Science.gov

Sample records for field large bore

  1. Design of HQ -- a High Field Large Bore Nb3Sn Quadrupole Magnet for LARP

    SciTech Connect

    Felice, H.; Ambrosio, G.; Anerella, M.; Bossert, R.; Caspi, S.; Cheng, D.; Dietderich, D.; Ferracin, P.; Ghosh, A. K.; Hafalia, R.; Hannaford, C. R.; Kashikhin, V.; Schmalze, J.; Prestemon, S.; Sabbi, G. L.; Wanderer, P.; Zlobin, A. V.

    2008-08-17

    In support of the Large Hadron Collider luminosity upgrade, a large bore (120 mm) Nb{sub 3}Sn quadrupole with 15 T peak coil field is being developed within the framework of the US LHC Accelerator Research Program (LARP). The 2-layer design with a 15 mm wide cable is aimed at pre-stress control, alignment and field quality while exploring the magnet performance limits in terms of gradient, forces and stresses. In addition, HQ will determine the magnetic, mechanical, and thermal margins of Nb{sub 3}Sn technology with respect to the requirements of the luminosity upgrade at the LHC.

  2. Bore-sight calibration of the profile laser scanner using a large size exterior calibration field

    NASA Astrophysics Data System (ADS)

    Koska, Bronislav; Křemen, Tomáš; Štroner, Martin

    2014-10-01

    The bore-sight calibration procedure and results of a profile laser scanner using a large size exterior calibration field is presented in the paper. The task is a part of Autonomous Mapping Airship (AMA) project which aims to create s surveying system with specific properties suitable for effective surveying of medium-wide areas (units to tens of square kilometers per a day). As is obvious from the project name an airship is used as a carrier. This vehicle has some specific properties. The most important properties are high carrying capacity (15 kg), long flight time (3 hours), high operating safety and special flight characteristics such as stability of flight, in terms of vibrations, and possibility to flight at low speed. The high carrying capacity enables using of high quality sensors like professional infrared (IR) camera FLIR SC645, high-end visible spectrum (VIS) digital camera and optics in the visible spectrum and tactical grade INSGPS sensor iMAR iTracerRT-F200 and profile laser scanner SICK LD-LRS1000. The calibration method is based on direct laboratory measuring of coordinate offset (lever-arm) and in-flight determination of rotation offsets (bore-sights). The bore-sight determination is based on the minimization of squares of individual point distances from measured planar surfaces.

  3. Large-bore pipe decontamination

    SciTech Connect

    Ebadian, M.A.

    1998-01-01

    The decontamination and decommissioning (D and D) of 1200 buildings within the US Department of Energy-Office of Environmental Management (DOE-EM) Complex will require the disposition of miles of pipe. The disposition of large-bore pipe, in particular, presents difficulties in the area of decontamination and characterization. The pipe is potentially contaminated internally as well as externally. This situation requires a system capable of decontaminating and characterizing both the inside and outside of the pipe. Current decontamination and characterization systems are not designed for application to this geometry, making the direct disposal of piping systems necessary in many cases. The pipe often creates voids in the disposal cell, which requires the pipe to be cut in half or filled with a grout material. These methods are labor intensive and costly to perform on large volumes of pipe. Direct disposal does not take advantage of recycling, which could provide monetary dividends. To facilitate the decontamination and characterization of large-bore piping and thereby reduce the volume of piping required for disposal, a detailed analysis will be conducted to document the pipe remediation problem set; determine potential technologies to solve this remediation problem set; design and laboratory test potential decontamination and characterization technologies; fabricate a prototype system; provide a cost-benefit analysis of the proposed system; and transfer the technology to industry. This report summarizes the activities performed during fiscal year 1997 and describes the planned activities for fiscal year 1998. Accomplishments for FY97 include the development of the applicable and relevant and appropriate regulations, the screening of decontamination and characterization technologies, and the selection and initial design of the decontamination system.

  4. Large Bore Powder Gun Qualification (U)

    SciTech Connect

    Rabern, Donald A.; Valdiviez, Robert

    2012-04-02

    A Large Bore Powder Gun (LBPG) is being designed to enable experimentalists to characterize material behavior outside the capabilities of the NNSS JASPER and LANL TA-55 PF-4 guns. The combination of these three guns will create a capability to conduct impact experiments over a wide range of pressures and shock profiles. The Large Bore Powder Gun will be fielded at the Nevada National Security Site (NNSS) U1a Complex. The Complex is nearly 1000 ft below ground with dedicated drifts for testing, instrumentation, and post-shot entombment. To ensure the reliability, safety, and performance of the LBPG, a qualification plan has been established and documented here. Requirements for the LBPG have been established and documented in WE-14-TR-0065 U A, Large Bore Powder Gun Customer Requirements. The document includes the requirements for the physics experiments, the gun and confinement systems, and operations at NNSS. A detailed description of the requirements is established in that document and is referred to and quoted throughout this document. Two Gun and Confinement Systems will be fielded. The Prototype Gun will be used primarily to characterize the gun and confinement performance and be the primary platform for qualification actions. This gun will also be used to investigate and qualify target and diagnostic modifications through the life of the program (U1a.104 Drift). An identical gun, the Physics Gun, will be fielded for confirmatory and Pu experiments (U1a.102D Drift). Both guns will be qualified for operation. The Gun and Confinement System design will be qualified through analysis, inspection, and testing using the Prototype Gun for the majority of process. The Physics Gun will be qualified through inspection and a limited number of qualification tests to ensure performance and behavior equivalent to the Prototype gun. Figure 1.1 shows the partial configuration of U1a and the locations of the Prototype and Physics Gun/Confinement Systems.

  5. Ultrasonic Measurements of Bore Temperature in Large Caliber Guns

    NASA Astrophysics Data System (ADS)

    Yuhas, Donald E.; Mutton, Mark J.; Remiasz, Jack R.; Vorres, Carol L.

    2009-03-01

    The Navy has a need to measure temperatures at critical areas on large caliber gun inner bore surfaces to insure appropriate action is taken in case of a misfire. Inappropriate actions could result in the loss of life and the disabling of a naval warship. In this report we describe the development of an ultrasonic-based sensor capable of non-intrusively measuring internal bore temperature. The results obtained during live fire field trials will be presented.

  6. Thermal modeling of bore fields with arbitrarily oriented boreholes

    NASA Astrophysics Data System (ADS)

    Lazzarotto, Alberto

    2016-04-01

    The accurate prediction of the thermal behavior of bore fields for shallow geothermal applications is necessary to carry out a proper design of such systems. A classical methodology to perform this analysis is the so-called g-function method. Most commercial tools implementing this methodology are designed to handle only bore fields configurations with vertical boreholes. This is a limitation since this condition might not apply in a real installation. In a recent development by the author, a semi-analytical method to determine g-function for bore fields with arbitrarily oriented boreholes was introduced. The strategy utilized is based on the idea introduced by Cimmino of representing boreholes as stacked finite line sources. The temperature along these finite lines is calculated by applying the superposition of the effects of each linear heat source in the field. This modeling technique allows to approximate uneven heat distribution along the boreholes which is a key feature for the calculation of g-functions according to Eskilson's boundary conditions. The method has been tested for a few simple configurations and showed results that are similar compare to previous results computed numerically by Eskilson. The method has been then successfully applied to the g-function calculation of an existing large scale highly asymmetrical bore field.

  7. Ultrasonic Phased Array Sound Field Mapping Through Large-Bore Coarse Grained Cast Austenitic Stainless Steel (CASS) Piping Materials

    SciTech Connect

    Cinson, Anthony D.; Crawford, Susan L.; Prowant, Matthew S.; Diaz, Aaron A.; Hathaway, John E.; Anderson, Michael T.

    2012-04-16

    A sound field beam mapping exercise was conducted to further understand the effects of coarse grained microstructures found in CASS materials on phased array ultrasonic wave propagation. Laboratory measurements were made on three CASS specimens with different microstructures; the specimens were polished and etched to reveal measurable grain sizes, shapes and orientations. Three longitudinal, phased array probes were fixed on a specimen's outside diameter with the sound field directed toward one end (face) of the pipe segment over a fixed range of angles. A point receiver was raster scanned over the surface of the specimen face generating a sound field image. A slice of CASS material was then removed from the specimen end and the beam mapping exercise repeated. The sound fields acquired were analyzed for spot size, coherency, and beam redirection. Analyses were conducted between the resulting sound fields and the microstructural characteristics of each specimen.

  8. Phased Array Ultrasonic Sound Field Mapping through Large-Bore Coarse Grained Cast Austenitic Stainless Steel (CASS) Components

    SciTech Connect

    Crawford, Susan L.; Cinson, Anthony D.; Prowant, Matthew S.; Coble, Jamie B.; Diaz, Aaron A.; Anderson, Michael T.

    2012-09-01

    A sound field beam mapping exercise was conducted to assist in understanding the effects of coarse-grained microstructures found in cast austenitic stainless steel (CASS) materials on acoustic longitudinal wave propagation. Ultrasonic laboratory measurements were made on three specimens representing four different grain structures. Phased array (PA) probes were fixed on each specimen surface and excited in the longitudinal mode at specific angles while a point receiver was scanned in a raster pattern over the end of the specimen, generating a transmitted sound field image. Three probes operating at nominal frequencies of 0.5, 0.8, and 1.0 MHz were used. A 6.4 mm (0.25-in.) thick slice was removed from the specimen end and beam mapping was repeated three times, yielding four full sets of beam images. Data were collected both with a constant part path for each configuration (probe, specimen and slice, angle, etc.) and with a variable part path (fixed position on the surface). The base specimens and slices were then polished and etched to reveal measureable grain microstructures that were compared to the sound field interactions and scattering effects seen in the collected data.

  9. View of four large bore holes on top of quarry ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View of four large bore holes on top of quarry wall, facing northeast - Granite Hill Plantation, Quarry No. 4, South side of State Route 16, 1.3 miles northeast east of Sparta, Sparta, Hancock County, GA

  10. VIEW OF PARALLEL LINE OF LARGE BORE HOLES IN NORTHERN ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW OF PARALLEL LINE OF LARGE BORE HOLES IN NORTHERN QUARRY AREA, FACING NORTHEAST - Granite Hill Plantation, Quarry No. 2, South side of State Route 16, 1.3 miles northeast east of Sparta, Sparta, Hancock County, GA

  11. DETAIL OF TWO LARGE BORE HOLES ON TOP OF SOUTH ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    DETAIL OF TWO LARGE BORE HOLES ON TOP OF SOUTH QUARRY WALL, FACING NORTH - Granite Hill Plantation, Quarry No. 1, South side of State Route 16, 1.3 miles northeast east of Sparta, Sparta, Hancock County, GA

  12. Operating Cost Reduction from Large Bore Snubber Reduction/Elimination

    SciTech Connect

    Brice-Nash, Richard; Dowdell, Michael; Swamy, Seth

    2006-07-01

    Large bore snubbers have typically been used in Nuclear Power plants to support the reactor coolant piping and equipment during dynamic loadings (seismic and postulated pipe break events) while also allowing free thermal expansion. However, these large bore snubbers require frequent inspection and testing to demonstrate operability. This paper will discuss the typical costs associated with maintenance and inspection and show how reduction in O and M costs can be achieved by reducing or eliminating the number of large bore snubbers in the nuclear power plant. This paper will also explain the basis for the reduction and/or elimination of these large bore snubbers and how alternate means of support may be provided, without compromising plant safety. Briefly stated, advances in fracture mechanics technology, developments in computational techniques, advancements in computer technology, and developments in industry standards and practices enable this application. (authors)

  13. In-bore radiography for large-caliber gun

    SciTech Connect

    Lucht, R.A.

    1987-01-01

    State-of-the-art techniques for dense object radiography, fast-transient digitization, modern computation, digital averaging and enhancement of multifilm radiographs, and microwave interferometry have been combined to provide modern propulsion and launch diagnostics for large-bore gun shots. An in-bore multifilm radiograph of a rod and sabot assembly was taken using a 2.3-MeV flash x-ray system. The launch system was radiographed approx.1 m from the muzzle end, where the gun tube walls are >1 in. thick. Excellent spatial resolution was achieved, and the straightness of the rod was determined to within 0.1 mm. A microwave interferometer produced in-bore position-vs-time measurements. External x-ray shadowgraphs were used to view yaw and sabot separation, and dynamic pressure measurements were compared with theoretical velocity profiles. The entire set of diagnostics comprises a self-consistent description of early projectile history.

  14. Mechanical design of a large bore quadrupole triplet magnet

    SciTech Connect

    Abbott, S.; Caylor, R.; Fong, E.; Tanabe, J.

    1987-03-01

    The mechanical design and construction of a 1 meter bore, low gradient quadrupole triplet is described. The magnet will be used for focussing a proton beam in accelerator studies of neutral particle at the Los Alamos National Laboratory. A significant feature of this magnet design is the precision location of the coil conductors within the steel yoke tube. Each of the quadrupole coils have been fabricated from water cooled aluminum conductor, wound in a cosine 2-theta geometry. The conductor bundles have been wound to a positional accuracy within +-0.050 cm which was required to reduce the harmonic content to less than 0.04% of the quadrupole field. Important aspects of the design, construction and assembly are described.

  15. Broad Ion Beam Extraction from Large Bore ECR Ion Source with Cylindrically Comb-Shaped Magnetic Fields Configuration by Feeding Simultaneously 11 to 13 GHz and 2.45 GHz Microwaves

    NASA Astrophysics Data System (ADS)

    Kato, Y.; Satani, T.; Matsui, Y.; Watanabe, T.; Muramatsu, M.; Tanaka, K.; Asaji, T.; Kitagawa, A.; Sato, F.; Iida, T.

    2008-11-01

    We tried to enlarge the operation window of an electron cyclotron resonance (ECR) ion source for producing the ECR plasma confined by cylindrically comb-shaped magnetic field, and for extracting the broad ion beam under the low pressures and low microwave powers. The magnetic field by permanent magnets constructs ECR zones at different positions for 2.45 GHz and 11 to 13 GHz microwaves, respectively. According to probe measurements, profiles of plasma density and temperature are different for using each single microwave. We conduct production of ECR plasma by launching simultaneously these two frequency microwaves, and obtain flat profiles of the electron density and the electron temperature. These profiles are not achieved by feeding single frequency microwave. It is found that plasma can be controllable on spatial profiles beyond wide operation window of plasma parameters. We conducted preliminary extracting and forming large bore ion beam from this source. We will make this source a part of tandem type ion source for the first stage. We investigated feasibility and hope to realize the device which has wide range operation window in a single device to produce many kinds of ion beams as like to universal source based on ECR ion source.

  16. Detailed design of the large-bore 8 T superconducting magnet for the NAFASSY test facility

    NASA Astrophysics Data System (ADS)

    Corato, V.; Affinito, L.; Anemona, A.; Besi Vetrella, U.; Di Zenobio, A.; Fiamozzi Zignani, C.; Freda, R.; Messina, G.; Muzzi, L.; Perrella, M.; Reccia, L.; Tomassetti, G.; Turtù, S.; della Corte, A.

    2015-03-01

    The ‘NAFASSY’ (NAtional FAcility for Superconducting SYstems) facility is designed to test wound conductor samples under high-field conditions at variable temperatures. Due to its unique features, it is reasonable to assume that in the near future NAFASSY will have a preeminent role at the international level in the qualification of long coiled cables in operative conditions. The magnetic system consists of a large warm bore background solenoid, made up of three series-connected grading sections obtained by winding three different Nb3Sn Cable-in-Conduit Conductors. Thanks to the financial support of the Italian Ministry for University and Research the low-field coil is currently under production. The design has been properly modified to allow the system to operate also as a stand-alone facility, with an inner bore diameter of 1144 mm. This magnet is able to provide about 7 T on its axis and about 8 T close to the insert inner radius, giving the possibility of performing a test relevant for large-sized NbTi or medium-field Nb3Sn conductors. The detailed design of the 8 T magnet, including the electro-magnetic, structural and thermo-hydraulic analysis, is here reported, as well as the production status.

  17. Beam characteristics of a large-bore copper laser with a radiatively cooled plasma

    SciTech Connect

    Chang, J.J.; Boley, C.D.; Molander, W.A.; Warner, B.E.; Martinez, M.W.

    1994-01-18

    In a large-bore copper vapor laser (CVL), excessive gas heating at the axial region of the discharge lowers its efficiency by thermally populating the metastable lower laser levels. The associated lower gas density also lengthens the discharge field-diffusion time, leading to weaker axial pumping and undesired beam characteristics. The authors` laboratory has developed a novel approach to circumvent this obstacle by cooling the plasma radiatively via a series of segmented metal plates (septa) placed vertically along the length of the tube. This improved tube design significantly lowers the average gas temperature and shortens the radial delay. A 27% increase in laser power was observed with the addition of septa. The authors have characterized the beam intensity profile, spatial and temporal pulse variation, and beam polarization through extensive laboratory measurements. A detailed computational model of the laser has been used to characterize and interpret the laboratory results.

  18. Ion beams extraction and measurements of plasma parameters on a multi-frequencies microwaves large bore ECRIS with permanent magnets

    SciTech Connect

    Nozaki, Dai; Kiriyama, Ryutaro; Takenaka, Tomoya; Kurisu, Yosuke; Yano, Keisuke; Sato, Fuminobu; Kato, Yushi; Iida, Toshiyuki

    2012-11-06

    We have developed an all-permanent magnet large bore electron cyclotron resonance ion source (ECRIS) for broad ion beam processing. The cylindrically comb-shaped magnetic field configuration is adopted for efficient plasma production and good magnetic confinement. To compensate for disadvantages of fixed magnetic configuration, a traveling wave tube amplifier (TWTA) is used. In the comb-shaped ECRIS, it is difficult to achieve controlling ion beam profiles in the whole inside the chamber by using even single frequency-controllable TWTA (11-13GHz), because of large bore size with all-magnets. We have tried controlling profiles of plasma parameters and then those of extracted ion beams by launching two largely different frequencies simultaneously, i.e., multi-frequencies microwaves. Here we report ion beam profiles and corresponding plasma parameters under various experimental conditions, dependence of ion beams against extraction voltages, and influence of different electrode positions on the electron density profile.

  19. Development of the large-bore powder gun for the Nevada Test Site

    NASA Astrophysics Data System (ADS)

    Esparza, James; Jensen, Brian

    2009-06-01

    Past fundamental work at the Nevada Test Site (NTS) U1a complex has been performed using explosively-driven flyer plates which provide high-pressure loading at the expense of some shock. In contrast, plate-impact experiments on single stage guns provide very planar loading conditions suitable for studying complex phenomena such as phase transitions and material strength, and provide important data useful for constraining and validating predictive models. The objective of the current work was to develop a large-bore powder gun capable of accelerating projectiles to moderately high velocity for impact experiments at NTS. This gun will span a performance gap between existing gun facilities and provide a means of examining phenomena over a wide range of stresses and time-scales. Advantages of the large-bore gun include the capability to load multiple samples simultaneously, the use of large diameter samples that significantly extend the time duration of the experiment, and minimal tilt. This new capability required the development of a disposable confinement system that used an explosively driven closure method to prevent contamination from moving up into the gun system. Experimental results of the qualification testing of the large-bore gun, the confinement system, and the explosively driven valve will be presented.

  20. Modeling of propellant flow and explosively-driven valve for the Large-Bore Powder Gun

    NASA Astrophysics Data System (ADS)

    Lam, Kin

    2013-06-01

    The Large-Bore Powder Gun, with a 3.5-inch bore, is being developed to provide dynamic experiments on physics samples at the Nevada Test Site with impact velocities exceeding 2 km/s. A confinement system is required to seal the target chamber from the gun system to keep it free of hazardous materials from the impact event. A key component of the confinement system is an explosively driven valve (EDV), which uses a small amount of explosive (PBX 9501) to drive an aluminum piston perpendicular to the barrel axis into a tapered hole. The objective of this study is to evaluate the efficacy of the EDV design via computational simulations using models validated with prototype experiments. We first established the gun performance characteristics using an interior ballistics code. Then an energy source model capable of generating the kinematics (i.e., pressure, velocity and displacement profiles) as predicted by the interior ballistic code is used in the hydrodynamics code CTH to calculate the M14 propellant gas expansion as the projectile travels down the gun barrel with the goal of obtaining the lateral (stagnation) pressure load on the EDV piston as it is inserted into the bore. A model of the EDV operation validated against stand-alone experiments is also developed. The gas flow and EDV models are combined to simulate integrated tests as well as the operating conditions specified for qualification. Results from these simulations and those involving design modifications to improve the confinement will be presented.

  1. MANTA, a novel plug-based vascular closure device for large bore arteriotomies: technical report.

    PubMed

    van Gils, Lennart; Daemen, Joost; Walters, Greg; Sorzano, Todd; Grintz, Todd; Nardone, Sam; Lenzen, Mattie; De Jaegere, Peter P T; Roubin, Gary; Van Mieghem, Nicolas M

    2016-09-18

    Catheter-based interventions have become a less invasive alternative to conventional surgical techniques for a wide array of cardiovascular diseases but often create large arteriotomies. A completely percutaneous technique is attractive as it may reduce the overall complication rate and procedure time. Currently, large bore arteriotomy closure relies on suture-based techniques. Access-site complications are not uncommon and often seem related to closure device failure. The MANTA VCD is a novel collagen-based closure device that specifically targets arteriotomies between 10 and 22 Fr. This technical report discusses the MANTA design concept, practical instructions for use and preliminary clinical experience. PMID:27639742

  2. Developing of the large-bore powder gun for the Nevada test site

    SciTech Connect

    Jensen, Brian J; Esparza, James S

    2009-01-01

    Plate-impact experiments on single stage guns provide very planar loading conditions suitable for studying complex phenomena such as phase transitions and material strength, and provide important data useful for constraining and validating predictive models. The objective of the current work was to develop a large-bore (3.5-inches or greater) powder gun capable of accelerating projectiles to moderately high velocities (greater than 2.25 km/s) for impact experiments at Nevada Test Site. This gun will span a performance gap between existing gun facilities and provide a means of examining phenomena over a wide range of stresses and time-scales. Advantages of the large-bore gun include the capability to load multiple samples simultaneously, the use of large diameter samples that significantly extend the time duration of the experiment, and minimal tilt (no bow). This new capability required the development of a disposable confinement system that used an explosively driven closure method to prevent contamination from moving up into the gun system. Experimental results for both the gun system and the explosive valve are presented.

  3. DEVELOPMENT OF THE LARGE-BORE POWDER GUN FOR THE NEVADA TEST SITE

    SciTech Connect

    Jensen, B.J.; Esparza, J.

    2009-12-28

    Plate-impact experiments on single stage guns provide very planar loading conditions suitable for studying complex phenomena such as phase transitions and material strength, and provide important data useful for constraining and validating predictive models. The objective of the current work was to develop a large-bore (3.5'' or greater) powder gun capable of accelerating projectiles to moderately high velocities (greater than 2.25 km/s) for impact experiments at Nevada Test Site. This gun will span a performance gap between existing gun facilities and provide a means of examining phenomena over a wide range of stresses and time-scales. Advantages of the large-bore gun include the capability to load multiple samples simultaneously, the use of large diameter samples that significantly extend the time duration of the experiment, and minimal tilt (no bow). This new capability required the development of a disposable confinement system that used an explosively driven closure method to prevent contamination from moving up into the gun system. Experimental results for both the gun system and the explosive valve are presented.

  4. Design of a Large Bore 60-T Pulse Magnet for Sandia National Laboratories

    SciTech Connect

    LESCH,B.; LI,L.; PERNAMBUCO-WISE,P.; ROVANG,DEAN C.; SCHNEIDER-MUNTAU,H.J.

    1999-09-23

    The design of a new pulsed magnet system for the generation of intense electron beams is presented. Determined by the required magnetic field profile along the axis, the magnet system consists of two coils (Coil No.1 and No.2) separated by a 32-mm axial gap. Each coil is energized independently. Both coils are internally reinforced with HIM Zylon fiber/epoxy composite. Coil No.1 made with AI-15 Glidcop wire has a bore of 110-mm diameter and is 200-mm long; it is energized by a 1.3-MJ, 13-kV capacitor bank. The magnetic field at the center of this coil is 30 T. Coil No.2 made with CuNb wire has a bore of 45 mm diameter, generates 60 T with a pulse duration of 60 ms, and is powered by a 4.0-MJ, 17.7-kV capacitor bank. We present design criteria, the coupling of the magnets, and the normal and the fault conditions during operation.

  5. Report on the development of the large-bore powder gun for the Nevada Test Site

    SciTech Connect

    B.J. Jensen

    2009-03-01

    Experiments are needed to locate phase boundaries and to provide both Hugoniot data and off-Hugoniot data (such as principle isentrope, refreezing, dynamic strength, etc.) achieved through complex loading paths. The objective of the current work was to de- velop a large bore (3.5 inch or greater) powder gun capable of accelerating projectiles to moderately high velocities exceeding 2 km/s for impact experiments. A total of 24 ex- periments were performed to measure the projectile velocity, breech strain, and projectile tilt to demonstrate the performance of the gun up to the maximum breech capacity of 16 pounds of propellant. Physics experiments using a multislug method were performed to obtain sound speed and Hugoniot for shocked cerium metal and to demonstrate the ability of the large bore gun to conduct well-defined, plate-impact experiments. In addition, six experiments were performed on the prototype containment system to examine the ability of the launcher and containment system to withstand the impact event and contain the propellant gases and impact debris postshot. The data presented here were essential for qualification of the launcher for experiments to be conducted at the U1a complex of the Nevada Test Site.

  6. Simple method for the generation of multiple homogeneous field volumes inside the bore of superconducting magnets.

    PubMed

    Chou, Ching-Yu; Ferrage, Fabien; Aubert, Guy; Sakellariou, Dimitris

    2015-01-01

    Standard Magnetic Resonance magnets produce a single homogeneous field volume, where the analysis is performed. Nonetheless, several modern applications could benefit from the generation of multiple homogeneous field volumes along the axis and inside the bore of the magnet. In this communication, we propose a straightforward method using a combination of ring structures of permanent magnets in order to cancel the gradient of the stray field in a series of distinct volumes. These concepts were demonstrated numerically on an experimentally measured magnetic field profile. We discuss advantages and limitations of our method and present the key steps required for an experimental validation. PMID:26182891

  7. Atmospheric noise of a breaking tidal bore.

    PubMed

    Chanson, Hubert

    2016-01-01

    A tidal bore is a surge of waters propagating upstream in an estuary as the tidal flow turns to rising and the flood tide propagates into a funnel-shaped system. Large tidal bores have a marked breaking roller. The sounds generated by breaking tidal bores were herein investigated in the field (Qiantang River) and in laboratory. The sound pressure record showed two dominant periods, with some similarity with an earlier study [Chanson (2009). J. Acoust. Soc. Am. 125(6), 3561-3568]. The two distinct phases were the incoming tidal bore when the sound amplitude increased with the approaching bore, and the passage of the tidal bore in front of the microphone when loud and powerful noises were heard. The dominant frequency ranged from 57 to 131 Hz in the Qiantang River bore. A comparison between laboratory and prototype tidal bores illustrated both common features and differences. The low pitch sound of the breaking bore had a dominant frequency close to the collective oscillations of bubble clouds, which could be modeled with a bubble cloud model using a transverse dimension of the bore roller. The findings suggest that this model might be over simplistic in the case of a powerful breaking bore, like that of the Qiantang River.

  8. Modeling of propellant flow and explosively-driven valve for the Large-Bore Powder Gun

    NASA Astrophysics Data System (ADS)

    Lam, Kin

    2014-05-01

    The Large-Bore Powder Gun is being developed to provide impact experiments on physics samples at the Nevada Test Site. A confinement system is required to seal the target chamber from the gun system to keep it free of hazardous materials from the impact event. A key component of the confinement system is an explosively driven valve (EDV), which uses a small amount of explosive to drive an aluminum piston perpendicular to the barrel axis into a tapered hole. The objective of this study is to evaluate designs of the confinement system via computational simulations using models validated with prototype experiments. A novel approach is adopted for this work, in which an energy source developed based on interior ballistic calculations was implemented in a hydrocode, which in turn was used to model the propellant flow, EDV operation, and their interactions. This paper describes the models and some simulation results leading to a proposed confinement system design.

  9. Optimizing power cylinder lubrication on a large bore natural gas engine

    NASA Astrophysics Data System (ADS)

    Luedeman, Matthew R.

    More than 6000 integral compressors, located along America's natural gas pipelines, pump natural gas across the United States. These compressors are powered by 2-stroke, large bore natural gas burning engines. Lowering the operating costs, reducing the emissions, and ensuring that these engines remain compliant with future emission regulations are the drivers for this study. Substantial research has focused on optimizing efficiency and reducing the fuel derived emissions on this class of engine. However, significantly less research has focused on the effect and reduction of lubricating oil derived emissions. This study evaluates the impact of power cylinder lubricating oil on overall engine emissions with an emphasis on reducing oxidation catalyst poisoning. A traditional power cylinder lubricator was analyzed; power cylinder lubricating oil was found to significantly impact exhaust emissions. Lubricating oil was identified as the primary contributor of particulate matter production in a large bore natural gas engine. The particulate matter was determined to be primarily organic carbon, and most likely direct oil carryover of small oil droplets. The particulate matter production equated to 25% of the injected oil at a nominal power cylinder lubrication rate. In addition, power cylinder friction is considered the primary contributor to friction loss in the internal combustion engine. This study investigates the potential for optimizing power cylinder lubrication by controlling power cylinder injection to occur at the optimal time in the piston cycle. By injecting oil directly into the ring pack, it is believed that emissions, catalyst poisoning, friction, and wear can all be reduced. This report outlines the design and theory of two electronically controlled lubrication systems. Experimental results and evaluation of one of the systems is included.

  10. A methodology for laser diagnostics in large-bore marine two-stroke diesel engines

    NASA Astrophysics Data System (ADS)

    Hult, J.; Mayer, S.

    2013-04-01

    Large two-stroke diesel engines for marine propulsion offer several challenges to successful implementation of the laser diagnostic techniques applied extensively in smaller automotive engines. For this purpose a fully operational large-bore engine has been modified to allow flexible optical access, through 24 optical ports with clear diameters of 40 mm. By mounting the entire optical set-up directly to the engine, effects of the vigorous vibrations and thermal drifts on alignment can be minimized. Wide-angle observation and illumination, as well as relatively large aperture detection, is made possible through mounting of optical modules and relays inside optical ports. This allows positioning of the last optical element within 10 mm from the cylinder wall. Finally, the implementation on a multi-cylinder engine allows for flexible and independent operation of the optically accessible cylinder for testing purposes. The performance of the integrated optical engine and imaging system developed is demonstrated through laser Mie scattering imaging of fuel jet structures, from which information on liquid penetration and spray angles can be deduced. Double pulse laser-sheet imaging of native in-cylinder structures is also demonstrated, for the purpose of velocimetry.

  11. SU-E-I-20: Comprehensive Quality Assurance Test of Second Generation Toshiba Aquilion Large Bore CT Simulator Based On AAPM TG-66 Recommendations

    SciTech Connect

    Zhang, D

    2015-06-15

    Purpose: AAPM radiation therapy committee task group No. 66 (TG-66) published a report which described a general approach to CT simulator QA. The report outlines the testing procedures and specifications for the evaluation of patient dose, radiation safety, electromechanical components, and image quality for a CT simulator. The purpose of this study is to thoroughly evaluate the performance of a second generation Toshiba Aquilion Large Bore CT simulator with 90 cm bore size (Toshiba, Nasu, JP) based on the TG-66 criteria. The testing procedures and results from this study provide baselines for a routine QA program. Methods: Different measurements and analysis were performed including CTDIvol measurements, alignment and orientation of gantry lasers, orientation of the tabletop with respect to the imaging plane, table movement and indexing accuracy, Scanogram location accuracy, high contrast spatial resolution, low contrast resolution, field uniformity, CT number accuracy, mA linearity and mA reproducibility using a number of different phantoms and measuring devices, such as CTDI phantom, ACR image quality phantom, TG-66 laser QA phantom, pencil ion chamber (Fluke Victoreen) and electrometer (RTI Solidose 400). Results: The CTDI measurements were within 20% of the console displayed values. The alignment and orientation for both gantry laser and tabletop, as well as the table movement and indexing and scanogram location accuracy were within 2mm as specified in TG66. The spatial resolution, low contrast resolution, field uniformity and CT number accuracy were all within ACR’s recommended limits. The mA linearity and reproducibility were both well below the TG66 threshold. Conclusion: The 90 cm bore size second generation Toshiba Aquilion Large Bore CT simulator that comes with 70 cm true FOV can consistently meet various clinical needs. The results demonstrated that this simulator complies with the TG-66 protocol in all aspects including electromechanical component

  12. Design of an RF Antenna for a Large0Bore, High Power, Steady State Plasma Processing Chamber for Material Separation

    SciTech Connect

    Rasmussen, D.A.; Freeman, R.L.

    2001-11-07

    The purpose of this Cooperative Research and Development Agreement (CRADA) between UT-Battelle, LLC, (Contractor), and Archimedes Technology Group, (Participant) is to evaluate the design of an RF antenna for a large-bore, high power, steady state plasma processing chamber for material separation. Criteria for optimization will be to maximize the power deposition in the plasma while operating at acceptable voltages and currents in the antenna structure. The project objectives are to evaluate the design of an RF antenna for a large-bore, high power, steady state plasma processing chamber for material separation. Criteria for optimization will be to maximize the power deposition in the plasma while operating at acceptable voltages and currents in the antenna structure.

  13. 40Ar/39Ar geochronology, paleomagnetism, and evolution of the Boring volcanic field, Oregon and Washington, USA

    USGS Publications Warehouse

    Fleck, Robert J.; Hagstrum, Jonathan T.; Calvert, Andrew T.; Evarts, Russell C.; Conrey, Richard M.

    2014-01-01

    The 40Ar/39Ar investigations of a large suite of fine-grained basaltic rocks of the Boring volcanic field (BVF), Oregon and Washington (USA), yielded two primary results. (1) Using age control from paleomagnetic polarity, stratigraphy, and available plateau ages, 40Ar/39Ar recoil model ages are defined that provide reliable age results in the absence of an age plateau, even in cases of significant Ar redistribution. (2) Grouping of eruptive ages either by period of activity or by composition defines a broadly northward progression of BVF volcanism during latest Pliocene and Pleistocene time that reflects rates consistent with regional plate movements. Based on the frequency distribution of measured ages, periods of greatest volcanic activity within the BVF occurred 2.7–2.2 Ma, 1.7–0.5 Ma, and 350–50 ka. Grouped by eruptive episode, geographic distributions of samples define a series of northeast-southwest–trending strips whose centers migrate from south-southeast to north-northwest at an average rate of 9.3 ± 1.6 mm/yr. Volcanic activity in the western part of the BVF migrated more rapidly than that to the east, causing trends of eruptive episodes to progress in an irregular, clockwise sense. The K2O and CaO values of dated samples exhibit well-defined temporal trends, decreasing and increasing, respectively, with age of eruption. Divided into two groups by K2O, the centers of these two distributions define a northward migration rate similar to that determined from eruptive age groups. This age and compositional migration rate of Boring volcanism is similar to the clockwise rotation rate of the Oregon Coast Range with respect to North America, and might reflect localized extension on the trailing edge of that rotating crustal block.

  14. Mesospheric bore formation from large-scale gravity wave perturbations observed by collocated all-sky OH imager and sodium lidar

    NASA Astrophysics Data System (ADS)

    Yue, J.; She, C.; Nakamura, T.; Harrell, S.; Yuan, T.

    2009-12-01

    On the night of 9 October 2007, long-horizontal-wavelength large-amplitude gravity waves were observed to steepen and form mesospheric bores at the altitude of ~87 km by the Kyoto University all-sky OH imager located at Fort Collins (41N, 105W), Colorado. The collocated Colorado State University sodium lidar simultaneously observed the presence of a temperature inversion layer implicating that both the gravity wave and bores were propagating in a ducted region. Moreover, a large cold front system was recorded several hours before in the troposphere which aligned with the phase fronts of these large gravity waves. For each of the 7 mesospheric bores observed in 2003-2008, we found similarly aligned cold front 1000 - 1500 km away, suggesting that the cold front is the likely source of the bore-generating large-scale gravity wave.

  15. Large-bore tapered-roller bearing performance and endurance to 2.4 million DN

    NASA Technical Reports Server (NTRS)

    Parker, R. J.

    1983-01-01

    The operating characteristics and experimental life estimates for 120.65 mm bore tapered roller bearings of two designs under combined radial and thrust loads were determined. A modified standard bearing design was tested at speeds up to 15,000 rpm. A computer optimized, high speed design was tested at speeds up to 20,000 rpm. Both designs were tested at a combined load of 26,700 N (6000 lb) radial load and and 53,400 N (12,000 lb) thrust load. Advanced helicopter transmissions which require the higher-speed capability of tapered-roller bearings also require higher temperature capability (ref. 2). Thus, materials with temperature capabilities higher than the conventional carburizing steels are required.

  16. Lubrication of high-speed, large bore tapered-roller bearings

    NASA Technical Reports Server (NTRS)

    Parker, R. J.; Signer, H. R.

    1977-01-01

    The performance of 120.65-mm- (4.75-in.-) bore tapered-roller bearings was investigated at shaft speeds up to 15,000 rpm (18,000 DN). Temperature distribution and bearing heat generation were determined as a function of shaft speed, radial and thrust loads, lubricant flow rate, and lubricant inlet temperature. Lubricant was supplied either by jets or by a combination of holes through the cone directly to the cone-rib contact and jets at the roller small-end side. Cone-rib lubrication significantly improved high-speed tapered-roller bearing performance, yielding lower cone-face temperatures and lower power loss and allowing lower lubricant flow rates for a given speed condition. Bearing temperatures increased with increased shaft speed and decreased with increased lubricant flow rate. Bearing power loss increased with increased shaft speed and increased lubricant flow rate.

  17. Arrangement for measuring the field angle of a magnetic field as a function of axial position within a magnet bore tube

    DOEpatents

    Pidcoe, Stephen V.; Zink, Roger A.; Boroski, William N.; McCaw, William R.

    1993-01-01

    An arrangement for measuring the field angle of a magnetic field as a function of axial position within a magnet bore tube of a magnet such as is used with the Superconducting Super Collider (SSC). The arrangement includes a magnetic field alignment gauge that is carried through the magnet bore tube by a positioning shuttle in predetermined increments. The positioning shuttle includes an extensible body assembly which is actuated by an internal piston arrangement. A pair of spaced inflatable cuffs are carried by the body assembly and are selectively actuated in cooperation with pressurizing of the piston to selectively drive the positioning shuttle in an axial direction. Control of the shuttle is provided by programmed electronic computer means located exteriorly of the bore tube and which controls valves provided pressurized fluid to the inflatable cuss and the piston arrangement.

  18. Multi-Frequency Microwaves Plasma Production for Active Profile Control of Ion Beams on a Large Bore ECR Ion Source with Permanent Magnets

    SciTech Connect

    Sakamoto, Naoki; Kato, Yushi; Kiriyama, Ryutaro; Takenaka, Tomoya; Sato, Fuminobu; Iida, Toshiyuki

    2011-01-07

    A new concept on magnetic field of plasma production and confinement by using permanent magnets, i.e. cylindrically comb-shaped magnets, has been proposed to enhance efficiency of an electron cyclotron resonance (ECR) plasma for broad and dense ion beam source under the low pressure and also the low microwave power. The resonance zones corresponding to the fundamental ECR for 2.45 GHz and 11-13 GHz frequency are constructed at different positions. The profiles of the plasma parameters in the ECR ion source are different from each frequency of microwave. Large bore extractor is set at the opposite side against the microwave feeds. It is found that differences of their profiles also appear at those of ion beam profiles. We conducted to launch simultaneously multiplex frequency microwaves controlled individually, and tried to control the profiles of the plasma parameters and then those of extracted ion beam.

  19. Bores In The Mesosphere

    NASA Astrophysics Data System (ADS)

    Smith, S. M.

    Bores are a special type of propagating hydraulic jump. They are a relatively common wave phenomenon in the Earth's oceans, rivers and lower atmosphere but they have been observed only rarely in the mesosphere. We will review the mesospheric bore phenomenon and present wide-field imaging observations of one particularly bright bore event seen at two widely-spaced (500 km) locations in the south-western United States: McDonald Observatory (MDO), Texas and the Starfire Optical Range (SOR), New Mexico. The measurements were supplemented with radar wind measurements, also made at the SOR, and by Na resonance lidar temperature measurements made at Fort Collins, Colorado, approximately 1100 km to the north of MDO. The multi- diagnostic observations provided evidence that mesospheric bores are associated with ducting regions in the mesosphere which allow them to travel distances of over 1500 km and exhibit lifetimes of over 6 hours.

  20. Surgical Versus Percutaneous Femoral Access for Delivery of Large-Bore Cardiovascular Devices (from the PARTNER Trial).

    PubMed

    McCabe, James M; Huang, Pei-Hsiu; Cohen, David J; Blackstone, Eugene H; Welt, Frederick G P; Davidson, Michael J; Kaneko, Tsuyoshi; Eng, Marvin H; Allen, Keith B; Xu, Ke; Lowry, Ashley M; Lei, Yang; Rajeswaran, Jeevanantham; Brown, David L; Mack, Michael J; Webb, John G; Smith, Craig R; Leon, Martin B; Eisenhauer, Andrew C

    2016-05-15

    It is unclear if surgical exposure confers a risk advantage compared with a percutaneous approach for patients undergoing endovascular procedures requiring large-bore femoral artery access. From the randomized controlled Placement of Aortic Transcatheter Valve trials A and B and the continued access registries, a total of 1,416 patients received transfemoral transcatheter aortic valve replacement, of which 857 underwent surgical, and 559 underwent percutaneous access. Thirty-day rates of major vascular complications and quality of life scores were assessed. Propensity matching was used to adjust for unmeasured confounders. Overall, there were 116 major vascular complications (8.2%). Complication rates decreased dramatically during the study period. In unadjusted analysis, major vascular complications were significantly less common in the percutaneous access group (35 [6.3%] vs 81 [9.5%] p = 0.032). However, among 292 propensity-matched pairs, there was no difference in major vascular complications (22 [7.5%] vs 28 [9.6%], p = 0.37). Percutaneous access was associated with fewer total in-hospital vascular complications (46 [16%] vs 66 [23%], p = 0.036), shorter median procedural duration (97 interquartile range [IQR 68 to 166] vs 121 [IQR 78 to 194] minutes, p <0.0001), and median length of stay (4 [IQR 2 to 8] vs 6 [IQR 3 to 10] days, p <0.0001). There were no significant differences in quality of life scores at 30 days. Surgical access for large-bore femoral access does not appear to confer any advantages over percutaneous access and may be associated with more minor vascular complications. PMID:27036077

  1. NOx Reduction with Natural Gas for Lean Large-Bore Engine Applications Using Lean NOx Trap Aftertreatment

    SciTech Connect

    Parks, JE

    2005-02-11

    Large-bore natural gas engines are used for distributed energy and gas compression since natural gas fuel offers a convenient and reliable fuel source via the natural gas pipeline and distribution infrastructure. Lean engines enable better fuel efficiency and lower operating costs; however, NOx emissions from lean engines are difficult to control. Technologies that reduce NOx in lean exhaust are desired to enable broader use of efficient lean engines. Lean NOx trap catalysts have demonstrated greater than 90% NOx reduction in lean exhaust from engines operating with gasoline, diesel, and natural gas fuels. In addition to the clean nature of the technology, lean NOx traps reduce NOx with the fuel source of the engine thereby eliminating the requirement for storage and handling of secondary fuels or reducing agents. A study of lean NOx trap catalysts for lean natural gas engines is presented here. Testing was performed on a Cummins C8.3G (CG-280) engine on a motor dynamometer. Lean NOx trap catalysts were tested for NOx reduction performance under various engine operating conditions, and the utilization of natural gas as the reductant fuel source was characterized. Engine test results show that temperature greatly affects the catalytic processes involved, specifically methane oxidation and NOx storage on the lean NOx trap. Additional studies on a bench flow reactor demonstrate the effect of precious metal loading (a primary cost factor) on lean NOx trap performance at different temperatures. Results and issues related to the potential of the lean NOx trap technology for large-bore engine applications will be discussed.

  2. Assembly and Test of HD2, a 36 mm bore high field Nb3Sn Dipole Magnet

    SciTech Connect

    Ferracin, P.; Bingham, B.; Caspi, S.; Cheng, D. W,.; Dietderich, D. R.; Felice, H.; Godeke, A.; Hafalia, A. R.; Hannaford, C. R.; Joseph, J.; Lietzke, A. F.; Lizarazo, J.; Sabbi, G.; Trillaud, F.; Wang, X.

    2008-08-17

    We report on the fabrication, assembly, and test of the Nb{sub 3}Sn dipole magnet HD2. The magnet, aimed at demonstrating the application of Nb{sub 3}Sn superconductor in high field accelerator-type dipoles, features a 36 mm clear bore surrounded by block-type coils with tilted ends. The coil design is optimized to minimize geometric harmonics in the aperture and the magnetic peak field on the conductor in the coil ends. The target bore field of 15 T at 4.3 K is consistent with critical current measurements of extracted strands. The coils are horizontally pre-stressed during assembly using an external aluminum shell pre-tensioned with water-pressurized bladders. Axial pre-loading of the coil ends is accomplished through two end plates and four aluminum tension rods. The strain in coil, shell, and rods is monitored with strain gauges during assembly, cool-down and magnet excitation, and compared with 3D finite element computations. Magnet's training performance, quench locations, and ramp-rate dependence are then analyzed and discussed.

  3. Observations of large-amplitude cross-shore internal bores near the shelf break, Santa Monica Bay, CA.

    PubMed

    Noble, Marlene A; Xu, J P

    2003-01-01

    Two sets of moorings were deployed along a cross-shelf transect in central Santa Monica bay for four months in the winter of 1998-1999. Both sites had an array of instruments attached to tripods set on the seafloor to monitor currents over the entire water column, surface waves, near-bed temperature, water clarity and suspended sediment. A companion mooring had temperature sensors spaced approximately 10 m apart to measure temperature profiles between the surface and the seafloor. One array was deployed in 70 m of water at a site adjacent to the shelf break, just northwest of a major ocean outfall. The other was deployed on the mid shelf in 35 m of water approximately 6 km from the shelf break site. The subtidal currents in the region flowed parallel to the isobaths with fluctuating time scales around 10 days, a typical coastal-ocean pattern. However, during the falling phase of the barotropic spring tide, sets of large-amplitude, sheared cross-shore current pulses with a duration of 2-5 h were observed at the shelf break site. Currents in these pulses flowed exclusively offshore in a thin layer near the bed with amplitudes reaching 30-40 cm/s. Simultaneously, currents with amplitudes around 15-20 cm/s flowed exclusively onshore in the thicker layer between the offshore flow layer and the sea surface. The net offshore transport was about half the onshore transport. Near-surface isotherms were depressed 30-40 m. These pulses were likely internal bores generated by tidal currents. Bed stresses associated with these events exceeded 3 dynes/cm(2). These amplitudes are large enough to resuspend and transport not only fine-grained material, but also medium to coarse sands from the shelf toward the slope. Consequently, the seafloor over the shelf break was swept clear of fine sediments. The data suggest that the internal bores dissipate and are reduced in amplitude as they propagate across this relatively narrow shelf. There is evidence that they reach the 35 m site, but

  4. Observations of large-amplitude cross-shore internal bores near the shelf break, Santa Monica Bay, CA

    USGS Publications Warehouse

    Noble, M.A.; Xu, J. P.

    2003-01-01

    Two sets of moorings were deployed along a cross-shelf transect in central Santa Monica bay for four months in the winter of 1998-1999. Both sites had an array of instruments attached to tripods set on the seafloor to monitor currents over the entire water column, surface waves, near-bed temperature, water clarity and suspended sediment. A companion mooring had temperature sensors spaced approximately 10 m apart to measure temperature profiles between the surface and the seafloor. One array was deployed in 70 m of water at a site adjacent to the shelf break, just northwest of a major ocean outfall. The other was deployed on the mid shelf in 35 m of water approximately 6 km from the shelf break site. The subtidal currents in the region flowed parallel to the isobaths with fluctuating time scales around 10 days, a typical coastal-ocean pattern. However, during the falling phase of the barotropic spring tide, sets of large-amplitude, sheared cross-shore current pulses with a duration of 2-5 h were observed at the shelf break site. Currents in these pulses flowed exclusively offshore in a thin layer near the bed with amplitudes reaching 30-40 cm/s. Simultaneously, currents with amplitudes around 15-20 cm/s flowed exclusively onshore in the thicker layer between the offshore flow layer and the sea surface. The net offshore transport was about half the onshore transport. Near-surface isotherms were depressed 30-40 m. These pulses were likely internal bores generated by tidal currents. Bed stresses associated with these events exceeded 3 dynes/cm2. These amplitudes are large enough to resuspend and transport not only fine-grained material, but also medium to coarse sands from the shelf toward the slope. Consequently, the seafloor over the shelf break was swept clear of fine sediments. The data suggest that the internal bores dissipate and are reduced in amplitude as they propagate across this relatively narrow shelf. There is evidence that they reach the 35 m site, but

  5. Test Results of HD2, A High Field Nb3Sn Dipole with A 36 MM Bore

    SciTech Connect

    Ferracin, Paolo

    2008-05-19

    The Superconducting Magnet Program at Lawrence Berkeley National Laboratory (LBNL) has developed the 1 m long Nb{sub 3}Sn dipole magnet HD2. With tilted (flared) ends to avoid obstructing a 36 mm clear bore, HD2 represents a step towards the use of block-type coils in high-field accelerator magnets. The coil design has been optimized to minimize geometric harmonics and reduce the conductor peak field in the end region, resulting in an expected short sample dipole field of 15 T. The support structure is composed by an external aluminum shell pre-tensioned with pressurized bladders and interference keys, and by two stainless steel end plates compressing the coil ends through four aluminum axial rods. We report on magnet design, assembly, and test results, including training performance, quench locations, and strain gauge measurements.

  6. Conditions for tidal bore formation in convergent alluvial estuaries

    NASA Astrophysics Data System (ADS)

    Bonneton, Philippe; Filippini, Andrea Gilberto; Arpaia, Luca; Bonneton, Natalie; Ricchiuto, Mario

    2016-04-01

    Over the last decade there has been an increasing interest in tidal bore dynamics. However most studies have been focused on small-scale bore processes. The present paper describes the first quantitative study, at the estuary scale, of the conditions for tidal bore formation in convergent alluvial estuaries. When freshwater discharge and large-scale spatial variations of the estuary water depth can be neglected, tide propagation in such estuaries is controlled by three main dimensionless parameters: the nonlinearity parameter ε0 , the convergence ratio δ0 and the friction parameter ϕ0. In this paper we explore this dimensionless parameter space, in terms of tidal bore occurrence, from a database of 21 estuaries (8 tidal-bore estuaries and 13 non tidal-bore estuaries). The field data point out that tidal bores occur for convergence ratios close to the critical convergence δc. A new proposed definition of the friction parameter highlights a clear separation on the parameter plane (ϕ0,ε0) between tidal-bore estuaries and non tidal-bore estuaries. More specifically, we have established that tidal bores occur in convergent estuaries when the nonlinearity parameter is greater than a critical value, εc , which is an increasing function of the friction parameter ϕ0. This result has been confirmed by numerical simulations of the two-dimensional Saint Venant equations. The real-estuary observations and the numerical simulations also show that, contrary to what is generally assumed, tide amplification is not a necessary condition for tidal bore formation. The effect of freshwater discharge on tidal bore occurrence has been analyzed from the database acquired during three long-term campaigns carried out on the Gironde/Garonne estuary. We have shown that in the upper estuary the tidal bore intensity is mainly governed by the local dimensionless tide amplitude ε. The bore intensity is an increasing function of ε and this relationship does not depend on freshwater

  7. BORE II

    2015-08-01

    Bore II, co-developed by Berkeley Lab researchers Frank Hale, Chin-Fu Tsang, and Christine Doughty, provides vital information for solving water quality and supply problems and for improving remediation of contaminated sites. Termed "hydrophysical logging," this technology is based on the concept of measuring repeated depth profiles of fluid electric conductivity in a borehole that is pumping. As fluid enters the wellbore, its distinct electric conductivity causes peaks in the conductivity log that grow and migratemore » upward with time. Analysis of the evolution of the peaks enables characterization of groundwater flow distribution more quickly, more cost effectively, and with higher resolution than ever before. Combining the unique interpretation software Bore II with advanced downhole instrumentation (the hydrophysical logging tool), the method quantifies inflow and outflow locations, their associated flow rates, and the basic water quality parameters of the associated formation waters (e.g., pH, oxidation-reduction potential, temperature). In addition, when applied in conjunction with downhole fluid sampling, Bore II makes possible a complete assessment of contaminant concentration within groundwater.« less

  8. BORE II

    SciTech Connect

    2015-08-01

    Bore II, co-developed by Berkeley Lab researchers Frank Hale, Chin-Fu Tsang, and Christine Doughty, provides vital information for solving water quality and supply problems and for improving remediation of contaminated sites. Termed "hydrophysical logging," this technology is based on the concept of measuring repeated depth profiles of fluid electric conductivity in a borehole that is pumping. As fluid enters the wellbore, its distinct electric conductivity causes peaks in the conductivity log that grow and migrate upward with time. Analysis of the evolution of the peaks enables characterization of groundwater flow distribution more quickly, more cost effectively, and with higher resolution than ever before. Combining the unique interpretation software Bore II with advanced downhole instrumentation (the hydrophysical logging tool), the method quantifies inflow and outflow locations, their associated flow rates, and the basic water quality parameters of the associated formation waters (e.g., pH, oxidation-reduction potential, temperature). In addition, when applied in conjunction with downhole fluid sampling, Bore II makes possible a complete assessment of contaminant concentration within groundwater.

  9. Improvement of microwave feeding on a large bore ECRIS with permanent magnets by using coaxial semi-dipole antenna

    SciTech Connect

    Kurisu, Yosuke; Sakamoto, Naoki; Kiriyama, Ryutaro; Takenaka, Tomoya; Nozaki, Dai; Yano, Keisuke; Sato, Fuminobu; Kato, Yushi; Iida, Toshiyuki

    2012-11-06

    We are constructing a tandem type electron cyclotron resonance (ECR) ion source (ECRIS). The first stage of this ECRIS has a large-bore with cylindrically comb-shaped permanent magnets. 2.45GHz and 11-13GHz microwaves can be supplied individually and simultaneously to the plasma chamber. For 2.45GHz, a coaxial semi-dipole antenna is used to feed the microwaves. In previous experiments, there were two problems encountered when running the 2.45GHz microwaves. High incident power was necessary to keep ECR discharge at low operating pressure because of high reflected microwave power. The surface of a support insulator between the inner and the outer electrodes of coaxial semi-dipole antenna was easily metalized by sputtering of the metal wall inside the chamber. The purpose of this study was to solve these problems. Performing several simulation experiments supports the hypothesis that the position of the support insulator is significant for microwave power efficiency. The end result was the ability to sustain ECR discharges at extremely low incident microwave power, several tens of watts, by optimized matching of the position and shape of the insulator.

  10. Mesospheric bore formation from large-scale gravity wave perturbations observed by collocated all-sky OH imager and sodium lidar

    NASA Astrophysics Data System (ADS)

    Yue, Jia; She, Chiao-Yao; Nakamura, Takuji; Harrell, Sean; Yuan, Tao

    2010-01-01

    On 9 October 2007, long-horizontal-wavelength gravity waves were observed for the first time to steepen and form mesospheric bores at the altitude of ~87 km, by an all-sky OH imager located at Fort Collins (41°N, 105°W), Colorado. The collocated sodium lidar simultaneously observed the presence of a temperature inversion layer as the ducting region. One mesospheric bore uniquely later evolved into a large-amplitude soliton-like perturbation. When the gravity wave and the associated soliton-like perturbation passed through the lidar beams, the lidar detected strong vertical disturbance at 90 km, indicating convective instability. A large cold front system recorded several hours before in the troposphere was aligned to phase fronts of these large gravity waves. For all of the 7 mesospheric bores observed over a 5 year period, we found a similar alignment with a cold front 1000-1500 km away as the likely source of these large-scale gravity waves.

  11. Ultra-wide bore 900 MHz high-resolution NMR at the National High Magnetic Field Laboratory

    NASA Astrophysics Data System (ADS)

    Fu, R.; Brey, W. W.; Shetty, K.; Gor'kov, P.; Saha, S.; Long, J. R.; Grant, S. C.; Chekmenev, E. Y.; Hu, J.; Gan, Z.; Sharma, M.; Zhang, F.; Logan, T. M.; Brüschweller, R.; Edison, A.; Blue, A.; Dixon, I. R.; Markiewicz, W. D.; Cross, T. A.

    2005-11-01

    Access to an ultra-wide bore (105 mm) 21.1 T magnet makes possible numerous advances in NMR spectroscopy and MR imaging, as well as novel applications. This magnet was developed, designed, manufactured and tested at the National High Magnetic Field Laboratory and on July 21, 2004 it was energized to 21.1 T. Commercial and unique homebuilt probes, along with a standard commercial NMR console have been installed and tested with many science applications to develop this spectrometer as a user facility. Solution NMR of membrane proteins with enhanced resolution, new pulse sequences for solid state NMR taking advantage of narrowed proton linewidths, and enhanced spatial resolution and contrast leading to improved animal imaging have been documented. In addition, it is demonstrated that spectroscopy of single site 17O labeled macromolecules in a hydrated lipid bilayer environment can be recorded in a remarkably short period of time. 17O spectra of aligned samples show the potential for using this data for orientational restraints and for characterizing unique details of cation binding properties to ion channels. The success of this NHMFL magnet illustrates the potential for using a similar magnet design as an outsert for high temperature superconducting insert coils to achieve an NMR magnet with a field >25 T.

  12. Comparison of predicted and experimental performance of large-bore roller bearing operating to 3.0 million DN

    NASA Technical Reports Server (NTRS)

    Coe, H. H.; Huller, F. T.

    1980-01-01

    Bearing inner and outer race temperatures and the amount of heat transferred to the lubricant were calculated by using the computer program CYBEAN. The results obtained were compared with previously reported experimental data for a 118 mm bore roller bearing that operated at shaft speeds to 25,500 rpm, radial loads to 8,900 N (2000 lb), and total lubricant flow rates to 0.0102 cu m/min (2.7 gal/min). The calculated results compared well with the experimental data.

  13. Inflating with large effective fields

    SciTech Connect

    Burgess, C.P.; Cicoli, M.; Quevedo, F.; Williams, M. E-mail: mcicoli@ictp.it E-mail: mwilliams@perimeterinsititute.ca

    2014-11-01

    We re-examine large scalar fields within effective field theory, in particular focussing on the issues raised by their use in inflationary models (as suggested by BICEP2 to obtain primordial tensor modes). We argue that when the large-field and low-energy regimes coincide the scalar dynamics is most effectively described in terms of an asymptotic large-field expansion whose form can be dictated by approximate symmetries, which also help control the size of quantum corrections. We discuss several possible symmetries that can achieve this, including pseudo-Goldstone inflatons characterized by a coset G/H (based on abelian and non-abelian, compact and non-compact symmetries), as well as symmetries that are intrinsically higher dimensional. Besides the usual trigonometric potentials of Natural Inflation we also find in this way simple large-field power laws (like V ∝ φ{sup 2}) and exponential potentials, V(φ) = ∑{sub k}V{sub x}e{sup −kφ/M}. Both of these can describe the data well and give slow-roll inflation for large fields without the need for a precise balancing of terms in the potential. The exponential potentials achieve large r through the limit |η| || ε and so predict r ≅ (8/3)(1-n{sub s}); consequently n{sub s} ≅ 0.96 gives r ≅ 0.11 but not much larger (and so could be ruled out as measurements on r and n{sub s} improve). We examine the naturalness issues for these models and give simple examples where symmetries protect these forms, using both pseudo-Goldstone inflatons (with non-abelian non-compact shift symmetries following familiar techniques from chiral perturbation theory) and extra-dimensional models.

  14. The Boring Volcanic Field of the Portland-Vancouver area, Oregon and Washington: tectonically anomalous forearc volcanism in an urban setting

    USGS Publications Warehouse

    Evarts, Russell C.; Conrey, Richard M.; Fleck, Robert J.; Hagstrum, Jonathan T.; O'Connor, Jim; Dorsey, Rebecca; Madin, Ian P.

    2009-01-01

    More than 80 small volcanoes are scattered throughout the Portland-Vancouver metropolitan area of northwestern Oregon and southwestern Washington. These volcanoes constitute the Boring Volcanic Field, which is centered in the Neogene Portland Basin and merges to the east with coeval volcanic centers of the High Cascade volcanic arc. Although the character of volcanic activity is typical of many monogenetic volcanic fields, its tectonic setting is not, being located in the forearc of the Cascadia subduction system well trenchward of the volcanic-arc axis. The history and petrology of this anomalous volcanic field have been elucidated by a comprehensive program of geologic mapping, geochemistry, 40Ar/39Ar geochronology, and paleomag-netic studies. Volcanism began at 2.6 Ma with eruption of low-K tholeiite and related lavas in the southern part of the Portland Basin. At 1.6 Ma, following a hiatus of ~0.8 m.y., similar lavas erupted a few kilometers to the north, after which volcanism became widely dispersed, compositionally variable, and more or less continuous, with an average recurrence interval of 15,000 yr. The youngest centers, 50–130 ka, are found in the northern part of the field. Boring centers are generally monogenetic and mafic but a few larger edifices, ranging from basalt to low-SiO2 andesite, were also constructed. Low-K to high-K calc-alkaline compositions similar to those of the nearby volcanic arc dominate the field, but many centers erupted magmas that exhibit little influence of fluids derived from the subducting slab. The timing and compositional characteristics of Boring volcanism suggest a genetic relationship with late Neogene intra-arc rifting.

  15. Enhanced production of electron cyclotron resonance plasma by exciting selective microwave mode on a large-bore electron cyclotron resonance ion source with permanent magnet

    SciTech Connect

    Kimura, Daiju Kurisu, Yosuke; Nozaki, Dai; Yano, Keisuke; Imai, Youta; Kumakura, Sho; Sato, Fuminobu; Kato, Yushi; Iida, Toshiyuki

    2014-02-15

    We are constructing a tandem type ECRIS. The first stage is large-bore with cylindrically comb-shaped magnet. We optimize the ion beam current and ion saturation current by a mobile plate tuner. They change by the position of the plate tuner for 2.45 GHz, 11–13 GHz, and multi-frequencies. The peak positions of them are close to the position where the microwave mode forms standing wave between the plate tuner and the extractor. The absorbed powers are estimated for each mode. We show a new guiding principle, which the number of efficient microwave mode should be selected to fit to that of multipole of the comb-shaped magnets. We obtained the excitation of the selective modes using new mobile plate tuner to enhance ECR efficiency.

  16. Determination of chromium in human lung fibroblast cells using a large bore-direct injection high-efficiency nebulizer with inductively coupled plasma mass spectrometry

    SciTech Connect

    McLean, John A.; Acon, Billy W.; Montaser, Akbar; Singh, Jatinder; Pritchard, Daryl E.; Patierno, Steven R.

    2000-05-01

    A novel method for the determination of chromium in suspensions of human lung fibroblast cells is described by using a large bore-direct injection high efficiency nebulizer (LB-DIHEN) with microscale flow injection analysis and inductively coupled plasma mass spectrometric detection. Chromium (VI)-treated cells were first counted and then suspended in a phosphate buffer saline solution. With the use of the method of standard additions, the relative concentration of Cr in {approx}100 HLF cells/peak was determined at m/z=50. Because the cells tend to clump and can yield inhomogeneities in the total number analyzed, Mg was used as an internal standard to compensate for the total cell mass. The level of Cr in HLF cells grown in a medium of 100 {mu}M Na{sub 2}CrO{sub 4} for two hours is on the order of 180 fg Cr/cell after correction for the number of cells in each injection. (c) 2000 Society for Applied Spectroscopy.

  17. Double diameter boring tool

    DOEpatents

    Ashbaugh, Fred N.; Murry, Kenneth R.

    1988-12-27

    A boring tool and a method of operation are provided for boring two concentric holes of precision diameters and depths in a single operation. The boring tool includes an elongated tool body, a shank for attachment to a standard adjustable boring head which is used on a manual or numerical control milling machine and first and second diametrically opposed cutting edges formed for cutting in opposite directions. The diameter of the elongated tool body is substantially equal to the distance from the first cutting edge tip to the axis of rotation plus the distance from the second cutting edge tip to the axis of rotation. The axis of rotation of the tool is spaced from the tool centerline a distance substantially equal to one-half the distance from the second cutting edge tip to the axis of rotation minus one-half the distance from the first cutting edge tip to the axis of rotation. The method includes the step of inserting the boring tool into the boring head, adjusting the distance between the tool centerline and the tool axis of rotation as described above and boring the two concentric holes.

  18. Double diameter boring tool

    DOEpatents

    Ashbaugh, F.A.; Murry, K.R.

    1986-02-10

    A boring tool and a method of operation are provided for boring two concentric holes of precision diameters and depths in a single operation. The boring tool includes an elongated tool body, a shank for attachment to a standard adjustable boring head which is used on a manual or numerical control milling machine and first and second diametrically opposed cutting flutes formed for cutting in opposite directions. The diameter of the elongated tool body is substantially equal to the distance from the first flute tip to the axis of rotation plus the distance from the second flute tip to the axis of rotation. The axis of rotation of the tool is spaced from the tool centerline a distance substantially equal to one-half the distance from the second flute tip to the axis of rotation minus one-half the distance from the first flute tip to the axis of rotation. The method includes the step of inserting the boring tool into the boring head, adjusting the distance between the tool centerline and the tool axis of rotation as described above and boring the two concentric holes.

  19. Slime thickness evaluation of bored piles by electrical resistivity probe

    NASA Astrophysics Data System (ADS)

    Chun, Ok-Hyun; Yoon, Hyung-Koo; Park, Min-Chul; Lee, Jong-Sub

    2014-09-01

    The bottoms of bored piles are generally stacked with soil particles, both while boreholes are being drilled, and afterward. The stacked soils are called slime, and when loads are applied on the pile, increase the pile settlement. Thus to guarantee the end bearing capacity of bored piles, the slime thickness should be precisely detected. The objective of this study is to suggest a new method for evaluating the slime thickness, using temperature compensated electrical resistivity. Laboratory studies are performed in advance, to estimate and compare the resolution of the electrical resistivity probe (ERP) and time domain reflectometry (TDR). The electrical properties of the ERP and TDR are measured using coaxial type electrodes and parallel type two-wire electrodes, respectively. Penetration tests, conducted in the fully saturated sand-clay mixtures, demonstrate that the ERP produces a better resolution of layer detection than TDR. Thus, field application tests using the ERP with a diameter of 35.7 mm are conducted for the investigation of slime thickness in large diameter bored piles. Field tests show that the slime layers are clearly identified by the ERP: the electrical resistivity dramatically increases at the interface between the slurry and slime layer. The electrical resistivity in the slurry layer inversely correlates with the amount of circulated water. This study suggests that the new electrical resistivity method may be a useful method for the investigation of the slime thickness in bored piles.

  20. Guided earth boring tool

    SciTech Connect

    Mc Donald, W.J.; Pittard, G.T.; Maurer, W.C.; Wasson, M.R.; Herben, W.C.

    1987-09-22

    A controllable tool for drilling holes in the earth is described comprising a hollow elongated rigid supporting drill pipe having a forward end for entering the earth, means supporting the drill pipe for earth boring or piercing movement, including means for moving the drill pipe longitudinally for penetrating the earth, the drill pipe moving means being constructed to permit addition and removal of supporting drill pipe during earth penetrating operation, a boring mole supported on the forward end of the hollow low drill pipe comprising a cylindrical housing supported on and open to the forward end of the drill pipe, a first means on the front end for applying a boring force to the soil comprising an anvil having a striking surface inside the housing and a boring surface outside the housing, a second means comprising a reciprocally movable hammer positioned in the housing to apply a percussive force to the anvil striking surface for transmitting a percussive force to the boring force applying means, and means permitting introduction of air pressure supplied through the hollow pipe into the housing for operating the hammer and for discharging spent air from the housing to the hole being bored, and the tool being operable to penetrate the earth upon longitudinal movement of the drill rod by the longitudinal rod moving means and operation of the mole by reciprocal movement of the hammer.

  1. THE DESIGN OF AN RF ANTENNA FOR A LARGE-BORE, HIGH POWER, STEADY STATE PLASMA PROCESSING CHAMBER FOR MATERIAL SEPARATION - CRADA FINAL REPORT for CRADA Number ORNL00-0585

    SciTech Connect

    Rasmussen, D. A.; Freeman, R. L.

    2001-11-07

    The purpose of this Cooperative Research and Development Agreement (CRADA) between UT-Battelle, LLC, (Contractor), and Archimedes Technology Group, (Participant) is to evaluate the design of an RF antenna for a large-bore, high power, steady state plasma processing chamber for material separation. Criteria for optimization will be to maximize the power deposition in the plasma while operating at acceptable voltages and currents in the antenna structure. The project objectives are to evaluate the design of an RF antenna for a large-bore, high power, steady state plasma processing chamber for material separation. Criteria for optimization will be to maximize the power deposition in the plasma while operating at acceptable voltages and currents in the antenna structure.

  2. Paleomagnetism and 40ar/39ar Geochronology of the Plio-Pleistocene Boring Volcanic Field: Implications for the Geomagnetic Polarity Time Scale

    NASA Astrophysics Data System (ADS)

    Hagstrum, J. T.; Fleck, R. J.; Evarts, R. C.; Calvert, A. T.; Conrey, R. M.

    2014-12-01

    The Boring volcanic field (BVF) in western Oregon and Washington has been the subject of a recently completed investigation that included detailed geologic mapping, petrographic and geochemical analyses, and 40Ar/39Ar geochronologic and paleomagnetic studies. At least 80 monogenetic volcanic centers compose the BVF, each of which erupted small volumes of magma ranging from basalt to mafic andesite over short intervals of time. More than 140 40Ar/39Ar determinations for lava flows and intrusions in the BVF range in age from ~3100 ka to ~60 ka. Oriented samples for paleomagnetic analysis were collected at an equivalent number of localities (>160) coincident with, or within the same unit proximal to, the geochronologic sampling sites. Based on the frequency distribution of ages, the most significant episodes of Boring volcanism occurred between 2700 and 2200 ka, 1700 and 500 ka, and 350 and 60 ka. A systematic determination of the BVF's eruptive history was undertaken mainly to assess its anomalous neotectonic setting west of the Cascade arc axis, as well as the magnitude of its concomitant volcanic hazards within the greater Portland and Vancouver metropolitan areas. Our paleomagnetic and geochronologic data, however, also have significant implications for the timing of geomagnetic field reversals and excursions during the Late Pliocene and Pleistocene epochs. The BVF data are more numerous higher in the section, and they capture transitional fields at two polarity boundaries allowing precise age determinations to be made for these reversals: the Brunhes-Matuyama transition is thus dated at 773±5 ka, and the upper Jaramillo-Matuyama transition at 973±6 ka. The lower Jaramillo-Matuyama transition occurred prior to 1068±8 ka, and the normal Cobb subchron must have occurred between reversed-polarity Matuyama flows dated at 1159±14 ka and 1207±6 ka. The lower Olduvai-Matuyama transition occurred prior to 1927±4 ka, and the Matuyama-Gauss transition prior to 2616

  3. Analysis of the temporal and spatial dependence of the eddy current fields in a 40-cm bore magnet.

    PubMed

    Robertson, S; Hughes, D G; Liu, Q; Allen, P S

    1992-05-01

    Eddy current fields, generated in an animal-size superconducting NMR magnet by a nominally rectangular pulsed transverse gradient applied in the vertical direction, have been studied by measuring the offset frequency of the proton NMR signal obtained from a small spherical sample. Measurements were made, after various time delays, at nine different locations in the sample space. Analysis of the data shows that the time-dependent fields at all nine locations are quite well accounted for by the superposition of only four independent exponentially decaying components that have time constants in the range from 9 to 400 ms. Two of these were found to be caused by eddy currents generated in the magnet structure. They generate primarily linear gradients, though one of them also produces a B0 shift, indicating a significant asymmetry about the isocenter of the conducting structure in which the eddy current flows. The other two exponentially decaying components, which had very different time constants from the eddy currents and also initial amplitudes of the opposite sign, were generated by the preemphasis unit. This calls into question the procedure used to adjust the preemphasis unit and an alternative method is proposed.

  4. Tidal Bore detection in the Garonne River using high frequency GNSS data

    NASA Astrophysics Data System (ADS)

    Frappart, Frédéric; Roussel, Nicolas; Darrozes, José; Bonneton, Philippe; Bonneton, Natalie; Detandt, Guillaume; Perosanz, Felix; Loyer, Sylvain

    2016-04-01

    A tidal bore is a positive surge propagating upstream that may form when a rising tide with significant amplitude enters shallow, gently sloping and narrowing rivers. Tidal bores have a significant impact on the river ecosystem behavior, especially in terms of sediment transport. Most of the existing field studies were limited to visual observations. Only a few field experiments have been devoted to a quantitative study of the tidal bore dynamics. We carried out a field study in August, 2015, using a GNSS buoy to measure the tidal bore in the Garonne River (France) at Podensac located 140 km upstream of the estuary mouth. Precise Point Positioning and Differential GNSS techniques were used to determine the river surface height variations with a 20 Hz sampling rate. This site was selected owing to the presence of well-developed undular tidal bores and also because of the absence of any significant curvature of the river at this location, which limits the complexity of the tidal bore structure. The Gironde estuary is located in the Bay of Biscay, on the southwest coast of France, and is formed from the meeting of the rivers Dordogne and Garonne. In the Gironde mouth, the mean neap tidal range and mean spring tidal range is 2.5 m and 5 m, respectively. As the tide propagates upstream a marked ebbflood asymmetry occurs in the upper reaches of the estuary and the wave is amplified. This large amplitude tidal wave propagates in the Garonne and Dordogne rivers up to 160 km from the estuary mouth. Both GNSS buoy and reference station use a Leica AR10 antenna and GR25 receiver. Both stations (reference and buoy) acquired data with a 20 Hz sampling rate. GNSS data were processed using RTKLib. Results allowed to detect the the wave train of the tidal bore that caused an elevation of the surface of around 1.5 m. Comparisons were performed using acoustic data showing a good agreement between both sources of data.

  5. Testing Large Structures in the Field

    NASA Technical Reports Server (NTRS)

    James, George; Carne, Thomas G.

    2009-01-01

    Field testing large structures creates unique challenges such as limited choices for boundary conditions and the fact that natural excitation sources cannot be removed. Several critical developments in field testing of large structures are reviewed, including: step relaxation testing which has been developed into a useful technique to apply large forces to operational systems by careful windowing; the capability of large structures testing with free support conditions which has been expanded by implementing modeling of the support structure; natural excitation which has been developed as a viable approach to field testing; and the hybrid approach which has been developed to allow forces to be estimated in operating structures. These developments have increased the ability to extract information from large structures and are highlighted in this presentation.

  6. Protocol for the surgical and large bore procedures in malignant pleural mesothelioma and radiotherapy trial (SMART Trial): an RCT evaluating whether prophylactic radiotherapy reduces the incidence of procedure tract metastases

    PubMed Central

    Clive, Amelia O; Wilson, Paula; Taylor, Hazel; Morley, Anna J; de Winton, Emma; Panakis, Niki; Rahman, Najib; Pepperell, Justin; Howell, Timothy; Batchelor, Timothy J P; Jordan, Nikki; Lee, Y C Gary; Dobson, Lee; Maskell, Nick A

    2015-01-01

    Introduction Patients with malignant pleural mesothelioma (MPM) may develop painful ‘procedure tract metastasis’ (PTM) at the site of previous pleural interventions. Prophylactic radiotherapy has been used to minimise this complication; however, three small randomised trials have shown conflicting results regarding its effectiveness. The surgical and large bore procedures in malignant pleural mesothelioma and radiotherapy trial (SMART Trial) is a suitably powered, multicentre, randomised controlled trial, designed to evaluate the efficacy of prophylactic radiotherapy within 42 days of pleural instrumentation in preventing the development of PTM in MPM. Methods and analysis 203 patients with a histocytologically proven diagnosis of MPM, who have undergone a large bore pleural intervention (thoracic surgery, large bore chest drain, indwelling pleural catheter or local anaesthetic thoracoscopy) in the previous 35 days, will be recruited from UK hospitals. Patients will be randomised (1:1) to receive immediate radiotherapy (21 Gy in 3 fractions over 3 working days within 42 days of the pleural intervention) or deferred radiotherapy (21 Gy in 3 fractions over 3 working days given if a PTM develops). Patients will be followed up for 12 months. The primary outcome measure is the rate of PTM until death or 12 months (whichever is sooner), as defined by the presence of a clinically palpable nodule of at least 1 cm diameter felt within 7 cm of the margins of the procedure site as confirmed by two assessors. Secondary outcome measures include chest pain, quality of life, analgaesic requirements, healthcare utilisation and safety (including radiotherapy toxicity). Ethics and dissemination The trial has received ethical approval from the Southampton B Research Ethics Committee (11/SC/0408). There is a Trial Steering Committee, including independent members and a patient and public representative. The trial results will be published in a peer

  7. Through bore subsea christmas trees

    SciTech Connect

    Huber, D.S.; Simmers, G.F.C.; Johnson, C.S.

    1985-01-01

    The workovers of subsea completed wells are expensive and time consuming as even the most routine tasks must be carried out by a semi-submersible. This paper describes the economic, safety and operational advantages which led to the development and successful first installation of 'through bore' subsea production trees. The conventional wet subsea trees have proved to be very reliable over the past ten years of operation in the Argyll, Duncan and Innes fields, however the completion strings require pulling on the average about once every three to five years. The conventional subsea tree/tubing hanger set up design requires the tree to be tripped and a rig BOP stack run to pull the tubing. This operation is time consuming, very weather sensitive and leaves the well temporarily without a well control stack on the wellhead. The 7 1/16'' 'through bore' subsea tree was developed to minimize the tubing pulling workover time and several trees have been run successfully since the latter part of 1984. The time saving on a tubing pulling workover is three days. In addition, the design considerably reduces the hazards and equipment damage risk inherent in the conventional design. Hamilton Brothers and National Supply Company in Aberdeen designed the equipment which must be considered a new generation of subsea production trees.

  8. Performance of large-bore tapered-roller bearings under combined radial and thrust load at shaft speeds to 15,000 rpm

    NASA Technical Reports Server (NTRS)

    Parker, R. J.; Signer, H. R.

    1977-01-01

    The performance of 120.65-mm bore tapered roller bearings was investigated at shaft speeds up to 15,000 rpm. Temperature distribution and bearing heat generation were determined as a function of shaft speed, radial and thrust loads, lubricant flow rate, and lubricant inlet temperature. Lubricant was supplied by either jets or by a combination of holes through the cone directly to the cone-rib contact and jets at the roller small-end side. Cone-rib lubrication significantly improved high-speed tapered-roller bearing performance, yielding lower cone-face temperatures and lower power loss and allowing lower lubricant flow rates for a given speed condition. Bearing temperatures increased with increased shaft speed and decreased with increased lubricant flow rate. Bearing power loss increased with increased shaft speed and increased lubricant flow rate.

  9. Bore hole navigator

    SciTech Connect

    Hoffman, G.J.

    1987-09-29

    A bore hole navigator is described comprising a two axis platform for lowering down a bore hole on a cable with its longitudinal axis parallel to the local bore hole direction. The two axis platform has an outer gimbal, bearing supported on the outer gimbal axis for rotation about the longitudinal axis of the platform, and an inner gimbal axis orthogonal the the outer gimbal axis. The inner gimbal axis has multiple axis segments spaced along the longitudinal axis of the platform and each bearing supported on the outer gimbal. The inner gimbal axis segment has a two axis gyro mounted thereon with its spin axis orthogonal to the respective inner gimbal axis segment, a first gyro sensitive axis parallel to the respective inner gimbal axis segment and a second gyro sensitive axis orthogonal to the spin axis. The second inner gimbal axis segment has a pitch torquer thereon operative to provide a controllable torque about the respective inner gimbal axis segment. The third inner gimbal axis segment has a pitch resolver thereon operative to measure rotation of the respective inner gimbal axis segment with respect to the outer gimbal. The first, second and third inner gimbal axis segments are coupled to rotate together. The outer gimbal has a yaw torquer thereon to provide a controllable torque about the outer gimbal axis, and a yaw resolver thereon to measure rotation of the outer gimbal about the outer gimbal axis. The outer gimbal also has a single axis accelerometer therein having its sensitive axis orthogonal to the outer gimbal axis and the inner gimbal axis segments.

  10. Maneuvering impact boring head

    DOEpatents

    Zollinger, W. Thor; Reutzel, Edward W.

    1998-01-01

    An impact boring head may comprise a main body having an internal cavity with a front end and a rear end. A striker having a head end and a tail end is slidably mounted in the internal cavity of the main body so that the striker can be reciprocated between a forward position and an aft position in response to hydraulic pressure. A compressible gas contained in the internal cavity between the head end of the striker and the front end of the internal cavity returns the striker to the aft position upon removal of the hydraulic pressure.

  11. Maneuvering impact boring head

    DOEpatents

    Zollinger, W.T.; Reutzel, E.W.

    1998-08-18

    An impact boring head may comprise a main body having an internal cavity with a front end and a rear end. A striker having a head end and a tail end is slidably mounted in the internal cavity of the main body so that the striker can be reciprocated between a forward position and an aft position in response to hydraulic pressure. A compressible gas contained in the internal cavity between the head end of the striker and the front end of the internal cavity returns the striker to the aft position upon removal of the hydraulic pressure. 8 figs.

  12. RHIC warm-bore systems

    SciTech Connect

    Welch, K.M.

    1994-07-01

    Pressure profiles, in time, are calculated as a consequence of anticipated outgassing of various beam components (e.g., rf cavities, etc.) and warm-bore beam pipes. Gold beam lifetimes and transverse beam emittance growth are given for calculated average pressures. Examples of undesirable warm-bore conditions are presented such as contaminated experimental beam pipes and warm-bore magnets (i.e., DX). These examples may prove instructive. The methods used in making these calculations are presented in Section 2. They are applicable to all linear systems. The calculations given apply to the RHIC accelerator and more specifically to warm-bore regions of the machine.

  13. Large gauge transformations in double field theory

    NASA Astrophysics Data System (ADS)

    Hohm, Olaf; Zwiebach, Barton

    2013-02-01

    Finite gauge transformations in double field theory can be defined by the exponential of generalized Lie derivatives. We interpret these transformations as `generalized coordinate transformations' in the doubled space by proposing and testing a formula that writes large transformations in terms of derivatives of the coordinate maps. Successive generalized coordinate transformations give a generalized coordinate transformation that differs from the direct composition of the original two. Instead, it is constructed using the Courant bracket. These transformations form a group when acting on fields but, intriguingly, do not associate when acting on coordinates.

  14. Large Deviations for Nonlocal Stochastic Neural Fields

    PubMed Central

    2014-01-01

    We study the effect of additive noise on integro-differential neural field equations. In particular, we analyze an Amari-type model driven by a Q-Wiener process, and focus on noise-induced transitions and escape. We argue that proving a sharp Kramers’ law for neural fields poses substantial difficulties, but that one may transfer techniques from stochastic partial differential equations to establish a large deviation principle (LDP). Then we demonstrate that an efficient finite-dimensional approximation of the stochastic neural field equation can be achieved using a Galerkin method and that the resulting finite-dimensional rate function for the LDP can have a multiscale structure in certain cases. These results form the starting point for an efficient practical computation of the LDP. Our approach also provides the technical basis for further rigorous study of noise-induced transitions in neural fields based on Galerkin approximations. Mathematics Subject Classification (2000): 60F10, 60H15, 65M60, 92C20. PMID:24742297

  15. Large field cutoffs make perturbative series converge

    NASA Astrophysics Data System (ADS)

    Meurice, Yannick

    For λφ4 problems, convergent perturbative series can be obtained by cutting off the large field configurations. The modified series converge to values exponentially close to the exact ones. For λ larger than some critical value, the method outperforms Padé approximants and Borel summations. We discuss some aspects of the semi-classical methods used to calculate the modified Feynman rules and estimate the error associated with the procedure. We provide a simple numerical example where the procedure works despite the fact that the Borel sum has singularities on the positive real axis.

  16. Large field cutoffs make perturbative series converge

    NASA Astrophysics Data System (ADS)

    Meurice, Yannick

    2002-03-01

    For λφ 4 problems, convergent perturbative series can be obtained by cutting off the large field configurations. The modified series converge to values exponentially close to the exact ones. For λ larger than some critical value, the method outperforms Padé approximants and Borel summations. We discuss some aspects of the semi-classical methods used to calculate the modified Feynman rules and estimate the error associated with the procedure. We provide a simple numerical example where the procedure works despite the fact that the Borel sum has singularities on the positive real axis.

  17. Large field inflation from axion mixing

    NASA Astrophysics Data System (ADS)

    Shiu, Gary; Staessens, Wieland; Ye, Fang

    2015-06-01

    We study the general multi-axion systems, focusing on the possibility of large field inflation driven by axions. We find that through axion mixing from a non-diagonal metric on the moduli space and/or from Stückelberg coupling to a U(1) gauge field, an effectively super-Planckian decay constant can be generated without the need of "alignment" in the axion decay constants. We also investigate the consistency conditions related to the gauge symmetries in the multi-axion systems, such as vanishing gauge anomalies and the potential presence of generalized Chern-Simons terms. Our scenario applies generally to field theory models whose axion periodicities are intrinsically sub-Planckian, but it is most naturally realized in string theory. The types of axion mixings invoked in our scenario appear quite commonly in D-brane models, and we present its implementation in type II superstring theory. Explicit stringy models exhibiting all the characteristics of our ideas are constructed within the frameworks of Type IIA intersecting D6-brane models on and Type IIB intersecting D7-brane models on Swiss-Cheese Calabi-Yau orientifolds.

  18. Monte Carlo simulation of large electron fields.

    PubMed

    Faddegon, Bruce A; Perl, Joseph; Asai, Makoto

    2008-03-01

    Two Monte Carlo systems, EGSnrc and Geant4, the latter with two different 'physics lists,' were used to calculate dose distributions in large electron fields used in radiotherapy. Source and geometry parameters were adjusted to match calculated results to measurement. Both codes were capable of accurately reproducing the measured dose distributions of the six electron beams available on the accelerator. Depth penetration matched the average measured with a diode and parallel-plate chamber to 0.04 cm or better. Calculated depth dose curves agreed to 2% with diode measurements in the build-up region, although for the lower beam energies there was a discrepancy of up to 5% in this region when calculated results are compared to parallel-plate measurements. Dose profiles at the depth of maximum dose matched to 2-3% in the central 25 cm of the field, corresponding to the field size of the largest applicator. A 4% match was obtained outside the central region. The discrepancy observed in the bremsstrahlung tail in published results that used EGS4 is no longer evident. Simulations with the different codes and physics lists used different source energies, incident beam angles, thicknesses of the primary foils, and distance between the primary and secondary foil. The true source and geometry parameters were not known with sufficient accuracy to determine which parameter set, including the energy of the source, was closest to the truth. These results underscore the requirement for experimental benchmarks of depth penetration and electron scatter for beam energies and foils relevant to radiotherapy.

  19. Monte Carlo simulation of large electron fields

    PubMed Central

    Faddegon, Bruce A; Perl, Joseph; Asai, Makoto

    2010-01-01

    Two Monte Carlo systems, EGSnrc and Geant4, the latter with two different “physics lists,” were used to calculate dose distributions in large electron fields used in radiotherapy. Source and geometry parameters were adjusted to match calculated results to measurement. Both codes were capable of accurately reproducing the measured dose distributions of the 6 electron beams available on the accelerator. Depth penetration matched the average measured with a diode and parallel-plate chamber to 0.04 cm or better. Calculated depth dose curves agreed to 2% with diode measurements in the buildup region, although for the lower beam energies there was a discrepancy of up to 5% in this region when calculated results are compared to parallel-plate measurements. Dose profiles at the depth of maximum dose matched to 2-3% in the central 25 cm of the field, corresponding to the field size of the largest applicator. A 4% match was obtained outside the central region. The discrepancy observed in the bremsstrahlung tail in published results that used EGS4 is no longer evident. Simulations with the different codes and physics lists used different source energies, incident beam angles, thicknesses of the primary foils, and distance between the primary and secondary foil. The true source and geometry parameters were not known with sufficient accuracy to determine which parameter set, including the energy of the source, was closest to the truth. These results underscore the requirement for experimental benchmarks of depth penetration and electron scatter for beam energies and foils relevant to radiotherapy. PMID:18296775

  20. Monte Carlo simulation of large electron fields

    NASA Astrophysics Data System (ADS)

    Faddegon, Bruce A.; Perl, Joseph; Asai, Makoto

    2008-03-01

    Two Monte Carlo systems, EGSnrc and Geant4, the latter with two different 'physics lists,' were used to calculate dose distributions in large electron fields used in radiotherapy. Source and geometry parameters were adjusted to match calculated results to measurement. Both codes were capable of accurately reproducing the measured dose distributions of the six electron beams available on the accelerator. Depth penetration matched the average measured with a diode and parallel-plate chamber to 0.04 cm or better. Calculated depth dose curves agreed to 2% with diode measurements in the build-up region, although for the lower beam energies there was a discrepancy of up to 5% in this region when calculated results are compared to parallel-plate measurements. Dose profiles at the depth of maximum dose matched to 2-3% in the central 25 cm of the field, corresponding to the field size of the largest applicator. A 4% match was obtained outside the central region. The discrepancy observed in the bremsstrahlung tail in published results that used EGS4 is no longer evident. Simulations with the different codes and physics lists used different source energies, incident beam angles, thicknesses of the primary foils, and distance between the primary and secondary foil. The true source and geometry parameters were not known with sufficient accuracy to determine which parameter set, including the energy of the source, was closest to the truth. These results underscore the requirement for experimental benchmarks of depth penetration and electron scatter for beam energies and foils relevant to radiotherapy.

  1. Profiles of ion beams and plasma parameters on a multi-frequencies microwaves large bore electron cyclotron resonance ion source with permanent magnets

    SciTech Connect

    Kato, Yushi; Sakamoto, Naoki; Kiriyama, Ryutaro; Takenaka, Tomoya; Kurisu, Yosuke; Nozaki, Dai; Sato, Fuminobu; Iida, Toshiyuki

    2012-02-15

    In order to contribute to various applications of plasma and beams based on an electron cyclotron resonance, a new concept on magnetic field with all magnets on plasma production and confinement has been proposed with enhanced efficiency for broad and dense ion beam. The magnetic field configuration consists of a pair of comb-shaped magnet surrounding plasma chamber cylindrically. Resonance zones corresponding for 2.45 GHz and 11-13 GHz frequencies are positioned at spatially different positions. We launch simultaneously multiplex frequencies microwaves operated individually, try to control profiles of the plasma parameters and the extracted ion beams, and to measure them in detail.

  2. Measurement of Antenna Bore-Sight Gain

    NASA Technical Reports Server (NTRS)

    Fortinberry, Jarrod; Shumpert, Thomas

    2016-01-01

    The absolute or free-field gain of a simple antenna can be approximated using standard antenna theory formulae or for a more accurate prediction, numerical methods may be employed to solve for antenna parameters including gain. Both of these methods will result in relatively reasonable estimates but in practice antenna gain is usually verified and documented via measurements and calibration. In this paper, a relatively simple and low-cost, yet effective means of determining the bore-sight free-field gain of a VHF/UHF antenna is proposed by using the Brewster angle relationship.

  3. Water jet assisted tunnel boring

    SciTech Connect

    Ozdemir, L.

    1984-06-21

    Mechanical tunnel boring has experienced significant growth over the last two decades. Improved machine design and performance coupled with a better understanding of factors affecting boreability have contributed to a dramatic increase in the number of machine bored tunnels. Today, tunnel boring machines (TBMs) are finding widespread application in various sectors of underground construction industry, both civil and mining. Most of the hard rock formations considered unsuited to mechanical boring only a few years ago are now excavated with TBMs with favorable economics compared to conventional drill and blast methods. Despite the advancements accomplished, TBMs need further improvements in design and operation to exend their capabilities and to reduce excavation costs, particularly in hard, abrasive rocks. The design of TBMs has presently reached a state where no additional major breakthroughs are anticipated in the near future. The cutter material appears to be the major obstacle to achieving further performance improvements. The amount of load which the cutters can sustain with acceptable levels of wear is the limiting factor determining the magnitude of the power that can be placed on a TBM. In fact, most present day TBMs can generate more thrust and torque than the individual cutters are capable of supporting.

  4. Tsunami Bores in Kitakami River

    NASA Astrophysics Data System (ADS)

    Tolkova, Elena; Tanaka, Hitoshi

    2016-07-01

    The 2011 Tohoku tsunami entered the Kitakami river and propagated there as a train of shock waves, recorded with a 1-min interval at water level stations at Fukuchi, Iino, and the weir 17.2 km from the mouth, where the bulk of the wave was reflected back. The records showed that each bore kept its shape and identity as it traveled a 10.9-km-path Fukuchi-Iino-weir-Iino. Shock handling based on the cross-river integrated classical shock conditions was applied to reconstruct the flow velocity time histories at the measurement sites, to estimate inflow into the river at each site, to evaluate the wave heights of incident and reflected tsunami bores near the weir, and to estimate propagation speed of the individual bores. Theoretical predictions are verified against the measurements. We discuss experiences of exercising the shock conditions with actual tsunami measurements in the Kitakami river, and test applicability of the shallow-water approximation for describing tsunami bores with heights ranging from 0.3 to 4 m in a river segment with a depth of 3-4 m.

  5. Field-aligned currents and large scale magnetospheric electric fields

    NASA Technical Reports Server (NTRS)

    Dangelo, N.

    1980-01-01

    D'Angelo's model of polar cap electric fields (1977) was used to visualize how high-latitude field-aligned currents are driven by the solar wind generator. The region 1 and region 2 currents of Iijima and Potemra (1976) and the cusp field-aligned currents of Wilhjelm et al. (1978) and McDiarmid et al. (1978) are apparently driven by different generators, although in both cases the solar wind is their ultimate source.

  6. Large-scale electric fields in post-flare loops

    NASA Technical Reports Server (NTRS)

    Hinata, Satoshi

    1987-01-01

    As the electrical conductivity along the magnetic field in the solar atmosphere is large, parallel electric fields have been neglected in most investigations. The importance of such fields is demonstrated for post-flare loops, and a model for them is introduced which takes into account the effect of parallel electric fields. The electric field calculated from the model is consistent with the electric field observed by Foukal et al. (1983).

  7. Fast magnetic reconnection with large guide fields

    SciTech Connect

    Stanier, A.; Simakov, Andrei N.; Chacón, L.; Daughton, W.

    2015-01-09

    Here, we demonstrate using two-fluid simulations that low-βmagnetic reconnection remains fast, regardless of the presence of fast dispersive waves, which have been previously suggested to play a critical role. In order to understand these results, a discrete model is constructed that offers scaling relationships for the reconnection rate and dissipation region (DR) thickness in terms of the upstream magnetic field and DR length. We verify these scalings numerically and show how the DR self-adjusts to process magnetic flux at the same rate that it is supplied to a larger region where two-fluid effects become important. Ultimately, the rate is independent of the DR physics and is in good agreement with kinetic results.

  8. Fast magnetic reconnection with large guide fields

    DOE PAGESBeta

    Stanier, A.; Simakov, Andrei N.; Chacón, L.; Daughton, W.

    2015-01-09

    Here, we demonstrate using two-fluid simulations that low-βmagnetic reconnection remains fast, regardless of the presence of fast dispersive waves, which have been previously suggested to play a critical role. In order to understand these results, a discrete model is constructed that offers scaling relationships for the reconnection rate and dissipation region (DR) thickness in terms of the upstream magnetic field and DR length. We verify these scalings numerically and show how the DR self-adjusts to process magnetic flux at the same rate that it is supplied to a larger region where two-fluid effects become important. Ultimately, the rate is independentmore » of the DR physics and is in good agreement with kinetic results.« less

  9. Site study plan for Exploratory shaft facilities design foundation boreholes (shaft surface facility foundation borings), Deaf Smith County Site, Texas: Surface-based geotechnical field program: Preliminary draft

    SciTech Connect

    Not Available

    1987-12-01

    This site study plan describes the Exploratory Shaft Facilities (ESF) Design Foundation Boreholes field activities to be conducted during early stages of Site Characterization at the Deaf Smith County, Texas, site. The field program has been designed to provide data useful in addressing information/data needs resulting from federal/state/local regulations, and repository program requirements. Approximately 50 foundation boreholes will be drilled within the ESP location to provide data necessary for design of the ESF and to satisfy applicable shaft permitting requirements. Soils and subsurface rock will be sampled as the foundation boreholes are advanced. Soil samples or rock core will be taken through the Blackwater Draw and Ogallala Formations and the Dockum Group. Hydrologic testing will be performed in boreholes that penetrates the water table. In-situ elastic properties will be determined from both the soil strata and rock units along the length of the boreholes. Field methods/tests are chosen that provide the best or only means of obtaining the required data. The Salt Repository Project (SRP) Networks specify the schedule under which the program will operate. Drilling will not begin until after site ground water baseline conditions have been established. The Technical Field Services Contractor is responsible for conducting the field program of drilling and testing. Samples and data will be handled and reported in accordance with established SRP procedures. A quality assurance program will be utilized to assure that activities affecting quality are performed correctly and that the appropriate documentation is maintained. 25 refs., 10 figs., 6 tabs.

  10. Size segregation in a granular bore

    NASA Astrophysics Data System (ADS)

    Edwards, A. N.; Vriend, N. M.

    2016-10-01

    We investigate the effect of particle-size segregation in an upslope propagating granular bore. A bidisperse mixture of particles, initially normally graded, flows down an inclined chute and impacts with a closed end. This impact causes the formation of a shock in flow thickness, known as a granular bore, to travel upslope, leaving behind a thick deposit. This deposit imprints the local segregated state featuring both pure and mixed regions of particles as a function of downstream position. The particle-size distribution through the depth is characterized by a thin purely small-particle layer at the base, a significant linear transition region, and a thick constant mixed-particle layer below the surface, in contrast to previously observed S-shaped steady-state concentration profiles. The experimental observations agree with recent progress that upward and downward segregation of large and small particles respectively is asymmetric. We incorporate the three-layer, experimentally observed, size-distribution profile into a depth-averaged segregation model to modify it accordingly. Numerical solutions of this model are able to match our experimental results and therefore motivate the use of a more general particle-size distribution profile.

  11. Rectangular-bore, high-gain laser plasma tube

    NASA Technical Reports Server (NTRS)

    Mollo, R. A.

    1969-01-01

    Rectangular-bore tube improves population inversion obtained from upper and terminal laser states, resulting in a significant increase in unsaturated gain factor. Radial field produces efficient pumping of upper laser state. Narrow tube dimensions cause increased diffusion flow of neon is metastable states to tube walls.

  12. Large Field, High Resolution Full-Field Optical Coherence Tomography

    PubMed Central

    Assayag, Osnath; Antoine, Martine; Sigal-Zafrani, Brigitte; Riben, Michael; Harms, Fabrice; Burcheri, Adriano; Grieve, Kate; Dalimier, Eugénie; Le Conte de Poly, Bertrand; Boccara, Claude

    2014-01-01

    We present a benchmark pilot study in which high-resolution Full-Field Optical Coherence Tomography (FF-OCT) was used to image human breast tissue and is evaluated to assess its ability to aid the pathologist’s management of intra-operative diagnoses. FF-OCT imaging safety was investigated and agreement between FF-OCT and routinely prepared histopathological images was evaluated. The compact setup used for this study provides 1 µm3 resolution and 200 µm imaging depth, and a 2.25 cm2 specimen is scanned in about 7 minutes. 75 breast specimens were imaged from 22 patients (21 women, 1 man) with a mean age of 58 (range: 25-83). Pathologists blind diagnosed normal/benign or malignant tissue based on FF-OCT images alone, diagnosis from histopathology followed for comparison. The contrast in the FF-OCT images is generated by intrinsic tissue scattering properties, meaning that no tissue staining or preparation is required. Major architectural features and tissue structures of benign breast tissue, including adipocytes, fibrous stroma, lobules and ducts were characterized. Subsequently, features resulting from pathological modification were characterized and a diagnosis decision tree was developed. Using FF-OCT images, two breast pathologists were able to distinguish normal/benign tissue from lesional with a sensitivity of 94% and 90%, and specificity of 75% and 79% respectively. PMID:24000981

  13. PERMANENT MAGNET DESIGNS WITH LARGE VARIATIONS IN FIELD STRENGTH.

    SciTech Connect

    GUPTA,R.

    2004-01-21

    The use of permanent magnets has been investigated as an option for electron cooling ring for the proposed luminosity upgrade of RHIC. Several methods have been developed that allow a large variation in field strength. These design concepts were verified with computer simulations using finite element codes. It will be shown that the field uniformity is maintained while the field strength is mechanically adjusted.

  14. Cam-controlled boring bar

    DOEpatents

    Glatthorn, Raymond H.

    1986-01-01

    A cam-controlled boring bar system (100) includes a first housing (152) which is rotatable about its longitudinal axis (154), and a second housing in the form of a cam-controlled slide (158) which is also rotatable about the axis (154) as well as being translatable therealong. A tool-holder (180) is mounted within the slide (158) for holding a single point cutting tool. Slide (158) has a rectangular configuration and is disposed within a rectangularly configured portion of the first housing (152). Arcuate cam slots (192) are defined within a side plate (172) of the housing (152), while cam followers (194) are mounted upon the cam slide (158) for cooperative engagement with the cam slots (192). In this manner, as the housing (152) and slide (158) rotate, and as the slide (158) also translates, a through-bore (14) having an hourglass configuration will be formed within a workpiece (16) which may be, for example, a nuclear reactor steam generator tube support plate.

  15. Tape the Teacher: Easier Field Trips for Large Classes

    ERIC Educational Resources Information Center

    Carter, Lynne; And Others

    1974-01-01

    Describes a tape-guided field trip that has been used successfully with college biology students in the University of California Botanical Garden. This program enables large numbers of students to make individual biological observations in the field with the aid of a specially tailored, taped guide. (JR)

  16. Magnetic Helicity and Large Scale Magnetic Fields: A Primer

    NASA Astrophysics Data System (ADS)

    Blackman, Eric G.

    2015-05-01

    Magnetic fields of laboratory, planetary, stellar, and galactic plasmas commonly exhibit significant order on large temporal or spatial scales compared to the otherwise random motions within the hosting system. Such ordered fields can be measured in the case of planets, stars, and galaxies, or inferred indirectly by the action of their dynamical influence, such as jets. Whether large scale fields are amplified in situ or a remnant from previous stages of an object's history is often debated for objects without a definitive magnetic activity cycle. Magnetic helicity, a measure of twist and linkage of magnetic field lines, is a unifying tool for understanding large scale field evolution for both mechanisms of origin. Its importance stems from its two basic properties: (1) magnetic helicity is typically better conserved than magnetic energy; and (2) the magnetic energy associated with a fixed amount of magnetic helicity is minimized when the system relaxes this helical structure to the largest scale available. Here I discuss how magnetic helicity has come to help us understand the saturation of and sustenance of large scale dynamos, the need for either local or global helicity fluxes to avoid dynamo quenching, and the associated observational consequences. I also discuss how magnetic helicity acts as a hindrance to turbulent diffusion of large scale fields, and thus a helper for fossil remnant large scale field origin models in some contexts. I briefly discuss the connection between large scale fields and accretion disk theory as well. The goal here is to provide a conceptual primer to help the reader efficiently penetrate the literature.

  17. Boring crustaceans damage polystyrene floats under docks polluting marine waters with microplastic.

    PubMed

    Davidson, Timothy M

    2012-09-01

    Boring isopods damage expanded polystyrene floats under docks and, in the process, expel copious numbers of microplastic particles. This paper describes the impacts of boring isopods in aquaculture facilities and docks, quantifies and discusses the implications of these microplastics, and tests if an alternate foam type prevents boring. Floats from aquaculture facilities and docks were heavily damaged by thousands of isopods and their burrows. Multiple sites in Asia, Australia, Panama, and the USA exhibited evidence of isopod damage. One isopod creates thousands of microplastic particles when excavating a burrow; colonies can expel millions of particles. Microplastics similar in size to these particles may facilitate the spread of non-native species or be ingested by organisms causing physical or toxicological harm. Extruded polystyrene inhibited boring, suggesting this foam may prevent damage in the field. These results reveal boring isopods cause widespread damage to docks and are a novel source of microplastic pollution. PMID:22763283

  18. Boring crustaceans damage polystyrene floats under docks polluting marine waters with microplastic.

    PubMed

    Davidson, Timothy M

    2012-09-01

    Boring isopods damage expanded polystyrene floats under docks and, in the process, expel copious numbers of microplastic particles. This paper describes the impacts of boring isopods in aquaculture facilities and docks, quantifies and discusses the implications of these microplastics, and tests if an alternate foam type prevents boring. Floats from aquaculture facilities and docks were heavily damaged by thousands of isopods and their burrows. Multiple sites in Asia, Australia, Panama, and the USA exhibited evidence of isopod damage. One isopod creates thousands of microplastic particles when excavating a burrow; colonies can expel millions of particles. Microplastics similar in size to these particles may facilitate the spread of non-native species or be ingested by organisms causing physical or toxicological harm. Extruded polystyrene inhibited boring, suggesting this foam may prevent damage in the field. These results reveal boring isopods cause widespread damage to docks and are a novel source of microplastic pollution.

  19. Feasibility study of detection of chatter by using FBG during boring

    NASA Astrophysics Data System (ADS)

    Zhu, P. Y.; Peng, W.; Yuan, L.; Hu, Z. J.

    2013-10-01

    A novel real-time monitoring system based on Fiber Bragg Grating (FBG) sensor has been developed to detect chatter in boring process. In the system, a boring bar with large length-to-diameter ratio (FSTUP3225R/L-16S) was the test subject. The FBG sensor was installed on the surface of the boring bar with the length of 225mm. A classical strain gauge was employed to measure the vibratory strain and compare the results with the ones from FBG sensor. The measurements were carried out using various cutting parameters to obtain the desired chatter phenomenon. The analysis of the experimental data was verified the chatter happened during the deep hole boring. Comparison between the experimental results from two kinds of sensors demonstrated that the measurement technique could be used to detect the dynamic strain, as well as the permitting one to research the method to identify boring chatter on-line be using optical fiber sensor system.

  20. DESIGN AND CONSTRUCTION OF A 15 T, 120 MM BORE IR QUADRUPOLE MAGNET FOR LARP

    SciTech Connect

    Caspi, S.; Cheng, D.; Dietderich, D.; Felice, H.; Ferracin, P.; Hafalia, R.; Hannaford, R.; Sabbi, G. S.; Anerella, M.; Ghosh, A.; Schmalzle, J.; Wanderer, P.; Ambrosio, G.; Bossert, R.; Kashikhin, V.; Pasholk, D.; Zlobin, A.

    2009-05-04

    Pushing accelerator magnets beyond 10 T holds a promise of future upgrades to machines like the Large Hadron Collider (LHC) at CERN. Nb{sub 3}Sn conductor is at the present time the only practical superconductor capable of generating fields beyond 10 T. In support of the LHC Phase-II upgrade, the US LHC Accelerator Research Program (LARP) is developing a large bore (120 mm) IR quadrupole (HQ) capable of reaching 15 T at its conductor peak field and a peak gradient of 219 T/m at 1.9 K. While exploring the magnet performance limits in terms of gradient, forces and stresses the 1 m long two-layer coil will demonstrate additional features such as alignment and accelerator field quality. In this paper we summarize the design and report on the magnet construction progress.

  1. Large Field Visualization with Demand-Driven Calculation

    NASA Technical Reports Server (NTRS)

    Moran, Patrick J.; Henze, Chris

    1999-01-01

    We present a system designed for the interactive definition and visualization of fields derived from large data sets: the Demand-Driven Visualizer (DDV). The system allows the user to write arbitrary expressions to define new fields, and then apply a variety of visualization techniques to the result. Expressions can include differential operators and numerous other built-in functions, ail of which are evaluated at specific field locations completely on demand. The payoff of following a demand-driven design philosophy throughout becomes particularly evident when working with large time-series data, where the costs of eager evaluation alternatives can be prohibitive.

  2. Attitude Estimation for Large Field-of-View Sensors

    NASA Technical Reports Server (NTRS)

    Cheng, Yang; Crassidis, John L.; Markley, F. Landis

    2005-01-01

    The QUEST measurement noise model for unit vector observations has been widely used in spacecraft attitude estimation for more than twenty years. It was derived under the approximation that the noise lies in the tangent plane of the respective unit vector and is axially symmetrically distributed about the vector. For large field-of-view sensors, however, this approximation may be poor, especially when the measurement falls near the edge of the field of view. In this paper a new measurement noise model is derived based on a realistic noise distribution in the focal-plane of a large field-of-view sensor, which shows significant differences from the QUEST model for unit vector observations far away from the sensor boresight. An extended Kalman filter for attitude estimation is then designed with the new measurement noise model. Simulation results show that with the new measurement model the extended Kalman filter achieves better estimation performance using large field-of-view sensor observations.

  3. Quality Designed Twin Wire Arc Spraying of Aluminum Bores

    NASA Astrophysics Data System (ADS)

    König, Johannes; Lahres, Michael; Methner, Oliver

    2015-01-01

    After 125 years of development in combustion engines, the attractiveness of these powerplants still gains a great deal of attention. The efficiency of engines has been increased continuously through numerous innovations during the last years. Especially in the field of motor engineering, consequent friction optimization leads to cost-effective fuel consumption advantages and a CO2 reduction. This is the motivation and adjusting lever of NANOSLIDE® from Mercedes-Benz. The twin wire arc-spraying process of the aluminum bore creates a thin, iron-carbon-alloyed coating which is surface-finished through honing. Due to the continuous development in engines, the coating strategies must be adapted in parallel to achieve a quality-conformed coating result. The most important factors to this end are the controlled indemnification of a minimal coating thickness and a homogeneous coating deposition of the complete bore. A specific system enables the measuring and adjusting of the part and the central plunging of the coating torch into the bore to achieve a homogeneous coating thickness. Before and after measurement of the bore diameter enables conclusions about the coating thickness. A software tool specifically developed for coating deposition can transfer this information to a model that predicts the coating deposition as a function of the coating strategy.

  4. When size matters: changing opinion in the management of pleural space—the rise of small-bore pleural catheters

    PubMed Central

    Sandri, Alberto; Guerrera, Francesco; Ferraris, Andrea; Marchisio, Filippo; Bora, Giulia; Costardi, Lorena; Solidoro, Paolo; Ruffini, Enrico; Oliaro, Alberto

    2016-01-01

    Tube thoracostomy is usually the first step to treat several thoracic/pleural conditions such as pneumothorax, pleural effusions, haemothorax, haemo-pneumothorax and empyema. Today, a wide range of drains is available, ranging from small to large bore ones. Indications for an appropriate selection remains yet matter of debate, especially regarding the use of small bore catheters. Through this paper, we aimed to retrace the improvements of drains through the years and to review the current clinical indications for chest drain placement in pleural/thoracic diseases, comparing the effectiveness of small-bore drains vs. large-bore ones. PMID:27499983

  5. When size matters: changing opinion in the management of pleural space-the rise of small-bore pleural catheters.

    PubMed

    Filosso, Pier Luigi; Sandri, Alberto; Guerrera, Francesco; Ferraris, Andrea; Marchisio, Filippo; Bora, Giulia; Costardi, Lorena; Solidoro, Paolo; Ruffini, Enrico; Oliaro, Alberto

    2016-07-01

    Tube thoracostomy is usually the first step to treat several thoracic/pleural conditions such as pneumothorax, pleural effusions, haemothorax, haemo-pneumothorax and empyema. Today, a wide range of drains is available, ranging from small to large bore ones. Indications for an appropriate selection remains yet matter of debate, especially regarding the use of small bore catheters. Through this paper, we aimed to retrace the improvements of drains through the years and to review the current clinical indications for chest drain placement in pleural/thoracic diseases, comparing the effectiveness of small-bore drains vs. large-bore ones. PMID:27499983

  6. Large amplitude middle atmospheric electric fields - Fact or fiction?

    NASA Technical Reports Server (NTRS)

    Kelley, M. C.; Siefring, C. L.; Pfaff, R. F., Jr.

    1983-01-01

    An analysis of the measurements of large apparent dc fields in the middle atmosphere, previously gathered by two sounding rockets, shows these fields to be spurious. In the case of one of the rockets, the evidence presented suggests that the measured electric fields, aligned with the rocket's velocity vector, may be due to a negatively charged wake. A comparison of measurements made by various electric field booms also suggests that the insulating boom coatings in one experiment may have affected the results obtained. It is recommended that insulating coatings should not be used at mesospheric altitudes, because of the detrimental effects that frictional charging may have.

  7. Performance of a 14-T CuNb/Nb3Sn Rutherford coil with a 300 mm wide cold bore

    NASA Astrophysics Data System (ADS)

    Oguro, Hidetoshi; Watanabe, Kazuo; Awaji, Satoshi; Hanai, Satoshi; Ioka, Shigeru; Sugimoto, Masahiro; Tsubouchi, Hirokazu

    2016-08-01

    A large-bore 14-T CuNb/Nb3Sn Rutherford coil was developed for a 25 T cryogen-free superconducting magnet. The magnet consisted of a low-temperature superconducting (LTS) magnet of NbTi and Nb3Sn Rutherford coils, and a high-temperature superconducting magnet. The Nb3Sn Rutherford coil was fabricated by the react-and-wind method for the first time. The LTS magnet reached the designed operation current of 854 A without a training quench at a 1 h ramp rate. The central magnetic field generated by the LTS magnet was measured by a Hall sensor to be 14.0 T at 854 A in a 300 mm cold bore.

  8. Large field excursions from a few site relaxion model

    NASA Astrophysics Data System (ADS)

    Fonseca, N.; de Lima, L.; Machado, C. S.; Matheus, R. D.

    2016-07-01

    Relaxion models are an interesting new avenue to explain the radiative stability of the Standard Model scalar sector. They require very large field excursions, which are difficult to generate in a consistent UV completion and to reconcile with the compact field space of the relaxion. We propose an N -site model which naturally generates the large decay constant needed to address these issues. Our model offers distinct advantages with respect to previous proposals: the construction involves non-Abelian fields, allowing for controlled high-energy behavior and more model building possibilities, both in particle physics and inflationary models, and also admits a continuum limit when the number of sites is large, which may be interpreted as a warped extra dimension.

  9. SU-E-J-03: Characterization of the Precision and Accuracy of a New, Preclinical, MRI-Guided Focused Ultrasound System for Image-Guided Interventions in Small-Bore, High-Field Magnets

    SciTech Connect

    Ellens, N; Farahani, K

    2015-06-15

    Purpose: MRI-guided focused ultrasound (MRgFUS) has many potential and realized applications including controlled heating and localized drug delivery. The development of many of these applications requires extensive preclinical work, much of it in small animal models. The goal of this study is to characterize the spatial targeting accuracy and reproducibility of a preclinical high field MRgFUS system for thermal ablation and drug delivery applications. Methods: The RK300 (FUS Instruments, Toronto, Canada) is a motorized, 2-axis FUS positioning system suitable for small bore (72 mm), high-field MRI systems. The accuracy of the system was assessed in three ways. First, the precision of the system was assessed by sonicating regular grids of 5 mm squares on polystyrene plates and comparing the resulting focal dimples to the intended pattern, thereby assessing the reproducibility and precision of the motion control alone. Second, the targeting accuracy was assessed by imaging a polystyrene plate with randomly drilled holes and replicating the hole pattern by sonicating the observed hole locations on intact polystyrene plates and comparing the results. Third, the practicallyrealizable accuracy and precision were assessed by comparing the locations of transcranial, FUS-induced blood-brain-barrier disruption (BBBD) (observed through Gadolinium enhancement) to the intended targets in a retrospective analysis of animals sonicated for other experiments. Results: The evenly-spaced grids indicated that the precision was 0.11 +/− 0.05 mm. When image-guidance was included by targeting random locations, the accuracy was 0.5 +/− 0.2 mm. The effective accuracy in the four rodent brains assessed was 0.8 +/− 0.6 mm. In all cases, the error appeared normally distributed (p<0.05) in both orthogonal axes, though the left/right error was systematically greater than the superior/inferior error. Conclusions: The targeting accuracy of this device is sub-millimeter, suitable for many

  10. THE LARGE-SCALE MAGNETIC FIELDS OF THIN ACCRETION DISKS

    SciTech Connect

    Cao Xinwu; Spruit, Hendrik C. E-mail: henk@mpa-garching.mpg.de

    2013-03-10

    Large-scale magnetic field threading an accretion disk is a key ingredient in the jet formation model. The most attractive scenario for the origin of such a large-scale field is the advection of the field by the gas in the accretion disk from the interstellar medium or a companion star. However, it is realized that outward diffusion of the accreted field is fast compared with the inward accretion velocity in a geometrically thin accretion disk if the value of the Prandtl number P{sub m} is around unity. In this work, we revisit this problem considering the angular momentum of the disk to be removed predominantly by the magnetically driven outflows. The radial velocity of the disk is significantly increased due to the presence of the outflows. Using a simplified model for the vertical disk structure, we find that even moderately weak fields can cause sufficient angular momentum loss via a magnetic wind to balance outward diffusion. There are two equilibrium points, one at low field strengths corresponding to a plasma-beta at the midplane of order several hundred, and one for strong accreted fields, {beta} {approx} 1. We surmise that the first is relevant for the accretion of weak, possibly external, fields through the outer parts of the disk, while the latter one could explain the tendency, observed in full three-dimensional numerical simulations, of strong flux bundles at the centers of disk to stay confined in spite of strong magnetororational instability turbulence surrounding them.

  11. Tunnel boring waste test plan

    SciTech Connect

    Patricio, J.G. . Rockwell Hanford Operations)

    1984-03-01

    The test plan has been prepared in anticipation of the need to excavate certain repository openings by relying upon mechanical excavation techniques. The test plan proposes that specific technical issues can be resolved and key design parameters defined by excavating openings in basalt near the surface, utilizing a full face tunnel boring machine (TBM). The purpose and objective of this type of testing will define the overall feasibility and attributes of mechanical excavation in basalt. The test plan recognizes that although this technology is generally available for underground construction for some geologic settings, the current state of technology for excavation in basalt is limited and the potential for improvement is considerable. The test plan recommends that it is economically advantageous to conduct additional testing in the laboratory to allow refinement of this plan based on the laboratory results. Thus, this test plan is considered preliminary in nature, with respect to detailed testing recommendations. However, the gross design attributes and resource requirements of a near-surface TBM demonstration are considered to be valid. 15 refs., 7 figs., 3 tabs.

  12. Scalable parallel distance field construction for large-scale applications

    SciTech Connect

    Yu, Hongfeng; Xie, Jinrong; Ma, Kwan -Liu; Kolla, Hemanth; Chen, Jacqueline H.

    2015-10-01

    Computing distance fields is fundamental to many scientific and engineering applications. Distance fields can be used to direct analysis and reduce data. In this paper, we present a highly scalable method for computing 3D distance fields on massively parallel distributed-memory machines. Anew distributed spatial data structure, named parallel distance tree, is introduced to manage the level sets of data and facilitate surface tracking overtime, resulting in significantly reduced computation and communication costs for calculating the distance to the surface of interest from any spatial locations. Our method supports several data types and distance metrics from real-world applications. We demonstrate its efficiency and scalability on state-of-the-art supercomputers using both large-scale volume datasets and surface models. We also demonstrate in-situ distance field computation on dynamic turbulent flame surfaces for a petascale combustion simulation. In conclusion, our work greatly extends the usability of distance fields for demanding applications.

  13. Scalable Parallel Distance Field Construction for Large-Scale Applications.

    PubMed

    Yu, Hongfeng; Xie, Jinrong; Ma, Kwan-Liu; Kolla, Hemanth; Chen, Jacqueline H

    2015-10-01

    Computing distance fields is fundamental to many scientific and engineering applications. Distance fields can be used to direct analysis and reduce data. In this paper, we present a highly scalable method for computing 3D distance fields on massively parallel distributed-memory machines. A new distributed spatial data structure, named parallel distance tree, is introduced to manage the level sets of data and facilitate surface tracking over time, resulting in significantly reduced computation and communication costs for calculating the distance to the surface of interest from any spatial locations. Our method supports several data types and distance metrics from real-world applications. We demonstrate its efficiency and scalability on state-of-the-art supercomputers using both large-scale volume datasets and surface models. We also demonstrate in-situ distance field computation on dynamic turbulent flame surfaces for a petascale combustion simulation. Our work greatly extends the usability of distance fields for demanding applications. PMID:26357251

  14. Scalable Parallel Distance Field Construction for Large-Scale Applications.

    PubMed

    Yu, Hongfeng; Xie, Jinrong; Ma, Kwan-Liu; Kolla, Hemanth; Chen, Jacqueline H

    2015-10-01

    Computing distance fields is fundamental to many scientific and engineering applications. Distance fields can be used to direct analysis and reduce data. In this paper, we present a highly scalable method for computing 3D distance fields on massively parallel distributed-memory machines. A new distributed spatial data structure, named parallel distance tree, is introduced to manage the level sets of data and facilitate surface tracking over time, resulting in significantly reduced computation and communication costs for calculating the distance to the surface of interest from any spatial locations. Our method supports several data types and distance metrics from real-world applications. We demonstrate its efficiency and scalability on state-of-the-art supercomputers using both large-scale volume datasets and surface models. We also demonstrate in-situ distance field computation on dynamic turbulent flame surfaces for a petascale combustion simulation. Our work greatly extends the usability of distance fields for demanding applications.

  15. A note on large gauge transformations in double field theory

    NASA Astrophysics Data System (ADS)

    Naseer, Usman

    2015-06-01

    We give a detailed proof of the conjecture by Hohm and Zwiebach in double field theory. This result implies that their proposal for large gauge transformations in terms of the Jacobian matrix for coordinate transformations is, as required, equivalent to the standard exponential map associated with the generalized Lie derivative along a suitable parameter.

  16. Osedax borings in fossil marine bird bones.

    PubMed

    Kiel, Steffen; Kahl, Wolf-Achim; Goedert, James L

    2011-01-01

    The bone-eating marine annelid Osedax consumes mainly whale bones on the deep-sea floor, but recent colonization experiments with cow bones and molecular age estimates suggesting a possible Cretaceous origin of Osedax indicate that this worm might be able grow on a wider range of substrates. The suggested Cretaceous origin was thought to imply that Osedax could colonize marine reptile or fish bones, but there is currently no evidence that Osedax consumes bones other than those of mammals. We provide the first evidence that Osedax was, and most likely still is, able to consume non-mammalian bones, namely bird bones. Borings resembling those produced by living Osedax were found in bones of early Oligocene marine flightless diving birds (family Plotopteridae). The species that produced these boreholes had a branching filiform root that grew to a length of at least 3 mm, and lived in densities of up to 40 individuals per square centimeter. The inclusion of bird bones into the diet of Osedax has interesting implications for the recent suggestion of a Cretaceous origin of this worm because marine birds have existed continuously since the Cretaceous. Bird bones could have enabled this worm to survive times in the Earth's history when large marine vertebrates other than fish were rare, specifically after the disappearance of large marine reptiles at the end-Cretaceous mass extinction event and before the rise of whales in the Eocene.

  17. Osedax borings in fossil marine bird bones

    NASA Astrophysics Data System (ADS)

    Kiel, Steffen; Kahl, Wolf-Achim; Goedert, James L.

    2011-01-01

    The bone-eating marine annelid Osedax consumes mainly whale bones on the deep-sea floor, but recent colonization experiments with cow bones and molecular age estimates suggesting a possible Cretaceous origin of Osedax indicate that this worm might be able grow on a wider range of substrates. The suggested Cretaceous origin was thought to imply that Osedax could colonize marine reptile or fish bones, but there is currently no evidence that Osedax consumes bones other than those of mammals. We provide the first evidence that Osedax was, and most likely still is, able to consume non-mammalian bones, namely bird bones. Borings resembling those produced by living Osedax were found in bones of early Oligocene marine flightless diving birds (family Plotopteridae). The species that produced these boreholes had a branching filiform root that grew to a length of at least 3 mm, and lived in densities of up to 40 individuals per square centimeter. The inclusion of bird bones into the diet of Osedax has interesting implications for the recent suggestion of a Cretaceous origin of this worm because marine birds have existed continuously since the Cretaceous. Bird bones could have enabled this worm to survive times in the Earth's history when large marine vertebrates other than fish were rare, specifically after the disappearance of large marine reptiles at the end-Cretaceous mass extinction event and before the rise of whales in the Eocene.

  18. Osedax borings in fossil marine bird bones.

    PubMed

    Kiel, Steffen; Kahl, Wolf-Achim; Goedert, James L

    2011-01-01

    The bone-eating marine annelid Osedax consumes mainly whale bones on the deep-sea floor, but recent colonization experiments with cow bones and molecular age estimates suggesting a possible Cretaceous origin of Osedax indicate that this worm might be able grow on a wider range of substrates. The suggested Cretaceous origin was thought to imply that Osedax could colonize marine reptile or fish bones, but there is currently no evidence that Osedax consumes bones other than those of mammals. We provide the first evidence that Osedax was, and most likely still is, able to consume non-mammalian bones, namely bird bones. Borings resembling those produced by living Osedax were found in bones of early Oligocene marine flightless diving birds (family Plotopteridae). The species that produced these boreholes had a branching filiform root that grew to a length of at least 3 mm, and lived in densities of up to 40 individuals per square centimeter. The inclusion of bird bones into the diet of Osedax has interesting implications for the recent suggestion of a Cretaceous origin of this worm because marine birds have existed continuously since the Cretaceous. Bird bones could have enabled this worm to survive times in the Earth's history when large marine vertebrates other than fish were rare, specifically after the disappearance of large marine reptiles at the end-Cretaceous mass extinction event and before the rise of whales in the Eocene. PMID:21103978

  19. Osedax borings in fossil marine bird bones

    PubMed Central

    Kahl, Wolf-Achim; Goedert, James L.

    2010-01-01

    The bone-eating marine annelid Osedax consumes mainly whale bones on the deep-sea floor, but recent colonization experiments with cow bones and molecular age estimates suggesting a possible Cretaceous origin of Osedax indicate that this worm might be able grow on a wider range of substrates. The suggested Cretaceous origin was thought to imply that Osedax could colonize marine reptile or fish bones, but there is currently no evidence that Osedax consumes bones other than those of mammals. We provide the first evidence that Osedax was, and most likely still is, able to consume non-mammalian bones, namely bird bones. Borings resembling those produced by living Osedax were found in bones of early Oligocene marine flightless diving birds (family Plotopteridae). The species that produced these boreholes had a branching filiform root that grew to a length of at least 3 mm, and lived in densities of up to 40 individuals per square centimeter. The inclusion of bird bones into the diet of Osedax has interesting implications for the recent suggestion of a Cretaceous origin of this worm because marine birds have existed continuously since the Cretaceous. Bird bones could have enabled this worm to survive times in the Earth’s history when large marine vertebrates other than fish were rare, specifically after the disappearance of large marine reptiles at the end-Cretaceous mass extinction event and before the rise of whales in the Eocene. PMID:21103978

  20. Small diameter, deep bore optical inspection system

    DOEpatents

    Lord, D.E.; Petrini, R.R.; Carter, G.W.

    An improved rod optic system for inspecting small diameter, deep bores is described. The system consists of a rod optic system utilizing a curved mirror at the end of the rod lens such that the optical path through the system is bent 90/sup 0/ to minimize optical distortion in examing the sides of a curved bore. The system is particularly useful in the examination of small bores for corrosion, and is capable if examing 1/16 inch diameter and up to 4-inch deep drill holes, for example. The positioning of the curved mirror allows simultaneous viewing from shallow and righ angle points of observation of the same artifact (such as corrosion) in the bore hole. The improved rod optic system may be used for direct eye sighting, or in combination with a still camera or a low-light television monitor; particularly low-light color television.

  1. Observational and Modeling Study of Mesopheric Bores

    NASA Astrophysics Data System (ADS)

    Loughmiller, P.; Hickey, M.; Franke, S.; Kelley, M.

    In mid-ladtitude studies of the dynamics of the mesosphere and lower thermosphere, some of the most intriguing phenomena observed high over the Hawaiian night skies are internal bores. These events affecting chemiluminescence are documented in monochromatic airglow images taken by high performance all-sky CCD imaging systems operating at the Maui Space Surveillance Site on top of Haleakala Crater. Data continues to be collected as part of the ongoing, collaborative Maui - Mesosphere and Lower Thermosphere (MALT) campaign, jointly sponsored by the National Science Foundation and the Air Force Office of Scientific Research. Bolstered by the Maui-MALT dataset, several theories now exist for mesospheric bores, agreeing in principle that they are likely nonlinear structures spawned by gravity waves and propagating within ducted waveguide regions. We investigate these plausible theories using a multi-instrument 2 approach, looking for correlation between bores and thermal inversion layers or wind shears, both potential guiding structures for lateral, geographic bore propagation.

  2. Small diameter, deep bore optical inspection system

    DOEpatents

    Lord, David E.; Petrini, Richard R.; Carter, Gary W.

    1981-01-01

    An improved rod optic system for inspecting small diameter, deep bores. The system consists of a rod optic system utilizing a curved mirror at the end of the rod lens such that the optical path through the system is bent 90.degree. to minimize optical distortion in examining the sides of a curved bore. The system is particularly useful in the examination of small bores for corrosion, and is capable of examining 1/16 inch diameter and up to 4 inch deep drill holes, for example. The positioning of the curved mirror allows simultaneous viewing from shallow and right angle points of observation of the same artifact (such as corrosion) in the bore hole. The improved rod optic system may be used for direct eye sighting, or in combination with a still camera or a low-light television monitor; particularly low-light color television.

  3. High temperature well bore cement slurry

    SciTech Connect

    Nahm, J.J.W.; Vinegar, H.J.; Karanikas, J.M.; Wyant, R.E.

    1993-07-13

    A low density well bore cement slurry composition is described suitable for cementing well bores with high reservoir temperatures comprising: (a) a high alumina cement in an amount of about 40 pounds per barrel of slurry or greater: (b) graphite in an amount greater than about one quarter, by volume, of the solids in the cement slurry; and (c) and a carrier fluid comprising drilling mud.

  4. CONSTRAINING PRIMORDIAL MAGNETIC FIELDS THROUGH LARGE-SCALE STRUCTURE

    SciTech Connect

    Kahniashvili, Tina; Natarajan, Aravind; Battaglia, Nicholas; Maravin, Yurii; Tevzadze, Alexander G.

    2013-06-10

    We study primordial magnetic field effects on the matter perturbations in the universe. We assume magnetic field generation prior to the big bang nucleosynthesis (BBN), i.e., during the radiation-dominated epoch of the universe expansion, but do not limit analysis by considering a particular magnetogenesis scenario. Contrary to previous studies, we limit the total magnetic field energy density and not the smoothed amplitude of the magnetic field at large (of the order of 1 Mpc) scales. We review several cosmological signatures, such as halo abundance, thermal Sunyaev-Zel'dovich effect, and Ly{alpha} data. For a cross-check, we compare our limits with that obtained through the cosmic microwave background faraday rotation effect and BBN. The limits range between 1.5 nG and 4.5 nG for n{sub B} in (- 3; -1.5).

  5. Strong CP Violation in Large Scale Magnetic Fields

    SciTech Connect

    Faccioli, P.; Millo, R.

    2007-11-19

    We explore the possibility of improving on the present experimental bounds on Strong CP violation, by studying processes in which the smallness of {theta} is compensated by the presence of some other very large scale. In particular, we study the response of the {theta} vacuum to large-scale magnetic fields, whose correlation lengths can be as large as the size of galaxy clusters. We find that, if strong interactions break CP, an external magnetic field would induce an electric vacuum polarization along the same direction. As a consequence, u,d-bar and d,u-bar quarks would accumulate in the opposite regions of the space, giving raise to an electric dipole moment. We estimate the magnitude of this effect both at T = 0 and for 0large or the field is very intense.

  6. Numerically modelling the large scale coronal magnetic field

    NASA Astrophysics Data System (ADS)

    Panja, Mayukh; Nandi, Dibyendu

    2016-07-01

    The solar corona spews out vast amounts of magnetized plasma into the heliosphere which has a direct impact on the Earth's magnetosphere. Thus it is important that we develop an understanding of the dynamics of the solar corona. With our present technology it has not been possible to generate 3D magnetic maps of the solar corona; this warrants the use of numerical simulations to study the coronal magnetic field. A very popular method of doing this, is to extrapolate the photospheric magnetic field using NLFF or PFSS codes. However the extrapolations at different time intervals are completely independent of each other and do not capture the temporal evolution of magnetic fields. On the other hand full MHD simulations of the global coronal field, apart from being computationally very expensive would be physically less transparent, owing to the large number of free parameters that are typically used in such codes. This brings us to the Magneto-frictional model which is relatively simpler and computationally more economic. We have developed a Magnetofrictional Model, in 3D spherical polar co-ordinates to study the large scale global coronal field. Here we present studies of changing connectivities between active regions, in response to photospheric motions.

  7. Edge field emission of large-area single layer graphene

    NASA Astrophysics Data System (ADS)

    Kleshch, Victor I.; Bandurin, Denis A.; Orekhov, Anton S.; Purcell, Stephen T.; Obraztsov, Alexander N.

    2015-12-01

    Field electron emission from the edges of large-area (∼1 cm × 1 cm) graphene films deposited onto quartz wafers was studied. The graphene was previously grown by chemical vapour deposition on copper. An extreme enhancement of electrostatic field at the edge of the films with macroscopically large lateral dimensions and with single atom thickness was achieved. This resulted in the creation of a blade type electron emitter, providing stable field emission at low-voltage with linear current density up to 0.5 mA/cm. A strong hysteresis in current-voltage characteristics and a step-like increase of the emission current during voltage ramp up were observed. These effects were explained by the local mechanical peeling of the graphene edge from the quartz substrate by the ponderomotive force during the field emission process. Specific field emission phenomena exhibited in the experimental study are explained by a unique combination of structural, electronic and mechanical properties of graphene. Various potential applications ranging from linear electron beam sources to microelectromechanical systems are discussed.

  8. A wind tunnel application of large-field focusing schlieren

    NASA Technical Reports Server (NTRS)

    Ponton, Michael K.; Seiner, John M.; Mitchell, L. K.; Manning, James C.; Jansen, Bernard J.; Lagen, Nicholas T.

    1992-01-01

    A large-field focusing schlieren apparatus was installed in the NASA Lewis Research Center 9 by 15 foot wind tunnel in an attempt to determine the density gradient flow field of a free jet issuing from a supersonic nozzle configuration. The nozzle exit geometry was designed to reduce acoustic emissions from the jet by enhancing plume mixing. Thus, the flow exhibited a complex three-dimensional structure which warranted utilizing the sharp focusing capability of this type of schlieren method. Design considerations concerning tunnel limitations, high-speed photography, and video tape recording are presented in the paper.

  9. Large N correlation functions in superconformal field theories

    NASA Astrophysics Data System (ADS)

    Rodriguez-Gomez, Diego; Russo, Jorge G.

    2016-06-01

    We compute correlation functions of chiral primary operators in mathcal{N}=2 super-conformal theories at large N using a construction based on supersymmetric localization recently developed by Gerchkovitz et al. We focus on mathcal{N}=4 SYM as well as on supercon-formal QCD. In the case of mathcal{N}=4 we recover the free field theory results as expected due to non-renormalization theorems. In the case of superconformal QCD we study the planar expansion in the large N limit. The final correlators admit a simple generalization to a finite N formula which exactly matches the various small N results in the literature.

  10. Large-field high-resolution mosaic movies

    NASA Astrophysics Data System (ADS)

    Hammerschlag, Robert H.; Sliepen, Guus; Bettonvil, Felix C. M.; Jägers, Aswin P. L.; Sütterlin, Peter; Martin, Sara F.

    2012-09-01

    Movies with fields-of-view larger than normal for high-resolution telescopes will give a better understanding of processes on the Sun, such as filament and active region developments and their possible interactions. New active regions can influence, by their emergence, their environment to the extent of possibly serving as an igniter of the eruption of a nearby filament. A method to create a large field-of-view is to join several fields-of-view into a mosaic. Fields are imaged quickly one after another using fast telescope-pointing. Such a pointing cycle has been automated at the Dutch Open Telescope (DOT), a high-resolution solar telescope located on the Canary Island La Palma. The observer can draw with the computer mouse the desired total field in the guider-telescope image of the whole Sun. The guider telescope is equipped with an H-alpha filter and electronic enhancement of contrast in the image for good visibility of filaments and prominences. The number and positions of the subfields are calculated automatically and represented by an array of bright points indicating the subfield centers inside the drawn rectangle of the total field on the computer screen with the whole-sun image. When the exposures start the telescope repeats automatically the sequence of subfields. Automatic production of flats is also programmed including defocusing and fast motion over the solar disk of the image field. For the first time mosaic movies were programmed from stored information on automated telescope motions from one field to the next. The mosaic movies fill the gap between whole-sun images with limited resolution of synoptic telescopes including space instruments and small-field high-cadence movies of high-resolution solar telescopes.

  11. Large scale meteorological influence during the Geysers 1979 field experiment

    SciTech Connect

    Barr, S.

    1980-01-01

    A series of meteorological field measurements conducted during July 1979 near Cobb Mountain in Northern California reveals evidence of several scales of atmospheric circulation consistent with the climatic pattern of the area. The scales of influence are reflected in the structure of wind and temperature in vertically stratified layers at a given observation site. Large scale synoptic gradient flow dominates the wind field above about twice the height of the topographic ridge. Below that there is a mixture of effects with evidence of a diurnal sea breeze influence and a sublayer of katabatic winds. The July observations demonstrate that weak migratory circulations in the large scale synoptic meteorological pattern have a significant influence on the day-to-day gradient winds and must be accounted for in planning meteorological programs including tracer experiments.

  12. Large field inflation models from higher-dimensional gauge theories

    NASA Astrophysics Data System (ADS)

    Furuuchi, Kazuyuki; Koyama, Yoji

    2015-02-01

    Motivated by the recent detection of B-mode polarization of CMB by BICEP2 which is possibly of primordial origin, we study large field inflation models which can be obtained from higher-dimensional gauge theories. The constraints from CMB observations on the gauge theory parameters are given, and their naturalness are discussed. Among the models analyzed, Dante's Inferno model turns out to be the most preferred model in this framework.

  13. Large field inflation models from higher-dimensional gauge theories

    SciTech Connect

    Furuuchi, Kazuyuki; Koyama, Yoji

    2015-02-23

    Motivated by the recent detection of B-mode polarization of CMB by BICEP2 which is possibly of primordial origin, we study large field inflation models which can be obtained from higher-dimensional gauge theories. The constraints from CMB observations on the gauge theory parameters are given, and their naturalness are discussed. Among the models analyzed, Dante’s Inferno model turns out to be the most preferred model in this framework.

  14. Relic vector field and CMB large scale anomalies

    SciTech Connect

    Chen, Xingang; Wang, Yi E-mail: yw366@cam.ac.uk

    2014-10-01

    We study the most general effects of relic vector fields on the inflationary background and density perturbations. Such effects are observable if the number of inflationary e-folds is close to the minimum requirement to solve the horizon problem. We show that this can potentially explain two CMB large scale anomalies: the quadrupole-octopole alignment and the quadrupole power suppression. We discuss its effect on the parity anomaly. We also provide analytical template for more detailed data comparison.

  15. Fast catadioptric optics with large field of view

    NASA Astrophysics Data System (ADS)

    Blanchard, N.; Doucet, M.; Desnoyers, N.; Le Noc, L.; Bergeron, A.

    2009-08-01

    High resolution is in demand for the new applications based on the use of infrared technology. For observation task, high resolution provides more information either under the form of better resolving power or larger field-of-view. Various solutions can be envisioned to achieve high resolution imaging. In this paper, a combination of high resolution detector and microscanning system is proposed. This strategy results in higher resolution and reduced aliasing. A catadioptric configuration is preferred when a microscan is required to increase the spatial sampling frequency. Among the catadioptric configurations, the Schmidt-Cassegrain has wide angle capability due to its aspherical entrance window. However, when the system is used in harsh environment, this compensator window may have to be replaced often. In this case, a flat window would be preferred because it can be removed or easily replaced at reasonable cost. The reduction of the aberrations to an acceptable level without compensator window requires that the mirrors of the telescope be aspherized. In this paper, we present a modified Cassegrain telescope with two aspherical mirrors and one field lens. Due to the large obscuration of the secondary mirror, the effective F/1.05 necessitates a larger working F-number of 0.75. The spectral band ranges from 7.0 to 14.0 microns and the focal length is 50mm. The system is designed for the ULIS UL04171 microbolometer detector with 640 x 480 pixels and 25 microns pixel pitch. With this sensor, the total field of view of the system is 22.6 degrees, which is very large for a catadioptric system. A microscan increases the system maximal spatial sampling frequency from 20 to 40 cycles per millimeter. Despite of the compactness, there is enough room between the field lens and the detector to insert a shutter. A baffle extending ahead of the device is needed in this large field of view design to avoid undesired rays reaching the detector.

  16. Large-scale magnetic fields, dark energy, and QCD

    SciTech Connect

    Urban, Federico R.; Zhitnitsky, Ariel R.

    2010-08-15

    Cosmological magnetic fields are being observed with ever increasing correlation lengths, possibly reaching the size of superclusters, therefore disfavoring the conventional picture of generation through primordial seeds later amplified by galaxy-bound dynamo mechanisms. In this paper we put forward a fundamentally different approach that links such large-scale magnetic fields to the cosmological vacuum energy. In our scenario the dark energy is due to the Veneziano ghost (which solves the U(1){sub A} problem in QCD). The Veneziano ghost couples through the triangle anomaly to the electromagnetic field with a constant which is unambiguously fixed in the standard model. While this interaction does not produce any physical effects in Minkowski space, it triggers the generation of a magnetic field in an expanding universe at every epoch. The induced energy of the magnetic field is thus proportional to cosmological vacuum energy: {rho}{sub EM{approx_equal}}B{sup 2{approx_equal}}(({alpha}/4{pi})){sup 2{rho}}{sub DE}, {rho}{sub DE} hence acting as a source for the magnetic energy {rho}{sub EM}. The corresponding numerical estimate leads to a magnitude in the nG range. There are two unique and distinctive predictions of our proposal: an uninterrupted active generation of Hubble size correlated magnetic fields throughout the evolution of the Universe; the presence of parity violation on the enormous scales 1/H, which apparently has been already observed in CMB. These predictions are entirely rooted into the standard model of particle physics.

  17. Large-field high-resolution mosaic movies

    NASA Astrophysics Data System (ADS)

    Hammerschlag, Robert H.; Sliepen, Guus; Bettonvil, Felix C. M.; Jägers, Aswin P. L.; Sütterlin, Peter; Lin, Yong; Martin, Sara F.; Panasenco, Olga; Romashets, Eugene P.

    2013-08-01

    Movies with fields-of-view larger than normal, for high-resolution telescopes, will give a better understanding of processes on the Sun such as filament and active region developments and their possible interactions. New active regions can serve as an igniter of the eruption of a nearby filament. A method to create a large field-of-view is to join several fields-of-view into a mosaic. Fields are imaged quickly, one after another, using fast telescope-pointing. Such a pointing cycle has been automated at the Dutch open telescope (DOT), a high-resolution solar telescope located on the Canary Island La Palma. The number and positions of the subfields are calculated automatically and represented by an array of bright points in the guider image which indicates the subfield centers inside the drawn rectangle of the total field on the computer screen with the whole-sun image. Automatic production of flats is also programmed. For the first time, mosaic movies were programmed from stored information on automated telescope motions. The mosaic movies show larger regions of the solar disk in high resolution and fill a gap between available whole-sun images with limited spatial resolution of synoptic telescopes including space instruments and small-field high-cadence movies of high-resolution solar telescopes.

  18. Large viewing field wavefront sensing by using a lightfield system

    NASA Astrophysics Data System (ADS)

    Lv, Yang; Zhang, Xuanzhe; Ma, Haotong; Ning, Yu; Wang, Rui; Xu, Xiaojun

    2013-09-01

    To overcome the shortcomings of Shack-Hartmann wavefront sensor, we developed a lightfield wavefront detection system, which is able to complete the large field of view, multi-perspective wavefront detection in a single photographic exposure. The lightfield wavefront detection system includes an imaging primary mirror, a lenslet array and a photosensitive device. The lenslet array is located on the imaging plane of the imaging primary mirror and the photosensitive device is located on the focal plane of the lenslet array. In this system, each lenslet reimages the aperture and forms a low-resolution image of the aperture. Compared with the Shack-Hartmann sensor, this lightfield measuring method can obtain imaging arrays in different perspectives. By comparing the array information with the standard information, we can obtain the slope matrix of the wavefront in different perspectives and restore the wavefront in a large field of view. Based on Fourier optics, we built the corresponding theoretical model and simulation system. By busing Meade telescope, turbulent phase screen, lenslet array and CCD camera, we founded the experimental lightfield wavefront measuring system. Numerical simulation results and experimental results show that this wavefront measuring method can effectively achieve the wavefront aberration information. This wavefront measurement method can realize the multi-perspective wavefront measurement, which is expected to solve the problem of large viewing field wavefront detection, and can be used for adaptive optics in giant telescopes.

  19. Geometric quantification of features in large flow fields.

    PubMed

    Kendall, Wesley; Huang, Jian; Peterka, Tom

    2012-01-01

    Interactive exploration of flow features in large-scale 3D unsteady-flow data is one of the most challenging visualization problems today. To comprehensively explore the complex feature spaces in these datasets, a proposed system employs a scalable framework for investigating a multitude of characteristics from traced field lines. This capability supports the examination of various neighborhood-based geometric attributes in concert with other scalar quantities. Such an analysis wasn't previously possible because of the large computational overhead and I/O requirements. The system integrates visual analytics methods by letting users procedurally and interactively describe and extract high-level flow features. An exploration of various phenomena in a large global ocean-modeling simulation demonstrates the approach's generality and expressiveness as well as its efficacy.

  20. Large trispectrum in two-field slow-roll inflation

    NASA Astrophysics Data System (ADS)

    Elliston, Joseph; Alabidi, Laila; Huston, Ian; Mulryne, David; Tavakol, Reza

    2012-09-01

    We calculate the conditions required to produce a large local trispectrum during two-field slow-roll inflation. This is done by extending and simplifying the 'heat-map' approach developed by Byrnes et al. The conditions required to generate a large trispectrum are broadly the same as those that can produce a large bispectrum. We derive a simple relation between τNL and fNL for models with separable potentials, and furthermore show that gNL and τNL can be related in specific circumstances. Additionally, we interpret the heatmaps dynamically, showing how they can be used as qualitative tools to understand the evolution of non-Gaussianity during inflation. We also show how fNL, τNL and gNL are sourced by generic shapes in the inflationary potential, namely ridges, valleys and inflection points.

  1. Large trispectrum in two-field slow-roll inflation

    SciTech Connect

    Elliston, Joseph; Huston, Ian; Mulryne, David; Tavakol, Reza; Alabidi, Laila E-mail: laila@yukawa.kyoto-u.ac.jp E-mail: d.mulryne@qmul.ac.uk

    2012-09-01

    We calculate the conditions required to produce a large local trispectrum during two-field slow-roll inflation. This is done by extending and simplifying the 'heat-map' approach developed by Byrnes et al. The conditions required to generate a large trispectrum are broadly the same as those that can produce a large bispectrum. We derive a simple relation between τ{sub NL} and f{sub NL} for models with separable potentials, and furthermore show that g{sub NL} and τ{sub NL} can be related in specific circumstances. Additionally, we interpret the heatmaps dynamically, showing how they can be used as qualitative tools to understand the evolution of non-Gaussianity during inflation. We also show how f{sub NL}, τ{sub NL} and g{sub NL} are sourced by generic shapes in the inflationary potential, namely ridges, valleys and inflection points.

  2. Penetration of Large Scale Electric Field to Inner Magnetosphere

    NASA Astrophysics Data System (ADS)

    Chen, S. H.; Fok, M. C. H.; Sibeck, D. G.; Wygant, J. R.; Spence, H. E.; Larsen, B.; Reeves, G. D.; Funsten, H. O.

    2015-12-01

    The direct penetration of large scale global electric field to the inner magnetosphere is a critical element in controlling how the background thermal plasma populates within the radiation belts. These plasma populations provide the source of particles and free energy needed for the generation and growth of various plasma waves that, at critical points of resonances in time and phase space, can scatter or energize radiation belt particles to regulate the flux level of the relativistic electrons in the system. At high geomagnetic activity levels, the distribution of large scale electric fields serves as an important indicator of how prevalence of strong wave-particle interactions extend over local times and radial distances. To understand the complex relationship between the global electric fields and thermal plasmas, particularly due to the ionospheric dynamo and the magnetospheric convection effects, and their relations to the geomagnetic activities, we analyze the electric field and cold plasma measurements from Van Allen Probes over more than two years period and simulate a geomagnetic storm event using Coupled Inner Magnetosphere-Ionosphere Model (CIMI). Our statistical analysis of the measurements from Van Allan Probes and CIMI simulations of the March 17, 2013 storm event indicate that: (1) Global dawn-dusk electric field can penetrate the inner magnetosphere inside the inner belt below L~2. (2) Stronger convections occurred in the dusk and midnight sectors than those in the noon and dawn sectors. (3) Strong convections at multiple locations exist at all activity levels but more complex at higher activity levels. (4) At the high activity levels, strongest convections occur in the midnight sectors at larger distances from the Earth and in the dusk sector at closer distances. (5) Two plasma populations of distinct ion temperature isotropies divided at L-Shell ~2, indicating distinct heating mechanisms between inner and outer radiation belts. (6) CIMI

  3. Scalable parallel distance field construction for large-scale applications

    DOE PAGESBeta

    Yu, Hongfeng; Xie, Jinrong; Ma, Kwan -Liu; Kolla, Hemanth; Chen, Jacqueline H.

    2015-10-01

    Computing distance fields is fundamental to many scientific and engineering applications. Distance fields can be used to direct analysis and reduce data. In this paper, we present a highly scalable method for computing 3D distance fields on massively parallel distributed-memory machines. Anew distributed spatial data structure, named parallel distance tree, is introduced to manage the level sets of data and facilitate surface tracking overtime, resulting in significantly reduced computation and communication costs for calculating the distance to the surface of interest from any spatial locations. Our method supports several data types and distance metrics from real-world applications. We demonstrate itsmore » efficiency and scalability on state-of-the-art supercomputers using both large-scale volume datasets and surface models. We also demonstrate in-situ distance field computation on dynamic turbulent flame surfaces for a petascale combustion simulation. In conclusion, our work greatly extends the usability of distance fields for demanding applications.« less

  4. A multidiagnostic investigation of the mesospheric bore phenomenon

    NASA Astrophysics Data System (ADS)

    Smith, Steven M.; Taylor, Michael J.; Swenson, Gary R.; She, Chiao-Yao; Hocking, Wayne; Baumgardner, Jeffrey; Mendillo, Michael

    2003-02-01

    Imaging measurements of a bright wave event in the nighttime mesosphere were made on 14 November 1999 at two sites separated by over 500 km in the southwestern United States. The event was characterized by a sharp onset of a series of extensive wavefronts that propagated across the entire sky. The waves were easily visible to the naked eye, and the entire event was observed for at least 5? hours. The event was observed using three wide-angle imaging systems located at the Boston University field station at McDonald Observatory (MDO), Fort Davis, Texas, and the Starfire Optical Range (SOR), Albuquerque, New Mexico. The spaced imaging measurements provided a unique opportunity to estimate the physical extent and time history of the disturbance. Simultaneous radar neutral wind measurements in the 82 to 98 km altitude region were also made at the SOR which indicated that a strong vertical wind shear of 19.5 ms-1km-1 occurred between 80 and 95 km just prior to the appearance of the disturbance. Simultaneous lidar temperature and density measurements made at Fort Collins, Colorado, ˜1100 km north of MDO, show the presence of a large (˜50 K) temperature inversion layer at the time of the wave event. The observations indicated that the event was most probably due to an undular mesospheric bore, a relatively uncommon disturbance which has only recently been reported [, 1995a]. Evidence is also shown to suggest that a large east-west tropospheric frontal system lying over the northern United States was the origin of the disturbance.

  5. Piston ring conformability in a distorted bore

    SciTech Connect

    Tomanik, E.

    1996-09-01

    Some different equations to calculate the maximum deformation that a given ring can conform to, are found in the bibliography. These equations do not consider the ring end gap and ovality, gas pressure acting on it, nor the actual bore shape, but only the maximum amplitude for a given term (from a fourier Series that describes the bore shape). A more exact prediction can be done with Finite Element tools or specific codes for piston ring simulation; those approaches are not usually carried out, except in special cases or in more fundamental studies. Experimental measurements were carried out to verify the simple conformability criteria. Deformed shapes were produced in a static jig and areas of non contact, between ring and the deformed bore shapes, were measured. Based on these measurements, a semi-empirical equation is proposed to calculate the limit of piston ring conformability. The proposed equation is simple enough to be calculated in the initial engine design phases (where the required inputs to more detailed methods are not available) or on a day-by-day basis. If bore deformation surpasses the ring conformability, the percentage of ring periphery contacting the bore can be estimated, in a first approximation, by the linear regression empirically found in the experiments.

  6. The propagation of internal undular bores over variable topography

    NASA Astrophysics Data System (ADS)

    Grimshaw, R.; Yuan, C.

    2016-10-01

    In the coastal ocean, large amplitude, horizontally propagating internal wave trains are commonly observed. These are long nonlinear waves and can be modelled by equations of the Korteweg-de Vries type. Typically they occur in regions of variable bottom topography when the variable-coefficient Korteweg-de Vries equation is an appropriate model. Of special interest is the situation when the coefficient of the quadratic nonlinear term changes sign at a certain critical point. This case has been widely studied for a solitary wave, which is extinguished at the critical point and replaced by a train of solitary waves of the opposite polarity to the incident wave, riding on a pedestal of the original polarity. Here we examine the same situation for an undular bore, represented by a modulated periodic wave train. Numerical simulations and some asymptotic analysis based on Whitham modulation equations show that the leading solitary waves in the undular bore are destroyed and replaced by a developing rarefaction wave supporting emerging solitary waves of the opposite polarity. In contrast the rear of the undular bore emerges with the same shape, but with reduced wave amplitudes, a shorter overall length scale and moves more slowly.

  7. The Large N Limit of Superconformal Field Theories and Supergravity

    NASA Astrophysics Data System (ADS)

    Maldacena, Juan M.

    We show that the large N limit of certain conformal field theories in various dimensions include in their Hilbert space a sector describing supergravity on the product of Anti-deSitter spacetimes, spheres and other compact manifolds. This is shown by taking some branes in the full M/string theory and then taking a low energy limit where the field theory on the brane decouples from the bulk. We observe that, in this limit, we can still trust the near horizon geometry for large N. The enhanced supersymmetries of the near horizon geometry correspond to the extra supersymmetry generators present in the superconformal group (as opposed to just the super-Poincare group). The 't Hooft limit of 4-d N =4 super-Yang-Mills at the conformal point is shown to contain strings: they are IIB strings. We conjecture that compactifications of M/string theory on various Anti-deSitter spacetimes are dual to various conformal field theories. This leads to a new proposal for a definition of M-theory which could be extended to include five non-compact dimensions.

  8. The large N limit of superconformal field theories and supergravity

    NASA Astrophysics Data System (ADS)

    Maldacena, Juan

    1999-07-01

    We show that the large N limit of certain conformal field theories in various dimensions include in their Hilbert space a sector describing supergravity on the product of Anti-deSitter spacetimes, spheres and other compact manifolds. This is shown by taking some branes in the full M/string theory and then taking a low energy limit where the field theory on the brane decouples from the bulk. We observe that, in this limit, we can still trust the near horizon geometry for large N. The enhanced supersymmetries of the near horizon geometry correspond to the extra supersymmetry generators present in the superconformal group (as opposed to just the super-Poincare group). The 't Hooft limit of 3+1N=4 super-Yang-Mills at the conformal point is shown to contain strings: they are IIB strings. We conjecture that compactifications of M/string theory on various Anti-deSitter spacetimes is dual to various conformal field theories. This leads to a new proposal for a definition of M-theory which could be extended to include five non-compact dimensions.

  9. Infrared-temperature variability in a large agricultural field

    NASA Technical Reports Server (NTRS)

    Millard, J. P.; Goettelman, R. C.; Leroy, M. J.

    1981-01-01

    Dunnigan Agro-Meteorological Experiment airborne thermal scanner images of a large varying-terrain barley field are acquired and analyzed. Temperature variability that may occur within instantaneous fields of view (IFOV) is defined (coefficient of variation: standard deviation/mean temperature in degrees C), and the percentage of the area within various IFOV's within + or - 1, 2, 3, and 5 degrees of the mean is determined. With the exception of very rugged terrain, over 80% of the area within 4, 16, 65 and 258 ha cells was at temperatures within + or - 3 C of the mean cell temperature. Remote measurements of field temperature appeared to be slightly influenced by pixel size in the range 4 ha to 259 ha, and the area percentage within any pixel which contributes within + or - 1, 2, 3, and 5 degrees C of the mean, is nominally the same. In conclusion, no great advantage is found in utilizing a small IFOV instead of a large one for remote sensing of crop temperature.

  10. Large-scale magnetic fields in magnetohydrodynamic turbulence.

    PubMed

    Alexakis, Alexandros

    2013-02-22

    High Reynolds number magnetohydrodynamic turbulence in the presence of zero-flux large-scale magnetic fields is investigated as a function of the magnetic field strength. For a variety of flow configurations, the energy dissipation rate [symbol: see text] follows the scaling [Symbol: see text] proportional U(rms)(3)/ℓ even when the large-scale magnetic field energy is twenty times larger than the kinetic energy. A further increase of the magnetic energy showed a transition to the [Symbol: see text] proportional U(rms)(2) B(rms)/ℓ scaling implying that magnetic shear becomes more efficient at this point at cascading the energy than the velocity fluctuations. Strongly helical configurations form nonturbulent helicity condensates that deviate from these scalings. Weak turbulence scaling was absent from the investigation. Finally, the magnetic energy spectra support the Kolmogorov spectrum k(-5/3) while kinetic energy spectra are closer to the Iroshnikov-Kraichnan spectrum k(-3/2) as observed in the solar wind.

  11. Large scale reconstruction of the solar coronal magnetic field

    NASA Astrophysics Data System (ADS)

    Amari, T.; Aly, J.-J.; Chopin, P.; Canou, A.; Mikic, Z.

    2014-10-01

    It is now becoming necessary to access the global magnetic structure of the solar low corona at a large scale in order to understand its physics and more particularly the conditions of energization of the magnetic fields and the multiple connections between distant active regions (ARs) which may trigger eruptive events in an almost coordinated way. Various vector magnetographs, either on board spacecraft or ground-based, currently allow to obtain vector synoptic maps, composite magnetograms made of multiple interactive ARs, and full disk magnetograms. We present a method recently developed for reconstructing the global solar coronal magnetic field as a nonlinear force-free magnetic field in spherical geometry, generalizing our previous results in Cartesian geometry. This method is implemented in the new code XTRAPOLS, which thus appears as an extension of our active region scale code XTRAPOL. We apply our method by performing a reconstruction at a specific time for which we dispose of a set of composite data constituted of a vector magnetogram provided by SDO/HMI, embedded in a larger full disk vector magnetogram provided by the same instrument, finally embedded in a synoptic map provided by SOLIS. It turns out to be possible to access the large scale structure of the corona and its energetic contents, and also the AR scale, at which we recover the presence of a twisted flux rope in equilibrium.

  12. The effective field theory of cosmological large scale structures

    SciTech Connect

    Carrasco, John Joseph M.; Hertzberg, Mark P.; Senatore, Leonardo

    2012-09-20

    Large scale structure surveys will likely become the next leading cosmological probe. In our universe, matter perturbations are large on short distances and small at long scales, i.e. strongly coupled in the UV and weakly coupled in the IR. To make precise analytical predictions on large scales, we develop an effective field theory formulated in terms of an IR effective fluid characterized by several parameters, such as speed of sound and viscosity. These parameters, determined by the UV physics described by the Boltzmann equation, are measured from N-body simulations. We find that the speed of sound of the effective fluid is c2s ≈ 10–6c2 and that the viscosity contributions are of the same order. The fluid describes all the relevant physics at long scales k and permits a manifestly convergent perturbative expansion in the size of the matter perturbations δ(k) for all the observables. As an example, we calculate the correction to the power spectrum at order δ(k)4. As a result, the predictions of the effective field theory are found to be in much better agreement with observation than standard cosmological perturbation theory, already reaching percent precision at this order up to a relatively short scale k ≃ 0.24h Mpc–1.

  13. Large scale photospheric magnetic field: The diffusion of active region fields

    NASA Technical Reports Server (NTRS)

    Schatten, K. H.; Leighton, R. B.; Howard, R.; Wilcox, J. M.

    1972-01-01

    The large-scale phototospheric magnetic field was computed by allowing observed active region fields to diffuse and to be sheared by differential rotation in accordance with the Leighton (1969) magneto-kinematic model of the solar cycle. The differential rotation of the computed field patterns as determined by autocorrelation curves is similar to that of the observed photospheric field, and poleward of 20 deg. latitude both are significantly different from the differential rotation of the long-lived sunspots (Newton and Nunn, 1951) used as an input into the computations.

  14. Large-scale electric fields in the earth's magnetosphere

    NASA Technical Reports Server (NTRS)

    Stern, D. P.

    1977-01-01

    Studies of the earth's magnetosphere have indicated that a large-scale electric field E plays a central role in its electrodynamics and in the flow and acceleration of charged particles there; while many observations relevant to E have accumulated, quite a few basic problems involving the origin and structure of this field remain unsolved. The ultimate source of E is presumably the flow of the solar wind past the earth, but the mechanism by which E arises is still unclear, and several independent sources may contribute to it, some of them being of a rather transient nature. This review attempts to sum up the main observed facts and theoretical concepts related to E.

  15. Influence of the Earth's magnetic field on large area photomultipliers

    SciTech Connect

    Leonora, E.; Aiello, S.; Leotta, G.

    2011-07-01

    The influence of the Earth's magnetic field on large area photomultipliers proposed for a future deep sea neutrino telescope was studied under the EU-funded KM3NeT design study. The aims were to evaluate variations in PMT performance in the Earth's magnetic field and to decide whether the use of magnetic shielding is necessary. Measurements were performed on three Hamamatsu PMTs: two 8-inch R5912 types, one of these with super-bi-alkali photocathode, and a 10-inch R7081 type with a standard bi-alkali photocathode. The various characteristics of the PMTs were measured while varying the PMT orientations with respect to the Earth's magnetic field, both with and without a mu-metal cage as magnetic shield. In the 8-inch PMTs the impact of the magnetic field was found to be smaller than that on the 10-inch PMT. The increased quantum efficiency in the 8 super-bi-alkali PMT almost compensated its smaller detection surface compared to the 10' PMT. No significant effects were measured upon transit time and the fraction of spurious pulses. (authors)

  16. Large Solar Flares and Sheared Magnetic Field Configuration

    NASA Technical Reports Server (NTRS)

    Choudhary, Debi Prasad

    2001-01-01

    This Comment gives additional information about the nature of flaring locations on the Sun described in the article "Sun unleashes Halloween storm", by R. E. Lopez, et al. What causes the large explosions from solar active regions that unleash huge magnetic storms and adverse space weather? It is now beyond doubt that the magnetic field in solar active regions harbors free energy that is released during these events. Direct measurements of the longitudinal and transverse components of active region magnetic fields with the vector magnetograph at NASA Marshall Space Flight Center (MSFC), taken on a regular basis for the last 30 years, have found key signatures of the locations of powerful flares. A vector magnetograph detects and measures the magnetic shear, which is the deviation of the observed transverse magnetic field direction from the potential field. The sheared locations possess abundant free magnetic energy for solar flares. In addition to active region NOAA 10486, the one that produced the largest flares last October, the NASA/MSFC vector magnetograph has observed several other such complex super active regions, including NOAA 6555 and 6659.

  17. Hadron Structures from Large Momentum Effective Field Theory

    NASA Astrophysics Data System (ADS)

    Xiong, Xiaonu

    2016-08-01

    The large momentum effective field theory (LaMET) is aiming to calculate parton distributions directly on lattice. In this approach a class of so-called quasi distributions are defined as pure spatial correlations in a finite momentum frame and they are directly calculated on lattice. The light-cone distributions are extracted from the quasi distributions by perturbative matching conditions. We present the application of LaMET on parton distribution functions and generalized parton distributions. Besides, heavy meson's quasi and light-cone distribution amplitudes are studied under nonrelativistic QCD (NRQCD) factorization framework.

  18. Full bore internal tieback system and method

    SciTech Connect

    Brammer, N.; Hosie, S.

    1993-06-29

    In a subsea well assembly having a tubular wellhead housing having a bore, the improvement is described comprising in combination: a counterbore in the bore of the wellhead housing; a tieback profile in the counterbore; a protective sleeve releasably secured in the counterbore and covering the tieback profile, the protective sleeve being movable to expose the tieback profile when it is desired to tieback the subsea well assembly; a tieback funnel which is configured to land on the rim of the wellhead housing when it is desired to tieback the subsea well assembly; and a tieback sleeve carried by the tieback funnel, having a profile on its exterior which is configured to engage the tieback profile in the counterbore after the protective sleeve has been moved to secure the tieback funnel to the wellhead housing, the tieback sleeve having a bore that has a diameter at least equal to the diameter of the bore immediately below the counterbore. A method of drilling and tying back a subsea well is described which includes the steps of installing an outer wellhead housing with conductor pipe extending into the well, then drilling the well to a greater depth, the improvement comprising: providing an inner wellhead housing with a bore, a rim, a counterbore extending downward from the rim, a tieback profile in the counterbore, and a sealing area located below the counterbore; releasably installing a protective sleeve in the counterbore so as to cover the tieback profile; securing a string of casing to the inner wellhead housing and landing the inner wellhead housing in the outer wellhead housing; drilling the well to a greater depth with the protective sleeve located in the counterbore; securing another string of casing to a casing hanger, landing the casing hanger in the inner wellhead housing, cementing the second string of casing in the well, and sealing the casing hanger to the sealing area of the bore of the inner wellhead housing.

  19. Boring in the Big City - part 2

    SciTech Connect

    Giuliani, A.J.

    1996-08-01

    This paper describes technologies being utilized or tested by Brooklyn Union for gas main installation. Trenchless technologies described include pipe splitting, key holes to minimize excavations, and boring. Areas in lining system technology which require further development by vendors and manufacturers of trenchless equipment are also addressed. Specific needs identified include: (1) improving instrumentation for locating and controlling underground boring; (2) repairing soft and hard lining systems; and (3) developing a window cutter to safely remove the old carrier pipes without damaging the newly fitted internal plastic pipes.

  20. Spin Chain in Magnetic Field: Limitations of the Large-N Mean-Field Theory

    DOE PAGESBeta

    Wohlfeld, K.; Chen, Cheng-Chien; van Veenendaal, M.; Devereaux, T. P.

    2015-02-01

    Motivated by the recent success in describing the spin and orbital spectrum of a spin-orbital chain using a large-N mean-field approximation [Phys. Rev. B 91, 165102 (2015)], we apply the same formalism to the case of a spin chain in the external magnetic field. It occurs that in this case, which corresponds to N=2 in the approximation, the large-N mean-field theory cannot qualitatively reproduce the spin excitation spectra at high magnetic fields, which polarize more than 50% of the spins in the magnetic ground state. This, rather counterintuitively, shows that the physics of a spin chain can under some circumstancesmore » be regarded as more complex than the physics of a spin-orbital chain.« less

  1. Spin Chain in Magnetic Field: Limitations of the Large-N Mean-Field Theory

    SciTech Connect

    Wohlfeld, K.; Chen, Cheng-Chien; van Veenendaal, M. ; Devereaux, T. P.

    2015-02-01

    Motivated by the recent success in describing the spin and orbital spectrum of a spin-orbital chain using a large-N mean-field approximation [Phys. Rev. B 91, 165102 (2015)], we apply the same formalism to the case of a spin chain in the external magnetic field. It occurs that in this case, which corresponds to N=2 in the approximation, the large-N mean-field theory cannot qualitatively reproduce the spin excitation spectra at high magnetic fields, which polarize more than 50% of the spins in the magnetic ground state. This, rather counterintuitively, shows that the physics of a spin chain can under some circumstances be regarded as more complex than the physics of a spin-orbital chain.

  2. Large Field Photogrammetry Techniques in Aircraft and Spacecraft Impact Testing

    NASA Technical Reports Server (NTRS)

    Littell, Justin D.

    2010-01-01

    The Landing and Impact Research Facility (LandIR) at NASA Langley Research Center is a 240 ft. high A-frame structure which is used for full-scale crash testing of aircraft and rotorcraft vehicles. Because the LandIR provides a unique capability to introduce impact velocities in the forward and vertical directions, it is also serving as the facility for landing tests on full-scale and sub-scale Orion spacecraft mass simulators. Recently, a three-dimensional photogrammetry system was acquired to assist with the gathering of vehicle flight data before, throughout and after the impact. This data provides the basis for the post-test analysis and data reduction. Experimental setups for pendulum swing tests on vehicles having both forward and vertical velocities can extend to 50 x 50 x 50 foot cubes, while weather, vehicle geometry, and other constraints make each experimental setup unique to each test. This paper will discuss the specific calibration techniques for large fields of views, camera and lens selection, data processing, as well as best practice techniques learned from using the large field of view photogrammetry on a multitude of crash and landing test scenarios unique to the LandIR.

  3. Large-scale field trials of active immunizing agents

    PubMed Central

    Cockburn, W. Charles

    1955-01-01

    In this discussion of the methods to be used in large-scale field trials of active immunizing agents and of the results to be expected from such trials, special emphasis is laid on pertussis vaccine trials in Great Britain. After a review of the criteria for strictly controlled field studies and of the investigation of typhoid vaccines conducted in 1904-08 by the Antityphoid Committee of the British Army, the author describes the pertussis vaccine studies which have been and are now being carried by the Whooping-Cough Immunization Committee of the Medical Research Council of Great Britain. The original strictly controlled trials have been completed and the results published. Studies are now being made of vaccines prepared by different methods and evaluated both in the field and in the laboratory. Each vaccine is given to some 2000-3000 children of 4-6 months to 4 years of age. By the end of the studies 30 000-40 000 children will have been followed up for a period of two years. Since in the current studies all the children are vaccinated and none are left as unvaccinated controls, the relative and not the absolute protective value of the vaccines will be measured. PMID:13270079

  4. Rapid topography mapping of scalar fields: Large molecular clusters

    NASA Astrophysics Data System (ADS)

    Yeole, Sachin D.; López, Rafael; Gadre, Shridhar R.

    2012-08-01

    An efficient and rapid algorithm for topography mapping of scalar fields, molecular electron density (MED) and molecular electrostatic potential (MESP) is presented. The highlight of the work is the use of fast function evaluation by Deformed-atoms-in-molecules (DAM) method. The DAM method provides very rapid as well as sufficiently accurate function and gradient evaluation. For mapping the topography of large systems, the molecular tailoring approach (MTA) is invoked. This new code is tested out for mapping the MED and MESP critical points (CP's) of small systems. It is further applied to large molecular clusters viz. (H2O)25, (C6H6)8 and also to a unit cell of valine crystal at MP2/6-31+G(d) level of theory. The completeness of the topography is checked by extensive search as well as applying the Poincaré-Hopf relation. The results obtained show that the DAM method in combination with MTA provides a rapid and efficient route for mapping the topography of large molecular systems.

  5. Field-aligned currents and large-scale magnetospheric electric fields

    NASA Technical Reports Server (NTRS)

    Dangelo, N.

    1979-01-01

    The existence of field-aligned currents (FAC) at northern and southern high latitudes was confirmed by a number of observations, most clearly by experiments on the TRIAD and ISIS 2 satellites. The high-latitude FAC system is used to relate what is presently known about the large-scale pattern of high-latitude ionospheric electric fields and their relation to solar wind parameters. Recently a simplified model was presented for polar cap electric fields. The model is of considerable help in visualizing the large-scale features of FAC systems. A summary of the FAC observations is given. The simplified model is used to visualize how the FAC systems are driven by their generators.

  6. Large field of view multiphoton microscopy of human skin

    NASA Astrophysics Data System (ADS)

    Balu, Mihaela; Mikami, Hideharu; Hou, Jue; Potma, Eric O.; Tromberg, Bruce J.

    2016-03-01

    Clinical examination crucially relies on the ability to quickly examine large tissue areas and rapidly zoom in to regions of interest. Skin lesions often show irregularity in color and appearance in general, especially when they start to progress towards malignancy. Large field of view (FOV) and automatic translation of the imaging area are critical in the assessment of the entire lesion. Imaging of limited FOVs of the lesion can easily result in false negative diagnosis. We present a multiphoton microscope based on two-photon excited fluorescence and second-harmonic generation that images FOVs of about 0.8 mm2 (without stitching adjacent FOVs) at speeds of 10 frames/second (800 x 800 pixels) with lateral and axial resolutions of 0.5 μm and 2.5 μm, respectively. The main novelty of this instrument is the design of the scan head, which includes a fast galvanometric scanner, relay optics, a beam expander and a high NA objective lens. We optimized the system based on the Olympus 25x, 1.05NA water immersion lens, that features a long working distance of 1 mm. Proper tailoring of the beam expander, which consists of the scan and tube lens elements, enables scaling of the FOV. The design criteria include a flat wavefront of the beam, minimum field curvature, and suppressed spherical aberrations. All aberrations in focus are below the Marechal criterion of 0.07λ rms for diffraction-limited performance. We demonstrate the practical utility of this microscope by ex-vivo imaging of wide FOVs in normal human skin.

  7. Biomechanics of substrate boring by fig wasps.

    PubMed

    Kundanati, Lakshminath; Gundiah, Namrata

    2014-06-01

    Female insects of diverse orders bore into substrates to deposit their eggs. Such insects must overcome several biomechanical challenges to successfully oviposit, which include the selection of suitable substrates through which the ovipositor can penetrate without itself fracturing. In many cases, the insect may also need to steer and manipulate the ovipositor within the substrate to deliver eggs at desired locations before rapidly retracting her ovipositor to avoid predation. In the case of female parasitoid ichneumonid wasps, this process is repeated multiple times during her lifetime, thus testing the ability of the ovipositioning apparatus to endure fracture and fatigue. What specific adaptations does the ovipositioning apparatus of a female ichneumonoid wasp possess to withstand these challenges? We addressed this question using a model system composed of parasitoid and pollinator fig wasps. First, we show that parasitoid ovipositor tips have teeth-like structures, preferentially enriched with zinc, unlike the smooth morphology of pollinator ovipositors. We describe sensillae present on the parasitoid ovipositor tip that are likely to aid in the detection of chemical species and mechanical deformations and sample microenvironments within the substrate. Second, using atomic force microscopy, we show that parasitoid tip regions have a higher modulus compared with regions proximal to the abdomen in parasitoid and pollinator ovipositors. Finally, we use videography to film wasps during substrate boring and analyse buckling of the ovipositor to estimate the forces required for substrate boring. Together, these results allow us to describe the biomechanical principles underlying substrate boring in parasitoid ichneumonid wasps. Such studies may be useful for the biomimetic design of surgical tools and in the use of novel mechanisms to bore through hard substrates.

  8. Field measurements of drag coefficients for model large woody debris

    NASA Astrophysics Data System (ADS)

    Hygelund, Bretagne; Manga, Michael

    2003-03-01

    Woody debris in rivers can be a significant source of roughness and consequently influences flow at both the local and reach scale. In order to develop a better quantitative understanding of the interaction between wood in rivers and stream flow, we thus performed a set of field measurements of the drag on model woody debris for conditions that prevail in typical natural streams. Our model debris consisted of PVC "logs" with diameters between 4 and 30 cm. The field setting allowed us to consider the hydrodynamic influence of a rough stream bottom, and our measurements thus complement previously published flume-based measurements. We found that, owing to the variation of velocity with water depth, some of our results differed appreciably from measurements made in smooth flumes. We determined the effects of (i) the orientation of the log, (ii) the size of the log relative to the water depth, (iii) the depth of the log in the water column, and (iv) leafless branches on the log. We found that the orientation of the log had no significant effect on the apparent drag coefficient. By contrast, because the water velocity varies with depth, the position of the log in the water column influenced the apparent drag for small logs. For large logs (diameter >30% of the water depth), however, the position of the log had little effect on drag. The ratio of the diameter of the log to the water depth, a quantity called "blockage," also affected drag. As blockage increased, drag increases. For blockages greater than about 0.3, however, the drag becomes independent of blockage. Finally, we found that the presence of leafless branches does not increase the drag (within measurement sensitivity).

  9. Volumetric thermoacoustic imaging over large fields of view.

    PubMed

    Roggenbuck, M A; Walker, R D; Catenacci, J W; Patch, S K

    2013-01-01

    The thermoacoustic (TA) contrast mechanism relies on rapid tissue heating and subsequent thermal expansion. TA computerized tomography (TCT) is therefore inverse source imaging. The TA contrast mechanism provides information complementary to that revealed by current diagnostic imaging techniques, but has been limited to just a few centimeters depth penetration. In this article, whole organ TCT is demonstrated on a large swine kidney. TA sinograms show that TA signal generated by high-power, very high frequency (VHF) electromagnetic pulses is detectable after travel through 6 cm of soft tissue. Reconstructed images provide resolution sufficient to track progression of calyces throughout the kidney. Because VHF electromagnetic energy can easily penetrate the abdomen of large adults, our results indicate that whole organ TA imaging is feasible in vivo, provided an ultrasound array can be placed near the region of interest. Pulses of 22 to 25 kW with carrier frequency 108 MHz and 900 ns pulse width were applied at a 100-Hz pulse repetition frequency to generate a 13-kV/m electric field and TA signal. Only 2 to 5 mJ was absorbed in the kidney per pulse, causing temperature and pressure jumps of only 5e-6°C and 4 Pa averaged throughout the 141-g specimen. TA pulses were detected by focused, single-element transducers (V306, Panametrics), amplified by 54 dB and averaged 64 times to reduce electronic noise. Data were measured over a cylindrical measurement aperture of radius 5 cm and length 6 cm, by rotating the specimen 1.8 degrees between tomographic views and translating 2 mm between slices. Reconstruction via filtered backprojection yields in-plane resolution better than 5 mm, but suffers significant blurring between planes. Both in-plane resolution and slice sensitivity profile could be improved by applying shorter irradiation pulsewidths and using less directional transducers. Both hardware changes would be recommended for a clinical prototype. PMID:23287507

  10. Bias in the effective field theory of large scale structures

    SciTech Connect

    Senatore, Leonardo

    2015-11-01

    We study how to describe collapsed objects, such as galaxies, in the context of the Effective Field Theory of Large Scale Structures. The overdensity of galaxies at a given location and time is determined by the initial tidal tensor, velocity gradients and spatial derivatives of the regions of dark matter that, during the evolution of the universe, ended up at that given location. Similarly to what was recently done for dark matter, we show how this Lagrangian space description can be recovered by upgrading simpler Eulerian calculations. We describe the Eulerian theory. We show that it is perturbatively local in space, but non-local in time, and we explain the observational consequences of this fact. We give an argument for why to a certain degree of accuracy the theory can be considered as quasi time-local and explain what the operator structure is in this case. We describe renormalization of the bias coefficients so that, after this and after upgrading the Eulerian calculation to a Lagrangian one, the perturbative series for galaxies correlation functions results in a manifestly convergent expansion in powers of k/k{sub NL} and k/k{sub M}, where k is the wavenumber of interest, k{sub NL} is the wavenumber associated to the non-linear scale, and k{sub M} is the comoving wavenumber enclosing the mass of a galaxy.

  11. Bias in the effective field theory of large scale structures

    SciTech Connect

    Senatore, Leonardo

    2015-11-05

    We study how to describe collapsed objects, such as galaxies, in the context of the Effective Field Theory of Large Scale Structures. The overdensity of galaxies at a given location and time is determined by the initial tidal tensor, velocity gradients and spatial derivatives of the regions of dark matter that, during the evolution of the universe, ended up at that given location. Similarly to what was recently done for dark matter, we show how this Lagrangian space description can be recovered by upgrading simpler Eulerian calculations. We describe the Eulerian theory. We show that it is perturbatively local in space, but non-local in time, and we explain the observational consequences of this fact. We give an argument for why to a certain degree of accuracy the theory can be considered as quasi time-local and explain what the operator structure is in this case. Furthermore, we describe renormalization of the bias coefficients so that, after this and after upgrading the Eulerian calculation to a Lagrangian one, the perturbative series for galaxies correlation functions results in a manifestly convergent expansion in powers of k/kNL and k/kM, where k is the wavenumber of interest, kNL is the wavenumber associated to the non-linear scale, and kM is the comoving wavenumber enclosing the mass of a galaxy.

  12. Bias in the effective field theory of large scale structures

    DOE PAGESBeta

    Senatore, Leonardo

    2015-11-05

    We study how to describe collapsed objects, such as galaxies, in the context of the Effective Field Theory of Large Scale Structures. The overdensity of galaxies at a given location and time is determined by the initial tidal tensor, velocity gradients and spatial derivatives of the regions of dark matter that, during the evolution of the universe, ended up at that given location. Similarly to what was recently done for dark matter, we show how this Lagrangian space description can be recovered by upgrading simpler Eulerian calculations. We describe the Eulerian theory. We show that it is perturbatively local inmore » space, but non-local in time, and we explain the observational consequences of this fact. We give an argument for why to a certain degree of accuracy the theory can be considered as quasi time-local and explain what the operator structure is in this case. Furthermore, we describe renormalization of the bias coefficients so that, after this and after upgrading the Eulerian calculation to a Lagrangian one, the perturbative series for galaxies correlation functions results in a manifestly convergent expansion in powers of k/kNL and k/kM, where k is the wavenumber of interest, kNL is the wavenumber associated to the non-linear scale, and kM is the comoving wavenumber enclosing the mass of a galaxy.« less

  13. Improvements in Monte Carlo Simulation of Large Electron Fields

    SciTech Connect

    Faddegon, Bruce A.; Perl, Joseph; Asai, Makoto; /SLAC

    2007-11-28

    Two Monte Carlo systems, EGSnrc and Geant4, were used to calculate dose distributions in large electron fields used in radiotherapy. Source and geometry parameters were adjusted to match calculated results with measurement. Both codes were capable of accurately reproducing the measured dose distributions of the 6 electron beams available on the accelerator. Depth penetration was matched to 0.1 cm. Depth dose curves generally agreed to 2% in the build-up region, although there is an additional 2-3% experimental uncertainty in this region. Dose profiles matched to 2% at the depth of maximum dose in the central region of the beam, out to the point of the profile where the dose begins to fall rapidly. A 3%/3mm match was obtained outside the central region except for the 6 MeV beam, where dose differences reached 5%. The discrepancy observed in the bremsstrahlung tail in published results that used EGS4 is no longer evident. The different systems required different source energies, incident beam angles, thicknesses of the exit window and primary foils, and distance between the primary and secondary foil. These results underscore the requirement for an experimental benchmark of electron scatter for beam energies and foils relevant to radiotherapy.

  14. Telecentric large-field lenses using Fresnel optics

    NASA Astrophysics Data System (ADS)

    Schuster, Norbert; Schoenheit, Thomas

    2002-02-01

    The practical application of Fresnel lenses in imaging systems is very much disputed. However, in large field, object side, telecentric lenses, conditions are such that the advantages of lightness, cheap production, and short construction length dominate the disadvantages. These disadvantages concern the reduced image quality. Starting from any paraxial relations, we present analytic equations which are useful in estimating the changes in the aberration balance, when a well compensated glass lens front group is replaced by a Fresnel lens singlet. The comparison of a pair of telecentric lenses with the same basic parameters, built with a glass lens front group and with a Fresnel singlet front group, confirms these equations. The reduced image quality, using a Fresnel singlet as front group in an object side telecentric lens, is caused by noncompensated lateral chromatic aberration, increased distortion values, higher stray light levels and reduced resolving power. For inspection purposes, the distortion is often not so important. If the work pieces are illuminated with monochromatic light, then chromatic aberrations become unimportant. Therefore, for machine vision inspection purposes, the object side telecentric ray path can be straightforwardly achieved using a Fresnel lens front group. This is an alternative to the well known, but expensive, glass front lens solutions.

  15. Predatorial borings in late precambrian mineralized exoskeletons.

    PubMed

    Bengtson, S; Zhao, Y

    1992-07-17

    The late Precambrian tube-forming Cloudina, the earliest known animal to produce a mineralized exoskeleton, shows evidence of having been attacked by shell-boring organisms. Of more than 500 tubes from Shaanxi Province, China, 2.7% have rounded holes 40 to 400 micrometers in diameter. The relation between the size of the holes and the width of the bored tubes suggests that the attacking organism was a predator, selecting its prey for size. If true, this would be the oldest case of predation in the fossil record and would support the hypothesis that selection pressures from predation was a significant factor in the evolution of animal skeletons around the Precambrian-Cambrian boundary.

  16. Conductor system for well bore data transmission

    SciTech Connect

    Galle, E.M.

    1990-04-03

    This patent describes an improved electrical transmission system for use in a fluid filled well bore. It comprises: a tubular member with threaded ends for connection in a drill string in a wellbore, having a transmitting end adapted for transmitting data signals, and a receiving end adapted for receiving data signals; a partition releasably carried by the transmitting end of the tubular member for mating with the tubular member; a compartment bounded in part by the partition and in part by the tubular member; a transmitter disposed in the compartment of the tubular member; seal means for sealing the compartment where the partition mates with the tubular member to protect the transmitter from the fluid in the well bore; and a flexible planar conductor.

  17. Observational and modelling study of mesospheric bores

    NASA Astrophysics Data System (ADS)

    Loughmiller, P. J.; Kelley, M. C.; Hickey, M. P.

    In studies of the dynamics of the upper atmosphere some of the most intriguing mesospheric phenomena observed high over the Hawaiian night skies are wall waves and internal bores These events are documented in airglow images taken by high performance all-sky CCD imaging systems operating on top of Haleakala Crater as part of the ongoing collaborative Maui - Mesosphere and Lower Thermosphere MALT campaign jointly sponsored by the National Science Foundation and the Air Force Office of Scientific Research Bolstered by the Maui-MALT dataset several theories now exist for mesospheric bores agreeing in principle that they are likely nonlinear structures spawned by gravity waves and propagating within a thermal inversion layer A new investigation will model optical emissions using a robust time-dependent chemical dynamics model to explore the airglow response to ducted gravity waves and in turn the geographical and vertical coupling relationships which may exist

  18. General model for boring tool optimization

    NASA Astrophysics Data System (ADS)

    Moraru, G. M.; rbes, M. V. Ze; Popescu, L. G.

    2016-08-01

    Optimizing a tool (and therefore those for boring) consist in improving its performance through maximizing the objective functions chosen by the designer and/or by user. In order to define and to implement the proposed objective functions, contribute numerous features and performance required by tool users. Incorporation of new features makes the cutting tool to be competitive in the market and to meet user requirements.

  19. WELL BORE BREAKOUTS AND IN SITU STRESS.

    USGS Publications Warehouse

    Zoback, Mark D.; Moos, Daniel; Mastin, Larry; Anderson, Roger N.

    1985-01-01

    The detailed cross-sectional shape of stress induced well bore breakouts has been studied using specially processed ultrasonic borehole televiewer data. Breakout shapes are shown for a variety of rock types and introduce a simple elastic failure model which explains many features of the observations. Both the observations and calculations indicate that the breakouts define relatively broad and flat curvilinear surfaces which enlarge the borehole in the direction of minimum horizontal compression. Refs.

  20. The persistence of large-scale blowouts in largely vegetated coastal dune fields

    NASA Astrophysics Data System (ADS)

    Delgado-Fernandez, Irene; Smyth, Thomas; Jackson, Derek; Davidson-Arnott, Robin; Smith, Alexander

    2016-04-01

    Coastal dunes move through natural phases of stability and instability during their evolution, displaying various temporal and spatial patterns across the dune field. Recent observations, however, have shown exceptionally rapid rates of stability through increased vegetative growth. This progressive vegetation colonisation and consequent loss of bare sand on coastal dune systems has been noted worldwide. Percentage reductions in bare sand of as much as 80% within just a few decades can been seen in examples from South Africa, Canada and Brazil as well as coastal dune sites across NW Europe. Despite these dramatic trends towards dune stabilisation, it is not uncommon to find particular examples of large-scale active blowouts and parabolic dunes within largely vegetated coastal dunes. While turbulence and airflow dynamics within features such as blowouts and other dune forms has been studied in detail within recent years, there is a lack of knowledge about what maintains dune mobility at these specific points in otherwise largely stabilized dune fields. This work explores the particular example of the 'Devil's Hole' blowout, Sefton Dunes, NW England. Approximately 300 m long by 100 m wide, its basin is below the water-table which leads to frequent flooding. Sefton Dunes in general have seen a dramatic loss of bare sand since the 1940s. However, and coinciding with this period of dune stabilisation, the 'Devil's Hole' has not only remained active but also grown in size at a rate of 4.5 m year-1 along its main axis. An exploration of factors controlling the maintenance of open bare sand areas at this particular location is examined using a variety of techniques including Computational Fluid Dynamics (CFD) airflow modelling and in situ empirical measurements of (short-term experiments) of wind turbulence and sand transport. Field measurements of wind parameters and transport processes were collected over a 2 week period during October 2015. Twenty three 3D ultrasonic

  1. Earth boring tool with improved inserts

    SciTech Connect

    Dill, H.; Scales, S.

    1980-07-08

    A description is given of an improved earth boring tool of the type having at least one sintered tungsten carbide insert with a substantially cylindrical retaining surface interferringly secured to the wall of a retaining hole, the improvement comprising said retaining surface roughened such that in any lineal increment of at least 010 inch, there are at least three asperities at least 0.001 in ch long and at least 0.00005 inch deep when measured with a stylus point with a 0.00005 inch radius. An improved method of retaining tungsten carbide inserts in an earth boring tool, said method comprising the steps of: drilling and reaming a plurality of holes in selected locations on the earth boring tool; sintering a plurality of tungsten carbide inserts with a binder selected from the group consisting of cobalt, nickel or iron; grinding a substantially cylindrical wall surface on the inserts that are nominally larger in diameter than the drilled and reamed holes; roughening the wall surface of the inserts such that any lineal increment of at least 0.010 inch has at least three asperities which are at least 0.001 inch long and at least 00005 inch deep when measured with a stylus point with a 0.00005 inch radius; and forcing the inserts interferringly into the mating drilled and reamed holes.

  2. Undular bore theory for the Gardner equation.

    PubMed

    Kamchatnov, A M; Kuo, Y-H; Lin, T-C; Horng, T-L; Gou, S-C; Clift, R; El, G A; Grimshaw, R H J

    2012-09-01

    We develop modulation theory for undular bores (dispersive shock waves) in the framework of the Gardner, or extended Korteweg-de Vries (KdV), equation, which is a generic mathematical model for weakly nonlinear and weakly dispersive wave propagation, when effects of higher order nonlinearity become important. Using a reduced version of the finite-gap integration method we derive the Gardner-Whitham modulation system in a Riemann invariant form and show that it can be mapped onto the well-known modulation system for the Korteweg-de Vries equation. The transformation between the two counterpart modulation systems is, however, not invertible. As a result, the study of the resolution of an initial discontinuity for the Gardner equation reveals a rich phenomenology of solutions which, along with the KdV-type simple undular bores, include nonlinear trigonometric bores, solibores, rarefaction waves, and composite solutions representing various combinations of the above structures. We construct full parametric maps of such solutions for both signs of the cubic nonlinear term in the Gardner equation. Our classification is supported by numerical simulations. PMID:23031043

  3. Fill tube bore inspection with machine vision

    SciTech Connect

    Pechersky, M.J.; Mosley, W.C.; Dickerson, R.K.

    1992-01-01

    A semi-automated technique for bore inspection of small diameter tubes is presented. The inspections are performed to insure that the bore surfaces are free of contaminants or defects. The image collectionscheme uses a borescope which is stepped along the length of the tube. An image is acquired at each step and portions from each image are combined to yield a planar image. Color analysis classifies the oxidation levels in the bore of the fill tubes. The analysis is performed by taking the image's mean values of the red, green, and blue intensities and computing a figure of merit which is then used to estimate the relative amount of oxidation. This estimation scheme was shown to have a high level of correlation with the tube oxidation levels and the quality of the subsequent welds as determined by metallographic evaluation.Surface imperfections are detected by a series of digital filtering steps followed by a statistical analysis of the resulting binary image. The frequency parameter of the Poisson distribution for the total image and image segments are computed. A statistical significance test is performed by comparing the frequency parameter of each segment to the global statistics of the image. Fine longitudinal scratches were detected with this method.

  4. Fill tube bore inspection with machine vision

    SciTech Connect

    Pechersky, M.J.; Mosley, W.C.; Dickerson, R.K.

    1992-12-31

    A semi-automated technique for bore inspection of small diameter tubes is presented. The inspections are performed to insure that the bore surfaces are free of contaminants or defects. The image collectionscheme uses a borescope which is stepped along the length of the tube. An image is acquired at each step and portions from each image are combined to yield a planar image. Color analysis classifies the oxidation levels in the bore of the fill tubes. The analysis is performed by taking the image`s mean values of the red, green, and blue intensities and computing a figure of merit which is then used to estimate the relative amount of oxidation. This estimation scheme was shown to have a high level of correlation with the tube oxidation levels and the quality of the subsequent welds as determined by metallographic evaluation.Surface imperfections are detected by a series of digital filtering steps followed by a statistical analysis of the resulting binary image. The frequency parameter of the Poisson distribution for the total image and image segments are computed. A statistical significance test is performed by comparing the frequency parameter of each segment to the global statistics of the image. Fine longitudinal scratches were detected with this method.

  5. SU-E-J-233: A Facility for Radiobiological Experiments in a Large Magnetic Field

    SciTech Connect

    Carlone, M; Heaton, R; Keller, H; Wouters, B; Jaffray, D

    2014-06-01

    Purpose: There is considerable interest in developing medical linear accelerators with integrated image guidance by MRI. Less work has been done on the fundamental biology of cell survival in the presence of a strong magnetic field. The purpose of this work is to describe an experimental system capable of measuring cell survival response in the types of MRI-linac systems currently under development. Methods: We have integrated a cobalt irradiator with a solenoid magnet. The solenoid magnet has inner diameter of 10 cm. To enable measurement of the biological effects as a function of depth, we are utilizing the sliced gel technique, in which cells are embedded and fixed within a gelatin matrix. Irradiated cells at defined positions (sub mm resolution) can subsequently be recovered and assessed for cell survival or other biological effects. Results: The magnetic field profile in the solenoid has a peak magnetic field 36 cm below the top edge of the magnet bore and can be placed at and SAD of 100 cm. At a solenoid current of 35 A, the peak magnetic field is 0.25 T. The dose rate of the cobalt irradiator is 16 cGy/min at 100 cm SAD. EBT3 film was used to demonstrate the system functionality. It was irradiated at 1 cm depth at 100 cm SSD with a 4×4 field to 1.5 Gy in a 0.25 T magnetic field. The dose profile was similar between this film and the control exposure without magnetic field. Conclusion: Integrating a cobalt irradiator with a high field magnet is demonstrated. The magnetic field at the cobalt defining head was minimal and did not interfere with the functioning of this unit. Cell survival experiments can be reproduced exactly in the presence or absence of a magnetic field since a resistive magnet is used.

  6. Large-scale properties of the interplanetary magnetic field

    NASA Technical Reports Server (NTRS)

    Schatten, K. H.

    1972-01-01

    Early theoretical work of Parker is presented along with the observational evidence supporting his Archimedes spiral model. Variations present in the interplanetary magnetic field from the spiral angle are related to structures in the solar wind. The causes of these structures are found to be either nonuniform radial solar wind flow or the time evolution of the photospheric field. Coronal magnetic models are related to the connection between the solar magnetic field and the interplanetary magnetic field. Direct extension of the solar field-magnetic nozzle controversy is discussed along with the coronal magnetic models. Effects of active regions on the interplanetary magnetic field is discussed with particular reference to the evolution of interplanetary sectors. Interplanetary magnetic field magnitude variations are shown throughout the solar cycle. The percentage of time the field magnitude is greater than 10 gamma is shown to closely parallel sunspot number. The sun's polar field influence on the interplanetary field and alternative views of the magnetic field structure out of the ecliptic plane are presented. In addition, a variety of significantly different interplanetary field structures are discussed.

  7. Challenges for D-brane large-field inflation with stabilizer fields

    NASA Astrophysics Data System (ADS)

    Landete, Aitor; Marchesano, Fernando; Wieck, Clemens

    2016-09-01

    We study possible string theory compactifications which, in the low-energy limit, describe chaotic inflation with a stabilizer field. We first analyze type IIA setups where the inflationary potential arises from a D6-brane wrapping an internal three-cycle, and where the stabilizer field is either an open-string or bulk Kähler modulus. We find that after integrating out the relevant closed-string moduli consistently, tachyonic directions arise during inflation which cannot be lifted. This is ultimately due to the shift symmetries of the type IIA Kähler potential at large compactification volume. This motivates us to search for stabilizer candidates in the complex structure sector of type IIB orientifolds, since these fields couple to D7-brane Wilson lines and their shift symmetries are generically broken away from the large complex structure limit. However, we find that in these setups the challenge is to obtain the necessary hierarchy between the inflationary and Kaluza-Klein scales.

  8. A New Approach to Reduce Number of Split Fields in Large Field IMRT

    SciTech Connect

    Lee, Chen-Chiao; Wu, Andrew; Garg, Madhur; Mutyala, Subhakar; Kalnicki, Shalom; Sayed, Gary; Mah, Dennis

    2011-04-01

    Intensity-modulated radiation therapy (IMRT) has been applied for treatments of primary head with neck nodes, lung with supraclavicular nodes, and high-risk prostate cancer with pelvis wall nodes, all of which require large fields. However, the design of the Varian multileaf collimator requires fields >14 cm in width to be split into 2 or more carriage movements. With the split-field technique, both the number of monitor units (MUs) and total treatment time are significantly increased. Although many different approaches have been investigated to reduce the MU, including introducing new leaf segmentation algorithms, none have resulted in widespread success. In addition, for most clinics, writing such algorithms is not a feasible solution, particularly with commercial treatment planning systems. We introduce a new approach that can minimize the number of split fields and reduce the total MUs, thereby reducing treatment time. The technique is demonstrated on the Eclipse planning system V7.3, but could be generalized to any other system.

  9. Control paraffin with well bore insulating gelled fluids

    SciTech Connect

    Yousif, M.H.; Young, D.B. ); Black, J.W.

    1994-10-01

    A variety of techniques are used to treat paraffin, including scrapping, pigging, heating, insulating and solvent usage. Well bore insulating fluids control paraffin deposition in offshore wells by producing a high cloud point oil from a relatively cold reservoir. Produced hydrocarbons exhibit large pressure and temperature changes from the formation to the surface facilities. This changes their phase behavior and consequently their carrying capacity of the dissolved paraffins. Paraffins can drop out in the producing formation, subsurface pumps, tubing, flowline, separators and storage tanks. Paraffins can be low molecular weight n-alkanes (C20-C40) or high molecular weight iso-alkanes and cyclic alkanes. Heat convection through the annulus is the main mechanism by which produced fluids lose heat to surrounding formations. Consequently, selecting a well bore insulating fluid should not be based entirely on thermal conductivity of the fluid. Although their thermal conductivity is only 2.5% that of water, fluids like mineral oil or diesel could transfer as much heat as water under the same temperature gradient. Testing shows that the viscosity of the annular fluid is the key parameter that needs to be increased to minimize annular convective heat loses.

  10. Catalog of worldwide tidal bore occurrences and characteristics

    USGS Publications Warehouse

    Bartsch-Winkler, S.; Lynch, David K.

    1988-01-01

    Documentation of tidal bore phenomena occurring throughout the world aids in defining the typical geographical setting of tidal bores and enables prediction of their occurrence in remote areas. Tidal bores are naturally occurring, tidally generated, solitary, moving water waves up to 6 meters in height that form upstream in estuaries with semidiurnal or nearly semidiurnal tide ranges exceeding 4 meters. Estuarine settings that have tidal bores typically include meandering fluvial systems with shallow gradients. Bores are well defined, having amplitudes greater than wind- or turbulence-caused waves, and may be undular or breaking. Formation of a bore is dependent on depth and velocity of the incoming tide and river outflow. Bores may occur in series (in several channels) or in succession (marking each tidal pulse). Tidal bores propagate up tidal estuaries a greater distance than the width of the estuary and most occur within 100 kilometers upstream of the estuary mouth. Because they are dynamic, bores cause difficulties in some shipping ports and are targets for eradication. Tidal bores are known to occur, or to have occurred in the recent past, in at least 67 localities in 16 countries at all latitudes, including every continent except Antarctica. Parts of Argentina, Canada, Central America, China, Mozambique, Madagascar, Northern Europe, North and South Korea, the United Kingdom, and the U.S.S.R. probably have additional undiscovered or unreported tidal bores. In Turnagain Arm estuary in Alaska, bores cause an abrupt increase in salinity, suspended sediment, surface character, and bottom pressure, a decrease in illumination of the water column, and a change in water temperature. Tidal bores occurring in Turnagain Arm, Alaska, have the

  11. Numerical Modeling of Tsunami Bore Attenuation and Extreme Hydrodynamic Impact Forces Using the SPH Method

    NASA Astrophysics Data System (ADS)

    Piche, Steffanie

    Understanding the impact of coastal forests on the propagation of rapidly advancing onshore tsunami bores is difficult due to complexity of this phenomenon and the large amount of parameters which must be considered. The research presented in the thesis focuses on understanding the protective effect of the coastal forest on the forces generated by the tsunami and its ability to reduce the propagation and velocity of the incoming tsunami bore. Concern for this method of protecting the coast from tsunamis is based on the effectiveness of the forest and its ability to withstand the impact forces caused by both the bore and the debris carried along by it. The devastation caused by the tsunami has been investigated in recent examples such as the 2011 Tohoku Tsunami in Japan and the Indian Ocean Tsunami which occurred in 2004. This research examines the reduction of the spatial extent of the tsunami bore inundation and runup due to the presence of the coastal forest, and attempts to quantify the impact forces induced by the tsunami bores and debris impact on the structures. This research work was performed using a numerical model based on the Smoothed Particle Hydrodynamics (SPH) method which is a single-phase three-dimensional model. The simulations performed in this study were separated into three sections. The first section focused on the reduction of the extent of the tsunami inundation and the magnitude of the bore velocity by the coastal forest. This section included the analysis of the hydrodynamic forces acting on the individual trees. The second section involved the numerical modeling of some of the physical laboratory experiments performed by researchers at the University of Ottawa, in cooperation with colleagues from the Ocean, Coastal and River Engineering Lab at the National Research Council, Ottawa, in an attempt to validate the movement and impact forces of floating driftwood on a column. The final section modeled the movement and impact of floating debris

  12. Limitations for the trapped field in large grain YBCO superconductors

    NASA Astrophysics Data System (ADS)

    Eisterer, M.; Haindl, S.; Zehetmayer, M.; Gonzalez-Arrabal, R.; Weber, H. W.; Litzkendorf, D.; Zeisberger, M.; Habisreuther, T.; Gawalek, W.; Shlyk, L.; Krabbes, G.

    2006-07-01

    The actual limitations for the trapped field in YBa2Cu3O7-δ (YBCO) monoliths are discussed. The influence of the sample geometry and of the critical current density on the trapped field is investigated by numerical calculations. The field dependence of the critical current density strongly influences the trapped field. A nonlinear relationship between the sample size, the critical current density and the resulting trapped field is derived. The maximum achievable trapped field in YBCO at 77 K is found to be around 2.5 T. This limit is obtained for reasonable geometries and high but realistic critical current densities. Such high fields have not been reached experimentally so far, due to non-optimized flux pinning and material inhomogeneities. These inhomogeneities can be directly assessed by the magnetoscan technique, and their influence is discussed. Significant differences between the a- and the c-growth sectors were found. Limitations due to cracks and non-superconducting inclusions (e.g. 211 particles) are estimated and found to be candidates for variations of Jc on a millimetre length scale, as observed in experiments.

  13. Unusual Mesospheric Bore Event Observed Over Antarctica

    NASA Astrophysics Data System (ADS)

    Taylor, M. J.; Nielsen, K.; Stockwell, R.; Picard, R. H.; Jarvis, M.

    All-sky CCD observations of mesospheric gravity waves have been made from Halley Station Antarctica (75.5 S, 26.7 W) as part of a collaborative research program between British Antarctic Survey, U.K. and Utah State University, USA. One goal of this investigation is the determination of the characteristics and sources of short-period (< 1 hour) gravity waves observed during the Antarctic winter in the absence of local tropospheric convection. This report describes an unusual mesospheric ``bore'' event that was observed near-simultaneously in three nightglow emissions: the OH (˜ 87 km), O2(0,1) (˜ 94 km) and Na (589.2 nm) (˜ 90 km), over a period of ˜ 3 hours on the 27-28 May, 2001. Mesospheric bores are rare wave events that have previously only been reported at low- and mid latitudes. This Antarctic event is particularly interesting for several reasons, (a) it was characterized by an extensive, high contrast linear wave front that rotated significantly in azimuth as it passed overhead, (b) the associated wave train was observed to grow in the number of crests, consistent with that expected for a ducted, bore-like motion, (c) the individual wave crests exhibited a spatially localized acceleration, possibly due to a sudden change in depth of the duct, and (d) the primary direction of motion of the event was due southwards towards the Antarctic pole suggesting exceptionally long range wave propagation from potential tropospheric sources close to Africa. The evolution and characteristics of this remarkable wave event will be presented together with a discussion of its possible origin.

  14. Imprints of massive primordial fields on large-scale structure

    NASA Astrophysics Data System (ADS)

    Dimastrogiovanni, Emanuela; Fasiello, Matteo; Kamionkowski, Marc

    2016-02-01

    Attention has focussed recently on models of inflation that involve a second or more fields with a mass near the inflationary Hubble parameter H, as may occur in supersymmetric theories if the supersymmetry-breaking scale is not far from H. Quasi-single-field (QsF) inflation is a relatively simple family of phenomenological models that serve as a proxy for theories with additional fields with masses m~ H. Since QsF inflation involves fields in addition to the inflaton, the consistency conditions between correlations that arise in single-clock inflation are not necessarily satisfied. As a result, correlation functions in the squeezed limit may be larger than in single-field inflation. Scalar non-Gaussianities mediated by the massive isocurvature field in QsF have been shown to be potentially observable. These are especially interesting since they would convey information about the mass of the isocurvature field. Here we consider non-Gaussian correlators involving tensor modes and their observational signatures. A physical correlation between a (long-wavelength) tensor mode and two scalar modes (tss), for instance, may give rise to local departures from statistical isotropy or, in other words, a non-trivial four-point function. The presence of the tensor mode may moreover be inferred geometrically from the shape dependence of the four-point function. We compute tss and stt (one soft curvature mode and two hard tensors) bispectra in QsF inflation, identifying the conditions necessary for these to "violate" the consistency relations. We find that while consistency conditions are violated by stt correlations, they are preserved by the tss in the minimal QsF model. Our study of primordial correlators which include gravitons in seeking imprints of additional fields with masses m~ H during inflation can be seen as complementary to the recent ``cosmological collider physics'' proposal.

  15. Environmental impact of a flocculant used to enhance solids transport during well bore clean-up operations

    SciTech Connect

    Yunus, M.N.M.; Procyk, A.D.; Malbrel, C.A.; Ling, K.L.C.

    1995-12-01

    This paper investigates particle flocculation as a mechanism to remove residual contaminants in well bores during completion operations. Laboratory tests and field trials were conducted demonstrating the ability of flocculating polymer sweeps to improve well bore cleaning efficiency. This process reduces the volume of fluid accumulated in the well bore that is discharged to the environment and minimizes the risk of formation damage by residuals left in the well bore. In addition, a comprehensive environmental impact study was performed on the flocculating polymers which included 72 hrs-EC50, 48 hrs-LC50, 10 day- LC50 tests on a variety of marine organisms, and bioaccumulation and biodegradability tests. In all cases, the flocculating polymers were shown to be environmentally safe at the recommended concentrations.

  16. Large Scale High-Latitude Ionospheric Electrodynamic Fields and Currents

    NASA Astrophysics Data System (ADS)

    Lu, Gang

    2016-07-01

    This paper provides an overview as well as the application of the Assimilative Mapping of Ionospheric Electrodynamics (AMIE) procedure. AMIE synthesizes observations from various ground-based and space-born instruments to derive global patterns of ionospheric conductance, electric fields, ionospheric equivalent current, horizontal currents, field-aligned currents, and other related electrodynamic fields simultaneously. Examples are presented to illustrate the effects of the different data inputs on the AMIE outputs. The AMIE patterns derived from ground magnetometer data are generally similar to those derived from satellite magnetometer data. But ground magnetometer data yield a cross-polar potential drop that is about 15-45 % smaller than that derived from satellite magnetometer data. Ground magnetometers also grossly underestimate the magnetic perturbations in space when compared with the in situ satellite magnetometer data. However, when satellite magnetometer data are employed, AMIE is able to replicate the observed magnetic perturbations along the satellite tracks with a mean root-mean-square (RMS) error of 17-21 %. In addition to derive snapshots of ionospheric electrodynamic fields, the utility of AMIE can be easily expanded to obtain the average distributions of these fields along with their associated variability. Such information should be valuable to the analysis and interpretation of the Swarm observations.

  17. Observational and Modeling Study of Mesopheric Bores

    NASA Astrophysics Data System (ADS)

    Loughmiller, P.; Kelley, M.; Hickey, M.

    In our studies of the dynamics of the upper atmosphere, some of the most intriguing mesospheric phenomena we observe high over the Hawaiian night skies are internal bores. These events affecting chemiluminescence are documented in monochromatic airglow images taken by high performance all-sky CCD imaging systems operating at the Maui Space Surveillance Site on top of Haleakala Crater. Data is collected as part of the ongoing, collaborative Maui - Mesosphere and Lower Thermosphere (MALT) campaign, jointly sponsored by the National Science Foundation and the Air Force Office of Scientific Research. Bolstered by the Maui-MALT dataset, several theories now exist for mesospheric bores, agreeing in principle that they are likely nonlinear structures spawned by gravity waves and propagating within ducted waveguide regions, such as thermal inversion layers. A new investigation will model optical emissions using a robust, time-dependent, chemical dynamics model to explore the airglow response to ducted gravity waves and, in turn, the geographical and vertical coupling relationships which may exist.

  18. Dosimetric impact of image artifact from a wide-bore CT scanner in radiotherapy treatment planning

    SciTech Connect

    Wu, Vincent; Podgorsak, Matthew B.; Tran, Tuan-Anh; Malhotra, Harish K.; Wang, Iris Z.

    2011-07-15

    Purpose: Traditional computed tomography (CT) units provide a maximum scan field-of-view (sFOV) diameter of 50 cm and a limited bore size, which cannot accommodate a large patient habitus or an extended simulation setup in radiation therapy (RT). Wide-bore CT scanners with increased bore size were developed to address these needs. Some scanners have the capacity to reconstruct the CT images at an extended FOV (eFOV), through data interpolation or extrapolation, using projection data acquired with a conventional sFOV. Objects that extend past the sFOV for eFOV reconstruction may generate image artifacts resulting from truncated projection data; this may distort CT numbers and structure contours in the region beyond the sFOV. The purpose of this study was to evaluate the dosimetric impact of image artifacts from eFOV reconstruction with a wide-bore CT scanner in radiotherapy (RT) treatment planning. Methods: Testing phantoms (i.e., a mini CT phantom with equivalent tissue inserts, a set of CT normal phantoms and anthropomorphic phantoms of the thorax and the pelvis) were used to evaluate eFOV artifacts. Reference baseline images of these phantoms were acquired with the phantom centrally positioned within the sFOV. For comparison, the phantoms were then shifted laterally and scanned partially outside the sFOV, but still within the eFOV. Treatment plans were generated for the thoracic and pelvic anthropomorphic phantoms utilizing the Eclipse treatment planning system (TPS) to study the potential effects of eFOV artifacts on dose calculations. All dose calculations of baseline and test treatment plans were carried out using the same MU. Results: Results show that both body contour and CT numbers are altered by image artifacts in eFOV reconstruction. CT number distortions of up to -356 HU for bone tissue and up to 323 HU for lung tissue were observed in the mini CT phantom. Results from the large body normal phantom, which is close to a clinical patient size, show

  19. Intraoperative wide bore nasogastric tube knotting: A rare incidence.

    PubMed

    Lamba, Sangeeta; Sethi, Surendra K; Khare, Arvind; Saini, Sudheendra

    2016-01-01

    Nasogastric tubes are commonly used in anesthetic practice for gastric decompression in surgical patients intraoperatively. The indications for its use are associated with a number of potential complications. Knotting of small-bore nasogastric tubes is usually common both during insertion and removal as compared to wide bore nasogastric tubes. Knotting of wide bore nasogastric tube is a rare complication and if occurs usually seen in long standing cases. We hereby report a case of incidental knotting of wide bore nasogastric tube that occurred intraoperatively.

  20. Deep bore hole instrumentation along San Francisco Bay Bridges

    SciTech Connect

    Bakun, W.; Bowman, J.; Clymer, R.; Foxall, W.; Hipley, P.; Hollfelder, J.; Hutchings, L.; Jarpe, S.; Kasameyer, P.; McEvilly, T.; Mualchin, L.; Palmer, M.

    1998-10-01

    The Bay Bridges down hole network consists of sensors in bore holes that are drilled 100 ft. into bedrock around and in the San Francisco Bay. Between 2 and 8 instruments have been spaced along the Dumbarton, San Mateo, Bay, and San Rafael bridges. The instruments will provide multiple use data that is important to geotechnical, structural engineering, and seismological studies. The holes are between 100 and 1000 ft deep and were drilled by Caltrans. There are twenty- one sensor packages at fifteen sites. Extensive financial support is being contributed by Caltrans, UCB, LBL, LLNL-LDRD, U.C. Campus/Laboratory Collaboration (CLC) program, and USGS. The down hole instrument package contains a three component HS-1 seismometer and three orthogonal Wilcox 73 1 accelerometers, and is capable of recording a micro g from local M = 1.0 earthquakes to 0.5 g strong ground motion form large Bay Area earthquakes.

  1. Large-bore viscometry tests on a shale slurry

    SciTech Connect

    Grove, T.W.

    1983-01-01

    The report covers work undertaken on behalf of the National Coal Board. Full-scale tests were carried out using a 4-inch-diameter tube viscometer to measure pipeline losses over a range of slurry throughputs. Bench-scale rotational viscometry tests were also performed to corroborate the full-scale test results.

  2. Poloidal rotation in tokamaks with large electric field gradients

    SciTech Connect

    Hinton, F.L.; Kim, Y.

    1995-01-01

    The ion poloidal flow velocity near the plasma edge in a tokamak has been calculated by extending neoclassical theory to include orbit squeezing, which is the reduction of the ion banana widths due to radial electric field shear. The pressure gradient-driven ion parallel flow is reduced by orbit squeezing, and then no longer cancels the diamagnetic flow in its contribution to poloidal flow. This allows the poloidal flow velocity to be a significant fraction of the ion diamagnetic velocity, which can be much larger than the standard neoclassical value (proportional to the ion temperature gradient). Equations for determining the poloidal flow and radial electric field profiles self-consistently are given. {copyright} {ital 1995} {ital American} {ital Institute} {ital of} {ital Physics}.

  3. Lower hybrid accessibility in a large, hot reversed field pinch

    SciTech Connect

    Dziubek, R.A.; Harvey, R.W.; Hokin, S.A.; Uchimoto, E.

    1995-11-01

    Accessibility and damping of the slow wave in a reversed field pinch (RFP) plasma is investigated theoretically, using projected Reversed Field Experiment (RFX) plasma parameters. By numerically solving the hot plasma dispersion relation, regions of propagation are found and the possibility of mode conversion is analyzed. If the parallel index of refraction of the wave is chosen judiciously at the edge of the plasma, the slow wave is accessible to a target region located just inside the reversal surface without mode conversion. Landau damping is also optimized in this region. A representative fast electron population is then added in order to determine its effect on accessibility and damping. The presence of these electrons, whose parameters were estimated by extrapolation of Madison Symmetric Torus (MST) data, does not affect the accessibility of the wave. However, the initial phase velocity of the wave needs to be increased somewhat in order to maintain optimal damping in the target zone.

  4. Laser Plasma Particle Accelerators: Large Fields for Smaller Facility Sources

    SciTech Connect

    Geddes, Cameron G.R.; Cormier-Michel, Estelle; Esarey, Eric H.; Schroeder, Carl B.; Vay, Jean-Luc; Leemans, Wim P.; Bruhwiler, David L.; Cary, John R.; Cowan, Ben; Durant, Marc; Hamill, Paul; Messmer, Peter; Mullowney, Paul; Nieter, Chet; Paul, Kevin; Shasharina, Svetlana; Veitzer, Seth; Weber, Gunther; Rubel, Oliver; Ushizima, Daniela; Bethel, Wes; Wu, John

    2009-03-20

    Compared to conventional particle accelerators, plasmas can sustain accelerating fields that are thousands of times higher. To exploit this ability, massively parallel SciDAC particle simulations provide physical insight into the development of next-generation accelerators that use laser-driven plasma waves. These plasma-based accelerators offer a path to more compact, ultra-fast particle and radiation sources for probing the subatomic world, for studying new materials and new technologies, and for medical applications.

  5. Virtually distortion-free imaging system for large field, high resolution lithography

    DOEpatents

    Hawryluk, A.M.; Ceglio, N.M.

    1993-01-05

    Virtually distortion free large field high resolution imaging is performed using an imaging system which contains large field distortion or field curvature. A reticle is imaged in one direction through the optical system to form an encoded mask. The encoded mask is then imaged back through the imaging system onto a wafer positioned at the reticle position.

  6. Virtually distortion-free imaging system for large field, high resolution lithography

    DOEpatents

    Hawryluk, Andrew M.; Ceglio, Natale M.

    1993-01-01

    Virtually distortion free large field high resolution imaging is performed using an imaging system which contains large field distortion or field curvature. A reticle is imaged in one direction through the optical system to form an encoded mask. The encoded mask is then imaged back through the imaging system onto a wafer positioned at the reticle position.

  7. Relating Berkovits and A ∞ superstring field theories; large Hilbert space perspective

    NASA Astrophysics Data System (ADS)

    Erler, Theodore

    2016-02-01

    We lift the dynamical field of the A ∞ superstring field theory to the large Hilbert space by introducing a gauge invariance associated with the eta zero mode. We then provide a field redefinition which relates the lifted field to the dynamical field of Berkovits' superstring field theory in the large Hilbert space. This generalizes the field redefinition in the small Hilbert space described in earlier works, and gives some understanding of the relation between the gauge symmetries of the theories. It also provides a new perspective on the algebraic structure underlying gauge invariance of the Wess-Zumino-Witten-like action.

  8. Chatter identification using HHT for boring process

    NASA Astrophysics Data System (ADS)

    Peng, Wei; Hu, Zhongju; Yuan, Li; Zhu, Pingyu

    2013-12-01

    This paper presents a signal processing technique of chatter detection for boring bar based on the Hilbert-Huang Transform (HHT). HHT is suitable for the analysis of non-stationary and non-linear signals. The flow of HHT for processing chatter signal and the principle are introduced. Two kinds of signals from strain gauge and FBG sensor are compared by HHT. The signals are decomposed into several intrinsic mode functions (IMFs) using empirical mode decomposition (EMD). The Hilbert transform is then applied on each IMF to obtain the instantaneous frequencies with time and their amplitudes. Finally, the marginal and the Hilbert spectrums of strain signals were produced using selected IMFs. The results show that the HHT-based strain signal analysis can also be considered as a simple and reliable method for chatter vibration detection.

  9. Earth boring bit with eccentric seal boss

    SciTech Connect

    Helmick, J.E.

    1981-07-21

    A rolling cone cutter earth boring bit is provided with a sealing system that results in the seal being squeezed uniformly around the seal circumference during drilling. The bearing pin seal surface is machined eccentrically to the bearing pin by an amount equal to the radial clearance of the bearing. The bearing pin seal surface is machined about an axis that is offset from the central axis of the bearing pin in the direction of the unloaded side of the bearing pin. When the bit is drilling and the bearing pin is loaded the seal will run on an axis concentric with the axis of the seal surfaces of the bearing pin and the rolling cutter and will see uniform squeeze around its circumference.

  10. Large-Scale Hybrid Dynamic Simulation Employing Field Measurements

    SciTech Connect

    Huang, Zhenyu; Guttromson, Ross T.; Hauer, John F.

    2004-06-30

    Simulation and measurements are two primary ways for power engineers to gain understanding of system behaviors and thus accomplish tasks in system planning and operation. Many well-developed simulation tools are available in today's market. On the other hand, large amount of measured data can be obtained from traditional SCADA systems and currently fast growing phasor networks. However, simulation and measurement are still two separate worlds. There is a need to combine the advantages of simulation and measurements. In view of this, this paper proposes the concept of hybrid dynamic simulation which opens up traditional simulation by providing entries for measurements. A method is presented to implement hybrid simulation with PSLF/PSDS. Test studies show the validity of the proposed hybrid simulation method. Applications of such hybrid simulation include system event playback, model validation, and software validation.

  11. Unsteady undular bores in fully nonlinear shallow-water theory

    NASA Astrophysics Data System (ADS)

    El, G. A.; Grimshaw, R. H. J.; Smyth, N. F.

    2006-02-01

    We consider unsteady undular bores for a pair of coupled equations of Boussinesq-type which contain the familiar fully nonlinear dissipationless shallow-water dynamics and the leading-order fully nonlinear dispersive terms. This system contains one horizontal space dimension and time and can be systematically derived from the full Euler equations for irrotational flows with a free surface using a standard long-wave asymptotic expansion. In this context the system was first derived by Su and Gardner. It coincides with the one-dimensional flat-bottom reduction of the Green-Naghdi system and, additionally, has recently found a number of fluid dynamics applications other than the present context of shallow-water gravity waves. We then use the Whitham modulation theory for a one-phase periodic travelling wave to obtain an asymptotic analytical description of an undular bore in the Su-Gardner system for a full range of "depth" ratios across the bore. The positions of the leading and trailing edges of the undular bore and the amplitude of the leading solitary wave of the bore are found as functions of this "depth ratio." The formation of a partial undular bore with a rapidly varying finite-amplitude trailing wavefront is predicted for "depth ratios" across the bore exceeding 1.43. The analytical results from the modulation theory are shown to be in excellent agreement with full numerical solutions for the development of an undular bore in the Su-Gardner system.

  12. Formulating entompathogens for control of boring beetles in avocado orchards

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A foam formulation of Beauveria bassiana was adapted to control boring beetles in avocado orchards. The two geographically independent avocado growing areas in the United States are threatened by emerging diseases vectored by boring beetles. In the California growing region, Fusarium dieback is vect...

  13. 6. VIEW OF BORING MILL. Chuck action of locomotive wheel ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. VIEW OF BORING MILL. Chuck action of locomotive wheel Wheel weight 1200 pounds, 3'-0' diameter. Table 53' in diameter Wheel is 48'. Largest hole that can be bored is 9-1/2' plus (GE axle is 10'). - Juniata Shops, Erecting Shop & Machine Shop, East of Fourth Avenue, between Fourth & Fifth Streets, Altoona, Blair County, PA

  14. ASSEMBLY AND TEST OF A 120 MM BORE 15 T NB3SN QUADRUPOLE FOR THE LHC UPGRADE

    SciTech Connect

    Felice, H.; Caspi, S.; Cheng, D.; Dietderich, D.; Ferracin, P.; Hafalia, R.; Joseph, J.; Lizarazo, J.; Sabbi, G. L.; Wang, X.; Anerella, M.; Ghosh, A. K.; Schmalzle, J.; Wanderer, P.; Ambrosio, G.; Bossert, R.; Zlobin, A. V.

    2010-05-23

    In support of the Large Hadron Collider (LHC) luminosity upgrade, the US LHC Accelerator Research Program (LARP) has been developing a 1-meter long, 120 mm bore Nb{sub 3}Sn IR quadrupole magnet (HQ). With a design short sample gradient of 219 T/m at 1.9 K and a peak field approaching 15 T, one of the main challenges of this magnet is to provide appropriate mechanical support to the coils. Compared to the previous LARP Technology Quadrupole and Long Quadrupole magnets, the purpose of HQ is also to demonstrate accelerator quality features such as alignment and cooling. So far, 8 HQ coils have been fabricated and 4 of them have been assembled and tested in HQ01a. This paper presents the mechanical assembly and test results of HQ01a.

  15. Single-field consistency relations of large scale structure

    SciTech Connect

    Creminelli, Paolo; Noreña, Jorge; Simonović, Marko; Vernizzi, Filippo E-mail: jorge.norena@icc.ub.edu E-mail: filippo.vernizzi@cea.fr

    2013-12-01

    We derive consistency relations for the late universe (CDM and ΛCDM): relations between an n-point function of the density contrast δ and an (n+1)-point function in the limit in which one of the (n+1) momenta becomes much smaller than the others. These are based on the observation that a long mode, in single-field models of inflation, reduces to a diffeomorphism since its freezing during inflation all the way until the late universe, even when the long mode is inside the horizon (but out of the sound horizon). These results are derived in Newtonian gauge, at first and second order in the small momentum q of the long mode and they are valid non-perturbatively in the short-scale δ. In the non-relativistic limit our results match with [1]. These relations are a consequence of diffeomorphism invariance; they are not satisfied in the presence of extra degrees of freedom during inflation or violation of the Equivalence Principle (extra forces) in the late universe.

  16. Oil well bore hole surveying by kinematic navigation

    SciTech Connect

    Egli, W.H.; Vallot, L.C.

    1988-08-30

    This patent describes a bore hole survey apparatus, comprising: an instrumentation pod adapted for travel down a bore hole to be surveyed; the pod including a rate gyroscope for sensing rotation of the pod substantially about its longitudinal axis along which it travels in the bore hole; the pod including accelerometer means for sensing the Earth's gravity vector with respect to a frame of reference of the pod; means for lowering the pod in a bore hole and for measuring increments of the lowering; and computational means connected for receiving signals from the rate gyroscope, the accelerometers and the lowering means, and for calculating therefrom the updated attitude and position of the pod as it is lowered into the bore hole, the computational means being programmed with an algorithm which calculates the updated pod location.

  17. Description of work for vadose borings in support of 200-UP-2 Unit

    SciTech Connect

    Kelty, G.G.

    1993-08-27

    This description of work (DOW) details the field activities associated with the vadose zone drilling and soil sampling in the 200-UP-2 Operable Unit (Task 2, 3, and 5) and will serve as a field guide for those performing the work. It will be used in conjunction with the 200-UP-2 RCRA Facility Investigation/Corrective Measures Study (DOE-RL 1993a,[LFI]) and Site Characterization Manual (WHC 1988a). Vadose zone borings are being constructed to characterize the vertical and horizontal extent of contaminants in sediments within and beneath the cribs. The locations for the proposed borings are presented in Figure 1. The contaminants of concern for the project are presented in Table 1.

  18. Tunnel boring machine performance in sedimentary rock

    SciTech Connect

    Nelson, P.

    1983-01-01

    Full-face tunnel boring machine (TBM) performance during the excavation of six tunnels is considered in terms of utilization, penetration rate, and cutter wear. Construction records for over 75,000 ft (22,860m) of tunnel in sedimentary rock are analyzed, and the results are used to investigate factors affecting TBM performance. Machine utilization is strongly affected by site specific conditions, including geology, construction planning, and contractor practice. The relative importance of each of 21 downtime causes is discussed, and recommendations are made for modifications in excavation system design which could help to reduce delays. Effects of machine operation rate were investigated. The interrelationship among penetration, thrust, and rolling force is analyzed with a three-dimensional model which provides a rational basis for explaining variations in cutter forces and penetration rate as a function of rock type. The most useful rock index for estimating TBM performance in sedimentary rock is shown to be a combination of Schmidt Hammer rebound and abrasion hardness. Variation in cutter wear is considered as a function of position on the cutterhead and the rock type being excavated. Rolling distances for center cutters are less sensitive to rock type than for other positions. A fracture mechanics approach, of use in modeling the process chip formation, is proposed. The use of fracture material properties for empirical prediction of TBM performance is reported. Recommendations are made for future work, and observations and records required for future performance evaluations are summarized.

  19. Large scale 3D geometry of deformation structures in the Aar massif and overlying Helvetic nappes (Central Alps, Switzerland) - A combined remote sensing and field work approach

    NASA Astrophysics Data System (ADS)

    Baumberger, R.; Wehrens, Ph.; Herwegh, M.

    2012-04-01

    Allowing deep insight into the formation history of a rock complex, shear zones, faults and joint systems represent important sources of geological information. The granitic rocks of the Haslital valley (Switzerland) show very good outcrop conditions to study these mechanical anisotropies. Furthermore, they permit a quantitative characterisation of the above-mentioned deformation structures on the large-scale, in terms of their 3D orientation, 3D spatial distribution, kinematics and evolution in 3D. A key problem while developing valid geological 3D models is the three-dimensional spatial distribution of geological structures, particularly with increasing distance from the surface. That is especially true in regions, where only little or even no "hard" underground data (e.g. bore holes, tunnel mappings and seismics) is available. In the study area, many subsurface data are available (e.g. cross sections, tunnel and pipeline mappings, bore holes etc.). Therefore, two methods dealing with the problems mentioned are developed: (1) A data acquisition, processing and visualisation method, (2) A methodology to improve the reliability of 3D models regarding the spatial trend of geological structures with increasing depth: 1) Using aerial photographs and a high-resolution digital elevation model, a GIS-based remote-sensing structural map of large-scale structural elements (shear zones, faults) of the study area was elaborated. Based on that lineament map, (i) a shear zone map was derived and (ii) a geostatistical analysis was applied to identify sub regions applicable for serving as field areas to test the methodology presented above. During fieldwork, the shear zone map was evaluated by verifying the occurrence and spatial distribution of the structures designated by remote sensing. Additionally, the geometry of the structures (e.g. 3D orientation, width, kinematics) was characterised and parameterised accordingly. These tasks were partially done using a GPS based Slate

  20. Field-flow fractionation of nucleic acids and proteins under large-scale gradient magnetic fields

    NASA Astrophysics Data System (ADS)

    Iwasaka, M.

    2007-05-01

    For the purpose of developing techniques for separating biological macromolecules, the present study reports a magnetic chromatography system employing high performance liquid chromatography and superconducting magnets of 14 and 5T. We observed chromatograms of catalase and albumin, which were eluded from columns that were exposed to magnetic fields of up to 14T with a maximum gradient of 90T/m. Without the magnetic fields, the chromatograms of the macromolecules showed a clear peak, while the chromatograms changed to have separated peaks for the same molecules after exposure to gradient magnetic fields. When the chromatocolumn was placed so the magnetic forces were opposite to the direction of flow, the albumin molecules separated into two groups. In addition, the chromatograms of catalase exposed to the magnetic fields indicated that the retention times of the two kinds of magnetically separated catalase were relatively changed if the column-field configuration was changed. Probably, the balance of paramagnetism in the heme and diamagnetism in the protein controlled the transport velocity under the influence of the gradient magnetic fields. In addition, the transport velocity of DNA molecules in the flow with a high gradient magnetic field was observed using a time-resolved spectrophotometric system.

  1. Generation of Large-Scale Magnetic Fields by Small-Scale Dynamo in Shear Flows.

    PubMed

    Squire, J; Bhattacharjee, A

    2015-10-23

    We propose a new mechanism for a turbulent mean-field dynamo in which the magnetic fluctuations resulting from a small-scale dynamo drive the generation of large-scale magnetic fields. This is in stark contrast to the common idea that small-scale magnetic fields should be harmful to large-scale dynamo action. These dynamos occur in the presence of a large-scale velocity shear and do not require net helicity, resulting from off-diagonal components of the turbulent resistivity tensor as the magnetic analogue of the "shear-current" effect. Given the inevitable existence of nonhelical small-scale magnetic fields in turbulent plasmas, as well as the generic nature of velocity shear, the suggested mechanism may help explain the generation of large-scale magnetic fields across a wide range of astrophysical objects. PMID:26551120

  2. Generation of large-scale magnetic fields by small-scale dynamo in shear flows

    SciTech Connect

    Squire, J.; Bhattacharjee, A.

    2015-10-20

    We propose a new mechanism for a turbulent mean-field dynamo in which the magnetic fluctuations resulting from a small-scale dynamo drive the generation of large-scale magnetic fields. This is in stark contrast to the common idea that small-scale magnetic fields should be harmful to large-scale dynamo action. These dynamos occur in the presence of a large-scale velocity shear and do not require net helicity, resulting from off-diagonal components of the turbulent resistivity tensor as the magnetic analogue of the "shear-current" effect. Furthermore, given the inevitable existence of nonhelical small-scale magnetic fields in turbulent plasmas, as well as the generic nature of velocity shear, the suggested mechanism may help explain the generation of large-scale magnetic fields across a wide range of astrophysical objects.

  3. Generation of large-scale magnetic fields by small-scale dynamo in shear flows

    DOE PAGESBeta

    Squire, J.; Bhattacharjee, A.

    2015-10-20

    We propose a new mechanism for a turbulent mean-field dynamo in which the magnetic fluctuations resulting from a small-scale dynamo drive the generation of large-scale magnetic fields. This is in stark contrast to the common idea that small-scale magnetic fields should be harmful to large-scale dynamo action. These dynamos occur in the presence of a large-scale velocity shear and do not require net helicity, resulting from off-diagonal components of the turbulent resistivity tensor as the magnetic analogue of the "shear-current" effect. Furthermore, given the inevitable existence of nonhelical small-scale magnetic fields in turbulent plasmas, as well as the generic naturemore » of velocity shear, the suggested mechanism may help explain the generation of large-scale magnetic fields across a wide range of astrophysical objects.« less

  4. BORED AND ASSEMBLED GATE VALVES RECEIVING PROTECTIVE COATING IN THE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    BORED AND ASSEMBLED GATE VALVES RECEIVING PROTECTIVE COATING IN THE VALVE PAINT BOOTH OF THE VALVE ASSEMBLY BUILDING. - Stockham Pipe & Fittings Company, Valve Assembly Building, 4000 Tenth Avenue North, Birmingham, Jefferson County, AL

  5. 8. VIEW OF WHEEL RACK FOR BORING MILL. Fork loading ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. VIEW OF WHEEL RACK FOR BORING MILL. Fork loading crane, manufactured by Cleveland Tramrail, 2-1/2 ton capacity. - Juniata Shops, Erecting Shop & Machine Shop, East of Fourth Avenue, between Fourth & Fifth Streets, Altoona, Blair County, PA

  6. 9. VIEW OF WHEEL RACK FOR BORING MILL. Fork loading ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. VIEW OF WHEEL RACK FOR BORING MILL. Fork loading crane, manufactured by Cleveland Tramrail, 2-1/2 ton capacity. - Juniata Shops, Erecting Shop & Machine Shop, East of Fourth Avenue, between Fourth & Fifth Streets, Altoona, Blair County, PA

  7. 39. TUNNEL BORE UNDER CONSTRUCTION. VIEW SHOWS LIGHT CONSTRUCTION RAILWAY ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    39. TUNNEL BORE UNDER CONSTRUCTION. VIEW SHOWS LIGHT CONSTRUCTION RAILWAY FOR HAULING MUCK AND SPOIL - Zion-Mount Carmel Highway, Tunnel, Two miles east of Zion Canyon Scenic Drive, Springdale, Washington County, UT

  8. Scanning and Measuring Device for Diagnostic of Barrel Bore

    NASA Astrophysics Data System (ADS)

    Marvan, Ales; Hajek, Josef; Vana, Jan; Dvorak, Radim; Drahansky, Martin; Jankovych, Robert; Skvarek, Jozef

    The article discusses the design, mechanical design, electronics and software for robot diagnosis of barrels with caliber of 120 mm to 155 mm. This diagnostic device is intended primarily for experimental research and verification of appropriate methods and technologies for the diagnosis of the main bore guns. Article also discusses the design of sensors and software, the issue of data processing and image reconstruction obtained by scanning of the surface of the bore.

  9. Recognition of Tidal Bore Deposits in the Stratigraphic Record

    NASA Astrophysics Data System (ADS)

    Fielding, C. R.; Joeckel, M.

    2015-12-01

    Tidal bores are upstream-propagating hydraulic jumps that episodically form the leading edge of flood tides in upstream-narrowing, gently sloping, coastal rivers which experience high tidal ranges (6 m+, typically). They attain 9 m in height and can penetrate more than 100 km inboard of a shoreline. The deposits of tidal bores, if they can be confidently diagnosed in ancient successions, constitute an unequivocal line of evidence in support of deposition within the tidal-fluvial zone of a lowland river. Deposits of modern tidal bores have been documented, and two recent studies have interpreted tidal bore deposits in ancient (Jurassic and Pennsylvanian) sedimentary rocks. The ancient tidal bore deposits recognized thus far comprise laterally discontinuous, erosionally-based beds of massive to faintly stratified sand, locally muddy and rich in detrital plant debris. Paleoflow structures, where preserved, indicate upstream-directed flow. The beds are enclosed by other, more pervasively stratified sandstones that were the product of ebb and flood-oriented currents in the ancient tidal rivers. The interpreted bore deposits are anomalous in the context of these normal current deposits, and indicate erosive scouring of the substrate followed by the en masse deposition of sand from suspension and upstream advection. Multiple horizons of putative tidal bore deposits are recognized in both the Jurassic and Pennsylvanian examples, suggesting that they were not the product of low-frequency, high-magnitude events such as tsunami or debris flows. It is anticipated that more examples of ancient tidal bore deposits will come to light now that diagnostic criteria are available, and that these will contribute to the fuller recognition of tidally-modulated fluvial deposits in the rock record.

  10. An Empirical Relation between the Large-scale Magnetic Field and the Dynamical Mass in Galaxies

    NASA Astrophysics Data System (ADS)

    Tabatabaei, F. S.; Martinsson, T. P. K.; Knapen, J. H.; Beckman, J. E.; Koribalski, B.; Elmegreen, B. G.

    2016-02-01

    The origin and evolution of cosmic magnetic fields as well as the influence of the magnetic fields on the evolution of galaxies are unknown. Though not without challenges, the dynamo theory can explain the large-scale coherent magnetic fields that govern galaxies, but observational evidence for the theory is so far very scarce. Putting together the available data of non-interacting, non-cluster galaxies with known large-scale magnetic fields, we find a tight correlation between the integrated polarized flux density, SPI, and the rotation speed, vrot, of galaxies. This leads to an almost linear correlation between the large-scale magnetic field \\bar{B} and vrot, assuming that the number of cosmic-ray electrons is proportional to the star formation rate, and a super-linear correlation assuming equipartition between magnetic fields and cosmic rays. This correlation cannot be attributed to an active linear α-Ω dynamo, as no correlation holds with global shear or angular speed. It indicates instead a coupling between the large-scale magnetic field and the dynamical mass of the galaxies, \\bar{B}˜ \\{M}{{dyn}}0.25-0.4. Hence, faster rotating and/or more massive galaxies have stronger large-scale magnetic fields. The observed \\bar{B}-{v}{{rot}} correlation shows that the anisotropic turbulent magnetic field dominates \\bar{B} in fast rotating galaxies as the turbulent magnetic field, coupled with gas, is enhanced and ordered due to the strong gas compression and/or local shear in these systems. This study supports a stationary condition for the large-scale magnetic field as long as the dynamical mass of galaxies is constant.

  11. Nonlinear Generation of shear flows and large scale magnetic fields by small scale

    NASA Astrophysics Data System (ADS)

    Aburjania, G.

    2009-04-01

    EGU2009-233 Nonlinear Generation of shear flows and large scale magnetic fields by small scale turbulence in the ionosphere by G. Aburjania Contact: George Aburjania, g.aburjania@gmail.com,aburj@mymail.ge

  12. Large-scale magnetic fields at high Reynolds numbers in magnetohydrodynamic simulations.

    PubMed

    Hotta, H; Rempel, M; Yokoyama, T

    2016-03-25

    The 11-year solar magnetic cycle shows a high degree of coherence in spite of the turbulent nature of the solar convection zone. It has been found in recent high-resolution magnetohydrodynamics simulations that the maintenance of a large-scale coherent magnetic field is difficult with small viscosity and magnetic diffusivity (≲10 (12) square centimenters per second). We reproduced previous findings that indicate a reduction of the energy in the large-scale magnetic field for lower diffusivities and demonstrate the recovery of the global-scale magnetic field using unprecedentedly high resolution. We found an efficient small-scale dynamo that suppresses small-scale flows, which mimics the properties of large diffusivity. As a result, the global-scale magnetic field is maintained even in the regime of small diffusivities-that is, large Reynolds numbers.

  13. Simplified field-in-field technique for a large-scale implementation in breast radiation treatment

    SciTech Connect

    Fournier-Bidoz, Nathalie; Kirova, Youlia M.; Campana, Francois; Dendale, Remi; Fourquet, Alain

    2012-07-01

    We wanted to evaluate a simplified 'field-in-field' technique (SFF) that was implemented in our department of Radiation Oncology for breast treatment. This study evaluated 15 consecutive patients treated with a simplified field in field technique after breast-conserving surgery for early-stage breast cancer. Radiotherapy consisted of whole-breast irradiation to the total dose of 50 Gy in 25 fractions, and a boost of 16 Gy in 8 fractions to the tumor bed. We compared dosimetric outcomes of SFF to state-of-the-art electronic surface compensation (ESC) with dynamic leaves. An analysis of early skin toxicity of a population of 15 patients was performed. The median volume receiving at least 95% of the prescribed dose was 763 mL (range, 347-1472) for SFF vs. 779 mL (range, 349-1494) for ESC. The median residual 107% isodose was 0.1 mL (range, 0-63) for SFF and 1.9 mL (range, 0-57) for ESC. Monitor units were on average 25% higher in ESC plans compared with SFF. No patient treated with SFF had acute side effects superior to grade 1-NCI scale. SFF created homogenous 3D dose distributions equivalent to electronic surface compensation with dynamic leaves. It allowed the integration of a forward planned concomitant tumor bed boost as an additional multileaf collimator subfield of the tangential fields. Compared with electronic surface compensation with dynamic leaves, shorter treatment times allowed better radiation protection to the patient. Low-grade acute toxicity evaluated weekly during treatment and 2 months after treatment completion justified the pursuit of this technique for all breast patients in our department.

  14. Consequences of the large ambipolar electric field in the solar wind

    SciTech Connect

    Scudder, J.D.

    1995-06-01

    The parallel electric field in the solar wind is much smaller than the V x B motional electric field, yet in the proper dimensions units it is very `large`. At the orbit of earth it is within a few percent of being at the Dreicer limit. This `large` electric field is required for quasi-neutrality; it will be shown to have interesting consequences for the electron velocity distribution function and the description of transport of heat. Interestingly, a similar dimensionless situation also occurs at the base of the transition region, while below the transition region the dimensionless electric field is very weak. These facts suggest a new way to look at the thermal-suprathermal dichotomy in velocity distributions as the response of a plasma where charge neutrality requires such large dimensionless electric fields.

  15. Large-scale modeling of rain fields from a rain cell deterministic model

    NASA Astrophysics Data System (ADS)

    FéRal, Laurent; Sauvageot, Henri; Castanet, Laurent; Lemorton, JoëL.; Cornet, FréDéRic; Leconte, Katia

    2006-04-01

    A methodology to simulate two-dimensional rain rate fields at large scale (1000 × 1000 km2, the scale of a satellite telecommunication beam or a terrestrial fixed broadband wireless access network) is proposed. It relies on a rain rate field cellular decomposition. At small scale (˜20 × 20 km2), the rain field is split up into its macroscopic components, the rain cells, described by the Hybrid Cell (HYCELL) cellular model. At midscale (˜150 × 150 km2), the rain field results from the conglomeration of rain cells modeled by HYCELL. To account for the rain cell spatial distribution at midscale, the latter is modeled by a doubly aggregative isotropic random walk, the optimal parameterization of which is derived from radar observations at midscale. The extension of the simulation area from the midscale to the large scale (1000 × 1000 km2) requires the modeling of the weather frontal area. The latter is first modeled by a Gaussian field with anisotropic covariance function. The Gaussian field is then turned into a binary field, giving the large-scale locations over which it is raining. This transformation requires the definition of the rain occupation rate over large-scale areas. Its probability distribution is determined from observations by the French operational radar network ARAMIS. The coupling with the rain field modeling at midscale is immediate whenever the large-scale field is split up into midscale subareas. The rain field thus generated accounts for the local CDF at each point, defining a structure spatially correlated at small scale, midscale, and large scale. It is then suggested that this approach be used by system designers to evaluate diversity gain, terrestrial path attenuation, or slant path attenuation for different azimuth and elevation angle directions.

  16. Spatial distribution of large-scale solar magnetic fields and their relation to the interplanetary magnetic field

    NASA Technical Reports Server (NTRS)

    Levine, R. H.

    1979-01-01

    The spatial organization of the observed photospheric magnetic field as well as its relation to the polarity of the IMF have been studied using high resolution magnetograms from the Kitt Peak National Observatory. Systematic patterns in the large scale field are due to contributions from both concentrated flux and more diffuse flux. The polarity of the photospheric field, determined on various spatial scales, correlates with the polarity of the IMF. Analyses based on several spatial scales in the photosphere suggest that new flux in the interplanetary medium is often due to relatively small photospheric features which appear in the photosphere up to one month before they are manifest at the earth.

  17. The Decay of a Weak Large-scale Magnetic Field in Two-dimensional Turbulence

    NASA Astrophysics Data System (ADS)

    Kondić, Todor; Hughes, David W.; Tobias, Steven M.

    2016-06-01

    We investigate the decay of a large-scale magnetic field in the context of incompressible, two-dimensional magnetohydrodynamic turbulence. It is well established that a very weak mean field, of strength significantly below equipartition value, induces a small-scale field strong enough to inhibit the process of turbulent magnetic diffusion. In light of ever-increasing computer power, we revisit this problem to investigate fluids and magnetic Reynolds numbers that were previously inaccessible. Furthermore, by exploiting the relation between the turbulent diffusion of the magnetic potential and that of the magnetic field, we are able to calculate the turbulent magnetic diffusivity extremely accurately through the imposition of a uniform mean magnetic field. We confirm the strong dependence of the turbulent diffusivity on the product of the magnetic Reynolds number and the energy of the large-scale magnetic field. We compare our findings with various theoretical descriptions of this process.

  18. On the nature of large auroral zone electric fields at 1-R/E/ altitude

    NASA Technical Reports Server (NTRS)

    Shawhan, S. D.; Falthammar, C.-G.; Block, L. P.

    1978-01-01

    Mechanisms that may support magnetic-field-aligned electric fields in collisionless plasma are discussed in the light of recent magnetospheric observations, which for the first time allow a quantitative test of the theoretical models. Data from barium ion releases which indicate large field-aligned potential drops and direct electric field probe measurements at high altitude which reveal electric fields of several hundred millivolts per meter are discussed. It is concluded that the large field strengths observed (1) cannot be explained by anomalous resistivity or thermoelectric effects based on wave-particle interaction, (2) are much larger than required merely to balance the local mirror forces, and (3) are compatible with electric double layers of the same nature as those observed in the laboratory.

  19. NOTE: Intraoperative radiation therapy using a mobile electron linear accelerator: field matching for large-field electron irradiation

    NASA Astrophysics Data System (ADS)

    Beddar, A. S.; Briere, T. M.; Ouzidane, M.

    2006-09-01

    Intraoperative radiation therapy (IORT) consists of delivering a large, single-fraction dose of radiation to a surgically exposed tumour or tumour bed at the time of surgery. With the availability of a mobile linear accelerator in the OR, IORT procedures have become more feasible for medical centres and more accessible to cancer patients. Often the area requiring irradiation is larger than what the treatment applicators will allow, and therefore, two or more adjoining fields are used. Unfortunately, the divergence and scattering of the electron beams may cause significant dose variations in the region of the field junction. Furthermore, because IORT treatments are delivered in a large single fraction, the effects of underdosing or overdosing could be more critical when compared to fractionated external beam therapy. Proper matching of the fields is therefore an important technical aspect of treatment delivery. We have studied the matching region using the largest flat applicator available for three different possibilities: abutting the fields, leaving a small gap or creating an overlap. Measurements were done using film dosimetry for the available energies of 4, 6, 9 and 12 MeV. Our results show the presence of clinically significant cold spots for the low-energy beams when the fields are either gapped or abutted, suggesting that the fields should be overlapped. No fields should be gapped. The results suggest that an optimal dose distribution may be obtained by overlapping the fields at 4 and 6 MeV and simply abutting the fields at 9 and 12 MeV. However, due to uncertainties in the placement of lead shields during treatment delivery, one may wish to consider overlapping the higher energy fields as well.

  20. Large-scale negative polarity magnetic fields on the sun and particle-emitting flares

    NASA Technical Reports Server (NTRS)

    Bumba, V.

    1972-01-01

    Some observational facts about the large-scale patterns formed by solar negative polarity magnetic fields during the 19th and 20th cycles of solar activity are presented. The close relation of the position of occurrence of very large flares accompanied by cosmic ray and PCA events as well as other phenomena of solar activity during the declining part of the 19th cycle of the regularities in the internal structure of large scale negative polarity features are demonstrated.

  1. Solar large-scale positive polarity magnetic fields and geomagnetic disturbances

    NASA Technical Reports Server (NTRS)

    Bumba, V.

    1972-01-01

    Unlike the negative polarity solar magnetic field large-scale regular features that correlate with enhanced solar activity regions, the positive polarity regular formations formed in the weak and old background magnetic fields seem to correlate well with geomagnetically enhanced periods of time (shifted for 4 days), which means that they seem to be the source of the quiet solar wind. This behavior of the large intervals of heliographic longitude with prevailing positive polarity fields may be followed to the end of the 18th cycle, during the declining part of the 19th cycle, and during the first half of the present 20th cycle of solar activity.

  2. Inertial-acoustic oscillations of black hole accretion discs with large-scale poloidal magnetic fields

    NASA Astrophysics Data System (ADS)

    Yu, Cong; Lai, Dong

    2015-07-01

    We study the effect of large-scale magnetic fields on the non-axisymmetric inertial-acoustic modes (also called p modes) trapped in the innermost regions of accretion discs around black holes (BHs). These global modes could provide an explanation for the high-frequency quasi-periodic oscillations (HFQPOs) observed in BH X-ray binaries. There may be observational evidence for the presence of such large-scale magnetic fields in the discs since episodic jets are observed in the same spectral state when HFQPOs are detected. We find that a large-scale poloidal magnetic field can enhance the corotational instability and increase the growth rate of the purely hydrodynamic overstable p modes. In addition, we show that the frequencies of these overstable p modes could be further reduced by such magnetic fields, making them agree better with observations.

  3. Evolution of the large-scale tail of primordial magnetic fields

    SciTech Connect

    Jedamzik, Karsten; Sigl, Guenter

    2011-05-15

    Cosmic magnetic fields may be generated during early cosmic phase transition, such as the QCD or electroweak transitions. The magnitude of the remainder of such fields at the present epoch crucially depends on the exponent n of their (initially super-Hubble) large-scale tail, i.e., B{sub {lambda}{approx}{lambda}}{sup -n}. It has been claimed that causality requires n=5/2, contrary to much earlier claims of n=3/2. Here we analyze this question in detail. First, we note that contrary to current belief, the large-scale magnetic field tail is not established at the phase transition itself, but rather continuously evolves up to the present epoch. Neglecting turbulent flows we find n=7/2, i.e., very strongly suppressed large-scale fields. However, in the inevitable presence of turbulent flows we find that the large-scale magnetic field tail has sufficient time to evolve to that of the fluid turbulence. For white noise fluid turbulence this yields n=3/2 up to a certain scale and n=5/2 beyond for the magnetic field spectrum. This picture is also not changed when primordial viscosity and fluid flow dissipation is taken into account. Appreciable primordial magnetic fields originating from cosmic phase transitions thus seem possible.

  4. Pervasive large-scale magnetic fields in the Venus nightside ionosphere and their implications

    NASA Technical Reports Server (NTRS)

    Luhmann, J. G.

    1992-01-01

    When the solar wind dynamic pressure at Venus was extraordinarily high during the primary mission of the Pioneer Venus Orbiter (PVO), 'disappearing ionospheres' occurred on the nightside, with accompanying pervasive near-periapsis magnetic fields of tens of nanoteslas. These nightside counterparts of the generally horizontal large-scale magnetic fields in the dayside ionosphere are found to exhibit some dependence of field magnitude on the solar wind pressure but not on solar zenith angle. Their statistical behavior suggests a global configuration in which the low-altitude field wraps around the planet, while the field at higher altitudes is draped like the induced magnetotail field. The toroidal low-altitude field geometry implies the possible existence of magnetic x points in the low-altitude wake.

  5. Structure and evolution of the large scale solar and heliospheric magnetic fields. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Hoeksema, J. T.

    1984-01-01

    Structure and evolution of large scale photospheric and coronal magnetic fields in the interval 1976-1983 were studied using observations from the Stanford Solar Observatory and a potential field model. The solar wind in the heliosphere is organized into large regions in which the magnetic field has a componenet either toward or away from the sun. The model predicts the location of the current sheet separating these regions. Near solar minimum, in 1976, the current sheet lay within a few degrees of the solar equator having two extensions north and south of the equator. Soon after minimum the latitudinal extent began to increase. The sheet reached to at least 50 deg from 1978 through 1983. The complex structure near maximum occasionally included multiple current sheets. Large scale structures persist for up to two years during the entire interval. To minimize errors in determining the structure of the heliospheric field particular attention was paid to decreasing the distorting effects of rapid field evolution, finding the optimum source surface radius, determining the correction to the sun's polar field, and handling missing data. The predicted structure agrees with direct interplanetary field measurements taken near the ecliptic and with coronameter and interplanetary scintillation measurements which infer the three dimensional interplanetary magnetic structure. During most of the solar cycle the heliospheric field cannot be adequately described as a dipole.

  6. Wear analysis of disc cutters of full face rock tunnel boring machine

    NASA Astrophysics Data System (ADS)

    Zhang, Zhaohuang; Meng, Liang; Sun, Fei

    2014-11-01

    Wear is a major factor of disc cutters' failure. No current theory offers a standard for the prediction of disc cutter wear yet. In the field the wear prediction method commonly used is based on the excavation length of tunnel boring machine(TBM) to predict the disc cutter wear and its wear law, considering the location number of each disc cutter on the cutterhead(radius for installation); in theory, there is a prediction method of using arc wear coefficient. However, the preceding two methods have their own errors, with their accuracy being 40% or so and largely relying on the technicians' experience. Therefore, radial wear coefficient, axial wear coefficient and trajectory wear coefficient are defined on the basis of the operating characteristics of TBM. With reference to the installation and characteristics of disc cutters, those coefficients are modified according to penetration, which gives rise to the presentation of comprehensive axial wear coefficient, comprehensive radial wear coefficient and comprehensive trajectory wear coefficient. Calculation and determination of wear coefficients are made with consideration of data from a segment of TBM project(excavation length 173 m). The resulting wear coefficient values, after modification, are adopted to predict the disc cutter wear in the follow-up segment of the TBM project(excavation length of 5621 m). The prediction results show that the disc cutter wear predicted with comprehensive radial wear coefficient and comprehensive trajectory wear coefficient are not only accurate(accuracy 16.12%) but also highly congruous, whereas there is a larger deviation in the prediction with comprehensive axial wear coefficient(accuracy 41%, which is in agreement with the prediction of disc cutters' life in the field). This paper puts forth a new method concerning prediction of life span and wear of TBM disc cutters as well as timing for replacing disc cutters.

  7. Sediment transport induced by tidal bores. An estimation from suspended matter measurements in the Sée River (Mont-Saint-Michel Bay, northwestern France)

    NASA Astrophysics Data System (ADS)

    Furgerot, Lucille; Mouazé, Dominique; Tessier, Bernadette; Perez, Laurent; Haquin, Sylvain; Weill, Pierre; Crave, Alain

    2016-07-01

    Tidal bores are believed to induce significant sediment transport in macrotidal estuaries. However, due to high turbulence and very large suspended sediment concentration (SSC), the measurement of sediment transport induced by a tidal bore is actually a technical challenge. Consequently, very few quantitative data have been published so far. This paper presents SSC measurements performed in the Sée River estuary (Mont-Saint-Michel Bay, northwestern France) during the tidal bore passage with direct and indirect (optical) methods. Both methods are calibrated in laboratory in order to verify the consistency of measurements, to calculate the uncertainties, and to correct the raw data. The SSC measurements coupled with ADCP velocity data are used to calculate the instantaneous sediment transport (qs) associated with the tidal bore passage (up to 40 kg/m2/s).

  8. Large-scale geometry and temporal variability of the Martian external magnetic field

    NASA Astrophysics Data System (ADS)

    Mittelholz, A.; Johnson, C. L.; Langlais, B.

    2014-12-01

    The martian magnetic field is unique among the terrestrial planets, as it results from the interaction of fields caused by crustal remnant magnetization and a planetary ionosphere with the solar wind and the interplanetary magnetic field. Internal fields of crustal origin have been subject to extensive studies, whereas the focus of our work deals with average spatial structure and time variability in the martian external magnetic field. We use the Mars Global Surveyor (MGS) vector magnetic field data to investigate the large-scale geometry and magnitude of such external fields. We analyze the day-time and night-time magnetic signature for the duration of the MGS mission in mapping orbit (2000-2006). We use along-track vector field measurements to estimate the day-time and night-time external fields after the subtraction of predicted crustal magnetic fields at spacecraft altitudes. We also examine day/night differences (i.e., the daily variation) in external fields; these are independent of crustal fields. Because the external fields are modified by the crustal fields, we investigate their structure as a function of latitude in the local time frame and as a function of both latitude and longitude in the body-fixed frame. In the body-fixed-frame BΘis generally dominant in magnitude with a day/night variation described to first order by a zonal degree-2 spherical harmonic structure. Br is strongly correlated with the crustal magnetic field. BΦ shows variable spatial behaviour during both night and day. Seasonal variations are observed as stronger average magnetic fields in the hemisphere pointing towards the sun. Additional shorter time scale variations in the global external field structure are observed.

  9. Generation of large-scale magnetic fields from inflation in teleparallelism

    SciTech Connect

    Bamba, Kazuharu; Geng, Chao-Qiang; Luo, Ling-Wei E-mail: geng@phys.nthu.edu.tw

    2012-10-01

    We explore the generation of large-scale magnetic fields from inflation in teleparallelism, in which the gravitational theory is described by the torsion scalar instead of the scalar curvature in general relativity. In particular, we examine the case that the conformal invariance of the electromagnetic field during inflation is broken by a non-minimal gravitational coupling between the torsion scalar and the electromagnetic field. It is shown that for a power-law type coupling, the magnetic field on 1 Mpc scale with its strength of ∼ 10{sup −9} G at the present time can be generated.

  10. Automated tracing of open-field coronal structures for an optimized large-scale magnetic field reconstruction

    NASA Astrophysics Data System (ADS)

    Uritsky, V. M.; Davila, J. M.; Jones, S. I.

    2014-12-01

    Solar Probe Plus and Solar Orbiter will provide detailed measurements in the inner heliosphere magnetically connected with the topologically complex and eruptive solar corona. Interpretation of these measurements will require accurate reconstruction of the large-scale coronal magnetic field. In a related presentation by S. Jones et al., we argue that such reconstruction can be performed using photospheric extrapolation methods constrained by white-light coronagraph images. Here, we present the image-processing component of this project dealing with an automated segmentation of fan-like coronal loop structures. In contrast to the existing segmentation codes designed for detecting small-scale closed loops in the vicinity of active regions, we focus on the large-scale geometry of the open-field coronal features observed at significant radial distances from the solar surface. The coronagraph images used for the loop segmentation are transformed into a polar coordinate system and undergo radial detrending and initial noise reduction. The preprocessed images are subject to an adaptive second order differentiation combining radial and azimuthal directions. An adjustable thresholding technique is applied to identify candidate coronagraph features associated with the large-scale coronal field. A blob detection algorithm is used to extract valid features and discard noisy data pixels. The obtained features are interpolated using higher-order polynomials which are used to derive empirical directional constraints for magnetic field extrapolation procedures based on photospheric magnetograms.

  11. Twin mesospheric bores observed over Brazilian equatorial region

    NASA Astrophysics Data System (ADS)

    Medeiros, A. F.; Paulino, I.; Taylor, M. J.; Fechine, J.; Takahashi, H.; Buriti, R. A.; Lima, L. M.; Wrasse, C. M.

    2016-01-01

    Two consecutive mesospheric bores were observed simultaneously by two all-sky cameras on 19 December 2006. The observations were carried out in the northeast of Brazil at two different stations: São João do Cariri (36.5° W, 7.4° S) and Monteiro (37.1° W, 7.9° S), which are by about 85 km apart. The mesospheric bores were observed within an interval of ˜ 3 h in the NIR OH and OI557.7 nm airglow emissions. Both bores propagated to the east and showed similar characteristics. However, the first one exhibited a dark leading front with several trailing waves behind and progressed into a brighter airglow region, while the second bore, observed in the OH layer, was comprised of several bright waves propagating into a darker airglow region. This is the first paper to report events like these, called twin mesospheric bores. The background of the atmosphere during the occurrence of these events was studied by considering the temperature profiles from the TIMED/SABER satellite and wind from a meteor radar.

  12. Boring sponges, an increasing threat for coral reefs affected by bleaching events.

    PubMed

    Carballo, José L; Bautista, Eric; Nava, Héctor; Cruz-Barraza, José A; Chávez, Jesus A

    2013-04-01

    Coral bleaching is a stress response of corals induced by a variety of factors, but these events have become more frequent and intense in response to recent climate-change-related temperature anomalies. We tested the hypothesis that coral reefs affected by bleaching events are currently heavily infested by boring sponges, which are playing a significant role in the destruction of their physical structure. Seventeen reefs that cover the entire distributional range of corals along the Mexican Pacific coast were studied between 2005/2006, and later between 2009/2010. Most of these coral reefs were previously impacted by bleaching events, which resulted in coral mortalities. Sponge abundance and species richness was used as an indicator of bioerosion, and coral cover was used to describe the present condition of coral reefs. Coral reefs are currently highly invaded (46% of the samples examined) by a very high diversity of boring sponges (20 species); being the coral reef framework the substrate most invaded (56%) followed by the rubbles (45%), and the living colonies (36%). The results also indicated that boring sponges are promoting the dislodgment of live colonies and large fragments from the framework. In summary, the eastern coral reefs affected by bleaching phenomena, mainly provoked by El Niño, present a high diversity and abundance of boring sponges, which are weakening the union of the colony with the reef framework and promoting their dislodgment. These phenomena will probably become even more intense and severe, as temperatures are projected to continue to rise under the scenarios for future climate change, which could place many eastern coral reefs beyond their survival threshold.

  13. Boring sponges, an increasing threat for coral reefs affected by bleaching events

    PubMed Central

    Carballo, José L; Bautista, Eric; Nava, Héctor; Cruz-Barraza, José A; Chávez, Jesus A

    2013-01-01

    Coral bleaching is a stress response of corals induced by a variety of factors, but these events have become more frequent and intense in response to recent climate-change-related temperature anomalies. We tested the hypothesis that coral reefs affected by bleaching events are currently heavily infested by boring sponges, which are playing a significant role in the destruction of their physical structure. Seventeen reefs that cover the entire distributional range of corals along the Mexican Pacific coast were studied between 2005/2006, and later between 2009/2010. Most of these coral reefs were previously impacted by bleaching events, which resulted in coral mortalities. Sponge abundance and species richness was used as an indicator of bioerosion, and coral cover was used to describe the present condition of coral reefs. Coral reefs are currently highly invaded (46% of the samples examined) by a very high diversity of boring sponges (20 species); being the coral reef framework the substrate most invaded (56%) followed by the rubbles (45%), and the living colonies (36%). The results also indicated that boring sponges are promoting the dislodgment of live colonies and large fragments from the framework. In summary, the eastern coral reefs affected by bleaching phenomena, mainly provoked by El Niño, present a high diversity and abundance of boring sponges, which are weakening the union of the colony with the reef framework and promoting their dislodgment. These phenomena will probably become even more intense and severe, as temperatures are projected to continue to rise under the scenarios for future climate change, which could place many eastern coral reefs beyond their survival threshold. PMID:23610632

  14. Finite element modeling and analysis of piezo-integrated composite structures under large applied electric fields

    NASA Astrophysics Data System (ADS)

    Rao, M. N.; Tarun, S.; Schmidt, R.; Schröder, K.-U.

    2016-05-01

    In this article, we focus on static finite element (FE) simulation of piezoelectric laminated composite plates and shells, considering the nonlinear constitutive behavior of piezoelectric materials under large applied electric fields. Under the assumptions of small strains and large electric fields, the second-order nonlinear constitutive equations are used in the variational principle approach, to develop a nonlinear FE model. Numerical simulations are performed to study the effect of material nonlinearity for piezoelectric bimorph and laminated composite plates as well as cylindrical shells. In comparison to the experimental investigations existing in the literature, the results predicted by the present model agree very well. The importance of the present nonlinear model is highlighted especially in large applied electric fields, and it is shown that the difference between the results simulated by linear and nonlinear constitutive FE models cannot be omitted.

  15. A New Facility for Testing Superconducting Solenoid Magnets with Large Fringe Fields at Fermilab

    SciTech Connect

    Orris, D.; Carcagno, R.; Nogiec, J.; Rabehl, R.; Sylvester, C.; Tartaglia, M.

    2013-09-01

    Testing superconducting solenoid with no iron flux return can be problematic for a magnet test facility due to the large magnetic fringe fields generated. These large external fields can interfere with the operation of equipment while precautions must be taken for personnel supporting the test. The magnetic forces between the solenoid under test and the external infrastructure must also be taken under consideration. A new test facility has been designed and built at Fermilab specifically for testing superconducting magnets with large external fringe fields. This paper discusses the test stand design, capabilities, and details of the instrumentation and controls with data from the first solenoid tested in this facility: the Muon Ionization Cooling Experiment (MICE) coupling coil.

  16. Pressure versus current scaling in a blocked bore rail gun

    NASA Astrophysics Data System (ADS)

    Barrett, B. D.; Eubank, Eric; Nunnally, W. C.

    1993-07-01

    The paper presents experimental results from a blocked bore plasma armature rail gun. A piezoelectric transducer mounted in the bore blocking structure recorded time-resolved pressures over a range of input currents from 50 to 150 kA. The bore block is located at four positions where peak current occurs for the four respective charging voltages to power the system. Problems associated with obtaining these measurements and the solutions employed are discussed. Average distances from the block face to the armature current centroid are estimated assuming a pressure balance between the magnetic and neutral pressures. The averages of the measured pressures were found to be proportional to the input current raised to the power of 1.655.

  17. Turbulence and magnetic fields in the large-scale structure of the universe.

    PubMed

    Ryu, Dongsu; Kang, Hyesung; Cho, Jungyeon; Das, Santabrata

    2008-05-16

    The nature and origin of turbulence and magnetic fields in the intergalactic space are important problems that are yet to be understood. We propose a scenario in which turbulent-flow motions are induced via the cascade of the vorticity generated at cosmological shocks during the formation of the large-scale structure. The turbulence in turn amplifies weak seed magnetic fields of any origin. Supercomputer simulations show that the turbulence is subsonic inside clusters and groups of galaxies, whereas it is transonic or mildly supersonic in filaments. Based on a turbulence dynamo model, we then estimated that the average magnetic field strength would be a few microgauss (microG) inside clusters and groups, approximately 0.1 muG around clusters and groups, and approximately 10 nanogauss in filaments. Our model presents a physical mechanism that transfers the gravitational energy to the turbulence and magnetic field energies in the large-scale structure of the universe.

  18. The concentration of the large-scale solar magnetic field by a meridional surface flow

    NASA Technical Reports Server (NTRS)

    Devore, C. R.; Boris, J. P.; Sheeley, N. R., Jr.

    1984-01-01

    Analytical and numerical solutions to the magnetic flux transport equation in the absence of new bipolar sources of flux are calculated for several meridional flow profiles and a range of peak flow speeds. It is found that a poleward flow with a broad profile and a nominal 10 m/s maximum speed concentrates the large-scale field into very small caps of less than 15 deg half-angle, with average field strengths of several tens of gauss, contrary to observations. A flow which reaches its peak speed at a relatively low latitude and then decreases rapidly to zero at higher latitudes leads to a large-scale field pattern which is consistent with observations. For such a flow, only lower latitude sunspot groups can contribute to interhemispheric flux annihilation and the resulting decay and reversal of the polar magnetic fields.

  19. Large-scale perturbations from the waterfall field in hybrid inflation

    SciTech Connect

    Fonseca, José; Wands, David; Sasaki, Misao E-mail: misao@yukawa.kyoto-u.ac.jp

    2010-09-01

    We estimate large-scale curvature perturbations from isocurvature fluctuations in the waterfall field during hybrid inflation, in addition to the usual inflaton field perturbations. The tachyonic instability at the end of inflation leads to an explosive growth of super-Hubble scale perturbations, but they retain the steep blue spectrum characteristic of vacuum fluctuations in a massive field during inflation. The power spectrum thus peaks around the Hubble-horizon scale at the end of inflation. We extend the usual δN formalism to include the essential role of these small fluctuations when estimating the large-scale curvature perturbation. The resulting curvature perturbation due to fluctuations in the waterfall field is second-order and the spectrum is expected to be of order 10{sup −54} on cosmological scales.

  20. Reduction of the field-aligned potential drop in the polar cap during large geomagnetic storms

    NASA Astrophysics Data System (ADS)

    Kitamura, N.; Seki, K.; Nishimura, Y.; Hori, T.; Terada, N.; Ono, T.; Strangeway, R. J.

    2013-12-01

    We have studied photoelectron flows and the inferred field-aligned potential drop in the polar cap during 5 large geomagnetic storms that occurred in the periods when the photoelectron observations in the polar cap were available near the apogee of the FAST satellite (~4000 km) at solar maximum, and the footprint of the satellite paths in the polar cap was under sunlit conditions most of the time. In contrast to the ~20 V potential drop during geomagnetically quiet periods at solar maximum identified by Kitamura et al. [JGR, 2012], the field-aligned potential drop frequently became smaller than ~5 V during the main and early recovery phases of the large geomagnetic storms. Because the potential acts to inhibit photoelectron escape, this result indicates that the corresponding acceleration of ions by the field-aligned potential drop in the polar cap and the lobe region is smaller during the main and early recovery phases of large geomagnetic storms compared to during geomagnetically quiet periods. Under small field-aligned current conditions, the number flux of outflowing ions should be nearly equal to the net escaping electron number flux. Since ions with large flux originating from the cusp/cleft ionosphere convect into the polar cap during geomagnetic storms [e.g., Kitamura et al., JGR, 2010], the net escaping electron number flux should increase to balance the enhanced ion outflows. The magnitude of the field-aligned potential drop would be reduced to let a larger fraction of photoelectrons escape.

  1. Large-Scale Dynamics of Mean-Field Games Driven by Local Nash Equilibria

    NASA Astrophysics Data System (ADS)

    Degond, Pierre; Liu, Jian-Guo; Ringhofer, Christian

    2014-02-01

    We introduce a new mean field kinetic model for systems of rational agents interacting in a game-theoretical framework. This model is inspired from non-cooperative anonymous games with a continuum of players and Mean-Field Games. The large time behavior of the system is given by a macroscopic closure with a Nash equilibrium serving as the local thermodynamic equilibrium. An application of the presented theory to a social model (herding behavior) is discussed.

  2. Grinding tool for making hemispherical bores in hard materials

    DOEpatents

    Duran, E.L.

    1985-04-03

    A grinding tool for forming hemispherical bores in hard materials such as boron carbide. The tool comprises a hemicircular grinding bit, formed of a metal bond diamond matrix, which is mounted transversely on one end of a tubular tool shaft. The bit includes a spherically curved outer edge surface which is the active grinding surface of the tool. Two coolant fluid ports on opposite sides of the bit enable introduction of coolant fluid through the bore of the tool shaft so as to be emitted adjacent the opposite sides of the grinding bit, thereby providing optimum cooling of both the workpiece and the bit.

  3. Melioidosis from Contaminated Bore Water and Successful UV Sterilization

    PubMed Central

    McRobb, Evan; Kaestli, Mirjam; Mayo, Mark; Price, Erin P.; Sarovich, Derek S.; Godoy, Daniel; Spratt, Brian G.; Currie, Bart J.

    2013-01-01

    Two cases of melioidosis at a residence in rural northern Australia were linked to the unchlorinated domestic bore (automated well) water supply, which was found to have a high concentration of Burkholderia pseudomallei. Using multilocus sequence typing, clinical B. pseudomallei isolates from both cases were identical to an isolate from the bore water supply. A simple UV sterilizer reduced B. pseudomallei from the domestic water supply to undetectable levels. We have shown that UV treatment is highly effective for remediation of water contaminated with B. pseudomallei and recommend its consideration in households where individuals may be at heightened risk of contracting melioidosis. PMID:23751401

  4. Melioidosis from contaminated bore water and successful UV sterilization.

    PubMed

    McRobb, Evan; Kaestli, Mirjam; Mayo, Mark; Price, Erin P; Sarovich, Derek S; Godoy, Daniel; Spratt, Brian G; Currie, Bart J

    2013-08-01

    Two cases of melioidosis at a residence in rural northern Australia were linked to the unchlorinated domestic bore (automated well) water supply, which was found to have a high concentration of Burkholderia pseudomallei. Using multilocus sequence typing, clinical B. pseudomallei isolates from both cases were identical to an isolate from the bore water supply. A simple UV sterilizer reduced B. pseudomallei from the domestic water supply to undetectable levels. We have shown that UV treatment is highly effective for remediation of water contaminated with B. pseudomallei and recommend its consideration in households where individuals may be at heightened risk of contracting melioidosis.

  5. The Large Scale Structure of the Galactic Magnetic Field and High Energy Cosmic Ray Anisotropy

    NASA Astrophysics Data System (ADS)

    Alvarez-Muñiz, Jaime; Stanev, Todor

    2006-10-01

    Measurements of the magnetic field in our Galaxy are complex and usually difficult to interpret. A spiral regular field in the disk is favored by observations, however the number of field reversals is still under debate. Measurements of the parity of the field across the Galactic plane are also very difficult due to the presence of the disk field itself. In this work we demonstrate that cosmic ray protons in the energy range 1018 to 1019eV, if accelerated near the center of the Galaxy, are sensitive to the large scale structure of the Galactic Magnetic Field (GMF). In particular if the field is of even parity, and the spiral field is bi-symmetric (BSS), ultra high energy protons will predominantly come from the Southern Galactic hemisphere, and predominantly from the Northern Galactic hemisphere if the field is of even parity and axi-symmetric (ASS). There is no sensitivity to the BSS or ASS configurations if the field is of odd parity.

  6. Seismic source characterisation of a Tunnel Boring Machine (TBM)

    NASA Astrophysics Data System (ADS)

    Kreutzer, Ingrid; Brückl, Ewald; Radinger, Alexander

    2015-04-01

    The Tunnel Seismic While Drilling (TSWD) method aims at predicting continuously the geological situation ahead of the tunnel without disturbing the construction work. Thereby the Tunnel Boring Machine (TBM) itself is used as seismic source. The cutting process generates seismic waves radiating into the rock mass and vibrations propagating to the main bearing of the cutter head. These vibrations are monitored and used as pilot signal. For the processing and interpretation it was hypothesized so far that the TBM acts like a single force. To prove this assumption the radiation pattern of several TBM's under construction were investigated. Therefore 3-components geophones were installed at the surface, which were situated directly above the tunnel axes and also with lateral offset. Additional, borehole geophones were placed in the wall of one tube of a two-tube tunnel. The geophones collected the forward and backward radiated wave field, as the TBM, operating in the other tube, passed their positions. The obtained seismic data contains continuous records over a range of 600 m of the TBM position. The offsets vary from 25 m to 400 m and the frequency ranges from 20-250 Hertz. The polarisation of the p-wave and the s-wave and their amplitude ratio were determined and compared with modelled seismograms with different source mechanism. The results show that the description of the source mechanism by a single force can be used as a first order approximation. More complex radiation pattern including tensile forces and several source locations like the transmission of reaction forces over the gripper to the tunnel wall are further tested and addressed.

  7. THE AGE-METALLICITY RELATIONSHIP OF THE LARGE MAGELLANIC CLOUD FIELD STAR POPULATION FROM WIDE-FIELD WASHINGTON PHOTOMETRY

    SciTech Connect

    Piatti, Andres E.; Geisler, Doug

    2013-01-01

    We analyze age and metallicity estimates for an unprecedented database of some 5.5 million stars distributed throughout the Large Magellanic Cloud (LMC) main body, obtained from CCD Washington CT{sub 1} photometry, reported on in Piatti et al. We produce a comprehensive field star age-metallicity relationship (AMR) from the earliest epoch until {approx}1 Gyr ago. This AMR reveals that the LMC has not evolved chemically as either a closed-box or bursting system, exclusively, but as a combination of both scenarios that have varied in relative strength over the lifetime of the galaxy, although the bursting model falls closer to the data in general. Furthermore, while old and metal-poor field stars have been preferentially formed in the outer disk, younger and more metal-rich stars have mostly been formed in the inner disk, confirming an outside-in formation. We provide evidence for the formation of stars between 5 and 12 Gyr, during the cluster age gap, although chemical enrichment during this period was minimal. We find no significant metallicity gradient in the LMC. We also find that the range in the metallicity of an LMC field has varied during the lifetime of the LMC. In particular, we find only a small range of the metal abundance in the outer disk fields, whereas an average range of {Delta}[Fe/H] = +0.3 {+-} 0.1 dex appears in the inner disk fields. Finally, the cluster and field AMRs show a satisfactory match only for the last 3 Gyr, while for the oldest ages (>11 Gyr), the cluster AMR is a remarkable lower envelope to the field AMR. Such a difference may be due to the very rapid early chemical evolution and lack of observed field stars in this regime, whereas the globular clusters are easily studied. This large difference is not easy to explain as coming from stripped ancient Small Magellanic Cloud (SMC) clusters, although the field SMC AMR is on average {approx}0.4 dex more metal-poor at all ages than that of the LMC but otherwise very similar.

  8. Large tensor-to-scalar ratio in small-field inflation.

    PubMed

    Kobayashi, Takeshi; Takahashi, Tomo

    2013-06-01

    We show that density perturbations seeded by the inflaton can be suppressed when having additional light degrees of freedom contributing to the production of perturbations. The inflaton fluctuations affect the light field dynamics by modulating the length of the inflationary period and, hence, produce additional density perturbations in the postinflationary era. Such perturbations can cancel those generated during inflation as both originate from the same inflaton fluctuations. This allows production of large gravitational waves from small-field inflation, which is normally forbidden by the Lyth bound on the inflaton field excursion. We also find that the field bound is taken over by the light scalar when the inflaton-induced perturbations are suppressed and, thus, present a generalized form of the Lyth bound that applies to the total field space. The novel mechanism allows violation of the usual consistency relation r≤-8n(T) for the tensor spectral index. PMID:25167480

  9. The primordial magnetic field generated at large field inflation, natural inflation, and R2-inflation by f2FF model

    NASA Astrophysics Data System (ADS)

    AlMuhammad, Anwar Saleh

    Large scale magnetic fields seem to be present in almost all astrophysical systems and scales from planets to superclusters of galaxies and in very low density intergalactic media. The upper limit of primordial magnetic fields (PMF) has been set by recent observations by the Planck observatory (2015) to be of the order of a few nG. The simple model {f. 2}FF used to generate the PMF during the inflation era. It is based on the breaking of conformal symmetry of electromagnetism during inflation. It is attractive because it is stable under perturbations and leads to a scale invariant PMF. However, it may suffer from two problems: Backreaction and strong coupling. In the first case, the electromagnetic energy may exceed the energy of inflation, {rho _{{Inf}}}. In the second case, the effective electric charges become excessively large if we want to retrieve the standard electromagnetism at the end of inflation. In this research, we investigate the generation of PMF under three different models of inflation in order to avoid the backreaction problem. We compute magnetic and electric spectra generated by the {f. 2}FF model in the context of large field inflation (LFI), natural inflation (NI) and {R. 2}-inflation, for all possible values of model parameters for de Sitter and power law expansion of inflation. The results of the research show that the scale invariant PMF can be generated in these models and the problem of backreaction may be avoided in some observational ranges. {R. 2}-inflation, which is preferred by the recent results of Planck 2015, we calculate the upper of the scale invariant PMF generated by {f. 2}FF and in turns we find that the upper limit of present magnetic field, {B_0} < 8.058 × {10. { - 9}}{G}. It is in the same order of magnitude of PMF, reported by Planck, 2015.

  10. Merged interaction regions and large-scale magnetic field fluctuations during 1991: Voyager 2 observations

    NASA Technical Reports Server (NTRS)

    Burlaga, L. F.; Ness, N. F.

    1994-01-01

    This paper analyzes Voyager 2 observations of the magnetic field between 33.6 AU and 36.2 AU during 1991 when extraordinary events were observed on the Sun and in the heliosphere. The magnetic field strength signal B(t) has the unusual form of two large transient merged interaction regions (MIRs) on a fluctuating background. The two MIRs moved past the spacecraft in 32 days and 18 days, respectively. The mean field strength in each transient MIR was approx. equals 2.6 times the mean field during the remaining part of the year (0.11 nT). Each of the MIRs is related to a fast stream. The magnetic field is strong throughout each stream, suggesting that the strong fields are carried by the streams as well as produced by shock and stream compression. The fluctuations in B(t) during 1991 are not multifractal, and the MIRs cannot be approximated as multifractal clusters of intense magnetic fields. The distribution of the hour-averaged magnetic field strengths is approximately lognormal over 90% of its intermediate range, and it has an exponential tail for B greater than the average magnetic field strength. The elevation angles of B have a normal distribution with a standard deviation of 16 deg +/- 4 deg. The distributions of the azimuthal angles of B in the ranges 1 deg - 180 deg and 180 deg - 360 deg are approximately normal over a more limited range, and non-Gaussian tails associated with nearly radial magnetic fields; the standard deviations are approx. equal to 40 deg. Individual sectors are present throughout most of the interval, even in the MIRs, but there is no recurrent sector pattern. A model of the large-scale fluctuations in 1991 will have to include both determinaistic and statistical factors.

  11. THE LARGE-SCALE MAGNETIC FIELDS OF ADVECTION-DOMINATED ACCRETION FLOWS

    SciTech Connect

    Cao Xinwu

    2011-08-20

    We calculate the advection/diffusion of the large-scale magnetic field threading an advection-dominated accretion flow (ADAF) and find that the magnetic field can be dragged inward by the accretion flow efficiently if the magnetic Prandtl number P{sub m}={eta}/{nu}{approx}1. This is due to the large radial velocity of the ADAF. It is found that the magnetic pressure can be as high as {approx}50% of the gas pressure in the inner region of the ADAF close to the black hole horizon, even if the external imposed homogeneous vertical field strength is {approx}< 5% of the gas pressure at the outer radius of the ADAF, which is caused by the gas in the ADAF plunging rapidly to the black hole within the marginal stable circular orbit. In the inner region of the ADAF, the accretion flow is significantly pressured in the vertical direction by the magnetic fields, and therefore its gas pressure can be two orders of magnitude higher than that in the ADAF without magnetic fields. This means that the magnetic field strength near the black hole is underestimated by assuming equipartition between magnetic and gas pressure with the conventional ADAF model. Our results show that the magnetic field strength of the flow near the black hole horizon can be more than one order of magnitude higher than that in the ADAF at {approx}3R{sub g} (R{sub g} = 2GM/c{sup 2}), which implies that the Blandford-Znajek mechanism could be more important than the Blandford-Payne mechanism for ADAFs. We find that the accretion flow is decelerated near the black hole by the magnetic field when the external imposed field is strong enough or the gas pressure of the flow is low at the outer radius, or both. This corresponds to a critical accretion rate, below which the accretion flow will be arrested by the magnetic field near the black hole for a given external imposed field. In this case, the gas may accrete as magnetically confined blobs diffusing through field lines in the region very close to the black

  12. FIELD DEMONSTRATION OF EMERGING PIPE WALL INTEGRITY ASSESSMENT TECHNOLOGIES FOR LARGE CAST IRON WATER MAINS

    EPA Science Inventory

    The U.S. Environmental Protection Agency sponsored a large-scale field demonstration of innovative leak detection/location and condition assessment technologies on a 76-year old, 2,500-ft long, cement-lined, 24-in. cast iron water main in Louisville, KY from July through Septembe...

  13. Field Demonstration of Emerging Pipe Wall Integrity Assessment Technologies for Large Cast Iron Water Mains - Paper

    EPA Science Inventory

    The U.S. Environmental Protection Agency (EPA) sponsored a large-scale field demonstration of innovative leak detection/location and condition assessment technologies on a 76-year old, 2,000-ft long, cement-lined, 24-in. cast-iron water main in Louisville, KY from July through Se...

  14. Identification of large masses of citrus fruit and rice fields in eastern Spain

    NASA Technical Reports Server (NTRS)

    Desagredo, F. L.; Salinas, F. G.

    1973-01-01

    ERTS-1 imagery has been successfully used for the identification of large areas of citrus groves and rice fields in the Valencia region of Eastern Spain. Results are encouraging and will facilitate the elaboration of a land use map with a fair degree of definition once methods prove to be fully operational.

  15. SU-E-T-404: Simple Field-In-Field Technique for Total Body Irradiation in Large Patients

    SciTech Connect

    Chi, P; Pinnix, C; Dabaja, B; Wang, C; Aristophanous, M; Tung, S

    2014-06-01

    Purpose: A simple Field-in-Field technique for Total Body Irradiation (TBI) was developed for traditional AP/PA TBI treatments to improve dosimetric uniformity in patients with large separation. Methods: TBI at our institution currently utilizes an AP/PA technique at an extended source-to-surface distance (SSD) of 380cm with patients in left decubitus position during the AP beam and in right decubitus during the PA beam. Patients who have differences in thickness (separation) between the abdomen and head greater than 10cm undergo CT simulation in both left and right decubitus treatment positions. One plan for each CT is generated to evaluate dose to patient midline with both AP and PA fields, but only corresponding AP fields will be exported for treatment for patient left decubitus position and PA fields for patient right decubitus position. Subfields are added by collimating with the x-ray jaws according to separation changes at 5–7% steps to minimize hot regions to less than 10%. Finally, the monitor units (MUs) for the plans are verified with hand calculation and water phantom measurements. Results: Dose uniformity (+/−10%) is achieved with field-in-field using only asymmetric jaws. It is dosimetrically robust with respect to minor setup/patient variations inevitable due to patient conditions. MUs calculated with Pinnacle were verified in 3 clinical cases and only a 2% difference was found compared to homogeneous calculation. In-vivo dosimeters were also used to verify doses received by each patient with and confirmed dose variations less than 10%. Conclusion: We encountered several cases with separation differences that raised uniformity concerns — based on a 1% dose difference per cm separation difference assumption. This could Resultin an unintended hot spot, often in the head/neck, up to 25%. This method allows dose modulation without adding treatment complexity nor introducing radiobiological variations, providing a reasonable solution for this unique

  16. Constraining Large-Scale Solar Magnetic Field Models with Optical Coronal Observations

    NASA Astrophysics Data System (ADS)

    Uritsky, V. M.; Davila, J. M.; Jones, S. I.

    2015-12-01

    Scientific success of the Solar Probe Plus (SPP) and Solar Orbiter (SO) missions will depend to a large extent on the accuracy of the available coronal magnetic field models describing the connectivity of plasma disturbances in the inner heliosphere with their source regions. We argue that ground based and satellite coronagraph images can provide robust geometric constraints for the next generation of improved coronal magnetic field extrapolation models. In contrast to the previously proposed loop segmentation codes designed for detecting compact closed-field structures above solar active regions, we focus on the large-scale geometry of the open-field coronal regions located at significant radial distances from the solar surface. Details on the new feature detection algorithms will be presented. By applying the developed image processing methodology to high-resolution Mauna Loa Solar Observatory images, we perform an optimized 3D B-line tracing for a full Carrington rotation using the magnetic field extrapolation code presented in a companion talk by S.Jones at al. Tracing results are shown to be in a good qualitative agreement with the large-scalie configuration of the optical corona. Subsequent phases of the project and the related data products for SSP and SO missions as wwll as the supporting global heliospheric simulations will be discussed.

  17. Large-scale solar magnetic fields and H-alpha patterns

    NASA Technical Reports Server (NTRS)

    Mcintosh, P. S.

    1972-01-01

    Coronal and interplanetary magnetic fields computed from measurements of large-scale photospheric magnetic fields suffer from interruptions in day-to-day observations and the limitation of using only measurements made near the solar central meridian. Procedures were devised for inferring the lines of polarity reversal from H-alpha solar patrol photographs that map the same large-scale features found on Mt. Wilson magnetograms. These features may be monitored without interruption by combining observations from the global network of observatories associated with NOAA's Space Environment Services Center. The patterns of inferred magnetic fields may be followed accurately as far as 60 deg from central meridian. Such patterns will be used to improve predictions of coronal features during the next solar eclipse.

  18. Background-oriented schlieren for the study of large flow fields

    NASA Astrophysics Data System (ADS)

    Trolinger, James D.; Buckner, Ben; L'Esperance, Drew

    2015-09-01

    Modern digital recording and processing techniques combined with new lighting methods and relatively old schlieren visualization methods move flow visualization to a new level, enabling a wide range of new applications and a possible revolution in the visualization of very large flow fields. This paper traces the evolution of schlieren imaging from Robert Hooke, who, in 1665, employed candles and lenses, to modern digital background oriented schlieren (BOS) systems, wherein image processing by computer replaces pure optical image processing. New possibilities and potential applications that could benefit from such a capability are examined. Example applications include viewing the flow field around full sized aircraft, large equipment and vehicles, monitoring explosions on bomb ranges, cooling systems, large structures and even buildings. Objectives of studies include aerodynamics, aero optics, heat transfer, and aero thermal measurements. Relevant digital cameras, light sources, and implementation methods are discussed.

  19. Non-Gaussianity and large-scale structure in a two-field inflationary model

    SciTech Connect

    Tseliakhovich, Dmitriy; Hirata, Christopher

    2010-08-15

    Single-field inflationary models predict nearly Gaussian initial conditions, and hence a detection of non-Gaussianity would be a signature of the more complex inflationary scenarios. In this paper we study the effect on the cosmic microwave background and on large-scale structure from primordial non-Gaussianity in a two-field inflationary model in which both the inflaton and curvaton contribute to the density perturbations. We show that in addition to the previously described enhancement of the galaxy bias on large scales, this setup results in large-scale stochasticity. We provide joint constraints on the local non-Gaussianity parameter f-tilde{sub NL} and the ratio {xi} of the amplitude of primordial perturbations due to the inflaton and curvaton using WMAP and Sloan Digital Sky Survey data.

  20. Advection/diffusion of large scale magnetic field in accretion disks

    NASA Astrophysics Data System (ADS)

    Lovelace, R. V. E.; Bisnovatyi-Kogan, G. S.; Rothstein, D. M.

    2009-02-01

    Activity of the nuclei of galaxies and stellar mass systems involving disk accretion to black holes is thought to be due to (1) a small-scale turbulent magnetic field in the disk (due to the magneto-rotational instability or MRI) which gives a large viscosity enhancing accretion, and (2) a large-scale magnetic field which gives rise to matter outflows and/or electromagnetic jets from the disk which also enhances accretion. An important problem with this picture is that the enhanced viscosity is accompanied by an enhanced magnetic diffusivity which acts to prevent the build up of a significant large-scale field. Recent work has pointed out that the disk's surface layers are non-turbulent and thus highly conducting (or non-diffusive) because the MRI is suppressed high in the disk where the magnetic and radiation pressures are larger than the thermal pressure. Here, we calculate the vertical (z) profiles of the stationary accretion flows (with radial and azimuthal components), and the profiles of the large-scale, magnetic field taking into account the turbulent viscosity and diffusivity due to the MRI and the fact that the turbulence vanishes at the surface of the disk. We derive a sixth-order differential equation for the radial flow velocity vr(z) which depends mainly on the midplane thermal to magnetic pressure ratio β>1 and the Prandtl number of the turbulence P=viscosity/diffusivity. Boundary conditions at the disk surface take into account a possible magnetic wind or jet and allow for a surface current in the highly conducting surface layer. The stationary solutions we find indicate that a weak (β>1) large-scale field does not diffuse away as suggested by earlier work.

  1. 4. VIEW OF VERTICAL BORING MACHINE. (Bullard) Vertical turning lathe ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. VIEW OF VERTICAL BORING MACHINE. (Bullard) Vertical turning lathe (VTL). Machining the fixture for GE Turboshroud. G.S. O'Brien, operator. - Juniata Shops, Machine Shop No. 1, East of Fourth Avenue at Third Street, Altoona, Blair County, PA

  2. Boring and Drilling Tools. Pre-Apprenticeship Phase 1 Training.

    ERIC Educational Resources Information Center

    Lane Community Coll., Eugene, OR.

    This self-paced student training module on boring and drilling tools is one of a number of modules developed for Pre-apprenticeship Phase 1 Training. Purpose of the module is to enable students to identify, select, and understand the proper use of many common awls, bits, and drilling tools. The module may contain some or all of the following: a…

  3. 2. GENERAL VIEW OF HYDRAULIC 48' BORING MILL. Manufactured by ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. GENERAL VIEW OF HYDRAULIC 48' BORING MILL. Manufactured by Simmons Machine Tool Corporation, Albany, New York, and Betts Company, a division of Niles Tool Company, Hamilton, Ohio. - Juniata Shops, Erecting Shop & Machine Shop, East of Fourth Avenue, between Fourth & Fifth Streets, Altoona, Blair County, PA

  4. Dangers of placement of narrow bore nasogastric feeding tubes.

    PubMed Central

    Biggart, M.; McQuillan, P. J.; Choudhry, A. K.; Nickalls, R. W.

    1987-01-01

    Three complications of the use of narrow bore nasogastric feeding tubes are described. Clinical tests to determine correct placement are noted to be unreliable and the importance of radiological confirmation is stressed. A number of suggestions are made for safe use of these tubes. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 PMID:3111340

  5. Not a load of rubbish: simulated field trials in large-scale containers.

    PubMed

    Hohmann, M; Stahl, A; Rudloff, J; Wittkop, B; Snowdon, R J

    2016-09-01

    Assessment of yield performance under fluctuating environmental conditions is a major aim of crop breeders. Unfortunately, results from controlled-environment evaluations of complex agronomic traits rarely translate to field performance. A major cause is that crops grown over their complete lifecycle in a greenhouse or growth chamber are generally constricted in their root growth, which influences their response to important abiotic constraints like water or nutrient availability. To overcome this poor transferability, we established a plant growth system comprising large refuse containers (120 L 'wheelie bins') that allow detailed phenotyping of small field-crop populations under semi-controlled growth conditions. Diverse winter oilseed rape cultivars were grown at field densities throughout the crop lifecycle, in different experiments over 2 years, to compare seed yields from individual containers to plot yields from multi-environment field trials. We found that we were able to predict yields in the field with high accuracy from container-grown plants. The container system proved suitable for detailed studies of stress response physiology and performance in pre-breeding populations. Investment in automated large-container systems may help breeders improve field transferability of greenhouse experiments, enabling screening of pre-breeding materials for abiotic stress response traits with a positive influence on yield. PMID:27144906

  6. Load-balanced parallel streamline generation on large scale vector fields.

    PubMed

    Nouanesengsy, Boonthanome; Lee, Teng-Yok; Shen, Han-Wei

    2011-12-01

    Because of the ever increasing size of output data from scientific simulations, supercomputers are increasingly relied upon to generate visualizations. One use of supercomputers is to generate field lines from large scale flow fields. When generating field lines in parallel, the vector field is generally decomposed into blocks, which are then assigned to processors. Since various regions of the vector field can have different flow complexity, processors will require varying amounts of computation time to trace their particles, causing load imbalance, and thus limiting the performance speedup. To achieve load-balanced streamline generation, we propose a workload-aware partitioning algorithm to decompose the vector field into partitions with near equal workloads. Since actual workloads are unknown beforehand, we propose a workload estimation algorithm to predict the workload in the local vector field. A graph-based representation of the vector field is employed to generate these estimates. Once the workloads have been estimated, our partitioning algorithm is hierarchically applied to distribute the workload to all partitions. We examine the performance of our workload estimation and workload-aware partitioning algorithm in several timings studies, which demonstrates that by employing these methods, better scalability can be achieved with little overhead. PMID:22034295

  7. Internal bore seasonality and tidal pumping of subthermocline waters at the head of the Monterey submarine canyon

    NASA Astrophysics Data System (ADS)

    Walter, Ryan K.; Phelan, P. Joe

    2016-03-01

    This study utilizes more than a year of observations made in shallow waters (~30 m) at the head of the Monterey Submarine Canyon to assess variability in the physical environment and internal bore field. The interaction of the internal tide with the canyon rim results in a semidiurnal tidal period pumping of cold-water masses (subthermocline waters) onto the adjacent shelf (i.e., internal bores). These internal bores are shown to be significantly coherent with the local sea surface height with minimal spatial variability when comparing two sites near the canyon head region. During the summer months, and periods of strong regional wind-driven upwelling and shoaling of the offshore thermocline, the canyon rim sites display elevated semidiurnal temperature variance. This semidiurnal variability reaches its annual minimum during the winter months when the regional upwelling favorable winds subside and the offshore thermocline deepens. Additionally, the observed internal bores show a distinct asymmetry between the leading (gradual cooling with velocities directed onto the shelf) and trailing edges (sharp warming with velocities directed into the canyon). It appears that the semidiurnal internal tide at the canyon head is a first-order control on the delivery of subthermocline waters to the nearshore coastal environment at this location.

  8. Internal Bore Seasonality and Tidal Pumping of Subthermocline Waters at the Head of the Monterey Submarine Canyon

    NASA Astrophysics Data System (ADS)

    Walter, R. K.; Phelan, J.

    2015-12-01

    This study utilizes more than a year of observations made in shallow waters (~30 m) at the head of the Monterey Submarine Canyon to assess variability in the physical environment and internal bore field. The interaction of the internal tide with the canyon rim results in a semidiurnal tidal period pumping of cold water intrusions (subthermocline waters) onto the adjacent shelf (i.e., internal bores). These internal bores are shown to be significantly coherent with the surface (barotropic) tide with minimal spatial variability when comparing two sites on opposite sides of the canyon head. During the summer months, and periods of strong regional wind-driven upwelling and shoaling of the offshore thermocline, the canyon rim sites display elevated semidiurnal temperature variance. The semidiurnal variability reaches its annual minimum during the winter months when the regional upwelling favorable winds subside and the offshore thermocline deepens. Additionally, the observed internal bores show a distinct asymmetry between the leading (gradual cooling with velocities directed onto the shelf) and trailing edges (sharp warming with velocities directed into the canyon). It appears that the semidiurnal internal tide at the canyon head is a first-order control on the delivery of subthermocline waters to the nearshore coastal environment at this location.

  9. Canyon drainage induced mixing over a large basin

    SciTech Connect

    Stalker, J.

    2000-05-01

    Complex terrain surrounding urbanized basins around the world has long been recognized to strongly affect the characteristics of vertical transport and mixing of pollutants. The Department of Energy's Vertical Transport and Mixing (VTMX) program will investigate mixing processes within night-time boundary layers over large urban basins. The program will launch several field experiments within the Salt Lake City basin in the coming years. This modeling study, like many other studies being undertaken by the participants of the VTMX programs, is intended to complement the proposed field experiments by numerically examining some of the flow interactions known to occur in large basins. Using idealized simulations, we particularly investigate drainage flows from deep canyons similar to those along the Wasatch Front into the Salt Lake City basin. Literature shows that under favorable conditions, drainage flows can generate bore waves that may propagate ahead of the density current (e.g., Simpson 1969; Simpson 1982; Crook and Miller 1985). Existence and frequency of such bore waves can profoundly influence the spatial and temporal variability of vertical transport and mixing within large basins. If bore waves do occur on a regular basis within the Salt Lake City basin (a task for the upcoming experiments to determine), then understanding the basin-scale conditions under which these waves are produced and how they may propagate and interact with the city's buildings will be of great importance in characterizing transport and mixing processes within the basin.

  10. Microchannel Voltammetry in the Presence of Large External Voltages and Electric Fields.

    PubMed

    Zaino, Lawrence P; Wichert, William R A; Crouch, Garrison M; Bohn, Paul W

    2016-04-19

    The ability to perform electrochemistry in the presence of large voltages and electric field magnitudes without concern for the local potential has many possible applications in micro/nanofluidic assays and in capillary electrophoresis. Traditionally, electrochemistry in the presence of significant external electric fields has been dominated by end-channel detection for capillary and microchip electrophoresis detection. We describe novel instrumentation for potentiostatically controlled voltammetry that can be applied in the presence of high external voltages and electric fields. Cyclic voltammetry is demonstrated without significant shifts in the half-wave potential at working electrodes at local potentials of up to ∼1500 V and field strengths of up to 3000 V/cm, using a standard Ag/AgCl reference electrode. PMID:27045936

  11. Magnetospheric Multiscale Observations of the Electron Diffusion Region of Large Guide Field Magnetic Reconnection.

    PubMed

    Eriksson, S; Wilder, F D; Ergun, R E; Schwartz, S J; Cassak, P A; Burch, J L; Chen, L-J; Torbert, R B; Phan, T D; Lavraud, B; Goodrich, K A; Holmes, J C; Stawarz, J E; Sturner, A P; Malaspina, D M; Usanova, M E; Trattner, K J; Strangeway, R J; Russell, C T; Pollock, C J; Giles, B L; Hesse, M; Lindqvist, P-A; Drake, J F; Shay, M A; Nakamura, R; Marklund, G T

    2016-07-01

    We report observations from the Magnetospheric Multiscale (MMS) satellites of a large guide field magnetic reconnection event. The observations suggest that two of the four MMS spacecraft sampled the electron diffusion region, whereas the other two spacecraft detected the exhaust jet from the event. The guide magnetic field amplitude is approximately 4 times that of the reconnecting field. The event is accompanied by a significant parallel electric field (E_{∥}) that is larger than predicted by simulations. The high-speed (∼300  km/s) crossing of the electron diffusion region limited the data set to one complete electron distribution inside of the electron diffusion region, which shows significant parallel heating. The data suggest that E_{∥} is balanced by a combination of electron inertia and a parallel gradient of the gyrotropic electron pressure. PMID:27419573

  12. Microfabricated arrays for fractionation of large DNA molecules via pulsed field electrophoresis

    NASA Astrophysics Data System (ADS)

    Bakajin, Olgica; Duke, Thomas A. J.; Chou, Chia-Fu; Tegenfeldt, Jonas; Chan, Shirley S.; Austin, Robert H.; Cox, Edward C.

    1999-10-01

    Novel microfabricated devices promise to accomplish fractionation of chromosomal size DNA more quickly, more accurately, at lower cost, and by using smaller sample amounts. Chromosomes are released by lysing cells directly in the device. The chromosomal DNA is further concentrated on a platinum wire in a 10 μm wide band using the phenomenon of dielectric trapping in AC fields. The DNA is then electrophoretically driven into a microfabricated array of posts arranged in a hexagonal lattice. Under electric fields whose direction periodically changes by 120°, the longer DNA molecules move at lower speeds than the shorter ones, and separation according to size is achieved. This technique allows application of electric fields as large as 1000 V/cm and, thus, promises to reduce considerably separation times compared to the presently used technique of pulsed-field gel electrophoresis.

  13. Magnetospheric Multiscale Observations of the Electron Diffusion Region of Large Guide Field Magnetic Reconnection

    NASA Astrophysics Data System (ADS)

    Eriksson, S.; Wilder, F. D.; Ergun, R. E.; Schwartz, S. J.; Cassak, P. A.; Burch, J. L.; Chen, L.-J.; Torbert, R. B.; Phan, T. D.; Lavraud, B.; Goodrich, K. A.; Holmes, J. C.; Stawarz, J. E.; Sturner, A. P.; Malaspina, D. M.; Usanova, M. E.; Trattner, K. J.; Strangeway, R. J.; Russell, C. T.; Pollock, C. J.; Giles, B. L.; Hesse, M.; Lindqvist, P.-A.; Drake, J. F.; Shay, M. A.; Nakamura, R.; Marklund, G. T.

    2016-07-01

    We report observations from the Magnetospheric Multiscale (MMS) satellites of a large guide field magnetic reconnection event. The observations suggest that two of the four MMS spacecraft sampled the electron diffusion region, whereas the other two spacecraft detected the exhaust jet from the event. The guide magnetic field amplitude is approximately 4 times that of the reconnecting field. The event is accompanied by a significant parallel electric field (E∥ ) that is larger than predicted by simulations. The high-speed (˜300 km /s ) crossing of the electron diffusion region limited the data set to one complete electron distribution inside of the electron diffusion region, which shows significant parallel heating. The data suggest that E∥ is balanced by a combination of electron inertia and a parallel gradient of the gyrotropic electron pressure.

  14. Control of light trapping in a large atomic system by a static magnetic field

    NASA Astrophysics Data System (ADS)

    Skipetrov, S. E.; Sokolov, I. M.; Havey, M. D.

    2016-07-01

    We propose to control light trapping in a large ensemble of cold atoms by an external, static magnetic field. For an appropriate choice of frequency and polarization of the exciting pulse, the field is expected to speed up the fluorescence of a dilute atomic system. In a dense ensemble, the field does not affect the early-time superradiant signal but amplifies intensity oscillations at intermediate times and induces a very slow, nonexponential long-time decay. The slowing down of fluorescence is due to the excitation of spatially localized collective atomic states that appear only under a strong magnetic field and have exponentially long lifetimes. Our results therefore pave a way towards experimental observation of the disorder-induced localization of light in cold atomic systems.

  15. EFFECTS OF LARGE-SCALE NON-AXISYMMETRIC PERTURBATIONS IN THE MEAN-FIELD SOLAR DYNAMO

    SciTech Connect

    Pipin, V. V.; Kosovichev, A. G.

    2015-11-10

    We explore the response of a nonlinear non-axisymmetric mean-field solar dynamo model to shallow non-axisymmetric perturbations. After a relaxation period, the amplitude of the non-axisymmetric field depends on the initial condition, helicity conservation, and the depth of perturbation. It is found that a perturbation that is anchored at 0.9 R{sub ⊙} has a profound effect on the dynamo process, producing a transient magnetic cycle of the axisymmetric magnetic field, if it is initiated at the growing phase of the cycle. The non-symmetric, with respect to the equator, perturbation results in a hemispheric asymmetry of the magnetic activity. The evolution of the axisymmetric and non-axisymmetric fields depends on the turbulent magnetic Reynolds number R{sub m}. In the range of R{sub m} = 10{sup 4}–10{sup 6} the evolution returns to the normal course in the next cycle, in which the non-axisymmetric field is generated due to a nonlinear α-effect and magnetic buoyancy. In the stationary state, the large-scale magnetic field demonstrates a phenomenon of “active longitudes” with cyclic 180° “flip-flop” changes of the large-scale magnetic field orientation. The flip-flop effect is known from observations of solar and stellar magnetic cycles. However, this effect disappears in the model, which includes the meridional circulation pattern determined by helioseismology. The rotation rate of the non-axisymmetric field components varies during the relaxation period and carries important information about the dynamo process.

  16. Step-Controllable Electric-Field-Assisted Nanoimprint Lithography for Uneven Large-Area Substrates.

    PubMed

    Wang, Chunhui; Shao, Jinyou; Tian, Hongmiao; Li, Xiangming; Ding, Yucheng; Li, Ben Q

    2016-04-26

    Large-area nanostructures are widely used in various fields, but fabrication on large-area uneven substrates poses a significant challenge. This study demonstrates a step-controllable electric-field-assisted nanoimprint lithography (e-NIL) method that can achieve conformal contact with uneven substrates for high fidelity nanostructuring. Experiments are used to demonstrate the method where a substrate coated with liquid resist is brought into contact with a flexible template driven by the applied electric field. Theoretical analysis based on the elasticity theory and electro-hydrodynamic theory is carried out. Effective voltage range and the saturation voltage are also discussed. A step-controllable release of flexible template is proposed and demonstrated to ensure the continuous contact between the template and an uneven substrate. This prevents formation of air traps and allows large area conformal contact to be achieved. A combination of Vacuum-electric field assisted step-controllable e-NIL is implemented in the developed prototype. Finally, photonic crystal nanostructures are successfully fabricated on a 4 in., 158 μm bow gallium nitride light-emitting diode epitaxial wafer using the proposed method, which enhance the light extraction property. PMID:27015525

  17. Wintertime connections between extreme wind patterns in Spain and large-scale geopotential height field

    NASA Astrophysics Data System (ADS)

    Pascual, A.; Martín, M. L.; Valero, F.; Luna, M. Y.; Morata, A.

    2013-03-01

    The present study is focused on the study of the variability and the most significant wind speed patterns in Spain during the winter season analyzing as well connections between the wind speed field and the geopotential height at 1000 hPa over an Atlantic area. The daily wind speed variability is investigated by means of principal components using wind speed observations. Five main modes of variation, accounting 66% of the variance of the original data, have been identified, highlighting their differences in the Spanish wind speed behavior. Connections between the wind speeds and the large-scale atmospheric field were underlined by means of composite maps. Composite maps were built up to give an averaged atmospheric circulation associated with extreme wind speed variability in Spain. Moreover, the principal component analysis was also applied to the geopotential heights, providing relationships between the large-scale atmospheric modes and the observational local wind speeds. Such relationships are shown in terms of the cumulated frequency values of wind speed associated with the extreme scores of the obtained large-scale atmospheric modes, showing those large-scale atmospheric patterns more dominant in the wind field in Spain.

  18. Large Field of View Particle-Image Velocimetry (LF-PIV): Design and Performance

    NASA Astrophysics Data System (ADS)

    Pol, Suhas; Hoffman, John; Balasubramaniam, Balakumar; P-23, LANL Team

    2011-11-01

    We discuss the challenges and limitations associated with the development of a Large Field of View Particle Image Velocimetry (LF-PIV) diagnostic that is capable of resolving large scale motions (3m x 1m per camera) in gas phase laboratory experiments. While this diagnostic is developed for the measurement of wakes and local inflow conditions around research wind turbines, the design considerations provided here are also relevant for the application of LF-PIV to atmospheric boundary layer, rotorcraft dynamics and large-scale wind tunnel flows. Scaling laws associated with LF-PIV systems are presented along with the performance analysis of low-density, large diameter Expancel particles that appear to be promising candidates for LF-PIV seeding. Comparison of data obtained by LF-PIV measurements (2MP camera) and regular format sized PIV measurements show an agreement of within 1% for mean velocity and 8% for turbulent statistics respectively. Los Alamos National Laboratory, NM, USA.

  19. Advection/Diffusion of Large Scale Magnetic Field in Accretion Disks

    NASA Astrophysics Data System (ADS)

    Lovelace, Richard V. E.; Rothstein, David M.; Bisnovatyi-Kogan, Gennady S.

    Winds and jets of proto-stellar systems are thought to arise from disk accretion involving (1) a small-scale turbulent magnetic field in the disk (due to the magneto-rotational instability or MRI) and (2) a large-scale magnetic field which gives rise to the winds and/or jets. An important problem with this picture is that the enhanced viscosity is accompanied by an enhanced magnetic diffusivity which acts to prevent the build up of a significant large-scale field. Recent work has pointed out that the surface layers of the disk are non-turbulent and thus highly conducting (or non-diffusive). This is because the MRI is suppressed in the surface layers where the magnetic and radiation pressures are larger than the thermal pressure. Here, we calculate the vertical (z) profiles of the stationary accretion flows (with radial and azimuthal components), and the profiles of the large-scale, magnetic field taking into account the turbulent viscosity and diffusivity due to the MRI and the fact that the turbulence vanishes at the surface of the disk. We derive a sixth-order differential equation for the radial flow velocity v r (z) which depends mainly on the midplane thermal to magnetic pressure ratio β > 1 and the magnetic Prandtl number of the turbulence P = viscosity/diffusivity. Boundary conditions at the disk surfaces take into account possible magnetic winds or jets and allow for a surface current flow in the highly conducting surface layers. The stationary solutions we find indicate that a weak (β > 1) large-scale field does not diffuse away as suggested by earlier work.

  20. Crystallization of insulin and lysozyme under reduced convection condition in a large gradient magnetic field

    NASA Astrophysics Data System (ADS)

    Yin, D. C.; Wakayama, N. I.; Fujiwara, M.; Harata, K.; Xue, X. P.; Fu, Z. X.; Zhang, S. W.; Shang, P.; Tanimoto, Y.

    The crystallization of protein from solution is governed by the process of transport phenomenon Any reason affecting the process of solute transport will impose effects on the crystallization process thus further affects the crystal quality Recent advancement in superconducting magnet technology makes it possible to provide a low cost long-time durable low effective gravity environment for the control of convection which is similar to the environment in the space As an ideal means to damp natural convection in a non-conductive solution on the Earth it may find applications in the field of protein crystallization In this presentation the authors investigated the crystallization of orthorhombic lysozyme crystals tetragonal lysozyme crystals and insulin crystals in a large gradient magnetic field Three effective gravity levels were used milli-gravity around 0G normal gravity 1G and hypergravity 1 8G Comparisons of the crystal quality obtained inside and outside the magnetic field showed that both the magnetic field and the effective gravity could affect the crystal quality But the effect also depends on the crystal and protein type For lysozyme crystals in tetragonal form the magnetic field and effective gravity showed no obvious effect on the quality whereas for the crystals in orthorhombic form both the magnetic field and effective gravity improved the crystal quality For insulin crystal which is highly symmetrical magnetic field and effective gravity showed no strong effect on the crystal quality It is well known that

  1. Development and field trial of a FBG-based magnetic sensor for large hydrogenerators

    NASA Astrophysics Data System (ADS)

    Fracarolli, João. P. V.; Rosolem, João. B.; Tomiyama, Elias K.; Floridia, Claudio; Penze, Rivael S.; Peres, Rodrigo; Dini, Danilo C.; Hortencio, Claudio A.; Dilli, Paulo I. G.; da Silva, Erlon V.; dos Santos, Marcéu. C.; Fruett, Fabiano

    2016-05-01

    We propose a passive optical sensor for online magnetic field monitoring in large hydrogenerators, based on FBG (Fiber Bragg Grating) technology and a magnestostrictive material (Terfenol-D). The objective of this sensor is to detect faults in the rotor windings due to inter turn short-circuits. This device is packaged in a novel rod-shaped enclosure, allowing it to be easily installed on the ventilation ducts of the stator of the machine. This sensor was developed and tested in laboratory and it has been evaluated in a field test on a 200 MVA, 60 poles hydrogenerator.

  2. Large-scale electric fields resulting from magnetic reconnection in the corona

    NASA Technical Reports Server (NTRS)

    Kopp, R. A.; Poletto, G.

    1986-01-01

    The method of Forbes and Priest (2-D model) is applied to the large two-ribbon flare of July 29, 1973, for which both detailed H observations and magnetic data are available. For this flare the ribbons were long, nearly straight, and parallel to each other, and the 2-D model for the coronal field geometry may be adequate. The temporal profile E(t) is calculated and indicates that reconnection sets in at the beginning of the decay phase. From this time the electric field grows rapidly to a maximum value of about 2 V/cm within just a few minutes. Thereafter it decreases monotonically with time.

  3. Field Test Results of Automated Demand Response in a Large Office Building

    SciTech Connect

    Han, Junqiao; Piette, Mary Ann; Kiliccote, Sila

    2008-10-20

    Demand response (DR) is an emerging research field and an effective tool that improves grid reliability and prevents the price of electricity from rising, especially in deregulated markets. This paper introduces the definition of DR and Automated Demand Response (Auto-DR). It describes the Auto-DR technology utilized at a commercial building in the summer of 2006 and the methodologies to evaluate associated demand savings. On the basis of field tests in a large office building, Auto-DR is proven to be a reliable and credible resource that ensures a stable and economical operation of the power grid.

  4. Mechanisation of large-scale agricultural fields in developing countries - a review.

    PubMed

    Onwude, Daniel I; Abdulstter, Rafia; Gomes, Chandima; Hashim, Norhashila

    2016-09-01

    Mechanisation of large-scale agricultural fields often requires the application of modern technologies such as mechanical power, automation, control and robotics. These technologies are generally associated with relatively well developed economies. The application of these technologies in some developing countries in Africa and Asia is limited by factors such as technology compatibility with the environment, availability of resources to facilitate the technology adoption, cost of technology purchase, government policies, adequacy of technology and appropriateness in addressing the needs of the population. As a result, many of the available resources have been used inadequately by farmers, who continue to rely mostly on conventional means of agricultural production, using traditional tools and equipment in most cases. This has led to low productivity and high cost of production among others. Therefore this paper attempts to evaluate the application of present day technology and its limitations to the advancement of large-scale mechanisation in developing countries of Africa and Asia. Particular emphasis is given to a general understanding of the various levels of mechanisation, present day technology, its management and application to large-scale agricultural fields. This review also focuses on/gives emphasis to future outlook that will enable a gradual, evolutionary and sustainable technological change. The study concludes that large-scale-agricultural farm mechanisation for sustainable food production in Africa and Asia must be anchored on a coherent strategy based on the actual needs and priorities of the large-scale farmers. © 2016 Society of Chemical Industry.

  5. Mechanisation of large-scale agricultural fields in developing countries - a review.

    PubMed

    Onwude, Daniel I; Abdulstter, Rafia; Gomes, Chandima; Hashim, Norhashila

    2016-09-01

    Mechanisation of large-scale agricultural fields often requires the application of modern technologies such as mechanical power, automation, control and robotics. These technologies are generally associated with relatively well developed economies. The application of these technologies in some developing countries in Africa and Asia is limited by factors such as technology compatibility with the environment, availability of resources to facilitate the technology adoption, cost of technology purchase, government policies, adequacy of technology and appropriateness in addressing the needs of the population. As a result, many of the available resources have been used inadequately by farmers, who continue to rely mostly on conventional means of agricultural production, using traditional tools and equipment in most cases. This has led to low productivity and high cost of production among others. Therefore this paper attempts to evaluate the application of present day technology and its limitations to the advancement of large-scale mechanisation in developing countries of Africa and Asia. Particular emphasis is given to a general understanding of the various levels of mechanisation, present day technology, its management and application to large-scale agricultural fields. This review also focuses on/gives emphasis to future outlook that will enable a gradual, evolutionary and sustainable technological change. The study concludes that large-scale-agricultural farm mechanisation for sustainable food production in Africa and Asia must be anchored on a coherent strategy based on the actual needs and priorities of the large-scale farmers. © 2016 Society of Chemical Industry. PMID:26940194

  6. Large-angle and high-efficiency tunable phase grating using fringe field switching liquid crystal.

    PubMed

    Xu, Daming; Tan, Guanjun; Wu, Shin-Tson

    2015-05-01

    We propose a switchable phase grating using fringe field switching (FFS) cells. The FFS phase grating possesses several attractive features: large diffraction angle, high diffraction efficiency, fast response time, and high contrast ratio. It can diffract >32% light to ± 2nd orders with a large diffraction angle of 12.1°. Meanwhile, its response time remains relatively fast even at -40°C. A simulation model is developed to explain the experimental results and good agreement is obtained. We also demonstrate a blazed phase grating to achieve tunable beam steering between 0th, 1st and 2nd orders. PMID:25969314

  7. Electrodiffusiophoresis of a large-zeta-potential particle in weak fields.

    PubMed

    Tricoli, Vincenzo; Orsini, Gabriele

    2015-10-21

    The electrodiffusiophoresis of a large-zeta-potential (ζ) particle in weak fields is investigated. In this large-ζ regime, Debye-layer kinetics determines O(1) perturbations to the electric- and concentration fields in the surrounding electroneutral solution. Taking these effects into account, the expressions of the slip-flow coefficient and the effective surface boundary-conditions for the electric- and concentration fields are derived. For binary and symmetric electrolyte where only one ion species carries the current in the electroneutral domain, the far-field salt gradient as related to the electric field is determined. The electrodiffusiophoretic mobility is obtained for three particle geometries: sphere, cylinder and spheroid arbitrarily oriented with respect to the externally applied field. Strong departure from Smoluchowskian behavior is found. If co-ion is the current carrier, the mobility is independent of ζ, regardless of the body shape. Also, the hydrodynamic flow-field is irrotational. If counter-ion is the current carrier, the problem formulated in terms of a properly-defined scalar field (Ω), which embodies both the electric potential (Ψ) and the salt concentration, becomes formally identical to the one addressed in our previous work, concerning the small-ζ regime, with negligible salt gradients. Then, all the results obtained in that study are extended and applied even to the large-ζ regime considered here, provided the new expressions now derived for the surface boundary conditions and the slip-flow coefficient are employed and Ω is used in place of Ψ. The present results are discussed also in comparison with the classical studies of Dukhin et al and O'Brien et al concerning electrophoresis of highly charged particles with no salt gradient at infinity, and with recent studies of electrodiffusiophoresis, which, however, neglected the fields perturbations caused by Debye-layer kinetics. It is found that the effects addressed and incorporated

  8. Development of a Large Field of View Shadowgraph System for a 16 Ft. Transonic Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Talley, Michael A.; Jones, Stephen B.; Goodman, Wesley L.

    2000-01-01

    A large field of view shadowgraph flow visualization system for the Langley 16 ft. Transonic Tunnel (16 ft.TT) has been developed to provide fast, low cost, aerodynamic design concept evaluation capability to support the development of the next generation of commercial and military aircraft and space launch vehicles. Key features of the 16 ft. TT shadowgraph system are: (1) high resolution (1280 X 1024) digital snap shots and sequences; (2) video recording of shadowgraph at 30 frames per second; (3) pan, tilt, & zoom to find and observe flow features; (4) one microsecond flash for freeze frame images; (5) large field of view approximately 12 X 6 ft; and (6) a low maintenance, high signal/noise ratio, retro-reflective screen to allow shadowgraph imaging while test section lights are on.

  9. Field effect tuning of microwave Faraday rotation and isolation with large-area graphene

    NASA Astrophysics Data System (ADS)

    Skulason, Helgi S.; Sounas, Dimitrios L.; Mahvash, Farzaneh; Francoeur, Sebastien; Siaj, Mohamed; Caloz, Christophe; Szkopek, Thomas

    2015-08-01

    We have demonstrated field effect tuning of microwave frequency Faraday rotation in magnetically biased large-area graphene in a hollow circular waveguide isolator geometry. Oxidized intrinsic silicon was used as a microwave transparent back-gate for large-area graphene devices. A 26 dB modulation of isolation in the K-band was achieved with a gate voltage modulation of 10 V corresponding to a carrier density modulation of 7 × 10 11 /cm2. We have developed a simple analytical model for transmission and isolation of the structure. Field effect modulation of Faraday rotation can be extended to other two dimensional electronic systems and is anticipated to be useful for gate voltage controlled isolators, circulators, and other non-reciprocal devices.

  10. Safety and immunogenicity of the synthetic malaria vaccine SPf66 in a large field trial.

    PubMed

    Amador, R; Moreno, A; Murillo, L A; Sierra, O; Saavedra, D; Rojas, M; Mora, A L; Rocha, C L; Alvarado, F; Falla, J C

    1992-07-01

    In the first field trial with synthetic malaria vaccine SPf66 in a large population naturally exposed to malaria, 9957 persons greater than 1 year old and residing on the Colombian Pacific coast received three doses of the vaccine. To evaluate vaccine safety, clinical observations were made 30 min and 48 h after each immunization. There were no adverse reactions in 95.7% of cases. In the 4.3% of cases with adverse reactions, local induration and erythema were the most frequent. In a randomly selected group of vaccinees, anti-SPf66 antibody titers were measured after the third dose: 93% of the vaccinees raised antibodies to SPf66. Among these, 55% had titers greater than 1:1600. These results demonstrate the safety and immunogenicity of the SPf66 vaccine in a large field trial.

  11. Circular polarization dependent cyclotron resonance in large-area graphene in ultrahigh magnetic fields

    NASA Astrophysics Data System (ADS)

    Booshehri, L. G.; Mielke, C. H.; Rickel, D. G.; Crooker, S. A.; Zhang, Q.; Ren, L.; Hároz, E. H.; Rustagi, A.; Stanton, C. J.; Jin, Z.; Sun, Z.; Yan, Z.; Tour, J. M.; Kono, J.

    2012-05-01

    Using ultrahigh magnetic fields up to 170 T and polarized midinfrared radiation with tunable wavelengths from 9.22 to 10.67 μm, we studied cyclotron resonance in large-area graphene grown by chemical vapor deposition. Circular polarization dependent studies reveal strong p-type doping for as-grown graphene, and the dependence of the cyclotron resonance on radiation wavelength allows for a determination of the Fermi energy. Thermal annealing shifts the Fermi energy to near the Dirac point, resulting in the simultaneous appearance of hole and electron cyclotron resonance in the magnetic quantum limit, even though the sample is still p-type, due to graphene's linear dispersion and unique Landau level structure. These high-field studies therefore allow for a clear identification of cyclotron resonance features in large-area, low-mobility graphene samples.

  12. 30 CFR 18.22 - Boring-type machines equipped for auxiliary face ventilation.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Boring-type machines equipped for auxiliary... AND ACCESSORIES Construction and Design Requirements § 18.22 Boring-type machines equipped for auxiliary face ventilation. Each boring-type continuous-mining machine that is submitted for approval...

  13. 30 CFR 18.22 - Boring-type machines equipped for auxiliary face ventilation.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Boring-type machines equipped for auxiliary... AND ACCESSORIES Construction and Design Requirements § 18.22 Boring-type machines equipped for auxiliary face ventilation. Each boring-type continuous-mining machine that is submitted for approval...

  14. 30 CFR 18.22 - Boring-type machines equipped for auxiliary face ventilation.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Boring-type machines equipped for auxiliary... AND ACCESSORIES Construction and Design Requirements § 18.22 Boring-type machines equipped for auxiliary face ventilation. Each boring-type continuous-mining machine that is submitted for approval...

  15. 30 CFR 18.22 - Boring-type machines equipped for auxiliary face ventilation.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Boring-type machines equipped for auxiliary... AND ACCESSORIES Construction and Design Requirements § 18.22 Boring-type machines equipped for auxiliary face ventilation. Each boring-type continuous-mining machine that is submitted for approval...

  16. 30 CFR 18.22 - Boring-type machines equipped for auxiliary face ventilation.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Boring-type machines equipped for auxiliary... AND ACCESSORIES Construction and Design Requirements § 18.22 Boring-type machines equipped for auxiliary face ventilation. Each boring-type continuous-mining machine that is submitted for approval...

  17. [Irradiation of lymphogranulomatosis patients with large fields of complex configuration, calculating absorbed doses by microcomputer].

    PubMed

    Belyĭ, E K; Miasnikov, A A; Mendeleev, I M

    1985-01-01

    The authors demonstrated advantages of irradiating lymphogranulomatosis patients with large fields of complex configuration. The use of computer eliminates the difficulties of dosage calculation. Application for these purposes of the 15 VUMS-28 unit based on the microcomputer "Elektronika-60" is suggested. Algorithm of the dosage calculation program is presented. The program is drawn up according to the GOST so that it can be used by other institutions concerned.

  18. LUMINOUS RED GALAXY HALO DENSITY FIELD RECONSTRUCTION AND APPLICATION TO LARGE-SCALE STRUCTURE MEASUREMENTS

    SciTech Connect

    Reid, Beth A.; Spergel, David N.; Bode, Paul E-mail: dns@astro.princeton.edu

    2009-09-01

    The nontrivial relationship between observations of galaxy positions in redshift space and the underlying matter field complicates our ability to determine the linear theory power spectrum and extract cosmological information from galaxy surveys. The Sloan Digital Sky Survey (SDSS) luminous red galaxy (LRG) catalog has the potential to place powerful constraints on cosmological parameters. LRGs are bright, highly biased tracers of large-scale structure. However, because they are highly biased, the nonlinear contribution of satellite galaxies to the galaxy power spectrum is large and fingers-of-God (FOGs) are significant. The combination of these effects leads to a {approx}10% correction in the underlying power spectrum at k = 0.1 h Mpc{sup -1} and {approx}40% correction at k = 0.2 h Mpc{sup -1} in the LRG P(k) analysis of Tegmark et al., thereby compromising the cosmological constraints when this potentially large correction is left as a free parameter. We propose an alternative approach to recovering the matter field from galaxy observations. Our approach is to use halos rather than galaxies to trace the underlying mass distribution. We identify FOGs and replace each FOG with a single halo object. This removes the nonlinear contribution of satellite galaxies, the one-halo term. We test our method on a large set of high-fidelity mock SDSS LRG catalogs and find that the power spectrum of the reconstructed halo density field deviates from the underlying matter power spectrum at the {<=}1% level for k {<=} 0.1 h Mpc{sup -1} and {<=}4% at k = 0.2 h Mpc{sup -1}. The reconstructed halo density field also removes the bias in the measurement of the redshift space distortion parameter {beta} induced by the FOG smearing of the linear redshift space distortions.

  19. A PILOT FOR A VERY LARGE ARRAY H I DEEP FIELD

    SciTech Connect

    Fernandez, Ximena; Van Gorkom, J. H.; Schiminovich, David; Hess, Kelley M.; Pisano, D. J.; Kreckel, Kathryn; Momjian, Emmanuel; Popping, Attila; Oosterloo, Tom; Chomiuk, Laura; Verheijen, M. A. W.; Henning, Patricia A.; Bershady, Matthew A.; Wilcots, Eric M.; Scoville, Nick

    2013-06-20

    High-resolution 21 cm H I deep fields provide spatially and kinematically resolved images of neutral hydrogen at different redshifts, which are key to understanding galaxy evolution across cosmic time and testing predictions of cosmological simulations. Here we present results from a pilot for an H I deep field done with the Karl G. Jansky Very Large Array (VLA). We take advantage of the newly expanded capabilities of the telescope to probe the redshift interval 0 < z < 0.193 in one observation. We observe the COSMOS field for 50 hr, which contains 413 galaxies with optical spectroscopic redshifts in the imaged field of 34' Multiplication-Sign 34' and the observed redshift interval. We have detected neutral hydrogen gas in 33 galaxies in different environments spanning the probed redshift range, including three without a previously known spectroscopic redshift. The detections have a range of H I and stellar masses, indicating the diversity of galaxies we are probing. We discuss the observations, data reduction, results, and highlight interesting detections. We find that the VLA's B-array is the ideal configuration for H I deep fields since its long spacings mitigate radio frequency interference. This pilot shows that the VLA is ready to carry out such a survey, and serves as a test for future H I deep fields planned with other Square Kilometer Array pathfinders.

  20. Design of apochromatic lens with large field and high definition for machine vision.

    PubMed

    Yang, Ao; Gao, Xingyu; Li, Mingfeng

    2016-08-01

    Precise machine vision detection for a large object at a finite working distance (WD) requires that the lens has a high resolution for a large field of view (FOV). In this case, the effect of a secondary spectrum on image quality is not negligible. According to the detection requirements, a high resolution apochromatic objective is designed and analyzed. The initial optical structure (IOS) is combined with three segments. Next, the secondary spectrum of the IOS is corrected by replacing glasses using the dispersion vector analysis method based on the Buchdahl dispersion equation. Other aberrations are optimized by the commercial optical design software ZEMAX by properly choosing the optimization function operands. The optimized optical structure (OOS) has an f-number (F/#) of 3.08, a FOV of φ60  mm, a WD of 240 mm, and a modulated transfer function (MTF) of all fields of more than 0.1 at 320  cycles/mm. The design requirements for a nonfluorite material apochromatic objective lens with a large field and high definition for machine vision detection have been achieved. PMID:27505379

  1. Indirect interband transition induced by optical near fields with large wave numbers

    NASA Astrophysics Data System (ADS)

    Yamaguchi, Maiku; Nobusada, Katsuyuki

    2016-05-01

    Optical near fields (ONFs) have Fourier components with large wave numbers that are two or three orders of magnitude larger than those of far-field propagating light owing to their nonuniformity in space. By utilizing these large wave numbers, the ONF is expected to induce an indirect interband transition between Bloch states having different wave numbers and directly generate an electron-hole pair without electron-phonon coupling. We perform time-dependent dynamics calculations of a one-dimensional periodic potential with an indirect band-gap structure and demonstrate that the ONF definitely induces an indirect interband transition. Instead of using the general Bloch boundary condition, which is usually imposed in conventional band structure calculations, we adopt an alternative boundary condition, the Born-von Kármán boundary condition, to appropriately treat indirect interband transitions. The calculated absorption spectra for the far-field and ONF excitations show different absorption edges and spectral patterns. We argue that this difference can be experimentally measured as evidence of the effects of the large wave numbers of the ONF.

  2. Compact optical gimbal as a conformal beam director for large field-of-regard lasercom applications

    NASA Astrophysics Data System (ADS)

    Kesner, Jessica E.; Hinrichs, Keith M.; Narkewich, Lawrence E.; Stephens, Timothy

    2015-03-01

    Laser communication offers advantages over traditional RF communication, including reduced size, weight, and power, higher data rates, and resistance to jamming. However, existing beam directors used for large field-of-regard lasercom terminals have limitations. Traditional gimbals require either domes or large conformal windows to achieve large fields of regard. Risley prism-based beam directors have temperature- and wavelength-dependent pointing necessitating tight temperature control and pointing correction techniques. Other methods, like liquid crystal optical phased array beam directors, have low transmittance and low technology readiness levels (TRLs). This paper presents a detailed design and preliminary performance results of a prototype Compact Optical Gimbal (COG) beam director that provides a 2 inch beam over a +/- 65o field-of-regard through a small (~12 inch) flat window. The COG differs from the traditional gimbal in that it includes three-axis steering with off-axis elevation and dither control, and a folded refractive afocal telescope incorporated into the body of the gimbal to minimize size. The COG's optical system does not have the pointing challenges characteristic of Risley prisms, and it utilizes high TRL components, including many commercial off-theshelf parts, to simplify implementation. The compact size and performance support a variety of beam steering applications and platforms.

  3. Mantle convection and the large scale structures of the Earth's gravitational field

    NASA Technical Reports Server (NTRS)

    Peltier, W. R.

    1985-01-01

    The connection between the observed large scale structure of the Earths' gravitational field, as represented by the GEM10 model, and the surface kinematic manifestations of plate tectonics, as represented by the absolute plate motion model of Minster and Jordan, is explored using a somewhat novel method of analysis. Two scalar derivatives of the field of surface plate velocities, namely the horizontal divergence and the radial vorticity, are computed from the plate motion data. These two scalars are respectively determined by the poloidal and toroidal scalars in terms of which any essentially solenoidal vector field may be completely represented. They provide a compact summary of the observed plate boundary types in nature, with oceanic ridges and trenches being essentially boundaries of divergence, and transform faults being essentially boundaries of vorticity.

  4. Infrared-temperature variability in a large agricultural field. [Dunnigan, California

    NASA Technical Reports Server (NTRS)

    Millard, J. P.; Goettelman, R. C.; Leroy, M. L. (Principal Investigator)

    1980-01-01

    The combined effect of water carved gullies, varying soil color, moisture state of the soil and crop, nonuniform phenology, and bare spots was measured for commercially grown barley planted on varying terrain. For all but the most rugged terrain, over 80% of the area within 4, 16, 65, and 259 ha cells was at temperatures within 3 C of the mean cell temperature. The result of using relatively small, 4 ha instantaneous field of views for remote sensing applications is that either the worst or the best of conditions is often observed. There appears to be no great advantage in utilizing a small instantaneous field of view instead of a large one for remote sensing of crop canopy temperatures. The two alternatives for design purposes are then either a very high spatial resolution, of the order of a meter or so, where the field is very accurately temperature mapped, or a low resolution, where the actual size seems to make little difference.

  5. Pulsed-field electrophoresis: application of a computer model to the separation of large DNA molecules.

    PubMed Central

    Lalande, M; Noolandi, J; Turmel, C; Rousseau, J; Slater, G W

    1987-01-01

    The biased reptation theory has been applied to the pulsed-field electrophoresis of DNA in agarose gels. A computer simulation of the theoretical model that calculates the mobility of large DNA molecules as a function of agarose pore size, DNA chain properties, and electric field conditions has been used to generate mobility curves for DNA molecules in the size range of the larger yeast chromosomes. Pulsed-field electrophoresis experiments resulting in the establishment of an electrophoretic karyotype for yeast, where the mobility of the DNA fragments is a monotonic function of molecular size for the entire size range that is resolved (200-2200 kilobase pairs), has been compared to the theoretical mobility curves generated by the computer model. The various physical mechanisms and experimental conditions responsible for band inversion and improved electrophoretic separation are identified and discussed in the framework of the model. Images PMID:3317398

  6. An improved method for field extraction and laboratory analysis of large, intact soil cores

    USGS Publications Warehouse

    Tindall, J.A.; Hemmen, K.; Dowd, J.F.

    1992-01-01

    Various methods have been proposed for the extraction of large, undisturbed soil cores and for subsequent analysis of fluid movement within the cores. The major problems associated with these methods are expense, cumbersome field extraction, and inadequate simulation of unsaturated flow conditions. A field and laboratory procedure is presented that is economical, convenient, and simulates unsaturated and saturated flow without interface flow problems and can be used on a variety of soil types. In the field, a stainless steel core barrel is hydraulically pressed into the soil (30-cm diam. and 38 cm high), the barrel and core are extracted from the soil, and after the barrel is removed from the core, the core is then wrapped securely with flexible sheet metal and a stainless mesh screen is attached to the bottom of the core for support. In the laboratory the soil core is set atop a porous ceramic plate over which a soil-diatomaceous earth slurry has been poured to assure good contact between plate and core. A cardboard cylinder (mold) is fastened around the core and the empty space filled with paraffin wax. Soil cores were tested under saturated and unsaturated conditions using a hanging water column for potentials ???0. Breakthrough curves indicated that no interface flow occurred along the edge of the core. This procedure proved to be reliable for field extraction of large, intact soil cores and for laboratory analysis of solute transport.

  7. Large electric-field control of perpendicular magnetic anisotropy in strained [Co/Ni] / PZT heterostructures

    NASA Astrophysics Data System (ADS)

    Gopman, Daniel; Dennis, Cindi; Chen, P. J.; Iunin, Yury; Shull, Robert

    We present a piezoelectric/ferromagnetic heterostructure with PMA - a Co/Ni multilayer sputtered directly onto a Pb(Zr,Ti)O3 (PZT) substrate. Chemical-mechanical polishing was used to reduce the roughness of PZT plates to below 2 nm rms, enabling optimal magnetoelectric coupling via the direct interface between PZT and sputtered Co/Ni films with large PMA (Keff = (95 +/-9 kJ/m3)) . We grew the following layer stack: Ta(3)/Pt(2)/[Co(0.15)/Ni(0.6)]x4/Co(0.15)/Pt(2)/Ta(3); numbers in parentheses indicate thicknesses in nm. Applied electric fields up to +/- 2 MV/m to the PZT generated 0.05% in-plane compression in the Co/Ni multilayer, enabling a large electric-field reduction of the PMA (ΔKeff >= 103 J/m3) and of the coercive field (35%). Our results demonstrate that: (i) heterostructures combining PZT and [Co/Ni] exhibit larger PMA (Keff ~105 J/m3) than previous magnetoelectric heterostructures based on Co/Pt and CoFeB, enabling thermally stable hybrid magnetoelectric/spintronic devices only tens of nm in diameter and (ii) electric-field control of the PMA is promising for more energy efficient switching of spintronic devices.

  8. High-Resolution Hα Velocity Fields of Nearby Spiral Galaxies with the Southern African Large Telescope

    NASA Astrophysics Data System (ADS)

    Mitchell, Carl; Williams, Ted; Spekkens, Kristine; Lee-Waddell, Karen; Kuzio de Naray, Rachel; Sellwood, Jerry

    2016-01-01

    In an effort to test ΛCDM predictions of galaxy mass distributions, we have obtained spectrophotometric observations of several nearby spiral galaxies with the Southern African Large Telescope (SALT) Fabry-Pérot (FP) interferometer as part of the RSS Imaging spectroscopy Nearby Galaxy Survey. Utilizing the SALT FP's 8 arcmin field of view and 2 arcsec angular resolution, we have derived 2D velocity fields of the Hα emission line to high spatial resolution at large radii. We have modeled these velocity fields with the DiskFit software package and found them to be in good agreement with lower-resolution velocity fields of the HI 21 cm line for the same galaxies. Here we present our Hα kinematic map of the barred spiral galaxy NGC 578. At the distance to this galaxy (22 Mpc), our kinematic data has a spatial resolution of 185 pc and extends to galactocentric radii of 13 kpc. The high spatial resolution of this data allows us to resolve the inner rising part of the rotation curves, which is compromised by beam smearing in lower-resolution observations. We are using these Hα kinematic data, combined with HI 21 cm kinematics and broadband photometric observations, to place constraints on NGC 578's mass distribution.

  9. Design, testing, and evaluation of an air injection grouting system for geothermal bores. Final report

    SciTech Connect

    1998-04-01

    The objective of this research was to examine the feasibility of an air injection grouting system for geothermal bores. The system that was researched used a pressurized blow tank and a small diameter hose (3/4 or 1 inch) to pneumatically transport dry bentonite granules into a wet bore. Upon contact with the annular fluid in the bore, water or drilling mud, the particles hydrated and formed a grout. A valve on the bottom of the tank allowed the feed rate of particles into the hose to be adjusted. Granular bentonites that were tested ranged in particle size from four to fifty mesh. The pneumatic conveying properties of granular bentonites were studied in dry injection tests. For a fifty-foot length of three quarter inch hose, mass flow rates up to 50 lb/min were found at a tank pressure of 25 psi with air flow rates ranging from 8 to 17 scfm for pressures of 15 to 25 psi. Mass flow rates of over 100 lb/min at a pressure of 25 psi were reached with a one inch hose. Air flow rates ranged 27 to 50 scfm for pressures of 15 to 25 psi for the one inch hose. Testing simulating wet bore conditions were also performed. A method of removing the injection hose at a constant rate was found to produce a uniform, high solids content grout. A relationship between mass flow rate and the percent solids of the resulting grout was discovered in test with drilling mud as an annular fluid. The mass flow rate and percent solids relationship for tests in water was influenced by the type of granular bentonite. Permeability coefficients of air injected grouts were found to be similar to those of slurry bentonite grouts. Tests with a sand and bentonite mixture had flow rates similar to those found for straight granular bentonites, although the number of possible valve settings was reduced. The sand/bentonite mixture produced an acceptable grout in wet injection tests once the reduced yield of the mixture, due to the sand, was taken into account. A field trial conducted with the Solinst

  10. Compact and large depth of field image scanner for auto document feeder with compound eye system

    NASA Astrophysics Data System (ADS)

    Kawano, Hiroyuki; Okamoto, Tatsuki; Matsuzawa, Taku; Nakajima, Hajime; Makita, Junko; Toyoda, Yoshitaka; Funakura, Tetsuo; Nakanishi, Takahito; Kunieda, Tatsuya; Minobe, Tadashi

    2013-03-01

    We designed a compact and large depth of field image scanner targeted for auto document feeders (ADF) by using a compound eye system design with plural optical units in which the ray paths are folded by a reflective optics. Though we have previously proposed the principle concept, we advance the design using a free-form surface mirror to reduce the F-number for less illumination energy and to shrink its optical track width to 40 mm. We achieved large depth of field (DOF) of 1.2 mm, defined as a range exceeding 30% modulation transfer function (MTF) at 300 dpi, which is about twice as large as a conventional gradient index (GRIN) lens array contact image sensor (CIS). The aperture stop has a rectangular-shaped aperture, where one side length is as large as 4.0mm for collecting much light, and another side length is as small as 1.88mm for avoiding interference of folded ray paths.

  11. Design considerations for large field particle image velocimetery (LF-PIV)

    NASA Astrophysics Data System (ADS)

    Pol, S. U.; Balakumar, B. J.

    2013-02-01

    We discuss the challenges and limitations associated with the development of a large field of view particle image velocimetry (LF-PIV) diagnostic, capable of resolving large-scale motions (>1 m per camera) in gas phase laboratory and field experiments. While this diagnostic is developed for the measurement of wakes and local inflow conditions around research wind turbines, the design considerations provided here are also relevant for the application of LF-PIV to atmospheric boundary layer, rotorcraft dynamics and large-scale wind tunnel flows. Measurements over an area of 0.75 m × 1.0 m on a confined vortex were obtained using a standard 2MP camera, with the potential for increasing this area significantly using 11MP cameras. The cameras in this case were oriented orthogonal to the measurement plane receiving only the side-scattered component of light from the particles. Scaling laws associated with LF-PIV systems are also presented along with the performance analysis of low-density, large diameter Expancel particles, that appear to be promising candidates for LF-PIV seeding.

  12. Advection/Diffusion of Large-Scale B Field in Accretion Disks

    NASA Astrophysics Data System (ADS)

    Lovelace, R. V. E.; Rothstein, D. M.; Bisnovatyi-Kogan, G. S.

    2009-08-01

    Activity of the nuclei of galaxies and stellar mass systems involving disk accretion to black holes is thought to be due to (1) a small-scale turbulent magnetic field in the disk (due to the magnetorotational instability, MRI), which gives a large viscosity enhancing accretion, and (2) a large-scale magnetic field, which gives rise to matter outflows and/or electromagnetic jets from the disk which also enhances accretion. An important problem with this picture is that the enhanced viscosity is accompanied by an enhanced magnetic diffusivity, which acts to prevent the buildup of a significant large-scale field. Recent work has pointed out that the disk's surface layers are nonturbulent, and thus highly conducting (or nondiffusive) because the MRI is suppressed high in the disk where the magnetic and radiation pressures are larger than the thermal pressure. Here, we calculate the vertical (z) profiles of the stationary accretion flows (with radial and azimuthal components) and the profiles of the large-scale magnetic field, taking into account the turbulent viscosity and diffusivity due to the MRI and the fact that the turbulence vanishes at the surface of the disk. We derive a sixth-order differential equation for the radial flow velocity vr (z), which depends mainly on the midplane thermal to magnetic pressure ratio β>1 and the Prandtl number of the turbulence P= viscosity/diffusivity. Boundary conditions at the disk surface take into account a possible magnetic wind or jet and allow for a surface current in the highly conducting surface layer. The stationary solutions we find indicate that a weak (β>1) large-scale field does not diffuse away as suggested by earlier work. For a wide range of parameters β>1 and P≥ 1, we find stationary channel-type flows where the flow is radially outward near the midplane of the disk and radially inward in the top and bottom parts of the disk. Channel flows with inward flow near the midplane and outflow in the top and bottom

  13. Frac height may increase away from well bore

    SciTech Connect

    Hunt, E. )

    1991-02-25

    Well logs with deep investigation capabilities are necessary to determine accurately the height of hydraulically produced fractures. Logs with shallow investigation capability will indicate the height of the fracture near the well bore, but as shown in a test in an East Texas well, fracture height in some formations can be substantially greater away from the well bore. In the East Texas test, six wire line surveys were run, including the usual gamma ray surveys. The fracture heights determined by the above logs are plotted. The independent estimates of gross fracture height varied considerably. Four logs, TWRL, VDL, SCAN, and CEL appear to be influenced by the fracture. Results were inconclusive from the Au and the CBL log. Analysis of each of these indicates a different minimum fracture height in this well.

  14. A bi-axial active boring tool for chatter mitigation

    SciTech Connect

    Redmond, J.M.; Barney, P.S.

    1998-08-01

    This paper summarizes results of metal cutting tests using an actively damped boring bar to suppress regenerative chatter. PZT stack actuators were integrated into a commercially available two-inch diameter boring bar to suppress bending vibrations. Since the modified tool requires no specialized mounting hardware, it can be readily mounted on a variety of machines. A cutting test using the prototype bar to remove metal from a hardened steel workpiece verifies that the authors actively damped tool yields significant vibration reduction and improved surface finish as compared to the open-loop case. In addition, the overall performance of the prototype bar is compared to that of an unmodified bar of pristine geometry, revealing that a significant enlargement of the stable machining envelope is obtained through application of feedback control.

  15. Analysis of stresses at the bore of a drilled ball operating in a high-speed bearing. [with stiffening web

    NASA Technical Reports Server (NTRS)

    Coe, H. H.; Lynch, J. E.

    1973-01-01

    Three-dimensional stress distributions were calculated for both a regular drilled ball with a stiffening web. The balls were 20.6 mm (0.8125 in.) in diameter and had a 12.6 mm (0.496 in.) diameter concentric hole. The stiffening web was 1.5 mm (0.06 in.) thick. The calculations showed that a large reversing tangential stress at the hole bore was reduced by one-half by the addition of the web.

  16. Fossils from bore holes on the Eastern Shore Peninsula, Virginia

    USGS Publications Warehouse

    Todd, Ruth; Gardner, Julia A.; Sohn, I.G.

    1955-01-01

    This report lists Foraminifera, Mollusca, and Ostracoda in five bore holes that penetrated a maximum of 445 feet of section in sediments of Pleistocene and Miocene age, and discusses the paleoecologic and stratigraphic significance of the fossils. It includes the contents of references 6, 16, and 18 of Virginia Division of Geology Mineral Resources Circular No. 2, dealing with the geology and groundwater resources of the Eastern Shore peninsula.

  17. Acoustic characterization of high intensity focused ultrasound fields generated from a transmitter with a large aperture

    SciTech Connect

    Chen, Tao; Fan, Tingbo; Zhang, Wei; Qiu, Yuanyuan; Tu, Juan E-mail: dzhang@nju.edu.cn; Guo, Xiasheng; Zhang, Dong E-mail: dzhang@nju.edu.cn

    2014-03-21

    Prediction and measurement of the acoustic field emitted from a high intensity focused ultrasound (HIFU) is essential for the accurate ultrasonic treatment. In this study, the acoustic field generated from a strongly focused HIFU transmitter was characterized by a combined experiment and simulation method. The spheroidal beam equation (SBE) was utilized to describe the nonlinear sound propagation. The curve of the source pressure amplitude versus voltage excitation was determined by fitting the measured ratio of the second harmonic to the fundamental component of the focal waveform to the simulation result; finally, the acoustic pressure field generated by the strongly focused HIFU transmitter was predicted by using the SBE model. A commercial fiber optic probe hydrophone was utilized to measure the acoustic pressure field generated from a 1.1 MHz HIFU transmitter with a large half aperture angle of 30°. The maximum measured peak-to-peak pressure was up to 72 MPa. The validity of this combined approach was confirmed by the comparison between the measured results and the calculated ones. The results indicate that the current approach might be useful to describe the HIFU field. The results also suggest that this method is not valid for low excitations owing to low sensitivity of the second harmonic.

  18. Large-scale Magnetic Field Generation via the Kinetic Kelvin-Helmholtz Instability in Unmagnetized Scenarios

    NASA Astrophysics Data System (ADS)

    Alves, E. P.; Grismayer, T.; Martins, S. F.; Fiúza, F.; Fonseca, R. A.; Silva, L. O.

    2012-02-01

    Collisionless plasma instabilities are fundamental in magnetic field generation in astrophysical scenarios, but their role has been addressed in scenarios where velocity shear is absent. In this work we show that velocity shears must be considered when studying realistic astrophysical scenarios, since these trigger the collisionless Kelvin-Helmholtz instability (KHI). We present the first self-consistent three-dimensional particle-in-cell simulations of the KHI in conditions relevant for unmagnetized relativistic outflows with velocity shear, such as active galactic nuclei and gamma-ray bursts. We show the generation of a strong large-scale DC magnetic field, which extends over the entire shear-surface, reaching thicknesses of a few tens of electron skin depths, and persisting on timescales much longer than the electron timescale. This DC magnetic field is not captured by magnetohydrodynamic models since it arises from intrinsically kinetic effects. Our results indicate that the KHI can generate intense magnetic fields yielding equipartition values up to epsilon B /epsilon p ~= 10-3-10-2 in the electron timescale. The KHI-induced magnetic fields have a characteristic structure that will lead to a distinct radiation signature and can seed the turbulent dynamo amplification process. The dynamics of the KHI are relevant for non-thermal radiation modeling and can also have a strong impact on the formation of relativistic shocks in presence of velocity shears.

  19. DYNAMICAL FRICTION IN A GASEOUS MEDIUM WITH A LARGE-SCALE MAGNETIC FIELD

    SciTech Connect

    Sanchez-Salcedo, F. J.

    2012-02-01

    The dynamical friction force experienced by a massive gravitating body moving through a gaseous medium is modified by sufficiently strong large-scale magnetic fields. Using linear perturbation theory, we calculate the structure of the wake generated by, and the gravitational drag force on, a body traveling in a straight-line trajectory in a uniformly magnetized medium. The functional form of the drag force as a function of the Mach number ({identical_to} V{sub 0}/c{sub s} , where V{sub 0} is the velocity of the body and c{sub s} is the sound speed) depends on the strength of the magnetic field and on the angle between the velocity of the perturber and the direction of the magnetic field. In particular, the peak value of the drag force is not near Mach number {approx}1 for a perturber moving in a sufficiently magnetized medium. As a rule of thumb, we may state that for supersonic motion, magnetic fields act to suppress dynamical friction; for subsonic motion, they tend to enhance dynamical friction. For perturbers moving along the magnetic field lines, the drag force at some subsonic Mach numbers may be stronger than at supersonic velocities. We also mention the relevance of our findings to black hole coalescence in galactic nuclei.

  20. Deep blank-field catalogue for medium- and large-sized telescopes

    NASA Astrophysics Data System (ADS)

    Jiménez Esteban, F. M.; Cabrera Lavers, A.; Cardiel, N.; Alacid, J. M.

    2012-11-01

    The observation of blank fields, defined as regions of the sky that are devoid of stars down to a given threshold magnitude, constitutes one of the most relevant calibration procedures required for the proper reduction of astronomical data obtained following typical observing strategies. In this work, we have used Delaunay triangulation to search for deep blank fields throughout the whole sky, with a minimum size of 10 arcmin in diameter and an increasing threshold magnitude from 15 to 18 in the R band of the USNO-B Catalog of the United States Naval Observatory. The result is a catalogue with the deepest blank fields known so far. A short sample of these regions has been tested with the 10.4-m Gran Telescopio Canarias, and it has been shown to be extremely useful for medium- and large-sized telescopes. Because some of the regions found could also be suitable for new extragalactic studies, we have estimated the galactic extinction in the direction of each deep blank field. This catalogue is accessible through the virtual observatory tool TESELA, and the user can retrieve - and visualize using ALADIN - the deep blank fields available near a given position in the sky.

  1. PARTICLE ACCELERATION BY COLLISIONLESS SHOCKS CONTAINING LARGE-SCALE MAGNETIC-FIELD VARIATIONS

    SciTech Connect

    Guo, F.; Jokipii, J. R.; Kota, J. E-mail: jokipii@lpl.arizona.ed

    2010-12-10

    Diffusive shock acceleration at collisionless shocks is thought to be the source of many of the energetic particles observed in space. Large-scale spatial variations of the magnetic field have been shown to be important in understanding observations. The effects are complex, so here we consider a simple, illustrative model. Here we solve numerically the Parker transport equation for a shock in the presence of large-scale sinusoidal magnetic-field variations. We demonstrate that the familiar planar-shock results can be significantly altered as a consequence of large-scale, meandering magnetic lines of force. Because the perpendicular diffusion coefficient {kappa}{sub perpendicular} is generally much smaller than the parallel diffusion coefficient {kappa}{sub ||}, the energetic charged particles are trapped and preferentially accelerated along the shock front in the regions where the connection points of magnetic field lines intersecting the shock surface converge, and thus create the 'hot spots' of the accelerated particles. For the regions where the connection points separate from each other, the acceleration to high energies will be suppressed. Further, the particles diffuse away from the 'hot spot' regions and modify the spectra of downstream particle distribution. These features are qualitatively similar to the recent Voyager observations in the Heliosheath. These results are potentially important for particle acceleration at shocks propagating in turbulent magnetized plasmas as well as those which contain large-scale nonplanar structures. Examples include anomalous cosmic rays accelerated by the solar wind termination shock, energetic particles observed in propagating heliospheric shocks, galactic cosmic rays accelerated by supernova blast waves, etc.

  2. Bore support assembly and a method of laser construction

    SciTech Connect

    Ortiz, M.V.; Shull, W.A.

    1989-09-12

    This patent describes a bore support assembly for use in a laser. It comprises: a joiner ring having radially spaced outer and inner peripheries, the outer periphery being capable of rigid attachment to an outer envelope of a laser at the interior thereof. The inner periphery defining a first central opening of a first size adapting the ring to receive an inner bore tube of the laser therethrough; and a spider structure positioned on one side of the joiner ring and extending generally along the central opening thereof. The spider structure having an outer peripheral portion rigidly attached to the inner periphery of the joiner ring, an inner peripheral portion spaced radially inwardly from the outer peripheral portion and defining a second central opening of a second size smaller than the first size of the first central opening of the joiner ring and adapting the inner peripheral portion of the spider structure to receive the bore tube of the laser therethrough and be rigidly interconnected therewith, and a plurality of flexible members extending radially between and interconnecting the outer and inner peripheral portions of the spider structure.

  3. Plausible mechanisms for the boring on carbonates by microbial phototrophs

    NASA Astrophysics Data System (ADS)

    Garcia-Pichel, Ferran

    2006-03-01

    Photosynthetic microbes, particularly cyanobacteria, that bore into carbonates are ancient biological players in various geologic phenomena such as the destruction of biogenic carbonates and coastal limestones, the reworking of carbonate sands and the cementation of microbialites. Their signatures are important tools for paleoenvironmental reconstruction, and they play a significant role in marine aquaculture. In spite of their geologic, environmental and economic importance, the mechanism by which they are able to excavate calcareous and calcophosphatic mineral substrates remains unknown. Excavation by acidulation, commonly thought to be a possible mechanism, constitutes nothing less than an apparent paradox, in that the geochemical consequence of oxygenic photosynthesis should be carbonate precipitation, not dissolution. Three alternative mechanistic models are presented here that may allow cyanobacterial boring to proceed and be still consistent with available evidence, as well as microbiological and geologic/geochemical principles. They are based on either temporal or spatial separation of photosynthesis and respiration, and on the active extrusion of calcium ions through an active cellular uptake and transport process. From the three models, the latter is shown to be most appropriate in describing and explaining the boring phenomenon. Several experimental approaches are discussed that would be appropriate to elucidate the paradox.

  4. RADIAL TRANSPORT OF LARGE-SCALE MAGNETIC FIELDS IN ACCRETION DISKS. II. RELAXATION TO STEADY STATES

    SciTech Connect

    Takeuchi, Taku; Okuzumi, Satoshi

    2014-12-20

    We study the time evolution of a large-scale magnetic flux threading an accretion disk. The induction equation of the mean poloidal field is solved under the standard viscous disk model. Magnetic flux evolution is controlled by two timescales: one is the timescale of the inward advection of the magnetic flux, τ{sub adv}. This is induced by the dragging of the flux by the accreting gas. The other is the outward diffusion timescale of the magnetic flux τ{sub dif}. We consider diffusion due to the Ohmic resistivity. These timescales can be significantly different from the disk viscous timescale τ{sub disk}. The behaviors of the magnetic flux evolution are quite different depending on the magnitude relationship of the timescales τ{sub adv}, τ{sub dif}, and τ{sub disk}. The most interesting phenomena occur when τ{sub adv} << τ{sub dif}, τ{sub disk}. In such a case, the magnetic flux distribution approaches a quasi-steady profile much faster than the viscous evolution of the gas disk, and the magnetic flux has also been tightly bundled to the inner part of the disk. In the inner part, although the poloidal magnetic field becomes much stronger than the interstellar magnetic field, the field strength is limited to the maximum value that is analytically given by our previous work. We also find a condition for the initial large magnetic flux, which is a fossil of the magnetic field dragging during the early phase of star formation that survives for a duration in which significant gas disk evolution proceeds.

  5. Large field-induced-strain at high temperature in ternary ferroelectric crystals

    NASA Astrophysics Data System (ADS)

    Wang, Yaojin; Chen, Lijun; Yuan, Guoliang; Luo, Haosu; Li, Jiefang; Viehland, D.

    2016-10-01

    The new generation of ternary Pb(In1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3 ferroelectric single crystals have potential applications in high power devices due to their surperior operational stability relative to the binary system. In this work, a reversible, large electric field induced strain of over 0.9% at room temperature, and in particular over 0.6% above 380 K was obtained. The polarization rotation path and the phase transition sequence of different compositions in these ternary systems have been determined with increasing electric field applied along [001] direction based on x-ray diffraction data. Thereafter, composition dependence of field-temperature phase diagrams were constructed, which provide compositional and thermal prospectus for the electromechanical properties. It was found the structural origin of the large stain, especially at higher temperature is the lattice parameters modulated by dual independent variables in composition of these ternary solid solution crystals.

  6. The Large-N Limit of Superconformal Field Theories and Supergravity

    NASA Astrophysics Data System (ADS)

    Maldacena, Juan

    We show that the large-N limits of certainconformal field theories in various dimensions includein their Hilbert space a sector describing supergravityon the product of anti-de Sitter spacetimes, spheres, and other compact manifolds. This is shown bytaking some branes in the full M/string theory and thentaking a low-energy limit where the field theory on thebrane decouples from the bulk. We observe that, in this limit, we can still trust thenear-horizon geometry for large N. The enhancedsupersymmetries of the near-horizon geometry correspondto the extra supersymmetry generators present in thesuperconformal group (as opposed to just the super-Poincaregroup). The 't Hooft limit of 3 + 1 N = 4 super-Yang?Mills at the conformal pointis shown to contain strings: they are IIB strings. Weconjecture that compactifications of M/string theory on various anti-de Sitterspacetimes is dual to various conformal field theories.This leads to a new proposal for a definition ofM-theory which could be extended to include fivenoncompact dimensions.

  7. Effects of the galactic magnetic field upon large scale anisotropies of extragalactic cosmic rays

    SciTech Connect

    Harari, D.; Mollerach, S.; Roulet, E. E-mail: mollerach@cab.cnea.gov.ar

    2010-11-01

    The large scale pattern in the arrival directions of extragalactic cosmic rays that reach the Earth is different from that of the flux arriving to the halo of the Galaxy as a result of the propagation through the galactic magnetic field. Two different effects are relevant in this process: deflections of trajectories and (de)acceleration by the electric field component due to the galactic rotation. The deflection of the cosmic ray trajectories makes the flux intensity arriving to the halo from some direction to appear reaching the Earth from another direction. This applies to any intrinsic anisotropy in the extragalactic distribution or, even in the absence of intrinsic anisotropies, to the dipolar Compton-Getting anisotropy induced when the observer is moving with respect to the cosmic rays rest frame. For an observer moving with the solar system, cosmic rays traveling through far away regions of the Galaxy also experience an electric force coming from the relative motion (due to the rotation of the Galaxy) of the local system in which the field can be considered as being purely magnetic. This produces small changes in the particles momentum that can originate large scale anisotropies even for an isotropic extragalactic flux.

  8. Alignments of Dark Matter Halos with Large-scale Tidal Fields: Mass and Redshift Dependence

    NASA Astrophysics Data System (ADS)

    Chen, Sijie; Wang, Huiyuan; Mo, H. J.; Shi, Jingjing

    2016-07-01

    Large-scale tidal fields estimated directly from the distribution of dark matter halos are used to investigate how halo shapes and spin vectors are aligned with the cosmic web. The major, intermediate, and minor axes of halos are aligned with the corresponding tidal axes, and halo spin axes tend to be parallel with the intermediate axes and perpendicular to the major axes of the tidal field. The strengths of these alignments generally increase with halo mass and redshift, but the dependence is only on the peak height, ν \\equiv {δ }{{c}}/σ ({M}{{h}},z). The scaling relations of the alignment strengths with the value of ν indicate that the alignment strengths remain roughly constant when the structures within which the halos reside are still in a quasi-linear regime, but decreases as nonlinear evolution becomes more important. We also calculate the alignments in projection so that our results can be compared directly with observations. Finally, we investigate the alignments of tidal tensors on large scales, and use the results to understand alignments of halo pairs separated at various distances. Our results suggest that the coherent structure of the tidal field is the underlying reason for the alignments of halos and galaxies seen in numerical simulations and in observations.

  9. Large field-induced-strain at high temperature in ternary ferroelectric crystals

    PubMed Central

    Wang, Yaojin; Chen, Lijun; Yuan, Guoliang; Luo, Haosu; Li, Jiefang; Viehland, D.

    2016-01-01

    The new generation of ternary Pb(In1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3 ferroelectric single crystals have potential applications in high power devices due to their surperior operational stability relative to the binary system. In this work, a reversible, large electric field induced strain of over 0.9% at room temperature, and in particular over 0.6% above 380 K was obtained. The polarization rotation path and the phase transition sequence of different compositions in these ternary systems have been determined with increasing electric field applied along [001] direction based on x-ray diffraction data. Thereafter, composition dependence of field-temperature phase diagrams were constructed, which provide compositional and thermal prospectus for the electromechanical properties. It was found the structural origin of the large stain, especially at higher temperature is the lattice parameters modulated by dual independent variables in composition of these ternary solid solution crystals. PMID:27734908

  10. Data Compression Algorithm Architecture for Large Depth-of-Field Particle Image Velocimeters

    NASA Technical Reports Server (NTRS)

    Bos, Brent; Memarsadeghi, Nargess; Kizhner, Semion; Antonille, Scott

    2013-01-01

    A large depth-of-field particle image velocimeter (PIV) is designed to characterize dynamic dust environments on planetary surfaces. This instrument detects lofted dust particles, and senses the number of particles per unit volume, measuring their sizes, velocities (both speed and direction), and shape factors when the particles are large. To measure these particle characteristics in-flight, the instrument gathers two-dimensional image data at a high frame rate, typically >4,000 Hz, generating large amounts of data for every second of operation, approximately 6 GB/s. To characterize a planetary dust environment that is dynamic, the instrument would have to operate for at least several minutes during an observation period, easily producing more than a terabyte of data per observation. Given current technology, this amount of data would be very difficult to store onboard a spacecraft, and downlink to Earth. Since 2007, innovators have been developing an autonomous image analysis algorithm architecture for the PIV instrument to greatly reduce the amount of data that it has to store and downlink. The algorithm analyzes PIV images and automatically reduces the image information down to only the particle measurement data that is of interest, reducing the amount of data that is handled by more than 10(exp 3). The state of development for this innovation is now fairly mature, with a functional algorithm architecture, along with several key pieces of algorithm logic, that has been proven through field test data acquired with a proof-of-concept PIV instrument.

  11. Coronal holes, large-scale magnetic field, and activity complexes in solar cycle 23

    NASA Astrophysics Data System (ADS)

    Tavastsherna, K. S.; Polyakow, E. V.

    2014-12-01

    A correlation among coronal holes (CH), a large-scale magnetic field (LMF), and activity complexes (AC) is studied in this work for 1997-2007 with the use of a coronal hole series obtained from observations at the Kitt Peak Observatory in the HeI 10830 Å line in 1975-2003 and SOHO/EIT-195 Å in 1996-2012 (Tlatov et al., 2014), synoptic Hα charts from Kislovodsk Mountain Astonomical Station, and the catalog of AC cores (Yazev, 2012). From the imposition of CH boundaries on Hα charts, which characterize the positions of neutral lines of the radial components of a large-scale solar magnetic field, it turns out that 70% of CH are located in unipolar regions of their sign during the above period, 10% are in the region of an opposite sign, and 20% are mainly very large CH, which are often crossed by the neutral lines of several unipolar regions. Data on mutual arrangement of CH and AC cores were obtained. It was shown that only some activity comples cores have genetic relationships with CH.

  12. Large-scale full-field metrology using projected fringes: some challenges and solutions

    NASA Astrophysics Data System (ADS)

    Huntley, Jonathan M.; Ogundana, Tokunbo; Burguete, Richard L.; Coggrave, C. Russell

    2007-06-01

    The application of optical techniques to the measurement of shape and deformation of structures in the aerospace industry poses unique challenges resulting from the large length scales involved, which are typically in the 1-10 m range. For example, the relative immobility of large samples requires a network of sensors to be linked into a common global coordinate system; traceable calibration requires the development of new types of calibration artefact; and traditional interferometric techniques for displacement field mapping are frequently too sensitive to observe the physical effect of interest. We describe a system designed to address some of these problems based on the projected fringe technique combined with temporal phase unwrapping. Multiple cameras and projectors are linked into a common coordinate system using calibration concepts borrowed from the photogrammetry field. Traceable calibration is achieved through the use of reference spheres separated by a bar of known length. Traditional two-dimensional image processing techniques for recognizing circles (Hough transforms) have been extended to the automatic detection of spheres within the measured 3-D point clouds. Bundle adjustment software has been developed to refine the camera and projector calibration parameters as well as the rigid body translation and rotation coordinates defining the poses of the calibration artefact. An overview of all these aspects of the developed techniques is given in the paper. Typical results from a compression test on a large scale aluminium structure, performed on-site at Airbus UK using the developed system, are also presented.

  13. North American Lauraceae: terpenoid emissions, relative attraction and boring preferences of redbay ambrosia beetle, Xyleborus glabratus (coleoptera: curculionidae: scolytinae).

    PubMed

    Kendra, Paul E; Montgomery, Wayne S; Niogret, Jerome; Pruett, Grechen E; Mayfield, Albert E; MacKenzie, Martin; Deyrup, Mark A; Bauchan, Gary R; Ploetz, Randy C; Epsky, Nancy D

    2014-01-01

    The invasive redbay ambrosia beetle, Xyleborus glabratus, is the primary vector of Raffaelea lauricola, a symbiotic fungus and the etiologic agent of laurel wilt. This lethal disease has caused severe mortality of redbay (Persea borbonia) and swampbay (P. palustris) trees in the southeastern USA, threatens avocado (P. americana) production in Florida, and has potential to impact additional New World species. To date, all North American hosts of X. glabratus and suscepts of laurel wilt are members of the family Lauraceae. This comparative study combined field tests and laboratory bioassays to evaluate attraction and boring preferences of female X. glabratus using freshly-cut bolts from nine species of Lauraceae: avocado (one cultivar of each botanical race), redbay, swampbay, silkbay (Persea humilis), California bay laurel (Umbellularia californica), sassafras (Sassafras albidum), northern spicebush (Lindera benzoin), camphor tree (Cinnamomum camphora), and lancewood (Nectandra coriacea). In addition, volatile collections and gas chromatography-mass spectroscopy (GC-MS) were conducted to quantify terpenoid emissions from test bolts, and electroantennography (EAG) was performed to measure olfactory responses of X. glabratus to terpenoids identified by GC-MS. Significant differences were observed among treatments in both field and laboratory tests. Silkbay and camphor tree attracted the highest numbers of the beetle in the field, and lancewood and spicebush the lowest, whereas boring activity was greatest on silkbay, bay laurel, swampbay, and redbay, and lowest on lancewood, spicebush, and camphor tree. The Guatemalan cultivar of avocado was more attractive than those of the other races, but boring response among the three was equivalent. The results suggest that camphor tree may contain a chemical deterrent to boring, and that different cues are associated with host location and host acceptance. Emissions of α-cubebene, α-copaene, α-humulene, and calamenene were

  14. North American Lauraceae: terpenoid emissions, relative attraction and boring preferences of redbay ambrosia beetle, Xyleborus glabratus (coleoptera: curculionidae: scolytinae).

    PubMed

    Kendra, Paul E; Montgomery, Wayne S; Niogret, Jerome; Pruett, Grechen E; Mayfield, Albert E; MacKenzie, Martin; Deyrup, Mark A; Bauchan, Gary R; Ploetz, Randy C; Epsky, Nancy D

    2014-01-01

    The invasive redbay ambrosia beetle, Xyleborus glabratus, is the primary vector of Raffaelea lauricola, a symbiotic fungus and the etiologic agent of laurel wilt. This lethal disease has caused severe mortality of redbay (Persea borbonia) and swampbay (P. palustris) trees in the southeastern USA, threatens avocado (P. americana) production in Florida, and has potential to impact additional New World species. To date, all North American hosts of X. glabratus and suscepts of laurel wilt are members of the family Lauraceae. This comparative study combined field tests and laboratory bioassays to evaluate attraction and boring preferences of female X. glabratus using freshly-cut bolts from nine species of Lauraceae: avocado (one cultivar of each botanical race), redbay, swampbay, silkbay (Persea humilis), California bay laurel (Umbellularia californica), sassafras (Sassafras albidum), northern spicebush (Lindera benzoin), camphor tree (Cinnamomum camphora), and lancewood (Nectandra coriacea). In addition, volatile collections and gas chromatography-mass spectroscopy (GC-MS) were conducted to quantify terpenoid emissions from test bolts, and electroantennography (EAG) was performed to measure olfactory responses of X. glabratus to terpenoids identified by GC-MS. Significant differences were observed among treatments in both field and laboratory tests. Silkbay and camphor tree attracted the highest numbers of the beetle in the field, and lancewood and spicebush the lowest, whereas boring activity was greatest on silkbay, bay laurel, swampbay, and redbay, and lowest on lancewood, spicebush, and camphor tree. The Guatemalan cultivar of avocado was more attractive than those of the other races, but boring response among the three was equivalent. The results suggest that camphor tree may contain a chemical deterrent to boring, and that different cues are associated with host location and host acceptance. Emissions of α-cubebene, α-copaene, α-humulene, and calamenene were

  15. North American Lauraceae: Terpenoid Emissions, Relative Attraction and Boring Preferences of Redbay Ambrosia Beetle, Xyleborus glabratus (Coleoptera: Curculionidae: Scolytinae)

    PubMed Central

    Kendra, Paul E.; Montgomery, Wayne S.; Niogret, Jerome; Pruett, Grechen E.; Mayfield, Albert E.; MacKenzie, Martin; Deyrup, Mark A.; Bauchan, Gary R.; Ploetz, Randy C.; Epsky, Nancy D.

    2014-01-01

    The invasive redbay ambrosia beetle, Xyleborus glabratus, is the primary vector of Raffaelea lauricola, a symbiotic fungus and the etiologic agent of laurel wilt. This lethal disease has caused severe mortality of redbay (Persea borbonia) and swampbay (P. palustris) trees in the southeastern USA, threatens avocado (P. americana) production in Florida, and has potential to impact additional New World species. To date, all North American hosts of X. glabratus and suscepts of laurel wilt are members of the family Lauraceae. This comparative study combined field tests and laboratory bioassays to evaluate attraction and boring preferences of female X. glabratus using freshly-cut bolts from nine species of Lauraceae: avocado (one cultivar of each botanical race), redbay, swampbay, silkbay (Persea humilis), California bay laurel (Umbellularia californica), sassafras (Sassafras albidum), northern spicebush (Lindera benzoin), camphor tree (Cinnamomum camphora), and lancewood (Nectandra coriacea). In addition, volatile collections and gas chromatography-mass spectroscopy (GC-MS) were conducted to quantify terpenoid emissions from test bolts, and electroantennography (EAG) was performed to measure olfactory responses of X. glabratus to terpenoids identified by GC-MS. Significant differences were observed among treatments in both field and laboratory tests. Silkbay and camphor tree attracted the highest numbers of the beetle in the field, and lancewood and spicebush the lowest, whereas boring activity was greatest on silkbay, bay laurel, swampbay, and redbay, and lowest on lancewood, spicebush, and camphor tree. The Guatemalan cultivar of avocado was more attractive than those of the other races, but boring response among the three was equivalent. The results suggest that camphor tree may contain a chemical deterrent to boring, and that different cues are associated with host location and host acceptance. Emissions of α-cubebene, α-copaene, α-humulene, and calamenene were

  16. DNA from Dust: Comparative Genomics of Large DNA Viruses in Field Surveillance Samples

    PubMed Central

    Pandey, Utsav; Bell, Andrew S.; Renner, Daniel W.; Kennedy, David A.; Shreve, Jacob T.; Cairns, Chris L.; Jones, Matthew J.; Dunn, Patricia A.; Read, Andrew F.

    2016-01-01

    ABSTRACT The intensification of the poultry industry over the last 60 years facilitated the evolution of increased virulence and vaccine breaks in Marek’s disease virus (MDV-1). Full-genome sequences are essential for understanding why and how this evolution occurred, but what is known about genome-wide variation in MDV comes from laboratory culture. To rectify this, we developed methods for obtaining high-quality genome sequences directly from field samples without the need for sequence-based enrichment strategies prior to sequencing. We applied this to the first characterization of MDV-1 genomes from the field, without prior culture. These viruses were collected from vaccinated hosts that acquired naturally circulating field strains of MDV-1, in the absence of a disease outbreak. This reflects the current issue afflicting the poultry industry, where virulent field strains continue to circulate despite vaccination and can remain undetected due to the lack of overt disease symptoms. We found that viral genomes from adjacent field sites had high levels of overall DNA identity, and despite strong evidence of purifying selection, had coding variations in proteins associated with virulence and manipulation of host immunity. Our methods empower ecological field surveillance, make it possible to determine the basis of viral virulence and vaccine breaks, and can be used to obtain full genomes from clinical samples of other large DNA viruses, known and unknown. IMPORTANCE Despite both clinical and laboratory data that show increased virulence in field isolates of MDV-1 over the last half century, we do not yet understand the genetic basis of its pathogenicity. Our knowledge of genome-wide variation between strains of this virus comes exclusively from isolates that have been cultured in the laboratory. MDV-1 isolates tend to lose virulence during repeated cycles of replication in the laboratory, raising concerns about the ability of cultured isolates to accurately

  17. Seeking large-scale magnetic fields in a pure-disk dwarf galaxy NGC 2976

    NASA Astrophysics Data System (ADS)

    Drzazga, R. T.; Chyży, K. T.; Heald, G. H.; Elstner, D.; Gallagher, J. S.

    2016-05-01

    Aims: It is still unknown how magnetic field-generation mechanisms could operate in low-mass dwarf galaxies. Here, we present a detailed study of a nearby pure-disk dwarf galaxy NGC 2976. Unlike previously observed dwarf objects, this galaxy possesses a clearly defined disk. We also discuss whether NGC 2976 could serve as a potential source of the intergalactic magnetic field. Methods: For the purpose of our studies, we performed deep multi-frequency polarimetric observations of NGC 2976 with the VLA and Effelsberg radio telescopes. Additionally, we supplement them with re-imaged data from the WSRT-SINGS survey for which a rotation measure (RM) synthesis was performed. A new weighting scheme for the RM synthesis algorithm, consisting of including information about the quality of data in individual frequency channels, was proposed and investigated. Application of this new weighting to the simulated data, as well as to the observed data, results in an improvement of the signal-to-noise ratio in the Faraday depth space. Results: The magnetic field morphology discovered in NGC 2976 consists of a southern polarized ridge. This structure does not seem to be due to just a pure large-scale dynamo process (possibly cosmic-ray driven) at work in this object, as indicated by the RM data and dynamo number calculations. Instead, the field of NGC 2976 is modified by past gravitational interactions and possibly also by ram pressure inside the M 81 galaxy group environment. The estimates of total (7 μG) and ordered (3 μG) magnetic field strengths, as well as degree of field order (0.46), which is similar to those observed in spirals, suggest that tidally generated magnetized gas flows can further enhance dynamo action in the object. NGC 2976 is apparently a good candidate for the efficient magnetization of its neighbourhood. It is able to provide an ordered (perhaps also regular) magnetic field into the intergalactic space up to a distance of about 5 kpc. Conclusions: Tidal

  18. Non-mean-field theory of anomalously large double layer capacitance

    NASA Astrophysics Data System (ADS)

    Loth, M. S.; Skinner, Brian; Shklovskii, B. I.

    2010-07-01

    Mean-field theories claim that the capacitance of the double layer formed at a metal/ionic conductor interface cannot be larger than that of the Helmholtz capacitor, whose width is equal to the radius of an ion. However, in some experiments the apparent width of the double layer capacitor is substantially smaller. We propose an alternate non-mean-field theory of the ionic double layer to explain such large capacitance values. Our theory allows for the binding of discrete ions to their image charges in the metal, which results in the formation of interface dipoles. We focus primarily on the case where only small cations are mobile and other ions form an oppositely charged background. In this case, at small temperature and zero applied voltage dipoles form a correlated liquid on both contacts. We show that at small voltages the capacitance of the double layer is determined by the transfer of dipoles from one electrode to the other and is therefore limited only by the weak dipole-dipole repulsion between bound ions so that the capacitance is very large. At large voltages the depletion of bound ions from one of the capacitor electrodes triggers a collapse of the capacitance to the much smaller mean-field value, as seen in experimental data. We test our analytical predictions with a Monte Carlo simulation and find good agreement. We further argue that our “one-component plasma” model should work well for strongly asymmetric ion liquids. We believe that this work also suggests an improved theory of pseudocapacitance.

  19. Stress-induced large anisotropy field modulation in Ni films deposited on a flexible substrate

    NASA Astrophysics Data System (ADS)

    Asai, R.; Ota, S.; Namazu, T.; Takenobu, T.; Koyama, T.; Chiba, D.

    2016-08-01

    A tensile strain on the order of a few percent was created in Ni thin films deposited on a flexible polyethylene naphthalate substrate, and the strain-induced change in the magnetic anisotropy was investigated. The magnetic easy axis was reversibly switched by 90° by the application of the stress. The easy axis was orthogonal to the applied stress. The in-plane saturation magnetic field or the uniaxial magnetic anisotropy energy changed linearly in reaction to the applied tensile strain up to a strain of 2.3%. Moreover, a large difference in the saturation magnetic field up to ˜0.3 T, which corresponds to a change in the magnetic anisotropy energy of ˜7 × 104 J/m3, was realized. The effective magnetoelastic coupling constant was almost independent of the thickness of Ni.

  20. Large amplitude spin torque vortex oscillations at zero external field using a perpendicular spin polarizer

    SciTech Connect

    Dussaux, A.; Rache Salles, B.; Jenkins, A. S.; Bortolotti, P.; Grollier, J.; Cros, V.; Fert, A.; Khvalkovskiy, A. V.; Kubota, H.; Fukushima, A.; Yakushiji, K.; Yuasa, S.

    2014-07-14

    We investigate the microwave response of a spin transfer vortex based oscillator in a magnetic tunnel junction with an in-plane reference layer combined with a spin valve with an out-of-plane magnetization spin polarizing layer. The main advantage of this perpendicular spin polarizer is to induce a large spin transfer force even at zero magnetic field, thus leading to a record emitted power (up to 0.6 μW) associated to a very narrow spectral linewidth of a few hundreds of kHz. The characteristics of this hybrid vortex based spin transfer nano-oscillator obtained at zero field and room temperature are of great importance for applications based on rf spintronic devices as integrated and tunable microwave source and/or microwave detector.

  1. DE-2 photoelectron measurements consistent with a large scale parallel electric field over the polar cap

    NASA Technical Reports Server (NTRS)

    Winningham, J. D.; Gurgiolo, C.

    1982-01-01

    Winningham and Heikkila (1974) presented observations of various polar cap particle morphologies. They interpreted observations of 'anomalous' photoelectron angular distribution over the polar caps to be indicative of a large scale, outwardly directed, parallel electric field over the polar cap. The parallel field was observed to be spatially and/or temporarily variable. However, results obtained by Winningham and Heikkila have one weakness, which is related to the lack of simultaneous observations at many pitch angles. The present investigation is, therefore, concerned with the presentation of results from Dynamics Explorer 2 (DE-2) which confirm the experimental results of Winningham and Heikkila. It is concluded that the earth's polar caps act much like any conductor immersed in a plasma and illuminated by sunlight. DE-1 and DE-2 would then represent tiny point probes examining the internal details in the sheath region of the polar cap.

  2. The structure of the white-light corona and the large-scale solar magnetic field

    NASA Technical Reports Server (NTRS)

    Sime, D. G.; Mccabe, M. K.

    1990-01-01

    The large-scale density structure of the white-light solar corona is compared to the organization of the solar magnetic field as identified by the appearance of neutral lines in the photosphere to examine whether any consistent relationship exists between the two. During the period covering Carrington rotations 1717 to 1736 brightness enhancements in the low corona tend to lie over the global neutral sheet identified in the photospheric magnetic field. The brightest of these enhancements are associated with neutral lines throguh active regions. These associations are not 1-1, but do hold both in stable and evolving conditions of the corona. A significant number of long-lived neutral lines is found, including filaments seen in H-alpha, for which there are not coronal enhancements.

  3. Generation of large scale field-aligned density irregularities in ionospheric heating experiments. [electromagnetic wave decay

    NASA Technical Reports Server (NTRS)

    Fejer, J. A.

    1974-01-01

    Threshold and growth rate for stimulated Brillouin scattering are calculated for a uniform magnetoplasma. These are then compared with the threshold and growth rate of a new thermal instability in which the nonlinear Lorentz force felt by the electrons at the beat frequency of the two electromagnetic waves is replaced by a pressure force due to differential heating in the interference pattern of the pump wave and the generated electromagnetic wave. This thermal instability, which is still essentially stimulated Brillouin scattering, has a threshold which is especially low when the propagation vector of the beat wave is almost normal to the magnetic field. The threshold is then considerably lower than the threshold for normal stimulated Brillouin scattering and therefore this new instability is probably responsible for the generation of large scale field aligned irregularities and ionospheric spread F.

  4. Modeling an unmitigated thermal quench event in a large field magnet in a DEMO reactor

    DOE PAGESBeta

    Merrill, Brad J.

    2015-03-25

    The superconducting magnet systems of future fusion reactors, such as a Demonstration Power Plant (DEMO), will produce magnetic field energies in the 10 s of GJ range. The release of this energy during a fault condition could produce arcs that can damage the magnets of these systems. The public safety consequences of such events must be explored for a DEMO reactor because the magnets are located near the DEMO's primary radioactive confinement barrier, the reactor's vacuum vessel (VV). Great care will be taken in the design of DEMO's magnet systems to detect and provide a rapid field energy dump tomore » avoid any accidents conditions. During an event when a fault condition proceeds undetected, the potential of producing melting of the magnet exists. If molten material from the magnet impinges on the walls of the VV, these walls could fail, resulting in a pathway for release of radioactive material from the VV. A model is under development at Idaho National Laboratory (INL) called MAGARC to investigate the consequences of this accident in a large toroidal field (TF) coil. Recent improvements to this model are described in this paper, along with predictions for a DEMO relevant event in a toroidal field magnet.« less

  5. Modeling an unmitigated thermal quench event in a large field magnet in a DEMO reactor

    SciTech Connect

    Merrill, Brad J.

    2015-03-25

    The superconducting magnet systems of future fusion reactors, such as a Demonstration Power Plant (DEMO), will produce magnetic field energies in the 10 s of GJ range. The release of this energy during a fault condition could produce arcs that can damage the magnets of these systems. The public safety consequences of such events must be explored for a DEMO reactor because the magnets are located near the DEMO's primary radioactive confinement barrier, the reactor's vacuum vessel (VV). Great care will be taken in the design of DEMO's magnet systems to detect and provide a rapid field energy dump to avoid any accidents conditions. During an event when a fault condition proceeds undetected, the potential of producing melting of the magnet exists. If molten material from the magnet impinges on the walls of the VV, these walls could fail, resulting in a pathway for release of radioactive material from the VV. A model is under development at Idaho National Laboratory (INL) called MAGARC to investigate the consequences of this accident in a large toroidal field (TF) coil. Recent improvements to this model are described in this paper, along with predictions for a DEMO relevant event in a toroidal field magnet.

  6. Out-of-core Compression and Decompression of Large n-dimensional Scalar Fields

    SciTech Connect

    Ibarria, L; Lindstrom, P; Rossignac, J; Szymczak, A

    2003-02-03

    We present a simple method for compressing very large and regularly sampled scalar fields. Our method is particularly attractive when the entire data set does not fit in memory and when the sampling rate is high relative to the feature size of the scalar field in all dimensions. Although we report results for R{sup 3} and R{sup 4} data sets, the proposed approach may be applied to higher dimensions. The method is based on the new Lorenzo predictor, introduced here, which estimates the value of the scalar field at each sample from the values at processed neighbors. The predicted values are exact when the n-dimensional scalar field is an implicit polynomial of degree n-1. Surprisingly, when the residuals (differences between the actual and predicted values) are encoded using arithmetic coding, the proposed method often outperforms wavelet compression in an L{infinity} sense. The proposed approach may be used both for lossy and lossless compression and is well suited for out-of-core compression and decompression, because a trivial implementation, which sweeps through the data set reading it once, requires maintaining only a small buffer in core memory, whose size barely exceeds a single n-1 dimensional slice of the data.

  7. Out-of-Core Compression and Decompression of Large n-Dimensional Scalar Fields

    SciTech Connect

    Ibarria, L; Lindstrom, P; Rossignac, J; Szymczak, A

    2003-05-07

    We present a simple method for compressing very large and regularly sampled scalar fields. Our method is particularly attractive when the entire data set does not fit in memory and when the sampling rate is high relative to the feature size of the scalar field in all dimensions. Although we report results for R{sup 3} and R{sup 4} data sets, the proposed approach may be applied to higher dimensions. The method is based on the new Lorenzo predictor, introduced here, which estimates the value of the scalar field at each sample from the values at processed neighbors. The predicted values are exact when the n-dimensional scalar field is an implicit polynomial of degree n-1. Surprisingly, when the residuals (differences between the actual and predicted values) are encoded using arithmetic coding, the proposed method often outperforms wavelet compression in an L{infinity} sense. The proposed approach may be used both for lossy and lossless compression and is well suited for out-of-core compression and decompression, because a trivial implementation, which sweeps through the data set reading it once, requires maintaining only a small buffer in core memory, whose size barely exceeds a single n-1 dimensional slice of the data.

  8. Development of Dynamic Flow Field Pressure Probes Suitable for Use in Large Scale Supersonic Wind Tunnels

    NASA Technical Reports Server (NTRS)

    Porro, A. Robert

    2000-01-01

    A series of dynamic flow field pressure probes were developed for use in large-scale supersonic wind tunnels at NASA Glenn Research Center. These flow field probes include pitot, static, and five-hole conical pressure probes that are capable of capturing fast acting flow field pressure transients that occur on a millisecond time scale. The pitot and static probes can be used to determine local Mach number time histories during a transient event. The five-hole conical pressure probes are used primarily to determine local flow angularity, but can also determine local Mach number. These probes were designed, developed, and tested at the NASA Glenn Research Center. They were also used in a NASA Glenn 10-by 10-Foot Supersonic Wind Tunnel (SWT) test program where they successfully acquired flow field pressure data in the vicinity of a propulsion system during an engine compressor staff and inlet unstart transient event. Details of the design, development, and subsequent use of these probes are discussed in this report.

  9. Improved confinement region without large magnetohydrodynamic activity in TPE-RX reversed-field pinch plasma

    SciTech Connect

    Yambe, Kiyoyuki; Hirano, Yoichi; Sakakita, Hajime; Koguchi, Haruhisa

    2014-11-15

    We found that spontaneous improved confinement was brought about depending on the operating region in the Toroidal Pinch Experiment-Reversed eXperiment (TPE-RX) reversed-field pinch plasma [Y. Yagi et al., Fusion Eng. Des. 45, 421 (1999)]. Gradual decay of the toroidal magnetic field at plasma surface B{sub tw} reversal makes it possible to realize a prolonged discharge, and the poloidal beta value and energy confinement time increase in the latter half of the discharge, where reversal and pinch parameters become shallow and low, respectively. In the latter half of the discharge, the plasma current and volume-averaged toroidal magnetic field 〈B{sub t}〉 increase again, the electron density slowly decays, the electron temperature and soft X-ray radiation intensity increase, and the magnetic fluctuations are markedly reduced. In this period of improved confinement, the value of (〈B{sub t}〉-B{sub tw})/B{sub pw}, where B{sub pw} is the poloidal magnetic field at the plasma surface, stays almost constant, which indicates that the dynamo action occurs without large magnetohydrodynamic activities.

  10. Optimization of a large integrated area development of gas fields offshore Sarawak, Malaysia

    SciTech Connect

    Inyang, S.E.; Tak, A.N.H.; Costello, G.

    1995-10-01

    Optimizations of field development plans are routine in the industry. The size, schedule and nature of the upstream gas supply project to the second Malaysia LNG (MLNG Dua) plant in Bintulu, Sarawak made the need for extensive optimizations critical to realizing a robust and cost effective development scheme, and makes the work of more general interest. The project comprises the upstream development of 11 offshore fields for gas supply to MLNG Dua plant at an initial plateau production of 7.8 million tons per year of LNG. The gas fields span a large geographical area in medium water depths (up to 440 ft), and contain gas reserves of a distinctly variable gas quality. This paper describes the project optimization efforts aimed to ensure an upstream gas supply system effectiveness of over 99% throughout the project life while maintaining high safety and environmental standards and also achieving an economic development in an era of low hydrocarbon prices. Fifty percent of the first of the three phases of this gas supply project has already been completed and the first gas from these fields is scheduled to be available by the end of 1995.

  11. Far-field pattern of a coherently combined beam from large-scale laser diode arrays

    NASA Technical Reports Server (NTRS)

    Kwon, Jin H.; Lee, Ja H.; Williams, Michael D.

    1991-01-01

    The far-field pattern of a large-scale amplifier array (LSAA) consisting of a large number (2000) of diode laser amplifiers is numerically simulated, and the power collection efficiencies are determined. Random distributions of phase mismatches, misorientations, and element failures in the LSAA system are considered. Phase mismatches and misorientations of the element amplifiers are found to be the most critical parameters of those affecting the power-collection efficiency. Errors of 0.2 wavelength and 25 percent for phase and diffraction angle, respectively, cause a 10 percent reduction in power-collection efficiency. The results are used to evaluate the concept of space-laser power transmission. It is found that an overall transmission efficiency of 80 percent could be realized with a 5-m-diam. receiver at a distance of 10,000 km when an LSAA transmitter 6 m in diam. is aimed with state-of-the-art pointing accuracy.

  12. The two-dimensional three-body problem in the large magnetic field limit is integrable

    NASA Astrophysics Data System (ADS)

    Botero, A.; Leyvraz, F.

    2016-06-01

    The problem of N particles interacting through pairwise central forces is notoriously intractable for N ≥ 3. Some remarkable specific cases have been solved in one dimension. Here we show that the guiding center approximation-valid for charges moving in two dimensions in the limit of large constant magnetic fields-simplifies the three-body problem for an arbitrary interparticle interaction invariant under rotations and translations, making it solvable by quadratures. A spinorial representation for the system is introduced, which allows a visualization of its phase space as the corresponding Bloch sphere. Finally, a discussion of the quantization of the problem is presented.

  13. A slotted waveguide field applicator to sustain large diameter uniform plasma cylinders.

    PubMed

    Wu, C; Zhan, R; Huang, W

    2000-01-01

    We describe a slotted waveguide field applicator and present the results of experimental investigation. The experimental results show that it can efficiently transfer power to plasma in the wide pressure range. Specially, it is able to produce a large diameter uniform plasma cylinder with diameter over 160 mm. The electron temperature and density are 2-4 eV and 10(10)-10(11) cm-3, respectively, under conditions of the pressure below 135 Pa and the microwave power 500-900 w. In addition, the primary study of the surface-wave modes indicate that the mode of m = 6 can be excited and propagate.

  14. Large-Scale Field Study of Landfill Covers at Sandia National Laboratories

    SciTech Connect

    Dwyer, S.F.

    1998-09-01

    A large-scale field demonstration comparing final landfill cover designs has been constructed and is currently being monitored at Sandia National Laboratories in Albuquerque, New Mexico. Two conventional designs (a RCRA Subtitle `D' Soil Cover and a RCRA Subtitle `C' Compacted Clay Cover) were constructed side-by-side with four alternative cover test plots designed for dry environments. The demonstration is intended to evaluate the various cover designs based on their respective water balance performance, ease and reliability of construction, and cost. This paper presents an overview of the ongoing demonstration.

  15. Large amplitude free vibrations of Timoshenko beams at higher modes using coupled displacement field method

    NASA Astrophysics Data System (ADS)

    Krishna Bhaskar, K.; Meera Saheb, K.

    2015-12-01

    A simple but accurate continuum solution for the shear flexible beam problem using the energy method involves in assuming suitable single term admissible functions for the lateral displacement and total rotation. This leads to two non-linear temporal differential equations in terms of the lateral displacement and the total rotation and are difficult, if not impossible, to solve to obtain the large amplitude fundamental frequencies of beams as a function of the amplitude and slenderness ratios of the vibrating beam. This situation can be avoided if one uses the concept of coupled displacement field where in the fields for lateral displacement and the total rotation are coupled through the static equilibrium equation. In this paper the lateral displacement field is assumed and the field for the total rotation is evaluated through the coupling equation. This approach leads to only one undetermined coefficient which can easily be used in the principle of conservation of total energy of the vibrating beam at a given time, neglecting damping. Finally, through a number of algebraic manipulations, one gets a nonlinear equation of Duffing type which can be solved using any standard method. To demonstrate the simplicity of the method discussed above the problem of large amplitude free vibrations of a uniform shear flexible hinged beam at higher modes with ends immovable to move axially has been solved. The numerical results obtained from the present formulation are in very good agreement with those obtained through finite element and other continuum methods for the fundamental mode, thus demonstrating the efficacy of the proposed method. Also some interesting observations are made with variation of frequency Vs amplitude at different modes.

  16. The IR-resummed Effective Field Theory of Large Scale Structures

    SciTech Connect

    Senatore, Leonardo; Zaldarriaga, Matias E-mail: matiasz@ias.edu

    2015-02-01

    We present a new method to resum the effect of large scale motions in the Effective Field Theory of Large Scale Structures. Because the linear power spectrum in ΛCDM is not scale free the effects of the large scale flows are enhanced. Although previous EFT calculations of the equal-time density power spectrum at one and two loops showed a remarkable agreement with numerical results, they also showed a 2% residual which appeared related to the BAO oscillations. We show that this was indeed the case, explain the physical origin and show how a Lagrangian based calculation removes this differences. We propose a simple method to upgrade existing Eulerian calculations to effectively make them Lagrangian and compare the new results with existing fits to numerical simulations. Our new two-loop results agrees with numerical results up to k∼ 0.6 h Mpc{sup −1} to within 1% with no oscillatory residuals. We also compute power spectra involving momentum which is significantly more affected by the large scale flows. We show how keeping track of these velocities significantly enhances the UV reach of the momentum power spectrum in addition to removing the BAO related residuals. We compute predictions for the real space correlation function around the BAO scale and investigate its sensitivity to the EFT parameters and the details of the resummation technique.

  17. Bore holes and the vanishing of guinea worm disease in Ghana's upper region.

    PubMed

    Hunter, J M

    1997-07-01

    Ghana's Upper Region provides an excellent example of the beneficial effects of improved water security provided by hand-pump tube wells. Following a Ghana-Canada bilateral development project that installed some 2500 pumps, protection rates against guinea worm disease may be estimated as 88% in the west, and 96% in the east. Survey comparisons between ca 1960 and 1990 show that dracunculiasis declined in 32 of a total of 38 areas. The shadow of guinea worm has been lifted from the land and, in many areas, a true "vanishing" has occurred. The few areas of disease increase are characterized by the lowest population densities, pioneer settlement for cotton farming, and an absence of bore holes. Vagaries of development have inadvertently produced disease transformations or "metamorphoses" from dracunculiasis to elephantiasis (lymphatic filariasis) in one area, and to red water disease (schistosomiasis hematobium) in other areas. Correlative associations between pump densities and guinea worm disease are weakened by the large size of areas for which disease is reported in 1990. One preliminary finding is that geographical distance to the pump is a stronger influence than demographic pressure on pumps, regarding dracunculiasis. Diminishing returns on higher pump densities in many areas support the idea of making fuller, safer use of supplementary non-pump water. Despite crises of fee payment and pump maintenance, the rural bore hole project has struck a mortal blow against guinea worm, and permanently raised the quality of life in the Upper Region.

  18. Generation of large field SEM image by panorama composition technology for nano-order measurement

    NASA Astrophysics Data System (ADS)

    Miyamoto, Atsushi; Hojyo, Yutaka

    2016-02-01

    Semiconductor manufacturing has a pressing need for a method to accurately evaluate the global shape deformation of a photomask pattern. We thus propose a novel composition technique for a large field panorama image of scanning electron microscopy (SEM). The proposed method optimises the arrangement of segmented imaging regions (SIRs), which are components of a panorama image, on the basis of the design data of the photomask pattern layout. The quantity of the line pattern segment, which is a clue to the connection in an overlapping region between adjoining SIRs and the connectability of any two SIRs, is evaluated. As a result of the optimisation, it is guaranteed that all SIR images can be connected theoretically. For 30 evaluation points, the maximum connection error of the SIR images was 1.5 nm in a simulation using pseudo-SEM images. The maximum total measurement error, which includes the connection error and CD measurement error from the panorama image, is estimated at 2.5 nm. This error was equivalent to about 1.4% of the photomask line width (target: 3%). The experiments using real SEM images demonstrate the effectiveness of the proposed method. It was visually confirmed that a large field, high-resolution and seamless panorama image can be generated.

  19. Effects of larval density in Ambystoma opacum: An experiment in large-scale field enclosures

    SciTech Connect

    Scott, D.E. )

    1990-02-01

    This experiment was designed to measure the effects of larval density on larval traits in the salamander Ambystoma opacum, and to ascertain whether previous studies conducted at smaller spatial scales or higher densities produced artifactual results. Density effects on larval growth, body size at metamorphosis, length of larval period, and survival to metamorphosis were studied in A. opacum in large-scale (41 m{sup 2} and 23 m{sup 2}) field enclosures in two temporary ponds. Each enclosure contained indigenous populations of prey (zooplankton and insects) and predators, as well as the range of microhabitats present in these natural ponds. Initial larval densities were chosen to represent high and low levels of naturally occurring mean densities. The results suggest that, in natural ponds, the importance of intraspecific competition is dependent upon hydroperiod, and the intensity of competition influences predation risk. Thus, both density-dependent and density-independent factors affect body size and recruitment of larval A. opacum into the adult population. The use of large-scale field enclosures has advantages and disadvantages: it allows the examination of density-dependent processes under natural conditions and provides high statistical power because of low variability in larval traits; however, experimental designs must be simple and underlying mechanisms are difficult to identify.

  20. On the possible origin of the large scale cosmic magnetic field

    SciTech Connect

    Coroniti, F. V.

    2014-01-10

    The possibility that the large scale cosmic magnetic field is directly generated at microgauss, equipartition levels during the reionization epoch by collisionless shocks that are forced to satisfy a downstream shear flow boundary condition is investigated through the development of two models—the accretion of an ionized plasma onto a weakly ionized cool galactic disk and onto a cool filament of the cosmic web. The dynamical structure and the physical parameters of the models are synthesized from recent cosmological simulations of the early reionization era after the formation of the first stars. The collisionless shock stands upstream of the disk and filament, and its dissipation is determined by ion inertial length Weibel turbulence. The downstream shear boundary condition is determined by the rotational neutral gas flow in the disk and the inward accretion flow along the filament. The shocked plasma is accelerated to the downstream shear flow velocity by the Weibel turbulence, and the relative shearing motion between the electrons and ions produces a strong, ion inertial scale current sheet that generates an equipartition strength, large scale downstream magnetic field, ∼10{sup –6} G for the disk and ∼6 × 10{sup –8} G for the filament. By assumption, hydrodynamic turbulence transports the shear-shock generated magnetic flux throughout the disk and filament volume.

  1. Large-Scale Magnetic Field in Accretion Disks and Relativistic Poynting-Flux Jets

    NASA Astrophysics Data System (ADS)

    Lovelace, R. V. E.; Bisnovatyi-Kogan, G. S.

    In earlier works we pointed out that the disk's surface layers are non-turbulent and thus highly conducting (or non-diffusive) because of hydrodynamic and/or magnetorotational (MRI) instabilities are suppressed high in the disk where the magnetic and radiation pressures are larger than the plasma thermal pressure. We have derived equations for the vertical profiles of stationary accretion flows (with radial and azimuthal components), and the profiles of the large-scale, magnetic field taking into account the turbulent viscosity and diffusivity and the fact that the turbulence vanishes at the surface of the disk. Our recent analysis in Ref. 1 shows that the inward or outward advection of the large-scale magnetic field depends on the ratio {R} of the accretion power going into magnetic disk winds to the viscous power dissipation and the plasma-β which is the ratio of the midplane plasma pressure to the magnetic pressure. Recent radio emission, polarization, and Faraday rotation maps of the radio jet of the galaxy 3C303 have been obtained in Ref. 2 and show that one component of this jet has a galactic-scale electric current of 3 × 1018 A flowing along the jet axis. We show that this current can be used to calculate the electromagnetic energy flow in this magnetically dominated jet.

  2. A Systematic Search for Low-mass Field Stars with Large Infrared Excesses

    NASA Astrophysics Data System (ADS)

    Theissen, Christopher; West, Andrew A.

    2016-06-01

    We present a systematic search for low-mass field stars exhibiting extreme infrared (IR) excesses. One potential cause of the IR excess is the collision of terrestrial worlds. Our input stars are from the Motion Verified Red Stars (MoVeRS) catalog. Candidate stars are then selected based on large deviations (3σ) between their measured Wide-field Infrared Survey Explorer (WISE) 12 μm flux and their expected flux (as estimated from stellar models). We investigate the stellar mass and time dependence for stars showing extreme IR excesses, using photometric colors from the Sloan Digital Sky Survey (SDSS) and Galactic height as proxies for mass and time, respectively. Using a Galactic kinematic model, we estimate the completeness for our sample as a function of line-of-sight through the Galaxy, estimating the number of low-mass stars that should exhibit extreme IR excesses within a local volume. The potential for planetary collisions to occur over a large range of stellar masses and ages has serious implications for the habitability of planetary systems around low-mass stars.

  3. The significance of large variations in oil properties of the Dai Hung field, Vietnam

    SciTech Connect

    Behrenbruch, P.; Du, P.Q.

    1995-10-01

    The Dai Hung Oil field, offshore Vietnam, is comprised of a complex subsurface structure containing stacked reservoir sequences typically found in many other Southeast Asian fields. Combined with areal fault compartmentalization, this situation has led to the observed, large variations in oil properties. Furthermore, the depositional environment in terms of burial history has created a unique overpressure situation which also had an affect, particularly on the crude saturation conditions of individual reservoirs. For commercial and technical reasons, this situation required a detailed analysis, both in terms of variation in crude assay and live oil properties. For whole crude properties: gravity, K factor, wax content and pour point-graphs were drawn up using a large data base of worldwide crudes against which the Dai Hung data could be validated. In case of PVT properties (bubble point and formation volume factor) existing industry correlations were examined. It could be concluded that the sweet, medium gravity and moderately waxy Dai Hung crude has whole crude properties which are comparable to other, similar crudes. The general framework of crude properties established is suitable to type other crudes, even if limited information is available. Of the existing PVT correlations tested, it was found that Standing`s correlation for the oil formation volume factor and the Kartoatmodjo-Schmidt correlation for the bubble point fitted the Dai Hung crude data the best. For the lower shrinkage Dai Hung crudes the Malaysian oil formation volume factor correlation by Omar-Todd gave the best data fit.

  4. A large field of view two-photon mesoscope with subcellular resolution for in vivo imaging

    PubMed Central

    Sofroniew, Nicholas James; Flickinger, Daniel; King, Jonathan; Svoboda, Karel

    2016-01-01

    Imaging is used to map activity across populations of neurons. Microscopes with cellular resolution have small (<1 millimeter) fields of view and cannot simultaneously image activity distributed across multiple brain areas. Typical large field of view microscopes do not resolve single cells, especially in the axial dimension. We developed a 2-photon random access mesoscope (2p-RAM) that allows high-resolution imaging anywhere within a volume spanning multiple brain areas (∅ 5 mm x 1 mm cylinder). 2p-RAM resolution is near diffraction limited (lateral, 0.66 μm, axial 4.09 μm at the center; excitation wavelength = 970 nm; numerical aperture = 0.6) over a large range of excitation wavelengths. A fast three-dimensional scanning system allows efficient sampling of neural activity in arbitrary regions of interest across the entire imaging volume. We illustrate the use of the 2p-RAM by imaging neural activity in multiple, non-contiguous brain areas in transgenic mice expressing protein calcium sensors. DOI: http://dx.doi.org/10.7554/eLife.14472.001 PMID:27300105

  5. Photometric Calibration and Image Stitching for a Large Field of View Multi-Camera System

    PubMed Central

    Lu, Yu; Wang, Keyi; Fan, Gongshu

    2016-01-01

    A new compact large field of view (FOV) multi-camera system is introduced. The camera is based on seven tiny complementary metal-oxide-semiconductor sensor modules covering over 160° × 160° FOV. Although image stitching has been studied extensively, sensor and lens differences have not been considered in previous multi-camera devices. In this study, we have calibrated the photometric characteristics of the multi-camera device. Lenses were not mounted on the sensor in the process of radiometric response calibration to eliminate the influence of the focusing effect of uniform light from an integrating sphere. Linearity range of the radiometric response, non-linearity response characteristics, sensitivity, and dark current of the camera response function are presented. The R, G, and B channels have different responses for the same illuminance. Vignetting artifact patterns have been tested. The actual luminance of the object is retrieved by sensor calibration results, and is used to blend images to make panoramas reflect the objective luminance more objectively. This compensates for the limitation of stitching images that are more realistic only through the smoothing method. The dynamic range limitation of can be resolved by using multiple cameras that cover a large field of view instead of a single image sensor with a wide-angle lens. The dynamic range is expanded by 48-fold in this system. We can obtain seven images in one shot with this multi-camera system, at 13 frames per second. PMID:27077857

  6. Photometric Calibration and Image Stitching for a Large Field of View Multi-Camera System.

    PubMed

    Lu, Yu; Wang, Keyi; Fan, Gongshu

    2016-04-11

    A new compact large field of view (FOV) multi-camera system is introduced. The camera is based on seven tiny complementary metal-oxide-semiconductor sensor modules covering over 160° × 160° FOV. Although image stitching has been studied extensively, sensor and lens differences have not been considered in previous multi-camera devices. In this study, we have calibrated the photometric characteristics of the multi-camera device. Lenses were not mounted on the sensor in the process of radiometric response calibration to eliminate the influence of the focusing effect of uniform light from an integrating sphere. Linearity range of the radiometric response, non-linearity response characteristics, sensitivity, and dark current of the camera response function are presented. The R, G, and B channels have different responses for the same illuminance. Vignetting artifact patterns have been tested. The actual luminance of the object is retrieved by sensor calibration results, and is used to blend images to make panoramas reflect the objective luminance more objectively. This compensates for the limitation of stitching images that are more realistic only through the smoothing method. The dynamic range limitation of can be resolved by using multiple cameras that cover a large field of view instead of a single image sensor with a wide-angle lens. The dynamic range is expanded by 48-fold in this system. We can obtain seven images in one shot with this multi-camera system, at 13 frames per second.

  7. Evaluation of flow resistance in gravel-bed rivers through a large field data set

    NASA Astrophysics Data System (ADS)

    Rickenmann, Dieter; Recking, Alain

    2011-07-01

    A data set of 2890 field measurements was used to test the ability of several conventional flow resistance equations to predict mean flow velocity in gravel bed rivers when used with no calibration. The tests were performed using both flow depth and discharge as input since discharge may be a more reliable measure of flow conditions in shallow flows. Generally better predictions are obtained when using flow discharge as input. The results indicate that the Manning-Strickler and the Keulegan equations show considerable disagreement with observed flow velocities for flow depths smaller than 10 times the characteristic grain diameter. Most equations show some systematic deviation for small relative flow depth. The use of new definitions for dimensionless variables in terms of nondimensional hydraulic geometry equations allows the development of a new flow resistance equation. The best overall performance is obtained by the Ferguson approach, which combines two power law flow resistance equations that are different for deep and shallow flows. To use this approach with flow discharge as input, a logarithmic matching equation in terms of the new dimensionless variables is proposed. For the domains of intermediate and large-scale roughness, the field data indicate a considerable increase in flow resistance as compared with the domain of small-scale roughness. The Ferguson approach is used to discuss the importance of flow resistance partitioning for bed load transport calculations at flow conditions with intermediate- and large-scale roughness in natural gravel, cobble, and boulder bed streams.

  8. Motor adaptation to a small force field superimposed on a large background force.

    PubMed

    Liu, Jiayin; Reinkensmeyer, David J

    2007-04-01

    The human motor system adapts to novel force field perturbations during reaching by forming an internal model of the external dynamics and by modulating arm impedance. We studied whether it uses similar strategies when the perturbation is superimposed on a much larger background force. Consistent with the Weber-Fechner law for force perception, subjects had greater difficulty consciously perceiving the force field perturbation when it was superimposed on the large background force. However, they still adapted to the perturbation, decreasing trajectory distortion with repeated reaching and demonstrating kinematic after effects when the perturbation was unexpectedly removed. They also adapted by increasing their arm impedance when the background force was not present, but did not vary the arm impedance when the background force was present. The identified parameters of a previously proposed mathematical model of motor adaptation changed significantly with the presence of the background force. These results indicate that the motor system maintains its sensitivity for internal model formation even when there are large background forces that mask perception. Further, the motor system modulates arm impedance differently in response to the same perturbation depending on the background force onto which that perturbation is superimposed. Finally, these results suggest that computational models of motor adaptation will likely need to include force-dependent parameters to accurately predict errors.

  9. Photometric Calibration and Image Stitching for a Large Field of View Multi-Camera System.

    PubMed

    Lu, Yu; Wang, Keyi; Fan, Gongshu

    2016-01-01

    A new compact large field of view (FOV) multi-camera system is introduced. The camera is based on seven tiny complementary metal-oxide-semiconductor sensor modules covering over 160° × 160° FOV. Although image stitching has been studied extensively, sensor and lens differences have not been considered in previous multi-camera devices. In this study, we have calibrated the photometric characteristics of the multi-camera device. Lenses were not mounted on the sensor in the process of radiometric response calibration to eliminate the influence of the focusing effect of uniform light from an integrating sphere. Linearity range of the radiometric response, non-linearity response characteristics, sensitivity, and dark current of the camera response function are presented. The R, G, and B channels have different responses for the same illuminance. Vignetting artifact patterns have been tested. The actual luminance of the object is retrieved by sensor calibration results, and is used to blend images to make panoramas reflect the objective luminance more objectively. This compensates for the limitation of stitching images that are more realistic only through the smoothing method. The dynamic range limitation of can be resolved by using multiple cameras that cover a large field of view instead of a single image sensor with a wide-angle lens. The dynamic range is expanded by 48-fold in this system. We can obtain seven images in one shot with this multi-camera system, at 13 frames per second. PMID:27077857

  10. Virtually distortion-free imaging system for large field, high resolution lithography using electrons, ions or other particle beams

    DOEpatents

    Hawryluk, Andrew M.; Ceglio, Natale M.

    1993-01-01

    Virtually distortion free large field high resolution imaging is performed using an imaging system which contains large field distortion or field curvature. A reticle is imaged in one direction through the optical system to form an encoded mask. The encoded mask is then imaged back through the imaging system onto a wafer positioned at the reticle position. Particle beams, including electrons, ions and neutral particles, may be used as well as electromagnetic radiation.

  11. Virtually distortion-free imaging system for large field, high resolution lithography using electrons, ions or other particle beams

    DOEpatents

    Hawryluk, A.M.; Ceglio, N.M.

    1993-01-12

    Virtually distortion free large field high resolution imaging is performed using an imaging system which contains large field distortion or field curvature. A reticle is imaged in one direction through the optical system to form an encoded mask. The encoded mask is then imaged back through the imaging system onto a wafer positioned at the reticle position. Particle beams, including electrons, ions and neutral particles, may be used as well as electromagnetic radiation.

  12. Virtually distortion-free imaging system for large field, high resolution lithography using electrons, ions or other particle beams

    SciTech Connect

    Hawryluk, A.M.; Ceglio, N.M.

    1991-04-10

    Virtually distortion free large field high resolution imaging is performed using an imaging system which contains large field distortion or field curvature. A reticle is imaged in one direction through the optical system to form an encoded mask. The encoded mask is then imaged back through the imaging system onto a wafer positioned at the reticle position. Particle beams, including electrons, ions and neutral particles, may be used as well as electromagnetic radiation.

  13. Calculation of large scale relative permeabilities from stochastic properties of the permeability field and fluid properties

    SciTech Connect

    Lenormand, R.; Thiele, M.R.

    1997-08-01

    The paper describes the method and presents preliminary results for the calculation of homogenized relative permeabilities using stochastic properties of the permeability field. In heterogeneous media, the spreading of an injected fluid is mainly sue to the permeability heterogeneity and viscosity fingering. At large scale, when the heterogeneous medium is replaced by a homogeneous one, we need to introduce a homogenized (or pseudo) relative permeability to obtain the same spreading. Generally, is derived by using fine-grid numerical simulations (Kyte and Berry). However, this operation is time consuming and cannot be performed for all the meshes of the reservoir. We propose an alternate method which uses the information given by the stochastic properties of the field without any numerical simulation. The method is based on recent developments on homogenized transport equations (the {open_quotes}MHD{close_quotes} equation, Lenormand SPE 30797). The MHD equation accounts for the three basic mechanisms of spreading of the injected fluid: (1) Dispersive spreading due to small scale randomness, characterized by a macrodispersion coefficient D. (2) Convective spreading due to large scale heterogeneities (layers) characterized by a heterogeneity factor H. (3) Viscous fingering characterized by an apparent viscosity ration M. In the paper, we first derive the parameters D and H as functions of variance and correlation length of the permeability field. The results are shown to be in good agreement with fine-grid simulations. The are then derived a function of D, H and M. The main result is that this approach lead to a time dependent . Finally, the calculated are compared to the values derived by history matching using fine-grid numerical simulations.

  14. Observations of Energetic High Magnetic Field Pulsars with the Fermi Large Area Telescope

    NASA Technical Reports Server (NTRS)

    Parent, D.; Kerr, M.; DenHartog, P. R.; Baring, M. G.; DeCesar, M. E.; Espinoza, C. M.; Harding, A. K.; Romani, R. W.; Stappers, B. W.; Watters, K.; Weltevrde, P.; Abdo, A. A.; Craig, H. A.; Kramer, M.; Lyne, A. G.

    2011-01-01

    We report the detection of gamma-ray pulsations from the high-magnetic-field rotation-powered pulsar PSR J1119.6127 using data from the Fermi Large Area Telescope. The gamma-ray light curve of PSR J1119.6127 shows a single, wide peak offset from the radio peak by 0.43 +/- 0.02 in phase. Spectral analysis suggests a power law of index 1.0 +/- 0.3(+0.4 -0.2) with an energy cut-off at 0.8 +/- 0.2(+2.0 -0.5) GeV. The first uncertainty is statistical and the second is systematic. We discuss the emission models of PSR J1119.6127 and demonstrate that despite the object's high surface magnetic field--near that of magnetars -- the field strength and structure in the gamma-ray emitting zone are apparently similar to those of typical young pulsars. Additionally, we present upper limits on the gamma-ray pulsed emission for the magnetically active PSR J1846.0258 in the supernova remnant Kesteven 75 and two other energetic high-Beta pulsars, PSRs J1718.3718 and J1734.3333. We explore possible explanations for the non-detection of these three objects, including peculiarities in their emission geometry.

  15. Primordial Magnetic Field Effects on the CMB and Large-Scale Structure

    DOE PAGESBeta

    Yamazaki, Dai G.; Ichiki, Kiyotomo; Kajino, Toshitaka; Mathews, Grant J.

    2010-01-01

    Mmore » agnetic fields are everywhere in nature, and they play an important role in every astronomical environment which involves the formation of plasma and currents. It is natural therefore to suppose that magnetic fields could be present in the turbulent high-temperature environment of the big bang. Such a primordial magnetic field (PMF) would be expected to manifest itself in the cosmic microwave background (CMB) temperature and polarization anisotropies, and also in the formation of large-scale structure. In this paper, we summarize the theoretical framework which we have developed to calculate the PMF power spectrum to high precision. Using this formulation, we summarize calculations of the effects of a PMF which take accurate quantitative account of the time evolution of the cutoff scale. We review the constructed numerical program, which is without approximation, and an improvement over the approach used in a number of previous works for studying the effect of the PMF on the cosmological perturbations. We demonstrate how the PMF is an important cosmological physical process on small scales. We also summarize the current constraints on the PMF amplitude B λ and the power spectral index n B which have been deduced from the available CMB observational data by using our computational framework.« less

  16. Schwinger-Dyson equations in large-N quantum field theories and nonlinear random processes

    SciTech Connect

    Buividovich, P. V.

    2011-02-15

    We propose a stochastic method for solving Schwinger-Dyson equations in large-N quantum field theories. Expectation values of single-trace operators are sampled by stationary probability distributions of the so-called nonlinear random processes. The set of all the histories of such processes corresponds to the set of all planar diagrams in the perturbative expansions of the expectation values of singlet operators. We illustrate the method on examples of the matrix-valued scalar field theory and the Weingarten model of random planar surfaces on the lattice. For theories with compact field variables, such as sigma models or non-Abelian lattice gauge theories, the method does not converge in the physically most interesting weak-coupling limit. In this case one can absorb the divergences into a self-consistent redefinition of expansion parameters. A stochastic solution of the self-consistency conditions can be implemented as a 'memory' of the random process, so that some parameters of the process are estimated from its previous history. We illustrate this idea on the two-dimensional O(N) sigma model. The extension to non-Abelian lattice gauge theories is discussed.

  17. A novel method of calculating far-field patterns of large aperture antennas

    NASA Technical Reports Server (NTRS)

    Bailey, M. C.

    1986-01-01

    A method is described for calculation of the radiation pattern of large aperture antennas. A piece-wise linear approximation of the aperture field using overlapping pyramidal basis functions allows the radiation pattern of an aperture antenna to be calculated as though it were a two-dimensional array. The calculation of radiation pattern data versus theta and phi, suitable for 3-D or contour plot algorithms, is achieved by locating the array in the yz-plane and performing a summation over the aperture field data sampled on a square grid. A FORTRAN subroutine is provided for performing radiation pattern calculations. Numerical results are included to demonstrate the accuracy and convergence of the method. These numerical results indicate that typical accuracies of + or - 0.1 dB for Directivity, + or - dB for the 1st Sidelobe Level, and + - 2dB for the 2nd Sidelobe Level can be obtained with an aperture grid of 45x45 points and requires approximately 0.02 seconds CPU time per far-field data point on a VAX 11/750 with a floating point accelerator.

  18. Large magnetic field effects in electrochemically doped organic light-emitting diodes

    NASA Astrophysics Data System (ADS)

    van Reenen, S.; Kersten, S. P.; Wouters, S. H. W.; Cox, M.; Janssen, P.; Koopmans, B.; Bobbert, P. A.; Kemerink, M.

    2013-09-01

    Large negative magnetoconductance (MC) of ˜12% is observed in electrochemically doped polymer light-emitting diodes at sub-band-gap bias voltages (Vbias). Simultaneously, a positive magnetoefficiency (Mη) of 9% is observed at Vbias = 2 V. At higher bias voltages, both the MC and Mη diminish while a negative magnetoelectroluminescence (MEL) appears. The negative MEL effect is rationalized by triplet-triplet annihilation that leads to delayed fluorescence, whereas the positive Mη effect is related to competition between spin mixing and exciton formation leading to an enhanced singlet:triplet ratio at nonzero magnetic field. The resultant reduction in triplet exciton density is argued to reduce detrapping of polarons in the recombination zone at low-bias voltages, explaining the observed negative MC. Regarding organic magnetoresistance, this study provides experimental data to verify existing models describing magnetic field effects in organic semiconductors, which contribute to better understanding hereof. Furthermore, we present indications of strong magnetic field effects related to interactions between trapped carriers and excitons, which specifically can be studied in electrochemically doped organic light-emitting diodes (OLEDs). Regarding light-emitting electrochemical cells (LECs), this work shows that delayed fluorescence from triplet-triplet annihilation substantially contributes to the electroluminescence and the device efficiency.

  19. The Effective Field Theory of Large Scale Structures at two loops

    SciTech Connect

    Carrasco, John Joseph M.; Foreman, Simon; Green, Daniel; Senatore, Leonardo E-mail: sfore@stanford.edu E-mail: senatore@stanford.edu

    2014-07-01

    Large scale structure surveys promise to be the next leading probe of cosmological information. It is therefore crucial to reliably predict their observables. The Effective Field Theory of Large Scale Structures (EFTofLSS) provides a manifestly convergent perturbation theory for the weakly non-linear regime of dark matter, where correlation functions are computed in an expansion of the wavenumber k of a mode over the wavenumber associated with the non-linear scale k{sub NL}. Since most of the information is contained at high wavenumbers, it is necessary to compute higher order corrections to correlation functions. After the one-loop correction to the matter power spectrum, we estimate that the next leading one is the two-loop contribution, which we compute here. At this order in k/k{sub NL}, there is only one counterterm in the EFTofLSS that must be included, though this term contributes both at tree-level and in several one-loop diagrams. We also discuss correlation functions involving the velocity and momentum fields. We find that the EFTofLSS prediction at two loops matches to percent accuracy the non-linear matter power spectrum at redshift zero up to k∼ 0.6 h Mpc{sup −1}, requiring just one unknown coefficient that needs to be fit to observations. Given that Standard Perturbation Theory stops converging at redshift zero at k∼ 0.1 h Mpc{sup −1}, our results demonstrate the possibility of accessing a factor of order 200 more dark matter quasi-linear modes than naively expected. If the remaining observational challenges to accessing these modes can be addressed with similar success, our results show that there is tremendous potential for large scale structure surveys to explore the primordial universe.

  20. Liver acquisition with volume acceleration flex on 70-cm wide-bore and 60-cm conventional-bore 3.0-T MRI.

    PubMed

    Saito, Shigeyoshi; Tanaka, Keiko; Hashido, Takashi

    2016-07-01

    This study aimed to compare the uniformity of fat suppression and image quality between liver acquisition with volume acceleration flex (LAVA-Flex) and LAVA on 60-cm conventional-bore and 70-cm wide-bore 3.0-T magnetic resonance imaging (MRI). The uniformity of fat suppression by LAVA-Flex and LAVA was assessed as the efficiency of suppression of superficial fat at the levels of the liver dome, porta, and renal hilum. Percentage standard deviation (%SD) was calculated using the following equation: %SD (%) = 100 × SD of the regions of interest (ROIs)/mean value of the signal intensity (SI) in the ROIs. Signal-to-noise ratio (SNR) and contrast ratio (CR) were calculated. In the LAVA sequence, the %SD in all slices on wide-bore 3.0-T MRI was significantly higher than that on conventional-bore 3.0-T MRI (P < 0.01). However, there was no significant difference in fat signal uniformity between the conventional and wide-bore scanners when LAVA-Flex was used. In the liver, there were no significant differences in SNR between the two sequences. However, the SNR in the pancreas was lower for the wide-bore scanner than for the conventional-bore scanner for both sequences (P < 0.05). There were no significant differences in CR for the liver and fat between LAVA-Flex and LAVA in both scanners. The CR in the LAVA-Flex images obtained by wide-bore MRI was significantly higher than that in the LAVA-Flex images recorded by conventional-bore MRI (P < 0.001). LAVA-Flex offers more homogenous fat suppression in the upper abdomen than LAVA for both conventional and wide-bore 3.0-T MRI.

  1. On the renormalization of the effective field theory of large scale structures

    SciTech Connect

    Pajer, Enrico; Zaldarriaga, Matias E-mail: matiasz@ias.edu

    2013-08-01

    Standard perturbation theory (SPT) for large-scale matter inhomogeneities is unsatisfactory for at least three reasons: there is no clear expansion parameter since the density contrast is not small on all scales; it does not fully account for deviations at large scales from a perfect pressureless fluid induced by short-scale non-linearities; for generic initial conditions, loop corrections are UV-divergent, making predictions cutoff dependent and hence unphysical. The Effective Field Theory of Large Scale Structures successfully addresses all three issues. Here we focus on the third one and show explicitly that the terms induced by integrating out short scales, neglected in SPT, have exactly the right scale dependence to cancel all UV-divergences at one loop, and this should hold at all loops. A particularly clear example is an Einstein deSitter universe with no-scale initial conditions P{sub in} ∼ k{sup n}. After renormalizing the theory, we use self-similarity to derive a very simple result for the final power spectrum for any n, excluding two-loop corrections and higher. We show how the relative importance of different corrections depends on n. For n ∼ −1.5, relevant for our universe, pressure and dissipative corrections are more important than the two-loop corrections.

  2. Characteristics of large particles and their effects on the submarine light field

    NASA Astrophysics Data System (ADS)

    Hou, Weilin

    Large particles play important roles in the ocean by modifying the underwater light field and effecting material transfer. The particle size distribution of large particles has been measured in-situ with multiple- camera video microscopy and the automated particle sizing and recognition software developed. Results show that there are more large particles in coastal waters than previously thaught, based upon by a hyperbolic size- distribution curve with a (log-log) slope parameter of close to 3 instead of 4 for the particles larger than 100μm diameter. Larger slopes are more typical for particles in the open ocean. This slope permits estimation of the distribution into the small-particle size range for use in correcting the beam-attenuation measurements for near-forward scattering. The large- particle slope and c-meter were used to estimate the small-particle size distributions which nearly matched those measured with a Coulter Counteroler (3.05%). There is also a fair correlation (r2=0.729) between the slope of the distribution and its concentration parameters. Scattering by large particles is influenced by not only the concentrations of these particles, but also the scattering phase functions. This first in-situ measurement of large-particle scattering with multiple angles reveals that they scatter more in the backward direction than was previously believed, and the enhanced backscattering can be explained in part by multiple scattering of aggregated particles. Proper identification of these large particles can be of great help in understanding the status of the ecosystem. By extracting particle features using high-resolution video images via moment-invariant functions and applying this information to lower-resolution images, we increase the effective sample volume without severely degrading classification efficiency. Traditional pattern recognition algorithms of images classified zooplankton with results within 24% of zooplankton collected using bottle samples

  3. Quantitative patterns of large-scale field-aligned currents in the auroral ionosphere

    SciTech Connect

    Foster, J.C.; Fuller-Rowell, T.; Evans, D.S.

    1989-03-01

    Quantitative patterns of the distribution of field-aligned current (FAC) density have been derived from gradients of the average patterns of the Hall and Pedersen currents at high latitudes under the assumption that the total current is divergence-free. The horizontal currents were calculated from empirical convection electric field models, derived from Millstone Hill radar observations, and the ionospheric Hall and Pedersen conductances, based on satellite observations of the precipitating particle energy flux and spectrum and including an average (equinox) solar contribution. These independent empirical models, and the resultant patterns of the field-aligned currents, are keyed to an auroral precipitation index which quantifies the intensity and spatial extent of high-latitude particle precipitation and which is determined from a single satellite crossing of the auroral precipitation pattern. The patterns detail the spatial distribution of the currents as a function of increasing disturbance level. The magnitudes of the total single-hemisphere currents into or out of the ionosphere are closely balanced at each activity level and increase exponentially between 0.1 and 6 MA with increasing values of the precipitation index. The interplanetary magnetic field (IMF) sector dependence of the FAC patterns is investigated for disturbed conditions. A large portion of the FAC pattern is closed by local Pedersen currents (current into the ionosphere is balanced by an equal current out of the ionosphere at that local time). This locally balanced portion of the FAC system is enhanced in the prenoon (postnoon) sector for IMF B/sub v/>+1 nT (B/sub y/<-1 nT). In addition, there are net currents into the ionosphere postnoon and out of the ionosphere in the premidnight sector.

  4. Grouting guidelines for Hanford Tanks Initiative cone penetrometer borings

    SciTech Connect

    Iwatate, D.F.

    1998-05-18

    Grouting of an open cone penetrometer (CP) borehole is done to construct a barrier that prevents the vertical migration of fluids and contaminants between geologic units and aquifers intersected by the boring. Whether to grout, the types of grout, and the method of deployment are functions of the site-specific conditions. This report recommends the strategy that should be followed both before and during HTI [Hanford Tanks Initiative] CP deployment to decide specific borehole grouting needs at Hanford SST farms. Topics discussed in this report that bear on this strategy include: Regulatory guidance, hydrogeologic conditions, operational factors, specific CP grouting deployment recommendations.

  5. System safety analysis of the Yucca Mountain tunnel boring machine

    SciTech Connect

    Smith, M.G.; Booth, L.; Eisler, L.

    1995-12-01

    The purpose of this analysis was to systematically identify and evaluate hazards related to the tunnel boring machine to be used at Yucca Mountain. This analysis required three steps to complete the risk evaluation: hazard/scenario identification, consequence assessment, and frequency assessment. The result was a `risk evaluation` of the scenarios identified in this analysis in accordance with MIL-STD-882C. The risk assessment in this analysis characterized the accident scenarios associated with the TBM in terms of relative risk and included recommendations for mitigating all identified risks.

  6. Small bore ceramic laser tube inspection light table

    DOEpatents

    Updike, Earl O.

    1990-01-01

    Apparatus for inspecting small bore ceramic laser tubes, which includes a support base with one or more support rollers. A fluorescent light tube is inserted within the laser tube and the laser tube is supported by the support rollers so that a gap is maintained between the laser tube and the fluorescent tube to enable rotation of the laser tube. In operation, the ceramic tube is illuminated from the inside by the fluorescent tube to facilitate visual inspection. Centering the tube around the axial light of the fluorescent tube provides information about straightness and wall thickness of the laser tube itself.

  7. THE LARGE APEX BOLOMETER CAMERA SURVEY OF THE EXTENDED CHANDRA DEEP FIELD SOUTH

    SciTech Connect

    Weiss, A.; Kovacs, A.; Menten, K. M.; Coppin, K.; Smail, Ian; Greve, T. R.; Walter, F.; Dannerbauer, H.; Dunlop, J. S.; Ivison, R. J.; Knudsen, K. K.; Bertoldi, F.; Alexander, D. M.; Brandt, W. N.; Chapman, S. C.; Cox, P.; De Breuck, C.; Gawiser, E.; Lutz, D.; Koekemoer, A. M.

    2009-12-20

    We present a sensitive 870 mum survey of the Extended Chandra Deep Field South (ECDFS) combining 310 hr of observing time with the Large Apex BOlometer Camera (LABOCA) on the APEX telescope. The LABOCA ECDFS Submillimetre Survey (LESS) covers the full 30' x 30' field size of the ECDFS and has a uniform noise level of sigma{sub 870{sub m}}u{sub m} approx 1.2 mJy beam{sup -1}. LESS is thus the largest contiguous deep submillimeter survey undertaken to date. The noise properties of our map show clear evidence that we are beginning to be affected by confusion noise. We present a catalog of 126 submillimeter galaxies (SMGs) detected with a significance level above 3.7sigma, at which level we expect five false detections given our map area of 1260 arcmin{sup 2}. The ECDFS exhibits a deficit of bright SMGs relative to previously studied blank fields but not of normal star-forming galaxies that dominate the extragalactic background light (EBL). This is in line with the underdensities observed for optically defined high redshift source populations in the ECDFS (BzKs, DRGs, optically bright active galactic nucleus, and massive K-band-selected galaxies). The differential source counts in the full field are well described by a power law with a slope of alpha = -3.2, comparable to the results from other fields. We show that the shape of the source counts is not uniform across the field. Instead, it steepens in regions with low SMG density. Towards the highest overdensities we measure a source-count shape consistent with previous surveys. The integrated 870 mum flux densities of our source-count models down to S{sub 870{sub m}}u{sub m} = 0.5 mJy account for >65% of the estimated EBL from COBE measurements. We have investigated the clustering of SMGs in the ECDFS by means of a two-point correlation function and find evidence for strong clustering on angular scales <1' with a significance of 3.4sigma. Assuming a power-law dependence for the correlation function and a typical

  8. Large Eddy Simulation of Transonic Flow Field in NASA Rotor 37

    NASA Technical Reports Server (NTRS)

    Hah, Chunill

    2009-01-01

    The current paper reports on numerical investigations on the flow characteristics in a transonic axial compressor, NASA Rotor 37. The flow field was used previously as a CFD blind test case conducted by American Society of Mechanical Engineers in 1994. Since the CFD blind-test exercise, many numerical studies on the flow field in the NASA Rotor 37 have been reported. Although steady improvements have been reported in both numerical procedure and turbulence closure, it is believed that all the important aspects of the flow field have not been fully explained with numerical studies based on the Reynolds Averaged Navier-Stokes (RANS) solution. Experimental data show large dip in total pressure distribution near the hub at downstream of the rotor at 100% rotor speed. Most original numerical solutions from the blind test exercise did not predict this total pressure deficit correctly. This total pressure deficit at the rotor exit was attributed to a hub corner flow separation by the author. Several subsequent numerical studies with different turbulence closure model also calculated this dip in total pressure rise. Also, several studies attributed this total pressure deficit to a small leakage flow coming from the hub in the test article. As the experimental study cannot be repeated, either explanation cannot be validated. The primary purpose of the current investigation is to investigate the transonic flow field with both RANS and a Large Eddy Simulation (LES). The RANS approach gives similar results presented at the original blind test exercise. Although the RANS calculates higher overall total pressure rise, the total pressure deficit near the hub is calculated correctly. The numerical solution shows that the total pressure deficit is due to a hub corner flow separation. The calculated pressure rise from the LES agrees better with the measured total pressure rise especially near the casing area where the passage shock interacts with the tip clearance vortex and flow

  9. Electron contamination modeling and reduction in a 1 T open bore inline MRI-linac system

    SciTech Connect

    Oborn, B. M.; Kolling, S.; Metcalfe, P. E.; Crozier, S.; Litzenberg, D. W.; Keall, P. J.

    2014-05-15

    Purpose: A potential side effect of inline MRI-linac systems is electron contamination focusing causing a high skin dose. In this work, the authors reexamine this prediction for an open bore 1 T MRI system being constructed for the Australian MRI-Linac Program. The efficiency of an electron contamination deflector (ECD) in purging electron contamination from the linac head is modeled, as well as the impact of a helium gas region between the deflector and phantom surface for lowering the amount of air-generated contamination. Methods: Magnetic modeling of the 1 T MRI was used to generate 3D magnetic field maps both with and without the presence of an ECD located immediately below the MLC’s. Forty-seven different ECD designs were modeled and for each the magnetic field map was imported into Geant4 Monte Carlo simulations including the linac head, ECD, and a 30 × 30 × 30 cm{sup 3} water phantom located at isocenter. For the first generation system, the x-ray source to isocenter distance (SID) will be 160 cm, resulting in an 81.2 cm long air gap from the base of the ECD to the phantom surface. The first 71.2 cm was modeled as air or helium gas, with the latter encased between two windows of 50 μm thick high density polyethlyene. 2D skin doses (at 70 μm depth) were calculated across the phantom surface at 1 × 1 mm{sup 2} resolution for 6 MV beams of field size of 5 × 5, 10 × 10, and 20 × 20 cm{sup 2}. Results: The skin dose was predicted to be of similar magnitude as the generic systems modeled in previous work, 230% to 1400% ofD {sub max} for 5 × 5 to 20 × 20 cm{sup 2}, respectively. Inclusion of the ECD introduced a nonuniformity to the MRI imaging field that ranged from ∼20 to ∼140 ppm while the net force acting on the ECD ranged from ∼151 N to ∼1773 N. Various ECD designs were 100% efficient at purging the electron contamination into the ECD magnet banks; however, a small percentage were scattered back into the beam and continued to the phantom

  10. Biodegradation of marine surface floating crude oil in a large-scale field simulated experiment.

    PubMed

    Bao, Mutai; Sun, Peiyan; Yang, Xiaofei; Wang, Xinping; Wang, Lina; Cao, Lixin; Li, Fujuan

    2014-08-01

    Biodegradation of marine surface floating crude oil with hydrocarbon degrading bacteria, rhamnolipid biosurfactants, and nutrients was carried out by a large-scale field simulated experiment in this paper. After a 103 day experiment, for n-alkanes, the maximum biodegradation rate reached 71% and the results showed hydrocarbon degrading bacteria, rhamnolipid biosurfactants, and nutrients have a comprehensive effect. It also showed that rhamnolipid biosurfactants could shorten the biodegradation time through an emulsifying function; the nutrients could greatly increase the biodegradation rate by promoting HDB production. For PAHs, the chrysene series had higher weathering resistance. For the same series, the weathering resistance ability is C1- < C2- < C3- < C4-. After 53 days, no comprehensive effect occurred and more biodegradation was found for different n-alkanes in two pools which only had added rhamnolipid biosurfactants or nutrients, respectively. Except for C14, C15 and C16 sesquiterpanes, most of the steranes and terpanes had high antibiodegradability.

  11. Large-Scale Magnetic Field Generation by Randomly Forced Shearing Waves

    NASA Astrophysics Data System (ADS)

    Heinemann, T.; McWilliams, J. C.; Schekochihin, A. A.

    2011-12-01

    A rigorous theory for the generation of a large-scale magnetic field by random nonhelically forced motions of a conducting fluid combined with a linear shear is presented in the analytically tractable limit of low magnetic Reynolds number (Rm) and weak shear. The dynamo is kinematic and due to fluctuations in the net (volume-averaged) electromotive force. This is a minimal proof-of-concept quasilinear calculation aiming to put the shear dynamo, a new effect recently found in numerical experiments, on a firm theoretical footing. Numerically observed scalings of the wave number and growth rate of the fastest-growing mode, previously not understood, are derived analytically. The simplicity of the model suggests that shear dynamo action may be a generic property of sheared magnetohydrodynamic turbulence.

  12. A very accurate filter wheel for a large field IR imager

    NASA Astrophysics Data System (ADS)

    Lizon, J. L.

    2010-07-01

    HAWK-I is a near-infrared imager with a relatively large field of view. Two filter wheels with 6 positions each offer a choice of 10 filters. The filters are directly in front of the detector, a mosaic of 2 × 2HAWAII 2RG 2048×2048 pixels detectors. A rather high positioning reproducibility (< 6 arc sec) is required in order to avoid any disagreement caused by subtraction of eventual fix pattern on the filters. The document describes various drive systems which have been tested in order to reach the specified positioning reproducibility. This includes an interesting dissipation free locking system combining electro magnet and permanent magnet. Every solution is discussed and the performances measured in the laboratory during a long campaign of test are exposed. We also address the choice of other critical components like the ball bearings, mounting of the filters and cooling of the wheels.

  13. LASER-driven fast electron dynamics in gaseous media under the influence of large electric fields

    NASA Astrophysics Data System (ADS)

    Batani, D.; Baton, S. D.; Manclossi, M.; Piazza, D.; Koenig, M.; Benuzzi-Mounaix, A.; Popescu, H.; Rousseaux, C.; Borghesi, M.; Cecchetti, C.; Schiavi, A.

    2009-03-01

    We present the results of experiments performed at the LULI laboratory, using the 100 TW laser facility, on the study of the propagation of fast electrons in gas targets. The implemented diagnostics included chirped shadowgraphy and proton imaging. Proton images showed the presence of very large fields in the gas (produced by charge separation). In turn, these imply a strong inhibition of propagation, and a slowing down of the fast electron cloud as it penetrates in the gas. Indeed chirped shadowgraphy images show a reduction in time of the velocity of the electron cloud from the initial value, of the order of a fraction of c, over a time scale of a few picoseconds.

  14. Single high dose-large field irradiation in drug resistant non-Hodgkin's lymphoma

    SciTech Connect

    Scarantino, C.W.; Greven, K.M.; Buss, D.H.

    1988-05-01

    Single high dose-large field irradiation (SHD-LFI), also described as half-body irradiation (HBI), has previously been reported as an effective modality for the palliation of symptoms in a number of solid tumors. This report concerns the ability of SHD-LFI to produce palliation of symptoms and/or objective response in patients with drug resistant non-Hodgkin's lymphoma (NHL). From 1981 to 1984, 34 patients with advanced drug resistant NHL were treated with SHD-LFI either to the whole abdomen (24 patients) or to the upper half body (10 patients). Overall, 19 of 23 patients achieved symptomatic improvement, while objective response was noted in 23 of 30 patients. We noted subjective and objective response in all histologies, and duration of response was not significantly different. Our results suggest a beneficial role for the early and judicious use of SHD-LFI in NHL.

  15. Accidents at Work and Costs Analysis: A Field Study in a Large Italian Company

    PubMed Central

    BATTAGLIA, Massimo; FREY, Marco; PASSETTI, Emilio

    2014-01-01

    Accidents at work are still a heavy burden in social and economic terms, and action to improve health and safety standards at work offers great potential gains not only to employers, but also to individuals and society as a whole. However, companies often are not interested to measure the costs of accidents even if cost information may facilitate preventive occupational health and safety management initiatives. The field study, carried out in a large Italian company, illustrates technical and organisational aspects associated with the implementation of an accident costs analysis tool. The results indicate that the implementation (and the use) of the tool requires a considerable commitment by the company, that accident costs analysis should serve to reinforce the importance of health and safety prevention and that the economic dimension of accidents is substantial. The study also suggests practical ways to facilitate the implementation and the moral acceptance of the accounting technology. PMID:24869894

  16. The trispectrum in the Effective Field Theory of Large Scale Structure

    NASA Astrophysics Data System (ADS)

    Bertolini, Daniele; Schutz, Katelin; Solon, Mikhail P.; Zurek, Kathryn M.

    2016-06-01

    We compute the connected four point correlation function (the trispectrum in Fourier space) of cosmological density perturbations at one-loop order in Standard Perturbation Theory (SPT) and the Effective Field Theory of Large Scale Structure (EFT of LSS). This paper is a companion to our earlier work on the non-Gaussian covariance of the matter power spectrum, which corresponds to a particular wavenumber configuration of the trispectrum. In the present calculation, we highlight and clarify some of the subtle aspects of the EFT framework that arise at third order in perturbation theory for general wavenumber configurations of the trispectrum. We consistently incorporate vorticity and non-locality in time into the EFT counterterms and lay out a complete basis of building blocks for the stress tensor. We show predictions for the one-loop SPT trispectrum and the EFT contributions, focusing on configurations which have particular relevance for using LSS to constrain primordial non-Gaussianity.

  17. Large Field of View PIV Measurements of Air Entrainment by SLS SMAT Water Sound Suppression System

    NASA Astrophysics Data System (ADS)

    Stegmeir, Matthew; Pothos, Stamatios; Bissell, Dan

    2015-11-01

    Water-based sound suppressions systems have been used to reduce the acoustic impact of space vehicle launches. Water flows at a high rate during launch in order to suppress Engine Generated Acoustics and other potentially damaging sources of noise. For the Space Shuttle, peak flow rates exceeded 900,000 gallons per minute. Such large water flow rates have the potential to induce substantial entrainment of the surrounding air, affecting the launch conditions and generating airflow around the launch vehicle. Validation testing is necessary to quantify this impact for future space launch systems. In this study, PIV measurements were performed to map the flow field above the SMAT sub-scale launch vehicle scaled launch stand. Air entrainment effects generated by a water-based sound suppression system were studied. Mean and fluctuating fluid velocities were mapped up to 1m above the test stand deck and compared to simulation results. Measurements performed with NASA MSFC.

  18. Radial transport of large-scale magnetic fields in accretion disks. I. Steady solutions and an upper limit on the vertical field strength

    SciTech Connect

    Okuzumi, Satoshi; Takeuchi, Taku; Muto, Takayuki

    2014-04-20

    Large-scale magnetic fields are key ingredients of magnetically driven disk accretion. We study how large-scale poloidal fields evolve in accretion disks, with the primary aim of quantifying the viability of magnetic accretion mechanisms in protoplanetary disks. We employ a kinematic mean-field model for poloidal field transport and focus on steady states where inward advection of a field balances with outward diffusion due to effective resistivities. We analytically derive the steady-state radial distribution of poloidal fields in highly conducting accretion disks. The analytic solution reveals an upper limit on the strength of large-scale vertical fields attainable in steady states. Any excess poloidal field will diffuse away within a finite time, and we demonstrate this with time-dependent numerical calculations of the mean-field equations. We apply this upper limit to large-scale vertical fields threading protoplanetary disks. We find that the maximum attainable strength is about 0.1 G at 1 AU, and about 1 mG at 10 AU from the central star. When combined with recent magnetic accretion models, the maximum field strength translates into the maximum steady-state accretion rate of ∼10{sup –7} M {sub ☉} yr{sup –1}, in agreement with observations. We also find that the maximum field strength is ∼1 kG at the surface of the central star provided that the disk extends down to the stellar surface. This implies that any excess stellar poloidal field of strength ≳ kG can be transported to the surrounding disk. This might in part resolve the magnetic flux problem in star formation.

  19. Large-scale dynamic compaction demonstration using WIPP salt: Fielding and preliminary results

    SciTech Connect

    Ahrens, E.H.; Hansen, F.D.

    1995-10-01

    Reconsolidation of crushed rock salt is a phenomenon of great interest to programs studying isolation of hazardous materials in natural salt geologic settings. Of particular interest is the potential for disaggregated salt to be restored to nearly an impermeable state. For example, reconsolidated crushed salt is proposed as a major shaft seal component for the Waste Isolation Pilot Plant (WIPP) Project. The concept for a permanent shaft seal component of the WIPP repository is to densely compact crushed salt in the four shafts; an effective seal will then be developed as the surrounding salt creeps into the shafts, further consolidating the crushed salt. Fundamental information on placement density and permeability is required to ensure attainment of the design function. The work reported here is the first large-scale compaction demonstration to provide information on initial salt properties applicable to design, construction, and performance expectations. The shaft seals must function for 10,000 years. Over this period a crushed salt mass will become less permeable as it is compressed by creep closure of salt surrounding the shaft. These facts preclude the possibility of conducting a full-scale, real-time field test. Because permanent seals taking advantage of salt reconsolidation have never been constructed, performance measurements have not been made on an appropriately large scale. An understanding of potential construction methods, achievable initial density and permeability, and performance of reconsolidated salt over time is required for seal design and performance assessment. This report discusses fielding and operations of a nearly full-scale dynamic compaction of mine-run WIPP salt, and presents preliminary density and in situ (in place) gas permeability results.

  20. A WASHINGTON PHOTOMETRIC SURVEY OF THE LARGE MAGELLANIC CLOUD FIELD STAR POPULATION

    SciTech Connect

    Piatti, Andres E.; Geisler, Doug; Mateluna, Renee

    2012-10-01

    We present photometry for an unprecedented database of some 5.5 million stars distributed throughout the Large Magellanic Cloud main body, from 21 fields covering a total area of 7.6 deg{sup 2}, obtained from Washington CT{sub 1} T{sub 2} CTIO 4 m MOSAIC data. Extensive artificial star tests over the whole mosaic image data set and the observed behavior of the photometric errors with magnitude demonstrate the accuracy of the morphology and clearly delineate the position of the main features in the color-magnitude diagrams (CMDs). The representative T{sub 1}(MS TO) mags are on average {approx}0.5 mag brighter than the T{sub 1} mags for the 100% completeness level of the respective field, allowing us to derive an accurate age estimate. We have analyzed the CMD Hess diagrams and used the peaks in star counts at the main sequence turnoff and red clump (RC) locations to age date the most dominant sub-population (or 'representative' population) in the stellar population mix. The metallicity of this representative population is estimated from the locus of the most populous red giant branch track. We use these results to derive age and metallicity estimates for all of our fields. The analyzed fields span age and metallicity ranges covering most of the galaxy's lifetime and chemical enrichment, i.e., ages and metallicities between {approx}1 and 13 Gyr and {approx}-0.2 and -1.2 dex, respectively. We show that the dispersions associated with the mean ages and metallicities represent in general a satisfactory estimate of the age/metallicity spread ({approx}1-3 Gyr/0.2-0.3 dex), although a few subfields have a slightly larger age/metallicity spread. Finally, we revisit the study of the vertical structure (VS) phenomenon, a striking feature composed of stars that extend from the bottom, bluest end of the RC to {approx}0.45 mag fainter. We confirm that the VS phenomenon is not clearly seen in most of the studied fields and suggest that its occurrence is linked to some other

  1. Fish navigation of large dams emerges from their modulation of flow field experience.

    PubMed

    Goodwin, R Andrew; Politano, Marcela; Garvin, Justin W; Nestler, John M; Hay, Duncan; Anderson, James J; Weber, Larry J; Dimperio, Eric; Smith, David L; Timko, Mark

    2014-04-01

    Navigating obstacles is innate to fish in rivers, but fragmentation of the world's rivers by more than 50,000 large dams threatens many of the fish migrations these waterways support. One limitation to mitigating the impacts of dams on fish is that we have a poor understanding of why some fish enter routes engineered for their safe travel around the dam but others pass through more dangerous routes. To understand fish movement through hydropower dam environments, we combine a computational fluid dynamics model of the flow field at a dam and a behavioral model in which simulated fish adjust swim orientation and speed to modulate their experience to water acceleration and pressure (depth). We fit the model to data on the passage of juvenile Pacific salmonids (Oncorhynchus spp.) at seven dams in the Columbia/Snake River system. Our findings from reproducing observed fish movement and passage patterns across 47 flow field conditions sampled over 14 y emphasize the role of experience and perception in the decision making of animals that can inform opportunities and limitations in living resources management and engineering design.

  2. Fish navigation of large dams emerges from their modulation of flow field experience

    PubMed Central

    Goodwin, R. Andrew; Politano, Marcela; Garvin, Justin W.; Nestler, John M.; Hay, Duncan; Anderson, James J.; Weber, Larry J.; Dimperio, Eric; Smith, David L.; Timko, Mark

    2014-01-01

    Navigating obstacles is innate to fish in rivers, but fragmentation of the world’s rivers by more than 50,000 large dams threatens many of the fish migrations these waterways support. One limitation to mitigating the impacts of dams on fish is that we have a poor understanding of why some fish enter routes engineered for their safe travel around the dam but others pass through more dangerous routes. To understand fish movement through hydropower dam environments, we combine a computational fluid dynamics model of the flow field at a dam and a behavioral model in which simulated fish adjust swim orientation and speed to modulate their experience to water acceleration and pressure (depth). We fit the model to data on the passage of juvenile Pacific salmonids (Oncorhynchus spp.) at seven dams in the Columbia/Snake River system. Our findings from reproducing observed fish movement and passage patterns across 47 flow field conditions sampled over 14 y emphasize the role of experience and perception in the decision making of animals that can inform opportunities and limitations in living resources management and engineering design. PMID:24706826

  3. Single-field consistency relations of large scale structure part II: resummation and redshift space

    SciTech Connect

    Creminelli, Paolo; Gleyzes, Jérôme; Vernizzi, Filippo; Simonović, Marko E-mail: jerome.gleyzes@cea.fr E-mail: filippo.vernizzi@cea.fr

    2014-02-01

    We generalize the recently derived single-field consistency relations of Large Scale Structure in two directions. First, we treat the effect of the long modes (with momentum q) on the short ones (with momentum k) non-perturbatively, by writing resummed consistency relations which do not require k/q⋅δ{sub q} << 1. These relations do not make any assumptions on the short-scales physics and are extended to include (an arbitrary number of) multiple long modes, internal lines with soft momenta and soft loops. We do several checks of these relations in perturbation theory and we verify that the effect of soft modes always cancels out in equal-time correlators. Second, we write the relations directly in redshift space, without assuming the single-stream approximation: not only the long mode affects the short scales as a homogeneous gravitational field, but it also displaces them by its velocity along the line-of-sight. Redshift space consistency relations still vanish when short modes are taken at equal time: an observation of a signal in the squeezed limit would point towards multifield inflation or a violation of the equivalence principle.

  4. Measurement and modeling of polarized specular neutron reflectivity in large magnetic fields

    DOE PAGESBeta

    Maranville, Brian B.; Kirby, Brian J.; Grutter, Alexander J.; Kienzle, Paul A.; Majkrzak, Charles F.; Liu, Yaohua; Dennis, Cindi L.

    2016-06-09

    The presence of a large applied magnetic field removes the degeneracy of the vacuum energy states for spin-up and spin-down neutrons. For polarized neutron reflectometry, this must be included in the reference potential energy of the Schrödinger equation that is used to calculate the expected scattering from a magnetic layered structure. For samples with magnetization that is purely parallel or antiparallel to the applied field which defines the quantization axis, there is no mixing of the spin states (no spin-flip scattering) and so this additional potential is constant throughout the scattering region. When there is non-collinear magnetization in the sample,more » however, there will be significant scattering from one spin state into the other, and the reference potentials will differ between the incoming and outgoing wavefunctions, changing the angle and intensities of the scattering. In conclusion, the theory of the scattering and recommended experimental practices for this type of measurement are presented, as well as an example measurement.« less

  5. The Lagrangian-space Effective Field Theory of large scale structures

    NASA Astrophysics Data System (ADS)

    Porto, Rafael A.; Senatore, Leonardo; Zaldarriaga, Matias

    2014-05-01

    We introduce a Lagrangian-space Effective Field Theory (LEFT) formalism for the study of cosmological large scale structures. Unlike the previous Eulerian-space construction, it is naturally formulated as an effective field theory of extended objects in Lagrangian space. In LEFT the resulting finite size effects are described using a multipole expansion parameterized by a set of time dependent coefficients and organized in powers of the ratio of the wavenumber of interest k over the non-linear scale kNL. The multipoles encode the effects of the short distance modes on the long-wavelength universe and absorb UV divergences when present. There are no IR divergences in LEFT. Some of the parameters that control the perturbative approach are not assumed to be small and can be automatically resummed. We present an illustrative one-loop calculation for a power law universe. We describe the dynamics both at the level of the equations of motion and through an action formalism.

  6. Measurement and modeling of polarized specular neutron reflectivity in large magnetic fields

    PubMed Central

    Maranville, Brian B.; Kirby, Brian J.; Grutter, Alexander J.; Kienzle, Paul A.; Majkrzak, Charles F.; Liu, Yaohua; Dennis, Cindi L.

    2016-01-01

    The presence of a large applied magnetic field removes the degeneracy of the vacuum energy states for spin-up and spin-down neutrons. For polarized neutron reflectometry, this must be included in the reference potential energy of the Schrödinger equation that is used to calculate the expected scattering from a magnetic layered structure. For samples with magnetization that is purely parallel or antiparallel to the applied field which defines the quantization axis, there is no mixing of the spin states (no spin-flip scattering) and so this additional potential is constant throughout the scattering region. When there is non-collinear magnetization in the sample, however, there will be significant scattering from one spin state into the other, and the reference potentials will differ between the incoming and outgoing wavefunctions, changing the angle and intensities of the scattering. The theory of the scattering and recommended experimental practices for this type of measurement are presented, as well as an example measurement. PMID:27504074

  7. Resonant Scanning with Large Field of View Reduces Photobleaching and Enhances Fluorescence Yield in STED Microscopy

    PubMed Central

    Wu, Yong; Wu, Xundong; Lu, Rong; Zhang, Jin; Toro, Ligia; Stefani, Enrico

    2015-01-01

    Photobleaching is a major limitation of superresolution Stimulated Depletion Emission (STED) microscopy. Fast scanning has long been considered an effective means to reduce photobleaching in fluorescence microscopy, but a careful quantitative study of this issue is missing. In this paper, we show that the photobleaching rate in STED microscopy can be slowed down and the fluorescence yield be enhanced by scanning with high speed, enabled by using large field of view in a custom-built resonant-scanning STED microscope. The effect of scanning speed on photobleaching and fluorescence yield is more remarkable at higher levels of depletion laser irradiance, and virtually disappears in conventional confocal microscopy. With ≥6 GW∙cm−2 depletion irradiance, we were able to extend the fluorophore survival time of Atto 647N and Abberior STAR 635P by ~80% with 8-fold wider field of view. We confirm that STED Photobleaching is primarily caused by the depletion light acting upon the excited fluorophores. Experimental data agree with a theoretical model. Our results encourage further increasing the linear scanning speed for photobleaching reduction in STED microscopy. PMID:26424175

  8. Fish navigation of large dams emerges from their modulation of flow field experience.

    PubMed

    Goodwin, R Andrew; Politano, Marcela; Garvin, Justin W; Nestler, John M; Hay, Duncan; Anderson, James J; Weber, Larry J; Dimperio, Eric; Smith, David L; Timko, Mark

    2014-04-01

    Navigating obstacles is innate to fish in rivers, but fragmentation of the world's rivers by more than 50,000 large dams threatens many of the fish migrations these waterways support. One limitation to mitigating the impacts of dams on fish is that we have a poor understanding of why some fish enter routes engineered for their safe travel around the dam but others pass through more dangerous routes. To understand fish movement through hydropower dam environments, we combine a computational fluid dynamics model of the flow field at a dam and a behavioral model in which simulated fish adjust swim orientation and speed to modulate their experience to water acceleration and pressure (depth). We fit the model to data on the passage of juvenile Pacific salmonids (Oncorhynchus spp.) at seven dams in the Columbia/Snake River system. Our findings from reproducing observed fish movement and passage patterns across 47 flow field conditions sampled over 14 y emphasize the role of experience and perception in the decision making of animals that can inform opportunities and limitations in living resources management and engineering design. PMID:24706826

  9. The Lagrangian-space Effective Field Theory of large scale structures

    SciTech Connect

    Porto, Rafael A.; Zaldarriaga, Matias; Senatore, Leonardo E-mail: senatore@stanford.edu

    2014-05-01

    We introduce a Lagrangian-space Effective Field Theory (LEFT) formalism for the study of cosmological large scale structures. Unlike the previous Eulerian-space construction, it is naturally formulated as an effective field theory of extended objects in Lagrangian space. In LEFT the resulting finite size effects are described using a multipole expansion parameterized by a set of time dependent coefficients and organized in powers of the ratio of the wavenumber of interest k over the non-linear scale k{sub NL}. The multipoles encode the effects of the short distance modes on the long-wavelength universe and absorb UV divergences when present. There are no IR divergences in LEFT. Some of the parameters that control the perturbative approach are not assumed to be small and can be automatically resummed. We present an illustrative one-loop calculation for a power law universe. We describe the dynamics both at the level of the equations of motion and through an action formalism.

  10. Prototyping a large field size IORT applicator for a mobile linear accelerator

    NASA Astrophysics Data System (ADS)

    Janssen, Rogier W. J.; Faddegon, Bruce A.; Dries, Wim J. F.

    2008-04-01

    The treatment of large tumors such as sarcomas with intra-operative radiotherapy using a Mobetron® is often complicated because of the limited field size of the primary collimator and the available applicators (max Ø100 mm). To circumvent this limitation a prototype rectangular applicator of 80 × 150 mm2 was designed and built featuring an additional scattering foil located at the top of the applicator. Because of its proven accuracy in modeling linear accelerator components the design was based on the EGSnrc Monte Carlo simulation code BEAMnrc. First, the Mobetron® treatment head was simulated both without an applicator and with a standard 100 mm applicator. Next, this model was used to design an applicator foil consisting of a rectangular Al base plate covering the whole beam and a pyramid of four stacked cylindrical slabs of different diameters centered on top of it. This foil was mounted on top of a plain rectangular Al tube. A prototype was built and tested with diode dosimetry in a water tank. Here, the prototype showed clinically acceptable 80 × 150 mm2 dose distributions for 4 MeV, 6 MeV and 9 MeV, obviating the use of complicated multiple irradiations with abutting field techniques. In addition, the measurements agreed well with the MC simulations, typically within 2%/1 mm.

  11. Laws of Large Numbers and Langevin Approximations for Stochastic Neural Field Equations

    PubMed Central

    2013-01-01

    In this study, we consider limit theorems for microscopic stochastic models of neural fields. We show that the Wilson–Cowan equation can be obtained as the limit in uniform convergence on compacts in probability for a sequence of microscopic models when the number of neuron populations distributed in space and the number of neurons per population tend to infinity. This result also allows to obtain limits for qualitatively different stochastic convergence concepts, e.g., convergence in the mean. Further, we present a central limit theorem for the martingale part of the microscopic models which, suitably re-scaled, converges to a centred Gaussian process with independent increments. These two results provide the basis for presenting the neural field Langevin equation, a stochastic differential equation taking values in a Hilbert space, which is the infinite-dimensional analogue of the chemical Langevin equation in the present setting. On a technical level, we apply recently developed law of large numbers and central limit theorems for piecewise deterministic processes taking values in Hilbert spaces to a master equation formulation of stochastic neuronal network models. These theorems are valid for processes taking values in Hilbert spaces, and by this are able to incorporate spatial structures of the underlying model. Mathematics Subject Classification (2000): 60F05, 60J25, 60J75, 92C20. PMID:23343328

  12. Gun bore flaw image matching based on improved SIFT descriptor

    NASA Astrophysics Data System (ADS)

    Zeng, Luan; Xiong, Wei; Zhai, You

    2013-01-01

    In order to increase the operation speed and matching ability of SIFT algorithm, the SIFT descriptor and matching strategy are improved. First, a method of constructing feature descriptor based on sector area is proposed. By computing the gradients histogram of location bins which are parted into 6 sector areas, a descriptor with 48 dimensions is constituted. It can reduce the dimension of feature vector and decrease the complexity of structuring descriptor. Second, it introduce a strategy that partitions the circular region into 6 identical sector areas starting from the dominate orientation. Consequently, the computational complexity is reduced due to cancellation of rotation operation for the area. The experimental results indicate that comparing with the OpenCV SIFT arithmetic, the average matching speed of the new method increase by about 55.86%. The matching veracity can be increased even under some variation of view point, illumination, rotation, scale and out of focus. The new method got satisfied results in gun bore flaw image matching. Keywords: Metrology, Flaw image matching, Gun bore, Feature descriptor

  13. Bore tube assembly for steam cooling a turbine rotor

    DOEpatents

    DeStefano, Thomas Daniel; Wilson, Ian David

    2002-01-01

    An axial bore tube assembly for a turbine is provided to supply cooling steam to hot gas components of the turbine wheels and return the spent cooling steam. A pair of inner and outer tubes define a steam supply passage concentric about an inner return passage. The forward ends of the tubes communicate with an end cap assembly having sets of peripheral holes communicating with first and second sets of radial tubes whereby cooling steam from the concentric passage is supplied through the end cap holes to radial tubes for cooling the buckets and return steam from the buckets is provided through the second set of radial tubes through a second set of openings of the end cap into the coaxial return passage. A radial-to-axial flow transitioning device, including anti-swirling vanes is provided in the end cap. A strut ring adjacent the aft end of the bore tube assembly permits axial and radial thermal expansion of the inner tube relative to the outer tube.

  14. A large and complete Jurassic geothermal field at Claudia, Deseado Massif, Santa Cruz, Argentina

    NASA Astrophysics Data System (ADS)

    Guido, Diego M.; Campbell, Kathleen A.

    2014-04-01

    Late Jurassic geothermal deposits at Claudia, Argentinean Patagonia, are among the largest (40 km2) and most varied in the Deseado Massif, a 60,000 km2 volcanic province hosting precious metals (Au, Ag) mineralization generated during diffuse back arc spreading and opening of the South Atlantic Ocean. Both siliceous sinter and travertine occur in the same stratigraphic sequence. Deposits range from those interpreted as fluvially reworked hydrothermal silica gels, to extensive apron terraces, to a clustering of high-temperature subaerial vent mounds. Paleoenvironmentally diagnostic textures of sinters include wavy laminated, bubble mat and nodular fabrics, and for travertines comprise fossil terracette rims, wavy laminated, bubble mat, spherulitic, oncoidal, and peloidal fabrics. Of special note is the presence of relatively large (to 25 cm high), inferred subaqueous "Conophyton" structures in travertines, which serve as analogs for some Precambrian stromatolites and imply the presence of relatively deep pools maintained by voluminous spring discharges. The Claudia geothermal field is geographically and geologically linked to the Cerro Vanguardia epithermal project (total resource of ~ 7.8 million ounces Au equivalent) via proximity, similar veins, and structural linkages, making it an especially large and relevant prospect for the region. The combined Claudia-Cerro Vanguardia hydrothermal system likely represents a fortuitous alignment of focused fluid flow and structure conducive to forming a giant epithermal ore deposit, with respect to size, ore concentration and potentially duration, in the Late Jurassic of Patagonia.

  15. Simulating observations with HARMONI: the integral field spectrograph for the European Extremely Large Telescope

    NASA Astrophysics Data System (ADS)

    Zieleniewski, Simon; Thatte, Niranjan; Kendrew, Sarah; Houghton, Ryan; Tecza, Matthias; Clarke, Fraser; Fusco, Thierry; Swinbank, Mark

    2014-07-01

    With the next generation of extremely large telescopes commencing construction, there is an urgent need for detailed quantitative predictions of the scientific observations that these new telescopes will enable. Most of these new telescopes will have adaptive optics fully integrated with the telescope itself, allowing unprecedented spatial resolution combined with enormous sensitivity. However, the adaptive optics point spread function will be strongly wavelength dependent, requiring detailed simulations that accurately model these variations. We have developed a simulation pipeline for the HARMONI integral field spectrograph, a first light instrument for the European Extremely Large Telescope. The simulator takes high-resolution input data-cubes of astrophysical objects and processes them with accurate atmospheric, telescope and instrumental effects, to produce mock observed cubes for chosen observing parameters. The output cubes represent the result of a perfect data reduc- tion process, enabling a detailed analysis and comparison between input and output, showcasing HARMONI's capabilities. The simulations utilise a detailed knowledge of the telescope's wavelength dependent adaptive op- tics point spread function. We discuss the simulation pipeline and present an early example of the pipeline functionality for simulating observations of high redshift galaxies.

  16. On the velocity in the Effective Field Theory of Large Scale Structures

    NASA Astrophysics Data System (ADS)

    Mercolli, Lorenzo; Pajer, Enrico

    2014-03-01

    We compute the renormalized two-point functions of density, divergence and vorticity of the velocity in the Effective Field Theory of Large Scale Structures. Because of momentum and mass conservation, the corrections from short scales to the large-scale power spectra of density, divergence and vorticity must start at order k4. For the vorticity this constitutes one of the two leading terms. Exact (approximated) self-similarity of an Einstein-de Sitter (ΛCDM) background fixes the time dependence so that the vorticity power spectrum at leading order is determined by the symmetries of the problem and the power spectrum around the non-linear scale. We show that to cancel all divergences in the velocity correlators one needs new counterterms. These fix the definition of velocity and do not represent new properties of the system. For an Einstein-de Sitter universe, we show that all three renormalized cross- and auto-correlation functions have the same structure but different numerical coefficients, which we compute. We elucidate the differences between using momentum and velocity.

  17. Large-scale sensor systems based on graphene electrolyte-gated field-effect transistors.

    PubMed

    Mackin, Charles; Palacios, Tomás

    2016-04-25

    This work reports a novel graphene electrolyte-gated field-effect transistor (EGFET) array architecture along with a compact, self-contained, and inexpensive measurement system that allows DC characterization of hundreds of graphene EGFETs as a function of VDS and VGS within a matter of minutes. We develop a reliable graphene EGFET fabrication process capable of producing 100% yield for a sample size of 256 devices. Large sample size statistical analysis of graphene EGFET electrical performance is performed for the first time. This work develops a compact piecewise DC model for graphene EGFETs that is shown capable of fitting 87% of IDSvs. VGS curves with a mean percent error of 7% or less. The model is used to extract variations in device parameters such as mobility, contact resistance, minimum carrier concentration, and Dirac point. Correlations in variations are presented. Lastly, this work presents a framework for application-specific optimization of large-scale sensor designs based on graphene EGFETs. PMID:26788552

  18. On the velocity in the Effective Field Theory of Large Scale Structures

    SciTech Connect

    Mercolli, Lorenzo; Pajer, Enrico E-mail: enrico.pajer@gmail.com

    2014-03-01

    We compute the renormalized two-point functions of density, divergence and vorticity of the velocity in the Effective Field Theory of Large Scale Structures. Because of momentum and mass conservation, the corrections from short scales to the large-scale power spectra of density, divergence and vorticity must start at order k{sup 4}. For the vorticity this constitutes one of the two leading terms. Exact (approximated) self-similarity of an Einstein-de Sitter (ΛCDM) background fixes the time dependence so that the vorticity power spectrum at leading order is determined by the symmetries of the problem and the power spectrum around the non-linear scale. We show that to cancel all divergences in the velocity correlators one needs new counterterms. These fix the definition of velocity and do not represent new properties of the system. For an Einstein-de Sitter universe, we show that all three renormalized cross- and auto-correlation functions have the same structure but different numerical coefficients, which we compute. We elucidate the differences between using momentum and velocity.

  19. Large-field-of-view wide-spectrum artificial reflecting superposition compound eyes.

    PubMed

    Huang, Chi-Chieh; Wu, Xiudong; Liu, Hewei; Aldalali, Bader; Rogers, John A; Jiang, Hongrui

    2014-08-13

    In nature, reflecting superposition compound eyes (RSCEs) found in shrimps, lobsters and some other decapods are extraordinary imaging systems with numerous optical features such as minimum chromatic aberration, wide-angle field of view (FOV), high sensitivity to light and superb acuity to motion. Here, we present life-sized, large-FOV, wide-spectrum artificial RSCEs as optical imaging devices inspired by the unique designs of their natural counterparts. Our devices can form real, clear images based on reflection rather than refraction, hence avoiding chromatic aberration due to dispersion by the optical materials. Compared to imaging at visible wavelengths using conventional refractive lenses of comparable size, our artificial RSCEs demonstrate minimum chromatic aberration, exceptional FOV up to 165° without distortion, modest aberrations and comparable imaging quality without any post-image processing. Together with an augmenting cruciform pattern surrounding each focused image, our large-FOV, wide-spectrum artificial RSCEs possess enhanced motion-tracking capability ideal for diverse applications in military, security, medical imaging and astronomy.

  20. VERTICAL STRUCTURE OF STATIONARY ACCRETION DISKS WITH A LARGE-SCALE MAGNETIC FIELD

    SciTech Connect

    Bisnovatyi-Kogan, G. S.; Lovelace, R. V. E. E-mail: RVL1@cornell.edu

    2012-05-10

    In earlier works we pointed out that the disk's surface layers are non-turbulent and thus highly conducting (or non-diffusive) because the hydrodynamic and/or magnetorotational instabilities are suppressed high in the disk where the magnetic and radiation pressures are larger than the plasma thermal pressure. Here, we calculate the vertical profiles of the stationary accretion flows (with radial and azimuthal components), and the profiles of the large-scale, magnetic field taking into account the turbulent viscosity and diffusivity and the fact that the turbulence vanishes at the surface of the disk. Also, here we require that the radial accretion speed be zero at the disk's surface and we assume that the ratio of the turbulent viscosity to the turbulent magnetic diffusivity is of order unity. Thus, at the disk's surface there are three boundary conditions. As a result, for a fixed dimensionless viscosity {alpha}-value, we find that there is a definite relation between the ratio R of the accretion power going into magnetic disk winds to the viscous power dissipation and the midplane plasma-{beta}, which is the ratio of the plasma to magnetic pressure in the disk. For a specific disk model with R of order unity we find that the critical value required for a stationary solution is {beta}{sub c} Almost-Equal-To 2.4r/({alpha}h), where h is the disk's half thickness. For weaker magnetic fields, {beta} > {beta}{sub c}, we argue that the poloidal field will advect outward while for {beta} < {beta}{sub c} it will advect inward. Alternatively, if the disk wind is negligible (R<<1), there are stationary solutions with {beta} >> {beta}{sub c}.

  1. Study of shape evaluation for mask and silicon using large field of view

    NASA Astrophysics Data System (ADS)

    Matsuoka, Ryoichi; Mito, Hiroaki; Shinoda, Shinichi; Toyoda, Yasutaka

    2010-09-01

    We have developed a highly integrated method of mask and silicon metrology. The aim of this integration is evaluating the performance of the silicon corresponding to Hotspot on a mask. It can use the mask shape of a large field, besides. The method adopts a metrology management system based on DBM (Design Based Metrology). This is the high accurate contouring created by an edge detection algorithm used in mask CD-SEM and silicon CD-SEM. Currently, as semiconductor manufacture moves towards even smaller feature size, this necessitates more aggressive optical proximity correction (OPC) to drive the super-resolution technology (RET). In other words, there is a trade-off between highly precise RET and mask manufacture, and this has a big impact on the semiconductor market that centers on the mask business. As an optimal solution to these issues, we provide a DFM solution that extracts 2-dimensional data for a more realistic and error-free simulation by reproducing accurately the contour of the actual mask, in addition to the simulation results from the mask data. On the other hand, there is roughness in the silicon form made from a mass-production line. Moreover, there is variation in the silicon form. For this reason, quantification of silicon form is important, in order to estimate the performance of a pattern. In order to quantify, the same form is equalized in two dimensions. And the method of evaluating based on the form is popular. In this study, we conducted experiments for averaging method of the pattern (Measurement Based Contouring) as two-dimensional mask and silicon evaluation technique. That is, observation of the identical position of a mask and a silicon was considered. The result proved its detection accuracy and reliability of variability on two-dimensional pattern (mask and silicon) and is adaptable to following fields of mask quality management. •Discrimination of nuisance defects for fine pattern. •Determination of two-dimensional variability of

  2. Simulated optic flow and extrastriate cortex. II. Responses to bar versus large-field stimuli.

    PubMed

    Mulligan, K; Kim, J N; Sherk, H

    1997-02-01

    In the preceding paper we described the responses of cells in the cat's lateral suprasylvian visual area (LS) to large-field optic flow and texture movies. To assess response properties such as direction selectivity, cells were also tested with moving bar stimuli. We expected that there would be good agreement between response properties elicited with optic flow movies and those revealed with bar stimuli. We first asked how well bar response properties predicted responsiveness to optic flow movies. There was no correlation between responsiveness to movies and the degree of end-stopping, length summation, or preference for bars that accelerated and expanded. We then considered only the 322 cells that responded to both bars and optic flow or texture movies and asked how well the strength of their response to movies could be predicted from the direction-tuning curves generated with bar stimuli. One-third of these cells responded much more strongly to movies than could be predicted from their direction-tuning curves. Generally, such cells were rather well tuned for the direction of bar motion and preferred a direction substantially different from what they saw in optic flow movies. Optic flow movies shown in the forward direction were the most effective variety of movie for two-thirds of these cells. To see whether this outcome stemmed from differential direction tuning for bars and large multielement displays, in a second series of experiments we compared direction tuning for bars and large-field texture movies. Many cells showed substantially different direction tuning for the two kinds of stimulus: almost 1/3 of 409 cells had tuning curves that overlapped each other by < 50%. But only a small number of cells (< 10%) responded much better to texture movies than to bars in the predominant direction of image motion in optic flow movies. This result, like that reported in the preceding paper, suggests that cells in LS respond differently to optic flow than to texture

  3. Biopolymers under large external forces and mean-field RNA virus evolutionary dynamics

    NASA Astrophysics Data System (ADS)

    Ahsan, Syed Amir

    The modeling of the mechanical response of single-molecules of DNA and RNA under large external forces through statistical mechanical methods is central to this thesis with a small portion devoted to modeling the evolutionary dynamics of positive-sense single-stranded RNA viruses. In order to develop and test models of biopolymer mechanics and illuminate the mechanisms underlying biological processes where biopolymers undergo changes in energy on the order of the thermal energy, , entails measuring forces and lengths on the scale of piconewtons (pN) and nanometers (nm), respectively. A capacity achieved in the past two decades at the single-molecule level through the development of micromanipulation techniques such as magnetic and optical tweezers, atomic force microscopy, coupled with advances in micro- and nanofabrication. The statistical mechanical models of biopolymers developed in this dissertation are dependent upon and the outcome of these advancements and resulting experiments. The dissertation begins in chapter 1 with an introduction to the structure and thermodynamics of DNA and RNA, highlighting the importance and effectiveness of simple, two-state models in their description as a prelude to the emergence of two-state models in the research manuscripts. In chapter 2 the standard models of the elasticity of polymers and of a polymer gel are reviewed, characterizing the continuum and mean-field models, including the scaling behavior of DNA in confined spaces. The research manuscript presented in the last section of chapter 2 (section 2.5), subsequent to a review of a Flory gel and in contrast to it, is a model of the elasticity of RNA as a gel, with viral RNA illustrating an instance of such a network, and shown to exhibit anomalous elastic behavior, a negative Poisson ratio, and capable of facilitating viral RNA encapsidation with further context provided in section 5.1. In chapter 3 the experimental methods and behavior of DNA and RNA under mechanical

  4. Four large-scale field-aligned current systmes in the dayside high-latitude region

    NASA Technical Reports Server (NTRS)

    Ohtani, S.; Potemra, T. A.; Newell, P.T.; Zanetti, L. J.; Iijima, T.; Watanabe, M.; Blomberg, L. G.; Elphinstone, R. D.; Murphree, J. S.; Yamauchi, M.

    1995-01-01

    A system of four current sheets of large-scale field-aligned currents (FACs) was discovered in the data set of simultaneous Viking and Defense Meteorological Satellire Program-F7 (DMSP-F7) crossing of the dayside high-latitude region. This paper reports four examples of this system that were observed in the prenoon sector. The flow polarities of FACs are upward, downward, upward, and downward, from equatorward to poleward. The lowest-latitude upward current is flowing mostly in the central plasma sheet (CPS) precipitation region, often overlapping with the boundary plasma sheet (BPS) at its poleward edge, andis interpreted as a region 2 current. The pair of downward and upward FACs in the middle of te structure are collocated with structured electron precipitation. The precipitation of high-energy (greater than 1 keV) electrons is more intense in the lower-latitude downward current sheet. The highest-latitude downward flowing current sheet is located in a weak, low-energy particle precipitation region, suggesting that this current is flowing on open field lines. Simulaneous observations in the postnoon local time sector reveal the standard three-sheet structure of FACs, sometimes described as region 2, region 1, and mantle (referred to the midday region O) currents. A high correlation was found between the occurrence of the four FAC sheet structure and negative interplanetary magnetic field (IMF) B(sub Y). We discuss the FAC structurein terms of three types of convection cells: the merging, viscous, andlobe cells. During strongly negative IMF B(sub Y), two convection reversals exist in the prenoon sector; one is inside the viscous cell, and the other is between the viscous cell and the lobe cell. This structure of convection flow is supported by the Viking electric field and auroral UV image data. Based on the convection pattern, the four FAC sheet structure is interpreted as the latitude overlap of midday and morning FAC systems. We suggest that the for

  5. Wrong detection of ventricular fibrillation in an implantable cardioverter defibrillator caused by the movement near the MRI scanner bore.

    PubMed

    Mattei, Eugenio; Censi, Federica; Triventi, Michele; Mancini, Matteo; Napolitano, Antonio; Genovese, Elisabetta; Cannata, Vittorio; Falsaperla, Rosaria; Calcagnini, Giovanni

    2015-01-01

    The static magnetic field generated by MRI systems is highly non-homogenous and rapidly decreases when moving away from the bore of the scanner. Consequently, the movement around the MRI scanner is equivalent to an exposure to a time-varying magnetic field at very low frequency (few Hz). For patients with an implanted cardiac stimulators, such as an implantable cardioverter/defibrillator (ICD), the movements inside the MRI environment may thus induce voltages on the loop formed by the leads of the device, with the potential to affect the behavior of the stimulator. In particular, the ICD's detection algorithms may be affected by the induced voltage and may cause inappropriate sensing, arrhythmia detections, and eventually inappropriate ICD therapy.We performed in-vitro measurements on a saline-filled humanshaped phantom (male, 170 cm height), equipped with an MRconditional ICD able to transmit in real-time the detected cardiac activity (electrograms). A biventricular implant was reproduced and the ICD was programmed in standard operating conditions, but with the shock delivery disabled. The electrograms recorded in the atrial, left and right ventricle channels were monitored during rotational movements along the vertical axis, in close proximity of the bore. The phantom was also equipped with an accelerometer and a magnetic field probe to measure the angular velocity and the magnetic field variation during the experiment. Pacing inhibition, inappropriate detection of tachyarrhythmias and of ventricular fibrillation were observed. Pacing inhibition began at an angular velocity of about 7 rad/s, (dB/dt of about 2 T/s). Inappropriate detection of ventricular fibrillation occurred at about 8 rad/s (dB/dt of about 3 T/s). These findings highlight the need for a specific risk assessment of workers with MR-conditional ICDs, which takes into account also effects that are generally not considered relevant for patients, such as the movement around the scanner bore. PMID

  6. Statistical techniques for detecting the intergalactic magnetic field from large samples of extragalactic Faraday rotation data

    SciTech Connect

    Akahori, Takuya; Gaensler, B. M.; Ryu, Dongsu E-mail: bryan.gaensler@sydney.edu.au

    2014-08-01

    Rotation measure (RM) grids of extragalactic radio sources have been widely used for studying cosmic magnetism. However, their potential for exploring the intergalactic magnetic field (IGMF) in filaments of galaxies is unclear, since other Faraday-rotation media such as the radio source itself, intervening galaxies, and the interstellar medium of our Galaxy are all significant contributors. We study statistical techniques for discriminating the Faraday rotation of filaments from other sources of Faraday rotation in future large-scale surveys of radio polarization. We consider a 30° × 30° field of view toward the south Galactic pole, while varying the number of sources detected in both present and future observations. We select sources located at high redshifts and toward which depolarization and optical absorption systems are not observed so as to reduce the RM contributions from the sources and intervening galaxies. It is found that a high-pass filter can satisfactorily reduce the RM contribution from the Galaxy since the angular scale of this component toward high Galactic latitudes would be much larger than that expected for the IGMF. Present observations do not yet provide a sufficient source density to be able to estimate the RM of filaments. However, from the proposed approach with forthcoming surveys, we predict significant residuals of RM that should be ascribable to filaments. The predicted structure of the IGMF down to scales of 0.°1 should be observable with data from the Square Kilometre Array, if we achieve selections of sources toward which sightlines do not contain intervening galaxies and RM errors are less than a few rad m{sup –2}.

  7. On the Operation of X-Ray Polarimeters with a Large Field of View

    NASA Astrophysics Data System (ADS)

    Muleri, Fabio

    2014-02-01

    The measurement of linear polarization is one of the hot topics of high-energy astrophysics. Gas detectors based on the photoelectric effect have paved the way for the design of sensitive instruments, and mission proposals based on them have been presented in the last few years in the energy range from about 2 keV to a few tens of keV. In addition, a number of polarimeters based on Compton scattering are approved or being discussed for launch on board balloons or space satellites at higher energies. These instruments are typically dedicated to pointed observations with narrow field of view telescopes or collimators, but there are also projects aimed at the polarimetry of bright transient sources such as soft gamma repeaters or the prompt emission of gamma-ray bursts. Given the erratic appearance of such events in the sky, these polarimeters have large fields of view to catch a reasonable number of them, and as a result, photons may impinge on the detector off-axis. This dramatically changes the response of the instrument to polarization, regardless of whether photoabsorption or Compton scattering is involved. Instead of the simple cosine-squared dependence expected for polarized photons that are incident on-axis, the response is never purely cosinusoidal, and a systematic modulation also appears for unpolarized radiation. We investigate the origin of these differences and present an analytical treatment that proves that such systematic effects are actually a natural consequence of how current instruments operate. Our analysis provides the expected response of photoelectric or Compton polarimeters to photons impinging with any inclination and state of polarization.

  8. On the operation of X-ray polarimeters with a large field of view

    SciTech Connect

    Muleri, Fabio

    2014-02-10

    The measurement of linear polarization is one of the hot topics of high-energy astrophysics. Gas detectors based on the photoelectric effect have paved the way for the design of sensitive instruments, and mission proposals based on them have been presented in the last few years in the energy range from about 2 keV to a few tens of keV. In addition, a number of polarimeters based on Compton scattering are approved or being discussed for launch on board balloons or space satellites at higher energies. These instruments are typically dedicated to pointed observations with narrow field of view telescopes or collimators, but there are also projects aimed at the polarimetry of bright transient sources such as soft gamma repeaters or the prompt emission of gamma-ray bursts. Given the erratic appearance of such events in the sky, these polarimeters have large fields of view to catch a reasonable number of them, and as a result, photons may impinge on the detector off-axis. This dramatically changes the response of the instrument to polarization, regardless of whether photoabsorption or Compton scattering is involved. Instead of the simple cosine-squared dependence expected for polarized photons that are incident on-axis, the response is never purely cosinusoidal, and a systematic modulation also appears for unpolarized radiation. We investigate the origin of these differences and present an analytical treatment that proves that such systematic effects are actually a natural consequence of how current instruments operate. Our analysis provides the expected response of photoelectric or Compton polarimeters to photons impinging with any inclination and state of polarization.

  9. Is it possible to detect large ocean floor structures in the gravity field of Europa?

    NASA Astrophysics Data System (ADS)

    Pauer, M.; Breuer, D.

    2006-12-01

    The data provided by the Galileo mission suggested the existence of a deep water ocean at the Jupiter's moon Europa. This fact motivates the future plans for the Outer Solar System exploration because the presence of water and inner energy of this satellite - which is likely a consequence of the tidal heating from Jupiter - gives a chance for primitive life-forms to evolve. A part of the internal energy is released through the tectonic activity observed on the ice shell which surrounds that subsurface ocean. However, another part of the inner energy could drive the tectonics also on the oceanic floor, i.e. on the water/silicate boundary. If we find a way how to look underneath the top ice/water layer we could learn about the structures present on this boundary, e.g. volcanoes, rifts, etc. One of the possible ways to do that is the inversion of the gravity field, which reflects the mass distribution within the moon. Our study focus on a possibility to detect such large ocean floor features in the gravity data from some future Europa obiter mission. We test various tectonic structures (different in size and compensation state) based on the real planetary topography analogs to obtain the minimum size of those features which could be recovered from the gravity field inversion. We also study the needed resolution of the gravity data and the accuracy of the anticipated measurements. Finally, we test the inversion procedure on the global synthetic topography with embedded tectonic features to check the results in the presence of the observation noise.

  10. Closed-bore XMR (CBXMR) systems for aortic valve replacement: X-ray tube imaging performance

    SciTech Connect

    Bracken, John A.; Komljenovic, Philip; Lillaney, Prasheel V.; Fahrig, Rebecca; Rowlands, J. A.

    2009-04-15

    A hybrid closed-bore x-ray/MRI system (CBXMR) is proposed to improve the safety and efficacy of percutaneous aortic valve replacement procedures. In this system, an x-ray C-arm will be positioned about 1 m from the entrance of a 1.5 T MRI scanner. The CBXMR system will harness the complementary strengths of both modalities to guide and deploy a bioprosthetic valve into the aortic annulus of the heart without coronary artery obstruction. A major challenge in constructing this system is ensuring proper operation of a rotating-anode x-ray tube in the MRI magnetic fringe field environment. The electron beam in the x-ray tube responsible for producing x rays can be deflected by the fringe field. However, the clinical impact of electron beam deflection in a magnetic field has not yet been studied. Here, the authors investigated changes in focal spot resolving power, field of view shift, and field of view truncation in x-ray images as a result of electron beam deflection. The authors found that in the fringe field acting on the x-ray tube at the clinical location for the x-ray C-arm (4 mT), focal spot size increased by only 2%, so the fringe field did not limit the resolving power of the x-ray system. The magnetic field also caused the field of view to shift by 3 mm. This shift must be corrected to avoid unnecessary primary radiation exposure to the patient and the staff in the cardiac catheterization laboratory. The fringe field was too weak to cause field of view truncation.

  11. Closed-bore XMR (CBXMR) systems for aortic valve replacement: X-ray tube imaging performance

    PubMed Central

    Bracken, John A.; Komljenovic, Philip; Lillaney, Prasheel V.; Fahrig, Rebecca; Rowlands, J. A.

    2009-01-01

    A hybrid closed-bore x-ray∕MRI system (CBXMR) is proposed to improve the safety and efficacy of percutaneous aortic valve replacement procedures. In this system, an x-ray C-arm will be positioned about 1 m from the entrance of a 1.5 T MRI scanner. The CBXMR system will harness the complementary strengths of both modalities to guide and deploy a bioprosthetic valve into the aortic annulus of the heart without coronary artery obstruction. A major challenge in constructing this system is ensuring proper operation of a rotating-anode x-ray tube in the MRI magnetic fringe field environment. The electron beam in the x-ray tube responsible for producing x rays can be deflected by the fringe field. However, the clinical impact of electron beam deflection in a magnetic field has not yet been studied. Here, the authors investigated changes in focal spot resolving power, field of view shift, and field of view truncation in x-ray images as a result of electron beam deflection. The authors found that in the fringe field acting on the x-ray tube at the clinical location for the x-ray C-arm (4 mT), focal spot size increased by only 2%, so the fringe field did not limit the resolving power of the x-ray system. The magnetic field also caused the field of view to shift by 3 mm. This shift must be corrected to avoid unnecessary primary radiation exposure to the patient and the staff in the cardiac catheterization laboratory. The fringe field was too weak to cause field of view truncation. PMID:19472613

  12. Closed-bore XMR (CBXMR) systems for aortic valve replacement: x-ray tube imaging performance.

    PubMed

    Bracken, John A; Komljenovic, Philip; Lillaney, Prasheel V; Fahrig, Rebecca; Rowlands, J A

    2009-04-01

    A hybrid closed-bore x-ray/MRI system (CBXMR) is proposed to improve the safety and efficacy of percutaneous aortic valve replacement procedures. In this system, an x-ray C-arm will be positioned about 1 m from the entrance of a 1.5 T MRI scanner. The CBXMR system will harness the complementary strengths of both modalities to guide and deploy a bioprosthetic valve into the aortic annulus of the heart without coronary artery obstruction. A major challenge in constructing this system is ensuring proper operation of a rotating-anode x-ray tube in the MRI magnetic fringe field environment. The electron beam in the x-ray tube responsible for producing x rays can be deflected by the fringe field. However, the clinical impact of electron beam deflection in a magnetic field has not yet been studied. Here, the authors investigated changes in focal spot resolving power, field of view shift, and field of view truncation in x-ray images as a result of electron beam deflection. The authors found that in the fringe field acting on the x-ray tube at the clinical location for the x-ray C-arm (4 mT), focal spot size increased by only 2%, so the fringe field did not limit the resolving power of the x-ray system. The magnetic field also caused the field of view to shift by 3 mm. This shift must be corrected to avoid unnecessary primary radiation exposure to the patient and the staff in the cardiac catheterization laboratory. The fringe field was too weak to cause field of view truncation. PMID:19472613

  13. The one-loop matter bispectrum in the Effective Field Theory of Large Scale Structures

    DOE PAGESBeta

    Angulo, Raul E.; Foreman, Simon; Schmittfull, Marcel; Senatore, Leonardo

    2015-10-14

    With this study, given the importance of future large scale structure surveys for delivering new cosmological information, it is crucial to reliably predict their observables. The Effective Field Theory of Large Scale Structures (EFTofLSS) provides a manifestly convergent perturbative scheme to compute the clustering of dark matter in the weakly nonlinear regime in an expansion in k/kNL, where k is the wavenumber of interest and kNL is the wavenumber associated to the nonlinear scale. It has been recently shown that the EFTofLSS matches to 1% level the dark matter power spectrum at redshift zero up to k ≃ 0.3 hmore » Mpc–1 and k ≃ 0.6 h Mpc–1 at one and two loops respectively, using only one counterterm that is fit to data. Similar results have been obtained for the momentum power spectrum at one loop. This is a remarkable improvement with respect to former analytical techniques. Here we study the prediction for the equal-time dark matter bispectrum at one loop. We find that at this order it is sufficient to consider the same counterterm that was measured in the power spectrum. Without any remaining free parameter, and in a cosmology for which kNL is smaller than in the previously considered cases (σ8=0.9), we find that the prediction from the EFTofLSS agrees very well with N-body simulations up to k ≃ 0.25 h Mpc–1, given the accuracy of the measurements, which is of order a few percent at the highest k's of interest. While the fit is very good on average up to k ≃ 0.25 h Mpc–1, the fit performs slightly worse on equilateral configurations, in agreement with expectations that for a given maximum k, equilateral triangles are the most nonlinear.« less

  14. Large field of view real-time three-dimensional imaging for ports

    NASA Astrophysics Data System (ADS)

    Gao, Meijing; Wu, Weilong; Gu, Haihua; Bi, Weihong

    2011-06-01

    With the acceleration of globalization and regionalization of the world economy, port is playing an increasingly important role for that it is an international transportation hub port interface and the support of the international trade platform. How to effectively reduce labor costs, improve the working environment, stable productivity, reduce the production cuts caused by human intervention and improve the management of real-time monitoring of all the major ports has become a common issue faced. In order to achieve the automatically stacking and reclaiming process of Stacker-Reclaimer in the bulk material yard, the source of its control is expected to identify the stockpile in the bulk yard, including length, width, height, the starting address, destination address, as well as Three-dimensional shape of the stockpile, since in the operation process, stockpile changes the shape dynamically. As a result, the real-time three-dimensional shape and coordinate of piles should be achieved. Based on the existing Stacker-Reclaimer in Qinhuangdao Port coal, we study the large field of view real-time three-dimensional laser scanning imaging theory and technology. The overall system design to achieving the three-dimensional laser scanning image is presented. The working principle of the three-dimensional laser scanning imaging system is analysised. Moreover, the parameter designation, the technical parameters and the composition of the whole system are all given. The research of the thesis is also used for other large-scale three-dimensional modeling of piles and the volume computing. In a world, the method has wide application prospect.

  15. Study on mechanism of lubricating oil consumption caused by cylinder bore deformation

    SciTech Connect

    Hitosugi, Hideshi; Nagoshi, Katsuyuki; Komada, Masaharu; Furuhama, Shoichi

    1996-09-01

    It is a well-known fact that cylinder bore deformations in engine operation involves a number of problems in terms of lubrication, and the deterioration of piston ring conformability to the bore, in particular, increases the lubricating oil consumption (LOC). It is also verified through the cylinder bore deformation measurements carried out by the research laboratory that bore deformations occur in engine operation which can not be ignored. Although some studies on the mechanism and the reduction of such deformations have been conducted, only few analyses have been conducted on the mechanism of the increase in LOC, whereas it is vital to clarify the mechanism under the current situation where the reduction of LOC is urged in terms of purification of exhaust emissions also. This study has been conducted for the clarification of the mechanism of LOC increased by cylinder bore deformation, with emphasis of analysis placed mainly on the following two points: (1) the development of a theoretical calculation method for the behavior of the oil film between a piston ring and the cylinder bore taking into account of the deformed bore profile and the ring elastic deformation, based on the piston ring dynamic lubrication theory developed by Furuhama, analysis of the relationship between the oil film behavior and lubricating oil flow-out rate against the deformed bore profile; (2) measurements of LOC and ring conformability to the bore deformation, using cylinder liners having various types of bore profiles and rings with local clearances on their sliding surfaces. Based on the analyses stated above, qualitatively and quantitatively evaluations of the LOC attributable to the bore deformations have been conducted. The details of the mechanism of LOC determined by the above is reported.

  16. Inviscid evolution of large amplitude filaments in a uniform gravity field

    SciTech Connect

    Angus, J. R.; Krasheninnikov, S. I.

    2014-11-15

    The inviscid evolution of localized density stratifications under the influence of a uniform gravity field in a homogeneous, ambient background is studied. The fluid is assumed to be incompressible, and the stratification, or filament, is assumed to be initially isotropic and at rest. It is shown that the center of mass energy can be related to the center of mass position in a form analogous to that of a solid object in a gravity field g by introducing an effective gravity field g{sub eff}, which is less than g due to energy that goes into the background and into non-center of mass motion of the filament. During the early stages of the evolution, g{sub eff} is constant in time and can be determined from the solution of a 1D differential equation that depends on the initial, radially varying density profile of the filament. For small amplitude filaments such that ρ{sub 0} ≪ 1, where ρ{sub 0} is the relative amplitude of the filament to the background, the early stage g{sub eff} scales linearly with ρ{sub 0}, but as ρ{sub 0}→∞, g{sub eff}→g and is thus independent of ρ{sub 0}. Fully nonlinear simulations are performed for the evolution of Gaussian filaments, and it is found that the time t{sub max}, which is defined as the time for the center of mass velocity to reach its maximum value U{sub max}, occurs very soon after the constant acceleration phase and so U{sub max}≈g{sub eff}(t=0)t{sub max}. The simulation results show that U{sub max}∼1/t{sub max}∼√(ρ{sub 0}) for ρ{sub 0} ≪ 1, in agreement with theory and results from previous authors, but that U{sub max} and t{sub max} both scale approximately with √(ρ{sub 0}) for ρ{sub 0} ≫ 1. The fact that U{sub max} and t{sub max} have the same scaling with ρ{sub 0} for large amplitude filaments is in agreement with the theory presented in this paper.

  17. Phase field approach with anisotropic interface energy and interface stresses: Large strain formulation

    NASA Astrophysics Data System (ADS)

    Levitas, Valery I.; Warren, James A.

    2016-06-01

    A thermodynamically consistent, large-strain, multi-phase field approach (with consequent interface stresses) is generalized for the case with anisotropic interface (gradient) energy (e.g. an energy density that depends both on the magnitude and direction of the gradients in the phase fields). Such a generalization, if done in the "usual" manner, yields a theory that can be shown to be manifestly unphysical. These theories consider the gradient energy as anisotropic in the deformed configuration, and, due to this supposition, several fundamental contradictions arise. First, the Cauchy stress tensor is non-symmetric and, consequently, violates the moment of momentum principle, in essence the Herring (thermodynamic) torque is imparting an unphysical angular momentum to the system. In addition, this non-symmetric stress implies a violation of the principle of material objectivity. These problems in the formulation can be resolved by insisting that the gradient energy is an isotropic function of the gradient of the order parameters in the deformed configuration, but depends on the direction of the gradient of the order parameters (is anisotropic) in the undeformed configuration. We find that for a propagating nonequilibrium interface, the structural part of the interfacial Cauchy stress is symmetric and reduces to a biaxial tension with the magnitude equal to the temperature- and orientation-dependent interface energy. Ginzburg-Landau equations for the evolution of the order parameters and temperature evolution equation, as well as the boundary conditions for the order parameters are derived. Small strain simplifications are presented. Remarkably, this anisotropy yields a first order correction in the Ginzburg-Landau equation for small strains, which has been neglected in prior works. The next strain-related term is third order. For concreteness, specific orientation dependencies of the gradient energy coefficients are examined, using published molecular dynamics

  18. Active and passive migration in boring isopods Limnoria spp. (Crustacea, Peracarida) from kelp holdfasts

    NASA Astrophysics Data System (ADS)

    Miranda, Leonardo; Thiel, Martin

    2008-10-01

    Many boring isopods inhabit positively buoyant substrata (wood and algae), which float after detachment, permitting passive migration of inhabitants. Based on observations from previous studies, it was hypothesized that juvenile, subadult and male isopods migrate actively, and will rapidly abandon substrata after detachment. In contrast, reproductive females and small offspring were predicted to remain in floating substrata and thus have a high probability to disperse passively via rafting. In order to test this hypothesis, a colonization and an emigration experiment were conducted with giant kelp ( Macrocystis integrifolia), the holdfasts of which are inhabited by boring isopods from the genus Limnoria. A survey of benthic substrata in the kelp forest confirmed that limnoriids inhabited the holdfasts and did not occur in holdfast-free samples. Results of the colonization experiment showed that all life history stages of the boring isopods immigrated into young, largely uncolonized holdfasts, and after 16 weeks all holdfasts were densely colonized. In the emigration experiment, all life history stages of the isopods rapidly abandoned the detached holdfasts — already 5 min after detachment only few individuals remained in the floating holdfasts. After this initial rapid emigration of isopods, little changes in isopod abundance occurred during the following 24 h, and at the end of the experiment some individuals of all life history stages still remained in the holdfasts. These results indicate that all life history stages of Limnoria participate in both active migration and passive dispersal. It is discussed that storm-related dynamics within kelp forests may contribute to intense mixing of local populations of these burrow-dwelling isopods, and that most immigrants to young holdfasts probably are individuals emigrating from old holdfasts detached during storm events. The fact that some individuals of all life history stages and both sexes remain in floating

  19. Large field distributed aperture laser semiactive angle measurement system design with imaging fiber bundles.

    PubMed

    Xu, Chunyun; Cheng, Haobo; Feng, Yunpeng; Jing, Xiaoli

    2016-09-01

    A type of laser semiactive angle measurement system is designed for target detecting and tracking. Only one detector is used to detect target location from four distributed aperture optical systems through a 4×1 imaging fiber bundle. A telecentric optical system in image space is designed to increase the efficiency of imaging fiber bundles. According to the working principle of a four-quadrant (4Q) detector, fiber diamond alignment is adopted between an optical system and a 4Q detector. The structure of the laser semiactive angle measurement system is, we believe, novel. Tolerance analysis is carried out to determine tolerance limits of manufacture and installation errors of the optical system. The performance of the proposed method is identified by computer simulations and experiments. It is demonstrated that the linear region of the system is ±12°, with measurement error of better than 0.2°. In general, this new system can be used with large field of view and high accuracy, providing an efficient, stable, and fast method for angle measurement in practical situations. PMID:27607276

  20. Wide-band acousto-optic deflectors for large field of view two-photon microscope.

    PubMed

    Jiang, Runhua; Zhou, Zhenqiao; Lv, Xiaohua; Zeng, Shaoqun

    2012-04-01

    Acousto-optic deflector (AOD) is an attractive scanner for two-photon microscopy because it can provide fast and versatile laser scanning and does not involve any mechanical movements. However, due to the small scan range of available AOD, the field of view (FOV) of the AOD-based microscope is typically smaller than that of the conventional galvanometer-based microscope. Here, we developed a novel wide-band AOD to enlarge the scan angle. Considering the maximum acceptable acoustic attenuation in the acousto-optic crystal, relatively lower operating frequencies and moderate aperture were adopted. The custom AOD was able to provide 60 MHz 3-dB bandwidth and 80% peak diffraction efficiency at 840 nm wavelength. Based on a pair of such AOD, a large FOV two-photon microscope was built with a FOV up to 418.5 μm (40× objective). The spatiotemporal dispersion was compensated simultaneously with a single custom-made prism. By means of dynamic power modulation, the variation of laser intensity within the FOV was reduced below 5%. The lateral and axial resolution of the system were 0.58-2.12 μm and 2.17-3.07 μm, respectively. Pollen grain images acquired by this system were presented to demonstrate the imaging capability at different positions across the entire FOV.

  1. Lateral Scanning Linnik Interferometry for Large Field of View and Fast Scanning: Wafer Bump Inspection

    NASA Astrophysics Data System (ADS)

    Kim, Min Y.; Veluvolu, Kalyana C.; Lee, Soon-Geul

    2011-07-01

    Wafer-level packaging is currently the major trend in semiconductor packaging for miniaturization and high-density integration. To ensure the package reliability, the wafer and substrate bumps utilized as connection junctions need to be in-line inspected as regards their top-height distribution, coplanarity, and volume uniformity. This article proposes a lateral scanning interferometric system for wafer bump shape inspection in three dimensions with a large field of view and fast inspection speed based on an optomechatronic system design. For multiple-peak interferogram from wafer bumps around a transparent film layer, two-step information extraction algorithms are suggested, including top surface profile and under-layer surface profile detection algorithms. The multiple-peak interferogram is acquired with variations of lateral position of the reference mirror by a piezoelectric transducer (PZT). A series of experiments is performed for representative wafer samples with solder and gold bumps, and the effectiveness of the proposed inspection system is verified from the test results.

  2. Powering up with indirect reciprocity in a large-scale field experiment.

    PubMed

    Yoeli, Erez; Hoffman, Moshe; Rand, David G; Nowak, Martin A

    2013-06-18

    A defining aspect of human cooperation is the use of sophisticated indirect reciprocity. We observe others, talk about others, and act accordingly. We help those who help others, and we cooperate expecting that others will cooperate in return. Indirect reciprocity is based on reputation, which spreads by communication. A crucial aspect of indirect reciprocity is observability: reputation effects can support cooperation as long as peoples' actions can be observed by others. In evolutionary models of indirect reciprocity, natural selection favors cooperation when observability is sufficiently high. Complimenting this theoretical work are experiments where observability promotes cooperation among small groups playing games in the laboratory. Until now, however, there has been little evidence of observability's power to promote large-scale cooperation in real world settings. Here we provide such evidence using a field study involving 2413 subjects. We collaborated with a utility company to study participation in a program designed to prevent blackouts. We show that observability triples participation in this public goods game. The effect is over four times larger than offering a $25 monetary incentive, the company's previous policy. Furthermore, as predicted by indirect reciprocity, we provide evidence that reputational concerns are driving our observability effect. In sum, we show how indirect reciprocity can be harnessed to increase cooperation in a relevant, real-world public goods game.

  3. Powering up with indirect reciprocity in a large-scale field experiment.

    PubMed

    Yoeli, Erez; Hoffman, Moshe; Rand, David G; Nowak, Martin A

    2013-06-18

    A defining aspect of human cooperation is the use of sophisticated indirect reciprocity. We observe others, talk about others, and act accordingly. We help those who help others, and we cooperate expecting that others will cooperate in return. Indirect reciprocity is based on reputation, which spreads by communication. A crucial aspect of indirect reciprocity is observability: reputation effects can support cooperation as long as peoples' actions can be observed by others. In evolutionary models of indirect reciprocity, natural selection favors cooperation when observability is sufficiently high. Complimenting this theoretical work are experiments where observability promotes cooperation among small groups playing games in the laboratory. Until now, however, there has been little evidence of observability's power to promote large-scale cooperation in real world settings. Here we provide such evidence using a field study involving 2413 subjects. We collaborated with a utility company to study participation in a program designed to prevent blackouts. We show that observability triples participation in this public goods game. The effect is over four times larger than offering a $25 monetary incentive, the company's previous policy. Furthermore, as predicted by indirect reciprocity, we provide evidence that reputational concerns are driving our observability effect. In sum, we show how indirect reciprocity can be harnessed to increase cooperation in a relevant, real-world public goods game. PMID:23754399

  4. Effects of stochastic field lines on the pressure driven MHD instabilities in the Large Helical Device

    NASA Astrophysics Data System (ADS)

    Ohdachi, Satoshi; Watanabe, Kiyomasa; Sakakibara, Satoru; Suzuki, Yasuhiro; Tsuchiya, Hayato; Ming, Tingfeng; Du, Xiaodi; LHD Expriment Group Team

    2014-10-01

    In the Large Helical Device (LHD), the plasma is surrounded by the so-called magnetic stochastic region, where the Kolmogorov length of the magnetic field lines is very short, from several tens of meters and to thousands meters. Finite pressure gradient are formed in this region and MHD instabilities localized in this region is observed since the edge region of the LHD is always unstable against the pressure driven mode. Therefore, the saturation level of the instabilities is the key issue in order to evaluate the risk of this kind of MHD instabilities. The saturation level depends on the pressure gradient and on the magnetic Reynolds number; there results are similar to the MHD mode in the closed magnetic surface region. The saturation level in the stochastic region is affected also by the stocasticity itself. Parameter dependence of the saturation level of the MHD activities in the region is discussed in detail. It is supported by NIFS budget code ULPP021, 028 and is also partially supported by the Ministry of Education, Science, Sports and Culture, Grant-in-Aid for Scientific Research 26249144, by the JSPS-NRF-NSFC A3 Foresight Program NSFC: No. 11261140328.

  5. Powering up with indirect reciprocity in a large-scale field experiment

    PubMed Central

    Yoeli, Erez; Hoffman, Moshe; Rand, David G.; Nowak, Martin A.

    2013-01-01

    A defining aspect of human cooperation is the use of sophisticated indirect reciprocity. We observe others, talk about others, and act accordingly. We help those who help others, and we cooperate expecting that others will cooperate in return. Indirect reciprocity is based on reputation, which spreads by communication. A crucial aspect of indirect reciprocity is observability: reputation effects can support cooperation as long as peoples’ actions can be observed by others. In evolutionary models of indirect reciprocity, natural selection favors cooperation when observability is sufficiently high. Complimenting this theoretical work are experiments where observability promotes cooperation among small groups playing games in the laboratory. Until now, however, there has been little evidence of observability’s power to promote large-scale cooperation in real world settings. Here we provide such evidence using a field study involving 2413 subjects. We collaborated with a utility company to study participation in a program designed to prevent blackouts. We show that observability triples participation in this public goods game. The effect is over four times larger than offering a $25 monetary incentive, the company’s previous policy. Furthermore, as predicted by indirect reciprocity, we provide evidence that reputational concerns are driving our observability effect. In sum, we show how indirect reciprocity can be harnessed to increase cooperation in a relevant, real-world public goods game. PMID:23754399

  6. Release model for in situ vitrification large-field test off-gas treatment system

    SciTech Connect

    Pafford, D.J.; Tung, V.X.

    1992-03-01

    A conceptual model for the vapor and aerosol transport and deposition in the in situ vitrification large-field test off-gas system (OGS) has been developed. This model can be used to predict the emissions from the OGS under normal and off-normal conditions. Results generated by the model can be used to evaluate design and/or procedural modifications, define tests, and predict results. The OGS vapor and aerosol transport and deposition is modeled using the PULSE/MOD-ISV/VER 1.0.0 developmental computer code. Input data requirements for this code include the specific geometries of the OGS components; the composition, rate, and temperature of the vapors and aerosols entering the OGS; and the OGS component surface temperatures or heat fluxes. Currently, not all of these model inputs are available. Therefore, conceptual input parameters are developed. Using this input data, preliminary calculations with the code have been performed. These calculations include a demonstration that the code predicts convergent results, a comparison of predicted results with performance data for one of the OGS components, and a preliminary sensitivity study of the complete model.

  7. Large field-of-view wavefront control for deep brain imaging (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Park, Jung-Hoon; Cui, Meng

    2016-03-01

    The biggest obstacle for deep tissue imaging is the scattering of light due to the heterogeneous distribution of biological tissue. In this respect, multiphoton microscopy has an inherent advantage as the scattering is significantly reduced by the use of longer excitation wavelengths. However, as we go deeper into the brain, effects of scattering still accumulate resulting in a loss of resolution and increased background noise. Adaptive optics is an ideal tool of choice to correct for such distortions of the excitation wavefront; the incident light can be tuned to cancel out the wavefront distortion experienced while propagating into greater depths resulting in a diffraction limited focus at the depth of interest. However, the biggest limitation of adaptive optics for in vivo brain imaging is its limited corrected field-of-view (FOV). For typical multiphoton laser scanning microscopes, the wavefront corrector for adaptive optics is placed at the pupil plane. This means that a single correction wavefront is applied to the entire scanned FOV which results in inefficient correction as the correction is averaged over the entire FOV. In this work, we demonstrate a novel approach to measure and display different correction wavefronts over different segments of the FOV. The application of the different correction wavefronts for each segment is realized in parallel resulting in fast aberration corrected imaging over a large FOV for high resolution in vivo brain imaging.

  8. Optical characterization of a miniaturized large field of view motion sensor

    NASA Astrophysics Data System (ADS)

    Moens, Els; Ottevaere, Heidi; Meuret, Youri; Thienpont, Hugo

    2012-06-01

    In this paper we discuss the geometrical and optical characterization of a miniaturized very wide field-of-view (FOV) motion sensor inspired by the working principle of insect facet eyes. The goal of the sensor is to detect movement in the environment and to specify where in the surroundings these changes took place. Based on the measurements of the sensor, certain actions can be taken such as sounding an alarm in security applications or turning on the light in domotic applications. The advantage of miniaturizing these sensors is that they are low-cost, compact and more esthetical compared to current motion detectors. The sensor was designed to have a very large FOV of 125° and an angular resolution of 1° or better. The micro-optics is built up of two stacked polymer plates consisting each out of a five by five lens array. In between there is a plate of absorbing material with a five by five array of baffles to create 25 optically isolated channels that each image part of the total FOV of 125° onto the detector. To geometrically characterize the lens arrays and verify the designed specifications, we made use of a coordinate measuring machine. The optical performance of the designed micro-optical system was analyzed by sending white light beams with different angles of incidence with respect to the sample through the sensor, comparing the position of the light spots visible on the detector and determining optical quality parameters such as MTF and distortion.

  9. Large-Field CO(J = 1→0) Observations of the Starburst Galaxy M 82

    NASA Astrophysics Data System (ADS)

    Salak, Dragan; Nakai, Naomasa; Miyamoto, Yusuke; Yamauchi, Aya; Tsuru, Takeshi G.

    2013-06-01

    We present large-field (15.7 × 16.9 arcmin2) CO(J = 1→0) observations of the starburst galaxy M 82, at an angular resolution of 22" with the NRO 45-m telescope. The CO emission was detected in the galactic disk, outflow (driven by the galactic wind) up to ˜2 kpc above the galactic plane in the halo, and in tidal streams. The kinematics of the outflow (including CO line splitting) suggests that it has the shape of a cylinder that is diverging outwards. The mass and kinetic energy of the molecular gas outflow are estimated to be (0.26-1.0) × 109 M⊙ and (1-4) × 1056 erg. A clump of CO gas was discovered 3.5 kpc above the galactic plane; it coincides with a dark lane previously found in X-ray observations, and a peak in H I emission. A comparison with H I, hot molecular hydrogen and dust suggests that the molecular gas shows signatures of warm and cool components in the outflow and tidal streams, respectively.

  10. The bispectrum in the Effective Field Theory of Large Scale Structure

    NASA Astrophysics Data System (ADS)

    Baldauf, Tobias; Mercolli, Lorenzo; Mirbabayi, Mehrdad; Pajer, Enrico

    2015-05-01

    We study the bispectrum in the Effective Field Theory of Large Scale Structure, consistently accounting for the effects of short-scale dynamics. We begin by proving that, as long as the theory is perturbative, it can be formulated to arbitrary order using only operators that are local in time. We then derive all the new operators required to cancel the UV-divergences and obtain a physically meaningful prediction for the one-loop bispectrum. In addition to new, subleading stochastic noises and the viscosity term needed for the one-loop power spectrum, we find three new effective operators. The three new parameters can be constrained by comparing with N-body simulations. The best fit is precisely what is suggested by the structure of UV-divergences, hence justifying a formula for the EFTofLSS bispectrum whose only fitting parameter is already fixed by the power spectrum. This result predicts the bispectrum of N-body simulations up to kmax≈0.22 h Mpc-1 at 0z=, an improvement by nearly a factor of two as compared to one-loop standard perturbation theory.

  11. Resonant atom-field interaction in large-size coupled-cavity arrays

    SciTech Connect

    Ciccarello, Francesco

    2011-04-15

    We consider an array of coupled cavities with staggered intercavity couplings, where each cavity mode interacts with an atom. In contrast to large-size arrays with uniform hopping rates where the atomic dynamics is known to be frozen in the strong-hopping regime, we show that resonant atom-field dynamics with significant energy exchange can occur in the case of staggered hopping rates even in the thermodynamic limit. This effect arises from the joint emergence of an energy gap in the free photonic dispersion relation and a discrete frequency at the gap's center. The latter corresponds to a bound normal mode stemming solely from the finiteness of the array length. Depending on which cavity is excited, either the atomic dynamics is frozen or a Jaynes-Cummings-like energy exchange is triggered between the bound photonic mode and its atomic analog. As these phenomena are effective with any number of cavities, they are prone to be experimentally observed even in small-size arrays.

  12. Wide-band acousto-optic deflectors for large field of view two-photon microscope.

    PubMed

    Jiang, Runhua; Zhou, Zhenqiao; Lv, Xiaohua; Zeng, Shaoqun

    2012-04-01

    Acousto-optic deflector (AOD) is an attractive scanner for two-photon microscopy because it can provide fast and versatile laser scanning and does not involve any mechanical movements. However, due to the small scan range of available AOD, the field of view (FOV) of the AOD-based microscope is typically smaller than that of the conventional galvanometer-based microscope. Here, we developed a novel wide-band AOD to enlarge the scan angle. Considering the maximum acceptable acoustic attenuation in the acousto-optic crystal, relatively lower operating frequencies and moderate aperture were adopted. The custom AOD was able to provide 60 MHz 3-dB bandwidth and 80% peak diffraction efficiency at 840 nm wavelength. Based on a pair of such AOD, a large FOV two-photon microscope was built with a FOV up to 418.5 μm (40× objective). The spatiotemporal dispersion was compensated simultaneously with a single custom-made prism. By means of dynamic power modulation, the variation of laser intensity within the FOV was reduced below 5%. The lateral and axial resolution of the system were 0.58-2.12 μm and 2.17-3.07 μm, respectively. Pollen grain images acquired by this system were presented to demonstrate the imaging capability at different positions across the entire FOV. PMID:22559541

  13. Geometric accuracy in three-dimensional coordinates of Leksell stereotactic skull frame with wide-bore 1.5-T MRI compared with conventional 1.5-T MRI.

    PubMed

    Nakazawa, Hisato; Komori, Masataka; Shibamoto, Yuta; Takikawa, Yukinori; Mori, Yoshimasa; Tsugawa, Takahiko

    2014-10-01

    The use of 1.5-tesla (T) magnetic resonance (MR) imaging with a wide and simultaneously short bore enhances patient comfort compared with traditional 1.5-T MR imaging and is becoming increasingly available in stereotactic radiosurgery treatment planning. However, the geometric accuracy seems unavoidably worse in wide-bore MR imaging than in conventional MR imaging. We assessed the geometric distortion of the stereotactic image attached on a Leksell skull frame in conventional and wide-bore 1.5-T MR imaging. Two kinds of acrylic phantoms were placed on the skull frame and were scanned using computed tomography (CT) and conventional and wide-bore 1.5-T MR imaging. The three-dimensional coordinates on both MR imaging were compared with those on CT. Deviations of measured coordinates at selected points (x = 50, 100, 150 mm; y = 50, 100, 150 mm) were indicated on different axial planes (z = 50, 75, 100, 125, 150 mm). The differences of coordinates were less than 1.0 mm in the entire treatable area for conventional MR imaging. With the large bore system, the differences of the coordinates were less than 1.0 mm around the center but substantially exceeded 1.0 mm in the peripheral regions. Further study is needed to increase the geometric accuracy of wide-bore MR imaging for stereotactic radiosurgery treatment planning.

  14. A tunnel boring system for the Yucca Mountain Project

    SciTech Connect

    Short, S.N.

    1994-12-31

    Design of the Yucca Mountain Project (YMP) tunnel boring machine (TBM) and backup began in June of 1993, with fabrication, machining and light assembly proceeding through to the end of the year. The original specifications for the project were contained in the request for quote for the YMP TBM and in Construction & Tunneling Services proposal document. As with all complex custom assignments, much of the finer details of the definition of the final scope of delivery was concurrent with the design effort itself. The summation of this effort is described in this paper. The major technical scope of the machine delivery is defined by the parameters listed in TABLE 1. Within the confines of the installed power and design excavation rates, the final product has been tailored to suit the particular needs of the project.

  15. Tunnel boring machine applications; Yucca Mountain Exploratory Studies Facility

    SciTech Connect

    Bhattacharyya, K.K.; McDonald, R.; Saunders, R.S.

    1992-11-01

    This paper reports that characterization of Yucca Mountain for a potential repository requires construction of an underground Exploratory Studies Facility (ESF). Mechanical excavating methods have been proposed for construction of the ESF as they offer a number of advantages over drilling and blasting at the Yucca Mountain site, including; less ground disturbance and therefore a potential for less adverse effects on the integrity of the site, creation of a more stable excavation cross section requiring less ground support, and an inherently safer and cleaner working environment. The tunnel boring machine (TBM) provides a proven technology for excavating the welded and unwelded Yucca Mountain tuffs. The access ramps and main underground tunnels form the largest part of the ESF underground construction work, and have been designed for excavation by TBM.

  16. Pack carburizing process for earth boring drill bits

    SciTech Connect

    Simons, R.W.; Scott, D.E.; Poland, J.R.

    1987-02-17

    A method is described of manufacturing an earth boring drill bit of the type having a bearing pin extending from a head section of the drill bit for rotatably mounting a cutter, comprising the steps of: providing a container having opposing end openings with sidewalls therebetween which define a container interior; placing the container over a portion of the head section so that the pin extends within the interior of the container; installing a spring spacer within the interior of the container about at least a portion of the circumference of the bearing pin at least one axial location; packing the container with a particulate treating medium; covering the container; and placing the pin and container into a furnace for a time and at a temperature to activate the treating medium.

  17. Design and fabrication of projectiles for round bore railguns

    SciTech Connect

    Susoeff, A.R.; Hawke, R.S.

    1985-03-07

    A hypervelocity railgun system which operates in a vacuum and uses a gas gun injector to pre-accelerate the projectiles required that the projectile seal operate over wide pressure and velocity ranges. In our case, the helium gas gun injector operated at up to 35 MPa (5 ksi) while the railgun, using a plasma arc armature, operated at up to 150 MPa (22 ksi). In addition to gas and arc sealing, it was necessary that a metal fuse be attached to the rear of the projectile in order to electrically commutate the rails upon entry to the railgun. This paper discusses procedures and techniques in the design and fabrication of projectiles for a round bore railgun. It is divided into three sections: (1) machining the projectile; (2) fuse fabrication; and (3) assembly of the projectile/fuse package.

  18. Persistence motives in irrational decisions to complete a boring task.

    PubMed

    Halkjelsvik, Torleif; Rise, Jostein

    2015-01-01

    We explored a novel task paradigm where participants from the online work marketplace Amazon Mechanical Turk were given the choice to quit or continue an unfinished boring task for identical economic rewards. In Studies 1a and 1b, about half the participants chose to continue (corresponding to an average of 55 and 35 cents in foregone earnings). Participants' self-reported reasons for continuing involved various types of persistence motives, reflecting a desire to persist or complete per se. Studies 2, 3a, 3b, and 3c ruled out the possibility that people continued because they enjoyed the task or believed there were additional rewards for continuing. Study 4 showed that the choice to quit/continue was associated with the manner in which the choice was presented (persistence test vs. decision-making test) and individual differences in dispositional persistence motives. The present data indicate that motivational forces independent of the focal reward may affect intertemporal decisions. PMID:25355585

  19. Evidence for a large-scale helical magnetic field in the quasar 3C 454.3

    NASA Astrophysics Data System (ADS)

    Zamaninasab, M.; Savolainen, T.; Clausen-Brown, E.; Hovatta, T.; Lister, M. L.; Krichbaum, T. P.; Kovalev, Y. Y.; Pushkarev, A. B.

    2013-12-01

    Most current theoretical models link the launching of relativistic jets from active galactic nuclei to the presence of twisted magnetic fields close to the supermassive black hole. While these models predict a large-scale, ordered, helical magnetic field near the central engine, it is not clear if, and to what extent, this order is preserved further downstream in the jet. Here, we present compelling evidence that suggests that the radio emission from the jet of the quasar 3C 454.3 exhibits multiple signatures of a large-scale, ordered helical magnetic field component at a distance of hundreds of parsecs from the launching point. Our results provide observational support for magnetic jet launching models and indicate that the ordered helical field component may remain stable over a large distance down the jet.

  20. Biogeography of Wood-Boring Crustaceans (Isopoda: Limnoriidae) Established in European Coastal Waters

    PubMed Central

    Borges, Luísa M. S.; Merckelbach, Lucas M.; Cragg, Simon M.

    2014-01-01

    Marine wood-borers of the Limnoriidae cause great destruction to wooden structures exposed in the marine environment. In this study we collated occurrence data obtained from field surveys, spanning over a period of 10 years, and from an extensive literature review. We aimed to determine which wood-boring limnoriid species are established in European coastal waters; to map their past and recent distribution in Europe in order to infer species range extension or contraction; to determine species environmental requirements using climatic envelopes. Of the six species of wood-boring Limnoria previously reported occurring in Europe, only Limnoria lignorum, L. quadripunctata and L. tripunctata are established in European coastal waters. L. carinata and L. tuberculata have uncertain established status, whereas L. borealis is not established in European waters. The species with the widest distribution in Europe is Limnoria lignorum, which is also the most tolerant species to a range of salinities. L. quadripunctata and L. tripunctata appear to be stenohaline. However, the present study shows that both L. quadripunctata and L. tripunctata are more widespread in Europe than previous reports suggested. Both species have been found occurring in Europe since they were described, and their increased distribution is probably the results of a range expansion. On the other hand L. lignorum appears to be retreating poleward with ocean warming. In certain areas (e.g. southern England, and southern Portugal), limnoriids appear to be very abundant and their activity is rivalling that of teredinids. Therefore, it is important to monitor the distribution and destructive activity of these organisms in Europe. PMID:25313796

  1. Study on the response of the full-bore conductance sensor for water cut measurement

    NASA Astrophysics Data System (ADS)

    Xie, Ronghua; Liu, Xingbin; Hu, Jinhai; Dai, Xuefei; Shan, Fujun; Xu, Wenfeng

    2009-02-01

    This paper has proposed a new structure of full-bore conductance sensor, which is designed for measuring water cut of the oil-water two-phase flow. The structure of the full-bore conductance sensor and the measurement principle are introduced in the paper. The mental ring-shaped electrode is mounted on the outside wall of the cylindrical insulation body. When the electrode is provided with constant current, according to the electrical theory, the electrode generates a voltage, the value of which is inversely proportional to the conductivity of fluid flowing between the sensor and the casing. The electrostatic field simulations of the sensor are accomplished by using ANSYS software. The results of the potential distribution simulation show that the potential decays quickly from the electrode along r direction (radial) and z direction (axial)to both sides, and the potential only distributes in a very narrow area near the electrode. A series of static experiments on the sensor are carried out in laboratory. The experiment results agree with the simulation results. In radial direction, the closer the rod is to the sensor, the more sensitive the sensor becomes and the greater the relative response becomes. In axial direction, the electrode only responds in a certain region on both sides of the electrode and decays rapidly from the electrode to both sides. And the salinity experiment is conducted in salt solution (3000 ppm), which shows that within the allowable range of experiment error, there is no effect of salinity on the sensor response. response.

  2. The large-scale ionospheric electric field - Its variation with magnetic activity and relation to terrestrial kilometric radiation

    NASA Technical Reports Server (NTRS)

    Holzworth, R. H.; Cullers, D. K.; Hudson, M. K.; Berthelier, J.-J.; Fahleson, U. V.; Falthammar, C.-G.; Jalonen, L.; Tanskanen, P.; Kelley, M. C.; Kellogg, P. J.

    1977-01-01

    Four days of simultaneous auroral zone electric field measurements on balloons flown from six sites spanning 180 deg of magnetic longitude have been analyzed. The average electric field behavior during this magnetically quiet epoch is consistent with earlier single-point measurements, although the average auroral zone electric field was more affected by corotation effects than it was during more disturbed times. When these data, which primarily reflect the large-scale (several hundred kilometer) ionospheric electric field, are mapped to the equator, a steady dawn to dusk component is apparent only on the average, while instantaneously the field is quite variable. The ionospheric electric field during isolated substorms is shown to have differing signatures east and west of 2200 LT. A worldwide positive correlation is shown to exist between the auroral zone electric field strength and the intensity of terrestrial kilometric radiation.

  3. Large-scale, near-Earth, magnetic fields from external sources and the corresponding induced internal field

    NASA Technical Reports Server (NTRS)

    Langel, R. A.; Estes, R. H.

    1983-01-01

    Data from MAGSAT analyzed as a function of the Dst index to determine the first degree/order spherical harmonic description of the near-Earth external field and its corresponding induced field. The analysis was done separately for data from dawn and dusk. The MAGSAT data was compared with POGO data. A local time variation of the external field persists even during very quiet magnetic conditions; both a diurnal and 8-hour period are present. A crude estimate of Sq current in the 45 deg geomagnetic latitude range is obtained for 1966 to 1970. The current strength, located in the ionosphere and induced in the Earth, is typical of earlier determinations from surface data, although its maximum is displaced in local time from previous results.

  4. CFD Modelling of Bore Erosion in Two-Stage Light Gas Guns

    NASA Technical Reports Server (NTRS)

    Bogdanoff, D. W.

    1998-01-01

    A well-validated quasi-one-dimensional computational fluid dynamics (CFD) code for the analysis of the internal ballistics of two-stage light gas guns is modified to explicitly calculate the ablation of steel from the gun bore and the incorporation of the ablated wall material into the hydrogen working cas. The modified code is used to model 45 shots made with the NASA Ames 0.5 inch light gas gun over an extremely wide variety of gun operating conditions. Good agreement is found between the experimental and theoretical piston velocities (maximum errors of +/-2% to +/-6%) and maximum powder pressures (maximum errors of +/-10% with good igniters). Overall, the agreement between the experimental and numerically calculated gun erosion values (within a factor of 2) was judged to be reasonably good, considering the complexity of the processes modelled. Experimental muzzle velocities agree very well (maximum errors of 0.5-0.7 km/sec) with theoretical muzzle velocities calculated with loading of the hydrogen gas with the ablated barrel wall material. Comparison of results for pump tube volumes of 100%, 60% and 40% of an initial benchmark value show that, at the higher muzzle velocities, operation at 40% pump tube volume produces much lower hydrogen loading and gun erosion and substantially lower maximum pressures in the gun. Large muzzle velocity gains (2.4-5.4 km/sec) are predicted upon driving the gun harder (that is, upon using, higher powder loads and/or lower hydrogen fill pressures) when hydrogen loading is neglected; much smaller muzzle velocity gains (1.1-2.2 km/sec) are predicted when hydrogen loading is taken into account. These smaller predicted velocity gains agree well with those achieved in practice. CFD snapshots of the hydrogen mass fraction, density and pressure of the in-bore medium are presented for a very erosive shot.

  5. High-resolution combined global gravity field modelling: Solving large kite systems using distributed computational algorithms

    NASA Astrophysics Data System (ADS)

    Zingerle, Philipp; Fecher, Thomas; Pail, Roland; Gruber, Thomas

    2016-04-01

    One of the major obstacles in modern global gravity field modelling is the seamless combination of lower degree inhomogeneous gravity field observations (e.g. data from satellite missions) with (very) high degree homogeneous information (e.g. gridded and reduced gravity anomalies, beyond d/o 1000). Actual approaches mostly combine such data only on the basis of the coefficients, meaning that previously for both observation classes (resp. models) a spherical harmonic analysis is done independently, solving dense normal equations (NEQ) for the inhomogeneous model and block-diagonal NEQs for the homogeneous. Obviously those methods are unable to identify or eliminate effects as spectral leakage due to band limitations of the models and non-orthogonality of the spherical harmonic base functions. To antagonize such problems a combination of both models on NEQ-basis is desirable. Theoretically this can be achieved using NEQ-stacking. Because of the higher maximum degree of the homogeneous model a reordering of the coefficient is needed which leads inevitably to the destruction of the block diagonal structure of the appropriate NEQ-matrix and therefore also to the destruction of simple sparsity. Hence, a special coefficient ordering is needed to create some new favorable sparsity pattern leading to a later efficient computational solving method. Such pattern can be found in the so called kite-structure (Bosch, 1993), achieving when applying the kite-ordering to the stacked NEQ-matrix. In a first step it is shown what is needed to attain the kite-(NEQ)system, how to solve it efficiently and also how to calculate the appropriate variance information from it. Further, because of the massive computational workload when operating on large kite-systems (theoretically possible up to about max. d/o 100.000), the main emphasis is put on to the presentation of special distributed algorithms which may solve those systems parallel on an indeterminate number of processes and are

  6. Design of shared instruments to utilize simulated gravities generated by a large-gradient, high-field superconducting magnet

    NASA Astrophysics Data System (ADS)

    Wang, Y.; Yin, D. C.; Liu, Y. M.; Shi, J. Z.; Lu, H. M.; Shi, Z. H.; Qian, A. R.; Shang, P.

    2011-03-01

    A high-field superconducting magnet can provide both high-magnetic fields and large-field gradients, which can be used as a special environment for research or practical applications in materials processing, life science studies, physical and chemical reactions, etc. To make full use of a superconducting magnet, shared instruments (the operating platform, sample holders, temperature controller, and observation system) must be prepared as prerequisites. This paper introduces the design of a set of sample holders and a temperature controller in detail with an emphasis on validating the performance of the force and temperature sensors in the high-magnetic field.

  7. Large-field-of-view wide-spectrum artificial reflecting superposition compound eyes

    NASA Astrophysics Data System (ADS)

    Huang, Chi-Chieh

    The study of the imaging principles of natural compound eyes has become an active area of research and has fueled the advancement of modern optics with many attractive design features beyond those available with conventional technologies. Most prominent among all compound eyes is the reflecting superposition compound eyes (RSCEs) found in some decapods. They are extraordinary imaging systems with numerous optical features such as minimum chromatic aberration, wide-angle field of view (FOV), high sensitivity to light and superb acuity to motion. Inspired by their remarkable visual system, we were able to implement the unique lens-free, reflection-based imaging mechanisms into a miniaturized, large-FOV optical imaging device operating at the wide visible spectrum to minimize chromatic aberration without any additional post-image processing. First, two micro-transfer printing methods, a multiple and a shear-assisted transfer printing technique, were studied and discussed to realize life-sized artificial RSCEs. The processes exploited the differential adhesive tendencies of the microstructures formed between a donor and a transfer substrate to accomplish an efficient release and transfer process. These techniques enabled conformal wrapping of three-dimensional (3-D) microstructures, initially fabricated in two-dimensional (2-D) layouts with standard fabrication technology onto a wide range of surfaces with complex and curvilinear shapes. Final part of this dissertation was focused on implementing the key operational features of the natural RSCEs into large-FOV, wide-spectrum artificial RSCEs as an optical imaging device suitable for the wide visible spectrum. Our devices can form real, clear images based on reflection rather than refraction, hence avoiding chromatic aberration due to dispersion by the optical materials. Compared to the performance of conventional refractive lenses of comparable size, our devices demonstrated minimum chromatic aberration, exceptional

  8. The one-loop matter bispectrum in the Effective Field Theory of Large Scale Structures

    SciTech Connect

    Angulo, Raul E.; Foreman, Simon; Schmittfull, Marcel; Senatore, Leonardo

    2015-10-14

    With this study, given the importance of future large scale structure surveys for delivering new cosmological information, it is crucial to reliably predict their observables. The Effective Field Theory of Large Scale Structures (EFTofLSS) provides a manifestly convergent perturbative scheme to compute the clustering of dark matter in the weakly nonlinear regime in an expansion in k/kNL, where k is the wavenumber of interest and kNL is the wavenumber associated to the nonlinear scale. It has been recently shown that the EFTofLSS matches to 1% level the dark matter power spectrum at redshift zero up to k ≃ 0.3 h Mpc–1 and k ≃ 0.6 h Mpc–1 at one and two loops respectively, using only one counterterm that is fit to data. Similar results have been obtained for the momentum power spectrum at one loop. This is a remarkable improvement with respect to former analytical techniques. Here we study the prediction for the equal-time dark matter bispectrum at one loop. We find that at this order it is sufficient to consider the same counterterm that was measured in the power spectrum. Without any remaining free parameter, and in a cosmology for which kNL is smaller than in the previously considered cases (σ8=0.9), we find that the prediction from the EFTofLSS agrees very well with N-body simulations up to k ≃ 0.25 h Mpc–1, given the accuracy of the measurements, which is of order a few percent at the highest k's of interest. While the fit is very good on average up to k ≃ 0.25 h Mpc–1, the fit performs slightly worse on equilateral configurations, in agreement with expectations that for a given maximum k, equilateral triangles are the most nonlinear.

  9. High Energy Particles, Shock Waves and Magnetic Fields in the Large Scale Structure of the Universe

    NASA Astrophysics Data System (ADS)

    Miniati, Francesco

    2000-11-01

    We have investigated acceleration of high energy cosmic rays in association with process of large scale structure formation. For the first time we have carried out numerical simulations of cosmological structure formation including explicitly the injection, acceleration and energy losses of high energy ions and electrons. Secondary electrons produced in hadronic collisions of cosmic ray ions and thermal background nuclei were also included in the calculation. Furthermore, we follow the passive evolution of the magnetic field (i.e. no magnetic force is included), generated at cosmic shocks through the Biermann battery mechanism. We first study the properties of cosmic shocks where particle acceleration takes place and find that most of the kinetic energy is processed by relatively weak shocks with Mach number of order 3-5. One of the main results of this thesis is that cosmic ray ions produced at these shocks store up a significant fraction of the total energy density and pressure inside today's clusters of galaxies. Furthermore, the radio synchrotron emission from secondary electrons in our simulation reproduces many observed features of radio halos. This result may suggest the important possibility that radio halos are a consequence of high non-thermal activity taking place inside clusters of galaxies. The non-thermal HXR excess of radiation observed in Coma cluster and Abell 2199 can be partially produced by inverse Compton emission of both primary and secondary electrons accelerated in simulated clusters with corresponding temperature, as they scatter the cosmic microwave background photons. The same mechanism, however, now involving the low energy electrons of the same distributions, generates an EUV luminosity that is far below the observed values.

  10. A large-scale field assessment of carbon stocks in human-modified tropical forests.

    PubMed

    Berenguer, Erika; Ferreira, Joice; Gardner, Toby Alan; Aragão, Luiz Eduardo Oliveira Cruz; De Camargo, Plínio Barbosa; Cerri, Carlos Eduardo; Durigan, Mariana; Cosme De Oliveira Junior, Raimundo; Vieira, Ima Célia Guimarães; Barlow, Jos

    2014-12-01

    Tropical rainforests store enormous amounts of carbon, the protection of which represents a vital component of efforts to mitigate global climate change. Currently, tropical forest conservation, science, policies, and climate mitigation actions focus predominantly on reducing carbon emissions from deforestation alone. However, every year vast areas of the humid tropics are disturbed by selective logging, understory fires, and habitat fragmentation. There is an urgent need to understand the effect of such disturbances on carbon stocks, and how stocks in disturbed forests compare to those found in undisturbed primary forests as well as in regenerating secondary forests. Here, we present the results of the largest field study to date on the impacts of human disturbances on above and belowground carbon stocks in tropical forests. Live vegetation, the largest carbon pool, was extremely sensitive to disturbance: forests that experienced both selective logging and understory fires stored, on average, 40% less aboveground carbon than undisturbed forests and were structurally similar to secondary forests. Edge effects also played an important role in explaining variability in aboveground carbon stocks of disturbed forests. Results indicate a potential rapid recovery of the dead wood and litter carbon pools, while soil stocks (0-30 cm) appeared to be resistant to the effects of logging and fire. Carbon loss and subsequent emissions due to human disturbances remain largely unaccounted for in greenhouse gas inventories, but by comparing our estimates of depleted carbon stocks in disturbed forests with Brazilian government assessments of the total forest area annually disturbed in the Amazon, we show that these emissions could represent up to 40% of the carbon loss from deforestation in the region. We conclude that conservation programs aiming to ensure the long-term permanence of forest carbon stocks, such as REDD+, will remain limited in their success unless they effectively

  11. Demonstration of large field effect in topological insulator films via a high-κ back gate

    NASA Astrophysics Data System (ADS)

    Wang, C. Y.; Lin, H. Y.; Yang, S. R.; Chen, K. H. M.; Lin, Y. H.; Chen, K. H.; Young, L. B.; Cheng, C. K.; Fanchiang, Y. T.; Tseng, S. C.; Hong, M.; Kwo, J.

    2016-05-01

    The spintronics applications long anticipated for topological insulators (TIs) has been hampered due to the presence of high density intrinsic defects in the bulk states. In this work we demonstrate the back-gating effect on TIs by integrating Bi2Se3 films 6-10 quintuple layer (QL) thick with amorphous high-κ oxides of Al2O3 and Y2O3. Large gating effect of tuning the Fermi level EF to very close to the band gap was observed, with an applied bias of an order of magnitude smaller than those of the SiO2 back gate, and the modulation of film resistance can reach as high as 1200%. The dependence of the gating effect on the TI film thickness was investigated, and ΔN2D/ΔVg varies with TI film thickness as ˜t-0.75. To enhance the gating effect, a Y2O3 layer thickness 4 nm was inserted into Al2O3 gate stack to increase the total κ value to 13.2. A 1.4 times stronger gating effect is observed, and the increment of induced carrier numbers is in good agreement with additional charges accumulated in the higher κ oxides. Moreover, we have reduced the intrinsic carrier concentration in the TI film by doping Te to Bi2Se3 to form Bi2TexSe1-x. The observation of a mixed state of ambipolar field that both electrons and holes are present indicates that we have tuned the EF very close to the Dirac Point. These results have demonstrated that our capability of gating TIs with high-κ back gate to pave the way to spin devices of tunable EF for dissipationless spintronics based on well-established semiconductor technology.

  12. A large-scale field assessment of carbon stocks in human-modified tropical forests.

    PubMed

    Berenguer, Erika; Ferreira, Joice; Gardner, Toby Alan; Aragão, Luiz Eduardo Oliveira Cruz; De Camargo, Plínio Barbosa; Cerri, Carlos Eduardo; Durigan, Mariana; Cosme De Oliveira Junior, Raimundo; Vieira, Ima Célia Guimarães; Barlow, Jos

    2014-12-01

    Tropical rainforests store enormous amounts of carbon, the protection of which represents a vital component of efforts to mitigate global climate change. Currently, tropical forest conservation, science, policies, and climate mitigation actions focus predominantly on reducing carbon emissions from deforestation alone. However, every year vast areas of the humid tropics are disturbed by selective logging, understory fires, and habitat fragmentation. There is an urgent need to understand the effect of such disturbances on carbon stocks, and how stocks in disturbed forests compare to those found in undisturbed primary forests as well as in regenerating secondary forests. Here, we present the results of the largest field study to date on the impacts of human disturbances on above and belowground carbon stocks in tropical forests. Live vegetation, the largest carbon pool, was extremely sensitive to disturbance: forests that experienced both selective logging and understory fires stored, on average, 40% less aboveground carbon than undisturbed forests and were structurally similar to secondary forests. Edge effects also played an important role in explaining variability in aboveground carbon stocks of disturbed forests. Results indicate a potential rapid recovery of the dead wood and litter carbon pools, while soil stocks (0-30 cm) appeared to be resistant to the effects of logging and fire. Carbon loss and subsequent emissions due to human disturbances remain largely unaccounted for in greenhouse gas inventories, but by comparing our estimates of depleted carbon stocks in disturbed forests with Brazilian government assessments of the total forest area annually disturbed in the Amazon, we show that these emissions could represent up to 40% of the carbon loss from deforestation in the region. We conclude that conservation programs aiming to ensure the long-term permanence of forest carbon stocks, such as REDD+, will remain limited in their success unless they effectively

  13. The Effect of Large-Field Wedge Filters on Stopping Power Ratios

    NASA Astrophysics Data System (ADS)

    Watts, Ronald Jay

    Over the past few decades, linear accelerators have been used for the treatment of cancer. These accelerators produce a spectrum of x-ray energies, with the maximum energy determined by the accelerating potential in the accelerator waveguide. Traditionally, the beams produced by these accelerators have been modified for certain treatment schemes to improve the overall dose distribution in the tumor volume. One of the beam modifiers has been the use of wedge filters. Although it has been accepted for some years that the introduction of a wedge filter hardens the x-ray beam from a linear accelerator, little or no correction for this effect has been routinely performed in the typical clinic. The results of this research will demonstrate that (1) a detectable change in the x-ray fluence energy distribution results with the introduction of a large field wedge, and (2) the change in the photon fluence results in a change in the average stopping power ratio for water to air used in the conversion of ionization chamber reading to absorbed dose. These effects are demonstrated for a variety of configurations including central axis and off axis points, with and without the wedge. To demonstrate the change in the x-ray fluence energy distribution, a reconstruction of bremsstrahlung spectra from measured transmission data technique was used, utilizing a Laplace Transform Pair Model. Following determination of Phi(E) for various beam configurations, with and without a wedge filter, average stopping power ratios of water to air were determined for each spectra. The results presented indicate that although a significant change in the photon fluence energy distribution results with the introduction of the wedge filter into the beam, the change in stopping power is <=q 0.5 %. This small change, however, is on the order of the chamber perturbation factors normally incorporated when using national or international dosimetry protocols. Thus this small change should be considered in

  14. Impact of magnetic topology on radial electric field profile in the scrape-off layer of the Large Helical Device

    NASA Astrophysics Data System (ADS)

    Suzuki, Y.; Ida, K.; Kamiya, K.; Yoshinuma, M.; Tsuchiya, H.; Kobayashi, M.; Kawamura, G.; Ohdachi, S.; Sakakibara, S.; Watanabe, K. Y.; Hudson, S.; Feng, Y.; Yamada, I.; Yasuhara, R.; Tanaka, K.; Akiyama, T.; Morisaki, T.; The LHD Experiment Group

    2016-09-01

    The radial electric field in the plasma edge is studied in the Large Helical Device (LHD) experiments. When magnetic field lines become stochastic or open at the plasma edge and connected to the vessel, electrons are lost faster than ions along these field lines. Then, a positive electric field appears in the plasma edge. The radial electric field profile can be used to detect the effective plasma boundary. Magnetic topology is an important issue in stellarator and tokamak research because the 3D boundary has the important role of controlling MHD edge stability with respect to ELMs, and plasma detachment. Since the stochastic magnetic field layer can be controlled in the LHD by changing the preset vacuum magnetic axis, this device is a good platform to study the properties of the radial electric field that appear with the different stochastic layer width. Two magnetic configurations with different widths of the stochastic layer as simulated in vacuum are studied for low-β discharges. It has been found that a positive electric field appeared outside of the last closed flux surface. In fact the positions of the positive electric field are found in the boundary between of the stochastic layer and the scrape-off layer. To understand where is the boundary of the stochastic layer and the scrape-off layer, the magnetic field lines are analyzed statistically. The variance of the magnetic field lines in the stochastic layer is increased outwards for both configurations. However, the skewness, which means the asymmetry of the distribution of the magnetic field line, increases for only one configuration. If the skewness is large, the connection length becomes effectively short. Since that is consistent with the experimental observation, the radial electric field can be considered as an index of the magnetic topology.

  15. Earthward directed CMEs seen in large-scale coronal magnetic field changes, SOHO LASCO coronagraph and solar wind

    NASA Astrophysics Data System (ADS)

    Li, Yan; Luhmann, Janet G.; Mulligan, T.; Hoeksema, J. Todd; Arge, C. Nick; Plunkett, S. P.; Cyr, O. C. St.

    2001-11-01

    One picture of coronal mass ejection (CME) initiation relates these events to the expansion into space of previously closed coronal magnetic fields, often part of the helmet streamer belt. The work described here makes use of the potential field source surface model based on updated synoptic photospheric field maps to study the large-scale coronal field changes. We isolate those field lines that change from closed to open configurations (newly opening field lines) by comparing potential field source surface models from adjacent magnetograph observations, wherein the same starting foot points on the photosphere are used. If there are some newly opening field lines between the times of two maps, we assume there was a possibility for CME occurrence(s) between these times. In particular, if there are newly opening field lines near the solar disk center, an earthward directed CME may have been generated. Monitoring the coronal magnetic field behavior can in principle reinforce (or not) days in advance predictions of magnetic storms based on Solar and Heliospheric Observatory (SOHO) Large-Angle Spectrometric Coronagraph (LASCO) halo CMEs. Moreover, the coronal field over the visible hemisphere contains information about the possible geoeffectiveness of a particular CME because it shows the approximate orientation and location of the active arcades. By comparing halo CMEs with the newly opening field lines, the solar wind measurements from Wind and ACE spacecraft and the Dst index, we show that, like soft X-ray sigmoids, disappearing filaments, and Extreme ultraviolet Imaging Telescope (EIT) waves on the disk of the Sun, magnetograph observation-based coronal field models may provide additional information on the likelihood of CME effects at the Earth.

  16. Generation of low-frequency electric and magnetic fields during large- scale chemical and nuclear explosions

    SciTech Connect

    Adushkin, V.V.; Dubinya, V.A.; Karaseva, V.A.; Soloviev, S.P.; Surkov, V.V.

    1995-06-01

    We discuss the main parameters of the electric field in the surface layer of the atmosphere and the results of the investigations of the natural electric field variations. Experimental investigations of the electromagnetic field for explosions in air are presented. Electromagnetic signals generated by underground nuclear and chemical explosions are discussed and explosions for 1976--1991 are listed. Long term anomalies of the earth`s electromagnetic field in the vicinity of underground explosions were also investigated. Study of the phenomenon of the irreversible shock magnetization showed that in the zone nearest to the explosion the quasistatic magnetic field decreases in inverse proportion to the distance.

  17. Field size, length, and width distributions based on LACIE ground truth data. [large area crop inventory experiment

    NASA Technical Reports Server (NTRS)

    Pitts, D. E.; Badhwar, G.

    1980-01-01

    The development of agricultural remote sensing systems requires knowledge of agricultural field size distributions so that the sensors, sampling frames, image interpretation schemes, registration systems, and classification systems can be properly designed. Malila et al. (1976) studied the field size distribution for wheat and all other crops in two Kansas LACIE (Large Area Crop Inventory Experiment) intensive test sites using ground observations of the crops and measurements of their field areas based on current year rectified aerial photomaps. The field area and size distributions reported in the present investigation are derived from a representative subset of a stratified random sample of LACIE sample segments. In contrast to previous work, the obtained results indicate that most field-size distributions are not log-normally distributed. The most common field size observed in this study was 10 acres for most crops studied.

  18. Large interfacial exchange fields in a thick superconducting film coupled to a spin-filter tunnel barrier

    NASA Astrophysics Data System (ADS)

    Pal, Avradeep; Blamire, M. G.

    2015-11-01

    The differential conductance of NbN/GdN/TiN superconductor/ferromagnetic insulator/normal-metal junctions, with a thick NbN layer shows a large zero-field voltage offset interpreted as a spin-filtered Zeeman splitting of the NbN density of states by an effective exchange field (H0) from the GdN. The splitting increases linearly, with applied field (Hext) enabling the relative sign of H0 and Hext to be determined. We show that the short NbN coherence length concentrates H0 at the NbN/GdN interface and eliminates any averaging over the GdN domain structure leading to a large zero-field splitting.

  19. On the angle between the average interplanetary magnetic field and the propagation direction of plane large amplitude Alfven waves

    NASA Technical Reports Server (NTRS)

    Lichtenstein, B. R.; Sonett, C. P.

    1979-01-01

    The paper shows that the experimentally observed close alignment of magnetic field minimum variance direction with the average magnetic field for Alfven waves in the solar wind is consistent with theoretically predicted properties of plane large amplitude Alfven waves in the MHD approximation. The theoretical properties of these Alfven waves constrain the time averaged magnetic field to cluster around the direction of minimum variance, which is aligned with the wave normal. Thus, spacecraft magnetometer observations in the solar wind of minimum variance directions strongly peaked about the average magnetic field direction are consistent with plane large amplitude Alfven waves which have wave normals aligned with the directions of minimum variance. This does not imply that geometrical hydromagnetic calculations for Alfven wave propagation direction in the solar wind are incorrect, but there is a discrepancy between geometrical hydromagnetics theory and observations that IMF minimum variance directions tend to be aligned with the ideal Parker spiral instead of the radial direction.

  20. EXPLAINING THE COEXISTENCE OF LARGE-SCALE AND SMALL-SCALE MAGNETIC FIELDS IN FULLY CONVECTIVE STARS

    SciTech Connect

    Yadav, Rakesh K.; Poppenhaeger, Katja; Wolk, Scott J.; Christensen, Ulrich R.; Gastine, Thomas; Morin, Julien; Reiners, Ansgar

    2015-11-10

    Despite the lack of a shear-rich tachocline region, low-mass fully convective (FC) stars are capable of generating strong magnetic fields, indicating that a dynamo mechanism fundamentally different from the solar dynamo is at work in these objects. We present a self-consistent three-dimensional model of magnetic field generation in low-mass FC stars. The model utilizes the anelastic magnetohydrodynamic equations to simulate compressible convection in a rotating sphere. A distributed dynamo working in the model spontaneously produces a dipole-dominated surface magnetic field of the observed strength. The interaction of this field with the turbulent convection in outer layers shreds it, producing small-scale fields that carry most of the magnetic flux. The Zeeman–Doppler-Imaging technique applied to synthetic spectropolarimetric data based on our model recovers most of the large-scale field. Our model simultaneously reproduces the morphology and magnitude of the large-scale field as well as the magnitude of the small-scale field observed on low-mass FC stars.