Science.gov

Sample records for field ionization-photoion technique

  1. The Study of State-Selected Ion-Molecule Reactions using the Vacuum Ultraviolet Pulsed Field Ionization-Photoion Technique

    DTIC Science & Technology

    2006-01-01

    reactant ion preparation is the photoelectron-photoion coin- spheric, industrial, and aerospace plasmas .17-21 It is known cidence technique, which...Phys. 34, 43 (1999). 55 K. Norwood and C. Y. Ng. Chem. Phys. Lett. 156, 145 (1989). 16R. A. Dressier and A. A. Viggiano , in The Encyclopedia of Mass

  2. The study of state-selected ion-molecule reactions using the vacuum ultraviolet pulsed field ionization-photoion technique.

    PubMed

    Dressler, Rainer A; Chiu, Y; Levandier, D J; Tang, X N; Hou, Y; Chang, C; Houchins, C; Xu, H; Ng, Cheuk-Yiu

    2006-10-07

    This paper presents the methodology to generate beams of ions in single quantum states for bimolecular ion-molecule reaction dynamics studies using pulsed field ionization (PFI) of atoms or molecules in high-n Rydberg states produced by vacuum ultraviolet (VUV) synchrotron or laser photoexcitation. Employing the pseudocontinuum high-resolution VUV synchrotron radiation at the Advanced Light Source as the photoionization source, PFI photoions (PFI-PIs) in selected rovibrational states have been generated for ion-molecule reaction studies using a fast-ion gate to pass the PFI-PIs at a fixed delay with respect to the detection of the PFI photoelectrons (PFI-PEs). The fast ion gate provided by a novel interleaved comb wire gate lens is the key for achieving the optimal signal-to-noise ratio in state-selected ion-molecule collision studies using the VUV synchrotron based PFI-PE secondary ion coincidence (PFI-PESICO) method. The most recent development of the VUV laser PFI-PI scheme for state-selected ion-molecule collision studies is also described. Absolute integral cross sections for state-selected H2+ ions ranging from v+ = 0 to 17 in collisions with Ar, Ne, and He at controlled translational energies have been obtained by employing the VUV synchrotron based PFI-PESICO scheme. The comparison between PFI-PESICO cross sections for the H2+(HD+)+Ne and H2+(HD+)+He proton-transfer reactions and theoretical cross sections based on quasiclassical trajectory (QCT) calculations and three-dimensional quantum scattering calculations performed on the most recently available ab initio potential energy surfaces is highlighted. In both reaction systems, quantum scattering resonances enhance the integral cross sections significantly above QCT predictions at low translational and vibrational energies. At higher energies, the agreement between experiment and quasiclassical theory is very good. The profile and magnitude of the kinetic energy dependence of the absolute integral cross

  3. Communication: Rovibrationally selected study of the N{sub 2}{sup +}(X; v{sup +}= 1, N{sup +}= 0-8) + Ar charge transfer reaction using the vacuum ultraviolet laser pulsed field ionization-photoion method

    SciTech Connect

    Chang, Yih Chung; Xu Hong; Xu Yuntao; Lu Zhou; Ng, C. Y.; Chiu, Yu-Hui; Levandier, Dale J.

    2011-05-28

    By employing an electric field pulsing scheme for vacuum ultraviolet laser pulsed field ionization-photoion (PFI-PI) measurements, we have been able to prepare a rovibrationally selected PFI-PI beam of N{sub 2}{sup +}(v{sup +}= 1, N{sup +}) with not only high intensity and high quantum state purity, but also high kinetic energy resolution, allowing absolute total cross sections [{sigma}(v{sup +}= 1, N{sup +})] for the N{sub 2}{sup +}(X; v{sup +}= 1, N{sup +}) + Ar, N{sup +}= 0-8 charge transfer reaction to be measured at center-of-mass collision energies (E{sub cm}) down to thermal energies. The {sigma}(v{sup +}= 1, N{sup +}= 0-8) values determined at E{sub cm}= 0.04-10.00 eV are in good agreement with the theoretical predictions based on the Landau-Zener-Stueckelberg formulism. Taking into account the experimental uncertainties, the {sigma}(v{sup +}= 1, N{sup +}), N{sup +}= 0-8, measured at E{sub cm}= 1.56 eV are found to be independent of N{sup +}.

  4. Vacuum Ultraviolet Laser Photoion and Pulsed Field Ionization-Photoion Study of Rydberg Series of Chlorine Atoms Prepared in the 2PJ (J = 3/2 and 1/2) Fine-structure States

    NASA Astrophysics Data System (ADS)

    Yang, Lei; Gao, Hong; Zhou, Jingang; Ng, C. Y.

    2015-09-01

    We have measured the high-resolution vacuum ultraviolet (VUV) photoion (VUV-PI) and VUV pulsed-field ionization-photoion (VUV-PFI-PI) spectra of chlorine atoms (Cl) in the VUV energy range 103,580-105,600 cm-1 (12.842-13.093 eV) using a tunable VUV laser as the photoexcitation and photoionization source. Here, Cl atoms are prepared in the Cl(2P3/2) and Cl(2P1/2) fine-structure states by 193.3 nm laser photodissociation of chlorobenzene. The employment of VUV-PFI-PI detection has allowed the identification of Rydberg transitions that are not observed in VUV-PI measurements. More than 180 new Rydberg transition lines with principal quantum number up to n = 61 have been identified and assigned to members of nine Rydberg series originating from the neutral Cl(2P3/2) and Cl(2P1/2) fine-structure states. Two of these Rydberg series are found to converge to the Cl+(3P2), four to the Cl+(3P1), and three to the Cl+(3P0) ionization limits. Based on the convergence limits determined by least-squares fits of the observed Rydberg transitions to the modified Ritz formula, we have obtained a more precise ionization energy (IE) for the formation of the ionic Cl+(3P2) from the ground Cl(2P3/2) state to be 104,591.01 ± 0.13 cm-1. This is consistent with previous IE measurements, but has a smaller uncertainty. The analysis of the quantum defects obtained for the Rydberg transitions reveals that many high-n Rydberg transitions are perturbed.

  5. Rovibrationally selected ion-molecule collision study using the molecular beam vacuum ultraviolet laser pulsed field ionization-photoion method: charge transfer reaction of N2(+)(X 2Σg+; v+ = 0-2; N+ = 0-9) + Ar.

    PubMed

    Chang, Yih Chung; Xu, Yuntao; Lu, Zhou; Xu, Hong; Ng, C Y

    2012-09-14

    We have developed an ion-molecule reaction apparatus for state-selected absolute total cross section measurements by implementing a high-resolution molecular beam vacuum ultraviolet (VUV) laser pulsed field ionization-photoion (PFI-PI) ion source to a double-quadrupole double-octopole ion-guide mass spectrometer. Using the total cross section measurement of the state-selected N(2)(+)(v(+), N(+)) + Ar charge transfer (CT) reaction as an example, we describe in detail the design of the VUV laser PFI-PI ion source used, which has made possible the preparation of reactant N(2)(+)(X (2)Σ(g)(+), v(+) = 0-2, N(+) = 0-9) PFI-PIs with high quantum state purity, high intensity, and high kinetic energy resolution. The PFI-PIs and prompt ions produced in the ion source are shown to have different kinetic energies, allowing the clean rejection of prompt ions from the PFI-PI beam by applying a retarding potential barrier upstream of the PFI-PI source. By optimizing the width and amplitude of the pulsed electric fields employed to the VUV-PFI-PI source, we show that the reactant N(2)(+) PFI-PI beam can be formed with a laboratory kinetic energy resolution of ΔE(lab) = ± 50 meV. As a result, the total cross section measurement can be conducted at center-of-mass kinetic energies (E(cm)'s) down to thermal energies. Absolute total rovibrationally selected cross sections σ(v(+) = 0-2, N(+) = 0-9) for the N(2)(+)(X (2)Σ(g)(+); v(+) = 0-2, N(+) = 0-9) + Ar CT reaction have been measured in the E(cm) range of 0.04-10.0 eV, revealing strong vibrational enhancements and E(cm)-dependencies of σ(v(+) = 0-2, N(+) = 0-9). The thermochemical threshold at E(cm) = 0.179 eV for the formation of Ar(+) from N(2)(+)(X; v(+) = 0, N(+)) + Ar was observed by the measured σ(v(+) = 0), confirming the narrow ΔE(cm) spread achieved in the present study. The σ(v(+) = 0-2; N(+)) values obtained here are compared with previous experimental and theoretical results. The theoretical predictions

  6. A quantum-rovibrational-state-selected study of the proton-transfer reaction H2(+)(X(2)Σ: v(+) = 1-3; N(+) = 0-3) + Ne → NeH(+) + H using the pulsed field ionization-photoion method: observation of the rotational effect near the reaction threshold.

    PubMed

    Xiong, Bo; Chang, Yih-Chung; Ng, Cheuk-Yiu

    2017-07-19

    Using the sequential electric field pulsing scheme for vacuum ultraviolet (VUV) laser pulsed field ionization-photoion (PFI-PI) detection, we have successfully prepared H2(+)(X(2)Σ: v(+) = 1-3; N(+) = 0-5) ions in the form of an ion beam in single quantum-rovibrational-states with high purity, high intensity, and narrow laboratory kinetic energy spread (ΔElab ≈ 0.05 eV). This VUV-PFI-PI ion source, when coupled with the double-quadrupole double-octupole ion-molecule reaction apparatus, has made possible a systematic examination of the vibrational- as well as rotational-state effects on the proton transfer reaction of H2(+)(X(2)Σ: v(+); N(+)) + Ne. Here, we present the integral cross sections [σ(v(+); N(+))'s] for the H2(+)(v(+) = 1-3; N(+) = 0-3) + Ne → NeH(+) + H reaction observed in the center-of-mass kinetic energy (Ecm) range of 0.05-2.00 eV. The σ(v(+) = 1, N(+) = 1) exhibits a distinct Ecm onset, which is found to agree with the endothermicity of 0.27 eV for the proton transfer process after taking into account of experimental uncertainties. Strong v(+)-vibrational enhancements are observed for σ(v(+) = 1-3, N(+)) in the Ecm range of 0.05-2.00 eV. While rotational excitations appear to have little effect on σ(v(+) = 3, N(+)), a careful search leads to the observation of moderate N(+)-rotational enhancements at v(+) = 2: σ(v(+) = 2; N(+) = 0) < σ(v(+) = 2; N(+) = 1) < σ(v(+) = 2; N(+) = 2) < σ(v(+) = 2; N(+) = 3), where the formation of NeH(+) is near thermal-neutral. The σ(v(+) = 1-3, N(+) = 0-3) values obtained here are compared with previous experimental results and the most recent state-of-the-art quantum dynamics predictions. We hope that these new experimental results would further motivate more rigorous theoretical calculations on the dynamics of this prototypical ion-molecule reaction.

  7. A vacuum ultraviolet laser pulsed field ionization-photoion study of methane (CH4): determination of the appearance energy of methylium from methane with unprecedented precision and the resulting impact on the bond dissociation energies of CH4 and CH4().

    PubMed

    Chang, Yih-Chung; Xiong, Bo; Bross, David H; Ruscic, Branko; Ng, C Y

    2017-04-05

    We report on the successful implementation of a high-resolution vacuum ultraviolet (VUV) laser pulsed field ionization-photoion (PFI-PI) detection method for the study of unimolecular dissociation of quantum-state- or energy-selected molecular ions. As a test case, we have determined the 0 K appearance energy (AE0) for the formation of methylium, CH3(+), from methane, CH4, as AE0(CH3(+)/CH4) = 14.32271 ± 0.00013 eV. This value has a significantly smaller error limit, but is otherwise consistent with previous laboratory and/or synchrotron-based studies of this dissociative photoionization onset. Furthermore, the sum of the VUV laser PFI-PI spectra obtained for the parent CH4(+) ion and the fragment CH3(+) ions of methane is found to agree with the earlier VUV pulsed field ionization-photoelectron (VUV-PFI-PE) spectrum of methane, providing unambiguous validation of the previous interpretation that the sharp VUV-PFI-PE step observed at the AE0(CH3(+)/CH4) threshold ensues because of higher PFI detection efficiency for fragment CH3(+) than for parent CH4(+). This, in turn, is a consequence of the underlying high-n Rydberg dissociation mechanism for the dissociative photoionization of CH4, which was proposed in previous synchrotron-based VUV-PFI-PE and VUV-PFI-PEPICO studies of CH4. The present highly accurate 0 K dissociative ionization threshold for CH4 can be utilized to derive accurate values for the bond dissociation energies of methane and methane cation. For methane, the straightforward application of sequential thermochemistry via the positive ion cycle leads to some ambiguity because of two competing VUV-PFI-PE literature values for the ionization energy of methyl radical. The ambiguity is successfully resolved by applying the Active Thermochemical Tables (ATcT) approach, resulting in D0(H-CH3) = 432.463 ± 0.027 kJ mol(-1) and D0(H-CH3(+)) = 164.701 ± 0.038 kJ mol(-1).

  8. A vacuum ultraviolet laser pulsed field ionization-photoion study of methane (CH4): Determination of the appearance energy of methylium from methane with unprecedented precision and the resulting impact on the bond dissociation energies of CH4 and CH4+

    DOE PAGES

    Chang, Yih -Chung; Xiong, Bo; Bross, David H.; ...

    2017-03-27

    Here, we report on the successful implementation of a high-resolution vacuum ultraviolet (VUV) laser pulsed field ionization-photoion (PFI-PI) detection method for the study of unimolecular dissociation of quantum-state- or energy-selected molecular ions. As a test case, we have determined the 0 K appearance energy (AE0) for the formation of methylium, CH3+, from methane, CH4, as AE0 (CH3+/CH4) = 14.32271 ± 0.00013 eV. This value has a significantly smaller error limit, but is otherwise consistent with previous laboratory and/or synchrotron-based studies of this dissociative photoionization onset. Furthermore, the sum of the VUV laser PFI-PI spectra obtained for the parent CH4+ ionmore » and the fragment CH3+ ions of methane is found to agree with the earlier VUV pulsed field ionization-photoelectron (VUV-PFI-PE) spectrum of methane, providing unambiguous validation of the previous interpretation that the sharp VUV-PFI-PE step observed at the AE0 (CH3+/CH4) threshold ensues because of higher PFI detection efficiency for fragment CH3+ than for parent CH4+. This, in turn, is a consequence of the underlying high-n Rydberg dissociation mechanism for the dissociative photoionization of CH4, which was proposed in previous synchrotron-based VUV-PFI-PE and VUV-PFI-PEPICO studies of CH4. The present highly accurate 0 K dissociative ionization threshold for CH4 can be utilized to derive accurate values for the bond dissociation energies of methane and methane cation. For methane, the straightforward application of sequential thermochemistry via the positive ion cycle leads to some ambiguity because of two competing VUV-PFI-PE literature values for the ionization energy of methyl radical. The ambiguity is successfully resolved by applying the Active Thermochemical Tables (ATcT) approach, resulting in D0 (H-CH3) = 432.463 ± 0.027 kJ/mol and D0(H-CH3+) = 164.701 ± 0.038 kJ/mol.« less

  9. Rovibrationally selected ion-molecule collision study using the molecular beam vacuum ultraviolet laser pulsed field ionization-photoion method: Charge transfer reaction of N{sub 2}{sup +}(X {sup 2}{Sigma}{sub g}{sup +}; v{sup +}= 0-2; N{sup +}= 0-9) + Ar

    SciTech Connect

    Chang, Yih Chung; Xu Yuntao; Lu Zhou; Xu Hong; Ng, C. Y.

    2012-09-14

    We have developed an ion-molecule reaction apparatus for state-selected absolute total cross section measurements by implementing a high-resolution molecular beam vacuum ultraviolet (VUV) laser pulsed field ionization-photoion (PFI-PI) ion source to a double-quadrupole double-octopole ion-guide mass spectrometer. Using the total cross section measurement of the state-selected N{sub 2}{sup +}(v{sup +}, N{sup +}) + Ar charge transfer (CT) reaction as an example, we describe in detail the design of the VUV laser PFI-PI ion source used, which has made possible the preparation of reactant N{sub 2}{sup +}(X {sup 2}{Sigma}{sub g}{sup +}, v{sup +}= 0-2, N{sup +}= 0-9) PFI-PIs with high quantum state purity, high intensity, and high kinetic energy resolution. The PFI-PIs and prompt ions produced in the ion source are shown to have different kinetic energies, allowing the clean rejection of prompt ions from the PFI-PI beam by applying a retarding potential barrier upstream of the PFI-PI source. By optimizing the width and amplitude of the pulsed electric fields employed to the VUV-PFI-PI source, we show that the reactant N{sub 2}{sup +} PFI-PI beam can be formed with a laboratory kinetic energy resolution of {Delta}E{sub lab}={+-} 50 meV. As a result, the total cross section measurement can be conducted at center-of-mass kinetic energies (E{sub cm}'s) down to thermal energies. Absolute total rovibrationally selected cross sections {sigma}(v{sup +}= 0-2, N{sup +}= 0-9) for the N{sub 2}{sup +}(X {sup 2}{Sigma}{sub g}{sup +}; v{sup +}= 0-2, N{sup +}= 0-9) + Ar CT reaction have been measured in the E{sub cm} range of 0.04-10.0 eV, revealing strong vibrational enhancements and E{sub cm}-dependencies of {sigma}(v{sup +}= 0-2, N{sup +}= 0-9). The thermochemical threshold at E{sub cm}= 0.179 eV for the formation of Ar{sup +} from N{sub 2}{sup +}(X; v{sup +}= 0, N{sup +}) + Ar was observed by the measured {sigma}(v{sup +}= 0), confirming the narrow {Delta}E{sub cm} spread achieved in

  10. Field measurements involve various techniques

    SciTech Connect

    Moore, D.P.; Byars, H.G. )

    1990-07-30

    A number of field techniques are available to determine the extent of corrosion on production equipment. This article on oil field corrosion explains the use of corrosion coupons, several types of probes, and various inspection techniques, and shows how to monitor iron content in water.

  11. Atoms in intense laser fields

    SciTech Connect

    Gavrila, M. )

    1992-01-01

    This book covers the following topics. Multiphoton ionization; photoionization with ultra-short laser pulses; Rydberg atoms in strong microwave fields; high-order harmonic generation in rare gases; mechanisms of short-wavelength generation; time-dependent studies of multiphoton processes; numerical experiments in strong and super-strong fields; resonance in multiphonton ionization nonpertubative treatment of multiphonton ionization within the floquet framework, atomic structure and decay in high frequency fields.

  12. Field techniques for sampling ants

    USDA-ARS?s Scientific Manuscript database

    Ants occur in most environments and ecologists ask a diverse array of questions involving ants. Thus, a key consideration in ant studies is to match the environment and question (and associated environmental variables) to the ant sampling technique. Since each technique has distinct limitations, usi...

  13. Gravity field determination and error assessment techniques

    NASA Technical Reports Server (NTRS)

    Yuan, D. N.; Shum, C. K.; Tapley, B. D.

    1989-01-01

    Linear estimation theory, along with a new technique to compute relative data weights, was applied to the determination of the Earth's geopotential field and other geophysical model parameters using a combination of satellite ground-based tracking data, satellite altimetry data, and the surface gravimetry data. The relative data weights for the inhomogeneous data sets are estimated simultaneously with the gravity field and other geophysical and orbit parameters in a least squares approach to produce the University of Texas gravity field models. New techniques to perform calibration of the formal covariance matrix for the geopotential solution were developed to obtain a reliable gravity field error estimate. Different techniques, which include orbit residual analysis, surface gravity anomaly residual analysis, subset gravity solution comparisons and consider covariance analysis, were applied to investigate the reliability of the calibration.

  14. Field Assessment Techniques for Bank Erosion Modeling

    DTIC Science & Technology

    1990-11-22

    Field Assessment Techniques for Bank Erosion Modeling First Interim Report Prepared for US Army European Research Office US AR DS G-. EDISON HOUSE...SEDIMENTATION ANALYSIS SHEETS and GUIDELINES FOR THE USE OF SEDIMENTATION ANALYSIS SHEETS IN THE FIELD Prepared for US Army Engineer Waterways Experiment...Material Type 3 Material Type 4 Cobbles Toe[’ Toe Toefl Toefl Protection Status Cobbles/boulders Mid-Bnak .. Mid-na.k Mid-Bnask[ Mid-Boak

  15. Techniques of magna-field irradiation

    SciTech Connect

    Shank, B.

    1983-12-01

    Total body irradiation (TBI) techniques have evolved over the years, with the basic goals remaining adequate immunosuppression and/or tumor eradication. TBI technique variables include: machine type and energy, prescription parameters (dose, number of fractions, dose/fraction, dose rate), patient position, therapy room and machine constraints (field size, distance) and beam modifiers (bolus, compensators, shields). Related variables include chemotherapy agents and schedules, and 'boost' radiotherapy. Seven representative institutions that treat a large number of TBI patients were surveyed for these variables. Homogeneity has been achieved generally within +/-10% with the use of these techniques. One 'sentinel' effect is discussed, namely interstitial pneumonitis, as a measure of normal tissue effects with varying techniques. There is an indication that more fractionated methods, used either daily or in a hyperfractionated fashion, are leading to a decreased incidence of pneumonitis.

  16. Soil Sampling Techniques For Alabama Grain Fields

    NASA Technical Reports Server (NTRS)

    Thompson, A. N.; Shaw, J. N.; Mask, P. L.; Touchton, J. T.; Rickman, D.

    2003-01-01

    Characterizing the spatial variability of nutrients facilitates precision soil sampling. Questions exist regarding the best technique for directed soil sampling based on a priori knowledge of soil and crop patterns. The objective of this study was to evaluate zone delineation techniques for Alabama grain fields to determine which method best minimized the soil test variability. Site one (25.8 ha) and site three (20.0 ha) were located in the Tennessee Valley region, and site two (24.2 ha) was located in the Coastal Plain region of Alabama. Tennessee Valley soils ranged from well drained Rhodic and Typic Paleudults to somewhat poorly drained Aquic Paleudults and Fluventic Dystrudepts. Coastal Plain s o i l s ranged from coarse-loamy Rhodic Kandiudults to loamy Arenic Kandiudults. Soils were sampled by grid soil sampling methods (grid sizes of 0.40 ha and 1 ha) consisting of: 1) twenty composited cores collected randomly throughout each grid (grid-cell sampling) and, 2) six composited cores collected randomly from a -3x3 m area at the center of each grid (grid-point sampling). Zones were established from 1) an Order 1 Soil Survey, 2) corn (Zea mays L.) yield maps, and 3) airborne remote sensing images. All soil properties were moderately to strongly spatially dependent as per semivariogram analyses. Differences in grid-point and grid-cell soil test values suggested grid-point sampling does not accurately represent grid values. Zones created by soil survey, yield data, and remote sensing images displayed lower coefficient of variations (8CV) for soil test values than overall field values, suggesting these techniques group soil test variability. However, few differences were observed between the three zone delineation techniques. Results suggest directed sampling using zone delineation techniques outlined in this paper would result in more efficient soil sampling for these Alabama grain fields.

  17. Soil Sampling Techniques For Alabama Grain Fields

    NASA Technical Reports Server (NTRS)

    Thompson, A. N.; Shaw, J. N.; Mask, P. L.; Touchton, J. T.; Rickman, D.

    2003-01-01

    Characterizing the spatial variability of nutrients facilitates precision soil sampling. Questions exist regarding the best technique for directed soil sampling based on a priori knowledge of soil and crop patterns. The objective of this study was to evaluate zone delineation techniques for Alabama grain fields to determine which method best minimized the soil test variability. Site one (25.8 ha) and site three (20.0 ha) were located in the Tennessee Valley region, and site two (24.2 ha) was located in the Coastal Plain region of Alabama. Tennessee Valley soils ranged from well drained Rhodic and Typic Paleudults to somewhat poorly drained Aquic Paleudults and Fluventic Dystrudepts. Coastal Plain s o i l s ranged from coarse-loamy Rhodic Kandiudults to loamy Arenic Kandiudults. Soils were sampled by grid soil sampling methods (grid sizes of 0.40 ha and 1 ha) consisting of: 1) twenty composited cores collected randomly throughout each grid (grid-cell sampling) and, 2) six composited cores collected randomly from a -3x3 m area at the center of each grid (grid-point sampling). Zones were established from 1) an Order 1 Soil Survey, 2) corn (Zea mays L.) yield maps, and 3) airborne remote sensing images. All soil properties were moderately to strongly spatially dependent as per semivariogram analyses. Differences in grid-point and grid-cell soil test values suggested grid-point sampling does not accurately represent grid values. Zones created by soil survey, yield data, and remote sensing images displayed lower coefficient of variations (8CV) for soil test values than overall field values, suggesting these techniques group soil test variability. However, few differences were observed between the three zone delineation techniques. Results suggest directed sampling using zone delineation techniques outlined in this paper would result in more efficient soil sampling for these Alabama grain fields.

  18. Techniques for the generation and monitoring of vapors

    SciTech Connect

    Nelson, G.O.

    1981-02-06

    Controlled test atmospheres can be produced using a variety of techniques. Gases are usually generated by using flow dilution methods while vapors are produced by using solvent injection and vaporization, saturation, permeation and diffusion techniques. The resulting gas mixtures can be monitored and measured using flame ionization, photoionization, electrochemical and infrared analytical systems. An ideal system for the production of controlled test atmospheres would not only be able to generate controlled test atmospheres, but also monitor all pertinent environmental parameters, such as temperature, humidity, and air flow.

  19. Studies of GRACE Gravity Field Inversion Techniques

    NASA Astrophysics Data System (ADS)

    Wang, L.; Shum, C.; Duan, J.; Schmidt, M.; Yuan, D.; Watkins, M. M.

    2008-12-01

    The geophysical inverse problem using satellite observations, such as GRACE, to estimate gravity change and mass variations at the Earth's surface is a well-known ill-posed problem. Different methods using different basis function (representing the gravity field) for different purposes (global or regional inversion) have been employed to obtain a stable solution, such as Bayesian estimation with prior information, the repro-BIQUUE of variance components and iterative least-squares estimation with simultaneous updating of a prior covariance, and to achieve enhanced spatial resolutions. The gravity field representation methods include spherical harmonics, regional gridded data (including mascons), and various wavelet representations (Poisson wavelets, Blackman band-limited regional wavelets with global representation). Finally, the use of data types (KBR range, range-rate, range-rate-rate) and data-generation methods (e.g., nonlinear orbit determination and geophysical inverse approach, energy conservation principle, etc) could also reflect relative inversion accuracy and the content of signal spectra in the resulting solution. In this contribution, we present results of a simulation experiment, which used various solution techniques and data types to attempt to quantify the relative advantage and disadvantage of each of the techniques.

  20. Full-field wafer warpage measurement technique

    NASA Astrophysics Data System (ADS)

    Hsieh, H. L.; Lee, J. Y.; Huang, Y. G.; Liang, A. J.; Sun, B. Y.

    2017-06-01

    An innovative moiré technique for full-field wafer warpage measurement is proposed in this study. The wafer warpage measurement technique is developed based on moiré method, Talbot effect, scanning profiling method, stroboscopic, instantaneous phase-shift method, as well as four-step phase shift method, high resolution, high stability and full-field measurement capabilities can be easily achieved. According to the proposed full-field optical configuration, a laser beam is expanded into a collimated beam with a 2-inch diameter and projected onto the wafer surface. The beam is reflected by the wafer surface and forms a moiré fringe image after passing two circular gratings, which is then focused and captured on a CCD camera for computation. The corresponding moiré fringes reflected from the wafer surface are obtained by overlapping the images of the measuring grating and the reference grating. The moiré fringes will shift when wafer warpage occurs. The phase of the moiré fringes will change proportionally to the degree of warpage in the wafer, which can be measured by detecting variations in the phase shift of the moiré fringes in each detection points on the surface of the entire wafer. The phase shift variations of each detection points can be calculated via the instantaneous phase-shift method and the four-step phase-shift method. By adding up the phase shift variations of each detection points along the radii of the circular gratings, the warpage value and surface topography of the wafer can be obtained. Experiments show that the proposed method is capable of obtaining test results similar to that of a commercial sensor, as well as performing accurate measurements under high speed rotation of 1500rpm. As compared to current warpage measurement methods such as the beam optical method, confocal microscopy, laser interferometry, shadow moiré method, and structured light method, this proposed technique has the advantage of full-field measurement, high

  1. Improved modeling techniques for turbomachinery flow fields

    SciTech Connect

    Lakshminarayana, B.; Fagan, J.R. Jr.

    1995-10-01

    This program has the objective of developing an improved methodology for modeling turbomachinery flow fields, including the prediction of losses and efficiency. Specifically, the program addresses the treatment of the mixing stress tensor terms attributed to deterministic flow field mechanisms required in steady-state Computational Fluid Dynamic (CFD) models for turbo-machinery flow fields. These mixing stress tensors arise due to spatial and temporal fluctuations (in an absolute frame of reference) caused by rotor-stator interaction due to various blade rows and by blade-to-blade variation of flow properties. These tasks include the acquisition of previously unavailable experimental data in a high-speed turbomachinery environment, the use of advanced techniques to analyze the data, and the development of a methodology to treat the deterministic component of the mixing stress tensor. Penn State will lead the effort to make direct measurements of the momentum and thermal mixing stress tensors in high-speed multistage compressor flow field in the turbomachinery laboratory at Penn State. They will also process the data by both conventional and conditional spectrum analysis to derive momentum and thermal mixing stress tensors due to blade-to-blade periodic and aperiodic components, revolution periodic and aperiodic components arising from various blade rows and non-deterministic (which includes random components) correlations. The modeling results from this program will be publicly available and generally applicable to steady-state Navier-Stokes solvers used for turbomachinery component (compressor or turbine) flow field predictions. These models will lead to improved methodology, including loss and efficiency prediction, for the design of high-efficiency turbomachinery and drastically reduce the time required for the design and development cycle of turbomachinery.

  2. Emerging Techniques for Field Device Security

    DOE PAGES

    Schwartz, Moses; Bechtel Corp.; Mulder, John; ...

    2014-11-01

    Critical infrastructure, such as electrical power plants and oil refineries, rely on embedded devices to control essential processes. State of the art security is unable to detect attacks on these devices at the hardware or firmware level. We provide an overview of the hardware used in industrial control system field devices, look at how these devices have been attacked, and discuss techniques and new technologies that may be used to secure them. We follow three themes: (1) Inspectability, the capability for an external arbiter to monitor the internal state of a device. (2) Trustworthiness, the degree to which a systemmore » will continue to function correctly despite disruption, error, or attack. (3) Diversity, the use of adaptive systems and complexity to make attacks more difficult by reducing the feasible attack surface.« less

  3. Emerging Techniques for Field Device Security

    SciTech Connect

    Schwartz, Moses; Mulder, John; Chavez, Adrian R.; Allan, Benjamin A.

    2014-11-01

    Critical infrastructure, such as electrical power plants and oil refineries, rely on embedded devices to control essential processes. State of the art security is unable to detect attacks on these devices at the hardware or firmware level. We provide an overview of the hardware used in industrial control system field devices, look at how these devices have been attacked, and discuss techniques and new technologies that may be used to secure them. We follow three themes: (1) Inspectability, the capability for an external arbiter to monitor the internal state of a device. (2) Trustworthiness, the degree to which a system will continue to function correctly despite disruption, error, or attack. (3) Diversity, the use of adaptive systems and complexity to make attacks more difficult by reducing the feasible attack surface.

  4. Investigating High Field Gravity using Astrophysical Techniques

    SciTech Connect

    Bloom, Elliott D.; /SLAC

    2008-02-01

    The purpose of these lectures is to introduce particle physicists to astrophysical techniques. These techniques can help us understand certain phenomena important to particle physics that are currently impossible to address using standard particle physics experimental techniques. As the subject matter is vast, compromises are necessary in order to convey the central ideas to the reader. Many general references are included for those who want to learn more. The paragraphs below elaborate on the structure of these lectures. I hope this discussion will clarify my motivation and make the lectures easier to follow. The lectures begin with a brief review of more theoretical ideas. First, elements of general relativity are reviewed, concentrating on those aspects that are needed to understand compact stellar objects (white dwarf stars, neutron stars, and black holes). I then review the equations of state of these objects, concentrating on the simplest standard models from astrophysics. After these mathematical preliminaries, Sec. 2(c) discusses 'The End State of Stars'. Most of this section also uses the simplest standard models. However, as these lectures are for particle physicists, I also discuss some of the more recent approaches to the equation of state of very dense compact objects. These particle-physics-motivated equations of state can dramatically change how we view the formation of black holes. Section 3 focuses on the properties of the objects that we want to characterize and measure. X-ray binary systems and Active Galactic Nuclei (AGN) are stressed because the lectures center on understanding very dense stellar objects, black hole candidates (BHCs), and their accompanying high gravitational fields. The use of x-ray timing and gamma-ray experiments is also introduced in this section. Sections 4 and 5 review information from x-ray and gamma-ray experiments. These sections also discuss the current state of the art in x-ray and gamma-ray satellite experiments and

  5. Track and Field: Technique Through Dynamics.

    ERIC Educational Resources Information Center

    Ecker, Tom

    This book was designed to aid in applying the laws of dynamics to the sport of track and field, event by event. It begins by tracing the history of the discoveries of the laws of motion and the principles of dynamics, with explanations of commonly used terms derived from the vocabularies of the physical sciences. The principles and laws of…

  6. Track and Field: Technique Through Dynamics.

    ERIC Educational Resources Information Center

    Ecker, Tom

    This book was designed to aid in applying the laws of dynamics to the sport of track and field, event by event. It begins by tracing the history of the discoveries of the laws of motion and the principles of dynamics, with explanations of commonly used terms derived from the vocabularies of the physical sciences. The principles and laws of…

  7. Feynman-Schwinger technique in field theories

    NASA Astrophysics Data System (ADS)

    Şavkli, Çetin

    2001-02-01

    In these lectures we introduce the Feynman-Schwinger representation method for solying nonperturbative problems in field theory. As an introduction we first give a brief overview of integral equations and path integral methods for solving nonperturbative problems. Then we discuss the Feynman-Schwinger (FSR) representation method with applications to scalar interactions. The FSR approach is a continuum path integral integral approach in terms of covariant trajectories of particles. Using the exact results provided by the FSR approach we test the reliability of commonly used approximations for nonperturbative summation of interactions for few body systems.

  8. Electromagnetic Scattered Field Evaluation and Data Compression Using Imaging Techniques

    NASA Technical Reports Server (NTRS)

    Gupta, I. J.; Burnside, W. D.

    1996-01-01

    This is the final report on Project #727625 between The Ohio State University and NASA, Lewis Research Center, Cleveland, Ohio. Under this project, a data compression technique for scattered field data of electrically large targets is developed. The technique was applied to the scattered fields of two targets of interest. The backscattered fields of the scale models of these targets were measured in a ra compact range. For one of the targets, the backscattered fields were also calculated using XPATCH computer code. Using the technique all scattered field data sets were compressed successfully. A compression ratio of the order 40 was achieved. In this report, the technique is described briefly and some sample results are included.

  9. Simple Technique for Dark-Field Photography of Immunodiffusion Bands

    PubMed Central

    Jensh, Ronald P.; Brent, Robert L.

    1969-01-01

    A simple dark-field photographic technique was developed which enables laboratory personnel with minimal photographic training to easily record antigen-antibody patterns on immunodiffusion plates. Images PMID:4979944

  10. Sixport technique for phase measurement of guided optical fields

    NASA Astrophysics Data System (ADS)

    Molina-Fernandez, I.; Ortega-Moñux, A.; Halir, R.; Wangüemert-Pérez, J. G.; Perez-Lara, P.

    2010-04-01

    This paper introduces the sixport technique for precise amplitude and phase measurement of guided optical fields. The main theoretical advances in this topic are reviewed and recent experimental measurements of a Silicon on Insulator sixport PLC reflectometer are presented.

  11. Techniques for Field Application of Lingual Ultrasound Imaging

    ERIC Educational Resources Information Center

    Gick, Bryan; Bird, Sonya; Wilson, Ian

    2005-01-01

    Techniques are discussed for using ultrasound for lingual imaging in field-related applications. The greatest challenges we have faced distinguishing the field setting from the laboratory setting are the lack of controlled head/transducer movement, and the related issue of tissue compression. Two experiments are reported. First, a pilot study…

  12. Techniques for Field Application of Lingual Ultrasound Imaging

    ERIC Educational Resources Information Center

    Gick, Bryan; Bird, Sonya; Wilson, Ian

    2005-01-01

    Techniques are discussed for using ultrasound for lingual imaging in field-related applications. The greatest challenges we have faced distinguishing the field setting from the laboratory setting are the lack of controlled head/transducer movement, and the related issue of tissue compression. Two experiments are reported. First, a pilot study…

  13. A color video display technique for flow field surveys

    NASA Technical Reports Server (NTRS)

    Winkelmann, A. E.; Tsao, C. P.

    1982-01-01

    Color video display techniques for flow field surveys are presented. The following techniques were examined: traverse device, used for flow field surveys above and behind finite wing models; flow chart of data reduction for color video display technique; location of spanwise survey stations above and behind wing; hot wire data at first three survey stations on fully stalled wing; hot wire data at last three stations behind fully stalled wing; hot wire and pitch probe data; magnitude of velocity, yaw angle, pitch angle, and cross flow direction from 5 tube survey at X/C = 2.70 behind fully stalled wing.

  14. Mapping Diffuse Seismicity Using Empirical Matched Field Processing Techniques

    SciTech Connect

    Wang, J; Templeton, D C; Harris, D B

    2011-01-21

    The objective of this project is to detect and locate more microearthquakes using the empirical matched field processing (MFP) method than can be detected using only conventional earthquake detection techniques. We propose that empirical MFP can complement existing catalogs and techniques. We test our method on continuous seismic data collected at the Salton Sea Geothermal Field during November 2009 and January 2010. In the Southern California Earthquake Data Center (SCEDC) earthquake catalog, 619 events were identified in our study area during this time frame and our MFP technique identified 1094 events. Therefore, we believe that the empirical MFP method combined with conventional methods significantly improves the network detection ability in an efficient matter.

  15. Frequency modulation technique for wide-field imaging of magnetic field with nitrogen-vacancy ensembles

    NASA Astrophysics Data System (ADS)

    Miura, Yukihiro; Kashiwaya, Satoshi; Nomura, Shintaro

    2017-04-01

    We report on the application of a frequency modulation technique to wide-field magnetic field imaging of nitrogen-vacancy centers in diamond at room temperature. We use a scientific CMOS (sCMOS) camera to collect photoluminescence images from a large number of nitrogen-vacancy center ensembles in parallel. This technique allows a significant reduction in the measurement time required to obtain a magnetic field image compared with a scanning probe approach at a comparable magnetic field sensitivity.

  16. Technique for Predicting the RF Field Strength Inside an Enclosure

    NASA Technical Reports Server (NTRS)

    Hallett, M.; Reddell, J.

    1998-01-01

    This Memorandum presents a simple analytical technique for predicting the RF electric field strength inside an enclosed volume in which radio frequency radiation occurs. The technique was developed to predict the radio frequency (RF) field strength within a launch vehicle's fairing from payloads launched with their telemetry transmitters radiating and to the impact of the radiation on the vehicle and payload. The RF field strength is shown to be a function of the surface materials and surface areas. The method accounts for RF energy losses within exposed surfaces, through RF windows, and within multiple layers of dielectric materials which may cover the surfaces. This Memorandum includes the rigorous derivation of all equations and presents examples and data to support the validity of the technique.

  17. Technique for Predicting the RF Field Strength Inside an Enclosure

    NASA Technical Reports Server (NTRS)

    Hallett, M.; Reddell, J.

    1998-01-01

    This Memorandum presents a simple analytical technique for predicting the RF electric field strength inside an enclosed volume in which radio frequency radiation occurs. The technique was developed to predict the radio frequency (RF) field strength within a launch vehicle's fairing from payloads launched with their telemetry transmitters radiating and to the impact of the radiation on the vehicle and payload. The RF field strength is shown to be a function of the surface materials and surface areas. The method accounts for RF energy losses within exposed surfaces, through RF windows, and within multiple layers of dielectric materials which may cover the surfaces. This Memorandum includes the rigorous derivation of all equations and presents examples and data to support the validity of the technique.

  18. Evaluating winds aloft by a simplified field technique

    Treesearch

    Melvin K. Hull

    1966-01-01

    A field technique for evaluating winds aloft is described. It can be used at remote places--even at the site of a wildfire. It has proved accurate as any known single theodolite technique, and is time-saving because the winds aloft are evaluated in miles per hour from direct readout. The tools required are much lower in cost, more portable, and more multi-purpose than...

  19. Analysis techniques used on field degraded photovoltaic modules

    SciTech Connect

    Hund, T.D.; King, D.L.

    1995-09-01

    Sandia National Laboratory`s PV System Components Department performs comprehensive failure analysis of photovoltaic modules after extended field exposure at various sites around the world. A full spectrum of analytical techniques are used to help identify the causes of degradation. The techniques are used to make solder fatigue life predictions for PV concentrator modules, identify cell damage or current mismatch, and measure the adhesive strength of the module encapsulant.

  20. Use of Field Research Sites to Teach Field Techniques in Graduate Level Soil Physics.

    ERIC Educational Resources Information Center

    Cassel, D. K.

    1986-01-01

    Describes how a field research site provides grauduate soil physics students with practical field-oriented experiences. Explains the structure of the course and the nature of the course's investigations. Assesses the advantages and obstacles associated with the field research technique. (ML)

  1. Field flow fractionation techniques to explore the "nano-world".

    PubMed

    Contado, Catia

    2017-04-01

    Field flow fractionation (FFF) techniques are used to successfully characterize several nanomaterials by sizing nano-entities and producing information about the aggregation/agglomeration state of nanoparticles. By coupling FFF techniques to specific detectors, researchers can determine particle-size distributions (PSDs), expressed as mass-based or number-based PSDs. This review considers FFF applications in the food, biomedical, and environmental sectors, mostly drawn from the past 4 y. It thus underlines the prominent role of asymmetrical flow FFF within the FFF family. By concisely comparing FFF techniques with other techniques suitable for sizing nano-objects, the advantages and the disadvantages of these instruments become clear. A consideration of select recent publications illustrates the state of the art of some lesser-known FFF techniques and innovative instrumental set-ups.

  2. Development of Improved Oil Field Waste Injection Disposal Techniques

    SciTech Connect

    Terralog Technologies

    2002-11-25

    The goals of this project have was to: (1) assemble and analyze a comprehensive database of past waste injection operations; (2) develop improved diagnostic techniques for monitoring fracture growth and formation changes; (3) develop operating guidelines to optimize daily operations and ultimate storage capacity of the target formation; and (4) to apply these improved models and guidelines in the field.

  3. Teaching Avalanche Safety Courses: Instructional Techniques and Field Exercises.

    ERIC Educational Resources Information Center

    Watters, Ron

    This paper discusses course structure, teaching techniques, and field exercises for enhancing winter travelers' avalanche knowledge and skills. In two class sessions, the course typically consists of a historical perspective; a section on snow physics (clouds, types of snow crystals, effects of riming, identification of precipitated snow crystals,…

  4. ASD FieldSpec Calibration Setup and Techniques

    NASA Technical Reports Server (NTRS)

    Olive, Dan

    2001-01-01

    This paper describes the Analytical Spectral Devices (ASD) Fieldspec Calibration Setup and Techniques. The topics include: 1) ASD Fieldspec FR Spectroradiometer; 2) Components of Calibration; 3) Equipment list; 4) Spectral Setup; 5) Spectral Calibration; 6) Radiometric and Linearity Setup; 7) Radiometric setup; 8) Datadets Required; 9) Data files; and 10) Field of View Measurement. This paper is in viewgraph form.

  5. Development of Improved Oil Field Waste Injection Disposal Techniques

    SciTech Connect

    Terralog Technologies USA Inc.

    2001-12-17

    The goals of this DOE sponsored project are to: (1) assemble and analyze a comprehensive database of past waste injection operations; (2) develop improved diagnostic techniques for monitoring fracture growth and formation changes; (3) develop operating guidelines to optimize daily operations and ultimate storage capacity of the target formation; and (4) to test these improved models and guidelines in the field.

  6. New techniques in 3D scalar and vector field visualization

    SciTech Connect

    Max, N.; Crawfis, R.; Becker, B.

    1993-05-05

    At Lawrence Livermore National Laboratory (LLNL) we have recently developed several techniques for volume visualization of scalar and vector fields, all of which use back-to-front compositing. The first renders volume density clouds by compositing polyhedral volume cells or their faces. The second is a ``splatting`` scheme which composites textures used to reconstruct the scalar or vector fields. One version calculates the necessary texture values in software, and another takes advantage of hardware texture mapping. The next technique renders contour surface polygons using semi-transparent textures, which adjust appropriately when the surfaces deform in a flow, or change topology. The final one renders the ``flow volume`` of smoke or dye tracer swept out by a fluid flowing through a small generating polygon. All of these techniques are applied to a climate model data set, to visualize cloud density and wind velocity.

  7. Semantic Data And Visualization Techniques Applied To Geologic Field Mapping

    NASA Astrophysics Data System (ADS)

    Houser, P. I. Q.; Royo-Leon, M.; Munoz, R.; Estrada, E.; Villanueva-Rosales, N.; Pennington, D. D.

    2015-12-01

    Geologic field mapping involves the use of technology before, during, and after visiting a site. Geologists utilize hardware such as Global Positioning Systems (GPS) connected to mobile computing platforms such as tablets that include software such as ESRI's ArcPad and other software to produce maps and figures for a final analysis and report. Hand written field notes contain important information and drawings or sketches of specific areas within the field study. Our goal is to collect and geo-tag final and raw field data into a cyber-infrastructure environment with an ontology that allows for large data processing, visualization, sharing, and searching, aiding in connecting field research with prior research in the same area and/or aid with experiment replication. Online searches of a specific field area return results such as weather data from NOAA and QuakeML seismic data from USGS. These results that can then be saved to a field mobile device and searched while in the field where there is no Internet connection. To accomplish this we created the GeoField ontology service using the Web Ontology Language (OWL) and Protégé software. Advanced queries on the dataset can be made using reasoning capabilities can be supported that go beyond a standard database service. These improvements include the automated discovery of data relevant to a specific field site and visualization techniques aimed at enhancing analysis and collaboration while in the field by draping data over mobile views of the site using augmented reality. A case study is being performed at University of Texas at El Paso's Indio Mountains Research Station located near Van Horn, Texas, an active multi-disciplinary field study site. The user can interactively move the camera around the study site and view their data digitally. Geologist's can check their data against the site in real-time and improve collaboration with another person as both parties have the same interactive view of the data.

  8. Optimizing Sudden Passage in the Earth's-Field NMR Technique

    NASA Astrophysics Data System (ADS)

    Melton, B. F.; Pollak, V. L.

    The equation of motion dM/ dt= γM × B( t) is solved numerically for the case B( t) = j Bp( t) + k Be. The field Beis a small static field, typically the earth's field. The field Bp( t) is a damped oscillation having frequency greater than, or on the order of, the precession frequency in field Be. Such oscillation inevitably occurs at the end of the rapid cutoff of the coil current used to polarize the sample. It is assumed that Bp( t) is initially large compared to Be, and that magnetization M is initially along the resultant field B. This is the usual situation in the earth's-field NMR technique when the polarizing field is produced by a coil of moderate to high impedance. It is shown that, when properly damped, the transient can be used to restore the magnetization to the x-yplane, thereby maximizing the amplitude of the subsequent free precession signal. The damping required is close to critical damping, so that the problem of circuit ringing when the coil is switched to receiver mode is also eliminated.

  9. A test of a moment technique for vector field calculations

    SciTech Connect

    Walton, S.R.

    1992-01-01

    Since last year, we have been using a moments technique to calculate the solar vector magnetic field from measurements of the Stokes profiles from the San Fernando Observatory Video Spectra-Spectroheliograph (SFO VSSHG). As part of our evaluation of the accuracy of this technique, I have carried out simulations using analytic profiles. Let S[sub n] be the nth moment of Stokes profile S([lambda]). That is: S[sub n] = [line integral][lambda][sup n]S([lambda]) d[lambda] where [lambda] = 0 is taken at line center and the integral is done over the line profile. We use the following approximations: [sup Q[sup 2

  10. Novel Techniques for Pulsed Field Gradient NMR Measurements

    NASA Astrophysics Data System (ADS)

    Brey, William Wallace

    Pulsed field gradient (PFG) techniques now find application in multiple quantum filtering and diffusion experiments as well as in magnetic resonance imaging and spatially selective spectroscopy. Conventionally, the gradient fields are produced by azimuthal and longitudinal currents on the surfaces of one or two cylinders. Using a series of planar units consisting of azimuthal and radial current elements spaced along the longitudinal axis, we have designed gradient coils having linear regions that extend axially nearly to the ends of the coil and to more than 80% of the inner radius. These designs locate the current return paths on a concentric cylinder, so the coils are called Concentric Return Path (CRP) coils. Coils having extended linear regions can be made smaller for a given sample size. Among the advantages that can accrue from using smaller coils are improved gradient strength and switching time, reduced eddy currents in the absence of shielding, and improved use of bore space. We used an approximation technique to predict the remaining eddy currents and a time-domain model of coil performance to simulate the electrical performance of the CRP coil and several reduced volume coils of more conventional design. One of the conventional coils was designed based on the time-domain performance model. A single-point acquisition technique was developed to measure the remaining eddy currents of the reduced volume coils. Adaptive sampling increases the dynamic range of the measurement. Measuring only the center of the stimulated echo removes chemical shift and B_0 inhomogeneity effects. The technique was also used to design an inverse filter to remove the eddy current effects in a larger coil set. We added pulsed field gradient and imaging capability to a 7 T commercial spectrometer to perform neuroscience and embryology research and used it in preliminary studies of binary liquid mixtures separating near a critical point. These techniques and coil designs will find

  11. Inducting technique and trapped field in ring-shaped superconductors

    NASA Astrophysics Data System (ADS)

    González-Jorge, H.; Peleteiro, J.; Carballo, E.; Domarco, G.

    2005-12-01

    A comparative study of trapped flux depending on the inducting technique was made in superconducting rings. The inducting procedures used where the traditional field cooling with electromagnet (in this work FC1 or FC2) and the field cooling with a closed magnetic circuit placed through the ring’s hole (FC3). The mentioned study was made by means of flux creep experiences in conventional samples and maps of trapped field in cut samples (current circulation disabled). The current induced in the samples was the critical value and the field trapped in the ring’s wall depended on the magnetic field of FC1, FC2 or FC3. Data obtained from flux creep measurements exhibited the lowest relaxation rate for FC3. On the other hand, maps of trapped field show that the flux trapped was also the lowest when the induction was made by using FC3. The data depicted that samples with similar trapped flux density exhibited similarities in their relaxation rates with very different critical current.

  12. Evaluation of Field-in-Field Technique for Total Body Irradiation

    SciTech Connect

    Onal, Cem; Sonmez, Aydan; Arslan, Gungor; Sonmez, Serhat; Efe, Esma; Oymak, Ezgi

    2012-08-01

    Purpose: To evaluate the clinical use of a field-in-field (FIF) technique for total body irradiation (TBI) using a treatment-planning system (TPS) and to verify TPS results with in vivo dose measurements using metal-oxide-semiconductor field-effect transistor (MOSFET) detectors. Methods and Materials: Clinical and dosimetric data of 10 patients treated with TBI were assessed. Certain radiation parameters were measured using homogenous and regular phantoms at an extended distance of 380 cm, and the results were compared with data from a conventional standard distance of 100 cm. Additionally, dosimetric validation of TPS doses was performed with a Rando phantom using manual calculations. A three-dimensional computed tomography plan was generated involving 18-MV photon beams with a TPS for both open-field and FIF techniques. The midline doses were measured at the head, neck, lung, umbilicus, and pelvis for both open-field and FIF techniques. Results: All patients received planned TBI using the FIF technique with 18-MV photon energies and 2 Gy b.i.d. on 3 consecutive days. The difference in tissue maximum ratios between the extended and conventional distances was <2%. The mean deviation of manual calculations compared with TPS data was +1.6% (range, 0.1-2.4%). A homogenous dose distribution was obtained with 18-MV photon beams using the FIF technique. The mean lung dose for the FIF technique was 79.2% (9.2 Gy; range, 8.8-9.7 Gy) of the prescribed dose. The MOSFET readings and TPS doses in the body were similar (percentage difference range, -0.5% to 2.5%) and slightly higher in the shoulder and lung (percentage difference range, 4.0-5.5%). Conclusion: The FIF technique used for TBI provides homogenous dose distribution and is feasible, simple, and spares time compared with more-complex techniques. The TPS doses were similar to the midline doses obtained from MOSFET readings.

  13. The applications of streamtube techniques to full field waterflood simulations

    SciTech Connect

    Emanuel, A.S.; Milliken, W.J.

    1995-12-31

    A comparison between streamtube and finite-difference modeling for multiwell waterfloods is presented to show the utility of streamtubes as a reservoir modeling technique. The streamtube formulation follows most of the classical techniques presented in the literature. Areal sweep in the model is determined by streamtubes developed on the basis of unit mobility ratio and corrected for changing mobility ratio by the method of Martin and Wegner. Displacement in the streamtubes is calculated by a Welge construction with vertical heterogeneity represented by Dykstra-Parsons layering. This work differs from previous efforts in that the streamtube patterns are changed to reflect changes in well development and that wells are individually history matched by assignment of Dykstra-Parsons coefficients on a well-by-well basis. Two applications of the technique are described. The first is a comparison between finite-difference and streamtube model history match and prediction for a waterflood based on the Ninth SPE Comparative Solution Project. This application is designed to display the basis of the streamtube technique in the context of a standardized industry problem. The second application is for a recently completed study of the Kaybob North reservoir which shows model development and history matching of a 100+ well field with a 30-year history and a number of realignments.

  14. Kalman filtering techniques for focal plane electric field estimation.

    PubMed

    Groff, Tyler D; Jeremy Kasdin, N

    2013-01-01

    For a coronagraph to detect faint exoplanets, it will require focal plane wavefront control techniques to continue reaching smaller angular separations and higher contrast levels. These correction algorithms are iterative and the control methods need an estimate of the electric field at the science camera, which requires nearly all of the images taken for the correction. The best way to make such algorithms the least disruptive to science exposures is to reduce the number required to estimate the field. We demonstrate a Kalman filter estimator that uses prior knowledge to create the estimate of the electric field, dramatically reducing the number of exposures required to estimate the image plane electric field while stabilizing the suppression against poor signal-to-noise. In addition to a significant reduction in exposures, we discuss the relative merit of this algorithm to estimation schemes that do not incorporate prior state estimate history, particularly in regard to estimate error and covariance. Ultimately the filter will lead to an adaptive algorithm which can estimate physical parameters in the laboratory for robustness to variance in the optical train.

  15. Large Field Photogrammetry Techniques in Aircraft and Spacecraft Impact Testing

    NASA Technical Reports Server (NTRS)

    Littell, Justin D.

    2010-01-01

    The Landing and Impact Research Facility (LandIR) at NASA Langley Research Center is a 240 ft. high A-frame structure which is used for full-scale crash testing of aircraft and rotorcraft vehicles. Because the LandIR provides a unique capability to introduce impact velocities in the forward and vertical directions, it is also serving as the facility for landing tests on full-scale and sub-scale Orion spacecraft mass simulators. Recently, a three-dimensional photogrammetry system was acquired to assist with the gathering of vehicle flight data before, throughout and after the impact. This data provides the basis for the post-test analysis and data reduction. Experimental setups for pendulum swing tests on vehicles having both forward and vertical velocities can extend to 50 x 50 x 50 foot cubes, while weather, vehicle geometry, and other constraints make each experimental setup unique to each test. This paper will discuss the specific calibration techniques for large fields of views, camera and lens selection, data processing, as well as best practice techniques learned from using the large field of view photogrammetry on a multitude of crash and landing test scenarios unique to the LandIR.

  16. A magnetic field measurement technique using a miniature transducer

    NASA Technical Reports Server (NTRS)

    Fales, C. L., Jr.; Breckenridge, R. A.; Debnam, W. J., Jr.

    1974-01-01

    The development, fabrication, and application of a magnetometer are described. The magnetometer has a miniature transducer and is capable of automatic scanning. The magnetometer described here is capable of detecting static magnetic fields as low as 1.6 A/m and its transducer has an active area 0.64 mm by 0.76 mm. Thin and rugged, the transducer uses wire, 0.05 mm in diameter, which is plated with a magnetic film, enabling measurement of transverse magnetic fields as close as 0.08 mm from a surface. The magnetometer, which is simple to operate and has a fast response, uses an inexpensive clip-on milliammeter (commonly found in most laboratories) for driving and processing the electrical signals and readout. A specially designed transducer holding mechanism replaces the XY recorder ink pen; this mechanism provides the basis for an automatic scanning technique. The instrument has been applied to the measurements of magnetic fields arising from remanent magnetization in experimental plated-wire memory planes and regions of magnetic activity in geological rock specimens.

  17. Evolutionary Based Techniques for Fault Tolerant Field Programmable Gate Arrays

    NASA Technical Reports Server (NTRS)

    Larchev, Gregory V.; Lohn, Jason D.

    2006-01-01

    The use of SRAM-based Field Programmable Gate Arrays (FPGAs) is becoming more and more prevalent in space applications. Commercial-grade FPGAs are potentially susceptible to permanently debilitating Single-Event Latchups (SELs). Repair methods based on Evolutionary Algorithms may be applied to FPGA circuits to enable successful fault recovery. This paper presents the experimental results of applying such methods to repair four commonly used circuits (quadrature decoder, 3-by-3-bit multiplier, 3-by-3-bit adder, 440-7 decoder) into which a number of simulated faults have been introduced. The results suggest that evolutionary repair techniques can improve the process of fault recovery when used instead of or as a supplement to Triple Modular Redundancy (TMR), which is currently the predominant method for mitigating FPGA faults.

  18. Simplified field-in-field technique for a large-scale implementation in breast radiation treatment

    SciTech Connect

    Fournier-Bidoz, Nathalie; Kirova, Youlia M.; Campana, Francois; Dendale, Remi; Fourquet, Alain

    2012-07-01

    We wanted to evaluate a simplified 'field-in-field' technique (SFF) that was implemented in our department of Radiation Oncology for breast treatment. This study evaluated 15 consecutive patients treated with a simplified field in field technique after breast-conserving surgery for early-stage breast cancer. Radiotherapy consisted of whole-breast irradiation to the total dose of 50 Gy in 25 fractions, and a boost of 16 Gy in 8 fractions to the tumor bed. We compared dosimetric outcomes of SFF to state-of-the-art electronic surface compensation (ESC) with dynamic leaves. An analysis of early skin toxicity of a population of 15 patients was performed. The median volume receiving at least 95% of the prescribed dose was 763 mL (range, 347-1472) for SFF vs. 779 mL (range, 349-1494) for ESC. The median residual 107% isodose was 0.1 mL (range, 0-63) for SFF and 1.9 mL (range, 0-57) for ESC. Monitor units were on average 25% higher in ESC plans compared with SFF. No patient treated with SFF had acute side effects superior to grade 1-NCI scale. SFF created homogenous 3D dose distributions equivalent to electronic surface compensation with dynamic leaves. It allowed the integration of a forward planned concomitant tumor bed boost as an additional multileaf collimator subfield of the tangential fields. Compared with electronic surface compensation with dynamic leaves, shorter treatment times allowed better radiation protection to the patient. Low-grade acute toxicity evaluated weekly during treatment and 2 months after treatment completion justified the pursuit of this technique for all breast patients in our department.

  19. Comparing field performances of denuder techniques in the high Arctic

    NASA Astrophysics Data System (ADS)

    Ianniello, Antonietta; Beine, Harry J.; Landis, Matthew S.; Stevens, Robert K.; Esposito, Giulio; Amoroso, Antonio; Allegrini, Ivo

    A field evaluation between two annular denuder configurations was conducted during the spring of 2003 in the marine Arctic at Ny-Ålesund, Svalbard. The IIA annular denuder system (ADS) employed a series of five single-channel annular denuders, a cyclone and a filter pack to discriminate between gas and aerosol species, while the EPA-Versatile Air Pollution Sampler (VAPS) configuration used a single multi-channel annular denuder to protect the integrity of PM 2.5 sample filters by collecting acidic gases. We compared the concentrations of gaseous nitric acid (HNO 3), nitrous acid (HONO), sulfur dioxide (SO 2) and hydrochloric acid (HCl) measured by the two systems. Results for HNO 3 and SO 2 suggested losses of gas phase species within the EPA-VAPS inlet surfaces due to low temperatures, high relative humidities, and coarse particle sea-salt deposition to the VAPS inlet during sampling. The difference in HNO 3 concentrations (55%) between the two data sets might also be due to the reaction between HNO 3 and NaCl on inlet surfaces within the EPA-VAPS system. Furthermore, we detected the release of HCl from marine aerosol particles in the EPA-VAPS inlet during sampling contributing to higher observed concentrations. Based on this work we present recommendations on the application of denuder sampling techniques for low-concentration gaseous species in Arctic and remote marine locations to minimize sampling biases. We suggest an annular denuder technique without a large surface area inlet device in order to minimize retention and/or production of gaseous atmospheric pollutants during sampling.

  20. Evaluation of the field-in-field technique with lung blocks for breast tangential radiotherapy

    PubMed Central

    Tanaka, Hidekazu; Hayashi, Shinya; Kajiura, Yuichi; Kitahara, Masashi; Matsuyama, Katsuya; Kanematsu, Masayuki; Hoshi, Hiroaki

    2015-01-01

    ABSTRACT Several studies have reported the advantages of the field-in-field (FIF) technique in breast radiotherapy, including dose reduction in the lungs by using lung field blocks. We evaluated the FIF technique with lung blocks for breast tangential radiotherapy. Sixteen patients underwent free breathing (FB) computed tomography (CT), followed by two CT procedures performed during breath hold after light inhalation (IN) and light exhalation (EX). Three radiotherapy plans were created using the FIF technique based on the FB-CT images: one without lung blocks (LB0) and two with lung blocks whose monitor units (MUs) were 5 (LB5) and 10 (LB10), respectively. These plans were copied to the IN-CT and EX-CT images. V20Gy, V30Gy, and V40Gy of the ipsilateral lung and V100%, V95%, and the mean dose (Dmean) to the planning target volume (PTV) were analyzed. The extent of changes in these parameters on the IN-plan and EX-plan compared with the FB-plan was evaluated. V20Gy, V30Gy, and V40Gy were significantly smaller for FB-LB5 and FB-LB10 than for FB-LB0; similar results were obtained for the IN-plan and EX-plan. V100%, V95%, and Dmean were also significant smaller for FB-LB5 and FB-LB10 than for FB-LB0. The extent of changes in V20Gy, V30Gy, and V40Gy on the IN-plan and EX-plan compared with the FB-plan was not statistically significant. Lung blocks were useful for dose reduction in the lung and a simultaneous PTV decrease. This technique should not be applied in the general population. PMID:26412879

  1. Mean field spin glasses treated with PDE techniques

    NASA Astrophysics Data System (ADS)

    Barra, Adriano; Del Ferraro, Gino; Tantari, Daniele

    2013-07-01

    Following an original idea of Guerra, in these notes we analyze the Sherrington-Kirkpatrick model from different perspectives, all sharing the underlying approach which consists in linking the resolution of the statistical mechanics of the model (e.g. solving for the free energy) to well-known partial differential equation (PDE) problems (in suitable spaces). The plan is then to solve the related PDE using techniques involved in their native field and lastly bringing back the solution in the proper statistical mechanics framework. Within this strand, after a streamlined test-case on the Curie-Weiss model to highlight the methods more than the physics behind, we solve the SK both at the replica symmetric and at the 1-RSB level, obtaining the correct expression for the free energy via an analogy to a Fourier equation and for the self-consistencies with an analogy to a Burger equation, whose shock wave develops exactly at critical noise level (triggering the phase transition). Our approach, beyond acting as a new alternative method (with respect to the standard routes) for tackling the complexity of spin glasses, links symmetries in PDE theory with constraints in statistical mechanics and, as a novel result from the theoretical physics perspective, we obtain a new class of polynomial identities (namely of Aizenman-Contucci type, but merged within the Guerra's broken replica measures), whose interest lies in understanding, via the recent Panchenko breakthroughs, how to force the overlap organization to the ultrametric tree predicted by Parisi.

  2. The virtual microphone technique in active sound field control systems

    NASA Astrophysics Data System (ADS)

    Lampropoulos, Iraklis E.; Shimizu, Yasushi

    2003-04-01

    Active Sound Field Control (AFC) has been proven very useful in reverberation enhancement applications in large rooms. However, feedback control is required in order to eliminate peaks in the frequency response of the system. The present research closely follows the studies of Shimizu in AFC, in which smoothing of the rooms transfer function is achieved by averaging the impulse responses of multiple microphones. ``The virtual or rotating microphone technique'' reduces the number of microphones in the aforementioned AFC technology, while still achieving the same acoustical effects in the room. After the impulse responses at previously specified pairs of microphone positions are measured, the ratio of transfer functions for every pair is calculated, thus yielding a constant K. Next, microphones are removed and their impulse responses are reproduced by processing the incoming signal of each pair through a convolver, where the computed K constants have been previously stored. Band limiting, windowing and time variance effects are critical factors, in order to reduce incoherence effects and yield reliable approximations of inverse filters and consequently calculations of K. The project is implemented in a church lacking low frequency reverberation for music and makes use of 2 physical and 2 virtual microphones.

  3. Picosecond lidar techniques in laboratory and field diagnostics

    NASA Astrophysics Data System (ADS)

    Goulard, R.

    1984-12-01

    The availability of picosecond laser systems opens a new potential in the field of diagnostics. It is now possible to observe chemical events over time intervals as short as 10 to the minus 9th power sec (e.g., fluorescence, bond-selective chemistry,...) without overlap with the much shorter 10 to the minus 12th power sec triggering signal. In addition, two specific effects are of special interest to real industrial flame diagnostics. One is the elimination of background noise, since the picosecond time-gating of the detector will collect the whole signal of interest but only a tiny fraction of the time-spread noise background (e.g., soot, walls,...). The other is related to the very short length of these pulses (similar to mm): it is the possibility to use the lidar/radar principle to convert the time history of the measured back scattered signals into a millimeter-resolved space distribution along the beam. In this fashion, Raman and other techniques can yield a detailed map of concentrations and temperatures in three-dimensional space, even in sooty combustors background, with the need of only one single porthole.

  4. Supercold technique duplicates magnetic field in second superconductor

    NASA Technical Reports Server (NTRS)

    Hildebrandt, A. F.

    1964-01-01

    A superconductor cylinder, charged with a high magnetic field, can be used to create a similar field in a larger cylinder. The uncharged cylinder is precooled, lowered into a helium dewar system, and fitted around the cylinder with the magnetic field. Magnetic flux lines pass through the two cylinders.

  5. Field results of antifouling techniques for optical instruments

    USGS Publications Warehouse

    Strahle, W.J.; Hotchkiss, F.S.; Martini, M.A.

    1998-01-01

    An anti-fouling technique is developed for the protection of optical instruments from biofouling which leaches a bromide compound into a sample chamber and pumps new water into the chamber prior to measurement. The primary advantage of using bromide is that it is less toxic than the metal-based antifoulants. The drawback of the bromide technique is also discussed.

  6. Technique for Predicting the Radio Frequency Field Strength Inside an Enclosure

    NASA Technical Reports Server (NTRS)

    Hallett, Michael P.; Reddell, Jerry P.

    1997-01-01

    This technical memo represents a simple analytical technique for predicting the Radio Frequency (RF) field inside an enclosed volume in which radio frequency occurs. The technique was developed to predict the RF field strength within a launch vehicle fairing in which some payloads desire to launch with their telemetry transmitter radiating. This technique considers both the launch vehicle and the payload aspects.

  7. Boson mapping techniques applied to constant gauge fields in QCD

    NASA Technical Reports Server (NTRS)

    Hess, Peter Otto; Lopez, J. C.

    1995-01-01

    Pairs of coordinates and derivatives of the constant gluon modes are mapped to new gluon-pair fields and their derivatives. Applying this mapping to the Hamiltonian of constant gluon fields results for large coupling constants into an effective Hamiltonian which separates into one describing a scalar field and another one for a field with spin two. The ground state is dominated by pairs of gluons coupled to color and spin zero with slight admixtures of color zero and spin two pairs. As color group we used SU(2).

  8. A new technique to determine the lightning charge location from the electric field vector measurements

    NASA Astrophysics Data System (ADS)

    Ravichandran, M.; Kamra, A. K.

    2004-03-01

    A new technique to find out the magnitude and location of the net charge center and the charge destroyed in a lightning flash in a thundercloud has been proposed. The technique is based on the measurements of the electric field vector on the ground surface during a lightning flash. The technique has the advantage of field measurements being made at only one station if simultaneous measurements for the distance of lightning are made with time-to-thunder technique. From our measurements made with a spherical field meter with Maxwell's current density, typical cases of cloud-to-cloud and cloud-to-ground discharges are analyzed. The values of above parameters calculated from this technique are within the normal range of these variables in thunderclouds inferred from other techniques. However, the charge values show significant change when the electric field vector instead of only the vertical electric field measured by conventional field mill is used for the calculations.

  9. Experimental Validation of Simulations Using Full-field Measurement Techniques

    SciTech Connect

    Hack, Erwin

    2010-05-28

    The calibration by reference materials of dynamic full-field measurement systems is discussed together with their use to validate numerical simulations of structural mechanics. The discussion addresses three challenges that are faced in these processes, i.e. how to calibrate a measuring instrument that (i) provides full-field data, and (ii) is dynamic; (iii) how to compare data from simulation and experimentation.

  10. The Evolving Field of Wound Measurement Techniques: A Literature Review.

    PubMed

    Khoo, Rachel; Jansen, Shirley

    2016-06-01

    Wound healing is a complex and multifactorial process that requires the involvement of a multidisciplinary approach. Methods of wound measurement have been developed and continually refined with the purpose of ensuring precision in wound measurement and documentation as the primary indicator of healing. This review aims to ascertain the efficacies of current wound area measurement techniques, and to highlight any perceived gaps in the literature so as to develop suggestions for future studies and practice. Med- line, PubMed, CliniKey, and CINAHL were searched using the terms "wound/ulcer measurement techniques," "wound assessment," "digi- tal planimetry," and "structured light." Articles between 2000 and 2014 were selected, and secondary searches were carried out by exam- ining the references of relevant articles. Only papers written in English were included. A universal, standardized method of wound as- sessment has not been established or proposed. At present, techniques range from the simple to the more complex - most of which have char- acteristics that allow for applicability in both rural and urban settings. Techniques covered are: ruler measurements, acetate tracings/contact planimetry, digital planimetry, and structured light devices. Conclu- sion. In reviewing the literature, the precision and reliability of digital planimetry over the more conventional methods of ruler measurements and acetate tracings are consistently demonstrated. The advent and utility of the laser or structured light approach, however, is promising, has only been analyzed by a few, and opens up the scope for further evaluation of this technique.

  11. Ultra-sensitive near-field Raman detection technique

    NASA Astrophysics Data System (ADS)

    Wu, Shifa; Liu, Kun; Pan, Shi

    2006-02-01

    In this report, based on the near-field Raman theory which mechanism is fundamental different with the far-field Raman, a new viewpoint of near-field Raman was brought out. In this view, to be the excitation light, the effect of evanescent light in near-field Raman was emphasized, at same time, the evanescent light component in the Raman scattering light was noticed, too. The sample could be excited through evanescent light and the component of evanescent light in Raman scattering light was collected entirely in the novel ultra-sensitive near-field Raman sample cell. According to the sample cell, initial experiment was performed. The high aperture oil immersed object lens was employed to form excitation light which included evanescent light component. High signal-to-noise surface enhanced Raman scattering (SERS) signal of rat serum was obtained. By analysing the Raman spectrum, it was found that the new Raman peaks come out because of the excitation light including evanescent light.

  12. The influence of the field setup on the dosimetry of abutted fields in single-isocenter half-beam techniques.

    PubMed

    Hernandez, V; Sempau, J

    2011-03-01

    To study the influence of the field setup on the dosimetry at the junction in single-isocenter half-beam techniques. The dosimetry at the junction for a two-field setup with the gantry at zero was first evaluated with radiochromic films. A three-field setup, with an anterior field and two opposed lateral fields, was also analyzed for two different relative positions of the fields involved. In all cases, the dose increase at the central axis, called the junction dose, was measured. Junction doses varied greatly with the setup. For the three-field setup, the junction dose differed from that obtained with the two-field setup, and it greatly depended on the relative position of the fields. When the anterior field was closer to the gantry than the lateral fields, a field gap occurred and the junction dose was negative. When the anterior field was farther from the gantry than the lateral fields, a field overlap was obtained and the junction dose was positive. The difference in the junction dose between the three-field setups was around 18% for the three accelerators evaluated. Having a uniform dose distribution for two fields at gantry 0 degrees does not guarantee a uniform distribution at other gantry angles. Junction doses are largely affected by the relative position of the radiation fields, which may have an impact in clinical practice. Therefore, any method aiming to assess or to optimize the dose homogeneity at the junction should take this effect into account.

  13. Mars gravity field based on a short-arc technique

    NASA Technical Reports Server (NTRS)

    Sjogren, W. L.; Lorell, J.; Wong, L.; Downs, W.

    1975-01-01

    The magnitudes of 92 surface mass points at designated locations were estimated from the radio tracking data of the Mariner Mars 1971 (M9) orbiter. This result is the first mass point model of a global field. The derived surface mass distribution correlates positively with the visible topography. The Hellas basin contains a mass deficiency, in contrast to some of the lunar basins which contain mass excesses. The Mars gravity field represented by the four parameters of an optimally located mass point (superimposed on an oblate spheroid) has third- and fourth-degree harmonics comparable to those of the complete model.

  14. Determination of hyperfine fields orientation in nuclear probe techniques

    NASA Astrophysics Data System (ADS)

    Szymański, K.; Olszewski, W.; Satuła, D.; Gawryluk, D. J.; Krzton-Maziopa, A.; Kalska-Szostko, B.

    2017-02-01

    One of the most popular nuclear probes, 57Fe is used for the investigation of orientations of hyperfine fields and also for the determination of other important properties. In particular, the orientation of iron magnetic moments can be unambiguously determined, including its signs. Experiments with polarized radiation are presented with regard to selected systems. Orientation of electric field gradient is used for acquiring information about the shape of the texture-free spectra. Applications on the analysis of iron-based superconductors are presented.

  15. Determination of hyperfine fields orientation in nuclear probe techniques.

    PubMed

    Szymański, K; Olszewski, W; Satuła, D; Gawryluk, D J; Krzton-Maziopa, A; Kalska-Szostko, B

    2017-02-15

    One of the most popular nuclear probes, (57)Fe is used for the investigation of orientations of hyperfine fields and also for the determination of other important properties. In particular, the orientation of iron magnetic moments can be unambiguously determined, including its signs. Experiments with polarized radiation are presented with regard to selected systems. Orientation of electric field gradient is used for acquiring information about the shape of the texture-free spectra. Applications on the analysis of iron-based superconductors are presented.

  16. COMPARING FIELD PERFORMANCES OF DENUDER TECHNIQUES IN THE HIGH ARCTIC

    EPA Science Inventory

    A field evaluation between two annular denuder system configurations was conducted during the spring of 2003 in the marine Arctic (Ny-Ålesund, Svalbard). The IIA annular denuder system (ADS) employs a series of five single channel annular denuders, a cyclone and a filter pack to ...

  17. COMPARING FIELD PERFORMANCES OF DENUDER TECHNIQUES IN THE HIGH ARCTIC

    EPA Science Inventory

    A field evaluation between two annular denuder system configurations was conducted during the spring of 2003 in the marine Arctic (Ny-Ålesund, Svalbard). The IIA annular denuder system (ADS) employs a series of five single channel annular denuders, a cyclone and a filter pack to ...

  18. Anaesthesia in the field. Spontaneous ventilation--a new technique.

    PubMed

    Restall, J; Thompson, M C; Johnston, I G; Fenton, T C

    1990-11-01

    In recent years the British Army has used the Triservice Anaesthetic Apparatus in the field. Trichloroethylene is no longer manufactured in the United Kingdom and halothane is not recommended for closely repeated anaesthetics. A method based on existing equipment is described for patients breathing spontaneously. A background infusion of ketamine, midazolam and alfentanil supplements the inhalation of isoflurane in oxygen-enriched air.

  19. Key techniques of the high precision gravity field system

    NASA Astrophysics Data System (ADS)

    Xu, Weimin; Chen, Shi; Lu, Hongyan; Shi, Lei

    2017-04-01

    Ground-based gravity time series provide a direct method to monitor all sources of mass changes from local to global scale. But the effectively infinite spatial sensitivity of gravity measurements make it difficult to isolate the signal of interest. The high precision gravity field system is an alternative approach of modeling mass changes under-ground. The field system, consists of absolute gravity, gravity and gravity gradient, GNSS, leveling and climate hydrology measurements, can improve the signal-to-noise ratio for many applications by removing contributions of unwanted signal from elevation changes, air pressure changes, local hydrology, and others. The networks of field system combination, such as field-profile in more than 100 kilometers, can be used in critical zone with high seismic risk for monitoring earth dynamics, volcanic and seismic phenomena. The system is constituted by 9 typical observation stations in 3*3 array (or 4 in 2*2 array) in 60 square meters field, each station is designed for integrated measurements, including absolute gravity, gravity gradient, elevation changes, air pressure and hydrology. Time-lapse gravity changes resulting from absolute gravimeter (FG5 or A10) with standard deviation less than 2 μGal, without the contributions of Earth tides, loading and polar motion. Additional measurements such as air pressure change, local hydrology and soil moisture are indispensable. The elevation changes resulting from GNSS (on the base station) and leveling (between stations) with precision less than 10 mm. The gravity gradient is the significant measurement for delimiting the location of the related mass changes underground the station, which is measured by Scintrex CG-5 gravimeters in different height (80cm in the test field), with precision less than 10 E. It is necessary to improve the precision of gravity gradient measurements by certain method in field experiment for the high precision measurement system. Acknowledgment: This

  20. Magnetic fields and star formation: New techniques and instrumentation

    NASA Astrophysics Data System (ADS)

    Hezareh, Talayeh

    Understanding the process of star formation is one of the fundamental challenges of modern astrophysics. Theoretical studies suggest that magnetic fields may play an important role in the formation and fragmentation of molecular clouds as well as for the support of clouds against gravitational collapse. Confirmation of these theoretical predictions can only be made through observations of magnetic field strengths and morphologies in star-forming regions. This thesis covers observational and instrumentation projects aimed at measuring the strength of the magnetic field in DR21(OH), an active star-forming region in the Galaxy. Chapter 1 provides an introduction on the physical conditions in molecular clouds and the problem of inefficient star formation observed in galaxies. Basics of astronomical polarimetry and its applications in magnetic field measurements are also discussed. Chapter 2 presents a new method for the simultaneous determination of the cosmic ray ionization rate of hydrogen molecules, zH2 , and the ionization fraction, chie, in DR21(OH) since the determination of the latter is essential in precisely estimating the magnetic strength. A simple network of chemical reactions dominant in the creation and destruction of two coexistent ions, HCNH+ and HCO +, is used in conjunction with observed pairs of rotational transitions of several molecular species in order to determine the electron and the H 3+ abundances. The cosmic ray ionization rate is then calculated knowing that in dark clouds it governs the rate of creation of H3+. The significance of our method lies in the ability to determine the H3+ abundance and chi e directly from observations, and estimate zH2 accordingly. Our results, zH2 = 3.1 x 10-18 s-1 and chi e = 3.2 x 10-8, are consistent with recent results in other objects. Chapter 3 presents a study based on a new method by Li & Houde (2008) towards measuring the strength of interstellar magnetic fields in turbulent clouds. We investigate the

  1. Fast Digital Correlations and Transforms Using Finite Field Techniques

    DTIC Science & Technology

    1979-12-01

    Signal Processing, Vol. ASSP-26, No. 6, December 1978. 14. I. S. Reed and T. K. Truong, "Fast Mersenne - Prime Transforms for Digital Filtering," Proceeding...Theorem for Computing Primitive Elements in the Field of Complex Integers Mersenne Prime ," (to be published) IEEE Trans. Acoustics, Speech, and Signal...Letters, Vol. 14, No. 15, 20th July, 1978. 20. I. S. Reed, T. K. Truong and R. L. Miller, "Correction to Fast Mersenne Prime Transforms for Digital

  2. Quantum Hall physics: Hierarchies and conformal field theory techniques

    NASA Astrophysics Data System (ADS)

    Hansson, T. H.; Hermanns, M.; Simon, S. H.; Viefers, S. F.

    2017-04-01

    The fractional quantum Hall effect, being one of the most studied phenomena in condensed matter physics during the past 30 years, has generated many ground-breaking new ideas and concepts. Very early on it was realized that the zoo of emerging states of matter would need to be understood in a systematic manner. The first attempts to do this, by Haldane and Halperin, set an agenda for further work which has continued to this day. Since that time the idea of hierarchies of quasiparticles condensing to form new states has been a pillar of our understanding of fractional quantum Hall physics. In the 30 years that have passed since then, a number of new directions of thought have advanced our understanding of fractional quantum Hall states and have extended it in new and unexpected ways. Among these directions is the extensive use of topological quantum field theories and conformal field theories, the application of the ideas of composite bosons and fermions, and the study of non-Abelian quantum Hall liquids. This article aims to present a comprehensive overview of this field, including the most recent developments.

  3. Teach Like a Champion Field Guide: A Practical Resource to Make the 49 Techniques Your Own

    ERIC Educational Resources Information Center

    Lemov, Doug

    2012-01-01

    In his acclaimed book "Teach Like a Champion", Doug Lemov shared 49 essential techniques used by excellent teachers. In his companion Field Guide, he further explores those techniques in a practical guide. With the "Teach Like a Champion Field Guide", teachers will have an indispensable resource that complements their classroom application of…

  4. The Development of Teaching and Learning in Bright-Field Microscopy Technique

    ERIC Educational Resources Information Center

    Iskandar, Yulita Hanum P.; Mahmud, Nurul Ethika; Wahab, Wan Nor Amilah Wan Abdul; Jamil, Noor Izani Noor; Basir, Nurlida

    2013-01-01

    E-learning should be pedagogically-driven rather than technologically-driven. The objectives of this study are to develop an interactive learning system in bright-field microscopy technique in order to support students' achievement of their intended learning outcomes. An interactive learning system on bright-field microscopy technique was…

  5. [The applications for Fourier transform infrared spectrum analysis technique in preventive medicine field].

    PubMed

    Yang, Jiao-lan; Luo, Tian

    2002-08-01

    This paper expatriated the applications for Fourier transform infrared spectrum analysis technique in preventive medicine field from four aspects of environmental pollution, life science, and the latest infrared analysis methods and near infrared analysis technique. In the environmental pollution field, it mainly described the advantages, the limitations and the solutions of the combined applications for gas chromatograph and Fourier transform infrared spectrum. In the life science field, it described the application for Fourier transform infrared spectrum analysis technique on protein secondary structure, membrane protein, phospholipid, nucleic acid, cell, tissue. In addition, it also introduced a few latest infrared analysis methods and the applications for near infrared spectrum analysis technique in food, cosmetic, drug.

  6. Field inter-comparison of eleven atmospheric ammonia measurement techniques

    NASA Astrophysics Data System (ADS)

    von Bobrutzki, K.; Braban, C. F.; Famulari, D.; Jones, S. K.; Blackall, T.; Smith, T. E. L.; Blom, M.; Coe, H.; Gallagher, M.; Ghalaieny, M.; McGillen, M. R.; Percival, C. J.; Whitehead, J. D.; Ellis, R.; Murphy, J.; Mohacsi, A.; Pogany, A.; Junninen, H.; Rantanen, S.; Sutton, M. A.; Nemitz, E.

    2010-01-01

    Eleven instruments for the measurement of ambient concentrations of atmospheric ammonia gas (NH3), based on eight different measurement methods were inter-compared above an intensively managed agricultural field in late summer 2008 in Southern Scotland. To test the instruments over a wide range of concentrations, the field was fertilised with urea midway through the experiment, leading to an increase in the average concentration from 10 to 100 ppbv. The instruments deployed included three wet-chemistry systems, one with offline analysis (annular rotating batch denuder, RBD) and two with online-analysis (Annular Denuder sampling with online Analysis, AMANDA; AiRRmonia), two Quantum Cascade Laser Absorption Spectrometers (a large-cell dual system; DUAL-QCLAS, and a compact system; c-QCLAS), two photo-acoustic spectrometers (WaSul-Flux; Nitrolux-100), a Cavity Ring Down Spectrosmeter (CRDS), a Chemical Ionisation Mass Spectrometer (CIMS), an ion mobility spectrometer (IMS) and an Open-Path Fourier Transform Infra-Red (OP-FTIR) Spectrometer. The instruments were compared with each other and with the average concentration of all instruments. An overall good agreement of hourly average concentrations between the instruments (R2>0.84), was observed for NH3 concentrations at the field of up to 120 ppbv with the slopes against the average ranging from 0.67 (DUAL-QCLAS) to 1.13 (AiRRmonia) with intercepts of -0.74 ppbv (RBD) to +2.69 ppbv (CIMS). More variability was found for performance for lower concentrations (<10 ppbv). Here the main factors affecting measurement precision are (a) the inlet design, (b) the state of inlet filters (where applicable), and (c) the quality of gas-phase standards (where applicable). By reference to the fast (1 Hz) instruments deployed during the study, it was possible to characterize the response times of the slower instruments.

  7. Field inter-comparison of eleven atmospheric ammonia measurement techniques

    NASA Astrophysics Data System (ADS)

    von Bobrutzki, K.; Braban, C. F.; Famulari, D.; Jones, S. K.; Blackall, T.; Smith, T. E. L.; Blom, M.; Coe, H.; Gallagher, M.; Ghalaieny, M.; McGillen, M. R.; Percival, C. J.; Whitehead, J. D.; Ellis, R.; Murphy, J.; Mohacsi, A.; Junninen, H.; Pogany, A.; Rantanen, S.; Sutton, M. A.; Nemitz, E.

    2009-08-01

    Eleven instruments for the measurement of ambient concentrations of atmospheric ammonia gas (NH3), based on eight different measurement methods were inter-compared above an intensively managed agricultural field in late summer 2008 in S. Scotland. To test the instruments over a wide range of concentrations, the field was fertilised with urea midway through the experiment, leading to an increase in the average concentration from 10 to 100 ppbv. The instruments deployed included three wet-chemistry systems, one with offline analysis (annular rotating batch denuder, RBD) and two with online-analysis (Annular Denuder sampling with online Analysis, AMANDA; AiRRmonia), two Quantum Cascade Laser Absorption Spectrometers (a large-cell dual system, DUAL-QCLAS, and a compact system, c-QCLAS), two photo-acoustic spectrometers (WaSul-Flux, Nitrolux-100), a Cavity Ring Down Spectrosmeter (CRDS), a Chemical Ionisation Mass Spectrometer (CIMS), an ion mobility spectrometer (IMS) and an Open-Path Fourier Transform Infra-Red (OP-FTIR) spectroscopy. Each instrument was compared with each other and with the average concentration of all instruments. An overall good agreement of hourly average concentrations between the instruments (R2>0.84), was observed for NH3 concentrations at the field of up to 120 ppbv with the slopes against the average ranging from 0.67 (DUAL-QCLAS) to 1.13 (AiRRmonia) with intercepts of -0.74 ppbv (RBD) to +2.69 ppbv (CIMS). More variability was found for performance for lower concentrations (<10 ppbv). Here the overruling factors affecting measurement precision are (a) the inlet design, (b) the state of inlet filters (where applicable), and (c) the quality of gas-phase standards (where applicable). By reference to the fast (1 Hz) instruments deployed during the study, it was possible to characterize the response times of the slower instruments.

  8. Work function measurements using a field emission retarding potential technique

    NASA Astrophysics Data System (ADS)

    Hamanaka, M. H. M. O.; Dall'Agnol, F. F.; Pimentel, V. L.; Mammana, V. P.; Tatsch, P. J.; den Engelsen, D.

    2016-03-01

    Herein we describe the measurement of the work function of a metal with advanced equipment based on the field emission retarding potential (FERP) method using a carbon nanotube (CNT) as cathode. The accuracy of the FERP method using a CNT emitter is described and a comparison between measurements of the work functions of aluminum, barium, calcium, gold, and platinum with published data will be presented. Our FERP equipment could be optimized with the aid of particle tracing simulations. These simulations led us to insert a magnetic collimator to improve the collection efficiency at the anode.

  9. Insect monitoring with fluorescence lidar techniques: field experiments.

    PubMed

    Guan, Zuguang; Brydegaard, Mikkel; Lundin, Patrik; Wellenreuther, Maren; Runemark, Anna; Svensson, Erik I; Svanberg, Sune

    2010-09-20

    Results from field experiments using a fluorescence lidar system to monitor movements of insects are reported. Measurements over a river surface were made at distances between 100 and 300 m, detecting, in particular, damselflies entering the 355 nm pulsed laser beam. The lidar system recorded the depolarized elastic backscattering and two broad bands of laser-induced fluorescence, with the separation wavelength at 500 nm. Captured species, dusted with characteristic fluorescent dye powders, could be followed spatially and temporally after release. Implications for ecological research are discussed.

  10. A Study of Hybrid Computing Techniques for Transonic Flow Fields.

    DTIC Science & Technology

    1980-02-01

    e (2.8) ax rr x r ar r r where, with e = div q, 8uav 8u T = z L. -+xe T rTr- + Moc ax Kr rx ax 8r (Z.9) T = + T + e rr = r + r Supersonic Far Field...Since only the flow downstream of a sonic nozzle is really needed for testing purposes, the numerical computations should not be very difficult. In this... Nozzle Throat, J. Fluid Mech., 69 (1975), 97-108. (3)Richey, 0. K. and Adamson, T. C., Jr., Analysis of Unsteady Transonic Channel Flow with Shock Waves

  11. Near-Field Terahertz Transmission Imaging at 0.210 Terahertz Using a Simple Aperture Technique

    DTIC Science & Technology

    2015-10-01

    diffraction-limited and near-field terahertz transmission imaging . The target is a 3-by-3 inch glass plate with a thin coating of chrome. The...TECHNICAL REPORT RDMR-WD-15-22 NEAR-FIELD TERAHERTZ TRANSMISSION IMAGING AT 0.210 TERAHERTZ USING A SIMPLE APERTURE TECHNIQUE...Final 4. TITLE AND SUBTITLE Near-Field Terahertz Transmission Imaging at 0.210 Terahertz Using a Simple Aperture Technique 5. FUNDING NUMBERS

  12. Geomagnetic Field Effects on the Imaging Air Shower Cherenkov Technique

    NASA Astrophysics Data System (ADS)

    Commichau, S.C.; Biland, A.; Kranich, D.; de los Reyes, R.; Moralejo, A.; Sobczyńska, D.

    Imaging Air Cherenkov Telescopes (IACTs) detect the Cherenkov light flashes of Extended Air Showers (EAS) triggered by VHE gamma-rays impinging on the Earth's atmosphere. Due to the overwhelming background from hadron induced EAS, the discrimination of the rare gamma-like events is rather difficult, in particular at energies below 100 GeV. The influence of the Geomagnetic Field (GF) on the EAS development can further complicate this discrimination and, in addition, also systematically affect the gamma-efficiency and energy resolution of an IACT. Here we present the results from dedicated Monte Carlo (MC) simulations for the MAGIC telescope site, show the GF effects on real data as well as possible corrections for these effects.

  13. Rapid brain MRI acquisition techniques at ultra-high fields

    PubMed Central

    Setsompop, Kawin; Feinberg, David A.; Polimeni, Jonathan R.

    2017-01-01

    Ultra-high-field MRI provides large increases in signal-to-noise ratio as well as enhancement of several contrast mechanisms in both structural and functional imaging. Combined, these gains result in a substantial boost in contrast-to-noise ratio that can be exploited for higher spatial resolution imaging to extract finer-scale information about the brain. With increased spatial resolution, however, is a concurrent increased image encoding burden that can cause unacceptably long scan times for structural imaging and slow temporal sampling of the hemodynamic response in functional MRI—particularly when whole-brain imaging is desired. To address this issue, new directions of imaging technology development—such as the move from conventional 2D slice-by-slice imaging to more efficient Simultaneous MultiSlice (SMS) or MultiBand imaging (which can be viewed as “pseudo-3D” encoding) as well as full 3D imaging—have provided dramatic improvements in acquisition speed. Such imaging paradigms provide higher SNR efficiency as well as improved encoding efficiency. Moreover, SMS and 3D imaging can make better use of coil sensitivity information in multi-channel receiver arrays used for parallel imaging acquisitions through controlled aliasing in multiple spatial directions. This has enabled unprecedented acceleration factors of an order of magnitude or higher in these imaging acquisition schemes, with low image artifact levels and high SNR. Here we review the latest developments of SMS and 3D imaging methods and related technologies at ultra-high field for rapid high-resolution functional and structural imaging of the brain. PMID:26835884

  14. Breast cancer regional radiation fields for supraclavicular and axillary lymph node treatment: is a posterior axillary boost field technique optimal?

    PubMed

    Wang, Xiaochun; Yu, Tse Kuan; Salehpour, Mohammad; Zhang, Sean X; Sun, Tzouh Liang; Buchholz, Thomas A

    2009-05-01

    To assess whether using an anterior oblique supraclavicular (SCV) field with a posterior axillary boost (PAB) field is an optimal technique for targeting axillary (AX) lymph nodes compared with two computed tomography (CT)-based techniques: (1) an SCV field with an anterior boost field and (2) intensity-modulated radiotherapy (IMRT). Ten patients with CT simulation data treated with postmastectomy radiation that included an SCV field were selected for the study. Supraclavicular nodes and AX Level I-III nodes within the SCV field were contoured and defined as the treatment target. Plans using the three techniques were generated and evaluated for each patient. The anterior axillary boost field and IMRT resulted in superior dose coverage compared with PAB. Namely, treatment volumes that received 105%, 80%, and 30% of prescribed dose for IMRT plans were significantly less than those for the anterior axillary boost plans, which were significantly less than PAB. For PAB and anterior axillary boost plans, there was a linear correlation between treatment volume receiving 105% of prescribed dose and maximum target depth. Furthermore, the IMRT technique resulted in better lung sparing and dose conformity to the target than anterior axillary boost, which again was significantly better than PAB. The maximum cord dose for IMRT was small, but higher than for the other two techniques. More monitor units were required to deliver the IMRT plan than the PAB plan, which was more than the anterior axillary boost plan. The PAB technique is not optimal for treatment of AX lymph nodes in an SCV field. We conclude that CT treatment planning with dose optimization around delineated target volumes should become standard for radiation treatments of supraclavicular and AX lymph nodes.

  15. [Authentication of Trace Material Evidence in Forensic Science Field with Infrared Microscopic Technique].

    PubMed

    Jiang, Zhi-quan; Hu, Ke-liang

    2016-03-01

    In the field of forensic science, conventional infrared spectral analysis technique is usually unable to meet the detection requirements, because only very a few trace material evidence with diverse shapes and complex compositions, can be extracted from the crime scene. Infrared microscopic technique is developed based on a combination of Fourier-transform infrared spectroscopic technique and microscopic technique. Infrared microscopic technique has a lot of advantages over conventional infrared spectroscopic technique, such as high detection sensitivity, micro-area analysisand nondestructive examination. It has effectively solved the problem of authentication of trace material evidence in the field of forensic science. Additionally, almost no external interference is introduced during measurements by infrared microscopic technique. It can satisfy the special need that the trace material evidence must be reserved for witness in court. It is illustrated in detail through real case analysis in this experimental center that, infrared microscopic technique has advantages in authentication of trace material evidence in forensic science field. In this paper, the vibration features in infrared spectra of material evidences, including paints, plastics, rubbers, fibers, drugs and toxicants, can be comparatively analyzed by means of infrared microscopic technique, in an attempt to provide powerful spectroscopic evidence for qualitative diagnosis of various criminal and traffic accident cases. The experimental results clearly suggest that infrared microscopic technique has an incomparable advantage and it has become an effective method for authentication of trace material evidence in the field of forensic science.

  16. DPSM technique for ultrasonic field modelling near fluid-solid interface.

    PubMed

    Banerjee, Sourav; Kundu, Tribikram; Alnuaimi, Nasser A

    2007-06-01

    Distributed point source method (DPSM) is gradually gaining popularity in the field of non-destructive evaluation (NDE). DPSM is a semi-analytical technique that can be used to calculate the ultrasonic fields produced by transducers of finite dimension placed in homogeneous or non-homogeneous media. This technique has been already used to model ultrasonic fields in homogeneous and multi-layered fluid structures. In this paper the method is extended to model the ultrasonic fields generated in both fluid and solid media near a fluid-solid interface when the transducer is placed in the fluid half-space near the interface. Most results in this paper are generated by the newly developed DPSM technique that requires matrix inversion. This technique is identified as the matrix inversion based DPSM technique. Some of these results are compared with the results produced by the Rayleigh-Sommerfield integral based DPSM technique. Theory behind both matrix inversion based and Rayleigh-Sommerfield integral based DPSM techniques is presented in this paper. The matrix inversion based DPSM technique is found to be very efficient for computing the ultrasonic field in non-homogeneous materials. One objective of this study is to model ultrasonic fields in both solids and fluids generated by the leaky Rayleigh wave when finite size transducers are inclined at Rayleigh critical angles. This phenomenon has been correctly modelled by the technique. It should be mentioned here that techniques based on paraxial assumptions fail to model the critical reflection phenomenon. Other advantages of the DPSM technique compared to the currently available techniques for transducer radiation modelling are discussed in the paper under Introduction.

  17. Applications of Effective Field Theory Techniques to Jet Physics

    NASA Astrophysics Data System (ADS)

    Freedman, Simon M.

    In this thesis we study jet production at large energies from leptonic collisions. We use the framework of effective theories of Quantum Chromodynamics (QCD) to examine the properties of jets and systematically improve calculations. We first develop a new formulation of soft-collinear effective theory (SCET), the appropriate effective theory for jets. In this formulation, soft and collinear degrees of freedom are described using QCD fields that interact with each other through light-like Wilson lines in external currents. This formulation gives a more intuitive picture of jet processes than the traditional formulation of SCET. In particular, we show how the decoupling of soft and collinear degrees of freedom that occurs at leading order in power counting is explicit to next-to-leading order and likely beyond. We then use this formulation to write the thrust rate in a factorized form at next-to-leading order in the thrust parameter. The rate involves an incomplete sum over final states due to phase space cuts that is enforced by a measurement operator. Subleading corrections require matching onto not only the next-to-next-to leading order SCET operators, but also matching onto subleading measurement operators. We derive the appropriate hard, jet, and soft functions and show they reproduce the expected subleading thrust rate. Next, we renormalize the next-to-leading order dijet operators used for the subleading thrust rate. Constraints on matching coefficients from current conservation and reparametrization invariance are shown. We also discuss the subtleties involved in regulating the infrared divergences of the individual loop diagrams in order to extract the ultraviolet divergences. The results can be used to increase the theoretical precision of the thrust rate. Finally, we study the (exclusive) k⊥ and C/A jet algorithms in SCET. Regularizing the virtualities and rapidities of the individual graphs, we are able to write the O(alpha s) dijet cross section as the

  18. Applications of Effective Field Theory Techniques to Jet Physics

    NASA Astrophysics Data System (ADS)

    Freedman, Simon M.

    In this thesis we study jet production at large energies from leptonic collisions. We use the framework of effective theories of Quantum Chromodynamics (QCD) to examine the properties of jets and systematically improve calculations. We first develop a new formulation of soft-collinear effective theory (SCET), the appropriate effective theory for jets. In this formulation, soft and collinear degrees of freedom are described using QCD fields that interact with each other through light-like Wilson lines in external currents. This formulation gives a more intuitive picture of jet processes than the traditional formulation of SCET. In particular, we show how the decoupling of soft and collinear degrees of freedom that occurs at leading order in power counting is explicit to next-to-leading order and likely beyond. We then use this formulation to write the thrust rate in a factorized form at next-to-leading order in the thrust parameter. The rate involves an incomplete sum over final states due to phase space cuts that is enforced by a measurement operator. Subleading corrections require matching onto not only the next-to-next-to leading order SCET operators, but also matching onto subleading measurement operators. We derive the appropriate hard, jet, and soft functions and show they reproduce the expected subleading thrust rate. Next, we renormalize the next-to-leading order dijet operators used for the subleading thrust rate. Constraints on matching coefficients from current conservation and reparametrization invariance are shown. We also discuss the subtleties involved in regulating the infrared divergences of the individual loop diagrams in order to extract the ultraviolet divergences. The results can be used to increase the theoretical precision of the thrust rate. Finally, we study the (exclusive) k_perp and C/A jet algorithms in SCET. Regularizing the virtualites and rapidities of the individual graphs, we are able to write the order(alpha_s) dijet cross section

  19. Correction techniques for the truncation of the source field in acoustic analogies.

    PubMed

    Martínez-Lera, Paula; Schram, Christophe

    2008-12-01

    The truncation of the source field may induce large overpredictions in the acoustic field computed through acoustic analogies. A comparative study of different correction approaches proposed in the literature is carried out, considering three different techniques: correction terms based on a convection assumption, use of model extensions, and windowing techniques. It is shown that convection-based correction terms need to take into account noncompactness effects of the source field in order to yield accurate results. A modified correction term that includes these effects is derived, and its equivalence to the method of model extensions in the case of purely convected flows is highlighted. Moreover, the performance of different windowing techniques is investigated.

  20. Electroacoustical imaging technique for encoding incoherent radiance fields as Gabor elementary signals

    NASA Technical Reports Server (NTRS)

    Fales, C. L.; Huck, F. O.

    1985-01-01

    A technique is presented for directly encoding incoherent radiance fields as Gabor elementary signals. This technique uses an electro-acoustic sensor to modulate the electronic charges induced by the incident radiance field with the electric fields generated by Gaussian modulated sinusoidal acoustic waves. The resultant signal carries the amplitude and phase information required for localizing spatial frequencies of the radiance field. These localized spatial frequency representations provide a link between the either geometric or Fourier transform representations currently used in computer vision and pattern recognition.

  1. Tracing Interstellar Magnetic Field Using Velocity Gradient Technique: Application to Atomic Hydrogen Data

    NASA Astrophysics Data System (ADS)

    Yuen, Ka Ho; Lazarian, A.

    2017-03-01

    The advancement of our understanding of MHD turbulence opens ways to develop new techniques to probe magnetic fields. In MHD turbulence, the velocity gradients are expected to be perpendicular to magnetic fields and this fact was used by González-Casanova & Lazarian to introduce a new technique to trace magnetic fields using velocity centroid gradients (VCGs). The latter can be obtained from spectroscopic observations. We apply the technique to GALFA-H i survey data and then compare the directions of magnetic fields obtained with our technique to the direction of magnetic fields obtained using PLANCK polarization. We find an excellent correspondence between the two ways of magnetic field tracing, which is obvious via the visual comparison and through the measuring of the statistics of magnetic field fluctuations obtained with the polarization data and our technique. This suggests that the VCGs have a potential for measuring of the foreground magnetic field fluctuations, and thus provide a new way of separating foreground and CMB polarization signals.

  2. A 3D technique for simulation of irregular electron treatment fields using a digital camera

    SciTech Connect

    Bassalow, Roustem; Sidhu, Narinder P

    2003-09-30

    Cerrobend inserts, which define electron field apertures, are manufactured at our institution using perspex templates. Contours are reproduced manually on these templates at the simulator from the field outlines drawn on the skin or mask of a patient. A previously reported technique for simulation of electron treatment fields uses a digital camera to eliminate the need for such templates. However, avoidance of the image distortions introduced by non-flat surfaces on which the electron field outlines were drawn could only be achieved by limiting the application of this technique to surfaces which were flat or near flat. We present a technique that employs a digital camera and allows simulation of electron treatment fields contoured on an anatomical surface of an arbitrary three-dimensional (3D) shape, such as that of the neck, extremities, face, or breast. The procedure is fast, accurate, and easy to perform.

  3. Electric field measurement in the ionosphere using the time-of-flight technique

    SciTech Connect

    Nakamura, Masato; Hayakawa, Hajime; Tsuruda, Koichiro )

    1989-05-01

    The first successful electric field measurement in the ionosphere using the time-of-flight technique with a lithium ion beam was carried out on a S-520 sounding rocket launched from Kagoshima Space Center, Japan on January 15, 1987. The purpose of this experiment was to prove the validity of the time-of-flight technique when it is applied to the measurement of the dc electric field in the ionosphere. A time-coded ion beam was ejected from the rocket in the direction perpendicular to the Earth's magnetic field. The beam returned to the rocket twice per rocket spin when the initial beam direction was nearly perpendicular to the electric field. The electric field and the magnetic field were derived from the travel time of these return lithium ions. The accuracy of the electric field determination was {plus minus} 0.3 mV/m. The direction of the electric field was obtained from the direction of the returning ion beam after about one ion gyration. The main constituent of the measured electric field was a V {times} B field due to the rocket motion across the geomagnetic field. The ambient field was less than 1 mV/m. The magnetic field was measured with an accuracy of {plus minus} 2.7 nT in this experiment.

  4. Field-aligned electric currents and their measurement by the incoherent backscatter technique

    NASA Technical Reports Server (NTRS)

    Bauer, P.; Cole, K. D.; Lejeume, G.

    1975-01-01

    Field aligned electric currents flow in the magnetosphere in many situations of fundamental geophysical interest. It is shown here that the incoherent backscatter technique can be used to measure these currents when the plasma line can be observed. The technique provides a ground based means of measuring these currents which complements the rocket and satellite ones.

  5. [Acute skin toxicity in breast intensity modulated radiotherapy using field in field technique].

    PubMed

    Blanchecotte, J; Ruffier-Loubière, A; Reynaud-Bougnoux, A; Barillot, I

    2015-04-01

    The optimization with presegmentation irradiation technique (Dosisoft™), used in treatment of breast carcinomas, facilitates the treatment delivery and improves radioprotection. The objective of our study was to evaluate the potential impact of this innovative technique on the acute skin toxicity especially on the rate of moist desquamation during irradiation of the whole breast after conservative surgery. The scores of acute skin toxicity observed at 50 Gy in 103 patients treated with the presegmentation technique were compared to those of 101 patients with similar breast size treated with a classic 3D technique. All patients received 50 Gy/2 Gy per fraction, 5 days a week using 4 MV photon beam. The boost on the tumoural bed was realized according to conventional technique. Using the NCI-CTCAE V4, the skin toxicity was recorded every week during the medical visit. Moreover, the following factors that could induce skin toxicity have been studied: breast size, body mass index, age, prior chemotherapy, concurrent administration of trastuzumab, hypertension, diabetes, smoking habits and statin uptake. The incidence of moist desquamation observed in all sites, has been decreased to only 9.8% in the presegmentation group versus 16.8% in the test group, the difference being not statistically significant OR=0.53 [0.23; 1.22] (P=0.13). In univariate analysis the presegmentation technique enabled a significant decrease of 4.4 Gy in mean, of the value of maximum dose (P=0.001). The other risk factors of skin toxicity are the increase of breast size (P<0.001), a high body mass index (P<0.001), hypertension (P=0.03) and concurrent administration of trastuzumab (P=0.07). In multivariate analysis, the two remaining significant factors are breast size (OR=1.004 [1.002; 1.006]) and trastuzumab administration (OR=4.95 [1.17; 20.79]). The comparison of the skin toxicity induced by the presegmentation or the reference technique shows a trend regarding the improvement of the skin

  6. Course in Biometeorological Field Techniques. Final Report to National Science Foundation.

    ERIC Educational Resources Information Center

    Tanner, C. B.

    This is the final report to the National Science Foundation (NSF) from a grant to develop a course in biometeorological field techniques. Objectives of the course were to give students experiences in making field measurements of parameters of the physical environment and their impact on plants and animals; and to develop an understanding of the…

  7. Field Techniques: Atlantic Barrier System. Field Guidebook. National Association of Geology Teachers Eastern Section Annual Field Conference (Lewes, Delaware, April 26-29, 1984).

    ERIC Educational Resources Information Center

    O'Connor, James V., Ed.; Tormey, Brian B., Ed.

    The Atlantic barrier system is used as a focal point in this manual of field exercises. A collection of activities and posed questions provide students with opportunities to develop skills basic to the development of sound field techniques. Investigations can be adapted and modified by teachers to specific subject areas and developmental needs.…

  8. Field Techniques: Atlantic Barrier System. Field Guidebook. National Association of Geology Teachers Eastern Section Annual Field Conference (Lewes, Delaware, April 26-29, 1984).

    ERIC Educational Resources Information Center

    O'Connor, James V., Ed.; Tormey, Brian B., Ed.

    The Atlantic barrier system is used as a focal point in this manual of field exercises. A collection of activities and posed questions provide students with opportunities to develop skills basic to the development of sound field techniques. Investigations can be adapted and modified by teachers to specific subject areas and developmental needs.…

  9. A coherent detection technique via optically biased field for broadband terahertz radiation

    NASA Astrophysics Data System (ADS)

    Du, Hai-Wei; Dong, Jia-Meng; Liu, Yi; Shi, Chang-Cheng; Wu, Jing-Wei; Peng, Xiao-Yu

    2017-09-01

    We demonstrate theoretically and experimentally a coherent terahertz detection technique based on an optically biased field functioning as a local oscillator and a second harmonic induced by the terahertz electric field in the air sensor working in free space. After optimizing the polarization angle and the energy of the probe pulse, and filling the system with dry nitrogen, the terahertz radiation generated from a two-color-femtosecond-laser-pulses induced plasma filament is measured by this technique with a bandwidth of 0.1-10 THz and a signal-to-noise ratio of 48 dB. Our technique provides an alternative simple method for coherent broadband terahertz detection.

  10. A comparison of flat-field measurement techniques for optical streak cameras

    SciTech Connect

    Montgomery, D.S.; Wiedwald, J.D.

    1988-08-01

    A technique for calibrating the flat-field response and geometric distortion of optical steak cameras using high-power lasers and electro-optic pulse shaping hardware was reported previously. The laser hardware provides a temporally-flat light pulse that can be used to calibrate streak cameras operating with sweep durations of 3- 10 ns. Although this technique is successful, the hardware involved is expensive and the process is complex. Based on the analysis of calibrations made at these fast sweep rates, we developed a new technique to measure the flat-field response of an optical streak camera using an array of visible light emitting diodes (LED) and a slow (/approximately/10..mu..s) sweep generator. We will discuss the new slow technique, and will present a comparison between calibration measurements made using the two techniques. 6 refs., 5 figs.

  11. Field analytical techniques for mercury in soils technology evaluation. Topical report, November 1994--March 1997

    SciTech Connect

    Solc, J.; Harju, J.A.; Grisanti, A.A.

    1998-02-01

    This report presents the evaluation of the four field analytical techniques for mercury detection in soils, namely (1) an anodic stripping voltametry technique (ASV) developed and tested by General Electric Corporation; (2) a static headspace analysis (SHSA) technique developed and tested by Dr. Ralph Turner of Oak Ridge National Laboratory; (3) the BiMelyze{reg_sign} Mercury Immunoassay (Bio) developed and tested by BioNebraska, Inc.; and (4) a transportable x-ray fluorescence (XRF) instrument/technique developed and tested by Spectrace, Inc.

  12. Mississippi exploration field trials using microbial, radiometrics, free soil gas, and other techniques

    SciTech Connect

    Moody, J.S.; Brown, L.R.; Thieling, S.C.

    1995-12-31

    The Mississippi Office of Geology has conducted field trials using the surface exploration techniques of geomicrobial, radiometrics, and free soil gas. The objective of these trials is to determine if Mississippi oil and gas fields have surface hydrocarbon expression resulting from vertical microseepage migration. Six fields have been surveyed ranging in depth from 3,330 ft to 18,500 ft. The fields differ in trapping styles and hydrocarbon type. The results so far indicate that these fields do have a surface expression and that geomicrobial analysis as well as radiometrics and free soil gas can detect hydrocarbon microseepage from pressurized reservoirs. All three exploration techniques located the reservoirs independent of depth, hydrocarbon type, or trapping style.

  13. The relationship between glaucoma medication adherence, eye drop technique, and visual field defect severity.

    PubMed

    Sleath, Betsy; Blalock, Susan; Covert, David; Stone, Jennifer L; Skinner, Asheley Cockrell; Muir, Kelly; Robin, Alan L

    2011-12-01

    The purpose of the study was to examine (1) how patient adherence and eye drop technique were associated with visual field defect severity and (2) how general glaucoma adherence self-efficacy and eye drop technique self-efficacy were related to visual field defect severity. Cross-sectional study conducted at a single private practice site. Patients using eye drops for their glaucoma. Subject adherence to glaucoma medications through Medication Events Monitoring System (MEMS) devices were measured, and eye drop instillation technique was assessed by video recording. General glaucoma medication adherence self-efficacy was measured using a 10-item scale, and eye drop technique self-efficacy was measured using a 6-item scale. Multivariate logistic regression was used to analyze the data. Visual field defect severity. Patients who were less than 80% adherent according to the MEMS devices were significantly more likely to have worse defect severity. Patients with lower scores on the general glaucoma medication adherence self-efficacy scale also were significantly more likely to have worse defect severity. Eye drop technique and eye drop technique self-efficacy were not related significantly to visual field defect severity. Eye care providers need to assess patient adherence and to work with those patients with poor adherence to find ways to improve their ability and self-efficacy in using their glaucoma medications. Proprietary or commercial disclosure may be found after the references. Copyright © 2011 American Academy of Ophthalmology. Published by Elsevier Inc. All rights reserved.

  14. Synchronous in-field application of life-detection techniques in planetary analog missions

    NASA Astrophysics Data System (ADS)

    Amador, Elena S.; Cable, Morgan L.; Chaudry, Nosheen; Cullen, Thomas; Gentry, Diana; Jacobsen, Malene B.; Murukesan, Gayathri; Schwieterman, Edward W.; Stevens, Adam H.; Stockton, Amanda; Yin, Chang; Cullen, David C.; Geppert, Wolf

    2015-02-01

    Field expeditions that simulate the operations of robotic planetary exploration missions at analog sites on Earth can help establish best practices and are therefore a positive contribution to the planetary exploration community. There are many sites in Iceland that possess heritage as planetary exploration analog locations and whose environmental extremes make them suitable for simulating scientific sampling and robotic operations. We conducted a planetary exploration analog mission at two recent lava fields in Iceland, Fimmvörðuháls (2010) and Eldfell (1973), using a specially developed field laboratory. We tested the utility of in-field site sampling down selection and tiered analysis operational capabilities with three life detection and characterization techniques: fluorescence microscopy (FM), adenine-triphosphate (ATP) bioluminescence assay, and quantitative polymerase chain reaction (qPCR) assay. The study made use of multiple cycles of sample collection at multiple distance scales and field laboratory analysis using the synchronous life-detection techniques to heuristically develop the continuing sampling and analysis strategy during the expedition. Here we report the operational lessons learned and provide brief summaries of scientific data. The full scientific data report will follow separately. We found that rapid in-field analysis to determine subsequent sampling decisions is operationally feasible, and that the chosen life detection and characterization techniques are suitable for a terrestrial life-detection field mission. In-field analysis enables the rapid obtainment of scientific data and thus facilitates the collection of the most scientifically relevant samples within a single field expedition, without the need for sample relocation to external laboratories. The operational lessons learned in this study could be applied to future terrestrial field expeditions employing other analytical techniques and to future robotic planetary exploration

  15. Use of amplitude vs offset seismic techniques to delineate subtle stratigraphic traps - Three field studies

    SciTech Connect

    Holton, J.E.; Lausten, C.D.; Blott, J.E. )

    1989-09-01

    Three stratigraphically trapped Wyoming fields which were previously held to be seismically invisible have been examined using amplitude vs. offset seismic techniques. This technology examines the seismic signature changes which take place as a function of source and receiver distance. Such signature changes are directly related to lithology and can be predicted in models and confirmed by the actual data. Two oil fields are located in the Powder River basin: Hartzog Draw and Coyote Creek. The third field, Dripping Rock, is a gas field in the Washakie basin of southwestern Wyoming. The fields produce from sands of the Shannon, Dakota, and Almond formations, respectively. All three fields lack significant velocity differences between the reservoir and trap facies. This results in an inability to delineate the sands using conventional seismic techniques. Amplitude vs. offset techniques, however, present easily identifiable anomalies which reliably delineate the extent of the reservoir sands in each of the cases. Amplitude vs. offset technology has been used successfully in numerous exploratory and development situations throughout the Rocky Mountains and other areas of the US and Canada. It has proven to be a very reliable technique to explore subtle stratigraphic plays which remain relatively immature in mature basins.

  16. A Dosimetric Evaluation of Conventional Helmet Field Irradiation Versus Two-Field Intensity-Modulated Radiotherapy Technique

    SciTech Connect

    Yu, James B.; Shiao, Stephen L.; Knisely, Jonathan . E-mail: jonathan.knisely@yale.edu

    2007-06-01

    Purpose: To compare dosimetric differences between conventional two-beam helmet field irradiation (external beam radiotherapy, EBRT) of the brain and a two-field intensity-modulated radiotherapy (IMRT) technique. Methods and Materials: Ten patients who received helmet field irradiation at our institution were selected for study. External beam radiotherapy portals were planned per usual practice. Intensity-modulated radiotherapy fields were created using the identical field angles as the EBRT portals. Each brain was fully contoured along with the spinal cord to the bottom of the C2 vertebral body. This volume was then expanded symmetrically by 0.5 cm to construct the planning target volume. An IMRT plan was constructed using uniform optimization constraints. For both techniques, the nominal prescribed dose was 3,000 cGy in 10 fractions of 300 cGy using 6-MV photons. Comparative dose-volume histograms were generated for each patient and analyzed. Results: Intensity-modulated radiotherapy improved dose uniformity over EBRT for whole brain radiotherapy. The mean percentage of brain receiving >105% of dose was reduced from 29.3% with EBRT to 0.03% with IMRT. The mean maximum dose was reduced from 3,378 cGy (113%) for EBRT to 3,162 cGy (105%) with IMRT. The mean percent volume receiving at least 98% of the prescribed dose was 99.5% for the conventional technique and 100% for IMRT. Conclusions: Intensity-modulated radiotherapy reduces dose inhomogeneity, particularly for the midline frontal lobe structures where hot spots occur with conventional two-field EBRT. More study needs to be done addressing the clinical implications of optimizing dose uniformity and its effect on long-term cognitive function in selected long-lived patients.

  17. A technique for verification of isocenter position in tangential field breast irradiation.

    PubMed

    Prabhakar, Ramachandran; Pande, Manish; Harsh, Kumar; Julka, Pramod K; Ganesh, Tharmar; Rath, Goura K

    2009-01-01

    Treatment verification and reproducibility of the breast treatment portals play a very important role in breast radiotherapy. We propose a simple technique to verify the planned isocenter position during treatment using an electronic portal imaging device. Ten patients were recruited in this study and (CT) computed tomography-based planning was performed with a conventional tangential field technique. For verification purposes, in addition to the standard medial (F1) and lateral (F2) tangential fields, a field (F3) perpendicular to the medial field was used for verification of the treatment portals. Lead markers were placed along the central axis of the 2 defined fields (F1 and F3) and the separation between the markers was measured on the portal images and verified with the marker separation on the digitally reconstructed radiographs (DRRs). Any deviation will identify the shift in the planned isocenter position during treatment. The average deviation observed between the markers measured from the DRR and portal image was 1.6 and 2.1 mm, with a standard deviation of 0.4 and 0.9 mm for fields F1 and F3, respectively. The maximum deviation observed was 3.0 mm for field F3. This technique will be very useful in patient setup for tangential breast radiotherapy.

  18. Electric field measurements of the LH wave and ICRF near-field utilizing non-perturbative spectroscopic techniques

    NASA Astrophysics Data System (ADS)

    Martin, E. H.; Caughman, J. B. O.; Klepper, C. C.; Goniche, M.; Isler, R. C.; Hillairet, J.; Bottereau, C.

    2015-12-01

    The physics of wave heating and current drive processes in the bulk hot plasma are generally well identified. However, details of the wave-plasma interaction in the cold plasma edge are still not fully understood. In this paper a spectroscopic technique allowing for measurements of the electric field driving wave-plasma interactions in the edge region for LH current drive and ICRH systems will be discussed. Experimental results obtained in Tore Supra near the LH C3 antenna and in the magnetized capacitively coupled RF sheath from an experiment designed to mimic the ICRF near-field are presented. In conclusion, future plans to implement a laser-based spectroscopic technique to acquire the high resolution measurements needed for model validation is discussed.

  19. Soot volume fraction fields in unsteady axis-symmetric flames by continuous laser extinction technique.

    PubMed

    Kashif, Muhammad; Bonnety, Jérôme; Guibert, Philippe; Morin, Céline; Legros, Guillaume

    2012-12-17

    A Laser Extinction Method has been set up to provide two-dimensional soot volume fraction field time history at a tunable frequency up to 70 Hz inside an axis-symmetric diffusion flame experiencing slow unsteady phenomena preserving the symmetry. The use of a continuous wave laser as the light source enables this repetition rate, which is an incremental advance in the laser extinction technique. The technique is shown to allow a fine description of the soot volume fraction field in a flickering flame exhibiting a 12.6 Hz flickering phenomenon. Within this range of repetition rate, the technique and its subsequent post-processing require neither any method for time-domain reconstruction nor any correction for energy intrusion. Possibly complemented by such a reconstruction method, the technique should support further soot volume fraction database in oscillating flames that exhibit characteristic times relevant to the current efforts in the validation of soot processes modeling.

  20. SU-E-T-404: Simple Field-In-Field Technique for Total Body Irradiation in Large Patients

    SciTech Connect

    Chi, P; Pinnix, C; Dabaja, B; Wang, C; Aristophanous, M; Tung, S

    2014-06-01

    Purpose: A simple Field-in-Field technique for Total Body Irradiation (TBI) was developed for traditional AP/PA TBI treatments to improve dosimetric uniformity in patients with large separation. Methods: TBI at our institution currently utilizes an AP/PA technique at an extended source-to-surface distance (SSD) of 380cm with patients in left decubitus position during the AP beam and in right decubitus during the PA beam. Patients who have differences in thickness (separation) between the abdomen and head greater than 10cm undergo CT simulation in both left and right decubitus treatment positions. One plan for each CT is generated to evaluate dose to patient midline with both AP and PA fields, but only corresponding AP fields will be exported for treatment for patient left decubitus position and PA fields for patient right decubitus position. Subfields are added by collimating with the x-ray jaws according to separation changes at 5–7% steps to minimize hot regions to less than 10%. Finally, the monitor units (MUs) for the plans are verified with hand calculation and water phantom measurements. Results: Dose uniformity (+/−10%) is achieved with field-in-field using only asymmetric jaws. It is dosimetrically robust with respect to minor setup/patient variations inevitable due to patient conditions. MUs calculated with Pinnacle were verified in 3 clinical cases and only a 2% difference was found compared to homogeneous calculation. In-vivo dosimeters were also used to verify doses received by each patient with and confirmed dose variations less than 10%. Conclusion: We encountered several cases with separation differences that raised uniformity concerns — based on a 1% dose difference per cm separation difference assumption. This could Resultin an unintended hot spot, often in the head/neck, up to 25%. This method allows dose modulation without adding treatment complexity nor introducing radiobiological variations, providing a reasonable solution for this unique

  1. Characterization of Hardening by Design Techniques on Commercial, Small Feature Sized Field-Programmable Gate Arrays

    DTIC Science & Technology

    2009-03-01

    AFIT/GE/ENG/09-43 CHARACTERIZATION OF HARDENING BY DESIGN TECHNIQUES ON COMMERCIAL, SMALL FEATURE SIZED FIELD-PROGRAMMABLE GATE ARRAYS THESIS...The purpose of which is to determine the radiation effects and characterize the improvements of various hardening by design techniques. The...Distributed RAM memory elements that are loaded both with ECC and non-error corrected data. The circuit is designed to check for errors in memory data, stuck

  2. Offshore Adriatic marginal gas fields: An approach to the technique of reservoir development

    SciTech Connect

    Montanari, A.; Bolelli, V.; Piccoli, G.

    1986-01-01

    The application of accelerated gas blowdown and wire line techniques in reservoir development and exploitation is presented for an off-shore Adriatic marginal gas field. The approach discussed in this paper utilizes selective completion, very low reserves/production ratio, sequential production, Through Tubing Bridge Plug and Through Tubing Perforation techniques to avoid the use of costly workover rigs and to allow economically convenient exploitation of a structure which otherwise would have been abandoned.

  3. Technique development for field inspection of cracking in seam welded ducts

    SciTech Connect

    Shell, Eric B.; Benson, Craig; Liljestrom, Greg C.; Shanahan, Stephen

    2014-02-18

    The resistance seam weld interfaces between alloyed and pure titanium are an in service concern due to precipitation of titanium hydride and resulting embrittlement and cracking. Several inspection techniques were developed and evaluated for field use to characterize the damage in the fleet. Electromagnetic, ultrasonic, florescent penetrant, thermographic, and radiographic techniques were considered. The ultrasonic and electromagnetic approaches were both found suitable. However, the electromagnetic approach is more desirable for field inspections, due to consistency and ease of use. The electromagnetic inspection procedure is able to discriminate between precursor damage and through cracking with sufficient sensitivity to small cracks.

  4. Application of the TLD albedo technique for monitoring and interpretation of neutron stray radiation fields

    NASA Astrophysics Data System (ADS)

    Piesch, E.; Burgkhardt, B.

    1980-09-01

    A single sphere albedo technique with TLD 600/TLD 700 detectors has been applied in neutron monitoring to calibrate albedo dosimeters and to interpret neutron stray radiation fields in terms of neutron dose equivalent separated for the energy groups below 0.4 eV, 0.4-10 keV and 10 keV-10 MeV, and Eeff for fast neutrons. The paper describes the technique for field and personnel monitoring under the aspect of an on-line computer program for data recording and processing.

  5. Three-dimensional radar imaging techniques and systems for near-field applications

    SciTech Connect

    Sheen, David M.; Hall, Thomas E.; McMakin, Douglas L.; Jones, Anthony M.; Tedeschi, Jonathan R.

    2016-05-12

    The Pacific Northwest National Laboratory has developed three-dimensional holographic (synthetic aperture) radar imaging techniques and systems for a wide variety of near-field applications. These applications include radar cross-section (RCS) imaging, personnel screening, standoff concealed weapon detection, concealed threat detection, through-barrier imaging, ground penetrating radar (GPR), and non-destructive evaluation (NDE). Sequentially-switched linear arrays are used for many of these systems to enable high-speed data acquisition and 3-D imaging. In this paper, the techniques and systems will be described along with imaging results that demonstrate the utility of near-field 3-D radar imaging for these compelling applications.

  6. Three-dimensional radar imaging techniques and systems for near-field applications

    NASA Astrophysics Data System (ADS)

    Sheen, David M.; Hall, Thomas E.; McMakin, Douglas L.; Jones, A. Mark; Tedeschi, Jonathan R.

    2016-05-01

    The Pacific Northwest National Laboratory has developed three-dimensional holographic (synthetic aperture) radar imaging techniques and systems for a wide variety of near-field applications. These applications include radar crosssection (RCS) imaging, personnel screening, standoff concealed weapon detection, concealed threat detection, throughbarrier imaging, ground penetrating radar (GPR), and non-destructive evaluation (NDE). Sequentially-switched linear arrays are used for many of these systems to enable high-speed data acquisition and 3-D imaging. In this paper, the techniques and systems will be described along with imaging results that demonstrate the utility of near-field 3-D radar imaging for these compelling applications.

  7. Learning from truth: youth participation in field marketing techniques to counter tobacco advertising.

    PubMed

    Eisenberg, Merrill; Ringwalt, Chris; Driscoll, David; Vallee, Manuel; Gullette, Gregory

    2004-01-01

    In 2000, the American Legacy Foundation (Legacy) launched truth, a national, multi-medium tobacco control social marketing campaign targeting youth age 12-17. This paper provides a brief description of one aspect of that campaign, the truth tour, and compares and contrasts the truth tour with commercial field marketing approaches used by the tobacco industry. The methods used for the tour's process evaluation are also described, and two important lessons learned about using field marketing techniques and using youth to implement field marketing techniques in social marketing campaigns are discussed. Social marketing campaigns that target youth may want to launch field marketing activities. The truth tour experience can inform the development of those efforts.

  8. Using Multi-Spacecraft Technique to Identify the Structure of Magnetic Field in CMEs

    NASA Astrophysics Data System (ADS)

    Al-haddad, N. A.; Jacobs, C.; Poedts, S.; Moestl, C.; Farrugia, C. J.; Lugaz, N.

    2013-12-01

    In order to understand the magnetic field structure of coronal mass ejections (CMEs), it is often required to investigate its local configuration at different positions of the CME. While this could be very challenging to implement observationally; it is rather applicable when using numerical simulations. In this work, we study the properties of a simulated CME using multi-spacecraft technique. We have shown previously how the reconstruction of magnetic fields from a single spacecraft, may yield misleading results. Here, we look into the reconstruction of the magnetic field using sets of two, and three spacecrafts at different longitudes, and discuss the effectiveness of this technique. This type of work can pave the way for future out-of-the-ecliptic missions such as Solar Probe or Solar Orbiter. Grad-Shafranov reconstruction of simulated satellite measurements of a CME containing writhed field lines.

  9. General Matrix Inversion Technique for the Calibration of Electric Field Sensor Arrays on Aircraft Platforms

    NASA Technical Reports Server (NTRS)

    Mach, D. M.; Koshak, W. J.

    2007-01-01

    A matrix calibration procedure has been developed that uniquely relates the electric fields measured at the aircraft with the external vector electric field and net aircraft charge. The calibration method can be generalized to any reasonable combination of electric field measurements and aircraft. A calibration matrix is determined for each aircraft that represents the individual instrument responses to the external electric field. The aircraft geometry and configuration of field mills (FMs) uniquely define the matrix. The matrix can then be inverted to determine the external electric field and net aircraft charge from the FM outputs. A distinct advantage of the method is that if one or more FMs need to be eliminated or deemphasized [e.g., due to a malfunction), it is a simple matter to reinvert the matrix without the malfunctioning FMs. To demonstrate the calibration technique, data are presented from several aircraft programs (ER-2, DC-8, Altus, and Citation).

  10. Computational Diagnostic Techniques for Electromagnetic Scattering: Analytical Imaging, Near Fields, and Surface Currents

    NASA Technical Reports Server (NTRS)

    Hom, Kam W.; Talcott, Noel A., Jr.; Shaeffer, John

    1997-01-01

    This paper presents three techniques and the graphics implementations which can be used as diagnostic aides in the design and understanding of scattering structures: Imaging, near fields, and surface current displays. The imaging analysis is a new bistatic k space approach which has potential for much greater information than standard experimental approaches. The near field and current analysis are implementations of standard theory while the diagnostic graphics displays are implementations exploiting recent computer engineering work station graphics libraries.

  11. Near-Field Three-Dimensional Radar Imaging Techniques and Applications

    SciTech Connect

    Sheen, David M.; McMakin, Douglas L.; Hall, Thomas E.

    2010-07-01

    Three dimensional radio frequency imaging techniques have been developed for a variety of near field applications including radar cross-section imaging, concealed weapon detection, ground penetrating radar imaging, through-barrier imaging, and non-destructive evaluation. These methods employ active radar transceivers that operate at various frequency ranges covering a wide range from less than 100 MHz to in excess of 350 GHz with the frequency range customized for each application. Computational wavefront reconstruction imaging techniques have been developed that optimize the resolution and illumination quality of the images. In this paper, rectilinear and cylindrical three-dimensional imaging techniques are described along with several application results.

  12. The INSAR technique: its principle and applications to mapping the deformation field of earthquakes

    NASA Astrophysics Data System (ADS)

    Shan, Xin-Jian; Ye, Hong

    1998-11-01

    The development, state-of-art and prospects of application of the radar remote sensing technique are presented. The principle of the INSAR (Interferometric Synthetic Aperture Radar) technique is expounded in more details. Some applications of this technique in measuring seismic dislocations are given. Finally, it is pointed out that INSAR has a non-replaceable application potential in observing ground surface vertical deformations; it would provide an entirely new means and method for monitoring the dynamic field of earthquakes and give an extremely great impetus to the future earthquake prediction work.

  13. Near-field three-dimensional radar imaging techniques and applications.

    PubMed

    Sheen, David; McMakin, Douglas; Hall, Thomas

    2010-07-01

    Three-dimensional radio frequency imaging techniques have been developed for a variety of near-field applications, including radar cross-section imaging, concealed weapon detection, ground penetrating radar imaging, through-barrier imaging, and nondestructive evaluation. These methods employ active radar transceivers that operate at various frequency ranges covering a wide range, from less than 100 MHz to in excess of 350 GHz, with the frequency range customized for each application. Computational wavefront reconstruction imaging techniques have been developed that optimize the resolution and illumination quality of the images. In this paper, rectilinear and cylindrical three-dimensional imaging techniques are described along with several application results.

  14. Measurements of mode field diameter and effective area of photonic crystal fibers by far-field scanning technique

    NASA Astrophysics Data System (ADS)

    Miyagi, Kazuya; Namihira, Yoshinori; Razzak, S. M. Abdur; Kaijage, Shubi F.; Begum, Feroza

    2010-07-01

    We have demonstrated that the correction factor k n = A eff/( πw 2), where ω = MFD/2 (MFD: mode field diameter), is above 1.20 for photonic crystal fibers (PCFs) with structural parameters in the range of d/Λ ≅ 0.40 to 0.90 ( d/Λ ratio of hole diameter d and pitch Λ). By using the far-field scanning (FFS) technique and the finite difference method, the results of experimental measurements and numerical simulations differed by only 0.9 to 3.0% for two types of PCFs. The finding that k n ≠ 1.0 for PCFs indicates that their electrical field distribution is non-Gaussian and cannot be determined by assuming a conventional step-index distribution for PCFs. It was also found that the ITU-T Petermann II definition is the most suitable for MFD measurements of PCFs with non-Gaussian distribution.

  15. Development of an expanded-field irradiation technique using a gimbaled x-ray head.

    PubMed

    Ono, Tomohiro; Miyabe, Yuki; Yamada, Masahiro; Yokota, Kenji; Kaneko, Shuji; Sawada, Akira; Monzen, Hajime; Mizowaki, Takashi; Kokubo, Masaki; Hiraoka, Masahiro

    2014-10-01

    The Vero4DRT has a maximum field size of 150.0 × 150.0 mm. The purpose of the present study was to develop expanded-field irradiation techniques using the unique gimbaled x-ray head of the Vero4DRT and to evaluate the dosimetric characteristics thereof. Two techniques were developed. One features gimbal swing irradiation and multiple static segments consisting of four separate fields exhibiting 2.39° gimbal rotation around two orthogonal axes. The central beam axis for each piecewise-field is shifted 40 mm from the isocenters of the left-right (LR) and superior-inferior (SI) directions, and, thus, the irradiation field size is expanded to 230.8 × 230.8 mm. Adjacent regions were created at the isocenter (a center-adjacent expandedfield) and 20 mm from the isocenter (an off-adjacent expandedfield). The field gaps or overlaps of combined piecewise-fields were established by adjustment of gimbal rotation and movement of the multileaf collimator (MLC). Another technique features dynamic segment irradiation in which the beam is delivered while rotating the gimbal. The dose profile is controlled by a combination of gimbal swing motion and opening and closing of the MLC. This enabled the authors to expand the irradiation field on the LR axis because the direction of MLC motion is parallel to that axis. A field 220.6 × 150.0 mm in dimensions was configured and examined. To evaluate the dosimetric characteristics of the expandedfields, films inserted into water-equivalent phantoms at depths of 50, 100, and 150 mm were irradiated and field sizes, penumbrae, flatness, and symmetry analyzed. In addition, the expanded-field irradiation techniques were applied to intensity-modulated radiation therapy (IMRT). A head-and-neck IMRT field, created using a conventional Linac (the Varian Clinac iX), was reproduced employing an expanded-field of the Vero4DRT. The simulated dose distribution for the expanded-IMRT field was compared to the measured dose distribution. The

  16. Development of an expanded-field irradiation technique using a gimbaled x-ray head

    SciTech Connect

    Ono, Tomohiro; Miyabe, Yuki Yamada, Masahiro; Yokota, Kenji; Kaneko, Shuji; Monzen, Hajime; Mizowaki, Takashi; Hiraoka, Masahiro; Sawada, Akira; Kokubo, Masaki

    2014-10-15

    Purpose: The Vero4DRT has a maximum field size of 150.0 × 150.0 mm. The purpose of the present study was to develop expanded-field irradiation techniques using the unique gimbaled x-ray head of the Vero4DRT and to evaluate the dosimetric characteristics thereof. Methods: Two techniques were developed. One features gimbal swing irradiation and multiple static segments consisting of four separate fields exhibiting 2.39° gimbal rotation around two orthogonal axes. The central beam axis for each piecewise-field is shifted 40 mm from the isocenters of the left–right (LR) and superior–inferior (SI) directions, and, thus, the irradiation field size is expanded to 230.8 × 230.8 mm. Adjacent regions were created at the isocenter (a center-adjacent expandedfield) and 20 mm from the isocenter (an off-adjacent expandedfield). The field gaps or overlaps of combined piecewise-fields were established by adjustment of gimbal rotation and movement of the multileaf collimator (MLC). Another technique features dynamic segment irradiation in which the beam is delivered while rotating the gimbal. The dose profile is controlled by a combination of gimbal swing motion and opening and closing of the MLC. This enabled the authors to expand the irradiation field on the LR axis because the direction of MLC motion is parallel to that axis. A field 220.6 × 150.0 mm in dimensions was configured and examined. To evaluate the dosimetric characteristics of the expandedfields, films inserted into water-equivalent phantoms at depths of 50, 100, and 150 mm were irradiated and field sizes, penumbrae, flatness, and symmetry analyzed. In addition, the expanded-field irradiation techniques were applied to intensity-modulated radiation therapy (IMRT). A head-and-neck IMRT field, created using a conventional Linac (the Varian Clinac iX), was reproduced employing an expanded-field of the Vero4DRT. The simulated dose distribution for the expanded-IMRT field was compared to the measured

  17. A novel potential/viscous flow coupling technique for computing helicopter flow fields

    NASA Technical Reports Server (NTRS)

    Summa, J. Michael; Strash, Daniel J.; Yoo, Sungyul

    1990-01-01

    Because of the complexity of helicopter flow field, a zonal method of analysis of computational aerodynamics is required. Here, a new procedure for coupling potential and viscous flow is proposed. An overlapping, velocity coupling technique is to be developed with the unique feature that the potential flow surface singularity strengths are obtained directly from the Navier-Stokes at a smoother inner fluid boundary. The closed-loop iteration method proceeds until the velocity field is converged. This coupling should provide the means of more accurate viscous computations of the near-body and rotor flow fields with resultant improved analysis of such important performance parameters as helicopter fuselage drag and rotor airloads.

  18. About the parametrizations utilized to perform magnetic moments measurements using the transient field technique

    NASA Astrophysics Data System (ADS)

    Gómez, A. M.; Torres, D. A.

    2016-07-01

    The experimental study of nuclear magnetic moments, using the Transient Field technique, makes use of spin-orbit hyperfine interactions to generate strong magnetic fields, above the kilo-Tesla regime, capable to create a precession of the nuclear spin. A theoretical description of such magnetic fields is still under theoretical research, and the use of parametrizations is still a common way to address the lack of theoretical information. In this contribution, a review of the main parametrizations utilized in the measurements of Nuclear Magnetic Moments will be presented, the challenges to create a theoretical description from first principles will be discussed.

  19. About the parametrizations utilized to perform magnetic moments measurements using the transient field technique

    SciTech Connect

    Gómez, A. M.; Torres, D. A.

    2016-07-07

    The experimental study of nuclear magnetic moments, using the Transient Field technique, makes use of spin-orbit hyperfine interactions to generate strong magnetic fields, above the kilo-Tesla regime, capable to create a precession of the nuclear spin. A theoretical description of such magnetic fields is still under theoretical research, and the use of parametrizations is still a common way to address the lack of theoretical information. In this contribution, a review of the main parametrizations utilized in the measurements of Nuclear Magnetic Moments will be presented, the challenges to create a theoretical description from first principles will be discussed.

  20. Solar coronal magnetic fields derived using seismology techniques applied to omnipresent sunspot waves

    NASA Astrophysics Data System (ADS)

    Jess, David B.; Reznikova, Veronika E.; Ryans, Robert S. I.; Christian, Damian J.; Keys, Peter H.; Mathioudakis, Mihalis; Mackay, Duncan H.; Krishna Prasad, S.; Banerjee, Dipankar; Grant, Samuel D. T.; Yau, Sean; Diamond, Conor

    2016-02-01

    Sunspots on the surface of the Sun are the observational signatures of intense manifestations of tightly packed magnetic field lines, with near-vertical field strengths exceeding 6,000 G in extreme cases. It is well accepted that both the plasma density and the magnitude of the magnetic field strength decrease rapidly away from the solar surface, making high-cadence coronal measurements through traditional Zeeman and Hanle effects difficult as the observational signatures are fraught with low-amplitude signals that can become swamped with instrumental noise. Magneto-hydrodynamic (MHD) techniques have previously been applied to coronal structures, with single and spatially isolated magnetic field strengths estimated as 9-55 G (refs ,,,). A drawback with previous MHD approaches is that they rely on particular wave modes alongside the detectability of harmonic overtones. Here we show, for the first time, how omnipresent magneto-acoustic waves, originating from within the underlying sunspot and propagating radially outwards, allow the spatial variation of the local coronal magnetic field to be mapped with high precision. We find coronal magnetic field strengths of 32 +/- 5 G above the sunspot, which decrease rapidly to values of approximately 1 G over a lateral distance of 7,000 km, consistent with previous isolated and unresolved estimations. Our results demonstrate a new, powerful technique that harnesses the omnipresent nature of sunspot oscillations to provide magnetic field mapping capabilities close to a magnetic source in the solar corona.

  1. Leader inception field from a vertical rod conductor efficiency of electrical triggering techniques

    SciTech Connect

    Berger, G.

    1996-12-31

    Vertical rod conductors have been tested in high voltage laboratory under simulated lightning conditions. These experiments led to the determination of the inception field necessary to launch an upward positive leader, which is a function of the rod height, confirming Rizk`s models. The efficiency of electrical triggering techniques added to a single rod is also investigated.

  2. Design of Optical Systems with Extended Depth of Field: An Educational Approach to Wavefront Coding Techniques

    ERIC Educational Resources Information Center

    Ferran, C.; Bosch, S.; Carnicer, A.

    2012-01-01

    A practical activity designed to introduce wavefront coding techniques as a method to extend the depth of field in optical systems is presented. The activity is suitable for advanced undergraduate students since it combines different topics in optical engineering such as optical system design, aberration theory, Fourier optics, and digital image…

  3. A Field-Based Technique for Teaching about Habitat Fragmentation and Edge Effects

    ERIC Educational Resources Information Center

    Resler, Lynn M.; Kolivras, Korine N.

    2009-01-01

    This article presents a field technique that exposes students to the indirect effects of habitat fragmentation on plant distributions through studying edge effects. This assignment, suited for students in an introductory biogeography or resource geography class, increases students' knowledge of basic biogeographic concepts such as environmental…

  4. Design of Optical Systems with Extended Depth of Field: An Educational Approach to Wavefront Coding Techniques

    ERIC Educational Resources Information Center

    Ferran, C.; Bosch, S.; Carnicer, A.

    2012-01-01

    A practical activity designed to introduce wavefront coding techniques as a method to extend the depth of field in optical systems is presented. The activity is suitable for advanced undergraduate students since it combines different topics in optical engineering such as optical system design, aberration theory, Fourier optics, and digital image…

  5. Application of the wide-field shadowgraph technique to rotor wake visualization

    NASA Technical Reports Server (NTRS)

    Norman, Thomas R.; Light, Jeffrey S.

    1989-01-01

    The wide field shadowgraph technique is reviewed along with its application to the visualization of rotor wakes. In particular, current experimental methods and data reduction requirements are discussed. Sample shadowgraphs are presented. These include shadowgraphs of model-scale helicopter main rotors and tilt rotors, and full scale tail rotors, both in hover and in forward flight.

  6. A Field-Based Technique for Teaching about Habitat Fragmentation and Edge Effects

    ERIC Educational Resources Information Center

    Resler, Lynn M.; Kolivras, Korine N.

    2009-01-01

    This article presents a field technique that exposes students to the indirect effects of habitat fragmentation on plant distributions through studying edge effects. This assignment, suited for students in an introductory biogeography or resource geography class, increases students' knowledge of basic biogeographic concepts such as environmental…

  7. Hard-X-ray directional dark-field imaging using the speckle scanning technique.

    PubMed

    Wang, Hongchang; Kashyap, Yogesh; Sawhney, Kawal

    2015-03-13

    X-ray dark-field imaging can provide inaccessible and complementary information compared to conventional absorption contrast imaging. However, extraction of the dark-field signal is difficult, and sophisticated optics are often required. In this Letter, we report a novel approach to generate high-quality dark-field images using a simple membrane. The dark-field image is extracted from the maximum correlation coefficient by applying a cross-correlation algorithm to a stack of speckle images collected by scanning a membrane in a transverse direction to the incident x-ray beam. The new method can also provide directional dark-field information, which is extremely useful for the study of strongly ordered systems. The potential of the proposed technique for nondestructive x-ray imaging is demonstrated by imaging representative samples.

  8. Direct imaging of neural currents using ultra-low field magnetic resonance techniques

    DOEpatents

    Volegov, Petr L.; Matlashov, Andrei N.; Mosher, John C.; Espy, Michelle A.; Kraus, Jr., Robert H.

    2009-08-11

    Using resonant interactions to directly and tomographically image neural activity in the human brain using magnetic resonance imaging (MRI) techniques at ultra-low field (ULF), the present inventors have established an approach that is sensitive to magnetic field distributions local to the spin population in cortex at the Larmor frequency of the measurement field. Because the Larmor frequency can be readily manipulated (through varying B.sub.m), one can also envision using ULF-DNI to image the frequency distribution of the local fields in cortex. Such information, taken together with simultaneous acquisition of MEG and ULF-NMR signals, enables non-invasive exploration of the correlation between local fields induced by neural activity in cortex and more `distant` measures of brain activity such as MEG and EEG.

  9. Increased Oil Production and Reserves From Improved Completion Techniques in the Bluebell Field, Uinta Basin, Utah

    SciTech Connect

    Morgan, C.D.; Deo, M.D.

    1998-04-01

    The Bluebell field is productive from the Tertiary lower Green River and Colton (Wasatch) Formations of the Uinta Basin, Utah. The productive interval consists of thousands of feet of interbedded fractured clastic and carbonate beds deposited in the ancestral Lake Uinta. Wells in the Bluebell field are typically completed by perforating 40 or more beds over 1000 to 3000 vertical ft (300-900 m), then stimulating the entire interval with hydrochloric acid. This technique is often referred to as the shot gun completion. Completion techniques used in the Bluebell field were discussed in detail in the Second Annual Report (Curtice, 1996). The shot-gun technique is believed to leave many potentially productive beds damaged and/or untreated, while allowing water-bearing and low-pressure (thief) zones to communicate with the wellbore. A two-year characterization study involved detailed examination of outcrop, core, well logs, surface and subsurface fractures, produced oil-field waters, engineering parameters of the two demonstration wells, and analysis of past completion techniques and effectiveness. The study was intended to improve the geologic characterization of the producing formations and thereby develop completion techniques specific to the producing beds or facies instead of a shot gun approach to stimulating all the beds. The characterization did not identify predictable-facies or predictable-fracture trends within the vertical stratigraphic column as originally hoped. Advanced logging techniques can identify productive beds in individual wells. A field-demonstration program was developed to use cased-hole advanced logging techniques in two wells and recompletion the wells at two different scales based on the logging. The first well was going to be completed at the interval scale using a multiple stage completion technique (about 500 ft [150 m] per stage). The second well will be recompleted at the bed-scale using bridge plug and packer to isolate three or more

  10. Patch nearfield acoustic holography combined with sound field separation technique applied to a non-free field

    NASA Astrophysics Data System (ADS)

    Bi, ChuanXing; Jing, WenQian; Zhang, YongBin; Xu, Liang

    2015-02-01

    The conventional nearfield acoustic holography (NAH) is usually based on the assumption of free-field conditions, and it also requires that the measurement aperture should be larger than the actual source. This paper is to focus on the problem that neither of the above-mentioned requirements can be met, and to examine the feasibility of reconstructing the sound field radiated by partial source, based on double-layer pressure measurements made in a non-free field by using patch NAH combined with sound field separation technique. And also, the sensitivity of the reconstructed result to the measurement error is analyzed in detail. Two experiments involving two speakers in an exterior space and one speaker inside a car cabin are presented. The experimental results demonstrate that the patch NAH based on single-layer pressure measurement cannot obtain a satisfied result due to the influences of disturbing sources and reflections, while the patch NAH based on double-layer pressure measurements can successfully remove these influences and reconstruct the patch sound field effectively.

  11. [African silhouettes and field photography. M. Griaule's contribution to the Maussian "discovery" of body techniques].

    PubMed

    Despoix, Philippe

    2010-01-01

    This essay focuses on the interaction between the new reproduction media and corresponding reconfiguration of research fields in anthropology using the case of the "techniques of the body" - a concept developed by Marcel Mauss (1872-1950). For Mauss, the initiator of this discipline in France, body skills constituted the most important anthropological entity resulting from the confrontation of technical images and his interest in walking techniques. Three scenarios are especially significant for Mauss's formulation of "body techniques" as a genuine concept: the front during the World War I, a New Yorke hospital in 1926, and an ethnographical field study conducted in Africa during the ate 1920s. Both, the photographic media as well as the Abyssinian expedition of his student Marcel Griaule, whose research publication Mauss co-authored (Silhouettes et graffiti abyssins) n 1933, take centre stage here.

  12. Techniques for generation of control and guidance signals derived from optical fields, part 2

    NASA Technical Reports Server (NTRS)

    Hemami, H.; Mcghee, R. B.; Gardner, S. R.

    1971-01-01

    The development is reported of a high resolution technique for the detection and identification of landmarks from spacecraft optical fields. By making use of nonlinear regression analysis, a method is presented whereby a sequence of synthetic images produced by a digital computer can be automatically adjusted to provide a least squares approximation to a real image. The convergence of the method is demonstrated by means of a computer simulation for both elliptical and rectangular patterns. Statistical simulation studies with elliptical and rectangular patterns show that the computational techniques developed are able to at least match human pattern recognition capabilities, even in the presence of large amounts of noise. Unlike most pattern recognition techniques, this ability is unaffected by arbitrary pattern rotation, translation, and scale change. Further development of the basic approach may eventually allow a spacecraft or robot vehicle to be provided with an ability to very accurately determine its spatial relationship to arbitrary known objects within its optical field of view.

  13. Oil-field wastewater purification by magnetic separation technique using a novel magnetic nanoparticle

    NASA Astrophysics Data System (ADS)

    Liu, Zhuonan; Yang, Huihui; Zhang, Hao; Huang, Chuanjun; Li, Laifeng

    2012-12-01

    In the present work, oil-field wastewater purification through superconducting magnetic separation technique using a novel magnetic nanoparticle was investigated. The magnetic nanoparticle, which has a multi-shell structure with ferroferric oxide as core, dense nonporous silica as inter layer and mesoporous silica as outer layer, was synthesized by co-precipitation method. To functionalize the magnetic nanoparticle, plasma polymerization technique was adopted and poly methyl acrylate (PMA) was formed on the surface of the nanoparticle. The multi-shell structure of the nanoparticle was confirmed by transmission electron microscope (TEM) and the characteristic is measurable by FTIR. It is found that most of the pollutants (85% by turbidity or 84% by COD value) in the oil-field wastewater are removed through the superconducting magnetic separation technique using this novel magnetic nanoparticle.

  14. Hyphenated techniques: The next generation of field-portable analytical instruments?

    SciTech Connect

    Meuzelaar, H.L.C.; McClennen, W.H.; Dworzanski, J.P.; Sheya, S.A.; Snyder, A.P.; Harden, C.S.; Arnold, N.S.

    1995-12-31

    The first field-portable (i.e., transportable) hyphenated analytical instruments, including commercially available MS/MS and GC/MS systems as well as a specially built GC/MS{sup n} introduced during the past seven years. Since then further miniaturization and ruggedization of hyphenated systems by several laboratories has resulted in fully man-portable (backpack and briefcase style) GC/MS systems and a hand portable GC/IMS prototype. The main pitfall to be avoided in developing hyphenated, field portable system is incompatibility between the coupled techniques. Carefully designed hyphenated techniques incorporating compatible methods such as GC and MS can provide dramatic increases in resolution and chemical specificity which may be traded for speed or sensitivity gains, if needed. Novel developments currently underway in the laboratory include roving GC/MS platforms, personalized GC/IMS devices, high speed GC/GC methods and, last but not least, Virtual Reality techniques.

  15. Two-field versus three-field irradiation technique in the postoperative treatment of head-and-neck cancer

    SciTech Connect

    Yom, Sue S.; Morrison, William H.; Ang, K. Kian; Rosenthal, David I.; Perkins, George H.; Wong, Pei-Fong M.S.; Garden, Adam S. . E-mail: agarden@mdanderson.org

    2006-10-01

    Purpose: We have increasingly used a two-field noncoplanar 'caudal tilt' technique (CTT) for irradiating postlaryngectomy and pharyngectomy patients to avoid matchline problems that can be encountered with the classic three-field head-and-neck radiation technique (3FT). This report compares the clinical outcomes of patients treated with postoperative radiation (PORT) using either 3FT or CTT. Methods and Materials: We conducted a retrospective review of the medical records of all patients with laryngeal or hypopharyngeal cancers consecutively treated with PORT between 1997 and 2002. Three-dimensional dosimetric planning was carried out for all patients. Results: Of 91 patients, 39 were treated with 3FT and 52 with CTT. The median follow-up was 34 months. Estimated rates of 2-year locoregional control, disease-free survival, and overall survival for patients treated with 3FT and CTT were, respectively, 92% and 85% (p = 0.241), 62% and 55% (p = 0.497), and 77% and 72% (p = 0.616). There were no significant differences in the incidence of acute or late side effects in the two groups. Conclusions: 'Caudal tilt' technique is often used as an alternative to 3FT for postoperative radiotherapy in cases of greater medical and technical complexity. Despite its use in more challenging cases, CTT provides similar long-term clinical outcomes compared with standard 3FT, when computerized three-dimensional dosimetry is used to assure adequate dosimetry throughout the treated volume.

  16. Three-dimensional near-field MIMO array imaging using range migration techniques.

    PubMed

    Zhuge, Xiaodong; Yarovoy, Alexander G

    2012-06-01

    This paper presents a 3-D near-field imaging algorithm that is formulated for 2-D wideband multiple-input-multiple-output (MIMO) imaging array topology. The proposed MIMO range migration technique performs the image reconstruction procedure in the frequency-wavenumber domain. The algorithm is able to completely compensate the curvature of the wavefront in the near-field through a specifically defined interpolation process and provides extremely high computational efficiency by the application of the fast Fourier transform. The implementation aspects of the algorithm and the sampling criteria of a MIMO aperture are discussed. The image reconstruction performance and computational efficiency of the algorithm are demonstrated both with numerical simulations and measurements using 2-D MIMO arrays. Real-time 3-D near-field imaging can be achieved with a real-aperture array by applying the proposed MIMO range migration techniques.

  17. Measurement technique of electric field using ultraviolet/visible spectroscopy in cylindrical plasmas

    SciTech Connect

    Kobayashi, T.; Yoshikawa, M.; Kubota, Y.; Saito, M.; Numada, M.; Ishii, K.; Cho, T.

    2004-10-01

    The rotation of impurity ion has been measured using ultraviolet (UV) visible spectroscopy in the cylindrical fusion plasma GAMMA 10 to investigate diamagnetic drift and ExB drift. The electric field is estimated with the plasma rotation and ExB drift analysis. Since the detected signal is the line integrated emission, the parametric Abel inversion technique has been developed. In the method, a density profile of impurity ion was assumed. Recently, we can obtain the density profile using collisional-radiative model (CRM) calculation. Then the electric field is obtained independently of that assumption. We present the measurement technique of the electric field using UV/visible spectroscopy and CRM calculation. The experimental result in GAMMA 10 is that consistent with the result of the neutral beam probe measurement.

  18. Unusual well control techniques pay off. [Well drilling techniques in the Elgin gas condensate field, North Sea

    SciTech Connect

    Idelovici, J.L.

    1993-07-01

    Well control and completion operations were seriously complicated by an unusual pressure phenomena encountered while drilling an appraisal well through Jurassic sandstones in a high-pressure, high-temperature (HPHT), gas and condensate field located in the United Kingdom continental shelf. The HPHT sandstone reservoir is located in the Upper Jurassic Franklin formation. Unorthodox well-control techniques were used because it was determined that the abnormally high pressure was generated by a mechanical reaction of the rock under the effect of heavy mud and equivalent circulating density, rather than by entry into the wellbore of formation fluids. This paper reviews the complex drilling fluid control procedures which had to be utilized to maintain an open bore hole during drilling.

  19. Measurements of solar magnetic fields by Fourier transform techniques. II - Saturated and blended lines

    NASA Technical Reports Server (NTRS)

    Tarbell, T. D.; Title, A. M.

    1976-01-01

    Fourier techniques have been exhaustively calibrated using Unno's (1956) results for the absorption profile of a simple Zeeman triplet. If a simple transformation is applied to the normalized line depths, then magnetic-field strengths and inclination angles can be measured very accurately from noisy saturated line profiles. Systematic errors caused by saturation effects can be estimated and reduced by varying one parameter. When a significant fraction of the line profile is unsplit and unpolarized, large errors may be made in measurements of low fields, unless the line is sufficiently weak. For a weak line, a vertical field of 1600 gauss can be measured to 10% accuracy even when 70% of the line profile is stray light. These stray-light errors are troublesome in measuring fields of gaps and pores but not sunspots. Numerical results of the error analysis are presented graphically.

  20. Measurements of solar magnetic fields by Fourier transform techniques. II - Saturated and blended lines

    NASA Technical Reports Server (NTRS)

    Tarbell, T. D.; Title, A. M.

    1976-01-01

    Fourier techniques have been exhaustively calibrated using Unno's (1956) results for the absorption profile of a simple Zeeman triplet. If a simple transformation is applied to the normalized line depths, then magnetic-field strengths and inclination angles can be measured very accurately from noisy saturated line profiles. Systematic errors caused by saturation effects can be estimated and reduced by varying one parameter. When a significant fraction of the line profile is unsplit and unpolarized, large errors may be made in measurements of low fields, unless the line is sufficiently weak. For a weak line, a vertical field of 1600 gauss can be measured to 10% accuracy even when 70% of the line profile is stray light. These stray-light errors are troublesome in measuring fields of gaps and pores but not sunspots. Numerical results of the error analysis are presented graphically.

  1. Visualization of a smoke flow field by using a lidar and DIC technique

    NASA Astrophysics Data System (ADS)

    Park, Nak Gyu; Baik, Sung Hoon; Park, Seung Kyu; Kim, Dong Lyul

    2015-11-01

    A visualization technique for the velocity field of plant smoke is described. We intend to present a long-range measurement method for a velocity field calculation from a series of images containing an illuminated planar layer of fluid. The main system is configured with two technical parts. One is a lidar system, which is for measuring the distance from an observer to the plant smoke, and the other is a DIC (digital image correlation) system. We configured the lidar system by using a Nd-YAG pulsed laser (10 Hz, injection seeded), a telescope (Schmidt Cassegrain type, diameter: 30 cm) and a PMT (photomultiplier tube). The DIC system is configured to track smoke images by using the developed fast correlation algorithm of the DIC. We acquired the velocity fields of smoke by using the calculated distance and the DIC algorithm. In this paper, we propose a new method for measuring the smoke velocity and visualizing the flow field.

  2. Pulsed remote field eddy current technique applied to non-magnetic flat conductive plates

    NASA Astrophysics Data System (ADS)

    Yang, Binfeng; Zhang, Hui; Zhang, Chao; Zhang, Zhanbin

    2013-12-01

    Non-magnetic metal plates are widely used in aviation and industrial applications. The detection of cracks in thick plate structures, such as multilayered structures of aircraft fuselage, has been challenging in nondestructive evaluation societies. The remote field eddy current (RFEC) technique has shown advantages of deep penetration and high sensitivity to deeply buried anomalies. However, the RFEC technique is mainly used to evaluate ferromagnetic tubes. There are many problems that should be fixed before the expansion and application of this technique for the inspection of non-magnetic conductive plates. In this article, the pulsed remote field eddy current (PRFEC) technique for the detection of defects in non-magnetic conducting plates was investigated. First, the principle of the PRFEC technique was analysed, followed by the analysis of the differences between the detection of defects in ferromagnetic and non-magnetic plain structures. Three different models of the PRFEC probe were simulated using ANSYS. The location of the transition zone, defect detection sensitivity and the ability to detect defects in thick plates using three probes were analysed and compared. The simulation results showed that the probe with a ferrite core had the highest detecting ability. The conclusions derived from the simulation study were also validated by conducting experiments.

  3. The sliding stop: a technique of fielding in cricket with a potential for serious knee injury.

    PubMed

    Von Hagen, K; Roach, R; Summers, B

    2000-10-01

    The sliding stop method of fielding in cricket is gaining popularity in schools and club cricket through its frequent exposure on television. The case history is reported of a cricketer who suffered a torn medial meniscus in his knee, a rare cricketing injury, while performing this technique incorrectly in a club game. The correct method of performing the technique is described in coaching manuals but is not commonly instructed at club or school level. The sliding stop should be discouraged in school and for club cricketers unless appropriately coached.

  4. Large aperture laser beam alignment system based on far field sampling technique

    NASA Astrophysics Data System (ADS)

    Zhang, J. C.; Liu, D. Z.; Ouyang, X. P.; Kang, J.; Xie, X. L.; Zhou, J.; Gong, L.; Zhu, B. Q.

    2016-11-01

    Laser beam alignment is very important for high-power laser facility. Long laser path and large-aperture lens for alignment are generally used, while the proposed alignment system with a wedge by far-field sampling technique reduces both space and cost requirements. General alignment system for large-aperture laser beam is long in distance and large in volum because of taking near-field sampling technique. With the development of laser fusion facilities, the space for alignment system is limited. A new alignment system for large-aperture laser beam is designed to save space and reduce operating costs. The new alignment for large-aperture laser beam with a wedge is based on far-field sampling technique. The wedge is placed behind the spatial filter to reflect some laser beam as signal light for alignment. Therefore, laser beam diameter in alignment system is small, which can save space for the laser facility. Comparing to general alignment system for large-aperture laser beam, large-aperture lenses for near-field and far-field sampling, long distance laser path are unnecessary for proposed alignment system, which saves cost and space greatly. This alignment system for large-aperture laser beam has been demonstrated well on the Muliti-PW Facility which uses the 7th beam of the SG-Ⅱ Facility as pump source. The experimental results indicate that the average near-field alignment error is less than 1% of reference, and the average far-filed alignment error is less than 5% of spatial filter pinhole diameter, which meet the alignment system requirements for laser beam of Multi-PW Facility.

  5. A technique for measuring magnetic fields on solar-type stars

    NASA Technical Reports Server (NTRS)

    Marcy, G. W.

    1982-01-01

    A method is developed and tested by which magnetic-field strengths and area filling-factors of magnetic regions on late-type stars may be inferred from high-resolution, absorption-line profiles that have been broadened by the Zeeman effect. The technique involves fitting such profiles with a triplet of components, the shape of which is derived from profiles of lines of low Zeeman sensitivity. Tests of the systematic and random errors indicate that such magnetic flux measurements have an uncertainty of 20% for stars with field strengths of 2000 gauss if at least 10% of the stellar surface contains magnetic regions.

  6. A technique for measuring magnetic fields on solar-type stars

    NASA Technical Reports Server (NTRS)

    Marcy, G. W.

    1982-01-01

    A method is developed and tested by which magnetic-field strengths and area filling-factors of magnetic regions on late-type stars may be inferred from high-resolution, absorption-line profiles that have been broadened by the Zeeman effect. The technique involves fitting such profiles with a triplet of components, the shape of which is derived from profiles of lines of low Zeeman sensitivity. Tests of the systematic and random errors indicate that such magnetic flux measurements have an uncertainty of 20% for stars with field strengths of 2000 gauss if at least 10% of the stellar surface contains magnetic regions.

  7. Imaging Analysis of Near-Field Recording Technique for Observation of Biological Specimens

    NASA Astrophysics Data System (ADS)

    Moriguchi, Chihiro; Ohta, Akihiro; Egami, Chikara; Kawata, Yoshimasa; Terakawa, Susumu; Tsuchimori, Masaaki; Watanabe, Osamu

    2006-07-01

    We present an analysis of the properties of an imaging based on a near-field recording technique in comparison with simulation results. In the system, the optical field distributions localized near the specimens are recorded as the surface topographic distributions of a photosensitive film. It is possible to observe both soft and moving specimens, because the system does not require a scanning probe to obtain the observed image. The imaging properties are evaluated using fine structures of paramecium, and we demonstrate that it is possible to observe minute differences of refractive indices.

  8. Application of the Coupled Finite Element-Combined Field Integral Equation Technique (FEICFIE) to the Radiation Problem

    NASA Technical Reports Server (NTRS)

    Jamnejad, V.; Cwik, T.; Zuffada, C.

    1994-01-01

    A coupled finite element-combined field integral equation technique was originally developed for solving scattering problems involving inhomogeneous objects of arbitrary shape and large dimensions in wavelength.

  9. The interactive effects of instructional set, field dependence, and extraversion on the Holtzman Inkblot Technique.

    PubMed

    Schmidt, J P

    1978-04-01

    Studied the interactive effects of examiner, instructional set, field dependence, and extraversion on the reactions of 81 males and 39 females to five Holtzman Inkblot Technique factor scores. Half of the Ss were told that the HIT was a measure of mental health and half that it was experimental in nature, which produced two instructional sets. Field dependence was measured with the Embedded Figures Test and extraversion by the Eysenck Personality Inventory. Subjective anxiety was tapped via the State-Trait Anxiety Inventory. Results revealed no differences among five examiners. However, three of the five HIT factors and the STAI were affected significantly by the instructional set. The effects, while significant, were not massive. Field dependence interacted with instructional set; field dependent Ss reacted with generally more changes in scores than did field independent S. Unlike field dependence, extraversion appeared unrelated to instructional set effects. The results are discussed in terms of how the factor scores interacted with the field dependence and instructional set in psychologically meaningful ways.

  10. Techniques for Ultra-high Magnetic Field Gradient NMR Diffusion Measurements

    NASA Astrophysics Data System (ADS)

    Sigmund, Eric E.; Mitrovic, Vesna F.; Calder, Edward S.; Will Thomas, G.; Halperin, William P.; Reyes, Arneil P.; Kuhns, Philip L.; Moulton, William G.

    2001-03-01

    We report on development and application of techniques for ultraslow diffusion coefficient measurements through nuclear magnetic resonance (NMR) in high magnetic field gradients. We have performed NMR experiments in a steady fringe field gradient of 175 T/m from a 23 T resistive Bitter magnet, as well as in a gradient of 42 T/m from an 8 T superconducting magnet. New techniques to provide optimum sensitivity in these experiments are described. To eliminate parasitic effects of the temporal instability of the resistive magnet, we have introduced a passive filter: a highly conductive cryogen-cooled inductive shield. We show experimental demonstration of such a shield’s effect on NMR performed in the Bitter magnet. For enhanced efficiency, we have employed “frequency jumping” in our spectrometer system. Application of these methods has made possible measurements of diffusion coefficients as low as 10-10 cm^2/s, probing motion on a 250 nm length scale.

  11. A Touch Sensing Technique Using the Effects of Extremely Low Frequency Fields on the Human Body

    PubMed Central

    Elfekey, Hatem; Bastawrous, Hany Ayad; Okamoto, Shogo

    2016-01-01

    Touch sensing is a fundamental approach in human-to-machine interfaces, and is currently under widespread use. Many current applications use active touch sensing technologies. Passive touch sensing technologies are, however, more adequate to implement low power or energy harvesting touch sensing interfaces. This paper presents a passive touch sensing technique based on the fact that the human body is affected by the surrounding extremely low frequency (ELF) electromagnetic fields, such as those of AC power lines. These external ELF fields induce electric potentials on the human body—because human tissues exhibit some conductivity at these frequencies—resulting in what is called AC hum. We therefore propose a passive touch sensing system that detects this hum noise when a human touch occurs, thus distinguishing between touch and non-touch events. The effectiveness of the proposed technique is validated by designing and implementing a flexible touch sensing keyboard. PMID:27918416

  12. Field transients of coherent terahertz synchrotron radiation accessed via time-resolving and correlation techniques

    SciTech Connect

    Pohl, A.; Hübers, H.-W.; Semenov, A.; Hoehl, A.; Ulm, G.; Ries, M.; Wüstefeld, G.; Ilin, K.; Thoma, P.; Siegel, M.

    2016-03-21

    Decaying oscillations of the electric field in repetitive pulses of coherent synchrotron radiation in the terahertz frequency range was evaluated by means of time-resolving and correlation techniques. Comparative analysis of real-time voltage transients of the electrical response and interferograms, which were obtained with an ultrafast zero-bias Schottky diode detector and a Martin-Puplett interferometer, delivers close values of the pulse duration. Consistent results were obtained via the correlation technique with a pair of Golay Cell detectors and a pair of resonant polarisation-sensitive superconducting detectors integrated on one chip. The duration of terahertz synchrotron pulses does not closely correlate with the duration of single-cycle electric field expected for the varying size of electron bunches. We largely attribute the difference to the charge density oscillations in electron bunches and to the low-frequency spectral cut-off imposed by both the synchrotron beamline and the coupling optics of our detectors.

  13. A Touch Sensing Technique Using the Effects of Extremely Low Frequency Fields on the Human Body.

    PubMed

    Elfekey, Hatem; Bastawrous, Hany Ayad; Okamoto, Shogo

    2016-12-02

    Touch sensing is a fundamental approach in human-to-machine interfaces, and is currently under widespread use. Many current applications use active touch sensing technologies. Passive touch sensing technologies are, however, more adequate to implement low power or energy harvesting touch sensing interfaces. This paper presents a passive touch sensing technique based on the fact that the human body is affected by the surrounding extremely low frequency (ELF) electromagnetic fields, such as those of AC power lines. These external ELF fields induce electric potentials on the human body-because human tissues exhibit some conductivity at these frequencies-resulting in what is called AC hum. We therefore propose a passive touch sensing system that detects this hum noise when a human touch occurs, thus distinguishing between touch and non-touch events. The effectiveness of the proposed technique is validated by designing and implementing a flexible touch sensing keyboard.

  14. The Wide-Field Imaging Interferometry Testbed: Enabling Techniques for High Angular Resolution Astronomy

    NASA Technical Reports Server (NTRS)

    Rinehart, S. A.; Armstrong, T.; Frey, Bradley J.; Jung, J.; Kirk, J.; Leisawitz, David T.; Leviton, Douglas B.; Lyon, R.; Maher, Stephen; Martino, Anthony J.; hide

    2007-01-01

    The Wide-Field Imaging Interferometry Testbed (WIIT) was designed to develop techniques for wide-field of view imaging interferometry, using "double-Fourier" methods. These techniques will be important for a wide range of future spacebased interferometry missions. We have provided simple demonstrations of the methodology already, and continuing development of the testbed will lead to higher data rates, improved data quality, and refined algorithms for image reconstruction. At present, the testbed effort includes five lines of development; automation of the testbed, operation in an improved environment, acquisition of large high-quality datasets, development of image reconstruction algorithms, and analytical modeling of the testbed. We discuss the progress made towards the first four of these goals; the analytical modeling is discussed in a separate paper within this conference.

  15. A comparison of conventional and grid techniques for chest radiography in field surveys

    PubMed Central

    Washington, J. S.; Dick, J. A.; Jacobsen, M.; Prentice, W. M.

    1973-01-01

    Washington, J. S., Dick, J. A., Jacobsen, M., and Prentice, W. M. (1973).British Journal of Industrial Medicine,30, 365-374. A comparison of conventional and grid techniques for chest radiography in field surveys. The effect on the quality of chest radiographs using a reciprocating grid with a moderately high kilovoltage (96 to 105 kV) has been studied. A total of 1 710 mineworkers had two postero-anterior chest radiographs taken at the same visit to a linked pair of mobile ϰ-ray units. One film was taken with conventional exposure factors and the other with moderately high kilovoltage and a reciprocating grid. The grid was exchanged between the two units according to a randomized plan so that the first radiograph was not always taken with the same technique. The 3 420 films so produced were subsequently assessed for quality by five doctors experienced in reading chest films. The films were examined singly in random order and the reader did not know which technique had been used for a given film. Four of the readers recorded improved quality using the grid technique for films from men whose antero-posterior chest measurements exceeded 254 mm (10 in), but they preferred the conventional exposure technique for films from men whose chest measurements were less than 254 mm. Results from all film pairs where a difference in quality was recorded showed no overall advantage for either technique. PMID:4753720

  16. Diagnostic techniques for measurement of aerodynamic noise in free field and reverberant environment of wind tunnels

    NASA Technical Reports Server (NTRS)

    El-Sum, H. M. A.; Mawardi, O. K.

    1973-01-01

    Techniques for studying aerodynamic noise generating mechanisms without disturbing the flow in a free field, and in the reverberation environment of the ARC wind tunnel were investigated along with the design and testing of an acoustic antenna with an electronic steering control. The acoustic characteristics of turbojet as a noise source, detection of direct sound from a source in a reverberant background, optical diagnostic methods, and the design characteristics of a high directivity acoustic antenna. Recommendations for further studies are included.

  17. Micro-SQUID technique for studying the temperature dependence of switching fields of single nanoparticles

    NASA Astrophysics Data System (ADS)

    Thirion, C.; Wernsdorfer, W.; Jamet, M.; Dupuis, V.; Mélinon, P.; Pérez, A.; Mailly, D.

    2002-04-01

    An improved micro-SQUID technique is presented allowing us to measure the temperature dependence of the magnetisation switching fields of single nanoparticles well above the critical superconducting temperature of the SQUID. Our first measurements on 3 nm cobalt nanoparticle embedded in a niobium matrix are compared to the Néel Brown model describing the magnetisation reversal by thermal activation over a single anisotropy barrier.

  18. Comparison of soft computing techniques for a three-phase oil field centrifuge.

    SciTech Connect

    Smith, R. E.; Parkinson, w; Miller, N.

    2002-01-01

    In this work we compare fuzzy techniques to neural network techniques for building a soft sensor for a three-phase oil field centrifuge. The soft sensor is used in a feed-forward control system that augments a feedback control system. Two approaches were used to develop the soft sensor. The first approach was to use a fuzzy rule based system based upon the experience of an expert operator. The expert operator's experience was supplemented using a computer model of the system. The second approach was to use a neural network to build the inverse of the computer model. The pros and cons of both techniques are discussed. KEYWORDS: fuzzy logic, neural networks, soft sensor, soft computing

  19. Towards a sterile insect technique field release of Anopheles arabiensis mosquitoes in Sudan: Irradiation, transportation, and field cage experimentation

    PubMed Central

    Helinski, Michelle EH; Hassan, Mo'awia M; El-Motasim, Waleed M; Malcolm, Colin A; Knols, Bart GJ; El-Sayed, Badria

    2008-01-01

    Background The work described in this article forms part of a study to suppress a population of the malaria vector Anopheles arabiensis in Northern State, Sudan, with the Sterile Insect Technique. No data have previously been collected on the irradiation and transportation of anopheline mosquitoes in Africa, and the first series of attempts to do this in Sudan are reported here. In addition, experiments in a large field cage under near-natural conditions are described. Methods Mosquitoes were irradiated in Khartoum and transported as adults by air to the field site earmarked for future releases (400 km from the laboratory). The field cage was prepared for experiments by creating resting sites with favourable conditions. The mating and survival of (irradiated) laboratory males and field-collected males was studied in the field cage, and two small-scale competition experiments were performed. Results Minor problems were experienced with the irradiation of insects, mostly associated with the absence of a rearing facility in close proximity to the irradiation source. The small-scale transportation of adult mosquitoes to the release site resulted in minimal mortality (< 6%). Experiments in the field cage showed that mating occurred in high frequencies (i.e. an average of 60% insemination of females after one or two nights of mating), and laboratory reared males (i.e. sixty generations) were able to inseminate wild females at rates comparable to wild males. Based on wing length data, there was no size preference of males for mates. Survival of mosquitoes from the cage, based on recapture after mating, was satisfactory and approximately 60% of the insects were recaptured after one night. Only limited information on male competitiveness was obtained due to problems associated with individual egg laying of small numbers of wild females. Conclusion It is concluded that although conditions are challenging, there are no major obstacles associated with the small

  20. Towards a sterile insect technique field release of Anopheles arabiensis mosquitoes in Sudan: irradiation, transportation, and field cage experimentation.

    PubMed

    Helinski, Michelle E H; Hassan, Mo'awia M; El-Motasim, Waleed M; Malcolm, Colin A; Knols, Bart G J; El-Sayed, Badria

    2008-04-25

    The work described in this article forms part of a study to suppress a population of the malaria vector Anopheles arabiensis in Northern State, Sudan, with the Sterile Insect Technique. No data have previously been collected on the irradiation and transportation of anopheline mosquitoes in Africa, and the first series of attempts to do this in Sudan are reported here. In addition, experiments in a large field cage under near-natural conditions are described. Mosquitoes were irradiated in Khartoum and transported as adults by air to the field site earmarked for future releases (400 km from the laboratory). The field cage was prepared for experiments by creating resting sites with favourable conditions. The mating and survival of (irradiated) laboratory males and field-collected males was studied in the field cage, and two small-scale competition experiments were performed. Minor problems were experienced with the irradiation of insects, mostly associated with the absence of a rearing facility in close proximity to the irradiation source. The small-scale transportation of adult mosquitoes to the release site resulted in minimal mortality (< 6%). Experiments in the field cage showed that mating occurred in high frequencies (i.e. an average of 60% insemination of females after one or two nights of mating), and laboratory reared males (i.e. sixty generations) were able to inseminate wild females at rates comparable to wild males. Based on wing length data, there was no size preference of males for mates. Survival of mosquitoes from the cage, based on recapture after mating, was satisfactory and approximately 60% of the insects were recaptured after one night. Only limited information on male competitiveness was obtained due to problems associated with individual egg laying of small numbers of wild females. It is concluded that although conditions are challenging, there are no major obstacles associated with the small-scale irradiation and transportation of insects in

  1. Magnetic resonance spectroscopy editing techniques of coupled spin systems at high field

    NASA Astrophysics Data System (ADS)

    Snyder, Jeff

    Magnetic resonance spectroscopy (MRS) provides a non-invasive tool for investigating chemical concentrations in the human brain. The detection of metabolites is useful in understanding functional pathways in healthy and diseased states. Many important metabolites are composed of multiple interacting spins coupled through chemical bonds in the molecule. Whereas the observation of strong uncoupled (singlet) resonances is straightforward, complex coupling patterns and signal overlap often hinder the detection of coupled spin systems, rendering quantification problematic. One of the primary goals of this project is to investigate spectral editing techniques to detect coupled spin systems and provide a means for increasing the accuracy of quantification. A new method of spectral editing based on subtraction spectroscopy is proposed, which relies on signal differences at constant echo time (TE) produced by varying the inter-pulse delays in an asymmetric PRESS sequence. The method requires no spectrally selective pulses or multiple quantum filters, and can be easily implemented with a standard PRESS sequence. All non-varying spectral information is maintained, in contrast to other popular editing techniques. In terms of strongly coupled spin systems, the procedure is demonstrated for glutamate and glutamine discrimination, as well as simulated optimization of field strength for detection of several strongly coupled metabolites. To produce the necessary TE space variations for weakly coupled systems, the flip angle of the second refocusing pulse was varied. This technique was applied for the detection of gamma-aminobutyric acid, which is completely obscured at standard clinical field strengths. A second editing method investigated the optimization of PRESS timing parameters at multiple field strengths for the simultaneous detection of glutamate and glutamine in vivo, by maximizing the signal yield and minimizing the significant overlap at lower field strengths. Finally

  2. From superresolution to nanodetection: overview of far field optical nanoscopy techniques for nanostructures

    NASA Astrophysics Data System (ADS)

    Montgomery, P. C.; Leong-Hoi, A.; Anstotz, F.; Mitev, D.; Pramatarova, L.; Haeberlé, O.

    2016-02-01

    Far field optical nanoscopy has been brought to the forefront with the 2014 Nobel Prize for chemistry in fluorescent nanoscopy for revealing intra-cellular details of tens of nm. In this review, we present an improved classification scheme that summarizes the many optical nanoscopy techniques that exist. We place particular emphasis on unlabelledsuperresolution techniques that provide real improved resolving power and unlabellednanodetection techniques for characterizing unresolved nanostructures. Superresolution is illustrated with sub-100 nm imaging of diatoms with tomographic diffractive microscopyand adenoviruseswith submerged microsphere optical nanoscopy. Three sub-categories of nanodetectionare then presented. Contrast enhancement is illustrated with surface enhanced ellipsometric contrast microscopy for the study of bacterial motility and strobed phase contrast microscopy for measuring the mechanical properties of vesicle membranes. High sensitivity phase measurement using interference microscopy demonstrates how nanostructured surfaces and structures can be characterized in biomaterials, laser textured stainless steel and defects within thin polymer films. Finally, deconvolution is illustrated with the use of through-focus scanning optical microscopy in critical dimension measurement and characterization of 40 nm linewidths in microelectronic devices. In this way we show how new far field optical nanoscopy techniques are being developed for unlabelled characterization of nano and biomaterials.

  3. Advancement of an Infra-Red Technique for Whole-Field Concentration Measurements in Fluidized Beds

    PubMed Central

    Medrano, Jose A.; de Nooijer, Niek C. A.; Gallucci, Fausto; van Sint Annaland, Martin

    2016-01-01

    For a better understanding and description of the mass transport phenomena in dense multiphase gas-solids systems such as fluidized bed reactors, detailed and quantitative experimental data on the concentration profiles is required, which demands advanced non-invasive concentration monitoring techniques with a high spatial and temporal resolution. A novel technique based on the selective detection of a gas component in a gas mixture using infra-red properties has been further developed. The first stage development was carried out using a very small sapphire reactor and CO2 as tracer gas. Although the measuring principle was demonstrated, the real application was hindered by the small reactor dimensions related to the high costs and difficult handling of large sapphire plates. In this study, a new system has been developed, that allows working at much larger scales and yet with higher resolution. In the new system, propane is used as tracer gas and quartz as reactor material. In this study, a thorough optimization and calibration of the technique is presented which is subsequently applied for whole-field measurements with high temporal resolution. The developed technique allows the use of a relatively inexpensive configuration for the measurement of detailed concentration fields and can be applied to a large variety of important chemical engineering topics. PMID:26927127

  4. The derivation of vector magnetic fields from Stokes profiles - Integral versus least squares fitting techniques

    NASA Technical Reports Server (NTRS)

    Ronan, R. S.; Mickey, D. L.; Orrall, F. Q.

    1987-01-01

    The results of two methods for deriving photospheric vector magnetic fields from the Zeeman effect, as observed in the Fe I line at 6302.5 A at high spectral resolution (45 mA), are compared. The first method does not take magnetooptical effects into account, but determines the vector magnetic field from the integral properties of the Stokes profiles. The second method is an iterative least-squares fitting technique which fits the observed Stokes profiles to the profiles predicted by the Unno-Rachkovsky solution to the radiative transfer equation. For sunspot fields above about 1500 gauss, the two methods are found to agree in derived azimuthal and inclination angles to within about + or - 20 deg.

  5. The derivation of vector magnetic fields from Stokes profiles - Integral versus least squares fitting techniques

    NASA Technical Reports Server (NTRS)

    Ronan, R. S.; Mickey, D. L.; Orrall, F. Q.

    1987-01-01

    The results of two methods for deriving photospheric vector magnetic fields from the Zeeman effect, as observed in the Fe I line at 6302.5 A at high spectral resolution (45 mA), are compared. The first method does not take magnetooptical effects into account, but determines the vector magnetic field from the integral properties of the Stokes profiles. The second method is an iterative least-squares fitting technique which fits the observed Stokes profiles to the profiles predicted by the Unno-Rachkovsky solution to the radiative transfer equation. For sunspot fields above about 1500 gauss, the two methods are found to agree in derived azimuthal and inclination angles to within about + or - 20 deg.

  6. An exactly solvable Ogston model of gel electrophoresis: X. Application to high-field separation techniques.

    PubMed

    Gauthier, Michel G; Slater, Gary W

    2003-01-01

    Recently, we generalized our lattice model of gel electrophoresis to study the net velocity of particles being pulled by a high-intensity electric field through an arbitrary distribution of immobile obstacles (Gauthier, M. G., Slater, G. W., J. Chem. Phys. 2002, 117, 6745-6756). In this article, we show how the high-field version of our model can be used to compare the velocity of particles with different electric charges and/or physical sizes. We then investigate specific two-dimensional distributions of obstacles that can be used to separate particles, e.g., in a microfluidic device. More precisely, we compare the velocity of differently charged or sized analytes in sieving, trapping and deflecting systems to model various electrophoretic separation techniques. In particular, we study the nonlinear effects present in ratchet systems and how they can be combined with time-asymmetric pulsed fields to provide new modes of separation.

  7. New approach to estimating variability in visual field data using an image processing technique.

    PubMed Central

    Crabb, D P; Edgar, D F; Fitzke, F W; McNaught, A I; Wynn, H P

    1995-01-01

    AIMS--A new framework for evaluating pointwise sensitivity variation in computerised visual field data is demonstrated. METHODS--A measure of local spatial variability (LSV) is generated using an image processing technique. Fifty five eyes from a sample of normal and glaucomatous subjects, examined on the Humphrey field analyser (HFA), were used to illustrate the method. RESULTS--Significant correlation between LSV and conventional estimates--namely, HFA pattern standard deviation and short term fluctuation, were found. CONCLUSION--LSV is not dependent on normals' reference data or repeated threshold determinations, thus potentially reducing test time. Also, the illustrated pointwise maps of LSV could provide a method for identifying areas of fluctuation commonly found in early glaucomatous field loss. PMID:7703196

  8. Visualizing the blind brain: brain imaging of visual field defects from early recovery to rehabilitation techniques

    PubMed Central

    Urbanski, Marika; Coubard, Olivier A.; Bourlon, Clémence

    2014-01-01

    Visual field defects (VFDs) are one of the most common consequences observed after brain injury, especially after a stroke in the posterior cerebral artery territory. Less frequently, tumors, traumatic brain injury, brain surgery or demyelination can also determine various visual disabilities, from a decrease in visual acuity to cerebral blindness. Visual field defects is a factor of bad functional prognosis as it compromises many daily life activities (e.g., obstacle avoidance, driving, and reading) and therefore the patient’s quality of life. Spontaneous recovery seems to be limited and restricted to the first 6 months, with the best chance of improvement at 1 month. The possible mechanisms at work could be partly due to cortical reorganization in the visual areas (plasticity) and/or partly to the use of intact alternative visual routes, first identified in animal studies and possibly underlying the phenomenon of blindsight. Despite processes of early recovery, which is rarely complete, and learning of compensatory strategies, the patient’s autonomy may still be compromised at more chronic stages. Therefore, various rehabilitation therapies based on neuroanatomical knowledge have been developed to improve VFDs. These use eye-movement training techniques (e.g., visual search, saccadic eye movements), reading training, visual field restitution (the Vision Restoration Therapy, VRT), or perceptual learning. In this review, we will focus on studies of human adults with acquired VFDs, which have used different imaging techniques (Positron Emission Tomography, PET; Diffusion Tensor Imaging, DTI; functional Magnetic Resonance Imaging, fMRI; Magneto Encephalography, MEG) or neurostimulation techniques (Transcranial Magnetic Stimulation, TMS; transcranial Direct Current Stimulation, tDCS) to show brain activations in the course of spontaneous recovery or after specific rehabilitation techniques. PMID:25324739

  9. Singular Stokes-polarimetry as new technique for metrology and inspection of polarized speckle fields

    NASA Astrophysics Data System (ADS)

    Soskin, Marat S.; Denisenko, Vladimir G.; Egorov, Roman I.

    2004-08-01

    Polarimetry is effective technique for polarized light fields characterization. It was shown recently that most full "finger-print" of light fields with arbitrary complexity is network of polarization singularities: C points with circular polarization and L lines with variable azimuth. The new singular Stokes-polarimetry was elaborated for such measurements. It allows define azimuth, eccentricity and handedness of elliptical vibrations in each pixel of receiving CCD camera in the range of mega-pixels. It is based on precise measurement of full set of Stokes parameters by the help of high quality analyzers and quarter-wave plates with λ/500 preciseness and 4" adjustment. The matrices of obtained data are processed in PC by special programs to find positions of polarization singularities and other needed topological features. The developed SSP technique was proved successfully by measurements of topology of polarized speckle-fields produced by multimode "photonic-crystal" fibers, double side rubbed polymer films, biomedical samples. Each singularity is localized with preciseness up to +/- 1 pixel in comparison with 500 pixels dimensions of typical speckle. It was confirmed that network of topological features appeared in polarized light field after its interaction with specimen under inspection is exact individual "passport" for its characterization. Therefore, SSP can be used for smart materials characterization. The presented data show that SSP technique is promising for local analysis of properties and defects of thin films, liquid crystal cells, optical elements, biological samples, etc. It is able discover heterogeneities and defects, which define essentially merits of specimens under inspection and can"t be checked by usual polarimetry methods. The detected extra high sensitivity of polarization singularities position and network to any changes of samples position and deformation opens quite new possibilities for sensing of deformations and displacement of

  10. New techniques for the scientific visualization of three-dimensional multi-variate and vector fields

    SciTech Connect

    Crawfis, Roger A.

    1995-10-01

    Volume rendering allows us to represent a density cloud with ideal properties (single scattering, no self-shadowing, etc.). Scientific visualization utilizes this technique by mapping an abstract variable or property in a computer simulation to a synthetic density cloud. This thesis extends volume rendering from its limitation of isotropic density clouds to anisotropic and/or noisy density clouds. Design aspects of these techniques are discussed that aid in the comprehension of scientific information. Anisotropic volume rendering is used to represent vector based quantities in scientific visualization. Velocity and vorticity in a fluid flow, electric and magnetic waves in an electromagnetic simulation, and blood flow within the body are examples of vector based information within a computer simulation or gathered from instrumentation. Understand these fields can be crucial to understanding the overall physics or physiology. Three techniques for representing three-dimensional vector fields are presented: Line Bundles, Textured Splats and Hair Splats. These techniques are aimed at providing a high-level (qualitative) overview of the flows, offering the user a substantial amount of information with a single image or animation. Non-homogenous volume rendering is used to represent multiple variables. Computer simulations can typically have over thirty variables, which describe properties whose understanding are useful to the scientist. Trying to understand each of these separately can be time consuming. Trying to understand any cause and effect relationships between different variables can be impossible. NoiseSplats is introduced to represent two or more properties in a single volume rendering of the data. This technique is also aimed at providing a qualitative overview of the flows.

  11. High Pressure Techniques for Low Temperature Studies in DC and Pulsed Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Tozer, S. W.

    Pressure can be used to expand the parameter space available in almost any experiment and allows for the continuous tuning of the electrical and orbital properties of a material. When combined with low temperatures and high magnetic fields, it becomes a powerful tool for the exploration of the band structure and defect levels in semiconductors, exotic transport mechanisms in molecular conductors, and the coexistence of magnetism and superconductivity. We have developed a variety of miniature pressure cells to allow the user to take full advantage of these opportunities. Metallic diamond anvil cells as small as 6 mm in diameter and 8 mm in height allow the sample to be rotated in field at millikelvin temperatures. Miniature plastic DACs and sapphire ball cells, rotators, and specialized He-4 and He-3 systems have also been developed to provide similar experimental capabilities in pulsed magnetic fields. Methods and designs to generate hydrostatic pressure and techniques to perform optical and electrical measurements in DC and pulsed fields will be presented. We would like to acknowledge the technical assistance of Richard Desilets, Howard Kolb, John Farrell, and Mike Pacheco. A portion of this work was performed at the National High Magnetic Field Laboratory, which is sponsored by NSF Cooperative Agreement No. DMR-9527035 and by the State of Florida.

  12. High Pressure Techniques for Low Temperature Studies in DC and Pulsed Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Tozer, S. W.

    2002-07-01

    Pressure can be used to expand the parameter space available in almost any experiment and allows for the continuous tuning of the electrical and orbital properties of a material. When combined with low temperatures and high magnetic fields, it becomes a powerful tool for the exploration of the band structure and defect levels in semiconductors, exotic transport mechanisms in molecular conductors, and the coexistence of magnetism and superconductivity. We have developed a variety of miniature pressure cells to allow the user to take full advantage of these opportunities. Metallic diamond anvil cells as small as 6 mm in diameter and 8 mm in height allow the sample to be rotated in field at millikelvin temperatures. Miniature plastic DACs and sapphire ball cells, rotators, and specialized He-4 and He-3 systems have also been developed to provide similar experimental capabilities in pulsed magnetic fields. Methods and designs to generate hydrostatic pressure and techniques to perform optical and electrical measurements in DC and pulsed fields will be presented. We would like to acknowledge the technical assistance of Richard Desilets, Howard Kolb, John Farrell, and Mike Pacheco. A portion of this work was performed at the National High Magnetic Field Laboratory, which is sponsored by NSF Cooperative Agreement No. DMR-9527035 and by the State of Florida.

  13. Computerized tomography technique for reconstruction of obstructed temperature field in infrared thermography

    NASA Astrophysics Data System (ADS)

    Sham, F. C.; Huang, Y. H.; Liu, L.; Chen, Y. S.; Hung, Y. Y.; Lo, T. Y.

    2010-01-01

    Infrared thermography is a rapid, non-invasive and full-field technique for non-destructive testing and evaluation (NDT&E). With all the achievements on IR instrumentation and image processing techniques attained, it has been extended far beyond simple hot-spot detection and becomes one of the most promising NDT&E techniques in the last decades. It has achieved increasing acceptance in different sectors include medical imaging, manufacturing component fault detection and buildings diagnostic. However, one limitation of IR thermography is that the testing results are greatly affected by object surface emissivity. Surface with various emissivities may lead to difficult discrimination between area of defect and area with different emissivity. Therefore, many studies have been carried out on eliminating emissivity, for example, the time derivative approach, lock-in processing and differential contrast measurements. In these methods, sequence of themo-data/images are recorded and being processed in order to eliminate differences of emissivity. Another problem of IR thermography is that any obstruction may limit stimulations and imaging which leads to the observation of unclear defect image. To solve this problem, this paper proposes an algorithm based on the principle of computerized tomography which permits the reconstruction of unavailable/partially available temperature distribution of the affected area using the measured surrounding temperature field. In the process, a set of imaginary rays are projected from many different directions across the area. For each ray, integration of the temperature derivatives along the ray is equals to the temperature difference between the boundary points intercepted by the ray. Therefore, a set of linear equations can be established by considering the multiple rays. Each equation expresses the unknown temperature derivatives in the affected area in terms of the measured boundary temperature data. Solution of the set of simultaneous

  14. Near-field Light Scattering Techniques for Measuring Nanoparticle-Surface Interaction Energies and Forces

    PubMed Central

    O'Dell, Dakota; Adam, Ian S.; DiPaolo, Brian; Sabharwal, Manit; Shi, Ce; Hart, Robert; Earhart, Christopher; Erickson, David

    2015-01-01

    Nanoparticles are quickly becoming commonplace in many commercial and industrial products, ranging from cosmetics to pharmaceuticals to medical diagnostics. Predicting the stability of the engineered nanoparticles within these products a priori remains an important and difficult challenge. Here we describe our techniques for measuring the mechanical interactions between nanoparticles and surfaces using near-field light scattering. Particle-surface interfacial forces are measured by optically “pushing” a particle against a reference surface and observing its motion using scattered near-field light. Unlike atomic force microscopy, this technique is not limited by thermal noise, but instead takes advantage of it. The integrated waveguide and microfluidic architecture allow for high-throughput measurements of about 1000 particles per hour. We characterize the reproducibility of and experimental uncertainty in the measurements made using the NanoTweezer surface instrument. We report surface interaction studies on gold nanoparticles with 50 nm diameters, smaller than previously reported in the literature using similar techniques. PMID:26855473

  15. Analyzing the field of bioinformatics with the multi-faceted topic modeling technique.

    PubMed

    Heo, Go Eun; Kang, Keun Young; Song, Min; Lee, Jeong-Hoon

    2017-05-31

    Bioinformatics is an interdisciplinary field at the intersection of molecular biology and computing technology. To characterize the field as convergent domain, researchers have used bibliometrics, augmented with text-mining techniques for content analysis. In previous studies, Latent Dirichlet Allocation (LDA) was the most representative topic modeling technique for identifying topic structure of subject areas. However, as opposed to revealing the topic structure in relation to metadata such as authors, publication date, and journals, LDA only displays the simple topic structure. In this paper, we adopt the Tang et al.'s Author-Conference-Topic (ACT) model to study the field of bioinformatics from the perspective of keyphrases, authors, and journals. The ACT model is capable of incorporating the paper, author, and conference into the topic distribution simultaneously. To obtain more meaningful results, we use journals and keyphrases instead of conferences and bag-of-words.. For analysis, we use PubMed to collected forty-six bioinformatics journals from the MEDLINE database. We conducted time series topic analysis over four periods from 1996 to 2015 to further examine the interdisciplinary nature of bioinformatics. We analyze the ACT Model results in each period. Additionally, for further integrated analysis, we conduct a time series analysis among the top-ranked keyphrases, journals, and authors according to their frequency. We also examine the patterns in the top journals by simultaneously identifying the topical probability in each period, as well as the top authors and keyphrases. The results indicate that in recent years diversified topics have become more prevalent and convergent topics have become more clearly represented. The results of our analysis implies that overtime the field of bioinformatics becomes more interdisciplinary where there is a steady increase in peripheral fields such as conceptual, mathematical, and system biology. These results are

  16. Comparing and Reconciling Traditional Field and Photogeologic Mapping Techniques: Lessons from the San Francisco Volcanic Field, Arizona

    NASA Technical Reports Server (NTRS)

    Skinner, J. A., Jr.; Eppler, D. B.; Bleacher, J. E.; Evans, C. A.; Feng, W.; Gruener, J.; Hurwitz, D. M.; Janoiko, B.; Whitson, P.

    2014-01-01

    Cartographic products and - specifically - geologic maps provide critical assistance for establishing physical and temporal frameworks of planetary surfaces. The technical methods that result in the creation of geologic maps vary depending on how observations are made as well as the overall intent of the final products [1-3]. These methods tend to follow a common linear work flow, including the identification and delineation of spatially and temporally discrete materials (units), the documentation of their primary (emplacement) and secondary (erosional) characteristics, analysis of the relative and absolute age relationships between these materials, and the collation of observations and interpretations into an objective map product. The "objectivity" of a map is critical cross comparison with overlapping maps and topical studies as well as its relevance to scientific posterity. However, the "accuracy" and "correctness" of a geologic map is very subject to debate. This can be evidenced by comparison of existing geologic maps at various scales, particularly those compiled through field- and remote-based mapped efforts. Our study focuses on comparing the fidelity of (1) "Apollo-style" geologic investigations, where typically non-geologist crew members follow static traverse routes established through pre-mission planning, and (2) "traditional" field-based investigations, where geologists are given free rein to observe without preplanned routes. This abstract summarizes the regional geology wherein our study was conducted, presents the geologic map created from traditional field mapping techniques, and offers basic insights into how geologic maps created from different tactics can be reconciled in support of exploratory missions. Additional abstracts [4-6] from this study discuss various exploration and science results of these efforts.

  17. Investigation of the flow field inside flat-plate collector tube using PIV technique

    SciTech Connect

    Sookdeo, Steven; Siddiqui, Kamran

    2010-06-15

    The thermofluid process inside the tube of flat-plate collectors is complex because the non-uniform heating of the tube results in the formation of stably and unstably stratified layers of fluid that interact with each other. The measurement and investigation of the flow behaviour inside the collector tube is very challenging. We report on a novel application of the particle image velocimetry (PIV) technique to remotely measure the velocity field inside the collector tube. The two-dimensional velocity fields were measured in the midplane of a collector tube for the Reynolds number range of 150-900 at unheated and four different heating conditions. We have presented and discussed in detail the technique implementation and the associated challenges. The results have shown that the collector heating significantly alters the structure and magnitude of the mean velocity field and influences the heat transfer to the fluid. It is observed that the collector heating causes a significant asymmetry in the mean velocity profiles over the given range of Reynolds numbers and heating conditions. (author)

  18. A technique for modeling the Earth's gravity field on the basis of satellite accelerations

    NASA Astrophysics Data System (ADS)

    Ditmar, P.; Sluijs, A. A. Van Eck Van Der

    2004-09-01

    A technique is proposed for Earth’s gravity field modeling on the basis of satellite accelerations that are derived from precise orbit data. The functional model rests on Newton’s second law. The computational procedure is based on the pre-conditioned conjugate-gradient (PCCG) method. The data are treated as weighted average accelerations rather than as point-wise ones. As a result, a simple three-point numerical differentiation scheme can be used to derive them. Noise in the orbit-derived accelerations is strongly dependent on frequency. Therefore, the key element of the proposed technique is frequency-dependent data weighting. Fast convergence of the PCCG procedure is ensured by a block-diagonal pre-conditioner (approximation of the normal matrix), which is derived under the so-called Colombo assumptions. Both uninterrupted data sets and data with gaps can be handled. The developed technique is compared with other approaches: (1) the energy balance approach (based on the energy conservation law) and (2) the traditional approach (based on the integration of variational equations). Theoretical considerations, supported by a numerical study, show that the proposed technique is more accurate than the energy balance approach and leads to approximately the same results as the traditional one. The former finding is explained by the fact that the energy balance approach is only sensitive to the along-track force component. Information about the cross-track and the radial component of the gravitational potential gradient is lost because the corresponding force components do no work and do not contribute to the energy balance. Furthermore, it is shown that the proposed technique is much (possibly, orders of magnitude) faster than the traditional one because it does not require the computation of the normal matrix. Hints are given on how the proposed technique can be adapted to the explicit assembling of the normal matrix if the latter is needed for the computation of

  19. A field study on the validity of the Quadri-Track Zone Comparison Technique.

    PubMed

    Mangan, Daniel J; Armitage, Thomas E; Adams, Gregory C

    2008-09-03

    This field study tested and demonstrated the validity and reliability of the Quadri-Track Zone Comparison Technique designed for specific Single-Issue Psychophysiological Veracity (PV) examinations using the polygraph, using one hundred and forty confirmed real-life cases from a private polygraph firm under contract with a metropolitan police department. The Quadri-Track Zone Comparison Technique's unique Inside Track accurately increased the scores for the innocent by 43.6% and the guilty by 37.1% thereby reducing the overall inconclusive rate from 19.5% to 1.4%, which effectively remedies the major cause (Fear/Hope of Error) of inconclusive results in single-issue polygraph tests. The Quadri-Track Zone Comparison Technique correctly identified 100% of the innocent as truthful with no inconclusives and no errors. It further correctly identified 97.8% of the guilty as deceptive and 2.2% as inconclusive, with no errors. Inconclusives excluded, the Quadri-Track Zone Comparison Technique was 100% accurate in the identification of the innocent and the guilty. Inconclusives included, the utility rate was 98.6%. Blind scoring of polygraph charts showed extremely high correlations for the individual and total scores with a combined accuracy of 98.3%.

  20. A Controlled Field Pilot for Testing Near Surface CO2 Detection Techniques and Transport Models

    NASA Astrophysics Data System (ADS)

    Spangler, L. H.; Dobeck, L.

    2007-12-01

    A field facility has been developed to allow controlled studies of near surface CO2transport and detection technologies. The key component of the facility is a shallow horizontal, well slotted over 70m of its length and divided into seven zones via packers with mass flow control in each individual zone. The scale and fluxes were designed to address large scale CO2 storage projects and desired retention rates for those projects and those design parameters will be discussed. A wide variety of detection techniques were deployed by collaborators from Los Alamos National Lab, Lawrence Berkeley National Lab, the National Energy Technology Lab, Pacific Northwest National Lab, Lawrence Livermore National Lab and West Virginia University. Techniques included eddy covariance, soil gas measurements, hyperspectral imaging for plant stress detection, differential absorption LIDAR (both free space atmospheric and below surface soil gas), tracer studies, water sampling, stable isotope studies, and soil flux chambers. An overview of these results will be presented.

  1. Gravity field fine structure estimation techniques for a spaceborne gravity gradiometer

    NASA Technical Reports Server (NTRS)

    Kahn, W. D.; Englar, T. S., Jr.

    1987-01-01

    Use of standard estimation techniques to recover geopotential fine structure from gradiometer data requires the adjustment of small subsets of parameters while constraining others to their a priori values in order to minimize the computational load. Here, gravitational anomalies are selected as a parametrization of the gravity field which permits such an approach. Techniques coupled with numerical results for a spaceborne gravity gradiometer mission simulation are described which demonstrate that if a satellite is in a polar/circular orbit at an altitude of 160 km, 1 deg mean free air gravity anomalies can be recovered to an accuracy of 0.4 mgal, where 1 mgal = 0.001 cm/sq s.

  2. Protein Structure: Alignment using Mean Field Techniques and Measurement of Isolated Individual Molecules

    SciTech Connect

    Blankenbecler, Richard

    2003-03-13

    Techniques originally developed in High Energy Physics have been applied to selected problems in genetics with promising results. First, this talk will briefly review the importance of protein structure from a physics point of view. Then Mean Field Techniques used in detector track fitting algorithms will be applied to the comparison of protein structures. The practical importance of such comparisons will be discussed. Second, the possibility of measuring the charge structure of ''single'' isolated molecules using the proposed SLAC Free Electron Laser will be outlined. This involves the development of an algorithm that determines the orientation of each of the many targeted identical molecules, constructs the 3-D transform from the many 2-D patterns, and finally performs an inverse fourier transform when only the magnitude of the transform is known, since the phase is not measurable.

  3. Detection and Isolation Techniques for Methanogens from Microbial Mats (in the El Tatio Geyser Field, Chile)

    NASA Astrophysics Data System (ADS)

    Pearson, E. Z.; Franks, M. A.; Bennett, P.

    2010-12-01

    Isolating methanogenic archea from an extreme environment such as El Tatio (high altitude, arid climate) gives insight to the methanogenic taxas able to adapt and grow under extreme conditions. The hydrothermal waters at El Tatio geyser field demonstrate extreme geochemical conditions, with discharge water from springs and geysers at local boiling temperature (85° C) with high levels of arsenic and low DIC levels. Despite these challenges, many of El Tatio’s hundred plus hydrothermal features host extensive microbial mat communities, many showing evidence of methanogenesis. When trying to isolate methanogens unique to this area, various approaches and techniques were used. To detect the presence of methanogens in samples taken from the field, dissolved methane concentrations were determined via gas chromatography (GC) analysis. Samples were then selected for culturing and most probable number (MPN) enumeration, where growth was assessed using both methane production and observations of fluorescence under UV light. PCR was used to see if the archeal DNA was apparent directly from the field, and shotgun cloning was done to determine phylogenetic affiliation. Several culturing techniques were carried out in an attempt to isolate methanogens from samples that showed evidence of methanogenesis. The slant culturing method was used because of the increased surface area for colonization combined with the relative ease of keeping anaerobic. After a few weeks, when colonies were apparent, some were aseptically selected and inoculated to observe growth in a liquid media containing ampicillin to inhibit bacterial growth. Culturing techniques proved successful after inoculation, showing a slow growth of methanogens via GC and autofluorescence. Further PCR tests and subsequent sequencing were done to confirm and identify isolates.

  4. New experimental technique for the measurement of the velocity field in thin films falling over obstacles

    NASA Astrophysics Data System (ADS)

    Landel, Julien R.; Daglis, Ana; McEvoy, Harry; Dalziel, Stuart B.

    2014-11-01

    We present a new experimental technique to measure the surface velocity of a thin falling film. Thin falling films are important in various processes such as cooling in heat exchangers or cleaning processes. For instance, in a household dishwasher cleaning depends on the ability of a thin draining film to remove material from a substrate. We are interested in the impact of obstacles attached to a substrate on the velocity field of a thin film flowing over them. Measuring the velocity field of thin falling films is a challenging experimental problem due to the small depth of the flow and the large velocity gradient across its depth. We propose a new technique based on PIV to measure the plane components of the velocity at the surface of the film over an arbitrarily large area and an arbitrarily large resolution, depending mostly on the image acquisition technique. We perform experiments with thin films of water flowing on a flat inclined surface, made of glass or stainless steel. The typical Reynolds number of the film is of the order of 100 to 1000, computed using the surface velocity, the film thickness and the kinematic viscosity of the film. We measure the modification to the flow field, from a viscous-gravity regime, caused by small solid obstacles, such as three-dimensional hemispherical obstacles and two-dimensional steps. We compare our results with past theoretical and numerical studies. This material is based upon work supported by the Defense Threat Reduction Agency under Contract No. HDTRA1-12-D-0003-0001.

  5. A planar near-field scanning technique for bistatic radar cross section measurements

    NASA Technical Reports Server (NTRS)

    Tuhela-Reuning, S.; Walton, E. K.

    1990-01-01

    A progress report on the development of a bistatic radar cross section (RCS) measurement range is presented. A technique using one parabolic reflector and a planar scanning probe antenna is analyzed. The field pattern in the test zone is computed using a spatial array of signal sources. It achieved an illumination pattern with 1 dB amplitude and 15 degree phase ripple over the target zone. The required scan plane size is found to be proportional to the size of the desired test target. Scan plane probe sample spacing can be increased beyond the Nyquist lambda/2 limit permitting constant probe sample spacing over a range of frequencies.

  6. A controlled field pilot for testing near surface CO2 detection techniques and transport models

    USGS Publications Warehouse

    Spangler, L.H.; Dobeck, L.M.; Repasky, K.; Nehrir, A.; Humphries, S.; Keith, C.; Shaw, J.; Rouse, J.; Cunningham, A.; Benson, S.; Oldenburg, C.M.; Lewicki, J.L.; Wells, A.; Diehl, R.; Strazisar, B.; Fessenden, J.; Rahn, Thomas; Amonette, J.; Barr, J.; Pickles, W.; Jacobson, J.; Silver, E.; Male, E.; Rauch, H.; Gullickson, K.; Trautz, R.; Kharaka, Y.; Birkholzer, J.; Wielopolski, L.

    2009-01-01

    A field facility has been developed to allow controlled studies of near surface CO2 transport and detection technologies. The key component of the facility is a shallow, slotted horizontal well divided into six zones. The scale and fluxes were designed to address large scale CO2 storage projects and desired retention rates for those projects. A wide variety of detection techniques were deployed by collaborators from 6 national labs, 2 universities, EPRI, and the USGS. Additionally, modeling of CO2 transport and concentrations in the saturated soil and in the vadose zone was conducted. An overview of these results will be presented. ?? 2009 Elsevier Ltd. All rights reserved.

  7. Probing plasmonic hot spots on single gold nanowires using combined near-field techniques

    NASA Astrophysics Data System (ADS)

    Hsia, Patrick; Douillard, Ludovic; Charra, Fabrice; Marguet, Sylvie; Kostcheev, Sergei; Bachelot, Renaud J. B.; Fiorini-Debuisschert, Céline

    2015-08-01

    The plasmonic properties of individual gold nanowires (NW) have been investigated using both two-photon luminescence (2PL) coupled to atomic force microscopy (AFM) and photoemission electron microscopy (PEEM) associated to low-energy electron microscopy (LEEM) measurements. Using these complementary near-field characterization techniques, comparative studies between wires made either by colloidal chemistry (CC) or by e-beam lithography (EBL) have been undertaken towards a better understanding of the role of the wires crystallinity regarding its optical properties. Considering comparable excitation conditions, we show that wires made by colloidal synthesis exhibits quite similar field enhancement effects ("hot spots") as EBL NW, however their 2PL emission spectrum clearly reveals their crystalline properties.

  8. Investigation of Phototriangulation Accuracy with Using of Various Techniques Laboratory and Field Calibration

    NASA Astrophysics Data System (ADS)

    Chibunichev, A. G.; Kurkov, V. M.; Smirnov, A. V.; Govorov, A. V.; Mikhalin, V. A.

    2016-10-01

    Nowadays, aerial survey technology using aerial systems based on unmanned aerial vehicles (UAVs) becomes more popular. UAVs physically can not carry professional aerocameras. Consumer digital cameras are used instead. Such cameras usually have rolling, lamellar or global shutter. Quite often manufacturers and users of such aerial systems do not use camera calibration. In this case self-calibration techniques are used. However such approach is not confirmed by extensive theoretical and practical research. In this paper we compare results of phototriangulation based on laboratory, test-field or self-calibration. For investigations we use Zaoksky test area as an experimental field provided dense network of target and natural control points. Racurs PHOTOMOD and Agisoft PhotoScan software were used in evaluation. The results of investigations, conclusions and practical recommendations are presented in this article.

  9. Time-domain incident-field extrapolation technique based on the singularity-expansion method

    SciTech Connect

    Klaasen, J.J.

    1991-05-01

    In this report, a method presented to extrapolate measurements from Nuclear Electromagnetic Pulse (NEMP) assessments directly in the time domain. This method is based on a time-domain extrapolation function which is obtained from the Singularity Expansion Method representation of the measured incident field of the NEMP simulator. Once the time-domain extrapolation function is determined, the responses recorded during an assessment can be extrapolated simply by convolving them with the time domain extrapolation function. It is found that to obtain useful extrapolated responses, the incident field measurements needs to be made minimum phase; otherwise unbounded results can be obtained. Results obtained with this technique are presented, using data from actual assessments.

  10. Development and validation of inversion technique for substorm current wedge using ground magnetic field data

    NASA Astrophysics Data System (ADS)

    Chu, Xiangning; Hsu, Tung-Shin; McPherron, Robert L.; Angelopoulos, Vassilis; Pu, Zuyin; Weygand, James J.; Khurana, Krishan; Connors, Martin; Kissinger, Jennifer; Zhang, Hui; Amm, Olaf

    2014-03-01

    The classic substorm current wedge model represents ground and space magnetic perturbations measured during substorms. We have developed an inversion technique to calculate parameters determining the intensity and geometry of the current system using magnetic field data at midlatitudes. The current wedge consists of four segments: a sheet-like field-aligned current downward to the ionosphere postmidnight, a westward current across the auroral bulge, an upward sheet-like current from the westward surge premidnight, and an eastward current in the equatorial plane. The model has five parameters including the current strength, the locations, and breadths of the two field-aligned current sheets. Simultaneous changes in the ring current are represented by the superposition of a symmetric ring current and a partial ring current characterized by three additional parameters. Parameters of the model are determined as a function of time based on midlatitude ground magnetometers, using realistic field lines and accounting for Earth's induction. The model is validated by a variety of techniques. First, the model predicts more than 80% of the variance in the observations. Second, the intensity of the current wedge and the ring current follows the same trends of the westward electrojet and the ring current indices. Third, the intensity of the westward electrojet agrees extremely well with the intensity of the current wedge. Finally, spacecraft observations of the aurora correspond with the evolution deduced from the model. This model of the substorm current wedge provides a valuable tool for the study of substorm development and its relation to phenomena in space.

  11. Estimation of rainfall field by combining radar data and raingauge observations: the modified conditional merging technique

    NASA Astrophysics Data System (ADS)

    Pignone, Flavio; Rebora, Nicola

    2014-05-01

    Estimation of rainfall field by combining radar data and raingauge observations: the modified conditional merging technique N. Rebora, F. Pignone, F. Silvestro The estimation of rainfall fields, especially its spatial distribution and position is a crucial task both for rainfall nowcasting and for modeling catchment response to rainfall. Some studies of literature about multisensor datafusion prove that combining data from raingauges and radar represents the best way to obtain an enhanced ad more reliable estimation of QPE and of the associated river discharge. Sinclair and Peagram (2004) have proposed the Conditional Merging (CM) technique, a merging algorithm which extract the information content from the observed data and use it within an interpolation method to obtain the rainfall maps. The raingauges provide a punctual measure of the observed "real" rainfall while the remote sensors (radar network or satellite constellation) supply rainfall estimation maps which give an idea of the correlation and structure of covariance of the observed field. In this work is studied an enhanced algorithm based on CM, called Modified Conditional Merging, which can be used in real-time to produce the optimal rainfall maps. The area of interest is Italy, where are both available a dense network of raingauge measurements (about 2000 stations) and a QPE estimated by the Italian Radar composite. The main innovation respect to classical CM is to estimate the structure of covariance and the length of spatial correlation λ, for every raingauge, directly from the cumulated radar rainfall fields. The advantages of this method is to estimate the local characteristic of the domain to obtain information at smaller scale, very useful for convective events. An operative use and a validation are presented and discussed.

  12. A supine cranio-spinal irradiation technique using moving field junctions

    NASA Astrophysics Data System (ADS)

    Mani, Karthick Raj; Sapru, Shantanu; Maria Das, K. J.; Basu, Ayan

    2016-12-01

    Aim: To demonstrate a simple technique of cranio-spinal irradiation (CSI) in supine position using inter fraction moving field junctions to feather out any potential hot and cold spots. Materials and Methods: Fifteen patients diagnosed with medulloblastoma were treated during the period February 2011 to June 2015 were included in this study. Out of fifteen patients in the study nine were male and 6 were female with a median age of 13.4 years (range 5-27 years). All the patients were positioned supine on CT simulation, immobilized using thermoplastic mask and aligned using room based laser system. Two parallel opposed lateral fields for the whole brain using an asymmetrical jaw with isocenter at C2 vertebral body. A posterior field also placed to cover the cervical and dorsal field using the same isocenter at C2. The second isocenter was placed at lumbar vertebral region to cover the remaining dorsal, lumbar and sacral region using an inter-fraction moving junction. Field-in-field and enhanced dynamic wedge used to homogeneous dose distribution when required. Results and Discussion: In this study, we found that only two patients failed in the primary site, no radiation myelitis or recurrences in the filed junctions were reported in these fifteen patients with a median follow-up of 36.4 months. The automated sequence of treatment plans with moving junctions in the comfortable supine position negating the need for manual junction matching or junction shifts avoiding potential treatment errors and also facilitating delivery of anesthesia where necessary.

  13. Development and application of color schlieren technique for investigation of three-dimensional concentration field

    NASA Astrophysics Data System (ADS)

    Srivastava, Atul

    2013-11-01

    The present work describes the development and application of rainbow schlieren deflectometry technique for the investigation of the three-dimensional concentration field around a crystal growing from its aqueous solution. The imaging technique employs a diverging beam of light to record the projection data of the concentration field. In contrast to the conventional schlieren methods, the present system makes use of a microscopic objective lens to act as the de-collimating lens for focusing the light beam onto the color filter to get the desired schlieren effect. In order to record the projection data of the concentration field from different view angles for tomographic reconstruction, the experiments are conducted in an octagonal growth cell. Detailed quantitative analysis of the schlieren images has then been carried out for each view angle to determine the path-integrated concentration distribution. Principles of tomography have been employed for the reconstruction of concentration field at select horizontal planes above the growing crystal. Results have been presented in the form of rainbow schlieren images of the convective field, path-averaged solute concentration distribution around the growing for each view angle and local concentration distribution at select horizontal planes above the crystal top surface. Recorded color schlieren images have been compared with those of the conventional monochrome schlieren and interferometric techniques for the same experimental conditions. The extent of color re-distribution as seen from the recorded rainbow schlieren images correlate well with the bright intensity regions of monochrome schlieren images and the extent of fringe deformation in the interferometric images. The comparison has been performed for a small as well as a comparatively larger-sized crystal. For small sized-crystal, the observed color redistribution is seen to be weak and restricted to the crystal vicinity only whereas the color changes are more

  14. Combined acquisition technique (CAT) for high-field neuroimaging with reduced RF power.

    PubMed

    Choli, Morwan; Blaimer, Martin; Breuer, Felix A; Ehses, Philipp; Speck, Oliver; Bartsch, Andreas J; Jakob, Peter M

    2013-08-01

    Clinical 3 T MRI systems are rapidly increasing and MRI systems with a static field of 7 T or even more have been installed. The RF power deposition is proportional to the square of the static magnetic field strength and is characterized by the specific absorption rate (SAR). Therefore, there exist defined safety limits to avoid heating of the patient. Here, we describe a hybrid method to significantly reduce the SAR compared to a turbo-spin-echo (TSE) sequence. We investigate the potential benefits of a combined acquisition technique (CAT) for high-field neuroimaging at 3 and 7 T. The TSE/EPI CAT experiments were performed on volunteers and patients and compared with standard TSE and GRASE protocols. Problems and solutions regarding T2 weighted CAT imaging are discussed. We present in vivo images with T2 and proton density contrast obtained on 3 and 7 T with significant SAR reduction (up to 60%) compared with standard TSE. Image quality is comparable to TSE but CAT shows fewer artifacts than a GRASE sequence. CAT is a promising candidate for neuroimaging at high fields up to 7 T. The SAR reduction allows one to shorten the waiting time between two excitations or to image more slices thereby reducing the overall measurement time.

  15. Influence of the jaw tracking technique on the dose calculation accuracy of small field VMAT plans.

    PubMed

    Swinnen, Ans C C; Öllers, Michel C; Roijen, Erik; Nijsten, Sebastiaan M; Verhaegen, Frank

    2017-01-01

    The aim of this study was to evaluate experimentally the accuracy of the dose calculation algorithm AcurosXB in small field highly modulated Volumetric Modulated Arc Therapy (VMAT). The 1000SRS detector array inserted in the rotational Octavius 4D phantom (PTW) was used for 3D dose verification of VMAT treatments characterized by small to very small targets. Clinical treatment plans (n = 28) were recalculated on the phantom CT data set in the Eclipse TPS. All measurements were done on a Varian TrueBeamSTx, which can provide the jaw tracking technique (JTT). The effect of disabling the JTT, thereby fixing the jaws at static field size of 3 × 3 cm(2) and applying the MLC to shape the smallest apertures, was investigated for static fields between 0.5 × 0.5-3 × 3 cm(2) and for seven VMAT patients with small brain metastases. The dose calculation accuracy has been evaluated by comparing the measured and calculated dose outputs and dose distributions. The dosimetric agreement has been presented by a local gamma evaluation criterion of 2%/2 mm. Regarding the clinical plans, the mean ± SD of the volumetric gamma evaluation scores considering the dose levels for evaluation of 10%, 50%, 80% and 95% are (96.0 ± 6.9)%, (95.2 ± 6.8)%, (86.7 ± 14.8)% and (56.3 ± 42.3)% respectively. For the smallest field VMAT treatments, discrepancies between calculated and measured doses up to 16% are obtained. The difference between the 1000SRS central chamber measurements compared to the calculated dose outputs for static fields 3 × 3, 2 × 2, 1 × 1 and 0.5 × 0.5 cm(2) collimated with MLC whereby jaws are fixed at 3 × 3 cm(2) and for static fields shaped with the collimator jaws only (MLC retracted), is on average respectively, 0.2%, 0.8%, 6.8%, 5.7% (6 MV) and 0.1%, 1.3%, 11.7%, 21.6% (10 MV). For the seven brain mets patients was found that the smaller the target volumes, the higher the improvement in agreement between measured and calculated doses after disabling the JTT

  16. High intensity pulsed electric field as an innovative technique for extraction of bioactive compounds-A review.

    PubMed

    Yan, Liang-Gong; He, Lang; Xi, Jun

    2017-09-02

    How to extract bioactive compounds safely and efficiently is one of the problems for the food and pharmaceutical industry. In recent years, several novel extraction techniques have been proposed. To pursue a more efficient method for industrial production, high intensity pulsed electric field (HIPEF) extraction technique has been developed. HIPEF extraction technique, which is based on the conventional pulsed electric field (PEF), provided higher electric field intensity and a special continuous extraction system, and it has confirmed less extraction time, higher extraction yield, and mild processing temperature. So this innovative technique is promising for application of industrial production. This review was devoted to introducing the recent achievement of HIPEF extraction technique, including novel HIPEF continuous extraction system, principles and mechanisms; the critical process factors influencing its performance applications; and comparison of HIPEF extraction with other extraction techniques. In the end, the defects and future trends of HIPEF extraction were also discussed.

  17. An Automatic Technique for Finding Faint Moving Objects in Wide Field CCD Images

    NASA Astrophysics Data System (ADS)

    Hainaut, O. R.; Meech, K. J.

    1996-09-01

    The traditional method used to find moving objects in astronomical images is to blink pairs or series of frames after registering them to align the background objects. While this technique is extremely efficient in terms of the low signal-to-noise ratio that the human sight can detect, it proved to be extremely time-, brain- and eyesight-consuming. The wide-field images provided by the large CCD mosaic recently built at IfA cover a field of view of 20 to 30' over 8192(2) pixels. Blinking such images is an enormous task, comparable to that of blinking large photographic plates. However, as the data are available digitally (each image occupying 260Mb of disk space), we are developing a set of computer codes to perform the moving object identification in sets of frames. This poster will describe the techniques we use in order to reach a detection efficiency as good as that of a human blinker; the main steps are to find all the objects in each frame (for which we rely on ``S-Extractor'' (Bertin & Arnouts (1996), A&ASS 117, 393), then identify all the background objects, and finally to search the non-background objects for sources moving in a coherent fashion. We will also describe the results of this method applied to actual data from the 8k CCD mosaic. {This work is being supported, in part, by NSF grant AST 92-21318.}

  18. Influence of the operatory field isolation technique on tooth-colored direct dental restorations.

    PubMed

    Cajazeira, Marlus Roberto Rodrigues; De Sabóia, Ticiana Medeiros; Maia, Lucianne Cople

    2014-06-01

    To evaluate, through a systematic review, the influence of the operatory field isolation technique on the longevity of dental restorations performed with tooth-colored materials. An electronic search of the scientific databases (MEDLINE, SCIRUS, VHL and SIGLE) and reference lists of the selected articles was conducted to identify randomized controlled clinical trials with a follow-up period of at least 12 months. The selected articles evaluated the effects of the operatory field isolation techniques (rubber dam or cotton rolls/saliva ejector) on the longevity of direct restorations performed with tooth-colored materials (e.g. resin composites, compomers and glass-ionomer cements) in primary or permanent posterior teeth. The selected studies were analyzed and categorized using a checklist proposed by the National Institute for Health and Clinical Excellence of the United Kingdom. 484 studies were identified on the scientific databases. After applying the exclusion criteria and removal of duplicates, a total of nine studies were considered as potentially eligible. From these, five studies were included in the final analysis by two evaluators. In four studies analyzed, the use of rubber dam did not influence the longevity of restorations in comparison to cotton rolls/saliva ejector. Only two studies were considered as low risk of bias.

  19. Characterization of nanosecond pulse electrical field shock waves using imaging techniques

    NASA Astrophysics Data System (ADS)

    Mimun, L. Chris; Ibey, Bennett L.; Roth, Caleb C.; Barnes, Ronald A.; Sardar, Dhiraj K.; Beier, Hope T.

    2015-03-01

    Nanosecond pulsed electric fields (nsPEF) cause the formation of small pores, termed nanopores, in the membrane of cells. Current nanoporation models treat nsPEF exposure as a purely electromagnetic phenomenon, but recent publications showing pressure transients, ROS production, temperature gradients, and pH waves suggest the stimulus may be physically and chemically multifactorial causing elicitation of diverse biological conditions and stressors. Our research group's goal is to quantify the breadth and participation of these stressors generated during nsPEF exposure and determine their relative importance to the observed cellular response. In this paper, we used advanced imaging techniques to identify a possible source of nsPEF-induced acoustic shock waves. nsPEFs were delivered in an aqueous media via a pair of 125 μm tungsten electrodes separated by 100 μm, mirroring our previously published cellular exposure experiments. To visualize any pressure transients emanating from the electrodes or surrounding medium, we used the Schlieren imaging technique. Resulting images and measurements confirmed that mechanical pressure waves and electrode-based stresses are formed during nsPEF, resulting in a clearer understanding of the whole exposure dosimetry. This information will be used to better quantify the impact of nsPEF-induced acoustic shock waves on cells, and has provided further evidence of non-electrical-field induced exposures for elicitation of bioieffects.

  20. Spatial Field Variability Mapping of Rice Crop using Clustering Technique from Space Borne Hyperspectral Data

    NASA Astrophysics Data System (ADS)

    Moharana, S.; Dutta, S.

    2015-12-01

    Precision farming refers to field-specific management of an agricultural crop at a spatial scale with an aim to get the highest achievable yield and to achieve this spatial information on field variability is essential. The difficulty in mapping of spatial variability occurring within an agriculture field can be revealed by employing spectral techniques in hyperspectral imagery rather than multispectral imagery. However an advanced algorithm needs to be developed to fully make use of the rich information content in hyperspectral data. In the present study, potential of hyperspectral data acquired from space platform was examined to map the field variation of paddy crop and its species discrimination. This high dimensional data comprising 242 spectral narrow bands with 30m ground resolution Hyperion L1R product acquired for Assam, India (30th Sept and 3rd Oct, 2014) were allowed for necessary pre-processing steps followed by geometric correction using Hyperion L1GST product. Finally an atmospherically corrected and spatially deduced image consisting of 112 band was obtained. By employing an advanced clustering algorithm, 12 different clusters of spectral waveforms of the crop were generated from six paddy fields for each images. The findings showed that, some clusters were well discriminated representing specific rice genotypes and some clusters were mixed treating as a single rice genotype. As vegetation index (VI) is the best indicator of vegetation mapping, three ratio based VI maps were also generated and unsupervised classification was performed for it. The so obtained 12 clusters of paddy crop were mapped spatially to the derived VI maps. From these findings, the existence of heterogeneity was clearly captured in one of the 6 rice plots (rice plot no. 1) while heterogeneity was observed in rest of the 5 rice plots. The degree of heterogeneous was found more in rice plot no.6 as compared to other plots. Subsequently, spatial variability of paddy field was

  1. A Field-Particle Correlation Technique to Explore the Collisionless Damping of Plasma Turbulence

    NASA Astrophysics Data System (ADS)

    Klein, Kristopher

    2016-10-01

    The nature of the dominant mechanisms which damp turbulent electromagnetic fluctuations remains an unanswered question in the study of a variety of collisionless plasma systems. Proposed damping mechanisms can be generally, but not exclusively, classified as resonant, e.g. Landau and cyclotron damping, non-resonant, e.g. stochastic ion heating, and intermittent, e.g. energization via current sheets or magnetic reconnection. To determine the role these mechanisms play in turbulent plasmas, we propose the application of field-particle correlations to time series of single spatial point observations of the type typically measured in the solar wind. This correlation, motivated by the form of the collisionless Vlasov equation, is the time averaged product of the factors comprising the nonlinear field-particle interaction term. The correlation both captures the secular transfer of energy between fields and perturbed plasma distributions by averaging out the conservative oscillatory energy transfer, and retains the velocity space structure of the secular transfer, allowing for observational characterization of the damping mechanism. Field-particle correlations are applied to a set of nonlinear kinetic numerical simulations of increasing complexity, including electrostatic, gyrokinetic, and hybrid Vlasov-Maxwell systems. These correlations are shown to capture the secular energy transfer between fields and particles and distinguish between the mechanisms accessible to the chosen system. We conclude with a discussion of the application of this general technique to data from current and upcoming spacecraft missions, including MMS, DSCOVR, Solar Probe Plus and THOR, which should help in determining which damping mechanisms operate in a variety of heliospheric plasmas. This work was performed in collaboration with Gregory Howes, Jason TenBarge, Nuno Loureiro, Ryusuke Numata, Francesco Valetini, Oreste Pezzi, Matt Kunz, Justin Kasper, and Chris Chen, with support from Grants

  2. Increased Oil Production and Reserves from Improved Completion Techniques in the Bluebell Field, Uinta Basin, Utah

    SciTech Connect

    Deo, M.D.; Morgan, C.D.

    1999-04-28

    The objective of the project is to increase oil production and reserves by the use of improved reservoir characterization and completion techniques in the Uinta Basin, Utah. To accomplish this objective, a two-year geologic and engineering characterization of the Bluebell field was conducted. The study evaluated surface and subsurface data, currently used completion techniques, and common production problems. It was determined that advanced case- and open-hole logs could be effective in determining productive beds and that stage-interval (about 500 ft [150 m] per stage) and bed-scale isolation completion techniques could result in improved well performance. In the first demonstration well (Michelle Ute well discussed in the previous technical report), dipole shear anisotropy (anisotropy) and dual-burst thermal decay time (TDT) logs were run before and isotope tracer log was run after the treatment. The logs were very helpful in characterizing the remaining hydrocarbon potential in the well. But, mechanical failure resulted in a poor recompletion and did not result in a significant improvement in the oil production from the well.

  3. MAGAT gel dosimetry for its application in small field treatment techniques

    NASA Astrophysics Data System (ADS)

    Gopishankar, N.; Vivekanandhan, S.; Kale, S. S.; Rath, G. K.; Senthil Kumaran, S.; Thulkar, Sanjay; Subramani, V.; Laviraj, M. A.; Bisht, R. K.; Mahapatra, A. K.

    2010-11-01

    Purpose of this work is to present the role of in-house manufactured MAGAT gel for treatment verification in small field dosimetric techniques such as Gammaknife (GK) and intensity-modulated radiation therapy (IMRT). Magnetic resonance imaging (MRI) is one of the most extensively used imaging technique for polymer gel dosimetry hence we used this method for gel evaluation. Different MR scanners and MRI sequences were used in this study for obtaining calibration plot between R2 and absorbed dose. An experimental plan was created for Gammaknife and IMRT. The prepared gel was filled in spherical glass phantom and in-house designed human head shape phantom for verification purpose. We used 8 TE values for all the imaging sequences for two reasons. Firstly it is sufficient enough to give good signal to noise ratio. Second considering the enormous scanning time involved in multiple spin echo sequence. MATLAB based in-house programs were used for R2 estimation and dose comparison. The isodose comparison with MAGAT gel showed reasonable agreement for both Gammaknife and IMRT techniques.

  4. Program for field validation of the Synthetic Aperture Focusing Technique for Ultrasonic Testing (SAFT UT)

    NASA Astrophysics Data System (ADS)

    Hamlin, D. R.

    1985-11-01

    This final report describes work performed by Southwest Research Institute for the Nuclear Regulatory Commission (NRC) in fulfillment of NRC Contract No. NRC-04-77-145; "Program for Field Validation of the Synthetic Aperture Focusing Technique for Ultrasonic Testing (SAFT UT)." The purpose was to validate the effectiveness of SAFT UT as a nondestructive examination technique for nuclear power and other related industries. SAFT UT is an ultrasonic imaging method for accurate measurement of the spatial location and extent of acoustically reflective surfaces (flaws) contained in objects such as structural components and weldments in nuclear power reactor systems. The increased measurement accuracy offered by SAFT, when compared with that provided by measurement methods now in use, will improve the reliability of flaw severity assessment with resultant safety and economic benefits to the nuclear power industry. This report presents a comprehensive discussion of the work accomplished in evaluating the performance capabilities of the developed SAFT UT inspection system. Inspection results obtained using both 0-degree longitudinal and angle-beam operating modes are presented. These results include laboratory and nuclear power plant field site examinations on a variety of defect types contained within carbon and stainless steel flat plate and cylindrical test specimens or components. The SAFT UT processed data flaw images are evaluated by comparing them to results obtained from destructive sectioning or by using flaw fabrication data which predicted actual flaw depth, orientation and size. On the basis of these evaluations, conclusions are presented which summarize the performance capabilities of the SAFT UT inspection technique.

  5. Two-dimensional refractive index profiling of optical fibers by modified refractive near-field technique

    NASA Astrophysics Data System (ADS)

    El Sayed, A.; Pilz, Soenke; Ryser, Manuel; Romano, Valerio

    2016-02-01

    The refractive index distribution in the core-cladding region of an optical fiber plays an important role in determining the transmission and dispersion properties of the waveguide. The refracted near-field technique (RNF) is among the most widespread techniques used for measuring the refractive index profile of optical fibers and is based on illuminating the end-facet of a fiber with a focused beam whose vertex angle greatly exceeds the acceptance angle of the fiber, which is immersed in an index matching liquid. What one observes are then the refracted unguided rays rather than the guided rays. Nevertheless, the standard refracted near-field technique cannot be applied to a wide range of optical fibers e.g. if their shapes are not axially symmetric. In this work we demonstrate a modified method which allows 2-D imaging of the refractive index profile and thereby overcoming the axial symmetric limitation of the standard RNF. The new system is operating at 630 nm and based on the same principle of the RNF, but the optical path is reversed so that the light at the fiber end-facet is collected by an objective lens and detected by a CCD camera. The method does not require scanning over the fiber end-facet. Thus the system is faster and less sensitive to vibrations and external conditions compared to the standard RNF, furthermore it allows averaging to improve the signal to noise ratio. The spatial resolution of the system is determined by the numerical aperture of the objective and by the resolution of the CCD camera. To calibrate the setup, a reference multi-step index fiber provided by National Physical Laboratory was used.

  6. Two-dimensional refractive index profiling of optical fibers by modified refractive near-field technique

    NASA Astrophysics Data System (ADS)

    El Sayed, A.; Pilz, Soenke; Ryser, Manuel; Romano, Valerio

    2016-04-01

    The refractive index distribution in the core-cladding region of an optical fiber plays an important role in determining the transmission and dispersion properties of the waveguide. The refracted near-field technique (RNF) is among the most widespread techniques used for measuring the refractive index profile of optical fibers and is based on illuminating the end-facet of a fiber with a focused beam whose vertex angle greatly exceeds the acceptance angle of the fiber, which is immersed in an index matching liquid. What one observes are then the refracted unguided rays rather than the guided rays. Nevertheless, the standard refracted near-field technique cannot be applied to a wide range of optical fibers e.g. if their shapes are not axially symmetric. In this work we demonstrate a modified method which allows 2-D imaging of the refractive index profile and thereby overcoming the axial symmetric limitation of the standard RNF. The new system is operating at 630 nm and based on the same principle of the RNF, but the optical path is reversed so that the light at the fiber end-facet is collected by an objective lens and detected by a CCD camera. The method does not require scanning over the fiber end-facet. Thus the system is faster and less sensitive to vibrations and external conditions compared to the standard RNF, furthermore it allows averaging to improve the signal to noise ratio. The spatial resolution of the system is determined by the numerical aperture of the objective and by the resolution of the CCD camera. To calibrate the setup, a reference multi-step index fiber provided by National Physical Laboratory was used.

  7. TRAINING-INDUCED CHANGES IN DRAG-FLICK TECHNIQUE IN FEMALE FIELD HOCKEY PLAYERS

    PubMed Central

    Gómez, M.; Martín-Casado, L.; Navarro, E.

    2012-01-01

    The penalty corner is one of the most important goal plays in field hockey. The drag-flick is used less by women than men in a penalty corner. The aim of this study was to describe training-induced changes in the drag-flick technique in female field hockey players. Four female players participated in the study. The VICON optoelectronic system (Oxford Metrics, Oxford, UK) measured the kinematic parameters of the drag-flick with six cameras sampling at 250 Hz, prior to and after training. Fifteen shots were captured for each subject. A Wilcoxon test assessed the differences between pre-training and post-training parameters. Two players received specific training twice a week for 8 weeks; the other two players did not train. The proposed drills improved the position of the stick at the beginning of the shot (p < 0.05), the total distance of the shot (p < 0.05) and the rotation radius at ball release (p < 0.01). It was noted that all players had lost speed of the previous run. Further studies should include a larger sample, in order to provide more information on field hockey performance. PMID:24868116

  8. Effective use of field screening techniques in environmental investigations: A multivariate geostatistical approach

    SciTech Connect

    Wild, M.R.; Rouhani, S.

    1996-12-31

    Environmental investigations typically entail broad data gathering efforts which include field screening surveys and laboratory analyses. Although usually collected extensively, data from field screening surveys are rarely used in the actual delineation of media contamination. On the other hand, laboratory analyses, which are used in the delineation, are minimized to avoid potentially high cost. Multivariate geostatistical techniques, such as indicator cokriging, were employed to incorporate volatile organic screening and laboratory data in order to better estimate soil contamination concentrations at an underground storage tank site. In this work, the direct and cross variographies are based on a multi-scale approach. The results indicate that soil gas measurements show good correlations with laboratory data at large scales. These correlations however, can be masked by poor correlations at micro-scale distances. Consequently, a classical direct correlation analysis between the two measured values is very likely to fail. In contrast, the presented multi-scale co-estimation procedure provides tools for a cost-effective and reliable assessment of soil contamination based on a combined use of laboratory and field screening data.

  9. The research of 3D small-field imaging system based on fringe projection technique

    NASA Astrophysics Data System (ADS)

    Yu, Yanqin; Huang, Shujun; Zhang, Zonghua; Gao, Feng; Jiang, Xiangqian

    2014-12-01

    This paper presents a 3D small-field imaging system by using the color fringe projection technique to measure the small objects having large slopes and/or discontinuous surface. A stereo microscope is used to generate a small-field projecting field and to capture the deformed fringe patterns on the measured small objects, respectively. Three fringe sets having the optimum fringe numbers are coded into one major color channel to generate color fringe patterns having the maximum fringe contrast of the captured fringe images. Through one channel of the stereo microscope, a DLP (Digital Light Processing) projector projects these generated color fringe pattern images onto the measured objects surface. From another channel, the fringe patterns are deformed with regard to the object surface and captured by a color CCD camera. The absolute phase of each pixel can be calculated from the captured fringe patterns by using the optimum three-fringe numbers selection method. Experimental results on measuring 3D shape of small objects show the accuracy and availability of the developed 3D imaging system.

  10. Three-dimensional magnetic field determination in magnetic nanoparticles using iterative reconstruction techniques

    NASA Astrophysics Data System (ADS)

    Humphrey, Emma Margaret

    Improving processing methods have consistently decreased the length scales of many magnetic devices. Methods to quantify the physical and magnetic domain structure of magnetic materials are needed to optimize their performance. However, magnetic characterization methods typically only measure one or two components of the magnetic properties. For instance, Lorentz microscopy is used to construct a two-dimensional projection of the magnetic induction. The vector field electron tomography (VFET) method uses Lorentz microscopy and tomography techniques to reconstruct the three-dimensional magnetic induction and magnetic vector potential of a sample. However, these reconstructions suffer from errors due to factors such as missing wedge information due to the nature of the samples and the physical constraints of the transmission electron microscope. Iterative tomographic techniques and the use of prior knowledge have been used in the literature to compensate for missing wedge data. In this work, we present several tools to construct iterative VFET (IVFET) algorithms. The iterative tomography algorithms Simultaneous Iterative Reconstruction Technique (SIRT), Discrete Algebraic Reconstruction Technique (DART), and Model-Based Iterative Reconstruction (MBIR) are summarized, and their relative merits are discussed. A novel approach to solving the Transport of Intensity Equation (TIE) that incorporates phase separation is presented, along with a comparison to the standard method. A model for simulating VFET images of a chain of nanoparticles and tomographic reconstructions using the model are shown. A spherical voxel forward projection model that can be used to update a single voxel of a VFET reconstruction and its projections is presented as a method for updating the reconstruction during iterative tomography.

  11. Application of Strong Field Physics Techniques to X-Ray Free Electron Laser Science

    NASA Astrophysics Data System (ADS)

    Roedig, Christoph Antony

    With the commissioning of the Linac Coherent Light Source (LCLS), the first x-ray free electron laser (XFEL) was realized at the Stanford Linear Accelerator Center. This novel device brings an unprecedented parameter set to a diverse community of scientists. The short wavelengths and short pulse durations enable an entire new class of time resolved structural analysis. The imaging capabilities enabled by the machine will lead to many breakthroughs in the fields of biophysics and nano technology. With the new capabilities of the LCLS come many challenges. The understanding required to effectively utilize the XFEL on complex molecular or biological systems goes back to the basic atomic physics of the interaction of light and matter. The parameter set of this machine is as unprecedented as it will be untested. To make informed measurements with the LCLS beam, a set of novel diagnostic techniques will be required. This report outlines major contributions made to the early experimental atomic physics and diagnostic efforts at LCLS. Building on a rich history of techniques used for ultra short optical lasers and atomic physics experimentation, a diagnostic instrument and experimental techniques are developed to make spectral, energy and temporal measurements of the LCLS pulses possible. Expanding on earlier studies of ionization performed on optical lasers and synchrotron sources, new ionization mechanisms such as multiphoton ionization in the x-ray regime are observed. Leveraging the unique combination of hard x-ray photon energy, extremely short pulse duration and high pulse energy, a technique for the time resolved study of ultrafast inner shell electronic relaxation processes is developed and studied for feasibility. The common theme to the efforts described here is the advancement of proven techniques and interesting atomic physics phenomena to the next generation of ultra short pulsed x-ray laser systems. The atomic physics explored here lay the groundwork for the

  12. Developing a marginal field using new techniques-South Monagas Unit, Venezuela

    SciTech Connect

    Skirvin, T.M.; Sven Hagen, E.; McGee, R.A.; Hinrichs, P.D. ); Medina, P.A. )

    1996-01-01

    In 1992 the Venezuelan national oil company, PDVSA, awarded operating service agreements to foreign oil companies for reactivation of marginal oil fields. The South Monagas Unit contains three oil and gas fields, Uracoa, Bombal, and Tucupita, that were not producing prior to the award of the contract As of October 1995, production from Uraroa had exceeded 20 MBbls/day of heavy oil from 26 vertical and 11 horizontal wells. Initial uncertainties about heavy oil treatment capability, water and gas production, oil flow rates, and ultimate recoverable reserves led to a phased development plan that has incrementally reduced the risk of financial exposure over time. The first phase of development utilized conventional geologic techniques and vertical wells to test treatment facilities, mud and gravel-pack technologies, and flow rates. Positive results led to the next phase of development which focused on reservoir performance and well optimization. A horizontal well drilling program was implemented in December 1993. A milestone in this program was the first gravel-pack horizontal well in Venezuela, completed in February, 1995. A pilot 2-D seismic program in late 1994 confined that high-quality seismic could be acquired to significantly enhance the development of Uracoa. A 175 W 3-D survey was shot and processed in mid-1995. Concurrently, borehole imaging logs were acquired in vertical wells to determine internal reservoir heterogeneity and sand depositional models. The sequence stratigraphic model that evolved, based on outcrop field analogs, 3-D seismic stratigraphy, and regional well control, is being used to optimize field development. In addition, new exploration concepts are being tested without risk using strategically located water injection wells as test wells.

  13. Time-selective windowing technique in free-field microphone reciprocity calibration.

    PubMed

    Kwon, Hyu-Sang; Cho, Wan-Ho; Suh, Sang-Joon

    2013-07-01

    Time-selective windowing techniques, which effectively remove multi-path noise, have been widely utilized for reciprocity calibration of microphone there are still limitations imposed by overlapping signals, particularly at low frequencies and for high Q microphones. Based on a fast Fourier transform analysis, the leakage due to a limited frequency range makes the overlap problem worse, not be perfectly separated. Instead of using conventional low-pass filters that are designed to have a flat response in the frequency range of interest, in this study, a filter with a Dolph-Chebyshev window shape was proposed because it has low sidelobe levels. After removing multi-path noise with a time-selective window, an inverse filter should be applied to compensate for distortion created by the applied filter. The method suggested in this paper extends the possible frequency range of free-field reciprocity calibration to frequencies below 2 kHz.

  14. Field Penetration in a Rectangular Box Using Numerical Techniques: An Effort to Obtain Statistical Shielding Effectiveness

    NASA Technical Reports Server (NTRS)

    Bunting, Charles F.; Yu, Shih-Pin

    2006-01-01

    This paper emphasizes the application of numerical methods to explore the ideas related to shielding effectiveness from a statistical view. An empty rectangular box is examined using a hybrid modal/moment method. The basic computational method is presented followed by the results for single- and multiple observation points within the over-moded empty structure. The statistics of the field are obtained by using frequency stirring, borrowed from the ideas connected with reverberation chamber techniques, and extends the ideas of shielding effectiveness well into the multiple resonance regions. The study presented in this paper will address the average shielding effectiveness over a broad spatial sample within the enclosure as the frequency is varied.

  15. Technique for current step measurements on the low field Metal Oxide Varistor (MOV)

    SciTech Connect

    Jaramillo, R.A.

    1992-08-01

    The low field (E{congruent}2kV/cm) Metal Oxide Varistor (MOV) is a voltage regulation device. This report describes a technique for performing DC characteristic measurements on a MOV. The varistor is in the feedback loop of a high voltage operational amplifier. A current source forces a staircase current waveform through a MOV. An operational amplifier provides the required applied voltage to maintain the desired values of current through the varistor. The current values change at a maximum rate of 33.3 readings per second and a high speed voltmeter measures the varistor voltage. The maximum available current and voltage at present are 5 mA and 10 kV respectively. Examples of its use are with data from the MC3596 and XMC4317.

  16. Whole arm manipulation planning based on feedback velocity fields and sampling-based techniques.

    PubMed

    Talaei, B; Abdollahi, F; Talebi, H A; Omidi Karkani, E

    2013-09-01

    Changing the configuration of a cooperative whole arm manipulator is not easy while enclosing an object. This difficulty is mainly because of risk of jamming caused by kinematic constraints. To reduce this risk, this paper proposes a feedback manipulation planning algorithm that takes grasp kinematics into account. The idea is based on a vector field that imposes perturbation in object motion inducing directions when the movement is considerably along manipulator redundant directions. Obstacle avoidance problem is then considered by combining the algorithm with sampling-based techniques. As experimental results confirm, the proposed algorithm is effective in avoiding jamming as well as obstacles for a 6-DOF dual arm whole arm manipulator. Copyright © 2013 ISA. Published by Elsevier Ltd. All rights reserved.

  17. A field technique for estimating aquifer parameters using flow log data

    USGS Publications Warehouse

    Paillet, Frederick L.

    2000-01-01

    A numerical model is used to predict flow along intervals between producing zones in open boreholes for comparison with measurements of borehole flow. The model gives flow under quasi-steady conditions as a function of the transmissivity and hydraulic head in an arbitrary number of zones communicating with each other along open boreholes. The theory shows that the amount of inflow to or outflow from the borehole under any one flow condition may not indicate relative zone transmissivity. A unique inversion for both hydraulic-head and transmissivity values is possible if flow is measured under two different conditions such as ambient and quasi-steady pumping, and if the difference in open-borehole water level between the two flow conditions is measured. The technique is shown to give useful estimates of water levels and transmissivities of two or more water-producing zones intersecting a single interval of open borehole under typical field conditions. Although the modeling technique involves some approximation, the principle limit on the accuracy of the method under field conditions is the measurement error in the flow log data. Flow measurements and pumping conditions are usually adjusted so that transmissivity estimates are most accurate for the most transmissive zones, and relative measurement error is proportionately larger for less transmissive zones. The most effective general application of the borehole-flow model results when the data are fit to models that systematically include more production zones of progressively smaller transmissivity values until model results show that all accuracy in the data set is exhausted.A numerical model is used to predict flow along intervals between producing zones in open boreholes for comparison with measurements of borehole flow. The model gives flow under quasi-steady conditions as a function of the transmissivity and hydraulic head in an arbitrary number of zones communicating with each other along open boreholes. The

  18. Motion robust magnetic susceptibility and field inhomogeneity estimation using regularized image restoration techniques for fMRI.

    PubMed

    Yeo, Desmond Teck Beng; Fessler, Jeffrey A; Kim, Boklye

    2008-01-01

    In functional MRI, head motion may cause dynamic nonlinear field-inhomogeneity changes, especially with large out-of-plane rotations. This may lead to dynamic geometric distortion or blurring in the time series, which may reduce activation detection accuracy. The use of image registration to estimate dynamic field inhomogeneity maps from a static field map is not sufficient in the presence of such rotations. This paper introduces a retrospective approach to estimate magnetic susceptibility induced field maps of an object in motion, given a static susceptibility induced field map and the associated object motion parameters. It estimates a susceptibility map from a static field map using regularized image restoration techniques, and applies rigid body motion to the former. The dynamic field map is then computed using susceptibility voxel convolution. The method addresses field map changes due to out-of-plane rotations during time series acquisition and does not involve real time field map acquisitions.

  19. Measurement of a velocity field in microvessels using a high resolution PIV technique.

    PubMed

    Sugii, Yasuhiko; Nishio, Shigeru; Okamoto, Koji

    2002-10-01

    Because endothelial cells are subject to flow shear stress, it is important to determine the velocity distribution in microvessels during studies of the mechanical interactions between the blood and the endothelium. Particle image velocimetry (PIV) is a quantitative method for measuring velocity fields instantaneously in experimental fluid mechanics. The authors have developed a high-resolution PIV technique that improves the dynamic flow range, spatial resolution, and measurement accuracy. The proposed method was applied to images of the arteriole in the rat mesentery, using an intravital microscope and high-speed digital video system. Taking the mesentery motion into account, the PIV technique was improved to measure red blood cell (RBC) velocity. Velocity distributions with spatial resolutions of 0.8 3 0.8 mm were obtained even near the wall in the center plane of the arteriole. The arteriole velocity profile was blunt in the center region of the vessel cross-section and sharp in the near-wall region. Typical flow features for non-Newtonian fluid are shown.

  20. Electrical field-induced extraction and separation techniques: promising trends in analytical chemistry--a review.

    PubMed

    Yamini, Yadollah; Seidi, Shahram; Rezazadeh, Maryam

    2014-03-03

    Sample preparation is an important issue in analytical chemistry, and is often a bottleneck in chemical analysis. So, the major incentive for the recent research has been to attain faster, simpler, less expensive, and more environmentally friendly sample preparation methods. The use of auxiliary energies, such as heat, ultrasound, and microwave, is one of the strategies that have been employed in sample preparation to reach the above purposes. Application of electrical driving force is the current state-of-the-art, which presents new possibilities for simplifying and shortening the sample preparation process as well as enhancing its selectivity. The electrical driving force has scarcely been utilized in comparison with other auxiliary energies. In this review, the different roles of electrical driving force (as a powerful auxiliary energy) in various extraction techniques, including liquid-, solid-, and membrane-based methods, have been taken into consideration. Also, the references have been made available, relevant to the developments in separation techniques and Lab-on-a-Chip (LOC) systems. All aspects of electrical driving force in extraction and separation methods are too specific to be treated in this contribution. However, the main aim of this review is to provide a brief knowledge about the different fields of analytical chemistry, with an emphasis on the latest efforts put into the electrically assisted membrane-based sample preparation systems. The advantages and disadvantages of these approaches as well as the new achievements in these areas have been discussed, which might be helpful for further progress in the future.

  1. Alternative phase-shifting technique for measuring full-field refractive index

    NASA Astrophysics Data System (ADS)

    Chen, Kun-Huang; Chen, Jing-Heng; Lin, Jiun-You; Chu, Yen-Chang

    2015-09-01

    This study proposes an alternative and simple method for measuring full-field refractive index. This method is based on the phase-shifting technique with a modulated electro-optical (EO) modulator and the phenomenon of total internal reflection. To this purpose, a linear polarized light is expanded and incident on the interface between the prism and the tested specimen, and the reflected light passes through an analyzer for interference. The phase difference between the s- and p-polarized light is sensitive to the refractive index of the tested specimen when the total internal reflection appears on this interface. Based on this effect, the resulting phase differences make it possible to analyze the refractive index of the tested specimen through a phase-shifting technique with a modulated EO modulator. The feasibility of this method was verified by experiment, and the measurement resolution can reach a value of refractive index unit of at least 3.552×10-4. This method has advantages of simple installation, ease of operation, and fast measurement.

  2. Azimuth sidelobe suppression technique for near-field MIMO radar imaging

    NASA Astrophysics Data System (ADS)

    Liu, Yongze; Xu, Xiaojian

    2015-10-01

    Multiple-input multiple-output (MIMO) radar is getting more and more applications over the last decade. In near field imaging using a linear MIMO array, the azimuth sampling is non-uniform, resulting in spatially variant point spread function (PSF) over a large imaging zone. In this work, an azimuth sidelobe suppression technique is proposed where apodization or complex amplitude weighting is applied to the multiple channel data prior to image reconstruction. For best sidelobe suppression, the optimal channel weights wopt are obtained through mathematical optimization. The overall process mainly includes three steps. Firstly, the expression of PSF in azimuth is acquired by the azimuth focusing process; Secondly, based on the fact that, for an ideal PSF the maximum value of the mainlobe should be one and the values of sidelobes should be zeros, the problem of finding wopt is mathematically fomulated as an optimization problem; Lastly, by setting proper mainlobe width and sidelobe level, the optimal weights can be solved through convex optimization algorithm. Simulations of a MIMO radar system where channel amplitude-phase error and antenna elements position deviation exist are presented and the performance of the proposed technique is studied.

  3. Establishing the skill of climate field reconstruction techniques for precipitation with pseudoproxy experiments

    NASA Astrophysics Data System (ADS)

    Gómez-Navarro, Juan José; Werner, Johannes; Wagner, Sebastian; Luterbacher, Jürg; Zorita, Eduardo

    2015-09-01

    This study aims at assessing the skill of several climate field reconstruction techniques (CFR) to reconstruct past precipitation over continental Europe and the Mediterranean at seasonal time scales over the last two millennia from proxy records. A number of pseudoproxy experiments are performed within the virtual reality of a regional paleoclimate simulation at 45 km resolution to analyse different aspects of reconstruction skill. Canonical Correlation Analysis (CCA), two versions of an Analog Method (AM) and Bayesian hierarchical modeling (BHM) are applied to reconstruct precipitation from a synthetic network of pseudoproxies that are contaminated with various types of noise. The skill of the derived reconstructions is assessed through comparison with precipitation simulated by the regional climate model. Unlike BHM, CCA systematically underestimates the variance. The AM can be adjusted to overcome this shortcoming, presenting an intermediate behaviour between the two aforementioned techniques. However, a trade-off between reconstruction-target correlations and reconstructed variance is the drawback of all CFR techniques. CCA (BHM) presents the largest (lowest) skill in preserving the temporal evolution, whereas the AM can be tuned to reproduce better correlation at the expense of losing variance. While BHM has been shown to perform well for temperatures, it relies heavily on prescribed spatial correlation lengths. While this assumption is valid for temperature, it is hardly warranted for precipitation. In general, none of the methods outperforms the other. All experiments agree that a dense and regularly distributed proxy network is required to reconstruct precipitation accurately, reflecting its high spatial and temporal variability. This is especially true in summer, when a specifically short de-correlation distance from the proxy location is caused by localised summertime convective precipitation events.

  4. An Analytical Technique to Elucidate Field Impurities From Manufacturing Uncertainties of an Double Pancake Type HTS Insert for High Field LTS/HTS NMR Magnets.

    PubMed

    Hahn, Seung-Yong; Ahn, Min Cheol; Bobrov, Emanuel Saul; Bascuñán, Juan; Iwasa, Yukikazu

    2009-06-01

    This paper addresses adverse effects of dimensional uncertainties of an HTS insert assembled with double-pancake coils on spatial field homogeneity. Each DP coil was wound with Bi2223 tapes having dimensional tolerances larger than one order of magnitude of those accepted for LTS wires used in conventional NMR magnets. The paper presents: 1) dimensional variations measured in two LTS/HTS NMR magnets, 350 MHz (LH350) and 700 MHz (LH700), both built and operated at the Francis Bitter Magnet Laboratory; and 2) an analytical technique and its application to elucidate the field impurities measured with the two LTS/HTS magnets. Field impurities computed with the analytical model and those measured with the two LTS/HTS magnets agree quite well, demonstrating that this analytical technique is applicable to design a DP-assembled HTS insert with an improved field homogeneity for a high-field LTS/HTS NMR magnet.

  5. An Analytical Technique to Elucidate Field Impurities From Manufacturing Uncertainties of an Double Pancake Type HTS Insert for High Field LTS/HTS NMR Magnets

    PubMed Central

    Hahn, Seung-yong; Ahn, Min Cheol; Bobrov, Emanuel Saul; Bascuñán, Juan; Iwasa, Yukikazu

    2010-01-01

    This paper addresses adverse effects of dimensional uncertainties of an HTS insert assembled with double-pancake coils on spatial field homogeneity. Each DP coil was wound with Bi2223 tapes having dimensional tolerances larger than one order of magnitude of those accepted for LTS wires used in conventional NMR magnets. The paper presents: 1) dimensional variations measured in two LTS/HTS NMR magnets, 350 MHz (LH350) and 700 MHz (LH700), both built and operated at the Francis Bitter Magnet Laboratory; and 2) an analytical technique and its application to elucidate the field impurities measured with the two LTS/HTS magnets. Field impurities computed with the analytical model and those measured with the two LTS/HTS magnets agree quite well, demonstrating that this analytical technique is applicable to design a DP-assembled HTS insert with an improved field homogeneity for a high-field LTS/HTS NMR magnet. PMID:20407595

  6. Spacecraft Communications System Verification Using On-Axis Near Field Measurement Techniques

    NASA Technical Reports Server (NTRS)

    Keating, Thomas; Baugh, Mark; Gosselin, R. B.; Lecha, Maria C.; Krebs, Carolyn A. (Technical Monitor)

    2000-01-01

    Determination of the readiness of a spacecraft for launch is a critical requirement. The final assembly of all subsystems must be verified. Testing of a communications system can mostly be done using closed-circuits (cabling to/from test ports), but the final connections to the antenna require radiation tests. The Tropical Rainfall Measuring Mission (TRMM) Project used a readily available 'near-fleld on-axis' equation to predict the values to be used for comparison with those obtained in a test program. Tests were performed in a 'clean room' environment at both Goddard Space Flight Center (GSFC) and in Japan at the Tanegashima Space Center (TnSC) launch facilities. Most of the measured values agreed with the predicted values to within 0.5 dB. This demonstrates that sometimes you can use relatively simple techniques to make antenna performance measurements when use of the 'far field ranges, anechoic chambers, or precision near-field ranges' are neither available nor practical. Test data and photographs are provided.

  7. Techniques of body composition assessment: a review of laboratory and field methods.

    PubMed

    Wagner, D R; Heyward, V H

    1999-06-01

    Body composition is one of the major health-related components of fitness. Thus, it is important for health and fitness professionals to have a general understanding of the most commonly used techniques for assessing body composition. This review presents the developmental background and underlying principles and theory of four laboratory (hydrodensitometry, air displacement plethysmography, isotope dilution, and dual-energy x-ray absorptiometry) and four field (bioelectrical impedance analysis, near-infrared interactance, skinfolds, and anthropometry) methods of body composition assessment. In addition to a description of the methods, the validity, and reliability, strengths, and limitations of each measurement tool are examined. Highlights of the laboratory methods include the relatively new Bod Pod air displacement device, which is a promising assessment tool more convenient than hydrodensitometry but still lacking substantial validity testing and the ability of dual-energy x-ray absorptiometry to measure regional composition making it an attractive method for clinicians. Advancements in segmental and multifrequency bioelectrical impedance for compartmental analysis have enhanced the value of this field method, but research continues to show that commercially available near-infrared interactance units are invalid. With this knowledge, the clinician and researcher should be able to make an informed decision regarding the most appropriate measurement device for their body composition assessments.

  8. Development of algorithms for capacitance imaging techniques for fluidized bed flow fields

    SciTech Connect

    Loudin, W.J.

    1991-01-01

    The objective of this research is to provide support for the instrumentation concept of a High Resolution Capacitance Imaging System (HRCIS). The work involves the development and evaluation of the mathematical theory and associated models and algorithms which reduce the electronic measurements to valid physical characterizations. The research and development require the investigation of techniques to solve large systems of equations based on capacitance measurements for various electrode configurations in order to estimate densities of materials in a cross-section of a fluidized bed. Capacitance measurements are made for 400 connections of the 32-electrode system; 400 corresponding electric-field curves are constructed by solving a second order partial differential equation. These curves are used to partition the circular disk into 193 regions called pixels, and the density of material in each pixel is to be estimated. Two methods of approximating densities have been developed and consideration of a third method has been initiated. One method (Method 1) is based on products of displacement currents for intersecting electric-field curves on a cross section. For each pixel one point of intersection is chosen, and the product of the capacitance measurements is found. Both the product and the square-root-of-product seem to yield good relative distribution of densities.

  9. Development of algorithms for capacitance imaging techniques for fluidized bed flow fields. 1990 Annual report

    SciTech Connect

    Loudin, W.J.

    1991-01-01

    The objective of this research is to provide support for the instrumentation concept of a High Resolution Capacitance Imaging System (HRCIS). The work involves the development and evaluation of the mathematical theory and associated models and algorithms which reduce the electronic measurements to valid physical characterizations. The research and development require the investigation of techniques to solve large systems of equations based on capacitance measurements for various electrode configurations in order to estimate densities of materials in a cross-section of a fluidized bed. Capacitance measurements are made for 400 connections of the 32-electrode system; 400 corresponding electric-field curves are constructed by solving a second order partial differential equation. These curves are used to partition the circular disk into 193 regions called pixels, and the density of material in each pixel is to be estimated. Two methods of approximating densities have been developed and consideration of a third method has been initiated. One method (Method 1) is based on products of displacement currents for intersecting electric-field curves on a cross section. For each pixel one point of intersection is chosen, and the product of the capacitance measurements is found. Both the product and the square-root-of-product seem to yield good relative distribution of densities.

  10. A Dosimetric Analysis of IMRT and Multistatic Fields Techniques for Left Breast Radiotherapy

    SciTech Connect

    Moon, Seong Kwon; Kim, Yeon Sil; Kim, Soo Young; Lee, Mi Jo; Keum, Hyun Sup; Kim, Seung Jin; Youn, Seon Min

    2011-10-01

    The purpose of this study was to analyze the dosimetric difference between intensity-modulated radiation therapy (IMRT) using 3 or 5 beams and multistatic field technique (MSF) in radiotherapy of the left breast. We made comparative analysis of two kinds of radiotherapy that can achieve improved dose homogeneity. First is a MSF that uses both major and small irradiation fields at the same time. The other is IMRT using 3 or 5 beams with an inverse planning system using multiple static multileaf collimators. We made treatment plans for 16 early left breast cancer patients who were randomly selected and had undergone breast conserving surgery and radiotherapy, and analyzed them in the dosimetric aspect. For the mean values of V{sub 95} and dose homogeneity index, no statistically significant difference was observed among the three therapies. Extreme hot spots receiving >110% of prescribed dose were not found in any of the three methods. Using Tukey's test, IMRT showed a significantly larger increase in exposure dose to the ipsilateral lung and the heart than MSF in the low-dose area, but in the high-dose area, MSF showed a slight increase. To improve dose homogeneity, the application of MSF, which can be easily planned and applied more widely, is considered optimal as an alternative to IMRT for radiotherapy of early left breast cancer.

  11. Flexible reduced field of view magnetic resonance imaging based on single-shot spatiotemporally encoded technique

    NASA Astrophysics Data System (ADS)

    Li, Jing; Cai, Cong-Bo; Chen, Lin; Chen, Ying; Qu, Xiao-Bo; Cai, Shu-Hui

    2015-10-01

    In many ultrafast imaging applications, the reduced field-of-view (rFOV) technique is often used to enhance the spatial resolution and field inhomogeneity immunity of the images. The stationary-phase characteristic of the spatiotemporally-encoded (SPEN) method offers an inherent applicability to rFOV imaging. In this study, a flexible rFOV imaging method is presented and the superiority of the SPEN approach in rFOV imaging is demonstrated. The proposed method is validated with phantom and in vivo rat experiments, including cardiac imaging and contrast-enhanced perfusion imaging. For comparison, the echo planar imaging (EPI) experiments with orthogonal RF excitation are also performed. The results show that the signal-to-noise ratios of the images acquired by the proposed method can be higher than those obtained with the rFOV EPI. Moreover, the proposed method shows better performance in the cardiac imaging and perfusion imaging of rat kidney, and it can scan one or more regions of interest (ROIs) with high spatial resolution in a single shot. It might be a favorable solution to ultrafast imaging applications in cases with severe susceptibility heterogeneities, such as cardiac imaging and perfusion imaging. Furthermore, it might be promising in applications with separate ROIs, such as mammary and limb imaging. Project supported by the National Natural Science Foundation of China (Grant Nos. 11474236, 81171331, and U1232212).

  12. Integrating remote sensing techniques at Cuprite, Nevada: AVIRIS, Thematic Mapper, and field spectroscopy

    NASA Technical Reports Server (NTRS)

    Hill, Bradley; Nash, Greg; Ridd, Merrill; Hauff, Phoebe L.; Ebel, Phil

    1992-01-01

    The Cuprite mining district in southwestern Nevada has become a test site for remote sensing studies with numerous airborne scanners and ground sensor data sets collected over the past fifteen years. Structurally, the Cuprite region can be divided into two areas with slightly different alteration and mineralogy. These zones lie on either side of a postulated low-angle structural discontinuity that strikes nearly parallel to US Route 95. Hydrothermal alternation at Cuprite was classified into three major zones: silicified, opalized, and argillized. These alteration types form a bulls-eye pattern east of the highway and are more linear on the west side of the highway making a striking contrast from the air and the imagery. Cuprite is therefore an ideal location for remote sensing research as it exhibits easily identified hydrothermal zoning, is relatively devoid of vegetation, and contains a distinctive spectrally diagnostic mineral suite including the ammonium feldspar buddingtonite, several types of alunite, different jarosites, illite, kaolinite, smectite, dickite, and opal. This present study brings a new dimension to these previous remote sensing and ground data sets compiled for Cuprite. The development of a higher resolution field spectrometer now provides the capability to combine extensive in-situ mineralogical data with a new geologic field survey and detailed Airborne Visible/Infrared Imaging Spectrometers (AVIRIS) images. The various data collection methods and the refinement of the integrated techniques are discussed.

  13. Mapping Tamarix: New techniques for field measurements, spatial modeling and remote sensing

    NASA Astrophysics Data System (ADS)

    Evangelista, Paul H.

    Native riparian ecosystems throughout the southwestern United States are being altered by the rapid invasion of Tamarix species, commonly known as tamarisk. The effects that tamarisk has on ecosystem processes have been poorly quantified largely due to inadequate survey methods. I tested new approaches for field measurements, spatial models and remote sensing to improve our ability measure and to map tamarisk occurrence, and provide new methods that will assist in management and control efforts. Examining allometric relationships between basal cover and height measurements collected in the field, I was able to produce several models to accurately estimate aboveground biomass. The best two models were explained 97% of the variance (R 2 = 0.97). Next, I tested five commonly used predictive spatial models to identify which methods performed best for tamarisk using different types of data collected in the field. Most spatial models performed well for tamarisk, with logistic regression performing best with an Area Under the receiver-operating characteristic Curve (AUC) of 0.89 and overall accuracy of 85%. The results of this study also suggested that models may not perform equally with different invasive species, and that results may be influenced by species traits and their interaction with environmental factors. Lastly, I tested several approaches to improve the ability to remotely sense tamarisk occurrence. Using Landsat7 ETM+ satellite scenes and derived vegetation indices for six different months of the growing season, I examined their ability to detect tamarisk individually (single-scene analyses) and collectively (time-series). My results showed that time-series analyses were best suited to distinguish tamarisk from other vegetation and landscape features (AUC = 0.96, overall accuracy = 90%). June, August and September were the best months to detect unique phenological attributes that are likely related to the species' extended growing season and green-up during

  14. Optical Flow-Field Techniques Used for Measurements in High-Speed Centrifugal Compressors

    NASA Technical Reports Server (NTRS)

    Skoch, Gary J.

    1999-01-01

    The overall performance of a centrifugal compressor depends on the performance of the impeller and diffuser as well as on the interactions occurring between these components. Accurate measurements of the flow fields in each component are needed to develop computational models that can be used in compressor design codes. These measurements must be made simultaneously over an area that covers both components so that researchers can understand the interactions occurring between the two components. Optical measurement techniques are being used at the NASA Lewis Research Center to measure the velocity fields present in both the impeller and diffuser of a 4:1 pressure ratio centrifugal compressor operating at several conditions ranging from design flow to surge. Laser Doppler Velocimetry (LDV) was used to measure the intrablade flows present in the impeller, and the results were compared with analyses obtained from two three-dimensional viscous codes. The development of a region of low throughflow velocity fluid within this high-speed impeller was examined and compared with a similar region first observed in a large low-speed centrifugal impeller at Lewis. Particle Image Velocimetry (PIV) is a relatively new technique that has been applied to measuring the diffuser flow fields. PIV can collect data rapidly in the diffuser while avoiding the light-reflection problems that are often encountered when LDV is used. The Particle Image Velocimeter employs a sheet of pulsed laser light that is introduced into the diffuser in a quasi-radial direction through an optical probe inserted near the diffuser discharge. The light sheet is positioned such that its centerline is parallel to the hub and shroud surfaces and such that it is parallel to the diffuser vane, thereby avoiding reflections from the solid surfaces. Seed particles small enough to follow the diffuser flow are introduced into the compressor at an upstream location. A high-speed charge-coupled discharge (CCD) camera is

  15. Unraveling the nature of electric field- and stress- induced structural transformations in soft PZT by a new powder poling technique

    NASA Astrophysics Data System (ADS)

    Kalyani, Ajay Kumar; V, Lalitha K.; James, Ajit R.; Fitch, Andy; Ranjan, Rajeev

    2015-02-01

    A ‘powder-poling’ technique was developed to study electric field induced structural transformations in ferroelectrics exhibiting a morphotropic phase boundary (MPB). The technique was employed on soft PZT exhibiting a large longitudinal piezoelectric response (d33 ˜ 650 pC N-1). It was found that electric poling brings about a considerable degree of irreversible tetragonal to monoclinic transformation. The same transformation was achieved after subjecting the specimen to mechanical stress, which suggests an equivalence of stress and electric field with regard to the structural mechanism in MPB compositions. The electric field induced structural transformation was also found to be accompanied by a decrease in the spatial coherence of polarization.

  16. Unraveling the nature of electric field- and stress- induced structural transformations in soft PZT by a new powder poling technique.

    PubMed

    Kalyani, Ajay Kumar; V, Lalitha K; James, Ajit R; Fitch, Andy; Ranjan, Rajeev

    2015-02-25

    A 'powder-poling' technique was developed to study electric field induced structural transformations in ferroelectrics exhibiting a morphotropic phase boundary (MPB). The technique was employed on soft PZT exhibiting a large longitudinal piezoelectric response (d(33) ∼ 650 pC N(-1)). It was found that electric poling brings about a considerable degree of irreversible tetragonal to monoclinic transformation. The same transformation was achieved after subjecting the specimen to mechanical stress, which suggests an equivalence of stress and electric field with regard to the structural mechanism in MPB compositions. The electric field induced structural transformation was also found to be accompanied by a decrease in the spatial coherence of polarization.

  17. SU-E-T-515: Field-In-Field Compensation Technique Using Multi-Leaf Collimator to Deliver Total Body Irradiation (TBI) Dose

    SciTech Connect

    Lakeman, T; Wang, IZ

    2014-06-01

    Purpose: Total body irradiation (TBI) uses large parallel-opposed radiation fields to suppress the patient's immune system and eradicate the residual cancer cells in preparation of recipient for bone marrow transplant. The manual placement of lead compensators has been used conventionally to compensate for the varying thickness through the entire body in large-field TBI. The goal of this study is to pursue utilizing the modern field-in-field (FIF) technique with the multi-leaf collimator (MLC) to more accurately and efficiently deliver dose to patients in need of TBI. Method: Treatment plans utilizing the FIF technique to deliver a total body dose were created retrospectively for patients for whom CT data had been previously acquired. Treatment fields include one pair of opposed open large fields (collimator=45°) with a specific weighting and a succession of smaller fields (collimator=90°) each with their own weighting. The smaller fields are shaped by moving MLC to block the sections of the patient which have already received close to 100% of the prescribed dose. The weighting factors for each of these fields were calculated using the attenuation coefficient of the initial lead compensators and the separation of the patient in different positions in the axial plane. Results: Dose-volume histograms (DVH) were calculated for evaluating the FIF compensation technique. The maximum body doses calculated from the DVH were reduced from the non-compensated 179.3% to 148.2% in the FIF plans, indicating a more uniform dose with the FIF compensation. All calculated monitor units were well within clinically acceptable limits and exceeded those of the original lead compensation plan by less than 50 MU (only ~1.1% increase). Conclusion: MLC FIF technique for TBI will not significantly increase the beam on time while it can substantially reduce the compensator setup time and the potential risk of errors in manually placing lead compensators.

  18. Comparison of Phase-Based 3D Near-Field Source Localization Techniques for UHF RFID

    PubMed Central

    Parr, Andreas; Miesen, Robert; Vossiek, Martin

    2016-01-01

    In this paper, we present multiple techniques for phase-based narrowband backscatter tag localization in three-dimensional space with planar antenna arrays or synthetic apertures. Beamformer and MUSIC localization algorithms, known from near-field source localization and direction-of-arrival estimation, are applied to the 3D backscatter scenario and their performance in terms of localization accuracy is evaluated. We discuss the impact of different transceiver modes known from the literature, which evaluate different send and receive antenna path combinations for a single localization, as in multiple input multiple output (MIMO) systems. Furthermore, we propose a new Singledimensional-MIMO (S-MIMO) transceiver mode, which is especially suited for use with mobile robot systems. Monte-Carlo simulations based on a realistic multipath error model ensure spatial correlation of the simulated signals, and serve to critically appraise the accuracies of the different localization approaches. A synthetic uniform rectangular array created by a robotic arm is used to evaluate selected localization techniques. We use an Ultra High Frequency (UHF) Radiofrequency Identification (RFID) setup to compare measurements with the theory and simulation. The results show how a mean localization accuracy of less than 30 cm can be reached in an indoor environment. Further simulations demonstrate how the distance between aperture and tag affects the localization accuracy and how the size and grid spacing of the rectangular array need to be adapted to improve the localization accuracy down to orders of magnitude in the centimeter range, and to maximize array efficiency in terms of localization accuracy per number of elements. PMID:27347976

  19. CT-Osteoabsorptiometry (CT-OAM) - a new investigation technique in the field of mummy research.

    PubMed

    Hirsch, Anna Christina; Hotz, Gerhard; Rosendahl, Wilfried; Zumstein, Valentin; Rühli, Frank J; Müller-Gerbl, Magdalena

    2017-04-04

    Introduction: The scientific study of mummies provides an insight into the life of past populations. Using CT-Osteoabsorptiometry (CT-OAM), a noninvasive technique based on conventional CT-data sets, it is possible to visualize the mineral density distribution in the subchondral bone plate, representing the long-term loading conditions of the articulation surface. The objective of the current study was to investigate the applicability of CT-OAM on mummies for the load analysis of joints as a new investigation technique in the field of mummy research. Material and methods: In order to clarify if apparent malpositions of the spinal column have existed during lifetime or occurred post-mortem, we evaluated the long-term loading patterns within the thoracic and lumbar endplates of 8 mummies. Results: The implementation of CT-OAM on mummies for load analysis of joints was feasible. The mineral density distribution within the endplates was not homogenous but followed distinct distribution patterns. In all of the endplates investigated the marginal zones were higher and the central areas lower mineralized, whereby the areas of greatest density were found in the peripheral marginal zones. The vertebra columns without malposition showed within the thoracic endplates an almost even circular allocation of the density maxima, whereas within the lumbar endplates an increased localization of the density maxima dorsomedial, dorsolateral and ventral was observed. The thoracic endplates of the spines with kyphosis did not show an even circular allocation anymore but a concentration of the density maxima in the ventral area and the endplates of the spines with scoliosis exhibited a predominant localization of the density maxima on the concave side. The examined endplates showed characteristic reproducible density patterns consistent with the long-term loading conditions. Conclusions: With help of CT-OAM pathological load distributions can be visualized before macroscopical changes

  20. Evaluating climate field reconstruction techniques using improved emulations of real-world conditions

    NASA Astrophysics Data System (ADS)

    Wang, J.; Emile-Geay, J.; Guillot, D.; Smerdon, J. E.; Rajaratnam, B.

    2014-01-01

    Pseudoproxy experiments (PPEs) have become an important framework for evaluating paleoclimate reconstruction methods. Most existing PPE studies assume constant proxy availability through time and uniform proxy quality across the pseudoproxy network. Real multiproxy networks are, however, marked by pronounced disparities in proxy quality, and a steep decline in proxy availability back in time, either of which may have large effects on reconstruction skill. A suite of PPEs constructed from a millennium-length general circulation model (GCM) simulation is thus designed to mimic these various real-world characteristics. The new pseudoproxy network is used to evaluate four climate field reconstruction (CFR) techniques: truncated total least squares embedded within the regularized EM (expectation-maximization) algorithm (RegEM-TTLS), the Mann et al. (2009) implementation of RegEM-TTLS (M09), canonical correlation analysis (CCA), and Gaussian graphical models embedded within RegEM (GraphEM). Each method's risk properties are also assessed via a 100-member noise ensemble. Contrary to expectation, it is found that reconstruction skill does not vary monotonically with proxy availability, but also is a function of the type and amplitude of climate variability (forced events vs. internal variability). The use of realistic spatiotemporal pseudoproxy characteristics also exposes large inter-method differences. Despite the comparable fidelity in reconstructing the global mean temperature, spatial skill varies considerably between CFR techniques. Both GraphEM and CCA efficiently exploit teleconnections, and produce consistent reconstructions across the ensemble. RegEM-TTLS and M09 appear advantageous for reconstructions on highly noisy data, but are subject to larger stochastic variations across different realizations of pseudoproxy noise. Results collectively highlight the importance of designing realistic pseudoproxy networks and implementing multiple noise realizations of PPEs

  1. High-resolution regional gravity field recovery from Poisson wavelets using heterogeneous observational techniques

    NASA Astrophysics Data System (ADS)

    Wu, Yihao; Luo, Zhicai; Chen, Wu; Chen, Yongqi

    2017-02-01

    We adopt Poisson wavelets for regional gravity field recovery using data acquired from various observational techniques; the method combines data of different spatial resolutions and coverage, and various spectral contents and noise levels. For managing the ill-conditioned system, the performances of the zero- and first-order Tikhonov regularization approaches are investigated. Moreover, a direct approach is proposed to properly combine Global Positioning System (GPS)/leveling data with the gravimetric quasi-geoid/geoid, where GPS/leveling data are treated as an additional observation group to form a new functional model. In this manner, the quasi-geoid/geoid that fits the local leveling system can be computed in one step, and no post-processing (e.g., corrector surface or least squares collocation) procedures are needed. As a case study, we model a new reference surface over Hong Kong. The results show solutions with first-order regularization are better than those obtained from zero-order regularization, which indicates the former may be more preferable for regional gravity field modeling. The numerical results also demonstrate the gravimetric quasi-geoid/geoid and GPS/leveling data can be combined properly using this direct approach, where no systematic errors exist between these two data sets. A comparison with 61 independent GPS/leveling points shows the accuracy of the new geoid, HKGEOID-2016, is around 1.1 cm. Further evaluation demonstrates the new geoid has improved significantly compared to the original model, HKGEOID-2000, and the standard deviation for the differences between the observed and computed geoidal heights at all GPS/leveling points is reduced from 2.4 to 0.6 cm. Finally, we conclude HKGEOID-2016 can be substituted for HKGEOID-2000 for engineering purposes and geophysical investigations in Hong Kong.

  2. Total-Field Technique for 3-D Modeling of Short Period Teleseismic Waves

    NASA Astrophysics Data System (ADS)

    Monteiller, V.; Beller, S.; Operto, S.; Nissen-Meyer, T.; Tago Pacheco, J.; Virieux, J.

    2014-12-01

    The massive development of dense seismic arrays and the rapid increase in computing capacity allow today to consider application of full waveform inversion of teleseismic data for high-resolution lithospheric imaging. We present an hybrid numerical method that allows for the modellingof short period teleseismic waves in 3D lithospheric target with both the discontinuous Galerkin finite elements method and finite difference method, opening the possibility to perform waveform inversion of seismograms recorded by dense regional broadband arrays. However, despite the supercomputer ability, the forward-problem remains expensive at global scale for teleseismic configuration especially when 3D numerical methods are considered. In order to perform the forward problem in a reasonable amount of time, we reduce the computational domain in which full waveform modelling is performed. We define a 3D regional domain located below the seismological network that is embedded in a homogeneous background or axisymmetric model, in which the seismic wavefield can be computed efficiently. The background wavefield is used to compute the full wavefield in the 3D regional domain using the so-called total-field/scattered-field technique. This method relies on the decomposition of the wavefield into a background and a scattered wavefields. The computational domain is subdivided into three sub-domains: an outer domain formed by the perfectly-matched absorbing layers, an intermediate domain in which only the outgoing wavefield scattered by the lithospheric heterogeneities is computed, and the inner domain formed by the lithospheric target in which the full wavefield is computed. In this study, we shall present simulations in realistic lithospheric target when the axisymetric background wavefield is computed with the AxiSEM softwave and the 3D simulation in lithospheric target model is performed with the discontinuous Galerkin or finite difference method.

  3. Imaging subsurface density structure in Luynnier volcanic field, Saudi Arabia, using 3D gravity inversion technique

    NASA Astrophysics Data System (ADS)

    Aboud, Essam; El-shrief, Adel; Alqahtani, Faisal; Mogren, Saad

    2017-04-01

    On 19 May, 2009, an earthquake of magnitude (M=5.4) shocked the most volcanically active recent basaltic fields, Luynnier volcanic field, northwestern Saudi Arabia. This event was the largest recorded one since long time ago. Government evacuated the surrounding residents around the epicenter for over 3 months away from any future volcanic activity. The seismic event caused damages to buildings in the village around the epicenter and resulted in surface fissure trending in NNW-SSE direction with about 8 km length. Seismologists from Saudi Geological Survey (SGS) worked out on locating the epicenter and the cause of this earthquake. They collected seismic data from Saudi Geological Surveys Station Network as well as installed broadband seismic stations around the region of the earthquake. They finally concluded that the main cause of the M=5.4 event is dike intrusion at depth of about 5 km (not reached to the surface). In the present work, we carried out detailed ground/airborne gravity survey around the surficial fissure to image the subsurface volcanic structure where about 380 gravity stations were recorded covering the main fissure in an area of 600 km2. Gravity data was analyzed using CET edge detection tools and 3D inversion technique. The results revealed that, there is a magma chamber/body beneath the surface at 5-20 km depth and the main reason for the M=5.4 earthquake is tectonic settings of the Red Sea. Additionally, the area is characterized by set of faults trending in NW direction, parallel to the Red Sea, and most of the volcanic cones were located on faults/contacts implying that, they are structurally controlled. The 8-km surficial crack is extended SE underneath the surface.

  4. Exploring the Whiting Features of SW Florida Through Remote Sensing Techniques and Field Measurements.

    NASA Astrophysics Data System (ADS)

    Long, J.; Hu, C.

    2016-02-01

    Floating patches of water containing high levels of calcium carbonate have been referred to as "whitings" for their bright spectral color. These in-water features are most noticeably found in the Bahama Banks region, but also in the Persian Gulf, and fresh water lakes. Although whitings have been studied for nearly a century, their process of formation is still hotly debated, whether these are the result of resuspended sediment by turbulent boundary conditions, biogenic precipitation by phytoplankton, the result of local chemistry, or something else, is still unknown. Whitings are also recurrent features, occurring throughout the year, usually with a seasonal preference. Individual events can be up to 250km2 and last for longer than one month. With such magnitude, it is important to finally understand the causes of these events, as well as their potential proxies. Though recurring, whitings are also hard to predict. Our region of interest holds newly documented whitings in a remote location, offshore from Everglades City, Florida. This study aims to combine remote sensing techniques with field measurements in order to understand a newly identified, recurring, in-water feature of SW Florida. Using daily MODIS images, a 10-year time series has been developed to evaluate the spatio-temporal variability of whitings in this area. The daily images available in near real-time also helped to plan field trips to take direct measurements of the whitings. Initial parameters were chosen based on long-standing hypotheses of whiting formation, such as those listed above, but also included spectral reflectance and backscattering as well as particle and CDOM absorption These were taken both inside and outside the whitings in order to better identify these features from remote observations. Our results provide the first study of whitings in SW Florida, adding a new multidisciplinary perspective to the world-wide phenomenon.

  5. Prediction of PAH biodegradation in field contaminated soils using a cyclodextrin extraction technique.

    PubMed

    Papadopoulos, Apostolos; Paton, Graeme I; Reid, Brian J; Semple, Kirk T

    2007-06-01

    Biodegradation has been identified as a major loss process for organic contaminants in soils and, as a result, microbial strategies have been developed for the remediation of contaminated land. Prediction of the biodegradable fraction would be important for determining bioremediation end-points in the clean-up of contaminated land. The aim of this study was to investigate the ability of a cyclodextrin extraction to predict the extent to which polycyclic aromatic hydrocarbons (PAHs) would be degraded microbiologically in field contaminated soils; further testing the robustness and reproducibility of this extraction in chemically complex systems. Dichloromethane and hydroxypropyl-beta-cyclodextrin (HPCD) extractable fractions were measured together with the PAH biodegradable fraction in each of the six field contaminated soils. The amounts of PAHs degraded by the catabolic activity of the indigenous microflora in each of the soils were correlated with HPCD-extractable PAH concentrations. The regressions showed that the amounts of lower molecular weight PAHs extracted by the HPCD were not significantly (P > 0.05) different to the amounts that were degraded. However, higher molecular weight PAHs that were extracted by HPCD did differ significantly (P < 0.05) from the amounts degraded. Although the HPCD extraction did overestimate the microbially degradable fraction of the higher molecular weight PAHs, overall the correlations between the HPCD extractable fraction and the microbially degradable fraction were very close, with mean values of the slope of line for the six soils equalling 1. This study further describes the robust and reproducible nature of the aqueous-based soil extraction technique reliably measuring the extent to which PAHs will be microbially degraded in soil.

  6. TH-C-12A-03: Development of Expanded Field Irradiation Technique with Gimbaled X-Ray Head

    SciTech Connect

    Ono, T; Miyabe, Y; Yamada, M; Kaneko, S; Monzen, H; Mizowaki, T; Hiraoka, M; Sawada, A; Kokubo, M

    2014-06-15

    Purpose: The Vero4DRT has a maximum field size of 150×150 mm{sup 2}. The purposes of this study were to develop an expanded field irradiation technique using a unique gimbaled x-ray head of Vero4DRT and to evaluate its dosimetric characteristic. Methods: The expanded field irradiation consisted of four separate fields with 2.39 degree gimbal rotation around orthogonal two axes. The central beam axis for each field shifted 40 mm from the isocenter for longitudinal and lateral directions, and thus, the field size was expanded up to 230×230 mm{sup 2}. Adjacent region were created at the isocenter (center-adjacent expanded-field) and 20 mm from isocenter (offadjacent expanded-field). To create flat dose distribution in the combined piecewise-fields, the overlapping and gaps regions on the isocenter plane were adjusted with the gimbal rotating and the MLC. To evaluate dosimetric characteristic of the expanded-field, films inserted in water-equivalent phantoms at 50, 100 and 150 mm depth were irradiated and the field size, penumbra, flatness and symmetry were analyzed.In addition, the expandedfield irradiation technique was applied to IMRT. A head and neck IMRT field, which was planned for the conventional linac (Varian Clinac iX), was reproduced with the expanded-field of the Vero4DRT. The simulated dose distribution for the expanded IMRT field was compared to the measured dose distribution. Results: The field size, penumbra, flatness and symmetry of center- and off- adjacent expanded-fields were 230.2–232.1 mm, 7.8–10.7 mm, 2.3–6.5% and –0.5–0.4% at 100 mm depth. The 82.1% area of the expanded IMRT dose distribution was within 5% difference between measurement and simulation, which was analyzed upper 50% dose area, and the 3%/3 mm gamma pass rate was 98.4%. Conclusions: The expandedfield technique was developed using the gimbaled x-ray head. To extend applied targets, such as whole breast irradiations or head and neck IMRT, the expanded-field technique

  7. Field-based DGTD/PIC technique for general and stable simulation of interaction between light and electron bunches

    NASA Astrophysics Data System (ADS)

    Fallahi, Arya; Kärtner, Franz

    2014-12-01

    We introduce a hybrid technique based on the discontinuous Galerkin time domain (DGTD) and the particle in cell (PIC) simulation methods for the analysis of interaction between light and charged particles. The DGTD algorithm is a three-dimensional, dual-field and fully explicit method for efficiently solving Maxwell equations in the time domain on unstructured grids. On the other hand, the PIC algorithm is a versatile technique for the simulation of charged particles in an electromagnetic field. This paper introduces a novel strategy for combining both methods to solve for the electron motion and field distribution when an optical beam interacts with an electron bunch in a very general geometry. The developed software offers a complete and stable numerical solution of the problem for arbitrary charge and field distributions in the time domain on unstructured grids. For this purpose, an advanced search algorithm is developed for fast calculation of field data at charge points and for later importing to the PIC simulations. In addition, we propose a field-based coupling between the two methods resulting in a stable and precise time marching scheme for both fields and charged particle motion. To benchmark the solver, some examples are numerically solved and compared with analytical solutions. Eventually, the developed software is utilized to simulate the field emission from a flat metal plate and a silicon nano-tip. In the future, we will use this technique for the simulation and design of ultrafast compact x-ray sources.

  8. Manipulation of local optical properties and structures in molybdenum-disulfide monolayers using electric field-assisted near-field techniques

    PubMed Central

    Nozaki, Junji; Fukumura, Musashi; Aoki, Takaaki; Maniwa, Yutaka; Yomogida, Yohei; Yanagi, Kazuhiro

    2017-01-01

    Remarkable optical properties, such as quantum light emission and large optical nonlinearity, have been observed in peculiar local sites of transition metal dichalcogenide monolayers, and the ability to tune such properties is of great importance for their optoelectronic applications. For that purpose, it is crucial to elucidate and tune their local optical properties simultaneously. Here, we develop an electric field-assisted near-field technique. Using this technique we can clarify and tune the local optical properties simultaneously with a spatial resolution of approximately 100 nm due to the electric field from the cantilever. The photoluminescence at local sites in molybdenum-disulfide (MoS2) monolayers is reversibly modulated, and the inhomogeneity of the charge neutral points and quantum yields is suggested. We successfully etch MoS2 crystals and fabricate nanoribbons using near-field techniques in combination with an electric field. This study creates a way to tune the local optical properties and to freely design the structural shapes of atomic monolayers using near-field optics. PMID:28378804

  9. Influence of the geomagnetic field on the IACT detection technique for possible sites of CTA observatories

    NASA Astrophysics Data System (ADS)

    Szanecki, M.; Bernlöhr, K.; Sobczyńska, D.; Niedźwiecki, A.; Sitarek, J.; Bednarek, W.

    2013-05-01

    We investigate the influence of the geomagnetic field (GF) on the Imaging Air Cherenkov Telescope technique for two northern (Tenerife and San Pedro Martir) and three southern (Salta, Leoncito and Namibia (the H.E.S.S.-site)) site candidates for Cherenkov Telescope Array (CTA) observatories. We use the CORSIKA and sim_telarray programs for Monte Carlo simulations of gamma ray showers, hadronic background and the telescope response. We focus here on gamma ray measurements in the low energy, sub-100 GeV, range. Therefore, we only consider the performance of arrays of several large telescopes. Neglecting the GF effect, we find (in agreement with previous studies) that such arrays have lower energy thresholds, and larger collection areas below 30 GeV, when located at higher altitudes. We point out, however, that in the considered ranges of altitudes and magnetic field intensities, 1800-3600 m a.s.l. and 0-40 μT, respectively, the GF effect has a similar magnitude to this altitude effect. We provide the trigger-level performance parameters of the observatory affected by the GF effect, in particular the collection areas, detection rates and the energy thresholds for all five locations, which information may be useful in the selection of sites for CTA. We also find simple scaling of these parameters with the magnetic field strength, which can be used to assess the magnitude of the GF effect for other sites; in this work we use them to estimate the performance parameters for five sites: South Africa-Beaufort West, USA-Yavapai Ranch, Namibia-Calapanzi, Chile-La Silla and India-Hanle. We roughly investigate the impact of the geophysical conditions on gamma/hadron separation procedures involving image shape and direction cuts. We note that the change of altitude has an opposite effect at the trigger and analysis levels, i.e. gains in triggering efficiency at higher altitudes are partially balanced by losses in the separation efficiency. In turn, a stronger GF spoils both the

  10. Integrating Novel Field, Laboratory and Modelling Techniques to Upscale Estimates of Soil Erosion

    NASA Astrophysics Data System (ADS)

    Wainwright, John; Parsons, Anthony; Cooper, James; Long, Edward; Hargrave, Graham; Kitchener, Ben; Hewett, Caspar; Onda, Yuichi; Furukawa, Tomomi; Obana, Eiichiro; Hayashi, Hirofumi; Noguchi, Takehiro

    2013-04-01

    Erosion is a particle-based phenomenon, yet most of current understanding and modelling of this process is based on bulk measurements rather than the movement of individual particles. Difficulties with measuring particle motions in dynamically changing conditions are being overcome with the application of two new technologies - particle imaging velocimetry (PIV) and radio frequency identification (RFID). It is thus possible to evaluate the entrainment, transport and deposition of individual particles and these data can be used to parameterize and to test particle-based modelling of the particle-based process. Both PIV and RFID tagging have been used in laboratory experiments to evaluate the detachment process by raindrops on bare surfaces and in shallow flows using rainfall simulation. The results suggest that the processes are more complex than hitherto thought with multiple detachment and transfer mechanisms. Because both mechanisms affect travel distance, they affect the ways in which estimates of soil erosion can be scaled from plot to hillslope and catchment scales. To evaluate movements at larger scales, we have also used RFID-tagged particles in field settings to look at sediment transfers following the Fukushima accident in Japan, 2011. A marker-in-cell model (MAHLERAN-MiC) has been developed to enable the laboratory results to be upscaled and tested in a field setting. Markers (representing sediment particles), containing sediment-property information, are initially distributed on a cellular grid. A cellular model is used to set up the boundary conditions and determine the hydrology and hydraulics on the hillslope. The markers are then moved through the grid according to these properties. This technique combines the advantages of Eulerian and Lagrangian methods while avoiding the shortcomings of each (computational efficiency vs. accuracy). The model simulates all the processes of detachment and transport; raindrop detachment and transport, interrill

  11. Subdivision based isogeometric analysis technique for electric field integral equations for simply connected structures

    NASA Astrophysics Data System (ADS)

    Li, Jie; Dault, Daniel; Liu, Beibei; Tong, Yiying; Shanker, Balasubramaniam

    2016-08-01

    The analysis of electromagnetic scattering has long been performed on a discrete representation of the geometry. This representation is typically continuous but not differentiable. The need to define physical quantities on this geometric representation has led to development of sets of basis functions that need to satisfy constraints at the boundaries of the elements/tessellations (viz., continuity of normal or tangential components across element boundaries). For electromagnetics, these result in either curl/div-conforming basis sets. The geometric representation used for analysis is in stark contrast with that used for design, wherein the surface representation is higher order differentiable. Using this representation for both geometry and physics on geometry has several advantages, and is elucidated in Hughes et al. (2005) [7]. Until now, a bulk of the literature on isogeometric methods have been limited to solid mechanics, with some effort to create NURBS based basis functions for electromagnetic analysis. In this paper, we present the first complete isogeometry solution methodology for the electric field integral equation as applied to simply connected structures. This paper systematically proceeds through surface representation using subdivision, definition of vector basis functions on this surface, to fidelity in the solution of integral equations. We also present techniques to stabilize the solution at low frequencies, and impose a Calderón preconditioner. Several results presented serve to validate the proposed approach as well as demonstrate some of its capabilities.

  12. Gravel-pack field examples of a new pulsed-neutron-activation logging technique

    SciTech Connect

    Caroll, J.F.; Smith, B.C. )

    1991-12-01

    Gravel packs traditionally have been evaluated with gamma/gamma density and neutron logging tools. These logging tools, particularly the density tools, do an acceptable job in most logging environments but have some limitations that affect their measurement resolution in attempts to define gravel-pack quality. The presence of high-density completion fluids significantly reduces the dynamic range of the conventional measurements. Low-contrast logging resolution is also encountered with the new matched-density gravel-pack systems that use matrix materials with densities near those of the completion fluids. This paper presents an alternative measurement of gravel-pack quality that is unaffected by the type of completion fluid present. The authors also present six field examples that demonstrate this new technique. Each example presents a different logging condition, e.g., heavy borehole fluid in a conventional gravel pack, gravel pack with sintered bauxite, two completions with Isopac gravel of different screen sizes, and multiple gravel-pack logs recorded before and after wireline repair work. Several of these examples show that neutron activation can be a useful method of gravel-pack analysis in some logging environments.

  13. A TECHNIQUE FOR PRIMARY BEAM CALIBRATION OF DRIFT-SCANNING, WIDE-FIELD ANTENNA ELEMENTS

    SciTech Connect

    Pober, Jonathan C.; Parsons, Aaron R.; Jacobs, Daniel C.; Aguirre, James E.; Moore, David F.; Bradley, Richard F.; Parashare, Chaitali R.; Carilli, Chris L.; Gugliucci, Nicole E.

    2012-02-15

    We present a new technique for calibrating the primary beam of a wide-field, drift-scanning antenna element. Drift-scan observing is not compatible with standard beam calibration routines, and the situation is further complicated by difficult-to-parameterize beam shapes and, at low frequencies, the sparsity of accurate source spectra to use as calibrators. We overcome these challenges by building up an interrelated network of source 'crossing points'-locations where the primary beam is sampled by multiple sources. Using the single assumption that a beam has 180 Degree-Sign rotational symmetry, we can achieve significant beam coverage with only a few tens of sources. The resulting network of crossing points allows us to solve for both a beam model and source flux densities referenced to a single calibrator source, circumventing the need for a large sample of well-characterized calibrators. We illustrate the method with actual and simulated observations from the Precision Array for Probing the Epoch of Reionization.

  14. Model of total skin electron treatment using the 'six-dual-field' technique.

    PubMed

    Faj, Dario; Vrtar, Mladen; Krajina, Zdenko; Jurković, Slaven; Margaretić, Damir

    2003-12-01

    During implementation of the total skin electron treatment, using six-dual-field technique, at radiotherapy department a large number of measurements are needed. To assess depth dose curve required by clinicians and dose uniformity over a whole treatment plane, combinations of different irradiation parameters are used (electron energy, beam angle, scatterers). Measurements for each combination must be performed. One possible way to reduce number of measurements is to model the treatment using the Monte Carlo simulation of electron transport. We made a simplified multiple-source Monte Carlo model of electron beam and tested it by comparing calculations and experimental results. Calculated data differs less than 5 percent from measurements in the treatment plane. During the treatment patient can be approximated using cylinders with different diameters and orientations. We tried to model the depth dose variations in the total skin electron treatment not just around the body cross-section (simplified to cylinders of different diameters), but also along the body to account for the variations in body curvature longitudinally. This effect comes down to the problem of modeling distribution in different cylinders, but varying the longitudinal orientation of those cylinders. We compared Monte Carlo calculations and film measurements of depth dose curves for two orientations of the cylindrical phantom, which were the simplest for experimental arrangement. Comparison of the results proved accuracy of the model and we used it to calculate depth dose curves for a number of other cylinder orientations.

  15. Software-based stacking techniques to enhance depth of field and dynamic range in digital photomicrography.

    PubMed

    Piper, Jörg

    2010-01-01

    Several software solutions are powerful tools to enhance the depth of field and improve focus in digital photomicrography. By these means, the focal depth can be fundamentally optimized so that three-dimensional structures within specimens can be documented with superior quality. Thus, images can be created in light microscopy which will be comparable with scanning electron micrographs. The remaining sharpness will no longer be dependent on the specimen's vertical dimension or its range in regional thickness. Moreover, any potential lack of definition associated with loss of planarity and unsteadiness in the visual accommodation can be mitigated or eliminated so that the contour sharpness and resolution can be strongly enhanced.Through the use of complementary software, ultrahigh ranges in brightness and contrast (the so-called high-dynamic range) can be corrected so that the final images will also be free from locally over- or underexposed zones. Furthermore, fine detail in low natural contrast can be visualized in much higher clarity. Fundamental enhancements of the global visual information will result from both techniques.

  16. Quantum-field-theoretical approach to phase-space techniques: Generalizing the positive-P representation

    SciTech Connect

    Plimak, L.I.; Fleischhauer, M.; Olsen, M.K.; Collett, M.J.

    2003-01-01

    We present an introduction to phase-space techniques (PST) based on a quantum-field-theoretical (QFT) approach. In addition to bridging the gap between PST and QFT, our approach results in a number of generalizations of the PST. First, for problems where the usual PST do not result in a genuine Fokker-Planck equation (even after phase-space doubling) and hence fail to produce a stochastic differential equation (SDE), we show how the system in question may be approximated via stochastic difference equations (S{delta}E). Second, we show that introducing sources into the SDE's (or S{delta}E's) generalizes them to a full quantum nonlinear stochastic response problem (thus generalizing Kubo's linear reaction theory to a quantum nonlinear stochastic response theory). Third, we establish general relations linking quantum response properties of the system in question to averages of operator products ordered in a way different from time normal. This extends PST to a much wider assemblage of operator products than are usually considered in phase-space approaches. In all cases, our approach yields a very simple and straightforward way of deriving stochastic equations in phase space.

  17. Diamond Field Emission Source using Transfer Mold Technique Prepared by Diamond Powder Seeding

    NASA Astrophysics Data System (ADS)

    Tezuka, Sachiaki; Matsuba, Yohei; Takahashi, Kohro

    Diamond thin films fabricated by MPCVD (microwave plasma chemical vapor deposition) are available for use as a field emitter material, because of its high mechanical quality, thermal conductivity, chemical stability, environmental tolerance, and NEA (negative electron affinity). Diode and triode emitter arrays using P-doped polycrystalline diamond were manufactured on a SiO2/Si(100) substrate with reverse pyramids formed by the transfer mold technique. As the diamond nucleation process, spin-coat seeding with pure diamond powder dispersed in isoamyl acetate has been introduced in place of the bias method. SEM (scanning electron microscopy) images and Raman spectroscopy indicate that the crystal quality of the diamond thin film fabricated by spin-coat seeding is superior to that fabricated by the bias method. The diamond crystal completely grew on top of the diode emitter by the US (ultrasonic) treatment in a diamond powder solution before spin-coat seeding. The tip radius was smaller than 50 nm. The beginning voltage of the emission of the diode emitter is 3 V after the DC glow discharge treatment in H2, which is lower than that of an emitter array fabricated by the bias method, 40 V. On the other hand, the emission of the diamond triode emitter starts at a gate voltage of only 0.5 V, and the emission current of 50∼60 mA is obtained at a gate voltage of 2 V.

  18. A Physics-based Automated Technique for the Detection of Field Line Resonance Frequency in Ground Magnetometer Data

    NASA Astrophysics Data System (ADS)

    Boudouridis, A.; Zesta, E.; Moldwin, M.

    2015-12-01

    The accurate determination of the Field Line Resonance (FLR) frequency of a resonating geomagnetic field line is necessary for the remote monitoring of the plasmaspheric mass density during geomagnetic storms and quiet times alike. Under certain assumptions the plasmaspheric mass density at the equator is inversely proportional to the square of the FLR frequency. The most common techniques to determine the FLR frequency from ground magnetometer measurements are the amplitude ratio and phase difference techniques, both based on geomagnetic field measurements at two latitudinally separated ground stations. Previously developed automated techniques have used statistical methods to pinpoint the FLR frequency using the amplitude ratio and phase difference calculations. We now introduce a physics-based automated technique that can reproduce the resonant wave characteristics from the two ground station data, and from those determine the FLR frequency. The advantage of the new technique, besides moving away from ambiguous statistical manipulations of the ground data, is the estimation of physically determined errors of the FLR frequency, which can yield physically determined errors of the equatorial plasmaspheric mass density. We present preliminary results of the new technique calculations, and test it using data from the new Inner-Magnetospheric Array for Geospace Science (iMAGS) ground magnetometer chain along the coast of Chile and the east coast of the United States. We compare the results with the results of previously published statistical automated techniques.

  19. Application of multivariable search techniques to the optimization of airfoils in a low speed nonlinear inviscid flow field

    NASA Technical Reports Server (NTRS)

    Hague, D. S.; Merz, A. W.

    1975-01-01

    Multivariable search techniques are applied to a particular class of airfoil optimization problems. These are the maximization of lift and the minimization of disturbance pressure magnitude in an inviscid nonlinear flow field. A variety of multivariable search techniques contained in an existing nonlinear optimization code, AESOP, are applied to this design problem. These techniques include elementary single parameter perturbation methods, organized search such as steepest-descent, quadratic, and Davidon methods, randomized procedures, and a generalized search acceleration technique. Airfoil design variables are seven in number and define perturbations to the profile of an existing NACA airfoil. The relative efficiency of the techniques are compared. It is shown that elementary one parameter at a time and random techniques compare favorably with organized searches in the class of problems considered. It is also shown that significant reductions in disturbance pressure magnitude can be made while retaining reasonable lift coefficient values at low free stream Mach numbers.

  20. Non-contact scanning probe technique for electric field measurements based on nanowire field-effect transistor.

    PubMed

    Trifonov, A S; Presnov, D E; Bozhev, I V; Evplov, D A; Desmaris, V; Krupenin, V A

    2017-08-01

    We report on the new active tip for scanning probe microscopy allowing the simultaneous measurements of surface topography and its potential profile. We designed and fabricated a field-effect transistor with nanowire channel located on the apex of silicon-on-insulator small chip. The field-effect transistor with nanowire channel was selected due to its extremely high electric field sensitivity even at room temperature. We developed the scanning probe operated in the tuning fork regime and demonstrated its reasonable spatial and field resolution. The proposed device can be a unique tool for high-sensitive, high-resolution, non-destructive potential profile mapping of nanoscale objects in physics, biology and material science. We discuss the ways to optimize the sensor charge sensitivity to the theoretical limit which is 10(-)(3)e/Hz(-1/2) at room temperature. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. A framework for validating light fields created using physically based rendering techniques

    NASA Astrophysics Data System (ADS)

    Whittinghill, David M.

    This research study presents a framework for applying physically based global illumination techniques to the creation of software models of light fields that are then validated against actual light fields measured in physical experiments. A prior experiment was performed by horticulture scientists in which the light field of an empty plant growth chamber was measured using quantum sensors at fixed spatial intervals. The result was a light map consisting of a 9 x 45, fixed-width, two-dimensional graph of sensor readings that described the intensity of radiant energy present in the chamber at the chosen locations. A single observation of the growth chamber was made resulting in a single data set consisting of 45 different, location-sensitive irradiance observations. To test this framework a series of simulations were performed in which the physical attributes of the growth chamber were duplicated as closely as possible in a virtual growth chamber software model. Modeled attributes included physical dimensions, wall and light reflectivity, and full-spectrum light characterization. Light transport was modeled using a physically based, global illumination rendering technique called photon mapping. Virtual sensors that recorded the intensity of the light that transmitted through their surface were placed in the virtual chamber at the same position and interval as the ones that were used in the physical experiment. The output of the virtual chamber experiments were represented as a graph in the same configuration as the one in the physical experiment. The experiment was conducted using a modified version of pbrt, a physically based, extensible renderer developed by Matt Pharr and Greg Humphreys [1]. As photon mapping uses a stochastic algorithm, many repetitions of the virtual chamber experiment were performed and the mean and standard deviation were recorded as a global measure for each chamber as well as for each individual sensor location. The global means of the

  2. A simplified clinical technique for a routine indirect restoration impression on a challenging patient using a dry field illuminator.

    PubMed

    Santucci, N M; Santucci, E T; Geissberger, M

    2014-01-01

    Detailed and accurate impressions are made when the oral environment is dry during the impression process. Maintaining a dry field on medically, physically, or emotionally compromised patients can be very challenging. If not achieved, it may compromise dental care and accurate outcomes. This article describes a technique that can be used to make a final impression for an indirect restoration in a protected, isolated, and dry environment, using a dry field illuminator.

  3. Application of the planar-scanning technique to the near-field dosimetry of millimeter-wave radiators.

    PubMed

    Zhao, Jianxun; Lu, Hongmin; Deng, Jun

    2015-02-01

    The planar-scanning technique was applied to the experimental measurement of the electric field and power flux density (PFD) in the exposure area close to the millimeter-wave (MMW) radiator. In the near-field region, the field and PFD were calculated from the plane-wave spectrum of the field sampled on a scan plane far from the radiator. The measurement resolution was improved by reducing the spatial interval between the field samples to a fraction of half the wavelength and implementing multiple iterations of the fast Fourier transform. With the reference to the results from the numerical calculation, an experimental evaluation of the planar-scanning measurement was made for a 50 GHz radiator. Placing the probe 1 to 3 wavelengths from the aperture of the radiator, the direct measurement gave the near-field data with significant differences from the numerical results. The planar-scanning measurement placed the probe 9 wavelengths away from the aperture and effectively reduced the maximum and averaged differences in the near-field data by 70.6% and 65.5%, respectively. Applied to the dosimetry of an open-ended waveguide and a choke ring antenna for 60 GHz exposure, the technique proved useful to the measurement of the PFD in the near-field exposure area of MMW radiators.

  4. Effect of varied training techniques on field endotracheal intubation success rates.

    PubMed

    Stewart, R D; Paris, P M; Pelton, G H; Garretson, D

    1984-11-01

    A pool of 146 mobile intensive care unit paramedics was divided into four equal groups and trained in the technique of direct laryngoscopic endotracheal intubation of cardiac arrest or deeply comatose patients. Group 1 was selected from supervisors and crew chiefs and trained as preceptors. The remaining paramedics were assigned to three other study groups. Groups 1 and 2 were trained with a didactic presentation followed by manikin practice, an animal laboratory exercise, and operating room experience. Group 3 had no OR experience; Group 4 had only didactic/manikin training. Intubations were observed by preceptors on scene. During the study period of 27 months, 689 of 763 patients (90.3%) were successfully intubated by 122 paramedics. While results suggest variation in skill levels according to training group (Group 1, 92.4%; Group 2, 87.6%, Group 3, 83.3%; Group 4, 76.9%), statistical analysis allowing for the variables of seniority and number of intubations performed by personnel failed to reveal differences in groups attributable to training programs. Complication rates were relatively low for all groups, the most common being prolonged intubation attempts. A significant improvement in the skill was seen as the study progressed when groups are pooled and compared. The findings suggest that endotracheal intubation of deeply comatose or cardiac arrest patients is a field procedure that can be performed safely and skillfully by well-monitored paramedical personnel. Operating room or animal laboratory experience may increase initial success levels, but these factors do not appear to greatly influence eventual performance or incidence of complications of the procedure.

  5. Frit inlet field-flow fractionation techniques for the characterization of polyion complex self-assemblies.

    PubMed

    Till, Ugo; Gaucher, Mireille; Amouroux, Baptiste; Gineste, Stéphane; Lonetti, Barbara; Marty, Jean-Daniel; Mingotaud, Christophe; Bria, Carmen R M; Williams, S Kim Ratanathanawongs; Violleau, Frédéric; Mingotaud, Anne-Françoise

    2017-01-20

    Polymer self-assemblies joining oppositely charged chains, known as polyion complexes (PICs), have been formed using poly(ethyleneoxide - b - acrylic acid)/poly(l-lysine), poly(ethyleneoxide-b-acrylic acid)/dendrigraft poly(l-lysine) and poly[(3-acrylamidopropyl) trimethylammonium chloride - b - N - isopropyl acrylamide]/poly(acrylic acid). The self-assemblies have been first characterized in batch by Dynamic Light Scattering. In a second step, their analysis by Flow Field-Flow Fractionation techniques (FlFFF) was examined. They were shown to be very sensitive to shearing, especially during the focus step of the fractionation, and this led to an incompatibility with asymmetrical FlFFF. On the other hand, Frit Inlet FlFFF proved to be very efficient to observe them, either in its symmetrical (FI-FlFFF) or asymmetrical version (FI-AsFlFFF). Conditions of elution were found to optimize the sample recovery in pure water. Spherical self-assemblies were detected, with a size range between 70-400nm depending on the polymers. Compared to batch DLS, FI-AsFlFFF clearly showed the presence of several populations in some cases. The influence of salt on poly(ethyleneoxide-b-acrylic acid) (PEO-PAA) 6000-3000/dendrigraft poly(l-lysine) (DGL 3) was also assessed in parallel in batch DLS and FI-AsFlFFF. Batch DLS revealed a first process of swelling of the self-assembly for low concentrations up to 0.8M followed by the dissociation. FI-AsFlFFF furthermore indicated a possible ejection of DGL3 from the PIC assembly for concentrations as low as 0.2M, which could not be observed in batch DLS.

  6. Field Evaluation of Two Geophysical Techniques for Real-Time Mapping of Smouldering Remediation (STAR)

    NASA Astrophysics Data System (ADS)

    Trento, L. M.; Tsourlos, P.; McMaster, M.; Liefl, D.; Sims, A.; Dominguez, J. L. G.; Vidumsky, J.; Gerhard, J.

    2016-12-01

    Self-sustaining Treatment for Active Remediation (STAR) technology destroys non-aqueous phase liquid (NAPL) in situ using principles of smouldering combustion. It involves propagating an exothermic (400-1000C) oxidation reaction outwards from an ignition well. A full-scale STAR system is currently being applied at an industrial site contaminated with coal tar below the water table in New Jersey, USA. STAR is typically tracked using multi-level thermocouples, which are discrete and sparse in space and time. This study evaluates two surface-based geophysical methods - Electrical Resistivity Tomography (ERT) and Self-Potential (SP) - for the ability to map the STAR reaction in real time at the New Jersey site. Both techniques involve placing electrode arrays on the surface and monitoring electrical signals over time (i.e., time-lapse). It is hypothesized that ERT should be able to monitor the resistive dry zone that precedes the reaction front and/or the growing NAPL-depleted zone. SP is expected to be able to detect the potential difference associated with thermal gradients generated by the reaction. Approximately 72 ERT electrodes in a "swiss cross" pattern plus 10 SP electrodes will be emplaced over single STAR treatment cell (six ignition wells). This setup will be employed to monitor both a deep (25 feet) and shallow (8 feet) STAR treatments. The geophysics will be complemented by in situ temperature measurements, continuous gas measurements, and pre- and post-treatment coring. The primary goal of this research is to evaluate the effectiveness of using ERT and SP for STAR under field conditions. The tests will be conducted in August 2016.

  7. Tsunakawa-Shaw method - an absolute paleointensity technique using alternating field demagnetization

    NASA Astrophysics Data System (ADS)

    Yamamoto, Y.; Mochizuki, N.; Shibuya, H.; Tsunakawa, H.

    2015-12-01

    Among geologic materials volcanic rocks have been typically used to deduce an absolute paleointensity. In the last decade, however, there seems a becoming consensus that volcanic rocks are not so ideal materials due to such as magnetic grains other than non-interacting single domain particles. One approach to obtain a good paleointensity estimate from the rocks is to reduce and correct the non-ideality, suppress alterations in laboratory and screen out suspicious results. We have been working on a development and an application of the Tsunakawa-Shaw method, which has been previously called the LTD-DHT Shaw method. This method is an AF(alternating field)-based technique and thus a paleointensity is estimated using coercivity spectra. To reduce the non-ideality, all remanences undergo low-temperature demagnetization (LTD) before any AF demagnetizations to remove multi-domain like component. To correct the non-ideality, anhysteretic remanent magnetizations (ARMs) are imparted with their directions parallel to natural remanent magnetizations and laboratory-imparted thermoremanent magnetizations (TRMs) and measured before and after laboratory heating. These ARMs are used to correct remanence anisotropies, possible interaction effects originated from the non-ideal grains and TRM changes caused by laboratory alterations. TRMs are imparted by heating specimens above their Curie temperatures and then cooling to room temperature at once to simulate nature conditions. These cycles are done in vacuum to suppress alterations in laboratory. Obtained results are judged by selection criteria, including a check for validity of the ARM corrections.It has been demonstrated that successful paleointensities are obtained from historical lavas in Japan and Hawaii, and from baked clay samples from a reconstructed ancient kiln, with the flow-mean precision of 5-10%. In case of old volcanic rocks, however, the method does not necessarily seem to be perfect. We will summarize these points in

  8. Field testing of fugitive dust control techniques at a uranium mill tailings pile - 1982 Field Test, Gas Hills, Wyoming.

    SciTech Connect

    Elmore, M.R.; Hartley, J.N.

    1983-12-01

    A field test was conducted on a uranium tailings pile to evaluate the effectiveness of 15 chemical stabilizers for control of fugitive dust from uranium mill tailings. A tailings pile at the Federal American Partners (FAP) Uranium Mill, Gas Hills, Wyoming, was used for the field test. Preliminary laboratory tests using a wing tunnel were conducted to select the more promising stabilizers for field testing. Fourteen of the chemical stabilizers were applied with a field spray system pulled behind a tractor; one--Hydro Mulch--was applied with a hydroseeder. A portable weather station and data logger were installed to record the weather conditions at the test site. After 1 year of monitoring (including three site visits), all of the stabilizers have degraded to some degree; but those applied at the manufacturers' recommended rate are still somewhat effective in reducing fugitive emissions. The following synthetic polymer emulsions appear to be the more effective stabilizers: Wallpol 40-133 from Reichold Chemicals, SP-400 from Johnson and March Corporation, and CPB-12 from Wen Don Corporation. Installed costs for the test plots ranged from $8400 to $11,300/ha; this range results from differences in stabilizer costs. Large-scale stabilization costs of the test materials are expected to range from $680 to $3600/ha based on FAP experience. Evaluation of the chemical stabilizers will continue for approximately 1 year. 2 references, 33 figures, 22 tables.

  9. Increased Oil Production and Reserves from Improved Completion Techniques in the Bluebell Field, Uinta Basin, Utah, Class I

    SciTech Connect

    Morgan, Craig D.; Gwynn, Wallace; Deo, Milind D.; Jarrard, Richard; Curtice, Richard; Morris, Thomas H.; Smouse, DeForrest; Tripp, Carol N.

    2000-01-20

    The objective of this project was to increase oil production and reserves by the use of improved reservoir characterization and completion techniques in the Unita Basin Utah. To accomplish this objective, a two-year geologic and engineering characterization of the Bluebell field was conducted. The study evaluated surface and subsurface data, currently used completion techniques, and common production problems. It was determined that advanced case- and open-hole logs could be effective in determining productive beds and that staged-interval (about 500 ft [150 m] per stage) and bed-scale isolation completion techniques could result in improved well performance.

  10. Combination of GPR with other NDT techniques in different fields of application - COST Action TU1208

    NASA Astrophysics Data System (ADS)

    Solla, Mercedes; Pérez-Gracia, Vega; Fontul, Simona; Santos-Assunçao, Sonia; Kucukdemirci, Melda

    2017-04-01

    During the last decades, there has been a continuous increase in the use of non-destructive testing (NDT) applied to many aspects related to civil engineering and other fields such as geology or sedimentology, archaeology and either monument or cultural heritage. This is principally due to the fact that most NDT methods work remotely, that is, without direct contact, while adding information of non-visible areas. Particularly, geophysics has significantly benefited the procedures for inspection and also, successfully solved some of the limitations of traditional methods such as a lack of objectiveness, destructive testing, loss of safety during infrastructure inspection, and also, low rates of production. The different geophysical methodologies are based on the measurement of physical properties of media. However, all geophysical methods are sensitive to different physical parameters and the success of these methods is related to the nature of the buried features themselves, in terms of their physical and geometric properties, soil conditions, operational factors such as the sensitivity of equipment and etc. Consequently, taking into account all of these factors, to obtain reliable and complementary results, multiple geophysical methods rather than single method and moreover data integration approaches are recommended to provide accurate interpretations. This work presents some examples of combination of Ground-Penetrating Radar (GPR) with other NDT techniques in different fields of application (pavements/railways, archaeological sites, monuments, and stratigraphy in beaches and bathymetries). An example of combination of GPR and Falling Weight Deflectometer (FWD) to assess the bearing capacity of flexible pavement is described as the most efficient structural evaluation of pavements and one of the most commonly applications of the methods on civil engineering inspections. Results of archaeogeophysical field surveys in Turkey are also included by combining the most

  11. Dosimetric Comparison of Split Field and Fixed Jaw Techniques for Large IMRT Target Volumes in the Head and Neck

    SciTech Connect

    Srivastava, Shiv P.; Das, Indra J.; Kumar, Arvind; Johnstone, Peter A.S.

    2011-04-01

    Some treatment planning systems (TPSs), when used for large-field (>14 cm) intensity-modulated radiation therapy (IMRT), create split fields that produce excessive multiple-leaf collimator segments, match-line dose inhomogeneity, and higher treatment times than nonsplit fields. A new method using a fixed-jaw technique (FJT) forces the jaw to stay at a fixed position during optimization and is proposed to reduce problems associated with split fields. Dosimetric comparisons between split-field technique (SFT) and FJT used for IMRT treatment is presented. Five patients with head and neck malignancies and regional target volumes were studied and compared with both techniques. Treatment planning was performed on an Eclipse TPS using beam data generated for Varian 2100C linear accelerator. A standard beam arrangement consisting of nine coplanar fields, equally spaced, was used in both techniques. Institutional dose-volume constraints used in head and neck cancer were kept the same for both techniques. The dosimetric coverage for the target volumes between SFT and FJT for head and neck IMRT plan is identical within {+-}1% up to 90% dose. Similarly, the organs at risk (OARs) have dose-volume coverage nearly identical for all patients. When the total monitor unit (MU) and segments were analyzed, SFT produces statistically significant higher segments (17.3 {+-} 6.3%) and higher MU (13.7 {+-} 4.4%) than the FJT. There is no match line in FJT and hence dose uniformity in the target volume is superior to the SFT. Dosimetrically, SFT and FJT are similar for dose-volume coverage; however, the FJT method provides better logistics, lower MU, shorter treatment time, and better dose uniformity. The number of segments and MU also has been correlated with the whole body radiation dose with long-term complications. Thus, FJT should be the preferred option over SFT for large target volumes.

  12. Dosimetric comparison of split field and fixed jaw techniques for large IMRT target volumes in the head and neck.

    PubMed

    Srivastava, Shiv P; Das, Indra J; Kumar, Arvind; Johnstone, Peter A S

    2011-01-01

    Some treatment planning systems (TPSs), when used for large-field (>14 cm) intensity-modulated radiation therapy (IMRT), create split fields that produce excessive multiple-leaf collimator segments, match-line dose inhomogeneity, and higher treatment times than nonsplit fields. A new method using a fixed-jaw technique (FJT) forces the jaw to stay at a fixed position during optimization and is proposed to reduce problems associated with split fields. Dosimetric comparisons between split-field technique (SFT) and FJT used for IMRT treatment is presented. Five patients with head and neck malignancies and regional target volumes were studied and compared with both techniques. Treatment planning was performed on an Eclipse TPS using beam data generated for Varian 2100C linear accelerator. A standard beam arrangement consisting of nine coplanar fields, equally spaced, was used in both techniques. Institutional dose-volume constraints used in head and neck cancer were kept the same for both techniques. The dosimetric coverage for the target volumes between SFT and FJT for head and neck IMRT plan is identical within ± 1% up to 90% dose. Similarly, the organs at risk (OARs) have dose-volume coverage nearly identical for all patients. When the total monitor unit (MU) and segments were analyzed, SFT produces statistically significant higher segments (17.3 ± 6.3%) and higher MU (13.7 ± 4.4%) than the FJT. There is no match line in FJT and hence dose uniformity in the target volume is superior to the SFT. Dosimetrically, SFT and FJT are similar for dose-volume coverage; however, the FJT method provides better logistics, lower MU, shorter treatment time, and better dose uniformity. The number of segments and MU also has been correlated with the whole body radiation dose with long-term complications. Thus, FJT should be the preferred option over SFT for large target volumes. Copyright © 2011 American Association of Medical Dosimetrists. Published by Elsevier Inc. All rights

  13. Conformal Locoregional Breast Irradiation with an Oblique Parasternal Photon Field Technique

    SciTech Connect

    Erven, Katrien; Petillion, Saskia; Weltens, Caroline; Van den Heuvel, Frank; Defraene, Gilles; Van Limbergen, Erik; Van den Bogaert, Walter

    2011-04-01

    We evaluated an isocentric technique for conformal irradiation of the breast, internal mammary, and medial supra-clavicular lymph nodes (IM-MS LN) using the oblique parasternal photon (OPP) technique. For 20 breast cancer patients, the OPP technique was compared with a conventional mixed-beam technique (2D) and a conformal partly wide tangential (PWT) technique, using dose-volume histogram analysis and normal tissue complication probabilities (NTCPs). The 3D techniques resulted in a better target coverage and homogeneity than did the 2D technique. The homogeneity index for the IM-MS PTV increased from 0.57 for 2D to 0.90 for PWT and 0.91 for OPP (both p < 0.001). The OPP technique was able to reduce the volume of heart receiving more than 30 Gy (V{sub 30}), the cardiac NTCP, and the volume of contralateral breast receiving 5 Gy (V{sub 5}) compared with the PWT plans (all p < 0.05). There is no significant difference in mean lung dose or lung NTCP between both 3D techniques. Compared with the PWT technique, the volume of lung receiving more than 20 Gy (V{sub 20}) was increased with the OPP technique, whereas the volume of lung receiving more than 40 Gy (V{sub 40}) was decreased (both p < 0.05). Compared with the PWT technique, the OPP technique can reduce doses to the contralateral breast and heart at the expense of an increased lung V{sub 20}.

  14. The dosimetric impact of respiratory breast movement and daily setup error on tangential whole breast irradiation using conventional wedge, field-in-field and irregular surface compensator techniques

    PubMed Central

    Furuya, Tomohisa; Sugimoto, Satoru; Kurokawa, Chie; Ozawa, Shuichi; Karasawa, Kumiko; Sasai, Keisuke

    2013-01-01

    To evaluate the dosimetric impact of respiratory breast motion and daily setup error on whole breast irradiation (WBI) using three irradiation techniques; conventional wedge (CW), field-in-field (FIF) and irregular surface compensator (ISC). WBI was planned for 16 breast cancer patients. The dose indices for evaluated clinical target volume (CTVevl), lung, and body were evaluated. For the anterior-posterior (AP) respiratory motion and setup error of a single fraction, the isocenter was moved according to a sine function, and the dose indices were averaged over one period. Furthermore, the dose indices were weighted according to setup error frequencies that have a normal distribution to model systematic and random setup error for the entire treatment course. In all irradiation techniques, AP movement has a significant impact on dose distribution. CTVevlD95 (the minimum relative dose that covers 95 % volume) and V95 (the relative volume receiving 95 % of the prescribed dose) were observed to significantly decrease from the original ISC plan when simulated for the entire treatment course. In contrast, the D95, V95 and dose homogeneity index did not significantly differ from those of the original plans for FIF and CW. With regard to lung dose, the effect of motion was very similar among all three techniques. The dosimetric impact of AP respiratory breast motion and setup error was largest for the ISC technique, and the second greatest effect was observed with the FIF technique. However, these variations are relatively small. PMID:22859565

  15. Fast and precise computation of electrostatic fields with a charge simulation method using modern programming techniques

    SciTech Connect

    Schmidt, S.; Zech, G.; Otto, W.

    1996-05-01

    A precise computation of the electrostatic field is of considerable importance for the optimization of devices with electrooptical imaging. Another field of interest is the development of particle detectors like wire chambers or microstrip chambers. Inside a gas volume of such a detector a high electrostatic field is produced at small electrodes. Particles passing the detector ionize a certain number of gas molecules. The electrons produced by this process are moving along the field lines. When they reach a high field region they are accelerated and in turn ionize the gas. This leads to a charge avalanche that induces a signal on the electrodes that can be measured. To simulate these detectors the field has to be computed to high precision, especially in regions where the field is large, since the gas gain depends exponentially on the field strength. For signal simulation also the drift velocity of the positive ions which is proportional to the field, the induced charges on the electrodes, and the capacitances are of interest. Here a method to reduce the computational effort for numerical calculation of electrostatic fields by a Charge Simulation Method is introduced. By simplifying complex charge configurations for the evaluation of the field at large distances, the computation time can be reduced considerably preserving high precision. Since the method is ideally suited to object-oriented programming it has been implemented in C++.

  16. Physics Laboratory Investigation of Vocational High School Field Stone and Concrete Construction Techniques in the Central Java Province (Indonesia)

    ERIC Educational Resources Information Center

    Purwandari, Ristiana Dyah

    2015-01-01

    The investigation aims in this study were to uncover the observations of infrastructures and physics laboratory in vocational high school for Stone and Concrete Construction Techniques Expertise Field or Teknik Konstruksi Batu dan Beton (TKBB)'s in Purwokerto Central Java Province, mapping the Vocational High School or Sekolah Menengah Kejuruan…

  17. Optimizing of the tangential technique and supraclavicular fields in 3 dimensional conformal radiation therapy for breast cancer.

    PubMed

    Jabbari, Keyvan; Azarmahd, Nazli; Babazade, Shadi; Amouheidari, Alireza

    2013-04-01

    Radiotherapy plays an essential role in the management of breast cancer. Three-dimensional conformal radiation therapy (3D-CRT) is applied based on 3D image information of anatomy of patients. In 3D-CRT for breast cancer one of the common techniques is tangential technique. In this project, various parameters of tangential and supraclavicular fields are optimized. This project has been done on computed tomography images of 100 patients in Isfahan Milad Hospital. All patients have been simulated and all the important organs have been contoured by radiation oncologist. Two techniques in supraclavicular region are evaluated including: 1-A single field (Anterior Posterior [AP]) with a dose of 200 cGy per fraction with 6 MV energy. This is a common technique. 2-Two parallel opposed fields (AP-Posterior Anterior [PA]). The dose of AP was 150 cGy with 6 MV energy and PA 50 cGy with 18 MV. In the second part of the project, the tangential fields has been optimized with change of normalization point in five points: (1) Isocenter (Confluence of rotation gantry axis and collimator axis) (2) Middle of thickest part of breast or middle of inter field distance (IFD) (3) Border between the lung and chest wall (4) Physician's choice (5) Between IFD and isocenter. Dose distributions have been compared for all patients in different methods of supraclavicular and tangential field. In parallel opposed fields average lung dose was 4% more than a single field and the maximum received heart dose was 21.5% less than a single field. The average dose of planning tumor volume (PTV) in method 2 is 2% more than method 1. In general AP-PA method because of a better coverage of PTV is suggested. In optimization of the tangential field all methods have similar coverage of PTV. Each method has spatial advantages and disadvantages. If it is important for the physician to reduce the dose received by the lung and heart, fifth method is suggested since in this method average and maximum received dose

  18. A mountain watershed hydrology field course: Experiential learning in hydrologic concepts and measurement techniques

    NASA Astrophysics Data System (ADS)

    Hogue, T. S.; Kinoshita, A. M.; Randell, J.

    2013-12-01

    A field mountainshed hydrology course was offered annually since April 2006 to investigate and quantify hydrologic processes in the Sagehen experimental watershed in the Sierra Nevada, California. This advanced field-based course was offered through the University of California, Los Angeles (UCLA) Civil and Environmental Engineering (CEE) and was primarily for upper division undergraduate students in the hydrology emphasis track. This unique ten-week course focused on the study of catchment processes in snow-dominated and mountainous regions. The course offered a range of activities, including quantifying distributed watershed fluxes, investigating geochemical properties of surface and groundwater systems, measuring channel dynamics and stream morphology, and analysis of snowpack properties. A major component of the course included an extended field trip to Sagehen where students undertook a range of observations and field experiments. Pre-field trip coursework required an in-depth analysis of historical streamflow, precipitation, snow and other regional hydroclimatological data. At Sagehen, students worked together in teams while gaining a range of field experiences. Post-field trip labs included analysis of their collected field data and comparison to previous years' data, culminating in a comprehensive final report and shared with the Sagehen Creek Field Station as part of a cooperative effort. This presentation will highlight course, laboratory and field design, a compilation of observational results, and insight on lessons learned through the course history.

  19. High-resolution alternating-field technique to determine the magnetocaloric effect of metals down to very low temperatures.

    PubMed

    Tokiwa, Y; Gegenwart, P

    2011-01-01

    The magnetocaloric effect or "magnetic Grüneisen ratio" Γ(H)=T(-1)(dT/dH)(S) quantifies the cooling or heating of a material when an applied magnetic field is changed under adiabatic conditions. Recently, this property has attracted considerable interest in the field of quantum criticality. Here, we report the development of a low-frequency alternating-field technique for measurements of the magnetocaloric effect down to very low temperatures, which is an important property for the study of quantum critical points. We focus, in particular, on highly conducting metallic samples and discuss the influence of eddy current heating. By comparison with magnetization and specific heat measurements, we demonstrate that our fast and accurate technique gives quantitatively correct values for the magnetocaloric effect under truly adiabatic conditions.

  20. High-resolution alternating-field technique to determine the magnetocaloric effect of metals down to very low temperatures

    NASA Astrophysics Data System (ADS)

    Tokiwa, Y.; Gegenwart, P.

    2011-01-01

    The magnetocaloric effect or "magnetic Grüneisen ratio" Γ _H=T^{-1}(dT/dH)_S quantifies the cooling or heating of a material when an applied magnetic field is changed under adiabatic conditions. Recently, this property has attracted considerable interest in the field of quantum criticality. Here, we report the development of a low-frequency alternating-field technique for measurements of the magnetocaloric effect down to very low temperatures, which is an important property for the study of quantum critical points. We focus, in particular, on highly conducting metallic samples and discuss the influence of eddy current heating. By comparison with magnetization and specific heat measurements, we demonstrate that our fast and accurate technique gives quantitatively correct values for the magnetocaloric effect under truly adiabatic conditions.

  1. Fusing Observations and Model Results for Creation of Enhanced Ozone Spatial Fields: Comparison of Three Techniques

    EPA Science Inventory

    This paper presents three simple techniques for fusing observations and numerical model predictions. The techniques rely on model/observation bias being considered either as error free, or containing some uncertainty, the latter mitigated with a Kalman filter approach or a spati...

  2. Fusing Observations and Model Results for Creation of Enhanced Ozone Spatial Fields: Comparison of Three Techniques

    EPA Science Inventory

    This paper presents three simple techniques for fusing observations and numerical model predictions. The techniques rely on model/observation bias being considered either as error free, or containing some uncertainty, the latter mitigated with a Kalman filter approach or a spati...

  3. Performance of marking techniques in the field and laboratory for Diabrotica speciosa (Germar) (Coleoptera: Chrysomelidae)

    USDA-ARS?s Scientific Manuscript database

    A reliable marking technique was needed for a mark-release-recapture experiment with adults of Diabrotica speciosa (Germar). Four marking techniques, acrylic paint (spattered or brushed on the surface of the insect); and fluorescent pigments (dusted on surfaces or mixed with diet to produce an inges...

  4. Precise measurement of a magnetic field generated by the electromagnetic flux compression technique.

    PubMed

    Nakamura, D; Sawabe, H; Matsuda, Y H; Takeyama, S

    2013-04-01

    The precision of the values of a magnetic field generated by electromagnetic flux compression was investigated in ultra-high magnetic fields of up to 700 T. In an attempt to calibrate the magnetic field measured by pickup coils, precise Faraday rotation (FR) measurements were conducted on optical (quartz and crown) glasses. A discernible "turn-around" phenomenon was observed in the FR signal as well as the pickup coils before the end of a liner implosion. We found that the magnetic field measured by pickup coils should be corrected by taking into account the high-frequency response of the signal transmission line. Near the peak magnetic field, however, the pickup coils failed to provide reliable values, leaving the FR measurement as the only method to precisely measure extremely high magnetic fields.

  5. Development of a rapid soil water content detection technique using active infrared thermal methods for in-field applications.

    PubMed

    Antonucci, Francesca; Pallottino, Federico; Costa, Corrado; Rimatori, Valentina; Giorgi, Stefano; Papetti, Patrizia; Menesatti, Paolo

    2011-01-01

    The aim of this study was to investigate the suitability of active infrared thermography and thermometry in combination with multivariate statistical partial least squares analysis as rapid soil water content detection techniques both in the laboratory and the field. Such techniques allow fast soil water content measurements helpful in both agricultural and environmental fields. These techniques, based on the theory of heat dissipation, were tested by directly measuring temperature dynamic variation of samples after heating. For the assessment of temperature dynamic variations data were collected during three intervals (3, 6 and 10 s). To account for the presence of specific heats differences between water and soil, the analyses were regulated using slopes to linearly describe their trends. For all analyses, the best model was achieved for a 10 s slope. Three different approaches were considered, two in the laboratory and one in the field. The first laboratory-based one was centred on active infrared thermography, considered measurement of temperature variation as independent variable and reported r = 0.74. The second laboratory-based one was focused on active infrared thermometry, added irradiation as independent variable and reported r = 0.76. The in-field experiment was performed by active infrared thermometry, heating bare soil by solar irradiance after exposure due to primary tillage. Some meteorological parameters were inserted as independent variables in the prediction model, which presented r = 0.61. In order to obtain more general and wide estimations in-field a Partial Least Squares Discriminant Analysis on three classes of percentage of soil water content was performed obtaining a high correct classification in the test (88.89%). The prediction error values were lower in the field with respect to laboratory analyses. Both techniques could be used in conjunction with a Geographic Information System for obtaining detailed information on soil heterogeneity.

  6. Development of a Rapid Soil Water Content Detection Technique Using Active Infrared Thermal Methods for In-Field Applications

    PubMed Central

    Antonucci, Francesca; Pallottino, Federico; Costa, Corrado; Rimatori, Valentina; Giorgi, Stefano; Papetti, Patrizia; Menesatti, Paolo

    2011-01-01

    The aim of this study was to investigate the suitability of active infrared thermography and thermometry in combination with multivariate statistical partial least squares analysis as rapid soil water content detection techniques both in the laboratory and the field. Such techniques allow fast soil water content measurements helpful in both agricultural and environmental fields. These techniques, based on the theory of heat dissipation, were tested by directly measuring temperature dynamic variation of samples after heating. For the assessment of temperature dynamic variations data were collected during three intervals (3, 6 and 10 s). To account for the presence of specific heats differences between water and soil, the analyses were regulated using slopes to linearly describe their trends. For all analyses, the best model was achieved for a 10 s slope. Three different approaches were considered, two in the laboratory and one in the field. The first laboratory-based one was centred on active infrared thermography, considered measurement of temperature variation as independent variable and reported r = 0.74. The second laboratory–based one was focused on active infrared thermometry, added irradiation as independent variable and reported r = 0.76. The in-field experiment was performed by active infrared thermometry, heating bare soil by solar irradiance after exposure due to primary tillage. Some meteorological parameters were inserted as independent variables in the prediction model, which presented r = 0.61. In order to obtain more general and wide estimations in-field a Partial Least Squares Discriminant Analysis on three classes of percentage of soil water content was performed obtaining a high correct classification in the test (88.89%). The prediction error values were lower in the field with respect to laboratory analyses. Both techniques could be used in conjunction with a Geographic Information System for obtaining detailed information on soil

  7. Overview of label-free far field optical nanoscopy techniques for nanometrology

    NASA Astrophysics Data System (ADS)

    Montgomery, Paul; Leong-Hoï, Audrey; Anstotz, Freddy; Liu, Hui; Simon, Bertrand; Debailleul, Matthieu; Haeberlé, Olivier

    2016-04-01

    The development of new nanomaterials, devices and systems is very much dependent on the availability of new techniques for nanometrology. There now exists many advanced optical imaging techniques capable of subwavelength resolution and detection, recently brought to the forefront through the 2014 Nobel Prize for chemistry for fluorescent STED and single molecule microscopy. Label-free nanoscopy techniques are particularly interesting for nanometrology since they have the advantages of being less intrusive and open to a wider number of structures that can be observed compared with fluorescent techniques. In view of the existence of many nanoscopy techniques, we present a practical classification scheme to help in their understanding. An important distinction is made between superresolution techniques that provide resolutions better than the classical λ/2 limit of diffraction and nanodetection techniques that are used to detect or characterize unresolved nanostructures or as nanoprobes to image sub-diffraction nanostructures. We then highlight some of the more important label-free techniques that can be used for nanometrology. Superresolution techniques displaying sub-100 nm resolution are demonstrated with tomographic diffractive microscopy (TDM) and submerged microsphere optical nanoscopy (SMON). Nanodetection techniques are separated into three categories depending on whether they use contrast, phase or deconvolution. The use of increased contrast is illustrated with ellipsometric contrast microscopy (SEEC) for measuring nanostructures. Very high sensitivity phase measurement using interference microscopy is then shown for characterizing nanometric surface roughness or internal structures. Finally, the use of through-focus scanning optical microscopy (TSOM) demonstrates the measurement and characterization of 60 nm linewidths in microelectronic devices.

  8. A technique for calculating the amplitude distribution of propagated fields by Gaussian sampling.

    PubMed

    Cywiak, Moisés; Morales, Arquímedes; Servín, Manuel; Gómez-Medina, Rafael

    2010-08-30

    We present a technique to solve numerically the Fresnel diffraction integral by representing a given complex function as a finite superposition of complex Gaussians. Once an accurate representation of these functions is attained, it is possible to find analytically its diffraction pattern. There are two useful consequences of this representation: first, the analytical results may be used for further theoretical studies and second, it may be used as a versatile and accurate numerical diffraction technique. The use of the technique is illustrated by calculating the intensity distribution in a vicinity of the focal region of an aberrated converging spherical wave emerging from a circular aperture.

  9. Conductivity enhancement of sulfonated poly(ether ketone ketone) blends using electric field structuring techniques

    NASA Astrophysics Data System (ADS)

    Gasa, Jeffrey V.; Shaw, Montgomery T.

    2004-03-01

    Binary blends composed of an ion-containing polymer and a secondary component were cast under an applied elec. field to produce membranes with anisotropic morphologies. The ion-containing polymer was sulfonated poly(ether ketone ketone) (SPEKK) and the secondary component was either poly(ether imide) (PEI) or styrene-acrylonitrile (SAN) copolymer. A range of compositions and sulfonation levels were studied using this blend system. Optical and SEM micrographs of the resulting membranes showed columnar structures that were oriented along the direction of the field. It was found that electric field alignment only occurs when SPEKK is the dispersed phase but not when it is the matrix. The results show that the conductivities of the membranes that were cast under an electric field were significantly higher than those of the membranes cast without electric field. The conductivity measurements were interpreted in terms of a composite equation with structure-dependent parameters.

  10. A new perspective on turbulent Galactic magnetic fields through comparison of linear polarization decomposition techniques

    NASA Astrophysics Data System (ADS)

    Robitaille, J.-F.; Scaife, A. M. M.; Carretti, E.; Gaensler, B. M.; McEwen, J. D.; Leistedt, B.; Haverkorn, M.; Bernardi, G.; Kesteven, M. J.; Poppi, S.; Staveley-Smith, L.

    2017-07-01

    We compare two rotationally invariant decomposition techniques on linear polarization data: the spin-2 spherical harmonic decomposition in two opposite parities, the E- and B-mode, and the multiscale analysis of the gradient of linear polarization, |\

  11. Obtaining oblique technique source-to-skin distances for irregular field (Clarkson) calculations: The Mayo Off-axis Distance Indicator

    SciTech Connect

    Lajoie, W.N. )

    1988-09-01

    Significant dose inhomogeneities may exist between the supraclavicular fossa (SCF) and the internal mammary chain (IMC) regions in the irregular L-shaped (hockey stick) field associated with breast cancer treatments. This dose inhomogeneity exists, in part, because of a positive air gap in the SCF and a negative air gap in the IMC locations. Independent of treatment technique, (i.e., whether anterior-posterior (AP) or oblique fields are used), accurate source-to-skin distance (SSD) values for the SCF, IMC, and axilla are necessary when doing an irregular field (Clarkson) dose calculation. However, when an oblique technique is used to treat the hockey stick field, obtaining non-central-axis SSDs is not as straightforward as when an AP technique is employed. The Mayo Off-axis Distance Indicator was constructed to slide into the blocking tray slot of the simulator or treatment machine. This mechanical measuring device provides quick and accurate SSD measurements for non-central-axis points under either AP or, more importantly, oblique treatment conditions.

  12. Magnetic field sensor using the fiber loop ring-down technique and an etched fiber coated with magnetic fluid.

    PubMed

    Shen, Tao; Feng, Yue; Sun, Binchao; Wei, Xinlao

    2016-02-01

    The fiber loop ring-down spectroscopy technique is introduced into the evanescent-field-based sensing scheme in order to create a new type of fiber-based magnetic field sensor. As a consequence, the sensitivity and stability of the magnetic field sensing system are significantly enhanced. The sensor head is constructed using a section of a single-mode fiber with its cladding partially etched. The process of fiber etching is described in detail, and the relationship between the diameter of the etched fiber and the etching time is experimentally investigated. After adopting the appropriate size of the etched fiber, the final experimental results show that the magnetic field strength has a well-defined linear relationship with the inverse of the ring-down time τ over a range of 30 mT with a sensitivity of 95.5 ns/mT.

  13. Application of quasi-linearization techniques to the analysis of aerodynamic-noise fields

    NASA Technical Reports Server (NTRS)

    Harris, W. L., Sr.

    1972-01-01

    The method of parametric differentiation was used as a means of obtaining solutions which describe aerodynamically generated sound fields, and which are valid over an increased range of a specific parameter. Details of applying the method to the problem of calculating the sound field of two rectilinear vortices rotating about an axis between them in a compressible medium are discussed. Pressure distribution in the far field are obtained. Parametric differentiation was also applied to the calculation of aerodynamic sound generated by a rotating cylinder in a viscous, compressible medium. The formulation of this problem in parametric space is given, and a procedure for obtaining a solution is outlined.

  14. The key techniques of 3D visualization of oceanic temperature field

    NASA Astrophysics Data System (ADS)

    Guo, Jia; Tian, Zhen; Cheng, Fang

    2007-06-01

    Visualization is an important means of understanding and explaining the natural phenomena. The visualization of ocean can help us understand and utilize the undersea world. As we know, the ocean is a real three-dimensional space, so the visualization includes not only the simulation of interface terrain (such as sea water surface, sea bottom, etc.) but also the hydrographic feature (such as salinity, temperature, pressure, current directions etc.). In this paper, taking the temperature field in the sea as the example, we discussed the visualization of data of space-fulfilled field from a viewpoint located in the field. We analyzed the acquisition and interpolation of 3-D oceanic data in section 2, proposed an Octree model in section 3, introduced visualization in scientific computing and implemented temperature field visualization based on volume rendering in section 4. Lastly, some conclusions are given in section 5.

  15. A new numerical technique of electric field determination within dielectric materials plate and cable using the TSM method

    NASA Astrophysics Data System (ADS)

    Belgaroui, E.; Guermazi, H.; Agnel, S.; Mlik, Y.; Toureille, A.

    2003-07-01

    In the frame of the thermal step method (TSM) used to characterize the space charge in dielectric materials, we present an original numerical technique for determining the electric field distribution in the bulk of a dielectric plate or cable. The first stage of our technique is the application of the finite element method (FEM) in order to find instantaneous distributions of temperature profiles. The calculation of the electric field distribution is based on these obtained profiles. During the stage of the determination, our mathematical treatment is based on the TSM charge q(t) in order to avoid numerical instabilities on the temperature derivatives. Therefore, we have transformed the integral equation for the TSM current I(t) used in previous works to an integral equation for the TSM charge q(t). The control of the instantaneous propagation of the thermal wave front, produced by submitting one face of the dielectric to a thermal step, and the application of Simpson's method to the integral equation of the TSM charge q(t), allow to determine the electric field distribution. The results of the electric field distribution are validated with those obtained in previous works. A good agreement and an improvement near the dielectric thickness boundaries are observed on these results. The numerical space charge density within the material is obtained by numerical derivation of the field according to Poisson's equation.

  16. Expert knowledge techniques applied to the analysis of electric field mill data

    NASA Technical Reports Server (NTRS)

    Nicholson, James R.; Mulvehill, Alice M.

    1990-01-01

    NASA operates a network of ground-based electric field mills at Kennedy Space Center (KSC) to identify clouds which might be an electrical hazard to space vehicle prior to and during launch or to the various ground operations performed at the center. Artificial intelligence has been used to develop an expert system for analyzing electric field mill data. The application of the system to expert system to small thunderstorms at KSC is shown.

  17. A comparison of TPS and different measurement techniques in small-field electron beams

    SciTech Connect

    Donmez Kesen, Nazmiye Cakir, Aydin; Okutan, Murat; Bilge, Hatice

    2015-04-01

    In recent years, small-field electron beams have been used for the treatment of superficial lesions, which requires small circular fields. However, when using very small electron fields, some significant dosimetric problems may occur. In this study, dose distributions and outputs of circular fields with dimensions of 5 cm and smaller, for nominal energies of 6, 9, and 15 MeV from the Siemens ONCOR Linac, were measured and compared with data from a treatment planning system using the pencil-beam algorithm in electron beam calculations. All dose distribution measurements were performed using the Gafchromic EBT film; these measurements were compared with data that were obtained from the Computerized Medical Systems (CMS) XiO treatment planning system (TPS), using the gamma-index method in the PTW VeriSoft software program. Output measurements were performed using the Gafchromic EBT film, an Advanced Markus ion chamber, and thermoluminescent dosimetry (TLD). Although the pencil-beam algorithm is used to model electron beams in many clinics, there is no substantial amount of detailed information in the literature about its use. As the field size decreased, the point of maximum dose moved closer to the surface. Output factors were consistent; differences from the values obtained from the TPS were, at maximum, 42% for 6 and 15 MeV and 32% for 9 MeV. When the dose distributions from the TPS were compared with the measurements from the Gafchromic EBT films, it was observed that the results were consistent for 2-cm diameter and larger fields, but the outputs for fields of 1-cm diameter and smaller were not consistent. In CMS XiO TPS, calculated using the pencil-beam algorithm, the dose distributions of electron treatment fields that were created with circular cutout of a 1-cm diameter were not appropriate for patient treatment and the pencil-beam algorithm is not convenient for monitor unit (MU) calculations in electron dosimetry.

  18. Condition for adiabatic passage in the earth's-field NMR technique

    NASA Astrophysics Data System (ADS)

    Melton, B. F.; Pollak, V. L.

    2002-09-01

    The equation of motion d M/ dt=γ M× B(t) is solved for the case B(t)= jB p(t)+ kB e. The field Be is a small static field, typically the earth's field. The field Bp( t) decays exponentially toward zero with time constant T. This decay is produced by an overdamped switching transient that occurs near the end of the rapid cutoff of the coil current used to polarize the sample. It is assumed that Bp is initially large compared to Be, and that magnetization M is initially along the resultant field B. Exact solutions are obtained numerically for several decay time constants of Bp, and the motion of M is depicted graphically. It is found that for adiabatic passage, the final cone angle β of the precession in field Be is related to the decay time constant of Bp by β=2e -(π/2) ωeT. This is confirmed by measurements of the amplitudes of the ensuing free-precession signals for various decay rates of Bp. Near-perfect adiabatic passage (magnetization aligned within 2° of the earth's field) can be achieved for time constants T⩾2.6/ ωe. For the case of sudden passage, an approximate analytic solution is developed by linearizing the equation of motion in the laboratory frame of reference. For the adiabatic case, an approximate analytic solution is obtained by linearizing the equation of motion in a rotating frame of reference that follows the resultant field B= Bp+ Be.

  19. New techniques for the detection of microplastics in sediments and field collected organisms.

    PubMed

    Claessens, Michiel; Van Cauwenberghe, Lisbeth; Vandegehuchte, Michiel B; Janssen, Colin R

    2013-05-15

    Microplastics have been reported in marine environments worldwide. Accurate assessment of quantity and type is therefore needed. Here, we propose new techniques for extracting microplastics from sediment and invertebrate tissue. The method developed for sediments involves a volume reduction of the sample by elutriation, followed by density separation using a high density NaI solution. Comparison of this methods' efficiency to that of a widely used technique indicated that the new method has a considerably higher extraction efficiency. For fibres and granules an increase of 23% and 39% was noted, extraction efficiency of PVC increased by 100%. The second method aimed at extracting microplastics from animal tissues based on chemical digestion. Extraction of microspheres yielded high efficiencies (94-98%). For fibres, efficiencies were highly variable (0-98%), depending on polymer type. The use of these two techniques will result in a more complete assessment of marine microplastic concentrations.

  20. Dosimetric comparison of 3-dimensional conformal and field-in-field radiotherapy techniques for the adjuvant treatment of early stage endometrial cancer.

    PubMed

    Yavas, Guler; Yavas, Cagdas; Acar, Hilal; Buyukyoruk, Ahmet; Cobanoglu, Gokcen; Kerimoglu, Ozlem Secilmis; Yavas, Ozlem; Celik, Cetin

    2013-11-01

    The purpose of this study is to compare field-in-field radiotherapy (FIF) with conformal radiotherapy (CRT) in terms of dosimetric benefits for early stage endometrial cancer patients. Ten consecutive early stage endometrial cancer patients who underwent adjuvant external beam radiotherapy were included in the study. For each patient, two different treatment plans were created. FIF and CRT plans were compared for doses in the planning target volume (PTV), the organ at risk (OAR) volumes including rectum, bladder, bowel, bilateral femurs and bone marrow, the dose homogeneity index, and the monitor unit counts required for the treatment. The FIF technique significantly reduced the maximum dose of the PTV, rectum, bladder, bowel, left femur, right femur and bone marrow (p values were: <0.001, 0.031, 0.003, <0.001, 0.001, 0.001 and <0.001 respectively). When the OAR volumes irradiated with >30 and >45 Gy were compared, the results were in favor of the FIF technique. The volumes of rectum, bladder, bowel, left femur, right femur and bone marrow receiving more than the prescription dose of 45 Gy were significantly reduced with FIF technique (p values were 0.016, 0.039, 0.01, 0.04, 0.037 and 0.01 respectively). The dose homogeneity index (DHI) was significantly improved with FIF technique (p < 0.001). FIF allowed more homogeneous dose distribution in the PTV and reduced the doses received by OAR. Considering the lower maximum doses in the OAR and PTV, FIF technique seems to be more advantageous than CRT during adjuvant radiotherapy for early stage endometrial cancer patients. Copyright © 2012 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  1. Surface phonon coupling within boron nitride resolved by a novel near-field infrared pump-probe imaging technique

    NASA Astrophysics Data System (ADS)

    Gilburd, Leonid; Xu, Xiaoji G.; de Beer, Sissi; Bando, Yoshio; Golberg, Dmitri; Walker, Gilbert C.

    2016-09-01

    The excitation of surface phonon-polariton (SPhP) modes in polar materials using scattering type near-field optical microscopy (s-SNOM) has recently become an area of interest because of its potential for application as naturally occurring meta-materials and in low-loss energy transfer. Within this area, hexagonal boron nitride (h-BN) and boron nitride nanotubes (BNNTs) are the primary structures under investigation. Here we present pump-probe continuous wave (CW) scattering-type scanning near-field optical microscopy (s-SNOM) - a novel two color pump-probe infrared technique which uses two continuous wave tunable light sources and is based on s-SNOM. The technique allows us to spatially resolve coupling of the longitudinal optical and surface phonon polariton modes in BNNTs. However, no similar coupling is observed in two-dimensional h-BN crystals.

  2. Application of Near-field intra-body communication and spread spectrum technique to vital-sign monitor.

    PubMed

    Kobayashi, Takumi; Shimatani, Yuichi; Kyoso, Masaki

    2012-01-01

    As a novel vital sign monitor, we have developed wireless ECG monitoring system with Near-field intra-body communication technique. However, communication reliability is not so high because transmission channel is noisy and unstable. In order to improve the problem, we utilize spread spectrum (SS), which is known as robust communication technique even through poor transmission channel. First of all, we evaluated characteristics of human body to SS signal. The results show that SS can be used even through human body. Based on this result, we developed and tested near-field intra-body communication device enhanced by SS. The test result shows that SS can solve the problem mentioned above.

  3. Paleointensity determinations at elevated temperatures - Sample preparation technique. [for lunar magnetic fields

    NASA Technical Reports Server (NTRS)

    Taylor, L. A.

    1979-01-01

    A technique has been developed for the encapsulation of rock samples in order to prevent the chemical alterations which commonly accompany paleointensity measurements at elevated temperatures. The technique involves vacuum pumping at about 100 C of the sample as placed in a silica tube. The tube containing the sample and a Ti 'getter' are sealed under vacuum. Measurements can be made at 200 and 300 C. Immediately after this, the sample is sealed-off from the getter. The sample is now ready for measurements at higher temperatures.

  4. Oil field development techniques: Proceedings of the Daqing international meeting, 1982

    SciTech Connect

    Mason, J.F.; Dickey, P.A.

    1989-01-01

    The petroleum geologist historically has focused on exploration techniques, leaving post-discovery development work in the hands of petroleum engineers. Today, however, the scenario is changing as geologists become more and more involved in development strategies due to their expertise in key concepts and techniques. Geologists' understanding of seismic stratigraphy, log studies, and pressure measurements, which give a picture of reservoir size and character; of reservoir modeling; and of depositional environment identification, which is used to design secondary and enhanced recovery, is being directly applied to reservoir development strategies.

  5. Enhanced carbonate reservoir model for an old reservoir utilizing new techniques: The Schaben Field (Mississippian), Ness County, Kansas

    SciTech Connect

    Carr, T.P.; Guy, W.J.; Franseen, E.K.; Bhattacharya, S. )

    1996-01-01

    The Pennsylvanian-Mississippian unconformity is a major stratigraphic event in Kansas that truncates rocks ranging from Precambrian to Mississippian. Many of the 6,000 fields in Kansas are located immediately beneath this unconformity. One example, Schaben Field located in Ness County, Kansas, has produced approximately 9 million barrels since it was discovered in 1963. Production is from the Mississippian (Osagian) cherty dolomites beneath the inconformity. The field was initially developed on a regular forty-acre spacing, but recent drilling has demonstrated the potential for additional targeted infill drilling. To develop an enhanced reservoir model for the Schabin field modern core, log, and well data were integrated with the existing data. New techniques such as [open quotes]Pseudoseismic[close quotes] and the [open quotes]Super[close quotes] Pickett plot were used to leverage the existing data and provide tools for analysis and 3D visualization. The pseudoseismic approach uses well-logs within a standard 3D seismic visualization system to provide a detailed macroscale view of karst patterns. The petrophysical analyses using the [open quotes]Super[close quotes] Pickett plot were used to recognize subtle trends and patterns for each of multiple reservoir intervals. Visual and petrographic examination of core from the field confirms karst development and indicates multiple stages of fracturing, brecciation, and dissolution features that were important in controlling and modifying development of reservoirs. The understanding of the reservoir heterogeneities resulting from the paleokarst model at Schaben field emphasizes the importance of integrating available data with new techniques to provide a predictive tool for discovery of additional pay within existing subunconformity fields in Kansas.

  6. Enhanced carbonate reservoir model for an old reservoir utilizing new techniques: The Schaben Field (Mississippian), Ness County, Kansas

    SciTech Connect

    Carr, T.P.; Guy, W.J.; Franseen, E.K.; Bhattacharya, S.

    1996-12-31

    The Pennsylvanian-Mississippian unconformity is a major stratigraphic event in Kansas that truncates rocks ranging from Precambrian to Mississippian. Many of the 6,000 fields in Kansas are located immediately beneath this unconformity. One example, Schaben Field located in Ness County, Kansas, has produced approximately 9 million barrels since it was discovered in 1963. Production is from the Mississippian (Osagian) cherty dolomites beneath the inconformity. The field was initially developed on a regular forty-acre spacing, but recent drilling has demonstrated the potential for additional targeted infill drilling. To develop an enhanced reservoir model for the Schabin field modern core, log, and well data were integrated with the existing data. New techniques such as {open_quotes}Pseudoseismic{close_quotes} and the {open_quotes}Super{close_quotes} Pickett plot were used to leverage the existing data and provide tools for analysis and 3D visualization. The pseudoseismic approach uses well-logs within a standard 3D seismic visualization system to provide a detailed macroscale view of karst patterns. The petrophysical analyses using the {open_quotes}Super{close_quotes} Pickett plot were used to recognize subtle trends and patterns for each of multiple reservoir intervals. Visual and petrographic examination of core from the field confirms karst development and indicates multiple stages of fracturing, brecciation, and dissolution features that were important in controlling and modifying development of reservoirs. The understanding of the reservoir heterogeneities resulting from the paleokarst model at Schaben field emphasizes the importance of integrating available data with new techniques to provide a predictive tool for discovery of additional pay within existing subunconformity fields in Kansas.

  7. Scatterometer-based scanner fingerprinting technique(ScatterLith) and its applications in image field and ACLV analysis

    NASA Astrophysics Data System (ADS)

    Wang, Changan; Zhang, Gary; DeMoor, Stephen J.; Boehm, Mark A.; Littau, Michael E.; Raymond, Christopher J.

    2003-06-01

    The ability to accurately, quickly and automatically fingerprint the lenses of advanced lithography scanners has always been a dream for lithographers. This is truly necessary to understand error sources of ACLV, especially when the optical lithography is pushed into 130 nm regimes and beyond. This dream has become a reality at Texas Instruments with the help of scatterometry. This paper describes the development and characterization of the scatterometer based scanner lens testing technique (ScatterLith) and its application in 193 nm and 248 nm scanner lens fingerprinting. The entire procedure includes a full field exposure through focus in a micro stepping mode, scatterometer measurement of focus matrix, image field analysis and mapping of lens curvature, astigmatism, spherical aberration, line-through pitch analysis and ACLV analysis (i.e. across chip line width variation). ACLV has been directly correlated with image field deviation, lens aberration and illumination source errors. Examples are given to illustrate its applications in accurate focus monitoring with enhanced capability of dynamic image field and lens signature mapping for the latest ArF and KrF scanners used in manufacturing environment for 130nm node and beyond. Analysis of CD variation across a full scanner field is done through a step-by-step image field correction procedure. ACLV contribution of each image field error can be quantified separately. The final across slit CD signature is further analyzed against possible errors from illumination uniformity, illumination pupil fill, and higher order projection lens aberrations. High accuracy and short cycle time make this new technique a very effective tool for in-line real time monitoring and scanner qualification. Its fingerprinting capability also provides lithography engineers a comprehensive understanding of scanner performance for CD control and tool matching. Its extendibility to 90nm and beyond is particularly attractive for future

  8. Background field removal technique using regularization enabled sophisticated harmonic artifact reduction for phase data with varying kernel sizes.

    PubMed

    Kan, Hirohito; Kasai, Harumasa; Arai, Nobuyuki; Kunitomo, Hiroshi; Hirose, Yasujiro; Shibamoto, Yuta

    2016-09-01

    An effective background field removal technique is desired for more accurate quantitative susceptibility mapping (QSM) prior to dipole inversion. The aim of this study was to evaluate the accuracy of regularization enabled sophisticated harmonic artifact reduction for phase data with varying spherical kernel sizes (REV-SHARP) method using a three-dimensional head phantom and human brain data. The proposed REV-SHARP method used the spherical mean value operation and Tikhonov regularization in the deconvolution process, with varying 2-14mm kernel sizes. The kernel sizes were gradually reduced, similar to the SHARP with varying spherical kernel (VSHARP) method. We determined the relative errors and relationships between the true local field and estimated local field in REV-SHARP, VSHARP, projection onto dipole fields (PDF), and regularization enabled SHARP (RESHARP). Human experiment was also conducted using REV-SHARP, VSHARP, PDF, and RESHARP. The relative errors in the numerical phantom study were 0.386, 0.448, 0.838, and 0.452 for REV-SHARP, VSHARP, PDF, and RESHARP. REV-SHARP result exhibited the highest correlation between the true local field and estimated local field. The linear regression slopes were 1.005, 1.124, 0.988, and 0.536 for REV-SHARP, VSHARP, PDF, and RESHARP in regions of interest on the three-dimensional head phantom. In human experiments, no obvious errors due to artifacts were present in REV-SHARP. The proposed REV-SHARP is a new method combined with variable spherical kernel size and Tikhonov regularization. This technique might make it possible to be more accurate backgroud field removal and help to achive better accuracy of QSM.

  9. Study of two-dimensional transient cavity fields using the finite-difference time-domain technique

    SciTech Connect

    Crisp, J.L.

    1988-06-01

    This work is intended to be a study into the application of the finite-difference time-domain, or FD-TD technique, to some of the problems faced by designers of equipment used in modern accelerators. In particular it discusses using the FD-TD algorithm to study the field distribution of a simple two-dimensional cavity in both space and time. 18 refs.

  10. The Development of a Full Field Three-Dimensional Microscale Flow Measurement Technique for Application to Near Contact Line Flows

    NASA Technical Reports Server (NTRS)

    He, Qun; Hallinan, Kevin

    1996-01-01

    The goal of this paper is to present details of the development of a new three-dimensional velocity field measurement technique which can be used to provide more insight into the dynamics of thin evaporating liquid films (not limited to just low heat inputs for the heat transfer) and which also could prove useful for the study of spreading and wetting phenomena and other microscale flows.

  11. Commissioning a small-field biological irradiator using point, 2D, and 3D dosimetry techniques

    SciTech Connect

    Newton, Joseph; Oldham, Mark; Thomas, Andrew; Li Yifan; Adamovics, John; Kirsch, David G.; Das, Shiva

    2011-12-15

    Purpose: To commission a small-field biological irradiator, the XRad225Cx from Precision x-Ray, Inc., for research use. The system produces a 225 kVp x-ray beam and is equipped with collimating cones that produce both square and circular radiation fields ranging in size from 1 to 40 mm. This work incorporates point, 2D, and 3D measurements to determine output factors (OF), percent-depth-dose (PDD) and dose profiles at multiple depths. Methods: Three independent dosimetry systems were used: ion-chambers (a farmer chamber and a micro-ionisation chamber), 2D EBT2 radiochromic film, and a novel 3D dosimetry system (DLOS/PRESAGE registered ). Reference point dose rates and output factors were determined from in-air ionization chamber measurements for fields down to {approx}13 mm using the formalism of TG61. PDD, profiles, and output factors at three separate depths (0, 0.5, and 2 cm), were determined for all field sizes from EBT2 film measurements in solid water. Several film PDD curves required a scaling correction, reflecting the challenge of accurate film alignment in very small fields. PDDs, profiles, and output factors were also determined with the 3D DLOS/PRESAGE registered system which generated isotropic 0.2 mm data, in scan times of 20 min. Results: Surface output factors determined by ion-chamber were observed to gradually drop by {approx}9% when the field size was reduced from 40 to 13 mm. More dramatic drops were observed for the smallest fields as determined by EBT{approx}18% and {approx}42% for the 2.5 mm and 1 mm fields, respectively. PRESAGE registered and film output factors agreed well for fields <20 mm (where 3D data were available) with mean deviation of 2.2% (range 1%-4%). PDD values at 2 cm depth varied from {approx}72% for the 40 mm field, down to {approx}55% for the 1 mm field. EBT and PRESAGE registered PDDs agreed within {approx}3% in the typical therapy region (1-4 cm). At deeper depths the EBT curves were slightly steeper (2.5% at 5 cm

  12. Amended Electric Field Distribution: A Reliable Technique for Electrical Performance Improvement in Nano scale SOI MOSFETs

    NASA Astrophysics Data System (ADS)

    Ramezani, Zeinab; Orouji, Ali A.

    2017-04-01

    To achieve reliable transistors, we propose a new silicon-on-insulator (SOI) metal-oxide-semiconductor field-effect transistor (MOSFET) with an amended electric field in the channel for improved electrical and thermal performance, with an emphasis on current leakage improvement. The amended electric field leads to lower electric field crowding and thereby we assume enhanced reliability, leakage current, gate-induced drain leakage (GIDL), and electron temperature. To modify the electric field distribution, an additional rectangular metal region (RMR) is utilized in the buried oxide of the SOI MOSFET. The location and dimensions of the RMR have been carefully optimized to achieve the best results. The electrical, thermal, and radiofrequency characteristics of the proposed structure were analyzed using two-dimensional (2-D) numerical simulations and compared with the characteristics of the conventional, fully depleted SOI MOSFET (C-SOI). Also, critical short-channel effects (SCEs) such as threshold voltage, drain-induced barrier lowering (DIBL), subthreshold slope degradation, hot-carrier effect, GIDL, and leakage power consumption are improved. According to the results obtained, the proposed nano SOI MOSFET is a reliable device, especially for use in low-power and high-temperature applications.

  13. Improved object segmentation using Markov random fields, artificial neural networks, and parallel processing techniques

    NASA Astrophysics Data System (ADS)

    Foulkes, Stephen B.; Booth, David M.

    1997-07-01

    Object segmentation is the process by which a mask is generated which identifies the area of an image which is occupied by an object. Many object recognition techniques depend on the quality of such masks for shape and underlying brightness information, however, segmentation remains notoriously unreliable. This paper considers how the image restoration technique of Geman and Geman can be applied to the improvement of object segmentations generated by a locally adaptive background subtraction technique. Also presented is how an artificial neural network hybrid, consisting of a single layer Kohonen network with each of its nodes connected to a different multi-layer perceptron, can be used to approximate the image restoration process. It is shown that the restoration techniques are very well suited for parallel processing and in particular the artificial neural network hybrid has the potential for near real time image processing. Results are presented for the detection of ships in SPOT panchromatic imagery and the detection of vehicles in infrared linescan images, these being a fair representation of the wider class of problem.

  14. Urban field guide: applying social forestry observation techniques to the east coast megalopolis

    Treesearch

    E. Svendsen; V. Marshall; M.F. Ufer

    2006-01-01

    A changing economy and different lifestyles have altered the meaning of the forest in the northeastern United States, prompting scientists to reconsider the spatial form, stewardship and function of the urban forest. The Authors describe how social observation techniques and the employment of a novel, locally based, participatory hand-held monitoring system could aid...

  15. Synchrotron microimaging technique for measuring the velocity fields of real blood flows

    SciTech Connect

    Lee, Sang-Joon; Kim, Guk Bae

    2005-03-15

    Angiography and Doppler methods used for diagnosing vascular diseases give information on the shape of blood vessels and pointwise blood speed but do not provide detailed information on the flow fields inside the blood vessels. In this study, we developed a method for visualizing blood flow by using coherent synchrotron x rays. This method, which does not require the addition of any contrast agent or tracer particles, visualizes the flow pattern of blood by enhancing the diffraction and interference characteristics of the blood cells. This was achieved by optimizing the sample- (blood) to-detector (charge-coupled device camera) distance and the sample thickness. The proposed method was used to extract quantitative velocity field information from blood flowing inside an opaque microchannel by applying a two-frame particle image velocimetry algorithm to enhanced x-ray images of the blood flow. The measured velocity field data showed a flow structure typical of flow in a macrochannel.

  16. A comparison of "flat fielding" techniques for x-ray framing cameras

    NASA Astrophysics Data System (ADS)

    Benedetti, L. R.; Trosseille, C.; Holder, J. P.; Piston, K.; Hargrove, D.; Bradley, D. K.; Bell, P.; Raimbourg, J.; Prat, M.; Pickworth, L. A.; Khan, S. F.

    2016-11-01

    Gain can vary across the active area of an x-ray framing camera by a factor of 4 (or more!) due to the voltage loss and dispersion associated with pulse transmission in a microstripline-coated microchannel plate. In order to make quantitative measurements, it is consequently important to measure the gain variation ("flat field"). Moreover, because of electromagnetic cross talk, gain variation depends on specific operational parameters, and ideally a flat field would be obtained at all operating conditions. As part of a collaboration between Lawrence Livermore National Laboratory's National Ignition Facility and the Commissariat à l'Énergie Atomique, we have been able to evaluate the consistency of three different methods of measuring x-ray flat fields. By applying all three methods to a single camera, we are able to isolate performance from method. Here we report the consistency of the methods and discuss systematic issues with the implementation and analysis of each.

  17. Development of Techniques for Visualization of Scalar and Vector Fields in the Immersive Environment

    NASA Technical Reports Server (NTRS)

    Bidasaria, Hari B.; Wilson, John W.; Nealy, John E.

    2005-01-01

    Visualization of scalar and vector fields in the immersive environment (CAVE - Cave Automated Virtual Environment) is important for its application to radiation shielding research at NASA Langley Research Center. A complete methodology and the underlying software for this purpose have been developed. The developed software has been put to use for the visualization of the earth s magnetic field, and in particular for the study of the South Atlantic Anomaly. The methodology has also been put to use for the visualization of geomagnetically trapped protons and electrons within Earth's magnetosphere.

  18. Application of the minimum correlation technique to the correction of the magnetic field measured by magnetometers on spacecraft

    NASA Technical Reports Server (NTRS)

    Mariani, F.

    1979-01-01

    Some aspects of the problem of obtaining precise, absolute determination of the vector of low magnetic fields existing in the interplanetary medium are addressed. In the case of a real S/C, there is always the possibility of a spurious field which includes the spacecraft residual field and/or possible field from the sensors, due to both electronic drifts or changes of the magnetic properties of the sensor core. These latter effects may occur during storage of the sensors prior to launching and/or in-flight. The reliability is demonstrated for a method which postulates that there should be no correlation between changes in measured field magnitude and changes in the measured inclination of the field with respect to any one of three fixed Cartesian component directions. Application of this minimum correlation technique to data from IMP-8 and Helios 1-2 shows it is appropriate for determination of the zero offset corrections of triaxial magnetometers. In general, a number of the order of 1000 consecutive data points is sufficient for a good determination.

  19. Arbitrary magnetic field gradient waveform correction using an impulse response based pre-equalization technique.

    PubMed

    Goora, Frédéric G; Colpitts, Bruce G; Balcom, Bruce J

    2014-01-01

    The time-varying magnetic fields used in magnetic resonance applications result in the induction of eddy currents on conductive structures in the vicinity of both the sample under investigation and the gradient coils. These eddy currents typically result in undesired degradations of image quality for MRI applications. Their ubiquitous nature has resulted in the development of various approaches to characterize and minimize their impact on image quality. This paper outlines a method that utilizes the magnetic field gradient waveform monitor method to directly measure the temporal evolution of the magnetic field gradient from a step-like input function and extracts the system impulse response. With the basic assumption that the gradient system is sufficiently linear and time invariant to permit system theory analysis, the impulse response is used to determine a pre-equalized (optimized) input waveform that provides a desired gradient response at the output of the system. An algorithm has been developed that calculates a pre-equalized waveform that may be accurately reproduced by the amplifier (is physically realizable) and accounts for system limitations including system bandwidth, amplifier slew rate capabilities, and noise inherent in the initial measurement. Significant improvements in magnetic field gradient waveform fidelity after pre-equalization have been realized and are summarized.

  20. Management and techniques for riparian restorations: roads field guide, vol. I

    Treesearch

    Roads/Riparian Restoration Team

    2002-01-01

    Improperly constructed or maintained roads near riparian and wetland areas may degrade these valuable sites. Degradation affects many aspects of the riparian and wetland ecosystems. This field guide presents information in a practical, user friendly format to help resource managers and professionals. Well-documented evaluation and monitoring strategies are critical in...

  1. Management and techniques for riparian restorations: roads field guide, vol. II

    Treesearch

    Roads/Riparian Restoration Team

    2002-01-01

    Improperly constructed or maintained roads near riparian and wetland areas may degrade these valuable sites. Degradation affects many aspects of the riparian and wetland ecosystems. This field guide presents information in a practical, user friendly format to help resource managers and professionals. Well-documented evaluation and monitoring strategies are critical in...

  2. Efficient technique for calculating multiple solutions of electric-field problems. Part I. Final report

    SciTech Connect

    Lauber, T.S.

    1980-12-01

    The purpose of this report is to present a digital computer program capable of calculating the electrostatic field in an arbitrary two-dimensional configuration. The program was developed as a preliminary result in a project aimed at producing a three-dimensional program. Thus, this report represents an interim report on the entire project.

  3. Stochastic Simulation Techniques for Partition Function Approximation of Gibbs Random Field Images

    DTIC Science & Technology

    1991-06-01

    of Physics C : Solid State Physics , vol. 10, pp. 1379-1388, 1977. [10] F.S. Cohen, "Markov random fields for image modeling and analysis." In Modeling...disorder," Journal of Applied Crystallography, vol. 6, pp. 87-96, 1973. [9] I.G. Enting, "Crystal growth models and Ising models: Disorder points," Journal

  4. On-combine Sensing Technique for Mapping Straw Yield within Wheat Fields

    USDA-ARS?s Scientific Manuscript database

    Straw from production of wheat is available for conversion to bioenergy. However, not all of this straw is available for conversion because a certain amount must be returned to the soil for conservation. County and state-wide inventories do not account for variation within farm fields. In this st...

  5. The Inquiry Process and Museum Field Trips: A Technique for the Classroom.

    ERIC Educational Resources Information Center

    DiBella, Robert L.; Steele, George E.

    This paper suggests model lessons that elementary or secondary social studies teachers can use to integrate field-trip experiences directly into instruction, specifically, inquiry teaching. The Ohio Historical Center and the Ohio Village in Columbus, Ohio, are used as example museums. To illustrate the instructional activities, the authors…

  6. Detection of concrete dam leakage using an integrated geophysical technique based on flow-field fitting method

    NASA Astrophysics Data System (ADS)

    Dai, Qianwei; Lin, Fangpeng; Wang, Xiaoping; Feng, Deshan; Bayless, Richard C.

    2017-05-01

    An integrated geophysical investigation was performed at S dam located at Dadu basin in China to assess the condition of the dam curtain. The key methodology of the integrated technique used was flow-field fitting method, which allowed identification of the hydraulic connections between the dam foundation and surface water sources (upstream and downstream), and location of the anomalous leakage outlets in the dam foundation. Limitations of the flow-field fitting method were complemented with resistivity logging to identify the internal erosion which had not yet developed into seepage pathways. The results of the flow-field fitting method and resistivity logging were consistent when compared with data provided by seismic tomography, borehole television, water injection test, and rock quality designation.

  7. Evaluating DEM conditioning techniques, elevation source data, and grid resolution for field-scale hydrological parameter extraction

    NASA Astrophysics Data System (ADS)

    Woodrow, Kathryn; Lindsay, John B.; Berg, Aaron A.

    2016-09-01

    Although digital elevation models (DEMs) prove useful for a number of hydrological applications, they are often the end result of numerous processing steps that each contains uncertainty. These uncertainties have the potential to greatly influence DEM quality and to further propagate to DEM-derived attributes including derived surface and near-surface drainage patterns. This research examines the impacts of DEM grid resolution, elevation source data, and conditioning techniques on the spatial and statistical distribution of field-scale hydrological attributes for a 12,000 ha watershed of an agricultural area within southwestern Ontario, Canada. Three conditioning techniques, including depression filling (DF), depression breaching (DB), and stream burning (SB), were examined. The catchments draining to each boundary of 7933 agricultural fields were delineated using the surface drainage patterns modeled from LiDAR data, interpolated to a 1 m, 5 m, and 10 m resolution DEMs, and from a 10 m resolution photogrammetric DEM. The results showed that variation in DEM grid resolution resulted in significant differences in the spatial and statistical distributions of contributing areas and the distributions of downslope flowpath length. Degrading the grid resolution of the LiDAR data from 1 m to 10 m resulted in a disagreement in mapped contributing areas of between 29.4% and 37.3% of the study area, depending on the DEM conditioning technique. The disagreements among the field-scale contributing areas mapped from the 10 m LiDAR DEM and photogrammetric DEM were large, with nearly half of the study area draining to alternate field boundaries. Differences in derived contributing areas and flowpaths among various conditioning techniques increased substantially at finer grid resolutions, with the largest disagreement among mapped contributing areas occurring between the 1 m resolution DB DEM and the SB DEM (37% disagreement) and the DB-DF comparison (36.5% disagreement in mapped

  8. Application of the windowed-Fourier-transform-based fringe analysis technique for investigating temperature and concentration fields in fluids.

    PubMed

    Mohanan, Sharika; Srivastava, Atul

    2014-04-10

    The present work is concerned with the development and application of a novel fringe analysis technique based on the principles of the windowed-Fourier-transform (WFT) for the determination of temperature and concentration fields from interferometric images for a range of heat and mass transfer applications. Based on the extent of the noise level associated with the experimental data, the technique has been coupled with two different phase unwrapping methods: the Itoh algorithm and the quality guided phase unwrapping technique for phase extraction. In order to generate the experimental data, a range of experiments have been carried out which include cooling of a vertical flat plate in free convection conditions, combustion of mono-propellant flames, and growth of organic as well as inorganic crystals from their aqueous solutions. The flat plate and combustion experiments are modeled as heat transfer applications wherein the interest is to determine the whole-field temperature distribution. Aqueous-solution-based crystal growth experiments are performed to simulate the mass transfer phenomena and the interest is to determine the two-dimensional solute concentration field around the growing crystal. A Mach-Zehnder interferometer has been employed to record the path-integrated quantity of interest (temperature and/or concentration) in the form of interferometric images in the experiments. The potential of the WFT method has also been demonstrated on numerically simulated phase data for varying noise levels, and the accuracy in phase extraction have been quantified in terms of the root mean square errors. Three levels of noise, i.e., 0%, 10%, and 20% have been considered. Results of the present study show that the WFT technique allows an accurate extraction of phase values that can subsequently be converted into two-dimensional temperature and/or concentration distribution fields. Moreover, since WFT is a local processing technique, speckle patterns and the inherent

  9. Polymer-based platforms by electric field-assisted techniques for tissue engineering and cancer therapy.

    PubMed

    Guarino, Vincenzo; Cirillo, Valentina; Altobelli, Rosaria; Ambrosio, Luigi

    2015-01-01

    A large variety of processes and tools has been investigated to acquire better knowledge on the natural evolution of healthy or pathological tissues in 3D scaffolds to discover new solutions for tissue engineering and cancer therapy. Among them, electrodynamic techniques allow revisiting old scaffold manufacturing approach by utilizing electrostatic forces as the driving force to assemble fibers and/or particles from an electrically charged solution. By carefully selecting materials and processing conditions, they allow to fine control of characteristic shapes and sizes from micro to sub-micrometric scale and incorporate biopolymers/molecules (e.g., proteins, growth factors) for time- and space-controlled release for use in drug delivery and passive/active targeting. This review focuses on current advances to design micro or nanostructured polymer platforms by electrodynamic techniques, to be used as innovative scaffolds for tissue engineering or as 3D models for preclinical in vitro studies of in vivo tumor growth.

  10. A field comparison of multiple techniques to quantify groundwater - surface-water interactions

    USGS Publications Warehouse

    González-Pinzón, Ricardo; Ward, Adam S; Hatch, Christine E; Wlostowski, Adam N; Singha, Kamini; Gooseff, Michael N; Haggerty, Roy; Harvey, Judson; Cirpka, Olaf A; Brock, James T

    2015-01-01

    Groundwater–surface-water (GW-SW) interactions in streams are difficult to quantify because of heterogeneity in hydraulic and reactive processes across a range of spatial and temporal scales. The challenge of quantifying these interactions has led to the development of several techniques, from centimeter-scale probes to whole-system tracers, including chemical, thermal, and electrical methods. We co-applied conservative and smart reactive solute-tracer tests, measurement of hydraulic heads, distributed temperature sensing, vertical profiles of solute tracer and temperature in the stream bed, and electrical resistivity imaging in a 450-m reach of a 3rd-order stream. GW-SW interactions were not spatially expansive, but were high in flux through a shallow hyporheic zone surrounding the reach. NaCl and resazurin tracers suggested different surface–subsurface exchange patterns in the upper ⅔ and lower ⅓ of the reach. Subsurface sampling of tracers and vertical thermal profiles quantified relatively high fluxes through a 10- to 20-cm deep hyporheic zone with chemical reactivity of the resazurin tracer indicated at 3-, 6-, and 9-cm sampling depths. Monitoring of hydraulic gradients along transects with MINIPOINT streambed samplers starting ∼40 m from the stream indicated that groundwater discharge prevented development of a larger hyporheic zone, which progressively decreased from the stream thalweg toward the banks. Distributed temperature sensing did not detect extensive inflow of ground water to the stream, and electrical resistivity imaging showed limited large-scale hyporheic exchange. We recommend choosing technique(s) based on: 1) clear definition of the questions to be addressed (physical, biological, or chemical processes), 2) explicit identification of the spatial and temporal scales to be covered and those required to provide an appropriate context for interpretation, and 3) maximizing generation of mechanistic understanding and reducing costs of

  11. New optical gating technique for detection of electric field waveforms with subpicosecond resolution.

    PubMed

    Muraviev, Andrey; Gutin, Alexey; Rupper, Greg; Rudin, Sergey; Shen, Xiaohan; Yamaguchi, Masashi; Aizin, Gregory; Shur, Michael

    2016-06-13

    The new optical gating technique uses a femtosecond optical laser pulses for the photoconductive detection of short pulses of terahertz (THz) radiation. This technique reproduces the shape of the THz pulse and after pulse plasmonic response of the two-dimensional electron gas in a short channel high electron mobility transistor (HEMT). The results are in excellent agreement with the electro-optic effect measurements and with the simulation results obtained in the frame of a two-dimensional hydrodynamic model. The femtosecond optical laser pulse time is delayed with respect to the THz pulse and generates a large concentration of the electron-hole pairs in the AlGaAs/InGaAs HEMT. This drastically increases the channel conductivity on the femtosecond scale and effectively shorts the device quenching the transistor response. The achieved time resolution is better than 250 femtoseconds and could be improved using shorter femtosecond laser pulses. The spatial resolution of this technique is on the order of tens of nanometers or even smaller. It could be applied for studying the electron transport in a variety of electronic devices ranging from silicon MOSFETs to heterostructure bipolar transistors.

  12. X-Ray Diffraction Techniques for a Field Instrument: Patterns of Lithologic Provences

    NASA Technical Reports Server (NTRS)

    Marshall, J.; Keaten, R.

    1999-01-01

    Future exploration of Mars will attempt to shed light on the mineralogy of surface materials. Instruments deployed from remote platforms should have the capability to conduct both intensive analyses as well as rapid, reconnaissance surveys while they function in the martian environment as surrogate geologists. In order to accommodate the reconnaissance mode of analysis and to compensate for analytical limitations imposed by the space-flight conditions, data analysis methods are being developed that will permit interpretation of data by recognition of signatures or "fingerprints". Specifically, we are developing a technique which will allow interpretation of diffraction patterns by recognition of characteristic signatures of different lithologic provences. This technique allows a remote vehicle to function in a rapid-scan mode using the lithologic signature to determine where a more thorough analysis is needed. An x-ray diffraction pattern is characterized by the angular positions of diffracted x-rays, x-ray intensity levels and background radiation levels. These elements may be used to identify a generalized x-ray signature. Lithologic signatures are being developed in two ways. A signature is composed using the ideal powder diffraction indices from the mineral assembledge common to a specific lithologic provence. This is then confirmed using a laboratory diffraction pattern of a whole rock powder. Preliminary results comparing the diffraction signatures of the major mineral assembledges common to basalt, carbonate, and evaporite basin deposits indicate that lithologies are differentiable as a "fingerprint". Statistical analyses are being performed to establish the confidence levels of this technique.

  13. Limitations in paleomagnetic data and modelling techniques and their impact on Holocene geomagnetic field models

    NASA Astrophysics Data System (ADS)

    Panovska, S.; Korte, M.; Finlay, C. C.; Constable, C. G.

    2015-07-01

    Characterization of geomagnetic field behaviour on timescales of centuries to millennia is necessary to understand the mechanisms that sustain the geodynamo and drive its evolution. As Holocene paleomagnetic and archeomagnetic data have become more abundant, strategies for regularized inversion of modern field data have been adapted to produce numerous time-varying global field models. We evaluate the effectiveness of several approaches to inversion and data handling, by assessing both global and regional properties of the resulting models. Global Holocene field models cannot resolve Southern hemisphere regional field variations without the use of sediments. A standard data set is used to construct multiple models using two different strategies for relative paleointensity calibration and declination orientation and a selection of starting models in the inversion procedure. When data uncertainties are considered, the results are similar overall regardless of whether we use iterative calibration and reorientation, or co-estimation of the calibration and orientation parameters as part of the inversion procedure. In each case the quality of the starting model used for initial relative paleointensity calibration and declination orientation is crucial and must be based on the best absolute information available. Without adequate initial calibration the morphology of dipole moment variations can be recovered but its absolute value will be correlated with the initial intensity calibrations, an effect that might be mitigated by ensuring an appropriate fit to enough high quality absolute intensity data with low uncertainties. The declination reorientation mainly impacts regional field structure and in the presence of non-zonal fields will result in a non-zero local average. The importance of declination orientation is highlighted by inconsistencies in the West Pacific and Australian sediment records in CALS10k.1b model. Great care must also be taken to assess uncertainties

  14. Comparison of molecular and microscopic technique for detection of Theileria annulata from the field cases of cattle

    PubMed Central

    Chauhan, H. C.; Patel, B. K.; Bhagat, A. G.; Patel, M. V.; Patel, S. I.; Raval, S. H.; Panchasara, H. H.; Shrimali, M. D.; Patel, A. C.; Chandel, B. S.

    2015-01-01

    Aim: Tropical theileriosis is fatal hemoprotozoal disease of dairy animals caused by Theileria annulata. The aim of the present study was to detect the T. annulata and comparison of results of molecular and microscopic techniques. Materials and Methods: A total of 52 blood samples were collected from the cattle suspected for theileriosis across the Banaskantha district. All the samples were screened for theileriosis using Giemsa’s staining technique and polymerase chain reaction (PCR). Results: Total of 17 (32.69%) and 24 (46.15%) samples were found positive for theileriosis by microscopic examination and PCR test, respectively. It revealed that the study area is endemic for theileriosis, and the microscopic technique has 70.83% sensitivity and 100% specificity with respect to PCR technique. Conclusion: It may be concluded from the present study that the PCR is comparatively sensitive technique than microscopic examination and may be recommended to use in the field for screening of theileriosis in the study area, where a high prevalence of diseases have been reported due to intensive dairy farming. PMID:27047045

  15. Identification of vibration excitations from acoustic measurements using near field acoustic holography and the force analysis technique

    NASA Astrophysics Data System (ADS)

    Pézerat, C.; Leclère, Q.; Totaro, N.; Pachebat, M.

    2009-10-01

    This study presents a method of using acoustic holography and the force analysis technique to identify vibration sources from radiated noise measurements. The structure studied is a plate excited by a shaker on which three measurements were performed: the first is a reference measurement of plate velocity obtained by scanning laser vibrometry, the second is based on sound pressure measurements in the near field of the structure, and the third is the measurement of normal acoustic velocities by using a p-U probe recently developed by Microflown Technologies. This was followed by the application of classical NAH, known as pressure-to-velocity holography and velocity-to-velocity holography to predict the plate velocity field from acoustic measurements at distances of 1 and 5 cm. Afterwards, the force analysis technique, also known as the RIFF technique, is applied with these five data sets. The principle is to inject the displacement field of the structure into its equation of motion and extract the resulting force distribution. This technique requires regularization done by a low-pass filter in the wavenumber domain. Apart from pressure-to-velocity holography at 5 cm, the reconstructed force distribution allows localizing the excitation point in the measurement area. FAT regularization is also shown to improve results as its cutoff wavenumber is optimized with the natural wavenumber of the plate. Lastly, quantitative force values are extracted from force distributions at all frequencies of the band 0-4 kHz studied and compared with the force spectrum measured directly by a piezoelectric sensor.

  16. External Magnetic Field Reduction Techniques for the Advanced Stirling Radioisotope Generator

    NASA Technical Reports Server (NTRS)

    Niedra, Janis M.; Geng, Steven M.

    2013-01-01

    Linear alternators coupled to high efficiency Stirling engines are strong candidates for thermal-to-electric power conversion in space. However, the magnetic field emissions, both AC and DC, of these permanent magnet excited alternators can interfere with sensitive instrumentation onboard a spacecraft. Effective methods to mitigate the AC and DC electromagnetic interference (EMI) from solenoidal type linear alternators (like that used in the Advanced Stirling Convertor) have been developed for potential use in the Advanced Stirling Radioisotope Generator. The methods developed avoid the complexity and extra mass inherent in data extraction from multiple sensors or the use of shielding. This paper discusses these methods, and also provides experimental data obtained during breadboard testing of both AC and DC external magnetic field devices.

  17. Research of Arc Chamber Optimization Techniques Based on Flow Field and Arc Joint Simulation

    NASA Astrophysics Data System (ADS)

    Zhong, Jianying; Guo, Yujing; Zhang, Hao

    2016-03-01

    The preliminary design of an arc chamber in the 550 kV SF6 circuit breaker was proposed in accordance with the technical requirements and design experience. The structural optimization was carried out according to the no-load flow field simulation results and verified by no-load pressure measurement. Based on load simulation results such as temperature field variation at the arc area and the tendency of post arc current under different recovery voltage, the second optimal design was completed and its correctness was certificated by a breaking test. Results demonstrate that the interrupting capacity of an arc chamber can be evaluated by the comparison of the gas medium recovery speed and post arc current growth rate.

  18. Field of view extension using frequency division multiple access technique: numerical analysis

    NASA Astrophysics Data System (ADS)

    Kavehvash, Zahra; Mehrany, Khashayar; Bagheri, Saeed

    2011-06-01

    Integral imaging could be considered as one of the prospective methods for recording and displaying 3D images based on its distinct features. Some of the most important challenges with this approach are the field of view and resolution limitation. In this work we investigate using frequency division multiple access (FDMA) idea for solving this problem. Simulation results show an increase of more than ten percent in the performance of the 3D reconstructed images using the proposed method.

  19. Techniques for Microwave Near-Field Quantum Control of Trapped Ions

    DTIC Science & Technology

    2013-01-31

    the inputs to the feedthroughs, we measured the frequency noise of the signals at 1.6865 GHz and estimated a negligible effect on the observed fidelity...position will cause off-resonant carrier transitions and ac Zeeman shifts [21], both of which will inhibit precise control. Thus, the magnetic field...the three microwave currents to minimize ac Zeeman shifts imposed on the ion. The experimental sequence is shown in Fig. 6(a). The nulling procedure

  20. On the Methodology of Nematode Extraction from Field Samples: Density Flotation Techniques

    PubMed Central

    Viglierchio, David R.; Yamashita, Tom T.

    1983-01-01

    Density flotation has been frequently used for the extraction of nematodes from field samples. Density flotation curves for four nematode species and five solutes have been prepared. The curves confirm that flotation was governed by several factors: solute density, solute osmotic activity, and physiological properties of the nematode species. Nematode viability and function can be adversely affected by improper selection of solute for density extraction of nematodes; nevertheless, some nematode species can be enriched from mixtures by density and solute selection. PMID:19295831

  1. Investigation of the Potts model of a diluted magnet by local field averaging technique

    NASA Astrophysics Data System (ADS)

    Semkin, S. V.; Smagin, V. P.

    2016-08-01

    Averaging of the local interatomic interaction fields has been applied to the Potts model of a diluted magnet. A self-consistent equation for the magnetization and an equation for the phase transition temperature have been derived. The temperature and magnetic atom density dependences of the spontaneous magnetization have been found for the lattices with the coordination numbers 3 and 4 and various numbers of spin states.

  2. Morphology, Hydraulics and Sediment Transport of an Ice-Covered River: Field Techniques and Initial Data,

    DTIC Science & Technology

    1986-10-01

    1603-1624. portant fundamental implications for the winter Beltaos , S . and A.M. Dean, Jr. (1981) Field inves- regime of rivers that need to be defined...DOWNGRADING SCHEDULE Approved for public release; distribution is __ unlimited. 4. PERFORMING ORGANIZATION REPORT NUMBER( S ) ’AONITORING ORGANIZATION...REPORT NUMBER( S ) CRREL Report 86-11 6a NAME OF PERFORMING ORGANIZATION 6b OFFICE SYMBOL 7a NAME OF MONITORING ORGANIZATION U.S. Army Cold Regions

  3. A hybrid numerical technique for predicting the aerodynamic and acoustic fields of advanced turboprops

    NASA Technical Reports Server (NTRS)

    Homicz, G. F.; Moselle, J. R.

    1985-01-01

    A hybrid numerical procedure is presented for the prediction of the aerodynamic and acoustic performance of advanced turboprops. A hybrid scheme is proposed which in principle leads to a consistent simultaneous prediction of both fields. In the inner flow a finite difference method, the Approximate-Factorization Alternating-Direction-Implicit (ADI) scheme, is used to solve the nonlinear Euler equations. In the outer flow the linearized acoustic equations are solved via a Boundary-Integral Equation (BIE) method. The two solutions are iteratively matched across a fictitious interface in the flow so as to maintain continuity. At convergence the resulting aerodynamic load prediction will automatically satisfy the appropriate free-field boundary conditions at the edge of the finite difference grid, while the acoustic predictions will reflect the back-reaction of the radiated field on the magnitude of the loading source terms, as well as refractive effects in the inner flow. The equations and logic needed to match the two solutions are developed and the computer program implementing the procedure is described. Unfortunately, no converged solutions were obtained, due to unexpectedly large running times. The reasons for this are discussed and several means to alleviate the situation are suggested.

  4. Spatial performance of RegEM climate field reconstruction techniques in a realistic pseudoproxy context

    NASA Astrophysics Data System (ADS)

    Wang, J.; Emile-Geay, J.; Guillot, D.

    2011-12-01

    Several methods of climate field reconstructions (CFRs) have been introduced in the past few years to estimate past climate variability from proxy data over the Common Era. The pseudoproxy framework has become a tool of choice for assessing the relative merits of such methods. Here we compare four variants of the RegEM algorithm [Schneider, 2001], using a pseudoproxy network mimicking the key spatio-temporal characteristics of the network of Mann et al., 2008 (hereinafter M08); the methods are (1) RegEM TTLS (2) RegEM iTTLS (3) GraphEM and (4) RegEM iRIDGE. To ensure continuity with previous work [Smerdon et al. 2011], pseudoproxy series are designed as a white-noise degraded version of the simulated temperature field [Amman et al. 2007] over 850-1980 C.E. colocated with 1138 M08 proxies. We use signal-to-noise ratios (SNRs) of: ∞ (no noise), 1.0, 0.5 and 0.25, to simulate differences in proxy quality. Two novelties in pseudoproxy design are introduced here: (1) the decrease in proxy availability over time follows that found in M08, (2) a realistic case where the SNR is empirically derived from correlations between each M08 proxy and the HadCRUT3v temperature field. It is found that this realistic SNR is clustered around 0.3, but ranges from 0.1 to 0.8. Verification statistics such as RE, CE, r2, bias, standard deviation ratio and RMSE are presented for each method at each SNR level. The results show that all methods perform relatively well at SNR levels higher than 0.5, but display drastically different performances at lower SNR levels. Compared with results using pseudoproxy network of Mann et al., 1998, (hereinafter MBH98), the reconstruction skill of the M08 network is relatively improved, in line with the findings of Smerdon et al., 2011. Overall, we find that GraphEM and iTTLS tend to produce more robust estimates of the temperature field at low SNR levels than other schemes, while preserving a higher amount of variance in the target field. Ammann, C. M., F

  5. Full-field speckle correlation technique as applied to blood flow monitoring

    NASA Astrophysics Data System (ADS)

    Vilensky, M. A.; Agafonov, D. N.; Timoshina, P. A.; Shipovskaya, O. V.; Zimnyakov, D. A.; Tuchin, V. V.; Novikov, P. A.

    2011-03-01

    The results of experimental study of monitoring the microcirculation in tissue superficial layers of the internal organs at gastro-duodenal hemorrhage with the use of laser speckles contrast analysis technique are presented. The microcirculation monitoring was provided in the course of the laparotomy of rat abdominal cavity in the real time. Microscopic hemodynamics was analyzed for small intestine and stomach under different conditions (normal state, provoked ischemia, administration of vasodilative agents such as papaverine, lidocaine). The prospects and problems of internal monitoring of micro-vascular flow in clinical conditions are discussed.

  6. Assessing the spatial distribution of glyphosate-AMPA in an Argentinian farm field using a pedometric technique

    NASA Astrophysics Data System (ADS)

    Barbera, Agustin; Zamora, Martin; Domenech, Marisa; Vega-Becerra, Andres; Castro-Franco, Mauricio

    2017-04-01

    The cultivation of transgenic glyphosate-resistant crops has been the most rapidly adopted crop technology in Argentina since 1997. Thus, more than 180 million liters of the broad-spectrum herbicide glyphosate (N - phosphonomethylglicine) are applied every year. The intensive use of glyphosate combined with geomorphometrical characteristics of the Pampa region is a matter of environmental concern. An integral component of assessing the risk of soil contamination in farm fields is to describe the spatial distribution of the levels of contaminant agent. Application of pedometric techniques for this purpose has been scarcely demonstrated. These techniques could provide an estimate of the concentration at a given unsampled location, as well as the probability that concentration will exceed the critical threshold concentration. In this work, a pedometric technique for assessing the spatial distribution of glyphosate in farm fields was developed. A field located at INTA Barrow, Argentina (Lat: -38.322844, Lon: -60.25572) which has a great soil spatial variability, was divided by soil-specific zones using a pedometric technique. This was developed integrating INTA Soil Survey information and a digital elevation model (DEM) obtained from a DGPS. Firstly, 10 topographic indices derived from a DEM were computed in a Random Forest algorithm to obtain a classification model for soil map units (SMU). Secondly, a classification model was applied to those topographic indices but at a scale higher than 1:1000. Finally, a spatial principal component analysis and a clustering using Fuzzy K-means were used into each SMU. From this clustering, three soil-specific zones were determined which were also validated through apparent electrical conductivity (CEa) measurements. Three soil sample points were determined by zone. In each one, samples from 0-10, 10-20 and 20-40cm depth were taken. Glyphosate content and AMPA in each soil sample were analyzed using de UPLC-MS/MS ESI (+/-). Only

  7. A hybrid experimental-numerical technique for determining 3D velocity fields from planar 2D PIV data

    NASA Astrophysics Data System (ADS)

    Eden, A.; Sigurdson, M.; Mezić, I.; Meinhart, C. D.

    2016-09-01

    Knowledge of 3D, three component velocity fields is central to the understanding and development of effective microfluidic devices for lab-on-chip mixing applications. In this paper we present a hybrid experimental-numerical method for the generation of 3D flow information from 2D particle image velocimetry (PIV) experimental data and finite element simulations of an alternating current electrothermal (ACET) micromixer. A numerical least-squares optimization algorithm is applied to a theory-based 3D multiphysics simulation in conjunction with 2D PIV data to generate an improved estimation of the steady state velocity field. This 3D velocity field can be used to assess mixing phenomena more accurately than would be possible through simulation alone. Our technique can also be used to estimate uncertain quantities in experimental situations by fitting the gathered field data to a simulated physical model. The optimization algorithm reduced the root-mean-squared difference between the experimental and simulated velocity fields in the target region by more than a factor of 4, resulting in an average error less than 12% of the average velocity magnitude.

  8. Computed tomography: a powerful imaging technique in the fields of dimensional metrology and quality control

    NASA Astrophysics Data System (ADS)

    Probst, Gabriel; Boeckmans, Bart; Dewulf, Wim; Kruth, Jean-Pierre

    2016-05-01

    X-ray computed tomography (CT) is slowly conquering its space in the manufacturing industry for dimensional metrology and quality control purposes. The main advantage is its non-invasive and non-destructive character. Currently, CT is the only measurement technique that allows full 3D visualization of both inner and outer features of an object through a contactless probing system. Using hundreds of radiographs, acquired while rotating the object, a 3D representation is generated and dimensions can be verified. In this research, this non-contact technique was used for the inspection of assembled components. A dental cast model with 8 implants, connected by a screwed retained bar made of titanium. The retained bar includes a mating interface connection that should ensure a perfect fitting without residual stresses when the connection is fixed with screws. CT was used to inspect the mating interfaces between these two components. Gaps at the connections can lead to bacterial growth and potential inconvenience for the patient who would have to face a new surgery to replace his/hers prosthesis. With the aid of CT, flaws in the design or manufacturing process that could lead to gaps at the connections could be assessed.

  9. Development of a spectroscopic technique for simultaneous magnetic field, electron density, and temperature measurements in ICF-relevant plasmas

    NASA Astrophysics Data System (ADS)

    Dutra, E. C.; Koch, J. A.; Presura, R.; Angermeier, W. A.; Darling, T.; Haque, S.; Mancini, R. C.; Covington, A. M.

    2016-11-01

    Spectroscopic techniques in the visible range are often used in plasma experiments to measure B-field induced Zeeman splitting, electron densities via Stark broadening, and temperatures from Doppler broadening. However, when electron densities and temperatures are sufficiently high, the broadening of the Stark and Doppler components can dominate the emission spectra and obscure the Zeeman component. In this research, we are developing a time-resolved multi-axial technique for measuring the Zeeman, Stark, and Doppler broadened line emission of dense magnetized plasmas for Z-pinch and Dense Plasma Focus (DPF) accelerators. The line emission is used to calculate the electron densities, temperatures, and B-fields. In parallel, we are developing a line-shape modeling code that incorporates the broadening effects due to Stark, Doppler, and Zeeman effects for dense magnetized plasma. This manuscript presents the details of the experimental setup and line shape code, along with the results obtained from an Al iii doublet at the University of Nevada, Reno at Nevada Terawatt Facility. Future tests are planned to further evaluate the technique and modeling on other material wire array, gas puff, and DPF platforms.

  10. A tropical cyclone dynamic initialization technique using high temporal and spatial density atmospheric motion vectors and airborne field campaign data

    NASA Astrophysics Data System (ADS)

    Hendricks, E. A.; Bell, M. M.; Elsberry, R. L.; Velden, C.

    2016-12-01

    A new tropical cyclone dynamic initialization technique is described and tested. The technique uses the triple-nested Coupled Ocean-Atmosphere Mesoscale Prediction System-Tropical Cyclones (COAMPS-TC) (with horizontal grid spacings of 45-,15-, and 5-km, respectively) in conjunction with the Spline Analysis at Mesoscale Utilizing Radar and Aircraft Instrumentation (SAMURAI). A proof-of-concept demonstration of this technique is given for Hurricane Joaquin from the Office of Naval Research (ONR) Tropical Cyclone Intensity (TCI) field program conducted in 2015. High spatial and temporal resolution atmospheric motion vectors (AMVs), dropwindsondes from the Yankee Environmental Systems High Definition Sounding System (HDSS), and surface wind speed retrievals from the Hurricane Imaging Radiometer (HIRAD) are ingested into SAMURAI to produce increments, which are then used by the COAMPS-TC dynamic initialization scheme to produce consistent dynamic and thermodynamically balanced fields. This high temporal resolution (order of 10-15 minutes) incremental dynamic initialization procedure has advantages over conventional methods in that a bogus vortex is not used, and existing asymmetries (including convective heating and upper and low level wind asymmetries) that exist in the TC are retained. The use of dynamic initialization also ensures improved vortex and environment balance, and consistency with the model physics. A preliminary verification of this new TC initialization scheme will be presented for the initialization and forecast of Hurricane Joaquin (2015).

  11. A comparison of two field chemical immobilization techniques for bobcats (Lynx rufus).

    PubMed

    Rockhill, Aimee P; Chinnadurai, Sathya K; Powell, Roger A; DePerno, Christopher S

    2011-12-01

    Anesthetic protocols that allow quick induction, short processing time, and rapid reversal are necessary for researchers performing minimally invasive procedures (including morphometric measurements or attachment of radiocollars). The objective of this study was to evaluate the effectiveness of medetomidine and butorphanol as a substitute for xylazine in ketamine-based field immobilization protocols for bobcats (Lynx rufus) to reduce recovery and total field times. During 2008 and 2009, 11 bobcats were immobilized with an intramuscular combination of ketamine (10 mg/kg)-xylazine (0.75 mg/kg) (KX) or ketamine (4 mg/kg)-medetomidine (40 mcg/kg)-butorphanol (0.4 mg/kg) (KMB). Time to initial sedation, recumbency, and full anesthesia were recorded postinjection. Time to head up, sternal, standing, full recovery, and total processing times were recorded post-reversal. Throughout anesthesia, heart rate (HR), respiratory rate (RR), rectal temperature (RT), and noninvasive hemoglobin-oxygen saturation (SpO2) were recorded at 5-min intervals. The KX combination had a median time to full anesthesia of 10 min, a median recovery time of 46 min, and a median total processing time of 83 min. Alternatively, the KMB combination had a median time to full anesthesia of 21 min, a median recovery time of 18 min, and a median total processing time of 64 min. The KX protocol produced a median HR of 129 beats/min, RR of 25 breaths/min, RT of 38.3 degrees C, and SpO2 of 93%. The KMB protocol produced a median HR of 97 beats/min, RR of 33 breaths/min, RT of 38.4 degrees C, and SpO2 of 92%. Though both protocols provided safe and reliable sedation, the benefits of using medetomidine and butorphanol to lower ketamine doses and decrease processing time for brief nonsurgical sedation of bobcats in the field are presented.

  12. Can the electron magnetic resonance (EMR) techniques measure the crystal (ligand) field parameters?

    NASA Astrophysics Data System (ADS)

    Rudowicz, C.; Sung, H. W. F.

    2001-07-01

    In this paper, the question posed in the title is critically examined on the basis of the available literature evidence implying the positive answer. The distinction between, on the one hand, the actual crystal field (CF) or equivalently ligand field (LF) related quantities and, on the other hand, the actual zero-field splitting (ZFS) or equivalently fine structure (FS) quantities, is elucidated. The origin and possible roots of the incorrect terminology consisting in mixing up the two physically distinct quantities at different levels are examined. Aspects concerning Hamiltonians, parameters, energy level splitting, and nature of the operators involved are taken into account. Problems with the various notations for the operators and parameters used in the electron magnetic resonance (EMR) area are also identified and reviewed. A large number of cases of incorrect terminology and other inconsistencies identified in the course of a comprehensive literature survey are analyzed and systematically classified. Implications of the confusion in question, which go beyond the simple semantic issues, are discussed. The results of the survey reveal that the two most serious categories of this confusion lead to misinterpretation of the experimental EMR data. Several examples of serious misinterpretations found in the books, reviews, and original papers are discussed. The incorrect terminology contributes also to misleading keyword classifications of papers in journals as well as references in scientific literature databases. Thus, the database searches may produce unreliable outcomes. Examples of such outcomes are also shown. It is concluded that, in order to prevent further proliferation of the incorrect terminology and thus to increase reliability of the published EMR data, a concerted effort within the EMR community is indispensable. Various ways in this regard at the international level are suggested.

  13. Teacher self-evaluation: an assessment using Delamont's 'beyond Flanders' fields' technique.

    PubMed

    Burke, L M

    1994-06-01

    Teacher appraisal is an issue which is becoming increasingly important in nurse education today. One potential system of evaluation which is currently under-valued and under-utilised within nurse education is self-assessment. This paper explores the issues involved through the application of Delamont's 'beyond Flanders' fields' assessment tool to an excerpt of teaching recorded on video tape. It concludes that self-assessment has significant value in developing the reflection skills of the teacher and thereby improving the quality of education delivered. It should therefore form a significant part of any appraisal event.

  14. Effect of nonlinear absorption on electric field applied lead chloride by Z-scan technique

    SciTech Connect

    Rejeena, I.; Lillibai,; Nampoori, V. P. N.; Radhakrishnan, P.; Rahimkutty, M. H.

    2014-10-15

    The preparation, spectral response and optical nonlinearity of gel grown lead chloride single crystals subjected to electric field of 20V using parallel plate arrangements have been investigated. Optical band gap of the samples were determined using linear absorption spectra. Open aperture z-scan was employed for the determination of nonlinear absorption coefficient of PbCl{sub 2} solution. The normalized transmittance curve exhibits a valley shows reverse saturable absorption. The non linear absorption at different input fluences were recorded using a single Gaussian laser beam in tight focus geometry. The RSA nature of the sample makes it suitable for optical limiting applications.

  15. A new technique for obtaining mitotic chromosome spreads from fishes in the field.

    PubMed

    Blanco, D R; Bertollo, L A C; Lui, R L; Vicari, M R; Margarido, V P; Artoni, R F; Moreira-Filho, O

    2012-07-01

    This study presents an adaptation of current methodologies for preparing mitotic chromosomes from fishes, optimized for use in the field. The high-quality preparations obtained using this modified methodology is suitable for subsequent chromosomal analysis. Importantly, this method is particularly useful when specimen collection sites are far from research laboratories or when researchers are working with highly sensitive species that do not survive long outside of their natural habitats. © 2012 The Authors. Journal of Fish Biology © 2012 The Fisheries Society of the British Isles.

  16. Near-field techniques for probing collective modes of anisotropic superconducting thin films

    NASA Astrophysics Data System (ADS)

    Stinson, H. T.; Wu, J. S.; Jiang, B. Y.; Fei, Z.; Rodin, A. S.; Chapler, B.; McLeod, A. S.; Castro-Neto, A.; Lee, Y. S.; Fogler, M. M.; Basov, D. N.

    2014-03-01

    We propose the use of scattering-type scanning near-field optical microscopy (s-SNOM) to characterize the collective mode spectrum of anisotropic superconductors. To probe the dispersion of collective modes with large in-plane momenta, specifically surface plasmons and guided wave modes, we model the real-space interference patterns of modes launched by the sharp s-SNOM tip and their reflections off physical and electronic boundaries. In addition, we show that s-SNOM spectroscopy allows for a direct probe of the c-axis superfluid density in underdoped anisotropic superconductors with nanoscale spatial resolution.

  17. Light-field camera-based 3D volumetric particle image velocimetry with dense ray tracing reconstruction technique

    NASA Astrophysics Data System (ADS)

    Shi, Shengxian; Ding, Junfei; New, T. H.; Soria, Julio

    2017-07-01

    This paper presents a dense ray tracing reconstruction technique for a single light-field camera-based particle image velocimetry. The new approach pre-determines the location of a particle through inverse dense ray tracing and reconstructs the voxel value using multiplicative algebraic reconstruction technique (MART). Simulation studies were undertaken to identify the effects of iteration number, relaxation factor, particle density, voxel-pixel ratio and the effect of the velocity gradient on the performance of the proposed dense ray tracing-based MART method (DRT-MART). The results demonstrate that the DRT-MART method achieves higher reconstruction resolution at significantly better computational efficiency than the MART method (4-50 times faster). Both DRT-MART and MART approaches were applied to measure the velocity field of a low speed jet flow which revealed that for the same computational cost, the DRT-MART method accurately resolves the jet velocity field with improved precision, especially for the velocity component along the depth direction.

  18. A novel contactless technique for thermal field mapping and thermal conductivity determination: two-laser Raman thermometry.

    PubMed

    Reparaz, J S; Chavez-Angel, E; Wagner, M R; Graczykowski, B; Gomis-Bresco, J; Alzina, F; Sotomayor Torres, C M

    2014-03-01

    We present a novel contactless technique for thermal conductivity determination and thermal field mapping based on creating a thermal distribution of phonons using a heating laser, while a second laser probes the local temperature through the spectral position of a Raman active mode. The spatial resolution can be as small as 300 nm, whereas its temperature accuracy is ±2 K. We validate this technique investigating the thermal properties of three free-standing single crystalline Si membranes with thickness of 250, 1000, and 2000 nm. We show that for two-dimensional materials such as free-standing membranes or thin films, and for small temperature gradients, the thermal field decays as T(r) ∝ ln(r) in the diffusive limit. The case of large temperature gradients within the membranes leads to an exponential decay of the thermal field, T ∝ exp[ - A·ln(r)]. The results demonstrate the full potential of this new contactless method for quantitative determination of thermal properties. The range of materials to which this method is applicable reaches far beyond the here demonstrated case of Si, as the only requirement is the presence of a Raman active mode.

  19. Fielding the magnetically applied pressure-shear technique on the Z accelerator (completion report for MRT 4519).

    SciTech Connect

    Alexander, C. Scott; Haill, Thomas A.; Dalton, Devon Gardner; Rovang, Dean Curtis; Lamppa, Derek C.

    2013-09-01

    The recently developed Magnetically Applied Pressure-Shear (MAPS) experimental technique to measure material shear strength at high pressures on magneto-hydrodynamic (MHD) drive pulsed power platforms was fielded on August 16, 2013 on shot Z2544 utilizing hardware set A0283A. Several technical and engineering challenges were overcome in the process leading to the attempt to measure the dynamic strength of NNSA Ta at 50 GPa. The MAPS technique relies on the ability to apply an external magnetic field properly aligned and time correlated with the MHD pulse. The load design had to be modified to accommodate the external field coils and additional support was required to manage stresses from the pulsed magnets. Further, this represents the first time transverse velocity interferometry has been applied to diagnose a shot at Z. All subsystems performed well with only minor issues related to the new feed design which can be easily addressed by modifying the current pulse shape. Despite the success of each new component, the experiment failed to measure strength in the samples due to spallation failure, most likely in the diamond anvils. To address this issue, hydrocode simulations are being used to evaluate a modified design using LiF windows to minimize tension in the diamond and prevent spall. Another option to eliminate the diamond material from the experiment is also being investigated.

  20. Authentication of bee pollen grains in bright-field microscopy by combining one-class classification techniques and image processing.

    PubMed

    Chica, Manuel

    2012-11-01

    A novel method for authenticating pollen grains in bright-field microscopic images is presented in this work. The usage of this new method is clear in many application fields such as bee-keeping sector, where laboratory experts need to identify fraudulent bee pollen samples against local known pollen types. Our system is based on image processing and one-class classification to reject unknown pollen grain objects. The latter classification technique allows us to tackle the major difficulty of the problem, the existence of many possible fraudulent pollen types, and the impossibility of modeling all of them. Different one-class classification paradigms are compared to study the most suitable technique for solving the problem. In addition, feature selection algorithms are applied to reduce the complexity and increase the accuracy of the models. For each local pollen type, a one-class classifier is trained and aggregated into a multiclassifier model. This multiclassification scheme combines the output of all the one-class classifiers in a unique final response. The proposed method is validated by authenticating pollen grains belonging to different Spanish bee pollen types. The overall accuracy of the system on classifying fraudulent microscopic pollen grain objects is 92.3%. The system is able to rapidly reject pollen grains, which belong to nonlocal pollen types, reducing the laboratory work and effort. The number of possible applications of this authentication method in the microscopy research field is unlimited.

  1. Controlled Space Radiation concept for mesh-free semi-analytical technique to model wave fields in complex geometries.

    PubMed

    Banerjee, Sourav; Das, Samik; Kundu, Tribikram; Placko, Dominique

    2009-12-01

    Numerical modelling of the ultrasonic wave propagation is important for Structural Heath Monitoring and System Prognosis problems. In order to develop intelligent and adaptive structures with embedded damage detector and classifier mechanisms, detailed understanding of scattered wave fields due to anomaly in the structure is inevitably required. A detailed understanding of the problem demands a good modelling of the wave propagation in the problem geometry in virtual form. Therefore, efficient analytical, semi-analytical or numerical modelling techniques are required. In recent years a semi-analytical mesh-free technique called Distributed Point Source Method (DPSM) is being used for modelling various ultrasonic, electrostatic and electromagnetic wave field problems. In the conventional DPSM approach point sources are placed along the transducer faces, problem boundaries and interfaces to model incident and scattered fields. Every point source emits energy in all directions uniformly. Source strengths of these 360 degrees radiation sources are obtained by satisfying interface and boundary conditions of the problem. In conventional DPSM modelling approach it is assumed that the shadow zone does not require any special consideration. 360 degrees Radiation point sources should be capable of properly modelling shadow zones because all boundary and interface conditions are satisfied. In this paper it is investigated how good this assumption is by introducing the 'shadow zone' concept at the point source level and comparing the results generated by the conventional DPSM and by this modified approach where the conventional 360 degrees radiation point sources are replaced by the Controlled Space Radiation (CSR) sources.

  2. Direct observation of λ-DNA molecule reversal movement within microfluidic channels under electric field with single molecule imaging technique

    NASA Astrophysics Data System (ADS)

    Fengyun, Yang; Kaige, Wang; Dan, Sun; Wei, Zhao; Hai-qing, Wang; Xin, He; Gui-ren, Wang; Jin-tao, Bai

    2016-07-01

    The electrodynamic characteristics of single DNA molecules moving within micro-/nano-fluidic channels are important in the design of biomedical chips and bimolecular sensors. In this study, the dynamic properties of λ-DNA molecules transferring along the microchannels driven by the external electrickinetic force were systemically investigated with the single molecule fluorescence imaging technique. The experimental results indicated that the velocity of DNA molecules was strictly dependent on the value of the applied electric field and the diameter of the channel. The larger the external electric field, the larger the velocity, and the more significant deformation of DNA molecules. More meaningfully, it was found that the moving directions of DNA molecules had two completely different directions: (i) along the direction of the external electric field, when the electric field intensity was smaller than a certain threshold value; (ii) opposite to the direction of the external electric field, when the electric field intensity was greater than the threshold electric field intensity. The reversal movement of DNA molecules was mainly determined by the competition between the electrophoresis force and the influence of electro-osmosis flow. These new findings will theoretically guide the practical application of fluidic channel sensors and lab-on-chips for precisely manipulating single DNA molecules. Project supported by the National Natural Science Foundation of China (Grant No. 61378083), the International Cooperation Foundation of the National Science and Technology Major Project of the Ministry of Science and Technology of China (Grant No. 2011DFA12220), the Major Research Plan of National Natural Science Foundation of China (Grant No. 91123030), and the Natural Science Foundation of Shaanxi Province of China (Grant Nos. 2010JS110 and 2013SZS03-Z01).

  3. Redox and speciation mapping of rock thin sections using high spatial resolution full-field imaging technique

    NASA Astrophysics Data System (ADS)

    de Andrade, V.; Susini, J.; Salomé, M.; Beraldin, O.; Heymes, T.; Lewin, E.

    2009-04-01

    Because of their complex genesis, natural rocks are the most often heterogeneous systems, with various scale-level heterogeneities for both chemistry and structure. In the last decade, the dramatic improvements of hyperspectral imaging techniques provided new tools for accurate material characterisation. Most of these micro- and nano- analytical techniques rely on scanning instruments, which offer high spatial resolution but suffer from long acquisition times imposing practical limits on the field of view. Conversely, full-field imaging techniques rely on a fast parallel acquisition but have limited resolution. Although soft X-ray full-field microscopes based on Fresnel zone plates are commonly used for high resolution imaging, its combination with spectroscopy is challenging and 2D chemical mapping still difficult. For harder X-rays, lensless X-ray microscope based on simple propagation geometry is easier and can be readily used for 2D spectro-microscopy. A full-field experimental setup was optimized at the ESRF-ID21 beamline to image iron redox and speciation distributions in rocks thin sections. The setup comprises a Si111 or Si220 (E = 0.4 eV) monochromator, a special sample stage and a sensitive camera associated with a brand new GGG:Eu light conversion scintillator and high magnification visible light optics. The pixel size ranges from 1.6 to 0.16 m according to the optic used. This instrument was used to analyse phyllosilicates and oxides of metamorphic sediments coming from the Aspromonte nappes-pile in Calabria. Iron chemical state distributions were derived - from images of 1000 Ã- 2000 Ã- 30 m3 rock thin sections - by subtraction of absorption images above and below the Fe K-edge. Using an automatic stitching reconstruction, a wide field image (4Ã-3 mm2 with a 1 m2 resolution for a total of about 12 millions pixels) of Fetotal elemental distribution was produced. Moreover, -XANES analyses (more than 1 million individual -XANES spectra) were performed

  4. Progress Toward a Technique for Measuring Electric Field Fluctuations in Tokamak Core Plasmas

    NASA Astrophysics Data System (ADS)

    Thompson, D. S.; Bakken, M. R.; Burke, M. G.; Couto, H. P.; Fonck, R. J.; Lewicki, B. T.; Winz, G. R.

    2014-10-01

    Measurements of electric field fluctuations in magnetic confinement experiments are desired for validating turbulence and transport models. A new diagnostic to measure Ez (r , t) fluctuations is in development on the Pegasus Toroidal Experiment. The approach is based on neutral beam emission spectroscopy using a high-throughput, high-resolution spectrometer to resolve fluctuations in wavelength separation between components of the motional Stark effect spectrum. Fluctuations at mid-minor-radius, normalized to an estimated MSE field, are estimated to be δE /EMSE ~ 10-3. In order to resolve fluctuations at turbulent time scales (fNy ~ 500 kHz), beam and spectrometer designs minimize broadening and maximize signal-to-noise ratio. The diagnostic employs a Fabry-Pérot spectrometer with étendue-matched collection optics and low noise detectors. The interferometer spacing is varied across the face of the etalon to mitigate geometric Doppler broadening. An 80 keV H0 beam from PBX-M with a divergence Ω < 0.5 degrees is being refurbished for this project. The beam includes a new ion source to maximize full energy species fraction and is designed to provide ~ 2 cm spatial resolution and 50 ms of 6 mA/cm2current density at the focal plane. Successful development and demonstration on Pegasus will guide future deployment on larger fusion facilities. Work supported by US DOE Grant DE-FG02-89ER53296.

  5. E-field-ratio telluric techniques applied to cavity detection for OSI operations

    SciTech Connect

    Didwall, E.M.; Wilt, M.J.

    1983-04-01

    Verification of compliance to a Comprehensive Test Ban Treaty (CTBT) may require an On-Site Inspection (OSI) of an area in the USSR where an underground nuclear test may have been conducted. As one of the possible technologies that may be applied by an OSI team, the E-field-ratio telluric method for cavity detection is examined. This method utilizes naturally occurring earth currents which are induced by ionospheric and tropospheric electromagnetic activity - no electric field source is provided by the user, thus reducing equipment requirements. Two test surveys were made at the Nevada Test Site. Underground cavities at these locations are expected to have lateral extents of the order of a few 10's of meters and depths less than 300 meters. Telluric measurements indicate that an electrically resistive anomaly exists where the cavity is expected. The anomaly associated with the cavity could be detected even when the survey line did not cross directly over the expected cavity location. Although these experiments do not define the limitations of the method, they do show strong evidence that cavities and chimney formations from an underground nuclear explosion can be detected. Specific goals for further research are suggested.

  6. Reliability of a field based 2D:4D measurement technique in children.

    PubMed

    Ranson, R M; Taylor, S R; Stratton, G

    2013-08-01

    There is limited literature on the relationship between second to fourth finger digit ratio (2D:4D) and health- and skill-related fitness in children. To examine this relationship it is important to establish a reliable method of assessing 2D:4D for use with large groups of children. The aim of the study was to examine the reliability of a field-based 2D:4D measure in children. METHODS/RESEARCH DESIGN: Fifty 8-11 year olds had 2D:4D of the right hand measured using a Perspex table top, a digital camera, and Adobe Photoshop software. Second to fourth finger digit ratio (and 2D and 4D) intra-observer and inter-observer reliabilities were assessed on the same day and intraobserver reliability was measured between days. Limits of agreement (LoA), coefficient of variation (CV) and Pearson's correlation coefficient were used for statistical analysis. High correlation coefficients (r=0.95-0.99) and low CV's (0.4-1.2%) were reported for intra- and inter-observer reliabilities on the same day and between days. LoA revealed negligible systematic bias with random error ranging from 0.02 to 0.12. These findings suggest that 2D:4D (and 2D and 4D) assessment in children using digital photography provides a reliable measure of 2D:4D that can be used during field-based testing. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Damage sensitivity investigations of EMI technique on different materials through coupled field analysis

    NASA Astrophysics Data System (ADS)

    Joshi, Bhrigu; Adhikari, Sailesh; Bhalla, Suresh

    2016-04-01

    This paper presents a comparative study through the piezoelectric coupled field analysis mode of finite element method (FEM) on detection of damages of varying magnitude, encompassing three different types of structural materials, using piezo impedance transducers. An aluminum block, a concrete block and a steel block of dimensions 48×48×10 mm were modelled in finite element software ANSYS. A PZT patch of 10×10×0.3 mm was also included in the model as surface bonded on the block. Coupled field analysis (CFA) was performed to obtain the admittance signatures of the piezo sensor in the frequency range of 0-250 kHz. The root mean square deviation (RMSD) index was employed to quantify the degree of variation of the signatures. It was found that concrete exhibited deviation in the signatures only with the change of damping values. However, the other two materials showed variation in the signatures even with changes in density and elasticity values in a small portion of the specimen. The comparative study shows that the PZT patches are more sensitive to damage detection in materials with low damping and the sensitivity typically decreases with increase in the damping.

  8. Noncontact measurement of liquid-surface properties with knife-edge electric field tweezers technique.

    PubMed

    Shimokawa, Yuji; Sakai, Keiji

    2013-06-01

    We have developed a technique for the simultaneous measurement of the surface tension and the viscosity of a liquid in a noncontact manner. In this method, a small linear deformation of the liquid surface is induced by a local dielectric force that is brought about by a knife-edge electrode. The surface tension and the viscosity are obtained from the shape of the induced meniscus and from the dynamic response of the surface, respectively. The surface tension obtained was examined in comparison with the values measured by the Wilhelmy plate method. We also measured time constants of the surface deformation for a variety of standard viscosity samples and obtained the relation between the time constant and the viscosity. The demonstrated advantage of the system is the ability to uniquely determine the surface tension and the viscosity.

  9. Comparison of sonochemiluminescence images using image analysis techniques and identification of acoustic pressure fields via simulation.

    PubMed

    Tiong, T Joyce; Chandesa, Tissa; Yap, Yeow Hong

    2017-05-01

    One common method to determine the existence of cavitational activity in power ultrasonics systems is by capturing images of sonoluminescence (SL) or sonochemiluminescence (SCL) in a dark environment. Conventionally, the light emitted from SL or SCL was detected based on the number of photons. Though this method is effective, it could not identify the sonochemical zones of an ultrasonic systems. SL/SCL images, on the other hand, enable identification of 'active' sonochemical zones. However, these images often provide just qualitative data as the harvesting of light intensity data from the images is tedious and require high resolution images. In this work, we propose a new image analysis technique using pseudo-colouring images to quantify the SCL zones based on the intensities of the SCL images and followed by comparison of the active SCL zones with COMSOL simulated acoustic pressure zones.

  10. Comparison of different MC techniques to evaluate BNCT dose profiles in phantom exposed tovarious neutron fields.

    PubMed

    Durisi, E; Koivunoro, H; Visca, L; Borla, O; Zanini, A

    2010-03-01

    The absorbed dose in BNCT (boron neutron capture therapy) consists of several radiation components with different physical properties and biological effectiveness. In order to assess the clinical efficacy of the beams, determining the dose profiles in tissues, Monte Carlo (MC) simulations are used. This paper presents a comparison between dose profiles calculated in different phantoms using two techniques: MC radiation transport code, MCNP-4C2 and BNCT MC treatment planning program, SERA (simulation environment for radiotherapy application). In this study MCNP is used as a reference tool. A preliminary test of SERA is performed using six monodirectional and monoenergetic beams directed onto a simple water phantom. In order to deeply investigate the effect of the different cross-section libraries and of the dose calculation methodology, monoenergetic and monodirectional beams directed toward a standard Snyder phantom are simulated. Neutron attenuation curves and dose profiles are calculated with both codes and the results are compared.

  11. New optical gating technique for detection of electric field waveforms with subpicosecond resolution

    NASA Astrophysics Data System (ADS)

    Muraviev, Andrey; Gutin, Alexey; Rupper, Greg; Rudin, Sergey; Shen, Xiaohan; Yamaguchi, Masashi; Aizin, Gregory; Shur, Michael

    2016-06-01

    We report on the new optical gating technique used for the direct photoconductive detection of short pulses of terahertz radiation with the resolution up to 250 femtoseconds. The femtosecond optical laser pulse time delayed with respect to the THz pulse generated a large concentration of the electron hole pairs in the AlGaAs/InGaAs High Electron Mobility Transistor (HEMT) drastically increasing the conductivity on the femtosecond scale and effectively shorting the source and drain. This optical gating quenched the response of the plasma waves launched by the THz pulse and allowed us to reproduce the waveform of the THz pulse by varying the time delay between the THz and quenching optical pulses. The results are in excellent agreement with the electro-optic effect measurements and with our hydrodynamic model that predicts the ultra-fast transistor plasmonic response at the time scale much shorter than the electron transit time, in full agreement with the measured data.

  12. Mini-FLOTAC, an Innovative Direct Diagnostic Technique for Intestinal Parasitic Infections: Experience from the Field

    PubMed Central

    Barda, Beatrice Divina; Rinaldi, Laura; Ianniello, Davide; Zepherine, Henry; Salvo, Fulvio; Sadutshang, Tsetan; Cringoli, Giuseppe; Clementi, Massimo; Albonico, Marco

    2013-01-01

    Background Soil-transmitted helminths and intestinal protozoa infection are widespread in developing countries, yet an accurate diagnosis is rarely performed. The aim of this study was to evaluate the recently developed mini–FLOTAC method and to compare with currently more widely used techniques for the diagnosis of intestinal parasitic infections in different settings. Methodology/Principal Findings The study was carried out in Dharamsala, Himachal Pradesh, India, and in Bukumbi, Tanzania. A total of 180 pupils from two primary schools had their stool analyzed (n = 80 in Dharamsala and n = 100 in Bukumbi) for intestinal parasitic infections with three diagnostic methods: direct fecal smear, formol-ether concentration method (FECM) and mini-FLOTAC. Overall, 72% of the pupils were positive for any intestinal parasitic infection, 24% carried dual infections and 11% three infections or more. The most frequently encountered intestinal parasites were Entamoeba coli, Entamoeba histolytica/dispar, Giardia intestinalis, hookworm, (and Schistosoma mansoni, in Tanzania). Statistically significant differences were found in the detection of parasitic infections among the three methods: mini-FLOTAC was the most sensitive method for helminth infections (90% mini-FLOTAC, 60% FECM, and 30% direct fecal smear), whereas FECM was most sensitive for intestinal protozoa infections (88% FECM, 70% direct fecal smear, and 68% mini-FLOTAC). Conclusion/Significance We present the first experiences with the mini-FLOTAC for the diagnosis of intestinal helminths and protozoa. Our results suggest that it is a valid, sensitive and potentially low-cost alternative technique that could be used in resource-limited settings — particularly for helminth diagnosis. PMID:23936577

  13. Complementary use of flow and sedimentation field-flow fractionation techniques for size characterizing biodegradable poly(lactic acid) nanospheres.

    PubMed

    Contado, Catia; Dalpiaz, Alessandro; Leo, Eliana; Zborowski, Maciej; Williams, P Stephen

    2007-07-20

    Poly(lactic acid) (PLA) nanoparticles were synthesized using a modified evaporation method, testing two different surfactants (sodium cholate and Pluronic F68) for the process. During their formulation the prodrug 5'-octanoyl-CPA (Oct-CPA) of the anti-ischemic N(6)-cyclopentyladenosine (CPA) was encapsulated. Three different purification methods were compared with respect to the influence of surfactant on the size characteristics of the final nanoparticle product. Flow and sedimentation field-flow fractionation techniques (FlFFF and SdFFF, respectively) were used to size characterize the five poly(lactic acid) particle samples. Two different combinations of carrier solution (mobile phase) were employed in the FlFFF analyses, while a solution of poly(vinyl alcohol) was used as mobile phase for the SdFFF runs. The separation performances of the two techniques were compared and the particle size distributions (PSDs), derived from the fractograms, were interpreted with the support of observations by scanning electron microscopy. Some critical aspects, such as the carrier choice and the channel thickness determination for the FlFFF, have been investigated. This is the first comprehensive comparison of the two FFF techniques for characterizing non-standard particulate materials. The two FFF techniques proved to be complementary and gave good, congruent and very useful information on the size distributions of the five poly(lactic acid) particle samples.

  14. Complementary use of flow and sedimentation field-flow fractionation techniques for size characterizing biodegradable poly(lactic acid) nanospheres

    PubMed Central

    Contado, Catia; Dalpiaz, Alessandro; Leo, Eliana; Zborowski, Maciej; Williams, P. Stephen

    2009-01-01

    Poly(lactic acid) nanoparticles were synthesized using a modified evaporation method, testing two different surfactants (sodium cholate and Pluronic F68) for the process. During their formulation the prodrug 5′-octanoyl-CPA (Oct-CPA) of the antiischemic N6-cyclopentyladenosine (CPA) was encapsulated. Three different purification methods were compared with respect to the influence of surfactant on the size characteristics of the final nanoparticle product. Flow and sedimentation field-flow fractionation techniques (FlFFF and SdFFF, respectively) were used to size characterize the five poly(lactic acid) particle samples. Two different combinations of carrier solution (mobile phase) were employed in the FlFFF analyses, while a solution of poly(vinyl alcohol) was used as mobile phase for the SdFFF runs. The separation performances of the two techniques were compared and the particle size distributions, derived from the fractograms, were interpreted with the support of observations by scanning electron microscopy. Some critical aspects, such as the carrier choice and the channel thickness determination for the FlFFF, have been investigated. This is the first comprehensive comparison of the two FFF techniques for characterizing non standard particulate materials. The two FFF techniques proved to be complementary and gave good, congruent and very useful information on the size distributions of the five poly(lactic acid) particle samples. PMID:17482199

  15. Sublacustrine groundwater discharge in esker aquifers; fully integrated groundwater flow modeling compared with novel field techniques

    NASA Astrophysics Data System (ADS)

    Ala-aho, Pertti; Rossi, Pekka M.; Isokangas, Elina; Kløve, Bjørn

    2015-04-01

    Groundwater (GW) discharge to surface water bodies such as streams, lakes and wetlands can greatly affect their water quantity, quality and related aquatic ecology. Therefore better understanding of GW - surface water interaction is needed in integrated management of water resources. Sublacustrine groundwater discharge (SGD) to lakes was studied in a complex unconfined Rokua esker aquifer system. SGD was studied for 12 lakes in the area to better understand water and solute inputs through lake beds and thereby the role of GW on lake water budget and solute concentrations. The locations and fluxes of SGD were simulated using a fully integrated groundwater flow model HydroGeoSphere. The used hydrological simulator allows water to flow and partition into overland and stream flow, evaporation, infiltration, and subsurface discharge into surface water features in a physically-based way, which was needed in simulating SGD of the complex aquifer system. The model was first calibrated for subsurface hydraulic conductivity in steady state using data of measured long-term average groundwater and lake levels and stream baseflow. The model performance in transient simulations was then examined against recorded hydrographs for lake and groundwater levels and stream flow. After model performance was verified, the simulated locations and fluxes of SGD were extracted from the model and compared with results from three independent field methods: airborne thermal imaging, stable isotope water balance and seepage meter measurements. Airborne thermal imaging was used to infer locations of SGD into lakes based on temperature anomalies at lakes shorelines due to discharging cold groundwater. Isotopic composition (H2 and O18) was analysed for lake water, groundwater and the data was used to estimate SGD flux into lakes. Finally, seepage meter measurements were conducted for one of the lakes to establish both locations and fluxes of SGD in detail. The simulated and field-based estimated

  16. Investigation of film formation in water-distribution systems by field-emission SEM and spectroscopy techniques

    SciTech Connect

    Liu, J.; Friedman, R.M.; Cortez, E.

    1996-12-31

    EPA has set limits on the concentration of heavy metals in drinking water supplies to protect the public health. Furthermore, the failure of pipes in the water distribution system from corrosion represents a massive investment in rebuilding its infrastructure. We have initiated a program to study the formation of corrosion-inhibition films formed in potable water delivery systems using various chemical phosphate treatments. In particular, blends of ortho- and polyphosphates have recently been used to reduce both lead and copper leaching. Several factors are important to the successful implementation of the phosphate technologies, including film thickness and porosity, rate and stability of formation and water quality conditions. In an attempt to understand the performance of these phosphate blends, advanced analytical techniques have been employed to study the nucleation and growth mechanisms of the passivation films in a variety of water systems. We report here some preliminary results on the study of the film formation by field emission scanning electron microscopy (FESEM) technique.

  17. Development of a field-portable small-size impedance analyzer for structural health monitoring using the electromechanical impedance technique

    NASA Astrophysics Data System (ADS)

    Giurgiutiu, Victor; Xu, Buli

    2004-07-01

    Electromechanical (E/M) impedance method is emerging as an effective and powerful technique for structural health monitoring. The E/M impedance method utilizes as its main apparatus an impedance analyzer that reads the in-situ E/M impedance of piezoelectric wafer active sensors (PWAS) attached to the monitored structure. Laboratory-type impedance analyzers (e.g. HP4194) are bulky, heavy, and expensive. They cannot be easily carried into the field for on-site structural health monitoring. To address this issue, means of to reduce the size of the impedance analyzer making the impedance analyzer more compact and field-portable are explored. In this paper, we present a systematic approach to the development of a field-portable small-size impedance analyzer for structural health monitoring using the electromechanical impedance technique. Our approach consists of several developmental stages. First, we perform a simulation of the E/M Impedance technique and develop the software tools for analyzing the signal in a fast and efficient way while maintaining the desired accuracy. The objective of this signal processing part is to obtain the complex impedance, ZR+iZI)=|Z| angle arg Z, at a number of frequencies in a predetermined range. Several signal processing methods were explored such as: (a) integration method; (b) correlation method; (c) Discrete Fourier transform (DFT) method. Second, we discuss the hardware issues associated with the implementation of this approach. The hardware system architecture consists of several blocks: (a) reference signal generation; (b) voltage and current measurements; and (c) digital signal acquisition and processing. Practical results obtained during proof-of-concept experiments are presented and comparatively examined.

  18. Volumetric Rendering Techniques for the Display of Three-Dimensional Aerodynamic Flow Field Data

    DTIC Science & Technology

    1988-12-01

    filial restIllk of tli i thesis woli ll hit\\.(, bll IitlPi~t ially Iliilislht’( wilhliit his gmiilamice. IId also ITe to AM l A ptk (’a idv io-st...anid (’apt lPhil Berali for e’xplaiinmg flow field s, pliOmiiling (lal Ide(s, andl~ (’ditinug my1 thesis text. I hIope the(y feel like II1 lid V gott(’m...echliies rely onl ap)proximiating isomiri sil faces of int erest with p)olygons;: ot hers oiiiY provieI all iimage ’ of a t wo-dolii’isiolnal "Slice- of

  19. Field investigation of techniques for remote laser sensing of oceanographic parameters

    NASA Technical Reports Server (NTRS)

    Houghton, W. M.; Exton, R. J.; Gregory, R. W.

    1983-01-01

    A laser fluorosensor, previously studied in the laboratory, was deployed at a pier in lower Chesapeake Bay for field testing. A Q-switched Nd:YAG laser doubled to 532 nm in conjunction with a gated optical multichannel analyzer (OMA) allow spectra with high signal-to-noise ratios to be recorded in full daylight at a distance of 20 m. As a test of the system a study was conducted of the spatial and temporal variations of the phytopigments phycoerythrin and chlorophyll. The phycoerythrin feature was resolved into two components, one attributable to cyanophytes and the other to cryptophytes. A comparison was also made with spectra obtained by the NASA airborne oceanographic lidar (AOL).

  20. ATS 6 EMI field measurements techniques and results. [anechoic chamber scale model testing

    NASA Technical Reports Server (NTRS)

    Afifi, M. S.; Keiser, B. E.

    1974-01-01

    At the present time 'Applications Technology Satellite (ATS)-6' is the world's largest communication satellite. It handles telecommunications in the frequency range of 40 - 30,000 MHz. Power levels on board the spacecraft range from -110 dBm to 52.5 dBw. Consequently considerable care was required in the design and test of this spacecraft, in order to provide assurances that the spacecraft would perform properly in its own RF environments. The testing was performed first by placing the earth viewing module (EVM) in a specially constructed 'small' anechoic chamber with an overhead parabolic reflector section, of 8' in diameter, instead of the 30' reflector of the full scale design. The near field analysis of this paper proves that this test configuration leads to a desirable overtest for the spacecraft. The test requirements, procedure and results are also explained.

  1. Effects of sprint and plyometrics training on field sport acceleration technique.

    PubMed

    Lockie, Robert G; Murphy, Aron J; Callaghan, Samuel J; Jeffriess, Matthew D

    2014-07-01

    The mechanisms for speed performance improvement from sprint training and plyometrics training, especially relating to stance kinetics, require investigation in field sport athletes. This study determined the effects of sprint training and plyometrics training on 10-m sprint time (0-5, 5-10, and 0-10 m intervals), step kinematics (step length and frequency, contact and flight time), and stance kinetics (first, second, and last contact relative vertical [VF, VI], horizontal [HF, HI], and resultant [RF, RI] force and impulse; resultant ground reaction force angle [RFθ]; ratio of horizontal to resultant force [RatF]) during a 10-m sprint. Sixteen male field sport athletes were allocated into sprint training (ST) and plyometrics training (PT) groups according to 10-m sprint time; independent samples t-tests (p ≤ 0.05) indicated no between-group differences. Training involved 2 sessions per week for 6 weeks. A repeated measures analysis of variance (p ≤ 0.05) determined within- and between-subject differences. Both groups decreased 0-5 and 0-10 m time. The ST group increased step length by ∼15%, which tended to be greater than step length gains for the PT group (∼7%). The ST group reduced first and second contact RFθ and RatF, and second contact HF. Second contact HI decreased for both groups. Results indicated a higher post-training emphasis on VF production. Vertical force changes were more pronounced for the PT group for the last contact, who increased or maintained last contact VI, RF, and RI to a greater extent than the ST group. Sprint and plyometrics training can improve acceleration, primarily through increased step length and a greater emphasis on VF.

  2. Field test comparison of an autocorrelation technique for determining grain size using a digital 'beachball' camera versus traditional methods

    USGS Publications Warehouse

    Barnard, P.L.; Rubin, D.M.; Harney, J.; Mustain, N.

    2007-01-01

    This extensive field test of an autocorrelation technique for determining grain size from digital images was conducted using a digital bed-sediment camera, or 'beachball' camera. Using 205 sediment samples and >1200 images from a variety of beaches on the west coast of the US, grain size ranging from sand to granules was measured from field samples using both the autocorrelation technique developed by Rubin [Rubin, D.M., 2004. A simple autocorrelation algorithm for determining grain size from digital images of sediment. Journal of Sedimentary Research, 74(1): 160-165.] and traditional methods (i.e. settling tube analysis, sieving, and point counts). To test the accuracy of the digital-image grain size algorithm, we compared results with manual point counts of an extensive image data set in the Santa Barbara littoral cell. Grain sizes calculated using the autocorrelation algorithm were highly correlated with the point counts of the same images (r2 = 0.93; n = 79) and had an error of only 1%. Comparisons of calculated grain sizes and grain sizes measured from grab samples demonstrated that the autocorrelation technique works well on high-energy dissipative beaches with well-sorted sediment such as in the Pacific Northwest (r2 ??? 0.92; n = 115). On less dissipative, more poorly sorted beaches such as Ocean Beach in San Francisco, results were not as good (r2 ??? 0.70; n = 67; within 3% accuracy). Because the algorithm works well compared with point counts of the same image, the poorer correlation with grab samples must be a result of actual spatial and vertical variability of sediment in the field; closer agreement between grain size in the images and grain size of grab samples can be achieved by increasing the sampling volume of the images (taking more images, distributed over a volume comparable to that of a grab sample). In all field tests the autocorrelation method was able to predict the mean and median grain size with ???96% accuracy, which is more than

  3. Magnetic Field Effect: An Efficient Tool To Investigate The Mechanism Of Reactions Using Laser Flash Photolysis Technique

    SciTech Connect

    Basu, Samita; Bose, Adity; Dey, Debarati

    2008-04-24

    Magnetic field effect combined with laser flash photolysis technique have been used to study the mechanism of interactions between two drug-like quinone molecules, Menadione (1,4-naphthoquinone, MQ) and 9, 10 Anthraquinone (AQ) with one of the DNA bases, Adenine in homogeneous acetonitrile/water and heterogeneous micellar media. A switchover in reaction mode from electron transfer to hydrogen abstraction is observed with MQ on changing the solvent from acetonitrile/water to micelle; whereas, AQ retains its mode of interaction towards Adenine as electron transfer in both the media due to its bulky structure compared to MQ.

  4. Validation of a field technique and characterization of fecal glucocorticoid metabolite analysis in wild chimpanzees (Pan troglodytes)

    PubMed Central

    Murray, Carson M; Heintz, Matthew R; Lonsdorf, Elizabeth V; Parr, Lisa A; Santymire, Rachel M

    2012-01-01

    Monitoring adrenocortical activity in wild primate populations is critical, given the well-documented relationship between stress, health and reproduction. Although many primate studies have quantified fecal glucocorticoid metabolite (FGM) concentrations, it is imperative that researchers validate their method for each species. Here, we describe and validate a technique for field extraction and storage of FGMs in wild chimpanzees (Pan troglodytes). Our method circumvents many of the logistical challenges associated with field studies while yielding similar results to a commonly-used laboratory method. We further validate that our method accurately reflects stress physiology using an ACTH challenge in a captive chimpanzee and a FGM peak at parturition in a wild subject. Finally, we quantify circadian patterns for FGMs for the first time in this species. Understanding these patterns may allow researchers to directly link specific events with the stress response. PMID:22968979

  5. Deep diving odontocetes foraging strategies and their prey field as determined by acoustic techniques

    NASA Astrophysics Data System (ADS)

    Giorli, Giacomo

    Deep diving odontocetes, like sperm whales, beaked whales, Risso's dolphins, and pilot whales are known to forage at deep depths in the ocean on squid and fish. These marine mammal species are top predators and for this reason are very important for the ecosystems they live in, since they can affect prey populations and control food web dynamics through top-down effects. The studies presented in this thesis investigate deep diving odontocetes. foraging strategies, and the density and size of their potential prey in the deep ocean using passive and active acoustic techniques. Ecological Acoustic Recorders (EAR) were used to monitor the foraging activity of deep diving odontocetes at three locations around the world: the Josephine Seamount High Sea Marine Protected Area (JHSMPA), the Ligurian Sea, and along the Kona coast of the island of Hawaii. In the JHSMPA, sperm whales. and beaked whales. foraging rates do not differ between night-time and day-time. However, in the Ligurian Sea, sperm whales switch to night-time foraging as the winter approaches, while beaked whales alternate between hunting mainly at night, and both at night and at day. Spatial differences were found in deep diving odontocetes. foraging activity in Hawaii where they forage most in areas with higher chlorophyll concentrations. Pilot whales (and false killer whales, clustered together in the category "blackfishes") and Risso's dolphins forage mainly at night at all locations. These two species adjust their foraging activity with the length of the night. The density and size of animals living in deep sea scattering layers was studied using a DIDSON imaging sonar at multiple stations along the Kona coast of Hawaii. The density of animals was affected by location, depth, month, and the time of day. The size of animals was influenced by station and month. The DIDSON proved to be a successful, non-invasive technique to study density and size of animals in the deep sea. Densities were found to be an

  6. Visualization and Transparentization of the Structure and Stress Field of Aggregated Geomaterials Through 3D Printing and Photoelastic Techniques

    NASA Astrophysics Data System (ADS)

    Ju, Yang; Wang, Li; Xie, Heping; Ma, Guowei; Zheng, Zemin; Mao, Lingtao

    2017-06-01

    Natural resource reservoirs usually consist of heterogeneous aggregated geomaterials containing a large number of randomly distributed particles with irregular geometry. As a result, the accurate characterization of the stress field, which essentially governs the mechanical behaviour of such geomaterials, through analytical and experimental methods, is considerably difficult. Physical visualization of the stress field is a promising method to quantitatively characterize and reveal the evolution and distribution of stress in aggregated geomaterials subjected to excavation loads. This paper presents a novel integration of X-ray computed tomography (CT) imaging, three-dimensional (3D) printing, and photoelastic testing for the transparentization and visualization of the aggregated structure and stress field of heterogeneous geomaterials. In this study, a glutenite rock sample was analysed by CT to acquire the 3D aggregate structure, following which 3D printing was adopted to produce transparent models with the same aggregate structure as that of the glutenite sample. Uniaxial compression tests incorporated with photoelastic techniques were performed on the transparent models to acquire and visualize the stress distribution of the aggregated models at various loading stages. The effect of randomly distributed aggregates on the stress field characteristics of the models, occurrence of plastic zones, and fracture initiation was analysed. The stress field characteristics of the aggregated models were analysed using the finite element method (FEM). The failure process was simulated using the distinct element method (DEM). Both FEM and DEM results were compared with the experimental observations. The results showed that the proposed method can very well visualize the stress field of aggregated solids during uniaxial loading. The results of the visualization tests were in good agreement with those of the numerical simulations.

  7. Earth strain measurements with the transportable laser ranging system: Field techniques and planning

    NASA Technical Reports Server (NTRS)

    Nakamura, Y.; Dorman, H. J.; Cahill, T.

    1982-01-01

    The potential of the transportable laser ranging system for monitoring the ground deformation around satellite ranging stations and other geodetic control points was examined with emphasis on testing the usefulness of the relative alteration technique. The temporal variation of the ratio of the length of each survey line to the mean length of all survey lines in a given area is directly related to the mean shear strain rate for the area. The data from a series of experimental measurements taken over the Los Angeles basin from a TLRS station at Mt. Wilson show that such ratios can be determined to an accuracy of one part in 10 million with a measurement program lasting for three days and without using any corrections for variations in atmospheric conditions. A numerical experiment using a set of hypothetical data indicates that reasonable estimates of the present shear strain rate and the direction of the principal axes in southern California can be deduced from such measurements over an interval of one to two years.

  8. EBSD: a powerful microstructure analysis technique in the field of solidification.

    PubMed

    Boehm-Courjault, E; Gonzales, F; Jacot, A; Kohler, F; Mariaux, A; Niederberger, C; Salgado-Ordorica, M A; Rappaz, M

    2009-01-01

    This paper presents a few examples of the application of electron back-scatter diffraction (EBSD) to solidification problems. For directionally solidified Al-Zn samples, this technique could reveal the change in dendrite growth directions from <100> to <110> as the composition of zinc increases from 5 to 90 wt%. The corresponding texture evolution and grain selection mechanisms were also examined. Twinned dendrites that form under certain solidification conditions in Al-X specimens (with X = Zn, Mg, Ni, Cu) were clearly identified as <110> dendrite trunks split in their centre by a (111) twin plane. In Zn-0.2 wt% Al hot-dip galvanized coatings on steel sheets, EBSD clearly revealed the preferential basal orientation distribution of the nuclei as well as the reinforcement of this distribution by the faster growth of <1010> dendrites. Moreover, in Al-Zn-Si coatings, misorientations as large as 10 degrees mm(-1) have been measured within individual grains. Finally, the complex band and lamellae microstructures that form in the Cu-Sn peritectic system at low growth rate could be shown to constitute a continuous network initiated from a single nucleus. EBSD also showed that the alpha and beta phases had a Kurdjumov-Sachs crystallographic relationship.

  9. [THE FORMS OF DELIBERATION INVOLVED IN THE FIELD OF BIOETHICS: TECHNIQUE DELIBERATION AND ETHICS DELIBERATION].

    PubMed

    Neves Pinto, Gerson

    2015-12-01

    In this article the author examines the formulation of the problem of new technologies with their ethical limits and legal. To do this, in a first it is d'assess the contribuitions of the two most important contemporary philosophers who have treated this subject: Jürgen Habermas and Ronald Dworkin, while trying to put them into dialog with the one who has been one of the founders of l'classic ethics: Aristotle. Then, it tries to answer the question of how could we understand this notion that Dworkin nome "moral dislocation" between the random and the choice or well, as the appointed Habermas, "l'extension of the contingency". Finally, we questioned how the Aristotelian distinction between the technical deliberation and deliberative ethical-moral can contribute to a better understanding of the questions on the decisions and choices that will make the moral agents (such as patients or the judges), as well as those relating to the type of deliberation technique chosen by the doctor or by the health professional.

  10. Application of advanced grid generation techniques for flow field computations about complex configurations

    NASA Technical Reports Server (NTRS)

    Kathong, Monchai; Tiwari, Surendra N.

    1988-01-01

    In the computation of flowfields about complex configurations, it is very difficult to construct a boundary-fitted coordinate system. An alternative approach is to use several grids at once, each of which is generated independently. This procedure is called the multiple grids or zonal grids approach; its applications are investigated. The method conservative providing conservation of fluxes at grid interfaces. The Euler equations are solved numerically on such grids for various configurations. The numerical scheme used is the finite-volume technique with a three-stage Runge-Kutta time integration. The code is vectorized and programmed to run on the CDC VPS-32 computer. Steady state solutions of the Euler equations are presented and discussed. The solutions include: low speed flow over a sphere, high speed flow over a slender body, supersonic flow through a duct, and supersonic internal/external flow interaction for an aircraft configuration at various angles of attack. The results demonstrate that the multiple grids approach along with the conservative interfacing is capable of computing the flows about the complex configurations where the use of a single grid system is not possible.

  11. Thermal Imagery and Field Techniques to Evaluate Groundwater Nutrient Loading to an Estuary

    NASA Astrophysics Data System (ADS)

    ROSEEN, R. M.; BRANNAKA, L. K.; BALLESTERO, T. P.

    2001-05-01

    Thermal infrared imagery has the potential to be a powerful and affordable tool for coastal managers and scientists to assist in the evaluation of pollution from groundwater. Developments in thermal imagery have improved its accessibility and affordability for use in coastal resource management. An on-going study has applied these new developments in thermal imagery to evaluate groundwater discharge on a large scale. In April and August of 2000 a series of thermal infrared aerial surveys were flown over the Great Bay Estuary in coastal New Hampshire. This study delineated the large-scale groundwater flux to an estuary. This flux was then used to estimate the nutrient loading to the estuarine ecosystem. The aerial survey covered the Great Bay, including nearly 50 miles of shoreline and four of the major contributing rivers. The August survey was completed in the equivalent of an afternoon. The images were available immediately with no post-processing required, and are being mosaicked into larger contiguous images to be incorporated into GIS applications. The images were studied for thermal anomalies as an indication of upwelling groundwater. The surface areas of each individual groundwater discharge zones were computed by GIS analysis of the photo-identified discharge zones. This was accomplished by use of gray-scale images calibrated to a known temperature range. The suspected groundwater discharge zones were identified in the field, characterized for hydrologic parameters, and sampled for water quality. Preliminary results suggest that groundwater is a significant component of the freshwater influx to the Great Bay, contributing half as much as the 10-year daily average of the Lamprey River. The Lamprey River is the largest (183 sq. mi. drainage area) of the four major surface freshwater sources to the upper Great Bay. Of particular significance, the estimated groundwater contribution was as much as 150%\\ that contributed by the Lamprey River during the summer

  12. Integrating field and numerical techniques to understand the dynamics of pyroclastic density currents: Mount St Helens

    NASA Astrophysics Data System (ADS)

    Brand, B. D.; Dufek, J.; Mackaman-lofland, C. A.; Pollock, N.

    2011-12-01

    The 9 hour, May 18th, 1980 eruption of Mount St Helens (MSH) is one of the best studied explosive volcanic eruptions within the past 100 years. Observations of plume height, combined with subsequent studies of ash dispersal, provide key constraints to the temporally varying mass flux from throughout the day on May 18th (Carey, S., Sigurdsson, H., Gardner, J.E., Criswell, W. J Volcanol Geotherm Res, 43: 99-112). An increase in eruptive intensity through the afternoon resulted in the generation of many pyroclastic density currents (PDCs), which filled in the pumice plain just north of the volcano. Deeply incised drainages provide new, extensive exposures that contain important information about the currents that produced them. Numerical models provide a framework to integrate field observations such as particle size, sorting, rounding and maximum lithic size versus distance from the vent, improving the general understanding of transport and deposition in PDCs. Thus visual observations and estimates of mass flux, detailed measurements of recently exposed strata, and multiphase numerical modeling are being combined to better constrain the dynamics of the PDCs produced on May 18th. Five flow units have been identified along the large western drainage of the pumice plain, each of which have intricate vertical and lateral facies changes and complex cross-cutting relationships away from source. Field relationships and the presence of pre-existing obstacles are used to back out flow direction and gain insight into PDC emplacement mechanisms. A few of the currents produced during the afternoon of May 18 were energetic enough to entrain dense lithic clasts, 10's of centimeters in diameter, and transport them 10's of meters downstream. Deposit features in these areas show a concentration of blocks at the base of flow units and evidence for self-channelization, suggesting the increased bulk density of the current and channelization resulted in an enhanced vertical density

  13. Deconvolving regional and fault-driven uplift in Calabria using drainage inversion techniques and field observations

    NASA Astrophysics Data System (ADS)

    Quye-Sawyer, Jennifer; Whittaker, Alexander; Roberts, Gareth; Rood, Dylan

    2017-04-01

    A key challenge in the Earth Sciences is to understand the timing and extent of the coupling between geodynamics, tectonics, and surface processes. In principle, the landscape adjusts to surface uplift or tectonic events, and present-day topography records a convolution of these processes. The inverse problem, the ability to find the 'best fit' theoretical scenario to match present day observations, is particularly desirable as it makes use of real data, encompasses the complexity of natural systems and quantifies model uncertainty through misfit. The region of Calabria, Italy, is known to have experienced geologically rapid uplift ( 1 mm/yr) since the Early Pleistocene, inferred from widespread marine terraces (ca. 1 Myr old) at elevations greater than 1 km. In addition, this is a tectonically active area of normal faulting with several highly destructive earthquakes in recent centuries. Since there has been some debate about the relative magnitudes of the uplift caused by regional processes or by faulting, the ability to model these effects on a regional scale may help resolve this problem. Therefore, Calabria is both a suitable and important site to model large magnitude recent geomorphic change. 1368 river longitudinal profiles have been generated from satellite digital elevation models (DEMs). These longitudinal profiles were compared to aerial photography to confirm the accuracy of this automated process. The longitudinal profiles contain numerous non-lithologically controlled knickpoints. Field observations support the presence of knickpoints extracted from the DEM and measurements of pebble imbrication from fluvial terraces suggest the planform stability of the drainage network in the last 1 Myr. By assuming fluvial erosion obeys stream power laws with an exponent of upstream area of 0.5 ± 0.1, the evolution of the landscape is computed using a linearized joint inversion of the longitudinal profiles. This has produced a spatially and temporally continuous

  14. Automated layout and phase assignment techniques for dark-field alternating PSM

    NASA Astrophysics Data System (ADS)

    Kahng, Andrew B.; Wang, Huijuan; Zelikovsky, Alexander

    1998-12-01

    We describe new, efficient algorithms for layout modification and phase assignment for dark field alternating-type phase- shifting masks in the single-exposure regime. We make the following contributions. First, we give optimal and fast algorithms to minimize the number of phase conflicts that must be removed to ensure 2-colorability of the conflict graph. These methods can potentially reduce runtime and/or improve solution quality, compared to previous approaches of Moniwa et al. and Ooi et al. Second, we suggest a new iterative 2- coloring and compaction approach that simultaneously optimizes layout and phase assignment. The approach iteratively performs the following steps: (1) compact the layout and find the conflict graph; (2) find the minimum set of edges whose deletion makes the conflict graph bipartite; and (3) add a new compaction constraint for each edge in this minimum set, such that the corresponding pair of features will no longer conflict. Third, we describe additional approaches to co- optimization of layout and phase assignment for alternating PSM. Preliminary computational experience appears promising.

  15. SEM technique for imaging and measuring electronic transport in nanocomposites based on electric field induced contrast

    DOEpatents

    Jesse, Stephen [Knoxville, TN; Geohegan, David B [Knoxville, TN; Guillorn, Michael [Brooktondale, NY

    2009-02-17

    Methods and apparatus are described for SEM imaging and measuring electronic transport in nanocomposites based on electric field induced contrast. A method includes mounting a sample onto a sample holder, the sample including a sample material; wire bonding leads from the sample holder onto the sample; placing the sample holder in a vacuum chamber of a scanning electron microscope; connecting leads from the sample holder to a power source located outside the vacuum chamber; controlling secondary electron emission from the sample by applying a predetermined voltage to the sample through the leads; and generating an image of the secondary electron emission from the sample. An apparatus includes a sample holder for a scanning electron microscope having an electrical interconnect and leads on top of the sample holder electrically connected to the electrical interconnect; a power source and a controller connected to the electrical interconnect for applying voltage to the sample holder to control the secondary electron emission from a sample mounted on the sample holder; and a computer coupled to a secondary electron detector to generate images of the secondary electron emission from the sample.

  16. Vector and Scalar Field Visualization Techniques for Multispacecraft Space Physics Missions

    NASA Astrophysics Data System (ADS)

    Roberts, D. A.; Rezapkin, V.; Coleman, J.; Boller, R.

    2003-12-01

    We present a new way of visualizing data that makes it possible to view simultaneously a large number of measured time series on the orbits of a large number of spacecraft. We shall show examples of using our ``ViSBARD" software to illucidate the structure of the solar wind upstream of the Earth, as well as cases showing magnetic field and particle information from many spacecraft in the magnetosphere. Each measurement is presented by a glyph (symbol or vector) at each point in time and at the position it was measured in the 3-D space. The ecliptic plane and, if appropriate, magnetospheric surfaces are presented to provide context. The software allows scrolling and zooming in time; the usual pan, zoom, and rotate in space; scaling of the data variables; a choice of color palettes; and 2-D graphs that scroll and scale in concert with the 3-D representation to aid the interpretation of the 3-D visualization. As the interval of data changes, the resolution automatically adjusts to maintain rapid response and to limit memory usage. A kinematic projection of all quantities yields a ``spatial view" that is particularly effective in fast flows such as the solar wind. The center of rotation can be moved to any data point to allow a detailed examination of a particular region. The software supports stereo viewing. Future extensions will incorporate the viewing of images as well as the simultaneous viewing of data and models.

  17. New non-Doppler remote sensing technique for 3D wind field mapping

    NASA Astrophysics Data System (ADS)

    Belen'kii, Mikhail S.; Gimmestad, Gary G.; Gurvich, Alexander V.

    1994-06-01

    A new approach to the statistical analysis of fluctuating, photon-limited signals that permits us to accumulate and process the lidar returns without averaging of the reflected energy fluctuations is developed. This approach requires recording the photocounts for each pulse in a series of pulses and then determining photocount statistics. Based on the semiclassical theory of photodetection and Mandel's formula, a relationship has been obtained between the time-space cross correlation function and the cross spectrum of the lidar returns and corresponding photocount statistics. It is shown that the relative uncertainties of measuring the cross correlation or the cross spectrum of the lidar returns is determined by the general number of photocounts, but not by their mean value. A fast-scanning lidar system, which is based on a new photocounting analysis approach, is described for 3D wind field mapping in the atmosphere at altitudes up to 5 km. A program for the experimental verification of the new approach is presented.

  18. Fabrication of Lightweight Radiation Shielding Composite Materials by Field Assisted Sintering Technique (FAST)

    NASA Technical Reports Server (NTRS)

    Prasad, Narasimha; Trivedi, Sudhir; Chen, Henry; Kutcher, Susan; Zhang, Dajie; Singh, Jogender

    2017-01-01

    Advances in radiation shielding technologies are needed to protect humans and electronic components from all threats of space radiation over long durations. In this paper, we report on the use of the innovative and novel fabrication technology known as Field Assisted Sintering Technology (FAST) to fabricate lightweight material with enhanced radiation shielding strength to safeguard humans and electronics suitable for next generation space exploration missions. The base materials we investigated were aluminum (Al), the current standard material for space hardware, and Ultra-High Molecular Weight Polyethylene (UHMWPE), which has high hydrogen content and resistance to nuclear reaction from neutrons, making it a good shielding material for both gamma radiation and particles. UHMWPE also has high resistance to corrosive chemicals, extremely low moisture sensitivity, very low coefficient of friction, and high resistance to abrasion. We reinforced the base materials by adding high density (ie, high atomic weight) metallic material into the composite. These filler materials included: boron carbide (B4C), tungsten (W), tungsten carbide (WC) and gadolinium (Gd).

  19. A two-angle far-field microscope imaging technique for spray flows

    NASA Astrophysics Data System (ADS)

    Kourmatzis, Agisilaos; Pham, Phuong X.; Masri, Assaad R.

    2017-03-01

    Backlight imaging is frequently used for the visualization of multiphase flows, where with appropriate microscope lenses, quantitative information on the spray structure can be attained. However, a key issue resides in the nature of the measurement which relies on a single viewing angle, hence preventing imaging of all liquid structures and features, such as those located behind other fragments. This paper presents results from an extensive experimental study aimed as a step forward towards resolving this problem by using a pair of high speed cameras oriented at 90 degrees to each other, and synchronized to two high-speed diode lasers. Both cameras are used with long distance microscope lenses. The images are processed as pairs allowing for identification and classification of the same liquid structure from two perspectives at high temporal (5 kHz) and spatial resolution (∼3 μm). Using a controlled mono-disperse spray, simultaneous, time-resolved visualization of the same spherical object being focused on one plane while de-focused on the other plane 90 degrees to the first has allowed for a quantification of shot-to-shot defocused size measurement error. An extensive error analysis is performed for spheroidal structures imaged from two angles and the dual angle technique is extended to measure the volume of non-spherical fragments for the first time, by ‘discretising’ a fragment into a number of constituent ellipses. Error analysis is performed based on measuring the known volumes of solid arbitrary shapes, and volume estimates were found to be within  ∼11% of the real volume for representative ‘ligament-like’ shapes. The contribution concludes by applying the ellipsoidal method to a real spray consisting of multiple non-spherical fragments. This extended approach clearly demonstrates potential to yield novel volume weighted quantities of non-spherical objects in turbulent multiphase flow applications.

  20. Field Techniques for Estimating Water Fluxes Between Surface Water and Ground Water

    USGS Publications Warehouse

    Rosenberry, Donald O.; LaBaugh, James W.

    2008-01-01

    This report focuses on measuring the flow of water across the interface between surface water and ground water, rather than the hydrogeological or geochemical processes that occur at or near this interface. The methods, however, that use hydrogeological and geochemical evidence to quantify water fluxes are described herein. This material is presented as a guide for those who have to examine the interaction of surface water and ground water. The intent here is that both the overview of the many available methods and the in-depth presentation of specific methods will enable the reader to choose those study approaches that will best meet the requirements of the environments and processes they are investigating, as well as to recognize the merits of using more than one approach. This report is designed to make the reader aware of the breadth of approaches available for the study of the exchange between surface and ground water. To accomplish this, the report is divided into four chapters. Chapter 1 describes many well-documented approaches for defining the flow between surface and ground waters. Subsequent chapters provide an in-depth presentation of particular methods. Chapter 2 focuses on three of the most commonly used methods to either calculate or directly measure flow of water between surface-water bodies and the ground-water domain: (1) measurement of water levels in well networks in combination with measurement of water level in nearby surface water to determine water-level gradients and flow; (2) use of portable piezometers (wells) or hydraulic potentiomanometers to measure hydraulic gradients; and (3) use of seepage meters to measure flow directly. Chapter 3 focuses on describing the techniques involved in conducting water-tracer tests using fluorescent dyes, a method commonly used in the hydrogeologic investigation and characterization of karst aquifers, and in the study of water fluxes in karst terranes. Chapter 4 focuses on heat as a tracer in hydrological

  1. The Effect of "Pumping" and "Nonpumping" Techniques on Velocity Production and Muscle Activity During Field-Based BMX Cycling.

    PubMed

    Rylands, Lee P; Hurst, Howard T; Roberts, Simon J; Graydon, Robert W

    2017-02-01

    Rylands, LP, Hurst, HT, Roberts, SJ, and Graydon, RW. The effect of "pumping" and "nonpumping" techniques on velocity production and muscle activity during field-based BMX cycling. J Strength Cond Res 31(2): 445-450, 2017-The aim of the current study was to determine if a technique called "pumping" had a significant effect on velocity production in Bicycle Motocross (BMX) cycling. Ten National standard male BMX riders fitted with surface electromyography (sEMG) sensors completed a timed lap of an indoor BMX track using the technique of pumping, and a lap without pumping. The lap times were recorded for both trials and their surface sEMG was recorded to ascertain any variation in muscle activation of the biceps brachii, triceps brachii, vastus lateralis, and medial gastrocnemius. The findings revealed no significant differences between any of muscle groups (p > 0.05). However, significant differences (p < 0.001) were observed between the pumping and nonpumping trials for both mean lap velocity (42 ± 1.8 km·h, 33 ± 2.9 km·h, respectively) and lap times (43.3 ± 3.1 seconds, 34.7 ± 1.49 seconds, respectively). The lap times recorded for the pumping trials were 19.50 ± 4.25% lower than the nonpumping, whereas velocity production was 21.81 ± 5.31% greater in the pumping trial compared with the nonpumping trial. The technique of pumping contributed significantly to velocity production, although not at the cost of additional muscle activity. From a physiological and technical perspective, coaches and riders should prioritize this technique when devising training regimes.

  2. A Field Evaluation of Airborne Techniques for Detection of Unexploded Ordnance

    SciTech Connect

    Bell, D.; Doll, W.E.; Hamlett, P.; Holladay, J.S.; Nyquist, J.E.; Smyre, J.; Gamey, T.J.

    1999-03-14

    US Defense Department estimates indicate that as many as 11 million acres of government land in the U. S. may contain unexploded ordnance (UXO), with the cost of identifying and disposing of this material estimated at nearly $500 billion. The size and character of the ordnance, types of interference, vegetation, geology, and topography vary from site to site. Because of size or composition, some ordnance is difficult to detect with any geophysical method, even under favorable soil and cultural interference conditions. For some sites, airborne methods may provide the most time and cost effective means for detection of UXO. Airborne methods offer lower risk to field crews from proximity to unstable ordnance, and less disturbance of sites that maybe environmentally sensitive. Data were acquired over a test site at Edwards AFB, CA using airborne magnetic, electromagnetic, multispectral and thermal sensors. Survey areas included sites where trenches might occur, and a test site in which we placed deactivated ordnance, ranging in size from small ''bomblets'' to large bombs. Magnetic data were then acquired with the Aerodat HM-3 system, which consists of three cesium magnetometers within booms extending to the front and sides of the helicopter, and mounted such that the helicopter can be flown within 3m of the surface. Electromagnetic data were acquired with an Aerodat 5 frequency coplanar induction system deployed as a sling load from a helicopter, with a sensor altitude of 15m. Surface data, acquired at selected sites, provide a comparison with airborne data. Multispectral and thermal data were acquired with a Daedelus AADS 1268 system. Preliminary analysis of the test data demonstrate the value of airborne systems for UXO detection and provide insight into improvements that might make the systems even more effective.

  3. Development of a Technique for Measuring Local Electric Field Fluctuations in High Temperature Plasmas

    NASA Astrophysics Data System (ADS)

    Burke, M. G.; Bakken, M. R.; Fonck, R. J.; Lewicki, B. T.; Rhodes, A. T.; Winz, G. R.

    2016-10-01

    A novel diagnostic for measuring local electric field fluctuations in high temperature plasmas is being developed. It employs high-speed measurements of the spectral separation and/or line intensities of the motional Stark effect (MSE) Hα multiplet emitted from a low divergence, 80 keV diagnostic neutral beam. A spatial heterodyne spectrometer (SHS) coupled to a 500 kHz CMOS camera provides the high resolution ( 0.025 nm) and throughput (<=0.1 cm2str) required for the measurement. The Fizeau fringe pattern produced by the SHS provides the Fourier transform of the input spectrum. Line broadening due to the large collection lens at the tokamak can be compensated by phase correcting the resulting fringe pattern. Based on simple tokamak turbulence scalings, Ẽ /EMSE 10-3 is expected for the core plasma in present experiments. To observe these low fluctuation levels, cross-correlation between adjacent spatial points and/or simultaneously measured ñ will be employed to suppress photon noise that is comparable to the turbulent signal. The SHS Littrow wavenumber and grating constant can be chosen to reduce the number of detectors needed to resolve changes in the input spectrum. This allows multi-spatial point measurements using 4-6 discrete photodiodes each, with no loss in sensitivity to Ẽ /EMSE . To validate this diagnostic concept, the diagnostic neutral beam will be fired into a magnetized target plasma (B <=0.5 T) comparable to a tokamak edge, with Ẽ applied parallel or perpendicular to EMSE via biased electrodes. Work supported by US DOE Grant DE-FG02-89ER53296.

  4. Site characterization techniques used at a low-level waste shallow land burial field demonstration facility

    SciTech Connect

    Davis, E.C.; Boegly, W.J. Jr.; Rothschild, E.R.; Spalding, B.P.; Vaughan, N.D.; Haase, C.S.; Huff, D.D.; Lee, S.Y.; Walls, E.C.; Newbold, J.D.

    1984-07-01

    The Environmental Sciences Division of the Oak Ridge National Laboratory has been investigating improved shallow land burial technology for application in the humd eastern United States. As part of this effort, a field demonstration facility (Engineered Test Facility, or ETF) has been established in Solid Waste Storage Area 6 for purposes of investigatig the ability of two trench treatments (waste grouting prior to cover emplacement and waste isolation with trench liners) to prevent water-waste contact and thus minimize waste leaching. As part of the experimental plan, the ETF site has been characterized for purposes of constructing a hydrologic model. Site characterization is an extremely important component of the waste disposal site selection process; during these activities, potential problems, which might obviate the site from further consideration, may be found. This report describes the ETF site characterization program and identifies and, where appropriate, evaluates those tests that are of most value in model development. Specific areas covered include site geology, soils, and hydrology. Each of these areas is further divided into numerous subsections, making it easy for the reader to examine a single area of interest. Site characterization is a multidiscipliary endeavor with voluminous data, only portions of which are presented and analyzed here. The information in this report is similar to that which will be required of a low-level waste site developer in preparing a license application for a potential site in the humid East, (a discussion of licensing requirements is beyond its scope). Only data relevant to hydrologic model development are included, anticipating that many of these same characterization methods will be used at future disposal sites with similar water-related problems.

  5. [Introducing marketing strategies and techniques into the field of voluntary blood donation, to meet the rise in blood demand].

    PubMed

    Pesavento, S; Bégué, L

    2011-04-01

    Social marketing uses marketing principles and techniques to induce a target audience to voluntary accept, reject, change or abandon a behaviour for the benefit of individuals, groups, or society as a whole. Thus, individual or societal gain is the primary goal of social marketing. This kind of marketing is frequently used in the United States or in Canada in several fields such as healthcare, social work, or the environment. In 2008, we introduced these strategies and techniques in the field of blood donation in France. This article describes what has been achieved in the last three years and outlines the main steps in the social marketing planning process: analyzing the social marketing environment, defining target audiences and objectives, building and implementing strategies and action plans, evaluating and monitoring. On the way to self-sufficiency, while respecting donors, social marketing is additional to the work done by the blood collection staffs, communication teams, and volunteers. Social marketing is a complementary tool to the work done by the blood collection staff, communication teams and blood donation organizations and can help to meet the challenge of self-sufficiency while still allowing for the privacy and rights of donors. Copyright © 2011. Published by Elsevier SAS.

  6. Development of a spectroscopic technique for simultaneous magnetic field, electron density, and temperature measurements in Z-pinch plasmas

    NASA Astrophysics Data System (ADS)

    Dutra, Eric; Presura, Radu; Covington, Aaron; Mancini, Roberto; Darling, Timothy; Angermeier, William

    2016-10-01

    Visible spectroscopic techniques are often used in plasma experiments to measure B-field induced Zeeman splitting, electron densities via Stark broadening, and temperatures from Doppler broadening. However, when electron densities and temperatures are sufficiently high, the broadening of the Stark and Doppler components can dominate the emission spectra and obscure the Zeeman component. In this research, we are developing a time-resolved multi-axial technique for measuring the Zeeman, Stark, and Doppler broadened line emission of dense magnetized plasmas for Z-pinch. In parallel, we are developing a line-shape modeling code that incorporates the broadening effects due to Stark, Doppler, and Zeeman effects for dense magnetized plasma. Experiments were conducted at the University of Nevada (Reno) at the Nevada Terawatt Facility (NTF) using the 1 MA Z-pinch (Zebra). The research explored the optical emission of Al III doublet, 4P 2P3/2 to 4S 2S1/2 and 4P 2P1/2 to 4s 2S1/2 transitions and used it to measure Zeeman, Stark, and Doppler broadened emission. The initial parameters for the line shape code are varied to simulate emission spectra. The simulated spectra are compared to experimental results. These results are used to infer temperature, electron density, and B-fields in the magnetized plasma.

  7. Monitoring and Modeling the Impact of Grazers Using Visual, Remote and Traditional Field Techniques

    NASA Astrophysics Data System (ADS)

    Roadknight, C. M.; Marshall, I. W.; Rose, R. J.

    2009-04-01

    The relationship between wild and domestic animals and the landscape they graze upon is important to soil erosion studies because they are a strong influence on vegetation cover (a key control on the rate of overland flow runoff), and also because the grazers contribute directly to sediment transport via carriage and indirectly by exposing fresh soil by trampling and burrowing/excavating. Quantifying the impacts of these effects on soil erosion and their dependence on grazing intensity, in complex semi-natural habitats has proved difficult. This is due to lack of manpower to collect sufficient data and weak standardization of data collection between observers. The advent of cheaper and more sophisticated digital camera technology and GPS tracking devices has lead to an increase in the amount of habitat monitoring information that is being collected. We report on the use of automated trail cameras to continuously capture images of grazer (sheep, rabbits, deer) activity in a variety of habitats at the Moor House nature reserve in northern England. As well as grazer activity these cameras also give valuable information on key climatic soil erosion factors such as snow, rain and wind and plant growth and thus allow the importance of a range of grazer activities and the grazing intensity to be estimated. GPS collars and more well established survey methods (erosion monitoring, dung counting and vegetation surveys) are being used to generate a detailed representation of land usage and plan camera siting. This paper describes the data collection techniques, outlines the quantitative and qualitative data collected and proposes online and offline systems that can reduce the data processing time and increase focus on important subsets in the collected data. We also present a land usage model that estimates grazing intensity, grazer behaviours and their impact on soil coverage at sites where cameras have not been deployed, based on generalising from camera sites to other

  8. A simple measuring technique of surface flow velocity to analyze the behavior of velocity fields in hydraulic engineering applications.

    NASA Astrophysics Data System (ADS)

    Tellez, Jackson; Gomez, Manuel; Russo, Beniamino; Redondo, Jose M.

    2015-04-01

    An important achievement in hydraulic engineering is the proposal and development of new techniques for the measurement of field velocities in hydraulic problems. The technological advances in digital cameras with high resolution and high speed found in the market, and the advances in digital image processing techniques now provides a tremendous potential to measure and study the behavior of the water surface flows. This technique was applied at the Laboratory of Hydraulics at the Technical University of Catalonia - Barcelona Tech to study the 2D velocity fields in the vicinity of a grate inlet. We used a platform to test grate inlets capacity with dimensions of 5.5 m long and 4 m wide allowing a zone of useful study of 5.5m x 3m, where the width is similar of the urban road lane. The platform allows you to modify the longitudinal slopes from 0% to 10% and transversal slope from 0% to 4%. Flow rates can arrive to 200 l/s. In addition a high resolution camera with 1280 x 1024 pixels resolution with maximum speed of 488 frames per second was used. A novel technique using particle image velocimetry to measure surface flow velocities has been developed and validated with the experimental data from the grate inlets capacity. In this case, the proposed methodology can become a useful tools to understand the velocity fields of the flow approaching the inlet where the traditional measuring equipment have serious problems and limitations. References DigiFlow User Guide. (2012), (June). Russo, B., Gómez, M., & Tellez, J. (2013). Methodology to Estimate the Hydraulic Efficiency of Nontested Continuous Transverse Grates. Journal of Irrigation and Drainage Engineering, 139(10), 864-871. doi:10.1061/(ASCE)IR.1943-4774.0000625 Teresa Vila (1), Jackson Tellez (1), Jesus Maria Sanchez (2), Laura Sotillos (1), Margarita Diez (3, 1), and J., & (1), M. R. (2014). Diffusion in fractal wakes and convective thermoelectric flows. Geophysical Research Abstracts - EGU General Assembly 2014

  9. Supine Craniospinal Irradiation Using a Proton Pencil Beam Scanning Technique Without Match Line Changes for Field Junctions

    SciTech Connect

    Lin, Haibo Ding, Xuanfeng; Kirk, Maura; Liu, Haoyang; Zhai, Huifang; Hill-Kayser, Christine E.; Lustig, Robert A.; Tochner, Zelig; Both, Stefan; McDonough, James

    2014-09-01

    Purpose: To propose and validate a craniospinal irradiation approach using a proton pencil beam scanning technique that overcomes the complexity of the planning associated with feathering match lines. Methods and Materials: Ten craniospinal irradiation patients had treatment planned with gradient dose optimization using the proton pencil beam scanning technique. The robustness of the plans was evaluated by shifting the isocenter of each treatment field by ±3 mm in the longitudinal direction and was compared with the original nonshifted plan with metrics of conformity number, homogeneity index, and maximal cord doses. An anthropomorphic phantom study using film measurements was carried out on a plan with 5-cm junction length. To mimic setup errors in the phantom study, fields were recalculated with isocenter shifts of 1, 3, 5, and 10 mm longitudinally, and compared with the original plans and measurements. Results: Uniform dose coverage to the entire target volumes was achieved using the gradient optimization approach with averaged junction lengths of 6.7 ± 0.5 cm. The average conformity number and homogeneity index equaled 0.78 ± 0.03 and 1.09 ± 0.01, respectively. Setup errors of 3 mm per field (6 mm in worst-case scenario) caused on average 4.6% lower conformity number 2.5% higher homogeneity index and maximal cord dose of 4216.1 ± 98.2 cGy. When the junction length was 5 cm or longer, setup errors of 6 mm resulted in up to 12% dosimetric deviation. Consistent results were reached between film measurements and planned dose profiles in the junction area. Conclusions: Longitudinal setup errors directly reduce the dosimetric accuracy of the proton craniospinal irradiation treatment with matched proton pencil beam scanning fields. The reported technique creates a slow dose gradient in the junction area, which makes the treatment more robust to longitudinal setup errors compared to conventional feathering methods.

  10. A novel dynamic field-matching technique for treatment of patients with para-aortic node-positive cervical cancer: Clinical experience

    PubMed Central

    Baden, Craig; Whitley, Alexander; López-Araujo, Javier; Popple, Richard; Duan, Jun; Kim, Robert

    2016-01-01

    Aim To report outcomes for patients with para-aortic lymph node positive cervical cancer treated with a dynamic field-matching technique. Background PET staging of cervical cancer has increased identification of patients with para-aortic lymph node metastasis. IMRT enables dose escalation in this area, but matching IMRT fields with traditional whole pelvis fields presents a challenge. Materials and methods From 2003 to 2012, 20 patients with cervical cancer and para-aortic lymph node metastasis were treated utilizing the dynamic field-matching technique. As opposed to single-isocenter half-beam junction techniques, this technique employs wedge-shaped dose junctions for the abutment of fields. We reviewed the records of all patients who completed treatment with the technique and abstracted treatment, toxicity, and disease-related outcome data for analysis. Results Median prescribed dose to the whole pelvis field was 45 Gy and para-aortic IMRT field 50.4 Gy. All but 3 patients underwent HDR (13 pts) or LDR (4 pts) brachytherapy. All patients developed lower GI toxicity; 10 grade 1, 9 grade 2, and 1 grade 4 (enterovaginal fistula). Median DFS was 12.4 months with 1 and 2-year DFS 60.0% and 38.1%. One-year OS was 83.7% and 2-year OS, 64.4%. A total of 10 patients developed recurrence; none occurred at the matched junction. Conclusions The dynamic field-matching technique provides a means for joining conventional whole pelvis fields and para-aortic IMRT fields that substantially reduces dose deviations at the junction due to field mismatch. Treatment with the dynamic matching technique is simple, effective, and tolerated with no apparent increase in toxicity. PMID:26900356

  11. Field Observations of Bioaerosols: What We've Learned from Fluorescence, Genetic, and Microscopic Techniques (Invited)

    NASA Astrophysics Data System (ADS)

    Huffman, J. A.; Fröhlich-Nowoisky, J.; Després, V. R.; Elbert, W.; Sinha, B.; Andreae, M. O.; Pöschl, U.

    2009-12-01

    Biogenic aerosols are ubiquitous in the Earth’s atmosphere, influencing atmospheric chemistry and physics, the biosphere, climate, and public health. They play an important role in the spread of biological organisms, and they can cause or enhance human, animal, and plant diseases. Moreover, they can initiate the formation of clouds and precipitation as cloud condensation and ice nuclei (CCN, IN). Primary biogenic aerosol particles (PBAP) such as pollen, fungal spores, and bacteria are emitted directly from the biosphere to the atmosphere. Microscopic investigations have shown that PBAP account for up to ~30% of fine and up to ~70% of coarse particulate matter in rural and rain forest air, and the estimates of PBA emissions range from ~60 Tg a-1 of fine particles up to ~1000 Tg a-1 of total particulate matter. Fungal spores account for a large proportion of PBA with typical number and mass concentrations of ~104 m-3 and ~1 μg m-3 in continental boundary layer air and estimated global emissions of the order of ~50 Tg a-1 and 200 m-2 s-1, respectively [1]. The actual abundance, variability and diversity of PBAP are still poorly understood and quantified, however. By measuring fluorescence at excitation and emission wavelengths specific to viable cells, online techniques with time resolution of minutes are able to detect fluorescent biological aerosol particles (FBAP), which represent a lower limit for the actual abundance of coarse (> 1 μm) PBAP [2]. Continuous sampling (1 - 4 months) was performed at various locations including pristine rain forest, rural and polluted urban sites. Each study exhibited a similar average particle number distribution dominated by a peak at ~3 μm, with coarse FBAP concentrations of the order of ~5x104 m-3 and ~1 μg m-3. Recent advances in the DNA analysis and molecular genetic characterization of aerosol filter samples yield new information about the sources and composition of PBA and provide new insight into regional and global

  12. A genetic algorithm particle pairing technique for 3D velocity field extraction in holographic particle image velocimetry

    NASA Astrophysics Data System (ADS)

    Sheng, J.; Meng, H.

    This research explores a novel technique, using Genetic Algorithm Particle Pairing (GAPP) to extract three-dimensional (3D) velocity fields of complex flows. It is motivated by Holographic Particle Image Velocimetry (HPIV), in which intrinsic speckle noise hinders the achievement of high particle density required for conventional correlation methods in extracting 3D velocity fields, especially in regions with large velocity gradients. The GA particle pairing method maps particles recorded at the first exposure to those at the second exposure in a 3D space, providing one velocity vector for each particle pair instead of seeking statistical averaging. Hence, particle pairing can work with sparse seeding and complex 3D velocity fields. When dealing with a large number of particles from two instants, however, the accuracy of pairing results and processing speed become major concerns. Using GA's capability to search a large solution space parallelly, our algorithm can efficiently find the best mapping scenarios among a large number of possible particle pairing schemes. During GA iterations, different pairing schemes or solutions are evaluated based on fluid dynamics. Two types of evaluation functions are proposed, tested, and embedded into the GA procedures. Hence, our Genetic Algorithm Particle Pairing (GAPP) technique is characterized by robustness in velocity calculation, high spatial resolution, good parallelism in handling large data sets, and high processing speed on parallel architectures. It has been successfully tested on a simple HPIV measurement of a real trapped vortex flow as well as a series of numerical experiments. In this paper, we introduce the principle of GAPP, analyze its performance under different parameters, and evaluate its processing speed on different computer architectures.

  13. Successful field evaluation of the efficiency of a gas gravity drainage process by applying recent developments in Sponge coring technique in a major oil field

    SciTech Connect

    Durandeau, M.; El-Emam, M.; Anis, A.H.; Fanti, G.

    1995-11-01

    This paper describes the application and integration of new technologies and recent developments in Sponge coring and presents the methodology used to carry out successfully the various phases of well designed Sponge coring project, including the coring phase, the on-site measurements and the full evaluation of the Sponge core samples. A field case is presented where a Sponge coring project was accomplished to obtain accurate fluids distribution and evaluate the gas gravity drainage efficiency in one of the Arab D sub-reservoirs of a major oil field offshore Abu Dhabi. A Sponge coring technology team was created to optimize the methodology used during Sponge coring an minimize the uncertainties which persisted on some of the previous operations. The effectiveness of the technique is discussed, with comparison to open hole logs and SCAL data. Realistic petrophysical parameters were obtained from non-invaded, native-state core samples. The effective oil saturation obtained from the Sponge core analysis results showed that the gravity segregation mechanism has been very active and efficient to recover the oil in the reservoir.

  14. Comprehensive theoretical analysis and experimental exploration of ultrafast microchip-based high-field asymmetric ion mobility spectrometry (FAIMS) technique.

    PubMed

    Li, Lingfeng; Wang, Yonghuan; Chen, Chilai; Wang, Xiaozhi; Luo, Jikui

    2015-06-01

    High-field asymmetric ion mobility spectrometry (FAIMS) has become an efficient technique for separation and characterization of gas-phase ions at ambient pressure, which utilizes the mobility differences of ions at high and low fields. Micro FAIMS devices made by micro-electromechanical system technology have small gaps of the channels, high electric field and good installation precision, as thus they have received great attentions. However, the disadvantage of relatively low resolution limits their applications in some areas. In this study, theoretical analysis and experimental exploration were carried out to overcome the disadvantage. Multiple scans, characteristic decline curves of ion transmission and pattern recognitions were proposed to improve the performance of the microchip-based FAIMS. The results showed that although micro FAIMS instruments as a standalone chemical analyzer suffer from low resolution, by using one or more of the methods proposed, they can identify chemicals precisely and provide quantitative analysis with low detection limit in some applications. Copyright © 2015 John Wiley & Sons, Ltd.

  15. Estimation of VOC emissions from produced-water treatment ponds in Uintah Basin oil and gas field using modeling techniques

    NASA Astrophysics Data System (ADS)

    Tran, H.; Mansfield, M. L.; Lyman, S. N.; O'Neil, T.; Jones, C. P.

    2015-12-01

    Emissions from produced-water treatment ponds are poorly characterized sources in oil and gas emission inventories that play a critical role in studying elevated winter ozone events in the Uintah Basin, Utah, U.S. Information gaps include un-quantified amounts and compositions of gases emitted from these facilities. The emitted gases are often known as volatile organic compounds (VOCs) which, beside nitrogen oxides (NOX), are major precursors for ozone formation in the near-surface layer. Field measurement campaigns using the flux-chamber technique have been performed to measure VOC emissions from a limited number of produced water ponds in the Uintah Basin of eastern Utah. Although the flux chamber provides accurate measurements at the point of sampling, it covers just a limited area of the ponds and is prone to altering environmental conditions (e.g., temperature, pressure). This fact raises the need to validate flux chamber measurements. In this study, we apply an inverse-dispersion modeling technique with evacuated canister sampling to validate the flux-chamber measurements. This modeling technique applies an initial and arbitrary emission rate to estimate pollutant concentrations at pre-defined receptors, and adjusts the emission rate until the estimated pollutant concentrations approximates measured concentrations at the receptors. The derived emission rates are then compared with flux-chamber measurements and differences are analyzed. Additionally, we investigate the applicability of the WATER9 wastewater emission model for the estimation of VOC emissions from produced-water ponds in the Uintah Basin. WATER9 estimates the emission of each gas based on properties of the gas, its concentration in the waste water, and the characteristics of the influent and treatment units. Results of VOC emission estimations using inverse-dispersion and WATER9 modeling techniques will be reported.

  16. TH-C-12A-06: Feasibility of a MLC-Based Inversely Optimized Multi-Field Grid Therapy Technique

    SciTech Connect

    Jin, J; Zhao, B; Huang, Y; Kim, J; Qin, Y; Wen, N; Ryu, S; Chetty, I

    2014-06-15

    Purpose: Grid therapy (GT), which generates highly spatially modulated dose distributions, can deliver single- or hypo-fractionated radiotherapy for large tumors without causing significant toxicities. GT may be applied in combination with immunotherapy, in light of recent preclinical data of synergetic interaction between radiotherapy and immunotherapy. However, conventional GT uses only one field, which does not have the advantage of multi-fields in 3D conformal-RT or IMRT. We have proposed a novel MLC-based, inverse-planned multi-field 3D GT technique. This study aims to test its deliverability and dosimetric accuracy. Methods: A lattice of small spheres was created as the boost volume within a large target. A simultaneous boost IMRT plan with 8-Gy to the target and 20-Gy to the boost volume was generated in the Eclipse treatment planning system (AAA v10) with a HD120 MLC. Nine beams were used, and the gantry and couch angles were selected so that the spheres were perfectly aligned in every beams eye view. The plan was mapped to a phantom with dose scaled. EBT3 films were calibrated and used to measure the delivered dose. Results: The IMRT plan generated a highly spatially modulated dose distribution in the target. D95%, D50%, D5% for the spheres and the targets in Gy were 18.5, 20.0, 21.4 and 7.9, 9.8, 16.1, respectively. D50% for a 1cm ring 1cm outside the target was 2.9-Gy. Film dosimetry showed good agreement between calculated and delivered dose, with an overall gamma passing rate of 99.6% (3%/1mm). The point dose differences for different spheres varied from 1–6%. Conclusion: We have demonstrated the deliverability and dose calculation accuracy of the MLC-based inversely optimized multi-field GT technique, which achieved a brachytherapy-like dose distribution. Single-fraction high dose can be delivered to the spheres in a large target with minimal dose to the surrounding normal tissue.

  17. Lessons in modern digital field geology: Open source software, 3D techniques, and the new world of digital mapping

    NASA Astrophysics Data System (ADS)

    Pavlis, Terry; Hurtado, Jose; Langford, Richard; Serpa, Laura

    2014-05-01

    Although many geologists refuse to admit it, it is time to put paper-based geologic mapping into the historical archives and move to the full potential of digital mapping techniques. For our group, flat map digital geologic mapping is now a routine operation in both research and instruction. Several software options are available, and basic proficiency with the software can be learned in a few hours of instruction and practice. The first practical field GIS software, ArcPad, remains a viable, stable option on Windows-based systems. However, the vendor seems to be moving away from ArcPad in favor of mobile software solutions that are difficult to implement without GIS specialists. Thus, we have pursued a second software option based on the open source program QGIS. Our QGIS system uses the same shapefile-centric data structure as our ArcPad system, including similar pop-up data entry forms and generic graphics for easy data management in the field. The advantage of QGIS is that the same software runs on virtually all common platforms except iOS, although the Android version remains unstable as of this writing. A third software option we are experimenting with for flat map-based field work is Fieldmove, a derivative of the 3D-capable program Move developed by Midland Valley. Our initial experiments with Fieldmove are positive, particularly with the new, inexpensive (<300Euros) Windows tablets. However, the lack of flexibility in data structure makes for cumbersome workflows when trying to interface our existing shapefile-centric data structures to Move. Nonetheless, in spring 2014 we will experiment with full-3D immersion in the field using the full Move software package in combination with ground based LiDAR and photogrammetry. One new workflow suggested by our initial experiments is that field geologists should consider using photogrammetry software to capture 3D visualizations of key outcrops. This process is now straightforward in several software packages, and

  18. Imaging of the magnetic field structure in megagauss plasmas by combining pulsed polarimetry with an optical Kerr effect shutter technique

    SciTech Connect

    Smith, R. J.

    2010-10-15

    Pulsed polarimetry in combination with a high speed photographic technique based on the optical Kerr effect is described. The backscatter in a pulsed polarimeter is directed through a scattering cell and photographed using an {approx}1 ps shutter, essentially freezing the intensity pattern. The image provides both the local electron density and magnetic field distributions along and transverse to the laser sightline. Submillimeter spatial resolution is possible for probing wavelengths in the visible due to the high densities and strong optical activity. Pulsed polarimetry is thereby extended to centimeter-sized plasmas with n{sub e}>10{sup 19}-10{sup 20} cm{sup -3} and B>20-100 T (MG) produced by multiterawatt, multimega-ampere electrical drivers, wire Z pinches, and liner imploded magnetized plasmas.

  19. Construction techniques for the Taklamakan Desert Highway: research on the construction materials and the results of field tests

    NASA Astrophysics Data System (ADS)

    Jin, Changning; Dong, Zhibao; Li, Zhinong

    2006-03-01

    After conducting many laboratory and field experiments, several key technical issues related to the construction of China’s Taklamakan Desert Highway have been satisfactorily resolved. In particular, considerable progress has been made on the dry compaction of a sand sub-base, road design parameters, the creation of a structure that combines a sub-grade and asphalt pavement, analysis of the stability of a sand sub-base strengthened with geotextiles, and on the development of a complete set of construction techniques. The achievements of this research were successfully applied for the first time in the Taklamakan Desert, where the environmental conditions are extremely harsh. The results suggest that the construction of this highway was economical and that the simple construction methods produced a reliable highway. The resulting highway is believed to be the world’s first long-distance graded highway running through a huge desert with migrating dunes.

  20. Field enhancement and resonance phenomena in complex three-dimensional nanoparticles: efficient computation using the source-model technique.

    PubMed

    Ishay, Yakir; Leviatan, Yehuda; Bartal, Guy

    2014-05-15

    We present a semi-analytical method for computing the electromagnetic field in and around 3D nanoparticles (NP) of complex shape and demonstrate its power via concrete examples of plasmonic NPs that have nonsymmetrical shapes and surface areas with very small radii of curvature. In particular, we show the three axial resonances of a 3D cashew-nut and the broadband response of peanut-shell NPs. The method employs the source-model technique along with a newly developed intricate source distributing algorithm based on the surface curvature. The method is simple and can outperform finite-difference time domain and finite-element-based software tools in both its efficiency and accuracy.

  1. Application of Rosenbrock search technique to reduce the drilling cost of a well in Bai-Hassan oil field

    SciTech Connect

    Aswad, Z.A.R.; Al-Hadad, S.M.S.

    1983-03-01

    The powerful Rosenbrock search technique, which optimizes both the search directions using the Gram-Schmidt procedure and the step size using the Fibonacci line search method, has been used to optimize the drilling program of an oil well drilled in Bai-Hassan oil field in Kirkuk, Iran, using the twodimensional drilling model of Galle and Woods. This model shows the effect of the two major controllable variables, weight on bit and rotary speed, on the drilling rate, while considering other controllable variables such as the mud properties, hydrostatic pressure, hydraulic design, and bit selection. The effect of tooth dullness on the drilling rate is also considered. Increasing the weight on the drill bit with a small increase or decrease in ratary speed resulted in a significant decrease in the drilling cost for most bit runs. It was found that a 48% reduction in this cost and a 97-hour savings in the total drilling time was possible under certain conditions.

  2. Use of Geophysical and Remote Sensing Techniques During the Comprehensive Test Ban Treaty Organization's Integrated Field Exercise 2014

    NASA Astrophysics Data System (ADS)

    Labak, Peter; Sussman, Aviva; Rowlands, Aled; Chiappini, Massimo; Malich, Gregor; MacLeod, Gordon; Sankey, Peter; Sweeney, Jerry; Tuckwell, George

    2016-04-01

    The Integrated Field Exercise of 2014 (IFE14) was a field event held in the Hashemite Kingdom of Jordan (with concurrent activities in Austria) that tested the operational and technical capabilities of a Comprehensive Test Ban Treaty's (CTBT) on-site inspection (OSI). During an OSI, up to 40 inspectors search a 1000km2 inspection area for evidence of a nuclear explosion. Over 250 experts from ~50 countries were involved in IFE14 (the largest simulation of an OSI to date) and worked from a number of different directions, such as the Exercise Management and Control Teams to execute the scenario in which the exercise was played, to those participants performing as members of the Inspection Team (IT). One of the main objectives of IFE14 was to test Treaty allowed inspection techniques, including a number of geophysical and remote sensing methods. In order to develop a scenario in which the simulated exercise could be carried out, a number of physical features in the IFE14 inspection area were designed and engineered by the Scenario Task Force Group (STF) that the IT could detect by applying the geophysical and remote sensing inspection technologies, as well as other techniques allowed by the CTBT. For example, in preparation for IFE14, the STF modeled a seismic triggering event that was provided to the IT to prompt them to detect and localize aftershocks in the vicinity of a possible explosion. Similarly, the STF planted shallow targets such as borehole casings and pipes for detection by other geophysical methods. In addition, airborne technologies, which included multi-spectral imaging, were deployed such that the IT could identify freshly exposed surfaces, imported materials and other areas that had been subject to modification. This presentation will introduce the CTBT and OSI, explain the IFE14 in terms of goals specific to geophysical and remote sensing methods, and show how both the preparation for and execution of IFE14 meet those goals.

  3. Evaluation of single and multiple Doppler lidar techniques to measure complex flow during the XPIA field campaign

    NASA Astrophysics Data System (ADS)

    Choukulkar, Aditya; Brewer, W. Alan; Sandberg, Scott P.; Weickmann, Ann; Bonin, Timothy A.; Hardesty, R. Michael; Lundquist, Julie K.; Delgado, Ruben; Valerio Iungo, G.; Ashton, Ryan; Debnath, Mithu; Bianco, Laura; Wilczak, James M.; Oncley, Steven; Wolfe, Daniel

    2017-01-01

    Accurate three-dimensional information of wind flow fields can be an important tool in not only visualizing complex flow but also understanding the underlying physical processes and improving flow modeling. However, a thorough analysis of the measurement uncertainties is required to properly interpret results. The XPIA (eXperimental Planetary boundary layer Instrumentation Assessment) field campaign conducted at the Boulder Atmospheric Observatory (BAO) in Erie, CO, from 2 March to 31 May 2015 brought together a large suite of in situ and remote sensing measurement platforms to evaluate complex flow measurement strategies. In this paper, measurement uncertainties for different single and multi-Doppler strategies using simple scan geometries (conical, vertical plane and staring) are investigated. The tradeoffs (such as time-space resolution vs. spatial coverage) among the different measurement techniques are evaluated using co-located measurements made near the BAO tower. Sensitivity of the single-/multi-Doppler measurement uncertainties to averaging period are investigated using the sonic anemometers installed on the BAO tower as the standard reference. Finally, the radiometer measurements are used to partition the measurement periods as a function of atmospheric stability to determine their effect on measurement uncertainty. It was found that with an increase in spatial coverage and measurement complexity, the uncertainty in the wind measurement also increased. For multi-Doppler techniques, the increase in uncertainty for temporally uncoordinated measurements is possibly due to requiring additional assumptions of stationarity along with horizontal homogeneity and less representative line-of-sight velocity statistics. It was also found that wind speed measurement uncertainty was lower during stable conditions compared to unstable conditions.

  4. Evaluation of single and multiple Doppler lidar techniques to measure complex flow during the XPIA field campaign

    DOE PAGES

    Choukulkar, Aditya; Brewer, W. Alan; Sandberg, Scott P.; ...

    2017-01-23

    Accurate three-dimensional information of wind flow fields can be an important tool in not only visualizing complex flow but also understanding the underlying physical processes and improving flow modeling. However, a thorough analysis of the measurement uncertainties is required to properly interpret results. The XPIA (eXperimental Planetary boundary layer Instrumentation Assessment) field campaign conducted at the Boulder Atmospheric Observatory (BAO) in Erie, CO, from 2 March to 31 May 2015 brought together a large suite of in situ and remote sensing measurement platforms to evaluate complex flow measurement strategies. In this paper, measurement uncertainties for different single and multi-Doppler strategies using simple scanmore » geometries (conical, vertical plane and staring) are investigated. The tradeoffs (such as time–space resolution vs. spatial coverage) among the different measurement techniques are evaluated using co-located measurements made near the BAO tower. Sensitivity of the single-/multi-Doppler measurement uncertainties to averaging period are investigated using the sonic anemometers installed on the BAO tower as the standard reference. Finally, the radiometer measurements are used to partition the measurement periods as a function of atmospheric stability to determine their effect on measurement uncertainty. It was found that with an increase in spatial coverage and measurement complexity, the uncertainty in the wind measurement also increased. For multi-Doppler techniques, the increase in uncertainty for temporally uncoordinated measurements is possibly due to requiring additional assumptions of stationarity along with horizontal homogeneity and less representative line-of-sight velocity statistics. Lastly, it was also found that wind speed measurement uncertainty was lower during stable conditions compared to unstable conditions.« less

  5. Evaluation of single and multiple Doppler lidar techniques to measure complex flow during the XPIA field campaign

    SciTech Connect

    Choukulkar, Aditya; Brewer, W. Alan; Sandberg, Scott P.; Weickmann, Ann; Bonin, Timothy A.; Hardesty, R. Michael; Lundquist, Julie K.; Delgado, Ruben; Iungo, G. Valerio; Ashton, Ryan; Debnath, Mithu; Bianco, Laura; Wilczak, James M.; Oncley, Steven; Wolfe, Daniel

    2017-01-01

    Accurate three-dimensional information of wind flow fields can be an important tool in not only visualizing complex flow but also understanding the underlying physical processes and improving flow modeling. However, a thorough analysis of the measurement uncertainties is required to properly interpret results. The XPIA (eXperimental Planetary boundary layer Instrumentation Assessment) field campaign conducted at the Boulder Atmospheric Observatory (BAO) in Erie, CO, from 2 March to 31 May 2015 brought together a large suite of in situ and remote sensing measurement platforms to evaluate complex flow measurement strategies.

    In this paper, measurement uncertainties for different single and multi-Doppler strategies using simple scan geometries (conical, vertical plane and staring) are investigated. The tradeoffs (such as time–space resolution vs. spatial coverage) among the different measurement techniques are evaluated using co-located measurements made near the BAO tower. Sensitivity of the single-/multi-Doppler measurement uncertainties to averaging period are investigated using the sonic anemometers installed on the BAO tower as the standard reference. Finally, the radiometer measurements are used to partition the measurement periods as a function of atmospheric stability to determine their effect on measurement uncertainty.

    It was found that with an increase in spatial coverage and measurement complexity, the uncertainty in the wind measurement also increased. For multi-Doppler techniques, the increase in uncertainty for temporally uncoordinated measurements is possibly due to requiring additional assumptions of stationarity along with horizontal homogeneity and less representative line-of-sight velocity statistics. It was also found that wind speed measurement uncertainty was lower during stable conditions compared to unstable conditions.

  6. Comparison of the blood film, Millipore filter and Nuclepore filter techniques for the detection of microfilaremia in a field survey in the Philippines.

    PubMed

    Shibuya, T; Cabrera, B D; Tanaka, H; Valeza, F S; Instrella, R

    1980-12-01

    The blood film, Millipore filter and Nuclepore filter techniques were applied in a filariasis field survey at a village in the Philippines. venous blood from each person was examined by the three techniques to compare their efficacy of microfilariae detection. Overall positive rate was 16.1% by the combined techniques. Microfilaria positive rate was highest in Nuclepore filter method (15.6%) followed by Millipore technique (13.6%) and blood film (11.5%), but their difference was not significant statistically. The ratio of the total microfilaria counts by the three techniques was 1:29.8:30.3, which seems to reflect the ratio of the blood volumes used. There was no significant difference between the microfilaria counts by the three techniques adjusted to the same volume of 30 microliter and examined by F-test. It is considered that the blood film is still of practical value in field surveys.

  7. Comparison of three techniques for modeling the Earth's gravity field on the basis of a satellite orbit

    NASA Astrophysics Data System (ADS)

    Ditmar, P.; van Eck van der Sluijs, A.

    2003-12-01

    At present, there are three techniques for the computation of the Earth's gravity field from a satellite orbit: (i) the "classical" approach based on the integration of variational equations (IVEA); (ii) the energy balance approach (EBA); (iii) the acceleration approach (AA), which directly relates the satellite accelerations to the gravity field in accordance with Newton's second law. Most of the results have been obtained so far with the IVEA and EBA. The AA is believed to be inferior because the double differentiation needed to convert the satellite orbit into the satellite accelerations amplifies data noise dramatically. We show that that a poor performance of the AA is a myth. One can easily prove that the solution of an inverse problem is invariant with respect to the linear transformation of the data vector of the kind d' = B d (where d is the original data vector, d' is the transformed data vector, and B is the transformation matrix) provided that the matrix B is square and invertible. The only pre-requisite is that the optimal estimation procedure is followed, including the usage of the properly transformed covariance matrix: Cd' = B Cd BT. In other words, such data vectors d' and d are equivalent. It is easy to show that the satellite positions and satellite accelerations are two nearly equivalent data sets (in order to reach a strict equivalence, the latter can be supplied, e.g., with the initial state vector). Therefore, these data sets may result in nearly the same gravity field model. A decision which technique is preferable should be made on the basis of practical considerations, e.g. the numerical efficiency. According to our experience, the AA leads to a much faster computational scheme than the IVEA. Furthermore, we have considered the EBA. It is easy to show that a set of kinetic energy measurements is nearly equivalent to a set of along-track satellite accelerations. The other two components of the acceleration vectors are ignored by the EBA

  8. Detecting brain tumor in computed tomography images using Markov random fields and fuzzy C-means clustering techniques

    SciTech Connect

    Abdulbaqi, Hayder Saad; Jafri, Mohd Zubir Mat; Omar, Ahmad Fairuz; Mustafa, Iskandar Shahrim Bin; Abood, Loay Kadom

    2015-04-24

    Brain tumors, are an abnormal growth of tissues in the brain. They may arise in people of any age. They must be detected early, diagnosed accurately, monitored carefully, and treated effectively in order to optimize patient outcomes regarding both survival and quality of life. Manual segmentation of brain tumors from CT scan images is a challenging and time consuming task. Size and location accurate detection of brain tumor plays a vital role in the successful diagnosis and treatment of tumors. Brain tumor detection is considered a challenging mission in medical image processing. The aim of this paper is to introduce a scheme for tumor detection in CT scan images using two different techniques Hidden Markov Random Fields (HMRF) and Fuzzy C-means (FCM). The proposed method has been developed in this research in order to construct hybrid method between (HMRF) and threshold. These methods have been applied on 4 different patient data sets. The result of comparison among these methods shows that the proposed method gives good results for brain tissue detection, and is more robust and effective compared with (FCM) techniques.

  9. Detecting brain tumor in computed tomography images using Markov random fields and fuzzy C-means clustering techniques

    NASA Astrophysics Data System (ADS)

    Abdulbaqi, Hayder Saad; Jafri, Mohd Zubir Mat; Omar, Ahmad Fairuz; Mustafa, Iskandar Shahrim Bin; Abood, Loay Kadom

    2015-04-01

    Brain tumors, are an abnormal growth of tissues in the brain. They may arise in people of any age. They must be detected early, diagnosed accurately, monitored carefully, and treated effectively in order to optimize patient outcomes regarding both survival and quality of life. Manual segmentation of brain tumors from CT scan images is a challenging and time consuming task. Size and location accurate detection of brain tumor plays a vital role in the successful diagnosis and treatment of tumors. Brain tumor detection is considered a challenging mission in medical image processing. The aim of this paper is to introduce a scheme for tumor detection in CT scan images using two different techniques Hidden Markov Random Fields (HMRF) and Fuzzy C-means (FCM). The proposed method has been developed in this research in order to construct hybrid method between (HMRF) and threshold. These methods have been applied on 4 different patient data sets. The result of comparison among these methods shows that the proposed method gives good results for brain tissue detection, and is more robust and effective compared with (FCM) techniques.

  10. Alternating current field measurement (ACFM): A new technique for the NDT of process plant and piping components

    SciTech Connect

    Raine, G.A.; Monahan, C.C.

    1996-12-31

    This paper describes a new electromagnetic-based NDT technology that is suitable for inspecting process plant and pipework fabricated from some of the more advanced materials, in addition to the traditional carbon steels. The name given to this new NDT technique is Alternating Current Field Measurement, or ACFM. ACFM is an extremely versatile NDT tool with a wide range of practical applications. A major advantage of ACFM over conventional NDT systems is that no calibration is required; crack detection and sizing is based on a theoretical interpretation of the measured signals. The technique is non-contacting and can be used on a wide range of electrically conductive materials (e.g., carbon steel, stainless steel, duplex steel, monel, inconel, aluminum, nickel, titanium, carbon reinforced plastics) without the need for extensive surface cleaning or removal of protective coatings. The flaws may be surface, sub-surface or remote face, depending on the material, and the probes can be designed to suppress signals from features that are not cracks (e.g., corrosion, undercuts, heat-affected zones, etc.), thus overcoming many of the problems associated with other electromagnetic systems and minimizing the probability of spurious indications.

  11. Marine Biological Field Techniques.

    ERIC Educational Resources Information Center

    Awkerman, Gary L.

    This publication is designed for use in a standard science curricula to develop oceanologic manifestations of certain science topics. Included are teacher guides, student activities, and demonstrations designed to impart ocean science understanding to high school students. It could be a useful instructional tool for any high school student field…

  12. SVD-Based Technique for Interference Cancellation and Noise Reduction in NMR Measurement of Time-Dependent Magnetic Fields

    PubMed Central

    Chen, Wenjun; Ma, Hong; Yu, De; Zhang, Hua

    2016-01-01

    A nuclear magnetic resonance (NMR) experiment for measurement of time-dependent magnetic fields was introduced. To improve the signal-to-interference-plus-noise ratio (SINR) of NMR data, a new method for interference cancellation and noise reduction (ICNR) based on singular value decomposition (SVD) was proposed. The singular values corresponding to the radio frequency interference (RFI) signal were identified in terms of the correlation between the FID data and the reference data, and then the RFI and noise were suppressed by setting the corresponding singular values to zero. The validity of the algorithm was verified by processing the measured NMR data. The results indicated that, this method has a significantly suppression of RFI and random noise, and can well preserve the FID signal. At present, the major limitation of the proposed SVD-based ICNR technique is that the threshold value for interference cancellation needs to be manually selected. Finally, the inversion waveform of the applied alternating magnetic field was given by fitting the processed experimental data. PMID:26959024

  13. Surface tension measurement techniques of magnetic fluids at an interface between different fluids using perpendicular field instability

    NASA Astrophysics Data System (ADS)

    Amin, M. Shahrooz; Elborai, Shihab; Lee, Se-Hee; He, Xiaowei; Zahn, Markus

    2005-05-01

    Two measurement techniques to determine the surface tension of ferrofluids using the perpendicular field instability are described. Four ferrofluid layers were examined with magnetic field applied perpendicularly to the surface of (1) oil-based ferrofluid in air; (2) water-based ferrofluid in air, (3) oil-based ferrofluid, and (4) fluorocarbon-based ferrofluid, both below a blend of 50% n-Propyl alcohol and 50% deionized water (propanol). Surface tension was accurately calculated by utilizing the measured Taylor wavelength from measurements of incipient fluid instability peaks and the measured densities of fluids. For cases (1) and (2), the calculated surface tension values were in good agreement with a tensiometer measurement. No accurate tensiometer measurements were conducted for the superposed liquids (3) and (4) since accurate tensiometer measurements are difficult for a two fluid layer system. The second less accurate method used the ferrofluid's nonlinear Langevin magnetization characteristics to compute the surface tension from incipience of interfacial instability conditions. Discrepancies between the surface tensions measured by the two methods were probably due to the ferrofluid particle size distributions and the strong dependence of the ferrofluid magnetization on particle size.

  14. [Present status, mechanisms, and control techniques of nitrogen and phosphorus non-point source pollution from vegetable fields].

    PubMed

    Huang, Dong-Feng; Wang, Guo; Li, Wei-Hua; Qiu, Xiao-Xuan

    2009-04-01

    Chemical fertilizers are often excessively applied on vegetable fields to pursue higher yields. In some areas, the fertilization rates are several times of those needed by vegetables. Nitrogen and phosphorous are obviously accumulated in the vegetable soils, resulting in the malnutrition, excessive nitrate, and poor quality of vegetables. Furthermore, a series of environmental problems, e.g., deterioration of vegetable soil physical and chemical properties, nitrate pollution of groundwater, and eutrophication of surface water, are produced. This paper reviewed the present status of nitrogen and phosphorous non-point source pollution from vegetable soils (accumulation characteristics of nitrogen and phosphorous and their pollution risks to water environment and vegetables), pollution mechanisms (sources, transformation, and losses of nitrogen and phosphorous), and control techniques (fertilization, chemical addition, nitrogen catch crop cultivation, optimal planting system, spatial matching of source and sink landscapes, and grass buffer strip technology), aimed to supply references for the further study on the nitrogen and phosphorous non-point source pollution from vegetable fields.

  15. Appraisal of Artificial Screening Techniques of Tomato to Accurately Reflect Field Performance of the Late Blight Resistance

    PubMed Central

    Nowakowska, Marzena; Nowicki, Marcin; Kłosińska, Urszula; Maciorowski, Robert; Kozik, Elżbieta U.

    2014-01-01

    Late blight (LB) caused by the oomycete Phytophthora infestans continues to thwart global tomato production, while only few resistant cultivars have been introduced locally. In order to gain from the released tomato germplasm with LB resistance, we compared the 5-year field performance of LB resistance in several tomato cultigens, with the results of controlled conditions testing (i.e., detached leaflet/leaf, whole plant). In case of these artificial screening techniques, the effects of plant age and inoculum concentration were additionally considered. In the field trials, LA 1033, L 3707, L 3708 displayed the highest LB resistance, and could be used for cultivar development under Polish conditions. Of the three methods using controlled conditions, the detached leaf and the whole plant tests had the highest correlation with thefield experiments. The plant age effect on LB resistance in tomato reported here, irrespective of the cultigen tested or inoculum concentration used, makes it important to standardize the test parameters when screening for resistance. Our results help show why other reports disagree on LB resistance in tomato. PMID:25279467

  16. Full-field swept-source optical coherence tomography with phase-shifting techniques for skin cancer detection

    NASA Astrophysics Data System (ADS)

    Krauter, J.; Boettcher, T.; Körner, K.; Gronle, M.; Osten, W.; Passilly, N.; Froehly, L.; Perrin, S.; Gorecki, C.

    2015-05-01

    The EU-funded project VIAMOS1 proposes an optical coherence tomography system (OCT) for skin cancer detection, which combines full-field and full-range swept-source OCT in a multi-channel sensor for parallel detection. One of the project objectives is the development of new fabrication technologies for micro-optics, which makes it compatible to Micro-Opto-Electromechanical System technology (MOEMS). The basic system concept is a wafer-based Mirau interferometer array with an actuated reference mirror, which enables phase shifted interferogram detection and therefore reconstruction of the complex phase information, resulting in a higher measurement range with reduced image artifacts. This paper presents an experimental one-channel on-bench OCT system with bulk optics, which serves as a proof-of-concept setup for the final VIAMOS micro-system. It is based on a Linnik interferometer with a wavelength tuning light source and a camera for parallel A-Scan detection. Phase shifting interferometry techniques (PSI) are used for the suppression of the complex conjugate artifact, whose suppression reaches 36 dB. The sensitivity of the system is constant over the full-field with a mean value of 97 dB. OCT images are presented of a thin membrane microlens and a biological tissue (onion) as a preliminary demonstration.

  17. SVD-Based Technique for Interference Cancellation and Noise Reduction in NMR Measurement of Time-Dependent Magnetic Fields.

    PubMed

    Chen, Wenjun; Ma, Hong; Yu, De; Zhang, Hua

    2016-03-04

    A nuclear magnetic resonance (NMR) experiment for measurement of time-dependent magnetic fields was introduced. To improve the signal-to-interference-plus-noise ratio (SINR) of NMR data, a new method for interference cancellation and noise reduction (ICNR) based on singular value decomposition (SVD) was proposed. The singular values corresponding to the radio frequency interference (RFI) signal were identified in terms of the correlation between the FID data and the reference data, and then the RFI and noise were suppressed by setting the corresponding singular values to zero. The validity of the algorithm was verified by processing the measured NMR data. The results indicated that, this method has a significantly suppression of RFI and random noise, and can well preserve the FID signal. At present, the major limitation of the proposed SVD-based ICNR technique is that the threshold value for interference cancellation needs to be manually selected. Finally, the inversion waveform of the applied alternating magnetic field was given by fitting the processed experimental data.

  18. Spatial variation of blood viscosity: modelling using shear fields measured by a μPIV based technique.

    PubMed

    Kaliviotis, Efstathios; Dusting, Jonathan; Balabani, Stavroula

    2011-09-01

    The spatial characteristics of blood viscosity were investigated by combining a newly developed constitutive equation with shear deformation fields calculated from velocity measurements obtained by a μPIV based technique. Blood at physiological hematocrit levels and in the presence of aggregation was sheared in a narrow gap plate-plate geometry and the velocity and aggregation characteristics were determined from images captured using a high resolution camera. Changes in the microstructure of blood caused by aggregation were observed to affect the flow characteristics. At low shear rates, high aggregation and network formation caused the RBC motion to become essentially two-dimensional. The measured velocity fields were used to estimate the magnitude of shear which was subsequently used in conjunction with the new model to assess the spatial variation of viscosity across the flow domain. It was found that the non-uniform microstructural characteristics of blood influence its viscosity distribution accordingly. The viscosity of blood estimated in the core of the examined flow, using a zero-gradient core velocity profile assumption, was found to be significantly higher than the overall effective viscosity determined using other velocity profile assumptions. Copyright © 2010 IPEM. Published by Elsevier Ltd. All rights reserved.

  19. Intensity-modulated radiation therapy (IMRT) of cancers of the head and neck: Comparison of split-field and whole-field techniques

    SciTech Connect

    Dabaja, Bouthaina; Salehpour, Mohammad R.; Rosen, Isaac; Tung, Sam; Morrison, William H.; Ang, K. Kian; Garden, Adam S. . E-mail: agarden@mdanderson.org

    2005-11-15

    Background: Oropharynx cancers treated with intensity-modulated radiation (IMRT) are often treated with a monoisocentric or half-beam technique (HB). IMRT is delivered to the primary tumor and upper neck alone, while the lower neck is treated with a matching anterior beam. Because IMRT can treat the entire volume or whole field (WF), the primary aim of the study was to test the ability to plan cases using WF-IMRT while obtaining an optimal plan and acceptable dose distribution and also respecting normal critical structures. Methods and Materials: Thirteen patients with early-stage oropharynx cancers had treatment plans created with HB-IMRT and WF-IMRT techniques. Plans were deemed acceptable if they met the planning guidelines (as defined or with minor violations) of the Radiation Therapy Oncology Group protocol H0022. Comparisons included coverage to the planning target volume (PTV) of the primary (PTV66) and subclinical disease (PTV54). We also compared the ability of both techniques to respect the tolerance of critical structures. Results: The volume of PTV66 treated to >110% was less in 9 of the 13 patients in the WF-IMRT plan as compared to the HB-IMRT plan. The calculated mean volume receiving >110% for all patients planned with WF-IMRT was 9.3% (0.8%-25%) compared to 13.7% (2.7%-23.7%) with HB-IMRT (p = 0.09). The PTV54 volume receiving >110% of dose was less in 10 of the 13 patients planned with WF-IMRT compared to HB-IMRT. The mean doses to all critical structures except the larynx were comparable with each plan. The mean dose to the larynx was significantly less (p = 0.001), 18.7 Gy, with HB-IMRT compared to 47 Gy with WF-IMRT. Conclusions: Regarding target volumes, acceptable plans can be generated with either WF-IMRT or HB-IMRT. WF-IMRT has an advantage if uncertainty at the match line is a concern, whereas HB-IMRT, particularly in cases not involving the base of tongue, can achieve much lower doses to the larynx.

  20. Solar Wind Magnetic Field Turbulence at Ion Kinetic Scales Measured by Cluster Using k-filtering Technique

    NASA Astrophysics Data System (ADS)

    Li, X.; Roberts, O. W.; Jeska, L.; Li, B.; Lu, Q.

    2014-12-01

    The nature of turbulence at kinetic scales is important since turbulence energy is believed to dissipate as heat at these scales. Here we report our several work on the solar wind turbulence at ion kinetic scales using the k-filtering technique. We found evidence of ion cyclotron resonance in solar wind intervals. In the wave vector space, in addition to the commonly observed population of magnetic field fluctuations propagating at quasi-perpendicular angles to the global mean field B0, a population propagating at quasi-parallel angles are also observed with no local plasma instabilities identified. At low wavenumbers (kv_A/Omega_p <= 0.6 ) both components are present, and have similar powers, while at higher wavenumbers (kv_A/Omega_p> 0.6) only the perpendicular component can be identified. A statistical study of 52 intervals of solar wind finds that the turbulence is predominantly highly oblique to the magnetic field with perpendicular wavenumbers much greater than parallel wavenumbers, and propagates slowly in the plasma frame with most points having frequencies smaller than the proton gyrofrequency. Weak agreement is found that turbulence at the ion kinetic scales consists of kinetic Alfven waves and coherent structures advected with plasma bulk velocity plus some minor more compressible components. The results suggest that anti-sunward and sunward propagating magnetic fluctuations have similar nature in both the fast and slow solar wind. The fast wind was shown to have significantly more anti-sunward flux than sunward flux and the slow wind appears to be more balanced at ion kinetic scales. The fluctuated magnetic field and magnitude of the magnetic field are used to compute the power of incompressible and compressible turbulence for the fast solar wind. It is found that Taylor's frozen-in hypothesis may break down for compressible turbulence at the ion kinetic scales, suggesting that whistler waves may contribute to the compressible turbulence on the scales

  1. Non-invasive near-field measurement setup based on modulated scatterer technique applied to microwave tomography

    NASA Astrophysics Data System (ADS)

    Memarzadeh-Tehran, Hamidreza

    The main focus of this thesis is to address the design and development of a near-field (NF) imaging setup based on the modulated scatterer technique (MST). MST is a well-known approach used in applications where accurate and perturbation-free measurement results are necessary. Of the possible implementations available for making an MST probe, including electrical, optical and mechanical, the optically modulated scatterer OMS was considered in order to provide nearly perturbation-free measurement due to the invisibility of optical fiber to the radio-frequency electromagnetic fields. The OMS probe consists of a commercial, off-the-shelf (COTS) photodiode chip (nonlinear device), a short-dipole antenna acting as a scatterer and a matching network (passive circuit). The latter improves the scattering properties and also increases the sensitivity of the OMS probe within the frequency range in which the matching network is optimized. The radiation characteristics of the probe, including cross-polarization response and omnidirectional sensitivity, were both theoretically and experimentally investigated. Finally, the performance and reliability of the probe was studied by comparing measured near-field distributions on a known field distribution with simulations. Increased imaging speed was obtained using an array of OMS probes, which reduces mechanical movements. Mutual-coupling, switching time and shadowing effect, which all may affect the performance of the array, were investigated. Then, the results obtained by the array were validated in a NF imager by measuring the E-field distribution of an antenna under test (AUT) and comparing it with a simulation. Calibration and data averaging were applied to raw data to compensate the probes for uncertainties in fabrication and interaction between array/AUT and array/receiving antenna. Dynamic range and linearity of the developed NF imager was improved by adding a carrier canceller circuit to the front-end of the receiver. The

  2. Modified Conditional Merging technique: a new method to estimate a rainfall field combining remote sensed data and raingauge observations

    NASA Astrophysics Data System (ADS)

    Pignone, Flavio; Rebora, Nicola; Silvestro, Francesco

    2015-04-01

    The estimation of the rainfall field, especially its spatial distribution and position, is a crucial task both for rainfall nowcasting and for modeling catchment response to rainfall. Some studies of literature about multisensor datafusion prove that combining data from different sensors (especially raingauges and radar) represents the best way to obtain an enhanced ad more reliable estimation of QPE and of the associated river discharge. Sinclair and Peagram (2004) have proposed the Conditional Merging (CM) technique, a merging algorithm which extract the information content from the observed data and use it within an interpolation method to obtain the rainfall maps. The raingauges provide a punctual measure of the observed "real" rainfall while the remote sensors (radar network or satellite constellation) supply rainfall estimation maps which give an idea of the spatial correlation structure of the observed field. In this work is studied an enhanced algorithm based on CM, called Modified Conditional Merging, which can be used in real-time to produce the optimal rainfall maps. The area of interest, where the CM has been applied, is Italy, where are both available a dense network of raingauge measurements (about 3000 stations) and a QPE estimated by the Italian Radar composite. The main innovation respect to classical CM is to estimate the structure of covariance and the length of spatial correlation λ, for every raingauge, directly from the cumulated radar rainfall fields. The advantages of this method is to estimate the local characteristic of the domain to obtain information at smaller scale, very useful for convective events. A cross-validation of the new method was done and several statistical scores were applied on the results. The validation on a large number of Italian past event along with its operational use are presented and discussed.

  3. Sterile insect technique and Mediterranean fruit fly (Diptera: Tephritidae): assessing the utility of aromatherapy in a Hawaiian coffee field.

    PubMed

    Shelly, Todd E; McInnis, Donald O; Rodd, Charles; Edu, James; Pahio, Elaine

    2007-04-01

    The sterile insect technique (SIT) is widely used in integrated programs against tephritid fruit fly pests, particularly the Mediterranean fruit fly, Ceratitis capitata (Wiedemann) (Diptera: Tephritidae). Unfortunately, the mass-rearing procedures inherent to the SIT often lead to a reduction in the mating ability of the released males. One potential solution involves the prerelease exposure of males to particular attractants. In particular, exposure of male Mediterranean fruit flies to ginger, Zingiber officinale Roscoe, root oil (GRO) has been shown to increase mating success in laboratory and field cage trials. Here, we describe a field experiment that compares the level of egg sterility observed in two Hawaiian coffee, Coffea arabica L., plots, with GRO-exposed, sterile males released in one (treated) plot and nonexposed, sterile males released in the other (control) plot. Once per week in both plots over a 13-wk period, sterile males were released, trap captures were scored to estimate relative abundance of sterile and wild males, and coffee berries were collected and dissected in the laboratory to estimate the incidence of unhatched (sterile) eggs. Data on wild fly abundance and the natural rate of egg hatch also were collected in a remote area that received no sterile males. Despite that sterile:wild male ratios were significantly lower in the treated plot than in the control plot, the incidence of sterile eggs was significantly higher in the treated plot than in the control plot. Correspondingly, significantly higher values of Fried's competitiveness index (C) were found, on average, for treated than control sterile males. This study is the first to identify an association between the GRO "status" of sterile males and the incidence of egg sterility in the field and suggests that prerelease, GRO exposure may represent a simple and inexpensive means to increase the effectiveness of Mediterranean fruit fly SIT programs.

  4. The integrated analyses of digital field mapping techniques and traditional field methods: implications from the Burdur-Fethiye Shear Zone, SW Turkey as a case-study

    NASA Astrophysics Data System (ADS)

    Elitez, İrem; Yaltırak, Cenk; Zabcı, Cengiz; Şahin, Murat

    2015-04-01

    The precise geological mapping is one of the most important issues in geological studies. Documenting the spatial distribution of geological bodies and their contacts play a crucial role on interpreting the tectonic evolution of any region. Although the traditional field techniques are still accepted to be the most fundamental tools in construction of geological maps, we suggest that the integration of digital technologies to the classical methods significantly increases the resolution and the quality of such products. We simply follow the following steps in integration of the digital data with the traditional field observations. First, we create the digital elevation model (DEM) of the region of interest by interpolating the digital contours of 1:25000 scale topographic maps to 10 m of ground pixel resolution. The non-commercial Google Earth satellite imagery and geological maps of previous studies are draped over the interpolated DEMs in the second stage. The integration of all spatial data is done by using the market leading GIS software, ESRI ArcGIS. We make the preliminary interpretation of major structures as tectonic lineaments and stratigraphic contacts. These preliminary maps are controlled and precisely coordinated during the field studies by using mobile tablets and/or phablets with GPS receivers. The same devices are also used in measuring and recording the geologic structures of the study region. Finally, all digitally collected measurements and observations are added to the GIS database and we finalise our geological map with all available information. We applied this integrated method to map the Burdur-Fethiye Shear Zone (BFSZ) in the southwest Turkey. The BFSZ is an active sinistral 60-to-90 km-wide shear zone, which prolongs about 300 km-long between Suhut-Cay in the northeast and Köyceğiz Lake-Kalkan in the southwest on land. The numerous studies suggest contradictory models not only about the evolution but also about the fault geometry of this

  5. Total Skin Electron Therapy for Cutaneous T-Cell Lymphoma Using a Modern Dual-Field Rotational Technique

    SciTech Connect

    Heumann, Thatcher R.; Esiashvili, Natia; Parker, Sareeta; Switchenko, Jeffrey M.; Dhabbaan, Anees; Goodman, Michael; Lechowicz, Mary Jo; Flowers, Christopher R.; Khan, Mohammad K.

    2015-05-01

    Purpose: To report our experience with rotational total skin electron irradiation (RTSEI) in cutaneous T-cell lymphoma (CTCL), and to examine response by disease stage and race. Methods and Materials: We reviewed our outcomes for 68 CTCL patients who received RTSEI (≥30 Gy) from 2000 to 2013. Primary outcomes were complete clinical response (CCR), recurrence-free survival (RFS), and overall survival (OS). Using log–rank tests and Cox proportional hazards, OS and RFS were compared across tumor stages at time of RTSEI with further racial subgroup analysis. Results: Median age at diagnosis and at time of radiation was 52 and 56 years, respectively. Median follow-up was 5.1 years, 49% were African American, and 49% were female. At time of treatment, 18, 37, and 13 patients were T stage 2, 3, and 4, respectively. At 6 weeks after RTSEI, overall CCR was 82% (88%, 83%, and 69% for T2, T3, and T4, respectively). Median RFS was 11 months for all patients and 14, 10, and 12 months for stage T2, T3, and T4, respectively. Tumor stage was not associated with RFS or CCR. Maintenance therapy after RTSEI was associated with improved RFS in both crude and multivariable analysis, controlling for T stage. Median OS was 76 months (91 and 59 months for T3 and T4, respectively). With the exception of improved OS in African Americans compared with whites at stage T2, race was not associated with CCR, RFS, or OS. Conclusions: These results represent the largest RTSEI clinical outcomes study in the modern era using a dual-field rotational technique. Our observed response rates match or improve upon the standard set by previous outcome studies using conventional TSEI techniques, despite a large percentage of advanced CTCL lesions in our cohort. We found that clinical response after RTSEI did not seem to be affected by T stage or race.

  6. Total skin electron therapy for cutaneous T-cell lymphoma using a modern dual-field rotational technique.

    PubMed

    Heumann, Thatcher R; Esiashvili, Natia; Parker, Sareeta; Switchenko, Jeffrey M; Dhabbaan, Anees; Goodman, Michael; Lechowicz, Mary Jo; Flowers, Christopher R; Khan, Mohammad K

    2015-05-01

    To report our experience with rotational total skin electron irradiation (RTSEI) in cutaneous T-cell lymphoma (CTCL), and to examine response by disease stage and race. We reviewed our outcomes for 68 CTCL patients who received RTSEI (≥ 30 Gy) from 2000 to 2013. Primary outcomes were complete clinical response (CCR), recurrence-free survival (RFS), and overall survival (OS). Using log-rank tests and Cox proportional hazards, OS and RFS were compared across tumor stages at time of RTSEI with further racial subgroup analysis. Median age at diagnosis and at time of radiation was 52 and 56 years, respectively. Median follow-up was 5.1 years, 49% were African American, and 49% were female. At time of treatment, 18, 37, and 13 patients were T stage 2, 3, and 4, respectively. At 6 weeks after RTSEI, overall CCR was 82% (88%, 83%, and 69% for T2, T3, and T4, respectively). Median RFS was 11 months for all patients and 14, 10, and 12 months for stage T2, T3, and T4, respectively. Tumor stage was not associated with RFS or CCR. Maintenance therapy after RTSEI was associated with improved RFS in both crude and multivariable analysis, controlling for T stage. Median OS was 76 months (91 and 59 months for T3 and T4, respectively). With the exception of improved OS in African Americans compared with whites at stage T2, race was not associated with CCR, RFS, or OS. These results represent the largest RTSEI clinical outcomes study in the modern era using a dual-field rotational technique. Our observed response rates match or improve upon the standard set by previous outcome studies using conventional TSEI techniques, despite a large percentage of advanced CTCL lesions in our cohort. We found that clinical response after RTSEI did not seem to be affected by T stage or race. Published by Elsevier Inc.

  7. Total Skin Electron Therapy for Cutaneous T-Cell Lymphoma Using a Modern Dual-Field Rotational Technique

    PubMed Central

    Heumann, Thatcher R.; Esiashvili, Natia; Parker, Sareeta; Switchenko, Jeffrey M.; Dhabbaan, Anees; Goodman, Michael; Lechowicz, Mary Jo; Flowers, Christopher R.; Khan, Mohammad K.

    2016-01-01

    Purpose To report our experience with rotational total skin electron irradiation (RTSEI) in cutaneous T-cell lymphoma (CTCL), and to examine response by disease stage and race. Methods and Materials We reviewed our outcomes for 68 CTCL patients who received RTSEI (≥30 Gy) from 2000 to 2013. Primary outcomes were complete clinical response (CCR), recurrence-free survival (RFS), and overall survival (OS). Using log–rank tests and Cox proportional hazards, OS and RFS were compared across tumor stages at time of RTSEI with further racial subgroup analysis. Results Median age at diagnosis and at time of radiation was 52 and 56 years, respectively. Median follow-up was 5.1 years, 49% were African American, and 49% were female. At time of treatment, 18, 37, and 13 patients were T stage 2, 3, and 4, respectively. At 6 weeks after RTSEI, overall CCR was 82% (88%, 83%, and 69% for T2, T3, and T4, respectively). Median RFS was 11 months for all patients and 14, 10, and 12 months for stage T2, T3, and T4, respectively. Tumor stage was not associated with RFS or CCR. Maintenance therapy after RTSEI was associated with improved RFS in both crude and multivariable analysis, controlling for T stage. Median OS was 76 months (91 and 59 months for T3 and T4, respectively). With the exception of improved OS in African Americans compared with whites at stage T2, race was not associated with CCR, RFS, or OS. Conclusions These results represent the largest RTSEI clinical outcomes study in the modern era using a dual-field rotational technique. Our observed response rates match or improve upon the standard set by previous outcome studies using conventional TSEI techniques, despite a large percentage of advanced CTCL lesions in our cohort. We found that clinical response after RTSEI did not seem to be affected by T stage or race. PMID:25670538

  8. Fabrication of Ultrasensitive Field-Effect Transistor DNA Biosensors by a Directional Transfer Technique Based on CVD-Grown Graphene.

    PubMed

    Zheng, Chao; Huang, Le; Zhang, Hong; Sun, Zhongyue; Zhang, Zhiyong; Zhang, Guo-Jun

    2015-08-12

    Most graphene field-effect transistor (G-FET) biosensors are fabricated through a routine process, in which graphene is transferred onto a Si/SiO2 substrate and then devices are subsequently produced by micromanufacture processes. However, such a fabrication approach can introduce contamination onto the graphene surface during the lithographic process, resulting in interference for the subsequent biosensing. In this work, we have developed a novel directional transfer technique to fabricate G-FET biosensors based on chemical-vapor-deposition- (CVD-) grown single-layer graphene (SLG) and applied this biosensor for the sensitive detection of DNA. A FET device with six individual array sensors was first fabricated, and SLG obtained by the CVD-growth method was transferred onto the sensor surface in a directional manner. Afterward, peptide nucleic acid (PNA) was covalently immobilized on the graphene surface, and DNA detection was realized by applying specific target DNA to the PNA-functionalized G-FET biosensor. The developed G-FET biosensor was able to detect target DNA at concentrations as low as 10 fM, which is 1 order of magnitude lower than those reported in a previous work. In addition, the biosensor was capable of distinguishing the complementary DNA from one-base-mismatched DNA and noncomplementary DNA. The directional transfer technique for the fabrication of G-FET biosensors is simple, and the as-constructed G-FET DNA biosensor shows ultrasensitivity and high specificity, indicating its potential application in disease diagnostics as a point-of-care tool.

  9. Using the Surface Renewal Technique to Estimate CO2 Exchange from a Rice Field to the Atmosphere

    NASA Astrophysics Data System (ADS)

    Suvocarev, K.; Reba, M. L.; Runkle, B.

    2015-12-01

    Measuring CO2 emissions as surface fluxes is crucial for climate change predictions. One major set of techniques to measure surface fluxes is through continuous micrometeorological observations over different landscapes. Recent approaches of the surface renewal method (SR) are becoming important for their capacity to independently measure sensible (H) and latent heat (LE) fluxes while avoiding some of the shortcomings of the eddy covariance method (EC). Unlike EC, SR avoids orientation limitations, leveling requirements and instrumentation separation and shadowing issues. The main advantage of SR over EC method is in its applicability in both roughness and inertial sub-layers. Therefore, SR measurements can be planned in cases where fetch requirements are not adequate for EC application. We applied the recent approach as suggested by Castellvi et al. (2008) over two months (May to July, 2015) of high-frequency data collected by EC equipment from a rice field in Arkansas. The main goal was to extend this SR application to CO2 fluxes (Fc) over agricultural fields. The results show high correlation between EC and SR fluxes (H, LE and Fc) when they are compared for all atmospheric stability conditions (R2 > 0.75). Some overestimation is observed for SR with respect to EC fluxes, similar to the findings of Castellvi et al. (2008) for rangeland grass. For all the data, SR analysis results were about 11%, 18% and 17% higher than the EC results for H, LE and Fc, respectively. These higher flux estimates resulted in better energy balance closure. The root mean square error for Fc was 6.55 μmol m-2 s-1. The observed overestimation will be addressed in the future by using additional methods for the turbulent fluxes quantification.

  10. A new submodelling technique for multi-scale finite element computation of electromagnetic fields: Application in bioelectromagnetism

    NASA Astrophysics Data System (ADS)

    Aristovich, K. Y.; Khan, S. H.

    2010-07-01

    Complex multi-scale Finite Element (FE) analyses always involve high number of elements and therefore require very long time of computations. This is caused by the fact, that considered effects on smaller scales have greater influences on the whole model and larger scales. Thus, mesh density should be as high as required by the smallest scale factor. New submodelling routine has been developed to sufficiently decrease the time of computation without loss of accuracy for the whole solution. The presented approach allows manipulation of different mesh sizes on different scales and, therefore total optimization of mesh density on each scale and transfer results automatically between the meshes corresponding to respective scales of the whole model. Unlike classical submodelling routine, the new technique operates with not only transfer of boundary conditions but also with volume results and transfer of forces (current density load in case of electromagnetism), which allows the solution of full Maxwell's equations in FE space. The approach was successfully implemented for electromagnetic solution in the forward problem of Magnetic Field Tomography (MFT) based on Magnetoencephalography (MEG), where the scale of one neuron was considered as the smallest and the scale of whole-brain model as the largest. The time of computation was reduced about 100 times, with the initial requirements of direct computations without submodelling routine of 10 million elements.

  11. Ultra-thin resistive switching oxide layers self-assembled by field-induced oxygen migration (FIOM) technique

    PubMed Central

    Lee, Sangik; Hwang, Inrok; Oh, Sungtaek; Hong, Sahwan; Kim, Yeonsoo; Nam, Yoonseung; Lee, Keundong; Yoon, Chansoo; Kim, Wondong; Park, Bae Ho

    2014-01-01

    High-performance ultra-thin oxide layers are required for various next-generation electronic and optical devices. In particular, ultra-thin resistive switching (RS) oxide layers are expected to become fundamental building blocks of three-dimensional high-density non-volatile memory devices. Until now, special deposition techniques have been introduced for realization of high-quality ultra-thin oxide layers. Here, we report that ultra-thin oxide layers with reliable RS behavior can be self-assembled by field-induced oxygen migration (FIOM) at the interface of an oxide-conductor/oxide-insulator or oxide-conductor/metal. The formation via FIOM of an ultra-thin oxide layer with a thickness of approximately 2–5 nm and 2.5% excess oxygen content is demonstrated using cross-sectional transmission electron microscopy and secondary ion mass spectroscopy depth profile. The observed RS behavior, such as the polarity dependent forming process, can be attributed to the formation of an ultra-thin oxide layer. In general, as oxygen ions are mobile in many oxide-conductors, FIOM can be used for the formation of ultra-thin oxide layers with desired properties at the interfaces or surfaces of oxide-conductors in high-performance oxide-based devices. PMID:25362933

  12. The Applications of Decision-Level Data Fusion Techniques in the Field of Multiuser Detection for DS-UWB Systems.

    PubMed

    Gu, Yebo; Yang, Minglei; Shi, Zhenguo; Wu, Zhilu

    2015-09-25

    In this paper, the decision-level data fusion techniques are extended to the multiuser detection (MUD) field. Then two novel MUD algorithms, that is the chairman arbitrating decision-level fusion criterion (CA-DFC) based MUD algorithm and the veto logic decision-level fusion criterion (VL-DFC) based MUD algorithm, are proposed for DS-UWB communication systems. In CA-DFC based method, the chairman can make his arbitration among the preliminary decisions from sub-optimal detectors by his own rule. In the VL-DFC based method, the undetermined bits in these preliminary decisions are considered to construct a simplified solution space, and then the chairman can make his final decision within this space. Simulation results demonstrate that the performances of CA-DFC and VL-DFC based MUD algorithms are superior to those of other sub-optimal MUD algorithms, and even close to that of OMD. Moreover, both of these proposed algorithms have lower computational complexity than OMD, which reveals their efficiency. Compared with CA-DFC, VL-DFC based algorithm achieves a little improvement in its performance, at the cost of the increment in its computational complexity. Thus, they can be applied to different practical situations.

  13. The Applications of Decision-Level Data Fusion Techniques in the Field of Multiuser Detection for DS-UWB Systems

    PubMed Central

    Gu, Yebo; Yang, Minglei; Shi, Zhenguo; Wu, Zhilu

    2015-01-01

    In this paper, the decision-level data fusion techniques are extended to the multiuser detection (MUD) field. Then two novel MUD algorithms, that is the chairman arbitrating decision-level fusion criterion (CA-DFC) based MUD algorithm and the veto logic decision-level fusion criterion (VL-DFC) based MUD algorithm, are proposed for DS-UWB communication systems. In CA-DFC based method, the chairman can make his arbitration among the preliminary decisions from sub-optimal detectors by his own rule. In the VL-DFC based method, the undetermined bits in these preliminary decisions are considered to construct a simplified solution space, and then the chairman can make his final decision within this space. Simulation results demonstrate that the performances of CA-DFC and VL-DFC based MUD algorithms are superior to those of other sub-optimal MUD algorithms, and even close to that of OMD. Moreover, both of these proposed algorithms have lower computational complexity than OMD, which reveals their efficiency. Compared with CA-DFC, VL-DFC based algorithm achieves a little improvement in its performance, at the cost of the increment in its computational complexity. Thus, they can be applied to different practical situations. PMID:26404273

  14. Electromagnetic self-consistent field initialization and fluid advance techniques for hybrid-kinetic PWFA code Architect

    NASA Astrophysics Data System (ADS)

    Massimo, F.; Marocchino, A.; Rossi, A. R.

    2016-09-01

    The realization of Plasma Wakefield Acceleration experiments with high quality of the accelerated bunches requires an increasing number of numerical simulations to perform first-order assessments for the experimental design and online-analysis of the experimental results. Particle in Cell codes are the state-of-the-art tools to study the beam-plasma interaction mechanism, but due to their requirements in terms of number of cores and computational time makes them unsuitable for quick parametric scans. Considerable interest has been shown thus in methods which reduce the computational time needed for the simulation of plasma acceleration. Such methods include the use of hybrid kinetic-fluid models, which treat the relativistic bunches as in a PIC code and the background plasma electrons as a fluid. A technique to properly initialize the bunch electromagnetic fields in the time explicit hybrid kinetic-fluid code Architect is presented, as well the implementation of the Flux Corrected Transport scheme for the fluid equations integrated in the code.

  15. Inspection of the Space Shuttle External Tank SOFI Using Near-Field and Focused Millimeter Wave Nondestructive Testing Techniques

    NASA Technical Reports Server (NTRS)

    Kharkovsky, S.; Hepburn, F.; Walker, J.; Zoughi, R.

    2005-01-01

    The Space Shuttle Columbia's catastrophic failure has been attributed to a piece of external tank SOFI (Spray On Foam Insulation) striking the left wing of the orbiter causing significant damage to some of the reinforced carbon/carbon leading edge wing panels. Subsequently, several nondestructive testing (NDT) techniques have been considered for inspecting the external tank. One such method involves using millimeter waves which have been shown to easily penetrate through the foam and provide high resolution images of its interior structures. This paper presents the results of inspecting three different SOFI covered panels by reflectometers at millimeter wave frequencies, specifically at 100 GHz. Each panel was fitted with various embedded anomalies/inserts representing voids and unbonds of diferent shapes, sizes and locations within each panel. In conjunction with these reJqectome&rs, radiators including a focused lens antenna and a small horn antenna were used. The focused lens antenna provided for a footprint diameter of approximately 1.25 cm (0.5") at 25.4 cm (10") away from the lens surface. The horn antenna was primarily operated in its near-field for obtaining relatively high resolution images. These images were produced using 2 0 scanning mechanisms. Discussions of the difference between the capabilities of these two types of antennas (radiators) for the purpose of inspecting the SOFI as it relates to the produced images are also presented.

  16. The application of the RELIEF technique for velocity field measurements in the ASTF C1 test cell

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The Aeropropulsion Systems Test Facility (ASTF) C1 Test Cell is to be configured for propulsion tests of National Aerospace Plane (NASP) engines over flight Mach number conditions ranging from 0.5 to 3.8. This facility is capable of continuously generating a 5 ft. x 5 ft. square free air jet flow field at a local Mach number up to 3.32 with a density of between 0.134 and 0.048 amagat and a static temperature of 257 K or less. The potential of the Raman Excitation + Laser Induced Electronic Fluorescence (RELIEF) velocity measurement technique for measuring the three dimensional velocity profile across the exit plane of this jet and the entrance plane to the test engine under these conditions is examined. Velocity measurements must be done to an accuracy of better than 1 percent. Flow direction must be measured to better than 1 deg for inlet performance evaluation. Measurements to these specifications need to be done with a grid spacing of approximately 1/100th of the cross sectional dimension of the free jet exit in a time not greater than 30 seconds.

  17. A new technique to optimize coil winding path for the arbitrarily distributed magnetic field and application to CHS-qa modular coils

    NASA Astrophysics Data System (ADS)

    Abe, M.; Nakayama, T.; Okamura, S.; Matsuoka, K.

    2004-11-01

    A new technique to calculate an arbitrarily shaped coil winding path for a target magnetic field distribution has been developed. The technique is called DUCAS (Design tool Using Current potentials And SVD, SVD= Singular Value Decomposition). The coil winding surface (CWS) is modeled by triangular finite elements (FEs). The SVD is applied on the response matrix from the current potentials (CPs) of the FE nodes to the magnetic field, to get eigen distribution functions of CPs and singular values (SVs). Using the eigen functions with large SVs, the CP distribution is determined on the CWS so as to reproduce a given magnetic field distribution. Discrete coil shapes are determined along the contour (flow) lines of CPs. The arbitrarily formed CWS is acceptable in DUCAS. We applied the DUCAS on CHS-qa (quasi-axisymmetric Compact Helical System) modular coils and confirmed that the technique is applicable on designs of helical system modular coils.

  18. Ambient in-situ immersion freezing measurements - findings from the ZAMBIS 2014 field campaign for three ice nucleation techniques

    NASA Astrophysics Data System (ADS)

    Kohn, Monika; Atkinson, James D.; Lohmann, Ulrike; Kanji, Zamin A.

    2015-04-01

    To estimate the influence of clouds on the Earth's radiation budget, it is crucial to understand cloud formation processes in the atmosphere. A key process, which significantly affects cloud microphysical properties and the initiation of precipitation thus contributing to the hydrological cycle, is the prevailing type of ice nucleation mechanism. In mixed-phase clouds immersion freezing is the dominant ice crystal forming mechanism, whereby ice nucleating particles (INP) first act as cloud condensation nuclei (CCN) and are activated to cloud droplets followed by freezing upon supercooling. There are a number of experimental methods and techniques to investigate the ice nucleating ability in the immersion mode, however most techniques are offline for field sampling or only suitable for laboratory measurements. In-situ atmospheric studies are needed to understand the ice formation processes of 'real world' particles. Laboratory experiments simulate conditions of atmospheric processes like ageing or coating but are still idealized. Our method is able to measure ambient in-situ immersion freezing on single immersed aerosol particles. The instrumental setup consists of the recently developed portable immersion mode cooling chamber (PIMCA) as a vertical extension to the portable ice nucleation chamber (PINC, [1]), where the frozen fraction of activated aerosol particles are detected by the ice optical depolarization detector (IODE, [2]). Two additional immersion freezing techniques based on a droplet freezing array [3,4] are used to sample ambient aerosol particles either in a suspension (fraction larger ~0.6 μm) or on PM10-filters to compare different ice nucleation techniques. Here, we present ambient in-situ measurements at an urban forest site in Zurich, Switzerland held during the Zurich ambient immersion freezing study (ZAMBIS) in spring 2014. We investigated the ice nucleating ability of natural atmospheric aerosol with the PIMCA/PINC immersion freezing setup as

  19. Axillary Irradiation with High Tangent Fields for Clinically Node-Negative Breast Cancer: Can 3-D Conformal Radiotherapy with a Field-in-Field Technique Better Control the Axilla?

    PubMed

    Sanuki, Naoko; Takeda, Atsuya; Amemiya, Atsushi; Ofuchi, Toru; Ono, Masato; Ogata, Haruki; Yamagami, Ryo; Hatayama, Jun; Eriguchi, Takahisa; Kunieda, Etsuo

    2013-10-01

    The target volume for postoperative breast irradiation is the remaining breast tissue, and the axillary region is not an intentional target volume. Between 2001 and 2009, eligible women with pT1-2cN0/pN0(sn) breast cancer underwent breast-conserving therapy without axillary dissection. Treatment outcomes between 2 radiotherapy planning groups, high tangent fields with 2-dimensional (2-D) simulation-based planning and 3-dimensional (3-D) computed tomography-based planning with a field-in-field technique, were compared. The correlating factors for axillary failure were also calculated. In total, 678 patients were eligible. As of May 2009, the median follow-up times for the 2-D (n = 346) and 3-D (n = 332) groups were 94 and 52 months, respectively. Patient characteristics were balanced, except for a younger population in the 2-D group and more lymphovascular invasion in the 3-D group. On multivariate analysis, 2-D planning was the only risk factor for axillary failure. In the 2-D and 3-D groups, the 5-year cumulative incidences of axillary failure were 8 (3.1%) and 1 (0.3%) (log-rank p = 0.009), respectively. The respective 5-year overall survival rates were 97.4 and 98.4% (p = 0.4). High tangent irradiation with 3-D planning improved axillary control compared to that with 2-D planning, suggesting that optimizing axillary dose distribution may impact outcomes.

  20. Electro-Optical Sensor Fabricated Using a Bulk Cleavage Technique and Its Characteristics for Near-Field Intra-Body Communication

    NASA Astrophysics Data System (ADS)

    Furuya, Akinori; Sasaki, Ai-ichiro; Morimura, Hiroki; Aihara, Kimihisa; Shinagawa, Mitsuru

    2013-09-01

    This paper describes how to obtain a low cost electro-optical (EO) sensor module for the mass production of near-field intra-body communication devices. In this study, we used a bulk cleavage technique to fabricate EO modulators without the need for any optical polishing or washing processes, and clarified the feasibility of assembling optical components using only a passive alignment technique with a compact housing.

  1. Stress analysis and tectonic trends of southern Sinai Peninsula, using potential field data analysis and anisotropy technique

    NASA Astrophysics Data System (ADS)

    Saleh, Salah; Saleh, Ahmed

    2012-09-01

    The aim of the present work is to evaluate the stress direction and the tectonic trends of the study area using magnetic anisotropy and potential field data interpretations (Bouguer and aeromagnetic). The specific objective of the gravity and aeromagnetic interpretation is to establish the trend and depth of the structural configuration of the basement rocks. Horizontal gradient techniques could to delineate directions of deep sources and enabled tracing several faults, lineaments and tectonic boundaries of basement rocks. The trend analysis shows N40°-50°W, N10°-20°W and N10°-20°E which may be related to the Gulf of Suez, Red Sea and Gulf of Aqaba stresses. However, Euler Deconvolution technique was applied using the aeromagnetic data to provide reliable information about penetrated source depth (100 m and ˜10.0 km) and trends of the subsurface sources (principally in NW and NE directions). Moreover, representative 72 oriented rock samples have been collected from seven sites in the study area. The rock magnetic properties and magnetic anisotropy analysis have been determined for all the studied samples. The interpretation clearly defined magnetic lineation at all sites and anisotropy of magnetic susceptibility ( AMS) parameters. The stress direction of the studied area has been evaluated using magnetic anisotropy and geophysical analysis. Generally the estimated geophysical data analysis (Bouguer and aeromagnetic) are well consistent with the AMS interpretations of this study. The results indicated that the directions of predominant faults and foliations are NW-SE (related to the Gulf of Suez and Red Sea rifting) which indicate that the main stress and tectonic trend is NE-SW, which is more predominant in southern Sinai region. Moreover, it is clear that, the studied area was affected also by less predominant sources trended in NE-SW direction, which related to the tectonic activity of Gulf of Aqaba. The least predominant is north 40°-50° east that is

  2. Stress analysis and tectonic trends of southern Sinai Peninsula, using potential field data analysis and anisotropy technique

    NASA Astrophysics Data System (ADS)

    Saleh, Salah; Saleh, Ahmed

    2012-09-01

    The aim of the present work is to evaluate the stress direction and the tectonic trends of the study area using magnetic anisotropy and potential field data interpretations (Bouguer and aeromagnetic). The specific objective of the gravity and aeromagnetic interpretation is to establish the trend and depth of the structural configuration of the basement rocks. Horizontal gradient techniques could to delineate directions of deep sources and enabled tracing several faults, lineaments and tectonic boundaries of basement rocks. The trend analysis shows N40°-50°W, N10°-20°W and N10°-20°E which may be related to the Gulf of Suez, Red Sea and Gulf of Aqaba stresses. However, Euler Deconvolution technique was applied using the aeromagnetic data to provide reliable information about penetrated source depth (100 m and ˜10.0 km) and trends of the subsurface sources (principally in NW and NE directions). Moreover, representative 72 oriented rock samples have been collected from seven sites in the study area. The rock magnetic properties and magnetic anisotropy analysis have been determined for all the studied samples. The interpretation clearly defined magnetic lineation at all sites and anisotropy of magnetic susceptibility (AMS) parameters. The stress direction of the studied area has been evaluated using magnetic anisotropy and geophysical analysis. Generally the estimated geophysical data analysis (Bouguer and aeromagnetic) are well consistent with the AMS interpretations of this study. The results indicated that the directions of predominant faults and foliations are NW-SE (related to the Gulf of Suez and Red Sea rifting) which indicate that the main stress and tectonic trend is NE-SW, which is more predominant in southern Sinai region. Moreover, it is clear that, the studied area was affected also by less predominant sources trended in NE-SW direction, which related to the tectonic activity of Gulf of Aqaba. The least predominant is north 40°-50° east that is

  3. Studying the spatial variability of Cr in agricultural field using both particle induced X-ray emission (PIXE) and instrumental neutron activation analysis (INAA) technique

    NASA Astrophysics Data System (ADS)

    Cruvinel, Paulo E.; Crestana, Sílvio; Artaxo, Paulo; Martins, JoséV.; Armelin, Maria JoséA.

    1996-04-01

    In the field of soil physics, a technique which permits a non-destructive, accurate and fast elemental analysis with a minimum of sample preparation effort is often desired. Although trace elements are minor components of the solid phase, they play an important role in soil fertility. Cr is of nutritional importance because it is a required element in human and animal nutrition. The immobility of Cr may be responsible for an inadequate Cr supply to plants. This work not only demonstrates the suitability of PIXE as a fast and non-destructive technique, useful to measure Cr content in soil samples, but also outlines a study of spatial variability of that element in agricultural field. To demonstrate the capability of the method soil samples were collected in a 5000 m 2 agricultural field. The soil samples were analyzed using both PIXE and INAA techniques. Besides, a Fourier interpolation technique was used to verify the distribution of Cr along of the sampled field. INAA was carried out by means of the γ-ray emitted by 51Cr(320 keV). Results show that there is a good linear relationship between the elemental concentration of Cr obtained using those techniques, i.e. a correlation coefficient of r2 = 0.82 was achieved.

  4. SU-E-T-272: Radiation Damage Comparison Between Intensity Modulated Radiotherapy and Field-In-Field Technique in Breast Cancer Treatments

    SciTech Connect

    Ai, H; Zhang, H

    2014-06-01

    Purpose: To compare normal tissue complications between IMRT and FIF treatment in breast cancer. Methods: 16 patients treated with IMRT plan and 20 patients treated with FIF plan were evaluated in this study. Both kinds of plans were generated using Eclipse treatment planning system by dosimetrist following clinical radiotherapy treatment guidelines. The plans were reviewed and approved by radiation oncologist. The average survival fraction (SF) for three different normal tissue cells of each concerned structure can be calculated from differential dose volume histogram (DVH) using linear quadratic model. The three types of normal tissues include radiosensitive, moderately radiosensitive and radio-resistant that represents 70%, 50% and 30% survival fractions, respectively, for a 2-Gy open field. Equivalent uniform doses (EUD) for corresponding normal tissues of each structure were calculated. Results: The EUDs of the lungs, heart, healthy breast and spinal cord with both IMRT and FIF treatments were calculated. Considering the average value of all IMRT plans, the lung of treated side absorbed 16.0% of dosage prescribed to the tumor if the radiosensitivity of the lung is similar to the radiosensitive cell line. For moderately radiosensitive and radio-resistant lung tissue, the average EUDs can be 18.9% and 22.4% of prescription. In contrast, patients treated with FIF plans were delivered 6.0%, 7.5% and 10.3% of prescribed dose for radiosensitive, moderately radiosensitive and radio-resistant lung tissue, respectively. Comparing heart EUDs between IMRT and FIF plans, average absorbed doses in IMRT treatment were 7.7%, 8.7% and 9.7% of prescription for three types of heart normal tissue cell lines while FIF treatments delivered only 1.3%, 1.5% and 1.6% of prescription dose. For the other organs, the results were similar. Conclusion: The results indicated that breast cancer treatment using IMRT technique had more normal tissue damage than FIF treatment. FIF demonstrated

  5. Comparison of the Effectiveness of Water-Based Extraction of Substances from Dry Tea Leaves with the Use of Magnetic Field Assisted Extraction Techniques.

    PubMed

    Zaguła, Grzegorz; Bajcar, Marcin; Saletnik, Bogdan; Czernicka, Maria; Puchalski, Czesław; Kapusta, Ireneusz; Oszmiański, Jan

    2017-10-03

    This article presents the findings of a study investigating the feasibility of using a magnetic field assisted technique for the water-based extraction of mineral components, polyphenols, and caffeine from dry black and green tea leaves. The authors present a concept of applying constant and variable magnetic fields in the process of producing water-based infusions from selected types of tea. Analyses investigating the effectiveness of the proposed technique in comparison with conventional infusion methods assessed the contents of selected mineral components-i.e., Al, Ca, Cu, K, Mg, P, S, and Zn-which were examined with the use of ICP-OES. The contents of caffeine and polyphenolic compounds were assessed using the HPLC. A changing magnetic field permitted an increased effectiveness of extraction of the mineral components, caffeine, and polyphenols. The findings support the conclusion that a changing magnetic field assisted extraction method is useful for obtaining biologically valuable components from tea infusions.

  6. (1)H NMR at Larmor frequencies down to 3Hz by means of Field-Cycling techniques.

    PubMed

    Kresse, B; Becher, M; Privalov, A F; Hofmann, M; Rössler, E A; Vogel, M; Fujara, F

    2017-04-01

    Field-Cycling (FC) NMR experiments were carried out at (1)H Larmor frequencies down to about 3Hz. This could be achieved by fast switching a high polarizing magnetic field down to a low evolution field which is tilted with respect to the polarization field. Then, the low frequency Larmor precession of the nuclear spin magnetization about this evolution field is registered by means of FIDs in a high detection field. The crucial technical point of the experiment is the stabilization of the evolution field, which is achieved by compensating for temporal magnetic field fluctuations of all three spatial components. The paper reports on some other basic low field experiments such as the simultaneous measurement of the Larmor frequency and the spin-lattice relaxation time in such small fields as well as the irradiation of oscillating transversal magnetic field pulses at very low frequencies as a novel method for field calibration in low field FC NMR. The potential of low field FC is exemplified by the (1)H relaxation dispersion of water at frequencies below about 2kHz stemming from the slow proton exchange process.

  7. Use of a semi-field system to evaluate the efficacy of topical repellents under user conditions provides a disease exposure free technique comparable with field data.

    PubMed

    Sangoro, Onyango; Lweitojera, Dickson; Simfukwe, Emmanuel; Ngonyani, Hassan; Mbeyela, Edgar; Lugiko, Daniel; Kihonda, Japhet; Maia, Marta; Moore, Sarah

    2014-04-26

    Before topical repellents can be employed as interventions against arthropod bites, their efficacy must be established. Currently, laboratory or field tests, using human volunteers, are the main methods used for assessing the efficacy of topical repellents. However, laboratory tests are not representative of real life conditions under which repellents are used and field-testing potentially exposes human volunteers to disease. There is, therefore, a need to develop methods to test efficacy of repellents under real life conditions while minimizing volunteer exposure to disease. A lotion-based, 15% N, N-Diethyl-3-methylbenzamide (DEET) repellent and 15% DEET in ethanol were compared to a placebo lotion in a 200 sq m (10 m × 20 m) semi-field system (SFS) against laboratory-reared Anopheles arabiensis mosquitoes and in full field settings against wild malaria vectors and nuisance-biting mosquitoes. The average percentage protection against biting mosquitoes over four hours in the SFS and field setting was determined. A Poisson regression model was then used to determine relative risk of being bitten when wearing either of these repellents compared to the placebo. Average percentage protection of the lotion-based 15% DEET repellent after four hours of mosquito collection was 82.13% (95% CI 75.94-88.82) in the semi-field experiments and 85.10% (95% CI 78.97-91.70) in the field experiments. Average percentage protection of 15% DEET in ethanol after four hours was 71.29% (CI 61.77-82.28) in the semi-field system and 88.24% (84.45-92.20) in the field. Semi-field evaluation results were comparable to full-field evaluations, indicating that such systems could be satisfactorily used in measuring efficacy of topically applied mosquito repellents, thereby avoiding risks of exposure to mosquito-borne pathogens, associated with field testing.

  8. Use of a semi-field system to evaluate the efficacy of topical repellents under user conditions provides a disease exposure free technique comparable with field data

    PubMed Central

    2014-01-01

    Background Before topical repellents can be employed as interventions against arthropod bites, their efficacy must be established. Currently, laboratory or field tests, using human volunteers, are the main methods used for assessing the efficacy of topical repellents. However, laboratory tests are not representative of real life conditions under which repellents are used and field-testing potentially exposes human volunteers to disease. There is, therefore, a need to develop methods to test efficacy of repellents under real life conditions while minimizing volunteer exposure to disease. Methods A lotion-based, 15% N, N-Diethyl-3-methylbenzamide (DEET) repellent and 15% DEET in ethanol were compared to a placebo lotion in a 200 sq m (10 m × 20 m) semi-field system (SFS) against laboratory-reared Anopheles arabiensis mosquitoes and in full field settings against wild malaria vectors and nuisance-biting mosquitoes. The average percentage protection against biting mosquitoes over four hours in the SFS and field setting was determined. A Poisson regression model was then used to determine relative risk of being bitten when wearing either of these repellents compared to the placebo. Results Average percentage protection of the lotion-based 15% DEET repellent after four hours of mosquito collection was 82.13% (95% CI 75.94-88.82) in the semi-field experiments and 85.10% (95% CI 78.97-91.70) in the field experiments. Average percentage protection of 15% DEET in ethanol after four hours was 71.29% (CI 61.77-82.28) in the semi-field system and 88.24% (84.45-92.20) in the field. Conclusions Semi-field evaluation results were comparable to full-field evaluations, indicating that such systems could be satisfactorily used in measuring efficacy of topically applied mosquito repellents, thereby avoiding risks of exposure to mosquito-borne pathogens, associated with field testing. PMID:24767458

  9. Integrating silicon nanowire field effect transistor, microfluidics and air sampling techniques for real-time monitoring biological aerosols.

    PubMed

    Shen, Fangxia; Tan, Miaomiao; Wang, Zhenxing; Yao, Maosheng; Xu, Zhenqiang; Wu, Yan; Wang, Jindong; Guo, Xuefeng; Zhu, Tong

    2011-09-01

    Numerous threats from biological aerosol exposures, such as those from H1N1 influenza, SARS, bird flu, and bioterrorism activities necessitate the development of a real-time bioaerosol sensing system, which however is a long-standing challenge in the field. Here, we developed a real-time monitoring system for airborne influenza H3N2 viruses by integrating electronically addressable silicon nanowire (SiNW) sensor devices, microfluidics and bioaerosol-to-hydrosol air sampling techniques. When airborne influenza H3N2 virus samples were collected and delivered to antibody-modified SiNW devices, discrete nanowire conductance changes were observed within seconds. In contrast, the conductance levels remained relatively unchanged when indoor air or clean air samples were delivered. A 10-fold increase in virus concentration was found to give rise to about 20-30% increase in the sensor response. The selectivity of the sensing device was successfully demonstrated using H1N1 viruses and house dust allergens. From the simulated aerosol release to the detection, we observed a time scale of 1