Science.gov

Sample records for field ionization-photoion technique

  1. Rovibrationally selected ion-molecule collision study using the molecular beam vacuum ultraviolet laser pulsed field ionization-photoion method: Charge transfer reaction of N2+(X 2Σg+; v+ = 0-2; N+ = 0-9) + Ar

    NASA Astrophysics Data System (ADS)

    Chang, Yih Chung; Xu, Yuntao; Lu, Zhou; Xu, Hong; Ng, C. Y.

    2012-09-01

    We have developed an ion-molecule reaction apparatus for state-selected absolute total cross section measurements by implementing a high-resolution molecular beam vacuum ultraviolet (VUV) laser pulsed field ionization-photoion (PFI-PI) ion source to a double-quadrupole double-octopole ion-guide mass spectrometer. Using the total cross section measurement of the state-selected N2+(v+, N+) + Ar charge transfer (CT) reaction as an example, we describe in detail the design of the VUV laser PFI-PI ion source used, which has made possible the preparation of reactant N2+(X 2Σg+, v+ = 0-2, N+ = 0-9) PFI-PIs with high quantum state purity, high intensity, and high kinetic energy resolution. The PFI-PIs and prompt ions produced in the ion source are shown to have different kinetic energies, allowing the clean rejection of prompt ions from the PFI-PI beam by applying a retarding potential barrier upstream of the PFI-PI source. By optimizing the width and amplitude of the pulsed electric fields employed to the VUV-PFI-PI source, we show that the reactant N2+ PFI-PI beam can be formed with a laboratory kinetic energy resolution of ΔElab = ± 50 meV. As a result, the total cross section measurement can be conducted at center-of-mass kinetic energies (Ecm's) down to thermal energies. Absolute total rovibrationally selected cross sections σ(v+ = 0-2, N+ = 0-9) for the N2+(X 2Σg+; v+ = 0-2, N+ = 0-9) + Ar CT reaction have been measured in the Ecm range of 0.04-10.0 eV, revealing strong vibrational enhancements and Ecm-dependencies of σ(v+ = 0-2, N+ = 0-9). The thermochemical threshold at Ecm = 0.179 eV for the formation of Ar+ from N2+(X; v+ = 0, N+) + Ar was observed by the measured σ(v+ = 0), confirming the narrow ΔEcm spread achieved in the present study. The σ(v+ = 0-2; N+) values obtained here are compared with previous experimental and theoretical results. The theoretical predictions calculated based on the Landau-Zener-Stückelberg formulism are found to be in fair

  2. Field techniques for sampling ants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ants occur in most environments and ecologists ask a diverse array of questions involving ants. Thus, a key consideration in ant studies is to match the environment and question (and associated environmental variables) to the ant sampling technique. Since each technique has distinct limitations, usi...

  3. Gravity field determination and error assessment techniques

    NASA Technical Reports Server (NTRS)

    Yuan, D. N.; Shum, C. K.; Tapley, B. D.

    1989-01-01

    Linear estimation theory, along with a new technique to compute relative data weights, was applied to the determination of the Earth's geopotential field and other geophysical model parameters using a combination of satellite ground-based tracking data, satellite altimetry data, and the surface gravimetry data. The relative data weights for the inhomogeneous data sets are estimated simultaneously with the gravity field and other geophysical and orbit parameters in a least squares approach to produce the University of Texas gravity field models. New techniques to perform calibration of the formal covariance matrix for the geopotential solution were developed to obtain a reliable gravity field error estimate. Different techniques, which include orbit residual analysis, surface gravity anomaly residual analysis, subset gravity solution comparisons and consider covariance analysis, were applied to investigate the reliability of the calibration.

  4. Fibre based integral field unit constructional techniques

    NASA Astrophysics Data System (ADS)

    Murray, Graham J.

    2006-06-01

    Presented here is a selected overview of constructional techniques and principles that have been developed and implemented at the University of Durham in the manufacture of successful fibre-based integral field units. The information contained herein is specifically intended to highlight the constructional methods that have been devised to assemble an efficient fibre bundle. Potential pitfalls that need to be considered when embarking upon such a deceptively simple instrument are also discussed.

  5. Soil Sampling Techniques For Alabama Grain Fields

    NASA Technical Reports Server (NTRS)

    Thompson, A. N.; Shaw, J. N.; Mask, P. L.; Touchton, J. T.; Rickman, D.

    2003-01-01

    Characterizing the spatial variability of nutrients facilitates precision soil sampling. Questions exist regarding the best technique for directed soil sampling based on a priori knowledge of soil and crop patterns. The objective of this study was to evaluate zone delineation techniques for Alabama grain fields to determine which method best minimized the soil test variability. Site one (25.8 ha) and site three (20.0 ha) were located in the Tennessee Valley region, and site two (24.2 ha) was located in the Coastal Plain region of Alabama. Tennessee Valley soils ranged from well drained Rhodic and Typic Paleudults to somewhat poorly drained Aquic Paleudults and Fluventic Dystrudepts. Coastal Plain s o i l s ranged from coarse-loamy Rhodic Kandiudults to loamy Arenic Kandiudults. Soils were sampled by grid soil sampling methods (grid sizes of 0.40 ha and 1 ha) consisting of: 1) twenty composited cores collected randomly throughout each grid (grid-cell sampling) and, 2) six composited cores collected randomly from a -3x3 m area at the center of each grid (grid-point sampling). Zones were established from 1) an Order 1 Soil Survey, 2) corn (Zea mays L.) yield maps, and 3) airborne remote sensing images. All soil properties were moderately to strongly spatially dependent as per semivariogram analyses. Differences in grid-point and grid-cell soil test values suggested grid-point sampling does not accurately represent grid values. Zones created by soil survey, yield data, and remote sensing images displayed lower coefficient of variations (8CV) for soil test values than overall field values, suggesting these techniques group soil test variability. However, few differences were observed between the three zone delineation techniques. Results suggest directed sampling using zone delineation techniques outlined in this paper would result in more efficient soil sampling for these Alabama grain fields.

  6. Improved modeling techniques for turbomachinery flow fields

    SciTech Connect

    Lakshminarayana, B.; Fagan, J.R. Jr.

    1995-12-31

    This program has the objective of developing an improved methodology for modeling turbomachinery flow fields, including the prediction of losses and efficiency. Specifically, the program addresses the treatment of the mixing stress tensor terms attributed to deterministic flow field mechanisms required in steady-state Computational Fluid Dynamic (CFD) models for turbomachinery flow fields. These mixing stress tensors arise due to spatial and temporal fluctuations (in an absolute frame of reference) caused by rotor-stator interaction due to various blade rows and by blade-to-blade variation of flow properties. This will be accomplished in a cooperative program by Penn State University and the Allison Engine Company. These tasks include the acquisition of previously unavailable experimental data in a high-speed turbomachinery environment, the use of advanced techniques to analyze the data, and the development of a methodology to treat the deterministic component of the mixing stress tenor.

  7. Improved modeling techniques for turbomachinery flow fields

    SciTech Connect

    Lakshminarayana, B.; Fagan, J.R. Jr.

    1995-10-01

    This program has the objective of developing an improved methodology for modeling turbomachinery flow fields, including the prediction of losses and efficiency. Specifically, the program addresses the treatment of the mixing stress tensor terms attributed to deterministic flow field mechanisms required in steady-state Computational Fluid Dynamic (CFD) models for turbo-machinery flow fields. These mixing stress tensors arise due to spatial and temporal fluctuations (in an absolute frame of reference) caused by rotor-stator interaction due to various blade rows and by blade-to-blade variation of flow properties. These tasks include the acquisition of previously unavailable experimental data in a high-speed turbomachinery environment, the use of advanced techniques to analyze the data, and the development of a methodology to treat the deterministic component of the mixing stress tensor. Penn State will lead the effort to make direct measurements of the momentum and thermal mixing stress tensors in high-speed multistage compressor flow field in the turbomachinery laboratory at Penn State. They will also process the data by both conventional and conditional spectrum analysis to derive momentum and thermal mixing stress tensors due to blade-to-blade periodic and aperiodic components, revolution periodic and aperiodic components arising from various blade rows and non-deterministic (which includes random components) correlations. The modeling results from this program will be publicly available and generally applicable to steady-state Navier-Stokes solvers used for turbomachinery component (compressor or turbine) flow field predictions. These models will lead to improved methodology, including loss and efficiency prediction, for the design of high-efficiency turbomachinery and drastically reduce the time required for the design and development cycle of turbomachinery.

  8. Emerging Techniques for Field Device Security

    DOE PAGESBeta

    Schwartz, Moses; Bechtel Corp.; Mulder, John; Chavez, Adrian R.; Allan, Benjamin A.

    2014-11-01

    Critical infrastructure, such as electrical power plants and oil refineries, rely on embedded devices to control essential processes. State of the art security is unable to detect attacks on these devices at the hardware or firmware level. We provide an overview of the hardware used in industrial control system field devices, look at how these devices have been attacked, and discuss techniques and new technologies that may be used to secure them. We follow three themes: (1) Inspectability, the capability for an external arbiter to monitor the internal state of a device. (2) Trustworthiness, the degree to which a systemmore » will continue to function correctly despite disruption, error, or attack. (3) Diversity, the use of adaptive systems and complexity to make attacks more difficult by reducing the feasible attack surface.« less

  9. Emerging Techniques for Field Device Security

    SciTech Connect

    Schwartz, Moses; Mulder, John; Chavez, Adrian R.; Allan, Benjamin A.

    2014-11-01

    Critical infrastructure, such as electrical power plants and oil refineries, rely on embedded devices to control essential processes. State of the art security is unable to detect attacks on these devices at the hardware or firmware level. We provide an overview of the hardware used in industrial control system field devices, look at how these devices have been attacked, and discuss techniques and new technologies that may be used to secure them. We follow three themes: (1) Inspectability, the capability for an external arbiter to monitor the internal state of a device. (2) Trustworthiness, the degree to which a system will continue to function correctly despite disruption, error, or attack. (3) Diversity, the use of adaptive systems and complexity to make attacks more difficult by reducing the feasible attack surface.

  10. Investigating High Field Gravity using Astrophysical Techniques

    SciTech Connect

    Bloom, Elliott D.; /SLAC

    2008-02-01

    The purpose of these lectures is to introduce particle physicists to astrophysical techniques. These techniques can help us understand certain phenomena important to particle physics that are currently impossible to address using standard particle physics experimental techniques. As the subject matter is vast, compromises are necessary in order to convey the central ideas to the reader. Many general references are included for those who want to learn more. The paragraphs below elaborate on the structure of these lectures. I hope this discussion will clarify my motivation and make the lectures easier to follow. The lectures begin with a brief review of more theoretical ideas. First, elements of general relativity are reviewed, concentrating on those aspects that are needed to understand compact stellar objects (white dwarf stars, neutron stars, and black holes). I then review the equations of state of these objects, concentrating on the simplest standard models from astrophysics. After these mathematical preliminaries, Sec. 2(c) discusses 'The End State of Stars'. Most of this section also uses the simplest standard models. However, as these lectures are for particle physicists, I also discuss some of the more recent approaches to the equation of state of very dense compact objects. These particle-physics-motivated equations of state can dramatically change how we view the formation of black holes. Section 3 focuses on the properties of the objects that we want to characterize and measure. X-ray binary systems and Active Galactic Nuclei (AGN) are stressed because the lectures center on understanding very dense stellar objects, black hole candidates (BHCs), and their accompanying high gravitational fields. The use of x-ray timing and gamma-ray experiments is also introduced in this section. Sections 4 and 5 review information from x-ray and gamma-ray experiments. These sections also discuss the current state of the art in x-ray and gamma-ray satellite experiments and

  11. Track and Field: Technique Through Dynamics.

    ERIC Educational Resources Information Center

    Ecker, Tom

    This book was designed to aid in applying the laws of dynamics to the sport of track and field, event by event. It begins by tracing the history of the discoveries of the laws of motion and the principles of dynamics, with explanations of commonly used terms derived from the vocabularies of the physical sciences. The principles and laws of…

  12. Frequency-offset separated oscillatory fields technique

    NASA Astrophysics Data System (ADS)

    Bezginov, N.; Vutha, A. C.; Ferchichi, I.; Storry, C. H.; Hessels, E. A.

    2015-05-01

    Improved measurements in atomic hydrogen are needed to shed light on the proton radius puzzle. We are measuring the Lamb shift in hydrogen (n = 2 ,S1 / 2 -->P1 / 2) using a frequency-offset separated oscillatory fields (FOSOF) method. The advantages of this method include its insensitivity to atomic beam intensity fluctuations and the microwave-system frequency response. We present experimental results obtained with this method, towards a new measurement of the proton charge radius. We acknowledge funding from NSERC, CFI, CRC, ORF, and NIST.

  13. Techniques for Field Application of Lingual Ultrasound Imaging

    ERIC Educational Resources Information Center

    Gick, Bryan; Bird, Sonya; Wilson, Ian

    2005-01-01

    Techniques are discussed for using ultrasound for lingual imaging in field-related applications. The greatest challenges we have faced distinguishing the field setting from the laboratory setting are the lack of controlled head/transducer movement, and the related issue of tissue compression. Two experiments are reported. First, a pilot study…

  14. A color video display technique for flow field surveys

    NASA Technical Reports Server (NTRS)

    Winkelmann, A. E.; Tsao, C. P.

    1982-01-01

    Color video display techniques for flow field surveys are presented. The following techniques were examined: traverse device, used for flow field surveys above and behind finite wing models; flow chart of data reduction for color video display technique; location of spanwise survey stations above and behind wing; hot wire data at first three survey stations on fully stalled wing; hot wire data at last three stations behind fully stalled wing; hot wire and pitch probe data; magnitude of velocity, yaw angle, pitch angle, and cross flow direction from 5 tube survey at X/C = 2.70 behind fully stalled wing.

  15. Mapping Diffuse Seismicity Using Empirical Matched Field Processing Techniques

    SciTech Connect

    Wang, J; Templeton, D C; Harris, D B

    2011-01-21

    The objective of this project is to detect and locate more microearthquakes using the empirical matched field processing (MFP) method than can be detected using only conventional earthquake detection techniques. We propose that empirical MFP can complement existing catalogs and techniques. We test our method on continuous seismic data collected at the Salton Sea Geothermal Field during November 2009 and January 2010. In the Southern California Earthquake Data Center (SCEDC) earthquake catalog, 619 events were identified in our study area during this time frame and our MFP technique identified 1094 events. Therefore, we believe that the empirical MFP method combined with conventional methods significantly improves the network detection ability in an efficient matter.

  16. Adaptive near-field beamforming techniques for sound source imaging.

    PubMed

    Cho, Yong Thung; Roan, Michael J

    2009-02-01

    Phased array signal processing techniques such as beamforming have a long history in applications such as sonar for detection and localization of far-field sound sources. Two sometimes competing challenges arise in any type of spatial processing; these are to minimize contributions from directions other than the look direction and minimize the width of the main lobe. To tackle this problem a large body of work has been devoted to the development of adaptive procedures that attempt to minimize side lobe contributions to the spatial processor output. In this paper, two adaptive beamforming procedures-minimum variance distorsionless response and weight optimization to minimize maximum side lobes--are modified for use in source visualization applications to estimate beamforming pressure and intensity using near-field pressure measurements. These adaptive techniques are compared to a fixed near-field focusing technique (both techniques use near-field beamforming weightings focusing at source locations estimated based on spherical wave array manifold vectors with spatial windows). Sound source resolution accuracies of near-field imaging procedures with different weighting strategies are compared using numerical simulations both in anechoic and reverberant environments with random measurement noise. Also, experimental results are given for near-field sound pressure measurements of an enclosed loudspeaker.

  17. Technique for Predicting the RF Field Strength Inside an Enclosure

    NASA Technical Reports Server (NTRS)

    Hallett, M.; Reddell, J.

    1998-01-01

    This Memorandum presents a simple analytical technique for predicting the RF electric field strength inside an enclosed volume in which radio frequency radiation occurs. The technique was developed to predict the radio frequency (RF) field strength within a launch vehicle's fairing from payloads launched with their telemetry transmitters radiating and to the impact of the radiation on the vehicle and payload. The RF field strength is shown to be a function of the surface materials and surface areas. The method accounts for RF energy losses within exposed surfaces, through RF windows, and within multiple layers of dielectric materials which may cover the surfaces. This Memorandum includes the rigorous derivation of all equations and presents examples and data to support the validity of the technique.

  18. Analysis techniques used on field degraded photovoltaic modules

    SciTech Connect

    Hund, T.D.; King, D.L.

    1995-09-01

    Sandia National Laboratory`s PV System Components Department performs comprehensive failure analysis of photovoltaic modules after extended field exposure at various sites around the world. A full spectrum of analytical techniques are used to help identify the causes of degradation. The techniques are used to make solder fatigue life predictions for PV concentrator modules, identify cell damage or current mismatch, and measure the adhesive strength of the module encapsulant.

  19. Use of Field Research Sites to Teach Field Techniques in Graduate Level Soil Physics.

    ERIC Educational Resources Information Center

    Cassel, D. K.

    1986-01-01

    Describes how a field research site provides grauduate soil physics students with practical field-oriented experiences. Explains the structure of the course and the nature of the course's investigations. Assesses the advantages and obstacles associated with the field research technique. (ML)

  20. ASD FieldSpec Calibration Setup and Techniques

    NASA Technical Reports Server (NTRS)

    Olive, Dan

    2001-01-01

    This paper describes the Analytical Spectral Devices (ASD) Fieldspec Calibration Setup and Techniques. The topics include: 1) ASD Fieldspec FR Spectroradiometer; 2) Components of Calibration; 3) Equipment list; 4) Spectral Setup; 5) Spectral Calibration; 6) Radiometric and Linearity Setup; 7) Radiometric setup; 8) Datadets Required; 9) Data files; and 10) Field of View Measurement. This paper is in viewgraph form.

  1. Teaching Avalanche Safety Courses: Instructional Techniques and Field Exercises.

    ERIC Educational Resources Information Center

    Watters, Ron

    This paper discusses course structure, teaching techniques, and field exercises for enhancing winter travelers' avalanche knowledge and skills. In two class sessions, the course typically consists of a historical perspective; a section on snow physics (clouds, types of snow crystals, effects of riming, identification of precipitated snow crystals,…

  2. Development of Improved Oil Field Waste Injection Disposal Techniques

    SciTech Connect

    Terralog Technologies

    2002-11-25

    The goals of this project have was to: (1) assemble and analyze a comprehensive database of past waste injection operations; (2) develop improved diagnostic techniques for monitoring fracture growth and formation changes; (3) develop operating guidelines to optimize daily operations and ultimate storage capacity of the target formation; and (4) to apply these improved models and guidelines in the field.

  3. An objective analysis technique for extrapolating tidal fields

    NASA Technical Reports Server (NTRS)

    Sanchez, B. V.

    1984-01-01

    An interpolation technique which allows accurate extrapolation of tidal height fields in the ocean basins by making use of selected satellite altimetry measurements and/or conventional gauge measurements was developed and tested. A normal mode solution for the Atlantic and Indian Oceans was obtained by means of a finite difference grid. Normal mode amplitude maps are presented.

  4. A Simple Technique for Visualizing Ultrasound Fields Without Schlieren Optics.

    PubMed

    Kudo, Nobuki

    2015-07-01

    A simple technique designed for visualization of ultrasound fields without Schlieren optics is introduced. An optical system of direct shadowgraphy with diverging light, which consists of a point light source and a shadow screen, constituted the basic system, but the screen was replaced by focusing optics: a camera that makes a virtual screen at its focus plane. The proposed technique visualizes displacement of light deflected by ultrasound, and the use of focusing optics enables flexible settings of the virtual screen position and optical magnification. Insufficient sensitivity of shadowgraphy was overcome by elimination of non-deflecting light using image subtraction of shadowgrams taken with and without ultrasound exposure. A 1-MHz focused transducer for ultrasound therapy and a 20-MHz miniature transducer for intravascular imaging were used for experiments, and alternate pressure change in short-pulsed ultrasound was visualized, indicating the usefulness of the proposed technique for evaluation of medical ultrasound fields.

  5. New techniques in 3D scalar and vector field visualization

    SciTech Connect

    Max, N.; Crawfis, R.; Becker, B.

    1993-05-05

    At Lawrence Livermore National Laboratory (LLNL) we have recently developed several techniques for volume visualization of scalar and vector fields, all of which use back-to-front compositing. The first renders volume density clouds by compositing polyhedral volume cells or their faces. The second is a ``splatting`` scheme which composites textures used to reconstruct the scalar or vector fields. One version calculates the necessary texture values in software, and another takes advantage of hardware texture mapping. The next technique renders contour surface polygons using semi-transparent textures, which adjust appropriately when the surfaces deform in a flow, or change topology. The final one renders the ``flow volume`` of smoke or dye tracer swept out by a fluid flowing through a small generating polygon. All of these techniques are applied to a climate model data set, to visualize cloud density and wind velocity.

  6. Semantic Data And Visualization Techniques Applied To Geologic Field Mapping

    NASA Astrophysics Data System (ADS)

    Houser, P. I. Q.; Royo-Leon, M.; Munoz, R.; Estrada, E.; Villanueva-Rosales, N.; Pennington, D. D.

    2015-12-01

    Geologic field mapping involves the use of technology before, during, and after visiting a site. Geologists utilize hardware such as Global Positioning Systems (GPS) connected to mobile computing platforms such as tablets that include software such as ESRI's ArcPad and other software to produce maps and figures for a final analysis and report. Hand written field notes contain important information and drawings or sketches of specific areas within the field study. Our goal is to collect and geo-tag final and raw field data into a cyber-infrastructure environment with an ontology that allows for large data processing, visualization, sharing, and searching, aiding in connecting field research with prior research in the same area and/or aid with experiment replication. Online searches of a specific field area return results such as weather data from NOAA and QuakeML seismic data from USGS. These results that can then be saved to a field mobile device and searched while in the field where there is no Internet connection. To accomplish this we created the GeoField ontology service using the Web Ontology Language (OWL) and Protégé software. Advanced queries on the dataset can be made using reasoning capabilities can be supported that go beyond a standard database service. These improvements include the automated discovery of data relevant to a specific field site and visualization techniques aimed at enhancing analysis and collaboration while in the field by draping data over mobile views of the site using augmented reality. A case study is being performed at University of Texas at El Paso's Indio Mountains Research Station located near Van Horn, Texas, an active multi-disciplinary field study site. The user can interactively move the camera around the study site and view their data digitally. Geologist's can check their data against the site in real-time and improve collaboration with another person as both parties have the same interactive view of the data.

  7. Data acquisition and preprocessing techniques for remote sensing field research

    NASA Technical Reports Server (NTRS)

    Biehl, L. L.; Robinson, B. F.

    1983-01-01

    A crops and soils data base has been developed at Purdue University's Laboratory for Applications of Remote Sensing using spectral and agronomic measurements made by several government and university researchers. The data are being used to (1) quantitatively determine the relationships of spectral and agronomic characteristics of crops and soils, (2) define future sensor systems, and (3) develop advanced data analysis techniques. Researchers follow defined data acquisition and preprocessing techniques to provide fully annotated and calibrated sets of spectral, agronomic, and meteorological data. These procedures enable the researcher to combine his data with that acquired by other researchers for remote sensing research. The key elements or requirements for developing a field research data base of spectral data that can be transported across sites and years are appropriate experiment design, accurate spectral data calibration, defined field procedures, and through experiment documentation.

  8. Integration of Field and Remote Sensing Techniques For Landslides Monitoring

    NASA Astrophysics Data System (ADS)

    Allievi, J.; Ambrosi, C.; Ceriani, M.; Colesanti, C.; Crosta, G. B.; Ferretti, A.; Fossati, D.; Menegaz, A.

    The definition of the state of activity of slope movements is of major interest both at local and at regional scale. The Geological Survey of the Regione Lombardia has re- cently started a series of projects aimed to the identification of areas subjected to slope instability and to the assessment of their state of activity. Field survey, aerial photo interpretation and advanced remote sensing techniques have been applied. Some ex- amples of large rock slope instabilities have been investigated in the Valtellina area (Lombardia, Northern Italy). In particular, we demonstrate the degree of integration of the adopted techniques for one of the largest rock slope movements actually recog- nised in the area. The remote sensing approach that has been adopted is the Perma- nent Scatterers (PS) Technique. This technique has been recently developed as a new methodology for surface deformation monitoring, using ESA ERS-SAR data. Its ap- plication to large slope movements in alpine and prealpine areas, with a relatively low urban development, has been tried for the first time in order to evaluate its potential in supporting studies for landslide hazard assessment. Previous results show that this ap- proach allows to reach an accuracy very close to the theoretical limit. This study shows the very good agreement reached for displacement velocities between historical trends and recent PS measurements. Scatterers have been identified by field surveying and some of them are located close to historically monitored benchmark for topographic measurements. Furthermore, the integration of these data with field observations al- lowed us to perform a preliminary reconstrucion of the landslide mechanism and to assess the activity of different landslide structures (scarps, etc.).

  9. Evaluation of Field-in-Field Technique for Total Body Irradiation

    SciTech Connect

    Onal, Cem; Sonmez, Aydan; Arslan, Gungor; Sonmez, Serhat; Efe, Esma; Oymak, Ezgi

    2012-08-01

    Purpose: To evaluate the clinical use of a field-in-field (FIF) technique for total body irradiation (TBI) using a treatment-planning system (TPS) and to verify TPS results with in vivo dose measurements using metal-oxide-semiconductor field-effect transistor (MOSFET) detectors. Methods and Materials: Clinical and dosimetric data of 10 patients treated with TBI were assessed. Certain radiation parameters were measured using homogenous and regular phantoms at an extended distance of 380 cm, and the results were compared with data from a conventional standard distance of 100 cm. Additionally, dosimetric validation of TPS doses was performed with a Rando phantom using manual calculations. A three-dimensional computed tomography plan was generated involving 18-MV photon beams with a TPS for both open-field and FIF techniques. The midline doses were measured at the head, neck, lung, umbilicus, and pelvis for both open-field and FIF techniques. Results: All patients received planned TBI using the FIF technique with 18-MV photon energies and 2 Gy b.i.d. on 3 consecutive days. The difference in tissue maximum ratios between the extended and conventional distances was <2%. The mean deviation of manual calculations compared with TPS data was +1.6% (range, 0.1-2.4%). A homogenous dose distribution was obtained with 18-MV photon beams using the FIF technique. The mean lung dose for the FIF technique was 79.2% (9.2 Gy; range, 8.8-9.7 Gy) of the prescribed dose. The MOSFET readings and TPS doses in the body were similar (percentage difference range, -0.5% to 2.5%) and slightly higher in the shoulder and lung (percentage difference range, 4.0-5.5%). Conclusion: The FIF technique used for TBI provides homogenous dose distribution and is feasible, simple, and spares time compared with more-complex techniques. The TPS doses were similar to the midline doses obtained from MOSFET readings.

  10. Large Field Photogrammetry Techniques in Aircraft and Spacecraft Impact Testing

    NASA Technical Reports Server (NTRS)

    Littell, Justin D.

    2010-01-01

    The Landing and Impact Research Facility (LandIR) at NASA Langley Research Center is a 240 ft. high A-frame structure which is used for full-scale crash testing of aircraft and rotorcraft vehicles. Because the LandIR provides a unique capability to introduce impact velocities in the forward and vertical directions, it is also serving as the facility for landing tests on full-scale and sub-scale Orion spacecraft mass simulators. Recently, a three-dimensional photogrammetry system was acquired to assist with the gathering of vehicle flight data before, throughout and after the impact. This data provides the basis for the post-test analysis and data reduction. Experimental setups for pendulum swing tests on vehicles having both forward and vertical velocities can extend to 50 x 50 x 50 foot cubes, while weather, vehicle geometry, and other constraints make each experimental setup unique to each test. This paper will discuss the specific calibration techniques for large fields of views, camera and lens selection, data processing, as well as best practice techniques learned from using the large field of view photogrammetry on a multitude of crash and landing test scenarios unique to the LandIR.

  11. Evolutionary Based Techniques for Fault Tolerant Field Programmable Gate Arrays

    NASA Technical Reports Server (NTRS)

    Larchev, Gregory V.; Lohn, Jason D.

    2006-01-01

    The use of SRAM-based Field Programmable Gate Arrays (FPGAs) is becoming more and more prevalent in space applications. Commercial-grade FPGAs are potentially susceptible to permanently debilitating Single-Event Latchups (SELs). Repair methods based on Evolutionary Algorithms may be applied to FPGA circuits to enable successful fault recovery. This paper presents the experimental results of applying such methods to repair four commonly used circuits (quadrature decoder, 3-by-3-bit multiplier, 3-by-3-bit adder, 440-7 decoder) into which a number of simulated faults have been introduced. The results suggest that evolutionary repair techniques can improve the process of fault recovery when used instead of or as a supplement to Triple Modular Redundancy (TMR), which is currently the predominant method for mitigating FPGA faults.

  12. Simplified field-in-field technique for a large-scale implementation in breast radiation treatment

    SciTech Connect

    Fournier-Bidoz, Nathalie; Kirova, Youlia M.; Campana, Francois; Dendale, Remi; Fourquet, Alain

    2012-07-01

    We wanted to evaluate a simplified 'field-in-field' technique (SFF) that was implemented in our department of Radiation Oncology for breast treatment. This study evaluated 15 consecutive patients treated with a simplified field in field technique after breast-conserving surgery for early-stage breast cancer. Radiotherapy consisted of whole-breast irradiation to the total dose of 50 Gy in 25 fractions, and a boost of 16 Gy in 8 fractions to the tumor bed. We compared dosimetric outcomes of SFF to state-of-the-art electronic surface compensation (ESC) with dynamic leaves. An analysis of early skin toxicity of a population of 15 patients was performed. The median volume receiving at least 95% of the prescribed dose was 763 mL (range, 347-1472) for SFF vs. 779 mL (range, 349-1494) for ESC. The median residual 107% isodose was 0.1 mL (range, 0-63) for SFF and 1.9 mL (range, 0-57) for ESC. Monitor units were on average 25% higher in ESC plans compared with SFF. No patient treated with SFF had acute side effects superior to grade 1-NCI scale. SFF created homogenous 3D dose distributions equivalent to electronic surface compensation with dynamic leaves. It allowed the integration of a forward planned concomitant tumor bed boost as an additional multileaf collimator subfield of the tangential fields. Compared with electronic surface compensation with dynamic leaves, shorter treatment times allowed better radiation protection to the patient. Low-grade acute toxicity evaluated weekly during treatment and 2 months after treatment completion justified the pursuit of this technique for all breast patients in our department.

  13. Evaluation of the field-in-field technique with lung blocks for breast tangential radiotherapy.

    PubMed

    Tanaka, Hidekazu; Hayashi, Shinya; Kajiura, Yuichi; Kitahara, Masashi; Matsuyama, Katsuya; Kanematsu, Masayuki; Hoshi, Hiroaki

    2015-08-01

    Several studies have reported the advantages of the field-in-field (FIF) technique in breast radiotherapy, including dose reduction in the lungs by using lung field blocks. We evaluated the FIF technique with lung blocks for breast tangential radiotherapy. Sixteen patients underwent free breathing (FB) computed tomography (CT), followed by two CT procedures performed during breath hold after light inhalation (IN) and light exhalation (EX). Three radiotherapy plans were created using the FIF technique based on the FB-CT images: one without lung blocks (LB0) and two with lung blocks whose monitor units (MUs) were 5 (LB5) and 10 (LB10), respectively. These plans were copied to the IN-CT and EX-CT images. V20Gy, V30Gy, and V40Gy of the ipsilateral lung and V100%, V95%, and the mean dose (Dmean) to the planning target volume (PTV) were analyzed. The extent of changes in these parameters on the IN-plan and EX-plan compared with the FB-plan was evaluated. V20Gy, V30Gy, and V40Gy were significantly smaller for FB-LB5 and FB-LB10 than for FB-LB0; similar results were obtained for the IN-plan and EX-plan. V100%, V95%, and Dmean were also significant smaller for FB-LB5 and FB-LB10 than for FB-LB0. The extent of changes in V20Gy, V30Gy, and V40Gy on the IN-plan and EX-plan compared with the FB-plan was not statistically significant. Lung blocks were useful for dose reduction in the lung and a simultaneous PTV decrease. This technique should not be applied in the general population.

  14. A field experiment comparing different workgroup interactive techniques.

    PubMed

    Eisele, Per

    2007-02-01

    Participants (N=149) belonging to real life workgroups from different work organisations took part in a project with the aim of improving organisational culture. Two techniques for enhancing effectiveness were used in the study, the individual-group-individual technique and the nominal group technique. In a control group were participants in nonstructured interactive groups. Thus, the workgroups were randomised into these 3 conditions. Analysis indicated that both techniques affect idea generation but not generation of goals.

  15. A technique for automatically extracting useful field of view and central field of view images

    PubMed Central

    Pandey, Anil Kumar; Sharma, Param Dev; Aheer, Deepak; Kumar, Jay Prakash; Sharma, Sanjay Kumar; Patel, Chetan; Kumar, Rakesh; Bal, Chandra Sekhar

    2016-01-01

    Introduction: It is essential to ensure the uniform response of the single photon emission computed tomography gamma camera system before using it for the clinical studies by exposing it to uniform flood source. Vendor specific acquisition and processing protocol provide for studying flood source images along with the quantitative uniformity parameters such as integral and differential uniformity. However, a significant difficulty is that the time required to acquire a flood source image varies from 10 to 35 min depending both on the activity of Cobalt-57 flood source and the pre specified counts in the vendors protocol (usually 4000K-10,000K counts). In case the acquired total counts are less than the total prespecified counts, and then the vendor's uniformity processing protocol does not precede with the computation of the quantitative uniformity parameters. In this study, we have developed and verified a technique for reading the flood source image, remove unwanted information, and automatically extract and save the useful field of view and central field of view images for the calculation of the uniformity parameters. Materials and Methods: This was implemented using MATLAB R2013b running on Ubuntu Operating system and was verified by subjecting it to the simulated and real flood sources images. Results: The accuracy of the technique was found to be encouraging, especially in view of practical difficulties with vendor-specific protocols. Conclusion: It may be used as a preprocessing step while calculating uniformity parameters of the gamma camera in lesser time with fewer constraints. PMID:27095858

  16. Process Concerns In Use of Force Field Techniques.

    ERIC Educational Resources Information Center

    Giammatteo, Michael C.

    This paper, one of a series derived from techniques used in training student teachers, explores the process of manipulating the variables in a problem or conflict or challenge situation. Specifically, it explores interpersonal feelings, intrapersonal feelings and conflicts that occur when these two are not in harmony. The technique calls upon the…

  17. Field results of antifouling techniques for optical instruments

    USGS Publications Warehouse

    Strahle, W.J.; Hotchkiss, F.S.; Martini, M.A.

    1998-01-01

    An anti-fouling technique is developed for the protection of optical instruments from biofouling which leaches a bromide compound into a sample chamber and pumps new water into the chamber prior to measurement. The primary advantage of using bromide is that it is less toxic than the metal-based antifoulants. The drawback of the bromide technique is also discussed.

  18. Boson mapping techniques applied to constant gauge fields in QCD

    NASA Technical Reports Server (NTRS)

    Hess, Peter Otto; Lopez, J. C.

    1995-01-01

    Pairs of coordinates and derivatives of the constant gluon modes are mapped to new gluon-pair fields and their derivatives. Applying this mapping to the Hamiltonian of constant gluon fields results for large coupling constants into an effective Hamiltonian which separates into one describing a scalar field and another one for a field with spin two. The ground state is dominated by pairs of gluons coupled to color and spin zero with slight admixtures of color zero and spin two pairs. As color group we used SU(2).

  19. Gravity field, geoid and ocean surface by space techniques

    NASA Technical Reports Server (NTRS)

    Anderle, R. J.

    1978-01-01

    Knowledge of the earth's gravity field continued to increase during the last four years. Altimetry data from the GEOS-3 satellite has provided the geoid over most of the ocean to an accuracy of about one meter. Increasing amounts of laser data has permitted the solution for 566 terms in the gravity field with which orbits of the GEOS-3 satellite have been computed to an accuracy of about one to two meters. The combination of satellite tracking data, altimetry and gravimetry has yielded a solution for 1360 terms in the earth's gravity field. A number of problems remain to be solved to increase the accuracy of the gravity field determination. New satellite systems would provide gravity data in unsurveyed areas and correction for topographic features of the ocean and improved computational procedures together with a more extensive laser network will considerably improve the accuracy of the results.

  20. Experimental Validation of Simulations Using Full-field Measurement Techniques

    SciTech Connect

    Hack, Erwin

    2010-05-28

    The calibration by reference materials of dynamic full-field measurement systems is discussed together with their use to validate numerical simulations of structural mechanics. The discussion addresses three challenges that are faced in these processes, i.e. how to calibrate a measuring instrument that (i) provides full-field data, and (ii) is dynamic; (iii) how to compare data from simulation and experimentation.

  1. COMPARING FIELD PERFORMANCES OF DENUDER TECHNIQUES IN THE HIGH ARCTIC

    EPA Science Inventory

    A field evaluation between two annular denuder system configurations was conducted during the spring of 2003 in the marine Arctic (Ny-Ålesund, Svalbard). The IIA annular denuder system (ADS) employs a series of five single channel annular denuders, a cyclone and a filter pack to ...

  2. Culture control in crop fields: A habitat management technique

    NASA Astrophysics Data System (ADS)

    Mayse, Mark A.

    1983-01-01

    Cultural factors, including vegetational backgrounds adjacent to and/or within the crop, harvest procedures, crop rotation patterns, planting dates, and plant density/spacing patterns provide a major portion of the ecological context in which arthropod populations in crop fields exist These cropping practices can often be manipulated to help favorably manage arthropod populations Some research highlights involving various types of cultural control are presented, including a discussion of several problems faced by researchers investigating cultural control of arthropods in field crop agroecosystems. In order to understand the complexities involved in cultural factor effects on arthropod populations, investigators must perform carefully designed research. Also, the most appropriate and meaningful way(s) to express arthropod population levels in such studies must be critically determined

  3. The Development of Teaching and Learning in Bright-Field Microscopy Technique

    ERIC Educational Resources Information Center

    Iskandar, Yulita Hanum P.; Mahmud, Nurul Ethika; Wahab, Wan Nor Amilah Wan Abdul; Jamil, Noor Izani Noor; Basir, Nurlida

    2013-01-01

    E-learning should be pedagogically-driven rather than technologically-driven. The objectives of this study are to develop an interactive learning system in bright-field microscopy technique in order to support students' achievement of their intended learning outcomes. An interactive learning system on bright-field microscopy technique was…

  4. Field inter-comparison of eleven atmospheric ammonia measurement techniques

    NASA Astrophysics Data System (ADS)

    von Bobrutzki, K.; Braban, C. F.; Famulari, D.; Jones, S. K.; Blackall, T.; Smith, T. E. L.; Blom, M.; Coe, H.; Gallagher, M.; Ghalaieny, M.; McGillen, M. R.; Percival, C. J.; Whitehead, J. D.; Ellis, R.; Murphy, J.; Mohacsi, A.; Pogany, A.; Junninen, H.; Rantanen, S.; Sutton, M. A.; Nemitz, E.

    2010-01-01

    Eleven instruments for the measurement of ambient concentrations of atmospheric ammonia gas (NH3), based on eight different measurement methods were inter-compared above an intensively managed agricultural field in late summer 2008 in Southern Scotland. To test the instruments over a wide range of concentrations, the field was fertilised with urea midway through the experiment, leading to an increase in the average concentration from 10 to 100 ppbv. The instruments deployed included three wet-chemistry systems, one with offline analysis (annular rotating batch denuder, RBD) and two with online-analysis (Annular Denuder sampling with online Analysis, AMANDA; AiRRmonia), two Quantum Cascade Laser Absorption Spectrometers (a large-cell dual system; DUAL-QCLAS, and a compact system; c-QCLAS), two photo-acoustic spectrometers (WaSul-Flux; Nitrolux-100), a Cavity Ring Down Spectrosmeter (CRDS), a Chemical Ionisation Mass Spectrometer (CIMS), an ion mobility spectrometer (IMS) and an Open-Path Fourier Transform Infra-Red (OP-FTIR) Spectrometer. The instruments were compared with each other and with the average concentration of all instruments. An overall good agreement of hourly average concentrations between the instruments (R2>0.84), was observed for NH3 concentrations at the field of up to 120 ppbv with the slopes against the average ranging from 0.67 (DUAL-QCLAS) to 1.13 (AiRRmonia) with intercepts of -0.74 ppbv (RBD) to +2.69 ppbv (CIMS). More variability was found for performance for lower concentrations (<10 ppbv). Here the main factors affecting measurement precision are (a) the inlet design, (b) the state of inlet filters (where applicable), and (c) the quality of gas-phase standards (where applicable). By reference to the fast (1 Hz) instruments deployed during the study, it was possible to characterize the response times of the slower instruments.

  5. Field inter-comparison of eleven atmospheric ammonia measurement techniques

    NASA Astrophysics Data System (ADS)

    von Bobrutzki, K.; Braban, C. F.; Famulari, D.; Jones, S. K.; Blackall, T.; Smith, T. E. L.; Blom, M.; Coe, H.; Gallagher, M.; Ghalaieny, M.; McGillen, M. R.; Percival, C. J.; Whitehead, J. D.; Ellis, R.; Murphy, J.; Mohacsi, A.; Junninen, H.; Pogany, A.; Rantanen, S.; Sutton, M. A.; Nemitz, E.

    2009-08-01

    Eleven instruments for the measurement of ambient concentrations of atmospheric ammonia gas (NH3), based on eight different measurement methods were inter-compared above an intensively managed agricultural field in late summer 2008 in S. Scotland. To test the instruments over a wide range of concentrations, the field was fertilised with urea midway through the experiment, leading to an increase in the average concentration from 10 to 100 ppbv. The instruments deployed included three wet-chemistry systems, one with offline analysis (annular rotating batch denuder, RBD) and two with online-analysis (Annular Denuder sampling with online Analysis, AMANDA; AiRRmonia), two Quantum Cascade Laser Absorption Spectrometers (a large-cell dual system, DUAL-QCLAS, and a compact system, c-QCLAS), two photo-acoustic spectrometers (WaSul-Flux, Nitrolux-100), a Cavity Ring Down Spectrosmeter (CRDS), a Chemical Ionisation Mass Spectrometer (CIMS), an ion mobility spectrometer (IMS) and an Open-Path Fourier Transform Infra-Red (OP-FTIR) spectroscopy. Each instrument was compared with each other and with the average concentration of all instruments. An overall good agreement of hourly average concentrations between the instruments (R2>0.84), was observed for NH3 concentrations at the field of up to 120 ppbv with the slopes against the average ranging from 0.67 (DUAL-QCLAS) to 1.13 (AiRRmonia) with intercepts of -0.74 ppbv (RBD) to +2.69 ppbv (CIMS). More variability was found for performance for lower concentrations (<10 ppbv). Here the overruling factors affecting measurement precision are (a) the inlet design, (b) the state of inlet filters (where applicable), and (c) the quality of gas-phase standards (where applicable). By reference to the fast (1 Hz) instruments deployed during the study, it was possible to characterize the response times of the slower instruments.

  6. Work function measurements using a field emission retarding potential technique.

    PubMed

    Hamanaka, M H M O; Dall'Agnol, F F; Pimentel, V L; Mammana, V P; Tatsch, P J; den Engelsen, D

    2016-03-01

    Herein we describe the measurement of the work function of a metal with advanced equipment based on the field emission retarding potential (FERP) method using a carbon nanotube (CNT) as cathode. The accuracy of the FERP method using a CNT emitter is described and a comparison between measurements of the work functions of aluminum, barium, calcium, gold, and platinum with published data will be presented. Our FERP equipment could be optimized with the aid of particle tracing simulations. These simulations led us to insert a magnetic collimator to improve the collection efficiency at the anode. PMID:27036828

  7. Hybrid single-beam reconstruction technique for slow and fast varying wave fields.

    PubMed

    Falaggis, Konstantinos; Kozacki, Tomasz; Kujawinska, Malgorzata

    2015-06-01

    An iterative single-beam wave field reconstruction technique that employs both non-paraxial, wave propagation based and paraxial deterministic phase retrieval techniques is presented. This approach overcomes two major obstacles that exist in the current state of the art techniques: iterative methods do not reconstruct slowly varying wave fields due to slow convergence and stagnation, and deterministic methods have paraxial limits, making the reconstructions of quickly varying object features impossible. In this work, a hybrid approach is reported that uses paraxial wave field corrections within iterative phase retrieval solvers. This technique is suitable for cases ranging from slow to fast varying wave fields, and unlike the currently available methods, can also reconstruct measurement objects with different regions of both slowly and quickly varying object features. It is further shown that this technique gives a higher accuracy than current single-beam phase retrieval techniques, and in comparison to the iterative methods, has a higher convergence speed.

  8. Full-field laser vibration measurement in NDT techniques

    NASA Astrophysics Data System (ADS)

    Yue, Kaiduan; Li, Zhongke; Yi, Yaxing; Zhang, Fei

    2008-12-01

    Research of Non Destructive Testing (NDT) methodology has developed rapidly in recent years[1][2]. But it is rarely used for small objects such as Micro-electronic Mechanics System. Due to the small size of the MEMS, the traditional method of contact measurement seriously affects the parameter of the object measured. So a high accuracy non-contact measurement is required for optimization of MEMS designs and improvement of its reliability[3][4]. With recent advances in photonics, electronics, and computer technology, a Non Destructive Testing (NDT) laser time average interferometry is proposed in the paper. Laser interferometry has the advantages of non-contact, high accuracy, full-field and fast speed, so it can be used to detect cracks in MEMS. A time average measurement method of digital speckle pattern interferometry is proposed to measure the vibration mode of the MEMS in the paper. According to the sudden change of amplitude of vibration mode, a crack can be measured. With the speckle average technology, high accuracy phase-shift, continuous phase scanning technology, combined with optical amplification technology, the resolution of the amplitude reaches 1nm, and the resolution of the crack reaches 5μm. The measurement system being full-field, the measuring speed of the measurement system can reach 512*512 points per one minute.

  9. Rapid brain MRI acquisition techniques at ultra-high fields.

    PubMed

    Setsompop, Kawin; Feinberg, David A; Polimeni, Jonathan R

    2016-09-01

    Ultra-high-field MRI provides large increases in signal-to-noise ratio (SNR) as well as enhancement of several contrast mechanisms in both structural and functional imaging. Combined, these gains result in a substantial boost in contrast-to-noise ratio that can be exploited for higher-spatial-resolution imaging to extract finer-scale information about the brain. With increased spatial resolution, however, there is a concurrent increased image-encoding burden that can cause unacceptably long scan times for structural imaging and slow temporal sampling of the hemodynamic response in functional MRI - particularly when whole-brain imaging is desired. To address this issue, new directions of imaging technology development - such as the move from conventional 2D slice-by-slice imaging to more efficient simultaneous multislice (SMS) or multiband imaging (which can be viewed as "pseudo-3D" encoding) as well as full 3D imaging - have provided dramatic improvements in acquisition speed. Such imaging paradigms provide higher SNR efficiency as well as improved encoding efficiency. Moreover, SMS and 3D imaging can make better use of coil sensitivity information in multichannel receiver arrays used for parallel imaging acquisitions through controlled aliasing in multiple spatial directions. This has enabled unprecedented acceleration factors of an order of magnitude or higher in these imaging acquisition schemes, with low image artifact levels and high SNR. Here we review the latest developments of SMS and 3D imaging methods and related technologies at ultra-high field for rapid high-resolution functional and structural imaging of the brain. Copyright © 2016 John Wiley & Sons, Ltd.

  10. An equivalent source technique for recovering the free sound field in a noisy environment.

    PubMed

    Bi, Chuan-Xing; Bolton, J Stuart

    2012-02-01

    In previous studies, a sound field separation technique based on the equivalent source method (ESM) was successfully applied to separate the incoming and outgoing fields composing a non-free field. However, if the incoming wave is scattered by the source surface, the outgoing field is not the field that would be generated by the source in a free field. The object of the present work was to provide an equivalent source technique that allows the recovery of that free field in a noisy environment. In this approach, the incoming and outgoing fields, including the scattered and directly radiated fields on the measurement surface, are separated to obtain the free-field pressure that would be radiated by the source in an anechoic environment. The recovered free-field pressure is then used to reconstruct the whole free field of the source by using near-field acoustical holography based on the ESM, which makes the results equivalent to those that could be obtained from a free-field measurement. A theoretical description of the technique is given first, and then three numerical cases are investigated to demonstrate the ability of the proposed method.

  11. Applications of Effective Field Theory Techniques to Jet Physics

    NASA Astrophysics Data System (ADS)

    Freedman, Simon M.

    In this thesis we study jet production at large energies from leptonic collisions. We use the framework of effective theories of Quantum Chromodynamics (QCD) to examine the properties of jets and systematically improve calculations. We first develop a new formulation of soft-collinear effective theory (SCET), the appropriate effective theory for jets. In this formulation, soft and collinear degrees of freedom are described using QCD fields that interact with each other through light-like Wilson lines in external currents. This formulation gives a more intuitive picture of jet processes than the traditional formulation of SCET. In particular, we show how the decoupling of soft and collinear degrees of freedom that occurs at leading order in power counting is explicit to next-to-leading order and likely beyond. We then use this formulation to write the thrust rate in a factorized form at next-to-leading order in the thrust parameter. The rate involves an incomplete sum over final states due to phase space cuts that is enforced by a measurement operator. Subleading corrections require matching onto not only the next-to-next-to leading order SCET operators, but also matching onto subleading measurement operators. We derive the appropriate hard, jet, and soft functions and show they reproduce the expected subleading thrust rate. Next, we renormalize the next-to-leading order dijet operators used for the subleading thrust rate. Constraints on matching coefficients from current conservation and reparametrization invariance are shown. We also discuss the subtleties involved in regulating the infrared divergences of the individual loop diagrams in order to extract the ultraviolet divergences. The results can be used to increase the theoretical precision of the thrust rate. Finally, we study the (exclusive) k_perp and C/A jet algorithms in SCET. Regularizing the virtualites and rapidities of the individual graphs, we are able to write the order(alpha_s) dijet cross section

  12. Applications of Effective Field Theory Techniques to Jet Physics

    NASA Astrophysics Data System (ADS)

    Freedman, Simon M.

    In this thesis we study jet production at large energies from leptonic collisions. We use the framework of effective theories of Quantum Chromodynamics (QCD) to examine the properties of jets and systematically improve calculations. We first develop a new formulation of soft-collinear effective theory (SCET), the appropriate effective theory for jets. In this formulation, soft and collinear degrees of freedom are described using QCD fields that interact with each other through light-like Wilson lines in external currents. This formulation gives a more intuitive picture of jet processes than the traditional formulation of SCET. In particular, we show how the decoupling of soft and collinear degrees of freedom that occurs at leading order in power counting is explicit to next-to-leading order and likely beyond. We then use this formulation to write the thrust rate in a factorized form at next-to-leading order in the thrust parameter. The rate involves an incomplete sum over final states due to phase space cuts that is enforced by a measurement operator. Subleading corrections require matching onto not only the next-to-next-to leading order SCET operators, but also matching onto subleading measurement operators. We derive the appropriate hard, jet, and soft functions and show they reproduce the expected subleading thrust rate. Next, we renormalize the next-to-leading order dijet operators used for the subleading thrust rate. Constraints on matching coefficients from current conservation and reparametrization invariance are shown. We also discuss the subtleties involved in regulating the infrared divergences of the individual loop diagrams in order to extract the ultraviolet divergences. The results can be used to increase the theoretical precision of the thrust rate. Finally, we study the (exclusive) k⊥ and C/A jet algorithms in SCET. Regularizing the virtualities and rapidities of the individual graphs, we are able to write the O(alpha s) dijet cross section as the

  13. [Authentication of Trace Material Evidence in Forensic Science Field with Infrared Microscopic Technique].

    PubMed

    Jiang, Zhi-quan; Hu, Ke-liang

    2016-03-01

    In the field of forensic science, conventional infrared spectral analysis technique is usually unable to meet the detection requirements, because only very a few trace material evidence with diverse shapes and complex compositions, can be extracted from the crime scene. Infrared microscopic technique is developed based on a combination of Fourier-transform infrared spectroscopic technique and microscopic technique. Infrared microscopic technique has a lot of advantages over conventional infrared spectroscopic technique, such as high detection sensitivity, micro-area analysisand nondestructive examination. It has effectively solved the problem of authentication of trace material evidence in the field of forensic science. Additionally, almost no external interference is introduced during measurements by infrared microscopic technique. It can satisfy the special need that the trace material evidence must be reserved for witness in court. It is illustrated in detail through real case analysis in this experimental center that, infrared microscopic technique has advantages in authentication of trace material evidence in forensic science field. In this paper, the vibration features in infrared spectra of material evidences, including paints, plastics, rubbers, fibers, drugs and toxicants, can be comparatively analyzed by means of infrared microscopic technique, in an attempt to provide powerful spectroscopic evidence for qualitative diagnosis of various criminal and traffic accident cases. The experimental results clearly suggest that infrared microscopic technique has an incomparable advantage and it has become an effective method for authentication of trace material evidence in the field of forensic science. PMID:27400510

  14. [Authentication of Trace Material Evidence in Forensic Science Field with Infrared Microscopic Technique].

    PubMed

    Jiang, Zhi-quan; Hu, Ke-liang

    2016-03-01

    In the field of forensic science, conventional infrared spectral analysis technique is usually unable to meet the detection requirements, because only very a few trace material evidence with diverse shapes and complex compositions, can be extracted from the crime scene. Infrared microscopic technique is developed based on a combination of Fourier-transform infrared spectroscopic technique and microscopic technique. Infrared microscopic technique has a lot of advantages over conventional infrared spectroscopic technique, such as high detection sensitivity, micro-area analysisand nondestructive examination. It has effectively solved the problem of authentication of trace material evidence in the field of forensic science. Additionally, almost no external interference is introduced during measurements by infrared microscopic technique. It can satisfy the special need that the trace material evidence must be reserved for witness in court. It is illustrated in detail through real case analysis in this experimental center that, infrared microscopic technique has advantages in authentication of trace material evidence in forensic science field. In this paper, the vibration features in infrared spectra of material evidences, including paints, plastics, rubbers, fibers, drugs and toxicants, can be comparatively analyzed by means of infrared microscopic technique, in an attempt to provide powerful spectroscopic evidence for qualitative diagnosis of various criminal and traffic accident cases. The experimental results clearly suggest that infrared microscopic technique has an incomparable advantage and it has become an effective method for authentication of trace material evidence in the field of forensic science.

  15. DPSM technique for ultrasonic field modelling near fluid-solid interface.

    PubMed

    Banerjee, Sourav; Kundu, Tribikram; Alnuaimi, Nasser A

    2007-06-01

    Distributed point source method (DPSM) is gradually gaining popularity in the field of non-destructive evaluation (NDE). DPSM is a semi-analytical technique that can be used to calculate the ultrasonic fields produced by transducers of finite dimension placed in homogeneous or non-homogeneous media. This technique has been already used to model ultrasonic fields in homogeneous and multi-layered fluid structures. In this paper the method is extended to model the ultrasonic fields generated in both fluid and solid media near a fluid-solid interface when the transducer is placed in the fluid half-space near the interface. Most results in this paper are generated by the newly developed DPSM technique that requires matrix inversion. This technique is identified as the matrix inversion based DPSM technique. Some of these results are compared with the results produced by the Rayleigh-Sommerfield integral based DPSM technique. Theory behind both matrix inversion based and Rayleigh-Sommerfield integral based DPSM techniques is presented in this paper. The matrix inversion based DPSM technique is found to be very efficient for computing the ultrasonic field in non-homogeneous materials. One objective of this study is to model ultrasonic fields in both solids and fluids generated by the leaky Rayleigh wave when finite size transducers are inclined at Rayleigh critical angles. This phenomenon has been correctly modelled by the technique. It should be mentioned here that techniques based on paraxial assumptions fail to model the critical reflection phenomenon. Other advantages of the DPSM technique compared to the currently available techniques for transducer radiation modelling are discussed in the paper under Introduction.

  16. Review of neutron calibration facilities and monitoring techniques: new needs for emerging fields.

    PubMed

    Gressier, V

    2014-10-01

    Neutron calibration facilities and monitoring techniques have been developed since the middle of the 20th century to support research and nuclear power energy development. The technical areas needing reference neutron fields and related instruments were mainly cross section measurements, radiation protection, dosimetry and fission reactors, with energy ranging from a few millielectronvolts to about 20 MeV. The reference neutron fields and calibration techniques developed for these purposes will be presented in this paper. However, in recent years, emerging fields have brought new needs for calibration facilities and monitoring techniques. These new challenges for neutron metrology will be exposed with their technical difficulties.

  17. Electroacoustical imaging technique for encoding incoherent radiance fields as Gabor elementary signals

    NASA Technical Reports Server (NTRS)

    Fales, C. L.; Huck, F. O.

    1985-01-01

    A technique is presented for directly encoding incoherent radiance fields as Gabor elementary signals. This technique uses an electro-acoustic sensor to modulate the electronic charges induced by the incident radiance field with the electric fields generated by Gaussian modulated sinusoidal acoustic waves. The resultant signal carries the amplitude and phase information required for localizing spatial frequencies of the radiance field. These localized spatial frequency representations provide a link between the either geometric or Fourier transform representations currently used in computer vision and pattern recognition.

  18. Reconstruction of Unsteady and Axisymmetric Flow Field by Colored-Grid Background Oriented Schlieren (CGBOS) Technique

    NASA Astrophysics Data System (ADS)

    Ota, M.; Leopold, F.; Jagusinski, F.; Maeno, K.

    The Background Oriented Schlieren (BOS) technique was proposed by Meier [1], and it enables us to take a quantitative density measurement of a flow field with computer-aided image analysis. In the past several years, the BOS technique was applied in various experiments [2],[3].

  19. Field-aligned electric currents and their measurement by the incoherent backscatter technique

    NASA Technical Reports Server (NTRS)

    Bauer, P.; Cole, K. D.; Lejeume, G.

    1975-01-01

    Field aligned electric currents flow in the magnetosphere in many situations of fundamental geophysical interest. It is shown here that the incoherent backscatter technique can be used to measure these currents when the plasma line can be observed. The technique provides a ground based means of measuring these currents which complements the rocket and satellite ones.

  20. Sound field separation technique based on equivalent source method and its application in nearfield acoustic holography.

    PubMed

    Bi, Chuan-Xing; Chen, Xin-Zhao; Chen, Jian

    2008-03-01

    A technique for separating sound fields using two closely spaced parallel measurement surfaces and based on equivalent source method is proposed. The method can separate wave components crossing two measurement surfaces in opposite directions, which makes nearfield acoustic holography (NAH) applications in a field where there exist sources on the two sides of the hologram surface, in a reverberant field or in a scattered field, possible. The method is flexible in applications, simple in computation, and very easy to implement. The measurement surfaces can be arbitrarily shaped, and they are not restricted to be regular as in the traditional field separation technique. And, because the method performs field separation calculations directly in the spatial domain-not in the wave number domain--it avoids the errors and limitations (the window effects, etc.) associated with the traditional field separation technique based on the spatial Fourier transform method. In the paper, a theoretical description is first given, and the performance of the proposed field separation technique and its application in NAH are then evaluated through experiments.

  1. Course in Biometeorological Field Techniques. Final Report to National Science Foundation.

    ERIC Educational Resources Information Center

    Tanner, C. B.

    This is the final report to the National Science Foundation (NSF) from a grant to develop a course in biometeorological field techniques. Objectives of the course were to give students experiences in making field measurements of parameters of the physical environment and their impact on plants and animals; and to develop an understanding of the…

  2. Field Techniques: Atlantic Barrier System. Field Guidebook. National Association of Geology Teachers Eastern Section Annual Field Conference (Lewes, Delaware, April 26-29, 1984).

    ERIC Educational Resources Information Center

    O'Connor, James V., Ed.; Tormey, Brian B., Ed.

    The Atlantic barrier system is used as a focal point in this manual of field exercises. A collection of activities and posed questions provide students with opportunities to develop skills basic to the development of sound field techniques. Investigations can be adapted and modified by teachers to specific subject areas and developmental needs.…

  3. An optical leveling technique for parallel near-field photolithography system

    NASA Astrophysics Data System (ADS)

    Liu, Zhuming; Chen, Xinyong; Zhang, Yuan; Weaver, John; Roberts, Clive J.

    2012-10-01

    An optical leveling technique is reported for a compact parallel (multi-cantilever) scanning near-field photolithography (SNP) prototype. This instrument operates in liquid and was designed to overcome the challenge of low sample throughput of previous serial scanning SNPs. A combination of zone plate lens array, probe array, and standard atomic force microscope feedback technique are employed to deliver parallel probe operation in the current SNP. Compared to the commonly used two-end or multi-end "force feedback" alignment techniques, the optical levelling technique applied provides a simple solution to maintaining all levers in an array within the near-field region. As a proof-of-principle experiment, the operation of the prototype was demonstrated by producing nano-scale patterns in parallel using scanning near-field photolithography.

  4. Field analytical techniques for mercury in soils technology evaluation. Topical report, November 1994--March 1997

    SciTech Connect

    Solc, J.; Harju, J.A.; Grisanti, A.A.

    1998-02-01

    This report presents the evaluation of the four field analytical techniques for mercury detection in soils, namely (1) an anodic stripping voltametry technique (ASV) developed and tested by General Electric Corporation; (2) a static headspace analysis (SHSA) technique developed and tested by Dr. Ralph Turner of Oak Ridge National Laboratory; (3) the BiMelyze{reg_sign} Mercury Immunoassay (Bio) developed and tested by BioNebraska, Inc.; and (4) a transportable x-ray fluorescence (XRF) instrument/technique developed and tested by Spectrace, Inc.

  5. Mississippi exploration field trials using microbial, radiometrics, free soil gas, and other techniques

    SciTech Connect

    Moody, J.S.; Brown, L.R.; Thieling, S.C.

    1995-12-31

    The Mississippi Office of Geology has conducted field trials using the surface exploration techniques of geomicrobial, radiometrics, and free soil gas. The objective of these trials is to determine if Mississippi oil and gas fields have surface hydrocarbon expression resulting from vertical microseepage migration. Six fields have been surveyed ranging in depth from 3,330 ft to 18,500 ft. The fields differ in trapping styles and hydrocarbon type. The results so far indicate that these fields do have a surface expression and that geomicrobial analysis as well as radiometrics and free soil gas can detect hydrocarbon microseepage from pressurized reservoirs. All three exploration techniques located the reservoirs independent of depth, hydrocarbon type, or trapping style.

  6. Synchronous in-field application of life-detection techniques in planetary analog missions

    NASA Astrophysics Data System (ADS)

    Amador, Elena S.; Cable, Morgan L.; Chaudry, Nosheen; Cullen, Thomas; Gentry, Diana; Jacobsen, Malene B.; Murukesan, Gayathri; Schwieterman, Edward W.; Stevens, Adam H.; Stockton, Amanda; Yin, Chang; Cullen, David C.; Geppert, Wolf

    2015-02-01

    Field expeditions that simulate the operations of robotic planetary exploration missions at analog sites on Earth can help establish best practices and are therefore a positive contribution to the planetary exploration community. There are many sites in Iceland that possess heritage as planetary exploration analog locations and whose environmental extremes make them suitable for simulating scientific sampling and robotic operations. We conducted a planetary exploration analog mission at two recent lava fields in Iceland, Fimmvörðuháls (2010) and Eldfell (1973), using a specially developed field laboratory. We tested the utility of in-field site sampling down selection and tiered analysis operational capabilities with three life detection and characterization techniques: fluorescence microscopy (FM), adenine-triphosphate (ATP) bioluminescence assay, and quantitative polymerase chain reaction (qPCR) assay. The study made use of multiple cycles of sample collection at multiple distance scales and field laboratory analysis using the synchronous life-detection techniques to heuristically develop the continuing sampling and analysis strategy during the expedition. Here we report the operational lessons learned and provide brief summaries of scientific data. The full scientific data report will follow separately. We found that rapid in-field analysis to determine subsequent sampling decisions is operationally feasible, and that the chosen life detection and characterization techniques are suitable for a terrestrial life-detection field mission. In-field analysis enables the rapid obtainment of scientific data and thus facilitates the collection of the most scientifically relevant samples within a single field expedition, without the need for sample relocation to external laboratories. The operational lessons learned in this study could be applied to future terrestrial field expeditions employing other analytical techniques and to future robotic planetary exploration

  7. Use of amplitude vs offset seismic techniques to delineate subtle stratigraphic traps - Three field studies

    SciTech Connect

    Holton, J.E.; Lausten, C.D.; Blott, J.E. )

    1989-09-01

    Three stratigraphically trapped Wyoming fields which were previously held to be seismically invisible have been examined using amplitude vs. offset seismic techniques. This technology examines the seismic signature changes which take place as a function of source and receiver distance. Such signature changes are directly related to lithology and can be predicted in models and confirmed by the actual data. Two oil fields are located in the Powder River basin: Hartzog Draw and Coyote Creek. The third field, Dripping Rock, is a gas field in the Washakie basin of southwestern Wyoming. The fields produce from sands of the Shannon, Dakota, and Almond formations, respectively. All three fields lack significant velocity differences between the reservoir and trap facies. This results in an inability to delineate the sands using conventional seismic techniques. Amplitude vs. offset techniques, however, present easily identifiable anomalies which reliably delineate the extent of the reservoir sands in each of the cases. Amplitude vs. offset technology has been used successfully in numerous exploratory and development situations throughout the Rocky Mountains and other areas of the US and Canada. It has proven to be a very reliable technique to explore subtle stratigraphic plays which remain relatively immature in mature basins.

  8. A Dosimetric Evaluation of Conventional Helmet Field Irradiation Versus Two-Field Intensity-Modulated Radiotherapy Technique

    SciTech Connect

    Yu, James B.; Shiao, Stephen L.; Knisely, Jonathan . E-mail: jonathan.knisely@yale.edu

    2007-06-01

    Purpose: To compare dosimetric differences between conventional two-beam helmet field irradiation (external beam radiotherapy, EBRT) of the brain and a two-field intensity-modulated radiotherapy (IMRT) technique. Methods and Materials: Ten patients who received helmet field irradiation at our institution were selected for study. External beam radiotherapy portals were planned per usual practice. Intensity-modulated radiotherapy fields were created using the identical field angles as the EBRT portals. Each brain was fully contoured along with the spinal cord to the bottom of the C2 vertebral body. This volume was then expanded symmetrically by 0.5 cm to construct the planning target volume. An IMRT plan was constructed using uniform optimization constraints. For both techniques, the nominal prescribed dose was 3,000 cGy in 10 fractions of 300 cGy using 6-MV photons. Comparative dose-volume histograms were generated for each patient and analyzed. Results: Intensity-modulated radiotherapy improved dose uniformity over EBRT for whole brain radiotherapy. The mean percentage of brain receiving >105% of dose was reduced from 29.3% with EBRT to 0.03% with IMRT. The mean maximum dose was reduced from 3,378 cGy (113%) for EBRT to 3,162 cGy (105%) with IMRT. The mean percent volume receiving at least 98% of the prescribed dose was 99.5% for the conventional technique and 100% for IMRT. Conclusions: Intensity-modulated radiotherapy reduces dose inhomogeneity, particularly for the midline frontal lobe structures where hot spots occur with conventional two-field EBRT. More study needs to be done addressing the clinical implications of optimizing dose uniformity and its effect on long-term cognitive function in selected long-lived patients.

  9. Offshore Adriatic marginal gas fields: An approach to the technique of reservoir development

    SciTech Connect

    Montanari, A.; Bolelli, V.; Piccoli, G.

    1986-01-01

    The application of accelerated gas blowdown and wire line techniques in reservoir development and exploitation is presented for an off-shore Adriatic marginal gas field. The approach discussed in this paper utilizes selective completion, very low reserves/production ratio, sequential production, Through Tubing Bridge Plug and Through Tubing Perforation techniques to avoid the use of costly workover rigs and to allow economically convenient exploitation of a structure which otherwise would have been abandoned.

  10. Technique development for field inspection of cracking in seam welded ducts

    SciTech Connect

    Shell, Eric B.; Benson, Craig; Liljestrom, Greg C.; Shanahan, Stephen

    2014-02-18

    The resistance seam weld interfaces between alloyed and pure titanium are an in service concern due to precipitation of titanium hydride and resulting embrittlement and cracking. Several inspection techniques were developed and evaluated for field use to characterize the damage in the fleet. Electromagnetic, ultrasonic, florescent penetrant, thermographic, and radiographic techniques were considered. The ultrasonic and electromagnetic approaches were both found suitable. However, the electromagnetic approach is more desirable for field inspections, due to consistency and ease of use. The electromagnetic inspection procedure is able to discriminate between precursor damage and through cracking with sufficient sensitivity to small cracks.

  11. Three-dimensional radar imaging techniques and systems for near-field applications

    NASA Astrophysics Data System (ADS)

    Sheen, David M.; Hall, Thomas E.; McMakin, Douglas L.; Jones, A. Mark; Tedeschi, Jonathan R.

    2016-05-01

    The Pacific Northwest National Laboratory has developed three-dimensional holographic (synthetic aperture) radar imaging techniques and systems for a wide variety of near-field applications. These applications include radar crosssection (RCS) imaging, personnel screening, standoff concealed weapon detection, concealed threat detection, throughbarrier imaging, ground penetrating radar (GPR), and non-destructive evaluation (NDE). Sequentially-switched linear arrays are used for many of these systems to enable high-speed data acquisition and 3-D imaging. In this paper, the techniques and systems will be described along with imaging results that demonstrate the utility of near-field 3-D radar imaging for these compelling applications.

  12. SU-E-T-404: Simple Field-In-Field Technique for Total Body Irradiation in Large Patients

    SciTech Connect

    Chi, P; Pinnix, C; Dabaja, B; Wang, C; Aristophanous, M; Tung, S

    2014-06-01

    Purpose: A simple Field-in-Field technique for Total Body Irradiation (TBI) was developed for traditional AP/PA TBI treatments to improve dosimetric uniformity in patients with large separation. Methods: TBI at our institution currently utilizes an AP/PA technique at an extended source-to-surface distance (SSD) of 380cm with patients in left decubitus position during the AP beam and in right decubitus during the PA beam. Patients who have differences in thickness (separation) between the abdomen and head greater than 10cm undergo CT simulation in both left and right decubitus treatment positions. One plan for each CT is generated to evaluate dose to patient midline with both AP and PA fields, but only corresponding AP fields will be exported for treatment for patient left decubitus position and PA fields for patient right decubitus position. Subfields are added by collimating with the x-ray jaws according to separation changes at 5–7% steps to minimize hot regions to less than 10%. Finally, the monitor units (MUs) for the plans are verified with hand calculation and water phantom measurements. Results: Dose uniformity (+/−10%) is achieved with field-in-field using only asymmetric jaws. It is dosimetrically robust with respect to minor setup/patient variations inevitable due to patient conditions. MUs calculated with Pinnacle were verified in 3 clinical cases and only a 2% difference was found compared to homogeneous calculation. In-vivo dosimeters were also used to verify doses received by each patient with and confirmed dose variations less than 10%. Conclusion: We encountered several cases with separation differences that raised uniformity concerns — based on a 1% dose difference per cm separation difference assumption. This could Resultin an unintended hot spot, often in the head/neck, up to 25%. This method allows dose modulation without adding treatment complexity nor introducing radiobiological variations, providing a reasonable solution for this unique

  13. Hyphenated low-field NMR techniques: combining NMR with NIR, GPC/SEC and rheometry.

    PubMed

    Räntzsch, Volker; Wilhelm, Manfred; Guthausen, Gisela

    2016-06-01

    Hyphenated low-field NMR techniques are promising characterization methods for online process analytics and comprehensive offline studies of soft materials. By combining different analytical methods with low-field NMR, information on chemical and physical properties can be correlated with molecular dynamics and complementary chemical information. In this review, we present three hyphenated low-field NMR techniques: a combination of near-infrared spectroscopy and time-domain NMR (TD-NMR) relaxometry, online (1) H-NMR spectroscopy measured directly after size exclusion chromatographic (SEC, also known as GPC) separation and a combination of rheometry and TD-NMR relaxometry for highly viscous materials. Case studies are reviewed that underline the possibilities and challenges of the different hyphenated low-field NMR methods. Copyright © 2015 John Wiley & Sons, Ltd.

  14. General Matrix Inversion Technique for the Calibration of Electric Field Sensor Arrays on Aircraft Platforms

    NASA Technical Reports Server (NTRS)

    Mach, D. M.; Koshak, W. J.

    2007-01-01

    A matrix calibration procedure has been developed that uniquely relates the electric fields measured at the aircraft with the external vector electric field and net aircraft charge. The calibration method can be generalized to any reasonable combination of electric field measurements and aircraft. A calibration matrix is determined for each aircraft that represents the individual instrument responses to the external electric field. The aircraft geometry and configuration of field mills (FMs) uniquely define the matrix. The matrix can then be inverted to determine the external electric field and net aircraft charge from the FM outputs. A distinct advantage of the method is that if one or more FMs need to be eliminated or deemphasized [e.g., due to a malfunction), it is a simple matter to reinvert the matrix without the malfunctioning FMs. To demonstrate the calibration technique, data are presented from several aircraft programs (ER-2, DC-8, Altus, and Citation).

  15. Investigating damage fields in a particulate composite material using real-time x-ray technique

    SciTech Connect

    Liu, C.T.; Tang, B.

    1993-12-31

    The damage fields in an edge-cracked sheet specimen subjected to a constant crosshead speed were investigated using the real-time x-ray technique. The specimen was made from polybutadiene rubber embedded with hard particles. The x-ray data were analyzed to delineate the damage field near the crack tip and to generate contour plots of the damage intensity. The experimental data were analyzed and the results are discussed.

  16. Computational Diagnostic Techniques for Electromagnetic Scattering: Analytical Imaging, Near Fields, and Surface Currents

    NASA Technical Reports Server (NTRS)

    Hom, Kam W.; Talcott, Noel A., Jr.; Shaeffer, John

    1997-01-01

    This paper presents three techniques and the graphics implementations which can be used as diagnostic aides in the design and understanding of scattering structures: Imaging, near fields, and surface current displays. The imaging analysis is a new bistatic k space approach which has potential for much greater information than standard experimental approaches. The near field and current analysis are implementations of standard theory while the diagnostic graphics displays are implementations exploiting recent computer engineering work station graphics libraries.

  17. Near-field three-dimensional radar imaging techniques and applications.

    PubMed

    Sheen, David; McMakin, Douglas; Hall, Thomas

    2010-07-01

    Three-dimensional radio frequency imaging techniques have been developed for a variety of near-field applications, including radar cross-section imaging, concealed weapon detection, ground penetrating radar imaging, through-barrier imaging, and nondestructive evaluation. These methods employ active radar transceivers that operate at various frequency ranges covering a wide range, from less than 100 MHz to in excess of 350 GHz, with the frequency range customized for each application. Computational wavefront reconstruction imaging techniques have been developed that optimize the resolution and illumination quality of the images. In this paper, rectilinear and cylindrical three-dimensional imaging techniques are described along with several application results.

  18. Near-Field Three-Dimensional Radar Imaging Techniques and Applications

    SciTech Connect

    Sheen, David M.; McMakin, Douglas L.; Hall, Thomas E.

    2010-07-01

    Three dimensional radio frequency imaging techniques have been developed for a variety of near field applications including radar cross-section imaging, concealed weapon detection, ground penetrating radar imaging, through-barrier imaging, and non-destructive evaluation. These methods employ active radar transceivers that operate at various frequency ranges covering a wide range from less than 100 MHz to in excess of 350 GHz with the frequency range customized for each application. Computational wavefront reconstruction imaging techniques have been developed that optimize the resolution and illumination quality of the images. In this paper, rectilinear and cylindrical three-dimensional imaging techniques are described along with several application results.

  19. Development of an expanded-field irradiation technique using a gimbaled x-ray head

    SciTech Connect

    Ono, Tomohiro; Miyabe, Yuki Yamada, Masahiro; Yokota, Kenji; Kaneko, Shuji; Monzen, Hajime; Mizowaki, Takashi; Hiraoka, Masahiro; Sawada, Akira; Kokubo, Masaki

    2014-10-15

    Purpose: The Vero4DRT has a maximum field size of 150.0 × 150.0 mm. The purpose of the present study was to develop expanded-field irradiation techniques using the unique gimbaled x-ray head of the Vero4DRT and to evaluate the dosimetric characteristics thereof. Methods: Two techniques were developed. One features gimbal swing irradiation and multiple static segments consisting of four separate fields exhibiting 2.39° gimbal rotation around two orthogonal axes. The central beam axis for each piecewise-field is shifted 40 mm from the isocenters of the left–right (LR) and superior–inferior (SI) directions, and, thus, the irradiation field size is expanded to 230.8 × 230.8 mm. Adjacent regions were created at the isocenter (a center-adjacent expandedfield) and 20 mm from the isocenter (an off-adjacent expandedfield). The field gaps or overlaps of combined piecewise-fields were established by adjustment of gimbal rotation and movement of the multileaf collimator (MLC). Another technique features dynamic segment irradiation in which the beam is delivered while rotating the gimbal. The dose profile is controlled by a combination of gimbal swing motion and opening and closing of the MLC. This enabled the authors to expand the irradiation field on the LR axis because the direction of MLC motion is parallel to that axis. A field 220.6 × 150.0 mm in dimensions was configured and examined. To evaluate the dosimetric characteristics of the expandedfields, films inserted into water-equivalent phantoms at depths of 50, 100, and 150 mm were irradiated and field sizes, penumbrae, flatness, and symmetry analyzed. In addition, the expanded-field irradiation techniques were applied to intensity-modulated radiation therapy (IMRT). A head-and-neck IMRT field, created using a conventional Linac (the Varian Clinac iX), was reproduced employing an expanded-field of the Vero4DRT. The simulated dose distribution for the expanded-IMRT field was compared to the measured

  20. A novel potential/viscous flow coupling technique for computing helicopter flow fields

    NASA Technical Reports Server (NTRS)

    Summa, J. Michael; Strash, Daniel J.; Yoo, Sungyul

    1990-01-01

    Because of the complexity of helicopter flow field, a zonal method of analysis of computational aerodynamics is required. Here, a new procedure for coupling potential and viscous flow is proposed. An overlapping, velocity coupling technique is to be developed with the unique feature that the potential flow surface singularity strengths are obtained directly from the Navier-Stokes at a smoother inner fluid boundary. The closed-loop iteration method proceeds until the velocity field is converged. This coupling should provide the means of more accurate viscous computations of the near-body and rotor flow fields with resultant improved analysis of such important performance parameters as helicopter fuselage drag and rotor airloads.

  1. About the parametrizations utilized to perform magnetic moments measurements using the transient field technique

    NASA Astrophysics Data System (ADS)

    Gómez, A. M.; Torres, D. A.

    2016-07-01

    The experimental study of nuclear magnetic moments, using the Transient Field technique, makes use of spin-orbit hyperfine interactions to generate strong magnetic fields, above the kilo-Tesla regime, capable to create a precession of the nuclear spin. A theoretical description of such magnetic fields is still under theoretical research, and the use of parametrizations is still a common way to address the lack of theoretical information. In this contribution, a review of the main parametrizations utilized in the measurements of Nuclear Magnetic Moments will be presented, the challenges to create a theoretical description from first principles will be discussed.

  2. Design of Optical Systems with Extended Depth of Field: An Educational Approach to Wavefront Coding Techniques

    ERIC Educational Resources Information Center

    Ferran, C.; Bosch, S.; Carnicer, A.

    2012-01-01

    A practical activity designed to introduce wavefront coding techniques as a method to extend the depth of field in optical systems is presented. The activity is suitable for advanced undergraduate students since it combines different topics in optical engineering such as optical system design, aberration theory, Fourier optics, and digital image…

  3. Program Evaluation and Review Technique (PERT): A Planning and Control Tool for Occupational Field Studies.

    ERIC Educational Resources Information Center

    Hemphill, John M., Jr.; And Others

    Program Evaluation and Review Technique (PERT) is used in the U.S. Marine Corps task analysis program for occupational field studies. Scheduling sequential tasks, estimating time requirements, determining staffing needs, and locating checkpoints for control all can be accomplished using PERT. Examples of operational aspects of PERT, PERT…

  4. A Field-Based Technique for Teaching about Habitat Fragmentation and Edge Effects

    ERIC Educational Resources Information Center

    Resler, Lynn M.; Kolivras, Korine N.

    2009-01-01

    This article presents a field technique that exposes students to the indirect effects of habitat fragmentation on plant distributions through studying edge effects. This assignment, suited for students in an introductory biogeography or resource geography class, increases students' knowledge of basic biogeographic concepts such as environmental…

  5. A Comparison of Three C-Arm Draping Techniques to Minimize Contamination of the Surgical Field.

    PubMed

    Gershkovich, Grigory E; Tiedeken, Nathan C; Hampton, David; Budacki, Ross; Samuel, Solomon P; Saing, Minn

    2016-10-01

    The use of intraoperative fluoroscopy has become a routine and useful adjunct within orthopaedic surgery. However, the fluoroscopy machine may become an additional source of contamination in the operating room, particularly when maneuvering from the anterior-posterior position to the lateral position. Consequently, draping techniques were developed to maintain sterility of the operative field and surgeon. Despite a variety of methods, no studies exist to compare the sterility of these techniques specifically when the fluoroscopy machine is in the lateral imaging position. We evaluated the sterility of 3 c-arm draping techniques in a simulated operative environment. The 3 techniques consisted of a traditional 3-quarter sterile sheet attached to the side of the operative table, a modified clip-drape method, and a commercially available sterile pouch. Our study demonstrated that the traditional method poses a high risk for sterile field contamination, whereas the modified clip-drape method and commercially available sterile pouch kept floor contamination furthest from the surgical field. With the current data, we urge surgeons to use modified techniques rather than the traditional draping method.

  6. Integrated velocity field from ground and satellite geodetic techniques: application to Arenal volcano

    NASA Astrophysics Data System (ADS)

    Muller, Cyril; del Potro, Rodrigo; Biggs, Juliet; Gottsmann, Joachim; Ebmeier, Susanna K.; Guillaume, Sébastien; Cattin, Paul-Henri; Van der Laat, Rodolfo

    2015-02-01

    Measurements of ground deformation can be used to identify and interpret geophysical processes occurring at volcanoes. Most studies rely on a single geodetic technique, or fit a geophysical model to the results of multiple geodetic techniques. Here we present a methodology that combines GPS, Total Station measurements and InSAR into a single reference frame to produce an integrated 3-D geodetic velocity surface without any prior geophysical assumptions. The methodology consists of five steps: design of the network, acquisition and processing of the data, spatial integration of the measurements, time series computation and finally the integration of spatial and temporal measurements. The most significant improvements of this method are (1) the reduction of the required field time, (2) the unambiguous detection of outliers, (3) an increased measurement accuracy and (4) the construction of a 3-D geodetic velocity field. We apply this methodology to ongoing motion on Arenal's western flank. Integration of multiple measurement techniques at Arenal volcano revealed a deformation field that is more complex than that described by individual geodetic techniques, yet remains consistent with previous studies. This approach can be applied to volcano monitoring worldwide and has the potential to be extended to incorporate other geodetic techniques and to study transient deformation.

  7. Solar coronal magnetic fields derived using seismology techniques applied to omnipresent sunspot waves

    NASA Astrophysics Data System (ADS)

    Jess, David B.; Reznikova, Veronika E.; Ryans, Robert S. I.; Christian, Damian J.; Keys, Peter H.; Mathioudakis, Mihalis; Mackay, Duncan H.; Krishna Prasad, S.; Banerjee, Dipankar; Grant, Samuel D. T.; Yau, Sean; Diamond, Conor

    2016-02-01

    Sunspots on the surface of the Sun are the observational signatures of intense manifestations of tightly packed magnetic field lines, with near-vertical field strengths exceeding 6,000 G in extreme cases. It is well accepted that both the plasma density and the magnitude of the magnetic field strength decrease rapidly away from the solar surface, making high-cadence coronal measurements through traditional Zeeman and Hanle effects difficult as the observational signatures are fraught with low-amplitude signals that can become swamped with instrumental noise. Magneto-hydrodynamic (MHD) techniques have previously been applied to coronal structures, with single and spatially isolated magnetic field strengths estimated as 9-55 G (refs ,,,). A drawback with previous MHD approaches is that they rely on particular wave modes alongside the detectability of harmonic overtones. Here we show, for the first time, how omnipresent magneto-acoustic waves, originating from within the underlying sunspot and propagating radially outwards, allow the spatial variation of the local coronal magnetic field to be mapped with high precision. We find coronal magnetic field strengths of 32 +/- 5 G above the sunspot, which decrease rapidly to values of approximately 1 G over a lateral distance of 7,000 km, consistent with previous isolated and unresolved estimations. Our results demonstrate a new, powerful technique that harnesses the omnipresent nature of sunspot oscillations to provide magnetic field mapping capabilities close to a magnetic source in the solar corona.

  8. Increased Oil Production and Reserves From Improved Completion Techniques in the Bluebell Field, Uinta Basin, Utah

    SciTech Connect

    Morgan, C.D.; Deo, M.D.

    1998-04-01

    The Bluebell field is productive from the Tertiary lower Green River and Colton (Wasatch) Formations of the Uinta Basin, Utah. The productive interval consists of thousands of feet of interbedded fractured clastic and carbonate beds deposited in the ancestral Lake Uinta. Wells in the Bluebell field are typically completed by perforating 40 or more beds over 1000 to 3000 vertical ft (300-900 m), then stimulating the entire interval with hydrochloric acid. This technique is often referred to as the shot gun completion. Completion techniques used in the Bluebell field were discussed in detail in the Second Annual Report (Curtice, 1996). The shot-gun technique is believed to leave many potentially productive beds damaged and/or untreated, while allowing water-bearing and low-pressure (thief) zones to communicate with the wellbore. A two-year characterization study involved detailed examination of outcrop, core, well logs, surface and subsurface fractures, produced oil-field waters, engineering parameters of the two demonstration wells, and analysis of past completion techniques and effectiveness. The study was intended to improve the geologic characterization of the producing formations and thereby develop completion techniques specific to the producing beds or facies instead of a shot gun approach to stimulating all the beds. The characterization did not identify predictable-facies or predictable-fracture trends within the vertical stratigraphic column as originally hoped. Advanced logging techniques can identify productive beds in individual wells. A field-demonstration program was developed to use cased-hole advanced logging techniques in two wells and recompletion the wells at two different scales based on the logging. The first well was going to be completed at the interval scale using a multiple stage completion technique (about 500 ft [150 m] per stage). The second well will be recompleted at the bed-scale using bridge plug and packer to isolate three or more

  9. Unusual well control techniques pay off. [Well drilling techniques in the Elgin gas condensate field, North Sea

    SciTech Connect

    Idelovici, J.L.

    1993-07-01

    Well control and completion operations were seriously complicated by an unusual pressure phenomena encountered while drilling an appraisal well through Jurassic sandstones in a high-pressure, high-temperature (HPHT), gas and condensate field located in the United Kingdom continental shelf. The HPHT sandstone reservoir is located in the Upper Jurassic Franklin formation. Unorthodox well-control techniques were used because it was determined that the abnormally high pressure was generated by a mechanical reaction of the rock under the effect of heavy mud and equivalent circulating density, rather than by entry into the wellbore of formation fluids. This paper reviews the complex drilling fluid control procedures which had to be utilized to maintain an open bore hole during drilling.

  10. Reconstruction of the density field using the Colored Background Oriented Schlieren Technique (CBOS)

    NASA Astrophysics Data System (ADS)

    Sourgen, F.; Leopold, F.; Klatt, D.

    2012-01-01

    In this paper the improved Background Oriented Schlieren technique called CBOS (Colored Background Oriented Schlieren) is described and used to reconstruct density fields of three-dimensional flows. The Background Oriented Schlieren technique (BOS) allows to measure the light deflection caused by density gradients in a compressible flow. For this purpose the local image displacements of the image of a background pattern observed through the flow is used. In order to increase the performance of the conventional Background Oriented Schlieren technique, the monochromatic background is replaced by a colored dot pattern. The different colors are treated separately using suitable correlation algorithms. Therefore, the accuracy and the spatial resolution can be increased. A tomographic reconstruction method is then used to reconstruct the density field in three-dimensional flows from CBOS measurements.

  11. [African silhouettes and field photography. M. Griaule's contribution to the Maussian "discovery" of body techniques].

    PubMed

    Despoix, Philippe

    2010-01-01

    This essay focuses on the interaction between the new reproduction media and corresponding reconfiguration of research fields in anthropology using the case of the "techniques of the body" - a concept developed by Marcel Mauss (1872-1950). For Mauss, the initiator of this discipline in France, body skills constituted the most important anthropological entity resulting from the confrontation of technical images and his interest in walking techniques. Three scenarios are especially significant for Mauss's formulation of "body techniques" as a genuine concept: the front during the World War I, a New Yorke hospital in 1926, and an ethnographical field study conducted in Africa during the ate 1920s. Both, the photographic media as well as the Abyssinian expedition of his student Marcel Griaule, whose research publication Mauss co-authored (Silhouettes et graffiti abyssins) n 1933, take centre stage here.

  12. A Rapid, Fluorescence-Based Field Screening Technique for Organic Species in Soil and Water Matrices.

    PubMed

    Russell, Amber L; Martin, David P; Cuddy, Michael F; Bednar, Anthony J

    2016-06-01

    Real-time detection of hydrocarbon contaminants in the environment presents analytical challenges because traditional laboratory-based techniques are cumbersome and not readily field portable. In the current work, a method for rapid and semi-quantitative detection of organic contaminants, primarily crude oil, in natural water and soil matrices has been developed. Detection limits in the parts per million and parts per billion were accomplished when using visual and digital detection methods, respectively. The extraction technique was modified from standard methodologies used for hydrocarbon analysis and provides a straight-forward separation technique that can remove interference from complex natural constituents. For water samples this method is semi-quantitative, with recoveries ranging from 70 % to 130 %, while measurements of soil samples are more qualitative due to lower extraction efficiencies related to the limitations of field-deployable procedures.

  13. [African silhouettes and field photography. M. Griaule's contribution to the Maussian "discovery" of body techniques].

    PubMed

    Despoix, Philippe

    2010-01-01

    This essay focuses on the interaction between the new reproduction media and corresponding reconfiguration of research fields in anthropology using the case of the "techniques of the body" - a concept developed by Marcel Mauss (1872-1950). For Mauss, the initiator of this discipline in France, body skills constituted the most important anthropological entity resulting from the confrontation of technical images and his interest in walking techniques. Three scenarios are especially significant for Mauss's formulation of "body techniques" as a genuine concept: the front during the World War I, a New Yorke hospital in 1926, and an ethnographical field study conducted in Africa during the ate 1920s. Both, the photographic media as well as the Abyssinian expedition of his student Marcel Griaule, whose research publication Mauss co-authored (Silhouettes et graffiti abyssins) n 1933, take centre stage here. PMID:21249525

  14. Direct imaging of neural currents using ultra-low field magnetic resonance techniques

    DOEpatents

    Volegov, Petr L.; Matlashov, Andrei N.; Mosher, John C.; Espy, Michelle A.; Kraus, Jr., Robert H.

    2009-08-11

    Using resonant interactions to directly and tomographically image neural activity in the human brain using magnetic resonance imaging (MRI) techniques at ultra-low field (ULF), the present inventors have established an approach that is sensitive to magnetic field distributions local to the spin population in cortex at the Larmor frequency of the measurement field. Because the Larmor frequency can be readily manipulated (through varying B.sub.m), one can also envision using ULF-DNI to image the frequency distribution of the local fields in cortex. Such information, taken together with simultaneous acquisition of MEG and ULF-NMR signals, enables non-invasive exploration of the correlation between local fields induced by neural activity in cortex and more `distant` measures of brain activity such as MEG and EEG.

  15. Two-field versus three-field irradiation technique in the postoperative treatment of head-and-neck cancer

    SciTech Connect

    Yom, Sue S.; Morrison, William H.; Ang, K. Kian; Rosenthal, David I.; Perkins, George H.; Wong, Pei-Fong M.S.; Garden, Adam S. . E-mail: agarden@mdanderson.org

    2006-10-01

    Purpose: We have increasingly used a two-field noncoplanar 'caudal tilt' technique (CTT) for irradiating postlaryngectomy and pharyngectomy patients to avoid matchline problems that can be encountered with the classic three-field head-and-neck radiation technique (3FT). This report compares the clinical outcomes of patients treated with postoperative radiation (PORT) using either 3FT or CTT. Methods and Materials: We conducted a retrospective review of the medical records of all patients with laryngeal or hypopharyngeal cancers consecutively treated with PORT between 1997 and 2002. Three-dimensional dosimetric planning was carried out for all patients. Results: Of 91 patients, 39 were treated with 3FT and 52 with CTT. The median follow-up was 34 months. Estimated rates of 2-year locoregional control, disease-free survival, and overall survival for patients treated with 3FT and CTT were, respectively, 92% and 85% (p = 0.241), 62% and 55% (p = 0.497), and 77% and 72% (p = 0.616). There were no significant differences in the incidence of acute or late side effects in the two groups. Conclusions: 'Caudal tilt' technique is often used as an alternative to 3FT for postoperative radiotherapy in cases of greater medical and technical complexity. Despite its use in more challenging cases, CTT provides similar long-term clinical outcomes compared with standard 3FT, when computerized three-dimensional dosimetry is used to assure adequate dosimetry throughout the treated volume.

  16. Patch nearfield acoustic holography combined with sound field separation technique applied to a non-free field

    NASA Astrophysics Data System (ADS)

    Bi, ChuanXing; Jing, WenQian; Zhang, YongBin; Xu, Liang

    2015-02-01

    The conventional nearfield acoustic holography (NAH) is usually based on the assumption of free-field conditions, and it also requires that the measurement aperture should be larger than the actual source. This paper is to focus on the problem that neither of the above-mentioned requirements can be met, and to examine the feasibility of reconstructing the sound field radiated by partial source, based on double-layer pressure measurements made in a non-free field by using patch NAH combined with sound field separation technique. And also, the sensitivity of the reconstructed result to the measurement error is analyzed in detail. Two experiments involving two speakers in an exterior space and one speaker inside a car cabin are presented. The experimental results demonstrate that the patch NAH based on single-layer pressure measurement cannot obtain a satisfied result due to the influences of disturbing sources and reflections, while the patch NAH based on double-layer pressure measurements can successfully remove these influences and reconstruct the patch sound field effectively.

  17. Electric field measurements on Cluster: comparing the double-probe and electron drift techniques

    NASA Astrophysics Data System (ADS)

    Eriksson, A. I.; André, M.; Klecker, B.; Laakso, H.; Lindqvist, P.-A.; Mozer, F.; Paschmann, G.; Pedersen, A.; Quinn, J.; Torbert, R.; Torkar, K.; Vaith, H.

    2006-03-01

    The four Cluster satellites each carry two instruments designed for measuring the electric field: a double-probe instrument (EFW) and an electron drift instrument (EDI). We compare data from the two instruments in a representative sample of plasma regions. The complementary merits and weaknesses of the two techniques are illustrated. EDI operations are confined to regions of magnetic fields above 30 nT and where wave activity and keV electron fluxes are not too high, while EFW can provide data everywhere, and can go far higher in sampling frequency than EDI. On the other hand, the EDI technique is immune to variations in the low energy plasma, while EFW sometimes detects significant nongeophysical electric fields, particularly in regions with drifting plasma, with ion energy (in eV) below the spacecraft potential (in volts). We show that the polar cap is a particularly intricate region for the double-probe technique, where large nongeophysical fields regularly contaminate EFW measurments of the DC electric field. We present a model explaining this in terms of enhanced cold plasma wake effects appearing when the ion flow energy is higher than the thermal energy but below the spacecraft potential multiplied by the ion charge. We suggest that these conditions, which are typical of the polar wind and occur sporadically in other regions containing a significant low energy ion population, cause a large cold plasma wake behind the spacecraft, resulting in spurious electric fields in EFW data. This interpretation is supported by an analysis of the direction of the spurious electric field, and by showing that use of active potential control alleviates the situation.

  18. A simple technique for measuring buoyant weight increment of entire, transplanted coral colonies in the field

    PubMed Central

    Herler, Jürgen; Dirnwöber, Markus

    2011-01-01

    Estimating the impacts of global and local threats on coral reefs requires monitoring reef health and measuring coral growth and calcification rates at different time scales. This has traditionally been mostly performed in short-term experimental studies in which coral fragments were grown in the laboratory or in the field but measured ex situ. Practical techniques in which growth and measurements are performed over the long term in situ are rare. Apart from photographic approaches, weight increment measurements have also been applied. Past buoyant weight measurements under water involved a complicated and little-used apparatus. We introduce a new method that combines previous field and laboratory techniques to measure the buoyant weight of entire, transplanted corals under water. This method uses an electronic balance fitted into an acrylic glass underwater housing and placed atop of an acrylic glass cube. Within this cube, corals transplanted onto artificial bases can be attached to the balance and weighed at predetermined intervals while they continue growth in the field. We also provide a set of simple equations for the volume and weight determinations required to calculate net growth rates. The new technique is highly accurate: low error of weight determinations due to variation of coral density (< 0.08%) and low standard error (< 0.01%) for repeated measurements of the same corals. We outline a transplantation technique for properly preparing corals for such long-term in situ experiments and measurements. PMID:22049248

  19. Pulsed remote field eddy current technique applied to non-magnetic flat conductive plates

    NASA Astrophysics Data System (ADS)

    Yang, Binfeng; Zhang, Hui; Zhang, Chao; Zhang, Zhanbin

    2013-12-01

    Non-magnetic metal plates are widely used in aviation and industrial applications. The detection of cracks in thick plate structures, such as multilayered structures of aircraft fuselage, has been challenging in nondestructive evaluation societies. The remote field eddy current (RFEC) technique has shown advantages of deep penetration and high sensitivity to deeply buried anomalies. However, the RFEC technique is mainly used to evaluate ferromagnetic tubes. There are many problems that should be fixed before the expansion and application of this technique for the inspection of non-magnetic conductive plates. In this article, the pulsed remote field eddy current (PRFEC) technique for the detection of defects in non-magnetic conducting plates was investigated. First, the principle of the PRFEC technique was analysed, followed by the analysis of the differences between the detection of defects in ferromagnetic and non-magnetic plain structures. Three different models of the PRFEC probe were simulated using ANSYS. The location of the transition zone, defect detection sensitivity and the ability to detect defects in thick plates using three probes were analysed and compared. The simulation results showed that the probe with a ferrite core had the highest detecting ability. The conclusions derived from the simulation study were also validated by conducting experiments.

  20. Magnetic field tunable small-scale mechanical properties of nickel single crystals measured by nanoindentation technique.

    PubMed

    Zhou, Hao; Pei, Yongmao; Fang, Daining

    2014-01-01

    Nano- and micromagnetic materials have been extensively employed in micro-functional devices. However, measuring small-scale mechanical and magnetomechanical properties is challenging, which restricts the design of new products and the performance of smart devices. A new magnetomechanical nanoindentation technique is developed and tested on a nickel single crystal in the absence and presence of a saturated magnetic field. Small-scale parameters such as Young's modulus, indentation hardness, and plastic index are dependent on the applied magnetic field, which differ greatly from their macroscale counterparts. Possible mechanisms that induced 31% increase in modulus and 7% reduction in hardness (i.e., the flexomagnetic effect and the interaction between dislocations and magnetic field, respectively) are analyzed and discussed. Results could be useful in the microminiaturization of applications, such as tunable mechanical resonators and magnetic field sensors.

  1. Measurements of solar magnetic fields by Fourier transform techniques. II - Saturated and blended lines

    NASA Technical Reports Server (NTRS)

    Tarbell, T. D.; Title, A. M.

    1976-01-01

    Fourier techniques have been exhaustively calibrated using Unno's (1956) results for the absorption profile of a simple Zeeman triplet. If a simple transformation is applied to the normalized line depths, then magnetic-field strengths and inclination angles can be measured very accurately from noisy saturated line profiles. Systematic errors caused by saturation effects can be estimated and reduced by varying one parameter. When a significant fraction of the line profile is unsplit and unpolarized, large errors may be made in measurements of low fields, unless the line is sufficiently weak. For a weak line, a vertical field of 1600 gauss can be measured to 10% accuracy even when 70% of the line profile is stray light. These stray-light errors are troublesome in measuring fields of gaps and pores but not sunspots. Numerical results of the error analysis are presented graphically.

  2. Research and implementation of visualization techniques for 3D explosion fields

    NASA Astrophysics Data System (ADS)

    Ning, Jianguo; Xu, Xiangzhao; Ma, Tianbao; Yu, Wen

    2015-12-01

    The visualization of scalar data in 3D explosion fields was devised to solve the problems of the complex physical and the huge data in numerical simulation of explosion mechanics problems. For enhancing the explosion effects and reducing the impacts of image analysis, the adjustment coefficient was added into original Phong illumination model. A variety of accelerated volume rendering algorithm and multithread technique were used to realize the fast rendering and real-time interactive control of 3D explosion fields. Cutaway view was implemented, so arbitrary section of 3D explosion fields can be seen conveniently. Slice can be extracted along three axes of 3D explosion fields, and the value at an arbitrary point on the slice can be gained. The experiment results show that the volume rendering acceleration algorithm can generate high quality images and can increase the speed of image generating, while achieve interactive control quickly.

  3. Observation of the local field distribution in photonic crystal microcavity by SNOM technique

    NASA Astrophysics Data System (ADS)

    Maidykovski, Anton I.; Lebedev, Oleg V.; Dolgova, Tatyana V.; Kazantsev, D. V.; Fedyanin, Andrew A.

    2002-11-01

    The spatial distribution of the local optical field at the cleavage of photonic crystal smicrocavity has been obtained by the scanning near-field optical microscope (SNOM). The localization of optical radiation at microcavity resonant wavelength in the vicinity of the λ/2 spacer layer is demonstrated. Samples of photonic crystal microcavity are prepared from silicon wafer by electrochemical etching technique. The wavelength of the microcavity mode is optimized for resonance with wavelengths of lasers. The image of the spatial distribution of optical field at the cleaved edge of the facing vertically microcavity is observed. Sample is pumped through external single-mode fiber perpendicularly to the microcavity. SNOM operates in the collection mode with the apertureless tip. We observe the localization of the resonant optical field in microcavity but we do not reveal such localization of the radiation at the non-resonant wavelength.

  4. Magnetic Field Tunable Small-scale Mechanical Properties of Nickel Single Crystals Measured by Nanoindentation Technique

    PubMed Central

    Zhou, Hao; Pei, Yongmao; Fang, Daining

    2014-01-01

    Nano- and micromagnetic materials have been extensively employed in micro-functional devices. However, measuring small-scale mechanical and magnetomechanical properties is challenging, which restricts the design of new products and the performance of smart devices. A new magnetomechanical nanoindentation technique is developed and tested on a nickel single crystal in the absence and presence of a saturated magnetic field. Small-scale parameters such as Young's modulus, indentation hardness, and plastic index are dependent on the applied magnetic field, which differ greatly from their macroscale counterparts. Possible mechanisms that induced 31% increase in modulus and 7% reduction in hardness (i.e., the flexomagnetic effect and the interaction between dislocations and magnetic field, respectively) are analyzed and discussed. Results could be useful in the microminiaturization of applications, such as tunable mechanical resonators and magnetic field sensors. PMID:24695002

  5. A technique for measuring magnetic fields on solar-type stars

    NASA Technical Reports Server (NTRS)

    Marcy, G. W.

    1982-01-01

    A method is developed and tested by which magnetic-field strengths and area filling-factors of magnetic regions on late-type stars may be inferred from high-resolution, absorption-line profiles that have been broadened by the Zeeman effect. The technique involves fitting such profiles with a triplet of components, the shape of which is derived from profiles of lines of low Zeeman sensitivity. Tests of the systematic and random errors indicate that such magnetic flux measurements have an uncertainty of 20% for stars with field strengths of 2000 gauss if at least 10% of the stellar surface contains magnetic regions.

  6. Imaging Analysis of Near-Field Recording Technique for Observation of Biological Specimens

    NASA Astrophysics Data System (ADS)

    Moriguchi, Chihiro; Ohta, Akihiro; Egami, Chikara; Kawata, Yoshimasa; Terakawa, Susumu; Tsuchimori, Masaaki; Watanabe, Osamu

    2006-07-01

    We present an analysis of the properties of an imaging based on a near-field recording technique in comparison with simulation results. In the system, the optical field distributions localized near the specimens are recorded as the surface topographic distributions of a photosensitive film. It is possible to observe both soft and moving specimens, because the system does not require a scanning probe to obtain the observed image. The imaging properties are evaluated using fine structures of paramecium, and we demonstrate that it is possible to observe minute differences of refractive indices.

  7. The Wide-Field Imaging Interferometry Testbed: Enabling Techniques for High Angular Resolution Astronomy

    NASA Technical Reports Server (NTRS)

    Rinehart, S. A.; Armstrong, T.; Frey, Bradley J.; Jung, J.; Kirk, J.; Leisawitz, David T.; Leviton, Douglas B.; Lyon, R.; Maher, Stephen; Martino, Anthony J.; Pauls, T.

    2007-01-01

    The Wide-Field Imaging Interferometry Testbed (WIIT) was designed to develop techniques for wide-field of view imaging interferometry, using "double-Fourier" methods. These techniques will be important for a wide range of future spacebased interferometry missions. We have provided simple demonstrations of the methodology already, and continuing development of the testbed will lead to higher data rates, improved data quality, and refined algorithms for image reconstruction. At present, the testbed effort includes five lines of development; automation of the testbed, operation in an improved environment, acquisition of large high-quality datasets, development of image reconstruction algorithms, and analytical modeling of the testbed. We discuss the progress made towards the first four of these goals; the analytical modeling is discussed in a separate paper within this conference.

  8. Field transients of coherent terahertz synchrotron radiation accessed via time-resolving and correlation techniques

    NASA Astrophysics Data System (ADS)

    Pohl, A.; Semenov, A.; Hübers, H.-W.; Hoehl, A.; Ries, M.; Wüstefeld, G.; Ulm, G.; Ilin, K.; Thoma, P.; Siegel, M.

    2016-03-01

    Decaying oscillations of the electric field in repetitive pulses of coherent synchrotron radiation in the terahertz frequency range was evaluated by means of time-resolving and correlation techniques. Comparative analysis of real-time voltage transients of the electrical response and interferograms, which were obtained with an ultrafast zero-bias Schottky diode detector and a Martin-Puplett interferometer, delivers close values of the pulse duration. Consistent results were obtained via the correlation technique with a pair of Golay Cell detectors and a pair of resonant polarisation-sensitive superconducting detectors integrated on one chip. The duration of terahertz synchrotron pulses does not closely correlate with the duration of single-cycle electric field expected for the varying size of electron bunches. We largely attribute the difference to the charge density oscillations in electron bunches and to the low-frequency spectral cut-off imposed by both the synchrotron beamline and the coupling optics of our detectors.

  9. New dimension in the schlieren technique: flow field analysis using color.

    PubMed

    Maddox, A R; Binder, R C

    1971-03-01

    The various techniques for introducing color into a schlieren system were explored, and all of them were found to have drawbacks such that the added dimension of color in a schlieren has never been utilized for extensive quantitative measurements. An entirely new technique using a diffraction grating to produce the color has been introduced as a modification of the conventional schlieren system. It provides solutions to the problems of sensitivity, range of measurement deflection and undesirable effects of diffraction which have limited the usefulness of color systems in the past. Methods for analyzing a conventional schlieren have been modified for the analysis of a color schlieren result. Surface pressures and flow field analysis for some simple two-dimensional airfoil shapes have been obtained by these color techniques developed here, and the results compare very well with theoretical pressure calculations.

  10. Comparison of soft computing techniques for a three-phase oil field centrifuge.

    SciTech Connect

    Smith, R. E.; Parkinson, w; Miller, N.

    2002-01-01

    In this work we compare fuzzy techniques to neural network techniques for building a soft sensor for a three-phase oil field centrifuge. The soft sensor is used in a feed-forward control system that augments a feedback control system. Two approaches were used to develop the soft sensor. The first approach was to use a fuzzy rule based system based upon the experience of an expert operator. The expert operator's experience was supplemented using a computer model of the system. The second approach was to use a neural network to build the inverse of the computer model. The pros and cons of both techniques are discussed. KEYWORDS: fuzzy logic, neural networks, soft sensor, soft computing

  11. An improved DPSM technique for modelling ultrasonic fields in cracked solids

    NASA Astrophysics Data System (ADS)

    Banerjee, Sourav; Kundu, Tribikram; Placko, Dominique

    2007-04-01

    In recent years Distributed Point Source Method (DPSM) is being used for modelling various ultrasonic, electrostatic and electromagnetic field modelling problems. In conventional DPSM several point sources are placed near the transducer face, interface and anomaly boundaries. The ultrasonic or the electromagnetic field at any point is computed by superimposing the contributions of different layers of point sources strategically placed. The conventional DPSM modelling technique is modified in this paper so that the contributions of the point sources in the shadow region can be removed from the calculations. For this purpose the conventional point sources that radiate in all directions are replaced by Controlled Space Radiation (CSR) sources. CSR sources can take care of the shadow region problem to some extent. Complete removal of the shadow region problem can be achieved by introducing artificial interfaces. Numerically synthesized fields obtained by the conventional DPSM technique that does not give any special consideration to the point sources in the shadow region and the proposed modified technique that nullifies the contributions of the point sources in the shadow region are compared. One application of this research can be found in the improved modelling of the real time ultrasonic non-destructive evaluation experiments.

  12. Imaging electron density and magnetic field distributions in the magnetosphere: A new technique

    NASA Astrophysics Data System (ADS)

    Ganguly, S.; Van Bavel, G. H.; Brown, A.

    2000-07-01

    The current collection of magnetospheric observations consists almost entirely of in situ measurements at isolated spacecraft positions. A novel remote sensing technique for simultaneously imaging the plasma density N and the magnetic field B is proposed. The imaged region of the magnetosphere can be several Earth radii in extent. Simultaneous measurements of both group delay and Faraday rotation of radio waves propagating through the magnetosphere yield both total electron content (TEC) and Faraday rotation angle, which is the integral of electron density weighted by some known function of the magnetic field and ray path. These data can then be inverted to obtain estimates of the three-dimensional spatial distribution of N and B. The geometry of the ray paths determines the number of components of B that can be resolved. Simple multisatellite simulations and common data processing techniques introduce this new application of tomography: Magnetospheric TEC measurements yield a map of N, which is then combined with Faraday rotation angle measurements to produce a two-component map of B in the plane of observation. The successful tomographic reconstructions provide a straightforward illustration of the practicality of using this technique to map the magnetospheric plasma density and magnetic field in two or three dimensions. Furthermore, simultaneous images of N and B are of great topical interest to geospace science because of their direct and immediate relevance to current questions regarding magnetospheric structure and dynamics.

  13. Advancement of an Infra-Red Technique for Whole-Field Concentration Measurements in Fluidized Beds

    PubMed Central

    Medrano, Jose A.; de Nooijer, Niek C. A.; Gallucci, Fausto; van Sint Annaland, Martin

    2016-01-01

    For a better understanding and description of the mass transport phenomena in dense multiphase gas-solids systems such as fluidized bed reactors, detailed and quantitative experimental data on the concentration profiles is required, which demands advanced non-invasive concentration monitoring techniques with a high spatial and temporal resolution. A novel technique based on the selective detection of a gas component in a gas mixture using infra-red properties has been further developed. The first stage development was carried out using a very small sapphire reactor and CO2 as tracer gas. Although the measuring principle was demonstrated, the real application was hindered by the small reactor dimensions related to the high costs and difficult handling of large sapphire plates. In this study, a new system has been developed, that allows working at much larger scales and yet with higher resolution. In the new system, propane is used as tracer gas and quartz as reactor material. In this study, a thorough optimization and calibration of the technique is presented which is subsequently applied for whole-field measurements with high temporal resolution. The developed technique allows the use of a relatively inexpensive configuration for the measurement of detailed concentration fields and can be applied to a large variety of important chemical engineering topics. PMID:26927127

  14. From superresolution to nanodetection: overview of far field optical nanoscopy techniques for nanostructures

    NASA Astrophysics Data System (ADS)

    Montgomery, P. C.; Leong-Hoi, A.; Anstotz, F.; Mitev, D.; Pramatarova, L.; Haeberlé, O.

    2016-02-01

    Far field optical nanoscopy has been brought to the forefront with the 2014 Nobel Prize for chemistry in fluorescent nanoscopy for revealing intra-cellular details of tens of nm. In this review, we present an improved classification scheme that summarizes the many optical nanoscopy techniques that exist. We place particular emphasis on unlabelledsuperresolution techniques that provide real improved resolving power and unlabellednanodetection techniques for characterizing unresolved nanostructures. Superresolution is illustrated with sub-100 nm imaging of diatoms with tomographic diffractive microscopyand adenoviruseswith submerged microsphere optical nanoscopy. Three sub-categories of nanodetectionare then presented. Contrast enhancement is illustrated with surface enhanced ellipsometric contrast microscopy for the study of bacterial motility and strobed phase contrast microscopy for measuring the mechanical properties of vesicle membranes. High sensitivity phase measurement using interference microscopy demonstrates how nanostructured surfaces and structures can be characterized in biomaterials, laser textured stainless steel and defects within thin polymer films. Finally, deconvolution is illustrated with the use of through-focus scanning optical microscopy in critical dimension measurement and characterization of 40 nm linewidths in microelectronic devices. In this way we show how new far field optical nanoscopy techniques are being developed for unlabelled characterization of nano and biomaterials.

  15. Towards a sterile insect technique field release of Anopheles arabiensis mosquitoes in Sudan: Irradiation, transportation, and field cage experimentation

    PubMed Central

    Helinski, Michelle EH; Hassan, Mo'awia M; El-Motasim, Waleed M; Malcolm, Colin A; Knols, Bart GJ; El-Sayed, Badria

    2008-01-01

    Background The work described in this article forms part of a study to suppress a population of the malaria vector Anopheles arabiensis in Northern State, Sudan, with the Sterile Insect Technique. No data have previously been collected on the irradiation and transportation of anopheline mosquitoes in Africa, and the first series of attempts to do this in Sudan are reported here. In addition, experiments in a large field cage under near-natural conditions are described. Methods Mosquitoes were irradiated in Khartoum and transported as adults by air to the field site earmarked for future releases (400 km from the laboratory). The field cage was prepared for experiments by creating resting sites with favourable conditions. The mating and survival of (irradiated) laboratory males and field-collected males was studied in the field cage, and two small-scale competition experiments were performed. Results Minor problems were experienced with the irradiation of insects, mostly associated with the absence of a rearing facility in close proximity to the irradiation source. The small-scale transportation of adult mosquitoes to the release site resulted in minimal mortality (< 6%). Experiments in the field cage showed that mating occurred in high frequencies (i.e. an average of 60% insemination of females after one or two nights of mating), and laboratory reared males (i.e. sixty generations) were able to inseminate wild females at rates comparable to wild males. Based on wing length data, there was no size preference of males for mates. Survival of mosquitoes from the cage, based on recapture after mating, was satisfactory and approximately 60% of the insects were recaptured after one night. Only limited information on male competitiveness was obtained due to problems associated with individual egg laying of small numbers of wild females. Conclusion It is concluded that although conditions are challenging, there are no major obstacles associated with the small

  16. The derivation of vector magnetic fields from Stokes profiles - Integral versus least squares fitting techniques

    NASA Technical Reports Server (NTRS)

    Ronan, R. S.; Mickey, D. L.; Orrall, F. Q.

    1987-01-01

    The results of two methods for deriving photospheric vector magnetic fields from the Zeeman effect, as observed in the Fe I line at 6302.5 A at high spectral resolution (45 mA), are compared. The first method does not take magnetooptical effects into account, but determines the vector magnetic field from the integral properties of the Stokes profiles. The second method is an iterative least-squares fitting technique which fits the observed Stokes profiles to the profiles predicted by the Unno-Rachkovsky solution to the radiative transfer equation. For sunspot fields above about 1500 gauss, the two methods are found to agree in derived azimuthal and inclination angles to within about + or - 20 deg.

  17. Harmonic generation at high field strengths - Frequency shifts and saturation phenomena. [optical mixing technique

    NASA Technical Reports Server (NTRS)

    Stappaerts, E. A.

    1975-01-01

    Optical harmonic generation and mixing in the gas phase has been proposed as a technique for the generation of coherent radiation in the vacuum ultraviolet and soft X-ray spectral region. At the high field strengths required by these processes the interaction between atoms and the electromagnetic field shows intensity-dependent resonances. In this paper we modify harmonic generation theory to include the effect of these frequency shifts. Closed-form expressions for generated dipole moment, absorption probability, and coherence length are presented. The most important consequences of frequency shifts on resonantly enhanced processes are that the pump laser must be tuned away from the small-field resonance frequency, that the conversion efficiency may saturate, and that the dispersion of the medium may change sign. As an example, the generation of 198-A radiation by a five-photon mixing process in Li(+) is considered.

  18. Visualizing the blind brain: brain imaging of visual field defects from early recovery to rehabilitation techniques.

    PubMed

    Urbanski, Marika; Coubard, Olivier A; Bourlon, Clémence

    2014-01-01

    Visual field defects (VFDs) are one of the most common consequences observed after brain injury, especially after a stroke in the posterior cerebral artery territory. Less frequently, tumors, traumatic brain injury, brain surgery or demyelination can also determine various visual disabilities, from a decrease in visual acuity to cerebral blindness. Visual field defects is a factor of bad functional prognosis as it compromises many daily life activities (e.g., obstacle avoidance, driving, and reading) and therefore the patient's quality of life. Spontaneous recovery seems to be limited and restricted to the first 6 months, with the best chance of improvement at 1 month. The possible mechanisms at work could be partly due to cortical reorganization in the visual areas (plasticity) and/or partly to the use of intact alternative visual routes, first identified in animal studies and possibly underlying the phenomenon of blindsight. Despite processes of early recovery, which is rarely complete, and learning of compensatory strategies, the patient's autonomy may still be compromised at more chronic stages. Therefore, various rehabilitation therapies based on neuroanatomical knowledge have been developed to improve VFDs. These use eye-movement training techniques (e.g., visual search, saccadic eye movements), reading training, visual field restitution (the Vision Restoration Therapy, VRT), or perceptual learning. In this review, we will focus on studies of human adults with acquired VFDs, which have used different imaging techniques (Positron Emission Tomography, PET; Diffusion Tensor Imaging, DTI; functional Magnetic Resonance Imaging, fMRI; Magneto Encephalography, MEG) or neurostimulation techniques (Transcranial Magnetic Stimulation, TMS; transcranial Direct Current Stimulation, tDCS) to show brain activations in the course of spontaneous recovery or after specific rehabilitation techniques.

  19. Visualizing the blind brain: brain imaging of visual field defects from early recovery to rehabilitation techniques

    PubMed Central

    Urbanski, Marika; Coubard, Olivier A.; Bourlon, Clémence

    2014-01-01

    Visual field defects (VFDs) are one of the most common consequences observed after brain injury, especially after a stroke in the posterior cerebral artery territory. Less frequently, tumors, traumatic brain injury, brain surgery or demyelination can also determine various visual disabilities, from a decrease in visual acuity to cerebral blindness. Visual field defects is a factor of bad functional prognosis as it compromises many daily life activities (e.g., obstacle avoidance, driving, and reading) and therefore the patient’s quality of life. Spontaneous recovery seems to be limited and restricted to the first 6 months, with the best chance of improvement at 1 month. The possible mechanisms at work could be partly due to cortical reorganization in the visual areas (plasticity) and/or partly to the use of intact alternative visual routes, first identified in animal studies and possibly underlying the phenomenon of blindsight. Despite processes of early recovery, which is rarely complete, and learning of compensatory strategies, the patient’s autonomy may still be compromised at more chronic stages. Therefore, various rehabilitation therapies based on neuroanatomical knowledge have been developed to improve VFDs. These use eye-movement training techniques (e.g., visual search, saccadic eye movements), reading training, visual field restitution (the Vision Restoration Therapy, VRT), or perceptual learning. In this review, we will focus on studies of human adults with acquired VFDs, which have used different imaging techniques (Positron Emission Tomography, PET; Diffusion Tensor Imaging, DTI; functional Magnetic Resonance Imaging, fMRI; Magneto Encephalography, MEG) or neurostimulation techniques (Transcranial Magnetic Stimulation, TMS; transcranial Direct Current Stimulation, tDCS) to show brain activations in the course of spontaneous recovery or after specific rehabilitation techniques. PMID:25324739

  20. New techniques for the scientific visualization of three-dimensional multi-variate and vector fields

    SciTech Connect

    Crawfis, R.A.

    1995-10-01

    Volume rendering allows us to represent a density cloud with ideal properties (single scattering, no self-shadowing, etc.). Scientific visualization utilizes this technique by mapping an abstract variable or property in a computer simulation to a synthetic density cloud. This thesis extends volume rendering from its limitation of isotropic density clouds to anisotropic and/or noisy density clouds. Design aspects of these techniques are discussed that aid in the comprehension of scientific information. Anisotropic volume rendering is used to represent vector based quantities in scientific visualization. Velocity and vorticity in a fluid flow, electric and magnetic waves in an electromagnetic simulation, and blood flow within the body are examples of vector based information within a computer simulation or gathered from instrumentation. Understand these fields can be crucial to understanding the overall physics or physiology. Three techniques for representing three-dimensional vector fields are presented: Line Bundles, Textured Splats and Hair Splats. These techniques are aimed at providing a high-level (qualitative) overview of the flows, offering the user a substantial amount of information with a single image or animation. Non-homogenous volume rendering is used to represent multiple variables. Computer simulations can typically have over thirty variables, which describe properties whose understanding are useful to the scientist. Trying to understand each of these separately can be time consuming. Trying to understand any cause and effect relationships between different variables can be impossible. NoiseSplats is introduced to represent two or more properties in a single volume rendering of the data. This technique is also aimed at providing a qualitative overview of the flows.

  1. Near-field Light Scattering Techniques for Measuring Nanoparticle-Surface Interaction Energies and Forces

    PubMed Central

    O'Dell, Dakota; Adam, Ian S.; DiPaolo, Brian; Sabharwal, Manit; Shi, Ce; Hart, Robert; Earhart, Christopher; Erickson, David

    2015-01-01

    Nanoparticles are quickly becoming commonplace in many commercial and industrial products, ranging from cosmetics to pharmaceuticals to medical diagnostics. Predicting the stability of the engineered nanoparticles within these products a priori remains an important and difficult challenge. Here we describe our techniques for measuring the mechanical interactions between nanoparticles and surfaces using near-field light scattering. Particle-surface interfacial forces are measured by optically “pushing” a particle against a reference surface and observing its motion using scattered near-field light. Unlike atomic force microscopy, this technique is not limited by thermal noise, but instead takes advantage of it. The integrated waveguide and microfluidic architecture allow for high-throughput measurements of about 1000 particles per hour. We characterize the reproducibility of and experimental uncertainty in the measurements made using the NanoTweezer surface instrument. We report surface interaction studies on gold nanoparticles with 50 nm diameters, smaller than previously reported in the literature using similar techniques. PMID:26855473

  2. Investigation of the flow field inside flat-plate collector tube using PIV technique

    SciTech Connect

    Sookdeo, Steven; Siddiqui, Kamran

    2010-06-15

    The thermofluid process inside the tube of flat-plate collectors is complex because the non-uniform heating of the tube results in the formation of stably and unstably stratified layers of fluid that interact with each other. The measurement and investigation of the flow behaviour inside the collector tube is very challenging. We report on a novel application of the particle image velocimetry (PIV) technique to remotely measure the velocity field inside the collector tube. The two-dimensional velocity fields were measured in the midplane of a collector tube for the Reynolds number range of 150-900 at unheated and four different heating conditions. We have presented and discussed in detail the technique implementation and the associated challenges. The results have shown that the collector heating significantly alters the structure and magnitude of the mean velocity field and influences the heat transfer to the fluid. It is observed that the collector heating causes a significant asymmetry in the mean velocity profiles over the given range of Reynolds numbers and heating conditions. (author)

  3. Comparing and Reconciling Traditional Field and Photogeologic Mapping Techniques: Lessons from the San Francisco Volcanic Field, Arizona

    NASA Technical Reports Server (NTRS)

    Skinner, J. A., Jr.; Eppler, D. B.; Bleacher, J. E.; Evans, C. A.; Feng, W.; Gruener, J.; Hurwitz, D. M.; Janoiko, B.; Whitson, P.

    2014-01-01

    Cartographic products and - specifically - geologic maps provide critical assistance for establishing physical and temporal frameworks of planetary surfaces. The technical methods that result in the creation of geologic maps vary depending on how observations are made as well as the overall intent of the final products [1-3]. These methods tend to follow a common linear work flow, including the identification and delineation of spatially and temporally discrete materials (units), the documentation of their primary (emplacement) and secondary (erosional) characteristics, analysis of the relative and absolute age relationships between these materials, and the collation of observations and interpretations into an objective map product. The "objectivity" of a map is critical cross comparison with overlapping maps and topical studies as well as its relevance to scientific posterity. However, the "accuracy" and "correctness" of a geologic map is very subject to debate. This can be evidenced by comparison of existing geologic maps at various scales, particularly those compiled through field- and remote-based mapped efforts. Our study focuses on comparing the fidelity of (1) "Apollo-style" geologic investigations, where typically non-geologist crew members follow static traverse routes established through pre-mission planning, and (2) "traditional" field-based investigations, where geologists are given free rein to observe without preplanned routes. This abstract summarizes the regional geology wherein our study was conducted, presents the geologic map created from traditional field mapping techniques, and offers basic insights into how geologic maps created from different tactics can be reconciled in support of exploratory missions. Additional abstracts [4-6] from this study discuss various exploration and science results of these efforts.

  4. Increased Oil Production and Reserves from Improved Completion Techniques in the Bluebell Field, Uinta Basin, Utah

    SciTech Connect

    Morgan, C.D.

    1997-05-09

    The objective of this project is to increase oil production and reserves in the Uinta Basin by demonstrating improved completion techniques. Low productivity of Uinta Basin wells is caused by gross production intervals of several thousand feet that contain perforated thief zones, water-bearing zones, and perforated oil-bearing intervals. Geologic and engineering characterization and computer simulation of the Green River and Wasatch Formations in the Bluebell field will determine reservoir heterogeneities related to fractures and depositional trends. This will be followed by drilling and recompletion of several wells to demonstrate improved completion techniques based on the reservoir characterization. Transfer of the project results will be an ongoing component of the project.

  5. Increased Oil Production and Reserves from Improved Completion Techniques in the Bluebell Field, Uinta Basin, Utah

    SciTech Connect

    Morgan, Craig D.

    1999-11-01

    The objective of this project is to increase oil production and reserves in the Uinta Basin by demonstrating improved completion techniques. Low productivity of Uinta Basin wells is caused by gross production intervals of several thousand feet that contain perforated thief zones, water-bearing zones, and unperforated oil-bearing intervals. Geologic and engineering characterization and computer simulation of the Green River and Wasatch Formations in the Bluebell field will determine reservoir heterogeneities related to fractures and depositional trends. This will be followed by drilling and recompletion of several wells to demonstrate improved completion techniques based on the reservoir characterization. Transfer of the project results will be an ongoing component of the project.

  6. New experimental technique for the measurement of the velocity field in thin films falling over obstacles

    NASA Astrophysics Data System (ADS)

    Landel, Julien R.; Daglis, Ana; McEvoy, Harry; Dalziel, Stuart B.

    2014-11-01

    We present a new experimental technique to measure the surface velocity of a thin falling film. Thin falling films are important in various processes such as cooling in heat exchangers or cleaning processes. For instance, in a household dishwasher cleaning depends on the ability of a thin draining film to remove material from a substrate. We are interested in the impact of obstacles attached to a substrate on the velocity field of a thin film flowing over them. Measuring the velocity field of thin falling films is a challenging experimental problem due to the small depth of the flow and the large velocity gradient across its depth. We propose a new technique based on PIV to measure the plane components of the velocity at the surface of the film over an arbitrarily large area and an arbitrarily large resolution, depending mostly on the image acquisition technique. We perform experiments with thin films of water flowing on a flat inclined surface, made of glass or stainless steel. The typical Reynolds number of the film is of the order of 100 to 1000, computed using the surface velocity, the film thickness and the kinematic viscosity of the film. We measure the modification to the flow field, from a viscous-gravity regime, caused by small solid obstacles, such as three-dimensional hemispherical obstacles and two-dimensional steps. We compare our results with past theoretical and numerical studies. This material is based upon work supported by the Defense Threat Reduction Agency under Contract No. HDTRA1-12-D-0003-0001.

  7. Detection and Isolation Techniques for Methanogens from Microbial Mats (in the El Tatio Geyser Field, Chile)

    NASA Astrophysics Data System (ADS)

    Pearson, E. Z.; Franks, M. A.; Bennett, P.

    2010-12-01

    Isolating methanogenic archea from an extreme environment such as El Tatio (high altitude, arid climate) gives insight to the methanogenic taxas able to adapt and grow under extreme conditions. The hydrothermal waters at El Tatio geyser field demonstrate extreme geochemical conditions, with discharge water from springs and geysers at local boiling temperature (85° C) with high levels of arsenic and low DIC levels. Despite these challenges, many of El Tatio’s hundred plus hydrothermal features host extensive microbial mat communities, many showing evidence of methanogenesis. When trying to isolate methanogens unique to this area, various approaches and techniques were used. To detect the presence of methanogens in samples taken from the field, dissolved methane concentrations were determined via gas chromatography (GC) analysis. Samples were then selected for culturing and most probable number (MPN) enumeration, where growth was assessed using both methane production and observations of fluorescence under UV light. PCR was used to see if the archeal DNA was apparent directly from the field, and shotgun cloning was done to determine phylogenetic affiliation. Several culturing techniques were carried out in an attempt to isolate methanogens from samples that showed evidence of methanogenesis. The slant culturing method was used because of the increased surface area for colonization combined with the relative ease of keeping anaerobic. After a few weeks, when colonies were apparent, some were aseptically selected and inoculated to observe growth in a liquid media containing ampicillin to inhibit bacterial growth. Culturing techniques proved successful after inoculation, showing a slow growth of methanogens via GC and autofluorescence. Further PCR tests and subsequent sequencing were done to confirm and identify isolates.

  8. A planar near-field scanning technique for bistatic radar cross section measurements

    NASA Technical Reports Server (NTRS)

    Tuhela-Reuning, S.; Walton, E. K.

    1990-01-01

    A progress report on the development of a bistatic radar cross section (RCS) measurement range is presented. A technique using one parabolic reflector and a planar scanning probe antenna is analyzed. The field pattern in the test zone is computed using a spatial array of signal sources. It achieved an illumination pattern with 1 dB amplitude and 15 degree phase ripple over the target zone. The required scan plane size is found to be proportional to the size of the desired test target. Scan plane probe sample spacing can be increased beyond the Nyquist lambda/2 limit permitting constant probe sample spacing over a range of frequencies.

  9. A controlled field pilot for testing near surface CO2 detection techniques and transport models

    USGS Publications Warehouse

    Spangler, L.H.; Dobeck, L.M.; Repasky, K.; Nehrir, A.; Humphries, S.; Keith, C.; Shaw, J.; Rouse, J.; Cunningham, A.; Benson, S.; Oldenburg, C.M.; Lewicki, J.L.; Wells, A.; Diehl, R.; Strazisar, B.; Fessenden, J.; Rahn, Thomas; Amonette, J.; Barr, J.; Pickles, W.; Jacobson, J.; Silver, E.; Male, E.; Rauch, H.; Gullickson, K.; Trautz, R.; Kharaka, Y.; Birkholzer, J.; Wielopolski, L.

    2009-01-01

    A field facility has been developed to allow controlled studies of near surface CO2 transport and detection technologies. The key component of the facility is a shallow, slotted horizontal well divided into six zones. The scale and fluxes were designed to address large scale CO2 storage projects and desired retention rates for those projects. A wide variety of detection techniques were deployed by collaborators from 6 national labs, 2 universities, EPRI, and the USGS. Additionally, modeling of CO2 transport and concentrations in the saturated soil and in the vadose zone was conducted. An overview of these results will be presented. ?? 2009 Elsevier Ltd. All rights reserved.

  10. Background field method: Alternative way of deriving the pinch technique's results

    SciTech Connect

    Hashimoto, S.; Kodaira, J.; Yasui, Y. ); Sasaki, K. )

    1994-12-01

    We show that the background field method (BFM) is a simple way of deriving the same gauge-invariant results which are obtained by the pinch technique (PT). For illustration we construct gauge-invariant self-energy and three-point vertices for gluons at the one-loop level by the BFM and demonstrate that we get the same results which were derived via the PT. We also calculate the four-gluon vertex in the BFM and show that this vertex obeys the same Ward identity that was found with the PT.

  11. Detection and identification of microorganisms using a combined flow field-flow fractionation/spectroscopy technique

    NASA Astrophysics Data System (ADS)

    Fu, Xiaojuan

    This doctoral project is focused on the implementation of a novel micron and sub-micron particle characterization technology for in-situ, continuous monitoring and detecting of microorganisms in water. The particle technology is based on simultaneous characterizing the joint particle property distribution (size, shape, and chemical composition) through the combined fractionation/separation and light scattering detection and interpretation techniques. Over more than a decade, field-flow fractionation (FFF) has shown to be well-suited for the separation and/or selection of bacteria (Giddings, 1993). As the most universal fractionation technique among the FFF family, flow field-flow fractionation (FFFF) has been chosen as the separation device in this research. The multi-angle laser light scattering (MALLS) photometer and the UV-vis/liquid core optical waveguide constitute the primary on-line light scattering detection system. The angular spectra obtained by the MALLS photometer provided information on the shape of microorganism; the multi-wavelength transmission spectra of microorganisms contain quantitative information on their size, number, shape, chemical composition and internal structure, which are essential for identification and classification of microorganisms. Both experimental results and the theoretical prediction have revealed that the particle size resolution capabilities of the FFFF fractionation system coupled with the sensitivity of the laser light scattering to particle shape, and the sensitivity of the UV-vis spectra to cell size, shape, cell orientation and chemical composition offer an integrated system for the identification and classification of microorganisms. The ability to discriminate between cell species was demonstrated by the light scattering and absorption interpretation model, which is based on light scattering theory (Rayleigh-Debye-Gans approximation), spectral deconvolution techniques, and on the approximation of the frequency

  12. Field comparison of disjunct and conventional eddy covariance techniques for trace gas flux measurements.

    PubMed

    Rinne, J; Douffet, T; Prigent, Y; Durand, P

    2008-04-01

    A field intercomparison experiment of the disjunct eddy covariance (DEC) and the conventional eddy covariance (EC) techniques was conducted over a grass field. The half-hourly water vapor fluxes measured by the DEC were within the estimated uncertainty from the fluxes measured by the EC. On the average there was a slight overestimation (<10%) of the fluxes measured by the DEC during the day and underestimation during the night as compared to the fluxes measured by the EC. As this bias does not appear in the simulated DEC measurements it is likely to be due to instrumental problems. The insensitivity of the quality of the fluxes measured by the DEC method to the deficiencies in the gas analysis shows the robustness of this new approach for measuring the surface-atmosphere exchange of trace gases.

  13. New test techniques to evaluate near field effects for supersonic store carriage and separation

    NASA Technical Reports Server (NTRS)

    Sawyer, Wallace C.; Stallings, Robert L., Jr.; Wilcox, Floyd J., Jr.; Blair, A. B., Jr.; Monta, William J.; Plentovich, Elizabeth B.

    1989-01-01

    Store separation and store carriage drag studies were conducted. A primary purpose is to develop new experimental methods to evaluate near field effects of store separation and levels of store carriage drag associated with a variety of carriage techniques for different store shapes and arrangements. Flow field measurements consisting of surface pressure distributions and vapor screen photographs are used to analyze the variations of the store separation characteristics with cavity geometry. Store carriage drag measurements representative of tangent, semi-submerged, and internal carriage installations are presented and discussed. Results are included from both fully metric models and models with only metric segments (metric pallets) and the relative merits of the two are discussed. Carriage drag measurements for store installations on an aircraft parent body are compared both with prediction methods and with installations on a generic parent body.

  14. Time-domain incident-field extrapolation technique based on the singularity-expansion method

    SciTech Connect

    Klaasen, J.J.

    1991-05-01

    In this report, a method presented to extrapolate measurements from Nuclear Electromagnetic Pulse (NEMP) assessments directly in the time domain. This method is based on a time-domain extrapolation function which is obtained from the Singularity Expansion Method representation of the measured incident field of the NEMP simulator. Once the time-domain extrapolation function is determined, the responses recorded during an assessment can be extrapolated simply by convolving them with the time domain extrapolation function. It is found that to obtain useful extrapolated responses, the incident field measurements needs to be made minimum phase; otherwise unbounded results can be obtained. Results obtained with this technique are presented, using data from actual assessments.

  15. An Automatic Technique for Finding Faint Moving Objects in Wide Field CCD Images

    NASA Astrophysics Data System (ADS)

    Hainaut, O. R.; Meech, K. J.

    1996-09-01

    The traditional method used to find moving objects in astronomical images is to blink pairs or series of frames after registering them to align the background objects. While this technique is extremely efficient in terms of the low signal-to-noise ratio that the human sight can detect, it proved to be extremely time-, brain- and eyesight-consuming. The wide-field images provided by the large CCD mosaic recently built at IfA cover a field of view of 20 to 30' over 8192(2) pixels. Blinking such images is an enormous task, comparable to that of blinking large photographic plates. However, as the data are available digitally (each image occupying 260Mb of disk space), we are developing a set of computer codes to perform the moving object identification in sets of frames. This poster will describe the techniques we use in order to reach a detection efficiency as good as that of a human blinker; the main steps are to find all the objects in each frame (for which we rely on ``S-Extractor'' (Bertin & Arnouts (1996), A&ASS 117, 393), then identify all the background objects, and finally to search the non-background objects for sources moving in a coherent fashion. We will also describe the results of this method applied to actual data from the 8k CCD mosaic. {This work is being supported, in part, by NSF grant AST 92-21318.}

  16. Investigation of well redevelopment techniques for the MWD Well Field, Savannah River Site, South Carolina

    SciTech Connect

    Kroening, D.E.; Snipes, D.S.; Falta, R.W.; Benson, S.M. . Dept. of Earth Sciences); Janssen, J. )

    1994-03-01

    Clemson University, in cooperation with the Savannah River Site (SRS) is investigating well treatment techniques at the Mixed Waste Disposal (MWD) Well Field at SRS. This well field consists of fifteen wells screened in three aquifers with a downward trending head gradient. Based on aquifer performance tests of the MWD wells, it has been determined that many of the wells exhibit low well efficiencies and high skin factors, indicative of damaged wells. Bacterial investigations show that the biological activity in these wells is low, probably due to a high pH environment. Evaluation of the Calcite Saturation Index for each well indicates that nearly all of the MWD wells have the potential for precipitating calcite and calcite deposits have been observed on downhole equipment. The calcite deposits may occur due to the dissolution of the grout mixtures by waters infiltrating down the well annulus driven by the downward head gradient with subsequent precipitation of calcite in the higher pH sand pack. Well rehabilitation techniques currently under investigation include acidification, hydraulic fracturing and traditional physical methods. In addition to treating the wells at MWD, the authors plan to perform aquifer performance tests and evaluate post-treatment skin factors. Further research into the long term effects of well treatment will be conducted, focusing on long term chemical changes brought about by the treatments.

  17. Spatial Field Variability Mapping of Rice Crop using Clustering Technique from Space Borne Hyperspectral Data

    NASA Astrophysics Data System (ADS)

    Moharana, S.; Dutta, S.

    2015-12-01

    Precision farming refers to field-specific management of an agricultural crop at a spatial scale with an aim to get the highest achievable yield and to achieve this spatial information on field variability is essential. The difficulty in mapping of spatial variability occurring within an agriculture field can be revealed by employing spectral techniques in hyperspectral imagery rather than multispectral imagery. However an advanced algorithm needs to be developed to fully make use of the rich information content in hyperspectral data. In the present study, potential of hyperspectral data acquired from space platform was examined to map the field variation of paddy crop and its species discrimination. This high dimensional data comprising 242 spectral narrow bands with 30m ground resolution Hyperion L1R product acquired for Assam, India (30th Sept and 3rd Oct, 2014) were allowed for necessary pre-processing steps followed by geometric correction using Hyperion L1GST product. Finally an atmospherically corrected and spatially deduced image consisting of 112 band was obtained. By employing an advanced clustering algorithm, 12 different clusters of spectral waveforms of the crop were generated from six paddy fields for each images. The findings showed that, some clusters were well discriminated representing specific rice genotypes and some clusters were mixed treating as a single rice genotype. As vegetation index (VI) is the best indicator of vegetation mapping, three ratio based VI maps were also generated and unsupervised classification was performed for it. The so obtained 12 clusters of paddy crop were mapped spatially to the derived VI maps. From these findings, the existence of heterogeneity was clearly captured in one of the 6 rice plots (rice plot no. 1) while heterogeneity was observed in rest of the 5 rice plots. The degree of heterogeneous was found more in rice plot no.6 as compared to other plots. Subsequently, spatial variability of paddy field was

  18. Increased Oil Production and Reserves from Improved Completion Techniques in the Bluebell Field, Uinta Basin, Utah

    SciTech Connect

    Deo, M.D.; Morgan, C.D.

    1999-04-28

    The objective of the project is to increase oil production and reserves by the use of improved reservoir characterization and completion techniques in the Uinta Basin, Utah. To accomplish this objective, a two-year geologic and engineering characterization of the Bluebell field was conducted. The study evaluated surface and subsurface data, currently used completion techniques, and common production problems. It was determined that advanced case- and open-hole logs could be effective in determining productive beds and that stage-interval (about 500 ft [150 m] per stage) and bed-scale isolation completion techniques could result in improved well performance. In the first demonstration well (Michelle Ute well discussed in the previous technical report), dipole shear anisotropy (anisotropy) and dual-burst thermal decay time (TDT) logs were run before and isotope tracer log was run after the treatment. The logs were very helpful in characterizing the remaining hydrocarbon potential in the well. But, mechanical failure resulted in a poor recompletion and did not result in a significant improvement in the oil production from the well.

  19. Unsupervised change detection based on improved Markov random field technique using multichannel synthetic aperture radar images

    NASA Astrophysics Data System (ADS)

    Salehi, Sara; Valadan Zoej, Mohammad Javad

    2014-01-01

    Change detection represents an important remote sensing tool in environmental monitoring and disaster management. In this respect, multichannel synthetic aperture radar (SAR) data offer great potential because of their insensitivity to atmospheric and sun-illumination conditions (over optical multispectral data) and the improved discrimination capability they may provide compared to single-channel SAR. The problem of detecting the changes caused by flooding is addressed by a contextual unsupervised technique based on a Markovian data fusion approach. However, the isotropic formulation of Markov random field (MRF) models causes oversmoothing of spatial boundaries in the final change maps. In order to reduce this drawback, an edge-preserving MRF model is proposed and formulated by using energy functions that combine the edge information extracted from the produced edge maps using competitive fuzzy rules and Canny technique, the information conveyed by each SAR channel, and the spatial contextual information. The proposed technique is experimentally validated with semisimulated data and real ASAR-ENVISAT images. Change detection results obtained by the improved MRF model exhibited a higher accuracy than its predecessors for both semisimulated (average 12%) and real (average 6%) data.

  20. Two-dimensional refractive index profiling of optical fibers by modified refractive near-field technique

    NASA Astrophysics Data System (ADS)

    El Sayed, A.; Pilz, Soenke; Ryser, Manuel; Romano, Valerio

    2016-02-01

    The refractive index distribution in the core-cladding region of an optical fiber plays an important role in determining the transmission and dispersion properties of the waveguide. The refracted near-field technique (RNF) is among the most widespread techniques used for measuring the refractive index profile of optical fibers and is based on illuminating the end-facet of a fiber with a focused beam whose vertex angle greatly exceeds the acceptance angle of the fiber, which is immersed in an index matching liquid. What one observes are then the refracted unguided rays rather than the guided rays. Nevertheless, the standard refracted near-field technique cannot be applied to a wide range of optical fibers e.g. if their shapes are not axially symmetric. In this work we demonstrate a modified method which allows 2-D imaging of the refractive index profile and thereby overcoming the axial symmetric limitation of the standard RNF. The new system is operating at 630 nm and based on the same principle of the RNF, but the optical path is reversed so that the light at the fiber end-facet is collected by an objective lens and detected by a CCD camera. The method does not require scanning over the fiber end-facet. Thus the system is faster and less sensitive to vibrations and external conditions compared to the standard RNF, furthermore it allows averaging to improve the signal to noise ratio. The spatial resolution of the system is determined by the numerical aperture of the objective and by the resolution of the CCD camera. To calibrate the setup, a reference multi-step index fiber provided by National Physical Laboratory was used.

  1. Two-dimensional refractive index profiling of optical fibers by modified refractive near-field technique

    NASA Astrophysics Data System (ADS)

    El Sayed, A.; Pilz, Soenke; Ryser, Manuel; Romano, Valerio

    2016-04-01

    The refractive index distribution in the core-cladding region of an optical fiber plays an important role in determining the transmission and dispersion properties of the waveguide. The refracted near-field technique (RNF) is among the most widespread techniques used for measuring the refractive index profile of optical fibers and is based on illuminating the end-facet of a fiber with a focused beam whose vertex angle greatly exceeds the acceptance angle of the fiber, which is immersed in an index matching liquid. What one observes are then the refracted unguided rays rather than the guided rays. Nevertheless, the standard refracted near-field technique cannot be applied to a wide range of optical fibers e.g. if their shapes are not axially symmetric. In this work we demonstrate a modified method which allows 2-D imaging of the refractive index profile and thereby overcoming the axial symmetric limitation of the standard RNF. The new system is operating at 630 nm and based on the same principle of the RNF, but the optical path is reversed so that the light at the fiber end-facet is collected by an objective lens and detected by a CCD camera. The method does not require scanning over the fiber end-facet. Thus the system is faster and less sensitive to vibrations and external conditions compared to the standard RNF, furthermore it allows averaging to improve the signal to noise ratio. The spatial resolution of the system is determined by the numerical aperture of the objective and by the resolution of the CCD camera. To calibrate the setup, a reference multi-step index fiber provided by National Physical Laboratory was used.

  2. Magnetic separation technique for environmental water purification by strong magnetic field generator loading HTS bulk magnets

    NASA Astrophysics Data System (ADS)

    Oka, T.; Tanaka, K.; Kimura, T.; Mimura, D.; Fukui, S.; Ogawa, J.; Sato, T.; Ooizumi, M.; Yokoyama, K.; Yamaguchi, M.

    2010-11-01

    The magnetic separation technique in combination with high temperature superconducting bulk magnets has been investigated to purify the ground water which has been used in the coolant system for the incinerator furnace to cool the burning gas. The experiment has been operated by means of the newly-built alternating channel type magnetic separating device. The separation ratios of ferromagnetic flocks including fine magnetite powder have been estimated by means of the high gradient magnetic separation method with small iron balls filled in the water channels. As the magnetic force acting on the magnetic particle is given by the product of a magnetization of the material and a gradient of magnetic field, and as the ferromagnetic stainless steel balls yield the steep gradient of magnetic field around them in a strong magnetic field, the system has exhibited a quite excellent performance with respect to the separation ratios. The separation ratios of the flocks which contain the magnetite powder with the values more than 50 ppm have remained over 80% for under the flow rates less than 5 L/min.

  3. TRAINING-INDUCED CHANGES IN DRAG-FLICK TECHNIQUE IN FEMALE FIELD HOCKEY PLAYERS

    PubMed Central

    Gómez, M.; Martín-Casado, L.; Navarro, E.

    2012-01-01

    The penalty corner is one of the most important goal plays in field hockey. The drag-flick is used less by women than men in a penalty corner. The aim of this study was to describe training-induced changes in the drag-flick technique in female field hockey players. Four female players participated in the study. The VICON optoelectronic system (Oxford Metrics, Oxford, UK) measured the kinematic parameters of the drag-flick with six cameras sampling at 250 Hz, prior to and after training. Fifteen shots were captured for each subject. A Wilcoxon test assessed the differences between pre-training and post-training parameters. Two players received specific training twice a week for 8 weeks; the other two players did not train. The proposed drills improved the position of the stick at the beginning of the shot (p < 0.05), the total distance of the shot (p < 0.05) and the rotation radius at ball release (p < 0.01). It was noted that all players had lost speed of the previous run. Further studies should include a larger sample, in order to provide more information on field hockey performance. PMID:24868116

  4. Floating field ring technique applied to enhance fill factor of silicon photomultiplier elementary cell

    NASA Astrophysics Data System (ADS)

    Maresca, L.; De Laurentis, M.; Riccio, M.; Irace, A.; Breglio, G.

    2011-06-01

    A silicon photomultiplier (SiPM) is a matrix of Geiger-mode avalanche photodiodes (GM-APDs) connected in parallel. One of the main drawback in the SiPm is the low Photon Detection Efficiency(PDE) also due to the low geometrical fill factor of the microcells array. This paper reports on the analysis and simulation of the single floating field ring technique, applied to the junction termination of the single cell of a Silicon Photomultiplier (SiPm). A floating guard ring is made along the border of the single microcell and it is not connected to the cathodic contact. Even if the ring is not electrically connected to the main junction, it mitigates the variation of the electrical field at the main termination. The effect of the junction-to-ring distance is analytically investigated by using cylindrical coordinates and an optimal distance together with the optimal width is found. Results show that the single floating ring reduces the junction edge electric field by keeping constant the size of the microcell allowing, then, an improvement for the geometrical fill factor. Results are supported by TCAD simulations.

  5. A field comparison of techniques to quantify surface water - groundwater interactions

    NASA Astrophysics Data System (ADS)

    Gonzalez-Pinzon, R.; Ward, A. S.; Hatch, C. E.; Wlostowski, A. N.; Singha, K.; Gooseff, M. N.; Haggerty, R.; Harvey, J. W.; Cirpka, O. A.; Brock, J. T.

    2014-12-01

    The challenge of quantifying surface water-groundwater interactions has led to the development of several techniques, from centimeter-scale probes to whole-system tracers, including chemical, thermal, and electrical methods. We co-applied several of these techniques within a single experimental reach in a third-order stream. The techniques that we used include: conservative and "smart" reactive solute tracer tests, measurement of hydraulic heads, distributed temperature sensing, vertical profiles of solute tracer and temperature in the streambed, and electrical resistivity imaging. Results from the field experiment consistently indicated that surface water-groundwater interactions were not spatially expansive, but were high in flux through a shallow hyporheic zone surrounding the 450-m study reach. The NaCl and resazurin tracers suggested different surface-subsurface exchange patterns between the upper two thirds and lower third of the reach. Subsurface sampling of tracers and vertical thermal profiles quantified relatively high fluxes through a 10-20 cm deep hyporheic zone with chemical reactivity of resazurin indicated at 3, 6 and 9 cm sampling depths. Monitoring of hydraulic gradients along transects starting ~ 40 m away from the stream indicated that groundwater flow prevented the development of a larger hyporheic zone, which was shown (from MINIPOINT samples) to progressively vanish from the stream thalweg with depth in the streambed and distance toward the banks. Finally, FO-DTS did not detect extensive inflow of groundwater into the stream and electrical resistivity imaging showed limited large-scale hyporheic exchange. From the experience gained in our experiment, we recommend the following reasoning to decide which technique(s) should be implemented in a particular study: 1) clearly define the nature of the questions to be addressed, i.e., physical, biological or chemical processes, 2) identify the spatial and temporal scales that want to be covered

  6. Developing a marginal field using new techniques-South Monagas Unit, Venezuela

    SciTech Connect

    Skirvin, T.M.; Sven Hagen, E.; McGee, R.A.; Hinrichs, P.D. ); Medina, P.A. )

    1996-01-01

    In 1992 the Venezuelan national oil company, PDVSA, awarded operating service agreements to foreign oil companies for reactivation of marginal oil fields. The South Monagas Unit contains three oil and gas fields, Uracoa, Bombal, and Tucupita, that were not producing prior to the award of the contract As of October 1995, production from Uraroa had exceeded 20 MBbls/day of heavy oil from 26 vertical and 11 horizontal wells. Initial uncertainties about heavy oil treatment capability, water and gas production, oil flow rates, and ultimate recoverable reserves led to a phased development plan that has incrementally reduced the risk of financial exposure over time. The first phase of development utilized conventional geologic techniques and vertical wells to test treatment facilities, mud and gravel-pack technologies, and flow rates. Positive results led to the next phase of development which focused on reservoir performance and well optimization. A horizontal well drilling program was implemented in December 1993. A milestone in this program was the first gravel-pack horizontal well in Venezuela, completed in February, 1995. A pilot 2-D seismic program in late 1994 confined that high-quality seismic could be acquired to significantly enhance the development of Uracoa. A 175 W 3-D survey was shot and processed in mid-1995. Concurrently, borehole imaging logs were acquired in vertical wells to determine internal reservoir heterogeneity and sand depositional models. The sequence stratigraphic model that evolved, based on outcrop field analogs, 3-D seismic stratigraphy, and regional well control, is being used to optimize field development. In addition, new exploration concepts are being tested without risk using strategically located water injection wells as test wells.

  7. Developing a marginal field using new techniques-South Monagas Unit, Venezuela

    SciTech Connect

    Skirvin, T.M.; Sven Hagen, E.; McGee, R.A.; Hinrichs, P.D.; Medina, P.A.

    1996-12-31

    In 1992 the Venezuelan national oil company, PDVSA, awarded operating service agreements to foreign oil companies for reactivation of marginal oil fields. The South Monagas Unit contains three oil and gas fields, Uracoa, Bombal, and Tucupita, that were not producing prior to the award of the contract As of October 1995, production from Uraroa had exceeded 20 MBbls/day of heavy oil from 26 vertical and 11 horizontal wells. Initial uncertainties about heavy oil treatment capability, water and gas production, oil flow rates, and ultimate recoverable reserves led to a phased development plan that has incrementally reduced the risk of financial exposure over time. The first phase of development utilized conventional geologic techniques and vertical wells to test treatment facilities, mud and gravel-pack technologies, and flow rates. Positive results led to the next phase of development which focused on reservoir performance and well optimization. A horizontal well drilling program was implemented in December 1993. A milestone in this program was the first gravel-pack horizontal well in Venezuela, completed in February, 1995. A pilot 2-D seismic program in late 1994 confined that high-quality seismic could be acquired to significantly enhance the development of Uracoa. A 175 W 3-D survey was shot and processed in mid-1995. Concurrently, borehole imaging logs were acquired in vertical wells to determine internal reservoir heterogeneity and sand depositional models. The sequence stratigraphic model that evolved, based on outcrop field analogs, 3-D seismic stratigraphy, and regional well control, is being used to optimize field development. In addition, new exploration concepts are being tested without risk using strategically located water injection wells as test wells.

  8. Application of Anisotropic Conductive Film to Fabrication of Molybdenum Field Emitter Arrays Using Transfer Mold Technique

    NASA Astrophysics Data System (ADS)

    Cho, Eou Sik; Ahn, Min Hyung; Kwon, Sang Jik

    2008-08-01

    In the fabrication of molybdenum field emitter arrays (Mo FEA) by the transfer mold technique, anisotropic conductive film (ACF) was applied to the bond between the inverted mold structure and the transferred glass substrate. Without any electrical treatment of electrostatic bonding, the inverted mold was successfully bonded to an indium tin oxide (ITO) glass substrate under optimized thermal and pressure conditions. No additional conductive layers were used in the bonding process, and the bonded ACF was not chemically affected in the wet-etch process of the silicon inverted mold structure. The fabricated Mo FEA was structurally and electrically investigated and an anode current of 10 nA per emitter was obtained at a gate bias of 94 V. The results demonstrate the possibility of selective conduction in the fabrication of transfer mold FEA using ACF bonding.

  9. A field technique for estimating aquifer parameters using flow log data

    USGS Publications Warehouse

    Paillet, Frederick L.

    2000-01-01

    A numerical model is used to predict flow along intervals between producing zones in open boreholes for comparison with measurements of borehole flow. The model gives flow under quasi-steady conditions as a function of the transmissivity and hydraulic head in an arbitrary number of zones communicating with each other along open boreholes. The theory shows that the amount of inflow to or outflow from the borehole under any one flow condition may not indicate relative zone transmissivity. A unique inversion for both hydraulic-head and transmissivity values is possible if flow is measured under two different conditions such as ambient and quasi-steady pumping, and if the difference in open-borehole water level between the two flow conditions is measured. The technique is shown to give useful estimates of water levels and transmissivities of two or more water-producing zones intersecting a single interval of open borehole under typical field conditions. Although the modeling technique involves some approximation, the principle limit on the accuracy of the method under field conditions is the measurement error in the flow log data. Flow measurements and pumping conditions are usually adjusted so that transmissivity estimates are most accurate for the most transmissive zones, and relative measurement error is proportionately larger for less transmissive zones. The most effective general application of the borehole-flow model results when the data are fit to models that systematically include more production zones of progressively smaller transmissivity values until model results show that all accuracy in the data set is exhausted.A numerical model is used to predict flow along intervals between producing zones in open boreholes for comparison with measurements of borehole flow. The model gives flow under quasi-steady conditions as a function of the transmissivity and hydraulic head in an arbitrary number of zones communicating with each other along open boreholes. The

  10. Establishing the skill of climate field reconstruction techniques for precipitation with pseudoproxy experiments

    NASA Astrophysics Data System (ADS)

    Gómez-Navarro, Juan José; Werner, Johannes; Wagner, Sebastian; Luterbacher, Jürg; Zorita, Eduardo

    2015-09-01

    This study aims at assessing the skill of several climate field reconstruction techniques (CFR) to reconstruct past precipitation over continental Europe and the Mediterranean at seasonal time scales over the last two millennia from proxy records. A number of pseudoproxy experiments are performed within the virtual reality of a regional paleoclimate simulation at 45 km resolution to analyse different aspects of reconstruction skill. Canonical Correlation Analysis (CCA), two versions of an Analog Method (AM) and Bayesian hierarchical modeling (BHM) are applied to reconstruct precipitation from a synthetic network of pseudoproxies that are contaminated with various types of noise. The skill of the derived reconstructions is assessed through comparison with precipitation simulated by the regional climate model. Unlike BHM, CCA systematically underestimates the variance. The AM can be adjusted to overcome this shortcoming, presenting an intermediate behaviour between the two aforementioned techniques. However, a trade-off between reconstruction-target correlations and reconstructed variance is the drawback of all CFR techniques. CCA (BHM) presents the largest (lowest) skill in preserving the temporal evolution, whereas the AM can be tuned to reproduce better correlation at the expense of losing variance. While BHM has been shown to perform well for temperatures, it relies heavily on prescribed spatial correlation lengths. While this assumption is valid for temperature, it is hardly warranted for precipitation. In general, none of the methods outperforms the other. All experiments agree that a dense and regularly distributed proxy network is required to reconstruct precipitation accurately, reflecting its high spatial and temporal variability. This is especially true in summer, when a specifically short de-correlation distance from the proxy location is caused by localised summertime convective precipitation events.

  11. Development of algorithms for capacitance imaging techniques for fluidized bed flow fields. 1990 Annual report

    SciTech Connect

    Loudin, W.J.

    1991-01-01

    The objective of this research is to provide support for the instrumentation concept of a High Resolution Capacitance Imaging System (HRCIS). The work involves the development and evaluation of the mathematical theory and associated models and algorithms which reduce the electronic measurements to valid physical characterizations. The research and development require the investigation of techniques to solve large systems of equations based on capacitance measurements for various electrode configurations in order to estimate densities of materials in a cross-section of a fluidized bed. Capacitance measurements are made for 400 connections of the 32-electrode system; 400 corresponding electric-field curves are constructed by solving a second order partial differential equation. These curves are used to partition the circular disk into 193 regions called pixels, and the density of material in each pixel is to be estimated. Two methods of approximating densities have been developed and consideration of a third method has been initiated. One method (Method 1) is based on products of displacement currents for intersecting electric-field curves on a cross section. For each pixel one point of intersection is chosen, and the product of the capacitance measurements is found. Both the product and the square-root-of-product seem to yield good relative distribution of densities.

  12. Development of algorithms for capacitance imaging techniques for fluidized bed flow fields

    SciTech Connect

    Loudin, W.J.

    1991-01-01

    The objective of this research is to provide support for the instrumentation concept of a High Resolution Capacitance Imaging System (HRCIS). The work involves the development and evaluation of the mathematical theory and associated models and algorithms which reduce the electronic measurements to valid physical characterizations. The research and development require the investigation of techniques to solve large systems of equations based on capacitance measurements for various electrode configurations in order to estimate densities of materials in a cross-section of a fluidized bed. Capacitance measurements are made for 400 connections of the 32-electrode system; 400 corresponding electric-field curves are constructed by solving a second order partial differential equation. These curves are used to partition the circular disk into 193 regions called pixels, and the density of material in each pixel is to be estimated. Two methods of approximating densities have been developed and consideration of a third method has been initiated. One method (Method 1) is based on products of displacement currents for intersecting electric-field curves on a cross section. For each pixel one point of intersection is chosen, and the product of the capacitance measurements is found. Both the product and the square-root-of-product seem to yield good relative distribution of densities.

  13. Combination of various observation techniques for regional modeling of the gravity field

    NASA Astrophysics Data System (ADS)

    Lieb, Verena; Schmidt, Michael; Dettmering, Denise; Börger, Klaus

    2016-05-01

    Modeling a very broad spectrum of the Earth's gravity field needs observations from various measurement techniques with different spectral sensitivities. Typically, high-resolution regional gravity data are combined with low-resolution global observations. To exploit the gravitational information as optimally as possible, we set up a regional modeling approach using radial spherical basis functions, emphasizing the strengths of various data sets by the flexible combination of high- and middle-resolution terrestrial, airborne, shipborne, and altimetry measurements. The basis functions are defined and located in the region of interest in such a manner, which the highest measure of information of the input data is captured. Any functional of the Earth's gravity field can be derived, as, e.g., quasi-geoid heights or gravity anomalies. Here we present results of a study area in Northern Germany. A comprehensive cross validation to external observation data delivers standard deviations less than 5 cm. Differences to an existing regional quasi-geoid model count on average ±6 cm and proof the plausibility of our solution. The comparison with existing global models reaches higher standard deviations for the more sensitive gravity anomalies as for quasi-geoid heights, showing the additional value of our solution in the high frequency domain. Covering a broad frequency spectrum, our regional models can be used as basis for various applications, such as refinement of global models, national geoid determination, and detection of mass anomalies in the Earth's interior.

  14. A Dosimetric Analysis of IMRT and Multistatic Fields Techniques for Left Breast Radiotherapy

    SciTech Connect

    Moon, Seong Kwon; Kim, Yeon Sil; Kim, Soo Young; Lee, Mi Jo; Keum, Hyun Sup; Kim, Seung Jin; Youn, Seon Min

    2011-10-01

    The purpose of this study was to analyze the dosimetric difference between intensity-modulated radiation therapy (IMRT) using 3 or 5 beams and multistatic field technique (MSF) in radiotherapy of the left breast. We made comparative analysis of two kinds of radiotherapy that can achieve improved dose homogeneity. First is a MSF that uses both major and small irradiation fields at the same time. The other is IMRT using 3 or 5 beams with an inverse planning system using multiple static multileaf collimators. We made treatment plans for 16 early left breast cancer patients who were randomly selected and had undergone breast conserving surgery and radiotherapy, and analyzed them in the dosimetric aspect. For the mean values of V{sub 95} and dose homogeneity index, no statistically significant difference was observed among the three therapies. Extreme hot spots receiving >110% of prescribed dose were not found in any of the three methods. Using Tukey's test, IMRT showed a significantly larger increase in exposure dose to the ipsilateral lung and the heart than MSF in the low-dose area, but in the high-dose area, MSF showed a slight increase. To improve dose homogeneity, the application of MSF, which can be easily planned and applied more widely, is considered optimal as an alternative to IMRT for radiotherapy of early left breast cancer.

  15. Spacecraft Communications System Verification Using On-Axis Near Field Measurement Techniques

    NASA Technical Reports Server (NTRS)

    Keating, Thomas; Baugh, Mark; Gosselin, R. B.; Lecha, Maria C.; Krebs, Carolyn A. (Technical Monitor)

    2000-01-01

    Determination of the readiness of a spacecraft for launch is a critical requirement. The final assembly of all subsystems must be verified. Testing of a communications system can mostly be done using closed-circuits (cabling to/from test ports), but the final connections to the antenna require radiation tests. The Tropical Rainfall Measuring Mission (TRMM) Project used a readily available 'near-fleld on-axis' equation to predict the values to be used for comparison with those obtained in a test program. Tests were performed in a 'clean room' environment at both Goddard Space Flight Center (GSFC) and in Japan at the Tanegashima Space Center (TnSC) launch facilities. Most of the measured values agreed with the predicted values to within 0.5 dB. This demonstrates that sometimes you can use relatively simple techniques to make antenna performance measurements when use of the 'far field ranges, anechoic chambers, or precision near-field ranges' are neither available nor practical. Test data and photographs are provided.

  16. Flexible reduced field of view magnetic resonance imaging based on single-shot spatiotemporally encoded technique

    NASA Astrophysics Data System (ADS)

    Li, Jing; Cai, Cong-Bo; Chen, Lin; Chen, Ying; Qu, Xiao-Bo; Cai, Shu-Hui

    2015-10-01

    In many ultrafast imaging applications, the reduced field-of-view (rFOV) technique is often used to enhance the spatial resolution and field inhomogeneity immunity of the images. The stationary-phase characteristic of the spatiotemporally-encoded (SPEN) method offers an inherent applicability to rFOV imaging. In this study, a flexible rFOV imaging method is presented and the superiority of the SPEN approach in rFOV imaging is demonstrated. The proposed method is validated with phantom and in vivo rat experiments, including cardiac imaging and contrast-enhanced perfusion imaging. For comparison, the echo planar imaging (EPI) experiments with orthogonal RF excitation are also performed. The results show that the signal-to-noise ratios of the images acquired by the proposed method can be higher than those obtained with the rFOV EPI. Moreover, the proposed method shows better performance in the cardiac imaging and perfusion imaging of rat kidney, and it can scan one or more regions of interest (ROIs) with high spatial resolution in a single shot. It might be a favorable solution to ultrafast imaging applications in cases with severe susceptibility heterogeneities, such as cardiac imaging and perfusion imaging. Furthermore, it might be promising in applications with separate ROIs, such as mammary and limb imaging. Project supported by the National Natural Science Foundation of China (Grant Nos. 11474236, 81171331, and U1232212).

  17. Integrating remote sensing techniques at Cuprite, Nevada: AVIRIS, Thematic Mapper, and field spectroscopy

    NASA Technical Reports Server (NTRS)

    Hill, Bradley; Nash, Greg; Ridd, Merrill; Hauff, Phoebe L.; Ebel, Phil

    1992-01-01

    The Cuprite mining district in southwestern Nevada has become a test site for remote sensing studies with numerous airborne scanners and ground sensor data sets collected over the past fifteen years. Structurally, the Cuprite region can be divided into two areas with slightly different alteration and mineralogy. These zones lie on either side of a postulated low-angle structural discontinuity that strikes nearly parallel to US Route 95. Hydrothermal alternation at Cuprite was classified into three major zones: silicified, opalized, and argillized. These alteration types form a bulls-eye pattern east of the highway and are more linear on the west side of the highway making a striking contrast from the air and the imagery. Cuprite is therefore an ideal location for remote sensing research as it exhibits easily identified hydrothermal zoning, is relatively devoid of vegetation, and contains a distinctive spectrally diagnostic mineral suite including the ammonium feldspar buddingtonite, several types of alunite, different jarosites, illite, kaolinite, smectite, dickite, and opal. This present study brings a new dimension to these previous remote sensing and ground data sets compiled for Cuprite. The development of a higher resolution field spectrometer now provides the capability to combine extensive in-situ mineralogical data with a new geologic field survey and detailed Airborne Visible/Infrared Imaging Spectrometers (AVIRIS) images. The various data collection methods and the refinement of the integrated techniques are discussed.

  18. A poloidal field measurement technique: Pitch angle measurements via injected He/sup +/ ions

    SciTech Connect

    Jobes, F.C.

    1989-07-01

    The poloidal field of a tokamak can be determined by observing the light emitted by He/sup +/ ions injected into the plasma by a perpendicular He/sup 0/ beam. These ions will orbit in small circles located where the neutral atom became ionized, and they will remain there for a few microseconds. During this time, some of these ions will also emit light at various spectral lines. The observed spectrum of any of these lines will have a peculiar and very wide shape, and it will be offset (Doppler shifted) with respect to the natural line location. The location and width of the spectral pattern provide independent information about the components of the poloidal field which are parallel and perpendicular to the beam velocity, and this information is local to the point where the light is emitted. For a horizontal beam, these components are b/sub x/ and b/sub y/, respectively. The difference in Doppler shift between two measurement points above one another (at the top and bottom of the beam) is directly proportional to /delta/b/sub x/, which in turn is proportional to the transform on that flux surface. Thus, this technique provides a means to measure directly local values of q(r). Simulation studies indicate that accurate measurements can be made in milliseconds. 6 refs., 8 figs.

  19. Two-phase flow measurement by chemical tracer technique for Uenotai geothermal field in Japan

    SciTech Connect

    Sato, Tatsuya; Osato, Kazumi; Hirtz, P.

    1996-12-31

    A tracer flow-test (TFT) survey of three production wells was performed in February, 1996, for Akita Geothermal Energy Co., Ltd. (AGECO) at the Uenotai geothermal field in the Akita prefecture of northern Honshu, Japan. The survey was conducted as a demonstration test of the chemical tracer method for two-phase flow measurement. Although the tracer method has been in commercial use for about 4 years this was the first time the technique had been applied on wells with mixing runs of less than 12 meters. The tracers were injected through the wing valve on the side of the wellheads to maximize the tracer dispersion through the 9 meters of pipeline available before sample collection. The three wells tested had steam fractions at the wellhead of 38 to 99.4 % by weight and total flow rates of 31.5 to 51.5 tons/hr. Based on the test results the chemical tracer method is considered accurate under the conditions experienced at the Uenotai geothermal field and has been adopted for routine flow rate and enthalpy monitoring.

  20. Influence of magnetic fields on calcium salts crystal formation: an explanation of the 'pulsed electromagnetic field' technique for bone healing.

    PubMed

    Madroñero, A

    1990-09-01

    In the search for a mechanism by means of which a magnetic field deparalyses non-unions and enhances bone tissue formation, the influence of continuous magnetic fields on the formation of calcium phosphate crystal seeds has been investigated. From this perspective, an explanation is given of a working mode in conventional equipment for pulsed electromagnetic field treatment; this is compared with multifunction equipment.

  1. Mapping Tamarix: New techniques for field measurements, spatial modeling and remote sensing

    NASA Astrophysics Data System (ADS)

    Evangelista, Paul H.

    Native riparian ecosystems throughout the southwestern United States are being altered by the rapid invasion of Tamarix species, commonly known as tamarisk. The effects that tamarisk has on ecosystem processes have been poorly quantified largely due to inadequate survey methods. I tested new approaches for field measurements, spatial models and remote sensing to improve our ability measure and to map tamarisk occurrence, and provide new methods that will assist in management and control efforts. Examining allometric relationships between basal cover and height measurements collected in the field, I was able to produce several models to accurately estimate aboveground biomass. The best two models were explained 97% of the variance (R 2 = 0.97). Next, I tested five commonly used predictive spatial models to identify which methods performed best for tamarisk using different types of data collected in the field. Most spatial models performed well for tamarisk, with logistic regression performing best with an Area Under the receiver-operating characteristic Curve (AUC) of 0.89 and overall accuracy of 85%. The results of this study also suggested that models may not perform equally with different invasive species, and that results may be influenced by species traits and their interaction with environmental factors. Lastly, I tested several approaches to improve the ability to remotely sense tamarisk occurrence. Using Landsat7 ETM+ satellite scenes and derived vegetation indices for six different months of the growing season, I examined their ability to detect tamarisk individually (single-scene analyses) and collectively (time-series). My results showed that time-series analyses were best suited to distinguish tamarisk from other vegetation and landscape features (AUC = 0.96, overall accuracy = 90%). June, August and September were the best months to detect unique phenological attributes that are likely related to the species' extended growing season and green-up during

  2. An Analytical Technique to Elucidate Field Impurities From Manufacturing Uncertainties of an Double Pancake Type HTS Insert for High Field LTS/HTS NMR Magnets

    PubMed Central

    Hahn, Seung-yong; Ahn, Min Cheol; Bobrov, Emanuel Saul; Bascuñán, Juan; Iwasa, Yukikazu

    2010-01-01

    This paper addresses adverse effects of dimensional uncertainties of an HTS insert assembled with double-pancake coils on spatial field homogeneity. Each DP coil was wound with Bi2223 tapes having dimensional tolerances larger than one order of magnitude of those accepted for LTS wires used in conventional NMR magnets. The paper presents: 1) dimensional variations measured in two LTS/HTS NMR magnets, 350 MHz (LH350) and 700 MHz (LH700), both built and operated at the Francis Bitter Magnet Laboratory; and 2) an analytical technique and its application to elucidate the field impurities measured with the two LTS/HTS magnets. Field impurities computed with the analytical model and those measured with the two LTS/HTS magnets agree quite well, demonstrating that this analytical technique is applicable to design a DP-assembled HTS insert with an improved field homogeneity for a high-field LTS/HTS NMR magnet. PMID:20407595

  3. An Analytical Technique to Elucidate Field Impurities From Manufacturing Uncertainties of an Double Pancake Type HTS Insert for High Field LTS/HTS NMR Magnets.

    PubMed

    Hahn, Seung-Yong; Ahn, Min Cheol; Bobrov, Emanuel Saul; Bascuñán, Juan; Iwasa, Yukikazu

    2009-06-01

    This paper addresses adverse effects of dimensional uncertainties of an HTS insert assembled with double-pancake coils on spatial field homogeneity. Each DP coil was wound with Bi2223 tapes having dimensional tolerances larger than one order of magnitude of those accepted for LTS wires used in conventional NMR magnets. The paper presents: 1) dimensional variations measured in two LTS/HTS NMR magnets, 350 MHz (LH350) and 700 MHz (LH700), both built and operated at the Francis Bitter Magnet Laboratory; and 2) an analytical technique and its application to elucidate the field impurities measured with the two LTS/HTS magnets. Field impurities computed with the analytical model and those measured with the two LTS/HTS magnets agree quite well, demonstrating that this analytical technique is applicable to design a DP-assembled HTS insert with an improved field homogeneity for a high-field LTS/HTS NMR magnet.

  4. Optical Flow-Field Techniques Used for Measurements in High-Speed Centrifugal Compressors

    NASA Technical Reports Server (NTRS)

    Skoch, Gary J.

    1999-01-01

    The overall performance of a centrifugal compressor depends on the performance of the impeller and diffuser as well as on the interactions occurring between these components. Accurate measurements of the flow fields in each component are needed to develop computational models that can be used in compressor design codes. These measurements must be made simultaneously over an area that covers both components so that researchers can understand the interactions occurring between the two components. Optical measurement techniques are being used at the NASA Lewis Research Center to measure the velocity fields present in both the impeller and diffuser of a 4:1 pressure ratio centrifugal compressor operating at several conditions ranging from design flow to surge. Laser Doppler Velocimetry (LDV) was used to measure the intrablade flows present in the impeller, and the results were compared with analyses obtained from two three-dimensional viscous codes. The development of a region of low throughflow velocity fluid within this high-speed impeller was examined and compared with a similar region first observed in a large low-speed centrifugal impeller at Lewis. Particle Image Velocimetry (PIV) is a relatively new technique that has been applied to measuring the diffuser flow fields. PIV can collect data rapidly in the diffuser while avoiding the light-reflection problems that are often encountered when LDV is used. The Particle Image Velocimeter employs a sheet of pulsed laser light that is introduced into the diffuser in a quasi-radial direction through an optical probe inserted near the diffuser discharge. The light sheet is positioned such that its centerline is parallel to the hub and shroud surfaces and such that it is parallel to the diffuser vane, thereby avoiding reflections from the solid surfaces. Seed particles small enough to follow the diffuser flow are introduced into the compressor at an upstream location. A high-speed charge-coupled discharge (CCD) camera is

  5. Computed-tomographic density measurement of supersonic flow field by colored-grid background oriented schlieren (CGBOS) technique

    NASA Astrophysics Data System (ADS)

    Ota, Masanori; Hamada, Kenta; Kato, Hiroko; Maeno, Kazuo

    2011-10-01

    The background oriented schlieren (BOS) technique is one of the visualization techniques that enable the quantitative measurement of density information in the flow field with very simple experimental setup. The principle of BOS is similar to the conventional schlieren technique, which exploits the bending of light caused by refractive index change corresponding to density change in the medium and both techniques are sensible to density gradient. In this report we propose colored-grid background oriented schlieren (CGBOS) technique. The experiments were carried out in a supersonic wind tunnel of test section size 0.6 × 0.6 m2 at JAXA-ISAS. A colored-grid pattern was used as background image and density gradient in vertical and horizontal direction was obtained. Computed tomographic reconstructions of 3D density information of the supersonic flow field around an asymmetric body from multi-directional CGBOS images were examined.

  6. SU-E-T-515: Field-In-Field Compensation Technique Using Multi-Leaf Collimator to Deliver Total Body Irradiation (TBI) Dose

    SciTech Connect

    Lakeman, T; Wang, IZ

    2014-06-01

    Purpose: Total body irradiation (TBI) uses large parallel-opposed radiation fields to suppress the patient's immune system and eradicate the residual cancer cells in preparation of recipient for bone marrow transplant. The manual placement of lead compensators has been used conventionally to compensate for the varying thickness through the entire body in large-field TBI. The goal of this study is to pursue utilizing the modern field-in-field (FIF) technique with the multi-leaf collimator (MLC) to more accurately and efficiently deliver dose to patients in need of TBI. Method: Treatment plans utilizing the FIF technique to deliver a total body dose were created retrospectively for patients for whom CT data had been previously acquired. Treatment fields include one pair of opposed open large fields (collimator=45°) with a specific weighting and a succession of smaller fields (collimator=90°) each with their own weighting. The smaller fields are shaped by moving MLC to block the sections of the patient which have already received close to 100% of the prescribed dose. The weighting factors for each of these fields were calculated using the attenuation coefficient of the initial lead compensators and the separation of the patient in different positions in the axial plane. Results: Dose-volume histograms (DVH) were calculated for evaluating the FIF compensation technique. The maximum body doses calculated from the DVH were reduced from the non-compensated 179.3% to 148.2% in the FIF plans, indicating a more uniform dose with the FIF compensation. All calculated monitor units were well within clinically acceptable limits and exceeded those of the original lead compensation plan by less than 50 MU (only ~1.1% increase). Conclusion: MLC FIF technique for TBI will not significantly increase the beam on time while it can substantially reduce the compensator setup time and the potential risk of errors in manually placing lead compensators.

  7. Comparison of Phase-Based 3D Near-Field Source Localization Techniques for UHF RFID.

    PubMed

    Parr, Andreas; Miesen, Robert; Vossiek, Martin

    2016-01-01

    In this paper, we present multiple techniques for phase-based narrowband backscatter tag localization in three-dimensional space with planar antenna arrays or synthetic apertures. Beamformer and MUSIC localization algorithms, known from near-field source localization and direction-of-arrival estimation, are applied to the 3D backscatter scenario and their performance in terms of localization accuracy is evaluated. We discuss the impact of different transceiver modes known from the literature, which evaluate different send and receive antenna path combinations for a single localization, as in multiple input multiple output (MIMO) systems. Furthermore, we propose a new Singledimensional-MIMO (S-MIMO) transceiver mode, which is especially suited for use with mobile robot systems. Monte-Carlo simulations based on a realistic multipath error model ensure spatial correlation of the simulated signals, and serve to critically appraise the accuracies of the different localization approaches. A synthetic uniform rectangular array created by a robotic arm is used to evaluate selected localization techniques. We use an Ultra High Frequency (UHF) Radiofrequency Identification (RFID) setup to compare measurements with the theory and simulation. The results show how a mean localization accuracy of less than 30 cm can be reached in an indoor environment. Further simulations demonstrate how the distance between aperture and tag affects the localization accuracy and how the size and grid spacing of the rectangular array need to be adapted to improve the localization accuracy down to orders of magnitude in the centimeter range, and to maximize array efficiency in terms of localization accuracy per number of elements. PMID:27347976

  8. Comparison of Phase-Based 3D Near-Field Source Localization Techniques for UHF RFID.

    PubMed

    Parr, Andreas; Miesen, Robert; Vossiek, Martin

    2016-06-25

    In this paper, we present multiple techniques for phase-based narrowband backscatter tag localization in three-dimensional space with planar antenna arrays or synthetic apertures. Beamformer and MUSIC localization algorithms, known from near-field source localization and direction-of-arrival estimation, are applied to the 3D backscatter scenario and their performance in terms of localization accuracy is evaluated. We discuss the impact of different transceiver modes known from the literature, which evaluate different send and receive antenna path combinations for a single localization, as in multiple input multiple output (MIMO) systems. Furthermore, we propose a new Singledimensional-MIMO (S-MIMO) transceiver mode, which is especially suited for use with mobile robot systems. Monte-Carlo simulations based on a realistic multipath error model ensure spatial correlation of the simulated signals, and serve to critically appraise the accuracies of the different localization approaches. A synthetic uniform rectangular array created by a robotic arm is used to evaluate selected localization techniques. We use an Ultra High Frequency (UHF) Radiofrequency Identification (RFID) setup to compare measurements with the theory and simulation. The results show how a mean localization accuracy of less than 30 cm can be reached in an indoor environment. Further simulations demonstrate how the distance between aperture and tag affects the localization accuracy and how the size and grid spacing of the rectangular array need to be adapted to improve the localization accuracy down to orders of magnitude in the centimeter range, and to maximize array efficiency in terms of localization accuracy per number of elements.

  9. Comparison of Phase-Based 3D Near-Field Source Localization Techniques for UHF RFID

    PubMed Central

    Parr, Andreas; Miesen, Robert; Vossiek, Martin

    2016-01-01

    In this paper, we present multiple techniques for phase-based narrowband backscatter tag localization in three-dimensional space with planar antenna arrays or synthetic apertures. Beamformer and MUSIC localization algorithms, known from near-field source localization and direction-of-arrival estimation, are applied to the 3D backscatter scenario and their performance in terms of localization accuracy is evaluated. We discuss the impact of different transceiver modes known from the literature, which evaluate different send and receive antenna path combinations for a single localization, as in multiple input multiple output (MIMO) systems. Furthermore, we propose a new Singledimensional-MIMO (S-MIMO) transceiver mode, which is especially suited for use with mobile robot systems. Monte-Carlo simulations based on a realistic multipath error model ensure spatial correlation of the simulated signals, and serve to critically appraise the accuracies of the different localization approaches. A synthetic uniform rectangular array created by a robotic arm is used to evaluate selected localization techniques. We use an Ultra High Frequency (UHF) Radiofrequency Identification (RFID) setup to compare measurements with the theory and simulation. The results show how a mean localization accuracy of less than 30 cm can be reached in an indoor environment. Further simulations demonstrate how the distance between aperture and tag affects the localization accuracy and how the size and grid spacing of the rectangular array need to be adapted to improve the localization accuracy down to orders of magnitude in the centimeter range, and to maximize array efficiency in terms of localization accuracy per number of elements. PMID:27347976

  10. Statistical techniques for detecting the intergalactic magnetic field from large samples of extragalactic Faraday rotation data

    SciTech Connect

    Akahori, Takuya; Gaensler, B. M.; Ryu, Dongsu E-mail: bryan.gaensler@sydney.edu.au

    2014-08-01

    Rotation measure (RM) grids of extragalactic radio sources have been widely used for studying cosmic magnetism. However, their potential for exploring the intergalactic magnetic field (IGMF) in filaments of galaxies is unclear, since other Faraday-rotation media such as the radio source itself, intervening galaxies, and the interstellar medium of our Galaxy are all significant contributors. We study statistical techniques for discriminating the Faraday rotation of filaments from other sources of Faraday rotation in future large-scale surveys of radio polarization. We consider a 30° × 30° field of view toward the south Galactic pole, while varying the number of sources detected in both present and future observations. We select sources located at high redshifts and toward which depolarization and optical absorption systems are not observed so as to reduce the RM contributions from the sources and intervening galaxies. It is found that a high-pass filter can satisfactorily reduce the RM contribution from the Galaxy since the angular scale of this component toward high Galactic latitudes would be much larger than that expected for the IGMF. Present observations do not yet provide a sufficient source density to be able to estimate the RM of filaments. However, from the proposed approach with forthcoming surveys, we predict significant residuals of RM that should be ascribable to filaments. The predicted structure of the IGMF down to scales of 0.°1 should be observable with data from the Square Kilometre Array, if we achieve selections of sources toward which sightlines do not contain intervening galaxies and RM errors are less than a few rad m{sup –2}.

  11. TH-C-12A-03: Development of Expanded Field Irradiation Technique with Gimbaled X-Ray Head

    SciTech Connect

    Ono, T; Miyabe, Y; Yamada, M; Kaneko, S; Monzen, H; Mizowaki, T; Hiraoka, M; Sawada, A; Kokubo, M

    2014-06-15

    Purpose: The Vero4DRT has a maximum field size of 150×150 mm{sup 2}. The purposes of this study were to develop an expanded field irradiation technique using a unique gimbaled x-ray head of Vero4DRT and to evaluate its dosimetric characteristic. Methods: The expanded field irradiation consisted of four separate fields with 2.39 degree gimbal rotation around orthogonal two axes. The central beam axis for each field shifted 40 mm from the isocenter for longitudinal and lateral directions, and thus, the field size was expanded up to 230×230 mm{sup 2}. Adjacent region were created at the isocenter (center-adjacent expanded-field) and 20 mm from isocenter (offadjacent expanded-field). To create flat dose distribution in the combined piecewise-fields, the overlapping and gaps regions on the isocenter plane were adjusted with the gimbal rotating and the MLC. To evaluate dosimetric characteristic of the expanded-field, films inserted in water-equivalent phantoms at 50, 100 and 150 mm depth were irradiated and the field size, penumbra, flatness and symmetry were analyzed.In addition, the expandedfield irradiation technique was applied to IMRT. A head and neck IMRT field, which was planned for the conventional linac (Varian Clinac iX), was reproduced with the expanded-field of the Vero4DRT. The simulated dose distribution for the expanded IMRT field was compared to the measured dose distribution. Results: The field size, penumbra, flatness and symmetry of center- and off- adjacent expanded-fields were 230.2–232.1 mm, 7.8–10.7 mm, 2.3–6.5% and –0.5–0.4% at 100 mm depth. The 82.1% area of the expanded IMRT dose distribution was within 5% difference between measurement and simulation, which was analyzed upper 50% dose area, and the 3%/3 mm gamma pass rate was 98.4%. Conclusions: The expandedfield technique was developed using the gimbaled x-ray head. To extend applied targets, such as whole breast irradiations or head and neck IMRT, the expanded-field technique

  12. Field-based DGTD/PIC technique for general and stable simulation of interaction between light and electron bunches

    NASA Astrophysics Data System (ADS)

    Fallahi, Arya; Kärtner, Franz

    2014-12-01

    We introduce a hybrid technique based on the discontinuous Galerkin time domain (DGTD) and the particle in cell (PIC) simulation methods for the analysis of interaction between light and charged particles. The DGTD algorithm is a three-dimensional, dual-field and fully explicit method for efficiently solving Maxwell equations in the time domain on unstructured grids. On the other hand, the PIC algorithm is a versatile technique for the simulation of charged particles in an electromagnetic field. This paper introduces a novel strategy for combining both methods to solve for the electron motion and field distribution when an optical beam interacts with an electron bunch in a very general geometry. The developed software offers a complete and stable numerical solution of the problem for arbitrary charge and field distributions in the time domain on unstructured grids. For this purpose, an advanced search algorithm is developed for fast calculation of field data at charge points and for later importing to the PIC simulations. In addition, we propose a field-based coupling between the two methods resulting in a stable and precise time marching scheme for both fields and charged particle motion. To benchmark the solver, some examples are numerically solved and compared with analytical solutions. Eventually, the developed software is utilized to simulate the field emission from a flat metal plate and a silicon nano-tip. In the future, we will use this technique for the simulation and design of ultrafast compact x-ray sources.

  13. Integrating Novel Field, Laboratory and Modelling Techniques to Upscale Estimates of Soil Erosion

    NASA Astrophysics Data System (ADS)

    Wainwright, John; Parsons, Anthony; Cooper, James; Long, Edward; Hargrave, Graham; Kitchener, Ben; Hewett, Caspar; Onda, Yuichi; Furukawa, Tomomi; Obana, Eiichiro; Hayashi, Hirofumi; Noguchi, Takehiro

    2013-04-01

    Erosion is a particle-based phenomenon, yet most of current understanding and modelling of this process is based on bulk measurements rather than the movement of individual particles. Difficulties with measuring particle motions in dynamically changing conditions are being overcome with the application of two new technologies - particle imaging velocimetry (PIV) and radio frequency identification (RFID). It is thus possible to evaluate the entrainment, transport and deposition of individual particles and these data can be used to parameterize and to test particle-based modelling of the particle-based process. Both PIV and RFID tagging have been used in laboratory experiments to evaluate the detachment process by raindrops on bare surfaces and in shallow flows using rainfall simulation. The results suggest that the processes are more complex than hitherto thought with multiple detachment and transfer mechanisms. Because both mechanisms affect travel distance, they affect the ways in which estimates of soil erosion can be scaled from plot to hillslope and catchment scales. To evaluate movements at larger scales, we have also used RFID-tagged particles in field settings to look at sediment transfers following the Fukushima accident in Japan, 2011. A marker-in-cell model (MAHLERAN-MiC) has been developed to enable the laboratory results to be upscaled and tested in a field setting. Markers (representing sediment particles), containing sediment-property information, are initially distributed on a cellular grid. A cellular model is used to set up the boundary conditions and determine the hydrology and hydraulics on the hillslope. The markers are then moved through the grid according to these properties. This technique combines the advantages of Eulerian and Lagrangian methods while avoiding the shortcomings of each (computational efficiency vs. accuracy). The model simulates all the processes of detachment and transport; raindrop detachment and transport, interrill

  14. Dose Distribution Analysis of Axillary Lymph Nodes for Three-Dimensional Conformal Radiotherapy With a Field-in-Field Technique for Breast Cancer

    SciTech Connect

    Ohashi, Toshio Takeda, Atsuya; Shigematsu, Naoyuki; Fukada, Junichi; Sanuki, Naoko; Amemiya, Atsushi; Kubo, Atsushi

    2009-01-01

    Purpose: We previously reported that most of axillary regions could be irradiated by the modified tangential irradiation technique (MTIT). The purpose of this study was to determine whether the three-dimensional conformal radiotherapy (3D-CRT) with a field-in-field technique improves dosimetry for the breast and axillary nodes. Methods and Materials: Fifty patients with left-sided breast cancer were enrolled. With MTIT, we planned the radiation field to be wider in the cranial direction than the standard tangential fields to include the axillary regions. With 3D-CRT, a field-in-field technique was used to spare the heart and contralateral breast to the extent possible by applying the multileaf collimator manually. Dose-volume histograms were compared for the breast, axillary region, heart, lung, and other normal tissues. Results: There were no significant differences in the percent volume of the breast receiving >90% of the prescribed dose (V90) between MTIT and 3D-CRT. The mean V90 of the level I to III axillary regions were increased from 93.7%, 48.2%, and 41.3% with MTIT to 97.6%, 85.8%, and 82.8% with 3D-CRT. 3D-CRT significantly reduced the volume of the heart receiving >30 Gy (mean, 7.6 vs. 15.9 mL), the percent volume of the bilateral lung receiving >20 Gy (7.4% vs. 8.9%), and the volume of other normal tissues receiving >107% of the prescribed dose (0.1 vs. 2.9 mL). Conclusion: The use of 3D-CRT with a field-in-field technique improves axillary node coverage, while decreasing doses to the heart, lungs, and the other normal tissues, compared with MTIT.

  15. Diamond Field Emission Source using Transfer Mold Technique Prepared by Diamond Powder Seeding

    NASA Astrophysics Data System (ADS)

    Tezuka, Sachiaki; Matsuba, Yohei; Takahashi, Kohro

    Diamond thin films fabricated by MPCVD (microwave plasma chemical vapor deposition) are available for use as a field emitter material, because of its high mechanical quality, thermal conductivity, chemical stability, environmental tolerance, and NEA (negative electron affinity). Diode and triode emitter arrays using P-doped polycrystalline diamond were manufactured on a SiO2/Si(100) substrate with reverse pyramids formed by the transfer mold technique. As the diamond nucleation process, spin-coat seeding with pure diamond powder dispersed in isoamyl acetate has been introduced in place of the bias method. SEM (scanning electron microscopy) images and Raman spectroscopy indicate that the crystal quality of the diamond thin film fabricated by spin-coat seeding is superior to that fabricated by the bias method. The diamond crystal completely grew on top of the diode emitter by the US (ultrasonic) treatment in a diamond powder solution before spin-coat seeding. The tip radius was smaller than 50 nm. The beginning voltage of the emission of the diode emitter is 3 V after the DC glow discharge treatment in H2, which is lower than that of an emitter array fabricated by the bias method, 40 V. On the other hand, the emission of the diamond triode emitter starts at a gate voltage of only 0.5 V, and the emission current of 50∼60 mA is obtained at a gate voltage of 2 V.

  16. Quantum-field-theoretical approach to phase-space techniques: Generalizing the positive-P representation

    SciTech Connect

    Plimak, L.I.; Fleischhauer, M.; Olsen, M.K.; Collett, M.J.

    2003-01-01

    We present an introduction to phase-space techniques (PST) based on a quantum-field-theoretical (QFT) approach. In addition to bridging the gap between PST and QFT, our approach results in a number of generalizations of the PST. First, for problems where the usual PST do not result in a genuine Fokker-Planck equation (even after phase-space doubling) and hence fail to produce a stochastic differential equation (SDE), we show how the system in question may be approximated via stochastic difference equations (S{delta}E). Second, we show that introducing sources into the SDE's (or S{delta}E's) generalizes them to a full quantum nonlinear stochastic response problem (thus generalizing Kubo's linear reaction theory to a quantum nonlinear stochastic response theory). Third, we establish general relations linking quantum response properties of the system in question to averages of operator products ordered in a way different from time normal. This extends PST to a much wider assemblage of operator products than are usually considered in phase-space approaches. In all cases, our approach yields a very simple and straightforward way of deriving stochastic equations in phase space.

  17. Phase field simulation of precipitation in a Mg-Al alloy using two techniques of approximation

    NASA Astrophysics Data System (ADS)

    Han, G. M.; Han, Z. Q.; Luo, A. A.; Sachdev, A. K.; Liu, B. C.

    2012-07-01

    In this paper, the precipitation of β-Mg17Al12 in aging process of Mg-9%Al (mass fraction) alloy was studied using a diffuse-interface phase field model. In the model, the precipitate phase and the matrix are distinguished by a structural order parameter, and the interface region is assumed to be a mixture of the precipitate phase and the matrix. The mixture composition was calculated using a weighted average method. Two techniques of approximation for the chemical free energy of precipitate phase and matrix were employed, where the variation characteristics of the free energy with the mole fraction of solute were included. In the simulation, the temperature and diffusion mobility coefficient were assumed to be constant. The effects of the solution approximations on the morphology evolution and growth kinetics of the precipitate were discussed. The effects of the interface mobility coefficient on the interface growth kinetics were examined, and the effects of the interface anisotropy between the precipitate phase and the matrix on the morphology of the precipitate were also discussed. It is demonstrated that the solution approximation taking into account the interaction between atoms for a binary system provides a good description for the chemical free energy. The simulation results showed that the precipitate phase growing from a supersaturated solid solution has a plate-like shape, which is in agreement with experimental observations. The growth kinetics of the precipitate phase is significantly influenced by the interface mobility coefficient.

  18. Application of near-field microwave sensing techniques for segregation detection in concrete members

    NASA Astrophysics Data System (ADS)

    Bois, K. J.; Benally, A. D.; Zoughi, R.; Nowak, P. S.

    2000-05-01

    In this presentation, a simple, low-cost near-field microwave nondestructive inspection technique for segregation detection in concrete members is presented. This process employs information from the measured magnitude of reflection coefficient at the aperture of an open-ended rectangular waveguide sensor. These measurements, whose results will be presented, were conducted using a Hewlett-Packard HP8510B network analyzer. However, in practice a simple and relatively inexpensive inspection apparatus constructed from discrete microwave components can easily be employed. It is shown that the standard deviation of magnitude of reflection coefficient measurement is linearly correlated with the aggregate density in concrete. Furthermore, for concrete in which the aggregate has segregated, this measurable parameter will change as a function of vertical position of the microwave scan. Results correlating the microwave measurements to the actual aggregate density of a well consolidated concrete specimen and a specimen in which the aggregate has segregated will be presented. Finally, the simple and low cost application of this method for in situ detection of aggregate segregation in concrete structures will be discussed.

  19. A TECHNIQUE FOR PRIMARY BEAM CALIBRATION OF DRIFT-SCANNING, WIDE-FIELD ANTENNA ELEMENTS

    SciTech Connect

    Pober, Jonathan C.; Parsons, Aaron R.; Jacobs, Daniel C.; Aguirre, James E.; Moore, David F.; Bradley, Richard F.; Parashare, Chaitali R.; Carilli, Chris L.; Gugliucci, Nicole E.

    2012-02-15

    We present a new technique for calibrating the primary beam of a wide-field, drift-scanning antenna element. Drift-scan observing is not compatible with standard beam calibration routines, and the situation is further complicated by difficult-to-parameterize beam shapes and, at low frequencies, the sparsity of accurate source spectra to use as calibrators. We overcome these challenges by building up an interrelated network of source 'crossing points'-locations where the primary beam is sampled by multiple sources. Using the single assumption that a beam has 180 Degree-Sign rotational symmetry, we can achieve significant beam coverage with only a few tens of sources. The resulting network of crossing points allows us to solve for both a beam model and source flux densities referenced to a single calibrator source, circumventing the need for a large sample of well-characterized calibrators. We illustrate the method with actual and simulated observations from the Precision Array for Probing the Epoch of Reionization.

  20. Subdivision based isogeometric analysis technique for electric field integral equations for simply connected structures

    NASA Astrophysics Data System (ADS)

    Li, Jie; Dault, Daniel; Liu, Beibei; Tong, Yiying; Shanker, Balasubramaniam

    2016-08-01

    The analysis of electromagnetic scattering has long been performed on a discrete representation of the geometry. This representation is typically continuous but not differentiable. The need to define physical quantities on this geometric representation has led to development of sets of basis functions that need to satisfy constraints at the boundaries of the elements/tessellations (viz., continuity of normal or tangential components across element boundaries). For electromagnetics, these result in either curl/div-conforming basis sets. The geometric representation used for analysis is in stark contrast with that used for design, wherein the surface representation is higher order differentiable. Using this representation for both geometry and physics on geometry has several advantages, and is elucidated in Hughes et al. (2005) [7]. Until now, a bulk of the literature on isogeometric methods have been limited to solid mechanics, with some effort to create NURBS based basis functions for electromagnetic analysis. In this paper, we present the first complete isogeometry solution methodology for the electric field integral equation as applied to simply connected structures. This paper systematically proceeds through surface representation using subdivision, definition of vector basis functions on this surface, to fidelity in the solution of integral equations. We also present techniques to stabilize the solution at low frequencies, and impose a Calderón preconditioner. Several results presented serve to validate the proposed approach as well as demonstrate some of its capabilities.

  1. Magnetic moment measurement in 72Zn using the Transient Field technique and Coulomb excitation in inverse kinematics

    NASA Astrophysics Data System (ADS)

    Illana Sisón, A.; Jungclaus, A.; Orlandi, R.; Perea, A.; Briz, J. A.; Bauer, C.; Gernhäuser, R.; Leske, J.; Mücher, D.; Pakarinen, J.; Pietralla, N.; Rajabali, M. M.; Seiler, D.; Stahl, C.

    2014-03-01

    The g factor of the first excited 2+ state of 72Zn has been measured using the Low Velocity Transient Field (LVTF) technique in combination with Coulomb excitation in inverse kinematics. The aim of the experiment was to test the viability of this method when applied to short-lived radioactive ISOL beams, in particular in comparison to the alternative High Velocity Transient Field (HVTF) technique using fragment beams. The result obtained for g(2+) in 72Zn in the present experiment follows the trend observed for the lighter stables Zn isotopes.

  2. Tsunakawa-Shaw method - an absolute paleointensity technique using alternating field demagnetization

    NASA Astrophysics Data System (ADS)

    Yamamoto, Y.; Mochizuki, N.; Shibuya, H.; Tsunakawa, H.

    2015-12-01

    Among geologic materials volcanic rocks have been typically used to deduce an absolute paleointensity. In the last decade, however, there seems a becoming consensus that volcanic rocks are not so ideal materials due to such as magnetic grains other than non-interacting single domain particles. One approach to obtain a good paleointensity estimate from the rocks is to reduce and correct the non-ideality, suppress alterations in laboratory and screen out suspicious results. We have been working on a development and an application of the Tsunakawa-Shaw method, which has been previously called the LTD-DHT Shaw method. This method is an AF(alternating field)-based technique and thus a paleointensity is estimated using coercivity spectra. To reduce the non-ideality, all remanences undergo low-temperature demagnetization (LTD) before any AF demagnetizations to remove multi-domain like component. To correct the non-ideality, anhysteretic remanent magnetizations (ARMs) are imparted with their directions parallel to natural remanent magnetizations and laboratory-imparted thermoremanent magnetizations (TRMs) and measured before and after laboratory heating. These ARMs are used to correct remanence anisotropies, possible interaction effects originated from the non-ideal grains and TRM changes caused by laboratory alterations. TRMs are imparted by heating specimens above their Curie temperatures and then cooling to room temperature at once to simulate nature conditions. These cycles are done in vacuum to suppress alterations in laboratory. Obtained results are judged by selection criteria, including a check for validity of the ARM corrections.It has been demonstrated that successful paleointensities are obtained from historical lavas in Japan and Hawaii, and from baked clay samples from a reconstructed ancient kiln, with the flow-mean precision of 5-10%. In case of old volcanic rocks, however, the method does not necessarily seem to be perfect. We will summarize these points in

  3. Increased Oil Production and Reserves from Improved Completion Techniques in the Bluebell Field, Uinta Basin, Utah, Class I

    SciTech Connect

    Morgan, Craig D.; Gwynn, Wallace; Deo, Milind D.; Jarrard, Richard; Curtice, Richard; Morris, Thomas H.; Smouse, DeForrest; Tripp, Carol N.

    2000-01-20

    The objective of this project was to increase oil production and reserves by the use of improved reservoir characterization and completion techniques in the Unita Basin Utah. To accomplish this objective, a two-year geologic and engineering characterization of the Bluebell field was conducted. The study evaluated surface and subsurface data, currently used completion techniques, and common production problems. It was determined that advanced case- and open-hole logs could be effective in determining productive beds and that staged-interval (about 500 ft [150 m] per stage) and bed-scale isolation completion techniques could result in improved well performance.

  4. A new technique for decoupling the host and nuclear spectra of type I AGNs using integral field spectroscopy

    NASA Astrophysics Data System (ADS)

    Sánchez, S. F.; García-Lorenzo, B.; Jahnke, K.; Mediavilla, E.; González-Serrano, J. I.; Christensen, L.; Wisotzki, L.

    2006-03-01

    We have developed a new technique to decouple the spectra of the host and the nucleus of type I AGNs using integral field spectroscopy (IFS) data. The technique is a simple extension of methods widely tested in 2D imaging. We present here the results from applying the technique to data taken with INTEGRAL at the 4.2m WHT telescope on the Seyfert 1 radio-galaxy 3C 120. We obtained, for the first time, a clean spectra of the host galaxy, without contamination from the nuclear source.

  5. Application of the planar-scanning technique to the near-field dosimetry of millimeter-wave radiators.

    PubMed

    Zhao, Jianxun; Lu, Hongmin; Deng, Jun

    2015-02-01

    The planar-scanning technique was applied to the experimental measurement of the electric field and power flux density (PFD) in the exposure area close to the millimeter-wave (MMW) radiator. In the near-field region, the field and PFD were calculated from the plane-wave spectrum of the field sampled on a scan plane far from the radiator. The measurement resolution was improved by reducing the spatial interval between the field samples to a fraction of half the wavelength and implementing multiple iterations of the fast Fourier transform. With the reference to the results from the numerical calculation, an experimental evaluation of the planar-scanning measurement was made for a 50 GHz radiator. Placing the probe 1 to 3 wavelengths from the aperture of the radiator, the direct measurement gave the near-field data with significant differences from the numerical results. The planar-scanning measurement placed the probe 9 wavelengths away from the aperture and effectively reduced the maximum and averaged differences in the near-field data by 70.6% and 65.5%, respectively. Applied to the dosimetry of an open-ended waveguide and a choke ring antenna for 60 GHz exposure, the technique proved useful to the measurement of the PFD in the near-field exposure area of MMW radiators.

  6. Field testing of fugitive dust control techniques at a uranium mill tailings pile - 1982 Field Test, Gas Hills, Wyoming.

    SciTech Connect

    Elmore, M.R.; Hartley, J.N.

    1983-12-01

    A field test was conducted on a uranium tailings pile to evaluate the effectiveness of 15 chemical stabilizers for control of fugitive dust from uranium mill tailings. A tailings pile at the Federal American Partners (FAP) Uranium Mill, Gas Hills, Wyoming, was used for the field test. Preliminary laboratory tests using a wing tunnel were conducted to select the more promising stabilizers for field testing. Fourteen of the chemical stabilizers were applied with a field spray system pulled behind a tractor; one--Hydro Mulch--was applied with a hydroseeder. A portable weather station and data logger were installed to record the weather conditions at the test site. After 1 year of monitoring (including three site visits), all of the stabilizers have degraded to some degree; but those applied at the manufacturers' recommended rate are still somewhat effective in reducing fugitive emissions. The following synthetic polymer emulsions appear to be the more effective stabilizers: Wallpol 40-133 from Reichold Chemicals, SP-400 from Johnson and March Corporation, and CPB-12 from Wen Don Corporation. Installed costs for the test plots ranged from $8400 to $11,300/ha; this range results from differences in stabilizer costs. Large-scale stabilization costs of the test materials are expected to range from $680 to $3600/ha based on FAP experience. Evaluation of the chemical stabilizers will continue for approximately 1 year. 2 references, 33 figures, 22 tables.

  7. Conformal Locoregional Breast Irradiation with an Oblique Parasternal Photon Field Technique

    SciTech Connect

    Erven, Katrien; Petillion, Saskia; Weltens, Caroline; Van den Heuvel, Frank; Defraene, Gilles; Van Limbergen, Erik; Van den Bogaert, Walter

    2011-04-01

    We evaluated an isocentric technique for conformal irradiation of the breast, internal mammary, and medial supra-clavicular lymph nodes (IM-MS LN) using the oblique parasternal photon (OPP) technique. For 20 breast cancer patients, the OPP technique was compared with a conventional mixed-beam technique (2D) and a conformal partly wide tangential (PWT) technique, using dose-volume histogram analysis and normal tissue complication probabilities (NTCPs). The 3D techniques resulted in a better target coverage and homogeneity than did the 2D technique. The homogeneity index for the IM-MS PTV increased from 0.57 for 2D to 0.90 for PWT and 0.91 for OPP (both p < 0.001). The OPP technique was able to reduce the volume of heart receiving more than 30 Gy (V{sub 30}), the cardiac NTCP, and the volume of contralateral breast receiving 5 Gy (V{sub 5}) compared with the PWT plans (all p < 0.05). There is no significant difference in mean lung dose or lung NTCP between both 3D techniques. Compared with the PWT technique, the volume of lung receiving more than 20 Gy (V{sub 20}) was increased with the OPP technique, whereas the volume of lung receiving more than 40 Gy (V{sub 40}) was decreased (both p < 0.05). Compared with the PWT technique, the OPP technique can reduce doses to the contralateral breast and heart at the expense of an increased lung V{sub 20}.

  8. Development of novel techniques to study the magnetic field evolution in wire array Z-pinches and X pinches

    NASA Astrophysics Data System (ADS)

    Syed, Wasif

    Understanding the magnetic field topology in wire-array Z-pinches is of great significance for their ultimate application to stockpile stewardship and inertial confinement fusion. We have developed and tested several novel techniques involving material-based sensors to measure magnetic fields as a function of space and time in high energy density plasmas on pulsed power machines. We first briefly introduce a technique that was used to measure a lower limit of the maximum magnetic field of a sub-microsecond duration pulse using magnetic reversal in CoPt thin films. The time-varying magnetic field was generated by an exploding wire array plasma called an X pinch produced on the 0.5 MA, 100 ns pulse duration, XP pulsed power generator. We then introduce a technique based on Faraday rotation that was used to measure magnetic fields in wire-array Z-pinches produced on the 1 MA, 100 ns rise time, COBRA pulsed power generator as well as on the XP generator. This technique measures magnetic fields as a function of space and time using Faraday rotation of a single longitudinal mode (SLM) laser through a magneto-optically active bulk waveguide, multicomponent terbium borate glass, placed adjacent to, or within, the wire array. We have measured fields > 10 T with 100 ns rise times outside of a wire-array Z-pinch for the entire duration (˜250 ns) of the current pulse and as much as ˜2 T inside a wire-array for ˜40 ns from the start of current. This is the first time that such rapidly varying and large fields have been measured using the terbium borate glass. The third method, also based on Faraday rotation of SLM laser light utilized an integrated optical fiber sensor (a fiber-sensor-fiber assembly) on the XP pulsed power generator that also yielded a measurement of the magnetic field of a wire-array Z-pinch for part of the current pulse. Finally, we repeated the third method by fabricating a "thin film waveguide" of terbium borate glass to increase the spatial resolution

  9. Dosimetric comparison of split field and fixed jaw techniques for large IMRT target volumes in the head and neck.

    PubMed

    Srivastava, Shiv P; Das, Indra J; Kumar, Arvind; Johnstone, Peter A S

    2011-01-01

    Some treatment planning systems (TPSs), when used for large-field (>14 cm) intensity-modulated radiation therapy (IMRT), create split fields that produce excessive multiple-leaf collimator segments, match-line dose inhomogeneity, and higher treatment times than nonsplit fields. A new method using a fixed-jaw technique (FJT) forces the jaw to stay at a fixed position during optimization and is proposed to reduce problems associated with split fields. Dosimetric comparisons between split-field technique (SFT) and FJT used for IMRT treatment is presented. Five patients with head and neck malignancies and regional target volumes were studied and compared with both techniques. Treatment planning was performed on an Eclipse TPS using beam data generated for Varian 2100C linear accelerator. A standard beam arrangement consisting of nine coplanar fields, equally spaced, was used in both techniques. Institutional dose-volume constraints used in head and neck cancer were kept the same for both techniques. The dosimetric coverage for the target volumes between SFT and FJT for head and neck IMRT plan is identical within ± 1% up to 90% dose. Similarly, the organs at risk (OARs) have dose-volume coverage nearly identical for all patients. When the total monitor unit (MU) and segments were analyzed, SFT produces statistically significant higher segments (17.3 ± 6.3%) and higher MU (13.7 ± 4.4%) than the FJT. There is no match line in FJT and hence dose uniformity in the target volume is superior to the SFT. Dosimetrically, SFT and FJT are similar for dose-volume coverage; however, the FJT method provides better logistics, lower MU, shorter treatment time, and better dose uniformity. The number of segments and MU also has been correlated with the whole body radiation dose with long-term complications. Thus, FJT should be the preferred option over SFT for large target volumes.

  10. Dosimetric Comparison of Split Field and Fixed Jaw Techniques for Large IMRT Target Volumes in the Head and Neck

    SciTech Connect

    Srivastava, Shiv P.; Das, Indra J.; Kumar, Arvind; Johnstone, Peter A.S.

    2011-04-01

    Some treatment planning systems (TPSs), when used for large-field (>14 cm) intensity-modulated radiation therapy (IMRT), create split fields that produce excessive multiple-leaf collimator segments, match-line dose inhomogeneity, and higher treatment times than nonsplit fields. A new method using a fixed-jaw technique (FJT) forces the jaw to stay at a fixed position during optimization and is proposed to reduce problems associated with split fields. Dosimetric comparisons between split-field technique (SFT) and FJT used for IMRT treatment is presented. Five patients with head and neck malignancies and regional target volumes were studied and compared with both techniques. Treatment planning was performed on an Eclipse TPS using beam data generated for Varian 2100C linear accelerator. A standard beam arrangement consisting of nine coplanar fields, equally spaced, was used in both techniques. Institutional dose-volume constraints used in head and neck cancer were kept the same for both techniques. The dosimetric coverage for the target volumes between SFT and FJT for head and neck IMRT plan is identical within {+-}1% up to 90% dose. Similarly, the organs at risk (OARs) have dose-volume coverage nearly identical for all patients. When the total monitor unit (MU) and segments were analyzed, SFT produces statistically significant higher segments (17.3 {+-} 6.3%) and higher MU (13.7 {+-} 4.4%) than the FJT. There is no match line in FJT and hence dose uniformity in the target volume is superior to the SFT. Dosimetrically, SFT and FJT are similar for dose-volume coverage; however, the FJT method provides better logistics, lower MU, shorter treatment time, and better dose uniformity. The number of segments and MU also has been correlated with the whole body radiation dose with long-term complications. Thus, FJT should be the preferred option over SFT for large target volumes.

  11. Physics Laboratory Investigation of Vocational High School Field Stone and Concrete Construction Techniques in the Central Java Province (Indonesia)

    ERIC Educational Resources Information Center

    Purwandari, Ristiana Dyah

    2015-01-01

    The investigation aims in this study were to uncover the observations of infrastructures and physics laboratory in vocational high school for Stone and Concrete Construction Techniques Expertise Field or Teknik Konstruksi Batu dan Beton (TKBB)'s in Purwokerto Central Java Province, mapping the Vocational High School or Sekolah Menengah Kejuruan…

  12. Fusing Observations and Model Results for Creation of Enhanced Ozone Spatial Fields: Comparison of Three Techniques

    EPA Science Inventory

    This paper presents three simple techniques for fusing observations and numerical model predictions. The techniques rely on model/observation bias being considered either as error free, or containing some uncertainty, the latter mitigated with a Kalman filter approach or a spati...

  13. Performance of marking techniques in the field and laboratory for Diabrotica speciosa (Germar) (Coleoptera: Chrysomelidae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A reliable marking technique was needed for a mark-release-recapture experiment with adults of Diabrotica speciosa (Germar). Four marking techniques, acrylic paint (spattered or brushed on the surface of the insect); and fluorescent pigments (dusted on surfaces or mixed with diet to produce an inges...

  14. A mountain watershed hydrology field course: Experiential learning in hydrologic concepts and measurement techniques

    NASA Astrophysics Data System (ADS)

    Hogue, T. S.; Kinoshita, A. M.; Randell, J.

    2013-12-01

    A field mountainshed hydrology course was offered annually since April 2006 to investigate and quantify hydrologic processes in the Sagehen experimental watershed in the Sierra Nevada, California. This advanced field-based course was offered through the University of California, Los Angeles (UCLA) Civil and Environmental Engineering (CEE) and was primarily for upper division undergraduate students in the hydrology emphasis track. This unique ten-week course focused on the study of catchment processes in snow-dominated and mountainous regions. The course offered a range of activities, including quantifying distributed watershed fluxes, investigating geochemical properties of surface and groundwater systems, measuring channel dynamics and stream morphology, and analysis of snowpack properties. A major component of the course included an extended field trip to Sagehen where students undertook a range of observations and field experiments. Pre-field trip coursework required an in-depth analysis of historical streamflow, precipitation, snow and other regional hydroclimatological data. At Sagehen, students worked together in teams while gaining a range of field experiences. Post-field trip labs included analysis of their collected field data and comparison to previous years' data, culminating in a comprehensive final report and shared with the Sagehen Creek Field Station as part of a cooperative effort. This presentation will highlight course, laboratory and field design, a compilation of observational results, and insight on lessons learned through the course history.

  15. Overview of label-free far field optical nanoscopy techniques for nanometrology

    NASA Astrophysics Data System (ADS)

    Montgomery, Paul; Leong-Hoï, Audrey; Anstotz, Freddy; Liu, Hui; Simon, Bertrand; Debailleul, Matthieu; Haeberlé, Olivier

    2016-04-01

    The development of new nanomaterials, devices and systems is very much dependent on the availability of new techniques for nanometrology. There now exists many advanced optical imaging techniques capable of subwavelength resolution and detection, recently brought to the forefront through the 2014 Nobel Prize for chemistry for fluorescent STED and single molecule microscopy. Label-free nanoscopy techniques are particularly interesting for nanometrology since they have the advantages of being less intrusive and open to a wider number of structures that can be observed compared with fluorescent techniques. In view of the existence of many nanoscopy techniques, we present a practical classification scheme to help in their understanding. An important distinction is made between superresolution techniques that provide resolutions better than the classical λ/2 limit of diffraction and nanodetection techniques that are used to detect or characterize unresolved nanostructures or as nanoprobes to image sub-diffraction nanostructures. We then highlight some of the more important label-free techniques that can be used for nanometrology. Superresolution techniques displaying sub-100 nm resolution are demonstrated with tomographic diffractive microscopy (TDM) and submerged microsphere optical nanoscopy (SMON). Nanodetection techniques are separated into three categories depending on whether they use contrast, phase or deconvolution. The use of increased contrast is illustrated with ellipsometric contrast microscopy (SEEC) for measuring nanostructures. Very high sensitivity phase measurement using interference microscopy is then shown for characterizing nanometric surface roughness or internal structures. Finally, the use of through-focus scanning optical microscopy (TSOM) demonstrates the measurement and characterization of 60 nm linewidths in microelectronic devices.

  16. GRAIL gravity field recovery using the short-arc integral equation technique: development of the latest Graz lunar gravity field model (GrazLGM)

    NASA Astrophysics Data System (ADS)

    Krauss, S.; Klinger, B.; Baur, O.; Mayr-Guerr, T.

    2015-10-01

    We present an updated version of the lunar gravity field model GrazLGM300a,b [1,2] based on intersatellite Ka-band ranging (KBR) observations collected by the GRAIL mission. We propose to exploit the ranging measurements by an integral equation approach using short orbital arcs [4].Compared to the predecessor model we increase the spectral resolution to degree and order 450 and refined the parameterization. Validation shows that the applied technique is well suited to recover the lunar gravity field.

  17. Ultrasonic propagation: a technique to reveal field induced structures in magnetic nanofluids.

    PubMed

    Parekh, Kinnari; Patel, Jaykumar; Upadhyay, R V

    2015-07-01

    The paper reports the study of magnetic field induced structures in magnetic nanofluid investigated through ultrasonic wave propagation. Modified Tarapov's theory is used to study variation in velocity anisotropy with magnetic field. The types of field induced structures depend upon the chemical structure of the carrier in which magnetic nanoparticles are dispersed. Our study indicates formation of fractals and chain respectively, in transformer oil and kerosene based fluid. This difference is explained on the basis of particle-particle interaction and particle-medium interaction. PMID:25791205

  18. Magnetic field sensor using the fiber loop ring-down technique and an etched fiber coated with magnetic fluid.

    PubMed

    Shen, Tao; Feng, Yue; Sun, Binchao; Wei, Xinlao

    2016-02-01

    The fiber loop ring-down spectroscopy technique is introduced into the evanescent-field-based sensing scheme in order to create a new type of fiber-based magnetic field sensor. As a consequence, the sensitivity and stability of the magnetic field sensing system are significantly enhanced. The sensor head is constructed using a section of a single-mode fiber with its cladding partially etched. The process of fiber etching is described in detail, and the relationship between the diameter of the etched fiber and the etching time is experimentally investigated. After adopting the appropriate size of the etched fiber, the final experimental results show that the magnetic field strength has a well-defined linear relationship with the inverse of the ring-down time τ over a range of 30 mT with a sensitivity of 95.5 ns/mT.

  19. Magnetic field sensor using the fiber loop ring-down technique and an etched fiber coated with magnetic fluid.

    PubMed

    Shen, Tao; Feng, Yue; Sun, Binchao; Wei, Xinlao

    2016-02-01

    The fiber loop ring-down spectroscopy technique is introduced into the evanescent-field-based sensing scheme in order to create a new type of fiber-based magnetic field sensor. As a consequence, the sensitivity and stability of the magnetic field sensing system are significantly enhanced. The sensor head is constructed using a section of a single-mode fiber with its cladding partially etched. The process of fiber etching is described in detail, and the relationship between the diameter of the etched fiber and the etching time is experimentally investigated. After adopting the appropriate size of the etched fiber, the final experimental results show that the magnetic field strength has a well-defined linear relationship with the inverse of the ring-down time τ over a range of 30 mT with a sensitivity of 95.5 ns/mT. PMID:26836067

  20. Optical phase distortion due to turbulent-fluid density fields - Quantification using the small-aperture beam technique

    NASA Astrophysics Data System (ADS)

    Jumper, E. J.; Hugo, R. J.

    1992-07-01

    This paper discusses the small-aperture beam technique, a relatively new way of experimentally quantifying optically-active, turbulent-fluid-flow-induced optical degradation. The paper lays out the theoretical basis for the technique, and the relationship of the measured jitter of the beam to optical path difference. A numerical simulation of a two-dimensional heated jet is used to explore the validity of beam jitter to obtain optical path difference in a flow region where eddy production constitutes the major character of the 'turbulent' flow field.

  1. A generating technique for Einstein gravity conformally coupled to a scalar field with Higgs potential.

    NASA Astrophysics Data System (ADS)

    Gal'Tsov, D. V.; Xanthopoulos, B. C.

    1992-01-01

    Starting from any solution of the Einstein equations, with cosmological term, coupled to a minimally coupled massless scalar field, a solution of the Einstein equations is constructed, conformally coupled to a massless self-interacting scalar field with the usual Higgs potential. When the cosmological constant vanishes, the Higgs term disappears and the transformation procedure reduces to that obtained by Bekenstein in 1974. As an example, a nonsingular cosmological solution is constructed that describes the restoration of spontaneously broken symmetry.

  2. A comparison of TPS and different measurement techniques in small-field electron beams

    SciTech Connect

    Donmez Kesen, Nazmiye Cakir, Aydin; Okutan, Murat; Bilge, Hatice

    2015-04-01

    In recent years, small-field electron beams have been used for the treatment of superficial lesions, which requires small circular fields. However, when using very small electron fields, some significant dosimetric problems may occur. In this study, dose distributions and outputs of circular fields with dimensions of 5 cm and smaller, for nominal energies of 6, 9, and 15 MeV from the Siemens ONCOR Linac, were measured and compared with data from a treatment planning system using the pencil-beam algorithm in electron beam calculations. All dose distribution measurements were performed using the Gafchromic EBT film; these measurements were compared with data that were obtained from the Computerized Medical Systems (CMS) XiO treatment planning system (TPS), using the gamma-index method in the PTW VeriSoft software program. Output measurements were performed using the Gafchromic EBT film, an Advanced Markus ion chamber, and thermoluminescent dosimetry (TLD). Although the pencil-beam algorithm is used to model electron beams in many clinics, there is no substantial amount of detailed information in the literature about its use. As the field size decreased, the point of maximum dose moved closer to the surface. Output factors were consistent; differences from the values obtained from the TPS were, at maximum, 42% for 6 and 15 MeV and 32% for 9 MeV. When the dose distributions from the TPS were compared with the measurements from the Gafchromic EBT films, it was observed that the results were consistent for 2-cm diameter and larger fields, but the outputs for fields of 1-cm diameter and smaller were not consistent. In CMS XiO TPS, calculated using the pencil-beam algorithm, the dose distributions of electron treatment fields that were created with circular cutout of a 1-cm diameter were not appropriate for patient treatment and the pencil-beam algorithm is not convenient for monitor unit (MU) calculations in electron dosimetry.

  3. Micro gel column technique is fit for detecting mixed fields post ABO incompatible hematopoietic stem cell transplantation.

    PubMed

    Li, Min-Fang; Liu, Feng; Zhang, Min

    2015-04-01

    How to choose suitable serologic method for assessment of the actual stages of ABO chimera is more important to establish transfusion strategy for patients post-ABO incompatible hematopoietic stem cell transplantation. We reported ABO phenotypes of a patient post-ABO minor incompatible hematopoietic stem cell transplantation from 1+ weak agglutination by tube method was obviously reaffirmed to mixed fields with 4+ positive reaction by micro gel column card. Hence, blood bank technologists must continually work together with hematologist to establish appropriate transfusion strategy, and micro gel column technique can be more appropriate for detecting mixed fields during the whole period of transplantation. PMID:25578650

  4. Electric field modulation technique for high-voltage AlGaN/GaN Schottky barrier diodes

    NASA Astrophysics Data System (ADS)

    Tang, Cen; Xie, Gang; Zhang, Li; Guo, Qing; Wang, Tao; Sheng, Kuang

    2013-10-01

    A novel structure of AlGaN/GaN Schottky barrier diode (SBD) featuring electric field optimization techniques of anode-connected-field-plate (AFP) and magnesium-doped p-type buried layer under the two-dimensional electron gas (2DEG) channel is proposed. In comparison with conventional AlGaN/GaN SBDs, the magnesium-doped p-type buried layer in the proposed structure can provide holes that can help to deplete the surface 2DEG. As a result, surface field strength around the electrode edges is significantly suppressed and the electric field along the channel is distributed more evenly. Through 2D numerical analysis, the AFP parameters (field plate length, LAFP, and field plate height, TAFP) and p-type buried layer parameters (p-type layer concentration, NP, and p-type layer thickness, TP) are optimized to achieve a three-equal-peak surface channel field distribution under exact charge balance conditions. A novel structure with a total drift region length of 10.5 μm and a magnesium-doped p-type concentration of 1 × 1017 cm-3 achieves a high breakdown voltage (VB) of 1.8 kV, showing 5 times improvement compared with the conventional SBD with the same device dimension.

  5. Commissioning a small-field biological irradiator using point, 2D, and 3D dosimetry techniques

    PubMed Central

    Newton, Joseph; Oldham, Mark; Thomas, Andrew; Li, Yifan; Adamovics, John; Kirsch, David G.; Das, Shiva

    2011-01-01

    Purpose: To commission a small-field biological irradiator, the XRad225Cx from Precision x-Ray, Inc., for research use. The system produces a 225 kVp x-ray beam and is equipped with collimating cones that produce both square and circular radiation fields ranging in size from 1 to 40 mm. This work incorporates point, 2D, and 3D measurements to determine output factors (OF), percent-depth-dose (PDD) and dose profiles at multiple depths. Methods: Three independent dosimetry systems were used: ion-chambers (a farmer chamber and a micro-ionisation chamber), 2D EBT2 radiochromic film, and a novel 3D dosimetry system (DLOS/PRESAGE®). Reference point dose rates and output factors were determined from in-air ionization chamber measurements for fields down to ∼13 mm using the formalism of TG61. PDD, profiles, and output factors at three separate depths (0, 0.5, and 2 cm), were determined for all field sizes from EBT2 film measurements in solid water. Several film PDD curves required a scaling correction, reflecting the challenge of accurate film alignment in very small fields. PDDs, profiles, and output factors were also determined with the 3D DLOS/PRESAGE® system which generated isotropic 0.2 mm data, in scan times of 20 min. Results: Surface output factors determined by ion-chamber were observed to gradually drop by ∼9% when the field size was reduced from 40 to 13 mm. More dramatic drops were observed for the smallest fields as determined by EBT∼18% and ∼42% for the 2.5 mm and 1 mm fields, respectively. PRESAGE® and film output factors agreed well for fields <20 mm (where 3D data were available) with mean deviation of 2.2% (range 1%–4%). PDD values at 2 cm depth varied from ∼72% for the 40 mm field, down to ∼55% for the 1 mm field. EBT and PRESAGE® PDDs agreed within ∼3% in the typical therapy region (1–4 cm). At deeper depths the EBT curves were slightly steeper (2.5% at 5 cm). These results indicate good overall consistency between ion-chamber, EBT

  6. Slice-mapping: Reservoir characterization technique - West Yucca Butte Field, Pecos County, Texas

    SciTech Connect

    Casavant, R.R.

    1988-01-01

    The West Yucca Butte field, located in Pecos County, Texas, is a structural-stratigraphic field that lies within the geologic province known as the Sheffield Channel-Val Verde basin area of west Texas. It is one of several producing fields situated in an en echelon pattern along several major northwest-southeast-trending fault systems. These fields are anticlinal features producing gas, condensate, and high-gravity oils from Lower Ordovician dolomites and sandstones, Devonian cherts and cherty limestones, and Pennsylvanian-Permian limestones. Production in the West Yucca Butte field is from the Lower Ordovician Ellenburger Group and the Pennsylvanian Strawn, Canyon, and Cisco Groups. In general, wells located highest on the structure, with adequate porosity, are the better wells. Production is also obtained from downdip wells where reservoirs stratigraphically pinch out along the flanks of the structure. However, in all reservoirs, internal stratigraphic heterogeneities significantly complicated development strategies. The Pennsylvanian reservoirs are very heterogeneous. The carbonates have undergone considerable diagenesis, resulting in the occlusion of primary porosities. Secondary spicular-moldic and microvuggy brecciated porosities are the principal porosity types. Petrographic studies were useful in describing the physical properties of this massive carbonate section and the depositional and diagenetic implications; however, little was known about the distribution and quality of the reservoirs.

  7. The Development of a Full Field Three-Dimensional Microscale Flow Measurement Technique for Application to Near Contact Line Flows

    NASA Technical Reports Server (NTRS)

    He, Qun; Hallinan, Kevin

    1996-01-01

    The goal of this paper is to present details of the development of a new three-dimensional velocity field measurement technique which can be used to provide more insight into the dynamics of thin evaporating liquid films (not limited to just low heat inputs for the heat transfer) and which also could prove useful for the study of spreading and wetting phenomena and other microscale flows.

  8. Background field removal technique using regularization enabled sophisticated harmonic artifact reduction for phase data with varying kernel sizes.

    PubMed

    Kan, Hirohito; Kasai, Harumasa; Arai, Nobuyuki; Kunitomo, Hiroshi; Hirose, Yasujiro; Shibamoto, Yuta

    2016-09-01

    An effective background field removal technique is desired for more accurate quantitative susceptibility mapping (QSM) prior to dipole inversion. The aim of this study was to evaluate the accuracy of regularization enabled sophisticated harmonic artifact reduction for phase data with varying spherical kernel sizes (REV-SHARP) method using a three-dimensional head phantom and human brain data. The proposed REV-SHARP method used the spherical mean value operation and Tikhonov regularization in the deconvolution process, with varying 2-14mm kernel sizes. The kernel sizes were gradually reduced, similar to the SHARP with varying spherical kernel (VSHARP) method. We determined the relative errors and relationships between the true local field and estimated local field in REV-SHARP, VSHARP, projection onto dipole fields (PDF), and regularization enabled SHARP (RESHARP). Human experiment was also conducted using REV-SHARP, VSHARP, PDF, and RESHARP. The relative errors in the numerical phantom study were 0.386, 0.448, 0.838, and 0.452 for REV-SHARP, VSHARP, PDF, and RESHARP. REV-SHARP result exhibited the highest correlation between the true local field and estimated local field. The linear regression slopes were 1.005, 1.124, 0.988, and 0.536 for REV-SHARP, VSHARP, PDF, and RESHARP in regions of interest on the three-dimensional head phantom. In human experiments, no obvious errors due to artifacts were present in REV-SHARP. The proposed REV-SHARP is a new method combined with variable spherical kernel size and Tikhonov regularization. This technique might make it possible to be more accurate backgroud field removal and help to achive better accuracy of QSM.

  9. Enhanced carbonate reservoir model for an old reservoir utilizing new techniques: The Schaben Field (Mississippian), Ness County, Kansas

    SciTech Connect

    Carr, T.P.; Guy, W.J.; Franseen, E.K.; Bhattacharya, S.

    1996-12-31

    The Pennsylvanian-Mississippian unconformity is a major stratigraphic event in Kansas that truncates rocks ranging from Precambrian to Mississippian. Many of the 6,000 fields in Kansas are located immediately beneath this unconformity. One example, Schaben Field located in Ness County, Kansas, has produced approximately 9 million barrels since it was discovered in 1963. Production is from the Mississippian (Osagian) cherty dolomites beneath the inconformity. The field was initially developed on a regular forty-acre spacing, but recent drilling has demonstrated the potential for additional targeted infill drilling. To develop an enhanced reservoir model for the Schabin field modern core, log, and well data were integrated with the existing data. New techniques such as {open_quotes}Pseudoseismic{close_quotes} and the {open_quotes}Super{close_quotes} Pickett plot were used to leverage the existing data and provide tools for analysis and 3D visualization. The pseudoseismic approach uses well-logs within a standard 3D seismic visualization system to provide a detailed macroscale view of karst patterns. The petrophysical analyses using the {open_quotes}Super{close_quotes} Pickett plot were used to recognize subtle trends and patterns for each of multiple reservoir intervals. Visual and petrographic examination of core from the field confirms karst development and indicates multiple stages of fracturing, brecciation, and dissolution features that were important in controlling and modifying development of reservoirs. The understanding of the reservoir heterogeneities resulting from the paleokarst model at Schaben field emphasizes the importance of integrating available data with new techniques to provide a predictive tool for discovery of additional pay within existing subunconformity fields in Kansas.

  10. Enhanced carbonate reservoir model for an old reservoir utilizing new techniques: The Schaben Field (Mississippian), Ness County, Kansas

    SciTech Connect

    Carr, T.P.; Guy, W.J.; Franseen, E.K.; Bhattacharya, S. )

    1996-01-01

    The Pennsylvanian-Mississippian unconformity is a major stratigraphic event in Kansas that truncates rocks ranging from Precambrian to Mississippian. Many of the 6,000 fields in Kansas are located immediately beneath this unconformity. One example, Schaben Field located in Ness County, Kansas, has produced approximately 9 million barrels since it was discovered in 1963. Production is from the Mississippian (Osagian) cherty dolomites beneath the inconformity. The field was initially developed on a regular forty-acre spacing, but recent drilling has demonstrated the potential for additional targeted infill drilling. To develop an enhanced reservoir model for the Schabin field modern core, log, and well data were integrated with the existing data. New techniques such as [open quotes]Pseudoseismic[close quotes] and the [open quotes]Super[close quotes] Pickett plot were used to leverage the existing data and provide tools for analysis and 3D visualization. The pseudoseismic approach uses well-logs within a standard 3D seismic visualization system to provide a detailed macroscale view of karst patterns. The petrophysical analyses using the [open quotes]Super[close quotes] Pickett plot were used to recognize subtle trends and patterns for each of multiple reservoir intervals. Visual and petrographic examination of core from the field confirms karst development and indicates multiple stages of fracturing, brecciation, and dissolution features that were important in controlling and modifying development of reservoirs. The understanding of the reservoir heterogeneities resulting from the paleokarst model at Schaben field emphasizes the importance of integrating available data with new techniques to provide a predictive tool for discovery of additional pay within existing subunconformity fields in Kansas.

  11. Background field removal technique using regularization enabled sophisticated harmonic artifact reduction for phase data with varying kernel sizes.

    PubMed

    Kan, Hirohito; Kasai, Harumasa; Arai, Nobuyuki; Kunitomo, Hiroshi; Hirose, Yasujiro; Shibamoto, Yuta

    2016-09-01

    An effective background field removal technique is desired for more accurate quantitative susceptibility mapping (QSM) prior to dipole inversion. The aim of this study was to evaluate the accuracy of regularization enabled sophisticated harmonic artifact reduction for phase data with varying spherical kernel sizes (REV-SHARP) method using a three-dimensional head phantom and human brain data. The proposed REV-SHARP method used the spherical mean value operation and Tikhonov regularization in the deconvolution process, with varying 2-14mm kernel sizes. The kernel sizes were gradually reduced, similar to the SHARP with varying spherical kernel (VSHARP) method. We determined the relative errors and relationships between the true local field and estimated local field in REV-SHARP, VSHARP, projection onto dipole fields (PDF), and regularization enabled SHARP (RESHARP). Human experiment was also conducted using REV-SHARP, VSHARP, PDF, and RESHARP. The relative errors in the numerical phantom study were 0.386, 0.448, 0.838, and 0.452 for REV-SHARP, VSHARP, PDF, and RESHARP. REV-SHARP result exhibited the highest correlation between the true local field and estimated local field. The linear regression slopes were 1.005, 1.124, 0.988, and 0.536 for REV-SHARP, VSHARP, PDF, and RESHARP in regions of interest on the three-dimensional head phantom. In human experiments, no obvious errors due to artifacts were present in REV-SHARP. The proposed REV-SHARP is a new method combined with variable spherical kernel size and Tikhonov regularization. This technique might make it possible to be more accurate backgroud field removal and help to achive better accuracy of QSM. PMID:27114339

  12. Synchrotron microimaging technique for measuring the velocity fields of real blood flows

    SciTech Connect

    Lee, Sang-Joon; Kim, Guk Bae

    2005-03-15

    Angiography and Doppler methods used for diagnosing vascular diseases give information on the shape of blood vessels and pointwise blood speed but do not provide detailed information on the flow fields inside the blood vessels. In this study, we developed a method for visualizing blood flow by using coherent synchrotron x rays. This method, which does not require the addition of any contrast agent or tracer particles, visualizes the flow pattern of blood by enhancing the diffraction and interference characteristics of the blood cells. This was achieved by optimizing the sample- (blood) to-detector (charge-coupled device camera) distance and the sample thickness. The proposed method was used to extract quantitative velocity field information from blood flowing inside an opaque microchannel by applying a two-frame particle image velocimetry algorithm to enhanced x-ray images of the blood flow. The measured velocity field data showed a flow structure typical of flow in a macrochannel.

  13. A comparison of "flat fielding" techniques for x-ray framing cameras

    NASA Astrophysics Data System (ADS)

    Benedetti, L. R.; Trosseille, C.; Holder, J. P.; Piston, K.; Hargrove, D.; Bradley, D. K.; Bell, P.; Raimbourg, J.; Prat, M.; Pickworth, L. A.; Khan, S. F.

    2016-11-01

    Gain can vary across the active area of an x-ray framing camera by a factor of 4 (or more!) due to the voltage loss and dispersion associated with pulse transmission in a microstripline-coated microchannel plate. In order to make quantitative measurements, it is consequently important to measure the gain variation ("flat field"). Moreover, because of electromagnetic cross talk, gain variation depends on specific operational parameters, and ideally a flat field would be obtained at all operating conditions. As part of a collaboration between Lawrence Livermore National Laboratory's National Ignition Facility and the Commissariat à l'Énergie Atomique, we have been able to evaluate the consistency of three different methods of measuring x-ray flat fields. By applying all three methods to a single camera, we are able to isolate performance from method. Here we report the consistency of the methods and discuss systematic issues with the implementation and analysis of each.

  14. Geological techniques utilized in trap Spring Field discovery, Railroad Valley, Nye County, Nevada

    SciTech Connect

    Dolly, E.D.

    1980-01-01

    The trap at Eagle Springs Field is a combination stratigraphic truncation-subcrop-fault trap. Production occurs from matrix and fracture porosity in reservoirs in the Sheep Pass Formation (Cretaceous and Eocene) and the Garrett Ranch volcanic group (Oligocene). Probably the most unique feature about the field is that the production occurs from the highest position on the lowermost fault block at the basin margin. On the adjacent higher fault blocks the reservoir beds were removed by erosion during the basin and range orogenic event. The position of the truncated edge of the lower Tertiary reservoir units is controlled by the fault pattern at the margin of the valley-basin Graben. Detailed geomorphic studies indicated that this fault pattern may be identified at the surface. Regional geomorphic mapping of fault patterns was conducted to localize areas with possible subcrop truncation patterns similar to Eagle Springs Field. 20 references.

  15. Techniques for application of faecal DNA methods to field studies of Ursids.

    PubMed

    Wasser, S K; Houston, C S; Koehler, G M; Cadd, G G; Fain, S R

    1997-11-01

    We describe methods for the preservation, extraction and amplification of DNA from faeces that facilitate field applications of faecal DNA technology. Mitochondrial, protein encoding and microsatellite nuclear DNA extracted and amplified from faeces of Malayan sun bears and North American black bears is shown to be identical to that extracted and amplified from the same individual's tissue or blood. A simple drying agent, silica beads, is shown to be a particularly effective preservative, allowing easy and safe transport of samples from the field. Methods are also developed to eliminate the risk of faecal DNA contamination from hair present in faeces. PMID:9394465

  16. Improvements of the gravity field from satellite techniques as proposed to the European Space Agency

    NASA Technical Reports Server (NTRS)

    Reigber, C.

    1978-01-01

    A summary of the European Earth Sciences Space Programme and the requirements for each gravity field mapping resulting from this programme are given. Three satellite experiments for gravity field improvement proposed to the European Space Agency in the last years are shortly characterized. One of these experiments, the low-low-SST-SLALOM experiment, based on laser interferometry for a "two target-one Spacelab telescope" configuration, is discussed in more detail. Reasons for the low-low concept selection are given and some mission aspects and a possible system concept for a compact ranging, acquisition and tracking system are presented.

  17. Application of digital interferogram evaluation techniques to the measurement of 3-D flow fields

    NASA Technical Reports Server (NTRS)

    Becker, Friedhelm; Yu, Yung H.

    1987-01-01

    A system for digitally evaluating interferograms, based on an image processing system connected to a host computer, was implemented. The system supports one- and two-dimensional interferogram evaluations. Interferograms are digitized, enhanced, and then segmented. The fringe coordinates are extracted, and the fringes are represented as polygonal data structures. Fringe numbering and fringe interpolation modules are implemented. The system supports editing and interactive features, as well as graphic visualization. An application of the system to the evaluation of double exposure interferograms from the transonic flow field around a helicopter blade and the reconstruction of the three dimensional flow field is given.

  18. Development of Techniques for Visualization of Scalar and Vector Fields in the Immersive Environment

    NASA Technical Reports Server (NTRS)

    Bidasaria, Hari B.; Wilson, John W.; Nealy, John E.

    2005-01-01

    Visualization of scalar and vector fields in the immersive environment (CAVE - Cave Automated Virtual Environment) is important for its application to radiation shielding research at NASA Langley Research Center. A complete methodology and the underlying software for this purpose have been developed. The developed software has been put to use for the visualization of the earth s magnetic field, and in particular for the study of the South Atlantic Anomaly. The methodology has also been put to use for the visualization of geomagnetically trapped protons and electrons within Earth's magnetosphere.

  19. Efficient technique for calculating multiple solutions of electric-field problems. Part I. Final report

    SciTech Connect

    Lauber, T.S.

    1980-12-01

    The purpose of this report is to present a digital computer program capable of calculating the electrostatic field in an arbitrary two-dimensional configuration. The program was developed as a preliminary result in a project aimed at producing a three-dimensional program. Thus, this report represents an interim report on the entire project.

  20. Arbitrary magnetic field gradient waveform correction using an impulse response based pre-equalization technique.

    PubMed

    Goora, Frédéric G; Colpitts, Bruce G; Balcom, Bruce J

    2014-01-01

    The time-varying magnetic fields used in magnetic resonance applications result in the induction of eddy currents on conductive structures in the vicinity of both the sample under investigation and the gradient coils. These eddy currents typically result in undesired degradations of image quality for MRI applications. Their ubiquitous nature has resulted in the development of various approaches to characterize and minimize their impact on image quality. This paper outlines a method that utilizes the magnetic field gradient waveform monitor method to directly measure the temporal evolution of the magnetic field gradient from a step-like input function and extracts the system impulse response. With the basic assumption that the gradient system is sufficiently linear and time invariant to permit system theory analysis, the impulse response is used to determine a pre-equalized (optimized) input waveform that provides a desired gradient response at the output of the system. An algorithm has been developed that calculates a pre-equalized waveform that may be accurately reproduced by the amplifier (is physically realizable) and accounts for system limitations including system bandwidth, amplifier slew rate capabilities, and noise inherent in the initial measurement. Significant improvements in magnetic field gradient waveform fidelity after pre-equalization have been realized and are summarized. PMID:24316188

  1. Effect of Field Independence/Dependence on Two Textbook Notetaking Techniques.

    ERIC Educational Resources Information Center

    Lipsky, Sally A.

    This study was performed to assess the effect of field independence/dependence on the successful use of mapping or outlining to take notes from textbooks. Success was measured in terms of student performance on a comprehension test and thoroughness of notetaking. The study sample of 38 students enrolled in reading and study skills courses at a…

  2. Field evaluation of a dyed food marking technique for Culex quinquefasciatus (Diptera: Culicidae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A method of marking adult Cx. quinquefasciatus Say by feeding the larvae commercial hog chow dyed with methylene blue, Giemsa, and crystal violet was evaluated under field conditions. Larvae were offered the dyed food in outdoor basins containg a mixture of dairy effluent and fresh water. Newly emer...

  3. On-combine Sensing Technique for Mapping Straw Yield within Wheat Fields

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Straw from production of wheat is available for conversion to bioenergy. However, not all of this straw is available for conversion because a certain amount must be returned to the soil for conservation. County and state-wide inventories do not account for variation within farm fields. In this st...

  4. Arbitrary magnetic field gradient waveform correction using an impulse response based pre-equalization technique.

    PubMed

    Goora, Frédéric G; Colpitts, Bruce G; Balcom, Bruce J

    2014-01-01

    The time-varying magnetic fields used in magnetic resonance applications result in the induction of eddy currents on conductive structures in the vicinity of both the sample under investigation and the gradient coils. These eddy currents typically result in undesired degradations of image quality for MRI applications. Their ubiquitous nature has resulted in the development of various approaches to characterize and minimize their impact on image quality. This paper outlines a method that utilizes the magnetic field gradient waveform monitor method to directly measure the temporal evolution of the magnetic field gradient from a step-like input function and extracts the system impulse response. With the basic assumption that the gradient system is sufficiently linear and time invariant to permit system theory analysis, the impulse response is used to determine a pre-equalized (optimized) input waveform that provides a desired gradient response at the output of the system. An algorithm has been developed that calculates a pre-equalized waveform that may be accurately reproduced by the amplifier (is physically realizable) and accounts for system limitations including system bandwidth, amplifier slew rate capabilities, and noise inherent in the initial measurement. Significant improvements in magnetic field gradient waveform fidelity after pre-equalization have been realized and are summarized.

  5. Polymer-based platforms by electric field-assisted techniques for tissue engineering and cancer therapy.

    PubMed

    Guarino, Vincenzo; Cirillo, Valentina; Altobelli, Rosaria; Ambrosio, Luigi

    2015-01-01

    A large variety of processes and tools has been investigated to acquire better knowledge on the natural evolution of healthy or pathological tissues in 3D scaffolds to discover new solutions for tissue engineering and cancer therapy. Among them, electrodynamic techniques allow revisiting old scaffold manufacturing approach by utilizing electrostatic forces as the driving force to assemble fibers and/or particles from an electrically charged solution. By carefully selecting materials and processing conditions, they allow to fine control of characteristic shapes and sizes from micro to sub-micrometric scale and incorporate biopolymers/molecules (e.g., proteins, growth factors) for time- and space-controlled release for use in drug delivery and passive/active targeting. This review focuses on current advances to design micro or nanostructured polymer platforms by electrodynamic techniques, to be used as innovative scaffolds for tissue engineering or as 3D models for preclinical in vitro studies of in vivo tumor growth. PMID:25487005

  6. X-Ray Diffraction Techniques for a Field Instrument: Patterns of Lithologic Provences

    NASA Astrophysics Data System (ADS)

    Marshall, J.; Keaten, R.

    1999-09-01

    Future exploration of Mars will attempt to shed light on the mineralogy of surface materials. Instruments deployed from remote platforms should have the capability to conduct both intensive analyses as well as rapid, reconnaissance surveys while they function in the martian environment as surrogate geologists. In order to accommodate the reconnaissance mode of analysis and to compensate for analytical limitations imposed by the space-flight conditions, data analysis methods are being developed that will permit interpretation of data by recognition of signatures or "fingerprints". Specifically, we are developing a technique which will allow interpretation of diffraction patterns by recognition of characteristic signatures of different lithologic provences. This technique allows a remote vehicle to function in a rapid-scan mode using the lithologic signature to determine where a more thorough analysis is needed. An x-ray diffraction pattern is characterized by the angular positions of diffracted x-rays, x-ray intensity levels and background radiation levels. These elements may be used to identify a generalized x-ray signature. Lithologic signatures are being developed in two ways. A signature is composed using the ideal powder diffraction indices from the mineral assembledge common to a specific lithologic provence. This is then confirmed using a laboratory diffraction pattern of a whole rock powder. Preliminary results comparing the diffraction signatures of the major mineral assembledges common to basalt, carbonate, and evaporite basin deposits indicate that lithologies are differentiable as a "fingerprint". Statistical analyses are being performed to establish the confidence levels of this technique.

  7. X-Ray Diffraction Techniques for a Field Instrument: Patterns of Lithologic Provences

    NASA Technical Reports Server (NTRS)

    Marshall, J.; Keaten, R.

    1999-01-01

    Future exploration of Mars will attempt to shed light on the mineralogy of surface materials. Instruments deployed from remote platforms should have the capability to conduct both intensive analyses as well as rapid, reconnaissance surveys while they function in the martian environment as surrogate geologists. In order to accommodate the reconnaissance mode of analysis and to compensate for analytical limitations imposed by the space-flight conditions, data analysis methods are being developed that will permit interpretation of data by recognition of signatures or "fingerprints". Specifically, we are developing a technique which will allow interpretation of diffraction patterns by recognition of characteristic signatures of different lithologic provences. This technique allows a remote vehicle to function in a rapid-scan mode using the lithologic signature to determine where a more thorough analysis is needed. An x-ray diffraction pattern is characterized by the angular positions of diffracted x-rays, x-ray intensity levels and background radiation levels. These elements may be used to identify a generalized x-ray signature. Lithologic signatures are being developed in two ways. A signature is composed using the ideal powder diffraction indices from the mineral assembledge common to a specific lithologic provence. This is then confirmed using a laboratory diffraction pattern of a whole rock powder. Preliminary results comparing the diffraction signatures of the major mineral assembledges common to basalt, carbonate, and evaporite basin deposits indicate that lithologies are differentiable as a "fingerprint". Statistical analyses are being performed to establish the confidence levels of this technique.

  8. Application of the minimum correlation technique to the correction of the magnetic field measured by magnetometers on spacecraft

    NASA Technical Reports Server (NTRS)

    Mariani, F.

    1979-01-01

    Some aspects of the problem of obtaining precise, absolute determination of the vector of low magnetic fields existing in the interplanetary medium are addressed. In the case of a real S/C, there is always the possibility of a spurious field which includes the spacecraft residual field and/or possible field from the sensors, due to both electronic drifts or changes of the magnetic properties of the sensor core. These latter effects may occur during storage of the sensors prior to launching and/or in-flight. The reliability is demonstrated for a method which postulates that there should be no correlation between changes in measured field magnitude and changes in the measured inclination of the field with respect to any one of three fixed Cartesian component directions. Application of this minimum correlation technique to data from IMP-8 and Helios 1-2 shows it is appropriate for determination of the zero offset corrections of triaxial magnetometers. In general, a number of the order of 1000 consecutive data points is sufficient for a good determination.

  9. Project OPTEX: Field study at a petrochemical facility to assess optical remote sensing and dispersion modeling techniques

    SciTech Connect

    Paien, R.J.; Zwicker, J.O.; Feldman, H.

    1997-12-31

    The American Petroleum Inst. has conducted a field study at a petrochemical facility for the purpose of (1) testing the ability of optical remote sensing (ORS) techniques to characterize fugitive emissions, and (2) assembling ambient and tracer sampler data for evaluating air dispersion models. The study, referred to as the OPTEX (Operational Petrochemical Tracer Experiment) Project, took place during October 1996 at a Texas petrochemical facility. This paper reports on the design of the field study and summarizes the measurements that were obtained in the field. Several aspects of the field study are described in the paper: the types and locations of the emission releases and tracer gases that were used, the deployment of tracer samplers at various downwind distances, the use of open-path FTIR (OP-FTIR) equipment at the site to quantify tracer gas emissions, special short-term tracer gas emissions designed to test the ability of the ORS systems to detect accidental releases, and the use of a Doppler sodar to evaluate vertical profiles of wind and turbulence upwind and downwind of the facility. The data base for this study, as well as that from an earlier field study that took place at the Duke Forest green field site in North Carolina, will be used for evaluating air dispersion model performance and the ability of ORS measurements to quantify fugitive emissions.

  10. Evaluating DEM conditioning techniques, elevation source data, and grid resolution for field-scale hydrological parameter extraction

    NASA Astrophysics Data System (ADS)

    Woodrow, Kathryn; Lindsay, John B.; Berg, Aaron A.

    2016-09-01

    Although digital elevation models (DEMs) prove useful for a number of hydrological applications, they are often the end result of numerous processing steps that each contains uncertainty. These uncertainties have the potential to greatly influence DEM quality and to further propagate to DEM-derived attributes including derived surface and near-surface drainage patterns. This research examines the impacts of DEM grid resolution, elevation source data, and conditioning techniques on the spatial and statistical distribution of field-scale hydrological attributes for a 12,000 ha watershed of an agricultural area within southwestern Ontario, Canada. Three conditioning techniques, including depression filling (DF), depression breaching (DB), and stream burning (SB), were examined. The catchments draining to each boundary of 7933 agricultural fields were delineated using the surface drainage patterns modeled from LiDAR data, interpolated to a 1 m, 5 m, and 10 m resolution DEMs, and from a 10 m resolution photogrammetric DEM. The results showed that variation in DEM grid resolution resulted in significant differences in the spatial and statistical distributions of contributing areas and the distributions of downslope flowpath length. Degrading the grid resolution of the LiDAR data from 1 m to 10 m resulted in a disagreement in mapped contributing areas of between 29.4% and 37.3% of the study area, depending on the DEM conditioning technique. The disagreements among the field-scale contributing areas mapped from the 10 m LiDAR DEM and photogrammetric DEM were large, with nearly half of the study area draining to alternate field boundaries. Differences in derived contributing areas and flowpaths among various conditioning techniques increased substantially at finer grid resolutions, with the largest disagreement among mapped contributing areas occurring between the 1 m resolution DB DEM and the SB DEM (37% disagreement) and the DB-DF comparison (36.5% disagreement in mapped

  11. Limitations in paleomagnetic data and modelling techniques and their impact on Holocene geomagnetic field models

    NASA Astrophysics Data System (ADS)

    Panovska, S.; Korte, M.; Finlay, C. C.; Constable, C. G.

    2015-07-01

    Characterization of geomagnetic field behaviour on timescales of centuries to millennia is necessary to understand the mechanisms that sustain the geodynamo and drive its evolution. As Holocene paleomagnetic and archeomagnetic data have become more abundant, strategies for regularized inversion of modern field data have been adapted to produce numerous time-varying global field models. We evaluate the effectiveness of several approaches to inversion and data handling, by assessing both global and regional properties of the resulting models. Global Holocene field models cannot resolve Southern hemisphere regional field variations without the use of sediments. A standard data set is used to construct multiple models using two different strategies for relative paleointensity calibration and declination orientation and a selection of starting models in the inversion procedure. When data uncertainties are considered, the results are similar overall regardless of whether we use iterative calibration and reorientation, or co-estimation of the calibration and orientation parameters as part of the inversion procedure. In each case the quality of the starting model used for initial relative paleointensity calibration and declination orientation is crucial and must be based on the best absolute information available. Without adequate initial calibration the morphology of dipole moment variations can be recovered but its absolute value will be correlated with the initial intensity calibrations, an effect that might be mitigated by ensuring an appropriate fit to enough high quality absolute intensity data with low uncertainties. The declination reorientation mainly impacts regional field structure and in the presence of non-zonal fields will result in a non-zero local average. The importance of declination orientation is highlighted by inconsistencies in the West Pacific and Australian sediment records in CALS10k.1b model. Great care must also be taken to assess uncertainties

  12. Comparison of molecular and microscopic technique for detection of Theileria annulata from the field cases of cattle

    PubMed Central

    Chauhan, H. C.; Patel, B. K.; Bhagat, A. G.; Patel, M. V.; Patel, S. I.; Raval, S. H.; Panchasara, H. H.; Shrimali, M. D.; Patel, A. C.; Chandel, B. S.

    2015-01-01

    Aim: Tropical theileriosis is fatal hemoprotozoal disease of dairy animals caused by Theileria annulata. The aim of the present study was to detect the T. annulata and comparison of results of molecular and microscopic techniques. Materials and Methods: A total of 52 blood samples were collected from the cattle suspected for theileriosis across the Banaskantha district. All the samples were screened for theileriosis using Giemsa’s staining technique and polymerase chain reaction (PCR). Results: Total of 17 (32.69%) and 24 (46.15%) samples were found positive for theileriosis by microscopic examination and PCR test, respectively. It revealed that the study area is endemic for theileriosis, and the microscopic technique has 70.83% sensitivity and 100% specificity with respect to PCR technique. Conclusion: It may be concluded from the present study that the PCR is comparatively sensitive technique than microscopic examination and may be recommended to use in the field for screening of theileriosis in the study area, where a high prevalence of diseases have been reported due to intensive dairy farming. PMID:27047045

  13. On numerical techniques for the transformation to an orthogonal coordinate system aligned with a vector field

    SciTech Connect

    CASTILLO,JOSE E.; OTTO,JAMES S.

    2000-02-11

    The authors explore the use of variational grid-generation to perform alignment of a grid with a given vector field. Variational methods have proven to be a powerful class of grid-generators, but when they are used in alignment, difficulties may arise in treating boundaries due to an incompatibility between geometry and vector field. In this paper, a refinement of the procedure of iterating boundary values is presented. It allows one to control the quality of the grid in the face of the above-mentioned incompatibility. This procedure may be incorporated into any variational alignment algorithm. The authors demonstrate its use with respect to a new quasi-variational alignment method having a particularly simple structure. The latter method is comparable to Knupp's method (see [7]), but avoids use of the Winslow equations.

  14. External Magnetic Field Reduction Techniques for the Advanced Stirling Radioisotope Generator

    NASA Technical Reports Server (NTRS)

    Niedra, Janis M.; Geng, Steven M.

    2013-01-01

    Linear alternators coupled to high efficiency Stirling engines are strong candidates for thermal-to-electric power conversion in space. However, the magnetic field emissions, both AC and DC, of these permanent magnet excited alternators can interfere with sensitive instrumentation onboard a spacecraft. Effective methods to mitigate the AC and DC electromagnetic interference (EMI) from solenoidal type linear alternators (like that used in the Advanced Stirling Convertor) have been developed for potential use in the Advanced Stirling Radioisotope Generator. The methods developed avoid the complexity and extra mass inherent in data extraction from multiple sensors or the use of shielding. This paper discusses these methods, and also provides experimental data obtained during breadboard testing of both AC and DC external magnetic field devices.

  15. On the Methodology of Nematode Extraction from Field Samples: Density Flotation Techniques

    PubMed Central

    Viglierchio, David R.; Yamashita, Tom T.

    1983-01-01

    Density flotation has been frequently used for the extraction of nematodes from field samples. Density flotation curves for four nematode species and five solutes have been prepared. The curves confirm that flotation was governed by several factors: solute density, solute osmotic activity, and physiological properties of the nematode species. Nematode viability and function can be adversely affected by improper selection of solute for density extraction of nematodes; nevertheless, some nematode species can be enriched from mixtures by density and solute selection. PMID:19295831

  16. Optimizing of the Tangential Technique and Supraclavicular Fields in 3 Dimensional Conformal Radiation Therapy for Breast Cancer

    PubMed Central

    Jabbari, Keyvan; Azarmahd, Nazli; Babazade, Shadi; Amouheidari, Alireza

    2013-01-01

    Radiotherapy plays an essential role in the management of breast cancer. Three-dimensional conformal radiation therapy (3D-CRT) is applied based on 3D image information of anatomy of patients. In 3D-CRT for breast cancer one of the common techniques is tangential technique. In this project, various parameters of tangential and supraclavicular fields are optimized. This project has been done on computed tomography images of 100 patients in Isfahan Milad Hospital. All patients have been simulated and all the important organs have been contoured by radiation oncologist. Two techniques in supraclavicular region are evaluated including: 1-A single field (Anterior Posterior [AP]) with a dose of 200 cGy per fraction with 6 MV energy. This is a common technique. 2-Two parallel opposed fields (AP-Posterior Anterior [PA]). The dose of AP was 150 cGy with 6 MV energy and PA 50 cGy with 18 MV. In the second part of the project, the tangential fields has been optimized with change of normalization point in five points: (1) Isocenter (Confluence of rotation gantry axis and collimator axis) (2) Middle of thickest part of breast or middle of inter field distance (IFD) (3) Border between the lung and chest wall (4) Physician's choice (5) Between IFD and isocenter. Dose distributions have been compared for all patients in different methods of supraclavicular and tangential field. In parallel opposed fields average lung dose was 4% more than a single field and the maximum received heart dose was 21.5% less than a single field. The average dose of planning tumor volume (PTV) in method 2 is 2% more than method 1. In general AP-PA method because of a better coverage of PTV is suggested. In optimization of the tangential field all methods have similar coverage of PTV. Each method has spatial advantages and disadvantages. If it is important for the physician to reduce the dose received by the lung and heart, fifth method is suggested since in this method average and maximum received dose

  17. Full-field speckle correlation technique as applied to blood flow monitoring

    NASA Astrophysics Data System (ADS)

    Vilensky, M. A.; Agafonov, D. N.; Timoshina, P. A.; Shipovskaya, O. V.; Zimnyakov, D. A.; Tuchin, V. V.; Novikov, P. A.

    2011-03-01

    The results of experimental study of monitoring the microcirculation in tissue superficial layers of the internal organs at gastro-duodenal hemorrhage with the use of laser speckles contrast analysis technique are presented. The microcirculation monitoring was provided in the course of the laparotomy of rat abdominal cavity in the real time. Microscopic hemodynamics was analyzed for small intestine and stomach under different conditions (normal state, provoked ischemia, administration of vasodilative agents such as papaverine, lidocaine). The prospects and problems of internal monitoring of micro-vascular flow in clinical conditions are discussed.

  18. Spatial performance of RegEM climate field reconstruction techniques in a realistic pseudoproxy context

    NASA Astrophysics Data System (ADS)

    Wang, J.; Emile-Geay, J.; Guillot, D.

    2011-12-01

    Several methods of climate field reconstructions (CFRs) have been introduced in the past few years to estimate past climate variability from proxy data over the Common Era. The pseudoproxy framework has become a tool of choice for assessing the relative merits of such methods. Here we compare four variants of the RegEM algorithm [Schneider, 2001], using a pseudoproxy network mimicking the key spatio-temporal characteristics of the network of Mann et al., 2008 (hereinafter M08); the methods are (1) RegEM TTLS (2) RegEM iTTLS (3) GraphEM and (4) RegEM iRIDGE. To ensure continuity with previous work [Smerdon et al. 2011], pseudoproxy series are designed as a white-noise degraded version of the simulated temperature field [Amman et al. 2007] over 850-1980 C.E. colocated with 1138 M08 proxies. We use signal-to-noise ratios (SNRs) of: ∞ (no noise), 1.0, 0.5 and 0.25, to simulate differences in proxy quality. Two novelties in pseudoproxy design are introduced here: (1) the decrease in proxy availability over time follows that found in M08, (2) a realistic case where the SNR is empirically derived from correlations between each M08 proxy and the HadCRUT3v temperature field. It is found that this realistic SNR is clustered around 0.3, but ranges from 0.1 to 0.8. Verification statistics such as RE, CE, r2, bias, standard deviation ratio and RMSE are presented for each method at each SNR level. The results show that all methods perform relatively well at SNR levels higher than 0.5, but display drastically different performances at lower SNR levels. Compared with results using pseudoproxy network of Mann et al., 1998, (hereinafter MBH98), the reconstruction skill of the M08 network is relatively improved, in line with the findings of Smerdon et al., 2011. Overall, we find that GraphEM and iTTLS tend to produce more robust estimates of the temperature field at low SNR levels than other schemes, while preserving a higher amount of variance in the target field. Ammann, C. M., F

  19. Computed tomography: a powerful imaging technique in the fields of dimensional metrology and quality control

    NASA Astrophysics Data System (ADS)

    Probst, Gabriel; Boeckmans, Bart; Dewulf, Wim; Kruth, Jean-Pierre

    2016-05-01

    X-ray computed tomography (CT) is slowly conquering its space in the manufacturing industry for dimensional metrology and quality control purposes. The main advantage is its non-invasive and non-destructive character. Currently, CT is the only measurement technique that allows full 3D visualization of both inner and outer features of an object through a contactless probing system. Using hundreds of radiographs, acquired while rotating the object, a 3D representation is generated and dimensions can be verified. In this research, this non-contact technique was used for the inspection of assembled components. A dental cast model with 8 implants, connected by a screwed retained bar made of titanium. The retained bar includes a mating interface connection that should ensure a perfect fitting without residual stresses when the connection is fixed with screws. CT was used to inspect the mating interfaces between these two components. Gaps at the connections can lead to bacterial growth and potential inconvenience for the patient who would have to face a new surgery to replace his/hers prosthesis. With the aid of CT, flaws in the design or manufacturing process that could lead to gaps at the connections could be assessed.

  20. Effect of nonlinear absorption on electric field applied lead chloride by Z-scan technique

    SciTech Connect

    Rejeena, I.; Lillibai,; Nampoori, V. P. N.; Radhakrishnan, P.; Rahimkutty, M. H.

    2014-10-15

    The preparation, spectral response and optical nonlinearity of gel grown lead chloride single crystals subjected to electric field of 20V using parallel plate arrangements have been investigated. Optical band gap of the samples were determined using linear absorption spectra. Open aperture z-scan was employed for the determination of nonlinear absorption coefficient of PbCl{sub 2} solution. The normalized transmittance curve exhibits a valley shows reverse saturable absorption. The non linear absorption at different input fluences were recorded using a single Gaussian laser beam in tight focus geometry. The RSA nature of the sample makes it suitable for optical limiting applications.

  1. Effect of nonlinear absorption on electric field applied lead chloride by Z-scan technique

    NASA Astrophysics Data System (ADS)

    Rejeena, I.; Lillibai, Rahimkutty, M. H.; Nampoori, V. P. N.; Radhakrishnan, P.

    2014-10-01

    The preparation, spectral response and optical nonlinearity of gel grown lead chloride single crystals subjected to electric field of 20V using parallel plate arrangements have been investigated. Optical band gap of the samples were determined using linear absorption spectra. Open aperture z-scan was employed for the determination of nonlinear absorption coefficient of PbCl2 solution. The normalized transmittance curve exhibits a valley shows reverse saturable absorption. The non linear absorption at different input fluences were recorded using a single Gaussian laser beam in tight focus geometry. The RSA nature of the sample makes it suitable for optical limiting applications.

  2. Enhanced adhesion and field emission of CuO nanowires synthesized by simply modified thermal oxidation technique

    NASA Astrophysics Data System (ADS)

    Tang, C. M.; Wang, Y. B.; Yao, R. H.; Ning, H. L.; Qiu, W. Q.; Liu, Z. W.

    2016-09-01

    Metal oxide nanowires (NWs) can be easily grown by the thermal oxidation method, but the low adhesion between the NWs and the substrate restricts their practical applications in functional devices. In this work, the conventional hotplate technique is simply modified by introducing one or two stainless steel plates to supply a more stable oxidation environment, which is found to be beneficial to the growth and adhesion of CuO NWs on the Cu substrate. In detail, the Cu foils were heated on the hotplate directly, on one plate over the hotplate, and between two plates over the hotplate at 400 °C in ambient condition. It is found that the NWs obtained between two plates exhibit large length and diameter with moderate density. The sufficient activated oxygen, stable temperature, and proper temperature gradient configuration caused by the two plates accelerate the formation of CuO NWs, and result in the longest NWs with enhanced adhesion. The grain-boundary diffusion and Kirkendall effect are proposed to explain the mechanism of NWs growth and the formation of cracks. The NWs obtained between two plates also showed the best field emission properties, with lowest turn-on field (5.31 V μm-1) and threshold field (9.8 V μm-1). Excellent field emission properties and enhanced NW-substrate adhesion indicate that these NW arrays could be potentially used as the cathode of field emission displays.

  3. Enhanced adhesion and field emission of CuO nanowires synthesized by simply modified thermal oxidation technique.

    PubMed

    Tang, C M; Wang, Y B; Yao, R H; Ning, H L; Qiu, W Q; Liu, Z W

    2016-09-30

    Metal oxide nanowires (NWs) can be easily grown by the thermal oxidation method, but the low adhesion between the NWs and the substrate restricts their practical applications in functional devices. In this work, the conventional hotplate technique is simply modified by introducing one or two stainless steel plates to supply a more stable oxidation environment, which is found to be beneficial to the growth and adhesion of CuO NWs on the Cu substrate. In detail, the Cu foils were heated on the hotplate directly, on one plate over the hotplate, and between two plates over the hotplate at 400 °C in ambient condition. It is found that the NWs obtained between two plates exhibit large length and diameter with moderate density. The sufficient activated oxygen, stable temperature, and proper temperature gradient configuration caused by the two plates accelerate the formation of CuO NWs, and result in the longest NWs with enhanced adhesion. The grain-boundary diffusion and Kirkendall effect are proposed to explain the mechanism of NWs growth and the formation of cracks. The NWs obtained between two plates also showed the best field emission properties, with lowest turn-on field (5.31 V μm(-1)) and threshold field (9.8 V μm(-1)). Excellent field emission properties and enhanced NW-substrate adhesion indicate that these NW arrays could be potentially used as the cathode of field emission displays. PMID:27560484

  4. Enhanced adhesion and field emission of CuO nanowires synthesized by simply modified thermal oxidation technique

    NASA Astrophysics Data System (ADS)

    Tang, C. M.; Wang, Y. B.; Yao, R. H.; Ning, H. L.; Qiu, W. Q.; Liu, Z. W.

    2016-09-01

    Metal oxide nanowires (NWs) can be easily grown by the thermal oxidation method, but the low adhesion between the NWs and the substrate restricts their practical applications in functional devices. In this work, the conventional hotplate technique is simply modified by introducing one or two stainless steel plates to supply a more stable oxidation environment, which is found to be beneficial to the growth and adhesion of CuO NWs on the Cu substrate. In detail, the Cu foils were heated on the hotplate directly, on one plate over the hotplate, and between two plates over the hotplate at 400 °C in ambient condition. It is found that the NWs obtained between two plates exhibit large length and diameter with moderate density. The sufficient activated oxygen, stable temperature, and proper temperature gradient configuration caused by the two plates accelerate the formation of CuO NWs, and result in the longest NWs with enhanced adhesion. The grain-boundary diffusion and Kirkendall effect are proposed to explain the mechanism of NWs growth and the formation of cracks. The NWs obtained between two plates also showed the best field emission properties, with lowest turn-on field (5.31 V μm‑1) and threshold field (9.8 V μm‑1). Excellent field emission properties and enhanced NW-substrate adhesion indicate that these NW arrays could be potentially used as the cathode of field emission displays.

  5. Enhanced adhesion and field emission of CuO nanowires synthesized by simply modified thermal oxidation technique.

    PubMed

    Tang, C M; Wang, Y B; Yao, R H; Ning, H L; Qiu, W Q; Liu, Z W

    2016-09-30

    Metal oxide nanowires (NWs) can be easily grown by the thermal oxidation method, but the low adhesion between the NWs and the substrate restricts their practical applications in functional devices. In this work, the conventional hotplate technique is simply modified by introducing one or two stainless steel plates to supply a more stable oxidation environment, which is found to be beneficial to the growth and adhesion of CuO NWs on the Cu substrate. In detail, the Cu foils were heated on the hotplate directly, on one plate over the hotplate, and between two plates over the hotplate at 400 °C in ambient condition. It is found that the NWs obtained between two plates exhibit large length and diameter with moderate density. The sufficient activated oxygen, stable temperature, and proper temperature gradient configuration caused by the two plates accelerate the formation of CuO NWs, and result in the longest NWs with enhanced adhesion. The grain-boundary diffusion and Kirkendall effect are proposed to explain the mechanism of NWs growth and the formation of cracks. The NWs obtained between two plates also showed the best field emission properties, with lowest turn-on field (5.31 V μm(-1)) and threshold field (9.8 V μm(-1)). Excellent field emission properties and enhanced NW-substrate adhesion indicate that these NW arrays could be potentially used as the cathode of field emission displays.

  6. A hybrid experimental-numerical technique for determining 3D velocity fields from planar 2D PIV data

    NASA Astrophysics Data System (ADS)

    Eden, A.; Sigurdson, M.; Mezić, I.; Meinhart, C. D.

    2016-09-01

    Knowledge of 3D, three component velocity fields is central to the understanding and development of effective microfluidic devices for lab-on-chip mixing applications. In this paper we present a hybrid experimental-numerical method for the generation of 3D flow information from 2D particle image velocimetry (PIV) experimental data and finite element simulations of an alternating current electrothermal (ACET) micromixer. A numerical least-squares optimization algorithm is applied to a theory-based 3D multiphysics simulation in conjunction with 2D PIV data to generate an improved estimation of the steady state velocity field. This 3D velocity field can be used to assess mixing phenomena more accurately than would be possible through simulation alone. Our technique can also be used to estimate uncertain quantities in experimental situations by fitting the gathered field data to a simulated physical model. The optimization algorithm reduced the root-mean-squared difference between the experimental and simulated velocity fields in the target region by more than a factor of 4, resulting in an average error less than 12% of the average velocity magnitude.

  7. Fielding the magnetically applied pressure-shear technique on the Z accelerator (completion report for MRT 4519).

    SciTech Connect

    Alexander, C. Scott; Haill, Thomas A.; Dalton, Devon Gardner; Rovang, Dean Curtis; Lamppa, Derek C.

    2013-09-01

    The recently developed Magnetically Applied Pressure-Shear (MAPS) experimental technique to measure material shear strength at high pressures on magneto-hydrodynamic (MHD) drive pulsed power platforms was fielded on August 16, 2013 on shot Z2544 utilizing hardware set A0283A. Several technical and engineering challenges were overcome in the process leading to the attempt to measure the dynamic strength of NNSA Ta at 50 GPa. The MAPS technique relies on the ability to apply an external magnetic field properly aligned and time correlated with the MHD pulse. The load design had to be modified to accommodate the external field coils and additional support was required to manage stresses from the pulsed magnets. Further, this represents the first time transverse velocity interferometry has been applied to diagnose a shot at Z. All subsystems performed well with only minor issues related to the new feed design which can be easily addressed by modifying the current pulse shape. Despite the success of each new component, the experiment failed to measure strength in the samples due to spallation failure, most likely in the diamond anvils. To address this issue, hydrocode simulations are being used to evaluate a modified design using LiF windows to minimize tension in the diamond and prevent spall. Another option to eliminate the diamond material from the experiment is also being investigated.

  8. Damage sensitivity investigations of EMI technique on different materials through coupled field analysis

    NASA Astrophysics Data System (ADS)

    Joshi, Bhrigu; Adhikari, Sailesh; Bhalla, Suresh

    2016-04-01

    This paper presents a comparative study through the piezoelectric coupled field analysis mode of finite element method (FEM) on detection of damages of varying magnitude, encompassing three different types of structural materials, using piezo impedance transducers. An aluminum block, a concrete block and a steel block of dimensions 48×48×10 mm were modelled in finite element software ANSYS. A PZT patch of 10×10×0.3 mm was also included in the model as surface bonded on the block. Coupled field analysis (CFA) was performed to obtain the admittance signatures of the piezo sensor in the frequency range of 0-250 kHz. The root mean square deviation (RMSD) index was employed to quantify the degree of variation of the signatures. It was found that concrete exhibited deviation in the signatures only with the change of damping values. However, the other two materials showed variation in the signatures even with changes in density and elasticity values in a small portion of the specimen. The comparative study shows that the PZT patches are more sensitive to damage detection in materials with low damping and the sensitivity typically decreases with increase in the damping.

  9. Progress Toward a Technique for Measuring Electric Field Fluctuations in Tokamak Core Plasmas

    NASA Astrophysics Data System (ADS)

    Thompson, D. S.; Bakken, M. R.; Burke, M. G.; Couto, H. P.; Fonck, R. J.; Lewicki, B. T.; Winz, G. R.

    2014-10-01

    Measurements of electric field fluctuations in magnetic confinement experiments are desired for validating turbulence and transport models. A new diagnostic to measure Ez (r , t) fluctuations is in development on the Pegasus Toroidal Experiment. The approach is based on neutral beam emission spectroscopy using a high-throughput, high-resolution spectrometer to resolve fluctuations in wavelength separation between components of the motional Stark effect spectrum. Fluctuations at mid-minor-radius, normalized to an estimated MSE field, are estimated to be δE /EMSE ~ 10-3. In order to resolve fluctuations at turbulent time scales (fNy ~ 500 kHz), beam and spectrometer designs minimize broadening and maximize signal-to-noise ratio. The diagnostic employs a Fabry-Pérot spectrometer with étendue-matched collection optics and low noise detectors. The interferometer spacing is varied across the face of the etalon to mitigate geometric Doppler broadening. An 80 keV H0 beam from PBX-M with a divergence Ω < 0.5 degrees is being refurbished for this project. The beam includes a new ion source to maximize full energy species fraction and is designed to provide ~ 2 cm spatial resolution and 50 ms of 6 mA/cm2current density at the focal plane. Successful development and demonstration on Pegasus will guide future deployment on larger fusion facilities. Work supported by US DOE Grant DE-FG02-89ER53296.

  10. Reclamation on Utah's Emery and Alton coal fields: techniques and plant materials

    SciTech Connect

    Ferguson, R.B.; Frischknecht, N.C.

    1985-01-01

    The studies reported on in this paper were designed to provide information on methods to establish vegetation on the soils of the semiarid Emery and Alton coal fields in Utah. No large-scale surface mining of coal has occurred in Utah, so research was conducted on typical potential mine sites following severe disturbance of soil materials. At Emery, primary objectives of the several studies were to evaluate the relative merits of site preparation by gouging, harrowing, and cultipacking in conjunction with the use of alfalfa hay or composted conifer bark as soil amendments. Seed was planted by broadcasting in all trials. At Alton, gouging and the use of hay and composted conifer bark was also tested. Wide varieties of plant species, consisting primarily of shrub and grass species but including several forb and tree species, were planted on different soil materials at both coal field locations. Secondary objectives on both study areas were the evaluation of the use of container-grown shrubs and determination of soil water potentials and soil temperature regimes, as well as documentation of air temperature and precipitation amounts received during the study period. During 5 years at Emery and 6 years at Alton, data were obtained on vegetational parameters such as density, percent cover, and plant yield. Data on survival and growth were obtained on planted shrubs.

  11. Noncontact measurement of liquid-surface properties with knife-edge electric field tweezers technique.

    PubMed

    Shimokawa, Yuji; Sakai, Keiji

    2013-06-01

    We have developed a technique for the simultaneous measurement of the surface tension and the viscosity of a liquid in a noncontact manner. In this method, a small linear deformation of the liquid surface is induced by a local dielectric force that is brought about by a knife-edge electrode. The surface tension and the viscosity are obtained from the shape of the induced meniscus and from the dynamic response of the surface, respectively. The surface tension obtained was examined in comparison with the values measured by the Wilhelmy plate method. We also measured time constants of the surface deformation for a variety of standard viscosity samples and obtained the relation between the time constant and the viscosity. The demonstrated advantage of the system is the ability to uniquely determine the surface tension and the viscosity.

  12. Mini-FLOTAC, an Innovative Direct Diagnostic Technique for Intestinal Parasitic Infections: Experience from the Field

    PubMed Central

    Barda, Beatrice Divina; Rinaldi, Laura; Ianniello, Davide; Zepherine, Henry; Salvo, Fulvio; Sadutshang, Tsetan; Cringoli, Giuseppe; Clementi, Massimo; Albonico, Marco

    2013-01-01

    Background Soil-transmitted helminths and intestinal protozoa infection are widespread in developing countries, yet an accurate diagnosis is rarely performed. The aim of this study was to evaluate the recently developed mini–FLOTAC method and to compare with currently more widely used techniques for the diagnosis of intestinal parasitic infections in different settings. Methodology/Principal Findings The study was carried out in Dharamsala, Himachal Pradesh, India, and in Bukumbi, Tanzania. A total of 180 pupils from two primary schools had their stool analyzed (n = 80 in Dharamsala and n = 100 in Bukumbi) for intestinal parasitic infections with three diagnostic methods: direct fecal smear, formol-ether concentration method (FECM) and mini-FLOTAC. Overall, 72% of the pupils were positive for any intestinal parasitic infection, 24% carried dual infections and 11% three infections or more. The most frequently encountered intestinal parasites were Entamoeba coli, Entamoeba histolytica/dispar, Giardia intestinalis, hookworm, (and Schistosoma mansoni, in Tanzania). Statistically significant differences were found in the detection of parasitic infections among the three methods: mini-FLOTAC was the most sensitive method for helminth infections (90% mini-FLOTAC, 60% FECM, and 30% direct fecal smear), whereas FECM was most sensitive for intestinal protozoa infections (88% FECM, 70% direct fecal smear, and 68% mini-FLOTAC). Conclusion/Significance We present the first experiences with the mini-FLOTAC for the diagnosis of intestinal helminths and protozoa. Our results suggest that it is a valid, sensitive and potentially low-cost alternative technique that could be used in resource-limited settings — particularly for helminth diagnosis. PMID:23936577

  13. Redox and speciation mapping of rock thin sections using high spatial resolution full-field imaging technique

    NASA Astrophysics Data System (ADS)

    de Andrade, V.; Susini, J.; Salomé, M.; Beraldin, O.; Heymes, T.; Lewin, E.

    2009-04-01

    Because of their complex genesis, natural rocks are the most often heterogeneous systems, with various scale-level heterogeneities for both chemistry and structure. In the last decade, the dramatic improvements of hyperspectral imaging techniques provided new tools for accurate material characterisation. Most of these micro- and nano- analytical techniques rely on scanning instruments, which offer high spatial resolution but suffer from long acquisition times imposing practical limits on the field of view. Conversely, full-field imaging techniques rely on a fast parallel acquisition but have limited resolution. Although soft X-ray full-field microscopes based on Fresnel zone plates are commonly used for high resolution imaging, its combination with spectroscopy is challenging and 2D chemical mapping still difficult. For harder X-rays, lensless X-ray microscope based on simple propagation geometry is easier and can be readily used for 2D spectro-microscopy. A full-field experimental setup was optimized at the ESRF-ID21 beamline to image iron redox and speciation distributions in rocks thin sections. The setup comprises a Si111 or Si220 (E = 0.4 eV) monochromator, a special sample stage and a sensitive camera associated with a brand new GGG:Eu light conversion scintillator and high magnification visible light optics. The pixel size ranges from 1.6 to 0.16 m according to the optic used. This instrument was used to analyse phyllosilicates and oxides of metamorphic sediments coming from the Aspromonte nappes-pile in Calabria. Iron chemical state distributions were derived - from images of 1000 Ã- 2000 Ã- 30 m3 rock thin sections - by subtraction of absorption images above and below the Fe K-edge. Using an automatic stitching reconstruction, a wide field image (4Ã-3 mm2 with a 1 m2 resolution for a total of about 12 millions pixels) of Fetotal elemental distribution was produced. Moreover, -XANES analyses (more than 1 million individual -XANES spectra) were performed

  14. Direct observation of λ-DNA molecule reversal movement within microfluidic channels under electric field with single molecule imaging technique

    NASA Astrophysics Data System (ADS)

    Fengyun, Yang; Kaige, Wang; Dan, Sun; Wei, Zhao; Hai-qing, Wang; Xin, He; Gui-ren, Wang; Jin-tao, Bai

    2016-07-01

    The electrodynamic characteristics of single DNA molecules moving within micro-/nano-fluidic channels are important in the design of biomedical chips and bimolecular sensors. In this study, the dynamic properties of λ-DNA molecules transferring along the microchannels driven by the external electrickinetic force were systemically investigated with the single molecule fluorescence imaging technique. The experimental results indicated that the velocity of DNA molecules was strictly dependent on the value of the applied electric field and the diameter of the channel. The larger the external electric field, the larger the velocity, and the more significant deformation of DNA molecules. More meaningfully, it was found that the moving directions of DNA molecules had two completely different directions: (i) along the direction of the external electric field, when the electric field intensity was smaller than a certain threshold value; (ii) opposite to the direction of the external electric field, when the electric field intensity was greater than the threshold electric field intensity. The reversal movement of DNA molecules was mainly determined by the competition between the electrophoresis force and the influence of electro-osmosis flow. These new findings will theoretically guide the practical application of fluidic channel sensors and lab-on-chips for precisely manipulating single DNA molecules. Project supported by the National Natural Science Foundation of China (Grant No. 61378083), the International Cooperation Foundation of the National Science and Technology Major Project of the Ministry of Science and Technology of China (Grant No. 2011DFA12220), the Major Research Plan of National Natural Science Foundation of China (Grant No. 91123030), and the Natural Science Foundation of Shaanxi Province of China (Grant Nos. 2010JS110 and 2013SZS03-Z01).

  15. Direct observation of λ-DNA molecule reversal movement within microfluidic channels under electric field with single molecule imaging technique

    NASA Astrophysics Data System (ADS)

    Fengyun, Yang; Kaige, Wang; Dan, Sun; Wei, Zhao; Hai-qing, Wang; Xin, He; Gui-ren, Wang; Jin-tao, Bai

    2016-07-01

    The electrodynamic characteristics of single DNA molecules moving within micro-/nano-fluidic channels are important in the design of biomedical chips and bimolecular sensors. In this study, the dynamic properties of λ-DNA molecules transferring along the microchannels driven by the external electrickinetic force were systemically investigated with the single molecule fluorescence imaging technique. The experimental results indicated that the velocity of DNA molecules was strictly dependent on the value of the applied electric field and the diameter of the channel. The larger the external electric field, the larger the velocity, and the more significant deformation of DNA molecules. More meaningfully, it was found that the moving directions of DNA molecules had two completely different directions: (i) along the direction of the external electric field, when the electric field intensity was smaller than a certain threshold value; (ii) opposite to the direction of the external electric field, when the electric field intensity was greater than the threshold electric field intensity. The reversal movement of DNA molecules was mainly determined by the competition between the electrophoresis force and the influence of electro-osmosis flow. These new findings will theoretically guide the practical application of fluidic channel sensors and lab-on-chips for precisely manipulating single DNA molecules. Project supported by the National Natural Science Foundation of China (Grant No. 61378083), the International Cooperation Foundation of the National Science and Technology Major Project of the Ministry of Science and Technology of China (Grant No. 2011DFA12220), the Major Research Plan of National Natural Science Foundation of China (Grant No. 91123030), and the Natural Science Foundation of Shaanxi Province of China (Grant Nos. 2010JS110 and 2013SZS03-Z01).

  16. Sublacustrine groundwater discharge in esker aquifers; fully integrated groundwater flow modeling compared with novel field techniques

    NASA Astrophysics Data System (ADS)

    Ala-aho, Pertti; Rossi, Pekka M.; Isokangas, Elina; Kløve, Bjørn

    2015-04-01

    Groundwater (GW) discharge to surface water bodies such as streams, lakes and wetlands can greatly affect their water quantity, quality and related aquatic ecology. Therefore better understanding of GW - surface water interaction is needed in integrated management of water resources. Sublacustrine groundwater discharge (SGD) to lakes was studied in a complex unconfined Rokua esker aquifer system. SGD was studied for 12 lakes in the area to better understand water and solute inputs through lake beds and thereby the role of GW on lake water budget and solute concentrations. The locations and fluxes of SGD were simulated using a fully integrated groundwater flow model HydroGeoSphere. The used hydrological simulator allows water to flow and partition into overland and stream flow, evaporation, infiltration, and subsurface discharge into surface water features in a physically-based way, which was needed in simulating SGD of the complex aquifer system. The model was first calibrated for subsurface hydraulic conductivity in steady state using data of measured long-term average groundwater and lake levels and stream baseflow. The model performance in transient simulations was then examined against recorded hydrographs for lake and groundwater levels and stream flow. After model performance was verified, the simulated locations and fluxes of SGD were extracted from the model and compared with results from three independent field methods: airborne thermal imaging, stable isotope water balance and seepage meter measurements. Airborne thermal imaging was used to infer locations of SGD into lakes based on temperature anomalies at lakes shorelines due to discharging cold groundwater. Isotopic composition (H2 and O18) was analysed for lake water, groundwater and the data was used to estimate SGD flux into lakes. Finally, seepage meter measurements were conducted for one of the lakes to establish both locations and fluxes of SGD in detail. The simulated and field-based estimated

  17. Complementary use of flow and sedimentation field-flow fractionation techniques for size characterizing biodegradable poly(lactic acid) nanospheres

    PubMed Central

    Contado, Catia; Dalpiaz, Alessandro; Leo, Eliana; Zborowski, Maciej; Williams, P. Stephen

    2009-01-01

    Poly(lactic acid) nanoparticles were synthesized using a modified evaporation method, testing two different surfactants (sodium cholate and Pluronic F68) for the process. During their formulation the prodrug 5′-octanoyl-CPA (Oct-CPA) of the antiischemic N6-cyclopentyladenosine (CPA) was encapsulated. Three different purification methods were compared with respect to the influence of surfactant on the size characteristics of the final nanoparticle product. Flow and sedimentation field-flow fractionation techniques (FlFFF and SdFFF, respectively) were used to size characterize the five poly(lactic acid) particle samples. Two different combinations of carrier solution (mobile phase) were employed in the FlFFF analyses, while a solution of poly(vinyl alcohol) was used as mobile phase for the SdFFF runs. The separation performances of the two techniques were compared and the particle size distributions, derived from the fractograms, were interpreted with the support of observations by scanning electron microscopy. Some critical aspects, such as the carrier choice and the channel thickness determination for the FlFFF, have been investigated. This is the first comprehensive comparison of the two FFF techniques for characterizing non standard particulate materials. The two FFF techniques proved to be complementary and gave good, congruent and very useful information on the size distributions of the five poly(lactic acid) particle samples. PMID:17482199

  18. Electron-beam manipulation techniques in the SINBAD Linac for external injection in plasma wake-field acceleration

    NASA Astrophysics Data System (ADS)

    Marchetti, B.; Assmann, R.; Behrens, C.; Brinkmann, R.; Dorda, U.; Floettmann, K.; Hartl, I.; Huening, M.; Nie, Y.; Schlarb, H.; Zhu, J.

    2016-09-01

    The SINBAD facility (Short and INnovative Bunches and Accelerators at Desy) is foreseen to host various experiments in the field of production of ultra-short electron bunches and novel high gradient acceleration techniques. Besides studying novel acceleration techniques aiming to produce high brightness short electron bunches, the ARD group at DESY is working on the design of a conventional RF accelerator that will allow the production of low charge (0.5 pC - few pC) ultra-short electron bunches (having full width half maximum, FWHM, length ≤ 1 fs - few fs). The setup will allow the direct experimental comparison of the performance achievable by using different compression techniques (velocity bunching, magnetic compression, hybrid compression schemes). At a later stage the SINBAD linac will be used to inject such electron bunches into a laser driven Plasma Wakefield Accelerator, which imposes strong requirements on parameters such as the arrival time jitter and the pointing stability of the beam. In this paper we review the compression techniques that are foreseen at SINBAD and we underline the differences in terms of peak current, beam quality and arrival time stability.

  19. Investigation of film formation in water-distribution systems by field-emission SEM and spectroscopy techniques

    SciTech Connect

    Liu, J.; Friedman, R.M.; Cortez, E.

    1996-12-31

    EPA has set limits on the concentration of heavy metals in drinking water supplies to protect the public health. Furthermore, the failure of pipes in the water distribution system from corrosion represents a massive investment in rebuilding its infrastructure. We have initiated a program to study the formation of corrosion-inhibition films formed in potable water delivery systems using various chemical phosphate treatments. In particular, blends of ortho- and polyphosphates have recently been used to reduce both lead and copper leaching. Several factors are important to the successful implementation of the phosphate technologies, including film thickness and porosity, rate and stability of formation and water quality conditions. In an attempt to understand the performance of these phosphate blends, advanced analytical techniques have been employed to study the nucleation and growth mechanisms of the passivation films in a variety of water systems. We report here some preliminary results on the study of the film formation by field emission scanning electron microscopy (FESEM) technique.

  20. A measurement technique for circumventing hysteresis and conductance drift in carbon nanotube field-effect transistors.

    PubMed

    Tunnell, Andrew; Ballarotto, Vincent; Cumings, John

    2014-01-31

    We present a measurement protocol that effectively eliminates both the hysteresis and the temporal drift typically observed in the channel conductance of single-walled carbon nanotube field-effect transistors (SWNT FETs) during the application of gate voltages. Before each resistance measurement, the gate is first stepped through a series of alternating positive and negative voltages to produce a neutral charge distribution within the device. This process is highly effective at removing the hysteresis in the channel conductance, and time-dependent measurements further demonstrate that the drain current is stable and single-valued, independent of the prior measurement history. The effectiveness of this method can be understood within the Preisach hysteresis model, which we demonstrate as a useful framework to predict the observed results. PMID:24394672

  1. A measurement technique for circumventing hysteresis and conductance drift in carbon nanotube field-effect transistors

    NASA Astrophysics Data System (ADS)

    Tunnell, Andrew; Ballarotto, Vincent; Cumings, John

    2014-01-01

    We present a measurement protocol that effectively eliminates both the hysteresis and the temporal drift typically observed in the channel conductance of single-walled carbon nanotube field-effect transistors (SWNT FETs) during the application of gate voltages. Before each resistance measurement, the gate is first stepped through a series of alternating positive and negative voltages to produce a neutral charge distribution within the device. This process is highly effective at removing the hysteresis in the channel conductance, and time-dependent measurements further demonstrate that the drain current is stable and single-valued, independent of the prior measurement history. The effectiveness of this method can be understood within the Preisach hysteresis model, which we demonstrate as a useful framework to predict the observed results.

  2. Field investigation of techniques for remote laser sensing of oceanographic parameters

    NASA Technical Reports Server (NTRS)

    Houghton, W. M.; Exton, R. J.; Gregory, R. W.

    1983-01-01

    A laser fluorosensor, previously studied in the laboratory, was deployed at a pier in lower Chesapeake Bay for field testing. A Q-switched Nd:YAG laser doubled to 532 nm in conjunction with a gated optical multichannel analyzer (OMA) allow spectra with high signal-to-noise ratios to be recorded in full daylight at a distance of 20 m. As a test of the system a study was conducted of the spatial and temporal variations of the phytopigments phycoerythrin and chlorophyll. The phycoerythrin feature was resolved into two components, one attributable to cyanophytes and the other to cryptophytes. A comparison was also made with spectra obtained by the NASA airborne oceanographic lidar (AOL).

  3. ATS 6 EMI field measurements techniques and results. [anechoic chamber scale model testing

    NASA Technical Reports Server (NTRS)

    Afifi, M. S.; Keiser, B. E.

    1974-01-01

    At the present time 'Applications Technology Satellite (ATS)-6' is the world's largest communication satellite. It handles telecommunications in the frequency range of 40 - 30,000 MHz. Power levels on board the spacecraft range from -110 dBm to 52.5 dBw. Consequently considerable care was required in the design and test of this spacecraft, in order to provide assurances that the spacecraft would perform properly in its own RF environments. The testing was performed first by placing the earth viewing module (EVM) in a specially constructed 'small' anechoic chamber with an overhead parabolic reflector section, of 8' in diameter, instead of the 30' reflector of the full scale design. The near field analysis of this paper proves that this test configuration leads to a desirable overtest for the spacecraft. The test requirements, procedure and results are also explained.

  4. Organic nanofibers integrated by transfer technique in field-effect transistor devices

    PubMed Central

    2011-01-01

    The electrical properties of self-assembled organic crystalline nanofibers are studied by integrating these on field-effect transistor platforms using both top and bottom contact configurations. In the staggered geometries, where the nanofibers are sandwiched between the gate and the source-drain electrodes, a better electrical conduction is observed when compared to the coplanar geometry where the nanofibers are placed over the gate and the source-drain electrodes. Qualitatively different output characteristics were observed for top and bottom contact devices reflecting the significantly different contact resistances. Bottom contact devices are dominated by contact effects, while the top contact device characteristics are determined by the nanofiber bulk properties. It is found that the contact resistance is lower for crystalline nanofibers when compared to amorphous thin films. These results shed light on the charge injection and transport properties for such organic nanostructures and thus constitute a significant step forward toward a nanofiber-based light-emitting device. PMID:21711821

  5. Effects of sprint and plyometrics training on field sport acceleration technique.

    PubMed

    Lockie, Robert G; Murphy, Aron J; Callaghan, Samuel J; Jeffriess, Matthew D

    2014-07-01

    The mechanisms for speed performance improvement from sprint training and plyometrics training, especially relating to stance kinetics, require investigation in field sport athletes. This study determined the effects of sprint training and plyometrics training on 10-m sprint time (0-5, 5-10, and 0-10 m intervals), step kinematics (step length and frequency, contact and flight time), and stance kinetics (first, second, and last contact relative vertical [VF, VI], horizontal [HF, HI], and resultant [RF, RI] force and impulse; resultant ground reaction force angle [RFθ]; ratio of horizontal to resultant force [RatF]) during a 10-m sprint. Sixteen male field sport athletes were allocated into sprint training (ST) and plyometrics training (PT) groups according to 10-m sprint time; independent samples t-tests (p ≤ 0.05) indicated no between-group differences. Training involved 2 sessions per week for 6 weeks. A repeated measures analysis of variance (p ≤ 0.05) determined within- and between-subject differences. Both groups decreased 0-5 and 0-10 m time. The ST group increased step length by ∼15%, which tended to be greater than step length gains for the PT group (∼7%). The ST group reduced first and second contact RFθ and RatF, and second contact HF. Second contact HI decreased for both groups. Results indicated a higher post-training emphasis on VF production. Vertical force changes were more pronounced for the PT group for the last contact, who increased or maintained last contact VI, RF, and RI to a greater extent than the ST group. Sprint and plyometrics training can improve acceleration, primarily through increased step length and a greater emphasis on VF.

  6. Development of a field-portable small-size impedance analyzer for structural health monitoring using the electromechanical impedance technique

    NASA Astrophysics Data System (ADS)

    Giurgiutiu, Victor; Xu, Buli

    2004-07-01

    Electromechanical (E/M) impedance method is emerging as an effective and powerful technique for structural health monitoring. The E/M impedance method utilizes as its main apparatus an impedance analyzer that reads the in-situ E/M impedance of piezoelectric wafer active sensors (PWAS) attached to the monitored structure. Laboratory-type impedance analyzers (e.g. HP4194) are bulky, heavy, and expensive. They cannot be easily carried into the field for on-site structural health monitoring. To address this issue, means of to reduce the size of the impedance analyzer making the impedance analyzer more compact and field-portable are explored. In this paper, we present a systematic approach to the development of a field-portable small-size impedance analyzer for structural health monitoring using the electromechanical impedance technique. Our approach consists of several developmental stages. First, we perform a simulation of the E/M Impedance technique and develop the software tools for analyzing the signal in a fast and efficient way while maintaining the desired accuracy. The objective of this signal processing part is to obtain the complex impedance, ZR+iZI)=|Z| angle arg Z, at a number of frequencies in a predetermined range. Several signal processing methods were explored such as: (a) integration method; (b) correlation method; (c) Discrete Fourier transform (DFT) method. Second, we discuss the hardware issues associated with the implementation of this approach. The hardware system architecture consists of several blocks: (a) reference signal generation; (b) voltage and current measurements; and (c) digital signal acquisition and processing. Practical results obtained during proof-of-concept experiments are presented and comparatively examined.

  7. Deep diving odontocetes foraging strategies and their prey field as determined by acoustic techniques

    NASA Astrophysics Data System (ADS)

    Giorli, Giacomo

    Deep diving odontocetes, like sperm whales, beaked whales, Risso's dolphins, and pilot whales are known to forage at deep depths in the ocean on squid and fish. These marine mammal species are top predators and for this reason are very important for the ecosystems they live in, since they can affect prey populations and control food web dynamics through top-down effects. The studies presented in this thesis investigate deep diving odontocetes. foraging strategies, and the density and size of their potential prey in the deep ocean using passive and active acoustic techniques. Ecological Acoustic Recorders (EAR) were used to monitor the foraging activity of deep diving odontocetes at three locations around the world: the Josephine Seamount High Sea Marine Protected Area (JHSMPA), the Ligurian Sea, and along the Kona coast of the island of Hawaii. In the JHSMPA, sperm whales. and beaked whales. foraging rates do not differ between night-time and day-time. However, in the Ligurian Sea, sperm whales switch to night-time foraging as the winter approaches, while beaked whales alternate between hunting mainly at night, and both at night and at day. Spatial differences were found in deep diving odontocetes. foraging activity in Hawaii where they forage most in areas with higher chlorophyll concentrations. Pilot whales (and false killer whales, clustered together in the category "blackfishes") and Risso's dolphins forage mainly at night at all locations. These two species adjust their foraging activity with the length of the night. The density and size of animals living in deep sea scattering layers was studied using a DIDSON imaging sonar at multiple stations along the Kona coast of Hawaii. The density of animals was affected by location, depth, month, and the time of day. The size of animals was influenced by station and month. The DIDSON proved to be a successful, non-invasive technique to study density and size of animals in the deep sea. Densities were found to be an

  8. Measurement of the intracrystalline self-diffusion of xenon in zeolites by the NMR pulsed field gradient technique

    SciTech Connect

    Heink, W.; Kaerger, J.; Pfeifer, H.; Stallmach, F. )

    1990-03-14

    With use of {sup 129}Xe NMR, the NMR pulsed field gradient technique is applied to study the self-diffusion of xenon adsorbed on zeolites NaX, NaCaA, and ZSM-5. In their dependence on both the type of adsorbent and the sorbate concentration, the self-diffusion coefficients are found to follow the same patterns as previously determined for methane by {sup 1}H NMR. For NaCaA, the comparison of the present results with literature data reveals large discrepancies, while recent computer simulations of xenon self-diffusion in ZSM-5 are found to be in reasonable agreement.

  9. Field test comparison of an autocorrelation technique for determining grain size using a digital 'beachball' camera versus traditional methods

    USGS Publications Warehouse

    Barnard, P.L.; Rubin, D.M.; Harney, J.; Mustain, N.

    2007-01-01

    This extensive field test of an autocorrelation technique for determining grain size from digital images was conducted using a digital bed-sediment camera, or 'beachball' camera. Using 205 sediment samples and >1200 images from a variety of beaches on the west coast of the US, grain size ranging from sand to granules was measured from field samples using both the autocorrelation technique developed by Rubin [Rubin, D.M., 2004. A simple autocorrelation algorithm for determining grain size from digital images of sediment. Journal of Sedimentary Research, 74(1): 160-165.] and traditional methods (i.e. settling tube analysis, sieving, and point counts). To test the accuracy of the digital-image grain size algorithm, we compared results with manual point counts of an extensive image data set in the Santa Barbara littoral cell. Grain sizes calculated using the autocorrelation algorithm were highly correlated with the point counts of the same images (r2 = 0.93; n = 79) and had an error of only 1%. Comparisons of calculated grain sizes and grain sizes measured from grab samples demonstrated that the autocorrelation technique works well on high-energy dissipative beaches with well-sorted sediment such as in the Pacific Northwest (r2 ??? 0.92; n = 115). On less dissipative, more poorly sorted beaches such as Ocean Beach in San Francisco, results were not as good (r2 ??? 0.70; n = 67; within 3% accuracy). Because the algorithm works well compared with point counts of the same image, the poorer correlation with grab samples must be a result of actual spatial and vertical variability of sediment in the field; closer agreement between grain size in the images and grain size of grab samples can be achieved by increasing the sampling volume of the images (taking more images, distributed over a volume comparable to that of a grab sample). In all field tests the autocorrelation method was able to predict the mean and median grain size with ???96% accuracy, which is more than

  10. New experimental technique for detecting the effect of low-frequency electric fields on enzyme structure.

    PubMed

    Greco, G; Gianfreda, L; d'Ambrosio, G; Massa, R; Scaglione, A; Scarfi, M R

    1990-01-01

    A new experimental approach has been developed to determine kinetic and thermodynamic parameters of the inactivation of an enzyme under labile conditions both with and without exposure to electrical currents as sources of perturbation. Studies were undertaken to investigate if low-frequency electric currents can accelerate the thermal inactivation of an enzyme through interactions with dipole moments in enzymatic molecules and through related mechanical stresses. The experiments were conducted with the enzyme acid phosphatase. The enzyme was exposed to a 50-Hz current at different densities (10 to 60 mA/cm2 rms) or to a sinusoidal or square-wave current at an average density of 3 mA/cm2 and frequencies from, respectively, 50 Hz to 20 kHz and 500 pulses per second (pps) to 50,000 pps. Positive-control experiments were performed in the presence of a stabilizer or a deactivator. The results indicate that the technique is sensitive to conformational changes that otherwise may be impossible to detect. However, exposure to electric currents under the experimental conditions described herein showed no effects of the currents.

  11. [THE FORMS OF DELIBERATION INVOLVED IN THE FIELD OF BIOETHICS: TECHNIQUE DELIBERATION AND ETHICS DELIBERATION].

    PubMed

    Neves Pinto, Gerson

    2015-12-01

    In this article the author examines the formulation of the problem of new technologies with their ethical limits and legal. To do this, in a first it is d'assess the contribuitions of the two most important contemporary philosophers who have treated this subject: Jürgen Habermas and Ronald Dworkin, while trying to put them into dialog with the one who has been one of the founders of l'classic ethics: Aristotle. Then, it tries to answer the question of how could we understand this notion that Dworkin nome "moral dislocation" between the random and the choice or well, as the appointed Habermas, "l'extension of the contingency". Finally, we questioned how the Aristotelian distinction between the technical deliberation and deliberative ethical-moral can contribute to a better understanding of the questions on the decisions and choices that will make the moral agents (such as patients or the judges), as well as those relating to the type of deliberation technique chosen by the doctor or by the health professional. PMID:27120826

  12. Application of advanced grid generation techniques for flow field computations about complex configurations

    NASA Technical Reports Server (NTRS)

    Kathong, Monchai; Tiwari, Surendra N.

    1988-01-01

    In the computation of flowfields about complex configurations, it is very difficult to construct a boundary-fitted coordinate system. An alternative approach is to use several grids at once, each of which is generated independently. This procedure is called the multiple grids or zonal grids approach; its applications are investigated. The method conservative providing conservation of fluxes at grid interfaces. The Euler equations are solved numerically on such grids for various configurations. The numerical scheme used is the finite-volume technique with a three-stage Runge-Kutta time integration. The code is vectorized and programmed to run on the CDC VPS-32 computer. Steady state solutions of the Euler equations are presented and discussed. The solutions include: low speed flow over a sphere, high speed flow over a slender body, supersonic flow through a duct, and supersonic internal/external flow interaction for an aircraft configuration at various angles of attack. The results demonstrate that the multiple grids approach along with the conservative interfacing is capable of computing the flows about the complex configurations where the use of a single grid system is not possible.

  13. [THE FORMS OF DELIBERATION INVOLVED IN THE FIELD OF BIOETHICS: TECHNIQUE DELIBERATION AND ETHICS DELIBERATION].

    PubMed

    Neves Pinto, Gerson

    2015-12-01

    In this article the author examines the formulation of the problem of new technologies with their ethical limits and legal. To do this, in a first it is d'assess the contribuitions of the two most important contemporary philosophers who have treated this subject: Jürgen Habermas and Ronald Dworkin, while trying to put them into dialog with the one who has been one of the founders of l'classic ethics: Aristotle. Then, it tries to answer the question of how could we understand this notion that Dworkin nome "moral dislocation" between the random and the choice or well, as the appointed Habermas, "l'extension of the contingency". Finally, we questioned how the Aristotelian distinction between the technical deliberation and deliberative ethical-moral can contribute to a better understanding of the questions on the decisions and choices that will make the moral agents (such as patients or the judges), as well as those relating to the type of deliberation technique chosen by the doctor or by the health professional.

  14. Earth strain measurements with the transportable laser ranging system: Field techniques and planning

    NASA Technical Reports Server (NTRS)

    Nakamura, Y.; Dorman, H. J.; Cahill, T.

    1982-01-01

    The potential of the transportable laser ranging system for monitoring the ground deformation around satellite ranging stations and other geodetic control points was examined with emphasis on testing the usefulness of the relative alteration technique. The temporal variation of the ratio of the length of each survey line to the mean length of all survey lines in a given area is directly related to the mean shear strain rate for the area. The data from a series of experimental measurements taken over the Los Angeles basin from a TLRS station at Mt. Wilson show that such ratios can be determined to an accuracy of one part in 10 million with a measurement program lasting for three days and without using any corrections for variations in atmospheric conditions. A numerical experiment using a set of hypothetical data indicates that reasonable estimates of the present shear strain rate and the direction of the principal axes in southern California can be deduced from such measurements over an interval of one to two years.

  15. Validation of a field technique and characterization of fecal glucocorticoid metabolite analysis in wild chimpanzees (Pan troglodytes).

    PubMed

    Murray, Carson M; Heintz, Matthew R; Lonsdorf, Elizabeth V; Parr, Lisa A; Santymire, Rachel M

    2013-01-01

    Monitoring adrenocortical activity in wild primate populations is critical, given the well-documented relationship between stress, health, and reproduction. Although many primate studies have quantified fecal glucocorticoid metabolite (FGM) concentrations, it is imperative that researchers validate their method for each species. Here, we describe and validate a technique for field extraction and storage of FGMs in wild chimpanzees (Pan troglodytes). Our method circumvents many of the logistical challenges associated with field studies while yielding similar results to a commonly used laboratory method. We further validate that our method accurately reflects stress physiology using an adrenocorticotropic hormone challenge in a captive chimpanzee and an FGM peak at parturition in a wild subject. Finally, we quantify circadian patterns for FGMs for the first time in this species. Understanding these patterns may allow researchers to directly link specific events with the stress response. PMID:22968979

  16. Thermal Imagery and Field Techniques to Evaluate Groundwater Nutrient Loading to an Estuary

    NASA Astrophysics Data System (ADS)

    ROSEEN, R. M.; BRANNAKA, L. K.; BALLESTERO, T. P.

    2001-05-01

    Thermal infrared imagery has the potential to be a powerful and affordable tool for coastal managers and scientists to assist in the evaluation of pollution from groundwater. Developments in thermal imagery have improved its accessibility and affordability for use in coastal resource management. An on-going study has applied these new developments in thermal imagery to evaluate groundwater discharge on a large scale. In April and August of 2000 a series of thermal infrared aerial surveys were flown over the Great Bay Estuary in coastal New Hampshire. This study delineated the large-scale groundwater flux to an estuary. This flux was then used to estimate the nutrient loading to the estuarine ecosystem. The aerial survey covered the Great Bay, including nearly 50 miles of shoreline and four of the major contributing rivers. The August survey was completed in the equivalent of an afternoon. The images were available immediately with no post-processing required, and are being mosaicked into larger contiguous images to be incorporated into GIS applications. The images were studied for thermal anomalies as an indication of upwelling groundwater. The surface areas of each individual groundwater discharge zones were computed by GIS analysis of the photo-identified discharge zones. This was accomplished by use of gray-scale images calibrated to a known temperature range. The suspected groundwater discharge zones were identified in the field, characterized for hydrologic parameters, and sampled for water quality. Preliminary results suggest that groundwater is a significant component of the freshwater influx to the Great Bay, contributing half as much as the 10-year daily average of the Lamprey River. The Lamprey River is the largest (183 sq. mi. drainage area) of the four major surface freshwater sources to the upper Great Bay. Of particular significance, the estimated groundwater contribution was as much as 150%\\ that contributed by the Lamprey River during the summer

  17. Thin Fluorine-Doped Tin Oxide Films Prepared Using an Electric Field-Modified Spray Pyrolysis Deposition Technique

    NASA Astrophysics Data System (ADS)

    Gupta, Archana; Pandya, Dinesh K.; Kashyap, Subhash C.

    2004-12-01

    Very thin fluorine-doped tin oxide films (60-70 nm) were prepared on glass substrates at low deposition temperatures (275-300°C), these films showed an electrical resistivity of 3.2 × 10-4Ω-cm and a transparency of 88% at 625 nm with the application of a dc electric field on the film surface during growth using a spray pyrolysis deposition technique. In this first study of its kind, the applied electric field during growth by spray pyrolysis resulted in the reduction in the critical thickness and the increases in both the electrical conductivity and transparency of continuous films. The obtained X-ray diffraction (XRD) patterns showed that the films prepared with an electric field were polycrystalline, whereas those prepared without an electric field were amorphous. This method shows potential for producing very thin oxide films at a low deposition temperature with a high growth rate, an enhanced optical quality and an improved electrical conductivity.

  18. SEM technique for imaging and measuring electronic transport in nanocomposites based on electric field induced contrast

    DOEpatents

    Jesse, Stephen [Knoxville, TN; Geohegan, David B [Knoxville, TN; Guillorn, Michael [Brooktondale, NY

    2009-02-17

    Methods and apparatus are described for SEM imaging and measuring electronic transport in nanocomposites based on electric field induced contrast. A method includes mounting a sample onto a sample holder, the sample including a sample material; wire bonding leads from the sample holder onto the sample; placing the sample holder in a vacuum chamber of a scanning electron microscope; connecting leads from the sample holder to a power source located outside the vacuum chamber; controlling secondary electron emission from the sample by applying a predetermined voltage to the sample through the leads; and generating an image of the secondary electron emission from the sample. An apparatus includes a sample holder for a scanning electron microscope having an electrical interconnect and leads on top of the sample holder electrically connected to the electrical interconnect; a power source and a controller connected to the electrical interconnect for applying voltage to the sample holder to control the secondary electron emission from a sample mounted on the sample holder; and a computer coupled to a secondary electron detector to generate images of the secondary electron emission from the sample.

  19. Development of Field-Reversed Configuration Plasma Gun Formation Techniques for Magnetized Target Fusion

    NASA Astrophysics Data System (ADS)

    Lynn, Alan; Gilmore, Mark; Wynkoop, Tyler; Intrator, Thomas; Weber, Thomas

    2012-10-01

    Magnetized Target Fusion (MTF) is an innovative approach for a relatively fast and cheap path to the production of fusion energy that utilizes magnetic confinement to assist in the compression of a hot plasma to thermonuclear conditions by an external driver. Los Alamos National Laboratory (LANL) is currently pursing demonstration of the MTF concept via compression of an FRC (field-reversed configuration) plasma by a metal liner z-pinch in conjunction with the Air Force Research Laboratory in Albuquerque, NM. A key physics issue for the FRC as an MTF target lies in the initial pre-ionization (PI) stage. The PI formation process determines the amount of magnetic flux that can be trapped to form the FRC. This trapped flux plays an important role in the FRC's final equilibrium, transport, and stability properties. It also provides the route to greatest potential gains in FRC lifetime, which is essential to provide enough time to translate and compress the FRC effectively. In conjunction with LANL we plan to test and characterize a new system to improve the initial PI plasma formation. This system will use an array of plasma guns to form the initial plasma. Initial characterization of the plasma gun behavior will be presented.

  20. Field Techniques for Estimating Water Fluxes Between Surface Water and Ground Water

    USGS Publications Warehouse

    Rosenberry, Donald O.; LaBaugh, James W.

    2008-01-01

    This report focuses on measuring the flow of water across the interface between surface water and ground water, rather than the hydrogeological or geochemical processes that occur at or near this interface. The methods, however, that use hydrogeological and geochemical evidence to quantify water fluxes are described herein. This material is presented as a guide for those who have to examine the interaction of surface water and ground water. The intent here is that both the overview of the many available methods and the in-depth presentation of specific methods will enable the reader to choose those study approaches that will best meet the requirements of the environments and processes they are investigating, as well as to recognize the merits of using more than one approach. This report is designed to make the reader aware of the breadth of approaches available for the study of the exchange between surface and ground water. To accomplish this, the report is divided into four chapters. Chapter 1 describes many well-documented approaches for defining the flow between surface and ground waters. Subsequent chapters provide an in-depth presentation of particular methods. Chapter 2 focuses on three of the most commonly used methods to either calculate or directly measure flow of water between surface-water bodies and the ground-water domain: (1) measurement of water levels in well networks in combination with measurement of water level in nearby surface water to determine water-level gradients and flow; (2) use of portable piezometers (wells) or hydraulic potentiomanometers to measure hydraulic gradients; and (3) use of seepage meters to measure flow directly. Chapter 3 focuses on describing the techniques involved in conducting water-tracer tests using fluorescent dyes, a method commonly used in the hydrogeologic investigation and characterization of karst aquifers, and in the study of water fluxes in karst terranes. Chapter 4 focuses on heat as a tracer in hydrological

  1. Site characterization techniques used at a low-level waste shallow land burial field demonstration facility

    SciTech Connect

    Davis, E.C.; Boegly, W.J. Jr.; Rothschild, E.R.; Spalding, B.P.; Vaughan, N.D.; Haase, C.S.; Huff, D.D.; Lee, S.Y.; Walls, E.C.; Newbold, J.D.

    1984-07-01

    The Environmental Sciences Division of the Oak Ridge National Laboratory has been investigating improved shallow land burial technology for application in the humd eastern United States. As part of this effort, a field demonstration facility (Engineered Test Facility, or ETF) has been established in Solid Waste Storage Area 6 for purposes of investigatig the ability of two trench treatments (waste grouting prior to cover emplacement and waste isolation with trench liners) to prevent water-waste contact and thus minimize waste leaching. As part of the experimental plan, the ETF site has been characterized for purposes of constructing a hydrologic model. Site characterization is an extremely important component of the waste disposal site selection process; during these activities, potential problems, which might obviate the site from further consideration, may be found. This report describes the ETF site characterization program and identifies and, where appropriate, evaluates those tests that are of most value in model development. Specific areas covered include site geology, soils, and hydrology. Each of these areas is further divided into numerous subsections, making it easy for the reader to examine a single area of interest. Site characterization is a multidiscipliary endeavor with voluminous data, only portions of which are presented and analyzed here. The information in this report is similar to that which will be required of a low-level waste site developer in preparing a license application for a potential site in the humid East, (a discussion of licensing requirements is beyond its scope). Only data relevant to hydrologic model development are included, anticipating that many of these same characterization methods will be used at future disposal sites with similar water-related problems.

  2. A Field Evaluation of Airborne Techniques for Detection of Unexploded Ordnance

    SciTech Connect

    Bell, D.; Doll, W.E.; Hamlett, P.; Holladay, J.S.; Nyquist, J.E.; Smyre, J.; Gamey, T.J.

    1999-03-14

    US Defense Department estimates indicate that as many as 11 million acres of government land in the U. S. may contain unexploded ordnance (UXO), with the cost of identifying and disposing of this material estimated at nearly $500 billion. The size and character of the ordnance, types of interference, vegetation, geology, and topography vary from site to site. Because of size or composition, some ordnance is difficult to detect with any geophysical method, even under favorable soil and cultural interference conditions. For some sites, airborne methods may provide the most time and cost effective means for detection of UXO. Airborne methods offer lower risk to field crews from proximity to unstable ordnance, and less disturbance of sites that maybe environmentally sensitive. Data were acquired over a test site at Edwards AFB, CA using airborne magnetic, electromagnetic, multispectral and thermal sensors. Survey areas included sites where trenches might occur, and a test site in which we placed deactivated ordnance, ranging in size from small ''bomblets'' to large bombs. Magnetic data were then acquired with the Aerodat HM-3 system, which consists of three cesium magnetometers within booms extending to the front and sides of the helicopter, and mounted such that the helicopter can be flown within 3m of the surface. Electromagnetic data were acquired with an Aerodat 5 frequency coplanar induction system deployed as a sling load from a helicopter, with a sensor altitude of 15m. Surface data, acquired at selected sites, provide a comparison with airborne data. Multispectral and thermal data were acquired with a Daedelus AADS 1268 system. Preliminary analysis of the test data demonstrate the value of airborne systems for UXO detection and provide insight into improvements that might make the systems even more effective.

  3. Remote sensing techniques to monitor nitrogen-driven carbon dynamics in field corn

    NASA Astrophysics Data System (ADS)

    Corp, Lawrence A.; Middleton, Elizabeth M.; Campbell, Petya K. E.; Huemmrich, K. Fred; Cheng, Yen-Ben; Daughtry, Craig S. T.

    2009-08-01

    Patterns of change in vegetation growth and condition are one of the primary indicators of the present and future ecological status of the globe. Nitrogen (N) is involved in photochemical processes and is one of the primary resources regulating plant growth. As a result, biological carbon (C) sequestration is driven by N availability. Large scale monitoring of photosynthetic processes are currently possible only with remote sensing systems that rely heavily on passive reflectance (R) information. Unlike R, fluorescence (F) emitted from chlorophyll is directly related to photochemical reactions and has been extensively used for the elucidation of the photosynthetic pathways. Recent advances in passive fluorescence instrumentation have made the remote acquisition of solar-induced fluorescence possible. The goal of this effort is to evaluate existing reflectance and emerging fluorescence methodologies for determining vegetation parameters related to photosynthetic function and carbon sequestration dynamics in plants. Field corn N treatment levels of 280, 140, 70, and 0 kg N / ha were sampled from an intensive test site for a multi-disciplinary project, Optimizing Production Inputs for Economic and Environmental Enhancement (OPE). Aircraft, near-ground, and leaf-level measurements were used to compare and contrast treatment effects within this experiment site assessed with both reflectance and fluorescence approaches. A number of spectral indices including the R derivative index D730/D705, the normalized difference of R750 vs. R705, and simple ratio R800/R750 differentiated three of the four N fertilization rates and yielded high correlations to three important carbon parameters: C:N, light use efficiency, and grain yield. These results advocate the application of hyperspectral sensors for remotely monitoring carbon cycle dynamics in terrestrial ecosystems.

  4. Infrared thermoimage analysis as real time technique to evaluate in-field pesticide spraying quality distribution

    NASA Astrophysics Data System (ADS)

    Menesatti, P.; Biocca, M.

    2007-09-01

    Tests and calibration of sprayers have been considered a very important task for chemicals use reduction in agriculture and for improvement of plant phytosanitary protection. A reliable, affordable and easy-to-use method to observe the distribution in the field is required and the infrared thermoimage analysis can be considered as a potential method based on non-contact imaging technologies. The basic idea is that the application of colder water (10 °C less) than the leaves surface makes it possible to distinguish and measure the targeted areas by means of a infrared thermoimage analysis based on significant and time persistent thermal differences. Trials were carried out on a hedge of Prunus laurocerasus, 2.1 m height with an homogenous canopy. A trailed orchard sprayer was employed with different spraying configurations. A FLIR TM (S40) thermocamera was used to acquire (@ 50 Hz) thermal videos, in a fixed position, at frame rate of 10 images/s, for nearly 3 min. Distribution quality was compared to the temperature differences obtained from the thermal images between pre-treatment and post-treatment (ΔT)., according two analysis: time-trend of ΔT average values for different hedge heights and imaging ΔT distribution and area coverage by segmentation in k means clustering after 30 s of spraying. The chosen spraying configuration presented a quite good distribution for the entire hedge height with the exclusion of the lower (0-1 m from the ground) and the upper part (>1.9 m). Through the image segmentation performed of ΔT image by k-means clustering, it was possible to have a more detailed and visual appreciation of the distribution quality among the entire hedge. The thermoimage analysis revealed interesting potentiality to evaluate quality distribution from orchards sprayers.

  5. Monitoring and Modeling the Impact of Grazers Using Visual, Remote and Traditional Field Techniques

    NASA Astrophysics Data System (ADS)

    Roadknight, C. M.; Marshall, I. W.; Rose, R. J.

    2009-04-01

    The relationship between wild and domestic animals and the landscape they graze upon is important to soil erosion studies because they are a strong influence on vegetation cover (a key control on the rate of overland flow runoff), and also because the grazers contribute directly to sediment transport via carriage and indirectly by exposing fresh soil by trampling and burrowing/excavating. Quantifying the impacts of these effects on soil erosion and their dependence on grazing intensity, in complex semi-natural habitats has proved difficult. This is due to lack of manpower to collect sufficient data and weak standardization of data collection between observers. The advent of cheaper and more sophisticated digital camera technology and GPS tracking devices has lead to an increase in the amount of habitat monitoring information that is being collected. We report on the use of automated trail cameras to continuously capture images of grazer (sheep, rabbits, deer) activity in a variety of habitats at the Moor House nature reserve in northern England. As well as grazer activity these cameras also give valuable information on key climatic soil erosion factors such as snow, rain and wind and plant growth and thus allow the importance of a range of grazer activities and the grazing intensity to be estimated. GPS collars and more well established survey methods (erosion monitoring, dung counting and vegetation surveys) are being used to generate a detailed representation of land usage and plan camera siting. This paper describes the data collection techniques, outlines the quantitative and qualitative data collected and proposes online and offline systems that can reduce the data processing time and increase focus on important subsets in the collected data. We also present a land usage model that estimates grazing intensity, grazer behaviours and their impact on soil coverage at sites where cameras have not been deployed, based on generalising from camera sites to other

  6. [Introducing marketing strategies and techniques into the field of voluntary blood donation, to meet the rise in blood demand].

    PubMed

    Pesavento, S; Bégué, L

    2011-04-01

    Social marketing uses marketing principles and techniques to induce a target audience to voluntary accept, reject, change or abandon a behaviour for the benefit of individuals, groups, or society as a whole. Thus, individual or societal gain is the primary goal of social marketing. This kind of marketing is frequently used in the United States or in Canada in several fields such as healthcare, social work, or the environment. In 2008, we introduced these strategies and techniques in the field of blood donation in France. This article describes what has been achieved in the last three years and outlines the main steps in the social marketing planning process: analyzing the social marketing environment, defining target audiences and objectives, building and implementing strategies and action plans, evaluating and monitoring. On the way to self-sufficiency, while respecting donors, social marketing is additional to the work done by the blood collection staffs, communication teams, and volunteers. Social marketing is a complementary tool to the work done by the blood collection staff, communication teams and blood donation organizations and can help to meet the challenge of self-sufficiency while still allowing for the privacy and rights of donors.

  7. [Introducing marketing strategies and techniques into the field of voluntary blood donation, to meet the rise in blood demand].

    PubMed

    Pesavento, S; Bégué, L

    2011-04-01

    Social marketing uses marketing principles and techniques to induce a target audience to voluntary accept, reject, change or abandon a behaviour for the benefit of individuals, groups, or society as a whole. Thus, individual or societal gain is the primary goal of social marketing. This kind of marketing is frequently used in the United States or in Canada in several fields such as healthcare, social work, or the environment. In 2008, we introduced these strategies and techniques in the field of blood donation in France. This article describes what has been achieved in the last three years and outlines the main steps in the social marketing planning process: analyzing the social marketing environment, defining target audiences and objectives, building and implementing strategies and action plans, evaluating and monitoring. On the way to self-sufficiency, while respecting donors, social marketing is additional to the work done by the blood collection staffs, communication teams, and volunteers. Social marketing is a complementary tool to the work done by the blood collection staff, communication teams and blood donation organizations and can help to meet the challenge of self-sufficiency while still allowing for the privacy and rights of donors. PMID:21474359

  8. A simple measuring technique of surface flow velocity to analyze the behavior of velocity fields in hydraulic engineering applications.

    NASA Astrophysics Data System (ADS)

    Tellez, Jackson; Gomez, Manuel; Russo, Beniamino; Redondo, Jose M.

    2015-04-01

    An important achievement in hydraulic engineering is the proposal and development of new techniques for the measurement of field velocities in hydraulic problems. The technological advances in digital cameras with high resolution and high speed found in the market, and the advances in digital image processing techniques now provides a tremendous potential to measure and study the behavior of the water surface flows. This technique was applied at the Laboratory of Hydraulics at the Technical University of Catalonia - Barcelona Tech to study the 2D velocity fields in the vicinity of a grate inlet. We used a platform to test grate inlets capacity with dimensions of 5.5 m long and 4 m wide allowing a zone of useful study of 5.5m x 3m, where the width is similar of the urban road lane. The platform allows you to modify the longitudinal slopes from 0% to 10% and transversal slope from 0% to 4%. Flow rates can arrive to 200 l/s. In addition a high resolution camera with 1280 x 1024 pixels resolution with maximum speed of 488 frames per second was used. A novel technique using particle image velocimetry to measure surface flow velocities has been developed and validated with the experimental data from the grate inlets capacity. In this case, the proposed methodology can become a useful tools to understand the velocity fields of the flow approaching the inlet where the traditional measuring equipment have serious problems and limitations. References DigiFlow User Guide. (2012), (June). Russo, B., Gómez, M., & Tellez, J. (2013). Methodology to Estimate the Hydraulic Efficiency of Nontested Continuous Transverse Grates. Journal of Irrigation and Drainage Engineering, 139(10), 864-871. doi:10.1061/(ASCE)IR.1943-4774.0000625 Teresa Vila (1), Jackson Tellez (1), Jesus Maria Sanchez (2), Laura Sotillos (1), Margarita Diez (3, 1), and J., & (1), M. R. (2014). Diffusion in fractal wakes and convective thermoelectric flows. Geophysical Research Abstracts - EGU General Assembly 2014

  9. Field Observations of Bioaerosols: What We've Learned from Fluorescence, Genetic, and Microscopic Techniques (Invited)

    NASA Astrophysics Data System (ADS)

    Huffman, J. A.; Fröhlich-Nowoisky, J.; Després, V. R.; Elbert, W.; Sinha, B.; Andreae, M. O.; Pöschl, U.

    2009-12-01

    Biogenic aerosols are ubiquitous in the Earth’s atmosphere, influencing atmospheric chemistry and physics, the biosphere, climate, and public health. They play an important role in the spread of biological organisms, and they can cause or enhance human, animal, and plant diseases. Moreover, they can initiate the formation of clouds and precipitation as cloud condensation and ice nuclei (CCN, IN). Primary biogenic aerosol particles (PBAP) such as pollen, fungal spores, and bacteria are emitted directly from the biosphere to the atmosphere. Microscopic investigations have shown that PBAP account for up to ~30% of fine and up to ~70% of coarse particulate matter in rural and rain forest air, and the estimates of PBA emissions range from ~60 Tg a-1 of fine particles up to ~1000 Tg a-1 of total particulate matter. Fungal spores account for a large proportion of PBA with typical number and mass concentrations of ~104 m-3 and ~1 μg m-3 in continental boundary layer air and estimated global emissions of the order of ~50 Tg a-1 and 200 m-2 s-1, respectively [1]. The actual abundance, variability and diversity of PBAP are still poorly understood and quantified, however. By measuring fluorescence at excitation and emission wavelengths specific to viable cells, online techniques with time resolution of minutes are able to detect fluorescent biological aerosol particles (FBAP), which represent a lower limit for the actual abundance of coarse (> 1 μm) PBAP [2]. Continuous sampling (1 - 4 months) was performed at various locations including pristine rain forest, rural and polluted urban sites. Each study exhibited a similar average particle number distribution dominated by a peak at ~3 μm, with coarse FBAP concentrations of the order of ~5x104 m-3 and ~1 μg m-3. Recent advances in the DNA analysis and molecular genetic characterization of aerosol filter samples yield new information about the sources and composition of PBA and provide new insight into regional and global

  10. Supine Craniospinal Irradiation Using a Proton Pencil Beam Scanning Technique Without Match Line Changes for Field Junctions

    SciTech Connect

    Lin, Haibo Ding, Xuanfeng; Kirk, Maura; Liu, Haoyang; Zhai, Huifang; Hill-Kayser, Christine E.; Lustig, Robert A.; Tochner, Zelig; Both, Stefan; McDonough, James

    2014-09-01

    Purpose: To propose and validate a craniospinal irradiation approach using a proton pencil beam scanning technique that overcomes the complexity of the planning associated with feathering match lines. Methods and Materials: Ten craniospinal irradiation patients had treatment planned with gradient dose optimization using the proton pencil beam scanning technique. The robustness of the plans was evaluated by shifting the isocenter of each treatment field by ±3 mm in the longitudinal direction and was compared with the original nonshifted plan with metrics of conformity number, homogeneity index, and maximal cord doses. An anthropomorphic phantom study using film measurements was carried out on a plan with 5-cm junction length. To mimic setup errors in the phantom study, fields were recalculated with isocenter shifts of 1, 3, 5, and 10 mm longitudinally, and compared with the original plans and measurements. Results: Uniform dose coverage to the entire target volumes was achieved using the gradient optimization approach with averaged junction lengths of 6.7 ± 0.5 cm. The average conformity number and homogeneity index equaled 0.78 ± 0.03 and 1.09 ± 0.01, respectively. Setup errors of 3 mm per field (6 mm in worst-case scenario) caused on average 4.6% lower conformity number 2.5% higher homogeneity index and maximal cord dose of 4216.1 ± 98.2 cGy. When the junction length was 5 cm or longer, setup errors of 6 mm resulted in up to 12% dosimetric deviation. Consistent results were reached between film measurements and planned dose profiles in the junction area. Conclusions: Longitudinal setup errors directly reduce the dosimetric accuracy of the proton craniospinal irradiation treatment with matched proton pencil beam scanning fields. The reported technique creates a slow dose gradient in the junction area, which makes the treatment more robust to longitudinal setup errors compared to conventional feathering methods.

  11. USGS Menlo Park GPS Data Processing Techniques and Derived North America Velocity Field (Invited)

    NASA Astrophysics Data System (ADS)

    Svarc, J. L.; Murray-Moraleda, J. R.; Langbein, J. O.

    2010-12-01

    The U.S. Geological Survey in Menlo Park routinely conducts repeated GPS surveys of geodetic markers throughout the western United States using dual-frequency geodetic GPS receivers. We combine campaign, continuous, and semi-permanent data to present a North America fixed velocity field for regions in the western United States. Mobile campaign-based surveys require less up-front investment than permanently monumented and telemetered GPS systems, and hence have achieved a broad and dense spatial coverage. The greater flexibility and mobility comes at the cost of greater uncertainties in individual daily position solutions. We also routinely process continuous GPS data collected at PBO stations operated by UNAVCO along with data from other continuous GPS networks such as BARD, PANGA, and CORS operated by other agencies. We have broken the Western US into several subnetworks containing approximately 150-250 stations each. The data are processed using JPL’s GIPSY-OASIS II release 5.0 software using a modified precise positioning strategy (Zumberge and others, 1997). We use the “ambizap” code provided by Geoff Blewitt (Blewitt, 2008) to fix phase ambiguities in continuous networks. To mitigate the effect of common mode noise we use the positions of stations in the network with very long, clean time series (i.e. those with no large outliers or offsets) to transform all position estimates into “regionally filtered” results following the approach of Hammond and Thatcher (2007). Velocity uncertainties from continuously operated GPS stations tend to be about 3 times smaller than those from campaign data. Langbein (2004) presents a maximum likelihood method for fitting a time series employing a variety of temporal noise models. We assume that GPS observations are contaminated by a combination of white, flicker, and random walk noise. For continuous and semi-permanent time series longer than 2 years we estimate these values, otherwise we fix the amplitudes of these

  12. Successful field evaluation of the efficiency of a gas gravity drainage process by applying recent developments in Sponge coring technique in a major oil field

    SciTech Connect

    Durandeau, M.; El-Emam, M.; Anis, A.H.; Fanti, G.

    1995-11-01

    This paper describes the application and integration of new technologies and recent developments in Sponge coring and presents the methodology used to carry out successfully the various phases of well designed Sponge coring project, including the coring phase, the on-site measurements and the full evaluation of the Sponge core samples. A field case is presented where a Sponge coring project was accomplished to obtain accurate fluids distribution and evaluate the gas gravity drainage efficiency in one of the Arab D sub-reservoirs of a major oil field offshore Abu Dhabi. A Sponge coring technology team was created to optimize the methodology used during Sponge coring an minimize the uncertainties which persisted on some of the previous operations. The effectiveness of the technique is discussed, with comparison to open hole logs and SCAL data. Realistic petrophysical parameters were obtained from non-invaded, native-state core samples. The effective oil saturation obtained from the Sponge core analysis results showed that the gravity segregation mechanism has been very active and efficient to recover the oil in the reservoir.

  13. Estimation of VOC emissions from produced-water treatment ponds in Uintah Basin oil and gas field using modeling techniques

    NASA Astrophysics Data System (ADS)

    Tran, H.; Mansfield, M. L.; Lyman, S. N.; O'Neil, T.; Jones, C. P.

    2015-12-01

    Emissions from produced-water treatment ponds are poorly characterized sources in oil and gas emission inventories that play a critical role in studying elevated winter ozone events in the Uintah Basin, Utah, U.S. Information gaps include un-quantified amounts and compositions of gases emitted from these facilities. The emitted gases are often known as volatile organic compounds (VOCs) which, beside nitrogen oxides (NOX), are major precursors for ozone formation in the near-surface layer. Field measurement campaigns using the flux-chamber technique have been performed to measure VOC emissions from a limited number of produced water ponds in the Uintah Basin of eastern Utah. Although the flux chamber provides accurate measurements at the point of sampling, it covers just a limited area of the ponds and is prone to altering environmental conditions (e.g., temperature, pressure). This fact raises the need to validate flux chamber measurements. In this study, we apply an inverse-dispersion modeling technique with evacuated canister sampling to validate the flux-chamber measurements. This modeling technique applies an initial and arbitrary emission rate to estimate pollutant concentrations at pre-defined receptors, and adjusts the emission rate until the estimated pollutant concentrations approximates measured concentrations at the receptors. The derived emission rates are then compared with flux-chamber measurements and differences are analyzed. Additionally, we investigate the applicability of the WATER9 wastewater emission model for the estimation of VOC emissions from produced-water ponds in the Uintah Basin. WATER9 estimates the emission of each gas based on properties of the gas, its concentration in the waste water, and the characteristics of the influent and treatment units. Results of VOC emission estimations using inverse-dispersion and WATER9 modeling techniques will be reported.

  14. TH-C-12A-06: Feasibility of a MLC-Based Inversely Optimized Multi-Field Grid Therapy Technique

    SciTech Connect

    Jin, J; Zhao, B; Huang, Y; Kim, J; Qin, Y; Wen, N; Ryu, S; Chetty, I

    2014-06-15

    Purpose: Grid therapy (GT), which generates highly spatially modulated dose distributions, can deliver single- or hypo-fractionated radiotherapy for large tumors without causing significant toxicities. GT may be applied in combination with immunotherapy, in light of recent preclinical data of synergetic interaction between radiotherapy and immunotherapy. However, conventional GT uses only one field, which does not have the advantage of multi-fields in 3D conformal-RT or IMRT. We have proposed a novel MLC-based, inverse-planned multi-field 3D GT technique. This study aims to test its deliverability and dosimetric accuracy. Methods: A lattice of small spheres was created as the boost volume within a large target. A simultaneous boost IMRT plan with 8-Gy to the target and 20-Gy to the boost volume was generated in the Eclipse treatment planning system (AAA v10) with a HD120 MLC. Nine beams were used, and the gantry and couch angles were selected so that the spheres were perfectly aligned in every beams eye view. The plan was mapped to a phantom with dose scaled. EBT3 films were calibrated and used to measure the delivered dose. Results: The IMRT plan generated a highly spatially modulated dose distribution in the target. D95%, D50%, D5% for the spheres and the targets in Gy were 18.5, 20.0, 21.4 and 7.9, 9.8, 16.1, respectively. D50% for a 1cm ring 1cm outside the target was 2.9-Gy. Film dosimetry showed good agreement between calculated and delivered dose, with an overall gamma passing rate of 99.6% (3%/1mm). The point dose differences for different spheres varied from 1–6%. Conclusion: We have demonstrated the deliverability and dose calculation accuracy of the MLC-based inversely optimized multi-field GT technique, which achieved a brachytherapy-like dose distribution. Single-fraction high dose can be delivered to the spheres in a large target with minimal dose to the surrounding normal tissue.

  15. Lessons in modern digital field geology: Open source software, 3D techniques, and the new world of digital mapping

    NASA Astrophysics Data System (ADS)

    Pavlis, Terry; Hurtado, Jose; Langford, Richard; Serpa, Laura

    2014-05-01

    Although many geologists refuse to admit it, it is time to put paper-based geologic mapping into the historical archives and move to the full potential of digital mapping techniques. For our group, flat map digital geologic mapping is now a routine operation in both research and instruction. Several software options are available, and basic proficiency with the software can be learned in a few hours of instruction and practice. The first practical field GIS software, ArcPad, remains a viable, stable option on Windows-based systems. However, the vendor seems to be moving away from ArcPad in favor of mobile software solutions that are difficult to implement without GIS specialists. Thus, we have pursued a second software option based on the open source program QGIS. Our QGIS system uses the same shapefile-centric data structure as our ArcPad system, including similar pop-up data entry forms and generic graphics for easy data management in the field. The advantage of QGIS is that the same software runs on virtually all common platforms except iOS, although the Android version remains unstable as of this writing. A third software option we are experimenting with for flat map-based field work is Fieldmove, a derivative of the 3D-capable program Move developed by Midland Valley. Our initial experiments with Fieldmove are positive, particularly with the new, inexpensive (<300Euros) Windows tablets. However, the lack of flexibility in data structure makes for cumbersome workflows when trying to interface our existing shapefile-centric data structures to Move. Nonetheless, in spring 2014 we will experiment with full-3D immersion in the field using the full Move software package in combination with ground based LiDAR and photogrammetry. One new workflow suggested by our initial experiments is that field geologists should consider using photogrammetry software to capture 3D visualizations of key outcrops. This process is now straightforward in several software packages, and

  16. Imaging of the magnetic field structure in megagauss plasmas by combining pulsed polarimetry with an optical Kerr effect shutter technique.

    PubMed

    Smith, R J

    2010-10-01

    Pulsed polarimetry in combination with a high speed photographic technique based on the optical Kerr effect is described. The backscatter in a pulsed polarimeter is directed through a scattering cell and photographed using an ∼1 ps shutter, essentially freezing the intensity pattern. The image provides both the local electron density and magnetic field distributions along and transverse to the laser sightline. Submillimeter spatial resolution is possible for probing wavelengths in the visible due to the high densities and strong optical activity. Pulsed polarimetry is thereby extended to centimeter-sized plasmas with n(e)>10(19)-10(20) cm(-3) and B>20-100 T (MG) produced by multiterawatt, multimega-ampere electrical drivers, wire Z pinches, and liner imploded magnetized plasmas. PMID:21033885

  17. Imaging of the magnetic field structure in megagauss plasmas by combining pulsed polarimetry with an optical Kerr effect shutter technique

    SciTech Connect

    Smith, R. J.

    2010-10-15

    Pulsed polarimetry in combination with a high speed photographic technique based on the optical Kerr effect is described. The backscatter in a pulsed polarimeter is directed through a scattering cell and photographed using an {approx}1 ps shutter, essentially freezing the intensity pattern. The image provides both the local electron density and magnetic field distributions along and transverse to the laser sightline. Submillimeter spatial resolution is possible for probing wavelengths in the visible due to the high densities and strong optical activity. Pulsed polarimetry is thereby extended to centimeter-sized plasmas with n{sub e}>10{sup 19}-10{sup 20} cm{sup -3} and B>20-100 T (MG) produced by multiterawatt, multimega-ampere electrical drivers, wire Z pinches, and liner imploded magnetized plasmas.

  18. Field enhancement and resonance phenomena in complex three-dimensional nanoparticles: efficient computation using the source-model technique.

    PubMed

    Ishay, Yakir; Leviatan, Yehuda; Bartal, Guy

    2014-05-15

    We present a semi-analytical method for computing the electromagnetic field in and around 3D nanoparticles (NP) of complex shape and demonstrate its power via concrete examples of plasmonic NPs that have nonsymmetrical shapes and surface areas with very small radii of curvature. In particular, we show the three axial resonances of a 3D cashew-nut and the broadband response of peanut-shell NPs. The method employs the source-model technique along with a newly developed intricate source distributing algorithm based on the surface curvature. The method is simple and can outperform finite-difference time domain and finite-element-based software tools in both its efficiency and accuracy. PMID:24978226

  19. Construction techniques for the Taklamakan Desert Highway: research on the construction materials and the results of field tests

    NASA Astrophysics Data System (ADS)

    Jin, Changning; Dong, Zhibao; Li, Zhinong

    2006-03-01

    After conducting many laboratory and field experiments, several key technical issues related to the construction of China’s Taklamakan Desert Highway have been satisfactorily resolved. In particular, considerable progress has been made on the dry compaction of a sand sub-base, road design parameters, the creation of a structure that combines a sub-grade and asphalt pavement, analysis of the stability of a sand sub-base strengthened with geotextiles, and on the development of a complete set of construction techniques. The achievements of this research were successfully applied for the first time in the Taklamakan Desert, where the environmental conditions are extremely harsh. The results suggest that the construction of this highway was economical and that the simple construction methods produced a reliable highway. The resulting highway is believed to be the world’s first long-distance graded highway running through a huge desert with migrating dunes.

  20. Use of Geophysical and Remote Sensing Techniques During the Comprehensive Test Ban Treaty Organization's Integrated Field Exercise 2014

    NASA Astrophysics Data System (ADS)

    Labak, Peter; Sussman, Aviva; Rowlands, Aled; Chiappini, Massimo; Malich, Gregor; MacLeod, Gordon; Sankey, Peter; Sweeney, Jerry; Tuckwell, George

    2016-04-01

    The Integrated Field Exercise of 2014 (IFE14) was a field event held in the Hashemite Kingdom of Jordan (with concurrent activities in Austria) that tested the operational and technical capabilities of a Comprehensive Test Ban Treaty's (CTBT) on-site inspection (OSI). During an OSI, up to 40 inspectors search a 1000km2 inspection area for evidence of a nuclear explosion. Over 250 experts from ~50 countries were involved in IFE14 (the largest simulation of an OSI to date) and worked from a number of different directions, such as the Exercise Management and Control Teams to execute the scenario in which the exercise was played, to those participants performing as members of the Inspection Team (IT). One of the main objectives of IFE14 was to test Treaty allowed inspection techniques, including a number of geophysical and remote sensing methods. In order to develop a scenario in which the simulated exercise could be carried out, a number of physical features in the IFE14 inspection area were designed and engineered by the Scenario Task Force Group (STF) that the IT could detect by applying the geophysical and remote sensing inspection technologies, as well as other techniques allowed by the CTBT. For example, in preparation for IFE14, the STF modeled a seismic triggering event that was provided to the IT to prompt them to detect and localize aftershocks in the vicinity of a possible explosion. Similarly, the STF planted shallow targets such as borehole casings and pipes for detection by other geophysical methods. In addition, airborne technologies, which included multi-spectral imaging, were deployed such that the IT could identify freshly exposed surfaces, imported materials and other areas that had been subject to modification. This presentation will introduce the CTBT and OSI, explain the IFE14 in terms of goals specific to geophysical and remote sensing methods, and show how both the preparation for and execution of IFE14 meet those goals.

  1. Comparison of three techniques for modeling the Earth's gravity field on the basis of a satellite orbit

    NASA Astrophysics Data System (ADS)

    Ditmar, P.; van Eck van der Sluijs, A.

    2003-12-01

    At present, there are three techniques for the computation of the Earth's gravity field from a satellite orbit: (i) the "classical" approach based on the integration of variational equations (IVEA); (ii) the energy balance approach (EBA); (iii) the acceleration approach (AA), which directly relates the satellite accelerations to the gravity field in accordance with Newton's second law. Most of the results have been obtained so far with the IVEA and EBA. The AA is believed to be inferior because the double differentiation needed to convert the satellite orbit into the satellite accelerations amplifies data noise dramatically. We show that that a poor performance of the AA is a myth. One can easily prove that the solution of an inverse problem is invariant with respect to the linear transformation of the data vector of the kind d' = B d (where d is the original data vector, d' is the transformed data vector, and B is the transformation matrix) provided that the matrix B is square and invertible. The only pre-requisite is that the optimal estimation procedure is followed, including the usage of the properly transformed covariance matrix: Cd' = B Cd BT. In other words, such data vectors d' and d are equivalent. It is easy to show that the satellite positions and satellite accelerations are two nearly equivalent data sets (in order to reach a strict equivalence, the latter can be supplied, e.g., with the initial state vector). Therefore, these data sets may result in nearly the same gravity field model. A decision which technique is preferable should be made on the basis of practical considerations, e.g. the numerical efficiency. According to our experience, the AA leads to a much faster computational scheme than the IVEA. Furthermore, we have considered the EBA. It is easy to show that a set of kinetic energy measurements is nearly equivalent to a set of along-track satellite accelerations. The other two components of the acceleration vectors are ignored by the EBA

  2. Marine Biological Field Techniques.

    ERIC Educational Resources Information Center

    Awkerman, Gary L.

    This publication is designed for use in a standard science curricula to develop oceanologic manifestations of certain science topics. Included are teacher guides, student activities, and demonstrations designed to impart ocean science understanding to high school students. It could be a useful instructional tool for any high school student field…

  3. Detecting brain tumor in computed tomography images using Markov random fields and fuzzy C-means clustering techniques

    NASA Astrophysics Data System (ADS)

    Abdulbaqi, Hayder Saad; Jafri, Mohd Zubir Mat; Omar, Ahmad Fairuz; Mustafa, Iskandar Shahrim Bin; Abood, Loay Kadom

    2015-04-01

    Brain tumors, are an abnormal growth of tissues in the brain. They may arise in people of any age. They must be detected early, diagnosed accurately, monitored carefully, and treated effectively in order to optimize patient outcomes regarding both survival and quality of life. Manual segmentation of brain tumors from CT scan images is a challenging and time consuming task. Size and location accurate detection of brain tumor plays a vital role in the successful diagnosis and treatment of tumors. Brain tumor detection is considered a challenging mission in medical image processing. The aim of this paper is to introduce a scheme for tumor detection in CT scan images using two different techniques Hidden Markov Random Fields (HMRF) and Fuzzy C-means (FCM). The proposed method has been developed in this research in order to construct hybrid method between (HMRF) and threshold. These methods have been applied on 4 different patient data sets. The result of comparison among these methods shows that the proposed method gives good results for brain tissue detection, and is more robust and effective compared with (FCM) techniques.

  4. Detecting brain tumor in computed tomography images using Markov random fields and fuzzy C-means clustering techniques

    SciTech Connect

    Abdulbaqi, Hayder Saad; Jafri, Mohd Zubir Mat; Omar, Ahmad Fairuz; Mustafa, Iskandar Shahrim Bin; Abood, Loay Kadom

    2015-04-24

    Brain tumors, are an abnormal growth of tissues in the brain. They may arise in people of any age. They must be detected early, diagnosed accurately, monitored carefully, and treated effectively in order to optimize patient outcomes regarding both survival and quality of life. Manual segmentation of brain tumors from CT scan images is a challenging and time consuming task. Size and location accurate detection of brain tumor plays a vital role in the successful diagnosis and treatment of tumors. Brain tumor detection is considered a challenging mission in medical image processing. The aim of this paper is to introduce a scheme for tumor detection in CT scan images using two different techniques Hidden Markov Random Fields (HMRF) and Fuzzy C-means (FCM). The proposed method has been developed in this research in order to construct hybrid method between (HMRF) and threshold. These methods have been applied on 4 different patient data sets. The result of comparison among these methods shows that the proposed method gives good results for brain tissue detection, and is more robust and effective compared with (FCM) techniques.

  5. Quantitative Density Measurement of the Interaction Field of Side Jet and Cross Flow by Colored-Grid Background Oriented Schlieren (CGBOS) Technique

    NASA Astrophysics Data System (ADS)

    Ota, M.; Inage, T.; Kikuma, Y.; Kawakami, H.; Miwa, Y.; Maeno, K.

    The Background Oriented Schlieren (BOS) technique proposed by Meier [1] enables us to take a quantitative density measurement of a flow field with computeraided image analysis. In the past several years, the BOS technique has been applied in various experiments [2],[3].

  6. SVD-Based Technique for Interference Cancellation and Noise Reduction in NMR Measurement of Time-Dependent Magnetic Fields.

    PubMed

    Chen, Wenjun; Ma, Hong; Yu, De; Zhang, Hua

    2016-03-04

    A nuclear magnetic resonance (NMR) experiment for measurement of time-dependent magnetic fields was introduced. To improve the signal-to-interference-plus-noise ratio (SINR) of NMR data, a new method for interference cancellation and noise reduction (ICNR) based on singular value decomposition (SVD) was proposed. The singular values corresponding to the radio frequency interference (RFI) signal were identified in terms of the correlation between the FID data and the reference data, and then the RFI and noise were suppressed by setting the corresponding singular values to zero. The validity of the algorithm was verified by processing the measured NMR data. The results indicated that, this method has a significantly suppression of RFI and random noise, and can well preserve the FID signal. At present, the major limitation of the proposed SVD-based ICNR technique is that the threshold value for interference cancellation needs to be manually selected. Finally, the inversion waveform of the applied alternating magnetic field was given by fitting the processed experimental data.

  7. Full-field swept-source optical coherence tomography with phase-shifting techniques for skin cancer detection

    NASA Astrophysics Data System (ADS)

    Krauter, J.; Boettcher, T.; Körner, K.; Gronle, M.; Osten, W.; Passilly, N.; Froehly, L.; Perrin, S.; Gorecki, C.

    2015-05-01

    The EU-funded project VIAMOS1 proposes an optical coherence tomography system (OCT) for skin cancer detection, which combines full-field and full-range swept-source OCT in a multi-channel sensor for parallel detection. One of the project objectives is the development of new fabrication technologies for micro-optics, which makes it compatible to Micro-Opto-Electromechanical System technology (MOEMS). The basic system concept is a wafer-based Mirau interferometer array with an actuated reference mirror, which enables phase shifted interferogram detection and therefore reconstruction of the complex phase information, resulting in a higher measurement range with reduced image artifacts. This paper presents an experimental one-channel on-bench OCT system with bulk optics, which serves as a proof-of-concept setup for the final VIAMOS micro-system. It is based on a Linnik interferometer with a wavelength tuning light source and a camera for parallel A-Scan detection. Phase shifting interferometry techniques (PSI) are used for the suppression of the complex conjugate artifact, whose suppression reaches 36 dB. The sensitivity of the system is constant over the full-field with a mean value of 97 dB. OCT images are presented of a thin membrane microlens and a biological tissue (onion) as a preliminary demonstration.

  8. SVD-Based Technique for Interference Cancellation and Noise Reduction in NMR Measurement of Time-Dependent Magnetic Fields

    PubMed Central

    Chen, Wenjun; Ma, Hong; Yu, De; Zhang, Hua

    2016-01-01

    A nuclear magnetic resonance (NMR) experiment for measurement of time-dependent magnetic fields was introduced. To improve the signal-to-interference-plus-noise ratio (SINR) of NMR data, a new method for interference cancellation and noise reduction (ICNR) based on singular value decomposition (SVD) was proposed. The singular values corresponding to the radio frequency interference (RFI) signal were identified in terms of the correlation between the FID data and the reference data, and then the RFI and noise were suppressed by setting the corresponding singular values to zero. The validity of the algorithm was verified by processing the measured NMR data. The results indicated that, this method has a significantly suppression of RFI and random noise, and can well preserve the FID signal. At present, the major limitation of the proposed SVD-based ICNR technique is that the threshold value for interference cancellation needs to be manually selected. Finally, the inversion waveform of the applied alternating magnetic field was given by fitting the processed experimental data. PMID:26959024

  9. Appraisal of Artificial Screening Techniques of Tomato to Accurately Reflect Field Performance of the Late Blight Resistance

    PubMed Central

    Nowakowska, Marzena; Nowicki, Marcin; Kłosińska, Urszula; Maciorowski, Robert; Kozik, Elżbieta U.

    2014-01-01

    Late blight (LB) caused by the oomycete Phytophthora infestans continues to thwart global tomato production, while only few resistant cultivars have been introduced locally. In order to gain from the released tomato germplasm with LB resistance, we compared the 5-year field performance of LB resistance in several tomato cultigens, with the results of controlled conditions testing (i.e., detached leaflet/leaf, whole plant). In case of these artificial screening techniques, the effects of plant age and inoculum concentration were additionally considered. In the field trials, LA 1033, L 3707, L 3708 displayed the highest LB resistance, and could be used for cultivar development under Polish conditions. Of the three methods using controlled conditions, the detached leaf and the whole plant tests had the highest correlation with thefield experiments. The plant age effect on LB resistance in tomato reported here, irrespective of the cultigen tested or inoculum concentration used, makes it important to standardize the test parameters when screening for resistance. Our results help show why other reports disagree on LB resistance in tomato. PMID:25279467

  10. Surface tension measurement techniques of magnetic fluids at an interface between different fluids using perpendicular field instability

    NASA Astrophysics Data System (ADS)

    Amin, M. Shahrooz; Elborai, Shihab; Lee, Se-Hee; He, Xiaowei; Zahn, Markus

    2005-05-01

    Two measurement techniques to determine the surface tension of ferrofluids using the perpendicular field instability are described. Four ferrofluid layers were examined with magnetic field applied perpendicularly to the surface of (1) oil-based ferrofluid in air; (2) water-based ferrofluid in air, (3) oil-based ferrofluid, and (4) fluorocarbon-based ferrofluid, both below a blend of 50% n-Propyl alcohol and 50% deionized water (propanol). Surface tension was accurately calculated by utilizing the measured Taylor wavelength from measurements of incipient fluid instability peaks and the measured densities of fluids. For cases (1) and (2), the calculated surface tension values were in good agreement with a tensiometer measurement. No accurate tensiometer measurements were conducted for the superposed liquids (3) and (4) since accurate tensiometer measurements are difficult for a two fluid layer system. The second less accurate method used the ferrofluid's nonlinear Langevin magnetization characteristics to compute the surface tension from incipience of interfacial instability conditions. Discrepancies between the surface tensions measured by the two methods were probably due to the ferrofluid particle size distributions and the strong dependence of the ferrofluid magnetization on particle size.

  11. Intensity-modulated radiation therapy (IMRT) of cancers of the head and neck: Comparison of split-field and whole-field techniques

    SciTech Connect

    Dabaja, Bouthaina; Salehpour, Mohammad R.; Rosen, Isaac; Tung, Sam; Morrison, William H.; Ang, K. Kian; Garden, Adam S. . E-mail: agarden@mdanderson.org

    2005-11-15

    Background: Oropharynx cancers treated with intensity-modulated radiation (IMRT) are often treated with a monoisocentric or half-beam technique (HB). IMRT is delivered to the primary tumor and upper neck alone, while the lower neck is treated with a matching anterior beam. Because IMRT can treat the entire volume or whole field (WF), the primary aim of the study was to test the ability to plan cases using WF-IMRT while obtaining an optimal plan and acceptable dose distribution and also respecting normal critical structures. Methods and Materials: Thirteen patients with early-stage oropharynx cancers had treatment plans created with HB-IMRT and WF-IMRT techniques. Plans were deemed acceptable if they met the planning guidelines (as defined or with minor violations) of the Radiation Therapy Oncology Group protocol H0022. Comparisons included coverage to the planning target volume (PTV) of the primary (PTV66) and subclinical disease (PTV54). We also compared the ability of both techniques to respect the tolerance of critical structures. Results: The volume of PTV66 treated to >110% was less in 9 of the 13 patients in the WF-IMRT plan as compared to the HB-IMRT plan. The calculated mean volume receiving >110% for all patients planned with WF-IMRT was 9.3% (0.8%-25%) compared to 13.7% (2.7%-23.7%) with HB-IMRT (p = 0.09). The PTV54 volume receiving >110% of dose was less in 10 of the 13 patients planned with WF-IMRT compared to HB-IMRT. The mean doses to all critical structures except the larynx were comparable with each plan. The mean dose to the larynx was significantly less (p = 0.001), 18.7 Gy, with HB-IMRT compared to 47 Gy with WF-IMRT. Conclusions: Regarding target volumes, acceptable plans can be generated with either WF-IMRT or HB-IMRT. WF-IMRT has an advantage if uncertainty at the match line is a concern, whereas HB-IMRT, particularly in cases not involving the base of tongue, can achieve much lower doses to the larynx.

  12. Solar Wind Magnetic Field Turbulence at Ion Kinetic Scales Measured by Cluster Using k-filtering Technique

    NASA Astrophysics Data System (ADS)

    Li, X.; Roberts, O. W.; Jeska, L.; Li, B.; Lu, Q.

    2014-12-01

    The nature of turbulence at kinetic scales is important since turbulence energy is believed to dissipate as heat at these scales. Here we report our several work on the solar wind turbulence at ion kinetic scales using the k-filtering technique. We found evidence of ion cyclotron resonance in solar wind intervals. In the wave vector space, in addition to the commonly observed population of magnetic field fluctuations propagating at quasi-perpendicular angles to the global mean field B0, a population propagating at quasi-parallel angles are also observed with no local plasma instabilities identified. At low wavenumbers (kv_A/Omega_p <= 0.6 ) both components are present, and have similar powers, while at higher wavenumbers (kv_A/Omega_p> 0.6) only the perpendicular component can be identified. A statistical study of 52 intervals of solar wind finds that the turbulence is predominantly highly oblique to the magnetic field with perpendicular wavenumbers much greater than parallel wavenumbers, and propagates slowly in the plasma frame with most points having frequencies smaller than the proton gyrofrequency. Weak agreement is found that turbulence at the ion kinetic scales consists of kinetic Alfven waves and coherent structures advected with plasma bulk velocity plus some minor more compressible components. The results suggest that anti-sunward and sunward propagating magnetic fluctuations have similar nature in both the fast and slow solar wind. The fast wind was shown to have significantly more anti-sunward flux than sunward flux and the slow wind appears to be more balanced at ion kinetic scales. The fluctuated magnetic field and magnitude of the magnetic field are used to compute the power of incompressible and compressible turbulence for the fast solar wind. It is found that Taylor's frozen-in hypothesis may break down for compressible turbulence at the ion kinetic scales, suggesting that whistler waves may contribute to the compressible turbulence on the scales

  13. Modified Conditional Merging technique: a new method to estimate a rainfall field combining remote sensed data and raingauge observations

    NASA Astrophysics Data System (ADS)

    Pignone, Flavio; Rebora, Nicola; Silvestro, Francesco

    2015-04-01

    The estimation of the rainfall field, especially its spatial distribution and position, is a crucial task both for rainfall nowcasting and for modeling catchment response to rainfall. Some studies of literature about multisensor datafusion prove that combining data from different sensors (especially raingauges and radar) represents the best way to obtain an enhanced ad more reliable estimation of QPE and of the associated river discharge. Sinclair and Peagram (2004) have proposed the Conditional Merging (CM) technique, a merging algorithm which extract the information content from the observed data and use it within an interpolation method to obtain the rainfall maps. The raingauges provide a punctual measure of the observed "real" rainfall while the remote sensors (radar network or satellite constellation) supply rainfall estimation maps which give an idea of the spatial correlation structure of the observed field. In this work is studied an enhanced algorithm based on CM, called Modified Conditional Merging, which can be used in real-time to produce the optimal rainfall maps. The area of interest, where the CM has been applied, is Italy, where are both available a dense network of raingauge measurements (about 3000 stations) and a QPE estimated by the Italian Radar composite. The main innovation respect to classical CM is to estimate the structure of covariance and the length of spatial correlation λ, for every raingauge, directly from the cumulated radar rainfall fields. The advantages of this method is to estimate the local characteristic of the domain to obtain information at smaller scale, very useful for convective events. A cross-validation of the new method was done and several statistical scores were applied on the results. The validation on a large number of Italian past event along with its operational use are presented and discussed.

  14. Sterile insect technique and Mediterranean fruit fly (Diptera: Tephritidae): assessing the utility of aromatherapy in a Hawaiian coffee field.

    PubMed

    Shelly, Todd E; McInnis, Donald O; Rodd, Charles; Edu, James; Pahio, Elaine

    2007-04-01

    The sterile insect technique (SIT) is widely used in integrated programs against tephritid fruit fly pests, particularly the Mediterranean fruit fly, Ceratitis capitata (Wiedemann) (Diptera: Tephritidae). Unfortunately, the mass-rearing procedures inherent to the SIT often lead to a reduction in the mating ability of the released males. One potential solution involves the prerelease exposure of males to particular attractants. In particular, exposure of male Mediterranean fruit flies to ginger, Zingiber officinale Roscoe, root oil (GRO) has been shown to increase mating success in laboratory and field cage trials. Here, we describe a field experiment that compares the level of egg sterility observed in two Hawaiian coffee, Coffea arabica L., plots, with GRO-exposed, sterile males released in one (treated) plot and nonexposed, sterile males released in the other (control) plot. Once per week in both plots over a 13-wk period, sterile males were released, trap captures were scored to estimate relative abundance of sterile and wild males, and coffee berries were collected and dissected in the laboratory to estimate the incidence of unhatched (sterile) eggs. Data on wild fly abundance and the natural rate of egg hatch also were collected in a remote area that received no sterile males. Despite that sterile:wild male ratios were significantly lower in the treated plot than in the control plot, the incidence of sterile eggs was significantly higher in the treated plot than in the control plot. Correspondingly, significantly higher values of Fried's competitiveness index (C) were found, on average, for treated than control sterile males. This study is the first to identify an association between the GRO "status" of sterile males and the incidence of egg sterility in the field and suggests that prerelease, GRO exposure may represent a simple and inexpensive means to increase the effectiveness of Mediterranean fruit fly SIT programs. PMID:17461047

  15. The integrated analyses of digital field mapping techniques and traditional field methods: implications from the Burdur-Fethiye Shear Zone, SW Turkey as a case-study

    NASA Astrophysics Data System (ADS)

    Elitez, İrem; Yaltırak, Cenk; Zabcı, Cengiz; Şahin, Murat

    2015-04-01

    The precise geological mapping is one of the most important issues in geological studies. Documenting the spatial distribution of geological bodies and their contacts play a crucial role on interpreting the tectonic evolution of any region. Although the traditional field techniques are still accepted to be the most fundamental tools in construction of geological maps, we suggest that the integration of digital technologies to the classical methods significantly increases the resolution and the quality of such products. We simply follow the following steps in integration of the digital data with the traditional field observations. First, we create the digital elevation model (DEM) of the region of interest by interpolating the digital contours of 1:25000 scale topographic maps to 10 m of ground pixel resolution. The non-commercial Google Earth satellite imagery and geological maps of previous studies are draped over the interpolated DEMs in the second stage. The integration of all spatial data is done by using the market leading GIS software, ESRI ArcGIS. We make the preliminary interpretation of major structures as tectonic lineaments and stratigraphic contacts. These preliminary maps are controlled and precisely coordinated during the field studies by using mobile tablets and/or phablets with GPS receivers. The same devices are also used in measuring and recording the geologic structures of the study region. Finally, all digitally collected measurements and observations are added to the GIS database and we finalise our geological map with all available information. We applied this integrated method to map the Burdur-Fethiye Shear Zone (BFSZ) in the southwest Turkey. The BFSZ is an active sinistral 60-to-90 km-wide shear zone, which prolongs about 300 km-long between Suhut-Cay in the northeast and Köyceğiz Lake-Kalkan in the southwest on land. The numerous studies suggest contradictory models not only about the evolution but also about the fault geometry of this

  16. Atmospheric measurements of hydroperoxides and aldehydes during field campaigns : new results due to improvement of measurements techniques

    NASA Astrophysics Data System (ADS)

    François, S.; Sowka, I.; Poulain, L.; Monod, A.; Wortham, H.

    2003-04-01

    Hydroperoxides and aldehydes are considered as atmospheric reservoirs of OH, HO_2 and RO_2 radicals and can reflect the oxidizing levels of the atmosphere. They are considered as important gas phase photo-oxidants present in the atmosphere. However, the atmospheric role of these compounds can vary from one species to another, therefore it is essential to investigate their measurement and speciation in the atmosphere. Atmospheric measurements were realized during two different field campaigns in the Marseilles area (France). Hydroperoxides were trapped in aqueous phase, with a glass coil and analyzed by HPLC/fluorescence detector with post column derivatization. Aldehydes were trapped in a liquid phase containing 2-4 DNPH, with a mist chamber and analyzed by HPLC/UV. The analytical techniques provided individual separation and quantification of seven hydroperoxides (hydrogen peroxide, hydroxymethyl hydroperoxide, bis(hydroxymethyl) peroxide, 1-hydroxyethyl hydroperoxide, methyl hydroperoxide, ethyl hydroperoxide and peroxyacetic acid) and eleven volatile aldehydes (formaldehyde, acetaldehyde, acrolein, acetone, propionaldehyde, crotonaldehyde, butyraldehyde, benzaldehyde, glyoxal, valeraldehyde and methylglyoxal). The first field campaign was part of the ESCOMPTE project (June 4th to July 16th 2001). During this campaign five different sampling sites, at low altitudes (<= 285 m), were investigated (maritime, urban, sub-industrial, biogenic and rural sites) and atmospheric measurements were realized during photochemical air pollution events. The second field campaign was part of the BOND project (July 2nd to July 14th 2002). Atmospheric measurements of hydroperoxides were carried out on one biogenic site, at altitude 690 m. The measurement system was improved allowing online sampling and analysis. During these field campaigns collection efficiencies were better than 96% for hydroperoxides, and from 78% to 96% for aldehydes. Detection limits were between 7,3× 10-3

  17. A comparison of rating and dating techniques to estimate the threat of soil erosion to archaeological monuments under agricultural fields

    NASA Astrophysics Data System (ADS)

    van Soest, Maud; Huisman, Hans; Schoorl, Jeroen; Reimann, Tony; Temme, Arnaud; Wallinga, Jakob; de Kort, Jan-Willem; van der Heiden, Menno; van Os, Bertil; van Egmond, Fenny; Ketteren, Michael

    2015-04-01

    For the protection of Dutch archaeological sites against degradation, the TOPsites project is investigating the rate, extent and mitigation of the most important processes involved. One of these processes is soil translocation or soil redistribution. For many Dutch archaeological sites the actual extent and rate of soil erosion is not yet known. In this study different techniques for dating and estimating rates have been compared on three archaeological sites on tilled fields with gentle slopes: (multi-temporal LiDar, profiles and spatial distribution of 137Cs, anthropogenic Pb, and 239+240Pu, and moreover OSL. In addition, the added value of the combination of several of these techniques together will be evaluated. Preliminary results show evidence for colluvium formation (deposition) on two of the sites. Lead contents in a buried soil on one of these sites suggest a subrecent to recent date. 137Cs profiles and spatial mapping, however, do not show clear evidence for recent erosion or re-deposition patterns. These first results suggest that in these agricultural settings with typical Dutch gentle slopes, erosion may only occur in rare, catastrophic, events with local high erosion and re-deposition rates instead of a more or less continuous process with lower rates. Consequently, the impact of ploughing might be limited to mixing of the plough layer, while the effect of damaging soil translocation, for these selected archaeological sites, seems less important. Forthcoming analysis and results of Pu and OSL will provide enough data for further discussion and possible falsification of these preliminary conclusions.

  18. Fabrication of Ultrasensitive Field-Effect Transistor DNA Biosensors by a Directional Transfer Technique Based on CVD-Grown Graphene.

    PubMed

    Zheng, Chao; Huang, Le; Zhang, Hong; Sun, Zhongyue; Zhang, Zhiyong; Zhang, Guo-Jun

    2015-08-12

    Most graphene field-effect transistor (G-FET) biosensors are fabricated through a routine process, in which graphene is transferred onto a Si/SiO2 substrate and then devices are subsequently produced by micromanufacture processes. However, such a fabrication approach can introduce contamination onto the graphene surface during the lithographic process, resulting in interference for the subsequent biosensing. In this work, we have developed a novel directional transfer technique to fabricate G-FET biosensors based on chemical-vapor-deposition- (CVD-) grown single-layer graphene (SLG) and applied this biosensor for the sensitive detection of DNA. A FET device with six individual array sensors was first fabricated, and SLG obtained by the CVD-growth method was transferred onto the sensor surface in a directional manner. Afterward, peptide nucleic acid (PNA) was covalently immobilized on the graphene surface, and DNA detection was realized by applying specific target DNA to the PNA-functionalized G-FET biosensor. The developed G-FET biosensor was able to detect target DNA at concentrations as low as 10 fM, which is 1 order of magnitude lower than those reported in a previous work. In addition, the biosensor was capable of distinguishing the complementary DNA from one-base-mismatched DNA and noncomplementary DNA. The directional transfer technique for the fabrication of G-FET biosensors is simple, and the as-constructed G-FET DNA biosensor shows ultrasensitivity and high specificity, indicating its potential application in disease diagnostics as a point-of-care tool.

  19. Total Skin Electron Therapy for Cutaneous T-Cell Lymphoma Using a Modern Dual-Field Rotational Technique

    SciTech Connect

    Heumann, Thatcher R.; Esiashvili, Natia; Parker, Sareeta; Switchenko, Jeffrey M.; Dhabbaan, Anees; Goodman, Michael; Lechowicz, Mary Jo; Flowers, Christopher R.; Khan, Mohammad K.

    2015-05-01

    Purpose: To report our experience with rotational total skin electron irradiation (RTSEI) in cutaneous T-cell lymphoma (CTCL), and to examine response by disease stage and race. Methods and Materials: We reviewed our outcomes for 68 CTCL patients who received RTSEI (≥30 Gy) from 2000 to 2013. Primary outcomes were complete clinical response (CCR), recurrence-free survival (RFS), and overall survival (OS). Using log–rank tests and Cox proportional hazards, OS and RFS were compared across tumor stages at time of RTSEI with further racial subgroup analysis. Results: Median age at diagnosis and at time of radiation was 52 and 56 years, respectively. Median follow-up was 5.1 years, 49% were African American, and 49% were female. At time of treatment, 18, 37, and 13 patients were T stage 2, 3, and 4, respectively. At 6 weeks after RTSEI, overall CCR was 82% (88%, 83%, and 69% for T2, T3, and T4, respectively). Median RFS was 11 months for all patients and 14, 10, and 12 months for stage T2, T3, and T4, respectively. Tumor stage was not associated with RFS or CCR. Maintenance therapy after RTSEI was associated with improved RFS in both crude and multivariable analysis, controlling for T stage. Median OS was 76 months (91 and 59 months for T3 and T4, respectively). With the exception of improved OS in African Americans compared with whites at stage T2, race was not associated with CCR, RFS, or OS. Conclusions: These results represent the largest RTSEI clinical outcomes study in the modern era using a dual-field rotational technique. Our observed response rates match or improve upon the standard set by previous outcome studies using conventional TSEI techniques, despite a large percentage of advanced CTCL lesions in our cohort. We found that clinical response after RTSEI did not seem to be affected by T stage or race.

  20. Fabrication of Ultrasensitive Field-Effect Transistor DNA Biosensors by a Directional Transfer Technique Based on CVD-Grown Graphene.

    PubMed

    Zheng, Chao; Huang, Le; Zhang, Hong; Sun, Zhongyue; Zhang, Zhiyong; Zhang, Guo-Jun

    2015-08-12

    Most graphene field-effect transistor (G-FET) biosensors are fabricated through a routine process, in which graphene is transferred onto a Si/SiO2 substrate and then devices are subsequently produced by micromanufacture processes. However, such a fabrication approach can introduce contamination onto the graphene surface during the lithographic process, resulting in interference for the subsequent biosensing. In this work, we have developed a novel directional transfer technique to fabricate G-FET biosensors based on chemical-vapor-deposition- (CVD-) grown single-layer graphene (SLG) and applied this biosensor for the sensitive detection of DNA. A FET device with six individual array sensors was first fabricated, and SLG obtained by the CVD-growth method was transferred onto the sensor surface in a directional manner. Afterward, peptide nucleic acid (PNA) was covalently immobilized on the graphene surface, and DNA detection was realized by applying specific target DNA to the PNA-functionalized G-FET biosensor. The developed G-FET biosensor was able to detect target DNA at concentrations as low as 10 fM, which is 1 order of magnitude lower than those reported in a previous work. In addition, the biosensor was capable of distinguishing the complementary DNA from one-base-mismatched DNA and noncomplementary DNA. The directional transfer technique for the fabrication of G-FET biosensors is simple, and the as-constructed G-FET DNA biosensor shows ultrasensitivity and high specificity, indicating its potential application in disease diagnostics as a point-of-care tool. PMID:26203889

  1. Comparison between eddy covariance and automatic chamber techniques for measuring net ecosystem exchange of carbon dioxide in cotton and wheat fields

    NASA Astrophysics Data System (ADS)

    Wang, K.; Liu, C.; Zheng, X.; Pihlatie, M.; Li, B.; Haapanala, S.; Vesala, T.; Liu, H.; Wang, Y.; Liu, G.; Hu, F.

    2013-11-01

    Static and transparent automatic chamber (AC) technique is a necessary choice for measuring net ecosystem exchange (NEE) of carbon dioxide (CO2) in circumstances where eddy covariance (EC) technique is not applicable. However, a comparison of the two techniques for measurements on croplands has seldom been undertaken. We carried out NEE observations in a cotton field (for one year) and a winter wheat field (for one cropping season) using both AC and EC techniques, to (a) compare the NEE fluxes measured using each technique, and (b) test the NEE measurement performance of an automatic chamber system (AMEG), which was designed for simultaneous flux measurements of multiple gases. The half-hourly NEE fluxes measured with the two techniques were in approximate agreement, with the AC fluxes being 0.78 (cotton) and 1.06 (wheat) times the size of the EC fluxes. When integrated to daily timescale, the fluxes of the two techniques were in better agreement, showing an average ratio of 0.94 and 1.00 for the cotton and wheat, respectively. During the periods with comparable field conditions and normal performance of both instruments, the cumulative NEE fluxes revealed small differences between the two techniques (-9.0% ~ 7%, with a mean of 0.1%). The measurements resulted in an annual cumulative NEE of -40 g C m-2 yr-1 (EC) and -42 g C m-2 yr-1 (AC) in the cotton field, and a seasonal cumulative NEE of -251 g C m-2 (EC) and -205 g C m-2 (AC) in the wheat field. Our results indicate that, for cropland populated by short plants, the AMEG system and the data processing procedures applied in this study are able to provide NEE estimates comparable to those from EC measurements.

  2. Compact sensor combining digital speckle pattern interferometry and the hole-drilling technique to measure nonuniform residual stress fields

    NASA Astrophysics Data System (ADS)

    Viotti, Matías R.; Albertazzi, Armando

    2013-10-01

    A portable device to essentially measure residual stress fields outside an optical bench is presented. This system combines the hole-drilling technique with digital speckle pattern interferometry. A novel feature of this device is its high degree of compaction since only one base supports simultaneously the measurement module and the hole-drilling device. A new version of the American society for testing and materials standard E837 for the measurement of residual stresses has been improved including a computation method for nonuniform residual stresses. According to this standard, a hole with a maximum depth of 1.0 mm should be introduced into the material to assess the stress distribution along the hole's depth. The discretization of the stress distribution is performed in 20 equal steps of 0.05 mm, getting the deformations generated for stress relief in every drilling step. A description of the compact device showing the solution for a fast and easy interchanging process between modules is also presented. The proposed system was compared with a traditional method using strain gages, and a good agreement was shown between stress distributions measured with both methods. Finally, the portable device was used to evaluate the residual stress distribution in a sample with a rod welded by friction hydro pillar processing.

  3. The Applications of Decision-Level Data Fusion Techniques in the Field of Multiuser Detection for DS-UWB Systems

    PubMed Central

    Gu, Yebo; Yang, Minglei; Shi, Zhenguo; Wu, Zhilu

    2015-01-01

    In this paper, the decision-level data fusion techniques are extended to the multiuser detection (MUD) field. Then two novel MUD algorithms, that is the chairman arbitrating decision-level fusion criterion (CA-DFC) based MUD algorithm and the veto logic decision-level fusion criterion (VL-DFC) based MUD algorithm, are proposed for DS-UWB communication systems. In CA-DFC based method, the chairman can make his arbitration among the preliminary decisions from sub-optimal detectors by his own rule. In the VL-DFC based method, the undetermined bits in these preliminary decisions are considered to construct a simplified solution space, and then the chairman can make his final decision within this space. Simulation results demonstrate that the performances of CA-DFC and VL-DFC based MUD algorithms are superior to those of other sub-optimal MUD algorithms, and even close to that of OMD. Moreover, both of these proposed algorithms have lower computational complexity than OMD, which reveals their efficiency. Compared with CA-DFC, VL-DFC based algorithm achieves a little improvement in its performance, at the cost of the increment in its computational complexity. Thus, they can be applied to different practical situations. PMID:26404273

  4. Electromagnetic self-consistent field initialization and fluid advance techniques for hybrid-kinetic PWFA code Architect

    NASA Astrophysics Data System (ADS)

    Massimo, F.; Marocchino, A.; Rossi, A. R.

    2016-09-01

    The realization of Plasma Wakefield Acceleration experiments with high quality of the accelerated bunches requires an increasing number of numerical simulations to perform first-order assessments for the experimental design and online-analysis of the experimental results. Particle in Cell codes are the state-of-the-art tools to study the beam-plasma interaction mechanism, but due to their requirements in terms of number of cores and computational time makes them unsuitable for quick parametric scans. Considerable interest has been shown thus in methods which reduce the computational time needed for the simulation of plasma acceleration. Such methods include the use of hybrid kinetic-fluid models, which treat the relativistic bunches as in a PIC code and the background plasma electrons as a fluid. A technique to properly initialize the bunch electromagnetic fields in the time explicit hybrid kinetic-fluid code Architect is presented, as well the implementation of the Flux Corrected Transport scheme for the fluid equations integrated in the code.

  5. Inspection of the Space Shuttle External Tank SOFI Using Near-Field and Focused Millimeter Wave Nondestructive Testing Techniques

    NASA Technical Reports Server (NTRS)

    Kharkovsky, S.; Hepburn, F.; Walker, J.; Zoughi, R.

    2005-01-01

    The Space Shuttle Columbia's catastrophic failure has been attributed to a piece of external tank SOFI (Spray On Foam Insulation) striking the left wing of the orbiter causing significant damage to some of the reinforced carbon/carbon leading edge wing panels. Subsequently, several nondestructive testing (NDT) techniques have been considered for inspecting the external tank. One such method involves using millimeter waves which have been shown to easily penetrate through the foam and provide high resolution images of its interior structures. This paper presents the results of inspecting three different SOFI covered panels by reflectometers at millimeter wave frequencies, specifically at 100 GHz. Each panel was fitted with various embedded anomalies/inserts representing voids and unbonds of diferent shapes, sizes and locations within each panel. In conjunction with these reJqectome&rs, radiators including a focused lens antenna and a small horn antenna were used. The focused lens antenna provided for a footprint diameter of approximately 1.25 cm (0.5") at 25.4 cm (10") away from the lens surface. The horn antenna was primarily operated in its near-field for obtaining relatively high resolution images. These images were produced using 2 0 scanning mechanisms. Discussions of the difference between the capabilities of these two types of antennas (radiators) for the purpose of inspecting the SOFI as it relates to the produced images are also presented.

  6. Ultra-thin resistive switching oxide layers self-assembled by field-induced oxygen migration (FIOM) technique.

    PubMed

    Lee, Sangik; Hwang, Inrok; Oh, Sungtaek; Hong, Sahwan; Kim, Yeonsoo; Nam, Yoonseung; Lee, Keundong; Yoon, Chansoo; Kim, Wondong; Park, Bae Ho

    2014-11-03

    High-performance ultra-thin oxide layers are required for various next-generation electronic and optical devices. In particular, ultra-thin resistive switching (RS) oxide layers are expected to become fundamental building blocks of three-dimensional high-density non-volatile memory devices. Until now, special deposition techniques have been introduced for realization of high-quality ultra-thin oxide layers. Here, we report that ultra-thin oxide layers with reliable RS behavior can be self-assembled by field-induced oxygen migration (FIOM) at the interface of an oxide-conductor/oxide-insulator or oxide-conductor/metal. The formation via FIOM of an ultra-thin oxide layer with a thickness of approximately 2-5 nm and 2.5% excess oxygen content is demonstrated using cross-sectional transmission electron microscopy and secondary ion mass spectroscopy depth profile. The observed RS behavior, such as the polarity dependent forming process, can be attributed to the formation of an ultra-thin oxide layer. In general, as oxygen ions are mobile in many oxide-conductors, FIOM can be used for the formation of ultra-thin oxide layers with desired properties at the interfaces or surfaces of oxide-conductors in high-performance oxide-based devices.

  7. A new submodelling technique for multi-scale finite element computation of electromagnetic fields: Application in bioelectromagnetism

    NASA Astrophysics Data System (ADS)

    Aristovich, K. Y.; Khan, S. H.

    2010-07-01

    Complex multi-scale Finite Element (FE) analyses always involve high number of elements and therefore require very long time of computations. This is caused by the fact, that considered effects on smaller scales have greater influences on the whole model and larger scales. Thus, mesh density should be as high as required by the smallest scale factor. New submodelling routine has been developed to sufficiently decrease the time of computation without loss of accuracy for the whole solution. The presented approach allows manipulation of different mesh sizes on different scales and, therefore total optimization of mesh density on each scale and transfer results automatically between the meshes corresponding to respective scales of the whole model. Unlike classical submodelling routine, the new technique operates with not only transfer of boundary conditions but also with volume results and transfer of forces (current density load in case of electromagnetism), which allows the solution of full Maxwell's equations in FE space. The approach was successfully implemented for electromagnetic solution in the forward problem of Magnetic Field Tomography (MFT) based on Magnetoencephalography (MEG), where the scale of one neuron was considered as the smallest and the scale of whole-brain model as the largest. The time of computation was reduced about 100 times, with the initial requirements of direct computations without submodelling routine of 10 million elements.

  8. A least-squares inversion technique for identification of a point release: Application to Fusion Field Trials 2007

    NASA Astrophysics Data System (ADS)

    Singh, Sarvesh Kumar; Rani, Raj

    2014-08-01

    Identification of a point release is a parametric estimation problem associated with the estimation of its parameters namely, location and strength. A least-squares inversion algorithm, free from initial guess of release parameters, is utilized here for the source identification in eleven trials of single continuous point releases conducted during Fusion Field Trials 2007. The source locations are retrieved within an average error of 23 m from their true locations. The maximum and minimum errors in the retrieval of the source location are obtained as 57.3 m and 3 m respectively. The source strength is retrieved within a factor of 1.6 in all the trials. The sensitivity of the source estimation is analysed with respect to (i) variation of grid sizes in discretized space, (ii) inclusion of zero measurements and (iii) addition of new measurements. Posterior uncertainty is mentioned in terms of variance of the source parameters, approximated by using the Hessian of the cost function. In addition, an attempt is made to obtain the minimum number of measurements for a successful source inversion. The study explores the future applicability of this least-squares inversion technique for point source identification.

  9. The application of the RELIEF technique for velocity field measurements in the ASTF C1 test cell

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The Aeropropulsion Systems Test Facility (ASTF) C1 Test Cell is to be configured for propulsion tests of National Aerospace Plane (NASP) engines over flight Mach number conditions ranging from 0.5 to 3.8. This facility is capable of continuously generating a 5 ft. x 5 ft. square free air jet flow field at a local Mach number up to 3.32 with a density of between 0.134 and 0.048 amagat and a static temperature of 257 K or less. The potential of the Raman Excitation + Laser Induced Electronic Fluorescence (RELIEF) velocity measurement technique for measuring the three dimensional velocity profile across the exit plane of this jet and the entrance plane to the test engine under these conditions is examined. Velocity measurements must be done to an accuracy of better than 1 percent. Flow direction must be measured to better than 1 deg for inlet performance evaluation. Measurements to these specifications need to be done with a grid spacing of approximately 1/100th of the cross sectional dimension of the free jet exit in a time not greater than 30 seconds.

  10. Ambient in-situ immersion freezing measurements - findings from the ZAMBIS 2014 field campaign for three ice nucleation techniques

    NASA Astrophysics Data System (ADS)

    Kohn, Monika; Atkinson, James D.; Lohmann, Ulrike; Kanji, Zamin A.

    2015-04-01

    To estimate the influence of clouds on the Earth's radiation budget, it is crucial to understand cloud formation processes in the atmosphere. A key process, which significantly affects cloud microphysical properties and the initiation of precipitation thus contributing to the hydrological cycle, is the prevailing type of ice nucleation mechanism. In mixed-phase clouds immersion freezing is the dominant ice crystal forming mechanism, whereby ice nucleating particles (INP) first act as cloud condensation nuclei (CCN) and are activated to cloud droplets followed by freezing upon supercooling. There are a number of experimental methods and techniques to investigate the ice nucleating ability in the immersion mode, however most techniques are offline for field sampling or only suitable for laboratory measurements. In-situ atmospheric studies are needed to understand the ice formation processes of 'real world' particles. Laboratory experiments simulate conditions of atmospheric processes like ageing or coating but are still idealized. Our method is able to measure ambient in-situ immersion freezing on single immersed aerosol particles. The instrumental setup consists of the recently developed portable immersion mode cooling chamber (PIMCA) as a vertical extension to the portable ice nucleation chamber (PINC, [1]), where the frozen fraction of activated aerosol particles are detected by the ice optical depolarization detector (IODE, [2]). Two additional immersion freezing techniques based on a droplet freezing array [3,4] are used to sample ambient aerosol particles either in a suspension (fraction larger ~0.6 μm) or on PM10-filters to compare different ice nucleation techniques. Here, we present ambient in-situ measurements at an urban forest site in Zurich, Switzerland held during the Zurich ambient immersion freezing study (ZAMBIS) in spring 2014. We investigated the ice nucleating ability of natural atmospheric aerosol with the PIMCA/PINC immersion freezing setup as

  11. Stress analysis and tectonic trends of southern Sinai Peninsula, using potential field data analysis and anisotropy technique

    NASA Astrophysics Data System (ADS)

    Saleh, Salah; Saleh, Ahmed

    2012-09-01

    The aim of the present work is to evaluate the stress direction and the tectonic trends of the study area using magnetic anisotropy and potential field data interpretations (Bouguer and aeromagnetic). The specific objective of the gravity and aeromagnetic interpretation is to establish the trend and depth of the structural configuration of the basement rocks. Horizontal gradient techniques could to delineate directions of deep sources and enabled tracing several faults, lineaments and tectonic boundaries of basement rocks. The trend analysis shows N40°-50°W, N10°-20°W and N10°-20°E which may be related to the Gulf of Suez, Red Sea and Gulf of Aqaba stresses. However, Euler Deconvolution technique was applied using the aeromagnetic data to provide reliable information about penetrated source depth (100 m and ˜10.0 km) and trends of the subsurface sources (principally in NW and NE directions). Moreover, representative 72 oriented rock samples have been collected from seven sites in the study area. The rock magnetic properties and magnetic anisotropy analysis have been determined for all the studied samples. The interpretation clearly defined magnetic lineation at all sites and anisotropy of magnetic susceptibility (AMS) parameters. The stress direction of the studied area has been evaluated using magnetic anisotropy and geophysical analysis. Generally the estimated geophysical data analysis (Bouguer and aeromagnetic) are well consistent with the AMS interpretations of this study. The results indicated that the directions of predominant faults and foliations are NW-SE (related to the Gulf of Suez and Red Sea rifting) which indicate that the main stress and tectonic trend is NE-SW, which is more predominant in southern Sinai region. Moreover, it is clear that, the studied area was affected also by less predominant sources trended in NE-SW direction, which related to the tectonic activity of Gulf of Aqaba. The least predominant is north 40°-50° east that is

  12. Stress analysis and tectonic trends of southern Sinai Peninsula, using potential field data analysis and anisotropy technique

    NASA Astrophysics Data System (ADS)

    Saleh, Salah; Saleh, Ahmed

    2012-09-01

    The aim of the present work is to evaluate the stress direction and the tectonic trends of the study area using magnetic anisotropy and potential field data interpretations (Bouguer and aeromagnetic). The specific objective of the gravity and aeromagnetic interpretation is to establish the trend and depth of the structural configuration of the basement rocks. Horizontal gradient techniques could to delineate directions of deep sources and enabled tracing several faults, lineaments and tectonic boundaries of basement rocks. The trend analysis shows N40°-50°W, N10°-20°W and N10°-20°E which may be related to the Gulf of Suez, Red Sea and Gulf of Aqaba stresses. However, Euler Deconvolution technique was applied using the aeromagnetic data to provide reliable information about penetrated source depth (100 m and ˜10.0 km) and trends of the subsurface sources (principally in NW and NE directions). Moreover, representative 72 oriented rock samples have been collected from seven sites in the study area. The rock magnetic properties and magnetic anisotropy analysis have been determined for all the studied samples. The interpretation clearly defined magnetic lineation at all sites and anisotropy of magnetic susceptibility ( AMS) parameters. The stress direction of the studied area has been evaluated using magnetic anisotropy and geophysical analysis. Generally the estimated geophysical data analysis (Bouguer and aeromagnetic) are well consistent with the AMS interpretations of this study. The results indicated that the directions of predominant faults and foliations are NW-SE (related to the Gulf of Suez and Red Sea rifting) which indicate that the main stress and tectonic trend is NE-SW, which is more predominant in southern Sinai region. Moreover, it is clear that, the studied area was affected also by less predominant sources trended in NE-SW direction, which related to the tectonic activity of Gulf of Aqaba. The least predominant is north 40°-50° east that is

  13. Studying the spatial variability of Cr in agricultural field using both particle induced X-ray emission (PIXE) and instrumental neutron activation analysis (INAA) technique

    NASA Astrophysics Data System (ADS)

    Cruvinel, Paulo E.; Crestana, Sílvio; Artaxo, Paulo; Martins, JoséV.; Armelin, Maria JoséA.

    1996-04-01

    In the field of soil physics, a technique which permits a non-destructive, accurate and fast elemental analysis with a minimum of sample preparation effort is often desired. Although trace elements are minor components of the solid phase, they play an important role in soil fertility. Cr is of nutritional importance because it is a required element in human and animal nutrition. The immobility of Cr may be responsible for an inadequate Cr supply to plants. This work not only demonstrates the suitability of PIXE as a fast and non-destructive technique, useful to measure Cr content in soil samples, but also outlines a study of spatial variability of that element in agricultural field. To demonstrate the capability of the method soil samples were collected in a 5000 m 2 agricultural field. The soil samples were analyzed using both PIXE and INAA techniques. Besides, a Fourier interpolation technique was used to verify the distribution of Cr along of the sampled field. INAA was carried out by means of the γ-ray emitted by 51Cr(320 keV). Results show that there is a good linear relationship between the elemental concentration of Cr obtained using those techniques, i.e. a correlation coefficient of r2 = 0.82 was achieved.

  14. SU-E-T-272: Radiation Damage Comparison Between Intensity Modulated Radiotherapy and Field-In-Field Technique in Breast Cancer Treatments

    SciTech Connect

    Ai, H; Zhang, H

    2014-06-01

    Purpose: To compare normal tissue complications between IMRT and FIF treatment in breast cancer. Methods: 16 patients treated with IMRT plan and 20 patients treated with FIF plan were evaluated in this study. Both kinds of plans were generated using Eclipse treatment planning system by dosimetrist following clinical radiotherapy treatment guidelines. The plans were reviewed and approved by radiation oncologist. The average survival fraction (SF) for three different normal tissue cells of each concerned structure can be calculated from differential dose volume histogram (DVH) using linear quadratic model. The three types of normal tissues include radiosensitive, moderately radiosensitive and radio-resistant that represents 70%, 50% and 30% survival fractions, respectively, for a 2-Gy open field. Equivalent uniform doses (EUD) for corresponding normal tissues of each structure were calculated. Results: The EUDs of the lungs, heart, healthy breast and spinal cord with both IMRT and FIF treatments were calculated. Considering the average value of all IMRT plans, the lung of treated side absorbed 16.0% of dosage prescribed to the tumor if the radiosensitivity of the lung is similar to the radiosensitive cell line. For moderately radiosensitive and radio-resistant lung tissue, the average EUDs can be 18.9% and 22.4% of prescription. In contrast, patients treated with FIF plans were delivered 6.0%, 7.5% and 10.3% of prescribed dose for radiosensitive, moderately radiosensitive and radio-resistant lung tissue, respectively. Comparing heart EUDs between IMRT and FIF plans, average absorbed doses in IMRT treatment were 7.7%, 8.7% and 9.7% of prescription for three types of heart normal tissue cell lines while FIF treatments delivered only 1.3%, 1.5% and 1.6% of prescription dose. For the other organs, the results were similar. Conclusion: The results indicated that breast cancer treatment using IMRT technique had more normal tissue damage than FIF treatment. FIF demonstrated

  15. Final Report on Development of Optimized Field-Reversed Configuration Plasma Formation Techniques for Magnetized Target Fusion

    SciTech Connect

    Lynn, Alan

    2013-11-01

    The University of New Mexico (UNM) proposed a collaboration with Los Alamos National Laboratory (LANL) to develop and test methods for improved formation of field-reversed configuration (FRC) plasmas relevant to magnetized target fusion (MTF) energy research. MTF is an innovative approach for a relatively fast and cheap path to the production of fusion energy that utilizes magnetic confinement to assist in the compression of a hot plasma to thermonuclear conditions by an external driver. LANL is currently pursing demonstration of the MTF concept via compression of an FRC plasma by a metal liner z-pinch in conjunction with the Air Force Research Laboratory in Albuquerque, NM. A key physics issue for the FRC's ultimate success as an MTF target lies in the initial pre-ionization (PI) stage. The PI plasma sets the initial conditions from which the FRC is created. In particular, the PI formation process determines the amount of magnetic flux that can be trapped to form the FRC. A ringing theta pinch ionization (RTPI) technique, such as currently used by the FRX-L device at LANL, has the advantages of high ionization fraction, simplicity (since no additional coils are required), and does not require internal electrodes which can introduce impurities into the plasma. However RTPI has been shown to only trap 50% of the initial bias flux at best and imposes additional engineering constraints on the capacitor banks. The amount of trapped flux plays an important role in the FRC's final equilibrium, transport, and stability properties, and provides increased ohmic heating of the FRC through induced currents as the magnetic field decays. Increasing the trapped flux also provides the route to greatest potential gains in FRC lifetime, which is essential to provide enough time to translate and compress the FRC effectively. In conjunction with LANL we initially planned to develop and test a microwave break- down system to improve the initial PI plasma formation. The UNM team would

  16. Increased oil production and reserves from improved completion techniques in the Bluebell field, Uinta Basin, Utah. Annual report, October 1, 1995--September 30, 1996

    SciTech Connect

    Morgan, C.D.; Allison, M.L.

    1997-08-01

    The Bluebell field is productive from the Tertiary lower Green River and Wasatch Formations of the Uinta Basin, Utah. The productive interval consists of thousands of feet of interbedded fractured clastic and carbonate beds deposited in a fluvial-dominated lacustrine environment. Wells in the Bluebell field are typically completed by perforating 40 or more beds over 1,000 to 3,000 vertical feet (300-900 m), then stimulating the entire interval. This completion technique is believed to leave many potentially productive beds damaged and/or untreated, while allowing water-bearing and low-pressure (thief) zones to communicate with the wellbore. Geologic and engineering characterization has been used to define improved completion techniques. A two-year characterization study involved detailed examination of outcrop, core, well logs, surface and subsurface fractures, produced oil-field waters, engineering parameters of the two demonstration wells, and analysis of past completion techniques and effectiveness. The characterization study resulted in recommendations for improved completion techniques and a field-demonstration program to test those techniques. The results of the characterization study and the proposed demonstration program are discussed in the second annual technical progress report. The operator of the wells was unable to begin the field demonstration this project year (October 1, 1995 to September 20, 1996). Correlation and thickness mapping of individual beds in the Wasatch Formation was completed and resulted in a. series of maps of each of the individual beds. These data were used in constructing the reservoir models. Non-fractured and fractured geostatistical models and reservoir simulations were generated for a 20-square-mile (51.8-km{sup 2}) portion of the Bluebell field. The modeling provides insights into the effects of fracture porosity and permeability in the Green River and Wasatch reservoirs.

  17. Increased oil production and reserves from improved completion techniques in the Bluebell Field, Uinta Basin, Utah. Annual report, October 1, 1996--September 30, 1997

    SciTech Connect

    Deo, M.D.; Morgan, C.D.

    1998-05-01

    Wells in the Bluebell field are typically completed by perforating 40 or more beds over 1,000 to 3,000 vertical ft, them stimulating the entire interval with hydrochloric acid. This technique is often referred to as the shot gun completion. The shot-gun technique is believed to leave many potentially productive beds damaged and/or untreated, while allowing water-bearing and low-pressure (thief) zones to communicate with the wellbore. A two-year characterization study involved detailed examination of outcrop, core, well logs, surface and subsurface fractures, produced oil-field waters, engineering parameters of the two demonstration wells, and analysis of past completion techniques and effectiveness. The study was intended to improve the geologic characterization of the producing formations and thereby develop completion techniques specific to the producing beds or facies instead of a shot gun approach to stimulating all the beds. The characterization did not identify predictable-facies or predictable-fracture trends within the vertical stratigraphic column as originally hoped. Advanced logging techniques can identify productive beds in individual wells. A field-demonstration program was developed to use cased-hole advanced logging techniques in two wells and recompletion the wells at two different scales based on the logging. The first well was going to be completed at the interval scale using a multiple stage completion technique (about 500 ft per stage). The second well will be recompleted at the bed-scale using bridge plug and packer to isolate three or more beds for stimulation. These recompletion will show which logs are most effective in identifying productive beds and what scale of completion is most cost effective. The third demonstration will be the logging and completion of a new well using the logs and completion scale or technique most effective in the previous demonstrations.

  18. Near-field reflection backscattering apertureless optical microscopy: application to spectroscopy experiments on opaque samples, comparison between lock-in and digital photon counting detection techniques.

    PubMed

    Diziain, S; Bijeon, J-L; Adam, P-M; Lamy de la Chapelle, M; Thomas, B; Déturche, R; Royer, P

    2007-01-01

    An apertureless scanning near-field optical microscope (ASNOM) in reflection backscattering configuration is designed to conduct spectroscopic experiments on opaque samples constituted of latex beads. The ASNOM proposed takes advantage of the depth-discrimination properties of confocal microscopes to efficiently extract the near-field optical signal. Given their importance in a spectroscopic experiment, we systematically compare the lock-in and synchronous photon counting detection methods. Some results of Rayleigh's scattering in the near field of the test samples are used to illustrate the possibilities of this technique for reflection backscattering spectroscopy.

  19. Single Event Analysis and Fault Injection Techniques Targeting Complex Designs Implemented in Xilinx-Virtex Family Field Programmable Gate Array (FPGA) Devices

    NASA Technical Reports Server (NTRS)

    Berg, Melanie D.; Label, Kenneth; Kim, Kim

    2014-01-01

    An informative session regarding SRAM FPGA basics. Presenting a framework for fault injection techniques applied to Xilinx Field Programmable Gate Arrays (FPGAs). Introduce an overlooked time component that illustrates fault injection is impractical for most real designs as a stand-alone characterization tool. Demonstrate procedures that benefit from fault injection error analysis.

  20. Further evidence for low intensity of the geomagnetic field during the early Cretaceous time: using the modified Shaw method and microwave technique

    NASA Astrophysics Data System (ADS)

    Pan, Yongxin; Hill, Mimi. J.; Zhu, Rixiang; Shaw, John

    2004-05-01

    We report new absolute palaeointensity estimates using basalts from northeastern China (K/Ar age, 125-120 Ma) using the modified Shaw method in conjunction with the microwave technique. Samples for the palaeointensity experiments were selected mainly based on their good reversibility of thermomagnetic curves and single primary magnetization characteristics. Using the modified Shaw method, 28 out of 45 measured samples from 10 cooling units give a virtual dipole moment of (3.1 +/- 1.0) × 1022 Am2, and the microwave technique using 14 acceptable determinations (out of 20 measured) give an average value of (2.9 +/- 0.9) × 1022 Am2. Results using both the modified Shaw method and the microwave technique demonstrate that the geomagnetic field strength recorded by these lavas was low. This is in agreement with previous results of the same time interval obtained by the Thellier method with partial thermal remanence (p-TRM) checks. The fact that different techniques give qualitatively compatible low palaeointensity results provides greater confidence that the weak field features seen just prior to the Cretaceous normal superchron (CNS) are the result of the actual field recorded by the basalts as opposed to artefacts of the method/analysis. This study also demonstrates that the microwave technique can be used for very old basalts.

  1. Comparison between eddy covariance and automatic chamber techniques for measuring net ecosystem exchange of carbon dioxide in cotton and wheat fields

    NASA Astrophysics Data System (ADS)

    Wang, K.; Liu, C.; Zheng, X.; Pihlatie, M.; Li, B.; Haapanala, S.; Vesala, T.; Liu, H.; Wang, Y.; Liu, G.; Hu, F.

    2013-05-01

    Static and transparent automatic chamber (AC) technique is a~necessary choice for measuring net ecosystem exchange (NEE) of carbon dioxide (CO2) in circumstances where eddy covariance (EC) technique is not applicable. However, a comparison of the two techniques for measurements on croplands has seldom been undertaken. We carried out NEE observations in a cotton field (for one year) and a winter wheat field (for one cropping season) using both AC and EC techniques, to (a) compare the NEE fluxes measured using each technique, and (b) test the NEE measurement performance of an automatic chamber system (AMEG), which was designed for simultaneous flux measurements of multiple gases. The half-hourly NEE fluxes measured with the two techniques were in approximate agreement, with the AC fluxes being 0.78 (cotton) and 1.06 (wheat) times those of the EC. When integrated to daily timescale, the fluxes of the two techniques were in better agreement, showing an average ratio of 0.94 and 1.00 for the cotton and wheat, respectively. During the periods with comparable field conditions and normal performance of both instruments, the cumulative NEE fluxes revealed small differences between the two techniques (-9.0 ~ 6.7%, with a mean of 0.1%). The measurements resulted in annual cumulative NEE of -40 g C m-2 yr-1 (EC) and -42 g C m-2 yr-1 (AC) in the cotton field and seasonal cumulative NEE of -251 g C m-2 (EC) and -205 g C m-2 (AC) in the wheat field. Our results indicate that, for cropland populated by short plants, the AMEG system and the data processing procedures applied in this study are able to provide NEE estimates comparable to those from EC measurements, although either technique may lead to an overestimation of the loss rate (or underestimation of the gain rate) of the soil organic carbon stock of an ecosystem, in particular with calcareous soils exposed to increasing atmospheric acid deposition.

  2. A study of the magnetic field distribution in an Ag-sheathed Bi2223 tape using scanning Hall sensor and magneto-optical techniques

    NASA Astrophysics Data System (ADS)

    Kawano, K.; Abell, J. S.; Ohtake, A.; Oota, A.

    2000-09-01

    Using both magneto-optical (MO) and scanning Hall sensor techniques, magnetic field distributions have been observed in a superconducting Ag-sheathed Bi2223 monofilamentary tape in the presence of an external magnetic field. Application of the inversion scheme to the MO contrast has allowed the two-dimensional current distribution to be determined. The Hall sensor measurements indicate that the current distribution in the core depends on the applied external field, and the current flows mainly at the edge of the core in a high external field. The magnetic line profiles across the width of the tape have been analysed by a numerical calculation by modelling the current loops based on the two-dimensional current distribution from the MO image. The analysis shows that an increase in the external field limits and narrows the current flow region from the whole of the core to the edge.

  3. Near Field Deformation of the Mw 6.0 24 August, 2014 South Napa Earthquake Estimated by Airborne Light Detection and Ranging (LiDAR) Change Detection Techniques

    NASA Astrophysics Data System (ADS)

    Lyda, A. W.; Zhang, X.; Glennie, C. L.; Hudnut, K. W.; Brooks, B. A.

    2015-12-01

    We examine surface deformation caused by the Mw 6.0 24 August, 2014 South Napa Earthquake using high-resolution pre and post event airborne LiDAR (Light Detection and Ranging) observations. Temporally spaced LiDAR surveys taken before and after an earthquake can provide decimeter-level, 3D near-field estimates of deformation. These near-field deformation estimates can help constrain fault slip and rheology of shallow seismogenic zones. We compare and contrast estimates of deformation obtained from pre and post-event LiDAR data sets of the 2014 South Napa Earthquake using two change detection techniques, Iterative Control Point (ICP) and Particle Image Velocimetry (PIV). The ICP algorithm has been and still is the primary technique for acquiring three dimensional deformations from airborne LiDAR data sets. It conducts a rigid registration of pre-event data points to post event data points via iteratively matching data points with the smallest Euclidian distances between data sets. PIV is a technique derived from fluid mechanics that measures the displacement of a particle between two images of known time. LiDAR points act as the particles within the point cloud images so that their movement represents the horizontal deformation of the surface. The results from these change detection techniques are presented and further analyzed for differences between the techniques, the effects of temporal spacing between LiDAR collections, and the use of permanent LiDAR scatterers to constrain deformation estimates. The airborne LiDAR results will also be compared with far field deformations from space based geodetic techniques (InSAR and GNSS) and field observations of surface displacement.

  4. Glacier and climate changes in the Western Indian Himalayas (Ladakh and Lahul-Spiti): remote sensing, field techniques and adaptation techniques

    NASA Astrophysics Data System (ADS)

    Racoviteanu, Adina; Williams, Mark

    2010-05-01

    Anecdotal evidence from glacier termini observations in the Himalayas suggest that these glaciers have been in a state of general retreat since the last century, and point to "alarming" rates of retreat in the past decades. Concomitantly, local communities in the Western Himalayas have reported changes in glacier extents, snow cover and weather patterns. In response to "alarming" rates of glacial retreat, some indigenous cultures in the Himalayan area have begun a number of adaptive responses such as meltwater harvesting to construct "artificial" glaciers, which store the water during the dry season. There is urgency in: a) scientifically evaluating whether such practices of glacier regeneration can help provide water in a timely manner and 2) developing glacier datasets to assist such local efforts to ensure water supply in these data-scarce mountainous areas. Here we compare and contrast scientific and indigenous perspectives on spatial patterns of glacier changes in the dry areas of Ladakh (34.10°N and 77.34°E ) and Lahul-Spiti district (31.11°N and 77.15°E ) in the Western Indian Himalaya. A new glacier inventory of Lahul-Spiti was constructed using a combination of data from the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) sensor with Shuttle Radar Topography Mission (SRTM), GPS field data and ground photography. Glacier changes were quantified by comparison with older ASTER inventory and topographic maps. We present changes reported by local communities and recorded in video, oral testimonies and ground photography. We focus on two indigenous practices of water harvesting for glacier regeneration: a) artificial glaciers and b) kul irrigation systems. Field data of artificial glaciers was acquired at Sabu, Stakmo and Phuktsey glaciers using a differential GPS system. Kul irrigation systems were documented in Spiti valley (Lara and Kibber villages). We will present the results of mapping these water harvesting systems with the goal

  5. RMF concept: a rotating-magnetic-field technique for driving steady plasma currents in compact toroid devices

    SciTech Connect

    McKenna, K.F.

    1980-09-01

    The generation and/or sustaining of a Compact Toroid (CT) configuration using the RMF technique is a relatively new and unknown concept. In this report the basic principles, historical development, and current theoretical understanding of this concept are reviewed. Significant experimental and theoretical results, potential problem areas, and recommendations for the direction of future work are discussed. An illustrative analysis of the application of the RMF technique to a CT reactor is presented. The results of a recent experiment, the Rotamak, in which a Spheromak-like CT plasma was produced using the RMF technique, are presented.

  6. Total-and scattered-field decomposition technique for the finite-element time-domain method.

    SciTech Connect

    Lou, Z.; Jin, J.-M.; Riley, Douglas; Petersson, R.

    2004-05-01

    A new finite-element time-domain (FETD) volumetric plane-wave excitation method for use with a total- and scattered-field decomposition (TSFD) is rigorously described. This method provides an alternative to the traditional Huygens surface approaches commonly used to impress the incident field into the total-field region. Although both the volumetric and Huygens surface formulations theoretically provide for zero leakage of the impressed wave into the scattered-field region, the volumetric method provides a simple path to numerically realize this. In practice, the level of leakage for the volumetric scheme is determined by available computer precision, as well as the residual of the matrix solution. In addition, the volumetric method exhibits nearly zero dispersion error with regard to the discrete incident field.

  7. Identification of Field Line Resonances in the Magnetosphere Using the Super Dual Auroral Radar Network (superdarn): New ``CROSS-POWER and Cross-Phase Technique

    NASA Astrophysics Data System (ADS)

    Mazzino, L.; Fenrich, F. R.

    2010-12-01

    Field Line Resonances (FLRs) are Ultra Low Frequency (ULF) standing waves that appear in discrete frequencies and occur in Earth’s Magnetic Field as a result of wave coupling of MHD compressional and Shear Alfvén waves. The main purpose of the new ‘cross-power and cross-phase’ technique, presented in this analysis, is to systematically identify FLR occurrence using data from the Super Dual Auroral Radar Network (SuperDARN), a radar network that detects coherent echoes from plasma irregularities that are aligned with the field lines. SuperDARN data has been successfully used for more than 17 years to identify FLRs, due to its large coverage over the polar cap and auroral region. Specifications of the instrument as well as the algorithm used by this new technique will be explained in detail. As an example we will apply the technique to a known 1.9 mHz FLR that occurred on November 20th 2003 at 22:30-23:00 UT detected by the Prince George station. Discussion of the application of this technique to automatically detect other events, and the future statistical analysis of all events identified will be presented.

  8. Characterization of unconventional electron fields for the treatment of mycosis fungoides using the total skin irradiation technique

    NASA Astrophysics Data System (ADS)

    Pagnan González, M. A.; Hernández Oviedo, J. O.; Mitsoura, E.; Ruesga Vázquez, D. R.

    2014-11-01

    Mycosis fungoides is a cutaneous lymphoma that accounts for 2-3% of all lymphomas. Several clinical studies have demonstrated the effectiveness of TSEBT (Total Skin Electron Beam Therapy) in patients with mycosis fungoides. It is important to develop this technique and make it available to a larger number of patients in Mexico. Because large fields for electron TSEBT are required in order to cover the entire body of the patient, beam characterization at conventional treatment distances is not sufficient and a calibration distance of 500cm or higher is required. Materials and methods: Calibration of radiochromic Gafchromic® EBT2 film (RCF) for electrons was performed in a solid water phantom (Scanditronix Wellhöfer) at a depth of 1.4cm and a Source Axis Distance (SAD) of 100cm. A polynomial fit was applied to the calibration curve, in order to obtain the equation relating dose response with optical density. The spatial distribution is obtained in terms of percentage of the dose, placing 3×3cm samples of RCF on the acrylic screen, which is placed in front of the patient in order to obtain maximum absorbed dose on the skin, covering an area of 200×100cm2. The Percentage Depth Dose (PDD) curve was obtained placing RCF samples at depths of 0, 1, 1.2, 1.4, 1.5, 2, 3, 4, 5, 6, 7, 8 and 9cm in the solid water phantom, irradiated with an ELEKTA SINERGY Linear Accelerator electron beam, with an energy of 6 MeV, at a Source Skin Distance (SSD) of 500cm, with 1000MU = 100Gy, with a cone of 40×40cm and gantry angle of 90°. The RCFs were scanned on a flatbed scanner (EPSON EXPRESSION 10000 XL) and the images were processed with the ImageJ program using a region of interest (ROI) of 1×1cm2. Results: The relative spatial dose distribution and the percentage depth dose for a SSD of 500±0.5cm, over an area of 200×100cm2 was obtained, resulting to an effective maximum dose depth (Zref) for electrons of 1.4±0.05cm. Using the same experimental data, horizontal and vertical

  9. Characterization of unconventional electron fields for the treatment of mycosis fungoides using the total skin irradiation technique

    SciTech Connect

    González, M. A. Pagnan Mitsoura, E.; Oviedo, J.O. Hernández; Vázquez, D. R. Ruesga

    2014-11-07

    Mycosis fungoides is a cutaneous lymphoma that accounts for 2–3% of all lymphomas. Several clinical studies have demonstrated the effectiveness of TSEBT (Total Skin Electron Beam Therapy) in patients with mycosis fungoides. It is important to develop this technique and make it available to a larger number of patients in Mexico. Because large fields for electron TSEBT are required in order to cover the entire body of the patient, beam characterization at conventional treatment distances is not sufficient and a calibration distance of 500cm or higher is required. Materials and methods: Calibration of radiochromic Gafchromic® EBT2 film (RCF) for electrons was performed in a solid water phantom (Scanditronix Wellhöfer) at a depth of 1.4cm and a Source Axis Distance (SAD) of 100cm. A polynomial fit was applied to the calibration curve, in order to obtain the equation relating dose response with optical density. The spatial distribution is obtained in terms of percentage of the dose, placing 3×3cm samples of RCF on the acrylic screen, which is placed in front of the patient in order to obtain maximum absorbed dose on the skin, covering an area of 200×100cm{sup 2}. The Percentage Depth Dose (PDD) curve was obtained placing RCF samples at depths of 0, 1, 1.2, 1.4, 1.5, 2, 3, 4, 5, 6, 7, 8 and 9cm in the solid water phantom, irradiated with an ELEKTA SINERGY Linear Accelerator electron beam, with an energy of 6 MeV, at a Source Skin Distance (SSD) of 500cm, with 1000MU = 100Gy, with a cone of 40×40cm and gantry angle of 90°. The RCFs were scanned on a flatbed scanner (EPSON EXPRESSION 10000 XL) and the images were processed with the ImageJ program using a region of interest (ROI) of 1×1cm{sup 2}. Results: The relative spatial dose distribution and the percentage depth dose for a SSD of 500±0.5cm, over an area of 200×100cm{sup 2} was obtained, resulting to an effective maximum dose depth (Z{sub ref}) for electrons of 1.4±0.05cm. Using the same experimental data

  10. Alternating techniques to measure magnetoresistance effects with a sensitivity of 2 pΩ under 3 T down to 60 fΩ in zero field

    NASA Astrophysics Data System (ADS)

    Dauguet, P.; Gandit, P.; Chaussy, J.

    1996-08-01

    Two methods have been developed to measure variations with magnetic field of electrical resistances in the range 0.1 nΩ-1 μΩ, for applied magnetic fields up to 3 T, and for temperatures less than 9 K. The first method provides direct access to R(H). Its absolute sensitivity is 3×10-14 V/√Hz with a short circuit at input. It becomes on a 1 μΩ sample: 6×10-14 V/√Hz in zero field, and 2×10-12 V/√Hz under 3 T. Averaging the signal over 100 s, the sensitivity is 6×10-15 V in zero field and 2×10-13 V under 3 T. In terms of resistance, using a sensing current of 100 mA, it corresponds to a sensitivity of 6×10-14 Ω in zero field and 2×10-12 Ω in the maximum field. The reproducibility of this method is 0.3%. The second method is a sinusoidal field modulation technique giving the field derivative of the resistance: dR/dH. It has the same absolute sensitivity as the R(H) method and it achieves ultrahigh resolution. It is sensitive to variations of the resistance as small as 6×10-14 Ω in zero field and 2×10-12 Ω in 3 T independent of the absolute resistance of the sample, thus the resulting resolution ΔR/R is, for example, 6×10-8 in zero field and 2×10-6 in the maximum field for a 1 μΩ sample. To demonstrate the high sensitivity of the setups, we measured the magnetoresistance of a magnetic multilayer with the current applied perpendicular to the multilayer plane.

  11. Phase-shifting whole-field speckle photography technique for the measurement of in-plane deformations in real time

    NASA Astrophysics Data System (ADS)

    Mohan, N. Krishna; Rastogi, Pramod

    2002-04-01

    A new real-time phase-shifting readout system is developed for quantitative evaluation of full-field correlation fringes obtained by means of Fourier filtering in speckle photography. The proposed method, which uses photorefractive crystals as the recording medium, is capable of mapping the whole-field displacement data from the recorded phase-shifted fringe patterns. Experimental results are presented on a diffuse surface subjected to rotation in its own plane.

  12. Electric-field distribution in Au-semi-insulating GaAs contact investigated by positron-lifetime technique

    NASA Astrophysics Data System (ADS)

    Ling, C. C.; Shek, Y. F.; Huang, A. P.; Fung, S.; Beling, C. D.

    1999-02-01

    Positron-lifetime spectroscopy has been used to investigate the electric-field distribution occurring at the Au-semi-insulating GaAs interface. Positrons implanted from a 22Na source and drifted back to the interface are detected through their characteristic lifetime at interface traps. The relative intensity of this fraction of interface-trapped positrons reveals that the field strength in the depletion region saturates at applied biases above 50 V, an observation that cannot be reconciled with a simple depletion approximation model. The data, are, however, shown to be fully consistent with recent direct electric-field measurements and the theoretical model proposed by McGregor et al. [J. Appl. Phys. 75, 7910 (1994)] of an enhanced EL2+ electron-capture cross section above a critical electric field that causes a dramatic reduction of the depletion region's net charge density. Two theoretically derived electric field profiles, together with an experimentally based profile, are used to estimate a positron mobility of ~95+/-35 cm2 V-1 s-1 under the saturation field. This value is higher than previous experiments would suggest, and reasons for this effect are discussed.

  13. ζ-FUNCTION Technique for Quantum Cosmology:. the Contributions of Matter Fields to the Hartle-Hawking Wave Function of the Universe

    NASA Astrophysics Data System (ADS)

    Kamenshchik, A. Yu.; Mishakov, I. V.

    We investigate the contributions of matter fields to the Hartle-Hawking wave function of the Universe in the one-loop approximation. The values ζ(0), which describe the scaling behavior of the wave function calculated on the background representing the part of four-dimensional DeSitter sphere, are calculated for scalar, electromagnetic, graviton, spin-1/2 and spin-3/2 fields. The ζ-function technique is used and developed for these calculations. The obtained results can be applied to a detailed investigation of the structure of the Hartle-Hawking wave function.

  14. Performance enhancement of multiple-gate ZnO metal-oxide-semiconductor field-effect transistors fabricated using self-aligned and laser interference photolithography techniques

    PubMed Central

    2014-01-01

    The simple self-aligned photolithography technique and laser interference photolithography technique were proposed and utilized to fabricate multiple-gate ZnO metal-oxide-semiconductor field-effect transistors (MOSFETs). Since the multiple-gate structure could improve the electrical field distribution along the ZnO channel, the performance of the ZnO MOSFETs could be enhanced. The performance of the multiple-gate ZnO MOSFETs was better than that of the conventional single-gate ZnO MOSFETs. The higher the drain-source saturation current (12.41 mA/mm), the higher the transconductance (5.35 mS/mm) and the lower the anomalous off-current (5.7 μA/mm) for the multiple-gate ZnO MOSFETs were obtained. PMID:24948884

  15. Performance enhancement of multiple-gate ZnO metal-oxide-semiconductor field-effect transistors fabricated using self-aligned and laser interference photolithography techniques.

    PubMed

    Lee, Hsin-Ying; Huang, Hung-Lin; Tseng, Chun-Yen

    2014-01-01

    The simple self-aligned photolithography technique and laser interference photolithography technique were proposed and utilized to fabricate multiple-gate ZnO metal-oxide-semiconductor field-effect transistors (MOSFETs). Since the multiple-gate structure could improve the electrical field distribution along the ZnO channel, the performance of the ZnO MOSFETs could be enhanced. The performance of the multiple-gate ZnO MOSFETs was better than that of the conventional single-gate ZnO MOSFETs. The higher the drain-source saturation current (12.41 mA/mm), the higher the transconductance (5.35 mS/mm) and the lower the anomalous off-current (5.7 μA/mm) for the multiple-gate ZnO MOSFETs were obtained.

  16. First g(2+) measurement on neutron-rich 72Zn, and the high-velocity transient field technique for radioactive heavy-ion beams

    NASA Astrophysics Data System (ADS)

    Fiori, E.; Georgiev, G.; Stuchbery, A. E.; Jungclaus, A.; Balabanski, D. L.; Blazhev, A.; Cabaret, S.; Clément, E.; Danchev, M.; Daugas, J. M.; Grevy, S.; Hass, M.; Kumar, V.; Leske, J.; Lozeva, R.; Lukyanov, S.; Mertzimekis, T. J.; Modamio, V.; Mouginot, B.; Nowacki, F.; Penionzhkevich, Yu. E.; Perrot, L.; Pietralla, N.; Sieja, K.; Speidel, K.-H.; Stefan, I.; Stodel, C.; Thomas, J. C.; Walker, J.; Zell, K. O.

    2012-03-01

    The high-velocity transient-field (HVTF) technique was used to measure the g factor of the 2+ state of 72Zn produced as a radioactive beam. The transient-field strength was probed at high velocity in ferromagnetic iron and gadolinium hosts using 76Ge beams. The potential of the HVTF method is demonstrated and the difficulties that need to be overcome for a reliable use of the TF technique with high-Z, high-velocity radioactive beams are revealed. The polarization of K-shell vacancies at high velocity, which shows more than an order of magnitude difference between Z=20 and Z=30 is discussed. The g-factor measurement hints at the theoretically predicted transition in the structure of the Zn isotopes near N=40.

  17. Increased oil production and reserves from improved completion techniques in the Bluebell Field, Uinta Basin, Utah. Annual report, October 1, 1994--September 30, 1995

    SciTech Connect

    Allison, M.L.; Morgan, C.D.

    1996-05-01

    The Bluebell field produces from the Tertiary lower Green River and Wasatch Formations of the Uinta Basin, Utah. The productive interval consists of thousands of feet of interbedded fractured clastic and carbonate beds deposited in a fluvial-dominated deltaic lacustrine environment. Wells in the Bluebell field are typically completed by perforating 40 or more beds over 1,000 to 3,000 vertical feet (300-900 m), then applying an acid-fracture stimulation treatment to the entire interval. This completion technique is believed to leave many potentially productive beds damaged and/or untreated, while allowing water-bearing and low-pressure (thief) zones to communicate with the wellbore. Geologic and engineering characterization has been used to define improved completion techniques. The study identified reservoir characteristics of beds that have the greatest long-term production potential.

  18. Low-velocity transient-field technique with radioactive ion beams: g factor of the first excited 2+ state in 72Zn

    NASA Astrophysics Data System (ADS)

    Illana, A.; Jungclaus, A.; Orlandi, R.; Perea, A.; Bauer, C.; Briz, J. A.; Egido, J. L.; Gernhäuser, R.; Leske, J.; Mücher, D.; Pakarinen, J.; Pietralla, N.; Rajabali, M.; Rodríguez, T. R.; Seiler, D.; Stahl, C.; Voulot, D.; Wenander, F.; Blazhev, A.; De Witte, H.; Reiter, P.; Seidlitz, M.; Siebeck, B.; Vermeulen, M. J.; Warr, N.

    2014-05-01

    The g factor of the first excited 2+ state in 72Zn has been measured using the transient-field (TF) technique in combination with Coulomb excitation in inverse kinematics. This experiment presents only the third successful application of the TF method to a short-lived radioactive beam in 10 y, highlighting the intricacies of applying this technique to present and future isotope separator on-line facilities. The significance of the experimental result, g(21+)=+0.47(14), for establishing the structure of the Zn isotopes near N =40 is discussed on the basis of shell-model and beyond-mean-field calculations, the latter accounting for the triaxial degree of freedom, configuration mixing, and particle number and angular momentum projections.

  19. Survivorship of male and female Bactrocera dorsalis in the field and the effect of male annihilation technique

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Male Annihilation Technique (MAT) is a key component of the Oriental fruit fly Bactrocera dorsalis Hendel (Diptera: Tephritidae) management because of the “strong” attraction of males to the lure methyl eugenol. The optimal application density for MAT has not been investigated for this economically ...

  20. Radio, Advertising Techniques, and Nutrition Education: A Summary of a Field Experiment in the Philippines and Nicaragua. Final Report.

    ERIC Educational Resources Information Center

    Cooke, Thomas M.; Romweber, Susan T.

    Infant and child health and nutrition education messages patterned after the reach-and-frequency technique of commercial advertising were broadcast to target groups of young mothers over local radio stations in the Philippines and Nicaragua for one year without the support of more conventional education methods. The messages were developed in…

  1. A scanning microscopy technique based on capacitive coupling with a field-effect transistor integrated with the tip.

    PubMed

    Shin, Kumjae; Kang, Dae sil; Lee, Sang hoon; Moon, Wonkyu

    2015-12-01

    We propose a method for measuring the capacitance of a thin layer using a Tip-on-Gate of Field-Effect Transistor (ToGoFET) probe. A ToGoFET probe with a metal-oxide-semiconductor field-effect transistor (MOSFET) with an ion-implant channel was embedded at the end of a cantilever and a Pt tip was fabricated using micro-machining. The ToGoFET probe was used to detect an alternating electric field at the dielectric surface. A dielectric buried metal sample was prepared; a sinusoidal input signal was applied to the buried metal lines; and the ToGoFET probe detected the electric field at the tip via the dielectric. The AC signal detected by the ToGoFET probe was demodulated by a simple AC-to-DC converter. Experimentally, it was shown that an electric field could be measured at the surface of the dielectric layer above a buried metal line. This promising result shows that it is possible to measure the surface local capacitance.

  2. A scanning microscopy technique based on capacitive coupling with a field-effect transistor integrated with the tip.

    PubMed

    Shin, Kumjae; Kang, Dae sil; Lee, Sang hoon; Moon, Wonkyu

    2015-12-01

    We propose a method for measuring the capacitance of a thin layer using a Tip-on-Gate of Field-Effect Transistor (ToGoFET) probe. A ToGoFET probe with a metal-oxide-semiconductor field-effect transistor (MOSFET) with an ion-implant channel was embedded at the end of a cantilever and a Pt tip was fabricated using micro-machining. The ToGoFET probe was used to detect an alternating electric field at the dielectric surface. A dielectric buried metal sample was prepared; a sinusoidal input signal was applied to the buried metal lines; and the ToGoFET probe detected the electric field at the tip via the dielectric. The AC signal detected by the ToGoFET probe was demodulated by a simple AC-to-DC converter. Experimentally, it was shown that an electric field could be measured at the surface of the dielectric layer above a buried metal line. This promising result shows that it is possible to measure the surface local capacitance. PMID:26231315

  3. A study of methods to predict and measure the transmission of sound through the walls of light aircraft. A survey of techniques for visualization of noise fields

    NASA Technical Reports Server (NTRS)

    Marshall, S. E.; Bernhard, R.

    1984-01-01

    A survey of the most widely used methods for visualizing acoustic phenomena is presented. Emphasis is placed on acoustic processes in the audible frequencies. Many visual problems are analyzed on computer graphic systems. A brief description of the current technology in computer graphics is included. The visualization technique survey will serve as basis for recommending an optimum scheme for displaying acoustic fields on computer graphic systems.

  4. Second primary tumors and field cancerization in oral and oropharyngeal cancer: molecular techniques provide new insights and definitions.

    PubMed

    Braakhuis, Boudewijn J M; Tabor, Maarten P; Leemans, C René; van der Waal, Isaac; Snow, Gordon B; Brakenhoff, Ruud H

    2002-02-01

    Second primary tumors (SPTs) are a significant problem in treating oral and oropharyngeal squamous cell carcinoma and have a negative impact on survival. In most studies the definition of SPT is based on the criteria of Warren and Gates, published in 1932. These criteria, however, are ill-defined and lead to confusion. Recent molecular studies have shown that a tumor can be surrounded by a mucosal field consisting of genetically altered cells. Furthermore, evidence has been provided that SPTs (defined by classical criteria) can share some or even all genetic markers with the index tumor, indicating that both tumors have arisen from a common cell clone. We propose that these secondary neoplastic lesions should not be considered SPTs, implying that the present concept of SPT needs revision. This review describes a novel classification of the secondary tumors that develop after treatment of a carcinoma in the oral cavity or oropharynx. On the basis of the molecular analysis of the tumors and the genetically altered mucosal field in between, we propose definitions for a "true SPT," a local recurrence, a "SFT" (second field tumor derived from the same genetically altered mucosal field as the primary tumor), and a metastasis. Considering the etiologic differences of these lesions, we believe that an accurate molecular definition is essential to make headway with the clinical management of oral and oropharyngeal cancer.

  5. A study on contralateral breast surface dose for various tangential field techniques and the impact of set-up error on this dose.

    PubMed

    Prabhakar, R; Haresh, K P; Julka, P K; Ganesh, T; Rath, G K; Joshi, R C; Sasindran, M; Naik, K K; Sridhar, P S

    2007-03-01

    The risk of inducing contralateral breast (CLB) cancer in patients undergoing tangential field irradiation for the treatment of breast cancer is a serious concern in radiation oncology. A bilateral breast phantom made of wax attached onto the Alderson Rando phantom was used for studying the CLB dose for techniques using physical wedges, EDWs, IMRT and open fields. The skin dose to the CLB was measured at four different points (3 cm from the medial border of the tangential field (P1), nipple (P3), axilla (P4), midpoint between P3 and P1 (P2)). The highest measured dose occurred at P1 with the 60 degrees physical wedges; it was 15.3% of the dose at isocentre. Similarly, the dose measured at P3 (nipple) with 60 degrees physical wedges was 1.90 times higher than the dose with 60 degrees EDWs. The dose at P1 for IMRT (7.8%) was almost the same as that for the open field (8.7%). The skin dose measured at the nipple was 2.1 - 10.9 % of the isocentre dose. The highest CLB doses were contributed by medial wedged fields. The dose to the CLB can be reduced by using IMRT or avoiding wedging the medial tangential fields. A set-up error in the longitudinal direction has little impact on the CLB dose. Set-up errors > 1 cm in the vertical and lateral directions have significant impact on the CLB dose. PMID:17508600

  6. Evaluation of the leucine incorporation technique for detection of pollution-induced community tolerance to copper in a long-term agricultural field trial with urban waste fertilizers.

    PubMed

    Lekfeldt, Jonas Duus Stevens; Magid, Jakob; Holm, Peter E; Nybroe, Ole; Brandt, Kristian Koefoed

    2014-11-01

    Copper (Cu) is known to accumulate in agricultural soils receiving urban waste products as fertilizers. We here report the use of the leucine incorporation technique to determine pollution-induced community tolerance (Leu-PICT) to Cu in a long-term agricultural field trial. A significantly increased bacterial community tolerance to Cu was observed for soils amended with organic waste fertilizers and was positively correlated with total soil Cu. However, metal speciation and whole-cell bacterial biosensor analysis demonstrated that the observed PICT responses could be explained entirely by Cu speciation and bioavailability artifacts during Leu-PICT detection. Hence, the agricultural application of urban wastes (sewage sludge or composted municipal waste) simulating more than 100 years of use did not result in sufficient accumulation of Cu to select for Cu resistance. Our findings also have implications for previously published PICT field studies and demonstrate that stringent PICT detection criteria are needed for field identification of specific toxicants.

  7. Latitudinal and longitudinal behavior of the geomagnetic field during a disturbed period: A case study using wavelet techniques

    NASA Astrophysics Data System (ADS)

    Klausner, Virginia; Domingues, Margarete Oliveira; Mendes, Odim; Mendes da Costa, Aracy; Papa, Andres Reinaldo Rodriguez; Ojeda Gonzalez, Arian

    2016-11-01

    Coronal mass ejections are the primary cause of the highly disturbed conditions observed in the magnetosphere. Momentum and energy from the solar wind are transferred to the Earth's magnetosphere mainly via magnetic reconnection which produces open field lines connecting the Earth magnetic field to the solar wind. Magnetospheric currents are coupled to the ionosphere through field-aligned currents. This particular characteristic of the magnetosphere-ionosphere interconnection is discussed here on the basis of the energy transfer from high (auroral currents) to low-latitudes (ring current). The objective of this work is to examine how the conditions during a magnetic storm can affect the global space and time configuration of the ring current, and, how these processes can affect the region of the South Atlantic Magnetic Anomaly. The H- or X-components of the Earth's magnetic field were examined using a set of six magnetometers approximately aligned around the geographic longitude at about 10 °, 140 ° and 295 ° from latitudes of 70 ° N to 70 ° S and aligned throughout the equatorial region, for the event of October 18-22, 1998. The investigation of simultaneous observations of data measured at different locations makes it possible to determine the effects of the magnetosphere-ionosphere coupling, and, it tries to establish some relationships among them. This work also compares the responses of the aligned magnetic observatories to the responses in the South Atlantic Magnetic Anomaly region. The major contribution of this paper is related to the applied methodology of the discrete wavelet transform. The wavelet coefficients are used as a filter to extract the information in high frequencies of the analyzed magnetogram. They also better represent information about the injections of energy and, consequently, the disturbances of the geomagnetic field measured on the ground. As a result, we present a better way to visualize the correlation between the X- or H

  8. The background oriented schlieren technique: sensitivity, accuracy, resolution and application to a three-dimensional density field

    NASA Astrophysics Data System (ADS)

    Cardoso, Rui P. R.; Yoon, Jeong-Whan

    2007-08-01

    Three-dimensional density information of a double free air jet was acquired using optical tomography. The projections of the density field were measured using the background oriented schlieren method (BOS). Preceding the free jet measurements, the sensitivity, accuracy and resolution of the BOS method were investigated. The sensitivity depends mostly on the focal length of the lens used, the relative position of the object between camera and background and the smallest detectable shift in the image plane. The accuracy was found to be sufficiently high to apply a tomographic reconstruction process. The resolution is determined by the transfer function of the BOS-method. It is not constant and depends on the size of the interrogation windows used for the cross-correlation-algorithm. The reconstruction of the free jet was computed, using filtered back projection. The reconstructed 3D density field shows with good resolution the typical diamond structure of the density distribution in under-expanded free jets.

  9. A novel magnetic field probing technique for determining state of health of sealed lead-acid batteries

    NASA Astrophysics Data System (ADS)

    Khare, Neeta; Singh, Pritpal; Vassiliou, John K.

    2012-11-01

    State of Health (SOH) is a critical index for a Sealed Lead-Acid (SLA) battery diagnostic which provides the information about battery replacement and aging effects. SOH is a complex function of chemical parameters of a battery such as stratification in electrolyte, electrode structure (sulfation and hard sulfation) in addition to electrical parameters of a battery. This paper describes a method of online determination of stratification, electrode structure, electrode polarization and current profile within the battery under the influence of a magnetic field. An AC magnetic field is used as a noninvasive tool during battery cycles. An induced emf in a secondary coil (SCV) is used as a measure of change in the magnetic field. The H+ proton density varies with change in sulfuric acid (electrolyte) concentration during battery cycles. The magnetic flux lines are affected by the density of H+ protons whose magnetic dipole moments try to align along the magnetic flux lines. The stratification is seen by a 12% decrease in magnetic flux linking from the top to the bottom of the electrolyte in a battery. Additional experimental results demonstrate the variation in magnetic flux linking which correlates with current profile across the electrode and electrode structure.

  10. Three-dimensional measurement of a gas flow temperature field using far-infrared band CT techniques

    NASA Astrophysics Data System (ADS)

    Zhang, Zhimin; Wang, Peng; Li, Shujing

    2014-01-01

    Emission spectral tomography (EST) can be utilized to reconstruct three-dimensional (3D) physical parameter distributions of gas flow fields. Mostly, the radiant energy of the visual and near-infrared bands is received by a video camera in EST, so it is difficult to examine a low/medium-temperature gas flow field by normal EST. However, the far-infrared radiant energy of a low/medium-temperature gas flow field is strong enough to be received by a far-infrared detector. Based on EST, a far-infrared band computed tomography (FICT) approach is proposed that focuses on far-infrared spectral emission and band emission tomography. Both low- and medium-temperature blackbody furnaces were adopted to calibrate the relation between infrared thermal image intensity and radiant exitance. The 3D temperature reconstruction of an alcohol blow lamp was carried out. According to the results of multiple measurements, the relative error of the FICT approach is less than 20%. The experimental results prove the feasibility of the FICT approach.

  11. Three-dimensional two-component velocity measurement of the flow field induced by the Vorticella picta microorganism using a confocal microparticle image velocimetry technique

    PubMed Central

    Nagai, Moeto; Oishi, Masamichi; Oshima, Marie; Asai, Hiroshi; Fujita, Hiroyuki

    2009-01-01

    Understanding the biological feeding strategy and characteristics of a microorganism as an actuator requires the detailed and quantitative measurement of flow velocity and flow rate induced by the microorganism. Although some velocimetry methods have been applied to examine the flow, the measured dimensions were limited to at most two-dimensional two-component measurements. Here we have developed a method to measure three-dimensional two-component flow velocity fields generated by the microorganism Vorticella picta using a piezoscanner and a confocal microscope. We obtained the two-component velocities of the flow field in a two-dimensional plane denoted as the XY plane, with an observation area of 455×341 μm2 and the resolution of 9.09 μm per each velocity vector by a confocal microparticle image velocimetry technique. The measurement of the flow field at each height took 37.5 ms, and it was repeated in 16 planes with a 2.50 μm separation in the Z direction. We reconstructed the three-dimensional two-component flow velocity field. From the reconstructed data, the flow velocity field [u(x,y,z),v(x,y,z)] in an arbitrary plane can be visualized. The flow rates through YZ and ZX planes were also calculated. During feeding, we examined a suction flow to the mouth of the Vorticella picta and measured it to be to 300 pl∕s. PMID:19693398

  12. Observation of the enhancement of electric fields normal to the surface using mid-infrared slot antennas and an atomic layer deposition technique

    NASA Astrophysics Data System (ADS)

    Nishimura, Y.; Kawano, T.; Kunichika, Y.; Kasahara, K.; Yaji, T.; Ikeda, N.; Oosato, H.; Miyazaki, H.; Sugimoto, Y.

    2015-08-01

    Optical electric field enhancement in the normal direction was experimentally investigated using mid-infrared slot antennas that were formed on a thin Al2O3 layer/Si substrate. The Al2O3 layer thicknesses could be controlled to an accuracy of a given atomic layer through the use of atomic layer deposition, and varied from 0 nm to 60 nm. An in-depth probe of the electric field was performed by observing the change in the reflection signal arising from the Restrahlen band of the natural oxide of Si formed on the surface of a Si substrate. In contrast to dipole nanoantennas, we could clearly observe Restrahlen bands of Al2O3 as well as the native Si oxide film. This was because the direction of the enhanced electric field was primarily parallel to the substrate surface in the slot antennas, which was different from the dipole nanoantenna having strong normal electric fields at the antenna ends. The atomic layer deposition technique provides versatile information on the electric field distribution within the depth direction, being considered complementary to the electromagnetic simulation of nanoantennas.

  13. A New Technique For Measuring The Twist Of Photospheric Active Regions Without Recourse To The Force-Free-Field Equation: Reconfirming The Hemispheric Helicity Trend

    NASA Astrophysics Data System (ADS)

    Nandy, Dibyendu; Calhoun, A.; Windschitl, J.; Canfield, R. C.; Linton, M. G.

    2007-05-01

    The twist component of magnetic helicity in solar active regions is known to be an important indicator of sub-photospheric flux tube dynamics and solar eruptive activity. Traditionally, estimates of the parameter alpha -- appearing in the force-free-field equation -- has been used to infer the twist of photospheric active regions. However, the photosphere is not force-free and this has lead to recent concerns on the validity of using the alpha parameter for determining photospheric active region twist. We have devised a new flux-tube-fitting technique for determining the twist of active regions without recourse to the force-free-field equation. This method assumes that the underlying active region flux system is cylindrically symmetric and uniformly twisted. By using this new technique, on a statistically compelling number of photospheric active region vector magnetograms, we re-confirm the hemispheric helicity rule independent of the force-free-field assumption. This research has been supported in parts by a NASA Living With a Star grant NNG05GE47G. A.C. and J.W. were supported by a NSF Research Experience for Undergraduates grant ATM-0243923 to Montana State University. M.G.L. acknowledges support from NASA and the Office of Naval Research.

  14. Arterial spin labeling-fast imaging with steady-state free precession (ASL-FISP): a rapid and quantitative perfusion technique for high-field MRI.

    PubMed

    Gao, Ying; Goodnough, Candida L; Erokwu, Bernadette O; Farr, George W; Darrah, Rebecca; Lu, Lan; Dell, Katherine M; Yu, Xin; Flask, Chris A

    2014-08-01

    Arterial spin labeling (ASL) is a valuable non-contrast perfusion MRI technique with numerous clinical applications. Many previous ASL MRI studies have utilized either echo-planar imaging (EPI) or true fast imaging with steady-state free precession (true FISP) readouts, which are prone to off-resonance artifacts on high-field MRI scanners. We have developed a rapid ASL-FISP MRI acquisition for high-field preclinical MRI scanners providing perfusion-weighted images with little or no artifacts in less than 2 s. In this initial implementation, a flow-sensitive alternating inversion recovery (FAIR) ASL preparation was combined with a rapid, centrically encoded FISP readout. Validation studies on healthy C57/BL6 mice provided consistent estimation of in vivo mouse brain perfusion at 7 and 9.4 T (249 ± 38 and 241 ± 17 mL/min/100 g, respectively). The utility of this method was further demonstrated in the detection of significant perfusion deficits in a C57/BL6 mouse model of ischemic stroke. Reasonable kidney perfusion estimates were also obtained for a healthy C57/BL6 mouse exhibiting differential perfusion in the renal cortex and medulla. Overall, the ASL-FISP technique provides a rapid and quantitative in vivo assessment of tissue perfusion for high-field MRI scanners with minimal image artifacts.

  15. A new technique for calculating reentry base heating. [analysis of laminar base flow field of two dimensional reentry body

    NASA Technical Reports Server (NTRS)

    Meng, J. C. S.

    1973-01-01

    The laminar base flow field of a two-dimensional reentry body has been studied by Telenin's method. The flow domain was divided into strips along the x-axis, and the flow variations were represented by Lagrange interpolation polynomials in the transformed vertical coordinate. The complete Navier-Stokes equations were used in the near wake region, and the boundary layer equations were applied elsewhere. The boundary conditions consisted of the flat plate thermal boundary layer in the forebody region and the near wake profile in the downstream region. The resulting two-point boundary value problem of 33 ordinary differential equations was then solved by the multiple shooting method. The detailed flow field and thermal environment in the base region are presented in the form of temperature contours, Mach number contours, velocity vectors, pressure distributions, and heat transfer coefficients on the base surface. The maximum heating rate was found on the centerline, and the two-dimensional stagnation point flow solution was adquate to estimate the maximum heating rate so long as the local Reynolds number could be obtained.

  16. Specialized pumping techniques applied to a very low-gravity, sand-laden crude-cat Canyon Field, California

    SciTech Connect

    Vonde, T.R.

    1982-09-01

    With the application of specially designed pumping and treating equipment, we are producing crude oil as low as 4/sup 0/ API (1.044 g/cm/sup 3/) containing up to 70 vol% of sand. An important part of this system is the bottomhole pumping equipment that has allowed primary production rates in excess of 150 B/D (24 m/sup 3//d) oil from wells that were restricted to less than 10 B/D (1.5 m/sup 3//d) oil when produced with conventional rod pumps and sand control completion methods. These pumps are available commercially. Techniques developed may be extended to other areas where production is limited by problems inherent with highly viscous crude oils and excessive sand entry.

  17. Advances in the implementation of helical tomotherapy-based total marrow irradiation with a novel field junction technique

    SciTech Connect

    Zeverino, Michele; Agostinelli, Stefano; Taccini, Gianni; Cavagnetto, Francesca; Garelli, Stefania; Gusinu, Marco; Vagge, Stefano; Barra, Salvina; Corvo, Renzo

    2012-10-01

    Given the limitations in the travel ability of the helical tomotherapy (HT) couch, total marrow irradiation (TMI) has to be split in 2 segments, with the lower limbs treated with feet first orientation. The aim of this work is to present a planning technique useful to reduce the dose inhomogeneity resulting from the matching of the 2 helical dose distributions. Three HT plans were generated for each of the 18 patients enrolled. Upper TMI (UTMI) and lower TMI (LTMI) were planned onto the whole-body computed tomography (CT) and on the lower-limb CT, respectively. A twin lower TMI plan (tLTMI) was designed on the whole-body CT. Agreement between LTMI and tLTMI plans was assessed by computing for each dose-volume histogram (DVH) structure the {gamma} index scored with 1% of dose and volume difference thresholds. UTMI and tLTMI plans were summed together on the whole-body CT, enabling the evaluation of dose inhomogeneity. Moreover, a couple of transition volumes were used to improve the dose uniformity in the abutment region. For every DVH, a number of points >99% passed the {gamma} analysis, validating the method used to generate the twin plan. The planned dose inhomogeneity at the junction level resulted within {+-}10% of the prescribed dose. Median dose reduction to organs at risk ranged from 30-80% of the prescribed dose. Mean conformity index was 1.41 (range 1.36-1.44) for the whole-body target. The technique provided a 'full helical' dose distribution for TMI treatments, which can be considered effective only if the dose agreement between LTMI and tLTMI plans is met. The planning of TMI with HT for the whole body with adequate dose homogeneity and conformity was shown to be feasible.

  18. Comparison of three field screening techniques for delineating petroleum hydrocarbon plumes in groundwater at a site in the southern Carson Desert, Nevada

    SciTech Connect

    Smuin, D.R.

    1993-01-01

    Three types of field screening techniques used in the characterization of potentially contaminated sites at Naval Air Station Fallon, Nevada, are compared. The methods and results for each technique are presented. The three techniques include soil-gas surveys, electromagnetic geophysical surveys, and groundwater test hole screening. Initial screening at the first study site included two soil-gas surveys and electromagnetic geophysical studies. These screening methods identified I areas of contamination; however, results were inconclusive. Therefore groundwater test hole screening was performed. Groundwater screening consisted of auger drilling down to the shallow alluvial aquifer. Groundwater samples were collected from the open drill hole with a bailer. On-site head-space analyses for volatile organic compounds (VOCS) were performed using a portable gas chromatograph (GC). Five areas of floating petroleum hydrocarbon product were identified along with the overall dissolved contaminant plume boundaries. Well placement was re-evaluated, and well sites were relocated based on the screening information. The most effective technique for identification of petroleum hydrocarbon-contaminant plumes was groundwater test hole screening. Groundwater screening was subsequently performed at 19 other sites. A total of 450 test holes were analyzed resulting in the delineation of six plumes.

  19. Improved particle counting and size distribution determination of aggregated virus populations by asymmetric flow field-flow fractionation and multiangle light scattering techniques.

    PubMed

    McEvoy, Matt; Razinkov, Vladimir; Wei, Ziping; Casas-Finet, Jose R; Tous, Guillermo I; Schenerman, Mark A

    2011-01-01

    A method using a combination of asymmetric flow field-flow fractionation (AFFFF) and multiangle light scattering (MALS) techniques has been shown to improve the estimation of virus particle counts and the amount of aggregated virus in laboratory samples. The method is based on the spherical particle counting approach given by Wyatt and Weida in 2004, with additional modifications. The new method was tested by analyzing polystyrene beads and adenovirus samples, both having a well-characterized particle size and concentration. Influenza virus samples were analyzed by the new AFFFF-MALS technique, and particle size and aggregate state were compared with results from atomic force microscopy analysis. The limitations and source of possible errors for the new AFFFF-MALS analysis are discussed.

  20. Increased oil production and reserves from improved completion techniques in the Bluebell Field, Uinta Basin, Utah. Seventh quarterly technical progress report, April 1, 1995--June 30, 1995

    SciTech Connect

    Morgan, C.D.

    1995-09-01

    The objective of this project is to increase oil production and reserves in the Uinta Basin by demonstrating improved completion techniques. Low productivity of Uinta Basin wells is caused by gross production intervals of several thousand feet that contain perforated thief zones, water-bearing zones, and unperforated oil-bearing intervals. Geologic and engineering characterization and computer simulation of the Green River and Wasatch formations in the Bluebell field will determine reservoir heterogeneities related to fractures and depositional trends. This will be followed by drilling and recompletion of several wells to demonstrate improved completion techniques based on the reservoir characterization. Transfer of the project results will be an ongoing component of the project. Technical progress for this quarter are discussed for subsurface and engineering studies.

  1. Identification of gunshot residues in fabric targets using sector field inductively coupled plasma mass spectrometry technique and ternary graphs.

    PubMed

    Freitas, João Carlos D; Sarkis, Jorge E Souza; Negrini Neto, Osvaldo; Viebig, Sônia Bocamino

    2012-03-01

    During criminal investigations involving firearms, the detection of gunshot residues (GSRs) is one of the most important evidences. In the present study, a new method to identify trace evidences of GSRs, deposited around the bullet entrance hole, in different types of fabrics used as targets, is described. The experiments were carried out using a 0.38-inch caliber revolver, and 9-mm and 0.40-inch caliber pistols. Testimonies of 2.25 cm(2) of the fabrics were cut around the bullet entrance and digested with 10% nitric acid. Antimony, barium, and lead were analyzed in the remaining solution using a sector field inductively coupled plasma mass spectrometer. The concentrations of the elements were detected at levels up to few microgram per square centimeter. The use of ternary graphics allowed us to identify specific patterns of distribution for blank samples and the clear distinction between the revolver and pistols used.

  2. Nitrogen use efficiency evaluation of aerobic rice under field capacity water potential using {sup 15}N isotopic tracer technique

    SciTech Connect

    Wahid, Ahmad Nazrul Abd; Rahim, Sahibin Abd; Rahim, Khairuddin Abdul; Harun, Abdul Rahim

    2015-09-25

    This study was carried out to evaluate the efficiency use of the nitrogen fertilizer on aerobic rice varieties MR219-4 and MR219-9 which were grown aerobically under field capacity water potential at the controlled environment area or shield house. Direct {sup 15}N isotope tracer method was used in this study, whereby the {sup 15}N isotope was utilized as a tracer for nitrogen nutrient uptake. {sup 15}N isotope presence in the samples is determined by using emission spectrometer analysis and percentage of total nitrogen is determined by using Kjeldahl method. {sup 15}N atom access value contained in the sample will be used in determining the effectiveness of the use of nitrogen in fertilizers through the specific calculation formulas. In this work, the data several data of nitrogen derived from fertilizer (Ndff), total nitrogen, nitrogen uptake and nitrogen use efficiency was obtained.

  3. Nitrogen use efficiency evaluation of aerobic rice under field capacity water potential using 15N isotopic tracer technique

    NASA Astrophysics Data System (ADS)

    Wahid, Ahmad Nazrul Abd; Rahim, Sahibin Abd; Rahim, Khairuddin Abdul; Harun, Abdul Rahim

    2015-09-01

    This study was carried out to evaluate the efficiency use of the nitrogen fertilizer on aerobic rice varieties MR219-4 and MR219-9 which were grown aerobically under field capacity water potential at the controlled environment area or shield house. Direct 15N isotope tracer method was used in this study, whereby the 15N isotope was utilized as a tracer for nitrogen nutrient uptake. 15N isotope presence in the samples is determined by using emission spectrometer analysis and percentage of total nitrogen is determined by using Kjeldahl method. 15N atom access value contained in the sample will be used in determining the effectiveness of the use of nitrogen in fertilizers through the specific calculation formulas. In this work, the data several data of nitrogen derived from fertilizer (Ndff), total nitrogen, nitrogen uptake and nitrogen use efficiency was obtained.

  4. Linear electric field mass analysis: a technique for three-dimensional high mass resolution space plasma composition measurements.

    PubMed

    McComas, D J; Nordholt, J E; Bame, S J; Barraclough, B L; Gosling, J T

    1990-08-01

    A revolutionary type of three-dimensional space plasma composition analyzer has been developed that combines very high-resolution mass composition measurements on a fraction of the incident ions simultaneously with lower mass resolution but high sensitivity measurements of the remaining population in a single compact and robust sensor design. Whereas the lower mass resolution measurements are achieved using conventional energy/charge (E/q) and linear time-of-flight analysis, the high mass resolution measurements are made by timing reflected E/q analyzed ions in a linear electric field (LEF). In a LEF the restoring (reflecting) force that an ion experiences in the direction parallel to the field is proportional to the depth it travels into the LEF region, and its equation of motion in that direction is that of a simple harmonic oscillator. Consequently, an ion's travel time is independent of its initial angle and energy and is simply proportional to the square root of the ion's mass/charge (m/q). The measured m/q resolution, (m/q)/Delta(m/q), for a small LEF-based prototype that we have developed and tested is approximately 20. In addition, our laboratory measurements with the prototype instrument show that characteristic time-of-flight spectra allow the resolution of atomic and molecular species with nearly identical m/q values. The measured response of the prototype is in excellent agreement with computer simulations of the device. Advanced design work using this computer simulation indicates that three-dimensional plasma composition analyzers with m/q resolutions of at least 50 are readily achievable.

  5. Adaptation of a visualized loop-mediated isothermal amplification technique for field detection of Plasmodium vivax infection

    PubMed Central

    2011-01-01

    Background Loop-mediated isothermal amplification (LAMP) is a high performance method for detecting DNA and holds promise for use in the molecular detection of infectious pathogens, including Plasmodium spp. However, in most malaria-endemic areas, which are often resource-limited, current LAMP methods are not feasible for diagnosis due to difficulties in accurately interpreting results with problems of sensitive visualization of amplified products, and the risk of contamination resulting from the high quantity of amplified DNA produced. In this study, we establish a novel visualized LAMP method in a closed-tube system, and validate it for the diagnosis of malaria under simulated field conditions. Methods A visualized LAMP method was established by the addition of a microcrystalline wax-dye capsule containing the highly sensitive DNA fluorescence dye SYBR Green I to a normal LAMP reaction prior to the initiation of the reaction. A total of 89 blood samples were collected on filter paper and processed using a simple boiling method for DNA extraction, and then tested by the visualized LAMP method for Plasmodium vivax infection. Results The wax capsule remained intact during isothermal amplification, and released the DNA dye to the reaction mixture only when the temperature was raised to the melting point following amplification. Soon after cooling down, the solidified wax sealed the reaction mix at the bottom of the tube, thus minimizing the risk of aerosol contamination. Compared to microscopy, the sensitivity and specificity of LAMP were 98.3% (95% confidence interval (CI): 91.1-99.7%) and 100% (95% CI: 88.3-100%), and were in close agreement with a nested polymerase chain reaction method. Conclusions This novel, cheap and quick visualized LAMP method is feasible for malaria diagnosis in resource-limited field settings. PMID:21693031

  6. Development of a field-friendly technique for fecal steroid extraction and storage using the African wild dog (Lycaon pictus).

    PubMed

    Santymire, R M; Armstrong, D M

    2010-01-01

    Hormonal analysis provides information about wildlife populations, but is difficult to conduct in the field. Our goal was to develop a rapid and effective field method for fecal steroid analysis by comparing: (1) three extraction methods (laboratory (LAB), homogenize (HO) and handshake (HS)) and (2) two storage methods (solid-phase extraction (SPE) tubes vs. plastic tubes (PT)). Samples (n=23) from captive African wild dogs (Lycaon pictus) were thoroughly mixed, three aliquots of each were weighed ( approximately 0.5 g) and 5 ml of 90% ethanol was added. For LAB, samples were agitated (mixer setting 60; 30 min), centrifuged (1,500 rpm; 20 min) and poured into glass tubes. Or aliquots were HO (1 min) or HS (1 min) and poured through filter paper into glass tubes. Samples were split, analyzed for corticosterone (C) and testosterone (T) metabolites using enzyme immunoassays or stored in SPE or PT. Samples were stored (room temperature) for 30, 60 or 180 days, reconstituted in buffer and analyzed. Mean C and T recoveries of HO were greater (P=0.03) than HS compared with LAB, which was similar to HO (P>0.05). After 30 days <21% of C and T was recovered from SPE, but approximately 100% of each was recovered from HO-PT and HS-PT. Similarly, after 60 and 180 days, approximately 100% of C and T was recovered from HO-PT and HS-PT. Results demonstrated that, for C and T, HO was more comparable (P<0.001) to LAB than HS and PT storage was more efficient than SPE (P<0.001).

  7. Measurements of the effectiveness of conservation agriculture at the field scale using radioisotopic techniques and runoff plots

    NASA Astrophysics Data System (ADS)

    Mabit, L.; Klik, A.; Toloza, A.; Benmansour, M.; Geisler, A.; Gerstmann, U. C.

    2009-04-01

    Growing evidence of the cost of soil erosion on agricultural land and off site impact of associated processes has emphasized the needs for quantitative assessment of erosion rates to develop and assess erosion control technology and to allocate conservation resources and development of conservation regulation, policies and programmes. Our main study goal was to assess the magnitude of deposition rates using Fallout Radionuclides ‘FRNs' (137-Cs and 210-Pb) and the mid-term (13 years) erosion rates using conventional runoff plot measurements in a small agricultural watershed under conventional and conservation tillage practices. The tillage treatments were conventional tillage system (CT), mechanical plough to 30 cm depth (the most common tillage system within the watershed); conservation tillage (CS) with cover crops during winter; and direct seeding (DS) no tillage with cover crops during winter. The experimental design - located in Mistelbach watershed 60 km north of Vienna/Austria - consists of one 3-metre-wide and 15-metre-long runoff plot (silt loam - slope of 14%) for each tillage system (CT, CS and DS) with the plots placed in the upper part of an agricultural field. 76 soil samples were collected to evaluate the initial fallout of 137-Cs and 210-Pb in a small forested area close to the experimental field, along a systematic multi-grid design,. In the sedimentation area of the watershed and down slope the agricultural field, 2 additional soil profiles were collected to 1 m depth. All soil samples were air dried, sieved to 2mm and analysed for their 137-Cs and 210-Pb contents using gamma detector. The main results and conclusion can be summarised as following: i) The initial 137-Cs fallout as measured in the 76 forested soil samples ranged from 1123 to 3354 Bq/m2 for an average of 1954 Bq/m2 with a coefficient of variation of 20.4 %. ii) Long-term erosion measurements (1994-2006) from runoff plots located in the upper part of the agricultural field just up

  8. Characterization techniques for fixed-field alternating gradient accelerators and beam studies using the KURRI 150 MeV proton FFAG

    NASA Astrophysics Data System (ADS)

    Sheehy, S. L.; Kelliher, D. J.; Machida, S.; Rogers, C.; Prior, C. R.; Volat, L.; Haj Tahar, M.; Ishi, Y.; Kuriyama, Y.; Sakamoto, M.; Uesugi, T.; Mori, Y.

    2016-07-01

    In this paper we describe the methods and tools used to characterize a 150 MeV proton scaling fixed field alternating gradient (FFAG) accelerator at Kyoto University Research Reactor Institute. Many of the techniques used are unique to this class of machine and are thus of relevance to any future FFAG accelerator. For the first time we detail systematic studies undertaken to improve the beam quality of the FFAG. The control of beam quality in this manner is crucial to demonstrating high power operation of FFAG accelerators in future.

  9. Application of industrial hygiene techniques for work-place exposure assessment protocols related to petro-chemical exploration and production field activities

    SciTech Connect

    Koehn, J.

    1995-12-31

    Standard industrial hygiene techniques for recognition, evaluation, and control can be directly applied to development of technical protocols for workplace exposure assessment activities for a variety of field site locations. Categories of occupational hazards include chemical and physical agents. Examples of these types of hazards directly related to oil and gas exploration and production workplaces include hydrocarbons, benzene, oil mist, hydrogen sulfide, Naturally Occurring Radioactive Materials (NORM), asbestos-containing materials, and noise. Specific components of well process chemicals include potential hazardous chemical substances such as methanol, acrolein, chlorine dioxide, and hydrochloric acid. Other types of exposure hazards may result from non-routine conduct of sandblasting and painting operations.

  10. SU-E-T-426: Dose Delivery Accuracy in Breast Field Junction for Free Breath and Deep Inspiration Breath Hold Techniques

    SciTech Connect

    Epstein, D; Shekel, E; Levin, D

    2014-06-01

    Purpose: The purpose of this work was to verify the accuracy of the dose distribution along the field junction in a half beam irradiation technique for breast cancer patients receiving radiation to the breast or chest wall (CW) and the supraclavicular LN region for both free breathing and deep inspiration breath hold (DIBH) technique. Methods: We performed in vivo measurements for nine breast cancer patients receiving radiation to the breast/CW and to the supraclavicular LN region. Six patients were treated to the left breast/CW using DIBH technique and three patients were treated to the right breast/CW in free breath. We used five microMOSFET dosimeters: three located along the field junction, one located 1 cm above the junction and the fifth microMOSFET located 1 cm below the junction. We performed consecutive measurements over several days for each patient and compared the measurements to the TPS calculation (Eclipse, Varian™). Results: The calculated and measured doses along the junction were 0.97±0.08 Gy and 1.02±0.14 Gy, respectively. Above the junction calculated and measured doses were 0.91±0.08 Gy and 0.98±0.09 Gy respectively, and below the junction calculated and measured doses were 1.70±0.15 Gy and 1.61±0.09 Gy, respectively. All differences were not statistically significant. When comparing calculated and measured doses for DIBH patients only, there was still no statistically significant difference between values for all dosimeter locations. Analysis was done using the Mann-Whitney Rank-Sum Test. Conclusion: We found excellent correlation between calculated doses from the TPS and measured skin doses at the junction of several half beam fields. Even for the DIBH technique, where there is more potential for variance due to depth of breath, there is no over or underdose along the field junction. This correlation validates the TPS, as well an accurate, reproducible patient setup.

  11. Macroscopic optical imaging technique for wide-field estimation of fluorescence depth in optically turbid media for application in brain tumor surgical guidance

    PubMed Central

    Kolste, Kolbein K.; Kanick, Stephen C.; Valdés, Pablo A.; Jermyn, Michael; Wilson, Brian C.; Roberts, David W.; Paulsen, Keith D.; Leblond, Frederic

    2015-01-01

    Abstract. A diffuse imaging method is presented that enables wide-field estimation of the depth of fluorescent molecular markers in turbid media by quantifying the deformation of the detected fluorescence spectra due to the wavelength-dependent light attenuation by overlying tissue. This is achieved by measuring the ratio of the fluorescence at two wavelengths in combination with normalization techniques based on diffuse reflectance measurements to evaluate tissue attenuation variations for different depths. It is demonstrated that fluorescence topography can be achieved up to a 5 mm depth using a near-infrared dye with millimeter depth accuracy in turbid media having optical properties representative of normal brain tissue. Wide-field depth estimates are made using optical technology integrated onto a commercial surgical microscope, making this approach feasible for real-world applications. PMID:25652704

  12. Increased oil production and reserves from improved completion techniques in the Bluebell Field, Uinta Basin, Utah. Annual report, September 30, 1993--September 30, 1994

    SciTech Connect

    Allison, M.

    1995-07-01

    The Bluebell field produces from the Tertiary lower Green River and Wasatch Formations of the Uinta Basin, Utah. The productive interval consists of thousands of feet of interbedded fractured clastic and carbonate beds deposited in a fluvial-dominated deltaic lacustrine environment, sandstones deposited in fluvial-dominated deltas; and carbonates and some interbedded sandstones of the lower Wasatch transition deposited in mud flats. Bluebell project personnel are studying ways to improve completion techniques used in the field to increase primary production in both new wells and recompletions. The study includes detailed petrographic examination of the different lithologic reservoir types in both the outcrop and core. Outcrop, core, and geophysical logs are being used to identify and map important depositional cycles. Petrographic detail will be used to improve log calculation methods which are currently highly questionable due to varying water chemistry and clay content in the Green River and Wasatch Formations. Field mapping of fractures and their relationship to basin tectonics helps predict the orientation of open fractures in the subsurface. The project includes acquiring bore-hole imaging logs from new wells in the Bluebell field thereby obtaining detailed subsurface fracture data previously not available. Reservoir simulation models are being constructed to improve the understanding of pressure and fluid flow within the reservoir. A detailed database of well completion histories has been compiled and will be studied to determine which were the most and the least effective methods used in the past.

  13. Advanced performance and scalability of Si nanowire field-effect transistors analyzed using noise spectroscopy and gamma radiation techniques

    SciTech Connect

    Li, J.; Vitusevich, S. A. Pud, S.; Offenhäusser, A.; Petrychuk, M. V.; Danilchenko, B. A.

    2013-11-28

    High-quality Si nanowire field effect transistors (FETs) were fabricated using thermal nanoimprint and chemical wet etching technologies. FET structures of different lengths demonstrate high carrier mobility with values of about 750 cm{sup 2}/Vs and low volume densities of active traps in the dielectric layers of 5 × 10{sup 17} cm{sup −3} eV{sup −1}. We investigated the transport properties of these n-type channel structures using low-frequency noise spectroscopy before and after gamma radiation treatment. Before gamma irradiation, FET structures with lengths of less than 4 μm exhibited noise from contact regions with 1/(L{sup 2}) dependence for the relative 1/f noise. After gamma radiation, the spectra reflected the priority of channel noise with 1/L dependence for all samples. The transport characteristics show that the fabricated nanowire FETs improved scalability, decreased parameter scattering, and increased stability after treatment. The results demonstrate that these nanowire FETs are promising for nanoelectronic and biosensor applications due to the cost-efficient technology and advanced performance of FETs with improved stability and reliability.

  14. Measuring soccer technique with easy-to-administer field tasks in female soccer players from four different competitive levels.

    PubMed

    Pedersen, Arve Vorland; Lorås, Håvard; Norvang, Ole Petter; Asplund, Jennifer

    2014-12-01

    Soccer is a multidimensional sport that requires skills in many different domains. Reports from competitions at the highest levels around the world suggest that a particularly decisive performance factor is a team's technical execution. Testing of technical skills in soccer has been infrequent compared with testing of physiological variables, and there has been a lack of consensus as to which tasks should be included in test batteries. In this study, the validity of four field tasks (heading, long pass, juggling, and hit-the-post) was examined by testing 108 female soccer players from four different competitive levels, representing a hierarchy of skill levels. Correlation analysis indicated that the tasks' results appeared statistically unrelated (Spearman's ρ ≤ .36). Statistical comparisons across competitive levels showed that task performance was closely correlated with players' competition level, with regression analysis indicating that 92% of the variance in mean rankings across tasks could be explained by competitive level. As the easily administered and low-cost tasks identified differences in technical skills across competitive levels, such tasks appear valid for inclusion in tests of technical skills.

  15. The field comparison of three measuring techniques for evaluation of the surface dust level in ventilation ducts.

    PubMed

    Holopainen, Rauno; Asikainen, Vesa; Pasanen, Pertti; Seppänen, Olli

    2002-03-01

    This paper reports the comparison of three measuring methods for quantifying the amount of dust on the inner surface of ventilation ducts: 1) a vacuum test method; 2) a gravimetric tape method; and 3) an optical method. Thirteen recently constructed buildings were selected for the field test in the Helsinki metropolitan area. The dust samples in each method were all taken from the same location in the duct. Most of the ducts sampled had no residual oil originating from the manufacturing process. The mean amount of dust measured with the vacuum test method was 1.3 g/m2 and the range was < 0.1-8.4 g/m2. The mean surface dust level measured using the gravimetric tape method was slightly lower, i.e. 1.2 g/m2 (< 0.1-5.0 g/m2). The mean cleanliness level of the ducts was 15% (2-41%) using the optical method. The wide variations and differences in the results of the different methods were caused by the unequal distribution of dust on the duct surfaces.

  16. Application of geochemical techniques to deduce the reservoir performance of the Palinpinon Geothermal Field, Philippines - an update

    SciTech Connect

    Ramos-Candelaria, M.N.; Garcia, S.E.; Hermoso, D.Z.

    1997-12-31

    Regular monitoring of various geochemical parameters in the water and vapor phases of the production wells at the Palinpinon I and II sectors of the Southern Negros Geothermal Field have been useful in the identification of the dominant reservoir processes occurring related to the present exploitation strategy. Observed geochemical and physical changes in the output of production wells have dictated production and injection strategies adopted to maximize production to meet the steam requirements of the power plant. Correlation of both physical and chemical data have identified the following reservoir processes: (1) Injection breakthrough via the Ticala Fault of the highly mineralized (Cl {approximately}8,000-10,500 mg/kg), isotopically enriched ({delta}{sup 18}O = -3.00{per_thousand}, {delta}{sup 2} H = -39{per_thousand}), and gas depleted brine for wells in the SW and central Puhagan. Injection breakthrough is also occurring in Palinpinon II and has resulted in temperature drops of 5-10{degrees}C.2. Pressure drawdown enhanced boiling in the liquid reservoir with steam separation of 220-240{degrees}C, feeding wells tapping the natural steam zone. However, enhanced drawdown has induced the entry of shallow acid steam condensate fluids in some wells (e.g. OK-7, PN-29D, PN-18D), which if not arrested could reduce production.

  17. Comparison of Measurement Techniques for Gate Shortening in Sub-Micrometer Metal Oxide Semiconductor Field Effect Transistors

    NASA Astrophysics Data System (ADS)

    Bhattacharya, Pradeep; Bari, Mohammad; Rao, Krishnaraj

    1993-08-01

    In this paper, various methods of evaluating the electrical channel length change (or gate shortening) as a result of applied gate voltage in sub-micrometer metal oxide semiconductor field effect transistors (MOSFETs) are investigated and the method best suited for such short channel length devices is reported. Studies were performed on n-channel transistors (n-MOSFETs) fabricated using X-ray and optical lithography and having channel lengths in the range of 0.4 to 4 μm and 1.5 to 10 μm respectively. The effective channel lengths were extracted from the current-voltage (I-V) measurements. The measurements were made for different low and high sets of gate voltages. In comparing various methods it was found that the method due to Terada and Muta, and Chern et al. gave accurate results consistently for short channel MOSFETs, whereas the Whitfield method gave accurate results only for larger channel length MOSFETs. The accuracy of the Whitfield method is sensitive to applied gate voltage during I-V measurements. The Peng and Afromowitz method is unsuitable for finding the effective channel length of sub-micrometer MOSFETs especially if the MOSFETs have high values of external resistance.

  18. Comparison of measurement techniques for gate shortening in sub-micrometer metal oxide semiconductor field effect transistors

    NASA Astrophysics Data System (ADS)

    Bhattacharya, Pradeep; Bari, Mohammad; Rao, Krishnaraj

    1993-08-01

    In this paper, various methods of evaluating the electrical channel length change (or gate shortening) as a result of applied gate voltage in sub-micrometer metal oxide semiconductor field effect transistors (MOSFETs) are investigated and the method best suited for such short channel length devices is reported. Studies were performed on n-channel transistors (n-MOSEFTs) fabricated using X-ray and optical lithography and having channel lengths in the range of 0.4 to 4 micron and 1.5 to 10 micron respectively. The effective channel lengths were extracted from the current-voltage (I-V) measurements. The measurements were made for different low and high sets of gate voltages. In comparing various methods it was found that the method due to Terada and Muta, and Chern et al. gave accurate results consistently for short channel MOSEFTs, whereas the Whitfield method gave accurate results only for larger channel length MOSEFTs. The accuracy of the Whitfield method is sensitive to applied gate voltage during I-V measurements. The Peng and Afromowitz method is unsuitable for finding the effective channel length of sub-micrometer MSFETs especially if the MSFETs have high values of external resistance.

  19. A simple technique to increase the linearity and field-of-view in position sensitive photomultiplier tubes

    SciTech Connect

    Clancy, R.L.; Thompson, C.J.; Robar, J.L.; Bergman, A.M.

    1996-12-31

    Crossed anode wire position sensitive photomultiplier tubes (PS-PMTs) detect the location of a light source and provide the X and Y axis coordinates of the event. These coordinates are typically generated using Anger logic, where a resistor chain divides the current flow into two signals for each coordinate (X{sup +}, X{sup -} & Y{sup +}, Y{sup -}). In the standard readout, identical resistor values are used across the entire resistor chain. While this arrangement provides a linear readout in the central portion of the photomultiplier face, the readout is non-linear and sometimes even double valued near the edges of the PS-PMT due to the truncation of the charge beyond the last anode wire. To counter this effect, we have increased the value of the resistance near the ends of each resistor chain in order to compensate for the charge lost beyond the anode wires. Measurements were made using a Hamamatsu R-3941 PS-PMT coupled to a pixellated BGO matrix of cut crystals with a 2mm pitch in each direction. After changing the end resistors, the usable field-of-view increased by 39%. This simple modification should enhance the operation of PS-PMTs in applications such as positron emission mammography, and small animal PET imaging.

  20. Measuring soccer technique with easy-to-administer field tasks in female soccer players from four different competitive levels.

    PubMed

    Pedersen, Arve Vorland; Lorås, Håvard; Norvang, Ole Petter; Asplund, Jennifer

    2014-12-01

    Soccer is a multidimensional sport that requires skills in many different domains. Reports from competitions at the highest levels around the world suggest that a particularly decisive performance factor is a team's technical execution. Testing of technical skills in soccer has been infrequent compared with testing of physiological variables, and there has been a lack of consensus as to which tasks should be included in test batteries. In this study, the validity of four field tasks (heading, long pass, juggling, and hit-the-post) was examined by testing 108 female soccer players from four different competitive levels, representing a hierarchy of skill levels. Correlation analysis indicated that the tasks' results appeared statistically unrelated (Spearman's ρ ≤ .36). Statistical comparisons across competitive levels showed that task performance was closely correlated with players' competition level, with regression analysis indicating that 92% of the variance in mean rankings across tasks could be explained by competitive level. As the easily administered and low-cost tasks identified differences in technical skills across competitive levels, such tasks appear valid for inclusion in tests of technical skills. PMID:25456249

  1. Improved hydrological model parametrization for climate change impact assessment under data scarcity - The potential of field monitoring techniques and geostatistics.

    PubMed

    Meyer, Swen; Blaschek, Michael; Duttmann, Rainer; Ludwig, Ralf

    2016-02-01

    According to current climate projections, Mediterranean countries are at high risk for an even pronounced susceptibility to changes in the hydrological budget and extremes. These changes are expected to have severe direct impacts on the management of water resources, agricultural productivity and drinking water supply. Current projections of future hydrological change, based on regional climate model results and subsequent hydrological modeling schemes, are very uncertain and poorly validated. The Rio Mannu di San Sperate Basin, located in Sardinia, Italy, is one test site of the CLIMB project. The Water Simulation Model (WaSiM) was set up to model current and future hydrological conditions. The availability of measured meteorological and hydrological data is poor as it is common for many Mediterranean catchments. In this study we conducted a soil sampling campaign in the Rio Mannu catchment. We tested different deterministic and hybrid geostatistical interpolation methods on soil textures and tested the performance of the applied models. We calculated a new soil texture map based on the best prediction method. The soil model in WaSiM was set up with the improved new soil information. The simulation results were compared to standard soil parametrization. WaSiMs was validated with spatial evapotranspiration rates using the triangle method (Jiang and Islam, 1999). WaSiM was driven with the meteorological forcing taken from 4 different ENSEMBLES climate projections for a reference (1971-2000) and a future (2041-2070) times series. The climate change impact was assessed based on differences between reference and future time series. The simulated results show a reduction of all hydrological quantities in the future in the spring season. Furthermore simulation results reveal an earlier onset of dry conditions in the catchment. We show that a solid soil model setup based on short-term field measurements can improve long-term modeling results, which is especially important

  2. Comparison of Two Techniques to Calculate Methane Oxidation rates in Samples Obtained From the Hudson Canyon Seep Field in the North Atlantic

    NASA Astrophysics Data System (ADS)

    Leonte, M.; Kessler, J. D.; Chepigin, A.; Kellermann, M. Y.; Arrington, E.; Valentine, D. L.; Sylva, S.

    2014-12-01

    Aerobic methane oxidation, or methanotrophy, is the dominant process by which methane is removed from the water column in oceanic environments. Therefore, accurately quantifying methane oxidation rates is crucial when constructing methane budgets on a local or global scale. Here we present a comparison of two techniques used to determine methane oxidation rates based on samples obtained over the Hudson Canyon seep field in the North Atlantic. Traditional methane oxidation rate measurements require inoculation of water samples with isotopically labeled methane and tracking the changes to methane concentrations and isotopes as the samples are incubated. However, the addition of methane above background levels is thought to increase the potential for methane oxidation in the sample. A new technique to calculate methane oxidation rates is based on kinetic isotope models and incorporates direct measurements of methane concentrations, methane 13C isotopes, and water current velocity. Acoustic instrumentation (ADCP) aboard the R/V Endeavor was used to obtain water current velocity data while water samples were collected for methane concentration and isotopic ratio analysis. Methane δ13C measurements allow us to attribute changes in methane concentration to either water dispersion or bacterial methane oxidation. The data obtained from this cruise will tell us a comprehensive story of methane removal processes from this active seep field. The kinetic isotope models will allow us to estimate the total flux of methane from the seep site and calculate methane oxidation rates at different depths and locations away from seafloor plumes.

  3. Predicting full-field dynamic strain on a three-bladed wind turbine using three dimensional point tracking and expansion techniques

    NASA Astrophysics Data System (ADS)

    Baqersad, Javad; Niezrecki, Christopher; Avitabile, Peter

    2014-03-01

    As part of a project to predict the full-field dynamic strain in rotating structures (e.g. wind turbines and helicopter blades), an experimental measurement was performed on a wind turbine attached to a 500-lb steel block and excited using a mechanical shaker. In this paper, the dynamic displacement of several optical targets mounted to a turbine placed in a semi-built-in configuration was measured by using three-dimensional point tracking. Using an expansion algorithm in conjunction with a finite element model of the blades, the measured displacements were expanded to all finite element degrees of freedom. The calculated displacements were applied to the finite element model to extract dynamic strain on the surface as well as within the interior points of the structure. To validate the technique for dynamic strain prediction, the physical strain at eight locations on the blades was measured during excitation using strain-gages. The expansion was performed by using both structural modes of an individual cantilevered blade and using modes of the entire structure (three-bladed wind turbine and the fixture) and the predicted strain was compared to the physical strain-gage measurements. The results demonstrate the ability of the technique to predict full-field dynamic strain from limited sets of measurements and can be used as a condition based monitoring tool to help provide damage prognosis of structures during operation.

  4. A novel field transplantation technique reveals intra-specific metal-induced oxidative responses in strains of Ectocarpus siliculosus with different pollution histories.

    PubMed

    Sáez, Claudio A; González, Alberto; Contreras, Rodrigo A; Moody, A John; Moenne, Alejandra; Brown, Murray T

    2015-04-01

    A novel field transplantation technique, in which seaweed material is incorporated into dialysis tubing, was used to investigate intra-specific responses to metals in the model brown alga Ectocarpus siliculosus. Metal accumulation in the two strains was similar, with higher concentrations in material deployed to the metal-contaminated site (Ventanas, Chile) than the pristine site (Quintay, Chile). However, the oxidative responses differed. At Ventanas, strain Es147 (from low-polluted site) underwent oxidative damage whereas Es524 (from highly polluted site) was not affected. Concentrations of reduced ascorbate (ASC) and reduced glutathione (GSH) were significantly higher in Es524. Activities of the antioxidant enzymes superoxide dismutase (SOD), ascorbate peroxidase (APX), catalase (CAT), and glutathione reductase (GR) all increased in Es524, whereas only SOD increased in Es147. For the first time, employing a field transplantation technique, we provide unambiguous evidence of inter-population variation of metal-tolerance in brown algae and establish that antioxidant defences are, in part, responsible.

  5. Monoclonal antibody-based dipstick assay: a reliable field applicable technique for diagnosis of Schistosoma mansoni infection using human serum and urine samples.

    PubMed

    Demerdash, Zeinab; Mohamed, Salwa; Hendawy, Mohamed; Rabia, Ibrahim; Attia, Mohy; Shaker, Zeinab; Diab, Tarek M

    2013-02-01

    A field applicable diagnostic technique, the dipstick assay, was evaluated for its sensitivity and specificity in diagnosing human Schistosoma mansoni infection. A monoclonal antibody (mAb) against S. mansoni adult worm tegumental antigen (AWTA) was employed in dipstick and sandwich ELISA for detection of circulating schistosome antigen (CSA) in both serum and urine samples. Based on clinical and parasitological examinations, 60 S. mansoni-infected patients, 30 patients infected with parasites other than schistosomiasis, and 30 uninfected healthy individuals were selected. The sensitivity and specificity of dipstick assay in urine samples were 86.7% and 90.0%, respectively, compared to 90.0% sensitivity and 91.7% specificity of sandwich ELISA. In serum samples, the sensitivity and specificity were 88.3% and 91.7% for dipstick assay vs. 91.7% and 95.0% for sandwich ELISA, respectively. The diagnostic efficacy of dipstick assay in urine and serum samples was 88.3% and 90.0%, while it was 90.8% and 93.3% for sandwich ELISA, respectively. The diagnostic indices of dipstick assay and ELISA either in serum or in urine were statistically comparable (P>0.05). In conclusion, the dipstick assay offers an alternative simple, rapid, non-invasive technique in detecting CSA or complement to stool examinations especially in field studies. PMID:23467705

  6. Simple Techniques For Assessing Impacts Of Oil And Gas Operations On Federal Lands - A Field Evaluation At Big South Fork National River And Recreation Area, Scott County, Tennessee

    USGS Publications Warehouse

    Otton, James K.; Zielinski, Robert A.

    2000-01-01

    Simple, cost-effective techniques are needed for land managers to assess the environmental impacts of oil and gas production activities on public lands so that sites may be prioritized for further, more formal assessment or remediation. These techniques should allow the field investigator to extend the assessment beyond the surface disturbances documented by simple observation and mapping using field-portable instruments and expendable materials that provide real-time data. The principal contaminants of current concern are hydrocarbons, produced water, and naturally occurring radioactive materials (NORM). Field investigators can examine sites for the impacts of hydrocarbon releases using a photoionization detector (PID) and a soil auger. Volatile organic carbon (VOC) in soil gases in an open auger hole or in the head space of a bagged and gently warmed auger soil sample can be measured by the PID. This allows detection of hydrocarbon movement in the shallow subsurface away from areas of obvious oil-stained soils or oil in pits at a production site. Similarly, a field conductivity meter and chloride titration strips can be used to measure salts in water and soil samples at distances well beyond areas of surface salt scarring. Use of a soil auger allows detection of saline subsoils in areas where salts may be flushed from the surface soil layers. Finally, a microRmeter detects the presence of naturally occurring radioactive materials (NORM) in equipment and soils. NORM often goes undetected at many sites although regulations limiting NORM in equipment and soils are being promulgated in several States and are being considered by the USEPA. With each technique, background sampling should be done for comparison with impacted areas. The authors examined sites in the Big South Fork National River and Recreation Area in November of 1999. A pit at one site at the edge of the flood plain of a small stream had received crude oil releases from a nearby tank. Auger holes down

  7. Localization of a continuous CO2 leak from an isotropic flat-surface structure using acoustic emission detection and near-field beamforming techniques

    NASA Astrophysics Data System (ADS)

    Yan, Yong; Cui, Xiwang; Guo, Miao; Han, Xiaojuan

    2016-11-01

    Seal capacity is of great importance for the safety operation of pressurized vessels. It is crucial to locate the leak hole timely and accurately for reasons of safety and maintenance. This paper presents the principle and application of a linear acoustic emission sensor array and a near-field beamforming technique to identify the location of a continuous CO2 leak from an isotropic flat-surface structure on a pressurized vessel in the carbon capture and storage system. Acoustic signals generated by the leak hole are collected using a linear high-frequency sensor array. Time-frequency analysis and a narrow-band filtering technique are deployed to extract effective information about the leak. The impacts of various factors on the performance of the localization technique are simulated, compared and discussed, including the number of sensors, distance between the leak hole and sensor array and spacing between adjacent sensors. Experiments were carried out on a laboratory-scale test rig to assess the effectiveness and operability of the proposed method. The results obtained suggest that the proposed method is capable of providing accurate and reliable localization of a continuous CO2 leak.

  8. Development and field application of a nonlinear ultrasonic modulation technique for fatigue crack detection without reference data from an intact condition

    NASA Astrophysics Data System (ADS)

    Lim, Hyung Jin; Kim, Yongtak; Koo, Gunhee; Yang, Suyoung; Sohn, Hoon; Bae, In-hwan; Jang, Jeong-Hwan

    2016-09-01

    In this study, a fatigue crack detection technique, which detects a fatigue crack without relying on any reference data obtained from the intact condition of a target structure, is developed using nonlinear ultrasonic modulation and applied to a real bridge structure. Using two wafer-type lead zirconate titanate (PZT) transducers, ultrasonic excitations at two distinctive frequencies are applied to a target inspection spot and the corresponding ultrasonic response is measured by another PZT transducer. Then, the nonlinear modulation components produced by a breathing-crack are extracted from the measured ultrasonic response, and a statistical classifier, which can determine if the nonlinear modulation components are statistically significant in comparison with the background noise level, is proposed. The effectiveness of the proposed fatigue crack detection technique is experimentally validated using the data obtained from aluminum plates and aircraft fitting-lug specimens under varying temperature and loading conditions, and through a field testing of Yeongjong Grand Bridge in South Korea. The uniqueness of this study lies in that (1) detection of a micro fatigue crack with less than 1 μm width and fatigue cracks in the range of 10–20 μm in width using nonlinear ultrasonic modulation, (2) automated detection of fatigue crack formation without using reference data obtained from an intact condition, (3) reliable and robust diagnosis under varying temperature and loading conditions, (4) application of a local fatigue crack detection technique to online monitoring of a real bridge.

  9. Development and field application of a nonlinear ultrasonic modulation technique for fatigue crack detection without reference data from an intact condition

    NASA Astrophysics Data System (ADS)

    Lim, Hyung Jin; Kim, Yongtak; Koo, Gunhee; Yang, Suyoung; Sohn, Hoon; Bae, In-hwan; Jang, Jeong-Hwan

    2016-09-01

    In this study, a fatigue crack detection technique, which detects a fatigue crack without relying on any reference data obtained from the intact condition of a target structure, is developed using nonlinear ultrasonic modulation and applied to a real bridge structure. Using two wafer-type lead zirconate titanate (PZT) transducers, ultrasonic excitations at two distinctive frequencies are applied to a target inspection spot and the corresponding ultrasonic response is measured by another PZT transducer. Then, the nonlinear modulation components produced by a breathing-crack are extracted from the measured ultrasonic response, and a statistical classifier, which can determine if the nonlinear modulation components are statistically significant in comparison with the background noise level, is proposed. The effectiveness of the proposed fatigue crack detection technique is experimentally validated using the data obtained from aluminum plates and aircraft fitting-lug specimens under varying temperature and loading conditions, and through a field testing of Yeongjong Grand Bridge in South Korea. The uniqueness of this study lies in that (1) detection of a micro fatigue crack with less than 1 μm width and fatigue cracks in the range of 10-20 μm in width using nonlinear ultrasonic modulation, (2) automated detection of fatigue crack formation without using reference data obtained from an intact condition, (3) reliable and robust diagnosis under varying temperature and loading conditions, (4) application of a local fatigue crack detection technique to online monitoring of a real bridge.

  10. A technique for determining Urbach edge, midgap states and electric field in a-Si:H and a-(Si,Ge):H devices

    NASA Technical Reports Server (NTRS)

    Dalal, Vikram L.; Knox, Ralph D.; Moradi, Behnam

    1990-01-01

    A technique for measuring the Urbach energy of valence band tail states and midgap defect densities in a-Si:H and a-(Si,Ge):H devices is described. The Urbach energy is determined by measuring the quantum efficiency (QE) of delocalized holes in the devices, whereas the midgap state density (DOS) is estimated by measuring the QE of localized holes. The distinction between delocalized and localized holes is obtained from the behavior of the QE upon the application of reverse bias to the device. The QE of holes localized in midgap states increases significantly upon the application of reverse bias because of Frenkel-Poole tunneling, whereas the QE of holes in tail states does not show such an increase. It is shown that upon light soaking the Urbach edge does not change, but the midgap DOS does increase significantly. A primary consequence of the increase in DOS is a decrease in electric field in the low-field middle i region of the p-i-n cell. The decrease in electric field is experimentally estimated by fitting the increase in the reverse bias QE to Frenkel-Poole tunneling.

  11. Measurements of the unsteady flow field within the stator row of a transonic axial-flow fan. I - Measurement and analysis technique

    NASA Technical Reports Server (NTRS)

    Suder, K. L.; Strazisar, A. J.; Adamczyk, J. J.; Hathaway, M. D.; Okiishi, T. H.

    1987-01-01

    This two-part paper presents laser anemometer measurements of the unsteady velocity field within the stator row of a transonic axial-flow fan. The objective is to provide additional insight into unsteady blade-row interactions within highspeed compressors which affect stage efficiency, energy transfer, and other design considerations. Part 1 describes the measurement and analysis techniques used for resolving the unsteady flow field features. The ensemble-average and variance of the measured velocities are used to identify the rotor wake generated and unresolved unsteadiness, respectively. (Rotor wake generated unsteadiness refers to the unsteadiness generated by the rotor wake velocity deficit and the term unresolved unsteadiness refers to all remaining contributions to unsteadiness such as vortex shedding, turbulence, mass flow fluctutions, etc.). A procedure for calculating auto and cross correlations of the rotor wake generated and unresolved unsteady velocity fluctuations is described. These unsteady-velocity correlations have significance since they also result from a decomposition of the Navier-Stokes equations. This decomposition of the Navier-Stokes equations resulting in the velocity correlations used to describe the unsteady velocity field will also be outlined in this paper.

  12. Structural, nanomechanical, field emission and ammonia gas sensing properties of nitrogenated amorphous carbon films deposited by filtered anodic jet carbon arc technique.

    PubMed

    Tripathi, R K; Panwar, O S; Srivastava, A K; Rawal, Ishpal; Chockalingam, Sreekumar

    2014-07-01

    This paper reports the effect of substrate bias on the structural, nanomechanical, field emission and ammonia gas sensing properties of nitrogenated amorphous carbon films embedded with nanocrystallites (a-C: N: nc) deposited by a filtered anodic jet carbon arc (FAJCA) technique. The films are characterized by X-ray diffraction, high resolution transmission electron microscopy, energy dispersive X-ray spectroscopic analysis, Raman spectroscopy, nanoindentation, field emission and ammonia gas sensing measurements. The properties of the films obtained are found to depend on the substrate bias. The maximum hardness (H)=42.7 GPa, elastic modulus (E)=330.4 GPa, plastic index parameter (H/E)=0.129 and elastic recovery (% ER)=74.4% have been obtained in a-C: N: nc films deposited at -60 V substrate bias which show the lowest ID/IG=0.43, emission threshold (ET)=4.9 V/µm accompanied with the largest emission current density (Jmax)=1 mA/cm(2) and field enhancement factor (β)=1805.6. The gas sensing behavior of the a-C: N: nc film has been tested by measuring the change in electrical resistance of the sample in ammonia environment at room temperature with the fast response and recovery time as 29 and 66.9s, respectively.

  13. Physicochemical characterization of titanium dioxide pigments using various techniques for size determination and asymmetric flow field flow fractionation hyphenated with inductively coupled plasma mass spectrometry.

    PubMed

    Helsper, Johannes P F G; Peters, Ruud J B; van Bemmel, Margaretha E M; Rivera, Zahira E Herrera; Wagner, Stephan; von der Kammer, Frank; Tromp, Peter C; Hofmann, Thilo; Weigel, Stefan

    2016-09-01

    Seven commercial titanium dioxide pigments and two other well-defined TiO2 materials (TiMs) were physicochemically characterised using asymmetric flow field flow fractionation (aF4) for separation, various techniques to determine size distribution and inductively coupled plasma mass spectrometry (ICPMS) for chemical characterization. The aF4-ICPMS conditions were optimised and validated for linearity, limit of detection, recovery, repeatability and reproducibility, all indicating good performance. Multi-element detection with aF4-ICPMS showed that some commercial pigments contained zirconium co-eluting with titanium in aF4. The other two TiMs, NM103 and NM104, contained aluminium as integral part of the titanium peak eluting in aF4. The materials were characterised using various size determination techniques: retention time in aF4, aF4 hyphenated with multi-angle laser light spectrometry (MALS), single particle ICPMS (spICPMS), scanning electron microscopy (SEM) and particle tracking analysis (PTA). PTA appeared inappropriate. For the other techniques, size distribution patterns were quite similar, i.e. high polydispersity with diameters from 20 to >700 nm, a modal peak between 200 and 500 nm and a shoulder at 600 nm. Number-based size distribution techniques as spICPMS and SEM showed smaller modal diameters than aF4-UV, from which mass-based diameters are calculated. With aF4-MALS calculated, light-scattering-based "diameters of gyration" (Øg) are similar to hydrodynamic diameters (Øh) from aF4-UV analyses and diameters observed with SEM, but much larger than with spICPMS. A Øg/Øh ratio of about 1 indicates that the TiMs are oblate spheres or fractal aggregates. SEM observations confirm the latter structure. The rationale for differences in modal peak diameter is discussed. PMID:27469116

  14. Physicochemical characterization of titanium dioxide pigments using various techniques for size determination and asymmetric flow field flow fractionation hyphenated with inductively coupled plasma mass spectrometry.

    PubMed

    Helsper, Johannes P F G; Peters, Ruud J B; van Bemmel, Margaretha E M; Rivera, Zahira E Herrera; Wagner, Stephan; von der Kammer, Frank; Tromp, Peter C; Hofmann, Thilo; Weigel, Stefan

    2016-09-01

    Seven commercial titanium dioxide pigments and two other well-defined TiO2 materials (TiMs) were physicochemically characterised using asymmetric flow field flow fractionation (aF4) for separation, various techniques to determine size distribution and inductively coupled plasma mass spectrometry (ICPMS) for chemical characterization. The aF4-ICPMS conditions were optimised and validated for linearity, limit of detection, recovery, repeatability and reproducibility, all indicating good performance. Multi-element detection with aF4-ICPMS showed that some commercial pigments contained zirconium co-eluting with titanium in aF4. The other two TiMs, NM103 and NM104, contained aluminium as integral part of the titanium peak eluting in aF4. The materials were characterised using various size determination techniques: retention time in aF4, aF4 hyphenated with multi-angle laser light spectrometry (MALS), single particle ICPMS (spICPMS), scanning electron microscopy (SEM) and particle tracking analysis (PTA). PTA appeared inappropriate. For the other techniques, size distribution patterns were quite similar, i.e. high polydispersity with diameters from 20 to >700 nm, a modal peak between 200 and 500 nm and a shoulder at 600 nm. Number-based size distribution techniques as spICPMS and SEM showed smaller modal diameters than aF4-UV, from which mass-based diameters are calculated. With aF4-MALS calculated, light-scattering-based "diameters of gyration" (Øg) are similar to hydrodynamic diameters (Øh) from aF4-UV analyses and diameters observed with SEM, but much larger than with spICPMS. A Øg/Øh ratio of about 1 indicates that the TiMs are oblate spheres or fractal aggregates. SEM observations confirm the latter structure. The rationale for differences in modal peak diameter is discussed.

  15. In situ spectrometric and chemical measurements of methane emissions from a natural marine hydrocarbon seep field, Coal Oil Point, California: Validation of methane remote sensing techniques

    NASA Astrophysics Data System (ADS)

    Luyendyk, B. P.; Leifer, I.; Roberts, D.; Margolis, J. S.

    2006-12-01

    Remote sensing techniques can significantly improve our understanding of the sources and sinks of the important greenhouse gas methane. Field and laboratory studies used spectral and in-situ chemical measurements of geologic methane plumes from natural marine seepage and radiative-transfer calculations to test the feasibility of using NASA's Airborne Visual/Infrared Imaging Spectrometer (AVIRIS) for methane remote sensing of this marine source. Based on numerical MODTRAN simulations, the spectral region between 2200 and 2340 nm was chosen for its sensitivity to CH4 with mild sensitivity to water vapor interference. During one marine field study, an intense seep area was repeatedly transected by boat using flame ion detectors (FID) to characterize the methane plume along with detailed meteorological measurements. Based on a Gaussian plume dispersion model for 3 m/s wind speed, methane column-abundances were calculated and showed a plume with methane concentrations greater than 0.5 g/m2 extending downwind 70 m with a 20 m width, much larger than the 3 to 5 m AVIRIS pixel size. Most of the methane was in the lower 10 m. MODTRAN calculations showed this to be well above the noise equivalent detection level of AVIRIS. During a separate field study, FIDs at three heights above the sea surface (2.2, 3.6, and 5 m) measured methane concentrations as high as 200 ppm while transecting an active seep area. Simultaneous spectra were obtained with a field spectrometer. Several plumes were identified from the FID data and a clear relationship was shown between the presence of methane plumes along the incident path and the presence of methane absorption features in spectra. Methane absorption features above atmospheric background were not observed outside the plumes.

  16. A real-time, full-field, and low-cost velocity sensing approach for linear motion using fringe projection techniques

    NASA Astrophysics Data System (ADS)

    Su, Wei-Hung; Co, Wei-Ting

    2016-06-01

    A velocity sensing approach using the fringe projection technique is presented. The moving object is projected with a sinusoidal fringe pattern. A CCD camera located at a different view angle observes the projected fringes on the dynamic object. The long exposure time of the CCD camera makes the fringes blurred by linear motion. The blurred fringes provide additional information to describe the depth displacement, and therefore the velocity vector can be identified. There is no need to take multiple-shot measurements to address the change in 3D positions at a sequence of time. Only one-shot measurement is required. Consequently, there is no need to perform image registration. The full-field approach also makes it possible to simultaneously inspect several objects.

  17. Formation of a built-in field at the porphyrin/ITO interface directly proven by the time-resolved photovoltage technique.

    PubMed

    Wei, Xiao; Han, Li-Na; Mao, Cheng-Yu; Wang, De-Jun; Li, Xin-Hao; Feng, Ping-Yun; Chen, Jie-Sheng

    2015-02-21

    Two assemblies, porphyrin powder/ITO and porphyrin film/ITO, were built by a facile method. The time-resolved photovoltage technique was utilized to prove the behaviour of photo-induced charges in the two assemblies. The photovoltage results show that the porphyrin film/ITO assembly displays a reversal polarity response, which is different from the response of porphyrin powder/ITO. This phenomenon is due to the effect of a built-in field on photo-induced charge behaviour at the porphyrin film/ITO interface. This result is beneficial for the development of a measuring method for detecting heterojunction interface formation and understanding the photoelectric process in photoelectric materials and devices. PMID:25601105

  18. Fault ride-through enhancement using an enhanced field oriented control technique for converters of grid connected DFIG and STATCOM for different types of faults.

    PubMed

    Ananth, D V N; Nagesh Kumar, G V

    2016-05-01

    With increase in electric power demand, transmission lines were forced to operate close to its full load and due to the drastic change in weather conditions, thermal limit is increasing and the system is operating with less security margin. To meet the increased power demand, a doubly fed induction generator (DFIG) based wind generation system is a better alternative. For improving power flow capability and increasing security STATCOM can be adopted. As per modern grid rules, DFIG needs to operate without losing synchronism called low voltage ride through (LVRT) during severe grid faults. Hence, an enhanced field oriented control technique (EFOC) was adopted in Rotor Side Converter of DFIG converter to improve power flow transfer and to improve dynamic and transient stability. A STATCOM is coordinated to the system for obtaining much better stability and enhanced operation during grid fault. For the EFOC technique, rotor flux reference changes its value from synchronous speed to zero during fault for injecting current at the rotor slip frequency. In this process DC-Offset component of flux is controlled, decomposition during symmetric and asymmetric faults. The offset decomposition of flux will be oscillatory in a conventional field oriented control, whereas in EFOC it was aimed to damp quickly. This paper mitigates voltage and limits surge currents to enhance the operation of DFIG during symmetrical and asymmetrical faults. The system performance with different types of faults like single line to ground, double line to ground and triple line to ground was applied and compared without and with a STATCOM occurring at the point of common coupling with fault resistance of a very small value at 0.001Ω.

  19. Field Techniques in Marine Biology

    ERIC Educational Resources Information Center

    Crenshaw, Neil

    1977-01-01

    Discussed is one teacher's method of teaching students to use various marine and scientific apparati while studying important relationships within the ecosystem. A data retrieval chart is included with questions and problems to ask about the data, along with information on how to interpret the data chart. (MA)

  20. Combining the Sterile Insect Technique with the Incompatible Insect Technique: III-Robust Mating Competitiveness of Irradiated Triple Wolbachia-Infected Aedes albopictus Males under Semi-Field Conditions

    PubMed Central

    Zhang, Dongjing; Lees, Rosemary Susan; Xi, Zhiyong; Bourtzis, Kostas; Gilles, Jeremie R. L.

    2016-01-01

    Combination of the sterile insect technique with the incompatible insect technique is considered to be a safe approach to control Aedes albopictus populations in the absence of an accurate and scalable sex separation system or genetic sexing strain. Our previous study has shown that the triple Wolbachia-infected Ae. albopictus strain (wAlbA, wAlbB and wPip) was suitable for mass rearing and females could be completely sterilized as pupae with a radiation dose of at least 28 Gy. However, whether this radiation dose can influence the mating competitiveness of the triple infected males was still unknown. In this study we aimed to evaluate the effects of irradiation on the male mating competitiveness of the triple infected strain under laboratory and semi-field conditions. The results herein indicate that irradiation with a lower, female-sterilizing dose has no negative impact on the longevity of triple infected males while a reduced lifespan was observed in the wild type males (wAlbA and wAlbB) irradiated with a higher male-sterilizing dose, in small cages. At different sterile: fertile release ratios in small cages, triple-infected males induced 39.8, 81.6 and 87.8% sterility in a wild type female population at 1:1, 5:1 and 10:1 release ratios, respectively, relative to a fertile control population. Similarly, irradiated triple infected males induced 31.3, 70.5 and 89.3% sterility at 1:1, 5:1 and 10:1 release ratios, respectively, again relative to the fertile control. Under semi-field conditions at a 5:1 release ratio, relative to wild type males, the mean male mating competitiveness index of 28 Gy irradiated triple-infected males was significantly higher than 35 Gy irradiated wild type males, while triple infected males showed no difference in mean mating competitiveness to either irradiated triple-infected or irradiated wild type males. An unexpected difference was also observed in the relative male mating competitiveness of the triple infected strain after

  1. Fast quantifying collision strength index of ethylene-vinyl acetate copolymer coverings on the fields based on near infrared hyperspectral imaging techniques

    PubMed Central

    Chen, Y. M.; Lin, P.; He, Y.; He, J. Q.; Zhang, J.; Li, X. L.

    2016-01-01

    A novel strategy based on the near infrared hyperspectral imaging techniques and chemometrics were explored for fast quantifying the collision strength index of ethylene-vinyl acetate copolymer (EVAC) coverings on the fields. The reflectance spectral data of EVAC coverings was obtained by using the near infrared hyperspectral meter. The collision analysis equipment was employed to measure the collision intensity of EVAC materials. The preprocessing algorithms were firstly performed before the calibration. The algorithms of random frog and successive projection (SP) were applied to extracting the fingerprint wavebands. A correlation model between the significant spectral curves which reflected the cross-linking attributions of the inner organic molecules and the degree of collision strength was set up by taking advantage of the support vector machine regression (SVMR) approach. The SP-SVMR model attained the residual predictive deviation of 3.074, the square of percentage of correlation coefficient of 93.48% and 93.05% and the root mean square error of 1.963 and 2.091 for the calibration and validation sets, respectively, which exhibited the best forecast performance. The results indicated that the approaches of integrating the near infrared hyperspectral imaging techniques with the chemometrics could be utilized to rapidly determine the degree of collision strength of EVAC. PMID:26875544

  2. Increased oil production and reserves from improved completion techniques in the Bluebell field, Uinta Basin, Utah. Tenth quarterly technical progress report, January 1, 1996--March 31, 1996. Revised

    SciTech Connect

    Allison, M.L.

    1996-05-13

    The objective of this project is to increase oil production and reserves in the Uinta Basin by demonstrating improved completion techniques. Low productivity of Uinta Basin will is caused by gross production intervals of several thousand feet that contain perforated thief zones, water-bearing zones, and unperforated oil- bearing intervals. Geologic and engineering characterization and computer simulation of the Green River and Wasatch Formations in the Bluefell field will determine reservoir heterogeneities related to fractures and depositional trends. This will be followed by techniques based on the reservoir characterization. Transfer of the project results will be an ongoing component of the project. Data (net pay thickness, porosity, and water saturation) of more than 100 individuals beds in he lower Green River and Wasatch Formations were used to generate geostatistical realization (numerical- representation) of the reservoir properties. The data set was derived from the Michelle Ute and Malnar Pike demonstration wells and 22 other wells in a 20 (52 km{sup 2}) square-mile area. Beds were studied independently of each other. Principles of sequential Gaussian simulations were used to generate geostatistical realizations of the beds.

  3. Increased oil production and reserves from improved completion techniques in the Bluebell field, Uinta Basin. Quarterly technical report, October 1, 1996--December 31, 1996

    SciTech Connect

    Morgan, C.D.

    1997-02-01

    The objective of this project is to increase oil production and reserves in the Uinta Basin by demonstrating improved completion techniques. Low productivity of Uinta Basin wells is caused by gross production intervals of several thousand feet that contain perforated thief zones, water-bearing zones, and unperforated oil-bearing intervals. Geologic and engineering characterization and computer simulation of the Green River and Wasatch formations in the Bluebell field will determine reservoir heterogeneities related to fractures and depositional trends. This will be followed by drilling and recompletion of several wells to demonstrate improved completion techniques based on the reservoir characterization. Transfer of the project results will be an ongoing component of the project. The recompletion of the Michelle Ute 7-1 well commenced and is the first step in the three-well demonstration. As part of the recompletion, the gross productive interval was logged, additional beds were perforated, and the entire interval was stimulated with a three-stage acid treatment. The operator attempted to stimulate the well at high pressure (about 10,000 pounds per square inch (psi) [68,950 kPa]) at three separate packer locations. But at each location the pressure would not hold. As a result, all three stages were pumped at a lower pressure (6500 psi maximum [44,820 kPa]) from one packer location. As of December 31, 1996, the operator was tripping in the hole with the production packer and tubing to begin swab testing the well.

  4. Fast quantifying collision strength index of ethylene-vinyl acetate copolymer coverings on the fields based on near infrared hyperspectral imaging techniques

    NASA Astrophysics Data System (ADS)

    Chen, Y. M.; Lin, P.; He, Y.; He, J. Q.; Zhang, J.; Li, X. L.

    2016-02-01

    A novel strategy based on the near infrared hyperspectral imaging techniques and chemometrics were explored for fast quantifying the collision strength index of ethylene-vinyl acetate copolymer (EVAC) coverings on the fields. The reflectance spectral data of EVAC coverings was obtained by using the near infrared hyperspectral meter. The collision analysis equipment was employed to measure the collision intensity of EVAC materials. The preprocessing algorithms were firstly performed before the calibration. The algorithms of random frog and successive projection (SP) were applied to extracting the fingerprint wavebands. A correlation model between the significant spectral curves which reflected the cross-linking attributions of the inner organic molecules and the degree of collision strength was set up by taking advantage of the support vector machine regression (SVMR) approach. The SP-SVMR model attained the residual predictive deviation of 3.074, the square of percentage of correlation coefficient of 93.48% and 93.05% and the root mean square error of 1.963 and 2.091 for the calibration and validation sets, respectively, which exhibited the best forecast performance. The results indicated that the approaches of integrating the near infrared hyperspectral imaging techniques with the chemometrics could be utilized to rapidly determine the degree of collision strength of EVAC.

  5. Transfer-free graphene synthesis on sapphire by catalyst metal agglomeration technique and demonstration of top-gate field-effect transistors

    SciTech Connect

    Miyoshi, Makoto Arima, Yukinori; Kubo, Toshiharu; Egawa, Takashi; Mizuno, Masaya; Soga, Tetsuo

    2015-08-17

    Transfer-free graphene synthesis was performed on sapphire substrates by using the catalyst metal agglomeration technique, and the graphene film quality was compared to that synthesized on sputtered SiO{sub 2}/Si substrates. Raman scattering measurements indicated that the graphene film on sapphire has better structural qualities than that on sputtered SiO{sub 2}/Si substrates. The cross-sectional transmission microscopic study also revealed that the film flatness was drastically improved by using sapphire substrates instead of sputtered SiO{sub 2}/Si substrates. These quality improvements seemed to be due the chemical and thermal stabilities of sapphire. Top-gate field-effect transistors were fabricated using the graphene films on sapphire, and it was confirmed that their drain current can be modulated with applied gate voltages. The maximum field-effect mobilities were estimated to be 720 cm{sup 2}/V s for electrons and 880 cm{sup 2}/V s for holes, respectively.

  6. The National Fuel End-Use Efficiency Field Test: Energy Savings and Performance of an Improved Energy Conservation Measure Selection Technique

    SciTech Connect

    Ternes, M.P.

    1991-01-01

    The performance of an advanced residential energy conservation measure (ECM) selection technique was tested in Buffalo, New York, to verify the energy savings and program improvements achieved from use of the technique in conservation programs and provide input into determining whether utility investments in residential gas end-use conservation are cost effective. The technique analyzes a house to identify all ECMs that are cost effective in the building envelope, space-heating system, and water-heating system. The benefit-to-cost ratio (BCR) for each ECM is determined and cost-effective ECMs (BCR > 1.0) are selected once interactions between ECMs are taken into account. Eighty-nine houses with the following characteristics were monitored for the duration of the field test: occupants were low-income, houses were single-family detached houses but not mobile homes, and primary space- and water-heating systems were gas-fired. Forty-five houses received a mix of ECMs as selected by the measure selection technique (audit houses) and 44 served as a control group. Pre-weatherization data were collected from January to April 1988 and post-weatherization data were collected from December 1988 to April 1989. Space- and waterheating gas consumption and indoor temperature were monitored weekly during the two winters. A house energy consumption model and regression analysis were employed to normalize the space-heating energy savings to average outdoor temperature conditions and a 68 F indoor temperature. Space and water-heating energy savings for the audit houses were adjusted by the savings for the control houses. The average savings of 257 therms/year for the audit houses was 17% of the average pre-weatherization house gas consumption and 78% of that predicted. Average space-heating energy savings was 252 therms/year (25% of pre-weatherization space-heating energy consumption and 85% of the predicted value) and average water-heating savings was 5 therms/year (2% of pre

  7. Himalayan glaciers: Combining remote sensing, field techniques and indigenous knowledge to understand spatio-temporal patterns of glacier changes and their impact on water resources

    NASA Astrophysics Data System (ADS)

    Racoviteanu, Adina

    With contradictory statements about "disappearing Himalayan glaciers" in the last few years, increasing concerns have been raised about the impact of snow and glacier changes on regional water supplies. Concomitantly, local communities in the western Himalaya report changes in glacier extents, snow cover and weather patterns. In response to perceived water scarcity, indigenous Himalayan cultures have begun a number of adaptive responses such as meltwater harvesting to construct "artificial" glaciers. This research addresses the need for a detailed assessment of glacier and climate parameters in the Himalaya, with the goal of identifying "at risk" glacierized areas and helping these local communities plan future water resources. The objectives of the research are threefold: 1) to review existing knowledge about glacier fluctuations and remote sensing methods for glacier mapping in the Himalaya; 3) to quantify spatio-temporal patterns of glacier changes in the eastern Himalaya in the last decades using remote sensing techniques and field measurements and 3) to quantify the role of glacier melt to streamflow using a combination of remote sensing and isotopic techniques. This thesis focuses on the monsoon-influenced eastern Himalaya (the Langtang and Khumbu regions in the Nepal Himalaya, and Sikkim in the Indian Himalaya). The research is grounded in extensive field surveys conducted from 2006 to 2010 across the Himalaya, including glacier mass balance expeditions, water sampling, ground-control point (GCP) acquisition and GPS-enabled photos. The goal of this research is to understand how topographic and climatic factors influence the rates of glacier change at various spatial scales, and how these changes re likely to affect future water resources. Multi-temporal (decadal) glacier datasets were derived from the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) sensor, Landsat ETM+, older topographic maps, declassified Corona imagery and very high

  8. Heliophrya sp. , a new protozoan biomonitor of pollution: culture techniques, toxin uptake and elimination, and field studies in an oil-polluted stream

    SciTech Connect

    Sayre, P.G.

    1984-01-01

    The stalkless suctorian Heliophyra sp., a sessile ciliated protozoan, was used as a pollution biomonitor. The research objectives were to determine: (1) optimal culture conditions and techniques for biotoxicity testing; (2) ability of Helipophrya to incorporate and eliminate a /sup 14/C oil component and other organic toxins; (3) suitability of Heliophrya as a biomonitor of oil pollution. Selection of culture conditions for Heliophrya were based on survival over a three week period and ability to divide when fed after three weeks. The LC50 (lethal concentration for 50% of the population) for 96 h was 12.4 ppt salinity. Heliophrya were exposed to /sup 14/C toxins for 48 h, then organisms were transferred to nonradioactive water for 96 h. The uptake rate of /sup 14/C octachlorostyrene was higher than /sup 14/C phenanthrene or /sup 14/C diisononyl phthalate. Elimination rates were comparable to other test organisms. Heliophrya and d. pulex were placed at three stations, in a stream which received chronic oil pollution, for periods of 48 h and seven days. A 48 h lab test with dilutions of field water was performed. Water samples were analyzed by gas chromatography and mass spectrometry. Death of Heliophrya at the three polluted stations over 48 h was not significantly greater than at a less polluted tributary; however, all the Daphnia in the polluted stream stations were killed. In the seven day field study, Heliophrya had an estimated LC50 of 1 ppm for the aromatic and 29 ppm for the total hydrocarbons. Compared to other species, Heliophrya is moderately sensitive to oil pollution, and is a good companion biomonitor to the more sensitive Daphnia.

  9. Extracting full-field dynamic strain on a wind turbine rotor subjected to arbitrary excitations using 3D point tracking and a modal expansion technique

    NASA Astrophysics Data System (ADS)

    Baqersad, Javad; Niezrecki, Christopher; Avitabile, Peter

    2015-09-01

    Health monitoring of rotating structures such as wind turbines and helicopter rotors is generally performed using conventional sensors that provide a limited set of data at discrete locations near or on the hub. These sensors usually provide no data on the blades or inside them where failures might occur. Within this paper, an approach was used to extract the full-field dynamic strain on a wind turbine assembly subject to arbitrary loading conditions. A three-bladed wind turbine having 2.3-m long blades was placed in a semi-built-in boundary condition using a hub, a machining chuck, and a steel block. For three different test cases, the turbine was excited using (1) pluck testing, (2) random impacts on blades with three impact hammers, and (3) random excitation by a mechanical shaker. The response of the structure to the excitations was measured using three-dimensional point tracking. A pair of high-speed cameras was used to measure displacement of optical targets on the structure when the blades were vibrating. The measured displacements at discrete locations were expanded and applied to the finite element model of the structure to extract the full-field dynamic strain. The results of the paper show an excellent correlation between the strain predicted using the proposed approach and the strain measured with strain-gages for each of the three loading conditions. The approach used in this paper to predict the strain showed higher accuracy than the digital image correlation technique. The new expansion approach is able to extract dynamic strain all over the entire structure, even inside the structure beyond the line of sight of the measurement system. Because the method is based on a non-contacting measurement approach, it can be readily applied to a variety of structures having different boundary and operating conditions, including rotating blades.

  10. Decomposition techniques

    USGS Publications Warehouse

    Chao, T.T.; Sanzolone, R.F.

    1992-01-01

    Sample decomposition is a fundamental and integral step in the procedure of geochemical analysis. It is often the limiting factor to sample throughput, especially with the recent application of the fast and modern multi-element measurement instrumentation. The complexity of geological materials makes it necessary to choose the sample decomposition technique that is compatible with the specific objective of the analysis. When selecting a decomposition technique, consideration should be given to the chemical and mineralogical characteristics of the sample, elements to be determined, precision and accuracy requirements, sample throughput, technical capability of personnel, and time constraints. This paper addresses these concerns and discusses the attributes and limitations of many techniques of sample decomposition along with examples of their application to geochemical analysis. The chemical properties of reagents as to their function as decomposition agents are also reviewed. The section on acid dissolution techniques addresses the various inorganic acids that are used individually or in combination in both open and closed systems. Fluxes used in sample fusion are discussed. The promising microwave-oven technology and the emerging field of automation are also examined. A section on applications highlights the use of decomposition techniques for the determination of Au, platinum group elements (PGEs), Hg, U, hydride-forming elements, rare earth elements (REEs), and multi-elements in geological materials. Partial dissolution techniques used for geochemical exploration which have been treated in detail elsewhere are not discussed here; nor are fire-assaying for noble metals and decomposition techniques for X-ray fluorescence or nuclear methods be discussed. ?? 1992.

  11. Using remote sensing techniques and field-based structural analysis to explore new gold and associated mineral sites around Al-Hajar mine, Asir terrane, Arabian Shield

    NASA Astrophysics Data System (ADS)

    Sonbul, Abdullah R.; El-Shafei, Mohamed K.; Bishta, Adel Z.

    2016-05-01

    Modern earth resource satellites provide huge amounts of digital imagery at different resolutions. These satellite imageries are considered one of the most significant sources of data for mineral exploration. Image processing techniques were applied to the exposed rocks around the Al-Aqiq area of the Asir terrane in the southern part of the Arabian Shield. The area under study has two sub-parallel N-S trending metamorphic belts of green-schist facies. The first belt is located southeast of Al-Aqiq, where the Al-Hajar Gold Mine is situated. It is essentially composed of metavolcanics and metasedimentary rocks, and it is intruded by different plutonic rocks of primarily diorite, syenite and porphyritic granite. The second belt is located northwest of Al-Aqiq, and it is composed of metavolcanics and metasedimentary rocks and is intruded by granite bodies. The current study aimed to distinguish the lithological units, detect and map the alteration zones, and extract the major fault lineaments around the Al-Hajar gold prospect. Digital satellite imageries, including Landsat 7 ETM + multispectral and panchromatic and SPOT-5 were used in addition to field verification. Areas with similar spectral signatures to the prospect were identified in the nearby metamorphic belt; it was considered as a target area and was inspected in the field. The relationships between the alteration zones, the mineral deposits and the structural elements were used to locate the ore-bearing zones in the subsurface. The metasedimentary units of the target area showed a dextral-ductile shearing top-to-the-north and the presence of dominant mineralized quartz vein-system. The area to the north of the Al-Hajar prospect showed also sub-parallel shear zones along which different types of alterations were detected. Field-based criteria such as hydrothermal breccia, jasper, iron gossans and porphyritic granite strongly indicate the presence of porphyry-type ore deposits in Al-Hajar metamorphic belt that

  12. Validity and reliability of a field technique for sweat Na+ and K+ analysis during exercise in a hot‐humid environment

    PubMed Central

    Baker, Lindsay B.; Ungaro, Corey T.; Barnes, Kelly A.; Nuccio, Ryan P.; Reimel, Adam J.; Stofan, John R.

    2014-01-01

    Abstract This study compared a field versus reference laboratory technique for extracting (syringe vs. centrifuge) and analyzing sweat [Na+] and [K+] (compact Horiba B‐722 and B‐731, HORIBA vs. ion chromatography, HPLC) collected with regional absorbent patches during exercise in a hot‐humid environment. Sweat samples were collected from seven anatomical sites on 30 athletes during 1‐h cycling in a heat chamber (33°C, 67% rh). Ten minutes into exercise, skin was cleaned/dried and two sweat patches were applied per anatomical site. After removal, one patch per site was centrifuged and sweat was analyzed with HORIBA in the heat chamber (CENTRIFUGE HORIBA) versus HPLC (CENTRIFUGE HPLC). Sweat from the second patch per site was extracted using a 5‐mL syringe and analyzed with HORIBA in the heat chamber (SYRINGE HORIBA) versus HPLC (SYRINGE HPLC). CENTRIFUGE HORIBA, SYRINGE HPLC, and SYRINGE HORIBA were highly related to CENTRIFUGE HPLC ([Na+]: ICC = 0.96, 0.94, and 0.93, respectively; [K+]: ICC = 0.87, 0.92, and 0.84, respectively), while mean differences from CENTRIFUGE HPLC were small but usually significant ([Na+]: 4.7 ± 7.9 mEql/L, −2.5 ± 9.3 mEq/L, 4.0 ± 10.9 mEq/L (all P < 0.001), respectively; [K+]: 0.44 ± 0.52 mEq/L (P < 0.001), 0.01 ± 0.49 mEq/L (P = 0.77), 0.50 ± 0.48 mEq/L (P < 0.001), respectively). On the basis of typical error of the measurement results, sweat [Na+] and [K+] obtained with SYRINGE HORIBA falls within ±15.4 mEq/L and ±0.68 mEq/L, respectively, of CENTRIFUGE HPLC 95% of the time. The field (SYRINGE HORIBA) method of extracting and analyzing sweat from regional absorbent patches may be useful in obtaining sweat [Na+] when rapid estimates in a hot‐humid field setting are needed. PMID:24793982

  13. Field application of the Nanoparticle Emission Assessment Technique (NEAT): task-based air monitoring during the processing of engineered nanomaterials (ENM) at four facilities.

    PubMed

    Methner, M; Beaucham, C; Crawford, C; Hodson, L; Geraci, C

    2012-01-01

    In early 2006, the National Institute for Occupational Safety and Health created a field research team whose mission is to visit a variety of facilities engaged in the production, handling, or use of engineered nanomaterials (ENMs) and to conduct initial emission and exposure assessments to identify candidate sites for further study. To conduct the assessments, the team developed the Nanoparticle Emission Assessment Technique (NEAT), which has been used at numerous facilities to sample multiple engineered nanomaterials. Data collected at four facilities, which volunteered to serve as test sites, indicate that specific tasks can release ENMs to the workplace atmosphere and that traditional controls such as ventilation can be used to limit exposure. Metrics such as particle number concentration (adjusted for background), airborne mass concentration, and qualitative transmission electron microscopy were used to determine the presence, nature, and magnitude of emissions and whether engineered nanomaterials migrated to the workers' breathing zone. [Supplementary materials are available for this article. Go to the publisher's online edition of Journal of Occupational and Environmental Hygiene for the following free supplemental resource: a PDF file containing information on facilities, a description of processes/tasks, existing controls, and sampling strategy, and a PDF file containing TEM images according to facility and task.]. PMID:22816668

  14. Application of a diode-laser absorption technique with the d(2) transition of atomic rb for hypersonic flow-field measurements.

    PubMed

    Trinks, O; Beck, W H

    1998-10-20

    With a first application of semiconductor lasers to absorption measurements of seeded atomic Rb in high-enthalpy flow fields, a diagnostic technique for time-resolved determination of flow velocity and gas temperature with a line-shape analysis was developed. In our measurements a GaAlAs diode laser was used to scan repetitively at 15 kHz over 1.3 cm(-1) across the D(2) resonance transition (5S(1/2) ? 5P(3/2), 780.2 nm) of seeded atomic Rb to obtain multiple absorption line shapes. The time-dependent signal contains highly resolved spectral line-shape information, which we interpret by fitting the spectrally resolved line shapes to Voigt profiles. Kinetic temperatures in the range 900-1400 K and gas velocities in the range 3900-6200 ms(-1) were obtained from the Doppler-broadened component of the line shape and from the Doppler shift, respectively, of the absorption frequency.

  15. Agglomeration behaviour of titanium dioxide nanoparticles in river waters: A multi-method approach combining light scattering and field-flow fractionation techniques.

    PubMed

    Chekli, L; Roy, M; Tijing, L D; Donner, E; Lombi, E; Shon, H K

    2015-08-15

    Titanium dioxide nanoparticles (TiO2 NPs) are currently one of the most prolifically used nanomaterials, resulting in an increasing likelihood of release to the environment. This is of concern as the potential toxicity of TiO2 NPs has been investigated in several recent studies. Research into their fate and behaviour once entering the environment is urgently needed to support risk assessment and policy development. In this study, we used a multi-method approach combining light scattering and field-flow fractionation techniques to assess both the aggregation behaviour and aggregate structure of TiO2 NPs in different river waters. Results showed that both the aggregate size and surface-adsorbed dissolved organic matter (DOM) were strongly related to the initial DOM concentration of the tested waters (i.e. R(2) > 0.90) suggesting that aggregation of TiO2 NPs is controlled by the presence and concentration of DOM. The conformation of the formed aggregates was also found to be strongly related to the surface-adsorbed DOM (i.e. R(2) > 0.95) with increasing surface-adsorbed DOM leading to more compact structures. Finally, the concentration of TiO2 NPs remaining in the supernatant after sedimentation of the larger aggregates was found to decrease proportionally with both increasing IS and decreasing DOM concentration, resulting in more than 95% sedimentation in the highest IS sample.

  16. A technique for estimating the probability of radiation-stimulated failures of integrated microcircuits in low-intensity radiation fields: Application to the Spektr-R spacecraft

    NASA Astrophysics Data System (ADS)

    Popov, V. D.; Khamidullina, N. M.

    2006-10-01

    In developing radio-electronic devices (RED) of spacecraft operating in the fields of ionizing radiation in space, one of the most important problems is the correct estimation of their radiation tolerance. The “weakest link” in the element base of onboard microelectronic devices under radiation effect is the integrated microcircuits (IMC), especially of large scale (LSI) and very large scale (VLSI) degree of integration. The main characteristic of IMC, which is taken into account when making decisions on using some particular type of IMC in the onboard RED, is the probability of non-failure operation (NFO) at the end of the spacecraft’s lifetime. It should be noted that, until now, the NFO has been calculated only from the reliability characteristics, disregarding the radiation effect. This paper presents the so-called “reliability” approach to determination of radiation tolerance of IMC, which allows one to estimate the probability of non-failure operation of various types of IMC with due account of radiation-stimulated dose failures. The described technique is applied to RED onboard the Spektr-R spacecraft to be launched in 2007.

  17. A Bootstrap Technique for Testing the Relationship Between Local-Scale Radar Observations of Cloud Occurrence and Large-Scale Atmospheric Fields

    SciTech Connect

    Marchand, Roger T.; Beagley, Nathaniel; Thompson, Sandra E.; Ackerman, Thomas P.; Schultz, David M.

    2006-11-01

    In this paper an atmospheric classification scheme based on fields that are resolved by global climate models (and numerical weather prediction models) is investigated as a mechanism to map the large-scale (synoptic-scale) atmospheric state to distributions of local-scale cloud properties. Using a bootstrap resampling technique, the temporal stability and distinctness of vertical profiles of cloud occurrence (obtained from a vertically pointing millimeter wavelength cloud-radar) are analyzed as a function of the atmospheric state. A stable class-based map from the large-scale to local-scale cloud properties could be of great utility in the analysis of GCM-predicted cloud properties, by providing a physical context from which to understand any differences between the model output and observations, as well as to separate differences (in total distribution) that are caused by having different weather regimes (or synoptic scale activity) rather than problems in the representation of clouds for a particular regime. Furthermore, if sufficiently robust mappings can be established, it could form the basis of a statistical GCM cloud parameterization.

  18. Microscopic techniques bridging between nanoscale and microscale with an atomically sharpened tip - field ion microscopy/scanning probe microscopy/ scanning electron microscopy.

    PubMed

    Tomitori, Masahiko; Sasahara, Akira

    2014-11-01

    Over a hundred years an atomistic point of view has been indispensable to explore fascinating properties of various materials and to develop novel functional materials. High-resolution microscopies, rapidly developed during the period, have taken central roles in promoting materials science and related techniques to observe and analyze the materials. As microscopies with the capability of atom-imaging, field ion microscopy (FIM), scanning tunneling microscopy (STM), atomic force microscopy (AFM) and transmission electron microscopy (TEM) can be cited, which have been highly evaluated as methods to ultimately bring forward the viewpoint of reductionism in materials science. On one hand, there have been difficulties to derive useful and practical information on large (micro) scale unique properties of materials using these excellent microscopies and to directly advance the engineering for practical materials. To make bridges over the gap between an atomic scale and an industrial engineering scale, we have to develop emergence science step-by-step as a discipline having hierarchical structures for future prospects by combining nanoscale and microscale techniques; as promising ways, the combined microscopic instruments covering the scale gap and the extremely sophisticated methods for sample preparation seem to be required. In addition, it is noted that spectroscopic and theoretical methods should implement the emergence science.Fundamentally, the function of microscope is to determine the spatial positions of a finite piece of material, that is, ultimately individual atoms, at an extremely high resolution with a high stability. To define and control the atomic positions, the STM and AFM as scanning probe microscopy (SPM) have successfully demonstrated their power; the technological heart of SPM lies in an atomically sharpened tip, which can be observed by FIM and TEM. For emergence science we would like to set sail using the tip as a base. Meanwhile, it is significant

  19. A non-contacting approach for full field dynamic strain monitoring of rotating structures using the photogrammetry, finite element, and modal expansion techniques

    NASA Astrophysics Data System (ADS)

    Baqersad, Javad

    Health monitoring of rotating structures such as wind turbines and helicopter rotors is generally performed using conventional sensors that provide a limited set of data at discrete locations near or on the hub. These sensors usually provide no data on the blades or interior locations where failures may occur. Within this work, an unique expansion algorithm was extended and combined with finite element (FE) modeling and an optical measurement technique to identify the dynamic strain in rotating structures. The merit of the approach is shown by using the approach to predict the dynamic strain on a small non-rotating and rotating wind turbine. A three-bladed wind turbine having 2.3-meter long blades was placed in a semi-built-in boundary condition using a hub, a machining chuck, and a steel block. A finite element model of the three wind turbine blades assembled to the hub was created and used to extract resonant frequencies and mode shapes. The FE model was validated and updated using experimental modal tests. For the non-rotating optical test, the turbine was excited using a sinusoidal excitation, a pluck test, arbitrary impacts on three blades, and random force excitations with a mechanical shaker. The response of the structure to the excitations was measured using three-dimensional point tracking. A pair of high-speed cameras was used to measure the displacement of optical targets on the structure when the blades were vibrating. The measured displacements at discrete locations were expanded and applied to the finite element model of the structure to extract the full-field dynamic strain. The results of the work show an excellent correlation between the strain predicted using the proposed approach and the strain measured with strain-gages for all of the three loading conditions. Similar to the non-rotating case, optical measurements were also preformed on a rotating wind turbine. The point tracking technique measured both rigid body displacement and flexible

  20. High energy X-ray diffraction study of a dental ceramics–titanium functional gradient material prepared by field assisted sintering technique

    SciTech Connect

    Witte, K.; Bodnar, W.; Schell, N.; Lang, H.; Burkel, E.

    2014-09-15

    A functional gradient material with eleven layers composed of a dental ceramics and titanium was successfully consolidated using field assisted sintering technique in a two-step sintering process. High energy X-ray diffraction studies on the gradient were performed at High Energy Material Science beamline at Desy in Hamburg. Phase composition, crystal unit edges and lattice mismatch along the gradient were determined applying Rietveld refinement procedure. Phase analysis revealed that the main crystalline phase present in the gradient is α-Ti. Crystallinity increases stepwisely along the gradient with a decreasing increment between every next layer, following rather the weight fraction of titanium. The crystal unit edge a of titanium remains approximately constant with a value of 2.9686(1) Å, while c is reduced with increasing amount of titanium. In the layer with pure titanium the crystal unit edge c is constant with a value of 4.7174(2) Å. The lattice mismatch leading to an internal stress was calculated over the whole gradient. It was found that the maximal internal stress in titanium embedded in the studied gradient is significantly smaller than its yield strength, which implies that the structure of titanium along the whole gradient is mechanically stable. - Highlights: • High energy XRD studies of dental ceramics–Ti gradient material consolidated by FAST. • Phase composition, crystallinity and lattice parameters are determined. • Crystallinity increases stepwisely along the gradient following weight fraction of Ti. • Lattice mismatch leading to internal stress is calculated over the whole gradient. • Internal stress in α-Ti embedded in the gradient is smaller than its yield strength.

  1. Unconventional Specimen Preparation Techniques Using High Resolution Low Voltage Field Emission Scanning Electron Microscopy to Study Cell Motility, Host Cell Invasion, and Internal Cell Structures in Toxoplasma gondii

    NASA Astrophysics Data System (ADS)

    Schatten, Heide; Ris, Hans

    2002-04-01

    Apicomplexan parasites employ complex and unconventional mechanisms for cell locomotion, host cell invasion, and cell division that are only poorly understood. While immunofluorescence and conventional transmission electron microscopy have been used to answer questions about the localization of some cytoskeletal proteins and cell organelles, many questions remain unanswered, partly because new methods are needed to study the complex interactions of cytoskeletal proteins and organelles that play a role in cell locomotion, host cell invasion, and cell division. The choice of fixation and preparation methods has proven critical for the analysis of cytoskeletal proteins because of the rapid turnover of actin filaments and the dense spatial organization of the cytoskeleton and its association with the complex membrane system. Here we introduce new methods to study structural aspects of cytoskeletal motility, host cell invasion, and cell division of Toxoplasma gondii, a most suitable laboratory model that is representative of apicomplexan parasites. The novel approach in our experiments is the use of high resolution low voltage field emission scanning electron microscopy (LVFESEM) combined with two new specimen preparation techniques. The first method uses LVFESEM after membrane extraction and stabilization of the cytoskeleton. This method allows viewing of actin filaments which had not been possible with any other method available so far. The second approach of imaging the parasite's ultrastructure and interactions with host cells uses semithick sections (200 nm) that are resin de-embedded (Ris and Malecki, 1993) and imaged with LVFESEM. This method allows analysis of structural detail in the parasite before and after host cell invasion and interactions with the membrane of the parasitophorous vacuole as well as parasite cell division.

  2. Investigations of the air flow velocity field structure above the wavy surface under severe wind conditions by particle image velosimetry technique.

    NASA Astrophysics Data System (ADS)

    Troitskaya, Yuliya; Kandaurov, Alexander; Sergeev, Daniil; Ermakova, Olga

    2013-04-01

    Preliminary experiments devoted to measuring characteristics of the air flow above the waved water surface for the wide range of wind speeds were performed with the application of modified Particle Image Velosimetry (PIV) technique. Experiments were carried out at the Wind - wave stratified flume of IAP RAS (length 10 °, cross section of air channel 0.4×0.4 m) for four different axial wind speeds: 8.7, 13.5, 19 and 24 m/s, corresponding to the equivalent 10-m wind speeds 15, 20, 30 40 m/s correspondingly. Intensive wave breaking with forming foam crest and droplets generations was occurred for two last wind conditions. The modified PIV-method based on the use of continuous-wave (CW) laser illumination of the airflow seeded by tiny particles and with highspeed video. Spherical 20 μm polyamide particles with density 1.02 g/sm3 and inertial time 7•10-3 s were used for seeding airflow with special injecting device. Green (532 nm) CW laser with 4 Wt output power was used as a source for light sheet. High speed digital camera Videosprint was used for taking visualized air flow images with the frame rate 2000 Hz s and exposure time 10 ms Combination including iteration Canny method [1] for obtaining curvilinear surface from the images in the laser sheet view and contact measurements of surface elevation by wire wave gauge installed near the border of working area for the surface wave profile was used. Then velocity air flow field was retrieved by PIV images processing with adaptive cross-correlation method on the curvilinear grid following surface wave profile. The mean wind velocity profiles were retrieved by averaging over obtained ensembles of wind velocity field realizations and over a wave period even for the cases of intensive wave breaking and droplets generation. To verify the PIV method additional measurements of mean velocity profiles over were carried out by the contact method using the Pitot tube. In the area of overlap, wind velocity profiles measured by

  3. TECHNIQUES FOR TEACHING CONSERVATION EDUCATION.

    ERIC Educational Resources Information Center

    BROWN, ROBERT E.; MOUSER, G.W.

    CONSERVATION PRINCIPLES, FIELD METHODS AND TECHNIQUES, AND SPECIFIC FIELD LEARNING ACTIVITIES ARE INCLUDED IN THIS REFERENCE VOLUME FOR TEACHERS. CONSERVATION PRINCIPLES INCLUDE STATEMENTS PERTAINING TO (1) SOIL, (2) WATER, (3) FOREST, AND (4) WILDLIFE. FIELD METHODS AND TECHNIQUES INCLUDE (1) PREPARING FOR A FIELD TRIP, (2) GETTING STUDENT…

  4. A simplified technique for determining the rotational motion of a satellite based on the onboard measurements of the angular velocity and magnetic field of the Earth

    NASA Astrophysics Data System (ADS)

    Abrashkin, V. I.; Voronov, K. E.; Piyakov, I. V.; Puzin, Yu. Ya.; Sazonov, V. V.; Syomkin, N. D.; Chebukov, S. Yu.

    2016-09-01

    The mathematical model, which allowed us to reconstruct the rotational motion of the Bion M-1 and Foton M-4 satellites by processing the measurements of onboard magnetometers and the angular velocity sensor, is sufficiently detailed and accurate. If we slightly lower the requirements for accuracy and transfer to a rougher model, i.e., we will not update the biases in measurements of the angular velocity component, then the measurement processing technique can be significantly simplified. The volume of calculations in minimizing the functional of the least-square technique is reduced; the most complicated part of calculations is performed using the standard procedure of computational linear algebra. This simplified technique is described below, and the examples of its application for reconstructing the rotational motion of the Foton M-4 satellite are presented. A noticeable distinction in the reconstructions of motion, constructed by simplified and more exact techniques, is revealed in processing the measurements over time intervals longer than 4 hours.

  5. Effects of selected low-impact-development (LID) techniques on water quality and quantity in the Ipswich River Basin, Massachusetts-Field and modeling studies

    USGS Publications Warehouse

    Zimmerman, Marc J.; Barbaro, Jeffrey R.; Sorenson, Jason R.; Waldron, Marcus C.

    2010-01-01

    During the months of August and September, flows in the Ipswich River, Massachusetts, dramatically decrease largely due to groundwater withdrawals needed to meet increased residential and commercial water demands. In the summer, rates of groundwater recharge are lower than during the rest of the year, and water demands are higher. From 2005 to 2008, the U.S. Geological Survey, in a cooperative funding agreement with the Massachusetts Department of Conservation and Recreation, monitored small-scale installations of low-impact-development (LID) enhancements designed to diminish the effects of storm runoff on the quantity and quality of surface water and groundwater. Funding for the studies also was contributed by the U.S. Environmental Protection Agency's Targeted Watersheds Grant Program through a financial assistance agreement with Massachusetts Department of Conservation and Recreation. The monitoring studies examined the effects of (1) replacing an impervious parking lot surface with a porous surface on groundwater quality, (2) installing rain gardens and porous pavement in a neighborhood of 3 acres on the quantity and quality of stormwater runoff, and (3) installing a 3,000-square foot (ft2) green roof on the quantity and quality of stormwater runoff. In addition, the effects of broad-scale implementation of LID techniques, reduced water withdrawals, and water-conservation measures on streamflow in large areas of the basin were simulated using the U.S. Geological Survey's Ipswich River Basin model. From June 2005 to 2007, groundwater quality was monitored at the Silver Lake town beach parking lot in Wilmington, MA, prior to and following the replacement of the conventional, impervious-asphalt surface with a porous surface consisting primarily of porous asphalt and porous pavers. Changes in the concentrations of the water-quality constituents, phosphorus, nitrogen, cadmium, chromium, copper, lead, nickel, zinc, and total petroleum hydrocarbons, were monitored

  6. An analysis of the radiation from apertures in curved surfaces by the geometrical theory of diffraction. [ray technique for electromagnetic fields

    NASA Technical Reports Server (NTRS)

    Pathak, P. H.; Kouyoumjian, R. G.

    1974-01-01

    In this paper the geometrical theory of diffraction is extended to treat the radiation from apertures of slots in convex perfectly conducting surfaces. It is assumed that the tangential electric field in the aperture is known so that an equivalent infinitesimal source can be defined at each point in the aperture. Surface rays emanate from this source which is a caustic of the ray system. A launching coefficient is introduced to describe the excitation of the surface ray modes. If the field radiated from the surface is desired, the ordinary diffraction coefficients are used to determine the field of the rays shed tangentially from the surface rays. The field of the surface ray modes is not the field on the surface; hence if the mutual coupling between slots is of interest, a second coefficient related to the launching coefficient must be employed. In the region adjacent to the shadow boundary, the component of the field directly radiated from the source is represented by Fock-type functions. In the illuminated region the incident radiation from the source (this does not include the diffracted field components) is treated by geometrical optics. This extension of the geometrical theory of diffraction is applied to calculate the radiation from slots on elliptic cylinders, spheres, and spheroids.

  7. A study of noise source location on a model scale augmentor wing using correlation techniques. [noise measurement of far field noise by wind tunnel tests

    NASA Technical Reports Server (NTRS)

    Wilby, J. F.; Scharton, T. D.

    1975-01-01

    An experimental investigation, conducted on a model-scale augmentor wing to identify the sources of far-field noise, is examined. The measurement procedure followed in the investigation involved the cross-correlation of far field sound pressures with fluctuating pressures on the surface of the augmentor flap and shroud. In addition pressures on the surfaces of the augmentor were cross-correlated. The results are interpreted as showing that the surface pressure fluctuations are mainly aerodynamic in character and are convected in the downstream direction with a velocity which is dependent on the jet exhaust velocity. However the far field sound levels in the mid and high frequency ranges are dominated by jet noise. There is an indication that in the low frequency range trailing edge noise, associated with interaction of the jet flow and the flap trailing edge, plays a significant role in the radiated sound field.

  8. Ultrasound-Induced Organogel Formation Followed by Thin Film Fabrication via Simple Doctor Blading Technique for Field-Effect Transistor Applications.

    PubMed

    Xu, Jiaju; Wang, Yulong; Shan, Haiquan; Lin, Yiwei; Chen, Qian; Roy, V A L; Xu, Zongxiang

    2016-07-27

    We demonstrate doctor blading technique to fabricate high performance transistors made up of printed small molecular materials. In this regard, we synthesize a new soluble phthalocyanine, tetra-n-butyl peripheral substituted copper(II) phthalocaynine (CuBuPc), that can easily undergo gel formation upon ultrasonic irradiation, leading to the formation of three-dimensional (3D) network composed of one-dimensional (1D) nanofibers structure. Finally, taking the advantage of thixotropic nature of the CuBuPc organogel, we use the doctor blade processing technique that limits the material wastage for the fabrication of transistor devices. Due to the ultrasound induced stronger π-π interaction, the transistor fabricated by doctor blading based on CuBuPc organogel exhibits significant increase in charge carrier mobility in comparison with other solution process techniques, thus paving a way for a simple and economically viable preparation of electronic circuits.

  9. Ultrasound-Induced Organogel Formation Followed by Thin Film Fabrication via Simple Doctor Blading Technique for Field-Effect Transistor Applications.

    PubMed

    Xu, Jiaju; Wang, Yulong; Shan, Haiquan; Lin, Yiwei; Chen, Qian; Roy, V A L; Xu, Zongxiang

    2016-07-27

    We demonstrate doctor blading technique to fabricate high performance transistors made up of printed small molecular materials. In this regard, we synthesize a new soluble phthalocyanine, tetra-n-butyl peripheral substituted copper(II) phthalocaynine (CuBuPc), that can easily undergo gel formation upon ultrasonic irradiation, leading to the formation of three-dimensional (3D) network composed of one-dimensional (1D) nanofibers structure. Finally, taking the advantage of thixotropic nature of the CuBuPc organogel, we use the doctor blade processing technique that limits the material wastage for the fabrication of transistor devices. Due to the ultrasound induced stronger π-π interaction, the transistor fabricated by doctor blading based on CuBuPc organogel exhibits significant increase in charge carrier mobility in comparison with other solution process techniques, thus paving a way for a simple and economically viable preparation of electronic circuits. PMID:27377991

  10. Unified Application Vapor Screen Flow Visualization and Pressure Sensitive Paint Measurement Techniques to Vortex- and Shock Wave-Dominated Flow Fields

    NASA Technical Reports Server (NTRS)

    Erickson, Gary E.

    2008-01-01

    Laser vapor screen (LVS) flow visualization and pressure sensitive paint (PSP) techniques were applied in a unified approach to wind tunnel testing of slender wing and missile configurations dominated by vortex flows and shock waves at subsonic, transonic, and supersonic speeds. The off-surface cross-flow patterns using the LVS technique were combined with global PSP surface static pressure mappings to characterize the leading-edge vortices and shock waves that coexist and interact at high angles of attack (alpha). The synthesis of LVS and PSP techniques was also effective in identifying the significant effects of passive surface porosity and the presence of vertical tail surfaces on the flow topologies. An overview is given of LVS and PSP applications in selected experiments on small-scale models of generic slender wing and missile configurations in the NASA Langley Research Center (NASA LaRC) Unitary Plan Wind Tunnel (UPWT) and 8-Foot Transonic Pressure Tunnel (8-Foot TPT).

  11. Unified Application of Vapor Screen Flow Visualization and Pressure Sensitive Paint Measurement Techniques to Vortex- and Shock Wave-Dominated Flow Fields

    NASA Technical Reports Server (NTRS)

    Erickson, Gary E.

    2010-01-01

    Laser vapor screen (LVS) flow visualization and pressure sensitive paint (PSP) techniques were applied in a unified approach to wind tunnel testing of slender wing and missile configurations dominated by vortex flows and shock waves at subsonic, transonic, and supersonic speeds. The off-surface cross-flow patterns using the LVS technique were combined with global PSP surface static pressure mappings to characterize the leading-edge vortices and shock waves that coexist and interact at high angles of attack. The synthesis of LVS and PSP techniques was also effective in identifying the significant effects of passive surface porosity and the presence of vertical tail surfaces on the flow topologies. An overview is given of LVS and PSP applications in selected experiments on small-scale models of generic slender wing and missile configurations in the NASA Langley Research Center (NASA LaRC) Unitary Plan Wind Tunnel (UPWT) and 8-Foot Transonic Pressure Tunnel (8-Foot TPT).

  12. Craniospinal irradiation techniques

    SciTech Connect

    Scarlatescu, Ioana Avram, Calin N.; Virag, Vasile

    2015-12-07

    In this paper we present one treatment plan for irradiation cases which involve a complex technique with multiple beams, using the 3D conformational technique. As the main purpose of radiotherapy is to administrate a precise dose into the tumor volume and protect as much as possible all the healthy tissues around it, for a case diagnosed with a primitive neuro ectoderm tumor, we have developed a new treatment plan, by controlling one of the two adjacent fields used at spinal field, in a way that avoids the fields superposition. Therefore, the risk of overdose is reduced by eliminating the field divergence.

  13. Craniospinal irradiation techniques

    NASA Astrophysics Data System (ADS)

    Scarlatescu, Ioana; Virag, Vasile; Avram, Calin N.

    2015-12-01

    In this paper we present one treatment plan for irradiation cases which involve a complex technique with multiple beams, using the 3D conformational technique. As the main purpose of radiotherapy is to administrate a precise dose into the tumor volume and protect as much as possible all the healthy tissues around it, for a case diagnosed with a primitive neuro ectoderm tumor, we have developed a new treatment plan, by controlling one of the two adjacent fields used at spinal field, in a way that avoids the fields superposition. Therefore, the risk of overdose is reduced by eliminating the field divergence.

  14. The Sterile Insect Technique and the Mediterranean Fruit Fly (Diptera: Tephritidae): Assessing the Utility of Aromatherapy in a Hawaiian Coffee Field

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Sterile Insect Technique (SIT) is widely used in integrated programs against tephritid fruit fly pests, particularly the Mediterranean fruit fly (medfly), Ceratitis capitata (Wiedemann). Unfortunately, the mass-rearing procedures inherent to the SIT often lead to a reduction in the mating abilit...

  15. Further fMRI Validation of the Visual Half Field Technique as an Indicator of Language Laterality: A Large-Group Analysis

    ERIC Educational Resources Information Center

    Van der Haegen, Lise; Cai, Qing; Seurinck, Ruth; Brysbaert, Marc

    2011-01-01

    The best established lateralized cerebral function is speech production, with the majority of the population having left hemisphere dominance. An important question is how to best assess the laterality of this function. Neuroimaging techniques such as functional Magnetic Resonance Imaging (fMRI) are increasingly used in clinical settings to…

  16. Simulation study of a geometric shape factor technique for estimating earth-emitted radiant flux densities from wide-field-of-view radiation measurements

    NASA Technical Reports Server (NTRS)

    Weaver, W. L.; Green, R. N.

    1980-01-01

    Geometric shape factors were computed and applied to satellite simulated irradiance measurements to estimate Earth emitted flux densities for global and zonal scales and for areas smaller than the detector field of view (FOV). Wide field of view flat plate detectors were emphasized, but spherical detectors were also studied. The radiation field was modeled after data from the Nimbus 2 and 3 satellites. At a satellite altitude of 600 km, zonal estimates were in error 1.0 to 1.2 percent and global estimates were in error less than 0.2 percent. Estimates with unrestricted field of view (UFOV) detectors were about the same for Lambertian and limb darkening radiation models. The opposite was found for restricted field of view detectors. The UFOV detectors are found to be poor estimators of flux density from the total FOV and are shown to be much better as estimators of flux density from a circle centered at the FOV with an area significantly smaller than that for the total FOV.

  17. Technique development for uiper critical field studies of SmFeAs(O,F) in the 300T single turn system

    SciTech Connect

    Mcdonald, Ross D; Balakirev, F. F.; Altarawneh, M. M.; Betts, J; Mielke, C. H.; Moll, Philip Jw; Zhigadlo, N D; Karpinski, J; Batlogg, B.

    2011-01-14

    In high temperature superconductors, such as the most recent class of iron pnictides, extremely high upper critical fields H{sub c2} are common. The determination of H{sub c2}(T) is crucial to understand the detailed nature of the superconductor, in particular H{sub c2}(T = 0K) is of great interest. It is not only related to fundamental properties of the system, it is furthermore of great importance for materials science, as it is the ultimate limit of applicability of this superconductor in high field applications. However, this important quantity can only be estimated by extrapolation, as H{sub c2}(T = 0K) well exceeds hundreds of Tesla in optimally doped SillFeAs(O,F). We are developing methods to measure Ha(T) in direct transport in the extreme magnetic fields generated by the LANL single turn magnet.

  18. Wide-field in vivo neocortical calcium dye imaging using a convection-enhanced loading technique combined with simultaneous multiwavelength imaging of voltage-sensitive dyes and hemodynamic signals

    PubMed Central

    Ma, Hongtao; Harris, Samuel; Rahmani, Redi; Lacefield, Clay O.; Zhao, Mingrui; Daniel, Andy G. S.; Zhou, Zhiping; Bruno, Randy M.; Berwick, Jason; Schwartz, Theodore H.

    2014-01-01

    Abstract. In vivo calcium imaging is an incredibly powerful technique that provides simultaneous information on fast neuronal events, such as action potentials and subthreshold synaptic activity, as well as slower events that occur in the glia and surrounding neuropil. Bulk-loading methods that involve multiple injections can be used for single-cell as well as wide-field imaging studies. However, multiple injections result in inhomogeneous loading as well as multiple sites of potential cortical injury. We used convection-enhanced delivery to create smooth, continuous loading of a large area of the cortical surface through a solitary injection site and demonstrated the efficacy of the technique using confocal microscopy imaging of single cells and physiological responses to single-trial events of spontaneous activity, somatosensory-evoked potentials, and epileptiform events. Combinations of calcium imaging with voltage-sensitive dye and intrinsic signal imaging demonstrate the utility of this technique in neurovascular coupling investigations. Convection-enhanced loading of calcium dyes may be a useful technique to advance the study of cortical processing when widespread loading of a wide-field imaging is required. PMID:25525611

  19. A novel technique to measure interface trap density in a GaAs MOS capacitor using time-varying magnetic fields

    NASA Astrophysics Data System (ADS)

    Choudhury, Aditya N. Roy; Venkataraman, V.

    2016-05-01

    Interface trap density (Dit) in a GaAs metal-oxide-semiconductor (MOS) capacitor can be measured electrically by measuring its impedance, i.e. by exciting it with a small signal voltage source and measuring the resulting current through the circuit. We propose a new method of measuring Dit where the MOS capacitor is subjected to a (time-varying) magnetic field instead, which produces an effect equivalent to a (time-varying) voltage drop across the sample. This happens because the electron chemical potential of GaAs changes with a change in an externally applied magnetic field (unlike that of the gate metal); this is not the voltage induced by Faraday's law of electromagnetic induction. So, by measuring the current through the MOS, Dit can be found similarly. Energy band diagrams and equivalent circuits of a MOS capacitor are drawn in the presence of a magnetic field, and analyzed. The way in which a magnetic field affects a MOS structure is shown to be fundamentally different compared to an electrical voltage source.

  20. Study on spatial variation of land subsidence over Minagish-Umm Gudair oil fields of Kuwait using synthetic aperture radar interferometry technique

    NASA Astrophysics Data System (ADS)

    Rao, Kota S.; Al Jassar, Hala K.; Kodiyan, Nevil J.; Daniel, Viju P.

    2016-01-01

    Land subsidence can be a major problem where there are large-scale underground activities such as oil extraction. This paper addresses the spatial variability of land subsidence over Minagish and Umm Gudair oil fields of Kuwait. Synthetic aperture radar interferometry (InSAR) with multiple reference scenes using a persistent scatterer InSAR toolchain was employed in this study. Twenty-nine scenes of advanced synthetic aperture radar data (for the period January 2005 to August 2009) were used to make 20 pairs of interferograms (with high coherence and low noise) of stable point-like reflectors. The output of this study is the land subsidence maps of Minagish and Umm Gudair oil fields with a spatial resolution of 40 m. The results indicate that there is land subsidence of 29.9 mm/year in the southern part of the oil field (Umm Gudair). This is the first detailed assessment of land subsidence in the Minagish-Umm Gudair oil fields; therefore, no ground-truth data are available to compare the subsidence results. The results were consistent, indicating their validity.

  1. A technique for displaying flight information in the field of view of binoculars for use by the pilots of radio controlled models

    NASA Technical Reports Server (NTRS)

    Fuller, H. V.

    1974-01-01

    A display system was developed to provide flight information to the ground based pilots of radio controlled models used in flight research programs. The display system utilizes data received by telemetry from the model, and presents the information numerically in the field of view of the binoculars used by the pilots.

  2. Testing the sensitivity of pumpage to increases in surficial aquifer system heads in the Cypress Creek well-field area, West-Central Florida : an optimization technique

    USGS Publications Warehouse

    Yobbi, Dann K.

    2002-01-01

    Tampa Bay depends on ground water for most of the water supply. Numerous wetlands and lakes in Pasco County have been impacted by the high demand for ground water. Central Pasco County, particularly the area within the Cypress Creek well field, has been greatly affected. Probable causes for the decline in surface-water levels are well-field pumpage and a decade-long drought. Efforts are underway to increase surface-water levels by developing alternative sources of water supply, thus reducing the quantity of well-field pumpage. Numerical ground-water flow simulations coupled with an optimization routine were used in a series of simulations to test the sensitivity of optimal pumpage to desired increases in surficial aquifer system heads in the Cypress Creek well field. The ground-water system was simulated using the central northern Tampa Bay ground-water flow model. Pumping solutions for 1987 equilibrium conditions and for a transient 6-month timeframe were determined for five test cases, each reflecting a range of desired target recovery heads at different head control sites in the surficial aquifer system. Results are presented in the form of curves relating average head recovery to total optimal pumpage. Pumping solutions are sensitive to the location of head control sites formulated in the optimization problem and as expected, total optimal pumpage decreased when desired target head increased. The distribution of optimal pumpage for individual production wells also was significantly affected by the location of head control sites. A pumping advantage was gained for test-case formulations where hydraulic heads were maximized in cells near the production wells, in cells within the steady-state pumping center cone of depression, and in cells within the area of the well field where confining-unit leakance is the highest. More water was pumped and the ratio of head recovery per unit decrease in optimal pumpage was more than double for test cases where hydraulic heads

  3. Development of an Advanced Technique to Correct Along-Track InSAR-Derived Surface Current Fields for Contributions of Wave Motions

    NASA Astrophysics Data System (ADS)

    Smith, C.; Romeiser, R.; Reniers, A.; MacMahan, J.

    2014-12-01

    The feasibility of surface current measurements by airborne and spaceborne along-track interferometric synthetic aperture radar (along-track InSAR) has been demonstrated on a number of occasions. Since the Doppler shifts detected by the radar include contributions of surface wave motions, a correction for these contributions has to be applied, which is often estimated as a mean correction for the entire current field on the basis of a simple theoretical model. In coastal areas and river estuaries with complex current and wave patterns, this approach is not adequate because one has to account for spatial variations in the wave field and in the corresponding corrections for the current field, which can be on the same order of magnitude as the actual surface currents of interest. Here we test the ability of a numerical near-shore hindcast model (Delft3D) to produce a wave field to be used for more appropriate computations of corrections for the along-track InSAR data. Our study was conducted at the mouth of the Columbia River on the West Coast of the U.S. during the spring of 2013. Over the course of the experiment, seven TerraSAR-X along-track InSAR images were acquired as well as a variety of in-situ data sets, such as trajectories of GPS-equipped Lagrangian drifters and velocity profiles from acoustic Doppler current profilers (ADCP). We use the in-situ data to validate our Delft3D model results, and we try to relate spatially varying differences between the measured and simulated surface currents and the TerraSAR-X derived Doppler velocities to the wave spectra obtained from Delft3D and to wave patterns observed in the SAR images. The long-term objective of this work is to derive the wave information and the corresponding velocity corrections from signatures contained in the along-track InSAR data set itself, such that a completely self-consistent correction of along-track InSAR-derived surface current fields for the contributions of spatially varying wave motions

  4. Application of molecular techniques to identification of three plusiine species, Autographa nigrisigna, Macdunnoughia confusa, and Thysanoplusia intermixta (Lepidoptera: Noctuidae), found in integrated pest management lettuce fields in Japan.

    PubMed

    Hashiyama, Aoi; Nomura, Masashi; Kurihara, Jun; Toyoshima, Goro

    2011-08-01

    Three plusiine species, Autographa nigrisigna, Macdunnoughia confusa, and Thysanoplusia intermixta (Lepidoptera: Noctuidae), are commonly found together in lettuce, Lactuca sativa L., fields in Japan. Given the marked morphological similarities between these species and the difficulty associated with discriminating between them using only visual cues, we used multiplex polymerase chain reaction (PCR) assay to distinguish between the three target species. Multiplex PCR uses four primers to simultaneously amplify a specific region of the mitochondrial DNA and produce species-specific banding patterns. The stringency of the method was tested using specimens of different sex, location, and developmental stage, and consistent results were obtained for all samples. Indeed, our method has the potential to clarify the species structure of plusiine species in lettuce fields. PMID:21882693

  5. National Field Manual for the Collection of Water-Quality Data. U.S. Geological Survey Techniques of Water-Resources Investigations, Book 9

    USGS Publications Warehouse

    2015-01-01

    The mission of the Water Resources Discipline of the U.S. Geological Survey (USGS) is to provide the information and understanding needed for wise management of the Nation's water resources. Inherent in this mission is the responsibility to collect data that accurately describe the physical, chemical, and biological attributes of water systems. These data are used for environmental and resource assessments by the USGS, other government agenices and scientific organizations, and the general public. Reliable and quality-assured data are essential to the credibility and impartiality of the water-resources appraisals carried out by the USGS. The development and use of a National Field Manual is necessary to achieve consistency in the scientific methods and procedures used, to document those methods and procedures, and to maintain technical expertise. USGS field personnel use this manual to ensure that the data collected are of the quality required to fulfill our mission.

  6. CHAMP, SWARM, and WDMAM magnetic data; three reasons for further developing techniques for modeling the lithospheric magnetic field at regional scales

    NASA Astrophysics Data System (ADS)

    Thebault, E.; Vervelidou, F.

    2012-04-01

    The spatial resolution of all available data monitoring the Earth's lithospheric magnetic field range from thousands to few kilometers at the regional spatial scale. The data type and measurement platforms covering these various wavelengths are in general different. For instance, Low Earth Orbiting satellites, such as CHAMP and the forthcoming SWARM, measure the vector field and are sensitive to large-scale and deep lithospheric magnetic field structures, while aeromagnetic and marine data or grids, like the World Digital Magnetic Anomaly Map (WDMAM), which are mostly scalar, in general fetch better shallow and small spatial scale signals. For quantitative geophysical interpretations, there is therefore a need for methodologies allowing for the reconstruction of the full magnetic field spectrum. During the last decades, various methodologies have been proposed in an effort to merge all kinds of magnetic data available over particular regions. We first briefly review the methods proposed by the scientific community and will more specifically focus on new progresses in developing the Revised Spherical Cap modeling approach. In particular, we will discuss the concept of spectrum with this formalism and its applicability in the framework of geomagnetism. Since a regional modeling approach can only be applied on high quality data we then propose some strategies to first obtain a better signal to noise ratio in satellite data and second to better account for its nature. We will illustrate our conclusions with issues faced with the data processing of single satellite missions such as CHAMP. Finally, we discuss how a constellation such as the Swarm mission will alleviate some of, so far, unresolved problems and how important it is to have the metadata information about the aeromagnetic and marine anomaly data.

  7. A field-based technique for the longitudinal profiling of ultrarelativistic electron or positron bunches down to lengths of {le}10 microns

    SciTech Connect

    Tatchyn, R.

    1993-05-01

    Present and future generations of particle accelerating and storage machines are expected to develop ever-decreasing electron/positron bunch lengths, down to 100 {mu} and beyond. In this paper a method for measuring the longitudinal profiles of ultrashort (1000 {mu} {approx} 10 {mu}) bunches, based on: (1) the extreme field compaction attained by ultrarelativistic particles, and (2) the reduction of the group velocity of a visible light pulse in a suitably-chosen dielectric medium, is outline.

  8. Evaluation of several biological monitoring techniques for hazard assessment of potentially contaminated wastewater and groundwater. Volume 3. Old O-field groundwater. Final report, July 1990-December 1991

    SciTech Connect

    Burton, D.T.; Turley, S.D.

    1992-03-01

    The toxicity of contaminated Old O-Field (Edgewood Area of Aberdeen Proving Ground) groundwater and the reduction and/or elimination of toxicity by various treatment processes were evaluated. The study was divided into a bench scale and pilot scale study. The bench scale studies consisted of 48-h definitive acute toxicity tests run with daphnid neonates (Daphnia magna) and juvenile fathead minnows (Pimephales promelas) exposed to untreated Old O-Field groundwater and groundwater treated by metals precipitation, UV oxidation (H 2O2 ), carbon adsorption, and carbon adsorption/biological sludge. The pilot scale studies consisted of several 96-h definitive acute toxicity tests run with two freshwater and two saltwater invertebrates and fish and Ames mutagenicity assays. Acute toxicity tests were run on untreated Old O-Field groundwater and groundwater treated by metals precipitation, UV oxidation (H2O2), air stripping, and carbon adsorption during the pilot scale study. The freshwater invertebrate and fish used in the study were daphnid neonates and juvenile fathead minnows, respectively. The saltwater invertebrate and fish were juvenile mysids (Mysidopsis bahia) and juvenile sheepshead minnows (Cyprinodon variegatus). Ames tests were run on untreated groundwater, UV oxidation-treated groundwater, and carbon-treated groundwater.... Groundwater, Aquatic, Toxicity, Daphnia, Daphnia magna, Fathead minnow, Pimephales promelas, Mysid, Mysidopsis bahia, Sheepshead minnow, Cyprinodon variegatus.

  9. Offshore underbalanced drilling system could revive field developments. Part 2: Making this valuable reservoir drilling/completion technique work on a conventional offshore drilling platform

    SciTech Connect

    Nessa, D.O.; Tangedahl, M.J.; Saponja, J.

    1997-10-01

    Part 1, presented in the July issue, discussed the emerging trend to move underbalanced drilling (UBD) operations into the offshore arena, following its successful application in many onshore areas. This concluding article delves into the details of applying UBD offshore. Starting with advantages the technique offers in many maturing or complex/marginal prospects, the UBD system for offshore platforms use is described. This involves conversion of the conventional rotary system, use of rotating diverters, design of the surface fluid separation system and the necessary gas (nitrogen or natural gas) injection system to lighten the fluid column. Commonly faced operational challenges for offshore UBD are listed along with recommended solutions.

  10. A New Look at Sedimentation, Metamorphism and Diagenesis of Antarctic Snow, Névé and Firn using Multi-Scale Field and Laboratory Techniques (Invited)

    NASA Astrophysics Data System (ADS)

    Schneebeli, M.

    2013-12-01

    Perennial Antarctic snow and superficial firn is different in many respects from seasonal snow, the most obvious the transition from snow to superficial firn. Anderson and Benson (1963) summarized the key points: snow is less than one year old, névé is snow older than one year, but less dense than firn, with the threshold at about 550 kg m-3. The difficulties in observing the Antarctic snowpack were realized early. One problem is the large horizontal variability, as scales vary from a few centimeters to kilometers. The other main difficulty is the much less obvious change in density, grain size and crystal shape of the ice structures compared to seasonal snow. In the past three austral summers, we measured the stratigraphy of snow and névé at three different sites: Allan Hills, Point Barnola and Kohnen Station. We used the following techniques in different combinations: microtomography of cast and natural snow, high-resolution penetrometry (SnowMicroPen), a new technique, which combines near-infrared photography of snowpits with a translucent profile (NIRtran) and ground penetrating radar (GPR). We measured on a few samples ∂O18, ∂D and Pb210. We also measured the crystal orientation (fabric) of casted snow, névé, and firn samples. The profiles reveal, as expected, large spatial variability. However, it seems to be possible using this combination of techniques to clearly distinguish regional and local differences in sedimentation, metamorphism and diagenesis quantitatively. We also see indications of the effect of seasonal metamorphism based on the orientation of facets. Wind-deposited sedimentary features can be distinguished from thin dense layers caused by metamorphic effects caused by alternating temperature gradients. Two-dimensional NIRtran profiles were of immense help to the evolution of the snowpack. SnowMicroPen profiles show the density and SSA at mm-resolution, and showed to be very useful if taken with a horizontal spacing of about 40 cm

  11. Volumetric-modulated arc therapy for left-sided breast cancer and all regional nodes improves target volumes coverage and reduces treatment time and doses to the heart and left coronary artery, compared with a field-in-field technique

    PubMed Central

    Tyran, Marguerite; Mailleux, Hugues; Tallet, Agnes; Fau, Pierre; Gonzague, Laurence; Minsat, Mathieu; Moureau-Zabotto, Laurence; Resbeut, Michel

    2015-01-01

    We compared two intensity-modulated radiotherapy techniques for left-sided breast treatment, involving lymph node irradiation including the internal mammary chain. Inverse planned arc-therapy (VMAT) was compared with a forward-planned multi-segment technique with a mono-isocenter (MONOISO). Ten files were planned per technique, delivering a 50-Gy dose to the breast and 46.95 Gy to nodes, within 25 fractions. Comparative endpoints were planning target volume (PTV) coverage, dose to surrounding structures, and treatment delivery time. PTV coverage, homogeneity and conformality were better for two arc VMAT plans; V95%PTV-T was 96% for VMAT vs 89.2% for MONOISO. Homogeneity index (HI)PTV-T was 0.1 and HIPTV-N was 0.1 for VMAT vs 0.6 and 0.5 for MONOISO. Treatment delivery time was reduced by a factor of two using VMAT relative to MONOISO (84 s vs 180 s). High doses to organs at risk were reduced (V30left lung = 14% using VMAT vs 24.4% with MONOISO; dose to 2% of the volume (D2%)heart = 26.1 Gy vs 32 Gy), especially to the left coronary artery (LCA) (D2%LCA = 34.4 Gy vs 40.3 Gy). However, VMAT delivered low doses to a larger volume, including contralateral organs (mean dose [Dmean]right lung = 4 Gy and Dmeanright breast = 3.2 Gy). These were better protected using MONOISO plans (Dmeanright lung = 0.8 Gy and Dmeanright breast = 0.4 Gy). VMAT improved PTV coverage and dose homogeneity, but clinical benefits remain unclear. Decreased dose exposure to the LCA may be clinically relevant. VMAT could be used for complex treatments that are difficult with conventional techniques. Patient age should be considered because of uncertainties concerning secondary malignancies. PMID:26386255

  12. [Use of open-path TDL technique and the backward Lagrangian stochastic model to monitor ammonia emission from summer maize field].

    PubMed

    Yang, Wen-Liang; Zhu, An-Ning; Zhang, Jia-Bao; Zhang, Yu-Jun; He, Ying; Wang, Li-Ming; Chen, Xiao-Min; Chen, Wen-Chao

    2012-11-01

    The backward Lagrangian stochastic dispersion model in conjunction with open-path tunable diode absorption spectroscopy was used to quantify ammonia emissions from farmland based on the high-temporal resolution data, aiming to provide innovative achievements to diagnose patterns of ammonia flux. The results indicate that the bLS dispersion technique using open-path lasers to measure atmospheric ammonia concentrations is suitable for determining ammonia emissions from farmland continuously, especially for characterizing diurnal characteristics of NH3 emissions. The ammonia emissions have a significant diurnal pattern with two emission peaks from urea applied to maize on a calcareous sandy loam fluvo-aquic soil in the North China Plain. We believe that the first peak starting at approximately 9:00 am is due to NH3 absorbed by the dew re-emission at night as the dew evaporates. The maximum of ammonia flux at 14:00 corresponds to the peak of soil temperature and solar radiation. The ammonia emission increased rapidly, but the duration of emission peaks lasted approximately 4 d. Cumulative NH3 emission was 25.3% of the applied N over the entire measurement period. The NH3 emissions measured with bLS dispersion technique and venting method had certain difference. PMID:23387189

  13. Simple Techniques For Assessing Impacts Of Oil And Gas Operations On Public Lands: A Field Evaluation Of A Photoionization Detector (PID) At A Condensate Release Site, Padre Island National Seashore, Texas

    USGS Publications Warehouse

    Otton, James K.; Zielinski, Robert A.

    2001-01-01

    Simple, cost-effective techniques are needed for land managers to assess the environmental impacts of oil and gas production activities on public lands, so that sites may be prioritized for remediation or for further, more formal assessment. Field-portable instruments provide real-time data and allow the field investigator to extend an assessment beyond simply locating and mapping obvious disturbances. Field investigators can examine sites for the presence of hydrocarbons in the subsurface using a soil auger and a photoionization detector (PID). The PID measures volatile organic compounds (VOC) in soil gases. This allows detection of hydrocarbons in the shallow subsurface near areas of obvious oil-stained soils, oil in pits, or dead vegetation. Remnants of a condensate release occur in sandy soils at a production site on the Padre Island National Seashore in south Texas. Dead vegetation had been observed by National Park Service personnel in the release area several years prior to our visit. The site is located several miles south of the Malaquite Beach Campground. In early 2001, we sampled soil gases for VOCs in the area believed to have received the condensate. Our purpose in this investigation was: 1) to establish what sampling techniques might be effective in sandy soils with a shallow water and contrast them with techniques used in an earlier study; and 2) delineate the probable area of condensate release. Our field results show that sealing the auger hole with a clear, rigid plastic tube capped at the top end and sampling the soil gas through a small hole in the cap increases the soil VOC gas signature, compared to sampling soil gases in the bottom of an open hole. This sealed-tube sampling method increases the contrast between the VOC levels within a contaminated area and adjacent background areas. The tube allows the PID air pump to draw soil gas from the volume of soil surrounding the open hole below the tube in a zone less influenced by atmospheric air

  14. Analysis and design of three dimensional supersonic nozzles. Volume 1: Nozzle-exhaust flow field analysis by a reference plane characteristics technique

    NASA Technical Reports Server (NTRS)

    Dash, S.; Delguidice, P.

    1972-01-01

    A second order numerical method employing reference plane characteristics has been developed for the calculation of geometrically complex three dimensional nozzle-exhaust flow fields, heretofore uncalculable by existing methods. The nozzles may have irregular cross sections with swept throats and may be stacked in modules using the vehicle undersurface for additional expansion. The nozzles may have highly nonuniform entrance conditions, the medium considered being an equilibrium hydrogen-air mixture. The program calculates and carries along the underexpansion shock and contact as discrete discontinuity surfaces, for a nonuniform vehicle external flow.

  15. Assessment of planetary geologic mapping techniques for Mars using terrestrial analogs: The SP Mountain area of the San Francisco Volcanic Field, Arizona

    USGS Publications Warehouse

    Tanaka, K.L.; Skinner, J.A.; Crumpler, L.S.; Dohm, J.M.

    2009-01-01

    We photogeologically mapped the SP Mountain region of the San Francisco Volcanic Field in northern Arizona, USA to evaluate and improve the fidelity of approaches used in geologic mapping of Mars. This test site, which was previously mapped in the field, is chiefly composed of Late Cenozoic cinder cones, lava flows, and alluvium perched on Permian limestone of the Kaibab Formation. Faulting and folding has deformed the older rocks and some of the volcanic materials, and fluvial erosion has carved drainage systems and deposited alluvium. These geologic materials and their formational and modificational histories are similar to those for regions of the Martian surface. We independently prepared four geologic maps using topographic and image data at resolutions that mimic those that are commonly used to map the geology of Mars (where consideration was included for the fact that Martian features such as lava flows are commonly much larger than their terrestrial counterparts). We primarily based our map units and stratigraphic relations on geomorphology, color contrasts, and cross-cutting relationships. Afterward, we compared our results with previously published field-based mapping results, including detailed analyses of the stratigraphy and of the spatial overlap and proximity of the field-based vs. remote-based (photogeologic) map units, contacts, and structures. Results of these analyses provide insights into how to optimize the photogeologic mapping of Mars (and, by extension, other remotely observed planetary surfaces). We recommend the following: (1) photogeologic mapping as an excellent approach to recovering the general geology of a region, along with examination of local, high-resolution datasets to gain insights into the complexity of the geology at outcrop scales; (2) delineating volcanic vents and lava-flow sequences conservatively and understanding that flow abutment and flow overlap are difficult to distinguish in remote data sets; (3) taking care to

  16. WE-G-17A-08: Electron Gun Operation for in Line MRI-Linac Configurations: An Assessment of Beam Fidelity and Recovery Techniques for Different SIDs and Magnetic Field Strengths

    SciTech Connect

    Whelan, B; Keall, P; Constantin, D; Holloway, L; Kolling, S; Oborn, B; Fahrig, R

    2014-06-15

    Purpose: To test the functionality of medical electron guns within the fringe field of a purpose built superconducting MRI magnet, and to test different recovery techniques for a variety of imaging field strengths and SIDs. Methods: Three different electron guns were simulated using Finite Element Modelling; a standard diode gun, a standard triode gun, and a novel diode gun designed to operate within parallel magnetic fields. The approximate working regime of each gun was established by assessing exit current in constant magnetic fields of varying strength and defining ‘working’ as less than 10% change in injection current. Next, the 1.0T MRI magnet was simulated within Comsol Multiphysics. The coil currents in this model were also scaled to produce field strengths of .5, 1, 1.5 and 3T. Various magnetic shield configurations were simulated, varying the SID from 800 to 1300mm. The average magnetic field within the gun region was assessed together with the distortion in the imaging volume - greater than 150uT distortion was considered unacceptable. Results: The conventional guns functioned in fields of less than 7.5mT. Conversely, the redesigned diode required fields greater than .1T to function correctly. Magnetic shielding was feasible for SIDS of greater than 1000mm for field strengths of .5T and 1T, and 1100mm for 1.5 and 3.0T. Beyond these limits shielding resulted in unacceptable MRI distortion. In contrast, the redesigned diode could perform acceptably for SIDs of less than 812, 896, 931, and 974mm for imaging strengths of 0.5, 1.0, 1.5, 3.0T. Conclusions: For in-line MRIlinac configurations where the electron gun is operating in low field regions, shielding is a straight forward option. However, as magnetic field strength increases and the SID is reduced, shielding results in too great a distortion in the MRI and redesigning the electron optics is the preferable solution. The authors would like to acknowledge funding from the National Health and Research

  17. A multiscale technique for the validation of a numerical code for predicting the pressure field induced by a high-power spark

    NASA Astrophysics Data System (ADS)

    Villa, A.; Malgesini, R.; Barbieri, L.

    2011-04-01

    A more precise knowledge of the pressure field induced by a high-power spark is essential to estimate the mechanical damage that a lightning strike can induce near the impact point. In this work we propose a multiscale approach to validate a numerical magnetohydro-dynamic model that can predict the pressure field when a very high-power discharge is considered. Two simplified models for the arc resistance are considered and their respective results are compared. A brief analysis regarding the numerical issues involved in the solution of a very high temperature gas is included. The numerical code has been validated against the experimental data of a short-arc discharge using a current waveform prescribed by the aeronautical standards. Our study shows that a strong shock wave is generated in the first power peak and this travels away from the arc column maintaining a relatively high strength a few tens of centimetres away. The pressure in the arc region remains high for the whole discharge period.

  18. Symbiotic N2-Fixation Estimated by the 15N Tracer Technique and Growth of Pueraria phaseoloides (Roxb.) Benth. Inoculated with Bradyrhizobium Strain in Field Conditions

    PubMed Central

    Sarr, Papa Saliou; Okon, Judith Wase; Begoude, Didier Aime Boyogueno; Araki, Shigeru; Ambang, Zachée; Shibata, Makoto; Funakawa, Shinya

    2016-01-01

    This field experiment was established in Eastern Cameroon to examine the effect of selected rhizobial inoculation on N2-fixation and growth of Pueraria phaseoloides. Treatments consisted of noninoculated and Bradyrhizobium yuanmingense S3-4-inoculated Pueraria with three replications each. Ipomoea batatas as a non-N2-fixing reference was interspersed in each Pueraria plot. All the twelve plots received 2 gN/m2 of 15N ammonium sulfate 10% atom excess. At harvest, dry matter yields and the nitrogen derived from atmospheric N2-fixation (%Ndfa) of inoculated Pueraria were significantly (P < 0.05) higher (81% and 10.83%, resp.) than those of noninoculated Pueraria. The inoculation enhanced nodule dry weight 2.44-fold. Consequently, the harvested N significantly (P < 0.05) increased by 83% in inoculated Pueraria, resulting from the increase in N2-fixation and soil N uptake. A loss of 55 to 60% of the N fertilizer was reported, and 36 to 40% of it was immobilized in soil. Here, we demonstrated that both N2-fixing potential of P. phaseoloides and soil N uptake are improved through field inoculations using efficient bradyrhizobial species. In practice, the inoculation contributes to maximize N input in soils by the cover crop's biomass and represent a good strategy to improve soil fertility for subsequent cultivation. PMID:26904363

  19. Radiofrequency current source (RFCS) drive and decoupling technique for parallel transmit arrays using a high-power metal oxide semiconductor field-effect transistor (MOSFET).

    PubMed

    Lee, Wonje; Boskamp, Eddy; Grist, Thomas; Kurpad, Krishna

    2009-07-01

    A radiofrequency current source (RFCS) design using a high-power metal oxide semiconductor field effect transistor (MOSFET) that enables independent current control for parallel transmit applications is presented. The design of an RFCS integrated with a series tuned transmitting loop and its associated control circuitry is described. The current source is operated in a gated class AB push-pull configuration for linear operation at high efficiency. The pulsed RF current amplitude driven into the low impedance transmitting loop was found to be relatively insensitive to the various loaded loop impedances ranging from 0.4 to 10.3 ohms, confirming current mode operation. The suppression of current induced by a neighboring loop was quantified as a function of center-to-center loop distance, and was measured to be 17 dB for nonoverlapping, adjacent loops. Deterministic manipulation of the B(1) field pattern was demonstrated by the independent control of RF phase and amplitude in a head-sized two-channel volume transmit array. It was found that a high-voltage rated RF power MOSFET with a minimum load resistance, exhibits current source behavior, which aids in transmit array design.

  20. Symbiotic N 2 -Fixation Estimated by the (15) N Tracer Technique and Growth of Pueraria phaseoloides (Roxb.) Benth. Inoculated with Bradyrhizobium Strain in Field Conditions.

    PubMed

    Sarr, Papa Saliou; Okon, Judith Wase; Begoude, Didier Aime Boyogueno; Araki, Shigeru; Ambang, Zachée; Shibata, Makoto; Funakawa, Shinya

    2016-01-01

    This field experiment was established in Eastern Cameroon to examine the effect of selected rhizobial inoculation on N2-fixation and growth of Pueraria phaseoloides. Treatments consisted of noninoculated and Bradyrhizobium yuanmingense S3-4-inoculated Pueraria with three replications each. Ipomoea batatas as a non-N2-fixing reference was interspersed in each Pueraria plot. All the twelve plots received 2 gN/m(2) of (15)N ammonium sulfate 10% atom excess. At harvest, dry matter yields and the nitrogen derived from atmospheric N2-fixation (%Ndfa) of inoculated Pueraria were significantly (P < 0.05) higher (81% and 10.83%, resp.) than those of noninoculated Pueraria. The inoculation enhanced nodule dry weight 2.44-fold. Consequently, the harvested N significantly (P < 0.05) increased by 83% in inoculated Pueraria, resulting from the increase in N2-fixation and soil N uptake. A loss of 55 to 60% of the N fertilizer was reported, and 36 to 40% of it was immobilized in soil. Here, we demonstrated that both N2-fixing potential of P. phaseoloides and soil N uptake are improved through field inoculations using efficient bradyrhizobial species. In practice, the inoculation contributes to maximize N input in soils by the cover crop's biomass and represent a good strategy to improve soil fertility for subsequent cultivation. PMID:26904363

  1. Radiofrequency current source (RFCS) drive and decoupling technique for parallel transmit arrays using a high-power metal oxide semiconductor field-effect transistor (MOSFET).

    PubMed

    Lee, Wonje; Boskamp, Eddy; Grist, Thomas; Kurpad, Krishna

    2009-07-01

    A radiofrequency current source (RFCS) design using a high-power metal oxide semiconductor field effect transistor (MOSFET) that enables independent current control for parallel transmit applications is presented. The design of an RFCS integrated with a series tuned transmitting loop and its associated control circuitry is described. The current source is operated in a gated class AB push-pull configuration for linear operation at high efficiency. The pulsed RF current amplitude driven into the low impedance transmitting loop was found to be relatively insensitive to the various loaded loop impedances ranging from 0.4 to 10.3 ohms, confirming current mode operation. The suppression of current induced by a neighboring loop was quantified as a function of center-to-center loop distance, and was measured to be 17 dB for nonoverlapping, adjacent loops. Deterministic manipulation of the B(1) field pattern was demonstrated by the independent control of RF phase and amplitude in a head-sized two-channel volume transmit array. It was found that a high-voltage rated RF power MOSFET with a minimum load resistance, exhibits current source behavior, which aids in transmit array design. PMID:19353658

  2. Field gamma dose-rate assessment in natural sedimentary contexts using LaBr3(Ce) and NaI(Tl) probes: a comparison between the "threshold" and "windows" techniques.

    PubMed

    Duval, M; Arnold, L J

    2013-04-01

    Results are presented for a series of replicate in situ gamma spectrometry measurements (n=20) made in natural sedimentary contexts using LaBr3(Ce) and NaI(Tl) probes. For both types of detectors, gamma dose rates were calculated using the "threshold" technique (Murray et al., 1978), and compared with results obtained previously by Arnold et al. (2012) using the "windows" technique (Aitken, 1985). Our results show that gamma dose rates obtained using these two techniques are consistent at 1σ for a given probe, and that the threshold technique yields reproducible results for the LaBr3(Ce) and NaI(Tl) probes. In comparison with the energy windows approach, the threshold approach offers an improvement in the precision with which gamma dose rates can be determined using the LaBr3(Ce) probe. The potential of an alternative threshold approach (the "energy threshold" approach of Guérin and Mercier, 2011) was also tested for both probe types, and the resultant gamma dose rates were found to be in agreement with those obtained using the standard threshold and energy windows techniques. Our results provide new insights into methods and instrumentation used for assessing in situ gamma dose rates in Electron Spin Resonance (ESR) and Luminescence dating. We conclude that LaBr3(Ce) probes can reliably be used for portable gamma dosimetry in low level activity sedimentary environments (500-1500μGy/a) when using the threshold approach, provided that their non-negligible internal background activities (equivalent to ∼758μGy/a for our probe) are accurately assessed and subtracted from gamma ray spectra measured in the field. Our results also suggest that there may be some minor merit in applying an internal background-subtraction procedure to NaI(Tl) gamma ray spectra when using the threshold technique, in spite of the lower intrinsic activities of NaI(Tl) detectors. PMID:23353090

  3. Fabrication of perovskite films using an electrostatic assisted spray technique: the effect of the electric field on morphology, crystallinity and solar cell performance

    NASA Astrophysics Data System (ADS)

    Chandrasekhar, P. S.; Kumar, Neetesh; Swami, Sanjay Kumar; Dutta, V.; Komarala, Vamsi K.

    2016-03-01

    An electric field assisted spray deposition method is employed for improving the perovskite film morphology, crystallinity, and surface coverage, and for further fabricating an efficient solar cell. By applying different voltages ranging from 0.5 to 2.0 kV during spray deposition, we observed a large variation in the film morphology and surface coverage compared to those fabricated without an electric field, which is due to improved atomization from the Coulomb fission process. The optimized applied voltage of 1.5 kV during spraying led to completion of the reaction between CH3NH3I and PbI2 on a hot substrate for pure phase CH3NH3PbI3 thin film formation with improved grain growth and surface coverage. The cells fabricated using perovskite films showed clear applied voltage dependence in the energy conversion process and alleviation in J-V hysteresis; with 1.5 kV applied voltage the average cell efficiency of 8.9% was obtained compared to films fabricated without applying voltage providing only 6.5%. The best efficiencies are 10.9% and 7.37% for applied voltages of 1.5 kV and 0 kV, respectively. The enhancement in efficiency with applied voltage is due to the formation of more uniform and dense films with large perovskite crystals, which resulted in efficient electron transportation (enhanced photocurrent and modified series and shunt resistances) by minimizing the charge carrier recombination at grain boundaries (resulting in enhanced open circuit voltage). With further optimization of the perovskite film thickness by adjusting the CH3NH3I spray volume, the average cell efficiency of ~11.0% was obtained.An electric field assisted spray deposition method is employed for improving the perovskite film morphology, crystallinity, and surface coverage, and for further fabricating an efficient solar cell. By applying different voltages ranging from 0.5 to 2.0 kV during spray deposition, we observed a large variation in the film morphology and surface coverage compared to

  4. Fabrication of perovskite films using an electrostatic assisted spray technique: the effect of the electric field on morphology, crystallinity and solar cell performance.

    PubMed

    Chandrasekhar, P S; Kumar, Neetesh; Swami, Sanjay Kumar; Dutta, V; Komarala, Vamsi K

    2016-03-28

    An electric field assisted spray deposition method is employed for improving the perovskite film morphology, crystallinity, and surface coverage, and for further fabricating an efficient solar cell. By applying different voltages ranging from 0.5 to 2.0 kV during spray deposition, we observed a large variation in the film morphology and surface coverage compared to those fabricated without an electric field, which is due to improved atomization from the Coulomb fission process. The optimized applied voltage of 1.5 kV during spraying led to completion of the reaction between CH3NH3I and PbI2 on a hot substrate for pure phase CH3NH3PbI3 thin film formation with improved grain growth and surface coverage. The cells fabricated using perovskite films showed clear applied voltage dependence in the energy conversion process and alleviation in J-V hysteresis; with 1.5 kV applied voltage the average cell efficiency of 8.9% was obtained compared to films fabricated without applying voltage providing only 6.5%. The best efficiencies are 10.9% and 7.37% for applied voltages of 1.5 kV and 0 kV, respectively. The enhancement in efficiency with applied voltage is due to the formation of more uniform and dense films with large perovskite crystals, which resulted in efficient electron transportation (enhanced photocurrent and modified series and shunt resistances) by minimizing the charge carrier recombination at grain boundaries (resulting in enhanced open circuit voltage). With further optimization of the perovskite film thickness by adjusting the CH3NH3I spray volume, the average cell efficiency of ∼11.0% was obtained. PMID:26956625

  5. Fabrication of perovskite films using an electrostatic assisted spray technique: the effect of the electric field on morphology, crystallinity and solar cell performance.

    PubMed

    Chandrasekhar, P S; Kumar, Neetesh; Swami, Sanjay Kumar; Dutta, V; Komarala, Vamsi K

    2016-03-28

    An electric field assisted spray deposition method is employed for improving the perovskite film morphology, crystallinity, and surface coverage, and for further fabricating an efficient solar cell. By applying different voltages ranging from 0.5 to 2.0 kV during spray deposition, we observed a large variation in the film morphology and surface coverage compared to those fabricated without an electric field, which is due to improved atomization from the Coulomb fission process. The optimized applied voltage of 1.5 kV during spraying led to completion of the reaction between CH3NH3I and PbI2 on a hot substrate for pure phase CH3NH3PbI3 thin film formation with improved grain growth and surface coverage. The cells fabricated using perovskite films showed clear applied voltage dependence in the energy conversion process and alleviation in J-V hysteresis; with 1.5 kV applied voltage the average cell efficiency of 8.9% was obtained compared to films fabricated without applying voltage providing only 6.5%. The best efficiencies are 10.9% and 7.37% for applied voltages of 1.5 kV and 0 kV, respectively. The enhancement in efficiency with applied voltage is due to the formation of more uniform and dense films with large perovskite crystals, which resulted in efficient electron transportation (enhanced photocurrent and modified series and shunt resistances) by minimizing the charge carrier recombination at grain boundaries (resulting in enhanced open circuit voltage). With further optimization of the perovskite film thickness by adjusting the CH3NH3I spray volume, the average cell efficiency of ∼11.0% was obtained.

  6. Local zone wise elastic and plastic properties of electron beam welded Ti-6Al-4V alloy using digital image correlation technique: A comparative study between uniform stress and virtual fields method

    NASA Astrophysics Data System (ADS)

    Saranath, K. M.; Ramji, M.

    2015-05-01

    Joining of materials using welding results in the formation of material zones with varying microstructure across the weld. Extraction of the mechanical properties of those individual heterogeneous zones are important in designing components and structures comprised of welds. In this study, the zone wise local extraction of the elastic and plastic properties of an electron beam welded Ti-6Al-4V titanium alloy has been carried out using both the uniform stress method (USM) and the virtual fields method (VFM) involving digital image correlation (DIC) technique. The surface strain field obtained using DIC technique from a transverse weld specimen tensile testing is used for extracting the zone wise strain evolution. Initially, using uniform stress assumption, zone wise full range stress-strain curves are extracted. In USM methodology, the elastic and plastic material models are fitted to the zone wise stress-strain curves and required parameters are extracted from it. But inherent disadvantage is lot of images need to be processed for the parameter extraction. Recently, VFM is gaining lot of popularity in characterization domain as it is robust, accurate and faster. VFM is based on the principle of virtual work where, the weak form of local equilibrium equations and kinematically admissible virtual displacement fields are utilized for parameter extraction. Hollomon's power law is used here as the hardening rule. Young's modulus, Poisson's ratio, yield stress, strength coefficient and strain hardening exponent are the parameters extracted zone wise using both USM and VFM. A Vicker's microhardness measurement is also conducted across the weld zone towards mapping the strength behavior. Fusion zone has reported higher yield strength, strength coefficient and Poisson's ratio. Young's modulus value is found decreasing from base metal towards the fusion zone. The trend observed in parameter variation across the weld zone obtained by both USM and VFM compares very well. Due

  7. Dismantling techniques

    SciTech Connect

    Wiese, E.

    1998-03-13

    Most of the dismantling techniques used in a Decontamination and Dismantlement (D and D) project are taken from conventional demolition practices. Some modifications to the techniques are made to limit exposure to the workers or to lessen the spread of contamination to the work area. When working on a D and D project, it is best to keep the dismantling techniques and tools as simple as possible. The workers will be more efficient and safer using techniques that are familiar to them. Prior experience with the technique or use of mock-ups is the best way to keep workers safe and to keep the project on schedule.

  8. Spectroscopic techniques and cyclic voltammetry with synthesis: Manganese(II) coordination stability and its ligand field parameters effect on macrocyclic ligands

    NASA Astrophysics Data System (ADS)

    Kumar, Rajiv; Chandra, Sulekh

    2007-05-01

    Manganese(II) macrocyclic complexes are prepared with different macrocyclic ligands, containing cyclic skeleton bearing organic components which have different chromospheres like N, O and S donor atoms and stereochemistry. Thus, six macrocyclic ligands, were prepared and their capacity to retain the manganese(II) ion in solid as well as in aqueous solution was determined and characterized by elemental analyses, molar conductance measurements, magnetic susceptibility measurements, mass, 1H NMR, IR, electronic spectral and cyclic voltammetric studies. The electronic spectrum of this system showed a dependence that may be consistent with the formation of stable complexes and coordination behaviour of the ions. ESR spectra of all the complexes are recorded in solid as well as solution, which show the oxidation state of the manganese(II). Spin Hamiltonian manganese(II), which can be defined as the magnetic field vector (ℋ): ℋ=gβHS+DSz2-{35}/{12}+E[Sz2-Sy2]+ASI+ 1/6 a Sx4+Sy4+Sz4-{707}/{16}+ 1/180 F{35Sz2-475}/{2Sz2+3255/10} Significant distortion of the manganese(II) ion in observed geometry is evident from the angle subtended by the different membered chelate rings and the angles spanned by trans donor atoms octahedral geometry. Cyclic voltammetric studies indicate that complexes with all ligands undergoes one electron oxidation from manganese(II) to manganese(III) followed by a further oxidation to manganese(IV) at a significantly more positive potential.

  9. Development of a spatially targeted field sampling technique for the southern cattle tick, Rhipicephalus microplus, by mapping white-tailed deer, Odocoileus virginianus, habitat in South Texas.

    PubMed

    Phillips, Pamela L; Welch, John B; Kramer, Matthew

    2014-01-01

    The objective of our study was to determine whether satellite remote sensed data could be used to identify white-tailed deer, Odocoileus virginianus (Zimmerman) (Artiodactyla: Cervidae), habitat and target locations for sampling free-living larvae of the southern cattle tick, Rhipicephalus (Boophilus) microplus (Canestrini) (Ixodida: Ixodidae) in South Texas. Two methods for mapping white-tailed deer habitat were used, an object-oriented method to identify closed canopies and waterways for deer movement and two vegetation indices: the Normalized Difference Vegetation Index and the Modified Soil Adjusted Vegetation Index to identify forage for deer. These two data sets of favorable white-tailed deer habitat were combined within a geographic information system to identify locations for sampling ticks. Larvae of R. (B.) microplus, were sampled in Zapata County, Texas, by walking transects with attached flannel panels to jeans. Although the data set and sampling period were limited, data analysis demonstrated that sampling of free-living larvae of R. (B.) microplus can be conducted in South Texas, and larvae were most abundant in areas that harbored O. virginianus. Spatial analysis of satellite imagery to classify white-tailed deer/southern cattle tick habitat proved efficacious and may be useful in directing sampling activities in the field. PMID:25368044

  10. Development of a Spatially Targeted Field Sampling Technique for the Southern Cattle Tick, Rhipicephalus microplus, by Mapping Whitetailed Deer, Odocoileus virginianus, Habitat in South Texas

    PubMed Central

    Phillips, Pamela L.; Welch, John B.; Kramer, Matthew

    2014-01-01

    The objective of our study was to determine whether satellite remote sensed data could be used to identify white-tailed deer, Odocoileus virginianus (Zimmerman) (Artiodactyla: Cervidae), habitat and target locations for sampling free-living larvae of the southern cattle tick, Rhipicephalus (Boophilus) microplus (Canestrini) (Ixodida: Ixodidae) in South Texas. Two methods for mapping white-tailed deer habitat were used, an object-oriented method to identify closed canopies and waterways for deer movement and two vegetation indices: the Normalized Difference Vegetation Index and the Modified Soil Adjusted Vegetation Index to identify forage for deer. These two data sets of favorable white-tailed deer habitat were combined within a geographic information system to identify locations for sampling ticks. Larvae of R. (B.) microplus, were sampled in Zapata County, Texas, by walking transects with attached flannel panels to jeans. Although the data set and sampling period were limited, data analysis demonstrated that sampling of free-living larvae of R. (B.) microplus can be conducted in South Texas, and larvae were most abundant in areas that harbored O. virginianus. Spatial analysis of satellite imagery to classify white-tailed deer/southern cattle tick habitat proved efficacious and may be useful in directing sampling activities in the field. PMID:25368044

  11. Characterization of a two-dimensional temperature field within a rapid compression machine using a toluene planar laser-induced fluorescence imaging technique

    NASA Astrophysics Data System (ADS)

    Strozzi, Camille; Sotton, Julien; Mura, Arnaud; Bellenoue, Marc

    2009-12-01

    The homogeneous charge compression ignition (HCCI) combustion process is an advanced operating mode for automotive engines. The self-ignition mechanisms that occur within the combustion chamber exhibit extreme temperature dependence. Therefore, the thorough understanding of corresponding phenomena requires the use of diagnostic methods featuring a sufficient thermal sensitivity, applicable in severe conditions similar to those encountered within engines. In this respect, toluene planar laser-induced fluorescence (PLIF) is applied to the inert compression flow generated within an optical rapid compression machine (RCM). A relatively simple diagnostic system is retained: a single wavelength excitation device (266 nm) and a single (filtered) collection system. This diagnostic system is associated with an image processing strategy specifically adapted to RCM devices. Despite the severe conditions under consideration (40 bar, 700-950 K), the method allows us to obtain relatively large two-dimensional temperature fields that display a level of description seldom achieved in such devices. In particular the temperature gradients, which play a crucial role in HCCI combustion processes, can be estimated. The present experimental results confirm the good reliability and accuracy of the method. The information gathered with this toluene PLIF method puts in evidence its high potentialities for the study of aero-thermal-reactive processes as they take place in real engine conditions. The retained strategy also brings new possibilities of non-intrusive analysis for flows practically encountered within industrial devices.

  12. Nested multiplex PCR--a feasible technique to study partial community of arbuscular mycorrhizal fungi in field-growing plant root.

    PubMed

    Dong, Xiuli; Zhao, Bin

    2006-08-01

    Plant can be infected by different arbuscular mycorrhizal fungi, but little is known about the interaction between them within root tissues mainly because different species cannot be distinguished on the basis of fungal structure. Accurate species identification of Arbuscular mycorrhizal fungi (AMF) colonized in plant roots is the cornerstone of mycorrhizal study, yet this fundamental step is impossible through its morphological character alone. For accurate, rapid and inexpensive detection of partial mycorrhizal fungal community in plant roots, a nested multiplex polymerase chain reaction (PCR) was developed in this study. Five discriminating primers designed based on the variable region of the 5' end of the large ribosomal subunit were used in the experiment for testing their specificity and the sensitivity in nested PCR by using spores from Glomus mosseae (BEG12), Glomus intraradices (BEG141), Scutellospora castaneae (BEG1) and two unidentified Glomus sp. HAUO3 and HAUO4. The feasibility assay of nested multiplex PCR was conducted by use of spore mixture, Astragalus sinicum roots co-inoculated with 4 species of arbuscular mycorrhizal fungi from pot cultures and 15 different field-growing plant roots respectively after analyses of the compatibility of primers. The result indicated that the sensitivity was in the same range as that of the corresponding single PCR reaction. Overall accuracy was 95%. The efficiency and sensitivity of this multiplex PCR procedure provided a rapid and easy way to simultaneously detect several of arbuscular mycorrhiza fungal species in a same plant root system. PMID:16989281

  13. Development of a spatially targeted field sampling technique for the southern cattle tick, Rhipicephalus microplus, by mapping white-tailed deer, Odocoileus virginianus, habitat in South Texas.

    PubMed

    Phillips, Pamela L; Welch, John B; Kramer, Matthew

    2014-01-01

    The objective of our study was to determine whether satellite remote sensed data could be used to identify white-tailed deer, Odocoileus virginianus (Zimmerman) (Artiodactyla: Cervidae), habitat and target locations for sampling free-living larvae of the southern cattle tick, Rhipicephalus (Boophilus) microplus (Canestrini) (Ixodida: Ixodidae) in South Texas. Two methods for mapping white-tailed deer habitat were used, an object-oriented method to identify closed canopies and waterways for deer movement and two vegetation indices: the Normalized Difference Vegetation Index and the Modified Soil Adjusted Vegetation Index to identify forage for deer. These two data sets of favorable white-tailed deer habitat were combined within a geographic information system to identify locations for sampling ticks. Larvae of R. (B.) microplus, were sampled in Zapata County, Texas, by walking transects with attached flannel panels to jeans. Although the data set and sampling period were limited, data analysis demonstrated that sampling of free-living larvae of R. (B.) microplus can be conducted in South Texas, and larvae were most abundant in areas that harbored O. virginianus. Spatial analysis of satellite imagery to classify white-tailed deer/southern cattle tick habitat proved efficacious and may be useful in directing sampling activities in the field.

  14. Development of the β-BaB2O4 crystal growth technique in the heat field of three-fold axis symmetry

    NASA Astrophysics Data System (ADS)

    Kokh, A. E.; Bekker, T. B.; Vlezko, V. A.; Kokh, K. A.

    2011-03-01

    In our earlier works we have shown the efficiency of β-BaB2O4 crystal growth in the heat field of three-fold axis symmetry. In order to involve the whole body of the high temperature solution in the convective motion it is very important to achieve vertical temperature distribution with the ‘hot points' at the lower part of the growth crucible. At the same time to prevent crystal overgrowth and contact with the crucible wall, the temperature of the latter at the high temperature solution surface must be higher than the crystallization temperature. In order to accomplish such temperature distribution two-zone heating furnace with three heating sectors in each zone has been developed. Load commutator executes power distribution on heating sectors during the growth run. We suppose that developed heating furnace and the system of thermoregulation allow one to achieve stable thermo-gravitational convection in the whole body of high temperature solution, thus substantially delaying the onset of constitutional undercooling.

  15. Tools and techniques for developing tephra stratigraphies in lake cores: A case study from the basaltic Auckland Volcanic Field, New Zealand

    NASA Astrophysics Data System (ADS)

    Hopkins, Jenni L.; Millet, Marc-Alban; Timm, Christian; Wilson, Colin J. N.; Leonard, Graham S.; Palin, J. Michael; Neil, Helen

    2015-09-01

    Probabilistic hazard forecasting for a volcanic region relies on understanding and reconstructing the eruptive record (derived potentially from proximal as well as distal volcanoes). Tephrostratigraphy is commonly used as a reconstructive tool by cross-correlating tephra deposits to create a stratigraphic framework that can be used to assess magnitude-frequency relationships for eruptive histories. When applied to widespread rhyolitic deposits, tephra identifications and correlations have been successful; however, the identification and correlation of basaltic tephras are more problematic. Here, using tephras in drill cores from six maars in the Auckland Volcanic Field (AVF), New Zealand, we show how X-ray density scanning coupled with magnetic susceptibility analysis can be used to accurately and reliably identify basaltic glass shard-bearing horizons in lacustrine sediments and which, when combined with the major and trace element signatures of the tephras, can be used to distinguish primary from reworked layers. After reliably identifying primary vs. reworked basaltic horizons within the cores, we detail an improved method for cross-core correlation based on stratigraphy and geochemical fingerprinting. We present major and trace element data for individual glass shards from 57 separate basaltic horizons identified within the cores. Our results suggest that in cases where major element compositions (SiO2, CaO, Al2O3, FeO, MgO) do not provide unambiguous correlations, trace elements (e.g. La, Gd, Yb, Zr, Nb, Nd) and trace element ratios (e.g. [La/Yb]N, [Gd/Yb]N, [Zr/Yb]N) are successful in improving the compositional distinction between the AVF basaltic tephra horizons, thereby allowing an improved eruptive history of the AVF to be reconstructed.

  16. Emerging optical nanoscopy techniques

    PubMed Central

    Montgomery, Paul C; Leong-Hoi, Audrey

    2015-01-01

    To face the challenges of modern health care, new imaging techniques with subcellular resolution or detection over wide fields are required. Far field optical nanoscopy presents many new solutions, providing high resolution or detection at high speed. We present a new classification scheme to help appreciate the growing number of optical nanoscopy techniques. We underline an important distinction between superresolution techniques that provide improved resolving power and nanodetection techniques for characterizing unresolved nanostructures. Some of the emerging techniques within these two categories are highlighted with applications in biophysics and medicine. Recent techniques employing wider angle imaging by digital holography and scattering lens microscopy allow superresolution to be achieved for subcellular and even in vivo, imaging without labeling. Nanodetection techniques are divided into four subcategories using contrast, phase, deconvolution, and nanomarkers. Contrast enhancement is illustrated by means of a polarized light-based technique and with strobed phase-contrast microscopy to reveal nanostructures. Very high sensitivity phase measurement using interference microscopy is shown to provide nanometric surface roughness measurement or to reveal internal nanometric structures. Finally, the use of nanomarkers is illustrated with stochastic fluorescence microscopy for mapping intracellular structures. We also present some of the future perspectives of optical nanoscopy. PMID:26491270

  17. Adaptation of the pseudo-metal-oxide-semiconductor field effect transistor technique to ultrathin silicon-on-insulator wafers characterization: Improved set-up, measurement procedure, parameter extraction, and modeling

    NASA Astrophysics Data System (ADS)

    Van Den Daele, W.; Malaquin, C.; Baumel, N.; Kononchuk, O.; Cristoloveanu, S.

    2013-10-01

    This paper