ionization experiments with pure toroidal field have been carried out in VEST (Versatile Experiment Spherical Torus) to investigate the feasibility of direct XB mode conversion from perpendicular LFS (Low Field Side) injection for efficient pre-ionization. Pre-ionization plasmas are studied by measuring the electron density and temperature profiles with respect to microwave power and toroidal field strength, and 2D full wave cold plasma simulation using the COMSOL Multiphysics is performed for the comparison. It is experimentally figured out that exceeding the threshold microwave power (>3 kW), the parametric decay and localized collisional heating is observed near the UHR (Upper Hybrid Resonance), and the efficient XB mode conversion can be achieved in both short density scale length (Ln) and magnetic scale length (LB) region positioned at outboard and inboard sides, respectively. From the 2D full wave simulations, the reflection and tunneling of X-wave near the R-cutoff layer according to the measured electron density profiles are analyzed with electric field polarization and power flow. Threshold electric field and wave power density for parametric decay are evaluated at least more than 4.8 × 104 V/m and 100 W/cm2, respectively. This study shows that efficient pre-ionization schemes using direct XB mode conversion can be realized by considering the key factors such as Ln, LB, and transmitted wave power at the UHR. Application to Ohmic start-up experiment is carried out to confirm the effect of the pre-ionization schemes on tokamak plasma start-up in VEST.

  5. Two-state and two-state plus continuum problems associated with the interaction of intense laser pulses with atoms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choi, C. W.; Payne, M. G.

    1977-02-01

    Two mathematical methods are utilized (one a form of adiabatic approximation, and the other closely related to the Zener method from collision theory) in order to calculate the probability of three-photon ionization when strong counter propagating pulses are tuned very near a two-photon resonant state. In this case the inverted populations predicted by Grischkowsky and Loy for smooth laser pulses lead to larger ionization probabilities than would be obtained for a square pulse of equal peak power and energy per pulse. The line shape of the ionization probability is also quite unusual in this problem. A sharp onset in themore » ionization probability occurs as the lasers are tuned through the exact unperturbed two-photon resonance. Under proper conditions, the change can be from a very small value to one near unity. It occurs in a very small frequency range determined by the larger of the residual Doppler effect and the reciprocal duration of the pulse. Thus, the line shape retains a Doppler-free aspect even at power levels such that power broadening would dwarf even the full Doppler effect in the case of a square pulse of equal energy and peak power. The same mathematical methods have been used to calculate line shapes for the two-photon excitation of fluorescence when the atoms see a pulsed field due to their time of passage across a tightly focused cw laser beam. Thus,the mathematical methods used above permitted accurate analytical calculations under a set of very interesting conditions.« less

  6. Reducing/Eliminating ESD Hazards During Pyro Operations

    NASA Technical Reports Server (NTRS)

    Soriano, Jose Francisco; Kelley, J. D. (Technical Monitor)

    2001-01-01

    Several safety concerns have occurred during pyro operations at 30% or lower RH in the OPF area based on the increase of electrostatic discharge (ESD). These concerns targeted the safety of personnel, flight hardware, and ground support equipment (GSE). Two proposed methods considered to control ESDs during pyro operations at 30% or lower RH are the use of an ionizer blower and to increase the moisture content. In order to demonstrate that the ionizer is effective in neutralizing static charge, a series of experimental runs were conducted in the Electrostatics Laboratory located in the Operations & Checkout (O&C) Building at NASA Kennedy Space Center (KSC). The effectiveness of the ionizer blower was evaluated based upon the time lapse of a charged metal plate from initial 1000 to 400 volts. Distance, RH, and angle of attack were studied. A full factorial experiment (2(exp 3) = 8) was conducted. Since we did not have a statistical analysis program, such as SAS, available, calculations were done manually based on the method of ANOVA (Analysis of Variances), but R(exp 2) (fitness of curve) was not obtained. As conjectured, distance was found to be the major influencial variable. Therefore, we concluded that the best possible combination of situations would be to position the ionizer blower as close as possible and facing directly into the charged plate. This scenario resulted in the quickest discharge rate, which would be the most beneficial during pyro operations below 30% RH. The second method of increasing the moisture content in the work environment through a modification of the OPF ECS current configuration appeared to be dependent on budget constraints and currently not planned to be modified. Finally, some recommendations are discussed such as to test the ionizer in an actual field experiment with a mockup pyro connector and a technician with all the NASA KSC Safety-compliant PPE to assess the realistic effectiveness of the ionizer blower.

  7. Field ionization characteristics of an ion source array for neutron generators

    NASA Astrophysics Data System (ADS)

    Bargsten Johnson, B.; Schwoebel, P. R.; Resnick, P. J.; Holland, C. E.; Hertz, K. L.; Chichester, D. L.

    2013-11-01

    A new deuterium ion source is being developed to improve the performance of existing compact neutron generators. The ion source is a microfabricated array of metal tips with an integrated gate (i.e., grid) and produces deuterium ions by field ionizing (or field desorbing) a supply of deuterium gas. Deuterium field ion currents from arrays at source temperatures of 77 K and 293 K are studied. Ion currents from single etched-wire tips operating under the same conditions are used to help understand array results. I-F characteristics of the arrays were found to follow trends similar to those of the better understood single etched-wire tip results; however, the fields achieved by the arrays are limited by electrical breakdown of the structure. Neutron production by field ionization at 293 K was demonstrated for the first time from microfabricated array structures with integrated gates.

  8. Improving the radiation hardness of graphene field effect transistors

    DOE PAGES

    Alexandrou, Konstantinos; Masurkar, Amrita; Edrees, Hassan; ...

    2016-10-11

    Ionizing radiation poses a significant challenge to the operation and reliability of conventional silicon-based devices. In this paper, we report the effects of gamma radiation on graphene field-effect transistors (GFETs), along with a method to mitigate those effects by developing a radiation-hardened version of our back-gated GFETs. We demonstrate that activated atmospheric oxygen from the gamma ray interaction with air damages the semiconductor device, and damage to the substrate contributes additional threshold voltage instability. Our radiation-hardened devices, which have protection against these two effects, exhibit minimal performance degradation, improved stability, and significantly reduced hysteresis after prolonged gamma radiation exposure. Finally,more » we believe this work provides an insight into graphene's interactions with ionizing radiation that could enable future graphene-based electronic devices to be used for space, military, and other radiation-sensitive applications.« less

  9. Improving the radiation hardness of graphene field effect transistors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alexandrou, Konstantinos; Masurkar, Amrita; Edrees, Hassan

    Ionizing radiation poses a significant challenge to the operation and reliability of conventional silicon-based devices. In this paper, we report the effects of gamma radiation on graphene field-effect transistors (GFETs), along with a method to mitigate those effects by developing a radiation-hardened version of our back-gated GFETs. We demonstrate that activated atmospheric oxygen from the gamma ray interaction with air damages the semiconductor device, and damage to the substrate contributes additional threshold voltage instability. Our radiation-hardened devices, which have protection against these two effects, exhibit minimal performance degradation, improved stability, and significantly reduced hysteresis after prolonged gamma radiation exposure. Finally,more » we believe this work provides an insight into graphene's interactions with ionizing radiation that could enable future graphene-based electronic devices to be used for space, military, and other radiation-sensitive applications.« less

  10. Time Resolved Studies of Interfacial Reactions of Ozone with Pulmonary Phospholipid Surfactants Using Field Induced Droplet Ionization Mass Spectrometry

    PubMed Central

    Kim, Hugh I.; Kim, Hyungjun; Shin, Young Shik; Beegle, Luther W.; Goddard, William A.; Heath, James R.; Kanik, Isik; Beauchamp, J. L.

    2013-01-01

    Field induced droplet ionization mass spectrometry (FIDI-MS) comprises a soft ionization method to sample ions from the surface of microliter droplets. A pulsed electric field stretches neutral droplets until they develop dual Taylor cones, emitting streams of positively and negatively charged submicrometer droplets in opposite directions, with the desired polarity being directed into a mass spectrometer for analysis. This methodology is employed to study the heterogeneous ozonolysis of 1-palmitoyl-2-oleoyl-sn-phosphatidylglycerol (POPG) at the air–liquid interface in negative ion mode using FIDI mass spectrometry. Our results demonstrate unique characteristics of the heterogeneous reactions at the air–liquid interface. We observe the hydroxyhydroperoxide and the secondary ozonide as major products of POPG ozonolysis in the FIDI-MS spectra. These products are metastable and difficult to observe in the bulk phase, using standard electrospray ionization (ESI) for mass spectrometric analysis. We also present studies of the heterogeneous ozonolysis of a mixture of saturated and unsaturated phospholipids at the air–liquid interface. A mixture of the saturated phospholipid 1,2-dipalmitoyl-sn-phosphatidylglycerol (DPPG) and unsaturated POPG is investigated in negative ion mode using FIDI-MS while a mixture of 1,2-dipalmitoyl-sn-phosphatidylcholine (DPPC) and 1-stearoyl-2-oleoyl-sn-phosphatidylcholine (SOPC) surfactant is studied in positive ion mode. In both cases FIDI-MS shows the saturated and unsaturated pulmonary surfactants form a mixed interfacial layer. Only the unsaturated phospholipid reacts with ozone, forming products that are more hydrophilic than the saturated phospholipid. With extensive ozonolysis only the saturated phospholipid remains at the droplet surface. Combining these experimental observations with the results of computational analysis provides an improved understanding of the interfacial structure and chemistry of a surfactant layer system when subject to oxidative stress. PMID:20608690

  11. The importance of Rydberg orbitals in dissociative ionization of small hydrocarbon molecules in intense laser fields.

    PubMed

    Jochim, Bethany; Siemering, R; Zohrabi, M; Voznyuk, O; Mahowald, J B; Schmitz, D G; Betsch, K J; Berry, Ben; Severt, T; Kling, Nora G; Burwitz, T G; Carnes, K D; Kling, M F; Ben-Itzhak, I; Wells, E; de Vivie-Riedle, R

    2017-06-30

    Much of our intuition about strong-field processes is built upon studies of diatomic molecules, which typically have electronic states that are relatively well separated in energy. In polyatomic molecules, however, the electronic states are closer together, leading to more complex interactions. A combined experimental and theoretical investigation of strong-field ionization followed by hydrogen elimination in the hydrocarbon series C 2 D 2 , C 2 D 4 and C 2 D 6 reveals that the photofragment angular distributions can only be understood when the field-dressed orbitals rather than the field-free orbitals are considered. Our measured angular distributions and intensity dependence show that these field-dressed orbitals can have strong Rydberg character for certain orientations of the molecule relative to the laser polarization and that they may contribute significantly to the hydrogen elimination dissociative ionization yield. These findings suggest that Rydberg contributions to field-dressed orbitals should be routinely considered when studying polyatomic molecules in intense laser fields.

  12. Impact of local electrostatic field rearrangement on field ionization

    NASA Astrophysics Data System (ADS)

    Katnagallu, Shyam; Dagan, Michal; Parviainen, Stefan; Nematollahi, Ali; Grabowski, Blazej; Bagot, Paul A. J.; Rolland, Nicolas; Neugebauer, Jörg; Raabe, Dierk; Vurpillot, François; Moody, Michael P.; Gault, Baptiste

    2018-03-01

    Field ion microscopy allows for direct imaging of surfaces with true atomic resolution. The high charge density distribution on the surface generates an intense electric field that can induce ionization of gas atoms. We investigate the dynamic nature of the charge and the consequent electrostatic field redistribution following the departure of atoms initially constituting the surface in the form of an ion, a process known as field evaporation. We report on a new algorithm for image processing and tracking of individual atoms on the specimen surface enabling quantitative assessment of shifts in the imaged atomic positions. By combining experimental investigations with molecular dynamics simulations, which include the full electric charge, we confirm that change is directly associated with the rearrangement of the electrostatic field that modifies the imaging gas ionization zone. We derive important considerations for future developments of data reconstruction in 3D field ion microscopy, in particular for precise quantification of lattice strains and characterization of crystalline defects at the atomic scale.

  13. PIC simulations of post-pulse field reversal and secondary ionization in nanosecond argon discharges

    NASA Astrophysics Data System (ADS)

    Kim, H. Y.; Gołkowski, M.; Gołkowski, C.; Stoltz, P.; Cohen, M. B.; Walker, M.

    2018-05-01

    Post-pulse electric field reversal and secondary ionization are investigated with a full kinetic treatment in argon discharges between planar electrodes on nanosecond time scales. The secondary ionization, which occurs at the falling edge of the voltage pulse, is induced by charge separation in the bulk plasma region. This process is driven by a reverse in the electric field from the cathode sheath to the formerly driven anode. Under the influence of the reverse electric field, electrons in the bulk plasma and sheath regions are accelerated toward the cathode. The electron movement manifests itself as a strong electron current generating high electron energies with significant electron dissipated power. Accelerated electrons collide with Ar molecules and an increased ionization rate is achieved even though the driving voltage is no longer applied. With this secondary ionization, in a single pulse (SP), the maximum electron density achieved is 1.5 times higher and takes a shorter time to reach using 1 kV 2 ns pulse as compared to a 1 kV direct current voltage at 1 Torr. A bipolar dual pulse excitation can increase maximum density another 50%–70% above a SP excitation and in half the time of RF sinusoidal excitation of the same period. The first field reversal is most prominent but subsequent field reversals also occur and correspond to electron temperature increases. Targeted pulse designs can be used to condition plasma density as required for fast discharge applications.

  14. Rotationally resolved pulsed field ionization photoelectron study of CO[sup +](X[sup 2][Sigma][sup +],v[sup +]=0[endash]42) in the energy range of 13. 98[endash]21. 92 eV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Evans, M.; Ng, C.Y.

    1999-11-01

    We have obtained rotationally resolved pulsed field ionization[endash]photoelectron (PFI-PE) spectra of CO in the energy range of 13.98[endash]21.92 eV, covering the ionization transitions CO[sup +](X hthinsp;[sup 2][Sigma][sup +],v[sup +]=0[endash]42,N[sup +])[l arrow]CO(X hthinsp;[sup 1][Sigma][sup +],v[sup [double prime

  15. Lyman-continuum leakage as dominant source of diffuse ionized gas in the Antennae galaxy

    NASA Astrophysics Data System (ADS)

    Weilbacher, Peter M.; Monreal-Ibero, Ana; Verhamme, Anne; Sandin, Christer; Steinmetz, Matthias; Kollatschny, Wolfram; Krajnović, Davor; Kamann, Sebastian; Roth, Martin M.; Erroz-Ferrer, Santiago; Marino, Raffaella Anna; Maseda, Michael V.; Wendt, Martin; Bacon, Roland; Dreizler, Stefan; Richard, Johan; Wisotzki, Lutz

    2018-04-01

    The Antennae galaxy (NGC 4038/39) is the closest major interacting galaxy system and is therefore often studied as a merger prototype. We present the first comprehensive integral field spectroscopic dataset of this system, observed with the MUSE instrument at the ESO VLT. We cover the two regions in this system which exhibit recent star formation: the central galaxy interaction and a region near the tip of the southern tidal tail. In these fields, we detect HII regions and diffuse ionized gas to unprecedented depth. About 15% of the ionized gas was undetected by previous observing campaigns. This newly detected faint ionized gas is visible everywhere around the central merger, and shows filamentary structure. We estimate diffuse gas fractions of about 60% in the central field and 10% in the southern region. We are able to show that the southern region contains a significantly different population of HII regions, showing fainter luminosities. By comparing HII region luminosities with the HST catalog of young star clusters in the central field, we estimate that there is enough Lyman-continuum leakage in the merger to explain the amount of diffuse ionized gas that we detect. We compare the Lyman-continuum escape fraction of each HII region against emission line ratios that are sensitive to the ionization parameter. While we find no systematic trend between these properties, the most extreme line ratios seem to be strong indicators of density bounded ionization. Extrapolating the Lyman-continuum escape fractions to the southern region, we conclude that simply from the comparison of the young stellar populations to the ionized gas there is no need to invoke other ionization mechanisms than Lyman-continuum leaking HII regions for the diffuse ionized gas in the Antennae. FITS images and Table of HII regions are available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/611/A95 and at http://muse-vlt.eu/science/antennae/

  16. The Pulsed High Density Experiment (PHDX) Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Slough, John P.; Andreason, Samuel

    The purpose of this paper is to present the conclusions that can be drawn from the Field Reversed Configuration (FRC) formation experiments conducted on the Pulsed High Density experiment (PHD) at the University of Washington. The experiment is ongoing. The experimental goal for this first stage of PHD was to generate a stable, high flux (>10 mWb), high energy (>10 KJ) target FRC. Such results would be adequate as a starting point for several later experiments. This work focuses on experimental implementation and the results of the first four month run. Difficulties were encountered due to the initial on-axis plasmamore » ionization source. Flux trapping with this ionization source acting alone was insufficient to accomplish experimental objectives. Additional ionization methods were utilized to overcome this difficulty. A more ideal plasma source layout is suggested and will be explored during a forthcoming work.« less

  17. Axial Structure of High-Vacuum Planar Magnetron Discharge Space

    NASA Astrophysics Data System (ADS)

    Miura, Tsutomu

    1999-09-01

    The spatial structure of high-vacuum planar magnetron discharge is theoretically investigated taking into account the electron confinement. The boundary xes of the electron confinement region depends on BA with Ea/BA as the parameter (BA: the magnetic flux density at the anode, Ea: the average electric field strength). The location at which the frequency of ionization events takes the maximum is expressed as CnNxiep (CnN: a factor related to the electron density distribution, xiep: the distance of the location from the cathode at which the ionization is most efficient). With increasing Ea and BA at a fixed Ea/BA, the density of the confined energetic electrons increases. With increasing Ea, the region where ionization is efficient shifts to the cathode side to give a high efficiency of the magnet. The boundary xes as determined by the probe method agreed with the theoretical prediction.

  18. The Pillars of Creation revisited with MUSE: gas kinematics and high-mass stellar feedback traced by optical spectroscopy

    NASA Astrophysics Data System (ADS)

    McLeod, A. F.; Dale, J. E.; Ginsburg, A.; Ercolano, B.; Gritschneder, M.; Ramsay, S.; Testi, L.

    2015-06-01

    Integral field unit (IFU) data of the iconic Pillars of Creation in M16 are presented. The ionization structure of the pillars was studied in great detail over almost the entire visible wavelength range, and maps of the relevant physical parameters, e.g. extinction, electron density, electron temperature, line-of-sight velocity of the ionized and neutral gas are shown. In agreement with previous authors, we find that the pillar tips are being ionized and photoevaporated by the massive members of the nearby cluster NGC 6611. They display a stratified ionization structure where the emission lines peak in a descending order according to their ionization energies. The IFU data allowed us to analyse the kinematics of the photoevaporative flow in terms of the stratified ionization structure, and we find that, in agreement with simulations, the photoevaporative flow is traced by a blueshift in the position-velocity profile. The gas kinematics and ionization structure have allowed us to produce a sketch of the 3D geometry of the Pillars, positioning the pillars with respect to the ionizing cluster stars. We use a novel method to detect a previously unknown bipolar outflow at the tip of the middle pillar and suggest that it has an embedded protostar as its driving source. Furthermore we identify a candidate outflow in the leftmost pillar. With the derived physical parameters and ionic abundances, we estimate a mass-loss rate due to the photoevaporative flow of 70 M⊙ Myr-1 which yields an expected lifetime of approximately 3 Myr.

  19. Using the Mini-Session Course Format to Train Students in the Practical Aspects of Modern Mass Spectrometry

    ERIC Educational Resources Information Center

    Rosado, Dale A., Jr.; Masterson, Tina S.; Masterson, Douglas S.

    2011-01-01

    Mass spectrometry (MS) has been gaining in popularity in recent years owing in large part to the development of soft-ionization techniques such as matrix-assisted laser desorption ionization (MALDI) and electrospray ionization (ESI). These soft-ionization techniques have opened up the field of MS analysis to biomolecules, polymers, and other high…

  20. Effect of the corrected ionization potential and spatial distribution on the angular and energy distribution in tunnel ionization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Petrović, V. M.; Miladinović, T. B., E-mail: tanja.miladinovic@gmail.com

    2016-05-15

    Within the framework of the Ammosov–Delone–Krainov theory, we consider the angular and energy distribution of outgoing electrons due to ionization by a circularly polarized electromagnetic field. A correction of the ground ionization potential by the ponderomotive and Stark shift is incorporated in both distributions. Spatial dependence is analyzed.

  1. Pulsed ion beam source

    DOEpatents

    Greenly, John B.

    1997-01-01

    An improved pulsed ion beam source having a new biasing circuit for the fast magnetic field. This circuit provides for an initial negative bias for the field created by the fast coils in the ion beam source which pre-ionize the gas in the source, ionize the gas and deliver the gas to the proper position in the accelerating gap between the anode and cathode assemblies in the ion beam source. The initial negative bias improves the interaction between the location of the nulls in the composite magnetic field in the ion beam source and the position of the gas for pre-ionization and ionization into the plasma as well as final positioning of the plasma in the accelerating gap. Improvements to the construction of the flux excluders in the anode assembly are also accomplished by fabricating them as layered structures with a high melting point, low conductivity material on the outsides with a high conductivity material in the center.

  2. Central-cell corrections and shallow donor states in strong magnetic fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jayam, Sr. Gerardin; Navaneethakrishnan, K.

    2001-06-01

    Ionization energies and the central-cell corrections have been calculated for a few shallow donors in Si, GaP, and GaAs. We have assumed a short range potential with two parameters for the strength and the range for each donor, representing the central-cell effects. These parameters are fixed using the experimentally available ionization energies for each donor in a semiconductor. In the presence of a magnetic field the donor ionization energies are estimated using a variational procedure. Our results show that the ionization energies and the central-cell corrections increase with magnetic field. Our results are compared for GaAs with the recent workmore » by Heron et al. [R. J. Heron, R. A. Lewis, P. E. Simmonds, R. P. Starret, A. V. Skougarevsky, R. G. Clark, and C. R. Stanley, J. Appl. Phys. 85, 893 (1999)]. {copyright} 2001 American Institute of Physics.« less

  3. Subcycle dynamics of Coulomb asymmetry in strong elliptical laser fields.

    PubMed

    Li, Min; Liu, Yunquan; Liu, Hong; Ning, Qicheng; Fu, Libin; Liu, Jie; Deng, Yongkai; Wu, Chengyin; Peng, Liang-You; Peng, Liangyou; Gong, Qihuang

    2013-07-12

    We measure photoelectron angular distributions of noble gases in intense elliptically polarized laser fields, which indicate strong structure-dependent Coulomb asymmetry. Using a dedicated semiclassical model, we have disentangled the contribution of direct ionization and multiple forward scattering on Coulomb asymmetry in elliptical laser fields. Our theory quantifies the roles of the ionic potential and initial transverse momentum on Coulomb asymmetry, proving that the small lobes of asymmetry are induced by direct ionization and the strong asymmetry is induced by multiple forward scattering in the ionic potential. Both processes are distorted by the Coulomb force acting on the electrons after tunneling. Lowering the ionization potential, the relative contribution of direct ionization on Coulomb asymmetry substantially decreases and Coulomb focusing on multiple rescattering is more important. We do not observe evident initial longitudinal momentum spread at the tunnel exit according to our simulation.

  4. Quantum state-resolved probing of strong-field-ionized xenon atoms using femtosecond high-order harmonic transient absorption spectroscopy.

    PubMed

    Loh, Zhi-Heng; Khalil, Munira; Correa, Raoul E; Santra, Robin; Buth, Christian; Leone, Stephen R

    2007-04-06

    Femtosecond high-order harmonic transient absorption spectroscopy is used to resolve the complete |j,m quantum state distribution of Xe+ produced by optical strong-field ionization of Xe atoms at 800 nm. Probing at the Xe N4/5 edge yields a population distribution rhoj,|m| of rho3/2,1/2ratiorho1/2,1/2ratiorho3/2,3/2=75+/-6 :12+/-3 :13+/-6%. The result is compared to a tunnel ionization calculation with the inclusion of spin-orbit coupling, revealing nonadiabatic ionization behavior. The sub-50-fs time resolution paves the way for tabletop extreme ultraviolet absorption probing of ultrafast dynamics.

  5. Is electrospray emission really due to columbic forces?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aliotta, Francesco, E-mail: aliotta@ipcf.cnr.it; Ponterio, Rosina C.; Salvato, Gabriele

    2014-09-15

    Electrospray ionization (ESI) is a widely adopted soft ionization method for mass spectroscopy (MS). In spite of the undeniable success of the technique, its mechanisms are difficult to be analytically modelled because the process is characterized by non-equilibrium conditions. The common belief is that the formation of gas-phase ions takes place at the apex of the Taylor cone via electrophoretic charging. The charge balance implies that a conversion of electrons to ions should occur at the metal-liquid interface of the injector needle. We have detected that the above description is based on unproved assumptions which are not consistent with themore » correct evaluation of the problem. The comparison between experiments performed under the usual geometry and observations obtained under symmetric field configurations suggests that the emitted droplets cannot be significantly charged or, at least, that any possible ionization mechanism is so poorly efficient to ensure that columbic forces cannot play a major role in jet formation, even in cases where the liquid consists of a solution of ionic species. Further work is required to clearly understand how ionization occurs in ESI-MS.« less

  6. Influence of ionization on ultrafast gas-based nonlinear fiber optics.

    PubMed

    Chang, W; Nazarkin, A; Travers, J C; Nold, J; Hölzer, P; Joly, N Y; Russell, P St J

    2011-10-10

    We numerically investigate the effect of ionization on ultrashort high-energy pulses propagating in gas-filled kagomé-lattice hollow-core photonic crystal fibers by solving an established uni-directional field equation. We consider the dynamics of two distinct regimes: ionization induced blue-shift and resonant dispersive wave emission in the deep-UV. We illustrate how the system evolves between these regimes and the changing influence of ionization. Finally, we consider the effect of higher ionization stages.

  7. Space charge dosimeters for extremely low power measurements of radiation in shipping containers

    DOEpatents

    Britton, Jr., Charles L.; Buckner, Mark A [Oak Ridge, TN; Hanson, Gregory R [Clinton, TN; Bryan, William L [Knoxville, TN

    2011-05-03

    Methods and apparatus are described for space charge dosimeters for extremely low power measurements of radiation in shipping containers. A method includes insitu polling a suite of passive integrating ionizing radiation sensors including reading-out dosimetric data from a first passive integrating ionizing radiation sensor and a second passive integrating ionizing radiation sensor, where the first passive integrating ionizing radiation sensor and the second passive integrating ionizing radiation sensor remain situated where the dosimetric data was integrated while reading-out. Another method includes arranging a plurality of ionizing radiation sensors in a spatially dispersed array; determining a relative position of each of the plurality of ionizing radiation sensors to define a volume of interest; collecting ionizing radiation data from at least a subset of the plurality of ionizing radiation sensors; and triggering an alarm condition when a dose level of an ionizing radiation source is calculated to exceed a threshold.

  8. Space charge dosimeters for extremely low power measurements of radiation in shipping containers

    DOEpatents

    Britton, Jr; Charles, L [Alcoa, TN; Buckner, Mark A [Oak Ridge, TN; Hanson, Gregory R [Clinton, TN; Bryan, William L [Knoxville, TN

    2011-04-26

    Methods and apparatus are described for space charge dosimeters for extremely low power measurements of radiation in shipping containers. A method includes in situ polling a suite of passive integrating ionizing radiation sensors including reading-out dosimetric data from a first passive integrating ionizing radiation sensor and a second passive integrating ionizing radiation sensor, where the first passive integrating ionizing radiation sensor and the second passive integrating ionizing radiation sensor remain situated where the dosimetric data was integrated while reading-out. Another method includes arranging a plurality of ionizing radiation sensors in a spatially dispersed array; determining a relative position of each of the plurality of ionizing radiation sensors to define a volume of interest; collecting ionizing radiation data from at least a subset of the plurality of ionizing radiation sensors; and triggering an alarm condition when a dose level of an ionizing radiation source is calculated to exceed a threshold.

  9. Miniature Free-Space Electrostatic Ion Thrusters

    NASA Technical Reports Server (NTRS)

    Hartley, Frank T.; Stephens, James B.

    2006-01-01

    A miniature electrostatic ion thruster is proposed for maneuvering small spacecraft. In a thruster based on this concept, one or more propellant gases would be introduced into an ionizer based on the same principles as those of the device described in an earlier article, "Miniature Bipolar Electrostatic Ion Thruster". On the front side, positive ions leaving an ionizer element would be accelerated to high momentum by an electric field between the ionizer and an accelerator grid around the periphery of the concave laminate structure. On the front side, electrons leaving an ionizer element would be ejected into free space by a smaller accelerating field. The equality of the ion and electron currents would eliminate the need for an additional electron- or ion-emitting device to keep the spacecraft charge-neutral. In a thruster design consisting of multiple membrane ionizers in a thin laminate structure with a peripheral accelerator grid, the direction of thrust could then be controlled (without need for moving parts in the thruster) by regulating the supply of gas to specific ionizer.

  10. The effect of surface conditions on the work function of insulators and semiconductors

    NASA Technical Reports Server (NTRS)

    George, A.

    1973-01-01

    Ionization energies of organic semiconductors were determined using single crystals of the material. The theory of the method is essentially that of Millikan's oil drop experiment. The technique employed in the experiment is based on the electrostatic method of balancing a charged particle in an electric field against the force of gravity for different excitation energies above the threshold value, and from an estimate of the balancing voltages, read off the ionization energy from the intercept of the energy axis in a plot wavelength corresponding to the balancing potential for the incident radiation of wavelength. In the modified technique which is adopted in the present experimental investigation, a small single crystal is suspended by a fine quartz fiber between two vertical capacitor plates to which a suitable high voltage is applied.

  11. Plasma-gun-assisted field-reversed configuration formation in a conical θ-pinch

    DOE PAGES

    Weber, T. E.; Intrator, T. P.; Smith, R. J.

    2015-04-29

    We show through injection of plasma via an annular array of coaxial plasma guns, during the pre-ionization phase of field-reversed configuration (FRC) formation how to catalyze the bulk ionization of a neutral gas prefill in the presence of a strong axial magnetic field and change the character of outward flux flow during field-reversal from a convective process to a much slower resistive diffusion process. Our approach has been found to significantly improve FRC formation in a conical θ-pinch, resulting in a ~350% increase in trapped flux at typical operating conditions, an expansion of accessible formation parameter space to lower densitiesmore » and higher temperatures, and a reduction or elimination of several deleterious effects associated with the pre-ionization phase.« less

  12. Plasma-gun-assisted field-reversed configuration formation in a conical θ-pinch

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weber, T. E., E-mail: tweber@lanl.gov; Intrator, T. P.; Smith, R. J.

    2015-04-15

    Injection of plasma via an annular array of coaxial plasma guns during the pre-ionization phase of field-reversed configuration (FRC) formation is shown to catalyze the bulk ionization of a neutral gas prefill in the presence of a strong axial magnetic field and change the character of outward flux flow during field-reversal from a convective process to a much slower resistive diffusion process. This approach has been found to significantly improve FRC formation in a conical θ-pinch, resulting in a ∼350% increase in trapped flux at typical operating conditions, an expansion of accessible formation parameter space to lower densities and highermore » temperatures, and a reduction or elimination of several deleterious effects associated with the pre-ionization phase.« less

  13. Tunneling ionization and harmonic generation in two-color fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kondo, K.; Kobayashi, Y.; Sagisaka, A.

    1996-02-01

    Tunneling ionization and harmonic generation in two-color fields were studied with a fundamental beam ({omega}) and its harmonics (2{omega},3{omega}), which were generated by a 100-fs Ti:sapphire laser. Ion yields of atoms and molecules were successfully controlled by means of a change in the relative phase between {omega} and 3{omega} pulses. Two-color interference was clearly observed in photoelectron spectra and harmonic spectra. In the {omega}{endash}2{omega} field even-order harmonics were observed in which the intensity was almost equal to that of the odd harmonics because of an asymmetric optical field. These results were compared with the quasi-static model for ionization and withmore » the quantum theory for harmonic generation. {copyright} {ital 1996 Optical Society of America.}« less

  14. Semi-quantitative proteomics of mammalian cells upon short-term exposure to non-ionizing electromagnetic fields.

    PubMed

    Kuzniar, Arnold; Laffeber, Charlie; Eppink, Berina; Bezstarosti, Karel; Dekkers, Dick; Woelders, Henri; Zwamborn, A Peter M; Demmers, Jeroen; Lebbink, Joyce H G; Kanaar, Roland

    2017-01-01

    The potential effects of non-ionizing electromagnetic fields (EMFs), such as those emitted by power-lines (in extremely low frequency range), mobile cellular systems and wireless networking devices (in radio frequency range) on human health have been intensively researched and debated. However, how exposure to these EMFs may lead to biological changes underlying possible health effects is still unclear. To reveal EMF-induced molecular changes, unbiased experiments (without a priori focusing on specific biological processes) with sensitive readouts are required. We present the first proteome-wide semi-quantitative mass spectrometry analysis of human fibroblasts, osteosarcomas and mouse embryonic stem cells exposed to three types of non-ionizing EMFs (ELF 50 Hz, UMTS 2.1 GHz and WiFi 5.8 GHz). We performed controlled in vitro EMF exposures of metabolically labeled mammalian cells followed by reliable statistical analyses of differential protein- and pathway-level regulations using an array of established bioinformatics methods. Our results indicate that less than 1% of the quantitated human or mouse proteome responds to the EMFs by small changes in protein abundance. Further network-based analysis of the differentially regulated proteins did not detect significantly perturbed cellular processes or pathways in human and mouse cells in response to ELF, UMTS or WiFi exposure. In conclusion, our extensive bioinformatics analyses of semi-quantitative mass spectrometry data do not support the notion that the short-time exposures to non-ionizing EMFs have a consistent biologically significant bearing on mammalian cells in culture.

  15. Semi-quantitative proteomics of mammalian cells upon short-term exposure to non-ionizing electromagnetic fields

    PubMed Central

    Laffeber, Charlie; Eppink, Berina; Bezstarosti, Karel; Dekkers, Dick; Woelders, Henri; Zwamborn, A. Peter M.; Demmers, Jeroen; Lebbink, Joyce H. G.; Kanaar, Roland

    2017-01-01

    The potential effects of non-ionizing electromagnetic fields (EMFs), such as those emitted by power-lines (in extremely low frequency range), mobile cellular systems and wireless networking devices (in radio frequency range) on human health have been intensively researched and debated. However, how exposure to these EMFs may lead to biological changes underlying possible health effects is still unclear. To reveal EMF-induced molecular changes, unbiased experiments (without a priori focusing on specific biological processes) with sensitive readouts are required. We present the first proteome-wide semi-quantitative mass spectrometry analysis of human fibroblasts, osteosarcomas and mouse embryonic stem cells exposed to three types of non-ionizing EMFs (ELF 50 Hz, UMTS 2.1 GHz and WiFi 5.8 GHz). We performed controlled in vitro EMF exposures of metabolically labeled mammalian cells followed by reliable statistical analyses of differential protein- and pathway-level regulations using an array of established bioinformatics methods. Our results indicate that less than 1% of the quantitated human or mouse proteome responds to the EMFs by small changes in protein abundance. Further network-based analysis of the differentially regulated proteins did not detect significantly perturbed cellular processes or pathways in human and mouse cells in response to ELF, UMTS or WiFi exposure. In conclusion, our extensive bioinformatics analyses of semi-quantitative mass spectrometry data do not support the notion that the short-time exposures to non-ionizing EMFs have a consistent biologically significant bearing on mammalian cells in culture. PMID:28234898

  16. TH-CD-BRA-07: MRI-Linac Dosimetry: Parameters That Change in a Magnetic Field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O’Brien, D. J.; Sawakuchi, G. O.

    Purpose: In MRI-linac integrated systems, the presence of the magnetic (B-)field has a large impact of the dose-distribution and the dose-responses of detectors; yet established protocols and previous experience may lead to assumptions about the commissioning process that are no longer valid. This study quantifies parameters that change when performing dosimetry with an MRI-linac including beam quality specifiers and the effective-point-of-measurement (EPOM) of ionization chambers. Methods: We used the Geant4 Monte Carlo code for this work with physics parameters that pass the Fano cavity test to within 0.1% for the simulated conditions with and without a 1.5 T B-field. Amore » point source model with the energy distribution of an MRI-linac beam was used with and without the B-field to calculate the beam quality specifiers %dd(10)× and TPR{sup 20}{sub 10}, the variation of chamber response with orientation and the how the B-field affects the EPOM of ionization chambers by comparing depth-dose curves calculated in water to those generated by a model PTW30013 Farmer chamber. Results: The %dd(10)× changes by over 2% in the presence of the B-field while the TPR{sup 20}{sub 10} is unaffected. Ionization chamber dose-response is known to depend on the orientation w.r.t. the B-field, but two alternative perpendicular orientations (anti-parallel to each other) also differ in dose-response by over 1%. The B-field shifts the EPOM downstream (closer to the chamber center) but it is also shifted laterally by 0.27 times the chamber’s cavity radius. Conclusion: The EPOM is affected by the B-field and it even shifts laterally. The relationship between %dd(10)× and the Spencer-Attix stopping powers is also changed. Care must be taken when using chambers perpendicular to the field as the dose-response changes depending on which perpendicular orientation is used. All of these effects must be considered when performing dosimetry in B-fields and should be accounted for in future dosimetry protocols. This project was partially funded by Elekta Ltd.« less

  17. The generation, destination, and astrophysical applications of magnetohydrodynamic turbulence

    NASA Astrophysics Data System (ADS)

    Xu, Siyao; Lazarian, Alex; Zhang, Bing

    2017-01-01

    The ubiquitous turbulence in the interstellar medium (ISM) participates in astrophysical processes over a huge dynamic range of scales. Understanding the turbulence properties in the multiphase, magnetized, partially ionized, and compressible ISM is the fundamental step prior to the studies of the ISM physics and other fields of astrophysics. I feel that a triad of analytical, numerical and observational efforts provides a winning combination to understand this complex system and solve long-standing puzzles. I have intensively studied the fundamental physics of magnetohydrodynamic (MHD) turbulence, and focused on two primary domains, dynamo and dissipation, which concern the origin of strong magnetic fields and the destination of turbulence, respectively. I further applied my theoretical studies in interpreting numerical results and observational data in various astrophysical contexts. The advanced analyses of MHD turbulence enable me to address a number of challenging astrophysical problems, e.g. the importance of magnetic fields for star formation in the early and present-day universe, new methods of measuring magnetic fields, the density distribution in the Galaxy and the host galaxy of a fast radio burst, the diffusion and acceleration of cosmic rays in partially ionized ISM phases.

  18. Phonon-assisted field emission in silicon nanomembranes for time-of-flight mass spectrometry of proteins.

    PubMed

    Park, Jonghoo; Aksamija, Zlatan; Shin, Hyun-Cheol; Kim, Hyunseok; Blick, Robert H

    2013-06-12

    Time-of-flight (TOF) mass spectrometry has been considered as the method of choice for mass analysis of large intact biomolecules, which are ionized in low charge states by matrix-assisted-laser-desorption/ionization (MALDI). However, it remains predominantly restricted to the mass analysis of biomolecules with a mass below about 50,000 Da. This limitation mainly stems from the fact that the sensitivity of the standard detectors decreases with increasing ion mass. We describe here a new principle for ion detection in TOF mass spectrometry, which is based upon suspended silicon nanomembranes. Impinging ion packets on one side of the suspended silicon nanomembrane generate nonequilibrium phonons, which propagate quasi-diffusively and deliver thermal energy to electrons within the silicon nanomembrane. This enhances electron emission from the nanomembrane surface with an electric field applied to it. The nonequilibrium phonon-assisted field emission in the suspended nanomembrane connected to an effective cooling of the nanomembrane via field emission allows mass analysis of megadalton ions with high mass resolution at room temperature. The high resolution of the detector will give better insight into high mass proteins and their functions.

  19. Applicability of post-ionization theory to laser-assisted field evaporation of magnetite

    DOE PAGES

    Schreiber, Daniel K.; Chiaramonti, Ann N.; Gordon, Lyle M.; ...

    2014-12-15

    Analysis of the mean Fe ion charge state from laser-assisted field evaporation of magnetite (Fe3O4) reveals unexpected trends as a function of laser pulse energy that break from conventional post-ionization theory for metals. For Fe ions evaporated from magnetite, the effects of post-ionization are partially offset by the increased prevalence of direct evaporation into higher charge states with increasing laser pulse energy. Therefore the final charge state is related to both the field strength and the laser pulse energy, despite those variables themselves being intertwined when analyzing at a constant detection rate. Comparison of data collected at different base temperaturesmore » also show that the increased prevalence of Fe2+ at higher laser energies is possibly not a direct thermal effect. Conversely, the ratio of 16O+:16O2+ is well-correlated with field strength and unaffected by laser pulse energy on its own, making it a better overall indicator of the field evaporation conditions than the mean Fe charge state. Plotting the normalized field strength versus laser pulse energy also elucidates a non-linear dependence, in agreement with previous observations on semiconductors, that suggests a field-dependent laser absorption efficiency. Together these observations demonstrate that the field evaporation process for laser-pulsed oxides exhibits fundamental differences from metallic specimens that cannot be completely explained by post-ionization theory. Further theoretical studies, combined with detailed analytical observations, are required to understand fully the field evaporation process of non-metallic samples.« less

  20. Terahertz emission from ultrafast ionizing air in symmetry-broken laser fields

    NASA Astrophysics Data System (ADS)

    Kim, Ki-Yong; Glownia, James H.; Taylor, Antoinette J.; Rodriguez, George

    2007-04-01

    A transient photocurrent model is developed to explain coherent terahertz emission from air irradiated by a symmetry-broken laser field composed of the fundamental and its second harmonic laser pulses. When the total laser field is asymmetric across individual optical cycles, a nonvanishing electron current surge can arise during optical field ionization of air, emitting a terahertz electromagnetic pulse. Terahertz power scalability is also investigated, and with optical pump energy of tens of millijoules per pulse, peak terahertz field strengths in excess of 150 kV/cm are routinely produced.

  1. Terahertz emission from ultrafast ionizing air in symmetry-broken laser fields.

    PubMed

    Kim, Ki-Yong; Glownia, James H; Taylor, Antoinette J; Rodriguez, George

    2007-04-16

    A transient photocurrent model is developed to explain coherent terahertz emission from air irradiated by a symmetry-broken laser field composed of the fundamental and its second harmonic laser pulses. When the total laser field is asymmetric across individual optical cycles, a nonvanishing electron current surge can arise during optical field ionization of air, emitting a terahertz electromagnetic pulse. Terahertz power scalability is also investigated, and with optical pump energy of tens of millijoules per pulse, peak terahertz field strengths in excess of 150 kV/cm are routinely produced.

  2. Measurements of output factors with different detector types and Monte Carlo calculations of stopping-power ratios for degraded electron beams.

    PubMed

    Björk, Peter; Knöös, Tommy; Nilsson, Per

    2004-10-07

    The aim of the present study was to investigate three different detector types (a parallel-plate ionization chamber, a p-type silicon diode and a diamond detector) with regard to output factor measurements in degraded electron beams, such as those encountered in small-electron-field radiotherapy and intraoperative radiation therapy (IORT). The Monte Carlo method was used to calculate mass collision stopping-power ratios between water and the different detector materials for these complex electron beams (nominal energies of 6, 12 and 20 MeV). The diamond detector was shown to exhibit excellent properties for output factor measurements in degraded beams and was therefore used as a reference. The diode detector was found to be well suited for practical measurements of output factors, although the water-to-silicon stopping-power ratio was shown to vary slightly with treatment set-up and irradiation depth (especially for lower electron energies). Application of ionization-chamber-based dosimetry, according to international dosimetry protocols, will introduce uncertainties smaller than 0.3% into the output factor determination for conventional IORT beams if the variation of the water-to-air stopping-power ratio is not taken into account. The IORT system at our department includes a 0.3 cm thin plastic scatterer inside the therapeutic beam, which furthermore increases the energy degradation of the electrons. By ignoring the change in the water-to-air stopping-power ratio due to this scatterer, the output factor could be underestimated by up to 1.3%. This was verified by the measurements. In small-electron-beam dosimetry, the water-to-air stopping-power ratio variation with field size could mostly be ignored. For fields with flat lateral dose profiles (>3 x 3 cm2), output factors determined with the ionization chamber were found to be in close agreement with the results of the diamond detector. For smaller field sizes the lateral extension of the ionization chamber hampers its use. We therefore recommend that the readily available silicon diode detector should be used for output factor measurements in complex electron fields.

  3. [Patient exposure to electromagnetic fields in magnetic resonance scanners: a review].

    PubMed

    Guibelalde del Castillo, E

    2013-12-01

    The use of non-ionizing electromagnetic fields in the low frequency end of the electromagnetic spectrum and static fields, radiofrequencies (RF), and microwaves is fundamental both in modern communication systems and in diagnostic medical imaging techniques like magnetic resonance imaging (MRI). The proliferation of these applications in recent decades has led to intense activity in developing regulations to guarantee their safety and to the establishment of guidelines and legal recommendations for the public, workers, and patients. In April 2012 it was foreseen that the European Parliament and Council would approve and publish a directive on the minimum health and safety requirements regarding the exposure of workers to the risks arising from electromagnetic fields, which would modify Directive 2004/40/EC. New studies related to the exposure to electromagnetic radiation and its impact on health published in recent years have led to a new postponement, and it is now foreseen that the directive will come into effect in October 2013. One of the most noteworthy aspects of the new version of the directive is the exclusion of the limits of occupational exposure to electromagnetic fields in the clinical use of MRI. In exchange for this exception, physicians and experts in protection against non-ionizing radiation are asked to make additional efforts to train workers exposed to non-ionizing radiation and to establish mechanisms to guarantee the correct application of non-ionizing electromagnetic fields in patients, along similar lines to the principles of justification and optimization established for ionizing radiation. On the basis of the most recently published studies, this article reviews some safety-related aspects to take into account when examining patients with MRI with high magnetic fields. Copyright © 2013 SERAM. Published by Elsevier Espana. All rights reserved.

  4. Transit dosimetry in IMRT with an a-Si EPID in direct detection configuration

    NASA Astrophysics Data System (ADS)

    Sabet, Mahsheed; Rowshanfarzad, Pejman; Vial, Philip; Menk, Frederick W.; Greer, Peter B.

    2012-08-01

    In this study an amorphous silicon electronic portal imaging device (a-Si EPID) converted to direct detection configuration was investigated as a transit dosimeter for intensity modulated radiation therapy (IMRT). After calibration to dose and correction for a background offset signal, the EPID-measured absolute IMRT transit doses for 29 fields were compared to a MatriXX two-dimensional array of ionization chambers (as reference) using Gamma evaluation (3%, 3 mm). The MatriXX was first evaluated as reference for transit dosimetry. The accuracy of EPID measurements was also investigated by comparison of point dose measurements by an ionization chamber on the central axis with slab and anthropomorphic phantoms in a range of simple to complex fields. The uncertainty in ionization chamber measurements in IMRT fields was also investigated by its displacement from the central axis and comparison with the central axis measurements. Comparison of the absolute doses measured by the EPID and MatriXX with slab phantoms in IMRT fields showed that on average 96.4% and 97.5% of points had a Gamma index<1 in head and neck and prostate fields, respectively. For absolute dose comparisons with anthropomorphic phantoms, the values changed to an average of 93.6%, 93.7% and 94.4% of points with Gamma index<1 in head and neck, brain and prostate fields, respectively. Point doses measured by the EPID and ionization chamber were within 3% difference for all conditions. The deviations introduced in the response of the ionization chamber in IMRT fields were<1%. The direct EPID performance for transit dosimetry showed that it has the potential to perform accurate, efficient and comprehensive in vivo dosimetry for IMRT.

  5. Ionization and expansion of barium clouds in the ionosphere

    NASA Technical Reports Server (NTRS)

    Ma, T.-Z.; Schunk, R. W.

    1993-01-01

    A recently envelope 3D model is used here to study the motion of the barium clouds released in the ionosphere, including the ionization stage. The ionization and the expansion of the barium clouds and the interaction between the clouds and the background ions are investigated using three simulations: a cloud without a directional velocity, a cloud with an initial velocity of 5 km/s across the B field, and a cloud with initial velocity components of 2 km/s both along and across the B field.

  6. E-beam ionized channel guiding of an intense relativistic electron beam

    DOEpatents

    Frost, Charles A.; Godfrey, Brendon B.; Kiekel, Paul D.; Shope, Steven L.

    1988-01-01

    An IREB is guided through a curved path by ionizing a channel in a gas with electrons from a filament, and confining the electrons to the center of the path with a magnetic field extending along the path. The magnetic field is preferably generated by a solenoid extending along the path.

  7. The argument for a unified approach to non-ionizing radiation protection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perala, R.A.; Rigden, G.J.; Pfeffer, R.A.

    1993-12-01

    In the next decade military equipment will be required to operate in severe electromagnetic environments. These environments are expected to contain most non-ionizing frequencies (D.C. to GHz), from hostile and/or non-hostile sources, and be severe enough to cause temporary upset or even catastrophic failure of electronic equipment. Over the past thirty years considerable emphasis has been placed on hardening critical systems to one or more of these non-ionizing radiation environments, the most prevalent being the nuclear-induced electromagnetic pulse (EMD). From this technology development there has evolved a hardening philosophy that applies to most of these non-ionizing radiation environments. The philosophy,more » which stresses the application of zonal shields plus penetration protection, can provide low-cost hardening against such diverse non-ionizing radiation as p-static, lightning, electromagnetic interference (EMI), EMP, high intensity radiated fields (HIRF), electromagnetic radiation (EMR), and high power microwaves (HPM). The objective in this paper is to describe the application of this philosophy to Army helicopters. The authors develop a unified specification complete with threat definitions and test methods which illustrates integration of EMP, lightning, and HIRF at the box qualification level. This paper is a summary of the effort documented in a cited reference.« less

  8. An optically stimulated luminescence system to measure dose profiles in x-ray computed tomography

    NASA Astrophysics Data System (ADS)

    Yukihara, E. G.; Ruan, C.; Gasparian, P. B. R.; Clouse, W. J.; Kalavagunta, C.; Ahmad, S.

    2009-10-01

    This paper describes an LED-based optically stimulated luminescence (OSL) system for dose profile measurements using OSL detector strips and investigates its performance in x-ray computed tomography (CT) dosimetry. To compensate for the energy response of the Al2O3:C OSL detectors, which have an effective atomic number of 11.28, field-specific energy correction factors were determined using two methods: (a) comparing the OSL profiles with ionization chamber point measurements (0.3 cm3 ionization chamber) and (b) comparing the OSL profiles integrated over a 100 mm length with 100 mm long pencil ionization chamber measurements. These correction factors were obtained for the CT body and head phantoms, central and peripheral positions and three x-ray tube potential differences (100 kVp, 120 kVp and 140 kVp). The OSL dose profiles corrected by the energy dependence agreed with the ionization chamber point measurements over the entire length of the phantom (300 mm). For 120 kVp x-ray tube potential difference, the CTDI100 values calculated using the OSL dose profiles corrected for the energy dependence and those obtained from an independent measurement with a 100 mm long pencil ionization chamber also agreed within ±5%.

  9. Primordial non-Gaussianity and reionization

    NASA Astrophysics Data System (ADS)

    Lidz, Adam; Baxter, Eric J.; Adshead, Peter; Dodelson, Scott

    2013-07-01

    The statistical properties of the primordial perturbations contain clues about their origins. Although the Planck collaboration has recently obtained tight constraints on primordial non-Gaussianity from cosmic microwave background measurements, it is still worthwhile to mine upcoming data sets in an effort to place independent or competitive limits. The ionized bubbles that formed at redshift z˜6-20 during the epoch of reionization were seeded by primordial overdensities, and so the statistics of the ionization field at high redshift are related to the statistics of the primordial field. Here we model the effect of primordial non-Gaussianity on the reionization field. The epoch and duration of reionization are affected, as are the sizes of the ionized bubbles, but these changes are degenerate with variations in the properties of the ionizing sources and the surrounding intergalactic medium. A more promising signature is the power spectrum of the spatial fluctuations in the ionization field, which may be probed by upcoming 21 cm surveys. This has the expected 1/k2 dependence on large scales, characteristic of a biased tracer of the matter field. We project how well upcoming 21 cm observations will be able to disentangle this signal from foreground contamination. Although foreground cleaning inevitably removes the large-scale modes most impacted by primordial non-Gaussianity, we find that primordial non-Gaussianity can be separated from foreground contamination for a narrow range of length scales. In principle, futuristic redshifted 21 cm surveys may allow constraints competitive with Planck.

  10. Miniature Ion-Mobility Spectrometer

    NASA Technical Reports Server (NTRS)

    Hartley, Frank T.

    2006-01-01

    The figure depicts a proposed miniature ion-mobility spectrometer that would be fabricated by micromachining. Unlike prior ion-mobility spectrometers, the proposed instrument would not be based on a time-of-flight principle and, consequently, would not have some of the disadvantageous characteristics of prior time-of-flight ion-mobility spectrometers. For example, one of these characteristics is the need for a bulky carrier-gas-feeding subsystem that includes a shutter gate to provide short pulses of gas in order to generate short pulses of ions. For another example, there is need for a complex device to generate pulses of ions from the pulses of gas and the device is capable of ionizing only a fraction of the incoming gas molecules; these characteristics preclude miniaturization. In contrast, the proposed instrument would not require a carrier-gas-feeding subsystem and would include a simple, highly compact device that would ionize all the molecules passing through it. The ionization device in the proposed instrument would be a 0.1-micron-thick dielectric membrane with metal electrodes on both sides. Small conical holes would be micromachined through the membrane and electrodes. An electric potential of the order of a volt applied between the membrane electrodes would give rise to an electric field of the order of several megavolts per meter in the submicron gap between the electrodes. An electric field of this magnitude would be sufficient to ionize all the molecules that enter the holes. Ionization (but not avalanche arcing) would occur because the distance between the ionizing electrodes would be less than the mean free path of gas molecules at the operating pressure of instrument. An accelerating grid would be located inside the instrument, downstream from the ionizing membrane. The electric potential applied to this grid would be negative relative to the potential on the inside electrode of the ionizing membrane and would be of a magnitude sufficient to generate a moderate electric field. Positive ions leaving the membrane holes would be accelerated in this electric field. The resulting flux of ions away from the ionization membrane would create a partial vacuum that would draw more of the gas medium through the membrane. The figure depicts a filter electrode and detector electrodes located along the sides of a drift tube downstream from the accelerator electrode. These electrodes would apply a transverse AC electric field superimposed on a ramped DC electric field. The AC field would effect differential transverse dispersal of ions. At a given instant of time, the trajectories of most of the ions would be bent toward the electrodes, causing most of the ions to collide with the electrodes and thereby become neutralized. The DC field would partly counteract the dispersive effect of the AC field, straightening the trajectories of a selected species of ions; the selection would vary with the magnitude of the applied DC field. The straightening of the trajectories of the selected ions would enable them to pass into the region between the detector electrodes. Depending on the polarity of the voltage applied to the detector electrodes, the electric field between the detector electrodes would draw the selected ions to one of these electrodes. Hence, the current collected by one of the detector electrodes would be a measure of the abundance of ions of the selected species. The ramping of the filter- electrode DC voltage would sweep the selection of ions through the spectrum of ionic species.

  11. MO-AB-BRA-08: Rapid Treatment Field Uniformity Optimization for Total Skin Electron Beam Therapy Using Cherenkov Imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andreozzi, J; Zhang, R; Glaser, A

    Purpose: To evaluate treatment field heterogeneity resulting from gantry angle choice in total skin electron beam therapy (TSEBT) following a modified Stanford dual-field technique, and determine a relationship between source to surface distance (SSD) and optimized gantry angle spread. Methods: Cherenkov imaging was used to image 62 treatment fields on a sheet of 1.2m x 2.2m x 1.2cm polyethylene following standard TSEBT setup at our institution (6 MeV, 888 MU/min, no spoiler, SSD=441cm), where gantry angles spanned from 239.5° to 300.5° at 1° increments. Average Cherenkov intensity and coefficient of variation in the region of interest were compared for themore » set of composite Cherenkov images created by summing all unique combinations of angle pairs to simulate dual-field treatment. The angle pair which produced the lowest coefficient of variation was further studied using an ionization chamber. The experiment was repeated at SSD=300cm, and SSD=370.5cm. Cherenkov imaging was also implemented during TSEBT of three patients. Results: The most uniform treatment region from a symmetric angle spread was achieved using gantry angles +/−17.5° about the horizontal axis at SSD=441cm, +/−18.5° at SSD=370.5cm, and +/−19.5° at SSD=300cm. Ionization chamber measurements comparing the original treatment spread (+/−14.5°) and the optimized angle pair (+/−17.5°) at SSD=441cm showed no significant deviation (r=0.999) in percent depth dose curves, and chamber measurements from nine locations within the field showed an improvement in dose uniformity from 24.41% to 9.75%. Ionization chamber measurements correlated strongly (r=0.981) with Cherenkov intensity measured concurrently on the flat Plastic Water phantom. Patient images and TLD results also showed modest uniformity improvements. Conclusion: A decreasing linear relationship between optimal angle spread and SSD was observed. Cherenkov imaging offers a new method of rapidly analyzing and optimizing TSEBT setup geometry by providing a 2D image of the treatment plane as a sum of the two fields. This study has been funded by NIH grants R21EB17559 and R01CA109558 as well as Norris Cotton Cancer Center Pilot funding.« less

  12. Ultrafast Electron Plasma Index: An Ionization Perspective

    DTIC Science & Technology

    2014-05-29

    picture in mind, the derivation of the index was a combination of the principle of least action and Fermat’s principle. In the current textbook ...multiphoton ionization. Phys Rev Lett 71: 1994-1997. 27. Ivanov MY, Spanner M, Smirnova O (2005) Anatomy of strong field ionization. J. Mod.Phys 52

  13. Control of the Earth's electric field intensity through solar wind modulation of galactic cosmic radiation: Support for a proposed atmospheric electrical sun-weather mechanism

    NASA Technical Reports Server (NTRS)

    Markson, R.

    1980-01-01

    The ionospheric potential and galactic cosmic radiation, found to be inversely correlated with the solar wind velocity are examined as being germane to weather modification. Since the ionospheric potential is proportional to the fair weather electric field intensity and cosmic radiation is the dominant source of atmospheric ionization, it is concluded that the Earth's overall electric field varies in phase with atmospheric ionization and that the latter is modulated by the solar wind. A proposed mechanism, in which solar control of ionizing radiation influences atmospheric electrification and thus possibly cloud physical processes is discussed. An experimental approach to critically test the proposed mechanism through comparison of the temporal variation of the Earth's electric field with conditions in the interplanetary medium is outlined.

  14. Flash ionization signature in coherent cyclotron emission from brown dwarfs

    NASA Astrophysics Data System (ADS)

    Vorgul, I.; Helling, Ch.

    2016-05-01

    Brown dwarfs (BDs) form mineral clouds in their atmospheres, where charged particles can produce large-scale discharges in the form of lightning resulting in substantial sudden increase of local ionization. BDs are observed to emit cyclotron radio emission. We show that signatures of strong transient atmospheric ionization events (flash ionization) can be imprinted on a pre-existing radiation. Detection of such flash ionization events will open investigations into the ionization state and atmospheric dynamics. Such events can also result from explosion shock waves, material outbursts or (volcanic) eruptions. We present an analytical model that describes the modulation of a pre-existing electromagnetic radiation by a time-dependent (flash) conductivity that is characteristic for flash ionization events like lightning. Our conductivity model reproduces the conductivity function derived from observations of terrestrial gamma-ray flashes, and is applicable to astrophysical objects with strong temporal variations in the local ionization, as in planetary atmospheres and protoplanetary discs. We show that the field responds with a characteristic flash-shaped pulse to a conductivity flash of intermediate intensity. More powerful ionization events result in smaller variations of the initial radiation, or in its damping. We show that the characteristic damping of the response field for high-power initial radiation carries information about the ionization flash magnitude and duration. The duration of the pulse amplification or the damping is consistently shorter for larger conductivity variations and can be used to evaluate the intensity of the flash ionization. Our work suggests that cyclotron emission could be probe signals for electrification processes inside BD atmosphere.

  15. Electric field measurements in a near atmospheric pressure nanosecond pulse discharge with picosecond electric field induced second harmonic generation

    NASA Astrophysics Data System (ADS)

    Goldberg, Benjamin M.; Chng, Tat Loon; Dogariu, Arthur; Miles, Richard B.

    2018-02-01

    We present an optical electric field measurement method for use in high pressure plasma discharges. The method is based upon the field induced second harmonic generation technique and can be used for localized electric field measurements with sub-nanosecond resolution in any gaseous species. When an external electric field is present, a dipole is induced in the typically centrosymmetric medium, allowing for second harmonic generation with signal intensities which scale by the square of the electric field. Calibrations have been carried out in 100 Torr room air, and a minimum sensitivity of 450 V/cm is demonstrated. Measurements were performed with nanosecond or faster temporal resolution in a 100 Torr room air environment both with and without a plasma present. It was shown that with no plasma present, the field follows the applied voltage to gap ratio, as measured using the back current shunt method. When the electric field is strong enough to exceed the breakdown threshold, the measured field was shown to exceed the anticipated voltage to gap ratio which is taken as an indication of the ionization wave front as it sweeps through the plasma volume.

  16. Measurements of the energy distribution of a high brightness rubidium ion beam.

    PubMed

    Ten Haaf, G; Wouters, S H W; Nijhof, D F J; Mutsaers, P H A; Vredenbregt, E J D

    2018-07-01

    The energy distribution of a high brightness rubidium ion beam, which is intended to be used as the source for a focused ion beam instrument, is measured with a retarding field analyzer. The ions are created from a laser-cooled and compressed atomic beam by two-step photoionization in which the ionization laser power is enhanced in a build-up cavity. Particle tracing simulations are performed to ensure the analyzer is able to resolve the distribution. The lowest achieved full width 50% energy spread is (0.205 ± 0.006) eV, which is measured at a beam current of 9 pA. The energy spread originates from the variation in the ionization position of the ions which are created inside an extraction electric field. This extraction field is essential to limit disorder-induced heating which can decrease the ion beam brightness. The ionization position distribution is limited by a tightly focused excitation laser beam. Energy distributions are measured for various ionization and excitation laser intensities and compared with calculations based on numerical solutions of the optical Bloch equations including ionization. A good agreement is found between measurements and calculations. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Modeling of Microplasmas with Nano-Engineered Electrodes

    NASA Astrophysics Data System (ADS)

    Macheret, Sergey; Tholeti, Siva Shashank; Alexeenko, Alina

    2015-09-01

    Microplasmas can potentially be used as unique tunable dielectrics for reconfigurable radio-frequency systems, if electron densities of 1010-1012 cm-3 can be sustained in cavities smaller than 100 micron. However, for low loss tangent, gas pressures below 10 mTorr would be required, whereas the physics of electron impact ionization dictates the pd scaling so that microplasmas must operate at high gas pressures, hundreds of Torr, and also high voltages. We analyze a new principle of plasma generation that goes well beyond the pd scaling by eliminating electron impact ionization. In the new concept, electrons are generated at the cathode by field emission from nanotubes, and ions are independently produced in field ionization at atomically-sharp tips on the anode. The electrons and ions then move in the opposite directions, mix, and create a plasma. The low pressure results in collisionless motion with no electron-impact ionization. One-dimensional PIC/MCC calculations show that emitters such as carbon nanotubes placed sparsely on the cathode, combined with field ionization nanorods at the anode, can indeed ensure steady-state electron densities of up to 1012 cm-3 at gas pressure lower than 10 mTorr with only 50-100 Volts applied cross a 40-50 μm gap.

  18. E-beam ionized channel guiding of an intense relativistic electron beam

    DOEpatents

    Frost, C.A.; Godfrey, B.B.; Kiekel, P.D.; Shope, S.L.

    1988-05-10

    An IREB is guided through a curved path by ionizing a channel in a gas with electrons from a filament, and confining the electrons to the center of the path with a magnetic field extending along the path. The magnetic field is preferably generated by a solenoid extending along the path. 2 figs.

  19. Evaluation of the photoionization probability of H2+ by the trajectory semiclassical method

    NASA Astrophysics Data System (ADS)

    Arkhipov, D. N.; Astashkevich, S. A.; Mityureva, A. A.; Smirnov, V. V.

    2018-07-01

    The trajectory-based method for calculating the probabilities of transitions in the quantum system developed in our previous works and tested for atoms is applied to calculating the photoionization probability for the simplest molecule - hydrogen molecular ion. In a weak field it is established a good agreement between our photoionization cross section and the data obtained by other theoretical methods for photon energy in the range from one-photon ionization threshold up to 25 a.u. Photoionization cross section in the range 25 < ω ≤ 100 a.u. was calculated for the first time judging by the literature known to us. It is also confirmed that the trajectory method works in a wide range of the field magnitudes including superatomic values up to relativistic intensity.

  20. Tip-Enhanced Photoinduced Electron Transfer and Ionization on Vertical Silicon Nanowires.

    PubMed

    Chen, Xiaoming; Wang, Tao; Lin, Leimiao; Wo, Fangjie; Liu, Yaqin; Liang, Xiao; Ye, Hui; Wu, Jianmin

    2018-05-02

    Nanostructured semiconductors are one of the most potent candidates for matrix-free laser desorption/ionization mass spectrometric (LDI-MS) analysis of low-molecular-weight molecules. Herein, the enhanced photoinduced electron transfer and LDI on the tip of a vertical silicon nanowire (SiNW) array were investigated. Theoretical simulation and LDI detection of indigo and isatin molecules in negative ion mode revealed that the electric field can be enhanced on the tip end of SiNWs, thereby promoting the energy and electron transfer to the analytes adsorbed on the tip of SiNWs. On the basis of this finding, a tip-contact sampling method coupled with LDI-MS detection was established. In this strategy, the tip of SiNWs can be regarded as microextraction heads for the sampling of molecules when they come in contact with analytes. Impression of skin, tissue, and pericarp on the vertical SiNW array can effectively transfer endogenous metabolites or exogenous substances onto the tip. Upon laser irradiation, the adsorbed molecules on the SiNW tip can be efficiently ionized and detected in negative ion mode because of the tip-enhanced electron transfer and LDI effect. We believe this work may significantly expand the application of LDI-MS in various fields.

  1. Pulsed ion beam source

    DOEpatents

    Greenly, J.B.

    1997-08-12

    An improved pulsed ion beam source is disclosed having a new biasing circuit for the fast magnetic field. This circuit provides for an initial negative bias for the field created by the fast coils in the ion beam source which pre-ionize the gas in the source, ionize the gas and deliver the gas to the proper position in the accelerating gap between the anode and cathode assemblies in the ion beam source. The initial negative bias improves the interaction between the location of the nulls in the composite magnetic field in the ion beam source and the position of the gas for pre-ionization and ionization into the plasma as well as final positioning of the plasma in the accelerating gap. Improvements to the construction of the flux excluders in the anode assembly are also accomplished by fabricating them as layered structures with a high melting point, low conductivity material on the outsides with a high conductivity material in the center. 12 figs.

  2. Method and apparatus to monitor a beam of ionizing radiation

    DOEpatents

    Blackburn, Brandon W.; Chichester, David L.; Watson, Scott M.; Johnson, James T.; Kinlaw, Mathew T.

    2015-06-02

    Methods and apparatus to capture images of fluorescence generated by ionizing radiation and determine a position of a beam of ionizing radiation generating the fluorescence from the captured images. In one embodiment, the fluorescence is the result of ionization and recombination of nitrogen in air.

  3. Quantitative mass spectrometry methods for pharmaceutical analysis

    PubMed Central

    Loos, Glenn; Van Schepdael, Ann

    2016-01-01

    Quantitative pharmaceutical analysis is nowadays frequently executed using mass spectrometry. Electrospray ionization coupled to a (hybrid) triple quadrupole mass spectrometer is generally used in combination with solid-phase extraction and liquid chromatography. Furthermore, isotopically labelled standards are often used to correct for ion suppression. The challenges in producing sensitive but reliable quantitative data depend on the instrumentation, sample preparation and hyphenated techniques. In this contribution, different approaches to enhance the ionization efficiencies using modified source geometries and improved ion guidance are provided. Furthermore, possibilities to minimize, assess and correct for matrix interferences caused by co-eluting substances are described. With the focus on pharmaceuticals in the environment and bioanalysis, different separation techniques, trends in liquid chromatography and sample preparation methods to minimize matrix effects and increase sensitivity are discussed. Although highly sensitive methods are generally aimed for to provide automated multi-residue analysis, (less sensitive) miniaturized set-ups have a great potential due to their ability for in-field usage. This article is part of the themed issue ‘Quantitative mass spectrometry’. PMID:27644982

  4. A vacuum ultraviolet laser pulsed field ionization-photoion study of methane (CH 4): Determination of the appearance energy of methylium from methane with unprecedented precision and the resulting impact on the bond dissociation energies of CH 4 and CH 4 +

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, Yih -Chung; Xiong, Bo; Bross, David H.

    Here, we report on the successful implementation of a high-resolution vacuum ultraviolet (VUV) laser pulsed field ionization-photoion (PFI-PI) detection method for the study of unimolecular dissociation of quantum-state- or energy-selected molecular ions. As a test case, we have determined the 0 K appearance energy (AE 0) for the formation of methylium, CH 3 +, from methane, CH 4, as AE 0 (CH 3 +/CH 4) = 14.32271 ± 0.00013 eV. This value has a significantly smaller error limit, but is otherwise consistent with previous laboratory and/or synchrotron-based studies of this dissociative photoionization onset. Furthermore, the sum of the VUV lasermore » PFI-PI spectra obtained for the parent CH 4 + ion and the fragment CH 3 + ions of methane is found to agree with the earlier VUV pulsed field ionization-photoelectron (VUV-PFI-PE) spectrum of methane, providing unambiguous validation of the previous interpretation that the sharp VUV-PFI-PE step observed at the AE 0 (CH 3 +/CH 4) threshold ensues because of higher PFI detection efficiency for fragment CH 3 + than for parent CH 4 +. This, in turn, is a consequence of the underlying high- n Rydberg dissociation mechanism for the dissociative photoionization of CH 4, which was proposed in previous synchrotron-based VUV-PFI-PE and VUV-PFI-PEPICO studies of CH 4. The present highly accurate 0 K dissociative ionization threshold for CH 4 can be utilized to derive accurate values for the bond dissociation energies of methane and methane cation. For methane, the straightforward application of sequential thermochemistry via the positive ion cycle leads to some ambiguity because of two competing VUV-PFI-PE literature values for the ionization energy of methyl radical. The ambiguity is successfully resolved by applying the Active Thermochemical Tables (ATcT) approach, resulting in D 0 (H-CH 3) = 432.463 ± 0.027 kJ/mol and D 0(H-CH 3 +) = 164.701 ± 0.038 kJ/mol.« less

  5. A vacuum ultraviolet laser pulsed field ionization-photoion study of methane (CH 4): Determination of the appearance energy of methylium from methane with unprecedented precision and the resulting impact on the bond dissociation energies of CH 4 and CH 4 +

    DOE PAGES

    Chang, Yih -Chung; Xiong, Bo; Bross, David H.; ...

    2017-03-27

    Here, we report on the successful implementation of a high-resolution vacuum ultraviolet (VUV) laser pulsed field ionization-photoion (PFI-PI) detection method for the study of unimolecular dissociation of quantum-state- or energy-selected molecular ions. As a test case, we have determined the 0 K appearance energy (AE 0) for the formation of methylium, CH 3 +, from methane, CH 4, as AE 0 (CH 3 +/CH 4) = 14.32271 ± 0.00013 eV. This value has a significantly smaller error limit, but is otherwise consistent with previous laboratory and/or synchrotron-based studies of this dissociative photoionization onset. Furthermore, the sum of the VUV lasermore » PFI-PI spectra obtained for the parent CH 4 + ion and the fragment CH 3 + ions of methane is found to agree with the earlier VUV pulsed field ionization-photoelectron (VUV-PFI-PE) spectrum of methane, providing unambiguous validation of the previous interpretation that the sharp VUV-PFI-PE step observed at the AE 0 (CH 3 +/CH 4) threshold ensues because of higher PFI detection efficiency for fragment CH 3 + than for parent CH 4 +. This, in turn, is a consequence of the underlying high- n Rydberg dissociation mechanism for the dissociative photoionization of CH 4, which was proposed in previous synchrotron-based VUV-PFI-PE and VUV-PFI-PEPICO studies of CH 4. The present highly accurate 0 K dissociative ionization threshold for CH 4 can be utilized to derive accurate values for the bond dissociation energies of methane and methane cation. For methane, the straightforward application of sequential thermochemistry via the positive ion cycle leads to some ambiguity because of two competing VUV-PFI-PE literature values for the ionization energy of methyl radical. The ambiguity is successfully resolved by applying the Active Thermochemical Tables (ATcT) approach, resulting in D 0 (H-CH 3) = 432.463 ± 0.027 kJ/mol and D 0(H-CH 3 +) = 164.701 ± 0.038 kJ/mol.« less

  6. Method and apparatus for the formation of a spheromak plasma

    DOEpatents

    Jardin, Stephen C.; Yamada, Masaaki; Furth, Harold P.; Okabayashi, Mitcheo

    1984-01-01

    An inductive method and apparatus for forming detached spheromak plasma using a thin-walled metal toroidal ring, with external current leads and internal poloidal and toroidal field coils located inside a vacuum chamber filled with low density hydrogen gas and an external axial field generating coil. The presence of a current in the poloidal field coils, and an externally generated axial field sets up the initial poloidal field configuration in which the field is strongest toward the major axis of the toroid. The internal toroidal-field-generating coil is then pulsed on, ionizing the gas and inducing poloidal current and toroidal magnetic field into the plasma region in the sleeve exterior to and adjacent to the ring and causing the plasma to expand away from the ring and toward the major axis. Next the current in the poloidal field coils in the ring is reversed. This induces toroidal current into the plasma and causes the poloidal magnetic field lines to reconnect. The reconnection continues until substantially all of the plasma is formed in a separated spheromak configuration held in equilibrium by the initial external field.

  7. Mass-loss rates, ionization fractions, shock velocities, and magnetic fields of stellar jets

    NASA Technical Reports Server (NTRS)

    Hartigan, Patrick; Morse, Jon A.; Raymond, John

    1994-01-01

    In this paper we calculate emission-line ratios from a series of planar radiative shock models that cover a wide range of shock velocities, preshock densities, and magnetic fields. The models cover the initial conditions relevant to stellar jets, and we show how to estimate the ionization fractions and shock velocities in jets directly from observations of the strong emission lines in these flows. The ionization fractions in the HH 34, HH 47, and HH 111 jets are approximately 2%, considerably smaller than previous estimates, and the shock velocities are approximately 30 km/s. For each jet the ionization fractions were found from five different line ratios, and the estimates agree to within a factor of approximately 2. The scatter in the estimates of the shock velocities is also small (+/- 4 km/s). The low ionization fractions of stellar jets imply that the observed electron densities are much lower than the total densities, so the mass-loss rates in these flows are correspondingly higher (approximately greater than 2 x 10(exp -7) solar mass/yr). The mass-loss rates in jets are a significant fraction (1%-10%) of the disk accretion rates onto young stellar objects that drive the outflows. The momentum and energy supplied by the visible portion of a typical stellar jet are sufficient to drive a weak molecular outflow. Magnetic fields in stellar jets are difficult to measure because the line ratios from a radiative shock with a magnetic field resemble those of a lower velocity shock without a field. The observed line fluxes can in principle indicate the strength of the field if the geometry of the shocks in the jet is well known.

  8. Atomic physics effects on tokamak edge drift-tearing modes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hahm, T.S.

    1993-03-01

    The effects of ionization and charge exchange on the linear stability of drift-tearing modes are analytically investigated. In particular, the linear instability threshold {Delta}{sup Th}, produced by ion sound wave coupling is modified. In the strongly collisional regime, the ionization breaks up the near cancellation of the perturbed electric field and the pressure gradient along the magnetic field, and increases the threshold. In the semi-collisional regime, both ionization and charge exchange act as drag on the ion parallel velocity, and consequently decrease the threshold by reducing the effectiveness of ion sound wave propagation.

  9. Atomic physics effects on tokamak edge drift-tearing modes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hahm, T.S.

    1993-03-01

    The effects of ionization and charge exchange on the linear stability of drift-tearing modes are analytically investigated. In particular, the linear instability threshold [Delta][sup Th], produced by ion sound wave coupling is modified. In the strongly collisional regime, the ionization breaks up the near cancellation of the perturbed electric field and the pressure gradient along the magnetic field, and increases the threshold. In the semi-collisional regime, both ionization and charge exchange act as drag on the ion parallel velocity, and consequently decrease the threshold by reducing the effectiveness of ion sound wave propagation.

  10. Ionizing gas breakdown waves in strong electric fields.

    NASA Technical Reports Server (NTRS)

    Klingbeil, R.; Tidman, D. A.; Fernsler, R. F.

    1972-01-01

    A previous analysis by Albright and Tidman (1972) of the structure of an ionizing potential wave driven through a dense gas by a strong electric field is extended to include atomic structure details of the background atoms and radiative effects, especially, photoionization. It is found that photoionization plays an important role in avalanche propagation. Velocities, electron densities, and temperatures are presented as a function of electric field for both negative and positive breakdown waves in nitrogen.

  11. Improved field emission properties of carbon nanotubes grown on stainless steel substrate and its application in ionization gauge

    NASA Astrophysics Data System (ADS)

    Li, Detian; Cheng, Yongjun; Wang, Yongjun; Zhang, Huzhong; Dong, Changkun; Li, Da

    2016-03-01

    Vertically aligned carbon nanotube (CNT) arrays were fabricated by chemical vapor deposition (CVD) technique on different substrates. Microstructures and field emission characteristics of the as-grown CNT arrays were investigated systematically, and its application in ionization gauge was also evaluated preliminarily. The results indicate that the as-grown CNT arrays are vertically well-aligned relating to the substrate surfaces, but the CNTs grown on stainless steel substrate are longer and more crystalline than the ones grown on silicon wafer substrate. The field emission behaviors of the as-grown CNT arrays are strongly dependent upon substrate properties. Namely, the CNT array grown on stainless steel substrate has better field emission properties, including lower turn on and threshold fields, better emission stability and repeatability, compared with the one grown on silicon wafer substrate. The superior field emission properties of the CNT array grown on stainless steel substrate are mainly attributed to low contact resistance, high thermal conductivity, good adhesion strength, etc. In addition, the metrological behaviors of ionization gauge with the CNT array grown on stainless steel substrate as an electron source were investigated, and this novel cathode ionization gauge extends the lower limit of linear pressure measurement to 10-8 Pa, which is one order of magnitude lower than the result reported for the same of gauge with CNT cathode.

  12. Ionization signals from diamond detectors in fast-neutron fields

    NASA Astrophysics Data System (ADS)

    Weiss, C.; Frais-Kölbl, H.; Griesmayer, E.; Kavrigin, P.

    2016-09-01

    In this paper we introduce a novel analysis technique for measurements with single-crystal chemical vapor deposition (sCVD) diamond detectors in fast-neutron fields. This method exploits the unique electronic property of sCVD diamond sensors that the signal shape of the detector current is directly proportional to the initial ionization profile. In fast-neutron fields the diamond sensor acts simultaneously as target and sensor. The interaction of neutrons with the stable isotopes 12 C and 13 C is of interest for fast-neutron diagnostics. The measured signal shapes of detector current pulses are used to identify individual types of interactions in the diamond with the goal to select neutron-induced reactions in the diamond and to suppress neutron-induced background reactions as well as γ-background. The method is verified with experimental data from a measurement in a 14.3 MeV neutron beam at JRC-IRMM, Geel/Belgium, where the 13C(n, α)10Be reaction was successfully extracted from the dominating background of recoil protons and γ-rays and the energy resolution of the 12C(n, α)9Be reaction was substantially improved. The presented analysis technique is especially relevant for diagnostics in harsh radiation environments, like fission and fusion reactors. It allows to extract the neutron spectrum from the background, and is particularly applicable to neutron flux monitoring and neutron spectroscopy.

  13. Matrix Assisted Ionization Vacuum (MAIV), a New Ionization Method for Biological Materials Analysis Using Mass Spectrometry*

    PubMed Central

    Inutan, Ellen D.; Trimpin, Sarah

    2013-01-01

    The introduction of electrospray ionization (ESI) and matrix-assisted laser desorption/ionization (MALDI) for the mass spectrometric analysis of peptides and proteins had a dramatic impact on biological science. We now report that a wide variety of compounds, including peptides, proteins, and protein complexes, are transported directly from a solid-state small molecule matrix to gas-phase ions when placed into the vacuum of a mass spectrometer without the use of high voltage, a laser, or added heat. This ionization process produces ions having charge states similar to ESI, making the method applicable for high performance mass spectrometers designed for atmospheric pressure ionization. We demonstrate highly sensitive ionization using intermediate pressure MALDI and modified ESI sources. This matrix and vacuum assisted soft ionization method is suitable for the direct surface analysis of biological materials, including tissue, via mass spectrometry. PMID:23242551

  14. Identification of N-nitrosamines in treated drinking water using nanoelectrospray ionization high-field asymmetric waveform ion mobility spectrometry with quadrupole time-of-flight mass spectrometry.

    PubMed

    Zhao, Yuan Yuan; Liu, Xin; Boyd, Jessica M; Qin, Feng; Li, Jianjun; Li, Xing-Fang

    2009-01-01

    We report a nanoelectrospray ionization (nESI) with high-field asymmetric waveform ion mobility spectrometry (FAIMS) and tandem mass spectrometry (MS-MS) method for determination of small molecules of m/z 50 to 200 and its potential application in environmental analysis. Integration of nESI with FAIMS and MS-MS combines the advantages of these three techniques into one method. The nESI provides efficient sample introduction and ionization and allows for collection of multiple data from only microliters of samples. The FAIMS provides rapid separation, reduces or eliminates background interference, and improves the signal-to-noise ratio as much as 10-fold over nESI-MS-MS. The tandem quadrupole time-of-flight MS detection provides accurate mass and mass spectral measurements for structural identification. Characteristics of FAIMS compensation voltage (CV) spectra of seven nitrosamines, N-nitrosodimethylamine (NDMA), N-nitrosomethylethylamine (NMEA), N-nitrosodiethylamine (NDEA), N-nitrosodi-n-propylamine (NDPA), N-nitrosodi-n-butylamine (NDBA), N-nitrosopiperidine (NPip), and N-nitrosopyrrolidine (NPyr), were analyzed. The optimal CV of the nitrosamines (at DV -4000 V) were: -1.6 V, NDBA; 2.6 V, NDPA; 6.6 V, NPip; 8.8 V, NDEA; 13.2 V, NPyr; 14.4 V, NMEA; and 19.4 V, NDMA. Fragmentation patterns of the seven nitrosamines in the nESI-FAIMS-MS-MS were also obtained. The specific CV and MS-MS spectra resulted in positive identification of NPyr and NPip in a treated water sample, demonstrating the potential application of this technique in environmental analysis.

  15. State of the art on nuclear heating in a mixed (n/γ) field in research reactors

    NASA Astrophysics Data System (ADS)

    Amharrak, H.; Salvo, J. Di; Lyoussi, A.; Carette, M.; Reynard-Carette, C.

    2014-06-01

    This article aims at inventorying the knowledge on nuclear heating measurements in a mixed (n,γ) field in low-power research reactors using ThermoLuminescent Detectors (TLDs), Optically Stimulated Luminescent Detectors (OSLDs) and Ionization Chambers. The difficulty in measuring a mixed (n,γ) field in a reactor configuration lies in quantifying the contribution of the gamma photons and neutrons to the full signal measured by these detectors. The algorithms and experimental protocols developed together with the calculation methods used to assess the contribution of the neutron dose to the total integrated dose as measured by these detectors will be described in this article. This 'inventory' will be used to summarize the best methods to be used in relation to the requirements.

  16. [Saccharomyces cerevisiae as a model organism for studying the carcinogenicity of non-ionizing electromagnetic fields and radiation].

    PubMed

    Voĭchuk, S I

    2014-01-01

    Medical and biological aspects of the effects of non-ionizing electromagnetic (EM) fields and radiation on human health are the important issues that have arisen as a result of anthropogenic impact on the biosphere. Safe use of man-made sources of non-ionizing electromagnetic fields and radiation in a broad range of frequencies--static, radio-frequency and microwave--is a subject of discussions and speculations. The main problem is the lack of understanding of the mechanism(s) of reception of EMFs by living organisms. In this review we have analyzed the existing literature data regarding the effects of the electromagnetic radiation on the model eukaryotic organism--yeast Saccharomyces cerevisiae. An attempt was made to estimate the probability of induction of carcinogenesis in humans under the influence of magnetic fields and electromagnetic radiation of extremely low frequency, radio frequency and microwave ranges.

  17. Carrier-envelope-phase control of asymmetries in the multiphoton ionization of xenon atoms by ultrashort bichromatic fields

    NASA Astrophysics Data System (ADS)

    Kerbstadt, S.; Pengel, D.; Englert, L.; Bayer, T.; Wollenhaupt, M.

    2018-06-01

    We report on bichromatic multiphoton ionization of xenon atoms (Xe) to demonstrate carrier-envelope-phase (CEP) control of lateral asymmetries in the photoelectron momentum distribution. In the experiments, we employ a 4 f polarization pulse shaper to sculpture bichromatic fields with commensurable center frequencies ω1:ω2=7 :8 from an over-octave-spanning CEP-stable white light supercontinuum by spectral amplitude and phase modulation. The bichromatic fields are spectrally tailored to induce controlled interferences of 7- vs 8-photon quantum pathways in the 5 P3 /2 ionization continuum of Xe. The CEP sensitivity of the asymmetric final-state wave function arises from coherent superposition of continuum states with opposite parity. Our results demonstrate that shaper-generated bichromatic fields with tailored center frequency ratio are a suitable tool to localize CEP-sensitive asymmetries in a specific photoelectron kinetic-energy window.

  18. Ionospheric modification using relativistic electron beams

    NASA Technical Reports Server (NTRS)

    Banks, Peter M.; Fraser-Smith, Anthony C.; Gilchrist, B. E.

    1990-01-01

    The recent development of comparatively small electron linear accelerators (linacs) now makes possible a new class of ionospheric modification experiments using beams of relativistic electrons. These experiments can potentially provide much new information about the interactions of natural relativistic electrons with other particles in the upper atmosphere, and it may also make possible new forms of ionization structures extending down from the lower ionosphere into the largely un-ionized upper atmosphere. The consequences of firing a pulsed 1 A, 5 Mev electron beam downwards into the upper atmosphere are investigated. If a small pitch angle with respect to the ambient geomagnetic field is selected, the beam produces a narrow column of substantial ionization extending down from the source altitude to altitudes of approximately 40 to 45 km. This column is immediately polarized by the natural middle atmosphere fair weather electric field and an increasingly large potential difference is established between the column and the surrounding atmosphere. In the regions between 40 to 60 km, this potential can amount to many tens of kilovolts and the associated electric field can be greater than the field required for breakdown and discharge. Under these conditions, it may be possible to initiate lightning discharges along the initial ionization channel. Filamentation may also occur at the lower end to drive further currents in the partially ionized gases of the stratosphere. Such discharges would derive their energy from the earth-ionosphere electrical system and would be sustained until plasma depletion and/or electric field reduction brought the discharge under control. It is likely that this artificially-triggered lightning would produce measurable low-frequency radiation.

  19. [Uncertainty of cross calibration-applied beam quality conversion factor for the Japan Society of Medical Physics 12].

    PubMed

    Kinoshita, Naoki; Kita, Akinobu; Takemura, Akihiro; Nishimoto, Yasuhiro; Adachi, Toshiki

    2014-09-01

    The uncertainty of the beam quality conversion factor (k(Q,Q0)) of standard dosimetry of absorbed dose to water in external beam radiotherapy 12 (JSMP12) is determined by combining the uncertainty of each beam quality conversion factor calculated for each type of ionization chamber. However, there is no guarantee that ionization chambers of the same type have the same structure and thickness, so there may be individual variations. We evaluated the uncertainty of k(Q,Q0) for JSMP12 using an ionization chamber dosimeter and linear accelerator without a specific device or technique in consideration of the individual variation of ionization chambers and in clinical radiation field. The cross calibration formula was modified and the beam quality conversion factor for the experimental values [(k(Q,Q0))field] determined using the modified formula. It's uncertainty was calculated to be 1.9%. The differences between (k(Q,Q0))field of experimental values and k(Q,Q0) for Japan Society of Medical Physics 12 (JSMP12) were 0.73% and 0.88% for 6- and 10-MV photon beams, respectively, remaining within ± 1.9%. This showed k(Q,Q0) for JSMP12 to be consistent with (k(Q,Q0))field of experimental values within the estimated uncertainty range. Although inter-individual differences may be generated, even when the same type of ionized chamber is used, k(Q,Q0) for JSMP12 appears to be consistent within the estimated uncertainty range of (k(Q,Q0)field.

  20. Ionization, photoelectron dynamics and elastic scattering in relativistic, ultra-strong field

    NASA Astrophysics Data System (ADS)

    Luo, Sui

    Ultrastrong laser-matter interaction has direct bearing to next generation technologies including plasma acceleration, laser fusion and attosecond X-ray generation. The commonly known physics in strong field becomes different as one progress to ultrastrong field. The works presented in this dissertation theoretically study the influence of relativistic effect and magnetic component of the laser field on the ionization, photoelectron dynamics and elastic scattering processes. The influence of magnetic component (B laser) of circularly polarized (CP) ultrastrong fields (up to3 x 1022 W/cm2) on atomic bound state dynamics is investigated. The Poincare plots are used to find the changes in trajectory energies are on the order of a few percent for intensities up to1 x 1022 W/cm2. It is found that at intensities where ionization approaches 50% for the bound state, the small changes from Blaser of the circular polarized light can actually result in a several-fold decrease in ionization probability. The force on the bound electron exerted by the Lorentz force from B laser is perpendicular to the rotating plane of the circular polarized light, and this nature makes those trajectories which are aligned away from the minimum in the potential barrier stabilized against tunneling ionization. Our results provide a classical understanding for ionization in ultrastrong fields and indicate that relativistic effects in ultrastrong field ionization may most easily be seen with CP fields. The photoelectron energy spectra from elastic rescattering in ultrastrong laser fields (up to 2x1019 W/cm2) is studied by using a relativistic adaption of a semi-classical three-step recollision model. The Hartree-Fock scattering potentials are used in calculating the elastic rescattering for both hydrogenlike and noble gas species. It is found that there is a reduction in elastic rescattering for intensities beyond 6 x 1016 W/cm2 when the laser Lorentz deflection of the photoelectron exceeds its wave-function spread. A relativistic rescattering enhancement occurs at 2 x 1018 W/cm2, commensurate with relativistic motion of a classical electron in a single field cycle. The good comparison between the results with available experiments suggests the theory approach is well suited to modeling scattering in the ultrastrong intensity regime. We investigate the elastic scattering process as it changes from strong to ultrastrong fields with the photoelectron angular distributions from Ne, Ar, and Xe. Noble gas species with Hartree-Fock scattering potentials show a reduction in elastic rescattering with the increasing energy of ultrastrong fields. It is found that as one increases the returning photoelectron energy, rescattering becomes the dominating mechanism behind the yield distribution as the emission angle for all the species extends from 0° to 90°. The relativistic effects and the magnetic field do not change the angular distribution until one is well into the Gamma r "1 regime where the Lorentz defection significantly reduces the yield. As we proceed to the highest energy, the angular emission range narrows as the mechanism changes over to backscattering into narrow angles along the electric field.

  1. Phase Structure of Strong-Field Tunneling Wave Packets from Molecules.

    PubMed

    Liu, Ming-Ming; Li, Min; Wu, Chengyin; Gong, Qihuang; Staudte, André; Liu, Yunquan

    2016-04-22

    We study the phase structure of the tunneling wave packets from strong-field ionization of molecules and present a molecular quantum-trajectory Monte Carlo model to describe the laser-driven dynamics of photoelectron momentum distributions of molecules. Using our model, we reproduce and explain the alignment-dependent molecular frame photoelectron spectra of strong-field tunneling ionization of N_{2} reported by M. Meckel et al. [Nat. Phys. 10, 594 (2014)]. In addition to modeling the low-energy photoelectron angular distributions quantitatively, we extract the phase structure of strong-field molecular tunneling wave packets, shedding light on its physical origin. The initial phase of the tunneling wave packets at the tunnel exit depends on both the initial transverse momentum distribution and the molecular internuclear distance. We further show that the ionizing molecular orbital has a critical effect on the initial phase of the tunneling wave packets. The phase structure of the photoelectron wave packet is a key ingredient for modeling strong-field molecular photoelectron holography, high-harmonic generation, and molecular orbital imaging.

  2. Terahertz field-induced ionization and perturbed free induction decay of excitons in bulk GaAs

    NASA Astrophysics Data System (ADS)

    Murotani, Yuta; Takayama, Masayuki; Sekiguchi, Fumiya; Kim, Changsu; Akiyama, Hidefumi; Shimano, Ryo

    2018-03-01

    We investigated the interaction between an intense terahertz (THz) pulse and excitons in bulk GaAs by using THz pump near-infrared (NIR) optical probe spectroscopy. We observed a clear spectral oscillation in the NIR transient absorption spectra at low temperature, which is interpreted as the THz pump-induced perturbed free induction decay (PFID) of the excitonic interband polarization. We performed a numerical simulation based on a microscopic theory and identified that the observed PFID signal originates from the THz field-induced ionization of excitons. Using a real-space representation of the excitonic wave function, we visualized how the ionization of an exciton proceeds under the intense single-cycle THz electric field. We also calculated the nonlinear susceptibility with the lowest-order perturbation theory assuming a weak THz pump, which showed a similar spectral feature with that obtained by the full treatment to field-induced ionization process. This coincidence is attributed to the fact that 1s-excitonic interband polarization is modified predominantly through interactions with the p-wave component of the excitonic wave function. A simple phenomenological expression of the PFID signal is presented to discuss effects of the THz pump pulse duration on the spectral oscillation.

  3. Technical Note: Impact of the geometry dependence of the ion chamber detector response function on a convolution-based method to address the volume averaging effect

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barraclough, Brendan; Lebron, Sharon; Li, Jonathan G.

    2016-05-15

    Purpose: To investigate the geometry dependence of the detector response function (DRF) of three commonly used scanning ionization chambers and its impact on a convolution-based method to address the volume averaging effect (VAE). Methods: A convolution-based approach has been proposed recently to address the ionization chamber VAE. It simulates the VAE in the treatment planning system (TPS) by iteratively convolving the calculated beam profiles with the DRF while optimizing the beam model. Since the convolved and the measured profiles are subject to the same VAE, the calculated profiles match the implicit “real” ones when the optimization converges. Three DRFs (Gaussian,more » Lorentzian, and parabolic function) were used for three ionization chambers (CC04, CC13, and SNC125c) in this study. Geometry dependent/independent DRFs were obtained by minimizing the difference between the ionization chamber-measured profiles and the diode-measured profiles convolved with the DRFs. These DRFs were used to obtain eighteen beam models for a commercial TPS. Accuracy of the beam models were evaluated by assessing the 20%–80% penumbra width difference (PWD) between the computed and diode-measured beam profiles. Results: The convolution-based approach was found to be effective for all three ionization chambers with significant improvement for all beam models. Up to 17% geometry dependence of the three DRFs was observed for the studied ionization chambers. With geometry dependent DRFs, the PWD was within 0.80 mm for the parabolic function and CC04 combination and within 0.50 mm for other combinations; with geometry independent DRFs, the PWD was within 1.00 mm for all cases. When using the Gaussian function as the DRF, accounting for geometry dependence led to marginal improvement (PWD < 0.20 mm) for CC04; the improvement ranged from 0.38 to 0.65 mm for CC13; for SNC125c, the improvement was slightly above 0.50 mm. Conclusions: Although all three DRFs were found adequate to represent the response of the studied ionization chambers, the Gaussian function was favored due to its superior overall performance. The geometry dependence of the DRFs can be significant for clinical applications involving small fields such as stereotactic radiotherapy.« less

  4. Determination of small-field correction factors for cylindrical ionization chambers using a semiempirical method

    NASA Astrophysics Data System (ADS)

    Park, Kwangwoo; Bak, Jino; Park, Sungho; Choi, Wonhoon; Park, Suk Won

    2016-02-01

    A semiempirical method based on the averaging effect of the sensitive volumes of different air-filled ionization chambers (ICs) was employed to approximate the correction factors for beam quality produced from the difference in the sizes of the reference field and small fields. We measured the output factors using several cylindrical ICs and calculated the correction factors using a mathematical method similar to deconvolution; in the method, we modeled the variable and inhomogeneous energy fluence function within the chamber cavity. The parameters of the modeled function and the correction factors were determined by solving a developed system of equations as well as on the basis of the measurement data and the geometry of the chambers. Further, Monte Carlo (MC) computations were performed using the Monaco® treatment planning system to validate the proposed method. The determined correction factors (k{{Q\\text{msr}},Q}{{f\\text{smf}}, {{f}\\text{ref}}} ) were comparable to the values derived from the MC computations performed using Monaco®. For example, for a 6 MV photon beam and a field size of 1  ×  1 cm2, k{{Q\\text{msr}},Q}{{f\\text{smf}}, {{f}\\text{ref}}} was calculated to be 1.125 for a PTW 31010 chamber and 1.022 for a PTW 31016 chamber. On the other hand, the k{{Q\\text{msr}},Q}{{f\\text{smf}}, {{f}\\text{ref}}} values determined from the MC computations were 1.121 and 1.031, respectively; the difference between the proposed method and the MC computation is less than 2%. In addition, we determined the k{{Q\\text{msr}},Q}{{f\\text{smf}}, {{f}\\text{ref}}} values for PTW 30013, PTW 31010, PTW 31016, IBA FC23-C, and IBA CC13 chambers as well. We devised a method for determining k{{Q\\text{msr}},Q}{{f\\text{smf}}, {{f}\\text{ref}}} from both the measurement of the output factors and model-based mathematical computation. The proposed method can be useful in case the MC simulation would not be applicable for the clinical settings.

  5. Instabilities and turbulence in highly ionized plasmas in a magnetic field

    NASA Technical Reports Server (NTRS)

    Jennings, W. C.

    1972-01-01

    Physical mechanisms were considered which are responsible for plasma turbulence and the establishment of necessary conditions for energy exchange and transfer in the frequency spectrum. In addition, work was performed to better understand the drift instability in the highly inhomogeneous Rensselaer arc, and methods to suppress this instability using feedback stabilization techniques. Correlation techniques were refined to study plasma turbulence, the diffusion wave technique for monitoring cross-field diffusion was extended to include regimes of high turbulence levels, and a technique for coupling stabilizing RF power to the Rensselaer arc was developed.

  6. Effects of Ionizing Radiation on the Heart

    PubMed Central

    Boerma, Marjan; Sridharan, Vijayalakshmi; Mao, Xiao-Wen; Nelson, Gregory A.; Cheema, Amrita K.; Koturbash, Igor; Singh, Sharda P.; Tackett, Alan J.; Hauer-Jensen, Martin

    2016-01-01

    This article provides an overview of studies addressing effects of ionizing radiation on the heart. Clinical studies have identified early and late manifestations of radiation-induced heart disease, a side effect of radiation therapy to tumors in the chest when all or part of the heart is situated in the radiation field. Studies in preclinical animal models have contributed to our understanding of the mechanisms by which radiation may injure the heart. More recent observations in human subjects suggest that ionizing radiation may have cardiovascular effects at lower doses than was previously thought. This has led to examinations of low-dose photons and low-dose charged particle irradiation in animal models. Lastly, studies have started to identify noninvasive methods for detection of cardiac radiation injury and interventions that may prevent or mitigate these adverse effects. Altogether, this ongoing research should increase our knowledge of biological mechanisms of cardiovascular radiation injury, identify non-invasive biomarkers for early detection, and potential interventions that may prevent or mitigate these adverse effects. PMID:27919338

  7. The influence of bremsstrahlung on electric discharge streamers in N2, O2 gas mixtures

    NASA Astrophysics Data System (ADS)

    Köhn, C.; Chanrion, O.; Neubert, T.

    2017-01-01

    Streamers are ionization filaments of electric gas discharges. Negative polarity streamers propagate primarily through electron impact ionization, whereas positive streamers in air develop through ionization of oxygen by UV photons emitted by excited nitrogen; however, experiments show that positive streamers may develop even for low oxygen concentrations. Here we explore if bremsstrahlung ionization facilitates positive streamer propagation. To discriminate between effects of UV and bremsstrahlung ionization, we simulate the formation of a double headed streamer at three different oxygen concentrations: no oxygen, 1 ppm O2 and 20% O2, as in air. At these oxygen levels, UV-relative to bremsstrahlung ionization is zero, small, and large. The simulations are conducted with a particle-in-cell code in a cylindrically symmetric configuration at ambient electric field magnitudes three times the conventional breakdown field. We find that bremsstrahlung induced ionization in air, contrary to expectations, reduces the propagation velocity of both positive and negative streamers by about 15%. At low oxygen levels, positive streamers stall; however, bremsstrahlung creates branching sub-streamers emerging from the streamer front that allow propagation of the streamer. Negative streamers propagate more readily forming branching sub-streamers. These results are in agreement with experiments. At both polarities, ionization patches are created ahead of the streamer front. Electrons with the highest energies are in the sub-streamer tips and the patches.

  8. Apparatus and method for the simultaneous detection of neutrons and ionizing electromagnetic radiation

    DOEpatents

    Bell, Zane W.

    2000-01-01

    A sensor for simultaneously detecting neutrons and ionizing electromagnetic radiation comprising: a sensor for the detection of gamma radiation, the sensor defining a sensing head; the sensor further defining an output end in communication with the sensing head; and an exterior neutron-sensitive material configured to form around the sensing head; wherein the neutron-sensitive material, subsequent to the capture of the neutron, fissions into an alpha-particle and a .sup.7 Li ion that is in a first excited state in a majority of the fissions, the first excited state decaying via the emission of a single gamma ray at 478 keV which can in turn be detected by the sensing head; and wherein the sensing head can also detect the ionizing electromagnetic radiation from an incident radiation field without significant interference from the neutron-sensitive material. A method for simultaneously detecting neutrons and ionizing electromagnetic radiation comprising the steps of: providing a gamma ray sensitive detector comprising a sensing head and an output end; conforming an exterior neutron-sensitive material configured to form around the sensing head of the detector; capturing neutrons by the sensing head causing the neutron-sensitive material to fission into an alpha-particle and a .sup.7 Li ion that is in a first excited state in a majority of the fissions, the state decaying via the emission of a single gamma ray at 478 keV; sensing gamma rays entering the detector through the neutron-sensitive material; and producing an output through a readout device coupled to the output end; wherein the detector provides an output which is proportional to the energy of the absorbed ionizing electromagnetic radiation.

  9. Single and double multiphoton ionization of Li and Be atoms by strong laser fields

    NASA Astrophysics Data System (ADS)

    Telnov, Dmitry; Heslar, John; Chu, Shih-I.

    2011-05-01

    The time-dependent density functional theory with self-interaction correction and proper asymptotic long-range potential is extended for nonperturbative treatment of multiphoton single and double ionization of Li and Be atoms by strong 800 nm laser fields. We make use of the time-dependent Krieger-Li-Iafrate (TDKLI) exchange-correlation potential with the integer discontinuity which improves the description of the double ionization process. However, we have found that the discontinuity of the TDKLI potential is not sufficient to reproduce the characteristic feature of double ionization. This may happen because the discontinuity of the TDKLI potential is related to the spin particle numbers only and not to the total particle number. Introducing a discontinuity with respect to the total particle number to the exchange-correlation potential, we were able to obtain the knee structure in the intensity dependence of the double ionization probability of Be. This work was partially supported by DOE and NSF and by NSC-Taiwan.

  10. Strong-field ionization of xenon dimers: The effect of two-equivalent-center interference and of driving ionic transitions

    NASA Astrophysics Data System (ADS)

    Zhang, C.; Feng, T.; Raabe, N.; Rottke, H.

    2018-02-01

    Strong-field ionization (SFI) of the homonuclear noble gas dimer Xe2 is investigated and compared with SFI of the Xe atom and of the ArXe heteronuclear dimer by using ultrashort Ti:sapphire laser pulses and photoelectron momentum spectroscopy. The large separation of the two nuclei of the dimer allows the study of two-equivalent-center interference effects on the photoelectron momentum distribution. Comparing the experimental results with a new model calculation, which is based on the strong-field approximation, actually reveals the influence of interference. Moreover, the comparison indicates that the presence of closely spaced gerade and ungerade electronic state pairs of the Xe2 + ion at the Xe2 ionization threshold, which are strongly dipole coupled, affects the photoelectron momentum distribution.

  11. Design and Installation of a Field Ionization Test Chamber for Ion Thrusters

    DTIC Science & Technology

    2011-12-01

    where F is thrust, m& is the mass flow rate of the propellant, and go is the standard acceleration due to gravity at sea level [1]. It provides a...only one graphene wall, and multi- walled CNT ( MWCNT ), which consist of multiple, concentric walls of graphene (Figure 9). One of the most unique...ionization chamber to ensure the mass flow rate going into the chamber matches the mass flow rate leaving it. 46 B. FIELD EMISSION AND FIELD

  12. Filamentation instability of a fast electron beam in a dielectric target.

    PubMed

    Debayle, A; Tikhonchuk, V T

    2008-12-01

    High-intensity laser-matter interaction is an efficient method for high-current relativistic electron beam production. At current densities exceeding a several kA microm{-2} , the beam propagation is maintained by an almost complete current neutralization by the target electrons. In such a geometry of two oppositely directed flows, beam instabilities can develop, depending on the target and the beam parameters. The present paper proposes an analytical description of the filamentation instability of an electron beam propagating through an insulator target. It is shown that the collisionless and resistive instabilities enter into competition with the ionization instability. This latter process is dominant in insulator targets where the field ionization by the fast beam provides free electrons for the neutralization current.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharma, Shailesh, E-mail: shailesh.sharma6@mail.dcu.ie; Impedans Limited, Chase House, City Junction Business Park, Northern Cross, D17 AK63, Dublin 17; Gahan, David, E-mail: david.gahan@impedans.com

    A compact retarding field analyzer with embedded quartz crystal microbalance has been developed to measure deposition rate, ionized flux fraction, and ion energy distribution arriving at the substrate location. The sensor can be placed on grounded, electrically floating, or radio frequency (rf) biased electrodes. A calibration method is presented to compensate for temperature effects in the quartz crystal. The metal deposition rate, metal ionization fraction, and energy distribution of the ions arriving at the substrate location are investigated in an asymmetric bipolar pulsed dc magnetron sputtering reactor under grounded, floating, and rf biased conditions. The diagnostic presented in this researchmore » work does not suffer from complications caused by water cooling arrangements to maintain constant temperature and is an attractive technique for characterizing a thin film deposition system.« less

  14. Analytical solutions for avalanche-breakdown voltages of single-diffused Gaussian junctions

    NASA Astrophysics Data System (ADS)

    Shenai, K.; Lin, H. C.

    1983-03-01

    Closed-form solutions of the potential difference between the two edges of the depletion layer of a single diffused Gaussian p-n junction are obtained by integrating Poisson's equation and equating the magnitudes of the positive and negative charges in the depletion layer. By using the closed form solution of the static Poisson's equation and Fulop's average ionization coefficient, the ionization integral in the depletion layer is computed, which yields the correct values of avalanche breakdown voltage, depletion layer thickness at breakdown, and the peak electric field as a function of junction depth. Newton's method is used for rapid convergence. A flowchart to perform the calculations with a programmable hand-held calculator, such as the TI-59, is shown.

  15. Quasi-dynamic mode of nanomembranes for time-of-flight mass spectrometry of proteins.

    PubMed

    Park, Jonghoo; Kim, Hyunseok; Blick, Robert H

    2012-04-21

    Mechanical resonators realized on the nano-scale by now offer applications in mass-sensing of biomolecules with extraordinary sensitivity. The general idea is that perfect mechanical biosensors should be of extremely small size to achieve zeptogram sensitivity in weighing single molecules similar to a balance. However, the small scale and long response time of weighing biomolecules with a cantilever restrict their usefulness as a high-throughput method. Commercial mass spectrometry (MS) such as electro-spray ionization (ESI)-MS and matrix-assisted laser desorption/ionization (MALDI)-time of flight (TOF)-MS are the gold standards to which nanomechanical resonators have to live up to. These two methods rely on the ionization and acceleration of biomolecules and the following ion detection after a mass selection step, such as time-of-flight (TOF). Hence, the spectrum is typically represented in m/z, i.e. the mass to ionization charge ratio. Here, we describe the feasibility and mass range of detection of a new mechanical approach for ion detection in time-of-flight mass spectrometry, the principle of which is that the impinging ion packets excite mechanical oscillations in a silicon nitride nanomembrane. These mechanical oscillations are henceforth detected via field emission of electrons from the nanomembrane. Ion detection is demonstrated in MALDI-TOF analysis over a broad range with angiotensin, bovine serum albumin (BSA), and an equimolar protein mixture of insulin, BSA, and immunoglobulin G (IgG). We find an unprecedented mass range of operation of the nanomembrane detector.

  16. The mechanism of detection of air pollution by an ionization chamber.

    PubMed

    Novković, D; Vukanac; Milosević, Z

    2000-01-01

    The mechanism of detection of chemical vapors in air by an ionization chamber supplied by DC and AC voltage has been described. The theoretical explanation is based on numerical solutions of the differential equations of the cylindrical ionization chamber. The current of the ionization chamber operating in the AC regime has two components: a conductive component, caused by the ions drifts, and a capacitive component, caused by the distortion of the electric field. The ionization chamber operating in the DC regime has only the first component; hence the AC supplied chamber has larger response than the DC supplied chamber.

  17. Self-organization and self-limitation in high power impulse magnetron sputtering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anders, Andre

    The plasma over the racetrack in high power impulse magnetron sputtering develops in traveling ionization zones. Power densities can locally reach 10{sup 9} W/m{sup 2}, which is much higher than usually reported. Ionization zones move because ions are 'evacuated' by the electric field, exposing neutrals to magnetically confined, drifting electrons. Drifting secondary electrons amplify ionization of the same ionization zone where the primary ions came from, while sputtered and outgassing atoms are supplied to the following zone(s). Strong density gradients parallel to the target disrupt electron confinement: a negative feedback mechanism that stabilizes ionization runaway.

  18. Characterization of a gated fiber-optic-coupled detector for application in clinical electron beam dosimetry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tanyi, James A.; Nitzling, Kevin D.; Lodwick, Camille J.

    2011-02-15

    Purpose: Assessment of the fundamental dosimetric characteristics of a novel gated fiber-optic-coupled dosimetry system for clinical electron beam irradiation. Methods: The response of fiber-optic-coupled dosimetry system to clinical electron beam, with nominal energy range of 6-20 MeV, was evaluated for reproducibility, linearity, and output dependence on dose rate, dose per pulse, energy, and field size. The validity of the detector system's response was assessed in correspondence with a reference ionization chamber. Results: The fiber-optic-coupled dosimetry system showed little dependence to dose rate variations (coefficient of variation {+-}0.37%) and dose per pulse changes (with 0.54% of reference chamber measurements). The reproducibilitymore » of the system was {+-}0.55% for dose fractions of {approx}100 cGy. Energy dependence was within {+-}1.67% relative to the reference ionization chamber for the 6-20 MeV nominal electron beam energy range. The system exhibited excellent linear response (R{sup 2}=1.000) compared to reference ionization chamber in the dose range of 1-1000 cGy. The output factors were within {+-}0.54% of the corresponding reference ionization chamber measurements. Conclusions: The dosimetric properties of the gated fiber-optic-coupled dosimetry system compare favorably to the corresponding reference ionization chamber measurements and show considerable potential for applications in clinical electron beam radiotherapy.« less

  19. Absolute dose calculations for Monte Carlo simulations of radiotherapy beams.

    PubMed

    Popescu, I A; Shaw, C P; Zavgorodni, S F; Beckham, W A

    2005-07-21

    Monte Carlo (MC) simulations have traditionally been used for single field relative comparisons with experimental data or commercial treatment planning systems (TPS). However, clinical treatment plans commonly involve more than one field. Since the contribution of each field must be accurately quantified, multiple field MC simulations are only possible by employing absolute dosimetry. Therefore, we have developed a rigorous calibration method that allows the incorporation of monitor units (MU) in MC simulations. This absolute dosimetry formalism can be easily implemented by any BEAMnrc/DOSXYZnrc user, and applies to any configuration of open and blocked fields, including intensity-modulated radiation therapy (IMRT) plans. Our approach involves the relationship between the dose scored in the monitor ionization chamber of a radiotherapy linear accelerator (linac), the number of initial particles incident on the target, and the field size. We found that for a 10 x 10 cm2 field of a 6 MV photon beam, 1 MU corresponds, in our model, to 8.129 x 10(13) +/- 1.0% electrons incident on the target and a total dose of 20.87 cGy +/- 1.0% in the monitor chambers of the virtual linac. We present an extensive experimental verification of our MC results for open and intensity-modulated fields, including a dynamic 7-field IMRT plan simulated on the CT data sets of a cylindrical phantom and of a Rando anthropomorphic phantom, which were validated by measurements using ionization chambers and thermoluminescent dosimeters (TLD). Our simulation results are in excellent agreement with experiment, with percentage differences of less than 2%, in general, demonstrating the accuracy of our Monte Carlo absolute dose calculations.

  20. Pre-breakdown processes in a dielectric fluid in inhomogeneous pulsed electric fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shneider, Mikhail N., E-mail: m.n.shneider@gmail.com; Pekker, Mikhail

    2015-06-14

    We consider the development of pre-breakdown cavitation nanopores appearing in the dielectric fluid under the influence of the electrostrictive stresses in the inhomogeneous pulsed electric field. It is shown that three characteristic regions can be distinguished near the needle electrode. In the first region, where the electric field gradient is greatest, the cavitation nanopores, occurring during the voltage nanosecond pulse, may grow to the size at which an electron accelerated by the field inside the pores can acquire enough energy for excitation and ionization of the liquid on the opposite pore wall, i.e., the breakdown conditions are satisfied. In themore » second region, the negative pressure caused by the electrostriction is large enough for the cavitation initiation (which can be registered by optical methods), but, during the voltage pulse, the pores do not reach the size at which the potential difference across their borders becomes sufficient for ionization or excitation of water molecules. And, in the third, the development of cavitation is impossible, due to an insufficient level of the negative pressure: in this area, the spontaneously occurring micropores do not grow and collapse under the influence of surface tension forces. This paper discusses the expansion dynamics of the cavitation pores and their most probable shape.« less

  1. CRIT II electric, magnetic, and density measurements within an ionizing neutral stream

    NASA Technical Reports Server (NTRS)

    Swenson, C. M.; Kelley, M. C.; Primdahl, F.; Baker, K. D.

    1990-01-01

    Measurements from rocket-borne sensors inside a high-velocity neutral barium beam show a-factor-of-six increase in plasma density in a moving ionizing front. This region was colocated with intense fluctuating electric fields at frequencies well under the lower hybrid frequency for a barium plasma. Large quasi-dc electric and magnetic field fluctuations were also detected with a large component of the current and the electric field parallel to B(0). An Alfven wave with a finite electric field component parallel to the geomagnetic field was observed to propagate along B(0), where it was detected by an instrumented subpayload.

  2. Breakdown voltage reduction by field emission in multi-walled carbon nanotubes based ionization gas sensor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saheed, M. Shuaib M.; Muti Mohamed, Norani; Arif Burhanudin, Zainal, E-mail: zainabh@petronas.com.my

    2014-03-24

    Ionization gas sensors using vertically aligned multi-wall carbon nanotubes (MWCNT) are demonstrated. The sharp tips of the nanotubes generate large non-uniform electric fields at relatively low applied voltage. The enhancement of the electric field results in field emission of electrons that dominates the breakdown mechanism in gas sensor with gap spacing below 14 μm. More than 90% reduction in breakdown voltage is observed for sensors with MWCNT and 7 μm gap spacing. Transition of breakdown mechanism, dominated by avalanche electrons to field emission electrons, as decreasing gap spacing is also observed and discussed.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Samedov, V. V., E-mail: v-samedov@yandex.ru

    Fluctuations of charge induced by charge carriers on the detector electrodes make a significant contribution to the energy resolution of ionization detectors, namely, semiconductor detectors and gas and liquid ionization chambers. These fluctuations are determined by the capture of charge carriers, as they drift in the bulk of the detector under the action of an electric field, by traps. In this study, we give a correct mathematical description of charge induction on electrodes of an ionization detector for an arbitrary electric field distribution in the detector with consideration of charge carrier capture by traps. The characteristic function obtained in thismore » study yields the general expression for the distribution function of the charge induced on the detector electrodes. The formulas obtained in this study are useful for analysis of the influence of charge carrier transport on energy resolution of ionization detectors.« less

  4. Revisiting benzene cluster cations for the chemical ionization of dimethyl sulfide and select volatile organic compounds

    DOE PAGES

    Kim, Michelle J.; Zoerb, Matthew C.; Campbell, Nicole R.; ...

    2016-04-05

    Here, benzene cluster cations were revisited as a sensitive and selective reagent ion for the chemical ionization of dimethyl sulfide (DMS) and a select group of volatile organic compounds (VOCs). Laboratory characterization was performed using both a new set of compounds (i.e., DMS, β-caryophyllene) as well as previously studied VOCs (i.e., isoprene, α-pinene). Using a field deployable chemical-ionization time-of-flight mass spectrometer (CI-ToFMS), benzene cluster cations demonstrated high sensitivity (> 1 ncps ppt −1) to DMS, isoprene, and α-pinene standards. Parallel measurements conducted using a chemical-ionization quadrupole mass spectrometer, with a much weaker electric field, demonstrated that ion–molecule reactions likely proceed through amore » combination of ligand-switching and direct charge transfer mechanisms. Laboratory tests suggest that benzene cluster cations may be suitable for the selective ionization of sesquiterpenes, where minimal fragmentation (< 25 %) was observed for the detection of β-caryophyllene, a bicyclic sesquiterpene. The in-field stability of benzene cluster cations using CI-ToFMS was examined in the marine boundary layer during the High Wind Gas Exchange Study (HiWinGS). The use of benzene cluster cation chemistry for the selective detection of DMS was validated against an atmospheric pressure ionization mass spectrometer, where measurements from the two instruments were highly correlated ( R 2 > 0.95, 10 s averages) over a wide range of sampling conditions.« less

  5. Radiation effects in interventional radiology using biological and physical dosimetry methods: a case-control study.

    PubMed

    Ramos, Miguel; Montoro, Alegria; Almonacid, Miguel; Ferrer, Silvia; Barquinero, Joan Francesc; Tortosa, Ricardo; Verdú, Gumersindo; Rodríguez, Pilar; Barrios, Lleonard; Villaescusa, Juan Ignacio

    2008-01-01

    Interventional radiologists and staff members are frequently exposed to protracted and fractionated low doses of ionizing radiation, which extend during all their professional activities. These exposures can derive, due to the irradiation of skin tissues and peripheral blood, in deterministic effects (radiodermitis, aged skin, hands depilation) or stochastic ones (skin and non-solid cancers incidence). Epidemiological studies of population exposed to ionizing radiation provide information of radio-induced effects. The radiation risk or radiological detriment has been estimated from a group of six exposed interventionist radiologists of the Hospital La Fe (Valencia, Spain). Dosimetry has been periodically registered from TLDs and wrist dosimeters (physical methods) and estimated through translocations in lymphocytes of peripheral blood (biological methods), by extrapolating the yield of translocations to their respective dose-effect curves. The probability of non-melanoma skin cancer and leukaemia (acute myelogenous, acute lymphocytic and chronic myelogenous leukaemia) incidence has been estimated through the software RADRISK. This software is based on a transport model from epidemiological studies of population exposed to external low-LET ionizing radiation [1]. Other non-solid carcinomas have not been considered due to their low statistical power, such as myeloid and non-Hodgkin lymphomas. The discrepancies observed between the physically recorded doses and biological estimated doses could indicate that exposed workers did not always wear their dosimeters or these dosimeters were not always exposed to the radiation field.

  6. Highly sensitive screening method for nitroaromatic, nitramine and nitrate ester explosives by high performance liquid chromatography-atmospheric pressure ionization-mass spectrometry (HPLC-API-MS) in forensic applications.

    PubMed

    Xu, Xiaoma; van de Craats, Anick M; de Bruyn, Peter C A M

    2004-11-01

    A highly sensitive screening method based on high performance liquid chromatography atmospheric pressure ionization mass spectrometry (HPLC-API-MS) has been developed for the analysis of 21 nitroaromatic, nitramine and nitrate ester explosives, which include the explosives most commonly encountered in forensic science. Two atmospheric pressure ionization (API) methods, atmospheric pressure chemical ionization (APCI) and electrospray ionization (ESI), and various experimental conditions have been applied to allow for the detection of all 21 explosive compounds. The limit of detection (LOD) in the full-scan mode has been found to be 0.012-1.2 ng on column for the screening of most explosives investigated. For nitrobenzene, an LOD of 10 ng was found with the APCI method in the negative mode. Although the detection of nitrobenzene, 2-, 3-, and 4-nitrotoluene is hindered by the difficult ionization of these compounds, we have found that by forming an adduct with glycine, LOD values in the range of 3-16 ng on column can be achieved. Compared with previous screening methods with thermospray ionization, the API method has distinct advantages, including simplicity and stability of the method applied, an extended screening range and a low detection limit for the explosives studied.

  7. Analysis of chirality by femtosecond laser ionization mass spectrometry.

    PubMed

    Horsch, Philipp; Urbasch, Gunter; Weitzel, Karl-Michael

    2012-09-01

    Recent progress in the field of chirality analysis employing laser ionization mass spectrometry is reviewed. Emphasis is given to femtosecond (fs) laser ionization work from the author's group. We begin by reviewing fundamental aspects of determining circular dichroism (CD) in fs-laser ionization mass spectrometry (fs-LIMS) discussing an example from the literature (resonant fs-LIMS of 3-methylcyclopentanone). Second, we present new data indicating CD in non-resonant fs-LIMS of propylene oxide. Copyright © 2012 Wiley Periodicals, Inc., A Wiley Company.

  8. Angle-resolved high-order above-threshold ionization of a molecule: sensitive tool for molecular characterization.

    PubMed

    Busuladzić, M; Gazibegović-Busuladzić, A; Milosević, D B; Becker, W

    2008-05-23

    The strong-field approximation for ionization of diatomic molecules by an intense laser field is generalized to include rescattering of the ionized electron off the various centers of its molecular parent ion. The resulting spectrum and its interference structure strongly depend on the symmetry of the ground state molecular orbital. For N2, if the laser polarization is perpendicular to the molecular axis, we observe a distinct minimum in the emission spectrum, which survives focal averaging and allows determination of, e.g., the internuclear separation. In contrast, for O2, rescattering is absent in the same situation.

  9. Imprints of the Molecular Electronic Structure in the Photoelectron Spectra of Strong-Field Ionized Asymmetric Triatomic Model Molecules

    NASA Astrophysics Data System (ADS)

    Paul, Matthias; Yue, Lun; Gräfe, Stefanie

    2018-06-01

    We examine the circular dichroism in the angular distribution of photoelectrons of triatomic model systems ionized by strong-field ionization. Following our recent work on this effect [Paul, Yue, and Gräfe, J. Mod. Opt. 64, 1104 (2017), 10.1080/09500340.2017.1299883], we demonstrate how the symmetry and electronic structure of the system is imprinted into the photoelectron momentum distribution. We use classical trajectories to reveal the origin of the threefolded pattern in the photoelectron momentum distribution, and show how an asymmetric nuclear configuration of the triatomic system effects the photoelectron spectra.

  10. MALDI Imaging Mass Spectrometry—A Mini Review of Methods and Recent Developments

    PubMed Central

    Eriksson, Cecilia; Masaki, Noritaka; Yao, Ikuko; Hayasaka, Takahiro; Setou, Mitsutoshi

    2013-01-01

    As the only imaging method available, Imaging Mass Spectrometry (IMS) can determine both the identity and the distribution of hundreds of molecules on tissue sections, all in one single run. IMS is becoming an established research technology, and due to recent technical and methodological improvements the interest in this technology is increasing steadily and within a wide range of scientific fields. Of the different IMS methods available, matrix-assisted laser desorption/ionization (MALDI) IMS is the most commonly employed. The course at IMSC 2012 in Kyoto covered the fundamental principles and techniques of MALDI-IMS, assuming no previous experience in IMS. This mini review summarizes the content of the one-day course and describes some of the most recent work performed within this research field. PMID:24349941

  11. Visual evidence of suppressing the ion and electron energy loss on the wall in Hall thrusters

    NASA Astrophysics Data System (ADS)

    Ding, Yongjie; Peng, Wuji; Sun, Hezhi; Wei, Liqiu; Zeng, Ming; Wang, Fufeng; Yu, Daren

    2017-03-01

    A method of pushing down magnetic field with two permanent magnetic rings is proposed in this paper. It can realize ionization in a channel and acceleration outside the channel. The wall will only suffer from the bombardment of low-energy ions and electrons, which can effectively reduce channel erosion and extend the operational lifetime of thrusters. Furthermore, there is no additional power consumption of coils, which improves the efficiency of systems. We show here the newly developed 200 W no wall-loss Hall thruster (NWLHT-200) that applies the method of pushing down magnetic field with two permanent magnetic rings; the visual evidence we obtained preliminarily confirms the feasibility that the proposed method can realize discharge without wall energy loss or erosion of Hall thrusters.

  12. Pulsed discharges produced by high-power surface waves

    NASA Astrophysics Data System (ADS)

    Böhle, A.; Ivanov, O.; Kolisko, A.; Kortshagen, U.; Schlüter, H.; Vikharev, A.

    1996-02-01

    The mechanisms of the ionization front advance in surface-wave-produced discharges are investigated using two experimental set-ups. The high-power surface waves are excited in a 3 cm wavelength band by a surfaguide and a novel type of launcher (an E-plane junction). The ionization front velocity of the surface wave is measured for a wide range of gas pressures, incident microwave power and initial pre-ionization. The experimental results are compared with theoretical ones based on three different models. The comparison between theory and experiment allows one to suggest a new interpretation of the ionization front's advance. The ionization front velocity is determined by a breakdown wave or an ionization wave in the electric field of a high-power surface wave in the zone near the ionization front.

  13. Analyses of electron runaway in front of the negative streamer channel

    NASA Astrophysics Data System (ADS)

    Babich, L. P.; Bochkov, E. I.; Kutsyk, I. M.; Neubert, T.; Chanrion, O.

    2017-08-01

    X-ray and γ-ray emissions, observed in correlation with negative leaders of lightning and long sparks of high-voltage laboratory experiments, are conventionally connected with the bremsstrahlung of high-energy runaway electrons (REs). Here we extend a focusing mechanism, analyzed in our previous paper, which allows the electric field to reach magnitudes, required for a generation of significant RE fluxes and associated bremsstrahlung, when the ionization wave propagates in a narrow, ionized channel created by a previous streamer. Under such conditions we compute the production rate of REs per unit streamer length as a function of the streamer velocity and predict that, once a streamer is formed with the electric field capable of producing REs ahead of the streamer front, the ionization induced by the REs is capable of creating an ionized channel that allows for self-sustained propagation of the RE-emitting ionization wave independent of the initial electron concentration. Thus, the streamer coronas of the leaders are probable sources of REs producing the observed high-energy radiation. To prove these predictions, new simulations are planned, which would show explicitly that the preionization in front of the channel via REs will lead to the ionization wave propagation self-consistent with RE generation.

  14. Magnetic-field-driven electron transport in ferromagnetic/ insulator/semiconductor hybrid structures

    NASA Astrophysics Data System (ADS)

    Volkov, N. V.; Tarasov, A. S.; Rautskii, M. V.; Lukyanenko, A. V.; Varnakov, S. N.; Ovchinnikov, S. G.

    2017-10-01

    Extremely large magnetotransport phenomena were found in the simple devices fabricated on base of the Me/SiO2/p-Si hybrid structures (where Me are Mn and Fe). These effects include gigantic magnetoimpedance (MI), dc magnetoresistance (MR) and the lateral magneto-photo-voltaic effect (LMPE). The MI and MR values exceed 106% in magnetic field about 0.2 T for Mn/SiO2/p-Si Schottky diode. LMPE observed in Fe/SiO2/p-Si lateral device reaches the value of 104% in a field of 1 T. We believe that in case with the Schottky diode MR and MI effects are originate from magnetic field influence on impact ionization process by two different ways. First, the trajectory of the electron is deflected by a magnetic field, which suppresses acquisition of kinetic energy and therefore impact ionization. Second, the magnetic field gives rise to shift of the acceptor energy levels in silicon to a higher energy. As a result, the activation energy for impact ionization significantly increases and consequently threshold voltage rises. Moreover, the second mechanism (acceptor level energy shifting in magnetic field) can be responsible for giant LMPE.

  15. Atmospheric helium and geomagnetic field reversals.

    NASA Technical Reports Server (NTRS)

    Sheldon, W. R.; Kern, J. W.

    1972-01-01

    The problem of the earth's helium budget is examined in the light of recent work on the interaction of the solar wind with nonmagnetic planets. It is proposed that the dominant mode of helium (He4) loss is ion pumping by the solar wind during geomagnetic field reversals, when the earth's magnetic field is very small. The interaction of the solar wind with the earth's upper atmosphere during such a period is found to involve the formation of a bow shock. The penetration altitude of the shock-heated solar plasma is calculated to be about 700 km, and ionization rates above this level are estimated for a cascade ionization (electron avalanche) process to average 10 to the 9th power ions/sq cm/sec. The calculated ionization rates and the capacity of the solar wind to remove ionized helium (He4) from the upper atmosphere during geomagnetic dipole reversals are sufficient to yield a secular equilibrium over geologic time scales. The upward transport of helium from the lower atmosphere under these conditions is found to be adequate to sustain the proposed loss rate.

  16. High-order above-threshold dissociation of molecules

    NASA Astrophysics Data System (ADS)

    Lu, Peifen; Wang, Junping; Li, Hui; Lin, Kang; Gong, Xiaochun; Song, Qiying; Ji, Qinying; Zhang, Wenbin; Ma, Junyang; Li, Hanxiao; Zeng, Heping; He, Feng; Wu, Jian

    2018-03-01

    Electrons bound to atoms or molecules can simultaneously absorb multiple photons via the above-threshold ionization featured with discrete peaks in the photoelectron spectrum on account of the quantized nature of the light energy. Analogously, the above-threshold dissociation of molecules has been proposed to address the multiple-photon energy deposition in the nuclei of molecules. In this case, nuclear energy spectra consisting of photon-energy spaced peaks exceeding the binding energy of the molecular bond are predicted. Although the observation of such phenomena is difficult, this scenario is nevertheless logical and is based on the fundamental laws. Here, we report conclusive experimental observation of high-order above-threshold dissociation of H2 in strong laser fields where the tunneling-ionized electron transfers the absorbed multiphoton energy, which is above the ionization threshold to the nuclei via the field-driven inelastic rescattering. Our results provide an unambiguous evidence that the electron and nuclei of a molecule as a whole absorb multiple photons, and thus above-threshold ionization and above-threshold dissociation must appear simultaneously, which is the cornerstone of the nowadays strong-field molecular physics.

  17. ASYMMETRIC MAGNETIC RECONNECTION IN WEAKLY IONIZED CHROMOSPHERIC PLASMAS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murphy, Nicholas A.; Lukin, Vyacheslav S., E-mail: namurphy@cfa.harvard.edu

    2015-06-01

    Realistic models of magnetic reconnection in the solar chromosphere must take into account that the plasma is partially ionized and that plasma conditions within any two magnetic flux bundles undergoing reconnection may not be the same. Asymmetric reconnection in the chromosphere may occur when newly emerged flux interacts with pre-existing, overlying flux. We present 2.5D simulations of asymmetric reconnection in weakly ionized, reacting plasmas where the magnetic field strengths, ion and neutral densities, and temperatures are different in each upstream region. The plasma and neutral components are evolved separately to allow non-equilibrium ionization. As in previous simulations of chromospheric reconnection,more » the current sheet thins to the scale of the neutral–ion mean free path and the ion and neutral outflows are strongly coupled. However, the ion and neutral inflows are asymmetrically decoupled. In cases with magnetic asymmetry, a net flow of neutrals through the current sheet from the weak-field (high-density) upstream region into the strong-field upstream region results from a neutral pressure gradient. Consequently, neutrals dragged along with the outflow are more likely to originate from the weak-field region. The Hall effect leads to the development of a characteristic quadrupole magnetic field modified by asymmetry, but the X-point geometry expected during Hall reconnection does not occur. All simulations show the development of plasmoids after an initial laminar phase.« less

  18. Connecting the dots: a correlation between ionizing radiation and cloud mass-loss rate traced by optical integral field spectroscopy

    NASA Astrophysics Data System (ADS)

    McLeod, A. F.; Gritschneder, M.; Dale, J. E.; Ginsburg, A.; Klaassen, P. D.; Mottram, J. C.; Preibisch, T.; Ramsay, S.; Reiter, M.; Testi, L.

    2016-11-01

    We present an analysis of the effect of feedback from O- and B-type stars with data from the integral field spectrograph Multi Unit Spectroscopic Explorer (MUSE) mounted on the Very Large Telescope of pillar-like structures in the Carina Nebular Complex, one of the most massive star-forming regions in the Galaxy. For the observed pillars, we compute gas electron densities and temperatures maps, produce integrated line and velocity maps of the ionized gas, study the ionization fronts at the pillar tips, analyse the properties of the single regions, and detect two ionized jets originating from two distinct pillar tips. For each pillar tip, we determine the incident ionizing photon flux Q0, pil originating from the nearby massive O- and B-type stars and compute the mass-loss rate dot{M} of the pillar tips due to photoevaporation caused by the incident ionizing radiation. We combine the results of the Carina data set with archival MUSE data of a pillar in NGC 3603 and with previously published MUSE data of the Pillars of Creation in M16, and with a total of 10 analysed pillars, find tight correlations between the ionizing photon flux and the electron density, the electron density and the distance from the ionizing sources, and the ionizing photon flux and the mass-loss rate. The combined MUSE data sets of pillars in regions with different physical conditions and stellar content therefore yield an empirical quantification of the feedback effects of ionizing radiation. In agreement with models, we find that dot{M}∝ Q_0,pil^{1/2}.

  19. Ionizing Electrons on the Martian Nightside: Structure and Variability

    NASA Astrophysics Data System (ADS)

    Lillis, Robert J.; Mitchell, David L.; Steckiewicz, Morgane; Brain, David; Xu, Shaosui; Weber, Tristan; Halekas, Jasper; Connerney, Jack; Espley, Jared; Benna, Mehdi; Elrod, Meredith; Thiemann, Edward; Eparvier, Frank

    2018-05-01

    The precipitation of suprathermal electrons is the dominant external source of energy deposition and ionization in the Martian nightside upper atmosphere and ionosphere. We investigate the spatial patterns and variability of ionizing electrons from 115 to 600 km altitude on the Martian nightside, using CO2 electron impact ionization frequency (EIIF) as our metric, examining more than 3 years of data collected in situ by the Mars Atmosphere and Volatile EvolutioN spacecraft. We characterize the behavior of EIIF with respect to altitude, solar zenith angle, solar wind pressure, and the geometry and strength of crustal magnetic fields. EIIF has a complex and correlated dependence on these factors, but we find that it generally increases with altitude and solar wind pressure, decreases with crustal magnetic field strength and does not depend detectably on solar zenith angle past 115°. The dependence is governed by (a) energy degradation and backscatter by collisions with atmospheric neutrals below 220 km and (b) magnetic field topology that permits or retards electron access to certain regions. This field topology is dynamic and varies with solar wind conditions, allowing greater electron access at higher altitudes where crustal fields are weaker and also for higher solar wind pressures, which result in stronger draped magnetic fields that push closed crustal magnetic field loops to lower altitudes. This multidimensional electron flux behavior can in the future be parameterized in an empirical model for use as input to global simulations of the nightside upper atmosphere, which currently do not account for this important source of energy.

  20. Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry: Mechanistic Studies and Methods for Improving the Structural Identification of Carbohydrates

    PubMed Central

    Lai, Yin-Hung; Wang, Yi-Sheng

    2017-01-01

    Although matrix-assisted laser desorption/ionization (MALDI) mass spectrometry is one of the most widely used soft ionization methods for biomolecules, the lack of detailed understanding of ionization mechanisms restricts its application in the analysis of carbohydrates. Structural identification of carbohydrates achieved by MALDI mass spectrometry helps us to gain insights into biological functions and pathogenesis of disease. In this review, we highlight mechanistic details of MALDI, including both ionization and desorption. Strategies to improve the ion yield of carbohydrates are also reviewed. Furthermore, commonly used fragmentation methods to identify the structure are discussed. PMID:28959517

  1. SU-F-T-263: Dosimetric Characteristics of the Cine Acquisition Mode of An A-Si EPID

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bawazeer, O; Deb, P; Sarasanandarajah, S

    2016-06-15

    Purpose: To investigate the dosimetric characteristics of Varian a-Si-500 electronic portal imaging device (EPID) operated in cine mode particularly considering linearity with delivered dose, dose rate, field size, phantom thickness, MLC speed and common IMRT fields. Methods: The EPID that attached to a Varian Clinac 21iX linear accelerator, was irradiated with 6 and 18 MV using 600 MU/min. Image acquisition is controlled by the IAS3 software, Trigger delay was 6 ms, BeamOnDelay and FrameStartDelay were zero. Different frame rates were utilized. Cine mode response was calculated using MATLAB as summation of mean pixel values in a region of interest ofmore » the acquired images. The performance of cine mode was compared to integrated mode and dose measurements in water using CC13 ionization chamber. Results: Figure1 illustrates that cine mode has nonlinear response for small MU, when delivering 10 MU was about 0.5 and 0.64 for 6 and 18 MV respectively. This is because the missing acquired images that were calculated around four images missing in each delivery. With the increase MU the response became linear and comparable with integrated mode and ionization chamber within 2%. Figure 2 shows that cine mode has comparable response with integrated mode and ionization chamber within 2% with changing dose rate for 10 MU delivered. This indicates that the dose rate change has no effect on nonlinearity of cine mode response. Except nonlinearity, cine mode is well matched to integrated mode response within 2% for field size, phantom thickness, MLC speed dependences. Conclusion: Cine mode has similar dosimetric characteristics to integrated mode with open and IMRT fields, and the main limitation with cine mode is missing images. Therefore, the calibration of EPID images with this mode should be run with large MU, and when IMRT verification field has low MU, the correction for missing images are required.« less

  2. Evaluation of Gas-filled Ionization Chamber Method for Radon Measurement at Two Reference Facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ishikawa, Tetsuo; Tokonami, Shinji; Kobayashi, Yosuke

    2008-08-07

    For quality assurance, gas-filled ionization chamber method was tested at two reference facilities for radon calibration: EML (USA) and PTB (Germany). Consequently, the radon concentrations estimated by the ionization chamber method were in good agreement with the reference radon concentrations provided by EML as well as PTB.

  3. Interrogating Seyferts with NebulaBayes: Spatially Probing the Narrow-line Region Radiation Fields and Chemical Abundances

    NASA Astrophysics Data System (ADS)

    Thomas, Adam D.; Dopita, Michael A.; Kewley, Lisa J.; Groves, Brent A.; Sutherland, Ralph S.; Hopkins, Andrew M.; Blanc, Guillermo A.

    2018-04-01

    NebulaBayes is a new Bayesian code that implements a general method of comparing observed emission-line fluxes to photoionization model grids. The code enables us to extract robust, spatially resolved measurements of abundances in the extended narrow-line regions (ENLRs) produced by Active Galactic Nuclei (AGN). We observe near-constant ionization parameters but steeply radially declining pressures, which together imply that radiation pressure regulates the ENLR density structure on large scales. Our sample includes four “pure Seyfert” galaxies from the S7 survey that have extensive ENLRs. NGC 2992 shows steep metallicity gradients from the nucleus into the ionization cones. An inverse metallicity gradient is observed in ESO 138-G01, which we attribute to a recent gas inflow or minor merger. A uniformly high metallicity and hard ionizing continuum are inferred across the ENLR of Mrk 573. Our analysis of IC 5063 is likely affected by contamination from shock excitation, which appears to soften the inferred ionizing spectrum. The peak of the ionizing continuum E peak is determined by the nuclear spectrum and the absorbing column between the nucleus and the ionized nebula. We cannot separate variation in this intrinsic E peak from the effects of shock or H II region contamination, but E peak measurements nevertheless give insights into ENLR excitation. We demonstrate the general applicability of NebulaBayes by analyzing a nuclear spectrum from the non-active galaxy NGC 4691 using a H II region grid. The NLR and H II region model grids are provided with NebulaBayes for use by the astronomical community.

  4. Ionization and current growth in N/sub 2/ at very high electric field to gas density ratios

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gylys, V.T.; Jelenkovic, B.M.; Phelps, A.V.

    1989-05-01

    Measurements and analyses have been made of electron impact ionization and of current growth in pulsed, low-current, prebreakdown discharges in parallel-plane geometry in N/sub 2/ at very high electric field to gas density ratios E/n and low products of the gas density n and electrode separation d. The E/n range and nd ranges were 1

  5. Electrospray Post-Ionization Mass Spectrometry of Electrosurgical Aerosols

    NASA Astrophysics Data System (ADS)

    Guenther, Sabine; Schäfer, Karl-Christian; Balog, Júlia; Dénes, Júlia; Majoros, Tamás; Albrecht, Katalin; Tóth, Miklós; Spengler, Bernhard; Takáts, Zoltán

    2011-11-01

    The feasibility of electrospray (ES) ionization of aerosols generated by electrosurgical disintegration methods was investigated. Although electrosurgery itself was demonstrated to produce gaseous ions, post-ionization methods were implemented to enhance the ion yield, especially in those cases when the ion current produced by the applied electrosurgical method is not sufficient for MS analysis. Post-ionization was implemented by mounting an ES emitter onto a Venturi pump, which is used for ion transfer. The effect of various parameters including geometry, high voltage setting, flow parameters, and solvent composition was investigated in detail. Experimental setups were optimized accordingly. ES post-ionization was found to yield spectra similar to those obtained by the REIMS technique, featuring predominantly lipid-type species. Signal enhancement was 20- to 50-fold compared with electrosurgical disintegration in positive mode, while no improvement was observed in negative mode. ES post-ionization was also demonstrated to allow the detection of non-lipid type species in the electrosurgical aerosol, including drug molecules. Since the tissue specificity of the MS data was preserved in the ES post-ionization setup, feasibility of tissue identification was demonstrated using different electrosurgical methods.

  6. Manipulating ion-atom collisions with coherent electromagnetic radiation.

    PubMed

    Kirchner, Tom

    2002-08-26

    Laser-assisted ion-atom collisions are considered in terms of a nonperturbative quantum mechanical description of the electronic motion. It is shown for the system He(2+) - H at 2 keV/amu that the collision dynamics depend strongly on the initial phase of the laser field and the applied wavelength. Whereas electronic transitions are caused by the concurrent action of the field and the projectile ion at relatively low frequencies, they can be separated into modified collisional capture and field ionization events in the region above the one-photon ionization threshold.

  7. Experimental investigation of strong-field-ionization theories for laser fields from visible to midinfrared frequencies

    NASA Astrophysics Data System (ADS)

    Lai, Yu Hang; Xu, Junliang; Szafruga, Urszula B.; Talbert, Bradford K.; Gong, Xiaowei; Zhang, Kaikai; Fuest, Harald; Kling, Matthias F.; Blaga, Cosmin I.; Agostini, Pierre; DiMauro, Louis F.

    2017-12-01

    Strong-field-ionization yield versus intensity is investigated for various atomic targets (Ne, Ar, Kr, Xe, Na, K, Zn, and Mg) and light polarization from visible to mid-infrared (0.4-4 μ m ), from multiphoton to tunneling regimes. The experimental findings (normalized yield vs intensity, ratio of circular to linear polarization and saturation intensities) are compared to the theoretical models of Perelomov-Popov-Terent'ev (PPT) and Ammosov-Delone-Krainov (ADK). While PPT is generally satisfactory, ADK validity is found, as expected, to be much more limited.

  8. Above-Threshold Ionization by an Elliptically Polarized Field: Quantum Tunneling Interferences and Classical Dodging

    NASA Astrophysics Data System (ADS)

    Paulus, G. G.; Zacher, F.; Walther, H.; Lohr, A.; Becker, W.; Kleber, M.

    1998-01-01

    Measurements of above-threshold ionization electron spectra in an elliptically polarized field as a function of the ellipticity are presented. In the rescattering regime, electron yields quickly drop with increasing ellipticity. The yields of lower-energy electrons rise again when circular polarization is approached. A classical explanation for these effects is provided. Additional local maxima in the yields of lower-energy electrons can be interpreted as being due to interferences of electron trajectories that tunnel out at different times within one cycle of the field.

  9. The Neutral Islands during the Late Epoch of Reionization

    NASA Astrophysics Data System (ADS)

    Xu, Yidong; Yue, Bin; Chen, Xuelei

    2018-05-01

    The large-scale structure of the ionization field during the epoch of reionization (EoR) can be modeled by the excursion set theory. While the growth of ionized regions during the early stage are described by the ``bubble model'', the shrinking process of neutral regions after the percolation of the ionized region calls for an ``island model''. An excursion set based analytical model and a semi-numerical code (islandFAST) have been developed. The ionizing background and the bubbles inside the islands are also included in the treatment. With two kinds of absorbers of ionizing photons, i.e. the large-scale under-dense neutral islands and the small-scale over-dense clumps, the ionizing background are self-consistently evolved in the model.

  10. Characterization of breakdown behavior of diamond Schottky barrier diodes using impact ionization coefficients

    NASA Astrophysics Data System (ADS)

    Driche, Khaled; Umezawa, Hitoshi; Rouger, Nicolas; Chicot, Gauthier; Gheeraert, Etienne

    2017-04-01

    Diamond has the advantage of having an exceptionally high critical electric field owing to its large band gap, which implies its high ability to withstand high voltages. At this maximum electric field, the operation of Schottky barrier diodes (SBDs), as well as FETs, may be limited by impact ionization, leading to avalanche multiplication, and hence the devices may breakdown. In this study, three of the reported impact ionization coefficients for electrons, αn, and holes, αp, in diamond at room temperature (300 K) are analyzed. Experimental data on reverse operation characteristics obtained from two different diamond SBDs are compared with those obtained from their corresponding simulated structures. Owing to the crucial role played by the impact ionization rate in determining the carrier transport, the three reported avalanche parameters implemented affect the behavior not only of the breakdown voltage but also of the leakage current for the same structure.

  11. Energy of the quasi-free electron in supercritical krypton near the critical point.

    PubMed

    Li, Luxi; Evans, C M; Findley, G L

    2005-12-01

    Field ionization measurements of high-n CH(3)I and C(2)H(5)I Rydberg states doped into krypton are presented as a function of krypton number density along the critical isotherm. These data exhibit a decrease in the krypton-induced shift of the dopant ionization energy near the critical point. This change in shift is modeled to within +/-0.2% of experiment using a theory that accounts for the polarization of krypton by the dopant ion, the polarization of krypton by the quasi-free electron that arises from field ionization of the dopant, and the zero point kinetic energy of the free electron. The overall decrease in the shift of the dopant ionization energy near the critical point of krypton, which is a factor of 2 larger than that observed in argon, is dominated by the increase in the zero point kinetic energy of the quasi-free electron.

  12. Single electron dynamics in a Hall thruster electromagnetic field profile

    NASA Astrophysics Data System (ADS)

    Marini, Samuel; Pakter, Renato

    2017-05-01

    In this work, the single electron dynamics in a simplified three dimensional Hall thruster model is studied. Using Hamiltonian formalism and the concept of limiting curves, one is able to determine confinement conditions for the electron in the acceleration channel. It is shown that as a given parameter of the electromagnetic field is changed, the particle trajectory may transit from regular to chaotic without affecting the confinement, which allows one to make a detailed analysis of the role played by the chaos. The ionization volume is also computed, which measures the probability of an electron to ionize background gas atoms. It is found that there is a great correlation between chaos and increased effective ionization volume. This indicates that a complex dynamical behavior may improve the device efficiency by augmenting the ionization capability of each electron, requiring an overall lower electron current.

  13. High-field plasma acceleration in a high-ionization-potential gas

    DOE PAGES

    Corde, S.; Adli, E.; Allen, J. M.; ...

    2016-06-17

    Plasma accelerators driven by particle beams are a very promising future accelerator technology as they can sustain high accelerating fields over long distances with high energy efficiency. They rely on the excitation of a plasma wave in the wake of a drive beam. To generate the plasma, a neutral gas can be field-ionized by the head of the drive beam, in which case the distance of acceleration and energy gain can be strongly limited by head erosion. In our research, we overcome this limit and demonstrate that electrons in the tail of a drive beam can be accelerated by upmore » to 27 GeV in a high-ionization-potential gas (argon), boosting their initial 20.35 GeV energy by 130%. Particle-in-cell simulations show that the argon plasma is sustaining very high electric fields, of ~150 GV m -1, over ~20 cm. Lastly, the results open new possibilities for the design of particle beam drivers and plasma sources.« less

  14. Effective ionization coefficients, limiting electric fields, and electron energy distributions in CF{sub 3}I + CF{sub 4} + Ar ternary gas mixtures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tezcan, S. S.; Dincer, M. S.; Bektas, S.

    2016-07-15

    This paper reports on the effective ionization coefficients, limiting electric fields, electron energy distribution functions, and mean energies in ternary mixtures of (Trifluoroiodomethane) CF{sub 3}I + CF{sub 4} + Ar in the E/N range of 100–700 Td employing a two-term solution of the Boltzmann equation. In the ternary mixture, CF{sub 3}I component is increased while the CF{sub 4} component is reduced accordingly and the 40% Ar component is kept constant. It is seen that the electronegativity of the mixture increases with increased CF{sub 3}I content and effective ionization coefficients decrease while the limiting electric field values increase. Synergism in themore » mixture is also evaluated in percentage using the limiting electric field values obtained. Furthermore, it is possible to control the mean electron energy in the ternary mixture by changing the content of CF{sub 3}I component.« less

  15. Global simulations of protoplanetary disks with net magnetic flux. I. Non-ideal MHD case

    NASA Astrophysics Data System (ADS)

    Béthune, William; Lesur, Geoffroy; Ferreira, Jonathan

    2017-04-01

    Context. The planet-forming region of protoplanetary disks is cold, dense, and therefore weakly ionized. For this reason, magnetohydrodynamic (MHD) turbulence is thought to be mostly absent, and another mechanism has to be found to explain gas accretion. It has been proposed that magnetized winds, launched from the ionized disk surface, could drive accretion in the presence of a large-scale magnetic field. Aims: The efficiency and the impact of these surface winds on the disk structure is still highly uncertain. We present the first global simulations of a weakly ionized disk that exhibits large-scale magnetized winds. We also study the impact of self-organization, which was previously demonstrated only in non-stratified models. Methods: We perform numerical simulations of stratified disks with the PLUTO code. We compute the ionization fraction dynamically, and account for all three non-ideal MHD effects: ohmic and ambipolar diffusions, and the Hall drift. Simplified heating and cooling due to non-thermal radiation is also taken into account in the disk atmosphere. Results: We find that disks can be accreting or not, depending on the configuration of the large-scale magnetic field. Magnetothermal winds, driven both by magnetic acceleration and heating of the atmosphere, are obtained in the accreting case. In some cases, these winds are asymmetric, ejecting predominantly on one side of the disk. The wind mass loss rate depends primarily on the average ratio of magnetic to thermal pressure in the disk midplane. The non-accreting case is characterized by a meridional circulation, with accretion layers at the disk surface and decretion in the midplane. Finally, we observe self-organization, resulting in axisymmetric rings of density and associated pressure "bumps". The underlying mechanism and its impact on observable structures are discussed.

  16. Quantitation of Mycotoxins Using Direct Analysis in Real Time Mass Spectrometry (DART-MS).

    PubMed

    Busman, Mark

    2018-05-01

    Ambient ionization represents a new generation of MS ion sources and is used for the rapid ionization of small molecules under ambient conditions. The combination of ambient ionization and MS allows the analysis of multiple food samples with simple or no sample treatment or in conjunction with prevailing sample preparation methods. Two ambient ionization methods, desorptive electrospray ionization (DESI) and direct analysis in real time (DART) have been adapted for food safety application. Both ionization techniques provide unique advantages and capabilities. DART has been used for a variety of qualitative and quantitative applications. In particular, mycotoxin contamination of food and feed materials has been addressed by DART-MS. Applications to mycotoxin analysis by ambient ionization MS and particularly DART-MS are summarized.

  17. Transition of recollision trajectories from linear to elliptical polarization

    DOE PAGES

    Li, Yingbin; Yu, Benhai; Tang, Qingbin; ...

    2016-03-15

    Using a classical ensemble method, we revisit the topic of recollision and nonsequential double ionization with elliptically polarized laser fields. We focus on how the recollision mechanism transitions from short trajectories with linear polarization to long trajectories with elliptical polarization. Furthermore, we propose how this transition can be observed by measuring the carrier-envelop-phase dependence of the correlated electron momentum spectra using currently available few-cycle laser pulses.

  18. Strong-field approximation for ionization of a diatomic molecule by a strong laser field. II. The role of electron rescattering off the molecular centers

    NASA Astrophysics Data System (ADS)

    Busuladžić, M.; Gazibegović-Busuladžić, A.; Milošević, D. B.; Becker, W.

    2008-09-01

    The strong-field approximation for ionization of diatomic molecules by a strong laser field [D. B. Milošević, Phys. Rev. A 74, 063404 (2006)] is generalized to include rescattering of the ionized electron wave packet off the molecular centers (the electron’s parent ion or the second atom). There are four rescattering contributions to the ionization rate, which are responsible for the high-energy plateau in the electron spectra and which interfere in a complicated manner. The spectra are even more complicated due to the different symmetry properties of the atomic orbitals of which a particular molecular orbital consists. Nevertheless, a comparatively simple condition emerges for the destructive interference of all these contributions, which yields a curve in the (Epf,θ) plane. Here θ is the electron emission angle and Epf is the electron kinetic energy. The resulting suppression of the rescattering plateau can be strong and affect a large area of the (Epf,θ) plane, depending on the orientation of the molecule. We illustrate this using the examples of the 3σg molecular orbital of N2 and the 1πg molecular orbital of O2 for various orientations of these molecules with respect to the laser polarization axis. For N2 , for perpendicular orientation and the equilibrium internuclear distance R0 , we find that the minima of the ionization rate form the curve Epfcos2θ=π2/(2R02) in the (Epf,θ) plane. For O2 the rescattering plateau is absent for perpendicular orientation.

  19. Dopant-induced ignition of helium nanoplasmas—a mechanistic study

    NASA Astrophysics Data System (ADS)

    Heidenreich, Andreas; Schomas, Dominik; Mudrich, Marcel

    2017-12-01

    Helium (He) nanodroplets irradiated by intense near-infrared laser pulses form a nanoplasma by avalanche-like electron impact ionizations (EIIs) even at lower laser intensities where He is not directly field ionized, provided that the droplets contain a few dopant atoms which provide seed electrons for the EII avalanche. In this theoretical paper on calcium and xenon doped He droplets we elucidate the mechanism which induces ionization avalanches, termed ignition. We find that the partial loss of seed electrons from the activated droplets starkly assists ignition, as the Coulomb barrier for ionization of helium is lowered by the electric field of the dopant cations, and this deshielding of the cation charges enhances their electric field. In addition, the dopant ions assist the acceleration of the seed electrons (slingshot effect) by the laser field, supporting EIIs of He and also causing electron loss by catapulting electrons away. The dopants’ ability to lower the Coulomb barriers at He as well as the slingshot effect decrease with the spatial expansion of the dopant, causing a dependence of the dopants’ ignition capability on the dopant mass. Here, we develop criteria (impact count functions) to assess the ignition capability of dopants, based on (i) the spatial overlap of the seed electron cloud with the He atoms and (ii) the overlap of their kinetic energy distribution with the distribution of Coulomb barrier heights at He. The relatively long time delays between the instants of dopant ionization and ignition (incubation times) for calcium doped droplets are determined to a large extent by the time it takes to deshield the dopant ions.

  20. Photo-ionization cross-section of donor-related in (In,Ga)N/GaN core/shell under hydrostatic pressure and electric field effects

    NASA Astrophysics Data System (ADS)

    El Ghazi, Haddou; John Peter, A.

    2017-04-01

    Hydrogenic-like donor-impurity related self and induced polarizations, bending energy and photo-ionization cross section in spherical core/shell zinc blende (In,Ga)N/GaN are computed. Based on the variational approach and within effective-mass and one parabolic approximations, the calculations are made under finite potential barrier taking into account of the discontinuity of the effective-mass and the constant dielectric. The photo-ionization cross section is studied according to the photon incident energy considering the effects of hydrostatic pressure, applied electric field, structure's radius, impurity's position and indium composition in the core. It is obtained that the influences mentioned above lead to either blue shifts or redshifts of the resonant peak of the photo-ionization cross section spectrum. The unusual behavior related to the structure radius is discussed which is as a consequence of the finite potential confinement. We have shown that the photo-ionization cross section can be controlled with adjusting the internal and external factors. These properties can be useful for producing some device applications such as quantum dot infrared photodetectors.

  1. Ambient ionization and miniature mass spectrometry system for chemical and biological analysis

    PubMed Central

    Ma, Xiaoxiao; Ouyang, Zheng

    2016-01-01

    Ambien ionization and miniaturization of mass spectrometers are two fields in mass spectrometry that have advanced significantly in the last decade. The integration of the techniques developed in these two fields is leading to the development of complete miniature analytical systems that can be used for on-site or point-of-care analysis by non-expert users. In this review, we report the current status of development in ambient ionization and miniature mass spectrometers, with an emphasis on those techniques with potential impact on the point-of-care (POC) diagnostics. The challenges in the future development of the integrated systems are discussed with possible solutions presented. PMID:28042191

  2. Negative-ion formation in the explosives RDX, PETN, and TNT by using the reversal electron attachment detection technique

    NASA Technical Reports Server (NTRS)

    Boumsellek, S.; Alajajian, S. H.; Chutjian, A.

    1992-01-01

    First results of a beam-beam, single-collision study of negative-ion mass spectra produced by attachment of zero-energy electrons to the molecules of the explosives RDX, PETN, and TNT are presented. The technique used is reversal electron attachment detection (READ) wherein the zero-energy electrons are produced by focusing an intense electron beam into a shaped electrostatic field which reverses the trajectory of electrons. The target beam is introduced at the reversal point, and attachment occurs because the electrons have essentially zero longitudinal and radial velocity. The READ technique is used to obtain the 'signature' of molecular ion formation and/or fragmentation for each explosive. Present data are compared with results from atmospheric-pressure ionization and negative-ion chemical ionization methods.

  3. Tip-enhanced ablation and ionization mass spectrometry for nanoscale chemical analysis

    PubMed Central

    Liang, Zhisen; Zhang, Shudi; Li, Xiaoping; Wang, Tongtong; Huang, Yaping; Hang, Wei; Yang, Zhilin; Li, Jianfeng; Tian, Zhongqun

    2017-01-01

    Spectroscopic methods with nanoscale lateral resolution are becoming essential in the fields of physics, chemistry, geology, biology, and materials science. However, the lateral resolution of laser-based mass spectrometry imaging (MSI) techniques has so far been limited to the microscale. This report presents the development of tip-enhanced ablation and ionization time-of-flight mass spectrometry (TEAI-TOFMS), using a shell-isolated apertureless silver tip. The TEAI-TOFMS results indicate the capability and reproducibility of the system for generating nanosized craters and for acquiring the corresponding mass spectral signals. Multi-elemental analysis of nine inorganic salt residues and MSI of a potassium salt residue pattern at a 50-nm lateral resolution were achieved. These results demonstrate the opportunity for the distribution of chemical compositions at the nanoscale to be visualized. PMID:29226250

  4. Tunnel ionization of atoms and molecules: How accurate are the weak-field asymptotic formulas?

    NASA Astrophysics Data System (ADS)

    Labeye, Marie; Risoud, François; Maquet, Alfred; Caillat, Jérémie; Taïeb, Richard

    2018-05-01

    Weak-field asymptotic formulas for the tunnel ionization rate of atoms and molecules in strong laser fields are often used for the analysis of strong field recollision experiments. We investigate their accuracy and domain of validity for different model systems by confronting them to exact numerical results, obtained by solving the time dependent Schrödinger equation. We find that corrections that take the dc-Stark shift into account are a simple and efficient way to improve the formula. Furthermore, analyzing the different approximations used, we show that error compensation plays a crucial role in the fair agreement between exact and analytical results.

  5. Enhancement of plasma generation in catalyst pores with different shapes

    NASA Astrophysics Data System (ADS)

    Zhang, Yu-Ru; Neyts, Erik C.; Bogaerts, Annemie

    2018-05-01

    Plasma generation inside catalyst pores is of utmost importance for plasma catalysis, as the existence of plasma species inside the pores affects the active surface area of the catalyst available to the plasma species for catalytic reactions. In this paper, the electric field enhancement, and thus the plasma production inside catalyst pores with different pore shapes is studied with a two-dimensional fluid model. The results indicate that the electric field will be significantly enhanced near tip-like structures. In a conical pore with small opening, the strongest electric field appears at the opening and bottom corners of the pore, giving rise to a prominent ionization rate throughout the pore. For a cylindrical pore, the electric field is only enhanced at the bottom corners of the pore, with lower absolute value, and thus the ionization rate inside the pore is only slightly enhanced. Finally, in a conical pore with large opening, the electric field is characterized by a maximum at the bottom of the pore, yielding a similar behavior for the ionization rate. These results demonstrate that the shape of the pore has a significantly influence on the electric field enhancement, and thus modifies the plasma properties.

  6. Evolution of magnetic fields in collapsing star-forming clouds under different environments

    NASA Astrophysics Data System (ADS)

    Higuchi, Koki; Machida, Masahiro N.; Susa, Hajime

    2018-04-01

    In nearby star-forming clouds, amplification and dissipation of the magnetic field are known to play crucial roles in the star-formation process. The star-forming environment varies from place to place and era to era in galaxies. In this study, amplification and dissipation of magnetic fields in star-forming clouds are investigated under different environments using magnetohydrodynamics (MHD) simulations. We consider various star-forming environments in combination with the metallicity and the ionization strength, and prepare prestellar clouds having two different mass-to-flux ratios. We calculate the cloud collapse until protostar formation using ideal and non-ideal (inclusion and exclusion of ohmic dissipation and ambipolar diffusion) MHD calculations to investigate the evolution of the magnetic field. We perform 288 runs in total and show the diversity of the density range within which the magnetic field effectively dissipates, depending on the environment. In addition, the dominant dissipation process (Ohmic dissipation or ambipolar diffusion) is shown to strongly depend on the star-forming environment. Especially, for the primordial case, magnetic field rarely dissipates without ionization source, while it efficiently dissipates when very weak ionization sources exist in the surrounding environment. The results of this study help to clarify star formation in various environments.

  7. 2D convolution kernels of ionization chambers used for photon-beam dosimetry in magnetic fields: the advantage of small over large chamber dimensions

    NASA Astrophysics Data System (ADS)

    Khee Looe, Hui; Delfs, Björn; Poppinga, Daniela; Harder, Dietrich; Poppe, Björn

    2018-04-01

    This study aims at developing an optimization strategy for photon-beam dosimetry in magnetic fields using ionization chambers. Similar to the familiar case in the absence of a magnetic field, detectors should be selected under the criterion that their measured 2D signal profiles M(x,y) approximate the absorbed dose to water profiles D(x,y) as closely as possible. Since the conversion of D(x,y) into M(x,y) is known as the convolution with the ‘lateral dose response function’ K(x-ξ, y-η) of the detector, the ideal detector would be characterized by a vanishing magnetic field dependence of this convolution kernel (Looe et al 2017b Phys. Med. Biol. 62 5131–48). The idea of the present study is to find out, by Monte Carlo simulation of two commercial ionization chambers of different size, whether the smaller chamber dimensions would be instrumental to approach this aim. As typical examples, the lateral dose response functions in the presence and absence of a magnetic field have been Monte-Carlo modeled for the new commercial ionization chambers PTW 31021 (‘Semiflex 3D’, internal radius 2.4 mm) and PTW 31022 (‘PinPoint 3D’, internal radius 1.45 mm), which are both available with calibration factors. The Monte-Carlo model of the ionization chambers has been adjusted to account for the presence of the non-collecting part of the air volume near the guard ring. The Monte-Carlo results allow a comparison between the widths of the magnetic field dependent photon fluence response function K M(x-ξ, y-η) and of the lateral dose response function K(x-ξ, y-η) of the two chambers with the width of the dose deposition kernel K D(x-ξ, y-η). The simulated dose and chamber signal profiles show that in small photon fields and in the presence of a 1.5 T field the distortion of the chamber signal profile compared with the true dose profile is weakest for the smaller chamber. The dose responses of both chambers at large field size are shown to be altered by not more than 2% in magnetic fields up to 1.5 T for all three investigated chamber orientations.

  8. Comparison of the sensitivity of mass spectrometry atmospheric pressure ionization techniques in the analysis of porphyrinoids.

    PubMed

    Swider, Paweł; Lewtak, Jan P; Gryko, Daniel T; Danikiewicz, Witold

    2013-10-01

    The porphyrinoids chemistry is greatly dependent on the data obtained in mass spectrometry. For this reason, it is essential to determine the range of applicability of mass spectrometry ionization methods. In this study, the sensitivity of three different atmospheric pressure ionization techniques, electrospray ionization, atmospheric pressure chemical ionization and atmospheric pressure photoionization, was tested for several porphyrinods and their metallocomplexes. Electrospray ionization method was shown to be the best ionization technique because of its high sensitivity for derivatives of cyanocobalamin, free-base corroles and porphyrins. In the case of metallocorroles and metalloporphyrins, atmospheric pressure photoionization with dopant proved to be the most sensitive ionization method. It was also shown that for relatively acidic compounds, particularly for corroles, the negative ion mode provides better sensitivity than the positive ion mode. The results supply a lot of relevant information on the methodology of porphyrinoids analysis carried out by mass spectrometry. The information can be useful in designing future MS or liquid chromatography-MS experiments. Copyright © 2013 John Wiley & Sons, Ltd.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Michelle J.; Zoerb, Matthew C.; Campbell, Nicole R.

    Here, benzene cluster cations were revisited as a sensitive and selective reagent ion for the chemical ionization of dimethyl sulfide (DMS) and a select group of volatile organic compounds (VOCs). Laboratory characterization was performed using both a new set of compounds (i.e., DMS, β-caryophyllene) as well as previously studied VOCs (i.e., isoprene, α-pinene). Using a field deployable chemical-ionization time-of-flight mass spectrometer (CI-ToFMS), benzene cluster cations demonstrated high sensitivity (> 1 ncps ppt −1) to DMS, isoprene, and α-pinene standards. Parallel measurements conducted using a chemical-ionization quadrupole mass spectrometer, with a much weaker electric field, demonstrated that ion–molecule reactions likely proceed through amore » combination of ligand-switching and direct charge transfer mechanisms. Laboratory tests suggest that benzene cluster cations may be suitable for the selective ionization of sesquiterpenes, where minimal fragmentation (< 25 %) was observed for the detection of β-caryophyllene, a bicyclic sesquiterpene. The in-field stability of benzene cluster cations using CI-ToFMS was examined in the marine boundary layer during the High Wind Gas Exchange Study (HiWinGS). The use of benzene cluster cation chemistry for the selective detection of DMS was validated against an atmospheric pressure ionization mass spectrometer, where measurements from the two instruments were highly correlated ( R 2 > 0.95, 10 s averages) over a wide range of sampling conditions.« less

  10. Advanced p-MOSFET Ionizing-Radiation Dosimeter

    NASA Technical Reports Server (NTRS)

    Buehler, Martin G.; Blaes, Brent R.

    1994-01-01

    Circuit measures total dose of ionizing radiation in terms of shift in threshold gate voltage of doped-channel metal oxide/semiconductor field-effect transistor (p-MOSFET). Drain current set at temperature-independent point to increase accuracy in determination of radiation dose.

  11. Analysis of conductive target influence in plasma jet experiments through helium metastable and electric field measurements

    NASA Astrophysics Data System (ADS)

    Darny, T.; Pouvesle, J.-M.; Puech, V.; Douat, C.; Dozias, S.; Robert, Eric

    2017-04-01

    The use of cold atmospheric pressure plasma jets for in vivo treatments implies most of the time plasma interaction with conductive targets. The effect of conductive target contact on the discharge behavior is studied here for a grounded metallic target and compared to the free jet configuration. In this work, realized with a plasma gun, we measured helium metastable HeM (23S1) concentration (by laser absorption spectroscopy) and electric field (EF) longitudinal and radial components (by electro-optic probe). Both diagnostics were temporally and spatially resolved. Mechanisms after ionization front impact on the target surface have been identified. The remnant conductive ionized channel behind the ionization front electrically transiently connects the inner high voltage electrode to the target. Due to impedance mismatching between the ionized channel and the target, a secondary ionization front is initiated and rapidly propagates from the target surface to the inner electrode through this ionized channel. This leads to a greatly enhanced HeM production inside the plasma plume and the capillary. Forward and reverse dynamics occur with further multi reflections of more or less damped ionization fronts between the inner electrode and the target as long as the ionized channel is persisting. This phenomenon is very sensitive to parameters such as target distance and ionized channel conductivity affecting electrical coupling between these two and evidenced using positive or negative voltage polarity and nitrogen admixture. In typical operating conditions for the plasma gun used in this work, it has been found that after the secondary ionization front propagation, when the ionized channel is conductive enough, a glow like discharge occurs with strong conduction current. HeM production and all species excitation, especially reactive ones, are then driven by high voltage pulse evolution. The control of forward and reverse dynamics, impacting on the production of the glow like discharge, will be useful for biomedical applications on living tissues.

  12. A comparison of two methods of in vivo dosimetry for a high energy neutron beam.

    PubMed

    Blake, S W; Bonnett, D E; Finch, J

    1990-06-01

    Two methods of in vivo dosimetry have been compared in a high energy neutron beam. These were activation dosimetry and thermoluminescence dosimetry (TLD). Their suitability was determined by comparison with estimates of total dose, obtained using a tissue equivalent ionization chamber. Measurements were made on the central axis and a profile of a 10 x 10 cm square field and also behind a shielding block in order to simulate conditions of clinical use. The TLD system was found to provide the best estimate of total dose.

  13. Gamma radiation field intensity meter

    DOEpatents

    Thacker, Louis H.

    1994-01-01

    A gamma radiation intensity meter measures dose rate of a radiation field. The gamma radiation intensity meter includes a tritium battery emitting beta rays generating a current which is essentially constant. Dose rate is correlated to an amount of movement of an electroscope element charged by the tritium battery. Ionizing radiation decreases the voltage at the element and causes movement. A bleed resistor is coupled between the electroscope support element or electrode and the ionization chamber wall electrode.

  14. Gamma radiation field intensity meter

    DOEpatents

    Thacker, Louis H.

    1995-01-01

    A gamma radiation intensity meter measures dose rate of a radiation field. The gamma radiation intensity meter includes a tritium battery emitting beta rays generating a current which is essentially constant. Dose rate is correlated to an amount of movement of an electroscope element charged by the tritium battery. Ionizing radiation decreases the voltage at the element and causes movement. A bleed resistor is coupled between the electroscope support element or electrode and the ionization chamber wall electrode.

  15. X-ray radiative transfer in protoplanetary disks. The role of dust and X-ray background fields

    NASA Astrophysics Data System (ADS)

    Rab, Ch.; Güdel, M.; Woitke, P.; Kamp, I.; Thi, W.-F.; Min, M.; Aresu, G.; Meijerink, R.

    2018-01-01

    Context. The X-ray luminosities of T Tauri stars are about two to four orders of magnitude higher than the luminosity of the contemporary Sun. As these stars are born in clusters, their disks are not only irradiated by their parent star but also by an X-ray background field produced by the cluster members. Aims: We aim to quantify the impact of X-ray background fields produced by young embedded clusters on the chemical structure of disks. Further, we want to investigate the importance of the dust for X-ray radiative transfer in disks. Methods: We present a new X-ray radiative transfer module for the radiation thermo-chemical disk code PRODIMO (PROtoplanetary DIsk MOdel), which includes X-ray scattering and absorption by both the gas and dust component. The X-ray dust opacities can be calculated for various dust compositions and dust-size distributions. For the X-ray radiative transfer we consider irradiation by the star and by X-ray background fields. To study the impact of X-rays on the chemical structure of disks we use the well established disk ionization tracers N2H+ and HCO+. Results: For evolved dust populations (e.g. grain growth), X-ray opacities are mostly dominated by the gas; only for photon energies E ≳ 5-10 keV do dust opacities become relevant. Consequently the local disk X-ray radiation field is only affected in dense regions close to the disk midplane. X-ray background fields can dominate the local X-ray disk ionization rate for disk radii r ≳ 20 au. However, the N2H+ and HCO+ column densities are only significantly affected in cases of low cosmic-ray ionization rates (≲10-19 s-1), or if the background flux is at least a factor of ten higher than the flux level of ≈10-5 erg cm-2 s-1 expected for clusters typical for the solar vicinity. Conclusions: Observable signatures of X-ray background fields in low-mass star-formation regions, like Taurus, are only expected for cluster members experiencing a strong X-ray background field (e.g. due to their location within the cluster). For the majority of the cluster members, the X-ray background field has relatively little impact on the disk chemical structure.

  16. Absolute dose calculations for Monte Carlo simulations of radiotherapy beams

    NASA Astrophysics Data System (ADS)

    Popescu, I. A.; Shaw, C. P.; Zavgorodni, S. F.; Beckham, W. A.

    2005-07-01

    Monte Carlo (MC) simulations have traditionally been used for single field relative comparisons with experimental data or commercial treatment planning systems (TPS). However, clinical treatment plans commonly involve more than one field. Since the contribution of each field must be accurately quantified, multiple field MC simulations are only possible by employing absolute dosimetry. Therefore, we have developed a rigorous calibration method that allows the incorporation of monitor units (MU) in MC simulations. This absolute dosimetry formalism can be easily implemented by any BEAMnrc/DOSXYZnrc user, and applies to any configuration of open and blocked fields, including intensity-modulated radiation therapy (IMRT) plans. Our approach involves the relationship between the dose scored in the monitor ionization chamber of a radiotherapy linear accelerator (linac), the number of initial particles incident on the target, and the field size. We found that for a 10 × 10 cm2 field of a 6 MV photon beam, 1 MU corresponds, in our model, to 8.129 × 1013 ± 1.0% electrons incident on the target and a total dose of 20.87 cGy ± 1.0% in the monitor chambers of the virtual linac. We present an extensive experimental verification of our MC results for open and intensity-modulated fields, including a dynamic 7-field IMRT plan simulated on the CT data sets of a cylindrical phantom and of a Rando anthropomorphic phantom, which were validated by measurements using ionization chambers and thermoluminescent dosimeters (TLD). Our simulation results are in excellent agreement with experiment, with percentage differences of less than 2%, in general, demonstrating the accuracy of our Monte Carlo absolute dose calculations.

  17. Kinetic Analysis of Weakly ionized Plasmas in presence of collecting walls

    NASA Astrophysics Data System (ADS)

    Gonzalez, J.; Donoso, J. M.

    2018-02-01

    Description of plasmas in contact with a wall able to collecting or emitting charged particles is a research topic of great importance. This situation arises in a great variety of phenomena such as the characterization of plasmas by means of electric probes, in the surface treatment of materials and in the service-life of coatings in electric thrusters. In particular, in this work we devote attention to the dynamics of an argon weakly ionized plasma in the presence of a collecting wall. It is proposed a kinetic model in a 1D1V planar phase-space geometry. The model accounts for the electric field coupled to the system by solving the associated Poisson’s equation. To solve numerically the resulting non-linear system of equations, the Propagator Integral Method is used in conjunction with a slabbing method. On each interrelating plasma slab the integral advancing scheme operates in velocity space, in such a way that the all the species dynamics dominating the system evolution are kinetically described.

  18. Bound-Electron Nonlinearity Beyond the Ionization Threshold.

    PubMed

    Wahlstrand, J K; Zahedpour, S; Bahl, A; Kolesik, M; Milchberg, H M

    2018-05-04

    We present absolute space- and time-resolved measurements of the ultrafast laser-driven nonlinear polarizability in argon, krypton, xenon, nitrogen, and oxygen up to ionization fractions of a few percent. These measurements enable determination of the strongly nonperturbative bound-electron nonlinear polarizability well beyond the ionization threshold, where it is found to remain approximately quadratic in the laser field, a result normally expected at much lower intensities where perturbation theory applies.

  19. Bound-Electron Nonlinearity Beyond the Ionization Threshold

    NASA Astrophysics Data System (ADS)

    Wahlstrand, J. K.; Zahedpour, S.; Bahl, A.; Kolesik, M.; Milchberg, H. M.

    2018-05-01

    We present absolute space- and time-resolved measurements of the ultrafast laser-driven nonlinear polarizability in argon, krypton, xenon, nitrogen, and oxygen up to ionization fractions of a few percent. These measurements enable determination of the strongly nonperturbative bound-electron nonlinear polarizability well beyond the ionization threshold, where it is found to remain approximately quadratic in the laser field, a result normally expected at much lower intensities where perturbation theory applies.

  20. High doses of ionizing radiation on bone repair: is there effect outside the irradiated site?

    PubMed

    Rocha, Flaviana Soares; Dias, Pâmella Coelho; Limirio, Pedro Henrique Justino Oliveira; Lara, Vitor Carvalho; Batista, Jonas Dantas; Dechichi, Paula

    2017-03-01

    Local ionizing radiation causes damage to bone metabolism, it reduces blood supply and cellularity over time. Recent studies indicate that radiation promotes biological response outside the treatment field. The aim of this study was to investigate the effects of ionizing radiation on bone repair outside the irradiated field. Ten healthy male Wistar rats were used; and five animals were submitted to radiotherapy on the left femur. After 4 weeks, in all animals were created bone defects in the right and left femurs. Seven days after surgery, animals were euthanized. The femurs were removed and randomly divided into 3 groups (n=5): Control (C) (right femur of the non-irradiated animals); Local ionizing radiation (IR) (left femur of the irradiated animals); Contralateral ionizing radiation (CIR) (right femur of the irradiated animals). The femurs were processed and embedded in paraffin; and bone histologic sections were evaluated to quantify the bone neoformation. Histomorphometric analysis showed that there was no significant difference between groups C (24.6±7.04) and CIR (25.3±4.31); and IR group not showed bone neoformation. The results suggest that ionizing radiation affects bone repair, but does not interfere in bone repair distant from the primary irradiated site. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Super-atmospheric pressure ionization mass spectrometry and its application to ultrafast online protein digestion analysis.

    PubMed

    Chen, Lee Chuin; Ninomiya, Satoshi; Hiraoka, Kenzo

    2016-06-01

    Ion source pressure plays a significant role in the process of ionization and the subsequent ion transmission inside a mass spectrometer. Pressurizing the ion source to a gas pressure greater than atmospheric pressure is a relatively new approach that aims to further improve the performance of atmospheric pressure ionization sources. For example, under a super-atmospheric pressure environment, a stable electrospray can be sustained for liquid with high surface tension such as pure water, because of the suppression of electric discharge. Even for nano-electrospray ionization (nano-ESI), which is known to work with aqueous solution, its stability and sensitivity can also be enhanced, particularly in the negative mode when the ion source is pressurized. A brief review on the development of super-atmospheric pressure ion sources, including high-pressure electrospray, field desorption and superheated ESI, and the strategies to interface these ion sources to a mass spectrometer will be given. Using a recent ESI prototype with an operating temperature at 220 °C under 27 atm, we also demonstrate that it is possible to achieve an online Asp-specific protein digestion analysis in which the whole processes of digestion, ionization and MS acquisition could be completed on the order of a few seconds. This method is fast, and the reaction can even be monitored on a near-real-time basis. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  2. Calculation of the Ionization Coefficient in the Townsend Discharge in the Mixture of Argon and Mercury Vapors with Temperature-Dependent Composition

    NASA Astrophysics Data System (ADS)

    Bondarenko, G. G.; Dubinina, M. S.; Fisher, M. R.; Kristya, V. I.

    2018-04-01

    For a hybrid model of the low-current discharge considering, along with direct ionization of the mixture components by electrons, the Penning ionization of mercury atoms by metastable argon atoms, the ionization coefficient in the argon-mercury mixture used in illuminating lamps is calculated. The analytical approximation formula describing the dependence of the ionization coefficient of the mixture on the reduced electric field strength and temperature is obtained for sufficiently wide ranges of their variations, and its accuracy is estimated. It is demonstrated that the discharge ignition voltage calculated using this formula is in agreement with the results of simulation and the available experimental data.

  3. 2D dark-count-rate modeling of PureB single-photon avalanche diodes in a TCAD environment

    NASA Astrophysics Data System (ADS)

    Knežević, Tihomir; Nanver, Lis K.; Suligoj, Tomislav

    2018-02-01

    PureB silicon photodiodes have nm-shallow p+n junctions with which photons/electrons with penetration-depths of a few nanometer can be detected. PureB Single-Photon Avalanche Diodes (SPADs) were fabricated and analysed by 2D numerical modeling as an extension to TCAD software. The very shallow p+ -anode has high perimeter curvature that enhances the electric field. In SPADs, noise is quantified by the dark count rate (DCR) that is a measure for the number of false counts triggered by unwanted processes in the non-illuminated device. Just like for desired events, the probability a dark count increases with increasing electric field and the perimeter conditions are critical. In this work, the DCR was studied by two 2D methods of analysis: the "quasi-2D" (Q-2D) method where vertical 1D cross-sections were assumed for calculating the electron/hole avalanche-probabilities, and the "ionization-integral 2D" (II-2D) method where crosssections were placed where the maximum ionization-integrals were calculated. The Q-2D method gave satisfactory results in structures where the peripheral regions had a small contribution to the DCR, such as in devices with conventional deepjunction guard rings (GRs). Otherwise, the II-2D method proved to be much more precise. The results show that the DCR simulation methods are useful for optimizing the compromise between fill-factor and p-/n-doping profile design in SPAD devices. For the experimentally investigated PureB SPADs, excellent agreement of the measured and simulated DCR was achieved. This shows that although an implicit GR is attractively compact, the very shallow pn-junction gives a risk of having such a low breakdown voltage at the perimeter that the DCR of the device may be negatively impacted.

  4. Alfvén ionization in an MHD-gas interactions code

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilson, A. D.; Diver, D. A.

    A numerical model of partially ionized plasmas is developed in order to capture their evolving ionization fractions as a result of Alfvén ionization (AI). The mechanism of, and the parameter regime necessary for, AI is discussed and an expression for the AI rate based on fluid parameters, from a gas-MHD model, is derived. This AI term is added to an existing MHD-gas interactions' code, and the result is a linear, 2D, two-fluid model that includes momentum transfer between charged and neutral species as well as an ionization rate that depends on the velocity fields of both fluids. The dynamics ofmore » waves propagating through such a partially ionized plasma are investigated, and it is found that AI has a significant influence on the fluid dynamics as well as both the local and global ionization fraction.« less

  5. High-order above-threshold dissociation of molecules.

    PubMed

    Lu, Peifen; Wang, Junping; Li, Hui; Lin, Kang; Gong, Xiaochun; Song, Qiying; Ji, Qinying; Zhang, Wenbin; Ma, Junyang; Li, Hanxiao; Zeng, Heping; He, Feng; Wu, Jian

    2018-02-27

    Electrons bound to atoms or molecules can simultaneously absorb multiple photons via the above-threshold ionization featured with discrete peaks in the photoelectron spectrum on account of the quantized nature of the light energy. Analogously, the above-threshold dissociation of molecules has been proposed to address the multiple-photon energy deposition in the nuclei of molecules. In this case, nuclear energy spectra consisting of photon-energy spaced peaks exceeding the binding energy of the molecular bond are predicted. Although the observation of such phenomena is difficult, this scenario is nevertheless logical and is based on the fundamental laws. Here, we report conclusive experimental observation of high-order above-threshold dissociation of H 2 in strong laser fields where the tunneling-ionized electron transfers the absorbed multiphoton energy, which is above the ionization threshold to the nuclei via the field-driven inelastic rescattering. Our results provide an unambiguous evidence that the electron and nuclei of a molecule as a whole absorb multiple photons, and thus above-threshold ionization and above-threshold dissociation must appear simultaneously, which is the cornerstone of the nowadays strong-field molecular physics. Copyright © 2018 the Author(s). Published by PNAS.

  6. New diagnostic methods for laser plasma- and microwave-enhanced combustion

    PubMed Central

    Miles, Richard B; Michael, James B; Limbach, Christopher M; McGuire, Sean D; Chng, Tat Loon; Edwards, Matthew R; DeLuca, Nicholas J; Shneider, Mikhail N; Dogariu, Arthur

    2015-01-01

    The study of pulsed laser- and microwave-induced plasma interactions with atmospheric and higher pressure combusting gases requires rapid diagnostic methods that are capable of determining the mechanisms by which these interactions are taking place. New rapid diagnostics are presented here extending the capabilities of Rayleigh and Thomson scattering and resonance-enhanced multi-photon ionization (REMPI) detection and introducing femtosecond laser-induced velocity and temperature profile imaging. Spectrally filtered Rayleigh scattering provides a method for the planar imaging of temperature fields for constant pressure interactions and line imaging of velocity, temperature and density profiles. Depolarization of Rayleigh scattering provides a measure of the dissociation fraction, and multi-wavelength line imaging enables the separation of Thomson scattering from Rayleigh scattering. Radar REMPI takes advantage of high-frequency microwave scattering from the region of laser-selected species ionization to extend REMPI to atmospheric pressures and implement it as a stand-off detection method for atomic and molecular species in combusting environments. Femtosecond laser electronic excitation tagging (FLEET) generates highly excited molecular species and dissociation through the focal zone of the laser. The prompt fluorescence from excited molecular species yields temperature profiles, and the delayed fluorescence from recombining atomic fragments yields velocity profiles. PMID:26170432

  7. Direct antigen detection from immunoprecipitated beads using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry; a new method for immunobeads-mass spectrometry (iMS).

    PubMed

    Shimada, Takashi; Toyama, Atsuhiko; Aoki, Chikage; Aoki, Yutaka; Tanaka, Koichi; Sato, Taka-Aki

    2011-12-15

    One-step detection of biological molecules is one of the principal techniques for clinical diagnosis, and the potential of mass spectrometry for biomarker detection has been a promising new approach in the field of medical sciences. We demonstrate here a new and high-sensitivity method that we termed immunobeads-mass spectrometry (iMS), which combines conventional immunoprecipitation and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). The key feature of iMS is the MS-compatible condition of immunoprecipitation using detergents with a monosaccaride-C8 alkyl chain or a disaccharide-C10 alkyl chain, and the minimized number of steps required for high-sensitivity detection of target peptides in serum or biological fluid. This was achieved by optimizing the wash buffer and subjecting the immunobeads directly to MALDI-TOF MS analysis. Using this method, we showed that 1 fmol of amyloid beta peptide spiked in serum was readily detectable, demonstrating the powerful tool of iMS as a biomarker detection method. Copyright © 2011 John Wiley & Sons, Ltd.

  8. Quantum entanglement in strong-field ionization

    NASA Astrophysics Data System (ADS)

    Majorosi, Szilárd; Benedict, Mihály G.; Czirják, Attila

    2017-10-01

    We investigate the time evolution of quantum entanglement between an electron, liberated by a strong few-cycle laser pulse, and its parent ion core. Since the standard procedure is numerically prohibitive in this case, we propose a method to quantify the quantum correlation in such a system: we use the reduced density matrices of the directional subspaces along the polarization of the laser pulse and along the transverse directions as building blocks for an approximate entanglement entropy. We present our results, based on accurate numerical simulations, in terms of several of these entropies, for selected values of the peak electric-field strength and the carrier-envelope phase difference of the laser pulse. The time evolution of the mutual entropy of the electron and the ion-core motion along the direction of the laser polarization is similar to our earlier results based on a simple one-dimensional model. However, taking into account also the dynamics perpendicular to the laser polarization reveals a surprisingly different entanglement dynamics above the laser intensity range corresponding to pure tunneling: the quantum entanglement decreases with time in the over-the-barrier ionization regime.

  9. Transport Simulations for Fast Ignition on NIF

    NASA Astrophysics Data System (ADS)

    Strozzi, D. J.; Tabak, M.; Grote, D. P.; Town, R. P. J.; Kemp, A. J.

    2009-11-01

    Calculations of the transport and deposition of a relativistic electron beam into fast-ignition fuel configurations are presented. The hybrid PIC code LSP is used, run in implicit mode and with fluid background particles. The electron beam distribution is chosen based on explicit PIC simulations of the short-pulse LPI. These generally display two hot-electron temperatures, one close to the ponderomotive scaling and one that is much lower. Fast-electron collisions utilize the formulae of J. R. Davies [S. Atzeni et al., Plasma Phys. Controlled Fusion 51 (2009)], and are done with a conservative, relativistic grid-based method similar to Lemons et al., J. Comput. Phys. 228 (2009). We include energy loss off both bound and free electrons in partially-ionized media (such as a gold cone), and have started to use realistic ionization and non-ideal EOS models. We have found the fractional energy coupling into the dense fuel is higher for CD than DT targets, due to the enhanced resistivity and resulting magnetic fields. The coupling enhancement due to magnetic fields and beam characteristics (such as angular spectrum) will be quantified.

  10. Effect of segmented electrode length on the performances of Hall thruster

    NASA Astrophysics Data System (ADS)

    Duan, Ping; Chen, Long; Liu, Guangrui; Bian, Xingyu; Yin, Yan

    2016-09-01

    The influences of the low-emissive graphite segmented electrode placed near the channel exit on the discharge characteristics of Hall thruster are studied using the particle-in-cell method. A two-dimensional physical model is established according to the Hall thruster discharge channel configuration. The effects of electrode length on potential, ion density, electron temperature, ionization rate and discharge current are investigated. It is found that, with the increasing of segmented electrode length, the equipotential lines bend towards the channel exit, and approximately parallel to the wall at the channel surface, radial velocity and radial flow of ions are increased, and the electron temperature is also enhanced. Due to the conductive characteristic of electrodes, the radial electric field and the axial electron conductivity near the wall are enhanced, and the probability of the electron-atom ionization is reduced, which leads to the degradation of ionization rate in discharge channel. However, the interaction between electrons and the wall enhances the near wall conductivity, therefore the discharge current grows along with the segmented electrode length, and the performance of the thruster is also affected.

  11. Simulation of X-ray transient absorption for following vibrations in coherently ionized F2 molecules

    NASA Astrophysics Data System (ADS)

    Dutoi, Anthony D.; Leone, Stephen R.

    2017-01-01

    Femtosecond and attosecond X-ray transient absorption experiments are becoming increasingly sophisticated tools for probing nuclear dynamics. In this work, we explore and develop theoretical tools needed for interpretation of such spectra,in order to characterize the vibrational coherences that result from ionizing a molecule in a strong IR field. Ab initio data for F2 is combined with simulations of nuclear dynamics, in order to simulate time-resolved X-ray absorption spectra for vibrational wavepackets after coherent ionization at 0 K and at finite temperature. Dihalogens pose rather difficult electronic structure problems, and the issues encountered in this work will be reflective of those encountered with any core-valence excitation simulation when a bond is breaking. The simulations reveal a strong dependence of the X-ray absorption maximum on the locations of the vibrational wave packets. A Fourier transform of the simulated signal shows features at the overtone frequencies of both the neutral and the cation, which reflect spatial interferences of the vibrational eigenstates. This provides a direct path for implementing ultrafast X-ray spectroscopic methods to visualize coherent nuclear dynamics.

  12. Direct Analysis of Large Living Organism by Megavolt Electrostatic Ionization Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Ng, Kwan-Ming; Tang, Ho-Wai; Man, Sin-Heng; Mak, Pui-Yuk; Choi, Yi-Ching; Wong, Melody Yee-Man

    2014-09-01

    A new ambient ionization method allowing the direct chemical analysis of living human body by mass spectrometry (MS) was developed. This MS method, namely Megavolt Electrostatic Ionization Mass Spectrometry, is based on electrostatic charging of a living individual to megavolt (MV) potential, illicit drugs, and explosives on skin/glove, flammable solvent on cloth/tissue paper, and volatile food substances in breath were readily ionized and detected by a mass spectrometer.

  13. Direct analysis of large living organism by megavolt electrostatic ionization mass spectrometry.

    PubMed

    Ng, Kwan-Ming; Tang, Ho-Wai; Man, Sin-Heng; Mak, Pui-Yuk; Choi, Yi-Ching; Wong, Melody Yee-Man

    2014-09-01

    A new ambient ionization method allowing the direct chemical analysis of living human body by mass spectrometry (MS) was developed. This MS method, namely Megavolt Electrostatic Ionization Mass Spectrometry, is based on electrostatic charging of a living individual to megavolt (MV) potential, illicit drugs, and explosives on skin/glove, flammable solvent on cloth/tissue paper, and volatile food substances in breath were readily ionized and detected by a mass spectrometer.

  14. Earle K. Plyler Prize Lecture: The Three Pillars of Ultrafast Molecular Science - Time, Phase, Intensity

    NASA Astrophysics Data System (ADS)

    Stolow, Albert

    We discuss the probing and control of molecular wavepacket dynamics in the context of three main `pillars' of light-matter interaction: time, phase, intensity. Time: Using short, coherent laser pulses and perturbative matter-field interactions, we study molecular wavepackets with a focus on the ultrafast non-Born-Oppenheimer dynamics, that is, the coupling of electronic and nuclear motions. Time-Resolved Photoelectron Spectroscopy (TRPES) is a powerful ultrafast probe of these processes in polyatomic molecules because it is sensitive both electronic and vibrational dynamics. Ideally, one would like to observe these ultrafast processes from the molecule's point of view - the Molecular Frame - thereby avoiding loss of information due to orientational averaging. This can be achieved by Time-Resolved Coincidence Imaging Spectroscopy (TRCIS) which images 3D recoil vectors of both photofragments and photoelectrons, in coincidence and as a function of time, permitting direct Molecular Frame imaging of valence electronic dynamics during a molecular dynamics. Phase: Using intermediate strength non-perturbative interactions, we apply the second order (polarizability) Non-Resonant Dynamic Stark Effect (NRDSE) to control molecular dynamics without any net absorption of light. NRDSE is also the interaction underlying molecular alignment and applies to field-free 1D of linear molecules and field-free 3D alignment of general (asymmetric) molecules. Using laser alignment, we can transiently fix a molecule in space, yielding a more general approach to direct Molecular Frame imaging of valence electronic dynamics during a chemical reaction. Intensity: In strong (ionizing) laser fields, a new laser-matter physics emerges for polyatomic systems wherein both the single active electron picture and the adiabatic electron response, both implicit in the standard 3-step models, can fail dramatically. This has important consequences for all attosecond strong field spectroscopies of polyatomic molecules, including high harmonic generation (HHG). We discuss an experimental method, Channel-Resolved Above Threshold Ionization (CRATI), which directly unveils the electronic channels participating in the attosecond molecular strong field ionization response [10]. This work was supported by the National Research Council of Canada and the Natural Sciences & Engineering Research Council.

  15. Assessing the sensitivity of benzene cluster cation chemical ionization mass spectrometry toward a wide array of biogenic volatile organic compounds

    NASA Astrophysics Data System (ADS)

    Lavi, Avi; Vermeuel, Michael; Novak, Gordon; Bertram, Timothy

    2017-04-01

    Chemical ionization mass spectrometry is a real-time, sensitive and selective measurement technique for the detection of volatile organic compounds (VOCs). The benefits of CIMS technology make it highly suitable for field measurements that requires fast (10Hz and higher) response rates, such as the study of surface-atmosphere exchange processes by the eddy covariance method. The use of benzene cluster cations as a regent ion was previously demonstrated as a sensitive and selective method for the detection of select biogenic VOCs (e.g. isoprene, monoterpenes and sesquiterpenes) [Kim et al., 2016; Leibrock and Huey, 2000]. Quantitative analysis of atmospheric trace gases necessitates calibration for each analyte as a function of atmospheric conditions. We describe a custom designed calibration system, based on liquid evaporation, for determination of the sensitivity of the benzene-CIMS to a wide range of organic compounds at atmospherically relevant mixing ratios (<200 ppt). We report on the effect of atmospheric water vapor and oxygen concentrations on instrument response for isoprene and a wide range of monoterpenes and sesquiterpenes. To gain mechanistic insight into the ion-molecule reactions and the role of water vapor and oxygen, we compare our measured sensitivities with a computational analysis of the charge distribution between the analyte, reagent ion and water molecules in the gas phase. These parameters provide insight on the ionization mechanism and provide parameters for quantification of organic molecules measured during field campaigns. References Kim, M. J., M. C. Zoerb, N. R. Campbell, K. J. Zimmermann, B. W. Blomquist, B. J. Huebert, and T. H. Bertram (2016), Revisiting benzene cluster cations for the chemical ionization of dimethyl sulfide and select volatile organic compounds, Atmos Meas Tech, 9(4), 1473-1484, doi:10.5194/amt-9-1473-2016. Leibrock, E., and L. G. Huey (2000), Ion chemistry for the detection of isoprene and other volatile organic compounds in ambient air, Geophys Res Lett, 27(12), 1719-1722, doi:Doi 10.1029/1999gl010804.

  16. Waveform control of orientation-dependent ionization of DCl in few-cycle laser fields.

    PubMed

    Znakovskaya, I; von den Hoff, P; Schirmel, N; Urbasch, G; Zherebtsov, S; Bergues, B; de Vivie-Riedle, R; Weitzel, K-M; Kling, M F

    2011-05-21

    Strong few-cycle light fields with stable electric field waveforms allow controlling electrons on time scales down to the attosecond domain. We have studied the dissociative ionization of randomly oriented DCl in 5 fs light fields at 720 nm in the tunneling regime. Momentum distributions of D(+) and Cl(+) fragments were recorded via velocity-map imaging. A waveform-dependent anti-correlated directional emission of D(+) and Cl(+) fragments is observed. Comparison of our results with calculations indicates that tailoring of the light field via the carrier envelope phase permits the control over the orientation of DCl(+) and in turn the directional emission of charged fragments upon the breakup of the molecular ion. © The Owner Societies 2011

  17. Gamma radiation field intensity meter

    DOEpatents

    Thacker, L.H.

    1995-10-17

    A gamma radiation intensity meter measures dose rate of a radiation field. The gamma radiation intensity meter includes a tritium battery emitting beta rays generating a current which is essentially constant. Dose rate is correlated to an amount of movement of an electroscope element charged by the tritium battery. Ionizing radiation decreases the voltage at the element and causes movement. A bleed resistor is coupled between the electroscope support element or electrode and the ionization chamber wall electrode. 4 figs.

  18. Gamma radiation field intensity meter

    DOEpatents

    Thacker, L.H.

    1994-08-16

    A gamma radiation intensity meter measures dose rate of a radiation field. The gamma radiation intensity meter includes a tritium battery emitting beta rays generating a current which is essentially constant. Dose rate is correlated to an amount of movement of an electroscope element charged by the tritium battery. Ionizing radiation decreases the voltage at the element and causes movement. A bleed resistor is coupled between the electroscope support element or electrode and the ionization chamber wall electrode. 4 figs.

  19. PLASMA GENERATOR

    DOEpatents

    Foster, J.S. Jr.

    1958-03-11

    This patent describes apparatus for producing an electricity neutral ionized gas discharge, termed a plasma, substantially free from contamination with neutral gas particles. The plasma generator of the present invention comprises a plasma chamber wherein gas introduced into the chamber is ionized by a radiofrequency source. A magnetic field is used to focus the plasma in line with an exit. This magnetic field cooperates with a differential pressure created across the exit to draw a uniform and uncontaminated plasma from the plasma chamber.

  20. SU-E-T-66: A Prototype for Couch Based Real-Time Dosimetry in External Beam Radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ramachandran, P

    Purpose: The main purpose of this study is to design a prototype for couch-based based real time dosimetry system in external beam radiotherapy Methods: A prototype of 100 ionization chambers was designed on a printed circuit board by etching the copper layer and each ionization chamber was wired to a 50 pin connector. The signals from the two 50 pin connectors collected from the ionization chambers were then transferred to a PXI module from National Instruments. The PXI module houses a current amplifier that amplifies the charge collected from the ionization chamber. The amplified signal is then sent to amore » digital multimeter module for converting the analog signal to digital signal. A software was designed in labview to read and display the signals obtained from the PXI module. A couch attachment frame was designed to house the 100 ionization chamber module. The frame was fixed underneath the treatment couch for measuring the dose during treatment. Resutls: The ionization chamber based prototype dosimetry was tested for simple radiotherapy treatment fields and found to be a useful device for measuring real time dosimetry at the treatment couch plane. This information could be used to assess the delivered dose to a patient during radiotherapy. It could be used as an invivo dosimeter during radiotherapy. Conclusion: In this study, a prototype for couch based real time dosimetry system was designed and tested. The prototype forms a basis for the development of large scale couch based real time dosimetry system that could be used to perform morning QA prior to treatment, assess real time doses delivered to patient and as a device to monitor the output of the treatment beam. Peter MacCallum Cancer Foundation.« less

  1. D region disturbances caused by electromagnetic pulses from lightning

    NASA Technical Reports Server (NTRS)

    Rodriguez, Juan V.; Inan, Umran S.; Bell, Timothy F.

    1992-01-01

    Attention is given to a simple formulation of the propagation and absorption in a magnetized collisional plasma of EM pulses from lightning which describes the effect of discharge orientation and radiated electric field on the structure and magnitude of heating and secondary ionization in the D region. Radiation from most lightning discharges can heat substantially, but only the most intense (not less than 20 V/m) are likely to cause ionization enhancements not less than 10 percent of the ambient in a single ionization cycle. This dependence on the radiated electric field is modified by the discharge radiation pattern: a horizontal cloud discharge tends to cause larger heating and ionizaton maxima while a vertical return stroke causes disturbances of a larger horizontal extent.

  2. Rings in above-threshold ionization: A quasiclassical analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lewenstein, M.; Kulander, K.C.; Schafer, K.J.

    1995-02-01

    A generalized strong-field approximation is formulated to describe atoms interacting with intense laser fields. We apply it to determine angular distributions of electrons in above-threshold ionization (ATI). The theory treats the effects of an electron rescattering from its parent ion core in a systematic perturbation series. Probability amplitudes for ionization are interpreted in terms of quasiclassical electron trajectories. We demonstrate that contributions from the direct tunneling processes in the absence of rescattering are not sufficient to describe the observed ATI spectra. We show that the high-energy portion of the spectrum, including recently discovered rings (i.e., complex features in the angularmore » distributions of outgoing electrons) are due to rescattering processes. We compare our quasiclassical results with exact numerical solutions.« less

  3. MPAI (mass probes aided ionization) method for total analysis of biomolecules by mass spectrometry.

    PubMed

    Honda, Aki; Hayashi, Shinichiro; Hifumi, Hiroki; Honma, Yuya; Tanji, Noriyuki; Iwasawa, Naoko; Suzuki, Yoshio; Suzuki, Koji

    2007-01-01

    We have designed and synthesized various mass probes, which enable us to effectively ionize various molecules to be detected with mass spectrometry. We call the ionization method using mass probes the "MPAI (mass probes aided ionization)" method. We aim at the sensitive detection of various biological molecules, and also the detection of bio-molecules by a single mass spectrometry serially without changing the mechanical settings. Here, we review mass probes for small molecules with various functional groups and mass probes for proteins. Further, we introduce newly developed mass probes for proteins for highly sensitive detection.

  4. Polarization resolved electric field measurements on plasma bullets in N2 using four-wave mixing

    NASA Astrophysics Data System (ADS)

    van der Schans, Marc; Boehm, Patrick; Nijdam, Sander; Ijzerman, Wilbert; Czarnetzki, Uwe

    2016-09-01

    Atmospheric pressure plasma jets generated by kHz AC or pulsed DC voltages typically consist of discrete guided ionization waves called plasma bullets. In this work, the electric field of plasma bullets generated in a pulsed DC jet with N2 as feed gas is investigated using the four-wave mixing method. In this diagnostic two laser beams, where one is Stokes shifted from the other, non-linearly interact with the N2 molecules and the bullet's electric field. As a result of the interaction a coherent anti-Stokes Raman scattered (CARS) beam and an infrared beam are generated from which the electric field can be determined. Compared to emission-based methods, this technique has the advantage of being able to also probe the electric field in regions around the plasma bullet where no photons are emitted. The four-wave mixing method and its analysis have been adapted to work with the non-uniform electric field of plasma bullets. In addition, an ex-situ calibration procedure using an electrode geometry different from the discharge geometry has been developed. An experimentally obtained radial profile of the axial electric field component of a plasma bullet in N2 is presented. The position of this profile is related to the location of the propagating bullet from temporally resolved images.

  5. Measurement of Scintillation and Ionization Yield and Scintillation Pulse Shape from Nuclear Recoils in Liquid Argon

    DOE PAGES

    Cao, H.

    2015-05-26

    We have measured the scintillation and ionization yield of recoiling nuclei in liquid argon as a function of applied electric field by exposing a dual-phase liquid argon time projection chamber (LAr-TPC) to a low energy pulsed narrow band neutron beam produced at the Notre Dame Institute for Structure and Nuclear Astrophysics. Liquid scintillation counters were arranged to detect and identify neutrons scattered in the TPC and to select the energy of the recoiling nuclei. We also report measurements of the scintillation yields for nuclear recoils with energies from 10.3 to 57.3 keV and for median applied electric fields from 0more » to 970 V/cm. For the ionization yields, we report measurements from 16.9 to 57.3 keV and for electric fields from 96.4 to 486 V/cm. Furthermore, we report the observation of an anticorrelation between scintillation and ionization from nuclear recoils, which is similar to the anticorrelation between scintillation and ionization from electron recoils. Assuming that the energy loss partitions into excitons and ion pairs from 83mKr internal conversion electrons is comparable to that from 207Bi conversion electrons, we obtained the numbers of excitons (N ex) and ion pairs (N i) and their ratio (N ex/N i) produced by nuclear recoils from 16.9 to 57.3 keV. Motivated by arguments suggesting direction sensitivity in LAr-TPC signals due to columnar recombination, a comparison of the light and charge yield of recoils parallel and perpendicular to the applied electric field is presented for the first time.« less

  6. Mode transition induced by the magnetic field gradient in Hall thrusters

    NASA Astrophysics Data System (ADS)

    Han, Liang; Wei, Liqiu; Yu, Daren

    2016-09-01

    A mode transition phenomenon was found in Hall thrusters, which was induced by the increase of the magnetic field gradient. In the transition process, we observed experimentally that there have been obvious changes in the oscillation, the mean value of the discharge current, the thrust, the anode efficiency, and the plume pattern. The shifting and compression of the high magnetic field causes the electron density in the discharge channel to decrease and the ionization zone to move towards the exit plane. This also corresponds to a low atom density in the discharge channel, resulting in a loss of stability of the ionization at a high magnetic field gradient, which presents the transition of the discharge mode.

  7. Quasi-steady carbon plasma source for neutral beam injector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koguchi, H., E-mail: h-koguchi@aist.go.jp; Sakakita, H.; Kiyama, S.

    2014-02-15

    Carbon plasma is successfully sustained during 1000 s without any carrier gas in the bucket type ionization chamber with cusp magnetic field. Every several seconds, seed plasmas having ∼3 ms duration time are injected into the ionization chamber by a shunting arch plasma gun. The weakly ionized carbon plasma ejected from the shunting arch is also ionized by 2.45 GHz microwave at the electron cyclotron resonance surface and the plasma can be sustained even in the interval of gun discharges. Control of the gun discharge interval allows to keep high pressure and to sustain the plasma for long duration.

  8. Quasi-steady carbon plasma source for neutral beam injector.

    PubMed

    Koguchi, H; Sakakita, H; Kiyama, S; Shimada, T; Sato, Y; Hirano, Y

    2014-02-01

    Carbon plasma is successfully sustained during 1000 s without any carrier gas in the bucket type ionization chamber with cusp magnetic field. Every several seconds, seed plasmas having ∼3 ms duration time are injected into the ionization chamber by a shunting arch plasma gun. The weakly ionized carbon plasma ejected from the shunting arch is also ionized by 2.45 GHz microwave at the electron cyclotron resonance surface and the plasma can be sustained even in the interval of gun discharges. Control of the gun discharge interval allows to keep high pressure and to sustain the plasma for long duration.

  9. Dosimetry for electron Intra-Operative RadioTherapy: Comparison of output factors obtained through alanine/EPR pellets, ionization chamber and Monte Carlo-GEANT4 simulations for IORT mobile dedicate accelerator

    NASA Astrophysics Data System (ADS)

    Marrale, Maurizio; Longo, Anna; Russo, Giorgio; Casarino, Carlo; Candiano, Giuliana; Gallo, Salvatore; Carlino, Antonio; Brai, Maria

    2015-09-01

    In this work a comparison between the response of alanine and Markus ionization chamber was carried out for measurements of the output factors (OF) of electron beams produced by a linear accelerator used for Intra-Operative Radiation Therapy (IORT). Output factors (OF) for conventional high-energy electron beams are normally measured using ionization chamber according to international dosimetry protocols. However, the electron beams used in IORT have characteristics of dose per pulse, energy spectrum and angular distribution quite different from beams usually used in external radiotherapy, so the direct application of international dosimetry protocols may introduce additional uncertainties in dosimetric determinations. The high dose per pulse could lead to an inaccuracy in dose measurements with ionization chamber, due to overestimation of ks recombination factor. Furthermore, the electron fields obtained with IORT-dedicated applicators have a wider energy spectrum and a wider angular distribution than the conventional fields, due to the presence of electrons scattered by the applicator's wall. For this reason, a dosimetry system should be characterized by a minimum dependence from the beam energy and from angle of incidence of electrons. This become particularly critical for small and bevelled applicators. All of these reasons lead to investigate the use of detectors different from the ionization chamber for measuring the OFs. Furthermore, the complete characterization of the radiation field could be accomplished also by the use of Monte Carlo simulations which allows to obtain detailed information on dose distributions. In this work we compare the output factors obtained by means of alanine dosimeters and Markus ionization chamber. The comparison is completed by the Monte Carlo calculations of OFs determined through the use of the Geant4 application "iort _ therapy" . The results are characterized by a good agreement of response of alanine pellets and Markus ionization chamber and Monte Carlo results (within about 3%) for both flat and bevelled applicators.

  10. Effect of the dynamic core-electron polarization of CO molecules on high-order harmonic generation

    NASA Astrophysics Data System (ADS)

    Le, Cam-Tu; Hoang, Van-Hung; Tran, Lan-Phuong; Le, Van-Hoang

    2018-04-01

    We theoretically investigate the influence of dynamic core-electron polarization (DCeP) of CO molecules on high-order harmonic generation (HHG) by solving the time-dependent Schrödinger equation (TDSE) within the single-active-electron (SAE) approximation. The effect of DCeP is shown to depend strongly on the molecular orientation angle θ . Particularly, compared to the calculations without DCeP, the inclusion of this effect gives rise to an enhancement of harmonic intensity at θ =0° when the electric field aligns along the O-C direction and to a suppression at θ =180° when the field heads in the opposite direction. Meanwhile, when the electric field is perpendicular to the molecular axis, the effect is almost insignificant. The phenomenon is thought to be linked to the ionization process. However, this picture is not completed yet. By solving the TDSE within the SAE approximation and conducting a classical simulation, we are able to obtain the ionization probability as well as the ionization rate and prove that HHG, in fact, receives a major contribution from electrons ionized at only a certain time interval, rather than throughout the whole pulse propagation. Including DCeP, the variation of the ionization rate in this interval highly correlates to that of the HHG intensity. To better demonstrate the origin of this manifestation, we also show the alternation DCeP makes on the effective potential that corresponds to the observed change in the ionization rate and consequently the HHG intensity. Our results confirm previous studies' observations and, more importantly, provide the missing physical explanation. With the role of DCeP now better understood for the entire range of the orientation angle, this effect can be handled more conveniently for calculating the HHG of other targets.

  11. Time-dependent Ionization in a Steady Flow in an MHD Model of the Solar Corona and Wind

    NASA Astrophysics Data System (ADS)

    Shen, Chengcai; Raymond, John C.; Mikić, Zoran; Linker, Jon A.; Reeves, Katharine K.; Murphy, Nicholas A.

    2017-11-01

    Time-dependent ionization is important for diagnostics of coronal streamers and pseudostreamers. We describe time-dependent ionization calculations for a three-dimensional magnetohydrodynamic (MHD) model of the solar corona and inner heliosphere. We analyze how non-equilibrium ionization (NEI) influences emission from a pseudostreamer during the Whole Sun Month interval (Carrington rotation CR1913, 1996 August 22 to September 18). We use a time-dependent code to calculate NEI states, based on the plasma temperature, density, velocity, and magnetic field in the MHD model, to obtain the synthetic emissivities and predict the intensities of the Lyα, O VI, Mg x, and Si xii emission lines observed by the SOHO/Ultraviolet Coronagraph Spectrometer (UVCS). At low coronal heights, the predicted intensity profiles of both Lyα and O VI lines match UVCS observations well, but the Mg x and Si xii emission are predicted to be too bright. At larger heights, the O VI and Mg x lines are predicted to be brighter for NEI than equilibrium ionization around this pseudostreamer, and Si xii is predicted to be fainter for NEI cases. The differences of predicted UVCS intensities between NEI and equilibrium ionization are around a factor of 2, but neither matches the observed intensity distributions along the full length of the UVCS slit. Variations in elemental abundances in closed field regions due to the gravitational settling and the FIP effect may significantly contribute to the predicted uncertainty. The assumption of Maxwellian electron distributions and errors in the magnetic field on the solar surface may also have notable effects on the mismatch between observations and model predictions.

  12. The ionized gas in the CALIFA early-type galaxies. I. Mapping two representative cases: NGC 6762 and NGC 5966

    NASA Astrophysics Data System (ADS)

    Kehrig, C.; Monreal-Ibero, A.; Papaderos, P.; Vílchez, J. M.; Gomes, J. M.; Masegosa, J.; Sánchez, S. F.; Lehnert, M. D.; Cid Fernandes, R.; Bland-Hawthorn, J.; Bomans, D. J.; Marquez, I.; Mast, D.; Aguerri, J. A. L.; López-Sánchez, Á. R.; Marino, R. A.; Pasquali, A.; Perez, I.; Roth, M. M.; Sánchez-Blázquez, P.; Ziegler, B.

    2012-04-01

    As part of the ongoing CALIFA survey, we have conducted a thorough bidimensional analysis of the ionized gas in two E/S0 galaxies, NGC 6762 and NGC 5966, aiming to shed light on the nature of their warm ionized ISM. Specifically, we present optical (3745-7300 Å) integral field spectroscopy obtained with the PMAS/PPAK integral field spectrophotometer. Its wide field-of-view (1' × 1') covers the entire optical extent of each galaxy down to faint continuum surface brightnesses. To recover the nebular lines, we modeled and subtracted the underlying stellar continuum from the observed spectra using the STARLIGHT spectral synthesis code. The pure emission-line spectra were used to investigate the gas properties and determine the possible sources of ionization. We show the advantages of IFU data in interpreting the complex nature of the ionized gas in NGC 6762 and NGC 5966. In NGC 6762, the ionized gas and stellar emission display similar morphologies, while the emission line morphology is elongated in NGC 5966, spanning ~6 kpc, and is oriented roughly orthogonal to the major axis of the stellar continuum ellipsoid. Whereas gas and stars are kinematically aligned in NGC 6762, the gas is kinematically decoupled from the stars in NGC 5966. A decoupled rotating disk or an "ionization cone" are two possible interpretations of the elongated ionized gas structure in NGC 5966. The latter would be the first "ionization cone" of such a dimension detected within a weak emission-line galaxy. Both galaxies have weak emission-lines relative to the continuum[EW(Hα) ≲ 3 Å] and have very low excitation, log([Oiii]λ5007/Hβ) ≲ 0.5. Based on optical diagnostic ratios ([Oiii]λ5007/Hβ, [Nii]λ6584/Hα, [Sii]λ6717, 6731/Hα, [Oi]λ6300/Hα), both objects contain a LINER nucleus and an extended LINER-like gas emission. The emission line ratios do not vary significantly with radius or aperture, which indicates that the nebular properties are spatially homogeneous. The gas emission in NGC 6762 can be best explained by photoionization by pAGB stars without the need of invoking any other excitation mechanism. In the case of NGC 5966, the presence of a nuclear ionizing source seems to be required to shape the elongated gas emission feature in the "ionization cone" scenario, although ionization by pAGB stars cannot be ruled out. Further study of this object is needed to clarify the nature of its elongated gas structure. Based on observations collected at the Centro Astronómico Hispano Alemán (CAHA) at Calar Alto, operated jointly by the Max-Planck-Institut für Astronomie and the Instituto de Astrofísica de Andalucía (CSIC).

  13. Indirect determination of the electric field in plasma discharges using laser-induced fluorescence spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vaudolon, J., E-mail: julien.vaudolon@cnrs-orleans.fr; Mazouffre, S., E-mail: stephane.mazouffre@cnrs-orleans.fr

    2014-09-15

    The evaluation of electric fields is of prime interest for the description of plasma characteristics. In this work, different methods for determining the electric field profile in low-pressure discharges using one- and two-dimensional Laser-Induced Fluorescence (LIF) measurements are presented and discussed. The energy conservation, fluid, and kinetic approaches appear to be well-suited for the electric field evaluation in this region of the plasma flow. However, the numerical complexity of a two-dimensional kinetic model is penalizing due to the limited signal-to-noise ratio that can be achieved, making the computation of the electric field subject to large error bars. The ionization contributionmore » which appears in the fluid model makes it unattractive on an experimental viewpoint. The energy conservation and 1D1V kinetic approaches should therefore be preferred for the determination of the electric field when LIF data are used.« less

  14. SU-E-T-353: Verification of Water Equivalent Thickness (WET) and Water Equivalent Spreadness (WES) of Proton Beam

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Demez, N; Lee, T; Keppel, Cynthia

    Purpose: To verify calculated water equivalent thickness (WET) and water equivalent spreadness (WES) in various tissue equivalent media for proton therapy Methods: Water equivalent thicknesses (WET) of tissue equivalent materials have been calculated using the Bragg-Kleeman rule. Lateral spreadness and fluence reduction of proton beams both in those media were calculated using proton loss model (PLM) algorithm. In addition, we calculated lateral spreadness ratios with respect to that in water at the same WET depth and so the WES was defined. The WETs of those media for different proton beam energies were measured using MLIC (Multi-Layered Ionization Chamber). Also, fluencemore » and field sizes in those materials of various thicknesses were measured with ionization chambers and films Results: Calculated WETs are in agreement with measured WETs within 0.5%. We found that water equivalent spreadness (WES) is constant and the fluence and field size measurements verify that fluence can be estimated using the concept of WES. Conclusions: Calculation of WET based on the Bragg-Kleeman rule as well as the constant WES of proton beams for tissue equivalent phantoms can be used to predict fluence and field sizes at the depths of interest both in tissue equivalent media accurately for clinically available protonenergies.« less

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cebe, M; Pacaci, P; Mabhouti, H

    Purpose: In this study, the two available calculation algorithms of the Varian Eclipse treatment planning system(TPS), the electron Monte Carlo(eMC) and General Gaussian Pencil Beam(GGPB) algorithms were used to compare measured and calculated peripheral dose distribution of electron beams. Methods: Peripheral dose measurements were carried out for 6, 9, 12, 15, 18 and 22 MeV electron beams of Varian Triology machine using parallel plate ionization chamber and EBT3 films in the slab phantom. Measurements were performed for 6×6, 10×10 and 25×25cm{sup 2} cone sizes at dmax of each energy up to 20cm beyond the field edges. Using the same filmmore » batch, the net OD to dose calibration curve was obtained for each energy. Films were scanned 48 hours after irradiation using an Epson 1000XL flatbed scanner. Dose distribution measured using parallel plate ionization chamber and EBT3 film and calculated by eMC and GGPB algorithms were compared. The measured and calculated data were then compared to find which algorithm calculates peripheral dose distribution more accurately. Results: The agreement between measurement and eMC was better than GGPB. The TPS underestimated the out of field doses. The difference between measured and calculated doses increase with the cone size. The largest deviation between calculated and parallel plate ionization chamber measured dose is less than 4.93% for eMC, but it can increase up to 7.51% for GGPB. For film measurement, the minimum gamma analysis passing rates between measured and calculated dose distributions were 98.2% and 92.7% for eMC and GGPB respectively for all field sizes and energies. Conclusion: Our results show that the Monte Carlo algorithm for electron planning in Eclipse is more accurate than previous algorithms for peripheral dose distributions. It must be emphasized that the use of GGPB for planning large field treatments with 6 MeV could lead to inaccuracies of clinical significance.« less

  16. Calculation of the spin-polarized electronic structure of an interstitial iron impurity in silicon

    NASA Astrophysics Data System (ADS)

    Katayama-Yoshida, H.; Zunger, Alex

    1985-06-01

    We apply our self-consistent, all-electron, spin-polarized Green's-function method within an impurity-centered, dynamic basis set to study the interstitial iron impurity in silicon. We use two different formulations of the interelectron interactions: the local-spin-density (LSD) formalism and the self-interaction-corrected (SIC) local-spin-density (SIC-LSD) formalism. We find that the SIC-LSD approach is needed to obtain the correct high-spin ground state of Si:Fe+. We propose a quantitative explanation to the observed donor ionization energy and the high-spin ground states for Si:Fe+ within the SIC-LSD approach. For both Si:Fe0 and Si:Fe+, this approach leads to a hyperfine field, contact spin density, and ionization energy in better agreement with experiments than the simple LSD approach. The apparent dichotomy between the covalently delocalized nature of Si:Fe as suggested on the one hand by its reduced hyperfine field (relative to the free atom) and extended spin density and by the occurrence of two closely spaced, stable charge states (within 0.4 eV) and on the other hand by the atomically localized picture (suggested, for example, by the stability of a high-spin, ground-state configuration) is resolved. We find a large reduction in the hyperfine field and contact spin density due to the covalent hybridization between the impurity 3d orbitals and the tails of the delocalized sp3 hybrid orbitals of the surrounding silicon atoms. Using the calculated results, we discuss (i) the underlying mechanism for the stability and plurality of charged states, (ii) the covalent reduction in the hyperfine field, (iii) the remarkable constancy of the impurity Mössbauer isomer shift for different charged states, (iv) comparison with the multiple charged states in ionic crystals, and (v) some related speculation about the mechanism of (Fe2+/Fe3+) oxidation-reduction ionizations in heme proteins and electron-transporting biological systems.

  17. Electron-Atom Ionization Calculations using Propagating Exterior Complex Scaling

    NASA Astrophysics Data System (ADS)

    Bartlett, Philip

    2007-10-01

    The exterior complex scaling method (Science 286 (1999) 2474), pioneered by Rescigno, McCurdy and coworkers, provided highly accurate ab initio solutions for electron-hydrogen collisions by directly solving the time-independent Schr"odinger equation in coordinate space. An extension of this method, propagating exterior complex scaling (PECS), was developed by Bartlett and Stelbovics (J. Phys. B 37 (2004) L69, J. Phys. B 39 (2006) R379) and has been demonstrated to provide computationally efficient and accurate calculations of ionization and scattering cross sections over a large range of energies below, above and near the ionization threshold. An overview of the PECS method for three-body collisions and the computational advantages of its propagation and iterative coupling techniques will be presented along with results of: (1) near-threshold ionization of electron-hydrogen collisions and the Wannier threshold laws, (2) scattering cross section resonances below the ionization threshold, and (3) total and differential cross sections for electron collisions with excited targets and hydrogenic ions from low through to high energies. Recently, the PECS method has been extended to solve four-body collisions using time-independent methods in coordinate space and has initially been applied to the s-wave model for electron-helium collisions. A description of the extensions made to the PECS method to facilitate these significantly more computationally demanding calculations will be given, and results will be presented for elastic, single-excitation, double-excitation, single-ionization and double-ionization collisions.

  18. Photon small-field measurements with a CMOS active pixel sensor.

    PubMed

    Spang, F Jiménez; Rosenberg, I; Hedin, E; Royle, G

    2015-06-07

    In this work the dosimetric performance of CMOS active pixel sensors for the measurement of small photon beams is presented. The detector used consisted of an array of 520  × 520 pixels on a 25 µm pitch. Dosimetric parameters measured with this sensor were compared with data collected with an ionization chamber, a film detector and GEANT4 Monte Carlo simulations. The sensor performance for beam profiles measurements was evaluated for field sizes of 0.5  × 0.5 cm(2). The high spatial resolution achieved with this sensor allowed the accurate measurement of profiles, beam penumbrae and field size under lateral electronic disequilibrium. Field size and penumbrae agreed within 5.4% and 2.2% respectively with film measurements. Agreements with ionization chambers better than 1.0% were obtained when measuring tissue-phantom ratios. Output factor measurements were in good agreement with ionization chamber and Monte Carlo simulation. The data obtained from this imaging sensor can be easily analyzed to extract dosimetric information. The results presented in this work are promising for the development and implementation of CMOS active pixel sensors for dosimetry applications.

  19. Technical Note: Impact of the geometry dependence of the ion chamber detector response function on a convolution-based method to address the volume averaging effect.

    PubMed

    Barraclough, Brendan; Li, Jonathan G; Lebron, Sharon; Fan, Qiyong; Liu, Chihray; Yan, Guanghua

    2016-05-01

    To investigate the geometry dependence of the detector response function (DRF) of three commonly used scanning ionization chambers and its impact on a convolution-based method to address the volume averaging effect (VAE). A convolution-based approach has been proposed recently to address the ionization chamber VAE. It simulates the VAE in the treatment planning system (TPS) by iteratively convolving the calculated beam profiles with the DRF while optimizing the beam model. Since the convolved and the measured profiles are subject to the same VAE, the calculated profiles match the implicit "real" ones when the optimization converges. Three DRFs (Gaussian, Lorentzian, and parabolic function) were used for three ionization chambers (CC04, CC13, and SNC125c) in this study. Geometry dependent/independent DRFs were obtained by minimizing the difference between the ionization chamber-measured profiles and the diode-measured profiles convolved with the DRFs. These DRFs were used to obtain eighteen beam models for a commercial TPS. Accuracy of the beam models were evaluated by assessing the 20%-80% penumbra width difference (PWD) between the computed and diode-measured beam profiles. The convolution-based approach was found to be effective for all three ionization chambers with significant improvement for all beam models. Up to 17% geometry dependence of the three DRFs was observed for the studied ionization chambers. With geometry dependent DRFs, the PWD was within 0.80 mm for the parabolic function and CC04 combination and within 0.50 mm for other combinations; with geometry independent DRFs, the PWD was within 1.00 mm for all cases. When using the Gaussian function as the DRF, accounting for geometry dependence led to marginal improvement (PWD < 0.20 mm) for CC04; the improvement ranged from 0.38 to 0.65 mm for CC13; for SNC125c, the improvement was slightly above 0.50 mm. Although all three DRFs were found adequate to represent the response of the studied ionization chambers, the Gaussian function was favored due to its superior overall performance. The geometry dependence of the DRFs can be significant for clinical applications involving small fields such as stereotactic radiotherapy.

  20. Energy response corrections for profile measurements using a combination of different detector types.

    PubMed

    Wegener, Sonja; Sauer, Otto A

    2018-02-01

    Different detector properties will heavily affect the results of off-axis measurements outside of radiation fields, where a different energy spectrum is encountered. While a diode detector would show a high spatial resolution, it contains high atomic number elements, which lead to perturbations and energy-dependent response. An ionization chamber, on the other hand, has a much smaller energy dependence, but shows dose averaging over its larger active volume. We suggest a way to obtain spatial energy response corrections of a detector independent of its volume effect for profiles of arbitrary fields by using a combination of two detectors. Measurements were performed at an Elekta Versa HD accelerator equipped with an Agility MLC. Dose profiles of fields between 10 × 4 cm² and 0.6 × 0.6 cm² were recorded several times, first with different small-field detectors (unshielded diode 60012 and stereotactic field detector SFD, microDiamond, EDGE, and PinPoint 31006) and then with a larger volume ionization chamber Semiflex 31010 for different photon beam qualities of 6, 10, and 18 MV. Correction factors for the small-field detectors were obtained from the readings of the respective detector and the ionization chamber using a convolution method. Selected profiles were also recorded on film to enable a comparison. After applying the correction factors to the profiles measured with different detectors, agreement between the detectors and with profiles measured on EBT3 film was improved considerably. Differences in the full width half maximum obtained with the detectors and the film typically decreased by a factor of two. Off-axis correction factors outside of a 10 × 1 cm² field ranged from about 1.3 for the EDGE diode about 10 mm from the field edge to 0.7 for the PinPoint 31006 25 mm from the field edge. The microDiamond required corrections comparable in size to the Si-diodes and even exceeded the values in the tail region of the field. The SFD was found to require the smallest correction. The corrections typically became larger for higher energies and for smaller field sizes. With a combination of two detectors, experimentally derived correction factors can be obtained. Application of those factors leads to improved agreement between the measured profiles and those recorded on EBT3 film. The results also complement so far only Monte Carlo-simulated values for the off-axis response of different detectors. © 2017 American Association of Physicists in Medicine.

  1. Mass-loading, pile-up, and mirror-mode waves at comet 67P/Churyumov-Gerasimenko

    NASA Astrophysics Data System (ADS)

    Volwerk, M.; Richter, I.; Tsurutani, B.; Götz, C.; Altwegg, K.; Broiles, T.; Burch, J.; Carr, C.; Cupido, E.; Delva, M.; Dósa, M.; Edberg, N. J. T.; Eriksson, A.; Henri, P.; Koenders, C.; Lebreton, J.-P.; Mandt, K. E.; Nilsson, H.; Opitz, A.; Rubin, M.; Schwingenschuh, K.; Stenberg Wieser, G.; Szegö, K.; Vallat, C.; Vallieres, X.; Glassmeier, K.-H.

    2016-01-01

    The data from all Rosetta plasma consortium instruments and from the ROSINA COPS instrument are used to study the interaction of the solar wind with the outgassing cometary nucleus of 67P/Churyumov-Gerasimenko. During 6 and 7 June 2015, the interaction was first dominated by an increase in the solar wind dynamic pressure, caused by a higher solar wind ion density. This pressure compressed the draped magnetic field around the comet, and the increase in solar wind electrons enhanced the ionization of the outflow gas through collisional ionization. The new ions are picked up by the solar wind magnetic field, and create a ring/ring-beam distribution, which, in a high-β plasma, is unstable for mirror mode wave generation. Two different kinds of mirror modes are observed: one of small size generated by locally ionized water and one of large size generated by ionization and pick-up farther away from the comet.

  2. Mass-loading, pile-up, and mirror-mode waves at comet 67P/Churyumov-Gerasimenko

    NASA Astrophysics Data System (ADS)

    Volwerk, Martin

    2016-04-01

    The data from all Rosetta Plasma Consortium instruments and from the ROSINA COPS instrument are used to study the interaction of the solar wind with the outgassing cometary nucleus of 67P/Churyumov-Gerasimenko. During 6 and 7 June 2015, the interaction was first dominated by an increase in the solar wind dynamic pressure, caused by a higher solar wind ion density. This pressure compressed the draped magnetic field around the comet, and the increase in solar wind electrons enhanced the ionization of the outflow gas through collisional ionization. The new ions are picked up by the solar wind magnetic field, and create a ring/ring-beam distribution, which, in a high-β plasma, is unstable for mirror mode wave generation. Two different kinds of mirror modes are observed: one of small size generated by locally ionized water and one of large size generated by ionization and pick-up farther away from the comet.

  3. Large-area field-ionization detector for the study of Rydberg atoms.

    PubMed

    Jones, A C L; Piñeiro, A M; Roeder, E E; Rutbeck-Goldman, H J; Tom, H W K; Mills, A P

    2016-11-01

    We describe here the development and characterization of a micro-channel plate (MCP) based detector designed for the efficient collection and detection of Rydberg positronium (Ps) atoms for use in a time-of-flight apparatus. The designed detector collects Rydberg atoms over a large area (∼4 times greater than the active area of the MCP), ionizing incident atoms and then collecting and focusing the freed positrons onto the MCP. Here we discuss the function, design, and optimization of the device. The detector has an efficiency for Rydberg Ps that is two times larger than that of the γ-ray scintillation detector based scheme it has been designed to replace, with half the background signal. In principle, detectors of the type described here could be readily employed for the detection of any Rydberg atom species, provided a sufficient field can be applied to achieve an ionization rate of ≥10 8 /s. In such cases, the best time resolution would be achieved by collecting ionized electrons rather than the positive ions.

  4. Photoionization in the halo of the Galaxy

    NASA Technical Reports Server (NTRS)

    Bregman, Joel N.; Harrington, J. Patrick

    1986-01-01

    The ionizing radiation field in the halo is calculated and found to be dominated in the 13.6-45 eV range by light from O-B stars that escapes the disk, by planetary nebulae at 45-54 eV, by quasars and the Galactic soft X-ray background at 54-2000 eV, and by the extragalactic X-ray background at higher energies. Photoionization models are calculated with this radiation field incident on halo clouds of constant density for a variety of densities, for normal and depleted abundances, and with variations of the incident spectrum. For species at least triply ionized, such as Si IV, C IV, N V, and O VI, the line ratios are determined by intervening gas with the greatest volume, which is not necessarily the greatest mass component. Column densities from doubly ionized species like Si III should be greater than from triply ionized species. The role of photoionized gas in cosmic ray-supported halos and Galactic fountains is discussed. Observational tests of photoionization models are suggested.

  5. Theory of dissociative tunneling ionization

    NASA Astrophysics Data System (ADS)

    Svensmark, Jens; Tolstikhin, Oleg I.; Madsen, Lars Bojer

    2016-05-01

    We present a theoretical study of the dissociative tunneling ionization process. Analytic expressions for the nuclear kinetic energy distribution of the ionization rates are derived. A particularly simple expression for the spectrum is found by using the Born-Oppenheimer (BO) approximation in conjunction with the reflection principle. These spectra are compared to exact non-BO ab initio spectra obtained through model calculations with a quantum mechanical treatment of both the electronic and nuclear degrees of freedom. In the regime where the BO approximation is applicable, imaging of the BO nuclear wave function is demonstrated to be possible through reverse use of the reflection principle, when accounting appropriately for the electronic ionization rate. A qualitative difference between the exact and BO wave functions in the asymptotic region of large electronic distances is shown. Additionally, the behavior of the wave function across the turning line is seen to be reminiscent of light refraction. For weak fields, where the BO approximation does not apply, the weak-field asymptotic theory describes the spectrum accurately.

  6. Footprints of electron correlation in strong-field double ionization of Kr close to the sequential-ionization regime

    NASA Astrophysics Data System (ADS)

    Li, Xiaokai; Wang, Chuncheng; Yuan, Zongqiang; Ye, Difa; Ma, Pan; Hu, Wenhui; Luo, Sizuo; Fu, Libin; Ding, Dajun

    2017-09-01

    By combining kinematically complete measurements and a semiclassical Monte Carlo simulation we study the correlated-electron dynamics in the strong-field double ionization of Kr. Interestingly, we find that, as we step into the sequential-ionization regime, there are still signatures of correlation in the two-electron joint momentum spectrum and, more intriguingly, the scaling law of the high-energy tail is completely different from early predictions on the low-Z atom (He). These experimental observations are well reproduced by our generalized semiclassical model adapting a Green-Sellin-Zachor potential. It is revealed that the competition between the screening effect of inner-shell electrons and the Coulomb focusing of nuclei leads to a non-inverse-square central force, which twists the returned electron trajectory at the vicinity of the parent core and thus significantly increases the probability of hard recollisions between two electrons. Our results might have promising applications ranging from accurately retrieving atomic structures to simulating celestial phenomena in the laboratory.

  7. Ionization Chemistry and Role of Grains on Non-ideal MHD Effects in Protoplanetary Disks

    NASA Astrophysics Data System (ADS)

    Xu, Rui; Bai, Xue-Ning; Oberg, Karin I.

    2015-01-01

    Ionization in protoplanetary disks (PPDs) is one of the key elements for understanding disk chemistry. It also determines the coupling between gas and magnetic fields hence strongly affect PPD gas dynamics. We study the ionization chemistry in the presence of grains in the midplane region of PPDs and its impact on gas conductivity reflected in non-ideal MHD effects including Ohmic resistivity, Hall effect and ambipolar diffusion. We first develop a reduced chemical reaction network from the UMIST database. The reduced network contains much smaller number of species and reactions while yields reliable estimates of the disk ionization level compared with the full network. We further show that grains are likely the dominant charge carrier in the midplane regions of the inner disk, which significantly affects the gas conductivity. In particular, ambipolar diffusion is strongly reduced and the Hall coefficient changes sign in the presence of strong magnetic field. The latter provides a natural mechanism to the saturation of the Hall-shear instability.

  8. Application of dynamic displacement current for diagnostics of subnanosecond breakdowns in an inhomogeneous electric field

    NASA Astrophysics Data System (ADS)

    Shao, Tao; Tarasenko, Victor F.; Zhang, Cheng; Burachenko, Alexandr G.; Rybka, Dmitry V.; Kostyrya, Igor'D.; Lomaev, Mikhail I.; Baksht, Evgeni Kh.; Yan, Ping

    2013-05-01

    The breakdown of different air gaps at high overvoltages in an inhomogeneous electric field was investigated with a time resolution of up to 100 ps. Dynamic displacement current was used for diagnostics of ionization processes between the ionization wave front and a plane anode. It is demonstrated that during the generation of a supershort avalanche electron beam (SAEB) with amplitudes of ˜10 A and more, conductivity in the air gaps at the breakdown stage is ensured by the ionization wave, whose front propagates from the electrode of small curvature radius, and by the dynamic displacement current between the ionization wave front and the plane electrode. The amplitude of the dynamic displacement current measured by a current shunt is 100 times greater than the SAEB. It is shown that with small gaps and with a large cathode diameter, the amplitude of the dynamic displacement current during a subnanosecond rise time of applied pulse voltage can be higher than 4 kA.

  9. Ionizing radiation-induced acoustics for radiotherapy and diagnostic radiology applications.

    PubMed

    Hickling, Susannah; Xiang, Liangzhong; Jones, Kevin C; Parodi, Katia; Assmann, Walter; Avery, Stephen; Hobson, Maritza; El Naqa, Issam

    2018-04-21

    Acoustic waves are induced via the thermoacoustic effect in objects exposed to a pulsed beam of ionizing radiation. This phenomenon has interesting potential applications in both radiotherapy dosimetry and treatment guidance as well as low dose radiological imaging. After initial work in the field in the 1980s and early 1990s, little research was done until 2013 when interest was rejuvenated, spurred on by technological advances in ultrasound transducers and the increasing complexity of radiotherapy delivery systems. Since then, many studies have been conducted and published applying ionizing radiation-induced acoustic principles into three primary research areas: Linear accelerator photon beam dosimetry, proton therapy range verification, and radiological imaging. This review article introduces the theoretical background behind ionizing radiation-induced acoustic waves, summarizes recent advances in the field, and provides an outlook on how the detection of ionizing radiation-induced acoustic waves can be used for relative and in vivo dosimetry in photon therapy, localization of the Bragg peak in proton therapy, and as a low-dose medical imaging modality. Future prospects and challenges for clinical implementation of these techniques are discussed. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  10. Occupational exposure to ionizing radiation and electromagnetic fields in relation to the risk of thyroid cancer in Sweden.

    PubMed

    Lope, Virginia; Pérez-Gómez, Beatriz; Aragonés, Nuria; López-Abente, Gonzalo; Gustavsson, Per; Floderus, Birgitta; Dosemeci, Mustafa; Silva, Agustín; Pollán, Marina

    2006-08-01

    This study sought to ascertain the risk of thyroid cancer in relation to occupational exposure to ionizing radiation and extremely low-frequency magnetic fields (ELFMF) in a cohort representative of Sweden's gainfully employed population. A historical cohort of 2 992 166 gainfully employed Swedish male and female workers was followed up from 1971 through 1989. Exposure to ELFMF and ionizing radiation was assessed using three job exposure matrices based on industrial branch or occupational codes. Relative risks (RR) for male and female workers, adjusted for age and geographic area, were computed using log-linear Poisson models. Occupational ELFMF exposure showed no effect on the risk of thyroid cancer in the study. However, female workers exposed to high intensities of ionizing radiation registered a marked excess risk (RR 1.85, 95% confidence interval (95% CI) 1.02-3.35]. This trend was not in evidence among the men. While the study confirms the etiologic role of ionizing radiation, with a higher incidence of thyroid cancer being recorded for the most-exposed female workers, our results do not support the possibility of occupational exposure to ELFMF being a risk factor for the development of thyroid cancer.

  11. Cascade Model of Ionization Multiplication of Electrons in Glow Discharge Plasma

    NASA Astrophysics Data System (ADS)

    Romanenko, V. A.; Solodky, S. A.; Kudryavtsev, A. A.; Suleymanov, I. A.

    1996-10-01

    For determination of EDF in non-uniform fields a Monte-Carlo simulation(Tran Ngoc An et al., J.Phys.D: Appl. Phys. 10, 2317 (1977))^,(J.P. Boeuf et al., Phys.D: Appl.Phys. 15, 2169 (1982)) is applied. As alternative multi-beam cascade model(H.B. Valentini, Contrib.Plasma Phys. 27, 331 (1987)) is offered. Our model eliminates defects of that model and enables to determine EDF of low pressure plasma in non-uniform fields. A cascade model (with EDF dividing in monoenergetic electron groups) for arbitrary electric potential profile was used. Modeling was carried out for electron forward scattering only, constant electron mean free path; ionization was considered only. The equation system was solved for the region with kinetic energies more than ionization energy. The boundary conditions (on ionization energy curve) take into account electron transitions from higher-lying level in the less than ionization energy region and secondary electron production. The problem solution in analytical functions was obtained. The insertion of additional processes does not make significant difficulties. EDF and electrokinetical parameters in helium from numerical calculations are well agreed with above-mentioned authors. Work was carried out under RFFI (project N 96-02-18417) support.

  12. Development of a new experimental device for long-duration magnetic reconnection in weakly ionized plasma

    NASA Astrophysics Data System (ADS)

    Yanai, Ryoma; Kaminou, Yasuhiro; Nishida, Kento; Inomoto, Michiaki

    2016-10-01

    Magnetic reconnection is a universal phenomenon which determines global structure and energy conversion in magnetized plasmas. Many experimental studies have been carried out to explore the physics of magnetic reconnection in fully ionized condition. However, it is predicted that the behavior of magnetic reconnection in weakly ionized plasmas such as solar chromosphere plasma will show different behavior such as ambipolar diffusion caused by interaction with neutral particles. In this research, we are developing a new experimental device to uncover the importance of ambipolar diffusion during magnetic reconnection in weakly ionized plasmas. We employ an inverter-driven rotating magnetic fields technique, which is used for generating steady azimuthal plasma current, to establish long-duration ( 1 ms) anti-parallel reconnection with magnetic field of 5 mT in weakly ionized plasma. We will present development status and initial results from the new experimental setup. This work was supported by JSPS A3 Foresight Program ``Innovative Tokamak Plasma Startup and Current Drive in Spherical Torus'', Giant-in Aid for Scientific Research (KAKENHI) 15H05750, 15K14279, 26287143 and the NIFS Collaboration Research program (NIFS14KNWP004).

  13. Star of Lima - Overview and optical diagnostics of a barium Alfven critical velocity experiment

    NASA Technical Reports Server (NTRS)

    Wescott, E. M.; Stenbaek-Nielsen, H. C.; Hallinan, T.; Foeppl, H.; Valenzuela, A.

    1986-01-01

    The Alfven critical velocity mechanism for ionization of a neutral gas streaming across the magnetic field has been demonstrated in laboratory experiments. In March 1983, two rocket-borne experiments with Ba and Sr tested the effect in the wall-less laboratory of space from Punto Lobos, Peru, near 430 km altitude. 'Star of Lima' used a conical Ba shaped charge aimed at an instrument payload about 2 km away. Because of rocket overperformance the detonation occurred in partial sunlight, so that less than 21.6 percent of the ionizing UV was present. Particle and field measurements indicate the production of hot electrons and waves in the energy and frequency range that are respectively predicted to produce a cascade of ionization by the Alfven mechanism. However, the ionization fluxes and wave energy density did not reach cascade levels, and optical observations indicate that only 2.5 to 5 x 10 to the 20th Ba ions were produced. A substantial portion and perhaps all of the ionization could have been produced by solar UV. The failure of the Alfven process in this experiment is not well understood.

  14. Non-Equilibrium Plasma MHD Electrical Power Generation at Tokyo Tech

    NASA Astrophysics Data System (ADS)

    Murakami, T.; Okuno, Y.; Yamasaki, H.

    2008-02-01

    This paper reviews the recent activities on radio-frequency (rf) electromagnetic-field-assisted magnetohydrodynamic (MHD) power generation experiments at the Tokyo Institute of Technology. An inductively coupled rf field (13.56 MHz) is continuously supplied to the disk-shaped Hall-type MHD generator. The first part of this paper describes a method of obtaining increased power output from a pure Argon plasma MHD power generator by incorporating an rf power source to preionize and heat the plasma. The rf heating enhances ionization of the Argon and raises the temperature of the free electron population above the nominally low 4500 K temperatures obtained without rf heating. This in turn enhances the plasma conductivity making MHD power generation feasible. We demonstrate an enhanced power output when rf heating is on approximately 5 times larger than the input power of the rf generator. The second part of this paper is a demonstration of a physical phenomenon of the rf-stabilization of the ionization instability, that had been conjectured for some time, but had not been seen experimentally. The rf heating suppresses the ionization instability in the plasma behavior and homogenizes the nonuniformity of the plasma structures. The power-generating performance is significantly improved with the aid of the rf power under wide seeding conditions. The increment of the enthalpy extraction ratio of around 2% is significantly greater than the fraction of the net rf power, that is, 0.16%, to the thermal input.

  15. STELLARATOR INJECTOR

    DOEpatents

    Post, R.F.

    1962-09-01

    A method and means are described for injecting energetic neutral atoms or molecular ions into dense magnetically collimated plasma columns of stellarators and the like in such a manner that the atoms or ions are able to significantly penetrate the column before being ionized by collision with the plasma constituent particles. Penetration of the plasma column by the neutral atoms or molecular ions is facilitated by superposition of two closely spaced magnetic mirrors on the plasma confinement field. The mirrors are moved apart to magnetically sweep plasma from a region between the mirrors and establish a relatively low plasma density therein. By virture of the low density, neutral atoms or molecular ions injected into the region significantly penetrate the plasma column before being ionized. Thereafter, the mirrors are diminished to permit the injected material to admix with the plasma in the remainder of the column. (AEC)

  16. Efficient and accurate modeling of electron photoemission in nanostructures with TDDFT

    NASA Astrophysics Data System (ADS)

    Wopperer, Philipp; De Giovannini, Umberto; Rubio, Angel

    2017-03-01

    We derive and extend the time-dependent surface-flux method introduced in [L. Tao, A. Scrinzi, New J. Phys. 14, 013021 (2012)] within a time-dependent density-functional theory (TDDFT) formalism and use it to calculate photoelectron spectra and angular distributions of atoms and molecules when excited by laser pulses. We present other, existing computational TDDFT methods that are suitable for the calculation of electron emission in compact spatial regions, and compare their results. We illustrate the performance of the new method by simulating strong-field ionization of C60 fullerene and discuss final state effects in the orbital reconstruction of planar organic molecules.

  17. METHOD OF PRODUCING AND ACCELERATING AN ION BEAM

    NASA Technical Reports Server (NTRS)

    Foster, John E. (Inventor)

    2005-01-01

    A method of producing and accelerating an ion beam comprising the steps of providing a magnetic field with a cusp that opens in an outward direction along a centerline that passes through a vertex of the cusp: providing an ionizing gas that sprays outward through at least one capillary-like orifice in a plenum that is positioned such that the orifice is on the centerline in the cusp, outward of the vortex of the cusp; providing a cathode electron source, and positioning it outward of the orifice and off of the centerline; and positively charging the plenum relative to the cathode electron source such that the plenum functions as m anode. A hot filament may be used as the cathode electron source, and permanent magnets may be used to provide the magnetic field.

  18. VizieR Online Data Catalog: Diffuse ionized gas in the Antennae galaxy (Weilbacher+, 2018)

    NASA Astrophysics Data System (ADS)

    Weilbacher, P. M.; Monreal-Ibero, A.; Verhamme, A.; Sandin, C.; Steinmetz, M.; Kollatschny, W.; Krajnovic, D.; Kamann, S.; Roth, M. M.; Erroz-Ferrer, S.; Marino, R. A.; Maseda, M. V.; Wendt, M.; Bacon, R.; Dreizler, S.; Richard, J.; Wisotzki, L.

    2017-11-01

    We provide two-dimensional maps of two different ways to measure the diffuse ionized gas as traced by the Halpha emission line in the Antennae Galaxy, both for the central field and the field at the end of the southern tidal tail. We provide a velocity map derived from the Halpha emission line, binned to a S/N~30. Finally, we provide line measurements and derived properties for all HII regions discussed in the paper. (4 data files).

  19. Enhancement of short-pulse recombination-pumped gain by soft-x-ray photoionization of the ground state

    NASA Astrophysics Data System (ADS)

    Apruzese, J. P.; Umstadter, D.

    1996-02-01

    The gain achieved in lasing to the ground state following short-pulse field ionization by a pump laser is highly transient. It will usually persist for only tens of picoseconds because of the rapid filling and negligible emptying of the ground state. Employing a detailed atomic model of lasing in hydrogen, we show that the removal of ground-state population by an appropriate broadband ionizing radiation field can enhance and prolong the gain in such a laser.

  20. Quantum dynamics of charge state in silicon field evaporation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Silaeva, Elena P.; Uchida, Kazuki; Watanabe, Kazuyuki, E-mail: kazuyuki@rs.kagu.tus.ac.jp

    2016-08-15

    The charge state of an ion field-evaporating from a silicon-atom cluster is analyzed using time-dependent density functional theory coupled to molecular dynamics. The final charge state of the ion is shown to increase gradually with increasing external electrostatic field in agreement with the average charge state of silicon ions detected experimentally. When field evaporation is triggered by laser-induced electronic excitations the charge state also increases with increasing intensity of the laser pulse. At the evaporation threshold, the charge state of the evaporating ion does not depend on the electrostatic field due to the strong contribution of laser excitations to themore » ionization process both at low and high laser energies. A neutral silicon atom escaping the cluster due to its high initial kinetic energy is shown to be eventually ionized by external electrostatic field.« less

  1. Highly informative multiclass profiling of lipids by ultra-high performance liquid chromatography - Low resolution (quadrupole) mass spectrometry by using electrospray ionization and atmospheric pressure chemical ionization interfaces.

    PubMed

    Beccaria, Marco; Inferrera, Veronica; Rigano, Francesca; Gorynski, Krzysztof; Purcaro, Giorgia; Pawliszyn, Janusz; Dugo, Paola; Mondello, Luigi

    2017-08-04

    A simple, fast, and versatile method, using an ultra-high performance liquid chromatography system coupled with a low resolution (single quadrupole) mass spectrometer was optimized to perform multiclass lipid profiling of human plasma. Particular attention was made to develop a method suitable for both electrospray ionization and atmospheric pressure chemical ionization interfaces (sequentially in positive- and negative-ion mode), without any modification of the chromatographic conditions (mobile phase, flow-rate, gradient, etc.). Emphasis was given to the extrapolation of the structural information based on the fragmentation pattern obtained using atmospheric pressure chemical ionization interface, under each different ionization condition, highlighting the complementary information obtained using the electrospray ionization interface, of support for related molecule ions identification. Furthermore, mass spectra of phosphatidylserine and phosphatidylinositol obtained using the atmospheric pressure chemical ionization interface are reported and discussed for the first time. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Nonequilibrium evolution of strong-field anisotropic ionized electrons towards a delayed plasma-state.

    PubMed

    Pasenow, B; Moloney, J V; Koch, S W; Chen, S H; Becker, A; Jaroń-Becker, A

    2012-01-30

    Rigorous quantum calculations of the femtosecond ionization of hydrogen atoms in air lead to highly anisotropic electron and ion angular (momentum) distributions. A quantum Monte-Carlo analysis of the subsequent many-body dynamics reveals two distinct relaxation steps, first to a nearly isotropic hot nonequilibrium and then to a quasi-equilibrium configuration. The collective isotropic plasma state is reached on a picosecond timescale well after the ultrashort ionizing pulse has passed.

  3. Fuel cell with ionization membrane

    NASA Technical Reports Server (NTRS)

    Hartley, Frank T. (Inventor)

    2007-01-01

    A fuel cell is disclosed comprising an ionization membrane having at least one area through which gas is passed, and which ionizes the gas passing therethrough, and a cathode for receiving the ions generated by the ionization membrane. The ionization membrane may include one or more openings in the membrane with electrodes that are located closer than a mean free path of molecules within the gas to be ionized. Methods of manufacture are also provided.

  4. Two-dimensional extended fluid model for a dc glow discharge with nonlocal ionization source term

    NASA Astrophysics Data System (ADS)

    Rafatov, Ismail; Bogdanov, Eugeny; Kudryavtsev, Anatoliy

    2013-09-01

    Numerical techniques applied to the gas discharge plasma modelling are generally grouped into fluid and kinetic (particle) methods, and their combinations which lead to the hybrid models. Hybrid models usually employ Monte Carlo method to simulate fast electron dynamics, while slow plasma species are described as fluids. However, since fast electrons contribution to these models is limited to deriving the ionization rate distribution, their effect can be expressed by the analytical approximation of the ionization source function, and then integrating it into the fluid model. In the context of this approach, we incorporated effect of fast electrons into the ``extended fluid model'' of glow discharge, using two spatial dimensions. Slow electrons, ions and excited neutral species are described by the fluid plasma equations. Slow electron transport (diffusion and mobility) coefficients as well as electron induced reaction rates are determined from the solutions of the electron Boltzmann equation. The self-consistent electric field is calculated using the Poisson equation. We carried out test calculations for the discharge in argon gas. Comparison with the experimental data as well as with the hybrid model results exhibits good applicability of the proposed model. The work was supported by the joint research grant from the Scientific and Technical Research Council of Turkey (TUBITAK) 212T164 and Russian Foundation for Basic Research (RFBR).

  5. Effect of matching between the magnetic field and channel length on the performance of low sputtering Hall thrusters

    NASA Astrophysics Data System (ADS)

    Ding, Yongjie; Boyang, Jia; Sun, Hezhi; Wei, Liqiu; Peng, Wuji; Li, Peng; Yu, Daren

    2018-02-01

    Discharge characteristics of a non-wall-loss Hall thruster were studied under different channel lengths using a design based on pushing a magnetic field through a double permanent magnet ring. The effect of different magnetic field intensities and channel lengths on ionization, efficiency, and plume divergence angle were studied. The experimental results show that propellant utilization is improved for optimal matching between the magnetic field and channel length. While matching the magnetic field and channel length, the ionization position of the neutral gas changes. The ion flow is effectively controlled, allowing the thrust force, specific impulse, and efficiency to be improved. Our study shows that the channel length is an important design parameter to consider for improving the performance of non-wall-loss Hall thrusters.

  6. Numerical Studies of Optimization and Aberration Correction Methods for the Preliminary Demonstration of the Parametric Ionization Cooling (PIC) Principle in the Twin Helix Muon Cooling Channel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maloney, J. A.; Morozov, V. S.; Derbenev, Ya. S.

    Muon colliders have been proposed for the next generation of particle accelerators that study high-energy physics at the energy and intensity frontiers. In this paper we study a possible implementation of muon ionization cooling, Parametric-resonance Ionization Cooling (PIC), in the twin helix channel. The resonant cooling method of PIC offers the potential to reduce emittance beyond that achievable with ionization cooling with ordinary magnetic focusing. We examine optimization of a variety of parameters, study the nonlinear dynamics in the twin helix channel and consider possible methods of aberration correction.

  7. Hydrogen molecules and chains in a superstrong magnetic field

    NASA Technical Reports Server (NTRS)

    Lai, Dong; Salpeter, Edwin E.; Shapiro, Stuart L.

    1992-01-01

    The electronic structures of hydrogen polymolecules H(n) (n = 2,3,4,...) is studied in a superstrong magnetic field (B greater than about 10 exp 12 G) typically found on the surface of a neutron star. Simple analytical scaling relations for several limiting cases (e.g., large n, high B field) are derived. The binding energies of H(n) molecules are numerically calculated for various magnetic-field strengths. For a given magnetic-field strength, the binding energy per atom in the H(n) molecules is found to approach a constant value as n increases. For typical field strengths of interest, energy saturation is essentially achieved once n exceeds 3 to 4. Also considered is the structure of negative H ions in a high magnetic field. For B about 10 exp 12 G, the dissociation energy of an atom in a hydrogen chain and the ionization potential of H(-) are smaller than the ionization potential of neutral atomic hydrogen.

  8. Unified Time and Frequency Picture of Ultrafast Atomic Excitation in Strong Laser Fields

    NASA Astrophysics Data System (ADS)

    Zimmermann, H.; Patchkovskii, S.; Ivanov, M.; Eichmann, U.

    2017-01-01

    Excitation and ionization in strong laser fields lies at the heart of such diverse research directions as high-harmonic generation and spectroscopy, laser-induced diffraction imaging, emission of femtosecond electron bunches from nanotips, self-guiding, filamentation and mirrorless lasing during propagation of light in atmospheres. While extensive quantum mechanical and semiclassical calculations on strong-field ionization are well backed by sophisticated experiments, the existing scattered theoretical work aiming at a full quantitative understanding of strong-field excitation lacks experimental confirmation. Here we present experiments on strong-field excitation in both the tunneling and multiphoton regimes and their rigorous interpretation by time dependent Schrödinger equation calculations, which finally consolidates the seemingly opposing strong-field regimes with their complementary pictures. Most strikingly, we observe an unprecedented enhancement of excitation yields, which opens new possibilities in ultrafast strong-field control of Rydberg wave packet excitation and laser intensity characterization.

  9. Effect of a magnetic field on the track structure of low-energy electrons: a Monte Carlo study

    NASA Astrophysics Data System (ADS)

    Bug, M. U.; Gargioni, E.; Guatelli, S.; Incerti, S.; Rabus, H.; Schulte, R.; Rosenfeld, A. B.

    2010-10-01

    The increasing use of MRI-guided radiation therapy evokes the necessity to investigate the potential impact of a magnetic field on the biological effectiveness of therapeutic radiation beams. While it is known that a magnetic field, applied during irradiation, can improve the macroscopic absorbed dose distribution of electrons in the tumor region, effects on the microscopic distribution of energy depositions and ionizations have not yet been investigated. An effect on the number of ionizations in a DNA segment, which is related to initial DNA damage in form of complex strand breaks, could be beneficial in radiation therapy. In this work we studied the effects of a magnetic field on the pattern of ionizations at nanometric level by means of Monte Carlo simulations using the Geant4-DNA toolkit. The track structure of low-energy electrons in the presence of a uniform static magnetic field of strength up to 14 T was calculated for a simplified DNA segment model in form of a water cylinder. In the case that no magnetic field is applied, nanodosimetric results obtained with Geant4-DNA were compared with those from the PTB track structure code. The obtained results suggest that any potential enhancement of complexity of DNA strand breaks induced by irradiation in a magnetic field is not related to modifications of the low-energy secondary electrons track structure.

  10. Galactic Teamwork Makes Distant Bubbles

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-03-01

    During the period of reionization that followed the dark ages of our universe, hydrogen was transformed from a neutral state, which is opaque to radiation, to an ionized one, which is transparent to radiation. But what generated the initial ionizing radiation? The recent discovery of multiple distant galaxies offers evidence for how this process occurred.Two Distant GalaxiesWe believe reionization occurred somewhere between a redshift of z = 6 and 7, because Ly-emitting galaxies drop out at roughly this redshift. Beyond this distance, were generally unable to see the light from these galaxies, because the universe is no longer transparent to their emission. This is not always the case, however: if a bubble of ionized gas exists around a distant galaxy, the radiation can escape, allowing us to see the galaxy.This is true of two recently-discovered Ly-emitting galaxies, confirmed to be at a redshift of z~7 and located near one another in a region known as the Bremer Deep Field. The fact that were able to see the radiation from these galaxies means that they are in an ionized HII region presumably one of the earlier regions to have become reionized in the universe.But on their own, neither of these galaxies is capable of generating an ionized bubble large enough for their light to escape. So what ionized the region around them, and what does this mean for our understanding of how reionization occurred in the universe?A Little Help From FriendsLocation in different filters of the objects in the Hubble Bremer Deep Field catalog. The z~7 selection region is outlined by the grey box. BDF-521 and BDF-3299 were the two originally discovered galaxies; the remaining red markers indicate the additional six galaxies discovered in the same region. [Castellano et al. 2016]A team of scientists led by Marco Castellano (Rome Observatory, INAF) investigated the possibility that there are other, faint galaxies near these two that have helped to ionize the region. Performing a survey using deep field Hubble observations, Castellano and collaborators found an additional 6 galaxies in the same region as the first two, also at a redshift of z~7!The authors believe these galaxies provide a simple explanation of the ionized bubble: each of these faint, normal galaxies produced a small ionized bubble. The overlap of these many small bubbles provided the larger ionized region from which the light of the two originally discovered galaxies was able to escape.How normal is this clustering of galaxies found by Castellano and collaborators? The team demonstrates via cosmological modeling that the number density of galaxies in this region is a factor of 34 greater than would be expected at this distance in a random pointing of the same size.These results greatly support the theoretical prediction that the first ionization fronts in the universe were formed in regions with significant galaxy overdensities. The discovery of this deep-field collection of galaxies strongly suggests that reionization was driven by faint, normal star-forming galaxies in a clumpy process.CitationM. Castellano et al 2016 ApJ 818 L3. doi:10.3847/2041-8205/818/1/L3

  11. Watching electrons tunnel

    NASA Astrophysics Data System (ADS)

    Moser, Simon

    2008-03-01

    To get insight to time resolved inner atomic or molecular processes, laser pulses of few femtoseconds or even attoseconds are needed. These short light pulse techniques ask for broad frequency spectra, control of dispersion and control of phase. Hence, linear optics fails and nonlinear optics in high electromagnetic fields is needed to satisfy the amount of control that is needed. One recent application of attosecond laser pulses is time resolved visualization of tunnel ionization in atoms applied to high electromagnetic fields. Here, Ne atom electrons are excited by an extreme ultraviolet attosecond laser pulse. After a while, a few cycles nearly infrared femtosecond laser pulse is applied to the atom causing tunnel ionization. The ion yield distribution can be measured as function of the delay time between excitation and ionization and so deliver insight to the time resolved mechanisms.

  12. Single-shot carrier-envelope-phase-tagged ion-momentum imaging of nonsequential double ionization of argon in intense 4-fs laser fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, Nora G.; Herrwerth, O.; Wirth, A.

    2011-01-15

    Single-shot carrier-envelope-phase (CEP) tagging is combined with a reaction mircoscope (REMI) to investigate CEP-dependent processes in atoms. Excellent experimental stability and data acquisition longevity are achieved. Using this approach, we study the CEP effects for nonsequential double ionization of argon in 4-fs laser fields at 750 nm and an intensity of 1.6x10{sup 14} W/cm{sup 2}. The Ar{sup 2+} ionization yield shows a pronounced CEP dependence which compares well with recent theoretical predictions employing quantitative rescattering theory [S. Micheau et al., Phys. Rev. A 79, 013417 (2009)]. Furthermore, we find strong CEP influences on the Ar{sup 2+} momentum spectra along themore » laser polarization axis.« less

  13. X-ray microprobe of orbital alignment in strong-field ionized atoms.

    PubMed

    Young, L; Arms, D A; Dufresne, E M; Dunford, R W; Ederer, D L; Höhr, C; Kanter, E P; Krässig, B; Landahl, E C; Peterson, E R; Rudati, J; Santra, R; Southworth, S H

    2006-08-25

    We have developed a synchrotron-based, time-resolved x-ray microprobe to investigate optical strong-field processes at intermediate intensities (10(14) - 10(15) W/cm2). This quantum-state specific probe has enabled the direct observation of orbital alignment in the residual ion produced by strong-field ionization of krypton atoms via resonant, polarized x-ray absorption. We found strong alignment to persist for a period long compared to the spin-orbit coupling time scale (6.2 fs). The observed degree of alignment can be explained by models that incorporate spin-orbit coupling. The methodology is applicable to a wide range of problems.

  14. Development of solvent-free ambient mass spectrometry for green chemistry applications.

    PubMed

    Liu, Pengyuan; Forni, Amanda; Chen, Hao

    2014-04-15

    Green chemistry minimizes chemical process hazards in many ways, including eliminating traditional solvents or using alternative recyclable solvents such as ionic liquids. This concept is now adopted in this study for monitoring solvent-free reactions and analysis of ionic liquids, solids, and catalysts by mass spectrometry (MS), without using any solvent. In our approach, probe electrospray ionization (PESI), an ambient ionization method, was employed for this purpose. Neat viscous room-temperature ionic liquids (RTILs) in trace amounts (e.g., 25 nL) could be directly analyzed without sample carryover effect, thereby enabling high-throughput analysis. With the probe being heated, it can also ionize ionic solid compounds such as organometallic complexes as well as a variety of neat neutral solid chemicals (e.g., amines). More importantly, moisture-sensitive samples (e.g., [bmim][AlCl4]) can be successfully ionized. Furthermore, detection of organometallic catalysts (including air-sensitive [Rh-MeDuPHOS][OTf]) in ionic liquids, a traditionally challenging task due to strong ion suppression effect from ionic liquids, can be enabled using PESI. In addition, PESI can be an ideal approach for monitoring solvent-free reactions. Using PESI-MS, we successfully examined the alkylation of amines by alcohols, the conversion of pyrylium into pyridinium, and the condensation of aldehydes with indoles as well as air- and moisture-sensitive reactions such as the oxidation of ferrocene and the condensation of pyrazoles with borohydride. Interestingly, besides the expected reaction products, the reaction intermediates such as the monopyrazolylborate ion were also observed, providing insightful information for reaction mechanisms. We believe that the presented solvent-free PESI-MS method would impact the green chemistry field.

  15. Substrate-Coated Illumination Droplet Spray Ionization: Real-Time Monitoring of Photocatalytic Reactions

    NASA Astrophysics Data System (ADS)

    Zhang, Hong; Li, Na; Zhao, Dandan; Jiang, Jie; You, Hong

    2017-09-01

    Real-time monitoring of photocatalytic reactions facilitates the elucidation of the mechanisms of the reactions. However, suitable tools for real-time monitoring are lacking. Herein, a novel method based on droplet spray ionization named substrate-coated illumination droplet spray ionization (SCI-DSI) for direct analysis of photocatalytic reaction solution is reported. SCI-DSI addresses many of the analytical limitations of electrospray ionization (ESI) for analysis of photocatalytic-reaction intermediates, and has potential for both in situ analysis and real-time monitoring of photocatalytic reactions. In SCI-DSI-mass spectrometry (MS), a photocatalytic reaction occurs by loading sample solutions onto the substrate-coated cover slip and by applying UV light above the modified slip; one corner of this slip adjacent to the inlet of a mass spectrometer is the high-electric-field location for launching a charged-droplet spray. After both testing and optimizing the performance of SCI-DSI, the value of this method for in situ analysis and real-time monitoring of photocatalytic reactions was demonstrated by the removal of cyclophosphamide (CP) in TiO2/UV. Reaction times ranged from seconds to minutes, and the proposed reaction intermediates were captured and identified by tandem mass spectrometry. Moreover, the free hydroxyl radical (·OH) was identified as the main radicals for CP removal. These results show that SCI-DSI is suitable for in situ analysis and real-time monitoring of CP removal under TiO2-based photocatalytic reactions. SCI-DSI is also a potential tool for in situ analysis and real-time assessment of the roles of radicals during CP removal under TiO2-based photocatalytic reactions. Graphical Abstract[Figure not available: see fulltext.

  16. Fabrication of gas sensor based on field ionization from SWCNTs with tripolar microelectrode

    NASA Astrophysics Data System (ADS)

    Cai, Shengbing; Zhang, Yong; Duan, Zhemin

    2012-12-01

    We report the nanofabrication of a sulfur dioxide (SO2) sensor with a tripolar on-chip microelectrode utilizing a film of single-walled carbon nanotubes (SWCNTs) as the field ionization cathode, where the ion flow current and the partial discharge current generated by the field ionization process of gaseous molecules can be gauged to gas species and concentration. The variation of the sensitivity is less than 4% for all of the tested devices, and the sensor has selectivity against gases such as He, NO2, CO, H2, SO2 and O2. Further, the sensor response presents well-defined and reproducible linear behavior with regard to concentration in the range investigated and a detection limitation of <˜0.5 ppm for SO2. More importantly, a tripolar on-chip microelectrode with SWCNTs as a cathode exhibits an impressive performance with respect to stability and anti-oxidation behavior, which are significantly better than had been possible before in the traditional bipolar sensor under explicit circumstances at room temperature.

  17. Automation of a Linear Accelerator Dosimetric Quality Assurance Program

    NASA Astrophysics Data System (ADS)

    Lebron Gonzalez, Sharon H.

    According to the American Society of Radiation Oncology, two-thirds of all cancer patients will receive radiation therapy during their illness with the majority of the treatments been delivered by a linear accelerator (linac). Therefore, quality assurance (QA) procedures must be enforced in order to deliver treatments with a machine in proper conditions. The overall goal of this project is to automate the linac's dosimetric QA procedures by analyzing and accomplishing various tasks. First, the photon beam dosimetry (i.e. total scatter correction factor, infinite percentage depth dose (PDD) and profiles) were parameterized. Parameterization consists of defining the parameters necessary for the specification of a dosimetric quantity model creating a data set that is portable and easy to implement for different applications including: beam modeling data input into a treatment planning system (TPS), comparing measured and TPS modelled data, the QA of a linac's beam characteristics, and the establishment of a standard data set for comparison with other data, etcetera. Second, this parameterization model was used to develop a universal method to determine the radiation field size of flattened (FF), flattening-filter-free (FFF) and wedge beams which we termed the parameterized gradient method (PGM). Third, the parameterized model was also used to develop a profile-based method for assessing the beam quality of photon FF and FFF beams using an ionization chamber array. The PDD and PDD change was also predicted from the measured profile. Lastly, methods were created to automate the multileaf collimator (MLC) calibration and QA procedures as well as the acquisition of the parameters included in monthly and annual photon dosimetric QA. A two field technique was used for the calculation of the MLC leaf relative offsets using an electronic portal imaging device (EPID). A step-and-shoot technique was used to accurately acquire the radiation field size, flatness, symmetry, output and beam quality specifiers in a single delivery to an ionization chamber array for FF and FFF beams.

  18. Efficient Ionization Investigation for Flow Control and Energy Extraction

    NASA Technical Reports Server (NTRS)

    Schneider, Steven J.; Kamhawi, Hani; Blankson, Isaiah M.

    2009-01-01

    Nonequilibrium ionization of air by nonthermal means is explored for hypersonic vehicle applications. The method selected for evaluation generates a weakly ionized plasma using pulsed nanosecond, high-voltage discharges sustained by a lower dc voltage. These discharges promise to provide a means of energizing and sustaining electrons in the air while maintaining a nearly constant ion/neutral molecule temperature. This paper explores the use of short approx.5 nsec, high-voltage approx.12 to 22 kV, repetitive (40 to 100 kHz) discharges in generating a weakly ionized gas sustained by a 1 kV dc voltage in dry air at pressures from 10 to 80 torr. Demonstrated lifetimes of the sustainer discharge current approx.10 to 25 msec are over three orders of magnitude longer than the 5 nsec pulse that generates the electrons. This life is adequate for many high speed flows, enabling the possibility of exploiting weakly ionized plasma phenomena in flow-fields such as those in hypersonic inlets, combustors, and nozzles. Results to date are obtained in a volume of plasma between electrodes in a bell jar. The buildup and decay of the visible emission from the pulser excited air is photographed on an ICCD camera with nanosecond resolution and the time constants for visible emission decay are observed to be between 10 to 15 nsec decreasing as pressure increases. The application of the sustainer voltage does not change the visible emission decay time constant. Energy consumption as indicated by power output from the power supplies is 194 to 669 W depending on pulse repetition rate.

  19. SR90, strontium shaped-charge critical ionization velocity experiment

    NASA Technical Reports Server (NTRS)

    Wescott, Eugene M.; Stenbaek-Nielsen, Hans; Swift, Daniel W.; Valenzuela, Arnoldo; Rees, David

    1990-01-01

    In May 1986 an experiment was performed to test Alfven's critical ionization velocity (CIV) effect in free space, using the first high explosive shaped charge with a conical liner of strontium metal. The release, made at 540 km altitude at dawn twilight, was aimed at 48 deg to B. The background electron density was 1.5 x 10(exp 4) cu cm. A faint field-aligned Sr(+) ion streak with tip velocity of 2.6 km/s was observed from two optical sites. Using two calibration methods, it was calculated that between 4.5 x 10(exp 20) and 2 x 10(exp 21) ions were visible. An ionization time constant of 1920 s was calculated for Sr from the solar UV spectrum and ionization cross section which combined with a computer simulation of the injection predicts 1.7 x 10(exp 21) solar UV ions in the low-velocity part of the ion streak. Thus all the observed ions are from solar UV ionization of the slow (less than critical) velocity portion of the neutral jet. The observed neutral Sr velocity distribution and computer simulations indicate that 2 x 10(exp 21) solar UV ions would have been created from the fast (greater than critical) part of the jet. They would have been more diffuse, and were not observed. Using this fact it was estimated that any CIV ions created were less than 10(exp 21). It was concluded that future Sr CIV free space experiments should be conducted below the UV shadow height and in much larger background plasma density.

  20. Propagation of a laser-driven relativistic electron beam inside a solid dielectric.

    PubMed

    Sarkisov, G S; Ivanov, V V; Leblanc, P; Sentoku, Y; Yates, K; Wiewior, P; Chalyy, O; Astanovitskiy, A; Bychenkov, V Yu; Jobe, D; Spielman, R B

    2012-09-01

    Laser probe diagnostics: shadowgraphy, interferometry, and polarimetry were used for a comprehensive characterization of ionization wave dynamics inside a glass target induced by a laser-driven, relativistic electron beam. Experiments were done using the 50-TW Leopard laser at the University of Nevada, Reno. We show that for a laser flux of ∼2 × 10(18) W/cm2 a hemispherical ionization wave propagates at c/3 for 10 ps and has a smooth electron-density distribution. The maximum free-electron density inside the glass target is ∼2 × 10(19) cm-3, which corresponds to an ionization level of ∼0.1%. Magnetic fields and electric fields do not exceed ∼15 kG and ∼1 MV/cm, respectively. The electron temperature has a hot, ringlike structure with a maximum of ∼0.7 eV. The topology of the interference phase shift shows the signature of the "fountain effect", a narrow electron beam that fans out from the propagation axis and heads back to the target surface. Two-dimensional particle-in-cell (PIC) computer simulations demonstrate radial spreading of fast electrons by self-consistent electrostatic fields driven by laser. The very low ionization observed after the laser heating pulse suggests a fast recombination on the sub-ps time scale.

  1. Multi-fluid Modeling of Magnetosonic Wave Propagation in the Solar Chromosphere: Effects of Impact Ionization and Radiative Recombination

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maneva, Yana G.; Laguna, Alejandro Alvarez; Poedts, Stefaan

    2017-02-20

    In order to study chromospheric magnetosonic wave propagation including, for the first time, the effects of ion–neutral interactions in the partially ionized solar chromosphere, we have developed a new multi-fluid computational model accounting for ionization and recombination reactions in gravitationally stratified magnetized collisional media. The two-fluid model used in our 2D numerical simulations treats neutrals as a separate fluid and considers charged species (electrons and ions) within the resistive MHD approach with Coulomb collisions and anisotropic heat flux determined by Braginskiis transport coefficients. The electromagnetic fields are evolved according to the full Maxwell equations and the solenoidality of the magneticmore » field is enforced with a hyperbolic divergence-cleaning scheme. The initial density and temperature profiles are similar to VAL III chromospheric model in which dynamical, thermal, and chemical equilibrium are considered to ensure comparison to existing MHD models and avoid artificial numerical heating. In this initial setup we include simple homogeneous flux tube magnetic field configuration and an external photospheric velocity driver to simulate the propagation of MHD waves in the partially ionized reactive chromosphere. In particular, we investigate the loss of chemical equilibrium and the plasma heating related to the steepening of fast magnetosonic wave fronts in the gravitationally stratified medium.« less

  2. Prediction of the critical reduced electric field strength for carbon dioxide and its mixtures with copper vapor from Boltzmann analysis for a gas temperature range of 300 K to 4000 K at 0.4 MPa

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Xingwen, E-mail: xwli@mail.xjtu.edu.cn; Guo, Xiaoxue; Zhao, Hu

    2015-04-14

    The influence of copper vapor mixed in hot CO{sub 2} on dielectric breakdown properties of gas mixture at a fixed pressure of 0.4 MPa for a temperature range of 300 K–4000 K is numerically analyzed. First, the equilibrium composition of hot CO{sub 2} with different copper fractions is calculated using a method based on mass action law. The next stage is devoted to computing the electron energy distribution functions (EEDF) by solving the two-term Boltzmann equation. The reduced ionization coefficient, the reduced attachment coefficient, and the reduced effective ionization coefficient are then obtained based on the EEDF. Finally, the critical reduced electric fieldmore » (E/N){sub cr} is obtained. The results indicate that an increasing mole fraction of copper markedly reduces (E/N){sub cr} of the CO{sub 2}–Cu gas mixtures because of copper's low ionization potential and large ionization cross section. Additionally, the generation of O{sub 2} from the thermal dissociation of CO{sub 2} contributes to the increase of (E/N){sub cr} of CO{sub 2}–Cu hot gas mixtures from about 2000 K to 3500 K.« less

  3. Electromagnetic Fields and Public Health: Mobile Phones

    MedlinePlus

    ... Ebola virus disease » Home / News / Fact sheets / Detail Electromagnetic fields and public health: mobile phones 8 October ... fixed antennas called base stations. Radiofrequency waves are electromagnetic fields, and unlike ionizing radiation such as X- ...

  4. Quantum and semiclassical physics behind ultrafast optical nonlinearity in the midinfrared: the role of ionization dynamics within the field half cycle.

    PubMed

    Serebryannikov, E E; Zheltikov, A M

    2014-07-25

    Ultrafast ionization dynamics within the field half cycle is shown to be the key physical factor that controls the properties of optical nonlinearity as a function of the carrier wavelength and intensity of a driving laser field. The Schrödinger-equation analysis of a generic hydrogen quantum system reveals universal tendencies in the wavelength dependence of optical nonlinearity, shedding light on unusual properties of optical nonlinearities in the midinfrared. For high-intensity low-frequency fields, free-state electrons are shown to dominate over bound electrons in the overall nonlinear response of a quantum system. In this regime, semiclassical models are shown to offer useful insights into the physics behind optical nonlinearity.

  5. Observed rate of ionization in shaped-charge releases of barium in the ionosphere

    NASA Technical Reports Server (NTRS)

    Hallinan, Thomas J.

    1988-01-01

    Data from 36 Ba shaped-charge releases carried out at an angle of less than 25 deg to the magnetic field, by the technique of Wescott et al. (1972) and Michel (1974), were examined for evidence of a sustained rate of ionization in excess of that attributable to sunlight. In four of the experiments, the time constant for the decay of the neutrals was measured using an ultrasensitive color TV camera and was found to have a value of about 30 sec, consistent with slow (solar) ionization. Although the qualitative appearance of most jets was found to be consistent with a slow process of ionization, some releases produced a thin confined jet that was suggestive of rapid ionization. Two of these jets were analyzed in detail, but no evidence of anomalous ionization was produced. The data obtained in this work agree with the geometrical predictions of the Swift model.

  6. Coulomb-repulsion-assisted double ionization from doubly excited states of argon

    NASA Astrophysics Data System (ADS)

    Liao, Qing; Winney, Alexander H.; Lee, Suk Kyoung; Lin, Yun Fei; Adhikari, Pradip; Li, Wen

    2017-08-01

    We report a combined experimental and theoretical study to elucidate nonsequential double-ionization dynamics of argon atoms at laser intensities near and below the recollision-induced ionization threshold. Three-dimensional momentum measurements of two electrons arising from strong-field nonsequential double ionization are achieved with a custom-built electron-electron-ion coincidence apparatus, showing laser intensity-dependent Coulomb repulsion effect between the two outgoing electrons. Furthermore, a previously predicted feature of double ionization from doubly excited states is confirmed in the distributions of sum of two-electron momenta. A classical ensemble simulation suggests that Coulomb-repulsion-assisted double ionization from doubly excited states is at play at low laser intensity. This mechanism can explain the dependence of Coulomb repulsion effect on the laser intensity, as well as the transition from side-by-side to back-to-back dominant emission along the laser polarization direction.

  7. Free-air ionization chamber, FAC-IR-300, designed for medium energy X-ray dosimetry

    NASA Astrophysics Data System (ADS)

    Mohammadi, S. M.; Tavakoli-Anbaran, H.; Zeinali, H. Z.

    2017-01-01

    The primary standard for X-ray photons is based on parallel-plate free-air ionization chamber (FAC). Therefore, the Atomic Energy Organization of Iran (AEOI) is tried to design and build the free-air ionization chamber, FAC-IR-300, for low and medium energy X-ray dosimetry. The main aim of the present work is to investigate specification of the FAC-IR-300 ionization chamber and design it. FAC-IR-300 dosimeter is composed of two parallel plates, a high voltage (HV) plate and a collector plate, along with a guard electrode that surrounds the collector plate. The guard plate and the collector were separated by an air gap. For obtaining uniformity in the electric field distribution, a group of guard strips was used around the ionization chamber. These characterizations involve determining the exact dimensions of the ionization chamber by using Monte Carlo simulation and introducing correction factors.

  8. Visualizing and Steering Dissociative Frustrated Double Ionization of Hydrogen Molecules

    NASA Astrophysics Data System (ADS)

    Zhang, Wenbin; Yu, Zuqing; Gong, Xiaochun; Wang, Junping; Lu, Peifen; Li, Hui; Song, Qiying; Ji, Qinying; Lin, Kang; Ma, Junyang; Li, Hanxiao; Sun, Fenghao; Qiang, Junjie; Zeng, Heping; He, Feng; Wu, Jian

    2017-12-01

    We experimentally visualize the dissociative frustrated double ionization of hydrogen molecules by using few-cycle laser pulses in a pump-probe scheme, in which process the tunneling ionized electron is recaptured by one of the outgoing nuclei of the breaking molecule. Three internuclear distances are recognized to enhance the dissociative frustrated double ionization of molecules at different instants after the first ionization step. The recapture of the electron can be further steered to one of the outgoing nuclei as desired by using phase-controlled two-color laser pulses. Both the experimental measurements and numerical simulations suggest that the Rydberg atom is favored to emit to the direction of the maximum of the asymmetric optical field. Our results on the one hand intuitively visualize the dissociative frustrated double ionization of molecules, and on the other hand open the possibility to selectively excite the heavy fragment ejected from a molecule.

  9. FAST TRACK COMMUNICATION: Attosecond correlation dynamics during electron tunnelling from molecules

    NASA Astrophysics Data System (ADS)

    Walters, Zachary B.; Smirnova, Olga

    2010-08-01

    In this communication, we present an analytical theory of strong-field ionization of molecules, which takes into account the rearrangement of multiple interacting electrons during the ionization process. We show that such rearrangement offers an alternative pathway to the ionization of orbitals more deeply bound than the highest occupied molecular orbital. This pathway is not subject to the full exponential suppression characteristic of direct tunnel ionization from the deeper orbitals. The departing electron produces an 'attosecond correlation pulse' which controls the rearrangement during the tunnelling process. The shape and duration of this pulse are determined by the electronic structure of the relevant states, molecular orientation and laser parameters.

  10. The Massive Stellar Population in the Diffuse Ionized Gas of M33

    NASA Technical Reports Server (NTRS)

    Hoopes, Charles G.; Walterbos, Rene A. M.

    1995-01-01

    We compare Far-UV, H alpha, and optical broadband images of the nearby spiral galaxy M33, to investigate the massive stars associated with the diffuse ionized gas. The H-alpha/FUV ratio is higher in HII regions than in the DIG, possibly indicating that an older population ionizes the DIG. The broad-band colors support this conclusion. The HII region population is consistent with a young burst, while the DIG colors resemble an older population with constant star formation. Our results indicate that there may be enough massive field stars to ionize the DIG, without the need for photon leakage from HII regions.

  11. MAGNETIZED GAS IN THE SMITH HIGH VELOCITY CLOUD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hill, Alex S.; McClure-Griffiths, Naomi M.; Mao, S. A.

    2013-11-01

    We report the first detection of magnetic fields associated with the Smith High Velocity Cloud. We use a catalog of Faraday rotation measures toward extragalactic radio sources behind the Smith Cloud, new H I observations from the Robert C. Byrd Green Bank Telescope, and a spectroscopic map of Hα from the Wisconsin H-Alpha Mapper Northern Sky Survey. There are enhancements in rotation measure (RM) of ≈100 rad m{sup –2} which are generally well correlated with decelerated Hα emission. We estimate a lower limit on the line-of-sight component of the field of ≈8 μG along a decelerated filament; this is amore » lower limit due to our assumptions about the geometry. No RM excess is evident in sightlines dominated by H I or Hα at the velocity of the Smith Cloud. The smooth Hα morphology of the emission at the Smith Cloud velocity suggests photoionization by the Galactic ionizing radiation field as the dominant ionization mechanism, while the filamentary morphology and high (≈1 Rayleigh) Hα intensity of the lower-velocity magnetized ionized gas suggests an ionization process associated with shocks due to interaction with the Galactic interstellar medium. The presence of the magnetic field may contribute to the survival of high velocity clouds like the Smith Cloud as they move from the Galactic halo to the disk. We expect these data to provide a test for magnetohydrodynamic simulations of infalling gas.« less

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takahashi, Masayuki, E-mail: m.takahashi@al.t.u-tokyo.ac.jp; Ohnishi, Naofumi

    A filamentary plasma is reproduced based on a fully kinetic model of electron and ion transports coupled with electromagnetic wave propagation. The discharge plasma transits from discrete to diffusive patterns at a 110-GHz breakdown, with decrease in the ambient pressure, because of the rapid electron diffusion that occurs during an increase in the propagation speed of the ionization front. A discrete plasma is obtained at low pressures when a low-frequency microwave is irradiated because the ionization process becomes more dominant than the electron diffusion, when the electrons are effectively heated by the low-frequency microwave. The propagation speed of the plasmamore » increases with decrease in the incident microwave frequency because of the higher ionization frequency and faster plasma diffusion resulting from the increase in the energy-absorption rate. An external magnetic field is applied to the breakdown volume, which induces plasma filamentation at lower pressures because the electron diffusion is suppressed by the magnetic field. The thrust performance of a microwave rocket is improved by the magnetic fields corresponding to the electron cyclotron resonance (ECR) and its higher-harmonic heating, because slower propagation of the ionization front and larger energy-absorption rates are obtained at lower pressures. It would be advantageous if the fundamental mode of ECR heating is coupled with a lower frequency microwave instead of combining the higher-harmonic ECR heating with the higher frequency microwave. This can improve the thrust performance with smaller magnetic fields even if the propagation speed increases because of the decrease in the incident microwave frequency.« less

  13. Transition-matrix theory for two-photon ionization of rare-gas atoms and isoelectronic ions with application to argon

    NASA Astrophysics Data System (ADS)

    Starace, Anthony F.; Jiang, Tsin-Fu

    1987-08-01

    A transition-matrix theory for two-photon ionization processes in rare-gas atoms or isoelectronic ions is presented. Uncoupled ordinary differential equations are obtained for the radial functions needed to calculate the two-photon transition amplitude. The implications of these equations are discussed in detail. In particular, the role of correlations involving virtually excited electron pairs, which are known to be essential to the description of single-photon processes, is examined for multiphoton ionization processes. Additionally, electron scattering interactions between two electron-hole pairs are introduced into our transition amplitude in the boson approximation since these have been found important in two-photon ionization of xenon by L'Huillier and Wendin [J. Phys. B 20, L37 (1987)]. Application of our theory is made to two-photon ionization of the 3p subshell of argon below the one-photon ionization threshold. Our results are compared to previous calculations of McGuire [Phys. Rev. A 24, 835 (1981)], of Moccia, Rahman, and Rizzo [J. Phys. B 16, 2737 (1983)], and of Pindzola and Kelly [Phys. Rev. A 11, 1543 (1975)]. Results are presented for both circularly and linearly polarized photons. Among our findings are, firstly, that the electron scattering interactions, which have not been included in previous calculations for argon, produce a substantial reduction in the two-photon single-ionization cross section below the one-photon ionization threshold, which is in agreement with findings of L'Huillier and Wendin for xenon. Secondly, we find that de-excitation of virtually excited electron pairs by absorption of a photon is important for describing the interaction of the atom with the photon field, as in the case of single-photon ionization processes, but that further excitation of virtually excited electron pairs by the photon field has completely negligible effects, indicating a major simplification of the theory for higher-order absorption processes.

  14. Reexamination of Induction Heating of Primitive Bodies in Protoplanetary Disks

    NASA Astrophysics Data System (ADS)

    Menzel, Raymond L.; Roberge, Wayne G.

    2013-10-01

    We reexamine the unipolar induction mechanism for heating asteroids originally proposed in a classic series of papers by Sonett and collaborators. As originally conceived, induction heating is caused by the "motional electric field" that appears in the frame of an asteroid immersed in a fully ionized, magnetized solar wind and drives currents through its interior. However, we point out that classical induction heating contains a subtle conceptual error, in consequence of which the electric field inside the asteroid was calculated incorrectly. The problem is that the motional electric field used by Sonett et al. is the electric field in the freely streaming plasma far from the asteroid; in fact, the motional field vanishes at the asteroid surface for realistic assumptions about the plasma density. In this paper we revisit and improve the induction heating scenario by (1) correcting the conceptual error by self-consistently calculating the electric field in and around the boundary layer at the asteroid-plasma interface; (2) considering weakly ionized plasmas consistent with current ideas about protoplanetary disks; and (3) considering more realistic scenarios that do not require a fully ionized, powerful T Tauri wind in the disk midplane. We present exemplary solutions for two highly idealized flows that show that the interior electric field can either vanish or be comparable to the fields predicted by classical induction depending on the flow geometry. We term the heating driven by these flows "electrodynamic heating," calculate its upper limits, and compare them to heating produced by short-lived radionuclides.

  15. Large-scale magnetic field in the accretion discs of young stars: the influence of magnetic diffusion, buoyancy and Hall effect

    NASA Astrophysics Data System (ADS)

    Khaibrakhmanov, S. A.; Dudorov, A. E.; Parfenov, S. Yu.; Sobolev, A. M.

    2017-01-01

    We investigate the fossil magnetic field in the accretion and protoplanetary discs using the Shakura and Sunyaev approach. The distinguishing feature of this study is the accurate solution of the ionization balance equations and the induction equation with Ohmic diffusion, magnetic ambipolar diffusion, buoyancy and the Hall effect. We consider the ionization by cosmic rays, X-rays and radionuclides, radiative recombinations, recombinations on dust grains and also thermal ionization. The buoyancy appears as the additional mechanism of magnetic flux escape in the steady-state solution of the induction equation. Calculations show that Ohmic diffusion and magnetic ambipolar diffusion constraint the generation of the magnetic field inside the `dead' zones. The magnetic field in these regions is quasi-vertical. The buoyancy constraints the toroidal magnetic field strength close to the disc inner edge. As a result, the toroidal and vertical magnetic fields become comparable. The Hall effect is important in the regions close to the borders of the `dead' zones because electrons are magnetized there. The magnetic field in these regions is quasi-radial. We calculate the magnetic field strength and geometry for the discs with accretion rates (10^{-8}-10^{-6}) {M}_{⊙} {yr}^{-1}. The fossil magnetic field geometry does not change significantly during the disc evolution while the accretion rate decreases. We construct the synthetic maps of dust emission polarized due to the dust grain alignment by the magnetic field. In the polarization maps, the `dead' zones appear as the regions with the reduced values of polarization degree in comparison to those in the adjacent regions.

  16. Timing Recollision in Nonsequential Double Ionization by Intense Elliptically Polarized Laser Pulses.

    PubMed

    Kang, H; Henrichs, K; Kunitski, M; Wang, Y; Hao, X; Fehre, K; Czasch, A; Eckart, S; Schmidt, L Ph H; Schöffler, M; Jahnke, T; Liu, X; Dörner, R

    2018-06-01

    We examine correlated electron and doubly charged ion momentum spectra from strong field double ionization of neon employing intense elliptically polarized laser pulses. An ellipticity-dependent asymmetry of correlated electron and ion momentum distributions has been observed. Using a 3D semiclassical model, we demonstrate that our observations reflect the subcycle dynamics of the recollision process. Our Letter reveals a general physical picture for recollision impact double ionization with elliptical polarization and demonstrates the possibility of ultrafast control of the recollision dynamics.

  17. Timing Recollision in Nonsequential Double Ionization by Intense Elliptically Polarized Laser Pulses

    NASA Astrophysics Data System (ADS)

    Kang, H.; Henrichs, K.; Kunitski, M.; Wang, Y.; Hao, X.; Fehre, K.; Czasch, A.; Eckart, S.; Schmidt, L. Ph. H.; Schöffler, M.; Jahnke, T.; Liu, X.; Dörner, R.

    2018-06-01

    We examine correlated electron and doubly charged ion momentum spectra from strong field double ionization of neon employing intense elliptically polarized laser pulses. An ellipticity-dependent asymmetry of correlated electron and ion momentum distributions has been observed. Using a 3D semiclassical model, we demonstrate that our observations reflect the subcycle dynamics of the recollision process. Our Letter reveals a general physical picture for recollision impact double ionization with elliptical polarization and demonstrates the possibility of ultrafast control of the recollision dynamics.

  18. Towards a fluid model for the streamer-to-leader transition in lightning channels.

    NASA Astrophysics Data System (ADS)

    Malagón, Alejandro; Luque, Alejandro

    2017-04-01

    Electric discharges are a very common phenomenon on Earth's atmosphere. However some of their features are still poorly understood. A sufficiently long electric discharge, such as a lightning channel, propagates along two phases. The first phase is known as "streamer phase" and consists in thin filaments of ionized air that advance due to a high electric field at their tip. The dominant process of ionization is impact ionization, involving electrons and the two major components in the air mass, which are nitrogen and oxygen. In the second phase called "leader phase", the electric current of the streamers has increased the air temperature highly enough so the thermal energy of the molecules present in the air is comparable to the ionization potential of nitrogen and oxygen. The underlying mechanism whereby the streamer-to-leader transition occurs is not precisely known. High-speed observations show that in negative discharges, comprising 90% of cloud-to-ground lightning, this transition is not smooth but mediated by the formation of a "space leader", that is, an isolated hot segment within the streamer region. This space leader is connected to the main leader in a sudden jump and therefore one speaks of a "stepped leader". However, the origin of the space leader is so far unknown. Here we present recent steps in the modeling of the streamer-to-leader transition, which requires coupling fluid mechanics, electromagnetism and air plasma chemistry. We discuss our work towards a model that solves Euler's equations (3 dimensions reduced to 2 by virtue of symmetry) coupled to electron drift using high-resolution finite volume methods for hyperbolic systems [1] implemented in the software package CLAWPACK. The drift of electrons is determined by a self-consistent electric field, which we obtain by solving Poisson's equation by means of off-the-shelf solvers. Our model also includes a selection of chemical reactions that have a relevant effect on the electron density in air, such as impact ionization, attachment and detachment. Using this model we plan to test the hypothesis that leader stepping results from an attachment instability that creates low-conductivity, high-field regions in a streamer corona, as recently discussed for sprites in [2]. With our detailed model for gas heating and expansion we will investigate whether the attachment instability leads to heating of air to a temperature high enough to develop space stems. A positive answer to this question would elucidate the physical mechanism of leader stepping. References [1] R.J. LeVeque. Finite Volume Methods for Hyperbolic Problems. Cambridge Texts in Applied Mathematics. Cambridge University Press, 2002. [2] A. Luque, H. C. Stenbaek-Nielsen, M. G. McHarg, and R.K. Haaland. Srpite beads and glows arising from the attachment instability in streamer channels. J. Geophys. Res. (Space Phys), 121, 2016.

  19. Ionization Efficiency in the Dayside Martian Upper Atmosphere

    NASA Astrophysics Data System (ADS)

    Cui, J.; Wu, X.-S.; Xu, S.-S.; Wang, X.-D.; Wellbrock, A.; Nordheim, T. A.; Cao, Y.-T.; Wang, W.-R.; Sun, W.-Q.; Wu, S.-Q.; Wei, Y.

    2018-04-01

    Combining the Mars Atmosphere and Volatile Evolution measurements of neutral atmospheric density, solar EUV/X-ray flux, and differential photoelectron intensity made during 240 nominal orbits, we calculate the ionization efficiency, defined as the ratio of the secondary (photoelectron impact) ionization rate to the primary (photon impact) ionization rate, in the dayside Martian upper atmosphere under a range of solar illumination conditions. Both the CO2 and O ionization efficiencies tend to be constant from 160 km up to 250 km, with respective median values of 0.19 ± 0.03 and 0.27 ± 0.04. These values are useful for fast calculation of the ionization rate in the dayside Martian upper atmosphere, without the need to construct photoelectron transport models. No substantial diurnal and solar cycle variations can be identified, except for a marginal trend of reduced ionization efficiency approaching the terminator. These observations are favorably interpreted by a simple scenario with ionization efficiencies, as a first approximation, determined by a comparison between relevant cross sections. Our analysis further reveals a connection between regions with strong crustal magnetic fields and regions with high ionization efficiencies, which are likely indicative of more efficient vertical transport of photoelectrons near magnetic anomalies.

  20. Sequential Double lonization: The Timing of Release

    NASA Astrophysics Data System (ADS)

    Pfeiffer, A.

    2011-05-01

    The timing of electron release in strong field double ionization poses great challenges both for conceptual definition and for conducting experimental measurement. Here we present coincidence momentum measurements of the doubly charged ion and of the two electrons arising from double ionization of Argon using elliptically (close to circularly) polarized laser pulses. Based on a semi-classical model, the ionization times are calculated from the measured electron momenta across a large intensity range. Exploiting the attoclock technique we have direct access to timings on a coarse and on a fine scale, similar to the hour and the minute hand of a clock. In our attoclock, the magnitude of the electron momenta follows the envelope of the laser pulse and gives a coarse timing for the electron releases (the hour hand), while the fine timing (the minute hand) is provided by the emission angle of the electrons. The first of our findings is that due to depletion the averaged ionization time moves towards the beginning of the pulse with increasing intensity, confirming the results of Maharjan et al., and that the ion momentum distribution projected onto the minor polarization axis shows a bifurcation from a 3-peak to a 4-peak structure. This effect can be fully understood by modeling the process semi-classically in the independent electron approximation following the simple man's model. The ionization time measurement performed with the attoclock shows that the release time of the first electron is in good agreement with the semi-classical simulation performed on the basis of Sequential Double lonization (SDI), whereas the ionization of the second electron occurs significantly earlier than predicted. This observation suggests that electron correlation and other Non-Sequential Double lonization (NSDI) mechanisms may play an important role also in the case of strong field double ionization by close-to-circularly polarized laser pulses. The timing of electron release in strong field double ionization poses great challenges both for conceptual definition and for conducting experimental measurement. Here we present coincidence momentum measurements of the doubly charged ion and of the two electrons arising from double ionization of Argon using elliptically (close to circularly) polarized laser pulses. Based on a semi-classical model, the ionization times are calculated from the measured electron momenta across a large intensity range. Exploiting the attoclock technique we have direct access to timings on a coarse and on a fine scale, similar to the hour and the minute hand of a clock. In our attoclock, the magnitude of the electron momenta follows the envelope of the laser pulse and gives a coarse timing for the electron releases (the hour hand), while the fine timing (the minute hand) is provided by the emission angle of the electrons. The first of our findings is that due to depletion the averaged ionization time moves towards the beginning of the pulse with increasing intensity, confirming the results of Maharjan et al., and that the ion momentum distribution projected onto the minor polarization axis shows a bifurcation from a 3-peak to a 4-peak structure. This effect can be fully understood by modeling the process semi-classically in the independent electron approximation following the simple man's model. The ionization time measurement performed with the attoclock shows that the release time of the first electron is in good agreement with the semi-classical simulation performed on the basis of Sequential Double lonization (SDI), whereas the ionization of the second electron occurs significantly earlier than predicted. This observation suggests that electron correlation and other Non-Sequential Double lonization (NSDI) mechanisms may play an important role also in the case of strong field double ionization by close-to-circularly polarized laser pulses. In collaboration with C. Cirelli and M. Smolarski, Physics Department, ETH Zurich, 8093 Zurich, Switzerland; R. Doerner, Institut fiir Kernphysik, Johann Wolfgang Goethe Universitat, 60438 Frankfurt am Main, Germany; and U. Keller, ETH Zurich.

  1. Double ionization in R -matrix theory using a two-electron outer region

    NASA Astrophysics Data System (ADS)

    Wragg, Jack; Parker, J. S.; van der Hart, H. W.

    2015-08-01

    We have developed a two-electron outer region for use within R -matrix theory to describe double ionization processes. The capability of this method is demonstrated for single-photon double ionization of He in the photon energy region between 80 and 180 eV. The cross sections are in agreement with established data. The extended R -matrix with time dependence method also provides information on higher-order processes, as demonstrated by the identification of signatures for sequential double ionization processes involving an intermediate He+ state with n =2 .

  2. The VIMOS Ultra Deep Survey: Nature, ISM properties, and ionizing spectra of CIII]λ1909 emitters at z = 2-4

    NASA Astrophysics Data System (ADS)

    Nakajima, K.; Schaerer, D.; Le Fèvre, O.; Amorín, R.; Talia, M.; Lemaux, B. C.; Tasca, L. A. M.; Vanzella, E.; Zamorani, G.; Bardelli, S.; Grazian, A.; Guaita, L.; Hathi, N. P.; Pentericci, L.; Zucca, E.

    2018-05-01

    Context. Ultraviolet (UV) emission-line spectra are used to spectroscopically confirm high-z galaxies and increasingly also to determine their physical properties. Aims: We construct photoionization models to interpret the observed UV spectra of distant galaxies in terms of the dominant radiation field and the physical condition of the interstellar medium (ISM). These models are applied to new spectroscopic observations from the VIMOS Ultra Deep Survey (VUDS). Methods: We construct a large grid of photoionization models, which use several incident radiation fields (stellar populations, active galactic nuclei (AGNs), mix of stars and AGNs, blackbodies, and others), and cover a wide range of metallicities and ionization parameters. From these models we derive new spectral UV line diagnostics using equivalent widths (EWs) of [CIII]λ1909 doublet, CIVλ1549 doublet and the line ratios of [CIII], CIV, and He IIλ1640 recombination lines. We apply these diagnostics to a sample of 450 [CIII]-emitting galaxies at redshifts z = 2-4 previously identified in VUDS. Results: We demonstrate that our photoionization models successfully reproduce observations of nearby and high-redshift sources with known radiation field and/or metallicity. For star-forming galaxies our models predict that [CIII] EW peaks at sub-solar metallicities, whereas CIV EW peaks at even lower metallicity. Using the UV diagnostics, we show that the average star-forming galaxy (EW([CIII]) 2 Å) based on the composite of the 450 UV-selected galaxies' spectra The inferred metallicity and ionization parameter is typically Z = 0.3-0.5 Z⊙ and logU = -2.7 to - 3, in agreement with earlier works at similar redshifts. The models also indicate an average age of 50-200 Myr since the beginning of the current star-formation, and an ionizing photon production rate, ξion, of logξion/erg-1 Hz = 25.3-25.4. Among the sources with EW([CIII]) >= 10 Å, approximately 30% are likely dominated by AGNs. The metallicity derived for galaxies with EW(CIII) = 10-20 Å is low, Z = 0.02-0.2 Z⊙, and the ionization parameter higher (logU -1.7) than the average star-forming galaxy. To explain the average UV observations of the strongest but rarest [CIII] emitters (EW([CIII]) > 20 Å), we find that stellar photoionization is clearly insufficient. A radiation field consisting of a mix of a young stellar population (logξion/erg-1 Hz 25.7) plus an AGN component is required. Furthermore an enhanced C/O abundance ratio (up to the solar value) is needed for metallicities Z = 0.1-0.2 Z⊙ and logU = -1.7 to - 1.5. Conclusions: A large grid of photoionization models has allowed us to propose new diagnostic diagrams to classify the nature of the ionizing radiation field (star formation or AGN) of distant galaxies using UV emission lines, and to constrain their ISM properties. We have applied this grid to a sample of [CIII]-emitting galaxies at z = 2-4 detected in VUDS, finding a range of physical properties and clear evidence for significant AGN contribution in rare sources with very strong [CIII] emission. The UV diagnostics we propose should also serve as an important basis for the interpretation of upcoming observations of high-redshift galaxies. Based on data obtained with the European Southern Observatory Very Large Telescope, Paranal, Chile, under Large Program 185.A-0791.JSPS Overseas Research Fellow.

  3. Effective ionization coefficient of C5 perfluorinated ketone and its mixtures with air

    NASA Astrophysics Data System (ADS)

    Aints, Märt; Jõgi, Indrek; Laan, Matti; Paris, Peeter; Raud, Jüri

    2018-04-01

    C5 perfluorinated ketone (C5 PFK with UIPAC chemical name 1,1,1,3,4,4,4-heptafluoro-3-(trifluoromethyl)-2-butanone and sold by 3M as Novec™ 5110) has a high dielectric strength and a low global warming potential, which makes it interesting as an insulating gas in medium and high-voltage applications. The study was carried out to determine the effective Townsend ionization coefficient α eff as a function of electric field strength and gas density for C5 PFK and for its mixtures with air. The non-self-sustained Townsend discharge between parallel plate electrodes was initiated by illuminating the cathode by UV radiation. The discharge current, I, was measured as a function of inter-electrode distance, d, at different gas densities, N, and electric field strengths, E. The effective ionization coefficient α eff was determined from the semi-logarithmic plots of I/I 0 against d. For each tested gas mixture, the density normalized effective ionization coefficient α eff/N was found to be a unique function of reduced electric field strength E/N. The measurements were carried out in the absolute pressure range of 0.05-1.3 bar and E/N range of 150-1200 Td. The increasing fraction of C5 PFK in air resulted in the decrease of effective ionization coefficient. The limiting electric field strength (E/N)lim where the effective ionization coefficient α eff became zero was 770 Td (190 kV cm-1 at 1 bar) for pure C5 PFK and decreased to 225 Td (78 kV cm-1 at 1.4 bar) for 7.6% C5 PFK/air mixture. The latter value of (E/N)lim is still more than two times higher than the (E/N)lim value of synthetic air and about two-thirds of the value corresponding to pure SF6. The investigated gas mixtures have the potential to become an alternative to SF6 in numerous high- and medium-voltage applications.

  4. Portal dosimetry for VMAT using integrated images obtained during treatment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bedford, James L., E-mail: James.Bedford@icr.ac.uk; Hanson, Ian M.; Hansen, Vibeke Nordmark

    2014-02-15

    Purpose: Portal dosimetry provides an accurate and convenient means of verifying dose delivered to the patient. A simple method for carrying out portal dosimetry for volumetric modulated arc therapy (VMAT) is described, together with phantom measurements demonstrating the validity of the approach. Methods: Portal images were predicted by projecting dose in the isocentric plane through to the portal image plane, with exponential attenuation and convolution with a double-Gaussian scatter function. Appropriate parameters for the projection were selected by fitting the calculation model to portal images measured on an iViewGT portal imager (Elekta AB, Stockholm, Sweden) for a variety of phantommore » thicknesses and field sizes. This model was then used to predict the portal image resulting from each control point of a VMAT arc. Finally, all these control point images were summed to predict the overall integrated portal image for the whole arc. The calculated and measured integrated portal images were compared for three lung and three esophagus plans delivered to a thorax phantom, and three prostate plans delivered to a homogeneous phantom, using a gamma index for 3% and 3 mm. A 0.6 cm{sup 3} ionization chamber was used to verify the planned isocentric dose. The sensitivity of this method to errors in monitor units, field shaping, gantry angle, and phantom position was also evaluated by means of computer simulations. Results: The calculation model for portal dose prediction was able to accurately compute the portal images due to simple square fields delivered to solid water phantoms. The integrated images of VMAT treatments delivered to phantoms were also correctly predicted by the method. The proportion of the images with a gamma index of less than unity was 93.7% ± 3.0% (1SD) and the difference between isocenter dose calculated by the planning system and measured by the ionization chamber was 0.8% ± 1.0%. The method was highly sensitive to errors in monitor units and field shape, but less sensitive to errors in gantry angle or phantom position. Conclusions: This method of predicting integrated portal images provides a convenient means of verifying dose delivered using VMAT, with minimal image acquisition and data processing requirements.« less

  5. Analysis of ionization wave dynamics in low-temperature plasma jets from fluid modeling supported by experimental investigations

    NASA Astrophysics Data System (ADS)

    Yousfi, M.; Eichwald, O.; Merbahi, N.; Jomaa, N.

    2012-08-01

    This work is devoted to fluid modeling based on experimental investigations of a classical setup of a low-temperature plasma jet. The latter is generated at atmospheric pressure using a quartz tube of small diameter crossed by helium gas flow and surrounded by an electrode system powered by a mono-polar high-voltage pulse. The streamer-like behavior of the fast plasma bullets or ionization waves launched in ambient air for every high-voltage pulse, already emphasized in the literature from experimental or analytical considerations or recent preliminary fluid models, is confirmed by a numerical one-moment fluid model for the simulation of the ionization wave dynamics. The dominant interactions between electron and the main ions present in He-air mixtures with their associated basic data are taken into account. The gradual dilution of helium in air outside the tube along the axis is also considered using a gas hydrodynamics model based on the Navier-Stokes equation assuming a laminar flow. Due to the low magnitude of the reduced electric field E/N (not exceeding 15 Td), it is first shown that consideration of the stepwise ionization of helium metastables is required to reach the critical size of the electron avalanches in order to initiate the formation of ionization waves. It is also shown that a gas pre-ionization ahead of the wave front of about 109 cm-3 (coming from Penning ionization without considering the gas photo-ionization) is required for the propagation. Furthermore, the second ionization wave experimentally observed during the falling time of the voltage pulse, between the powered electrode and the tube exit, is correlated with the electric field increase inside the ionized channel in the whole region between the electrode and the tube exit. The propagation velocity and the distance traveled by the front of the ionization wave outside the tube in the downstream side are consistent with the present experimental measurements. In comparison with the streamer dynamics in a classical corona discharge, it is shown that under the same gas composition the plasma jet ionization waves propagate with a lower velocity (about 5 times), and have a higher diameter (at least 10 times) and a lower plasma density (at least 100 times).

  6. Effect of partially ionized impurities and radiation on the effective critical electric field for runaway generation

    NASA Astrophysics Data System (ADS)

    Hesslow, L.; Embréus, O.; Wilkie, G. J.; Papp, G.; Fülöp, T.

    2018-07-01

    We derive a formula for the effective critical electric field for runaway generation and decay that accounts for the presence of partially ionized impurities in combination with synchrotron and bremsstrahlung radiation losses. We show that the effective critical field is drastically larger than the classical Connor–Hastie field, and even exceeds the value obtained by replacing the free electron density by the total electron density (including both free and bound electrons). Using a kinetic equation solver with an inductive electric field, we show that the runaway current decay after an impurity injection is expected to be linear in time and proportional to the effective critical electric field in highly inductive tokamak devices. This is relevant for the efficacy of mitigation strategies for runaway electrons since it reduces the required amount of injected impurities to achieve a certain current decay rate.

  7. A preliminary comparison of Na lidar and meteor radar zonal winds during geomagnetic quiet and disturbed conditions

    NASA Astrophysics Data System (ADS)

    Kishore Kumar, G.; Nesse Tyssøy, H.; Williams, Bifford P.

    2018-03-01

    We investigate the possibility that sufficiently large electric fields and/or ionization during geomagnetic disturbed conditions may invalidate the assumptions applied in the retrieval of neutral horizontal winds from meteor and/or lidar measurements. As per our knowledge, the possible errors in the wind estimation have never been reported. In the present case study, we have been using co-located meteor radar and sodium resonance lidar zonal wind measurements over Andenes (69.27°N, 16.04°E) during intense substorms in the declining phase of the January 2005 solar proton event (21-22 January 2005). In total, 14 h of measurements are available for the comparison, which covers both quiet and disturbed conditions. For comparison, the lidar zonal wind measurements are averaged over the same time and altitude as the meteor radar wind measurements. High cross correlations (∼0.8) are found in all height regions. The discrepancies can be explained in light of differences in the observational volumes of the two instruments. Further, we extended the comparison to address the electric field and/or ionization impact on the neutral wind estimation. For the periods of low ionization, the neutral winds estimated with both instruments are quite consistent with each other. During periods of elevated ionization, comparatively large differences are noticed at the highermost altitude, which might be due to the electric field and/or ionization impact on the wind estimation. At present, one event is not sufficient to make any firm conclusion. Further study with more co-located measurements are needed to test the statistical significance of the result.

  8. Measuring particle charge in an rf dusty plasma

    NASA Astrophysics Data System (ADS)

    Fung, Jerome; Liu, Bin; Goree, John; Nosenko, Vladimir

    2004-11-01

    A dusty plasma is an ionized gas containing micron-size particles of solid matter. A particle gains a large negative charge by collecting electrons and ions from the plasma. In a gas discharge, particles can be levitated by the sheath electric field above a horizontal planar electrode. Most dusty plasma experiments require a knowledge of the particle charge, which is a key parameter for all interactions with other particles and the plasma electric field. Several methods have been developed in the literature to measure the charge. The vertical resonance method uses Langmuir probe measurements of the ion density and video camera measurements of the amplitude of vertical particle oscillations, which are excited by modulating the rf voltage. Here, we report a new method that is a variation of the vertical resonance method. It uses the plasma potential and particle height, which can be measured more accurately than the ion density. We tested this method and compared the resulting charge to values obtained using the original resonance method as well as sound speed methods. Work supported by an NSF REU grant, NASA and DOE.

  9. Ultrasound ionization of biomolecules.

    PubMed

    Wu, Chen-I; Wang, Yi-Sheng; Chen, Nelson G; Wu, Chung-Yi; Chen, Chung-Hsuan

    2010-09-15

    To date, mass spectrometric analysis of biomolecules has been primarily performed with either matrix-assisted laser desorption/ionization (MALDI) or electrospray ionization (ESI). In this work, ultrasound produced by a simple piezoelectric device is shown as an alternative method for soft ionization of biomolecules. Precursor ions of proteins, saccharides and fatty acids showed little fragmentation. Cavitation is considered as a primary mechanism for the ionization of biomolecules. Copyright 2010 John Wiley & Sons, Ltd.

  10. Efficient ECH-assisted plasma start-up using trapped particle configuration in the versatile experiment spherical torus

    NASA Astrophysics Data System (ADS)

    An, YoungHwa; Lee, Jeongwon; Jo, JongGab; Jung, Bong-Ki; Lee, HyunYeong; Chung, Kyoung-Jae; Na, Yong-Su; Hahm, T. S.; Hwang, Y. S.

    2017-01-01

    An efficient and robust ECH (electron cyclotron heating)-assisted plasma start-up scheme with a low loop voltage and low volt-second consumption utilizing the trapped particle configuration (TPC) has been developed in the versatile experiment spherical torus (VEST). The TPC is a mirror-like magnetic field configuration providing a vertical magnetic field in the same direction as the equilibrium field. It significantly enhances ECH pre-ionization with enhanced particle confinement due to its mirror effect, and intrinsically provides an equilibrium field with a stable decay index enabling prompt plasma current initiation. Consequently, the formation of TPC before the onset of the loop voltage allows the plasma to start up with a lower loop voltage and lower volt-second consumption as well as a wider operation range in terms of ECH pre-ionization power and H2 filling pressure. The TPC can improve the widely-used field null configuration significantly for more efficient start-up when ECH pre-ionization is used. This can then be utilized in superconducting tokamaks requiring a low loop voltage start-up, such as ITER, or in spherical tori with limited volt-seconds. The TPC can be particularly useful in superconducting tokamaks with a limited current slew-rate of superconducting PF coils, as it can save volt-second consumption before plasma current initiation by providing prompt initiation with an intrinsic stable equilibrium field.

  11. Direct Surface and Droplet Microsampling for Electrospray Ionization Mass Spectrometry Analysis with an Integrated Dual-Probe Microfluidic Chip

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Cong-Min; Zhu, Ying; Jin, Di-Qiong

    Ambient mass spectrometry (MS) has revolutionized the way of MS analysis and broadened its application in various fields. This paper describes the use of microfluidic techniques to simplify the setup and improve the functions of ambient MS by integrating the sampling probe, electrospray emitter probe, and online mixer on a single glass microchip. Two types of sampling probes, including a parallel-channel probe and a U-shaped channel probe, were designed for dryspot and liquid-phase droplet samples, respectively. We demonstrated that the microfabrication techniques not only enhanced the capability of ambient MS methods in analysis of dry-spot samples on various surfaces, butmore » also enabled new applications in the analysis of nanoliter-scale chemical reactions in an array of droplets. The versatility of the microchip-based ambient MS method was demonstrated in multiple different applications including evaluation of residual pesticide on fruit surfaces, sensitive analysis of low-ionizable analytes using postsampling derivatization, and high-throughput screening of Ugi-type multicomponent reactions.« less

  12. Use of capillary gas chromatography with negative ion-chemical ionization mass spectrometry for the determination of perfluorocarbon tracers in the atmosphere.

    PubMed

    Cooke, K M; Simmonds TPG; Nickless, G; Makepeace, A P

    2001-09-01

    A sensitive and selective technique for the quantitative measurement of atmospheric perfluorocarbon trace species at the sub part per quadrillion (10(-15)) levels is presented. The method utilizes advances in adsorbent enrichment techniques coupled with benchtop capillary gas chromatography and negative ion-chemical ionization mass spectrometry. The development and enhancement of sampling technology for tracer experiments is described, and the results from background measurements and a preliminary field experiment are presented. The overall precision of the analytical method with respect to the preferred tracer for these atmospheric transport studies, perfluoromethylcyclohexane, was +/-1.7%. The background concentrations of perfluorodimethylcyclobutane, perfluoromethylcyclopentane, and perfluoromethylcyclohexane at a remote coastal location (Mace Head, Ireland, 53 degrees N, 10 degrees W) were found to be 2.5 (+/-0.4), 6.8 (+/-1.0), and 5.2 fL L(-1) (+/-1.3), respectively. Background concentrations within an urban conurbation (Bristol, U.K.) were slightly greater at 3.0 (+/-1.5), 8.1 (+/-1.8), and 6.3 fL L(-1) (+/-1.1), respectively.

  13. Integral field spectroscopy of selected areas of the Bright bar and Orion-S cloud in the Orion nebula

    NASA Astrophysics Data System (ADS)

    Mesa-Delgado, A.; Núñez-Díaz, M.; Esteban, C.; López-Martín, L.; García-Rojas, J.

    2011-10-01

    We present integral field spectroscopy of two selected zones in the Orion nebula obtained with the Potsdam Multi-Aperture Spectrophotometer, covering the optical spectral range from 3500 to 7200 Å and with a spatial resolution of 1 arcsec. The observed zones are located on the prominent Bright bar and on the brightest area at the north-east of the Orion south cloud, both containing remarkable ionization fronts. We obtain maps of emission-line fluxes and ratios, electron density and temperatures, and chemical abundances. We study the ionization structure and morphology of both fields, whose ionization fronts show different inclination angles with respect to the plane of the sky. We find that the maps of electron density, O+/H+ and O/H ratios show a rather similar structure. We interpret this as produced by the strong dependence on density of the [O II] lines used to derive the O+ abundance, and that our nominal values of electron density - derived from the [S II] line ratio - may be slightly higher than the appropriate value for the O+ zone. We measure the faint recombination lines of O II in the field at the north-east of the Orion south cloud, allowing us to explore the so-called abundance discrepancy problem. We find a rather constant abundance discrepancy across the field and a mean value similar to that determined in other areas of the Orion nebula, indicating that the particular physical conditions of this ionization front do not contribute to this discrepancy. Based on observations collected at the Centro Astronómico Hispano Alemán (CAHA) at Calar Alto, operated jointly by the Max-Planck Institut für Astronomie and the Instituto de Astrofísica de Andalucía (CSIC).

  14. Characterization of extreme ultraviolet laser ablation mass spectrometry for actinide trace analysis and nanoscale isotopic imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Green, Tyler; Kuznetsov, Ilya; Willingham, David

    The purpose of this research was to characterize Extreme Ultraviolet Time-of-Flight (EUV TOF) Laser Ablation Mass Spectrometry for high spatial resolution elemental and isotopic analysis. We compare EUV TOF results with Secondary Ionization Mass Spectrometry (SIMS) to orient the EUV TOF method within the overall field of analytical mass spectrometry. Using the well-characterized NIST 61x glasses, we show that the EUV ionization approach produces relatively few molecular ion interferences in comparison to TOF SIMS. We demonstrate that the ratio of element ion to element oxide ion is adjustable with EUV laser pulse energy and that the EUV TOF instrument hasmore » a sample utilization efficiency of 0.014%. The EUV TOF system also achieves a lateral resolution of 80 nm and we demonstrate this lateral resolution with isotopic imaging of closely spaced particles or uranium isotopic standard materials.« less

  15. Screening for trace explosives by AccuTOF™-DART®: an in-depth validation study.

    PubMed

    Sisco, Edward; Dake, Jeffrey; Bridge, Candice

    2013-10-10

    Ambient ionization mass spectrometry is finding increasing utility as a rapid analysis technique in a number of fields. In forensic science specifically, analysis of many types of samples, including drugs, explosives, inks, bank dye, and lotions, has been shown to be possible using these techniques [1]. This paper focuses on one type of ambient ionization mass spectrometry, Direct Analysis in Real Time Mass Spectrometry (DART-MS or DART), and its viability as a screening tool for trace explosives analysis. In order to assess viability, a validation study was completed which focused on the analysis of trace amounts of nitro and peroxide based explosives. Topics which were studied, and are discussed, include method optimization, reproducibility, sensitivity, development of a search library, discrimination of mixtures, and blind sampling. Advantages and disadvantages of this technique over other similar screening techniques are also discussed. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  16. Achieving Stable Radiation Pressure Acceleration of Heavy Ions via Successive Electron Replenishment from Ionization of a High-Z Material Coating

    NASA Astrophysics Data System (ADS)

    Shen, X. F.; Qiao, B.; Zhang, H.; Kar, S.; Zhou, C. T.; Chang, H. X.; Borghesi, M.; He, X. T.

    2017-05-01

    A method to achieve stable radiation pressure acceleration (RPA) of heavy ions from laser-irradiated ultrathin foils is proposed, where a high-Z material coating in front is used. The coated high-Z material, acting as a moving electron repository, continuously replenishes the accelerating heavy ion foil with comoving electrons in the light-sail acceleration stage due to its successive ionization under laser fields with Gaussian temporal profile. As a result, the detrimental effects such as foil deformation and electron loss induced by the Rayleigh-Taylor-like and other instabilities in RPA are significantly offset and suppressed so that stable acceleration of heavy ions are maintained. Particle-in-cell simulations show that a monoenergetic Al13 + beam with peak energy 3.8 GeV and particle number 1 010 (charge >20 nC ) can be obtained at intensity 1 022 W /cm2 .

  17. MALDI-TOF MS Profiling-Advances in Species Identification of Pests, Parasites, and Vectors.

    PubMed

    Murugaiyan, Jayaseelan; Roesler, Uwe

    2017-01-01

    Invertebrate pests and parasites of humans, animals, and plants continue to cause serious diseases and remain as a high treat to agricultural productivity and storage. The rapid and accurate species identification of the pests and parasites are needed for understanding epidemiology, monitoring outbreaks, and designing control measures. Matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) profiling has emerged as a rapid, cost effective, and high throughput technique of microbial species identification in modern diagnostic laboratories. The development of soft ionization techniques and the release of commercial pattern matching software platforms has resulted in the exponential growth of applications in higher organisms including parasitology. The present review discusses the proof-of-principle experiments and various methods of MALDI MS profiling in rapid species identification of both laboratory and field isolates of pests, parasites and vectors.

  18. Far-Zone Resonant Energy Transfer in X-ray Photoemission as a Structure Determination Tool.

    PubMed

    Céolin, Denis; Rueff, Jean-Pascal; Zimin, Andrey; Morin, Paul; Kimberg, Victor; Polyutov, Sergey; Ågren, Hans; Gel'mukhanov, Faris

    2017-06-15

    Near-zone Förster resonant energy transfer is the main effect responsible for excitation energy flow in the optical region and is frequently used to obtain structural information. In the hard X-ray region, the Förster law is inadequate because the wavelength is generally shorter than the distance between donors and acceptors; hence, far-zone resonant energy transfer (FZRET) becomes dominant. We demonstrate the characteristics of X-ray FZRET and its fundamental differences with the ordinary near-zone resonant energy-transfer process in the optical region by recording and analyzing two qualitatively different systems: high-density CuO polycrystalline powder and SF 6 diluted gas. We suggest a method to estimate geometrical structure using X-ray FZRET employing as a ruler the distance-dependent shift of the acceptor core ionization potential induced by the Coulomb field of the core-ionized donor.

  19. MALDI-TOF MS Profiling-Advances in Species Identification of Pests, Parasites, and Vectors

    PubMed Central

    Murugaiyan, Jayaseelan; Roesler, Uwe

    2017-01-01

    Invertebrate pests and parasites of humans, animals, and plants continue to cause serious diseases and remain as a high treat to agricultural productivity and storage. The rapid and accurate species identification of the pests and parasites are needed for understanding epidemiology, monitoring outbreaks, and designing control measures. Matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) profiling has emerged as a rapid, cost effective, and high throughput technique of microbial species identification in modern diagnostic laboratories. The development of soft ionization techniques and the release of commercial pattern matching software platforms has resulted in the exponential growth of applications in higher organisms including parasitology. The present review discusses the proof-of-principle experiments and various methods of MALDI MS profiling in rapid species identification of both laboratory and field isolates of pests, parasites and vectors. PMID:28555175

  20. Self-sustained criterion with photoionization for positive dc corona plasmas between coaxial cylinders

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng, Yuesheng, E-mail: yueshengzheng@fzu.edu.cn; Zhang, Bo, E-mail: shizbcn@tsinghua.edu.cn; He, Jinliang, E-mail: hejl@tsinghua.edu.cn

    The positive dc corona plasmas between coaxial cylinders in air under the application of a self-sustained criterion with photoionization are investigated in this paper. A photon absorption function suitable for cylindrical electrode, which can characterize the total photons within the ionization region, is proposed on the basis of the classic corona onset criteria. Based on the general fluid model with the self-sustained criterion, the role of photoionization in the ionization region is clarified. It is found that the surface electric field keeps constant under a relatively low corona current, while it is slightly weakened with the increase of the coronamore » current. Similar tendencies can be found under different conductor radii and relative air densities. The small change of the surface electric field will become more significant for the electron density distribution as well as the ionization activity under a high corona current, compared with the results under the assumption of a constant surface field. The assumption that the surface electric field remains constant should be corrected with the increase of the corona current when the energetic electrons with a distance from the conductor surface are concerned.« less

Top