DOE Office of Scientific and Technical Information (OSTI.GOV)
Laitinen, T.; Dalla, S., E-mail: tlmlaitinen@uclan.ac.uk
Current particle transport models describe the propagation of charged particles across the mean field direction in turbulent plasmas as diffusion. However, recent studies suggest that at short timescales, such as soon after solar energetic particle (SEP) injection, particles remain on turbulently meandering field lines, which results in nondiffusive initial propagation across the mean magnetic field. In this work, we use a new technique to investigate how the particles are displaced from their original field lines, and we quantify the parameters of the transition from field-aligned particle propagation along meandering field lines to particle diffusion across the mean magnetic field. Wemore » show that the initial decoupling of the particles from the field lines is slow, and particles remain within a Larmor radius from their initial meandering field lines for tens to hundreds of Larmor periods, for 0.1–10 MeV protons in turbulence conditions typical of the solar wind at 1 au. Subsequently, particles decouple from their initial field lines and after hundreds to thousands of Larmor periods reach time-asymptotic diffusive behavior consistent with particle diffusion across the mean field caused by the meandering of the field lines. We show that the typical duration of the prediffusive phase, hours to tens of hours for 10 MeV protons in 1 au solar wind turbulence conditions, is significant for SEP propagation to 1 au and must be taken into account when modeling SEP propagation in the interplanetary space.« less
Energetic Particle Transport across the Mean Magnetic Field: Before Diffusion
NASA Astrophysics Data System (ADS)
Laitinen, T.; Dalla, S.
2017-01-01
Current particle transport models describe the propagation of charged particles across the mean field direction in turbulent plasmas as diffusion. However, recent studies suggest that at short timescales, such as soon after solar energetic particle (SEP) injection, particles remain on turbulently meandering field lines, which results in nondiffusive initial propagation across the mean magnetic field. In this work, we use a new technique to investigate how the particles are displaced from their original field lines, and we quantify the parameters of the transition from field-aligned particle propagation along meandering field lines to particle diffusion across the mean magnetic field. We show that the initial decoupling of the particles from the field lines is slow, and particles remain within a Larmor radius from their initial meandering field lines for tens to hundreds of Larmor periods, for 0.1-10 MeV protons in turbulence conditions typical of the solar wind at 1 au. Subsequently, particles decouple from their initial field lines and after hundreds to thousands of Larmor periods reach time-asymptotic diffusive behavior consistent with particle diffusion across the mean field caused by the meandering of the field lines. We show that the typical duration of the prediffusive phase, hours to tens of hours for 10 MeV protons in 1 au solar wind turbulence conditions, is significant for SEP propagation to 1 au and must be taken into account when modeling SEP propagation in the interplanetary space.
NASA Astrophysics Data System (ADS)
Calvin, Mark; Punjabi, Alkesh
1996-11-01
We use the method of quasi-magnetic surfaces to calculate the correlation between the field line and particle diffusion coefficients. The magnetic topology of a tokamak is perturbed by a spectrum of neighboring resonant resistive modes. The Hamiltonian equations of motion for the field line are integrated numerically. Poincare plots of the quasi-magnetic surfaces are generated initially and after the field line has traversed a considerable distance. From the areas of the quasi-magnetic surfaces and the field line distance, we estimate the field line diffusion coefficient. We start plasma particles on the initial quasi-surface, and calculate the particle diffusion coefficient from our Monte Carlo method (Punjabi A., Boozer A., Lam M., Kim H. and Burke K., J. Plasma Phys.), 44, 405 (1990). We then estimate the correlation between the particle and field diffusion as the strength of the resistive modes is varied.
Magnetohydrodynamic Modeling of Solar Coronal Dynamics with an Initial Non-force-free Magnetic Field
NASA Astrophysics Data System (ADS)
Prasad, A.; Bhattacharyya, R.; Kumar, Sanjay
2017-05-01
The magnetic fields in the solar corona are generally neither force-free nor axisymmetric and have complex dynamics that are difficult to characterize. Here we simulate the topological evolution of solar coronal magnetic field lines (MFLs) using a magnetohydrodynamic model. The simulation is initialized with a non-axisymmetric non-force-free magnetic field that best correlates with the observed vector magnetograms of solar active regions (ARs). To focus on these ideas, simulations are performed for the flaring AR 11283 noted for its complexity and well-documented dynamics. The simulated dynamics develops as the initial Lorentz force pushes the plasma and facilitates successive magnetic reconnections at the two X-type null lines present in the initial field. Importantly, the simulation allows for the spontaneous development of mass flow, unique among contemporary works, that preferentially reconnects field lines at one of the X-type null lines. Consequently, a flux rope consisting of low-lying twisted MFLs, which approximately traces the major polarity inversion line, undergoes an asymmetric monotonic rise. The rise is attributed to a reduction in the magnetic tension force at the region overlying the rope, resulting from the reconnection. A monotonic rise of the rope is in conformity with the standard scenario of flares. Importantly, the simulated dynamics leads to bifurcations of the flux rope, which, being akin to the observed filament bifurcation in AR 11283, establishes the appropriateness of the initial field in describing ARs.
Magnetohydrodynamic Modeling of Solar Coronal Dynamics with an Initial Non-force-free Magnetic Field
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prasad, A.; Bhattacharyya, R.; Kumar, Sanjay
The magnetic fields in the solar corona are generally neither force-free nor axisymmetric and have complex dynamics that are difficult to characterize. Here we simulate the topological evolution of solar coronal magnetic field lines (MFLs) using a magnetohydrodynamic model. The simulation is initialized with a non-axisymmetric non-force-free magnetic field that best correlates with the observed vector magnetograms of solar active regions (ARs). To focus on these ideas, simulations are performed for the flaring AR 11283 noted for its complexity and well-documented dynamics. The simulated dynamics develops as the initial Lorentz force pushes the plasma and facilitates successive magnetic reconnections atmore » the two X-type null lines present in the initial field. Importantly, the simulation allows for the spontaneous development of mass flow, unique among contemporary works, that preferentially reconnects field lines at one of the X-type null lines. Consequently, a flux rope consisting of low-lying twisted MFLs, which approximately traces the major polarity inversion line, undergoes an asymmetric monotonic rise. The rise is attributed to a reduction in the magnetic tension force at the region overlying the rope, resulting from the reconnection. A monotonic rise of the rope is in conformity with the standard scenario of flares. Importantly, the simulated dynamics leads to bifurcations of the flux rope, which, being akin to the observed filament bifurcation in AR 11283, establishes the appropriateness of the initial field in describing ARs.« less
NASA Astrophysics Data System (ADS)
Prasad, A.; Bhattacharyya, R.; Hu, Qiang; Kumar, Sanjay; Nayak, Sushree S.
2018-06-01
The magnetohydrodynamics of the solar corona is simulated numerically. The simulation is initialized with an extrapolated non-force-free magnetic field using the vector magnetogram of the active region NOAA 12192, which was obtained from the solar photosphere. Particularly, we focus on the magnetic reconnections (MRs) occurring close to a magnetic null point that resulted in the appearance of circular chromospheric flare ribbons on 2014 October 24 around 21:21 UT, after the peak of an X3.1 flare. The extrapolated field lines show the presence of the three-dimensional (3D) null near one of the polarity-inversion lines—where the flare was observed. In the subsequent numerical simulation, we find MRs occurring near the null point, where the magnetic field lines from the fan plane of the 3D null form a X-type configuration with underlying arcade field lines. The footpoints of the dome-shaped field lines, inherent to the 3D null, show high gradients of the squashing factor. We find slipping reconnections at these quasi-separatrix layers, which are co-located with the post-flare circular brightening observed at chromospheric heights. This demonstrates the viability of the initial non-force-free field, along with the dynamics it initiates. Moreover, the initial field and its simulated evolution are found to be devoid of any flux rope, which is congruent with the confined nature of the flare.
NASA Technical Reports Server (NTRS)
Dahlburg, Russell B.; Antiochos,, Spiro K.; Norton, D.
1996-01-01
We present numerical simulations of the collision and subsequent interaction of two initially orthogonal, twisted, force free field magnetic fluxtubes. The simulations were carried out using a new three dimensional explicit parallelized Fourier collocation algorithm for solving the viscoresistive equations of compressible magnetohydrodynamics. It is found that, under a wide range of conditions, the fluxtubes can 'tunnel' through each other. Two key conditions must be satisfied for tunneling to occur: the magnetic field must be highly twisted with a field line pitch much greater than 1, and the magnetic Lundquist number must be somewhat large, greater than or equal to 2880. This tunneling behavior has not been seen previously in studies of either vortex tube or magnetic fluxtube interactions. An examination of magnetic field lines shows that tunneling is due to a double reconnection mechanism. Initially orthogonal field lines reconnect at two specific locations, exchange interacting sections and 'pass' through each other. The implications of these results for solar and space plasmas are discussed.
Diffusive processes in a stochastic magnetic field
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, H.; Vlad, M.; Vanden Eijnden, E.
1995-05-01
The statistical representation of a fluctuating (stochastic) magnetic field configuration is studied in detail. The Eulerian correlation functions of the magnetic field are determined, taking into account all geometrical constraints: these objects form a nondiagonal matrix. The Lagrangian correlations, within the reasonable Corrsin approximation, are reduced to a single scalar function, determined by an integral equation. The mean square perpendicular deviation of a geometrical point moving along a perturbed field line is determined by a nonlinear second-order differential equation. The separation of neighboring field lines in a stochastic magnetic field is studied. We find exponentiation lengths of both signs describing,more » in particular, a decay (on the average) of any initial anisotropy. The vanishing sum of these exponentiation lengths ensures the existence of an invariant which was overlooked in previous works. Next, the separation of a particle`s trajectory from the magnetic field line to which it was initially attached is studied by a similar method. Here too an initial phase of exponential separation appears. Assuming the existence of a final diffusive phase, anomalous diffusion coefficients are found for both weakly and strongly collisional limits. The latter is identical to the well known Rechester-Rosenbluth coefficient, which is obtained here by a more quantitative (though not entirely deductive) treatment than in earlier works.« less
Interchange Slip-Running Reconnection and Sweeping SEP-Beams
NASA Technical Reports Server (NTRS)
Masson, S.; Aulanier, G.; Pariat, E.; Klein, K.-L.
2011-01-01
We present a new model to explain how particles, accelerated at a reconnection site that is not magnetically connected to the Earth, could eventually propagate along the well-connected open flux tube. Our model is based on the results of a low-beta resistive magnetohydrodynamics simulation of a three-dimensional line-tied and initially current-free bipole, that is embedded in a non-uniform open potential field. The topology of this configuration is that of an asymmetric coronal null-point, with a closed fan surface and an open outer spine. When driven by slow photospheric shearing motions, field lines, initially fully anchored below the fan dome, reconnect at the null point, and jump to the open magnetic domain. This is the standard interchange mode as sketched and calculated in 2D. The key result in 3D is that, reconnected open field lines located in the vicinity of the outer spine, keep reconnecting continuously, across an open quasi-separatrix layer, as previously identified for non-open-null-point reconnection. The apparent slipping motion of these field lines leads to form an extended narrow magnetic flux tube at high altitude. Because of the slip-running reconnection, we conjecture that if energetic particles would be travelling through, or be accelerated inside, the diffusion region, they would be successively injected along continuously reconnecting field lines that are connected farther and farther from the spine. At the scale of the full Sun, owing to the super-radial expansion of field lines below 3 solar radius, such energetic particles could easily be injected in field lines slipping over significant distances, and could eventually reach the distant flux tube that is well-connected to the Earth.
Disruption of coronal magnetic field arcades
NASA Technical Reports Server (NTRS)
Mikic, Zoran; Linker, Jon A.
1994-01-01
The ideal and resistive properties of isolated large-scale coronal magnetic arcades are studied using axisymmetric solutions of the time-dependent magnetohydrodynamic (MHD) equations in spherical geometry. We examine how flares and coronal mass ejections may be initiated by sudden disruptions of the magnetic field. The evolution of coronal arcades in response to applied shearing photospheric flows indicates that disruptive behavior can occur beyond a critical shear. The disruption can be traced to ideal MHD magnetic nonequilibrium. The magnetic field expands outward in a process that opens the field lines and produces a tangential discontinuity in the magnetic field. In the presence of plasma resistivity, the resulting current sheet is the site of rapid reconnection, leading to an impulsive release of magnetic energy, fast flows, and the ejection of a plasmoid. We relate these results to previous studies of force-free fields and to the properties of the open-field configuration. We show that the field lines in an arcade are forced open when the magnetic energy approaches (but is still below) the open-field energy, creating a partially open field in which most of the field lines extend away from the solar surface. Preliminary application of this model to helmet streamers indicates that it is relevant to the initiation of coronal mass ejections.
MHD simulations of magnetic reconnection in a skewed three-dimensional tail configuration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Birn, J.; Hesse, M.
1991-01-01
Using the three-dimensional MHD code, the authors have studied the dynamic evolution of a non-symmetric magnetotail configuration, initiated by the sudden occurence of (anomalous) resistivity. The initial configuration included variations in all three space dimensions, consistent with average tail observations. In addition, it was skewed due to the presence of a net cross-tail magnetic field component B{sub yN} with a magnitude as typically observed, so that it lacked commonly assumed mirror symmetries around the midnight meridian and the equatorial planes. The field evolution was found to be very similar to that of a symmetric configuration studied earlier, indicating plasmoid formationmore » and ejection. The most noticeable new feature in the evolution of the individual field components is a reduction of B{sub y} on the reconnected dipole-like field lines earthward from the reconnection region. The topological structure of the magnetic field, however, defined by the field line connections, shows remarkable differences from the symmetric case, consistent with conclusions by Hughes and Sibeck (1987) and Birn et al. (1989). The plasmoid, which is a magnetically separate entity in the symmetric case, becomes open, connected initially with the Earth, but getting gradually connected with the interplanetary field, as reconnection of lobe field lines proceeds from the midnight region to the flanks of the tail. The separation of the plasmoid from the Earth is thus found to take a finite amount of time. When the plasmoid begins to separate from the Earth, a filamentary structure of field connections develops, not present in the spatial variation of the fields; this confirms predictions by Birn et al. (1989). A localization of the electric field parallel to the magnetic field is found consistent with conclusions on general magnetic reconnection.« less
Observations of the Ion Signatures of Double Merging and the Formation of Newly Closed Field Lines
NASA Technical Reports Server (NTRS)
Chandler, Michael O.; Avanov, Levon A.; Craven, Paul D.
2007-01-01
Observations from the Polar spacecraft, taken during a period of northward interplanetary magnetic field (IMF) show magnetosheath ions within the magnetosphere with velocity distributions resulting from multiple merging sites along the same field line. The observations from the TIDE instrument show two separate ion energy-time dispersions that are attributed to two widely separated (-20Re) merging sites. Estimates of the initial merging times show that they occurred nearly simultaneously (within 5 minutes.) Along with these populations, cold, ionospheric ions were observed counterstreaming along the field lines. The presence of such ions is evidence that these field lines are connected to the ionosphere on both ends. These results are consistent with the hypothesis that double merging can produce closed field lines populated by solar wind plasma. While the merging sites cannot be unambiguously located, the observations and analyses favor one site poleward of the northern cusp and a second site at low latitudes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ostrovskaya, G. V., E-mail: galya-ostr@mail.ru; Markov, V. S.; Frank, A. G., E-mail: annfrank@fpl.gpi.ru
The influence of the initial parameters of the magnetic field and plasma on the spatial structure of the electric current and electron density in current sheets formed in helium plasma in 2D and 3D magnetic configurations with X-type singular lines is studied by the methods of holographic interferometry and magnetic measurements. Significant differences in the structures of plasma and current sheets formed at close parameters of the initial plasma and similar configurations of the initial magnetic fields are revealed.
Constantin, Dragoş E.; Fahrig, Rebecca; Keall, Paul J.
2011-01-01
Purpose: Using magnetic resonance imaging (MRI) for real-time guidance during radiotherapy is an active area of research and development. One aspect of the problem is the influence of the MRI scanner, modeled here as an external magnetic field, on the medical linear accelerator (linac) components. The present work characterizes the behavior of two medical linac electron guns with external magnetic fields for in-line and perpendicular orientations of the linac with respect to the MRI scanner. Methods: Two electron guns, Litton L-2087 and Varian VTC6364, are considered as representative models for this study. Emphasis was placed on the in-line design approach in which case the MRI scanner and the linac axes of symmetry coincide and assumes no magnetic shielding of the linac. For the in-line case, the magnetic field from a 0.5 T open MRI (GE Signa SP) magnet with a 60 cm gap between its poles was computed and used in full three dimensional (3D) space charge simulations, whereas for the perpendicular case the magnetic field was constant. Results: For the in-line configuration, it is shown that the electron beam is not deflected from the axis of symmetry of the gun and the primary beam current does not vanish even at very high values of the magnetic field, e.g., 0.16 T. As the field strength increases, the primary beam current has an initial plateau of constant value after which its value decreases to a minimum corresponding to a field strength of approximately 0.06 T. After the minimum is reached, the current starts to increase slowly. For the case when the beam current computation is performed at the beam waist position the initial plateau ends at 0.016 T for Litton L-2087 and at 0.012 T for Varian VTC6364. The minimum value of the primary beam current is 27.5% of the initial value for Litton L-2087 and 22.9% of the initial value for Varian VTC6364. The minimum current is reached at 0.06 and 0.062 T for Litton L-2087 and Varian VTC6364, respectively. At 0.16 T the beam current increases to 40.2 and 31.4% from the original value of the current for Litton L-2087 and Varian VTC6364, respectively. In contrast, for the case when the electron gun is perpendicular to the magnetic field, the electron beam is deflected from the axis of symmetry even at small values of the magnetic field. As the strength of the magnetic field increases, so does the beam deflection, leading to a sharp decrease of the primary beam current which vanishes at about 0.007 T for Litton L-2087 and at 0.006 T for Varian VTC6364, respectively. At zero external field, the beam rms emittance computed at beam waist is 1.54 and 1.29π-mm-mrad for Litton L-2087 and Varian VTC6364, respectively. For the in-line configuration, there are two particular values of the external field where the beam rms emittance reaches a minimum. Litton L-2087 rms emittance reaches a minimum of 0.72π and 2.01π-mm-mrad at 0.026 and 0.132 T, respectively. Varian VTC6364 rms emittance reaches a minimum of 0.34π and 0.35π-mm-mrad at 0.028 and 0.14 T, respectively. Beam radius dependence on the external field is shown for the in-line configuration for both electron guns. Conclusions: 3D space charge simulation of two electron guns, Litton L-2087 and Varian VTC6364, were performed for in-line and perpendicular external magnetic fields. A consistent behavior of Pierce guns in external magnetic fields was proven. For the in-line configuration, the primary beam current does not vanish but a large reduction of beam current (up to 77.1%) is observed at higher field strengths; the beam directionality remains unchanged. It was shown that for a perpendicular configuration the current vanishes due to beam bending under the action of the Lorentz force. For in-line configuration it was determined that the rms beam emittance reaches two minima for relatively high values of the external magnetic field. PMID:21859019
R-LINE: A Line Source Dispersion Model for Near-Surface Releases
Based on Science Advisory Board and the National Research Councilrecommendations, EPA-ORD initiated research on near-road air quality andhealth effects. Field measurements indicated that exposures to traffic-emitted air pollutants near roads can be influenced by complexities of r...
Surface evolution in bare bamboo-type metal lines under diffusion and electric field effects
NASA Astrophysics Data System (ADS)
Averbuch, Amir; Israeli, Moshe; Nathan, Menachem; Ravve, Igor
2003-07-01
Irregularities such as voids and cracks often occur in bamboo-type metal lines of microelectronic interconnects. They increase the resistance of the circuits, and may even lead to a fatal failure. In this work, we analyze numerically the electromigration of an unpassivated bamboo-type line with pre-existing irregularities in its top surface (also called a grain-void interface). The bamboo line is subjected to surface diffusion forces and external electric fields. Under these forces, initial defects may either heal or become worse. The grain-void interface is considered to be one-dimensional, and the physical formulation of an electromigration and diffusion model results in two coupled, fourth order, one-dimensional time-dependent PDEs, with the boundary conditions imposed at the electrode points and at the triple point, which belongs to two neighboring grains and the void. These equations are discretized by finite differences on a regular grid in space, and by a Runge-Kutta integration scheme in time, and solved simultaneously with a static Laplace equation describing the voltage distribution throughout each grain, when the substrate conductivity is neglected. Since the voltage distribution is required only along an interface line, the two-dimensional discretization of the grain interior is not needed, and the static problem is solved by the boundary element method at each time step. The motion of the interface line is studied for different ratios between diffusion and electric field forces, and for different initial configurations of the grain-void interface. We study plain and tilted contour lines, considering positive and negative tilts with respect to the external electric field, a stepped contour with field lines entering or exiting the 'step', and a number of modifications of the classical Mullins problem of thermal grooving. We also consider a two-grain Mullins problem with a normal and tilted boundary between the grains, examining positive and negative tilts.
NASA Technical Reports Server (NTRS)
Hagyard, M. J.
1988-01-01
The vector magnetic field of an active region at a location of repeated flaring is studied in order to explore the nature of the currents flowing in the areas where the flares initiated. The observed transverse component of the magnetic field is used to obtain the component of electric current density crossing the photosphere along the line-of-sight. It is found that currents flow out of an area of positive magnetic polarity and across the magnetic inversion line into two areas of negative polarity. Characteristics of the calculated source field are discussed.
Non-LTE Calculations of the Fe I 6173 Å Line in a Flaring Atmosphere
NASA Astrophysics Data System (ADS)
Hong, Jie; Ding, M. D.; Li, Ying; Carlsson, Mats
2018-04-01
The Fe I 6173 Å line is widely used in the measurements of vector magnetic fields by instruments including the Helioseismic and Magnetic Imager (HMI). We perform non-local thermodynamic equilibrium calculations of this line based on radiative hydrodynamic simulations in a flaring atmosphere. We employ both a quiet-Sun atmosphere and a penumbral atmosphere as the initial one in our simulations. We find that, in the quiet-Sun atmosphere, the line center is obviously enhanced during an intermediate flare. The enhanced emission is contributed from both radiative backwarming in the photosphere and particle beam heating in the lower chromosphere. A blue asymmetry of the line profile also appears due to an upward mass motion in the lower chromosphere. If we take a penumbral atmosphere as the initial atmosphere, the line has a more significant response to the flare heating, showing a central emission and an obvious asymmetry. The low spectral resolution of HMI would indicate some loss of information, but the enhancement and line asymmetry are still kept. By calculating polarized line profiles, we find that the Stokes I and V profiles can be altered as a result of flare heating. Thus the distortion of this line has a crucial influence on the magnetic field measured from this line, and one should be cautious in interpreting the magnetic transients observed frequently in solar flares.
Constantin, Dragoş E; Fahrig, Rebecca; Keall, Paul J
2011-07-01
Using magnetic resonance imaging (MRI) for real-time guidance during radiotherapy is an active area of research and development. One aspect of the problem is the influence of the MRI scanner, modeled here as an external magnetic field, on the medical linear accelerator (linac) components. The present work characterizes the behavior of two medical linac electron guns with external magnetic fields for in-line and perpendicular orientations of the linac with respect to the MRI scanner. Two electron guns, Litton L-2087 and Varian VTC6364, are considered as representative models for this study. Emphasis was placed on the in-line design approach in which case the MRI scanner and the linac axes of symmetry coincide and assumes no magnetic shielding of the linac. For the in-line case, the magnetic field from a 0.5 T open MRI (GE Signa SP) magnet with a 60 cm gap between its poles was computed and used in full three dimensional (3D) space charge simulations, whereas for the perpendicular case the magnetic field was constant. For the in-line configuration, it is shown that the electron beam is not deflected from the axis of symmetry of the gun and the primary beam current does not vanish even at very high values of the magnetic field, e.g., 0.16 T. As the field strength increases, the primary beam current has an initial plateau of constant value after which its value decreases to a minimum corresponding to a field strength of approximately 0.06 T. After the minimum is reached, the current starts to increase slowly. For the case when the beam current computation is performed at the beam waist position the initial plateau ends at 0.016 T for Litton L-2087 and at 0.012 T for Varian VTC6364. The minimum value of the primary beam current is 27.5% of the initial value for Litton L-2087 and 22.9% of the initial value for Varian VTC6364. The minimum current is reached at 0.06 and 0.062 T for Litton L-2087 and Varian VTC6364, respectively. At 0.16 T the beam current increases to 40.2 and 31.4% from the original value of the current for Litton L-2087 and Varian VTC6364, respectively. In contrast, for the case when the electron gun is perpendicular to the magnetic field, the electron beam is deflected from the axis of symmetry even at small values of the magnetic field. As the strength of the magnetic field increases, so does the beam deflection, leading to a sharp decrease of the primary beam current which vanishes at about 0.007 T for Litton L-2087 and at 0.006 T for Varian VTC6364, respectively. At zero external field, the beam rms emittance computed at beam waist is 1.54 and 1.29n-mm-mrad for Litton L-2087 and Varian VTC6364, respectively. For the inline configuration, there are two particular values of the external field where the beam rms emittance reaches a minimum. Litton L-2087 rms emittance reaches a minimum of 0.72n and 2.01 n-mm-mrad at 0.026 and 0.132 T, respectively. Varian VTC6364 rms emittance reaches a minimum of 0.34n and 0.35n-mm-mrad at 0.028 and 0.14 T, respectively. Beam radius dependence on the external field is shown for the in-line configuration for both electron guns. 3D space charge simulation of two electron guns, Litton L-2087 and Varian VTC6364, were performed for in-line and perpendicular external magnetic fields. A consistent behavior of Pierce guns in external magnetic fields was proven. For the in-line configuration, the primary beam current does not vanish but a large reduction of beam current (up to 77.1%) is observed at higher field strengths; the beam directionality remains unchanged. It was shown that for a perpendicular configuration the current vanishes due to beam bending under the action of the Lorentz force. For in-line configuration it was determined that the rms beam emittance reaches two minima for relatively high values of the external magnetic field.
A nonsingular model of the open magnetosphere
NASA Technical Reports Server (NTRS)
Toffoletto, F. R.; Hill, T. W.
1993-01-01
We present a modified version of the Toffoletto and Hill (1989) open magnetosphere model that incorporates a tail-like interconection field with a discontinuity 10 represent the slow-mode expansion fan that defines the high-latitude tail magnetopause. (The interconnection field is defined as the perturbation on an initially closed magnetosphere model to make it open.) The expansion fan controls the open field line region in the tail, and the intersection of the fan with the tail current sheet is, by design, the x line. The new interconnection field allows greater control of the tail field structure; in particular, it enables us to eliminate the nightside mapping singularity that occurs in previous models when the interplanetary magnetic field is nonsouthward. Also, in contrast to earlier models, the far tail x line extends farther downstream on the flanks than in the center of the tail, consistent with observations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Avara, Mark J.; Reynolds, Christopher S.; Bogdanovic, Tamara, E-mail: mavara@astro.umd.edu, E-mail: chris@astro.umd.edu, E-mail: tamarab@gatech.edu
2013-08-20
The role played by magnetic fields in the intracluster medium (ICM) of galaxy clusters is complex. The weakly collisional nature of the ICM leads to thermal conduction that is channeled along field lines. This anisotropic heat conduction profoundly changes the instabilities of the ICM atmosphere, with convective stabilities being driven by temperature gradients of either sign. Here, we employ the Athena magnetohydrodynamic code to investigate the local non-linear behavior of the heat-flux-driven buoyancy instability (HBI) relevant in the cores of cooling-core clusters where the temperature increases with radius. We study a grid of two-dimensional simulations that span a large rangemore » of initial magnetic field strengths and numerical resolutions. For very weak initial fields, we recover the previously known result that the HBI wraps the field in the horizontal direction, thereby shutting off the heat flux. However, we find that simulations that begin with intermediate initial field strengths have a qualitatively different behavior, forming HBI-stable filaments that resist field-line wrapping and enable sustained vertical conductive heat flux at a level of 10%-25% of the Spitzer value. While astrophysical conclusions regarding the role of conduction in cooling cores require detailed global models, our local study proves that systems dominated by the HBI do not necessarily quench the conductive heat flux.« less
Vortices at the magnetic equator generated by hybrid Alfvén resonant waves
NASA Astrophysics Data System (ADS)
Hiraki, Yasutaka
2015-01-01
We performed three-dimensional magnetohydrodynamic simulations of shear Alfvén waves in a full field line system with magnetosphere-ionosphere coupling and plasma non-uniformities. Feedback instability of the Alfvén resonant modes showed various nonlinear features under the field line cavities: (i) a secondary flow shear instability occurs at the magnetic equator, (ii) trapping of the ionospheric Alfvén resonant modes facilitates deformation of field-aligned current structures, and (iii) hybrid Alfvén resonant modes grow to cause vortices and magnetic oscillations around the magnetic equator. Essential features in the initial brightening of auroral arc at substorm onsets could be explained by the dynamics of Alfvén resonant modes, which are the nature of the field line system responding to a background rapid change.
Advancements in Chinese Geomagnetism and Aeronomy during the Last Thirty Years,
1981-02-09
movements of charged particles in geomagnetic fields and neutral line magnetic fields and they vigorously initiated simulated tests. References (120-121... telluric prospecting and related probems; (6) Magnetic prospecting and interpretation of data; (7) Some research on geomagnetic instruments; (8
Weaving Knotted Vector Fields with Tunable Helicity.
Kedia, Hridesh; Foster, David; Dennis, Mark R; Irvine, William T M
2016-12-30
We present a general construction of divergence-free knotted vector fields from complex scalar fields, whose closed field lines encode many kinds of knots and links, including torus knots, their cables, the figure-8 knot, and its generalizations. As finite-energy physical fields, they represent initial states for fields such as the magnetic field in a plasma, or the vorticity field in a fluid. We give a systematic procedure for calculating the vector potential, starting from complex scalar functions with knotted zero filaments, thus enabling an explicit computation of the helicity of these knotted fields. The construction can be used to generate isolated knotted flux tubes, filled by knots encoded in the lines of the vector field. Lastly, we give examples of manifestly knotted vector fields with vanishing helicity. Our results provide building blocks for analytical models and simulations alike.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Constantin, Dragos E.; Fahrig, Rebecca; Keall, Paul J.
Purpose: Using magnetic resonance imaging (MRI) for real-time guidance during radiotherapy is an active area of research and development. One aspect of the problem is the influence of the MRI scanner, modeled here as an external magnetic field, on the medical linear accelerator (linac) components. The present work characterizes the behavior of two medical linac electron guns with external magnetic fields for in-line and perpendicular orientations of the linac with respect to the MRI scanner. Methods: Two electron guns, Litton L-2087 and Varian VTC6364, are considered as representative models for this study. Emphasis was placed on the in-line design approachmore » in which case the MRI scanner and the linac axes of symmetry coincide and assumes no magnetic shielding of the linac. For the in-line case, the magnetic field from a 0.5 T open MRI (GE Signa SP) magnet with a 60 cm gap between its poles was computed and used in full three dimensional (3D) space charge simulations, whereas for the perpendicular case the magnetic field was constant. Results: For the in-line configuration, it is shown that the electron beam is not deflected from the axis of symmetry of the gun and the primary beam current does not vanish even at very high values of the magnetic field, e.g., 0.16 T. As the field strength increases, the primary beam current has an initial plateau of constant value after which its value decreases to a minimum corresponding to a field strength of approximately 0.06 T. After the minimum is reached, the current starts to increase slowly. For the case when the beam current computation is performed at the beam waist position the initial plateau ends at 0.016 T for Litton L-2087 and at 0.012 T for Varian VTC6364. The minimum value of the primary beam current is 27.5% of the initial value for Litton L-2087 and 22.9% of the initial value for Varian VTC6364. The minimum current is reached at 0.06 and 0.062 T for Litton L-2087 and Varian VTC6364, respectively. At 0.16 T the beam current increases to 40.2 and 31.4% from the original value of the current for Litton L-2087 and Varian VTC6364, respectively. In contrast, for the case when the electron gun is perpendicular to the magnetic field, the electron beam is deflected from the axis of symmetry even at small values of the magnetic field. As the strength of the magnetic field increases, so does the beam deflection, leading to a sharp decrease of the primary beam current which vanishes at about 0.007 T for Litton L-2087 and at 0.006 T for Varian VTC6364, respectively. At zero external field, the beam rms emittance computed at beam waist is 1.54 and 1.29{pi}-mm-mrad for Litton L-2087 and Varian VTC6364, respectively. For the in-line configuration, there are two particular values of the external field where the beam rms emittance reaches a minimum. Litton L-2087 rms emittance reaches a minimum of 0.72{pi} and 2.01{pi}-mm-mrad at 0.026 and 0.132 T, respectively. Varian VTC6364 rms emittance reaches a minimum of 0.34{pi} and 0.35{pi}-mm-mrad at 0.028 and 0.14 T, respectively. Beam radius dependence on the external field is shown for the in-line configuration for both electron guns. Conclusions: 3D space charge simulation of two electron guns, Litton L-2087 and Varian VTC6364, were performed for in-line and perpendicular external magnetic fields. A consistent behavior of Pierce guns in external magnetic fields was proven. For the in-line configuration, the primary beam current does not vanish but a large reduction of beam current (up to 77.1%) is observed at higher field strengths; the beam directionality remains unchanged. It was shown that for a perpendicular configuration the current vanishes due to beam bending under the action of the Lorentz force. For in-line configuration it was determined that the rms beam emittance reaches two minima for relatively high values of the external magnetic field.« less
Student understanding of the direction of the magnetic force on a charged particle
NASA Astrophysics Data System (ADS)
Scaife, Thomas M.; Heckler, Andrew F.
2010-08-01
We study student understanding of the direction of the magnetic force experienced by a charged particle moving through a homogeneous magnetic field in both the magnetic pole and field line representations of the magnetic field. In five studies, we administer a series of simple questions in either written or interview format. Our results indicate that although students begin at the same low level of performance in both representations, they answer correctly more often in the field line representation than in the pole representation after instruction. This difference is due in part to more students believing that charges are attracted to magnetic poles than believing that charges are pushed along magnetic field lines. Although traditional instruction is fairly effective in teaching students to answer correctly up to a few weeks following instruction, especially for the field line representation, some students revert to their initial misconceptions several months after instruction. The responses reveal persistent and largely random sign errors in the direction of the force. The sign errors are largely nonsystematic and due to confusion about the direction of the magnetic field and the execution and choice of the right-hand rule and lack of recognition of the noncommutativity of the cross product.
Field Line Mapping of the Polar Cap Neutral Density Anomaly
NASA Astrophysics Data System (ADS)
Sutton, E. K.; Lin, C. S.; Huang, C. Y.; Cooke, D. L.
2016-12-01
Polar cap neutral density anomaly (PCNDA) events of localized density enhancement with a half size around 700-1000 km had been frequently detected by CHAMP satellite at around 400 km during major magnetic storms with Dst < -100 nT. Density enhancement is probably produced via Joule heating of the thermosphere when a significant amount of energy is deposited in the polar cap. We have identified 12 PCNDA events measured by CHAMP during two major magnetic storms including one initiated by a large solar wind pressure pulse. Their density anomaly locations are found to scatter randomly within the polar circle of 80o magnetic latitude in the geomagnetic coordinate. However after transformed to the Geocentric Solar Wind (GSW) coordinates, their locations become aligned in the direction of solar wind velocity. To better understand the polar cap energy deposition we trace magnetic field lines to the magnetosphere up to 30 earth radii from the ionosphere at 400 km using the data-based Tsyganenko T95 and TS05 magnetic field models. Field line tracing is performed in the GSW coordinate along the CHAMP orbit as well as for the whole polar cap. Each traced magnetic field line is classified into one of the three categories, (1) magnetosphere closed field line (MC) crossing the equatorial plane within 30 earth radii, (2) open field line connected to the magnetopause (MP), or (3) open field line connected to the magnetotail lobe (MT). For nine PCNDA events among the 10 events that we are able to conduct tracing, field lines originated from the density anomaly regions are classified as MT. Only one outlier event in association with a very large IMF BZ is classified as MP. Furthermore the separation angle between the density anomaly peak and the MP-MT field line separation point at 400 km on the X- and Z-axes meridian plane varies from -4o to 16o. Based on these results we speculate that convective electric fields and field aligned currents in the ionosphere might be enhanced near the MP-MT separation point during magnetic storms, resulting in intense localized Joule heating of the thermosphere.
Cascade model of gamma-ray bursts: Power-law and annihilation-line components
NASA Technical Reports Server (NTRS)
Harding, A. K.; Sturrock, P. A.; Daugherty, J. K.
1988-01-01
If, in a neutron star magnetosphere, an electron is accelerated to an energy of 10 to the 11th or 12th power eV by an electric field parallel to the magnetic field, motion of the electron along the curved field line leads to a cascade of gamma rays and electron-positron pairs. This process is believed to occur in radio pulsars and gamma ray burst sources. Results are presented from numerical simulations of the radiation and photon annihilation pair production processes, using a computer code previously developed for the study of radio pulsars. A range of values of initial energy of a primary electron was considered along with initial injection position, and magnetic dipole moment of the neutron star. The resulting spectra was found to exhibit complex forms that are typically power law over a substantial range of photon energy, and typically include a dip in the spectrum near the electron gyro-frequency at the injection point. The results of a number of models are compared with data for the 5 Mar., 1979 gamma ray burst. A good fit was found to the gamma ray part of the spectrum, including the equivalent width of the annihilation line.
NASA Astrophysics Data System (ADS)
Mishin, V. M.; Russell, C. T.; Saifudinova, T. I.; Bazarzhapov, A. D.
2000-10-01
We define an expansion onset (synonymous with the main breakup) to be one with sufficient signatures of open tail reconnection. Earlier onsets, which we term initial onsets, occur before the expansion onset, without the signatures of open tail reconnection but with other signs of a clear substorm onset. These two types of substorm onsets and their timing are discussed herein in a study of selected substorm-like events. During the 10-hour interval studied, five impulses of the Perreault-Akasofu index ɛ were observed with comparable peak values. However, the observed magnetospheric responses were very different in terms of equatorward motion and poleward expansion of the auroral oval. We conclude that the occurrence either of an initial onset or of a full onset (under similar boundary conditions) depends on the amount of stored free energy, proportional to the tail length, which is controlled by the input power. The earlier or initial onset marks a sudden change in the convection pattern in the nightside. This onset could mark the initiation of reconnection on closed field lines while the expansion onset could mark the initiation of reconnection on open field lines.
An iterative reconstruction of cosmological initial density fields
NASA Astrophysics Data System (ADS)
Hada, Ryuichiro; Eisenstein, Daniel J.
2018-05-01
We present an iterative method to reconstruct the linear-theory initial conditions from the late-time cosmological matter density field, with the intent of improving the recovery of the cosmic distance scale from the baryon acoustic oscillations (BAOs). We present tests using the dark matter density field in both real and redshift space generated from an N-body simulation. In redshift space at z = 0.5, we find that the reconstructed displacement field using our iterative method are more than 80% correlated with the true displacement field of the dark matter particles on scales k < 0.10h Mpc-1. Furthermore, we show that the two-point correlation function of our reconstructed density field matches that of the initial density field substantially better, especially on small scales (<40h-1 Mpc). Our redshift-space results are improved if we use an anisotropic smoothing so as to account for the reduced small-scale information along the line of sight in redshift space.
Validation of community models: 3. Tracing field lines in heliospheric models
NASA Astrophysics Data System (ADS)
MacNeice, Peter; Elliott, Brian; Acebal, Ariel
2011-10-01
Forecasting hazardous gradual solar energetic particle (SEP) bursts at Earth requires accurately modeling field line connections between Earth and the locations of coronal or interplanetary shocks that accelerate the particles. We test the accuracy of field lines reconstructed using four different models of the ambient coronal and inner heliospheric magnetic field, through which these shocks must propagate, including the coupled Wang-Sheeley-Arge (WSA)/ENLIL model. Evaluating the WSA/ENLIL model performance is important since it is the most sophisticated model currently available to space weather forecasters which can model interplanetary coronal mass ejections and, when coupled with particle acceleration and transport models, will provide a complete model for gradual SEP bursts. Previous studies using a simpler Archimedean spiral approach above 2.5 solar radii have reported poor performance. We test the accuracy of the model field lines connecting Earth to the Sun at the onset times of 15 impulsive SEP bursts, comparing the foot points of these field lines with the locations of surface events believed to be responsible for the SEP bursts. We find the WSA/ENLIL model performance is no better than the simplest spiral model, and the principal source of error is the model's inability to reproduce sufficient low-latitude open flux. This may be due to the model's use of static synoptic magnetograms, which fail to account for transient activity in the low corona, during which reconnection events believed to initiate the SEP acceleration may contribute short-lived open flux at low latitudes. Time-dependent coronal models incorporating these transient events may be needed to significantly improve Earth/Sun field line forecasting.
Effects of magnetic fields on photoionized pillars and globules
NASA Astrophysics Data System (ADS)
Mackey, Jonathan; Lim, Andrew J.
2011-04-01
The effects of initially uniform magnetic fields on the formation and evolution of dense pillars and cometary globules at the boundaries of H II regions are investigated using 3D radiation-magnetohydrodynamics simulations. It is shown, in agreement with previous work, that a strong initial magnetic field is required to significantly alter the non-magnetized dynamics because the energy input from photoionization is so large that it remains the dominant driver of the dynamics in most situations. Additionally, it is found that for weak and medium field strengths an initially perpendicular field is swept into alignment with the pillar during its dynamical evolution, matching magnetic field observations of the 'Pillars of Creation' in M16 and also some cometary globules. A strong perpendicular magnetic field remains in its initial configuration and also confines the photoevaporation flow into a bar-shaped dense ionized ribbon which partially shields the ionization front and would be readily observable in recombination lines. A simple analytic model is presented to explain the properties of this bright linear structure. These results show that magnetic field strengths in star-forming regions can in principle be significantly constrained by the morphology of structures which form at the borders of H II regions.
Modelling the Auroral Magnetosphere-Ionosphere Coupling System at Jupiter
NASA Astrophysics Data System (ADS)
Bunce, E. J.; Cowley, S.; Provan, G.
2016-12-01
The magnetosphere-ionosphere coupling system at Jupiter is a topic of central significance in understanding the fundamental properties of its large-scale plasma environment. Theoretical discussion of this topic typically considers the properties of the field-aligned current systems that form part of a large-scale magnetosphere-ionosphere coupling current system associated with momentum exchange between the ionosphere and the magnetosphere, communicated via the magnetic field. The current system associated with the main oval is believed to be related to centrifugally-driven outward radial transport of iogenic plasma that leads to sub-corotation in the middle magnetosphere. In addition to the magnetosphere-ionosphere coupling current system, upward-directed field-aligned currents may flow at the open-closed field line boundary due to the shear between outer closed field lines and open field lines, which may relate to emission poleward of the main oval. An axi-symmetric model of the plasma flow in the jovian system, the related coupling currents, and the consequent auroral precipitation based on these combined ideas was initially devised to represent typical steady-state conditions for the system and later extended to consider auroral effects resulting from sudden compressions of the magnetosphere. More recently, the model has been extended along model magnetic field lines into the magnetosphere in order to relate them to in situ observations from the NASA Juno spacecraft at Jupiter. The field-aligned coupling currents associated with the modelled current systems produce a readily-observable azimuthal field signature that bends the field lines out of magnetic meridians. Here we show the computed azimuthal fields produced by our model auroral current system throughout the region between the ionosphere and the magnetic equator, and illustrate the results by evaluation of various model parameters (e.g. field-aligned current density, accelerating voltages, accelerated energy flux) along the Juno orbits.
How northward turnings of the IMF can lead to substorm expansion onsets
NASA Astrophysics Data System (ADS)
Russell, C. T.
2000-10-01
The frequent triggering of the expansion phase of substorms by northward turnings of the interplanetary magnetic field (IMF) can be understood in terms of the existence of two neutral points. The distant neutral point produces a plasma sheet on closed field lines that resupplies the magnetized plasma surrounding the near-Earth neutral point. As long as the near-Earth neutral point reconnects in moderately dense plasma, the reconnection rate is low. When the IMF turns northward, reconnection at the distant neutral point ceases but reconnection at the near-Earth neutral point continues and soon reaches open, low density magnetic field lines where the rate of reconnection is rapid, and a full expansion phase occurs. This model is consistent with the observations of substorms with two onsets: an initial one at low invariant latitudes when reconnection at the near Earth neutral point first begins and the second when reconnection reaches low density field lines at the edge of the plasma sheet and continues into the open flux of the tail lobes. It is also consistent with the occurrence of pseudo breakups in which reconnection at the near Earth neutral point begins but does not proceed to lobe field lines and a full expansion phase.
Magnetic shuffling of coronal downdrafts
NASA Astrophysics Data System (ADS)
Petralia, A.; Reale, F.; Orlando, S.
2017-02-01
Context. Channelled fragmented downflows are ubiquitous in magnetized atmospheres, and have recently been addressed based on an observation after a solar eruption. Aims: We study the possible back-effect of the magnetic field on the propagation of confined flows. Methods: We compared two 3D magnetohydrodynamic simulations of dense supersonic plasma blobs that fall down along a coronal magnetic flux tube. In one, the blobs move strictly along the field lines; in the other, the initial velocity of the blobs is not perfectly aligned with the magnetic field and the field is weaker. Results: The aligned blobs remain compact while flowing along the tube, with the generated shocks. The misaligned blobs are disrupted and merge through the chaotic shuffling of the field lines. They are structured into thinner filaments. Alfvén wave fronts are generated together with shocks ahead of the dense moving front. Conclusions: Downflowing plasma fragments can be chaotically and efficiently mixed if their motion is misaligned with field lines, with broad implications for disk accretion in protostars, coronal eruptions, and rain, for example. Movies associated to Figs. 2 and 3 are available at http://www.aanda.org
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pallesen, T.R.; Braestrup, M.W.; Jorgensen, O.
Development of Danish North Sea hydrocarbon resources includes the 17-km Rolf pipeline installed in 1985. This one consists of an insulated 8-in. two-phase flow product line with a 3-in. piggyback gas lift line. A practical solution to design of this insulated pipeline, including the small diameter, piggyback injection line was corrosion coating of fusion bonded epoxy (FBE) and polyethylene (PE) sleeve pipe. The insulation design prevents hydrate formation under the most conservative flow regime during gas lift production. Also, the required minimum flow rate during the initial natural lift period is well below the value anticipiated at the initiation ofmore » gas lift. The weight coating design ensures stability on the seabed during the summer months only; thus trenching was required during the same installation season. Installation of insulated flowlines serving marginal fields is a significant feature of North Sea hydrocarbon development projects. The Skjold field is connected to Gorm by a 6-in., two-phase-flow line. The 11-km line was installed in 1982 as the first insulated pipeline in the North Sea. The Rolf field, located 17 km west of Gorm, went on stream Jan. 2. The development includes an unmanned wellhead platform and an insulated, two-phase-flow pipeline to the Gorm E riser platform. After separation on the Gorm C process platform, the oil and condensate are transported to shore through the 20-in. oil pipeline, and the natural gas is piped to Tyra for transmission through the 30-in. gas pipeline. Oil production at Rolf is assisted by the injection of lift gas, transported from Gorm through a 3-in. pipeline, installed piggyback on the insulated 8-in. product line. The seabed is smooth and sandy, the water depth varying between 33.7 m (110.5 ft) at Rolf and 39.1 m (128 ft) at Gorm.« less
NASA Astrophysics Data System (ADS)
Morita, Yukinori; Mori, Takahiro; Migita, Shinji; Mizubayashi, Wataru; Tanabe, Akihito; Fukuda, Koichi; Matsukawa, Takashi; Endo, Kazuhiko; O'uchi, Shin-ichi; Liu, Yongxun; Masahara, Meishoku; Ota, Hiroyuki
2014-12-01
The performance of parallel electric field tunnel field-effect transistors (TFETs), in which band-to-band tunneling (BTBT) was initiated in-line to the gate electric field was evaluated. The TFET was fabricated by inserting an epitaxially-grown parallel-plate tunnel capacitor between heavily doped source wells and gate insulators. Analysis using a distributed-element circuit model indicated there should be a limit of the drain current caused by the self-voltage-drop effect in the ultrathin channel layer.
Nonlinear evolution of the coronal magnetic field under reconnective relaxation
NASA Technical Reports Server (NTRS)
Wolfson, R.; Vekstein, G. E.; Priest, E. R.
1994-01-01
Recently, Vekstein et al. (Vekstein, Priest, & Steele 1993) have developed a model for coronal heating in which the corona responds to photospheric footpoint motions by small-scale reconnection events that bring about a relaxed state while conserving magnetic helicity but not field-line connectivity. Vekstein et al. consider a partially open field configuration in which magnetic helicity is ejected to infinity on open field lines but retained in the closed-field region. Under this scheme, they describe the evolution of an initially potential field, in response to helicity injection, in the linear regime. The present work uses numerical calculations to extend the model of Vekstein et al. into the fully nonlinear regime. The results show a rise and bulging of the field lines of the closed-field region with increasing magnetic helicity, to a point where further solutions are impossible. We interpret these solution-sequence endpoints as indicating a possible loss of equilibrium, in the sense that a relaxed equilibrium state may no longer be available to the corona when sufficient helicity has been injected. The rise and bulging behavior is reminiscent of what is observed in a helmet streamer just before the start of a coronal mass ejection (CME), and so our model suggests that a catastrophic loss of magnetic equilibrium might be the initiation mechanism for CMEs. We also find that some choices of boundary conditions can result in qualitative changes in the magnetic topology, with the appearance of magnetic islands. Whether or not this behavior occurs depends on the relative strengths of the fields in the closed- and open-field regions; in particular, island formation is most likely when the open field (which is potential) is strong and thus acts to confine the force-free closed field. Finally, we show that the energy released through reconnective relaxation can be a substantial fraction of the magnetic energy injected into the corona through footpoint motions and may be sufficient for heating the corona above active regions.
Radiative Characteristics of the Pulse-Periodic Discharge Plasma Initiated by Runaway Electrons
NASA Astrophysics Data System (ADS)
Lomaev, M. I.; Beloplotov, D. V.; Tarasenko, V. F.; Sorokin, D. A.
2016-07-01
Results of experimental investigations of amplitude-temporal and spectral characteristics of radiation of a pulse-periodic discharge plasma initiated in nitrogen by runaway electrons are presented. The discharge was initiated by high-voltage nanosecond voltage pulses with repetition frequency of 60 Hz in a sharply inhomogeneous electric field in a gap between the conic potential cathode and the planar grounded aluminum anode. It is established that intensive lines of Al I atoms and Al II atomic ions, lines of N I atoms and N II ions, bands of the first (1+) and second positive (2+) nitrogen systems, as well as bands of cyanogen CN are observed in the emission spectrum of the discharge plasma under the given excitation conditions.
EFFECTS OF FIELD-LINE TOPOLOGY ON ENERGY PROPAGATION IN THE CORONA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Candelaresi, S.; Pontin, D. I.; Hornig, G.
We study the effect of photospheric footpoint motions on magnetic field structures containing magnetic nulls. The footpoint motions are prescribed on the photospheric boundary as a velocity field that entangles the magnetic field. We investigate the propagation of the injected energy, the conversion of energy, emergence of current layers, and other consequences of the nontrivial magnetic field topology in this situation. These boundary motions lead initially to an increase in magnetic and kinetic energy. Following this, the energy input from the photosphere is partially dissipated and partially transported out of the domain through the Poynting flux. The presence of separatrixmore » layers and magnetic null points fundamentally alters the propagation behavior of disturbances from the photosphere into the corona. Depending on the field-line topology close to the photosphere, the energy is either trapped or free to propagate into the corona.« less
Divertor for use in fusion reactors
Christensen, Uffe R.
1979-01-01
A poloidal divertor for a toroidal plasma column ring having a set of poloidal coils co-axial with the plasma ring for providing a space for a thick shielding blanket close to the plasma along the entire length of the plasma ring cross section and all the way around the axis of rotation of the plasma ring. The poloidal coils of this invention also provide a stagnation point on the inside of the toroidal plasma column ring, gently curving field lines for vertical stability, an initial plasma current, and the shaping of the field lines of a separatrix up and around the shielding blanket.
Tropical squall lines of the Arizona monsoon
NASA Technical Reports Server (NTRS)
Smith, Walter P.; Gall, Robert L.
1989-01-01
Three cases of squall lines composed of strong to severe thunderstorms that formed over Arizona, and Sonora (Mexico) on July, 16-17 and 17-18, 1984, and August 2-3, 1986, are examined. Data, which included satellite imagery, VISSR-derived fields, surface data, and records or cloud-to-ground lightning strikes, indicate that the initiation, growth, and dissipation of all three squall lines were very similar. Results indicate that these mesoscale convective systems developed in an environment of relatively strong low-level shear with very weak shear aloft and that they possessed almost all the properties of a typical tropical squall line.
Heat conduction in cooling flows. [in clusters of galaxies
NASA Technical Reports Server (NTRS)
Bregman, Joel N.; David, L. P.
1988-01-01
It has been suggested that electron conduction may significantly reduce the accretion rate (and star foramtion rate) for cooling flows in clusters of galaxies. A numerical hydrodynamics code was used to investigate the time behavior of cooling flows with conduction. The usual conduction coefficient is modified by an efficiency factor, mu, to realize the effects of tangled magnetic field lines. Two classes of models are considered, one where mu is independent of position and time, and one where inflow stretches the field lines and changes mu. In both cases, there is only a narrow range of initial conditions for mu in which the cluster accretion rate is reduced while a significant temperature gradient occurs. In the first case, no steady solution exists in which both conditions are met. In the second case, steady state solutions occur in which both conditions are met, but only for a narrow range of initial values where mu = 0.001.
Baxter, Holly L.; Mazarei, Mitra; Fu, Chunxiang; ...
2016-05-18
Modifying plant cell walls by manipulating lignin biosynthesis can improve biofuel yields from lignocellulosic crops. For example, transgenic switchgrass lines with downregulated expression of caffeic acid O-methyltransferase, a lignin biosynthetic enzyme, produce up to 38% more ethanol than controls. The aim of the present study was to understand cell wall lignification over the second and third growing seasons of COMT-downregulated field-grown switchgrass. COMT gene expression, lignification, and cell wall recalcitrance were assayed for two independent transgenic lines at monthly intervals. Switchgrass rust (Puccinia emaculata) incidence was also tracked across the seasons. Trends in lignification over time differed between the 2more » years. In 2012, sampling was initiated in mid-growing season on reproductive-stage plants and there was little variation in the lignin content of all lines (COMT-downregulated and control) over time. COMT-downregulated lines maintained 11-16% less lignin, 33-40% lower S/G (syringyl-to-guaiacyl) ratios, and 15-42% higher sugar release relative to controls for all time points. In 2013, sampling was initiated earlier in the season on elongation-stage plants and the lignin content of all lines steadily increased over time, while sugar release expectedly decreased. S/G ratios increased in non-transgenic control plants as biomass accumulated over the season, while remaining relatively stable across the season in the COMT-downregulated lines. Differences in cell wall chemistry between transgenic and non-transgenic lines were not apparent until plants transitioned to reproductive growth in mid-season, after which the cell walls of COMT-downregulated plants exhibited phenotypes consistent with what was observed in 2012. There were no differences in rust damage between transgenics and controls at any time point. Finally, these results provide relevant fundamental insights into the process of lignification in a maturing field-grown biofuel feedstock with downregulated lignin biosynthesis.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baxter, Holly L.; Mazarei, Mitra; Fu, Chunxiang
Modifying plant cell walls by manipulating lignin biosynthesis can improve biofuel yields from lignocellulosic crops. For example, transgenic switchgrass lines with downregulated expression of caffeic acid O-methyltransferase, a lignin biosynthetic enzyme, produce up to 38% more ethanol than controls. The aim of the present study was to understand cell wall lignification over the second and third growing seasons of COMT-downregulated field-grown switchgrass. COMT gene expression, lignification, and cell wall recalcitrance were assayed for two independent transgenic lines at monthly intervals. Switchgrass rust (Puccinia emaculata) incidence was also tracked across the seasons. Trends in lignification over time differed between the 2more » years. In 2012, sampling was initiated in mid-growing season on reproductive-stage plants and there was little variation in the lignin content of all lines (COMT-downregulated and control) over time. COMT-downregulated lines maintained 11-16% less lignin, 33-40% lower S/G (syringyl-to-guaiacyl) ratios, and 15-42% higher sugar release relative to controls for all time points. In 2013, sampling was initiated earlier in the season on elongation-stage plants and the lignin content of all lines steadily increased over time, while sugar release expectedly decreased. S/G ratios increased in non-transgenic control plants as biomass accumulated over the season, while remaining relatively stable across the season in the COMT-downregulated lines. Differences in cell wall chemistry between transgenic and non-transgenic lines were not apparent until plants transitioned to reproductive growth in mid-season, after which the cell walls of COMT-downregulated plants exhibited phenotypes consistent with what was observed in 2012. There were no differences in rust damage between transgenics and controls at any time point. Finally, these results provide relevant fundamental insights into the process of lignification in a maturing field-grown biofuel feedstock with downregulated lignin biosynthesis.« less
Colliding Magnetic Flux Ropes and Quasi-Separatrix Layers in a Laboratory Plasma
NASA Astrophysics Data System (ADS)
Lawrence, Eric Eugene
An experimental study of the dynamics of colliding magnetic flux ropes and the magnetic reconnection that occurs during these collisions is presented. A magnetic flux rope is a bundle of twisted magnetic field lines that is ubiquitous in space and solar plasmas. The flux ropes are created in the Large Plasma Device (LAPD) using two heated lanthanum hexaboride (LaB6) cathodes that inject currents into the background plasma. The currents are initially parallel to the background magnetic field. The azimuthal field of each current together with the background axial field create helical twisted flux ropes. It is found that the flux ropes rotate in time (corkscrew) and collide with each other. During a collision, antiparallel magnetic fields can undergo magnetic reconnection. When these collisions occur, we observe current layers flowing in the opposite direction of the injected current, a signatuare of reconnection. Analysis of the three-dimensional magnetic field lines shows the existence of quasi-separatrix layers (QSLs). These are regions in the magnetic configuration where there are large spatial gradients in the connectivity of field line footpoints in the boundary surfaces. QSLs are thought to be favorable sites for magnetic reconnection. It is shown that the location and shape of the QSL is similar to what is seen in simulations of merging flux ropes. Furthermore, the field line structure of the QSL is similar to that of a twisted hyperbolic flux tube (HFT). An HFT is a type of QSL that has been shown to be a preferred site for current sheet formation in simulations of interacting coronal loops. The HFT in this experiment is found to be generally near the reverse current layers, although the agreement is not perfect. Looking at the time evolution of the QSL, we find that the QSL cross-sectional area grows and contracts at the same time that the flux ropes collide and that the reverse current layers appear. Analysis of the field line motion shows that, during reconnection, bundles of field lines rapidly flip across the QSLs. This is analagous to the way that field lines are pushed across a separatrix in 2D reconnection.
Initial velocity V-shapes of young asteroid families
NASA Astrophysics Data System (ADS)
Bolin, Bryce T.; Walsh, Kevin J.; Morbidelli, Alessandro; Delbó, Marco
2018-01-01
Ejection velocity fields of asteroid families are largely unconstrained due to the fact that members disperse relatively quickly on Myr time-scales by secular resonances and the Yarkovsky effect. The spreading of fragments in a by the Yarkovsky effect is indistinguishable from the spreading caused by the initial ejection of fragments. By examining families <20 Myr old, we can use the V-shape identification technique to separate family shapes that are due to the initial ejection velocity field and those that are due to the Yarkovsky effect. Asteroid families that are <20 Myr old provide an opportunity to study the velocity field of family fragments before they become too dispersed. Only the Karin family's initial velocity field has been determined and scales inversely with diameter, D-1. We have applied the V-shape identification technique to constrain young families' initial ejection velocity fields by measuring the curvature of their fragments' V-shape correlation in semimajor axis, a, versus D-1 space. Curvature from a straight line implies a deviation from a scaling of D-1. We measure the V-shape curvature of 11 young asteroid families including the 1993 FY12, Aeolia, Brangane, Brasilia, Clarissa, Iannini, Karin, Konig, Koronis(2), Theobalda and Veritas asteroid families. We find that the majority of asteroid families have initial ejection velocity fields consistent with ∼D-1 supporting laboratory impact experiments and computer simulations of disrupting asteroid parent bodies.
A rigidly rotating magnetosphere model for circumstellar emission from magnetic OB stars
NASA Astrophysics Data System (ADS)
Townsend, R. H. D.; Owocki, S. P.
2005-02-01
We present a semi-analytical approach for modelling circumstellar emission from rotating hot stars with a strong dipole magnetic field tilted at an arbitrary angle to the rotation axis. By assuming the rigid-field limit in which material driven (e.g. in a wind outflow) from the star is forced to remain in strict rigid-body corotation, we are able to solve for the effective centrifugal-plus-gravitational potential along each field line, and thereby identify the location of potential minima where material is prone to accumulate. Applying basic scalings for the surface mass flux of a radiatively driven stellar wind, we calculate the circumstellar density distribution that obtains once ejected plasma settles into hydrostatic stratification along field lines. The resulting accumulation surface resembles a rigidly rotating, warped disc, tilted such that its average surface normal lies between the rotation and magnetic axes. Using a simple model of the plasma emissivity, we calculate time-resolved synthetic line spectra for the disc. Initial comparisons show an encouraging level of correspondence with the observed rotational phase variations of Balmer-line emission profiles from magnetic Bp stars such as σ Ori E.
NASA Astrophysics Data System (ADS)
Yin, Y.; Sonka, M.
2010-03-01
A novel method is presented for definition of search lines in a variety of surface segmentation approaches. The method is inspired by properties of electric field direction lines and is applicable to general-purpose n-D shapebased image segmentation tasks. Its utility is demonstrated in graph construction and optimal segmentation of multiple mutually interacting objects. The properties of the electric field-based graph construction guarantee that inter-object graph connecting lines are non-intersecting and inherently covering the entire object-interaction space. When applied to inter-object cross-surface mapping, our approach generates one-to-one and all-to-all vertex correspondent pairs between the regions of mutual interaction. We demonstrate the benefits of the electric field approach in several examples ranging from relatively simple single-surface segmentation to complex multiobject multi-surface segmentation of femur-tibia cartilage. The performance of our approach is demonstrated in 60 MR images from the Osteoarthritis Initiative (OAI), in which our approach achieved a very good performance as judged by surface positioning errors (average of 0.29 and 0.59 mm for signed and unsigned cartilage positioning errors, respectively).
Summary and recent results from the NASA advanced High Speed Propeller Research Program
NASA Technical Reports Server (NTRS)
Mitchell, G. A.; Mikkelson, D. C.
1982-01-01
Advanced high-speed propellers offer large performance improvements for aircraft that cruise in the Mach 0.7 to 0.8 speed regime. The current status of the NASA research program on high-speed propeller aerodynamics, acoustics, and aeroelastics is described. Recent wind tunnel results for five 8- to 10-blade advanced models are compared with analytical predictions. Test results show that blade sweep was important in achieving net efficiencies near 80 percent at Mach 0.8 and reducing near-field cruise noise by dB. Lifting line and lifting surface aerodynamic analysis codes are under development and some initial lifting line results are compared with propeller force and probe data. Some initial laser velocimeter measurements of the flow field velocities of an 8-bladed 45 deg swept propeller are shown. Experimental aeroelastic results indicate that cascade effects and blade sweep strongly affect propeller aeroelastic characteristics. Comparisons of propeller near-field noise data with linear acoustic theory indicate that the theory adequate predicts near-field noise for subsonic tip speeds but overpredicts the noise for supersonic tip speeds. Potential large gains in propeller efficiency of 7 to 11 percent at Mach 0.8 may be possible with advanced counter-rotation propellers.
NASA Astrophysics Data System (ADS)
Liu, Lijuan; Wang, Yuming; Zhou, Zhenjun; Dissauer, Karin; Temmer, Manuela; Cui, Jun
2018-05-01
In this paper, we analyzed a failed and a successful eruption that initiated from the same polarity inversion line within NOAA AR 11387 on 2011 December 25. They both started from a reconnection between sheared arcades, with distinct pre-eruption conditions and eruption details: before the failed one, the magnetic fields of the core region had a weaker non-potentiality; the external fields had a similar critical height for torus instability, and a similar local torus-stable region, but a larger magnetic flux ratio (of low corona and near-surface region) compared to the successful one. During the failed eruption, a smaller Lorentz force impulse was exerted on the outward ejecta; the ejecta had a much slower rising speed. Factors that might lead to the initiation of the failed eruption are identified: (1) a weaker non-potentiality of the core region, and a smaller Lorentz force impulse gave the ejecta a small momentum; (2) the large flux ratio, and the local torus-stable region in the corona provided strong confinements that made the erupting structure regain an equilibrium state.
NASA Astrophysics Data System (ADS)
Inoue, S.; Hayashi, K.; Magara, T.; Choe, G. S.; Park, Y. D.
2014-06-01
We performed a magnetohydrodynamic (MHD) simulation using a nonlinear force-free field (NLFFF) in solar active region 11158 to clarify the dynamics of an X2.2-class solar flare. We found that the NLFFF never shows the dramatic dynamics seen in observations, i.e., it is in a stable state against the perturbations. On the other hand, the MHD simulation shows that when the strongly twisted lines are formed at close to the neutral line, which are produced via tether-cutting reconnection in the twisted lines of the NLFFF, they consequently erupt away from the solar surface via the complicated reconnection. This result supports the argument that the strongly twisted lines formed in NLFFF via tether-cutting reconnection are responsible for breaking the force balance condition of the magnetic fields in the lower solar corona. In addition to this, the dynamical evolution of these field lines reveals that at the initial stage the spatial pattern of the footpoints caused by the reconnection of the twisted lines appropriately maps the distribution of the observed two-ribbon flares. Interestingly, after the flare, the reconnected field lines convert into a structure like the post-flare loops, which is analogous to the extreme ultraviolet image taken by the Solar Dynamics Observatory. Eventually, we found that the twisted lines exceed a critical height at which the flux tube becomes unstable to the torus instability. These results illustrate the reliability of our simulation and also provide an important relationship between flare and coronal mass ejection dynamics.
Simulator study of vortex encounters by a twin-engine, commercial, jet transport airplane
NASA Technical Reports Server (NTRS)
Hastings, E. C., Jr.; Keyser, G. L., Jr.
1982-01-01
A simulator study of vortex encounters was conducted for a twin-engine, commercial, jet transport airplane encountering the vortex flow field of a heavy, four-engine, commercial, jet transport airplane in the final-approach configuration. The encounters were conducted with fixed controls and with a pilot using a state-of-the-art, manual-control system. Piloted encounters with the base-line vortex flow field out of ground effect (unattenuated) resulted in initial bank-angle excursions greater than 40 deg, coupled with initial sideslip-angle excursions greater than 10 deg. The severity of these initial upsets was significantly reduced when the vortex center was moved laterally or vertically away from the flight path of the encountering airplane. Smaller reductions occurred when the flow field was attenuated by the flight spoilers on the generating airplane. The largest reduction in the severity of the initial upsets, however, was from aging in ground effect. The severity of the initial upsets of the following airplane was relatively unaffected by the approach speed. Increasing the lift coefficient of the generating airplane resulted in an increase in the severity of the initial upsets.
NASA Technical Reports Server (NTRS)
Choudhary, Debi Prasad; Gary, Allen G.
1998-01-01
The high-resolution H(sub alpha) images observed during the decay phase of a long duration flare on 23 March 1991 are used to study the three-dimensional magnetic field configuration of the active region NOAA 6555. Whereas, all the large flares in NOAA 6555 occurred at the location of high magnetic shear and flux emergence, this long duration flare was observed in the region of low magnetic shear at the photosphere. The H(sub alpha) loop activity started soon after the maximum phase of the flare. There were few long loop at the initial phase of the activity. Some of these were sheared in the chromosphere at an angle of about 45 deg with the east-west axis. Gradually, increasing number of shorter loops, oriented along the east-west axis, started appearing. The chromospheric Dopplergrams show blue-shifts at the end points of the loops. By using different magnetic field models, we have extrapolated the photospheric magnetograms to the chromospheric heights. The magnetic field lines computed by using the potential field model correspond to most of the observed H(sub alpha) loops. The height of the H(sub alpha) loops were derived by comparing them with the computed field lines. From the temporal evolution of the H(sub alpha) loop activity, we derive the negative rate of appearance of H(sub alpha) features as a function of height. It is found that the field lines oriented along one of the neutral lines was sheared and low lying. The higher field lines were mostly potential. The paper also outlines a possible scenario for describing the post-flare stage of the observed long duration flare.
NASA Astrophysics Data System (ADS)
Lin, C. S.; Sutton, E. K.; Huang, C. Y.; Cooke, D. L.
2018-02-01
Polar cap neutral density anomaly (PCNDA) with large mass density enhancements over the background has been frequently observed in the polar cap during magnetic storms. By tracing field lines to the magnetosphere from the polar ionosphere, we divide the polar cap into two regions, an open field line (OFL) region with field lines connecting to the magnetopause boundary and a distant tail field line (TFL) region threaded with magnetotail lobe field lines. A statistical study of neutral density observed by the Challenging Minisatellite Payload satellite during major magnetic storms with Dst < -100 from July 2001 to 2006 indicates that over 85% of density anomalies were detected in the TFL region, at about 18° to 25° equatorward the center of the OFL region. PCNDAs were frequently accompanied by plasma clouds with peak density greater than 105 #/cm3. Modeling of plasma cloud drift paths suggests that plasma clouds originating in the dayside ionosphere could convect through the OFL region following the zero-potential line and reach the PCNDA locations. Plasma clouds could become stagnate in the TFL region, allowing a long duration of collisions with the neutral gas and possibly contributing to heating of PCNDAs. The PCNDA observations are interpreted as evidence that traveling atmospheric disturbance could be generated in the nightside polar cap. From the PCNDA size and speed of sound at 400 km, we derive an initial energy deposition duration for producing traveling atmospheric disturbance in the range from 0.5 to 2.5 hr.
Cusp Dynamics-Particle Acceleration by Alfven Waves
NASA Technical Reports Server (NTRS)
Ergun, Robert E.; Parker, Scott A.
2005-01-01
Successful results were obtained from this research project. This investigation answered and/or made progresses on each of the four important questions that were proposed: (1) How do Alfven waves propagate on dayside open field lines? (2) How are precipitating electrons influenced by propagating Alfven waves? (3) How are various cusp electron distributions generated? (4) How are Alfven waves modified by electrons? During the first year of this investigation, the input parameters, such as density and temperature altitude profiles, of the gyrofluid code on the cusp field lines were constructed based on 3-point satellite observations. The initial gyrofluid result was presented at the GEM meeting by Dr. Samuel Jones.
Line-scanning, stage scanning confocal microscope
NASA Astrophysics Data System (ADS)
Carucci, John A.; Stevenson, Mary; Gareau, Daniel
2016-03-01
We created a line-scanning, stage scanning confocal microscope as part of a new procedure: video assisted micrographic surgery (VAMS). The need for rapid pathological assessment of the tissue on the surface of skin excisions very large since there are 3.5 million new skin cancers diagnosed annually in the United States. The new design presented here is a confocal microscope without any scanning optics. Instead, a line is focused in space and the sample, which is flattened, is physically translated such that the line scans across its face in a direction perpendicular to the line its self. The line is 6mm long and the stage is capable of scanning 50 mm, hence the field of view is quite large. The theoretical diffraction-limited resolution is 0.7um lateral and 3.7um axial. However, in this preliminary report, we present initial results that are a factor of 5-7 poorer in resolution. The results are encouraging because they demonstrate that the linear array detector measures sufficient signal from fluorescently labeled tissue and also demonstrate the large field of view achievable with VAMS.
2007-10-01
associated with transmission lines is generally due to either corona or “spark gap” discharges. When the electric field at the surface of a conductor... corona , will be initiated from the conductor into the Chapter 3: Affected Environment Supplemental Environmental Assessment – Lighthouse Substation at...Cape Canaveral Air Force Station 24 surrounding air. The intensity of the corona increases with the voltage of the line and is dependent on the
The Detection of Nonplanar Surfaces in Visual Space.
1984-03-01
involve quasi -dotted stimuli. For example, applications may be found in fields such as air traffic control ; geophysical surveys (e.g., to distinguish a...line microcomputers. The control program was initially loaded by the experimenter from the computer’s disk O memory into its randomly addressable... experimenter and the computer carried out certain initialization segments of the control program. Next, the observer signed on at the computer terminal with a
Electron Injections Caused by a Dipolarization Flux Bundle
NASA Astrophysics Data System (ADS)
Kabin, K.; Kalugin, G. A.; Donovan, E.; Spanswick, E.
2017-12-01
We study electron injections caused by an earthward propagating electromagnetic pulse. The background magnetic field model is fully three-dimensional and includes the day-night asymmetry, however, the field lines are contained in the meridional planes. The transient pulse fields, which are prescribed analytically, are also three-dimensional. We study electron energization as a function of the initial radial position and the initial energy. We present results for equatorially-mirroring particles as well as for particles with several other values of the initial pitch angles. The pitch-angle dependence of the energization rates is relatively weak for the equatorial pitch angles greater than about 60o, but particles with smaller pitch angles gain significantly less energy than the equatorial ones. Energy gain factors of 3 to 10 are easily achievable in our model which is sufficient to produce observable features in ground based observations, such as those done by riometers.
Results of magnetospheric barium ion cloud experiment of 1971
NASA Technical Reports Server (NTRS)
Adamson, D.; Fricke, C. L.; Long, S. A. T.
1975-01-01
The barium ion cloud experiment involved the release of about 2 kg of barium at an altitude of 31 482 km, a latitude of 6.926 N., and a longitude of 74.395 W. Significant erosion of plasma from the main ion core occurred during the initial phase of the ion cloud expansion. From the motion of the outermost striational filaments, the electric field components were determined to be 0.19 mV/m in the westerly direction and 0.68 mV/m in the inward direction. The differences between these components and those measured from balloons flown in the proximity of the extremity of the field line through the release point implied the existence of potential gradients along the magnetic field lines. The deceleration of the main core was greater than theoretically predicted. This was attributed to the formation of a polarization wake, resulting in an increase of the area of interaction and resistive dissipation at ionospheric levels. The actual orientation of the magnetic field line through the release point differed by about 10.5 deg from that predicted by magnetic field models that did not include the effect of ring current.
Bidirectional Fusion of the Heart-forming Fields in the Developing Chick Embryo
Moreno-Rodriguez, R.A.; Krug, E.L.; Reyes, L.; Villavicencio, L.; Mjaatvedt, C.H.; Markwald, R.R.
2007-01-01
It is generally thought that the early pre-tubular chick heart is formed by fusion of the anterior or cephalic limits of the paired cardiogenic fields. However, this study shows that the heart fields initially fuse at their midpoint to form a transitory “butterfly”-shaped, cardiogenic structure. Fusion then progresses bi-directionally along the longitudinal axis in both cranial and caudal directions. Using in vivo labeling, we demonstrate that cells along the ventral fusion line are highly motile, crossing future primitive segments. We found that mesoderm cells migrated cephalically from the unfused tips of the anterior/cephalic wings into the head mesenchyme in the region that has been called the secondary heart field. Perturbing the anterior/cranial fusion results in formation of a biconal heart. A theoretical role of the ventral fusion line acting as a “heart organizer” and its role in cardia bifida is discussed. PMID:16252277
Three-dimensional simulations of the orientation and structure of reconnection X-lines
NASA Astrophysics Data System (ADS)
Schreier, R.; Swisdak, M.; Drake, J. F.; Cassak, P. A.
2010-11-01
This letter employs Hall magnetohydrodynamic simulations to study X-lines formed during the reconnection of magnetic fields with differing strengths and orientations embedded in plasmas of differing densities. Although random initial perturbations trigger the growth of X-lines with many orientations, a few robust X-lines sharing an orientation consistent with the direction of maximal outflow speed, as predicted by Swisdak and Drake [Geophys. Res. Lett. 34, L11106 (2007)] eventually dominate the system. Reconnection in the geometry examined here contradicts the suggestion of Sonnerup [J. Geophys. Res. 79, 1546 (1974)] that it occurs in a plane normal to the equilibrium current. At late time, the X-lines' growth stagnates, leaving them shorter than the simulation domain.
NASA Technical Reports Server (NTRS)
Pena, Joaquin; Hinchey, Michael G.; Ruiz-Cortes, Antonio
2006-01-01
The field of Software Product Lines (SPL) emphasizes building a core architecture for a family of software products from which concrete products can be derived rapidly. This helps to reduce time-to-market, costs, etc., and can result in improved software quality and safety. Current AOSE methodologies are concerned with developing a single Multiagent System. We propose an initial approach to developing the core architecture of a Multiagent Systems Product Line (MAS-PL), exemplifying our approach with reference to a concept NASA mission based on multiagent technology.
Plasma sheet dynamics observed by the Polar spacecraft in association with substorm onsets
NASA Astrophysics Data System (ADS)
Toivanen, P. K.; Baker, D. N.; Peterson, W. K.; Li, X.; Donovan, E. F.; Viljanen, A.; Keiling, A.; Wygant, J. R.; Kletzing, C. A.
2001-09-01
We present observations of the Polar spacecraft of magnetospheric substorm signatures in the plasma sheet midway along auroral field lines between the ionosphere and the equatorial plasma sheet. On October 17, 1997, Polar was located in the onset meridian in conjunction with the Scandinavian magnetometer chain (International Monitor for Auroral Geomagnetic Effects; IMAGE). In addition, a geostationary spacecraft, LANL-97A, was located near the onset meridian. On August 29, 1997, Polar was magnetically conjugate to the Canadian magnetometer chain (Canadian Auroral Network for the OPEN Program Unified Study; CANOPUS) ~5 hours east of the onset meridian. In both cases, substorm activity was manifested as strong magnetic (20 nT) and electric (40 mVm-1) field variations with bursts of parallel Poynting flux (~1 ergcm-2s-1), predominantly directed toward the ionosphere. In the first event Polar was located in the plasma sheet near the plasma sheet boundary, and the field variations were initiated at the ground onset. In the second event, Polar crossed the plasma sheet boundary to the tail lobes a few minutes prior to a local plasma sheet expansion. As Polar was engulfed by the plasma sheet, the field variations occurred in the previously quiet plasma sheet boundary. This coincided with the auroral bulge reaching the CANOPUS stations. We compare these two events and argue that the field variations were most probably signatures of the reconnection of open field lines and the subsequent enhanced earthward flows. Furthermore, weak flow bursts were observed at Polar in both events ~9 min before the onset. In the first event, a gradual development toward a negative bay and a burst of Pi2 pulsations were associated with the flow bursts. We anticipate that these signatures, often described in terms of pseudobreakups, were a precursor of the substorm onset, the initiation of the reconnection of closed field lines.
Method and apparatus for the formation of a spheromak plasma
Jardin, Stephen C.; Yamada, Masaaki; Furth, Harold P.; Okabayashi, Mitcheo
1984-01-01
An inductive method and apparatus for forming detached spheromak plasma using a thin-walled metal toroidal ring, with external current leads and internal poloidal and toroidal field coils located inside a vacuum chamber filled with low density hydrogen gas and an external axial field generating coil. The presence of a current in the poloidal field coils, and an externally generated axial field sets up the initial poloidal field configuration in which the field is strongest toward the major axis of the toroid. The internal toroidal-field-generating coil is then pulsed on, ionizing the gas and inducing poloidal current and toroidal magnetic field into the plasma region in the sleeve exterior to and adjacent to the ring and causing the plasma to expand away from the ring and toward the major axis. Next the current in the poloidal field coils in the ring is reversed. This induces toroidal current into the plasma and causes the poloidal magnetic field lines to reconnect. The reconnection continues until substantially all of the plasma is formed in a separated spheromak configuration held in equilibrium by the initial external field.
Bonfill, Xavier; Osorio, Dimelza; Solà, Ivan; Pijoan, Jose Ignacio; Balasso, Valentina; Quintana, Maria Jesús; Puig, Teresa; Bolibar, Ignasi; Urrútia, Gerard; Zamora, Javier; Emparanza, José Ignacio; Gómez de la Cámara, Agustín; Ferreira-González, Ignacio
2016-01-01
To describe the development of a novel on-line database aimed to serve as a source of information concerning healthcare interventions appraised for their clinical value and appropriateness by several initiatives worldwide, and to present a retrospective analysis of the appraisals already included in the database. Database development and a retrospective analysis. The database DianaHealth.com is already on-line and it is regularly updated, independent, open access and available in English and Spanish. Initiatives are identified in medical news, in article references, and by contacting experts in the field. We include appraisals in the form of clinical recommendations, expert analyses, conclusions from systematic reviews, and original research that label any health care intervention as low-value or inappropriate. We obtain the information necessary to classify the appraisals according to type of intervention, specialties involved, publication year, authoring initiative, and key words. The database is accessible through a search engine which retrieves a list of appraisals and a link to the website where they were published. DianaHealth.com also provides a brief description of the initiatives and a section where users can report new appraisals or suggest new initiatives. From January 2014 to July 2015, the on-line database included 2940 appraisals from 22 initiatives: eleven campaigns gathering clinical recommendations from scientific societies, five sets of conclusions from literature review, three sets of recommendations from guidelines, two collections of articles on low clinical value in medical journals, and an initiative of our own. We have developed an open access on-line database of appraisals about healthcare interventions considered of low clinical value or inappropriate. DianaHealth.com could help physicians and other stakeholders make better decisions concerning patient care and healthcare systems sustainability. Future efforts should be focused on assessing the impact of these appraisals in the clinical practice.
Bonfill, Xavier; Osorio, Dimelza; Solà, Ivan; Pijoan, Jose Ignacio; Balasso, Valentina; Quintana, Maria Jesús; Puig, Teresa; Bolibar, Ignasi; Urrútia, Gerard; Zamora, Javier; Emparanza, José Ignacio; Gómez de la Cámara, Agustín; Ferreira-González, Ignacio
2016-01-01
Objective To describe the development of a novel on-line database aimed to serve as a source of information concerning healthcare interventions appraised for their clinical value and appropriateness by several initiatives worldwide, and to present a retrospective analysis of the appraisals already included in the database. Methods and Findings Database development and a retrospective analysis. The database DianaHealth.com is already on-line and it is regularly updated, independent, open access and available in English and Spanish. Initiatives are identified in medical news, in article references, and by contacting experts in the field. We include appraisals in the form of clinical recommendations, expert analyses, conclusions from systematic reviews, and original research that label any health care intervention as low-value or inappropriate. We obtain the information necessary to classify the appraisals according to type of intervention, specialties involved, publication year, authoring initiative, and key words. The database is accessible through a search engine which retrieves a list of appraisals and a link to the website where they were published. DianaHealth.com also provides a brief description of the initiatives and a section where users can report new appraisals or suggest new initiatives. From January 2014 to July 2015, the on-line database included 2940 appraisals from 22 initiatives: eleven campaigns gathering clinical recommendations from scientific societies, five sets of conclusions from literature review, three sets of recommendations from guidelines, two collections of articles on low clinical value in medical journals, and an initiative of our own. Conclusions We have developed an open access on-line database of appraisals about healthcare interventions considered of low clinical value or inappropriate. DianaHealth.com could help physicians and other stakeholders make better decisions concerning patient care and healthcare systems sustainability. Future efforts should be focused on assessing the impact of these appraisals in the clinical practice. PMID:26840451
Twisted versus braided magnetic flux ropes in coronal geometry. II. Comparative behaviour
NASA Astrophysics Data System (ADS)
Prior, C.; Yeates, A. R.
2016-06-01
Aims: Sigmoidal structures in the solar corona are commonly associated with magnetic flux ropes whose magnetic field lines are twisted about a mutual axis. Their dynamical evolution is well studied, with sufficient twisting leading to large-scale rotation (writhing) and vertical expansion, possibly leading to ejection. Here, we investigate the behaviour of flux ropes whose field lines have more complex entangled/braided configurations. Our hypothesis is that this internal structure will inhibit the large-scale morphological changes. Additionally, we investigate the influence of the background field within which the rope is embedded. Methods: A technique for generating tubular magnetic fields with arbitrary axial geometry and internal structure, introduced in part I of this study, provides the initial conditions for resistive-MHD simulations. The tubular fields are embedded in a linear force-free background, and we consider various internal structures for the tubular field, including both twisted and braided topologies. These embedded flux ropes are then evolved using a 3D MHD code. Results: Firstly, in a background where twisted flux ropes evolve through the expected non-linear writhing and vertical expansion, we find that flux ropes with sufficiently braided/entangled interiors show no such large-scale changes. Secondly, embedding a twisted flux rope in a background field with a sigmoidal inversion line leads to eventual reversal of the large-scale rotation. Thirdly, in some cases a braided flux rope splits due to reconnection into two twisted flux ropes of opposing chirality - a phenomenon previously observed in cylindrical configurations. Conclusions: Sufficiently complex entanglement of the magnetic field lines within a flux rope can suppress large-scale morphological changes of its axis, with magnetic energy reduced instead through reconnection and expansion. The structure of the background magnetic field can significantly affect the changing morphology of a flux rope.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Giacalone, J.
We investigate the physics of charged-particle acceleration at spherical shocks moving into a uniform plasma containing a turbulent magnetic field with a uniform mean. This has applications to particle acceleration at astrophysical shocks, most notably, to supernovae blast waves. We numerically integrate the equations of motion of a large number of test protons moving under the influence of electric and magnetic fields determined from a kinematically defined plasma flow associated with a radially propagating blast wave. Distribution functions are determined from the positions and velocities of the protons. The unshocked plasma contains a magnetic field with a uniform mean andmore » an irregular component having a Kolmogorov-like power spectrum. The field inside the blast wave is determined from Maxwell’s equations. The angle between the average magnetic field and unit normal to the shock varies with position along its surface. It is quasi-perpendicular to the unit normal near the sphere’s equator, and quasi-parallel to it near the poles. We find that the highest intensities of particles, accelerated by the shock, are at the poles of the blast wave. The particles “collect” at the poles as they approximately adhere to magnetic field lines that move poleward from their initial encounter with the shock at the equator, as the shock expands. The field lines at the poles have been connected to the shock the longest. We also find that the highest-energy protons are initially accelerated near the equator or near the quasi-perpendicular portion of the shock, where the acceleration is more rapid.« less
Liao, Chen-Ting; Sandhu, Arvinder; Camp, Seth; Schafer, Kenneth J; Gaarde, Mette B
2015-04-10
We investigate the absorption line shapes of laser-dressed atoms beyond the single-atom response, by using extreme ultraviolet (XUV) attosecond pulse trains to probe an optically thick helium target under the influence of a strong infrared (IR) field. We study the interplay between the IR-induced phase shift of the microscopic time-dependent dipole moment and the resonant-propagation-induced reshaping of the macroscopic XUV pulse. Our experimental and theoretical results show that as the optical depth increases, this interplay leads initially to a broadening of the IR-modified line shape, and subsequently, to the appearance of new, narrow features in the absorption line.
Mass-loss rates, ionization fractions, shock velocities, and magnetic fields of stellar jets
NASA Technical Reports Server (NTRS)
Hartigan, Patrick; Morse, Jon A.; Raymond, John
1994-01-01
In this paper we calculate emission-line ratios from a series of planar radiative shock models that cover a wide range of shock velocities, preshock densities, and magnetic fields. The models cover the initial conditions relevant to stellar jets, and we show how to estimate the ionization fractions and shock velocities in jets directly from observations of the strong emission lines in these flows. The ionization fractions in the HH 34, HH 47, and HH 111 jets are approximately 2%, considerably smaller than previous estimates, and the shock velocities are approximately 30 km/s. For each jet the ionization fractions were found from five different line ratios, and the estimates agree to within a factor of approximately 2. The scatter in the estimates of the shock velocities is also small (+/- 4 km/s). The low ionization fractions of stellar jets imply that the observed electron densities are much lower than the total densities, so the mass-loss rates in these flows are correspondingly higher (approximately greater than 2 x 10(exp -7) solar mass/yr). The mass-loss rates in jets are a significant fraction (1%-10%) of the disk accretion rates onto young stellar objects that drive the outflows. The momentum and energy supplied by the visible portion of a typical stellar jet are sufficient to drive a weak molecular outflow. Magnetic fields in stellar jets are difficult to measure because the line ratios from a radiative shock with a magnetic field resemble those of a lower velocity shock without a field. The observed line fluxes can in principle indicate the strength of the field if the geometry of the shocks in the jet is well known.
Rotating Magnetic Structures Associated with a Quasi-circular Ribbon Flare
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Haidong; Jiang, Yunchun; Yang, Jiayan
We present the detection of a small eruption and the associated quasi-circular ribbon flare during the emergence of a bipole occurring on 2015 February 3. Under a fan dome, a sigmoid was rooted in a single magnetic bipole, which was encircled by negative polarity. The nonlinear force-free field extrapolation shows the presence of twisted field lines, which can represent a sigmoid structure. The rotation of the magnetic bipole may cause the twisting of magnetic field lines. An initial brightening appeared at one of the footpoints of the sigmoid, where the positive polarity slides toward a nearby negative polarity field region.more » The sigmoid displayed an ascending motion and then interacted intensively with the spine-like field. This type of null point reconnection in corona led to a violent blowout jet, and a quasi-circular flare ribbon was also produced. The magnetic emergence and rotational motion are the main contributors to the energy buildup for the flare, while the cancellation and collision might act as a trigger.« less
Kinetic Alfven wave explanation of the Hall signals in magnetic reconnection
NASA Astrophysics Data System (ADS)
Dai, L.; Wang, C.; Zhang, Y.; Duan, S.; Lavraud, B.; Burch, J. L.; Pollock, C.; Torbert, R. B.
2017-12-01
Magnetic reconnection is initiated in a small diffusion region but can drive global-scale dynamics in Earth's magnetosphere, solar flares, and astrophysical systems. Understanding the processes at work in the diffusion region remains a main challenge in space plasma physics. Recent in-situ observations from MMS and THEMIS reveal that the electric field normal to the reconnection current layer, often called the Hall electric field (En), is mainly balanced by the ion pressure gradient. Here we present theoretical explanations indicating that this observation fact is a manifestation of Kinetic Alfven Waves (KAW) physics. The ion pressure gradient represents the finite gyroradius effect of KAW, leading to ion intrusion across the magnetic field lines. Electrons stream along the magnetic field lines to track ions, resulting in field-aligned currents and the associated pattern of the out-of-plane Hall magnetic field (Bm). The ratio En/Bm is on the order of the Alfven speed, as predicted by the KAW theory. The KAW physics further provides new perspectives on how ion intrusion may trigger electric fields suitable for reconnection to occur.
What is the Relationship between the Solar Wind and Storms/Substorms?
NASA Technical Reports Server (NTRS)
Fairfield, D. H.; Burlaga, L. F.
1999-01-01
The interplanetary magnetic field (IMF) carried past the Earth by the solar wind has long been known to be the principal quantity that controls geomagnetic storms and substorms. Intervals of strong southward IMF with durations of at least a significant fraction of a day produce storms, while more typical, shorter intervals of less-intense southward fields produce substorms. The strong, long-duration southward fields are generally associated with coronal mass ejections and magnetic clouds or else they are produced by interplanetary dynamics initiated by fast solar wind flows that compress preexisting southward fields. Smaller, short-duration southward fields that occur on most days are related to long period waves, turbulence, or random variations in the IMF. Southward IMF enhances dayside reconnection between the IMF and the Earth's dipole with the reconnected field lines supplementing open field lines of the geomagnetic tail and producing an expanded polar cap and increased tail energy. Although the frequent storage of solar wind energy and its release during substorms is the most common mode of solar wind/magnetosphere interaction, under certain circumstances, steady southward IMF seems to produce intervals of relatively steady magnetosphere convection without substorms. During these latter times, the inner magnetosphere remains in a stressed tail-like state while the more distant magnetotail has larger northward field and more dipolar-like field lines. Recent evidence suggests that enhanced magnetosphere particle densities associated with enhanced solar wind densities allow more particles to be accelerated for the ring current, thus creating larger storms.
Nonequilibrium Tricritical Point in a System with Long-Range Interactions
NASA Astrophysics Data System (ADS)
Antoniazzi, Andrea; Fanelli, Duccio; Ruffo, Stefano; Yamaguchi, Yoshiyuki Y.
2007-07-01
Systems with long-range interactions display a short-time relaxation towards quasistationary states whose lifetime increases with system size. With reference to the Hamiltonian mean field model, we here show that a maximum entropy principle, based on Lynden-Bell’s pioneering idea of “violent relaxation,” predicts the presence of out-of-equilibrium phase transitions separating the relaxation towards homogeneous (zero magnetization) or inhomogeneous (nonzero magnetization) quasistationary states. When varying the initial condition within a family of “water bags” with different initial magnetization and energy, first- and second-order phase transition lines are found that merge at an out-of-equilibrium tricritical point. Metastability is theoretically predicted and numerically checked around the first-order phase transition line.
The Driving Magnetic Field and Reconnection in CME/Flare Eruptions and Coronal Jets
NASA Technical Reports Server (NTRS)
Moore, Ronald L.
2010-01-01
Signatures of reconnection in major CME (coronal mass ejection)/flare eruptions and in coronal X-ray jets are illustrated and interpreted. The signatures are magnetic field lines and their feet that brighten in flare emission. CME/flare eruptions are magnetic explosions in which: 1. The field that erupts is initially a closed arcade. 2. At eruption onset, most of the free magnetic energy to be released is not stored in field bracketing a current sheet, but in sheared field in the core of the arcade. 3. The sheared core field erupts by a process that from its start or soon after involves fast "tether-cutting" reconnection at an initially small current sheet low in the sheared core field. If the arcade has oppositely-directed field over it, the eruption process from its start or soon after also involves fast "breakout" reconnection at an initially small current sheet between the arcade and the overarching field. These aspects are shown by the small area of the bright field lines and foot-point flare ribbons in the onset of the eruption. 4. At either small current sheet, the fast reconnection progressively unleashes the erupting core field to erupt with progressively greater force. In turn, the erupting core field drives the current sheet to become progressively larger and to undergo progressively greater fast reconnection in the explosive phase of the eruption, and the flare arcade and ribbons grow to become comparable to the pre-eruption arcade in lateral extent. In coronal X-ray jets: 1. The magnetic energy released in the jet is built up by the emergence of a magnetic arcade into surrounding unipolar "open" field. 2. A simple jet is produced when a burst of reconnection occurs at the current sheet between the arcade and the open field. This produces a bright reconnection jet and a bright reconnection arcade that are both much smaller in diameter that the driving arcade. 3. A more complex jet is produced when the arcade has a sheared core field and undergoes an ejective eruption in the manner of a miniature CME/flare eruption. The jet is then a combination of a miniature CME and the products of more widely distributed reconnection of the erupting arcade with the open field than in simple jets.
Wagaba, Henry; Beyene, Getu; Aleu, Jude; Odipio, John; Okao-Okuja, Geoffrey; Chauhan, Raj Deepika; Munga, Theresia; Obiero, Hannington; Halsey, Mark E.; Ilyas, Muhammad; Raymond, Peter; Bua, Anton; Taylor, Nigel J.; Miano, Douglas; Alicai, Titus
2017-01-01
Cassava brown streak disease (CBSD) presents a serious threat to cassava production in East and Central Africa. Currently, no cultivars with high levels of resistance to CBSD are available to farmers. Transgenic RNAi technology was employed to combat CBSD by fusing coat protein (CP) sequences from Ugandan cassava brown streak virus (UCBSV) and Cassava brown streak virus (CBSV) to create an inverted repeat construct (p5001) driven by the constitutive Cassava vein mosaic virus promoter. Twenty-five plant lines of cultivar TME 204 expressing varying levels of small interfering RNAs (siRNAs) were established in confined field trials (CFTs) in Uganda and Kenya. Within an initial CFT at Namulonge, Uganda, non-transgenic TME 204 plants developed foliar and storage root CBSD incidences at 96–100% by 12 months after planting. In contrast, 16 of the 25 p5001 transgenic lines showed no foliar symptoms and had less than 8% of their storage roots symptomatic for CBSD. A direct positive correlation was seen between levels of resistance to CBSD and expression of transgenic CP-derived siRNAs. A subsequent CFT was established at Namulonge using stem cuttings from the initial trial. All transgenic lines established remained asymptomatic for CBSD, while 98% of the non-transgenic TME 204 stake-derived plants developed storage roots symptomatic for CBSD. Similarly, very high levels of resistance to CBSD were demonstrated by TME 204 p5001 RNAi lines grown within a CFT over a full cropping cycle at Mtwapa, coastal Kenya. Sequence analysis of CBSD causal viruses present at the trial sites showed that the transgenic lines were exposed to both CBSV and UCBSV, and that the sequenced isolates shared >90% CP identity with transgenic CP sequences expressed by the p5001 inverted repeat expression cassette. These results demonstrate very high levels of field resistance to CBSD conferred by the p5001 RNAi construct at diverse agro-ecological locations, and across the vegetative cropping cycle. PMID:28127301
Microelectrode-assisted low-voltage atmospheric pressure glow discharge in air
NASA Astrophysics Data System (ADS)
Liu, Wenzheng; Zhao, Shuai; Niu, Jiangqi; Chai, Maolin
2017-09-01
During the process of discharge, appropriately changing the paths corresponding to electric field lines and the field strength distribution along these paths, as well as increasing the number of initial electrons, can effectively enhance the uniformity of discharge and inhibit the formation of filamentary discharge. A method is proposed that uses a microelectrode to initiate the macroscopic discharge phenomenon. An asymmetric structure was designed comprising a single electrode of carbon fiber; this electrode structure is of helical-contact type. Benefitting from the special electric field distribution and the microdischarge process, a three-dimensional atmospheric pressure glow discharge was achieved in air, characterized by low discharge voltage, low energy consumption, good diffusion performance, and less ozone generation. The plasma studied is uniform and stable with good diffusion characteristics and low levels of contaminants and hence has potential applications in the field of air purification.
NASA Technical Reports Server (NTRS)
Ober, Daniel M.; Horwitz, J. L.
1998-01-01
We present initial results on the modeling of the circulation of plasmaspheric-origin plasma into the outer magnetosphere and low-latitude boundary layer (LLBL), using a dynamic global core plasma model (DGCPM). The DGCPM includes the influences of spatially and temporally varying convection and refilling processes to calculate the equatorial core plasma density distribution throughout the magnetosphere. We have developed an initial description of the electric and magnetic field structures in the outer magnetosphere region. The purpose of this paper is to examine both the losses of plasmaspheric-origin plasma into the magnetopause boundary layer and the convection of this plasma that remains trapped on closed magnetic field lines. For the LLBL electric and magnetic structures we have adopted here, the plasmaspheric plasma reaching the outer magnetosphere is diverted anti-sunward primarily along the dusk flank. These plasmas reach X= -15 R(sub E) in the LLBL approximately 3.2 hours after the initial enhancement of convection and continues to populate the LLBL for 12 hours as the convection electric field diminishes.
Double Magnetic Reconnection Driven by Kelvin-Helmholtz Vortices
NASA Astrophysics Data System (ADS)
Horton, W., Jr.; Faganello, M.; Califano, F.; Pegoraro, F.
2017-12-01
Simulations and theory for the solar wind driven magnetic reconnection in the flanks of the magnetopause is shown to be intrinsically 3D with the secular growth of couple pairs of reconnection regions off the equatorial plane. We call the process double mid-latitude reconnection and show supporting 3D simulations and theory descripting the secular growth of the magnetic reconnection with the resulting mixing of the solar wind plasma with the magnetosphere plasma. The initial phase develops Kelvin-Helmholtz vortices at low-latitude and, through the propagation of Alfven waves far from the region where the stresses are generated, creates a standard quasi-2D low latitude boundary layer magnetic reconnection but off the equatorial plane and with a weak guide field component. The reconnection exponential growth is followed by a secularly growing nonlinear phase that gradually closes the solar wind field lines on the Earth. The nonlinear field line structure provides a channel for penetration of the SW plasma into the MS as observed by spacecraft [THEMIS and Cluster]. The simulations show the amount of solar wind plasma brought into the magnetosphere by tracing the time evolution of the areas corresponding to double reconnected field lines with Poincare maps. The results for the solar wind plasma brought into the magnetosphere seems consistent with the observed plasma transport. Finally, we have shown how the intrinsic 3D nature of the doubly reconnected magnetic field lines leads to the generation of twisted magnetic spatial structures that differ from the quasi-2D magnetic islands structures.
OUTFLOWS AND DARK BANDS AT ARCADE-LIKE ACTIVE REGION CORE BOUNDARIES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scott, J. T.; Martens, P. C. H.; Tarr, L.
Observations from the EUV Imaging Spectrometer (EIS) on board Hinode have revealed outflows and non-thermal line broadening in low intensity regions at the edges of active regions (ARs). We use data from Hinode's EIS, Solar Dynamic Observatory's Atmospheric Imaging Assembly and Helioseismic and Magnetic Imager, and the Transition Region and Coronal Explorer instrument to investigate the boundaries of arcade-like AR cores for NOAA ARs 11112, 10978, and 9077. A narrow, low intensity region that is observed at the core's periphery as a dark band shows outflows and increased spectral line broadening. This dark band is found to exist for daysmore » and appears between the bright coronal loop structures of different coronal topologies. We find a case where the dark band region is formed between the magnetic field from emerging flux and the field of the pre-existing flux. A magnetic field extrapolation indicates that this dark band is coincident with the spine lines or magnetic separatrices in the extrapolated field. This occurs over unipolar regions where the brightened coronal field is separated in connectivity and topology. This separation does not appear to be infinitesimal and an initial estimate of the minimum distance of separation is found to be Almost-Equal-To 1.5-3.5 Mm.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, S; Zhu, X; Zhang, M
Purpose Half-beam block is a field matching technique frequently used in radiotherapy. With no setup error, a well calibrated linac, and no internal organ motion, two photon fields can be matched seamlessly dosimetry-wise with their central axes passing the match line. However, in actual clinical situations, internal organ motion is often inevitable. This study was conducted to investigate its influence on radiation dose to patient internal points directly under the matching line. Methods A clinical setting is modeled as two half-space (x<0 and x<0) radiation fields that are turned on sequentially with a time gap of integer times of themore » patient internal organ motion period (T{sub 0}). Our point of interest moves with patient internal organs periodically and evenly in and out of the radiation fields, resulting in an average location at x=0. When the fields are delivered without any motion management, the initial phase of the point’s movement is unknown. Statistical methods are used to compute the expected value () and variance (σ) of the point dose given the uncertainty. Results Analytical solutions are obtained for and s of dose received by a point directly under the match line. is proportional to the total beam-on time (T1), and σ demonstrates previously unknown periodic behavior. /« less
NASA Technical Reports Server (NTRS)
Santos, J. C.; Sibeck, D. G.; Buchner, J.; Gonzalez, W. D.; Ferreira, J. L.
2014-01-01
We present predictions for the evolution of FTEs generated by localized bursts of reconnection on a planar magnetopause that separates a magnetosheath region of high densities and weak magnetic field from a magnetospheric region of low densities and strong magnetic field. The magnetic fields present a shear angle of 105 degrees. Reconnection forms a pair of FTEs each crossing the magnetopause in the field reversal region and bulging into the magnetosphere and magnetosheath. At their initial stage they can be characterized as flux tubes since the newly reconnected magnetic field lines are not twisted. Reconnection launches Alfvenic perturbations that propagate along the FTEs generating high-speed jets, which move the pair of FTEs in opposite directions. As the FTE moves, it displaces the ambient magnetic field and plasma producing bipolar magnetic field and plasma velocity signatures normal to the nominal magnetopause in the regions surrounding the FTE. The combination of the ambient plasma with the FTE flows generates a vortical velocity pattern around the reconnected field lines. During its evolution the FTE evolves to a flux rope configuration due to the twist of the magnetic field lines. The alfvenic perturbations propagate faster along the part of the FTE bulging into the magnetosphere than in the magnetosheath, and due to the differences between the plasma and magnetic field properties the perturbations have slightly different signatures in the two regions. As a consequence, the FTEs have different signatures depending on whether the satellite encounters the part bulging into the magnetosphere or into the magnetosheath.
IS MAGNETIC RECONNECTION THE CAUSE OF SUPERSONIC UPFLOWS IN GRANULAR CELLS?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Borrero, J. M.; Schmidt, W.; Martinez Pillet, V.
In a previous work, we reported on the discovery of supersonic magnetic upflows on granular cells in data from the SUNRISE/IMaX instrument. In the present work, we investigate the physical origin of these events employing data from the same instrument but with higher spectral sampling. By means of the inversion of Stokes profiles we are able to recover the physical parameters (temperature, magnetic field, line-of-sight velocity, etc.) present in the solar photosphere at the time of these events. The inversion is performed in a Monte-Carlo-like fashion, that is, repeating it many times with different initializations and retaining only the bestmore » result. We find that many of the events are characterized by a reversal in the polarity of the magnetic field along the vertical direction in the photosphere, accompanied by an enhancement in the temperature and by supersonic line-of-sight velocities. In about half of the studied events, large blueshifted and redshifted line-of-sight velocities coexist above/below each other. These features can be explained in terms of magnetic reconnection, where the energy stored in the magnetic field is released in the form of kinetic and thermal energy when magnetic field lines of opposite polarities coalesce. However, the agreement with magnetic reconnection is not perfect and, therefore, other possible physical mechanisms might also play a role.« less
Model development of supersonic trough wind with shocks
NASA Technical Reports Server (NTRS)
Grebowsky, J. M.
1972-01-01
The time dependent one dimensional hydrodynamic equations describe the evolution of the thermal plasma flow along closed magnetic field lines outside of the plasmasphere. The convection of the supersonic polar wind onto a closed fieldline results in the assumed formation of collisionless plasma shocks. These shocks move earthward as the field line with its frozen-in plasma remains fixed or contracts with time to smaller L coordinates. The high equatorial plasma temperature (of the order of electron volts) produced by the shock process decreases with time if the flow is isothermal but it will increase if the contraction is under adiabatic conditions. Assuming adiabaticity a peak in the temperature forms at the equator in conjunction with a depression in the ion density. After an initial contraction, if the flux tube drifts to higher L coordinates the direction of the shock motion can be reversed so that the supersonic region will expand along the field line towards the state characterizing the supersonic polar wind. A rapid expansion will lower the equatorial density while the temperature decreases with time under adiabatic but not isothermal conditions.
NASA Astrophysics Data System (ADS)
Franek, James B.
Argon emission lines, particularly those in the near-infrared region (700-900nm), are used to determine plasma properties in low-temperature, partially ionized plasmas to determine effective electron temperature [Boffard et al., 2012], and argon excited state density [Boffard et al., 2009] using appropriately assumed electron energy distributions. While the effect of radiation trapping influences the interpretation of plasma properties from emission-line ratio analysis, eliminating the need to account for these effects by directly observing the 3px-to-1sy transitions [ Boffard et al., 2012] is preferable in most cases as this simplifies the analysis. In this dissertation, a 1-Torr argon, pulsed positive column in a hollow-cathode discharge is used to study the correlation between four quantities: 420.1-419.8nm emission-line ratio, metastable-atom density, reduced electric field, and electron energy distribution. The extended coronal model is used to acquire an expression for 420.1-419.8nm emission-line ratio, which is sensitive to direct electron-impact excitation of argon excited states as well as stepwise electron-impact excitation of argon excited states for the purpose of inferring plasma quantities from experimental measurements. Initial inspection of the 420.1-419.8nm emission-line ratio suggests the pulse may be empirically divided into three distinct stages labelled the Initiation Stage, Transient Stage, and Post-Transient stage. Using equilibrium electron energy distributions from simulation to deduce excitation rates [Adams et al., 2012] in the extended coronal model affords agreement between predicted and observed metastable density in the Post-Transient stage of the discharge [Franek et al., 2015]. Applying this model-assisted diagnostic technique to the characterization of plasma systems utilizing lower-resolution spectroscopic systems is not straightforward, however, as the 419.8nm and 420.1nm emission-line profiles are convolved and become insufficiently resolved for treating the convolution as two separate emission-lines. To remedy this, the argon 425.9nm emission-line is evaluated as a proxy for the 419.8 nm emission-line. Both emission-lines (419.8nm and 425.9nm) are attributed to direct excitation from the argon ground state. The intensity of the 425.9nm emission-line is compared to the intensity of the 419.8nm emission-line over a range of plasma conditions to infer the same plasma quantities from similar experimental measurements. Discrepancies between the observed intensities of the emission-lines (419.8nm, 425.9nm) are explained by electron-impact cross-sections of their parent states. It is shown that the intensity of the argon 425.9nm emission-line is similar to that of the 419.8nm emission-line. The difference between the observed emission lines (425.9nm, 419.8nm) is attributed to the electron energy distribution in the plasma.
Analyses of Simulated Reconnection-Driven Solar Polar Jets
NASA Astrophysics Data System (ADS)
Roberts, M. A.; Uritsky, V. M.; Karpen, J. T.; DeVore, C. R.
2014-12-01
Solar polar jets are observed to originate in regions within the open field of solar coronal holes. These so called "anemone" regions are generally accepted to be regions of opposite polarity, and are associated with an embedded dipole topology, consisting of a fan-separatrix and a spine line emanating from a null point occurring at the top of the dome shaped fan surface. Previous analysis of these jets (Pariat et al. 2009,2010) modeled using the Adaptively Refined Magnetohydrodynamics Solver (ARMS) has supported the claim that magnetic reconnection across current sheets formed at the null point between the highly twisted closed field of the dipole and open field lines surrounding it releases the energy necessary to drive these jets. However, these initial simulations assumed a "static" environment for the jets, neglecting effects due to gravity, solar wind and the expanding spherical geometry. A new set of ARMS simulations taking into account these additional physical processes was recently performed. Initial results are qualitatively consistent with the earlier Cartesian studies, demonstrating the robustness of the underlying ideal and resistive mechanisms. We focus on density and velocity fluctuations within a narrow radial slit aligned with the direction of the spine of the jet, as well as other physical properties, in order to identify and refine their signatures in the lower heliosphere. These refined signatures can be used as parameters by which plasma processes initiated by these jets may be identified in situ by future missions such as Solar Orbiter and Solar Probe Plus.
Stability of the line preserving flows
NASA Astrophysics Data System (ADS)
Figura, Przemysław
2017-11-01
We examine the equations that are used to describe flows which preserve field lines. We study what happens if we introduce perturbations to the governing equations. The stability of the line preserving flows in the case of the magneto-fluids permeated by magnetic fields is strictly connected to the non-null magnetic reconnection processes. In most of our study we use the Euler potential representation of the external magnetic field. We provide general expressions for the perturbations of the Euler potentials that describe the magnetic field. Similarly, we provide expressions for the case of steady flow as well as we obtain certain conditions required for the stability of the flow. In addition, for steady flows we formulate conditions under which the perturbations of the external field are negligible and the field may be described by its initial unperturbed form. Then we consider the flow equation that transforms quantities from the laboratory coordinate system to the related external field coordinate system. We introduce perturbations to the equation and obtain its simplified versions for the case of a steady flow. For a given system, use of this method allows us to simplify the considerations provided that some part of the system may be described as a perturbation. Next, to study regions favourable for the magnetic reconnection to occur we introduce a deviation vector to the basic line preserving flows condition equation. We provide expressions of the vector for some simplifying cases. This method allows us to examine if given perturbations either stabilise the system or induce magnetic reconnection. To illustrate some of our results we study two examples, namely a simple laboratory plasma flow and a simple planetary magnetosphere model.
Auroral displays near the 'foot' of the field line of the ATS-5 satellite
NASA Technical Reports Server (NTRS)
Akasofu, S.-I.; Deforest, S.; Mcilwain, C.
1974-01-01
Summary of an extensive correlative study of ATS-5 particle and magnetic field data with all-sky photographs from Great Whale River which is near the 'foot' of the field lines passing through the ATS-5 satellite. In particular, an effort is made to identify specific particle features with specific auroral displays during substorms, such as a westward traveling surge, poleward expansive motion, and drifting patches. It is found that, in early evening hours, the first encounter of ATS-5 with hot plasma is associated with the equatorward shift of the diffuse aurora, but not necessarily with westward traveling surges (even when the satellite is embedded in the plasma sheet). In the midnight sector, an injection corresponds very well to the initial brightening of an auroral arc. Specific features of morning sector auroras are difficult to correlate with specific particle features.
Fluctuation dynamo and turbulent induction at small Prandtl number.
Eyink, Gregory L
2010-10-01
We study the Lagrangian mechanism of the fluctuation dynamo at zero Prandtl number and infinite magnetic Reynolds number, in the Kazantsev-Kraichnan model of white-noise advection. With a rough velocity field corresponding to a turbulent inertial range, flux freezing holds only in a stochastic sense. We show that field lines arriving to the same point which were initially separated by many resistive lengths are important to the dynamo. Magnetic vectors of the seed field that point parallel to the initial separation vector arrive anticorrelated and produce an "antidynamo" effect. We also study the problem of "magnetic induction" of a spatially uniform seed field. We find no essential distinction between this process and fluctuation dynamo, both producing the same growth rates and small-scale magnetic correlations. In the regime of very rough velocity fields where fluctuation dynamo fails, we obtain the induced magnetic energy spectra. We use these results to evaluate theories proposed for magnetic spectra in laboratory experiments of turbulent induction.
Imprints of explosion conditions on late-time spectra of type Ia supernovae
NASA Astrophysics Data System (ADS)
Diamond, Tiara R.
Type Ia supernovae (SNe Ia) play a vital role in the discrimination of different cosmological models. These events have been shown to be standardizable based on properties of their light curves during the early-time photospheric phase. However, the distribution of types of progenitor system, the explosion trigger, and the physics of the explosion are still an active topic of discussion. The details of the progenitors and explosion may provide insight into the variation seen in Type Ia supernova light curves and spectra, and therefore, allow for additional methods of standardization among the group. Late-time near-infrared spectral observations for SNe Ia show numerous strong emission features of forbidden line transitions of cobalt and iron, tracing the central distribution of iron-group burning products. As the spectrum ages, the cobalt features fade as expected from the decay of 56Co to 56Fe. This work will show that the strong and isolated [Fe II] emission line at 1.644 mum provides a unique tool to analyze near-infrared spectra of SNe Ia. Several new methods of analysis will be demonstrated to determine some of the initial conditions of the system. The initial central density, rhoc, and the extent of mixing in the central regions of the explosion have signatures in the line profiles of late-time spectra. An embedded magnetic field, B, of the white dwarf can be determined using the evolution of the lines profiles. Currently magnetic field effects are not included in the hydrodynamics and radiation transport of simulations of SNe Ia. Normalization of spectra to the 1.644 mum line allows separation of features produced by stable versus unstable isotopes of iron group elements. Implications for potential progenitor systems, explosion mechanisms, and the origins and morphology of magnetic fields in SNe Ia, in addition to limitations of the method, are discussed. Observations of the late-time near-infrared emission spectrum at multiple epochs allow for the first ever analysis of the evolution of the 1.644 mum line profile for a SNe Ia. These late-time data are really pushing the observational limits of current ground-based telescopes in terms of a dim target and low signal-to-noise. The new analysis method presented in this work is used on observations of SN 2005df to constrain the initial conditions of those systems. Finally, the details and limitations of the method are presented for use with SN 2014J and future time-series observations, which will dramatically increase in number and signal-to-noise with the next-generation of telescopes and missions.
Characterization of the Goubau line for testing beam diagnostic instruments
NASA Astrophysics Data System (ADS)
Kim, S. Y.; Stulle, F.; Sung, C. K.; Yoo, K. H.; Seok, J.; Moon, K. J.; Choi, C. U.; Chung, Y.; Kim, G.; Woo, H. J.; Kwon, J.; Lee, I. G.; Choi, E. M.; Chung, M.
2017-12-01
One of the main characteristics of the Goubau line is that it supports a low-loss, non-radiated surface wave guided by a dielectric-coated metal wire. The dominant mode of the surface wave along the Goubau line is a TM01 mode, which resembles the pattern of the electromagnetic fields induced in the metallic beam pipe when the charged particle beam passes through it. Therefore, the Goubau line can be used for the preliminary bench test and performance optimization of the beam diagnostic instruments without requiring charged particle beams from the accelerators. In this paper, we discuss the basic properties of the Goubau line for testing beam diagnostic instruments and present the initial test results for button-type beam position monitors (BPMs). The experimental results are consistent with the theoretical estimations, which indicates that Goubau line allows effective testing of beam diagnostic equipment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hau, L.N.; Wolf, R.A.
A two-dimensional, resistive-MHD computer code is used to investigate the spontaneous reconnection of magnetotaillike configurations. The initial conditions adopted in the simulations are of two types: (1) in which the equatorial normal magnetic field component B{sub ze} declines monotonically down the tail, and (2) in which B{sub ze} exhibits a deep minimum in the near-earth plasma sheet. Configurations of the second type have been suggested by Erickson (1984, 1985) to be the inevitable result of adiabatic, earthward convection of the plasma sheet. To represent the case where the earthward convection stops before the X line forms, i.e., the case wheremore » the interplanetary magnetic field turns northward after a period of southward orientation, the authors impose zero-flow boundary conditions at the edges of the computational box. The initial configurations are in equilibrium and stable within ideal MHD. The dynamic evolution of the system starts after the resistivity is turned on. The main results of the simulations basically support the neutral-line model of substorms and confirm Birn's (1980) computer studies. Specifically, they find spontaneous formation of an X-type neutral point and a single O-type plasmoid with strong tailward flow on the tailward side of the X point. in addition, the results show that the formation of the X point for the configurations of type 2 is clearly associated with the assumed initial B{sub z} minimum. Furthermore, the time interval from trablurning on of the resistivity to the formation of a plasmoid is much shorter in the case where there is an initial deep minimum.« less
1987-06-01
of the parts (43 items) were obtained at prices whereby inadequate data prevented the auditors from making a conclusion as to reasonableness. [Ref...that the funding would need to be a separate line item or a similar mechanism to prevent a "bleeding off" of those funds. One individual suggested...BOSS funding for BOSS efforts. 91 The BOSS Prgram is a mature proaram. Of the 126 BOSS initiatives, only 19 remain in an outstanding status and 3 in a
A Short History of the Air University, Maxwell AFB, and the 42nd Air Base Wing
2013-07-31
Aircraft and Engine Repair Depot No. 3 at the former Wright flying field. The depot operations continued until early 1919. In 1921, the 22nd (later...Forces (AAF) announced the opening of a specialized four- engine pilot school, initially to train air crews for the B-24 Liberator and, later, for the...systems engineering in March 2007, followed three months later by ACSC’s offering an on-line graduate degree. On 2 Mar 2009, the CCAF initiated the
On the electromagnetic fields, Poynting vector, and peak power radiated by lightning return strokes
NASA Technical Reports Server (NTRS)
Krider, E. P.
1992-01-01
The initial radiation fields, Poynting vector, and total electromagnetic power that a vertical return stroke radiates into the upper half space have been computed when the speed of the stroke, nu, is a significant fraction of the speed of light, c, assuming that at large distances and early times the source is an infinitesimal dipole. The initial current is also assumed to satisfy the transmission-line model with a constant nu and to be perpendicular to an infinite, perfectly conducting ground. The effect of a large nu is to increase the radiation fields by a factor of (1-beta-sq cos-sq theta) exp -1, where beta = nu/c and theta is measured from the vertical, and the Poynting vector by a factor of (1-beta-sq cos-sq theta) exp -2.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lugaz, N.; Shibata, K.; Downs, C.
We present a numerical investigation of the coronal evolution of a coronal mass ejection (CME) on 2005 August 22 using a three-dimensional thermodynamic magnetohydrodynamic model, the space weather modeling framework. The source region of the eruption was anemone active region (AR) 10798, which emerged inside a coronal hole. We validate our modeled corona by producing synthetic extreme-ultraviolet (EUV) images, which we compare to EIT images. We initiate the CME with an out-of-equilibrium flux rope with an orientation and chirality chosen in agreement with observations of an H{alpha} filament. During the eruption, one footpoint of the flux rope reconnects with streamermore » magnetic field lines and with open field lines from the adjacent coronal hole. It yields an eruption which has a mix of closed and open twisted field lines due to interchange reconnection and only one footpoint line-tied to the source region. Even with the large-scale reconnection, we find no evidence of strong rotation of the CME as it propagates. We study the CME deflection and find that the effect of the Lorentz force is a deflection of the CME by about 3{sup 0} R{sup -1}{sub sun} toward the east during the first 30 minutes of the propagation. We also produce coronagraphic and EUV images of the CME, which we compare with real images, identifying a dimming region associated with the reconnection process. We discuss the implication of our results for the arrival at Earth of CMEs originating from the limb and for models to explain the presence of open field lines in magnetic clouds.« less
Kinetic Simulations of Current-Sheet Formation and Reconnection at a Magnetic X Line
NASA Technical Reports Server (NTRS)
Black, C.; Antiochos, S. K.; Hesse, M.; Karpen, J. T.; DeVore, C. R.; Kuznetsova, M. M.; Zenitani, S.
2011-01-01
The integration of kinetic effects into macroscopic numerical models is currently of great interest to the plasma physics community, particularly in the context of magnetic reconnection. We are examining the formation and reconnection of current sheets in a simple, two-dimensional X-line configuration using high resolution particle-in-cell (PIC) simulations. The initial potential magnetic field is perturbed by thermal pressure introduced into the particle distribution far from the X line. The relaxation of this added stress leads to the development of a current sheet, which reconnects for imposed stress of sufficient strength. We compare the evolution and final state of our PIC simulations with magnetohydrodynamic simulations assuming both uniform and localized resistivities, and with force-free magnetic-field equilibria in which the amount of reconnect ion across the X line can be constrained to be zero (ideal evolution) or optimal (minimum final magnetic energy). We will discuss implications of our results for reconnection onset and cessation at kinetic scales in dynamically formed current sheets, such as those occurring in the terrestrial magnetotail and solar corona.
Design and progress in the fabrication of an EUV micro exposure tool optics for PREUVE
NASA Astrophysics Data System (ADS)
Geyl, Roland; Tanne, Jean-Francois
2001-12-01
SAGEM, through its REOSC product line, is participating since November 1999 to PREUVE, the French EUV initiative, and work within this program especially in the field of EUV illumination and projection optics. After a short description of the PREUVE main lines of activity, we will detail our contributions to this program and work progress. This is mainly focused on basic EUV optics fabrication technology in order to ensure the fabrication of the entire optics assembly of an EUV micro exposure tool.
Large-volume flux closure during plasmoid-mediated reconnection in coaxial helicity injection
Ebrahimi, Fatima [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States)] (ORCID:0000000331095367); Raman, Roger [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States)] (ORCID:0000000220273271)
2016-01-01
A large-volume flux closure during transient coaxial helicity injection (CHI) in NSTX-U is demonstrated through resistive magnetohydrodynamics (MHD) simulations. Several major improvements, including the improved positioning of the divertor poloidal field coils, are projected to improve the CHI start-up phase in NSTX-U. Simulations in the NSTX-U configuration with constant in time coil currents show that with strong flux shaping the injected open field lines (injector flux) rapidly reconnect and form large volume of closed flux surfaces. This is achieved by driving parallel current in the injector flux coil and oppositely directed currents in the flux shaping coils to form a narrow injector flux footprint and push the injector flux into the vessel. As the helicity and plasma are injected into the device, the oppositely directed field lines in the injector region are forced to reconnect through a local Sweet–Parker type reconnection, or to spontaneously reconnect when the elongated current sheet becomes MHD unstable to form plasmoids. In these simulations for the first time, it is found that the closed flux is over 70% of the initial injector flux used to initiate the discharge. These results could work well for the application of transient CHI in devices that employ super conducting coils to generate and sustain the plasma equilibrium.
Large-volume flux closure during plasmoid-mediated reconnection in coaxial helicity injection
Ebrahimi, F. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Raman, R. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States)
2016-04-01
A large-volume flux closure during transient coaxial helicity injection (CHI) in NSTX-U is demonstrated through resistive magnetohydrodynamics (MHD) simulations. Several major improvements, including the improved positioning of the divertor poloidal field coils, are projected to improve the CHI start-up phase in NSTX-U. Simulations in the NSTX-U configuration with constant in time coil currents show that with strong flux shaping the injected open field lines (injector flux) rapidly reconnect and form large volume of closed flux surfaces. This is achieved by driving parallel current in the injector flux coil and oppositely directed currents in the flux shaping coils to form a narrow injector flux footprint and push the injector flux into the vessel. As the helicity and plasma are injected into the device, the oppositely directed field lines in the injector region are forced to reconnect through a local Sweet–Parker type reconnection, or to spontaneously reconnect when the elongated current sheet becomes MHD unstable to form plasmoids. In these simulations for the first time, it is found that the closed flux is over 70% of the initial injector flux used to initiate the discharge. These results could work well for the application of transient CHI in devices that employ super conducting coils to generate and sustain the plasma equilibrium.
The energetic ion signature of an O-type neutral line in the geomagnetic tail
NASA Technical Reports Server (NTRS)
Martin, R. F., Jr.; Johnson, D. F.; Speiser, T. W.
1991-01-01
An energetic ion signature is presented which has the potential for remote sensing of an O-type neutral line embedded in a current sheet. A source plasma with a tailward flowing Kappa distribution yields a strongly non-Kappa distribution after interacting with the neutral line: sharp jumps, or ridges, occur in the velocity space distribution function f(nu-perpendicular, nu-parallel) associated with both increases and decreases in f. The jumps occur when orbits are reversed in the x-direction: a reversal causing initially earthward particles (low probability in the source distribution) to be observed results in a decrease in f, while a reversal causing initially tailward particles to be observed produces an increase in f. The reversals, and hence the jumps, occur at approximately constant values of perpendicular velocity in both the positive nu parallel and negative nu parallel half planes. The results were obtained using single particle simulations in a fixed magnetic field model.
Ion gyroradius effects on particle trapping in kinetic Alfven waves along auroral field lines
DOE Office of Scientific and Technical Information (OSTI.GOV)
Damiano, P. A.; Johnson, J. R.; Chaston, C. C.
In this study, a 2-D self-consistent hybrid gyrofluid-kinetic electron model is used to investigate Alfven wave propagation along dipolar magnetic field lines for a range of ion to electron temperature ratios. The focus of the investigation is on understanding the role of these effects on electron trapping in kinetic Alfven waves sourced in the plasma sheet and the role of this trapping in contributing to the overall electron energization at the ionosphere. This work also builds on our previous effort by considering a similar system in the limit of fixed initial parallel current, rather than fixed initial perpendicular electric field.more » It is found that the effects of particle trapping are strongest in the cold ion limit and the kinetic Alfven wave is able to carry trapped electrons a large distance along the field line yielding a relatively large net energization of the trapped electron population as the phase speed of the wave is increased. However, as the ion temperature is increased, the ability of the kinetic Alfven wave to carry and energize trapped electrons is reduced by more significant wave energy dispersion perpendicular to the ambient magnetic field which reduces the amplitude of the wave. This reduction of wave amplitude in turn reduces both the parallel current and the extent of the high-energy tails evident in the energized electron populations at the ionospheric boundary (which may serve to explain the limited extent of the broadband electron energization seen in observations). Here, even in the cold ion limit, trapping effects in kinetic Alfven waves lead to only modest electron energization for the parameters considered (on the order of tens of eV) and the primary energization of electrons to keV levels coincides with the arrival of the wave at the ionospheric boundary.« less
Ion gyroradius effects on particle trapping in kinetic Alfven waves along auroral field lines
Damiano, P. A.; Johnson, J. R.; Chaston, C. C.
2016-11-10
In this study, a 2-D self-consistent hybrid gyrofluid-kinetic electron model is used to investigate Alfven wave propagation along dipolar magnetic field lines for a range of ion to electron temperature ratios. The focus of the investigation is on understanding the role of these effects on electron trapping in kinetic Alfven waves sourced in the plasma sheet and the role of this trapping in contributing to the overall electron energization at the ionosphere. This work also builds on our previous effort by considering a similar system in the limit of fixed initial parallel current, rather than fixed initial perpendicular electric field.more » It is found that the effects of particle trapping are strongest in the cold ion limit and the kinetic Alfven wave is able to carry trapped electrons a large distance along the field line yielding a relatively large net energization of the trapped electron population as the phase speed of the wave is increased. However, as the ion temperature is increased, the ability of the kinetic Alfven wave to carry and energize trapped electrons is reduced by more significant wave energy dispersion perpendicular to the ambient magnetic field which reduces the amplitude of the wave. This reduction of wave amplitude in turn reduces both the parallel current and the extent of the high-energy tails evident in the energized electron populations at the ionospheric boundary (which may serve to explain the limited extent of the broadband electron energization seen in observations). Here, even in the cold ion limit, trapping effects in kinetic Alfven waves lead to only modest electron energization for the parameters considered (on the order of tens of eV) and the primary energization of electrons to keV levels coincides with the arrival of the wave at the ionospheric boundary.« less
Plasmoid formation and evolution in a numerical simulation of a substorm
NASA Technical Reports Server (NTRS)
Slinker, S. P.; Fedder, J. A.; Lyon, J. G.
1995-01-01
Plasmoids are thought to occur as a consequence of the formation of a near-Earth neutral line during the evolution of a geomagnetic substorm. Using a 3D, global MHD simulation of the interaction of the Earth's magnetosphere with the solar wind, we initiate a substorm by a southward turning of the Interplanetary Magnetic Field (IMF) after a long period of steady northward field. A large plasmoid is formed and ejected. We show field line maps of its shape and relate its formation time to the progress of the substorm as indicated by the cross polar potential. Because of the large region of closed field in the magnetotail at the time of the substorm, this plasmoid is longer in axial dimension than is typically observed. We compare the simulation results with the type of satellite observations which have been used to argue for the existence of plasmoids or of traveling compression regions (TCRs) in the lobes or magnetosheath. The simulation predicts that plasmoid passage would result in a strong signal in the cross tail electric field.
The significance of vector magnetic field measurements
NASA Technical Reports Server (NTRS)
Hagyard, M. J.
1990-01-01
Observations of four flaring solar active regions, obtained during 1980-1986 with the NASA Marshall vector magnetograph (Hagyard et al., 1982 and 1985), are presented graphically and characterized in detail, with reference to nearly simultaneous Big Bear Solar Observatory and USAF ASW H-alpha images. It is shown that the flares occurred where local photospheric magnetic fields differed most from the potential field, with initial brightening on either side of a magnetic-neutral line near the point of maximum angular shear (rather than that of maximum magnetic-field strength, typically 1 kG or greater). Particular emphasis is placed on the fact that these significant nonpotential features were detected only by measuring all three components of the vector magnetic field.
NASA Astrophysics Data System (ADS)
da Silva, C. L.; Merrill, R. A.; Pasko, V. P.
2015-12-01
A significant portion of the in-cloud lightning development is observed as a series of initial breakdown pulses (IBPs) that are characterized by an abrupt change in the electric field at a remote sensor. Recent experimental and theoretical studies have attributed this process to the stepwise elongation of an initial lightning leader inside the thunderstorm [da Silva and Pasko, JGR, 120, 4989-5009, 2015, and references therein]. Attempts to visually observe these events are hampered due to the fact that clouds are opaque to optical radiation. Due to this reason, throughout the last decade, a number of researchers have used the so-called transmission line models (also commonly referred to as engineering models), widely employed for return stroke simulations, to simulate the waveshapes of IBPs, and also of narrow bipolar events. The transmission line (TL) model approach is to prescribe the source current dynamics in a certain manner to match the measured E-field change waveform, with the purpose of retrieving key information about the source, such as its height, peak current, size, speed of charge motion, etc. Although the TL matching method is not necessarily physics-driven, the estimated source characteristics can give insights on the dominant length- and time-scales, as well as, on the energetics of the source. This contributes to better understanding of the environment where the onset and early stages of lightning development takes place.In the present work, we use numerical modeling to constrain the number of source parameters that can be confidently inferred from the observed far-field IBP waveforms. We compare different modified TL models (i.e., with different attenuation behaviors) to show that they tend to produce similar waveforms in conditions where the channel is short. We also demonstrate that it is impossible to simultaneously retrieve the speed of source current propagation and channel length from an observed IBP waveform, in contrast to what has been previously done in the literature. Finally, we demonstrate that the simulated field-to-current conversion factor in IBP sources can vary by more than one order of magnitude, making peak current estimates for intracloud lightning processes a challenging task.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Volkov, N. B.; Zubarev, N. M., E-mail: nick@iep.uran.ru; Zubareva, O. V.
Exact solutions are obtained for the problem of an equilibrium configuration of an uncharged cylindrical jet of a conducting liquid in a transverse electric field. The transverse cross section of the jet moving between two planar electrodes is deformed under the action of electrostatic forces (capillary forces play a stabilizing role). According to the solutions obtained, the initially circular cross section of the jet may be significantly (formally, unboundedly) stretched along the lines of forces of the field, and the boundaries of the jet asymptotically approach the electrodes.
Formation of a solar Hα filament from orphan penumbrae
NASA Astrophysics Data System (ADS)
Buehler, D.; Lagg, A.; van Noort, M.; Solanki, S. K.
2016-05-01
Aims: The formation and evolution of an Hα filament in active region (AR) 10953 is described. Methods: Observations from the Solar Optical Telescope (SOT) aboard the Hinode satellite starting from UT 18:09 on 27th April 2007 until UT 06:08 on 1st May 2007 were analysed. 20 scans of the 6302 Å Fe I line pair recorded by SOT/SP were inverted using the spatially coupled version of the SPINOR code. The inversions were analysed together with co-spatial SOT/BFI G-band and Ca II H and SOT/NFI Hα observations. Results: Following the disappearance of an initial Hα filament aligned along the polarity inversion line (PIL) of the AR, a new Hα filament formed in its place some 20 h later, which remained stable for, at least, another 1.5 days. The creation of the new Hα filament was driven by the ascent of horizontal magnetic fields from the photosphere into the chromosphere at three separate locations along the PIL. The magnetic fields at two of these locations were situated directly underneath the initial Hα filament and formed orphan penumbrae already aligned along the Hα filament channel. The 700 G orphan penumbrae were stable and trapped in the photosphere until the disappearance of the overlying initial Hα filament, after which they started to ascend into the chromosphere at 10 ± 5 m/s. Each ascent was associated with a simultaneous magnetic flux reduction of up to 50% in the photosphere. The ascended orphan penumbrae formed dark seed structures in Hα in parallel with the PIL, which elongated and merged to form an Hα filament. The filament channel featured horizontal magnetic fields of on average 260 G at log (τ) = -2 suspended above the nearly field-free lower photosphere. The fields took on an overall inverse configuration at log (τ) = -2 suggesting a flux rope topology for the new Hα filament. The destruction of the initial Hα filament was likely caused by the flux emergence at the third location along the PIL. Conclusions: We present a new interpretation of the Hα filament formation in AR 10953 whereby the mainly horizontal fields of orphan penumbrae, aligned along the Hα filament channel, ascend into the chromosphere, forming seed fragments for a new, second Hα filament. The orphan penumbral fields ascend into the chromosphere ~9-24 h before the Hα filament is fully formed.
NASA Astrophysics Data System (ADS)
Mayo, Elizabeth A.
2009-01-01
Interstellar magnetic fields are believed to play a crucial role in the star-formation process, therefore a comprehensive study of magnetic fields is necessary in understanding the origins of stars. These projects use observational data obtained from the Very Large Array (VLA) in Socorro, NM. The data reveal interstellar magnetic field strengths via the Zeeman effect in radio frequency spectral lines. This information provides an estimate of the magnetic energy in star-forming interstellar clouds in the Galaxy, and comparisons can be made with these energies and the energies of self-gravitation and internal motions. From these comparisons, a better understanding of the role of magnetic fields in the origins of stars will emerge. NGC 6334 A is a compact HII region at the center of what is believed to be a large, rotating molecular torus (Kramer et al. (1997)). This is a continuing study based on initial measurements of the HI and OH Zeeman effect (Sarma et al. (2000)). The current study includes OH observations performed by the VLA at a higher spatial resolution than previously published data, and allows for a better analysis of the spatial variations of the magnetic field. A new model of the region is also developed based on OH opacity studies, dust continuum maps, radio spectral lines, and infrared (IR) maps. The VLA has been used to study the Zeeman effect in the 21cm HI line seen in absorption against radio sources in the Cygnus-X region. These sources are mostly galactic nebulae or HII regions, and are bright and compact in this region of the spectrum. HI absorption lines are strong against these regions and the VLA is capable of detecting the weak Zeeman effect within them. Support for this work was provided by the NSF PAARE program to South Carolina State University under award AST-0750814.
Two-channel spin-chain communication line and simple quantum gates
NASA Astrophysics Data System (ADS)
Stolze, J.; Zenchuk, A. I.
2017-08-01
We consider the remote creation of a mixed state in a one-qubit receiver connected to two two-qubit senders via different channels. Channels are assumed to be chains of spins (qubits) with nearest-neighbor interactions, no external fields are being applied. The problem of sharing the creatable region of the receiver's state-space between two senders is considered for a communication line with the receiver located asymmetrically with respect to these senders (asymmetric communication line). An example of a quantum register realizing simple functions is constructed on the basis of a symmetric communication line. In that setup, the initial states of the two senders serve as input and control signals, respectively, while the state of the receiver at a proper time instant is considered as the output signal.
NASA Astrophysics Data System (ADS)
Isaka, Katsuo
The biological effects of extremely low frequency electric fields on animals are reviewed with emphasis on studies of the nervous system, behavior, endocrinology, and blood chemistry. First, this paper provides a histrical overview of studies on the electric field effects initiated in Russia and the United States mainly regarding electric utility workers in high voltage substations and transmission lines. Then, the possible mechanisms of electric field effects are explained using the functions of surface electric fields and induced currents in biological objects. The real mechanisms have not yet been identified. The thresholds of electric field perception levels for rats, baboons, and humans are introduced and compared. The experimental results concerning the depression of melatonin secretion in rats exposed to electric fields are described.
Compact soft x-ray multichord camera: Design and initial operation
NASA Astrophysics Data System (ADS)
Franz, P.; Gadani, G.; Pasqualotto, R.; Marrelli, L.; Martin, P.; Spizzo, G.; Brunsell, P.; Chapman, B. E.; Paganucci, F.; Rossetti, P.; Xiao, C.
2003-03-01
A compact and low cost diagnostic for spatially resolved measurements of soft x-ray or total radiation emission has been designed and realized to be flexibly applied to different plasma physics experiments. Its reduced size (outer diameter=35 mm) makes it suited to a variety of devices. The line integrated emissivity (brightness) has been measured along up to 20 lines of sight, using an array of miniaturized silicon photodiodes. Preliminary prototypes of the diagnostic have been installed in the Madison Symmetric Torus reversed field pinch (RFP) device at University of Wisconsin and in the EXTRAP T2 RFP device at the Royal Institute of Technology in Stockholm. Application of the diagnostic to a gas-fed (argon, helium) magnetoplasma dynamic thruster (MPDT) with an external magnetic field will also be discussed.
Short-Range prediction of a Mediterranean Severe weather event using EnKF: Configuration tests
NASA Astrophysics Data System (ADS)
Carrio Carrio, Diego Saul; Homar Santaner, Víctor
2014-05-01
The afternoon of 4th October 2007, severe damaging winds and torrential rainfall affected the Island of Mallorca. This storm produced F2-F3 tornadoes in the vicinity of Palma, with one person killed and estimated damages to property exceeding 10 M€. Several studies have analysed the meteorological context in which this episode unfolded, describing the formation of a train of multiple thunderstorms along a warm front and the evolution of a squall line organized from convective activity initiated offshore Murcia during that morning. Couhet et al. (2011) attributed the correct simulation of the convective system and particularly its organization as a squall line to the correct representation of a convergence line at low-levels over the Alboran Sea during the first hours of the day. The numerical prediction of mesoscale phenomena which initiates, organizes and evolves over the sea is an extremely demanding challenge of great importance for coastal regions. In this study, we investigate the skill of a mesoscale ensemble data assimilation system to predict the severe phenomena occurred on 4th October 2007. We use an Ensemble Kalman Filter which assimilates conventional (surface, radiosonde and AMDAR) data using the DART implementation from (NCAR). On the one hand, we analyse the potential of the assimilation cycle to advect critical observational data towards decisive data-void areas over the sea. Furthermore, we assess the sensitivity of the ensemble products to the ensemble size, grid resolution, assimilation period and physics diversity in the mesoscale model. In particular, we focus on the effect of these numerical configurations on the representation of the convective activity and the precipitation field, as valuable predictands of high impact weather. Results show that the 6-h EnKF assimilation period produces initial fields that successfully represent the environment in which initiation occurred and thus the derived numerical predictions render improved evolutions of the squall line. Synthetic maps of severe convective risk reveals the improved predictability of the event using the EnKF as opposed to deterministic or downscaled configurations. Discussion on further improvements to the forecasting systems is provided.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Trubilko, A. I., E-mail: trubilko.andrey@gmail.com
Coherent scattering of a two-level atom in the field of a quantized standing wave of a micromaser is considered under conditions of initial quantum correlation between the atom and the field. Such a correlation can be produced by a broadband parametric source. The interaction leading to scattering of the atom from the nonuniform field occurs in the dispersion limit or in the wing of the absorption line of the atom. Apart from the quantized field, the atom simultaneously interacts with two classical counterpropagating waves with different frequencies, which are acting in the plane perpendicular to the atom’s propagation velocity andmore » to the wavevector of the standing wave. Joint action of the quantized field and two classical waves induces effective two-photon and Raman resonance interaction on the working transition. The effective Hamiltonian of the interaction is derived using the unitary transformation method developed for a moving atom. A strong effect is detected, which makes it possible to distinguish the correlated initial state of the atom and the field in the scattering of atom from the state of independent systems. For all three waves, scattering is not observed when systems with quantum correlation are prepared using a high-intensity parametric source. Conversely, when the atom interacts only with the nonuniform field of the standing wave, scattering is not observed in the case of the initial factorized state.« less
Global Magnetospheric Evolution Effected by Sudden Ring Current Injection
NASA Astrophysics Data System (ADS)
Park, Geunseok; No, Jincheol; Kim, Kap-Sung; Choe, Gwangson; Lee, Junggi
2016-04-01
The dynamical evolution of the Earth's magnetosphere loaded with a transiently enhanced ring current is investigated by global magnetohydrodynamic simulations. Two cases with different values of the primitive ring current are considered. In one case, the initial ring current is strong enough to create a magnetic island in the magnetosphere. The magnetic island readily reconnects with the earth-connected ambient field and is destroyed as the system approaches a steady equilibrium. In the other case, the initial ring current is not so strong, and the initial magnetic field configuration bears no magnetic island, but features a wake of bent field lines, which is smoothed out through the relaxing evolution of the magnetosphere. The relaxation time of the magnetosphere is found to be about five to six minutes, over which the ring current is reduced to about a quarter of its initial value. Before reaching a quasi-steady state, the magnetosphere is found to undergo an overshooting expansion and a subsequent contraction. Fast and slow magnetosonic waves are identified to play an important role in the relaxation toward equilibrium. Our study suggests that a sudden injection of the ring current can generate an appreciable global pulsation of the magnetosphere.
Global Evolution of the Earth's Magnetosphere in Response to a Sudden Ring Current Injection
NASA Astrophysics Data System (ADS)
No, Jincheol; Choe, Gwangson; Park, Geunseok
2014-05-01
The dynamical evolution of the Earth's magnetosphere loaded with a transiently enhanced ring current is investigated by global magnetohydrodynamic simulations. Two cases with different values of the primitive ring current are considered. In one case, the initial ring current is strong enough to create a magnetic island in the magnetosphere. The magnetic island readily reconnects with the earth-connected ambient field and is destroyed as the system approaches a steady equilibrium. In the other case, the initial ring current is not so strong, and the initial magnetic field configuration bears no magnetic island, but features a wake of bent field lines, which is smoothed out through the relaxing evolution of the magnetosphere. The relaxation time of the magnetosphere is found to be about five to six minutes, over which the ring current is reduced to about a quarter of its initial value. Before reaching a steady state, the magnetosphere is found to undergo an overshooting expansion and a subsequent contraction. Fast and slow magnetosonic waves are identified to play an important role in the relaxation toward equilibrium. Our study suggests that a sudden injection of the ring current can generate an appreciable global pulsation of the magnetosphere.
Circular sawing experiments on a radial arm saw
Charles W. McMillin; J.L. Lubxin
1959-01-01
Several years ago, the American Machine and Foundry Co. decided to conduct a comprehensive investigation in the field of cutting processes. The initial emphasis has been on circular sawing because of the product line of the company's DeWalt Division. As a nevessary antecedent to theoretical and experimental investigations, an extensive review of the literature on...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Asahina, Yuta; Ohsuga, Ken; Nomura, Mariko, E-mail: asahina@cfca.jp
By performing three-dimensional magnetohydrodynamics simulations of subrelativistic jets and disk winds propagating into the magnetized inhomogeneous interstellar medium (ISM), we investigate the magnetic effects on the active galactic nucleus feedback. Our simulations reveal that the magnetic tension force promotes the acceleration of the dense gas clouds, since the magnetic field lines, which are initially straight, bend around the gas clouds. In the jet models, the velocity dispersion of the clouds increases with an increase in the initial magnetic fields. The increment of the kinetic energy of the clouds is proportional to the initial magnetic fields, implying that the magnetic tensionmore » force increases the energy conversion efficiency from the jet to the gas clouds. Through simulations of the mildly collimated disk wind and the funnel-shaped disk wind, we confirm that such an enhancement of the energy conversion efficiency via the magnetic fields appears even if the energy is injected via the disk winds. The enhancement of the acceleration of the dense part of the magnetized ISM via the magnetic tension force will occur wherever the magnetized inhomogeneous matter is blown away.« less
Modeling Reconnection-Driven Solar Polar Jets with Gravity and Wind
NASA Astrophysics Data System (ADS)
Karpen, Judith T.; DeVore, C. R.; Antiochos, S. K.
2013-07-01
Solar polar jets are dynamic, narrow, radially extended structures observed in EUV emission. They have been found to originate within the open magnetic field of coronal holes in “anemone” regions, which are generally accepted to be intrusions of opposite polarity. The associated embedded-dipole topology consists of a spine line emanating from a null point atop a dome-shaped fan surface. Previous work (Pariat et al. 2009, 2010) has validated the idea that magnetic free energy stored on twisted closed field lines within the fan surface can be released explosively by the onset of fast reconnection between the highly stressed closed field inside the null and the unstressed open field outside (Antiochos 1996). The simulations showed that a dense jet comprising a nonlinear, torsional Alfven wave is ejected into the outer corona on the newly reconnected open field lines. While proving the principle of the basic model, those simulations neglected the important effects of gravity, the solar wind, and an expanding spherical geometry. We introduce those additional physical processes in new simulations of reconnection-driven jets, to determine whether the model remains robust in the resulting more realistic setting, and to begin establishing the signatures of the jets in the inner heliosphere for comparison with observations. Initial results demonstrate explosive energy release and a jet in the low corona very much like that in the earlier Cartesian, gravity-free, static-atmosphere runs. We report our analysis of the results, their comparison with previous work, and their implications for observations. This work was supported by NASA’s LWS TR&T program.Abstract (2,250 Maximum Characters): Solar polar jets are dynamic, narrow, radially extended structures observed in EUV emission. They have been found to originate within the open magnetic field of coronal holes in “anemone” regions, which are generally accepted to be intrusions of opposite polarity. The associated embedded-dipole topology consists of a spine line emanating from a null point atop a dome-shaped fan surface. Previous work (Pariat et al. 2009, 2010) has validated the idea that magnetic free energy stored on twisted closed field lines within the fan surface can be released explosively by the onset of fast reconnection between the highly stressed closed field inside the null and the unstressed open field outside (Antiochos 1996). The simulations showed that a dense jet comprising a nonlinear, torsional Alfven wave is ejected into the outer corona on the newly reconnected open field lines. While proving the principle of the basic model, those simulations neglected the important effects of gravity, the solar wind, and an expanding spherical geometry. We introduce those additional physical processes in new simulations of reconnection-driven jets, to determine whether the model remains robust in the resulting more realistic setting, and to begin establishing the signatures of the jets in the inner heliosphere for comparison with observations. Initial results demonstrate explosive energy release and a jet in the low corona very much like that in the earlier Cartesian, gravity-free, static-atmosphere runs. We report our analysis of the results, their comparison with previous work, and their implications for observations. This work was supported by NASA’s LWS TR&T program.
NASA Astrophysics Data System (ADS)
Bonfiglio, D.; Veranda, M.; Cappello, S.; Chacón, L.; Spizzo, G.
2010-11-01
The emergence of a self-organized reversed-field pinch (RFP) helical regime, first shown by 3D MHD numerical simulations, has been highlighted in the RFX-mod experiment at high current operation (IP above 1 MA). In fact, a quasi-stationary helical configuration spontaneously appears, characterized by strong internal electron transport barriers. In such regime electron temperature and density become, to a very good approximation, functions of the helical flux coordinate related to the dominant helical magnetic component. In addition, this regime is diagnosed to be associated with the topological transition to a single-helical-axis (SHAx) state, achieved after the expulsion of the separatrix of the dominant mode's magnetic island. The SHAx state is theoretically predicted to be resilient to the magnetic chaos induced by secondary modes. In this paper, we present initial results of the volume-preserving field line tracing code NEMATO [Finn J M and Chacón L 2005 Phys. Plasmas 12 054503] applied to study the magnetic topology resulting from 3D MHD simulations of the RFP. First, a successful 2D verification test of the code is shown, then, initial application to a systematic study of chaos healing in the helical RFP is discussed. The separatrix disappearance is confirmed to play an essential role for chaos healing. The triggering effect of a reversed magnetic shear for the formation of ordered surfaces within magnetic chaos is also diagnosed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bonfiglio, Daniele; Veranda, M.; Cappello, Susanna
2010-01-01
The emergence of a self-organized reversed-field pinch (RFP) helical regime, first shown by 3D MHD numerical simulations, has been highlighted in the RFX-mod experiment at high current operation (IP above 1 MA). In fact, a quasi-stationary helical configuration spontaneously appears, characterized by strong internal electron transport barriers. In such regime electron temperature and density become, to a very good approximation, functions of the helical flux coordinate related to the dominant helical magnetic component. In addition, this regime is diagnosed to be associated with the topological transition to a single-helical-axis (SHAx) state, achieved after the expulsion of the separatrix of themore » dominant mode's magnetic island. The SHAx state is theoretically predicted to be resilient to the magnetic chaos induced by secondary modes. In this paper, we present initial results of the volume-preserving field line tracing code nemato [Finn J M and Chacon L 2005 Phys. Plasmas 12 054503] applied to study the magnetic topology resulting from 3D MHD simulations of the RFP. First, a successful 2D verification test of the code is shown, then, initial application to a systematic study of chaos healing in the helical RFP is discussed. The separatrix disappearance is confirmed to play an essential role for chaos healing. The triggering effect of a reversed magnetic shear for the formation of ordered surfaces within magnetic chaos is also diagnosed.« less
NASA Astrophysics Data System (ADS)
Saneev, Boris; Ivanova, Irina; Izbuldin, Alexander; Muzychuk, Svetlana; Maysyuk, Elena; Borisov, Gennady; Butkhuyag, Sodovin
2018-01-01
The paper is concerned with the specific features of Russia's economic development in a new economic environment that caused the need to revise the priorities of energy policy. The research presents the initial conditions, targets and strategic directions of energy development in the East of the country. The focus is made on the priority lines of innovation and technology cooperation between Russia and Northeast Asian countries in the field of energy, and recommendations on necessary conditions and initiatives for their successful implementation are given.
Ochagavía, Helga; Prieto, Paula; Savin, Roxana; Griffiths, Simon; Slafer, GustavoA
2018-04-27
Wheat adaptation is affected by Ppd genes, but the role of these alleles in the rates of leaf and spikelet initiation has not been properly analysed. Twelve near isogenic lines (NILs) combining Ppd-1a alleles from different donors introgressed in A, B, and/or D genomes were tested under field conditions during two growing seasons together with the wild type, Paragon. Leaf initiation rate was unaffected by Ppd-1a alleles so the final leaf number (FLN) was reduced in parallel with reductions in the duration of the vegetative phase. Spikelet primordia initiation was accelerated and consequently the effect on spikelets per spike was less than proportional to the effect on the duration of spikelet initiation. The magnitude of these effects on spikelet plastochron depended on the doses of Ppd-1 homoeoalleles and the specific insensitivity alleles carried. Double ridge was consistently later than floral initiation, but the difference between them was not affected by Ppd-1a alleles. These findings have potential for selecting the best combinations from the Ppd-1 homoeoallelic series for manipulating adaptation taking into consideration particular effects on spikelet number.
Ochagavía, Helga; Prieto, Paula; Griffiths, Simon
2018-01-01
Abstract Wheat adaptation is affected by Ppd genes, but the role of these alleles in the rates of leaf and spikelet initiation has not been properly analysed. Twelve near isogenic lines (NILs) combining Ppd-1a alleles from different donors introgressed in A, B, and/or D genomes were tested under field conditions during two growing seasons together with the wild type, Paragon. Leaf initiation rate was unaffected by Ppd-1a alleles so the final leaf number (FLN) was reduced in parallel with reductions in the duration of the vegetative phase. Spikelet primordia initiation was accelerated and consequently the effect on spikelets per spike was less than proportional to the effect on the duration of spikelet initiation. The magnitude of these effects on spikelet plastochron depended on the doses of Ppd-1 homoeoalleles and the specific insensitivity alleles carried. Double ridge was consistently later than floral initiation, but the difference between them was not affected by Ppd-1a alleles. These findings have potential for selecting the best combinations from the Ppd-1 homoeoallelic series for manipulating adaptation taking into consideration particular effects on spikelet number. PMID:29562296
Current-Sheet Formation and Reconnection at a Magnetic X Line in Particle-in-Cell Simulations
NASA Technical Reports Server (NTRS)
Black, C.; Antiochos, S. K.; Hesse, M.; Karpen, J. T.; Kuznetsova, M. M.; Zenitani, S.
2011-01-01
The integration of kinetic effects into macroscopic numerical models is currently of great interest to the heliophysics community, particularly in the context of magnetic reconnection. Reconnection governs the large-scale energy release and topological rearrangement of magnetic fields in a wide variety of laboratory, heliophysical, and astrophysical systems. We are examining the formation and reconnection of current sheets in a simple, two-dimensional X-line configuration using high-resolution particle-in-cell (PIC) simulations. The initial minimum-energy, potential magnetic field is perturbed by excess thermal pressure introduced into the particle distribution function far from the X line. Subsequently, the relaxation of this added stress leads self-consistently to the development of a current sheet that reconnects for imposed stress of sufficient strength. We compare the time-dependent evolution and final state of our PIC simulations with macroscopic magnetohydrodynamic simulations assuming both uniform and localized electrical resistivities (C. R. DeVore et al., this meeting), as well as with force-free magnetic-field equilibria in which the amount of reconnection across the X line can be constrained to be zero (ideal evolution) or optimal (minimum final magnetic energy). We will discuss implications of our results for understanding magnetic-reconnection onset and cessation at kinetic scales in dynamically formed current sheets, such as those occurring in the solar corona and terrestrial magnetotail.
Single-shot dual-wavelength in-line and off-axis hybrid digital holography
NASA Astrophysics Data System (ADS)
Wang, Fengpeng; Wang, Dayong; Rong, Lu; Wang, Yunxin; Zhao, Jie
2018-02-01
We propose an in-line and off-axis hybrid holographic real-time imaging technique. The in-line and off-axis digital holograms are generated simultaneously by two lasers with different wavelengths, and they are recorded using a color camera with a single shot. The reconstruction is carried using an iterative algorithm in which the initial input is designed to include the intensity of the in-line hologram and the approximate phase distributions obtained from the off-axis hologram. In this way, the complex field in the object plane and the output by the iterative procedure can produce higher quality amplitude and phase images compared to traditional iterative phase retrieval. The performance of the technique has been demonstrated by acquiring the amplitude and phase images of a green lacewing's wing and a living moon jellyfish.
Regularized Biot-Savart Laws for Modeling Magnetic Flux Ropes
NASA Astrophysics Data System (ADS)
Titov, Viacheslav; Downs, Cooper; Mikic, Zoran; Torok, Tibor; Linker, Jon A.
2017-08-01
Many existing models assume that magnetic flux ropes play a key role in solar flares and coronal mass ejections (CMEs). It is therefore important to develop efficient methods for constructing flux-rope configurations constrained by observed magnetic data and the initial morphology of CMEs. As our new step in this direction, we have derived and implemented a compact analytical form that represents the magnetic field of a thin flux rope with an axis of arbitrary shape and a circular cross-section. This form implies that the flux rope carries axial current I and axial flux F, so that the respective magnetic field is a curl of the sum of toroidal and poloidal vector potentials proportional to I and F, respectively. The vector potentials are expressed in terms of Biot-Savart laws whose kernels are regularized at the rope axis. We regularized them in such a way that for a straight-line axis the form provides a cylindrical force-free flux rope with a parabolic profile of the axial current density. So far, we set the shape of the rope axis by tracking the polarity inversion lines of observed magnetograms and estimating its height and other parameters of the rope from a calculated potential field above these lines. In spite of this heuristic approach, we were able to successfully construct pre-eruption configurations for the 2009 February13 and 2011 October 1 CME events. These applications demonstrate that our regularized Biot-Savart laws are indeed a very flexible and efficient method for energizing initial configurations in MHD simulations of CMEs. We discuss possible ways of optimizing the axis paths and other extensions of the method in order to make it more useful and robust.Research supported by NSF, NASA's HSR and LWS Programs, and AFOSR.
Varying self-inductance and energy storage in a sheared force-free arcade. [of coronal loops
NASA Technical Reports Server (NTRS)
Zuccarello, F.; Burm, H.; Kuperus, M.; Raadu, M.; Spicer, D. S.
1987-01-01
An electric circuit analogy is used to model the build-up and storage of magnetic energy in the coronal loops known to exist in the atmosphere of the sun. The present parameterization of magnetic energy storage in an electric circuit analog uses a bulk current I flowing in the circuit and a self-inductance L. Because the self-inductance is determined by the geometry of the magnetic configuration any change in its dimensions will change L. If L is increased, the amount of magnetic energy stored and the rate at which magnetic energy is stored are both increased. One way of increasing L is to shear the magnetic field lines and increase their effective geometrical length. Using the force-free field approximation for a magnetic arcade whose field lines are sheared by photospheric motions, it is demonstrated that the increase of magnetic energy is initially due to the increase of the current intensity I and later mainly due to the increase of the self-inductance.
Four-Dimensional Continuum Gyrokinetic Code: Neoclassical Simulation of Fusion Edge Plasmas
NASA Astrophysics Data System (ADS)
Xu, X. Q.
2005-10-01
We are developing a continuum gyrokinetic code, TEMPEST, to simulate edge plasmas. Our code represents velocity space via a grid in equilibrium energy and magnetic moment variables, and configuration space via poloidal magnetic flux and poloidal angle. The geometry is that of a fully diverted tokamak (single or double null) and so includes boundary conditions for both closed magnetic flux surfaces and open field lines. The 4-dimensional code includes kinetic electrons and ions, and electrostatic field-solver options, and simulates neoclassical transport. The present implementation is a Method of Lines approach where spatial finite-differences (higher order upwinding) and implicit time advancement are used. We present results of initial verification and validation studies: transition from collisional to collisionless limits of parallel end-loss in the scrape-off layer, self-consistent electric field, and the effect of the real X-point geometry and edge plasma conditions on the standard neoclassical theory, including a comparison of our 4D code with other kinetic neoclassical codes and experiments.
Large-volume flux closure during plasmoid-mediated reconnection in coaxial helicity injection
Ebrahimi, F.; Raman, R.
2016-03-23
A large-volume flux closure during transient coaxial helicity injection (CHI) in NSTX-U is demonstrated through resistive magnetohydrodynamics (MHD) simulations. Several major improvements, including the improved positioning of the divertor poloidal field coils, are projected to improve the CHI start-up phase in NSTX-U. Simulations in the NSTX-U configuration with constant in time coil currents show that with strong flux shaping the injected open field lines (injector flux) rapidly reconnect and form large volume of closed flux surfaces. This is achieved by driving parallel current in the injector flux coil and oppositely directed currents in the flux shaping coils to form amore » narrow injector flux footprint and push the injector flux into the vessel. As the helicity and plasma are injected into the device, the oppositely directed field lines in the injector region are forced to reconnect through a local Sweet-Parker type reconnection, or to spontaneously reconnect when the elongated current sheet becomes MHD unstable to form plasmoids. In these simulations for the first time, it is found that the closed flux is over 70% of the initial injector flux used to initiate the discharge. Furthermore, these results could work well for the application of transient CHI in devices that employ super conducting coils to generate and sustain the plasma equilibrium.« less
ERIC Educational Resources Information Center
Tennessee Univ., Knoxville. Center for Literacy Studies.
The Arizona Adult Literacy and Technology Resource Center and the University of Tennessee's Center for Literacy Studies undertook a collaborative project to explore the feasibility and effectiveness of regional sharing of resources and expertise in field of adult education and literacy education. The project's goals were as follows: involve a…
Jenise M. Bauman; Carolyn H. Keiffer; Shiv Hiremath
2012-01-01
American chestnut was eliminated as a canopy tree from the Appalachian region of North America with the introduction of chestnut blight in the early 1900s. Breeding programs initiated in the 1980s have produced seedling lines that display the pure American morphology with potential resistance to chestnut blight. More work is required to assess their field performance...
Pulsation research during the IMS. [International Magnetospheric Study
NASA Technical Reports Server (NTRS)
Hughes, W. J.
1982-01-01
After describing the development status of the field of magnetic pulsations in 1975, before the initiation of the International Magnetospheric Study (IMS), attention is given to the IMS's novel observational results and an attempt is made to identify the most effective research methods employed. It is found that the most fruitful work involved small-scale collaboration between a few individuals or a few groups possessing complementary data sets. Consideration is restricted to research on the long period pulsations which can be broadly classified as field line resonances. Recommendations are made for future research efforts.
Chromospheric-coronal coupling during solar flares: Current systems and particle acceleration
NASA Technical Reports Server (NTRS)
Winglee, Robert M.; Mckean, M. E.; Dulk, G. A.
1989-01-01
Two-dimensional (three velocity) electrostatic particle simulations are used to investigate the particle heating and acceleration associated with the impulsive phase of a solar flare. A crossfield current in the high corona (which is presumably driven by reconnection processes) is used to initiate the flare. Due to the differential motion of the electrons and ions, currents, and associated quasi-static electric fields are generated with the primary current and balancing return current being on adjacent field lines. These currents extend from the corona down into the chromosphere. Electrons can be accelerated to energies exceeding 100 keV on short time scales via the quasi-static fields and wave-particle interactions. The spectra of these electrons has a broken power-law distribution which hardens in time. The spatially separate primary and return currents are closed by the cross-field acceleration of the ambient ions into the primary current regions. These ions are then accelerated upwards into the corona by the same quasi-static electric field accelerating the electrons downwards. This acceleration can account for the broadened stationary and weak blue shifted component seen in soft x ray line emissions and enhancements in heavy ion abundances seen in the solar wind in associations with solar flares.
Dipole-dipole resonance line shapes in a cold Rydberg gas
NASA Astrophysics Data System (ADS)
Richards, B. G.; Jones, R. R.
2016-04-01
We have explored the dipole-dipole mediated, resonant energy transfer reaction, 32 p3 /2+32 p3 /2→32 s +33 s , in an ensemble of cold 85Rb Rydberg atoms. Stark tuning is employed to measure the population transfer probability as a function of the total electronic energy difference between the initial and final atom-pair states over a range of Rydberg densities, 2 ×108≤ρ ≤3 ×109 cm-3. The observed line shapes provide information on the role of beyond nearest-neighbor interactions, the range of Rydberg atom separations, and the electric field inhomogeneity in the sample. The widths of the resonance line shapes increase approximately linearly with the Rydberg density and are only a factor of 2 larger than expected for two-body, nearest-neighbor interactions alone. These results are in agreement with the prediction [B. Sun and F. Robicheaux, Phys. Rev. A 78, 040701(R) (2008), 10.1103/PhysRevA.78.040701] that beyond nearest-neighbor exchange interactions should not influence the population transfer process to the degree once thought. At low densities, Gaussian rather than Lorentzian line shapes are observed due to electric field inhomogeneities, allowing us to set an upper limit for the field variation across the Rydberg sample. At higher densities, non-Lorentzian, cusplike line shapes characterized by sharp central peaks and broad wings reflect the random distribution of interatomic distances within the magneto-optical trap (MOT). These line shapes are well reproduced by an analytic expression derived from a nearest-neighbor interaction model and may serve as a useful fingerprint for characterizing the position correlation function for atoms within the MOT.
Non-Solenoidal Tokamak Startup via Inboard Local Helicity Injection on the Pegasus ST
NASA Astrophysics Data System (ADS)
Perry, J. M.; Barr, J. L.; Bodner, G. M.; Bongard, M. W.; Fonck, R. J.; Pachicano, J. L.; Reusch, J. A.; Rodriguez Sanchez, C.; Richner, N. J.; Schlossberg, D. J.
2016-10-01
Local helicity injection (LHI) is a non-solenoidal startup technique utilizing small injectors at the plasma edge to source current along helical magnetic field lines. Unstable injected current streams relax to a tokamak-like configuration with high toroidal current multiplication. Flexible placement of injectors permits tradeoffs between helicity injection rate, poloidal field induction, and magnetic geometry requirements for initial relaxation. Experiments using a new set of large-area injectors in the lower divertor explore the efficacy of high-field-side (HFS) injection. The increased area (4 cm2) current source is functional up to full Pegasus toroidal field (BT , inj = 0.23 T). However, relaxation to a tokamak state is increasingly frustrated for BT , inj > 0.15 T with uniform vacuum vertical field. Paths to relaxation at increased field include: manipulation of vacuum poloidal field geometry; increased injector current; and plasma initiation with outboard injectors, subsequently transitioning to divertor injector drive. During initial tests of HFS injectors, achieved Vinj was limited to 600 V by plasma-material interactions on the divertor plate, which may be mitigated by increasing injector elevation. In experiments with helicity injection as the dominant current drive Ip 0.13 MA has been attained, with T̲e > 100 eV and ne 1019 m-3. Extrapolation to full BT, longer pulse length, and Vinj 1 kV suggest Ip > 0.25 MA should be attainable in a plasma dominated by helicity drive. Work supported by US DOE Grant DE-FG02-96ER54375.
The anatomy of the Orion B giant molecular cloud: A local template for studies of nearby galaxies
NASA Astrophysics Data System (ADS)
Pety, Jérôme; Guzmán, Viviana V.; Orkisz, Jan H.; Liszt, Harvey S.; Gerin, Maryvonne; Bron, Emeric; Bardeau, Sébastien; Goicoechea, Javier R.; Gratier, Pierre; Le Petit, Franck; Levrier, François; Öberg, Karin I.; Roueff, Evelyne; Sievers, Albrecht
2017-01-01
Context. Molecular lines and line ratios are commonly used to infer properties of extra-galactic star forming regions. The new generation of millimeter receivers almost turns every observation into a line survey. Full exploitation of this technical advancement in extra-galactic study requires detailed bench-marking of available line diagnostics. Aims: We aim to develop the Orion B giant molecular cloud (GMC) as a local template for interpreting extra-galactic molecular line observations. Methods: We use the wide-band receiver at the IRAM-30 m to spatially and spectrally resolve the Orion B GMC. The observations cover almost 1 square degree at 26'' resolution with a bandwidth of 32 GHz from 84 to 116 GHz in only two tunings. Among the mapped spectral lines are the , , C18O, C17O, HCN, HNC, , C2H, HCO+, N2H+(1-0), and , , SiO, c - C3H2, CH3OH (2-1) transitions. Results: We introduce the molecular anatomy of the Orion B GMC, including relationships between line intensities and gas column density or far-UV radiation fields, and correlations between selected line and line ratios. We also obtain a dust-traced gas mass that is less than approximately one third the CO-traced mass, using the standard XCO conversion factor. The presence of over-luminous CO can be traced back to the dependence of the CO intensity on UV illumination. As a matter of fact, while most lines show some dependence on the UV radiation field, CN and C2H are the most sensitive. Moreover, dense cloud cores are almost exclusively traced by N2H+. Other traditional high-density tracers, such as HCN(1-0), are also easily detected in extended translucent regions at a typical density of 500 H2 cm-3. In general, we find no straightforward relationship between line critical density and the fraction of the line luminosity coming from dense gas regions. Conclusions: Our initial findings demonstrate that the relationships between line (ratio) intensities and environment in GMCs are more complicated than often assumed. Sensitivity (I.e., the molecular column density), excitation, and, above all, chemistry contribute to the observed line intensity distributions, and they must be considered together when developing the next generation of extra-galactic molecular line diagnostics of mass, density, temperature, and radiation field.
Minimum-fuel turning climbout and descent guidance of transport jets
NASA Technical Reports Server (NTRS)
Neuman, F.; Kreindler, E.
1983-01-01
The complete flightpath optimization problem for minimum fuel consumption from takeoff to landing including the initial and final turns from and to the runway heading is solved. However, only the initial and final segments which contain the turns are treated, since the straight-line climbout, cruise, and descent problems have already been solved. The paths are derived by generating fields of extremals, using the necessary conditions of optimal control together with singular arcs and state constraints. Results show that the speed profiles for straight flight and turning flight are essentially identical except for the final horizontal accelerating or decelerating turns. The optimal turns require no abrupt maneuvers, and an approximation of the optimal turns could be easily integrated with present straight-line climb-cruise-descent fuel-optimization algorithms. Climbout at the optimal IAS rather than the 250-knot terminal-area speed limit would save 36 lb of fuel for the 727-100 aircraft.
Kembro, J M; Satterlee, D G; Schmidt, J B; Perillo, M A; Marin, R H
2008-11-01
Japanese quail selected for a low-stress (LS), rather than a high-stress (HS), plasma corticosterone response to brief restraint have been shown to possess lower fearfulness and a nonspecific reduction in stress responsiveness. Detrended fluctuation analysis provides information on the organization and complexity of temporal patterns of behavior. The present study evaluated the temporal pattern of ambulation of LS and HS quail in an open field that represented a novel environment. Time series of 4,200 data points were collected for each bird by registering the distance ambulated every 0.5 s during a 35-min test period. Consistent with their known reduced fearfulness, the LS quail initiated ambulation significantly sooner (P < 0.02) and tended to ambulate more (P < 0.09) than did their HS counterparts. Detrended fluctuation analyses showed a monofractal series (i.e., a series with similar complexity at different temporal scales) in 72% of the birds. These birds initiated their ambulatory activity in less than 600 s. Among these birds, a lower (P < 0.03) autosimilarity coefficient (alpha) was found in the LS quail than in their HS counterparts (alpha = 0.76 +/- 0.03 and 0.87 +/- 0.03, respectively), suggesting a more complex (less regular) ambulatory pattern in the LS quail. However, when the patterns of ambulation were reexamined by considering only the active period of the time series (i.e., after the birds had initiated their ambulatory activity), monofractal patterns were observed in 97% of the birds, and no differences were found between the lines. Collectively, the results suggest that during the active period of open-field testing, during which fear responses are likely less strong and other motivations are the driving forces of ambulation, the LS and HS lines have similar ambulatory organization.
Storage-and-release flux rope eruptions in the laboratory: initial results and experimental plans
NASA Astrophysics Data System (ADS)
Myers, C. E.; Yamada, M.; Ji, H.; Yoo, J.; Jara-Almonte, J.; Lawrence, E. E.
2012-12-01
Solar eruptive events such as coronal mass ejections (CMEs) are thought to be driven by a sudden release of magnetic energy stored in the corona. In many cases, the pre-eruptive configuration is a non-potential magnetic structure that can be modeled as a line-tied magnetic flux rope. In spite of ever-improving observational capabilities, directly studying the evolution of coronal flux ropes remains a significant challenge. Thus, in order to further explore the mechanisms that drive solar eruptions, we must find novel ways to simulate the relevant physical system. To this end, we have constructed a new laboratory experiment to study storage-and-release flux rope eruptions. This experiment contains a carefully designed set of ``sub-photospheric" coils that produces an active-region-like potential field configuration that remains static throughout the discharge. An arched magnetic flux rope plasma is formed within this potential field configuration by driving electric current through two line-tied footpoints (copper electrodes). Over the course of the discharge, the plasma current is quasi-statically increased (to tens of kiloamperes over many Alfvén times) in order to slowly build up magnetic energy in the system. As the flux rope gains energy, it will expand away from the electrodes to a point where it is expected to undergo a dynamic eruption due to the onset of a loss-of-equilibrium [Forbes & Isenberg, Astrophys. J. 373, 294 (1991)] or the torus instability [Kliem & Török, Phys. Rev. Lett. 96, 255002 (2006)]. In these experiments, the structure of the background potential field configuration (i.e., the field decay index) can be varied to study its effect on the observed flux rope eruptions. Initial results from these experiment are presented, including images from a fast visible light camera and direct measurements from internal magnetic diagnostics. This research is supported by DoE Contract Number DE-AC02-09CH11466 and by the Center for Magnetic Self-Organization (CMSO).; Specially designed magnetic field coils (orange and blue) are used to produce an active-region-like potential field configuration within the vacuum vessel (gray). An arched magnetic flux rope plasma is formed by driving electric current along low-lying potential field lines (blue/green). As magnetic energy builds up in the flux rope, it will expand outward and possibly undergo a storage-and-release eruption.
The origin of the structure of large-scale magnetic fields in disc galaxies
NASA Astrophysics Data System (ADS)
Nixon, C. J.; Hands, T. O.; King, A. R.; Pringle, J. E.
2018-07-01
The large-scale magnetic fields observed in spiral disc galaxies are often thought to result from dynamo action in the disc plane. However, the increasing importance of Faraday depolarization along any line of sight towards the galactic plane suggests that the strongest polarization signal may come from well above (˜0.3-1 kpc) this plane, from the vicinity of the warm interstellar medium (WIM)/halo interface. We propose (see also Henriksen & Irwin 2016) that the observed spiral fields (polarization patterns) result from the action of vertical shear on an initially poloidal field. We show that this simple model accounts for the main observed properties of large-scale fields. We speculate as to how current models of optical spiral structure may generate the observed arm/interarm spiral polarization patterns.
3-D MHD disk wind simulations of protostellar jets
NASA Astrophysics Data System (ADS)
Staff, Jan E.; Koning, Nico; Ouyed, Rachid; Tanaka, Kei; Tan, Jonathan C.
2016-01-01
We present the results of large scale, three-dimensional magnetohydrodynamics simulations of disk winds for different initial magnetic field configurations. The jets are followed from the source to distances, which are resolvable by HST and ALMA observations. Our simulations show that jets are heated along their length by many shocks. The mass of the protostar is a free parameter that can be inserted in the post processing of the data, and we apply the simulations to both low mass and high mass protostars. For the latter we also compute the expected diagnostics when the outflow is photoionized by the protostar. We compute the emission lines that are produced, and find excellent agreement with observations. For a one solar mass protostar, we find the jet width to be between 20 and 30 au while the maximum velocities perpendicular to the jet are found to be 100 km s-1. The initially less open magnetic field configuration simulations result in a wider, two-component jet; a cylindrically shaped outer jet surrounding a narrow and much faster, inner jet. For the initially most open magnetic field configuration the kink mode creates a narrow corkscrew-like jet without a clear Keplerian rotation profile and even regions where we observe rotation opposite to the disk (counter-rotating). This is not seen in the less open field configurations.
Filament cooling and condensation in a sheared magnetic field
NASA Technical Reports Server (NTRS)
Van Hoven, Gerard
1990-01-01
Thermal instability driven by optically thin radiation in the corona is believed to initiate the formation of solar filaments. The fact that filaments are observed generally to separate regions of opposite, line-of-sight, magnetic polarity in the differentially rotating photosphere suggests that filament formation requires the presence of a highly sheared magnetic field. The coupled energetics and dynamics of the most important condensation modes, those due to perpendicular thermal conduction at short wavelengths are discussed. Linear structure in the sheared field and their growth rates is described, and 2D, nonlinear, MHD simulations of the evolution of these modes in a force-free field are conducted. The simulations achieve the fine thermal structures, minimum temperatures and maximum densities characteristic of observed solar filaments.
The Polar Cusp Observed by Cluster Under Constant Imf-Bz Southward
NASA Astrophysics Data System (ADS)
Escoubet, C. P.; Berchem, J.; Pitout, F.; Trattner, K. J.; Richard, R. L.; Taylor, M. G.; Soucek, J.; Grison, B.; Laakso, H. E.; Masson, A.; Dunlop, M. W.; Dandouras, I. S.; Reme, H.; Fazakerley, A. N.; Daly, P. W.
2011-12-01
The Earth's magnetic field is influenced by the interplanetary magnetic field (IMF), specially at the magnetopause where both magnetic fields enter in direct contact and magnetic reconnection can be initiated. In the polar regions, the polar cusp that extends from the magnetopause down to the ionosphere is also directly influenced. The reconnection not only allow ions and electrons from the solar wind to enter the polar cusp but also give an impulse to the magnetic field lines threading the polar cusp through the reconnection electric field. A dispersion in energy of the ions is subsequently produced by the motion of field lines and the time-of-flight effect on down-going ions. If reconnection is continuous and operates at constant rate, the ion dispersion is smooth and continuous. On the other hand if the reconnection rate varies, we expect interruption in the dispersion forming energy steps or staircase. Similarly, multiple entries near the magnetopause could also produce steps at low or mid-altitude when a spacecraft is crossing subsequently the field lines originating from these multiple sources. Cluster with four spacecraft following each other in the mid-altitude cusp can be used to distinguish between these "temporal" and "spatial" effects. We will show two Cluster cusp crossings where the spacecraft were separated by a few minutes. The energy dispersions observed in the first crossing were the same during the few minutes that separated the spacecraft. In the second crossing, two ion dispersions were observed on the first spacecraft and only one of the following spacecraft, about 10 min later. The detailed analysis indicates that these steps result from spatial structures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McMaken, Tyler C.; Petrie, Gordon J. D., E-mail: tmcmaken@gmail.com, E-mail: gpetrie@noao.edu
The solar active region (AR), NOAA 12192, appeared in 2014 October as the largest AR in 24 years. Here we examine the counterintuitive nature of two diffusion-driven processes in the region: the role of helicity buildup in the formation of a major filament, and the relationship between the effects of supergranular diffusion and meridional flow on the AR and on the polar field. Quantitatively, calculations of current helicity and magnetic twist from Helioseismic and Magnetic Imager (HMI) vector magnetograms indicate that, though AR 12192 emerged with negative helicity, positive helicity from subsequent flux emergence, consistent with the hemispheric sign-preference ofmore » helicity, increased over time within large-scale, weak-field regions such as those near the polarity inversion line (PIL). Morphologically, Atmospheric Imaging Assembly observations of filament barbs, sigmoidal patterns, and bases of Fe xii stalks initially exhibited signatures of negative helicity, and the long filament that subsequently formed had a strong positive helicity consistent with the helicity buildup along the PIL. We find from full-disk HMI magnetograms that AR 12192's leading positive flux was initially closer to the equator but, owing either to the region’s magnetic surroundings or to its asymmetric flux density distribution, was transported poleward more quickly on average than its trailing negative flux, contrary to the canonical pattern of bipole flux transport. This behavior caused the AR to have a smaller effect on the polar fields than expected and enabled the formation of the very long neutral line where the filament formed.« less
Spectroscopic Measurements of Planar Foil Plasmas Driven by a MA LTD
NASA Astrophysics Data System (ADS)
Patel, Sonal; Yager-Elorriaga, David; Steiner, Adam; Jordan, Nick; Gilgenbach, Ronald; Lau, Y. Y.
2014-10-01
Planar foil ablation experiments are being conducted on the Linear Transformer Driver (LTD) at the University of Michigan. The experiment consists of a 400 nm-thick, Al planar foil and a current return post. An optical fiber is placed perpendicular to the magnetic field and linear polarizers are used to isolate the pi and sigma lines. The LTD is charged to +/-70 kV with approximately 400-500 kA passing through the foil. Laser shadowgraphy has previously imaged the plasma and measured anisotropy in the Magneto Rayleigh-Taylor (MRT) instability. Localized magnetic field measurements using Zeeman splitting during the current rise is expected to yield some insight into this anisotropy. Initial experiments use Na D lines of Al foils seeded with sodium to measure Zeeman splitting. Several ion lines are also currently being studied, such as Al III and C IV, to probe the higher temperature core plasma. In planned experiments, several lens-coupled optical fibers will be placed across the foil, and local magnetic field measurements will be taken to measure current division within the plasma. This work was supported by US DoE. S.G. Patel and A.M. Steiner supported by NPSC funded by Sandia. D.A. Yager supported by NSF fellowship Grant DGE 1256260.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Edward Nichols
2002-05-03
In this quarter we continued the processing of the Safford IP survey data. The processing identified a time shift problem between the sites that was caused by a GPS firmware error. A software procedure was developed to identify and correct the shift, and this was applied to the data. Preliminary estimates were made of the remote referenced MT parameters, and initial data quality assessment showed the data quality was good for most of the line. The multi-site robust processing code of Egbert was linked to the new data and processing initiated.
Nonequilibrium and nonperturbative dynamics of ultrastrong coupling in open lines.
Peropadre, B; Zueco, D; Porras, D; García-Ripoll, J J
2013-12-13
The time and space resolved dynamics of a qubit with an Ohmic coupling to propagating 1D photons is studied, from weak coupling to the ultrastrong coupling regime. A nonperturbative study based on matrix product states shows the following results, (i) The ground state of the combined systems contains excitations of both the qubit and the surrounding bosonic field. (ii) An initially excited qubit equilibrates through spontaneous emission to a state, which under certain conditions is locally close to that ground state, both in the qubit and the field. (iii) The resonances of the combined qubit-photon system match those of the spontaneous emission process and also the predictions of the adiabatic renormalization [A. J. Leggett et al., Rev. Mod. Phys. 59, 1 (1987)]. Finally, nonperturbative ab initio calculations show that this physics can be studied using a flux qubit galvanically coupled to a superconducting transmission line.
A study of solar preflare activity using two-dimensional radio and SMM-XRP observations
NASA Technical Reports Server (NTRS)
Kundu, M. R.; Gopalswamy, N.; Saba, J. L. R.; Schmelz, J. T. S.; Strong, K. T.
1987-01-01
A study of type III activity at meter-decameter wavelengths in the preflare phase of the February 3, 1986 flare is presented, using data obtained with the Clark Lake Multifrequency Radioheliograph. This activity is compared with similar type III burst activity during the impulsive phase, and it is found that there is a displacement of burst sources between the onset and end times of the activity. A comparison of this displacement at three frequencies suggests that the type III emitting electrons gain access progressively to diverging and different field lines relative to the initial field lines. The energetics of the type III emitting electrons are inferred from observations and compared with those of the associated hard X-ray emitting electrons. The soft X-ray data from SMM-XRP show enhanced emission measure, density, and temperature in the region associated with the preflare type III activity.
A study of solar preflare activity using two-dimensional radio and SMM-XRP observations
NASA Astrophysics Data System (ADS)
Kundu, M. R.; Gopalswamy, N.; Saba, J. L. R.; Schmelz, J. T. S.; Strong, K. T.
1987-09-01
The authors present a study of type III activity at meter-decameter wavelengths in the preflare phase of the 1986 February 3 flare using data obtained with the Clark Lake Multifrequency Radioheliograph. They compare this activity with similar type III burst activity during the impulsive phase and find that there is a displacement of burst sources between the onset and end times of the activity. A comparison of this displacement at three frequencies suggests that the type III emitting electrons gain access progressively to diverging and different field lines relative to the initial field lines. The energetics of the type III emitting electrons are inferred from observations and compared with those of the associated hard X-ray emitting electrons. The soft X-ray data from SMM-XRP shows enhanced emission measure, density and temperature in the region associated with the preflare type III activity.
On the Magnetic Shield for a Vlasov-Poisson Plasma
NASA Astrophysics Data System (ADS)
Caprino, Silvia; Cavallaro, Guido; Marchioro, Carlo
2017-12-01
We study the screening of a bounded body Γ against the effect of a wind of charged particles, by means of a shield produced by a magnetic field which becomes infinite on the border of Γ . The charged wind is modeled by a Vlasov-Poisson plasma, the bounded body by a torus, and the external magnetic field is taken close to the border of Γ . We study two models: a plasma composed by different species with positive or negative charges, and finite total mass of each species, and another made of many species of the same sign, each having infinite mass. We investigate the time evolution of both systems, showing in particular that the plasma particles cannot reach the body. Finally we discuss possible extensions to more general initial data. We show also that when the magnetic lines are straight lines, (that imposes an unbounded body), the previous results can be improved.
Metallic Li colloids studied by Li-7 MAS NMR in electron-irradiated LiF
NASA Astrophysics Data System (ADS)
Zogal, O. J.; Beuneu, F.; Vajda, P.; Florian, P.; Massiot, D.
Li-7 MAS NMR spectra of 2.5 MeV electron-irradiated LiF crystals have been measured in a field of 9.4 T. Besides the resonance line of the ionic compound, a second well-separated spectrum is observed in the region of the Knight shift value for metallic lithium. At room temperature, the latter can be decomposed into two components with different Knight shift and linewidth values. When the temperature is increased, line narrowing takes place at first, indicating shortening of correlation times for self-diffusion, independently in both components. Above 370 K, both lines broaden and approach each other before collapsing into a single line. The high ppm component disappears after crossing the melting temperature of metallic lithium (454 K). The two lines are attributed to different types of metallic Li: one to bulk-like metal, the other to Li present initially under pressure and relaxing to the former under thermal treatment.
Covariant electromagnetic field lines
NASA Astrophysics Data System (ADS)
Hadad, Y.; Cohen, E.; Kaminer, I.; Elitzur, A. C.
2017-08-01
Faraday introduced electric field lines as a powerful tool for understanding the electric force, and these field lines are still used today in classrooms and textbooks teaching the basics of electromagnetism within the electrostatic limit. However, despite attempts at generalizing this concept beyond the electrostatic limit, such a fully relativistic field line theory still appears to be missing. In this work, we propose such a theory and define covariant electromagnetic field lines that naturally extend electric field lines to relativistic systems and general electromagnetic fields. We derive a closed-form formula for the field lines curvature in the vicinity of a charge, and show that it is related to the world line of the charge. This demonstrates how the kinematics of a charge can be derived from the geometry of the electromagnetic field lines. Such a theory may also provide new tools in modeling and analyzing electromagnetic phenomena, and may entail new insights regarding long-standing problems such as radiation-reaction and self-force. In particular, the electromagnetic field lines curvature has the attractive property of being non-singular everywhere, thus eliminating all self-field singularities without using renormalization techniques.
NASA Astrophysics Data System (ADS)
Gutowski, Marek W.
1992-12-01
Presented is a novel, heuristic algorithm, based on fuzzy set theory, allowing for significant off-line data reduction. Given the equidistant data, the algorithm discards some points while retaining others with their original values. The fraction of original data points retained is typically {1}/{6} of the initial value. The reduced data set preserves all the essential features of the input curve. It is possible to reconstruct the original information to high degree of precision by means of natural cubic splines, rational cubic splines or even linear interpolation. Main fields of application should be non-linear data fitting (substantial savings in CPU time) and graphics (storage space savings).
Initial pioneer venus magnetic field results: dayside observations.
Russell, C T; Elphic, R C; Slavin, J A
1979-02-23
Initial observations by the Pioneer Venus mangnetometer in the sunlit ionosphere reveal a dynamic ionosphere, very responsive to external solar-wind conditions. The localtions of the bow shock and ionosphere are variable. The strength of the magnetic field just olutside the ionopause is in approximate pressure balance with the thermal plasma of the ionosphere and changes markedly from day, to day in response to changes in solar wind pressure. The field strength in the ionosphere is also variable from day to day. The field is often weak, at most a few gammas, but reaching many tens of gammas for periods of the order of seconds. These field enchantments are interpreted as due to the passage of spacecraft through flux ropes consisting of bundles of twisted field lines surrounded by the ionospheric plasma. The helicity of the flux varies through the flux tube, with lows pitch angles on the inside and very lage angles in the low-field outer edges of the ropes. These ropes may have external or internal sources. Consistent with previous results, the average position of the bow shock is much closer to the planet than would be expected if the solar wnd were completely deflected by the planet. In total, these observations indicate that the solar wind plays a significant role in the physics of the Venus ionosphere.
Development of Numerical Methods to Estimate the Ohmic Breakdown Scenarios of a Tokamak
NASA Astrophysics Data System (ADS)
Yoo, Min-Gu; Kim, Jayhyun; An, Younghwa; Hwang, Yong-Seok; Shim, Seung Bo; Lee, Hae June; Na, Yong-Su
2011-10-01
The ohmic breakdown is a fundamental method to initiate the plasma in a tokamak. For the robust breakdown, ohmic breakdown scenarios have to be carefully designed by optimizing the magnetic field configurations to minimize the stray magnetic fields. This research focuses on development of numerical methods to estimate the ohmic breakdown scenarios by precise analysis of the magnetic field configurations. This is essential for the robust and optimal breakdown and start-up of fusion devices especially for ITER and its beyond equipped with low toroidal electric field (ET <= 0.3 V/m). A field-line-following analysis code based on the Townsend avalanche theory and a particle simulation code are developed to analyze the breakdown characteristics of actual complex magnetic field configurations including the stray magnetic fields in tokamaks. They are applied to the ohmic breakdown scenarios of tokamaks such as KSTAR and VEST and compared with experiments.
NASA Astrophysics Data System (ADS)
Chen, Yuxi; Tóth, Gábor; Cassak, Paul; Jia, Xianzhe; Gombosi, Tamas I.; Slavin, James A.; Markidis, Stefano; Peng, Ivy Bo; Jordanova, Vania K.; Henderson, Michael G.
2017-10-01
We perform a three-dimensional (3-D) global simulation of Earth's magnetosphere with kinetic reconnection physics to study the flux transfer events (FTEs) and dayside magnetic reconnection with the recently developed magnetohydrodynamics with embedded particle-in-cell model. During the 1 h long simulation, the FTEs are generated quasi-periodically near the subsolar point and move toward the poles. We find that the magnetic field signature of FTEs at their early formation stage is similar to a "crater FTE," which is characterized by a magnetic field strength dip at the FTE center. After the FTE core field grows to a significant value, it becomes an FTE with typical flux rope structure. When an FTE moves across the cusp, reconnection between the FTE field lines and the cusp field lines can dissipate the FTE. The kinetic features are also captured by our model. A crescent electron phase space distribution is found near the reconnection site. A similar distribution is found for ions at the location where the Larmor electric field appears. The lower hybrid drift instability (LHDI) along the current sheet direction also arises at the interface of magnetosheath and magnetosphere plasma. The LHDI electric field is about 8 mV/m, and its dominant wavelength relative to the electron gyroradius agrees reasonably with Magnetospheric Multiscale (MMS) observations.
NASA Astrophysics Data System (ADS)
Perkins, L. John; Logan, B. Grant; Ho, Darwin; Zimmerman, George; Rhodes, Mark; Blackfield, Donald; Hawkins, Steven
2017-10-01
Imposed magnetic fields of tens of Tesla that increase to greater than 10 kT (100 MGauss) under capsule compression may relax conditions for ignition and propagating burn in indirect-drive ICF targets. This may allow attainment of ignition, or at least significant fusion energy yields, in presently-performing ICF targets on the National Ignition Facility that today are sub-marginal for thermonuclear burn through adverse hydrodynamic conditions at stagnation. Results of detailed 2D radiation-hydrodynamic-burn simulations applied to NIF capsule implosions with low-mode shape perturbations and residual kinetic energy loss indicate that such compressed fields may increase the probability for ignition through range reduction of fusion alpha particles, suppression of electron heat conduction and stabilization of higher-mode RT instabilities. Optimum initial applied fields are around 50 T. Off-line testing has been performed of a hohlraum coil and pulsed power supply that could be integrated on NIF; axial fields of 58T were obtained. Given the full plasma structure at capsule stagnation may be governed by 3-D resistive MHD, the formation of closed magnetic field lines might further augment ignition prospects. Experiments are now required to assess the potential of applied magnetic fields to NIF ICF ignition and burn. Work performed under auspices of U.S. DOE by LLNL under Contract DE-AC52-07NA27344.
Initial Simulations of RF Waves in Hot Plasmas Using the FullWave Code
NASA Astrophysics Data System (ADS)
Zhao, Liangji; Svidzinski, Vladimir; Spencer, Andrew; Kim, Jin-Soo
2017-10-01
FullWave is a simulation tool that models RF fields in hot inhomogeneous magnetized plasmas. The wave equations with linearized hot plasma dielectric response are solved in configuration space on adaptive cloud of computational points. The nonlocal hot plasma dielectric response is formulated by calculating the plasma conductivity kernel based on the solution of the linearized Vlasov equation in inhomogeneous magnetic field. In an rf field, the hot plasma dielectric response is limited to the distance of a few particles' Larmor radii, near the magnetic field line passing through the test point. The localization of the hot plasma dielectric response results in a sparse matrix of the problem thus significantly reduces the size of the problem and makes the simulations faster. We will present the initial results of modeling of rf waves using the Fullwave code, including calculation of nonlocal conductivity kernel in 2D Tokamak geometry; the interpolation of conductivity kernel from test points to adaptive cloud of computational points; and the results of self-consistent simulations of 2D rf fields using calculated hot plasma conductivity kernel in a tokamak plasma with reduced parameters. Work supported by the US DOE ``SBIR program.
The effect of a helicopter on DC fields and ions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harris, E.L.; Rindall, B.D.; Tarko, N.J.
1993-10-01
When a plan was initiated to utilize a helicopter to perform work on an energized, high voltage dc transmission line by bonding the helicopter to the conductor, it was necessary to determine what effect, if any, the helicopter would have on the dc fields and ions. In addition, it was necessary to determine the possible effect on helicopter instrumentation and communications. A test site and research facility at Lundar, Manitoba, Canada, provided the ideal location for making these tests. As a result, the information obtained determined that a helicopter-airborne platform could safely be used to perform the work.
Electrohydrodynamic deformation and interaction of a pair of emulsion drops
NASA Technical Reports Server (NTRS)
Baygents, James C.
1994-01-01
The response of a pair of emulsion drops to the imposition of a uniform electric field is examined. The case studied is that of equal-sized drops whose line of centers is parallel to the axis of the applied field. A new boundary integral solution to the governing equations of the leaky dielectric model is developed; the formulation accounts for the electrostatic and hydrodynamic interactions between the drops, as well as their deformations. Numerical calculations show that, after an initial transient during which the drops primarily deform, the pair drift slowly together due to their electrostatic interactions.
Detection of z~2 Type IIn Supernovae
NASA Astrophysics Data System (ADS)
Cooke, Jeff; Sullivan, Mark; Barton, Elizabeth J.
2009-05-01
Type IIn supernovae (SNe IIn) result from the deaths of massive stars. The broad magnitude distribution of SNe IIn make these some of the most luminous SN events ever recorded. In addition, they are the most luminous SN type in the rest-frame UV which make them ideal targets for wide-field optical high redshift searches. We briefly describe our method to detect z~2 SNe IIn events that involves monitoring color-selected galaxies in deep stacked images and our program that applies this method to the CFHTLS survey. Initial results have detected four compelling photometric candidates from their subtracted images and light curves. SNe IIn spectra exhibit extremely bright narrow emission lines as a result of the interaction between the SN ejecta and the circumstellar material released in pre-explosion outbursts. These emission lines remain bright for years after outburst and are above the thresholds of current 8 m-class telescope sensitivities to z~3. The deep spectroscopy required to confirm z~2 host galaxies has the potential to detect the SN emission lines and measure their energies. Finally, planned deep, wide-field surveys have the capability to detect and confirm SNe IIn to z~6. The emission lines of such high-redshift events are expected to be above the sensitivity of future 30 m-class telescopes and the James Webb Space Telescope.
Biological effects from electromagnetic field exposure and public exposure standards.
Hardell, Lennart; Sage, Cindy
2008-02-01
During recent years there has been increasing public concern on potential health risks from power-frequency fields (extremely low frequency electromagnetic fields; ELF) and from radiofrequency/microwave radiation emissions (RF) from wireless communications. Non-thermal (low-intensity) biological effects have not been considered for regulation of microwave exposure, although numerous scientific reports indicate such effects. The BioInitiative Report is based on an international research and public policy initiative to give an overview of what is known of biological effects that occur at low-intensity electromagnetic fields (EMFs) exposure. Health endpoints reported to be associated with ELF and/or RF include childhood leukaemia, brain tumours, genotoxic effects, neurological effects and neurodegenerative diseases, immune system deregulation, allergic and inflammatory responses, breast cancer, miscarriage and some cardiovascular effects. The BioInitiative Report concluded that a reasonable suspicion of risk exists based on clear evidence of bioeffects at environmentally relevant levels, which, with prolonged exposures may reasonably be presumed to result in health impacts. Regarding ELF a new lower public safety limit for habitable space adjacent to all new or upgraded power lines and for all other new constructions should be applied. A new lower limit should also be used for existing habitable space for children and/or women who are pregnant. A precautionary limit should be adopted for outdoor, cumulative RF exposure and for cumulative indoor RF fields with considerably lower limits than existing guidelines, see the BioInitiative Report. The current guidelines for the US and European microwave exposure from mobile phones, for the brain are 1.6 W/Kg and 2 W/Kg, respectively. Since use of mobile phones is associated with an increased risk for brain tumour after 10 years, a new biologically based guideline is warranted. Other health impacts associated with exposure to electromagnetic fields not summarized here may be found in the BioInitiative Report at www.bioinitiative.org.
The role of magnetic fields in the collapse of protostellar gas clouds
NASA Technical Reports Server (NTRS)
Scott, E. H.; Black, D. C.
1980-01-01
The paper presents the results of a numerical calculation of the collapse of an idealized protostellar gas cloud including the effects of a 'frozen-in' magnetic field. The 'traditional' picture of magnetic effects on gas clouds and recent observational and theoretical work on the subject are summarized. Attention is given to the method of calculation and the results are interpreted. It is found that the central magnetic field in the collapsing cloud model follows a rho to the 1/2 power relation, and the discussion implies that this is a general result which should hold true for some range of initial conditions around those chosen. In addition, it is found that the outer envelope of the cloud will be held up by tension in the field lines.
Coronal evolution due to shear motion
NASA Technical Reports Server (NTRS)
Steinolfson, R. S.
1991-01-01
Numerical solutions of the compressible MHD equations are used here to simulate the evolution of an initially force-free magnetic field in a static corona as a result of slow photospheric motion of the magnetic field footpoints. Simulations have been completed for values of plasma beta from 0.1 to 0.5, maximum shear velocities from 0.5 to 10.3 km/s, and with various amounts of resistive and viscous dissipation. In all cases the evolution proceeds in two qualitatively different stages. In the earlier stage, the field evolves gradually with the field lines, expanding outward at a velocity not unlike the shear velocity. Then, the field begins to expand much more rapidly until it reaches velocities exceeding a characteristic Alfven velocity. Inclusion of the thermodynamics, gravity, and compressibility is shown to have only a quantitative effect on the onset of the eruptive phase, illustrating that the primary interactions are between the dynamics and the magnetic field evolution.
Flare onset at sites of maximum magnetic shear
NASA Technical Reports Server (NTRS)
Hagyard, M. J.; Smith, J. B., Jr.
1988-01-01
Observations of the transverse component of the Sun's photospheric magnetic field obtained with the MSFC vector magnetograph show where the fields are nonpotential. The correlation was studied between locations of nonpotential fields and sites of flare onset for four different active regions. The details of the active region AR 4711 are outlined. Similar results are presented for three other regions: AR 2372 (April 1980), AR 2776 (November 1980), and AR 4474 (April 1984). For all four regions it is shown that flares initiate at sites on the magnetic neutral line where the local field deviates the most from the potential field. The results of this study suggest that flares are likely to erupt where the shear is equal to or greater than 85 degrees, the field is equal to or greater than 10000 G, and there is strong shear (equal to or greater then 80 degress) extending over a length equal to or greater than 8000 km.
Cascading failures in interdependent systems under a flow redistribution model
NASA Astrophysics Data System (ADS)
Zhang, Yingrui; Arenas, Alex; Yaǧan, Osman
2018-02-01
Robustness and cascading failures in interdependent systems has been an active research field in the past decade. However, most existing works use percolation-based models where only the largest component of each network remains functional throughout the cascade. Although suitable for communication networks, this assumption fails to capture the dependencies in systems carrying a flow (e.g., power systems, road transportation networks), where cascading failures are often triggered by redistribution of flows leading to overloading of lines. Here, we consider a model consisting of systems A and B with initial line loads and capacities given by {LA,i,CA ,i} i =1 n and {LB,i,CB ,i} i =1 n, respectively. When a line fails in system A , a fraction of its load is redistributed to alive lines in B , while remaining (1 -a ) fraction is redistributed equally among all functional lines in A ; a line failure in B is treated similarly with b giving the fraction to be redistributed to A . We give a thorough analysis of cascading failures of this model initiated by a random attack targeting p1 fraction of lines in A and p2 fraction in B . We show that (i) the model captures the real-world phenomenon of unexpected large scale cascades and exhibits interesting transition behavior: the final collapse is always first order, but it can be preceded by a sequence of first- and second-order transitions; (ii) network robustness tightly depends on the coupling coefficients a and b , and robustness is maximized at non-trivial a ,b values in general; (iii) unlike most existing models, interdependence has a multifaceted impact on system robustness in that interdependency can lead to an improved robustness for each individual network.
Cascading failures in interdependent systems under a flow redistribution model.
Zhang, Yingrui; Arenas, Alex; Yağan, Osman
2018-02-01
Robustness and cascading failures in interdependent systems has been an active research field in the past decade. However, most existing works use percolation-based models where only the largest component of each network remains functional throughout the cascade. Although suitable for communication networks, this assumption fails to capture the dependencies in systems carrying a flow (e.g., power systems, road transportation networks), where cascading failures are often triggered by redistribution of flows leading to overloading of lines. Here, we consider a model consisting of systems A and B with initial line loads and capacities given by {L_{A,i},C_{A,i}}_{i=1}^{n} and {L_{B,i},C_{B,i}}_{i=1}^{n}, respectively. When a line fails in system A, a fraction of its load is redistributed to alive lines in B, while remaining (1-a) fraction is redistributed equally among all functional lines in A; a line failure in B is treated similarly with b giving the fraction to be redistributed to A. We give a thorough analysis of cascading failures of this model initiated by a random attack targeting p_{1} fraction of lines in A and p_{2} fraction in B. We show that (i) the model captures the real-world phenomenon of unexpected large scale cascades and exhibits interesting transition behavior: the final collapse is always first order, but it can be preceded by a sequence of first- and second-order transitions; (ii) network robustness tightly depends on the coupling coefficients a and b, and robustness is maximized at non-trivial a,b values in general; (iii) unlike most existing models, interdependence has a multifaceted impact on system robustness in that interdependency can lead to an improved robustness for each individual network.
On the Polarization Properties of Magnetar Giant Flare Pulsating Tails
NASA Astrophysics Data System (ADS)
Yang, Yuan-Pei; Zhang, Bing
2015-12-01
Three giant flares have been detected so far from soft gamma-ray repeaters, each characterized by an initial short hard spike and a pulsating tail. The observed pulsating tails are characterized by a duration of ˜100 s, an isotropic energy of ˜1044 erg, and a pulse period of a few seconds. The pulsating tail emission likely originates from the residual energy after the intense energy release during the initial spike, which forms a trapped fireball composed of a photon-pair plasma in a closed-field-line region of the magnetars. Observationally the spectra of pulsating tails can be fitted by the superposition of a thermal component and a power-law component, with the thermal component dominating the emission in the early and late stages of the pulsating-tail observations. In this paper, assuming that the trapped fireball is from a closed-field-line region in the magnetosphere, we calculate the atmospheric structure of the optically thick trapped fireball and the polarization properties of the trapped fireball. By properly treating the photon propagation in a hot, highly magnetized, electron-positron pair plasma, we tally photons in two modes (O mode and E mode) at a certain observational angle through Monte Carlo simulations. Our results suggest that the polarization degree depends on the viewing angle with respect to the magnetic axis of the magnetar, and can be as high as Π ≃ 30% in the 1-30 keV band, and Π ≃ 10% in the 30-100 keV band, if the line of sight is perpendicular to the magnetic axis.
Late-time Near-infrared Observations of SN 2005df
NASA Astrophysics Data System (ADS)
Diamond, Tiara R.; Hoeflich, Peter; Gerardy, Christopher L.
2015-06-01
We present late-time near-infrared (NIR) spectral evolution, at 200-400 days, for the Type Ia supernova SN 2005df. The spectra show numerous strong emission features of [Co ii], [Co iii], and [Fe ii] throughout the 0.8-1.8 μm region. As the spectrum ages, the cobalt features fade as would be expected from the decay of 56Co to 56Fe. We show that the strong and isolated [Fe ii] emission line at 1.644 μ {m} provides a unique tool to analyze NIR spectra of SNe Ia. Normalization of spectra to this line allows the separation of features produced by stable versus unstable isotopes of iron group elements. We develop a new method of determining the initial central density, {ρ }c, and the magnetic field, B, of the white dwarf (WD) using the width of the 1.644 μ {m} line. The line width (LW) is sensitive because of electron capture in the early stages of burning, which increases as a function of density. The sensitivity of the LW to B increases with time, and the effects of the magnetic field shift toward later times with decreasing {ρ }c. Through comparison with spherical models, the initial central density for SN 2005df is measured as {ρ }c=0.9(+/- 0.2)× {10}9 {g} {{cm}}-3, which corresponds to a WD close to the Chandrasekhar mass, with {M}{WD}=1.31(+/- 0.03) {M}⊙ and systematic error less than 0.04 {M}⊙. This error estimate is based on spherical models. We discuss the potential uncertainties due to multi-dimensional effects, mixing, and rotation. The latter two effects would increase the estimate of the WD mass. Within {M}{Ch} explosions, however, the central density found for SN 2005df is very low for a H-accretor, possibly suggesting a helium star companion or a tidally disrupted WD companion. As an alternative, we suggest mixing of the central region. We find some support for high initial magnetic fields of strength {10}6 {G} for SN 2005df, however, 0 {G} cannot be ruled out because of noise in the spectra combined with low {ρ }c. We discuss our findings in the context of mixing by Rayleigh-Taylor instabilities during deflagration burning and a wide variety of explosion scenarios. Observations strongly support a very limited amount of mixing during a deflagration phase and high central densities characteristic of a {M}{Ch} WD.
Use of terrestrial field studies in the derivation of bioaccumulation potential of chemicals
van den Brink, Nico W.; Arblaster, Jennifer A.; Bowman, Sarah R.; Conder, Jason M.; Elliott, John E.; Johnson, Mark S.; Muir, Derek C.G.; Natal-da-Luz, Tiago; Rattner, Barnett A.; Sample, Bradley E.; Shore, Richard F.
2016-01-01
Field-based studies are an essential component of research addressing the behavior of organic chemicals, and a unique line of evidence that can be used to assess bioaccumulation potential in chemical registration programs and aid in development of associated laboratory and modeling efforts. To aid scientific and regulatory discourse on the application of terrestrial field data in this manner, this article provides practical recommendations regarding the generation and interpretation of terrestrial field data. Currently, biota-to-soil-accumulation factors (BSAFs), biomagnification factors (BMFs), and bioaccumulation factors (BAFs) are the most suitable bioaccumulation metrics that are applicable to bioaccumulation assessment evaluations and able to be generated from terrestrial field studies with relatively low uncertainty. Biomagnification factors calculated from field-collected samples of terrestrial carnivores and their prey appear to be particularly robust indicators of bioaccumulation potential. The use of stable isotope ratios for quantification of trophic relationships in terrestrial ecosystems needs to be further developed to resolve uncertainties associated with the calculation of terrestrial trophic magnification factors (TMFs). Sampling efforts for terrestrial field studies should strive for efficiency, and advice on optimization of study sample sizes, practical considerations for obtaining samples, selection of tissues for analysis, and data interpretation is provided. Although there is still much to be learned regarding terrestrial bioaccumulation, these recommendations provide some initial guidance to the present application of terrestrial field data as a line of evidence in the assessment of chemical bioaccumulation potential and a resource to inform laboratory and modeling efforts.
Gas flow to start in line from Algeria to Spain
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morvan, A.H.M.
1996-12-02
Construction of Phase 1 of the 858 mile, 48-in. Gazoduc Maghreb Europe (GME) was complete by the middle of October. Initial design of the line called for it to take gas from Algerian oil and gas fields, through Morocco, across the Strait of Gibraltar, into Spain. Subsequent gas contracts have warranted an extension, currently under construction, from Cordoba, Spain, into Portugal. The section from Cordoba to the Spain-Portugal border has been essentially completed as well as the transmission lines in Portugal. The only missing link remains the section across the border which is to be completed by year end. Commercialmore » operation all the way through Portugal is due in first quarter 1997. The paper discusses the background, the four phases of construction, and the auxiliary systems of this pipeline.« less
NASA Astrophysics Data System (ADS)
Vemareddy, P.
2017-08-01
We study the magnetic field evolution in AR 12371, related to its successive eruptive nature. During the disk transit of seven days, the active region (AR) launched four sequential fast coronal mass ejections (CMEs), which are associated with long duration M-class flares. Morphological study delineates a pre-eruptive coronal sigmoid structure above the polarity inversion line (PIL) similar to Moore et al.’s study. The velocity field derived from tracked magnetograms indicates persistent shear and converging motions of polarity regions about the PIL. While these shear motions continue, the crossed arms of two sigmoid elbows are being brought to interaction by converging motions at the middle of the PIL, initiating the tether-cutting reconnection of field lines and the onset of the CME explosion. The successive CMEs are explained by a cyclic process of magnetic energy storage and release referred to as “sigmoid-to-arcade-to-sigmoid” transformation driven by photospheric flux motions. Furthermore, the continued shear motions inject helicity flux with a dominant negative sign, which contributes to core field twist and its energy by building a twisted flux rope (FR). After a limiting value, the excess coronal helicity is expelled by bodily ejection of the FR, which is initiated by some instability as realized by intermittent CMEs. This AR is in contrast with the confined AR 12192 with a predominant negative sign and larger helicity flux, but much weaker (-0.02 turns) normalized coronal helicity content. While predominant signed helicity flux is a requirement for CME eruption, our study suggests that the magnetic flux normalized helicity flux is a necessary condition accommodating the role of background flux and appeals to a further study of a large sample of ARs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vemareddy, P., E-mail: vemareddy@iiap.res.in
We study the magnetic field evolution in AR 12371, related to its successive eruptive nature. During the disk transit of seven days, the active region (AR) launched four sequential fast coronal mass ejections (CMEs), which are associated with long duration M-class flares. Morphological study delineates a pre-eruptive coronal sigmoid structure above the polarity inversion line (PIL) similar to Moore et al.’s study. The velocity field derived from tracked magnetograms indicates persistent shear and converging motions of polarity regions about the PIL. While these shear motions continue, the crossed arms of two sigmoid elbows are being brought to interaction by convergingmore » motions at the middle of the PIL, initiating the tether-cutting reconnection of field lines and the onset of the CME explosion. The successive CMEs are explained by a cyclic process of magnetic energy storage and release referred to as “sigmoid-to-arcade-to-sigmoid” transformation driven by photospheric flux motions. Furthermore, the continued shear motions inject helicity flux with a dominant negative sign, which contributes to core field twist and its energy by building a twisted flux rope (FR). After a limiting value, the excess coronal helicity is expelled by bodily ejection of the FR, which is initiated by some instability as realized by intermittent CMEs. This AR is in contrast with the confined AR 12192 with a predominant negative sign and larger helicity flux, but much weaker (−0.02 turns) normalized coronal helicity content. While predominant signed helicity flux is a requirement for CME eruption, our study suggests that the magnetic flux normalized helicity flux is a necessary condition accommodating the role of background flux and appeals to a further study of a large sample of ARs.« less
NASA Astrophysics Data System (ADS)
Luhmann, J. G.; Mays, M. L.; Li, Y.; Bain, H. M.; Lee, C. O.; Odstrcil, D.; Mewaldt, R. A.; Cohen, C.; Leske, R. A.
2017-12-01
An observer's magnetic field connection to a SEP-producing interplanetary shock (or compression) source often appears to provide a good indicator of whether or not a SEP event occurs. As a result, some tools for SEP event modeling make use of this finding. However, a key assumption of these approaches is that the interplanetary magnetic field and heliospheric shock geometries are known throughout the event(s). We consider examples of SEP time profile calculations obtained with combined ENLIL and SEPMOD modeling where the results compare well with observations at multiple inner heliosphere sites, and compare them to cases where such comparisons show a relative lack of agreement. ENLIL does not include the shock inside 21 Rs or CME/ICME ejecta magnetic fields, but for the agreeable cases this does not seem to make a big difference. The number, size, speed and directions of related CMEs/ICMEs, and ENLIL field line geometry appear to play the most critical roles. This includes the inclusion of prior and parallel events that affect both the ICME propagation and magnetic field geometry and strength along the observer field line. It seems clear that if a SEP forecasting system is desired, we must continue to have instrumentation that allows us to specify global CME/ICME initiation geometry (coronagraphs, XUV/EUV imagers) and background solar wind structure (magnetographs).
Inferences Concerning the Magnetospheric Source Region for Auroral Breakup
NASA Technical Reports Server (NTRS)
Lyons, L. R.
1992-01-01
It is argued that the magnetospheric source region for auroral arc breakup and substorm initiation is along boundary plasma sheet (BPS) magnetic field lines. This source region lies beyond a distinct central plasma sheet (CPS) region and sufficiently far from the Earth that energetic ion motion violates the guiding center approximation (i.e., is chaotic). The source region is not constrained to any particular range of distances from the Earth, and substorm initiation may be possible over a wide range of distances from near synchronous orbit to the distant tail. It is also argued that the layer of low-energy electrons and velocity dispersed ion beams observed at low altitudes on Aureol 3 is not a different region from the region of auroral arcs. Both comprise the BPS. The two regions occasionally appear distinct at low altitudes because of the effects of arc field-aligned potential drops on precipitating particles.
NASA Technical Reports Server (NTRS)
Wei, C. Q.; Lee, L. C.; Wang, S.; Akasofu, S.-I.
1991-01-01
Spacecraft observations suggest that flux transfer events and interplanetary magnetic clouds may be associated with magnetic flux ropes which are magnetic flux tubes containing helical magnetic field lines. In the magnetic flux ropes, the azimuthal magnetic field is superposed on the axial field. The time evolution of a localized magnetic flux rope is studied. A two-dimensional compressible MHD simulation code with a cylindrical symmetry is developed to study the wave modes associated with the evolution of flux ropes. It is found that in the initial phase both the fast magnetosonic wave and the Alfven wave are developed in the flux rope. After this initial phase, the Alfven wave becomes the dominant wave mode for the evolution of the magnetic flux rope and the radial expansion velocity of the flux rope is found to be negligible. Numerical results further show that even for a large initial azimuthal component of the magnetic field, the propagation velocity along the axial direction of the flux rope remains the Alfven velocity. It is also found that the localized magnetic flux rope tends to evolve into two separate magnetic ropes propagating in opposite directions. The simulation results are used to study the evolution of magnetic flux ropes associated with flux transfer events observed at the earth's dayside magnetopause and magnetic clouds in the interplanetary space.
NASA Technical Reports Server (NTRS)
Gary, G. Allen; Moore, R. L.
2003-01-01
We present observations and an interpretation of a unique multiple-turn spiral flux tube eruption from AR10030 on 2002 July 15. The TRACE CIV observations clearly show a flux tube that is helical and that is erupting from within a sheared magnetic field. These observations are interpreted in the context of the breakout model for magnetic field explosions. The initiation of the helix eruption starts 25 seconds after the peak of the flare s strongest impulsive spike of microwave gryosynchrotron radiation early in the flare s explosive phase, implying that the sheared core field is not the site of the initial reconnection. Within the quadrupolar configuration of the active region, the external and internal reconnection sites are identified in each of two consecutive eruptive flares that produce a double CME. The first external breakout reconnection apparently releases an underlying sheared core field and allows it to erupt, leading to internal reconnection in the wake of the erupting helix. This internal reconnection heats the two-ribbon flare and might or might not produce the helix. These events lead to the first CME and are followed by a second breakout that initiates a second and larger halo CME. The strong magnetic shear in the region is associated with rapid proper motion and evolution of the active region. The multiple-turn helix originates from above a sheared-field magnetic inversion line within a filament channel, and starts to erupt only after fast breakout reconnection has started. These observations are counter to the standard flare model and support the breakout model for eruptive flare initiation. However, the observations are compatible with internal reconnection in a sheared magnetic arcade in the formation and eruption of the helix.
NASA Technical Reports Server (NTRS)
Gary, G. Allen; Moore, R. L.
2004-01-01
We present observations and an interpretation of a unique multiple-turn spiral flux tube eruption from active region 10030 on 2002 July 15. The TRACE C IV observations clearly show a flux tube that is helical and erupting from within a sheared magnetic field. These observations are interpreted in the context of the breakout model for magnetic field explosions. The initiation of the helix eruption. as determined by a linear backward extrapolation, starts 25 s after the peak of the flare's strongest impulsive spike of microwave gyrosynchrotron radiation early in the flare s explosive phase, implying that the sheared core field is not the site of the initial reconnection. Within the quadrupolar configuration of the active region, the external and internal reconnection sites are identified in each of two consecutive eruptive flares that produce a double coronal mass ejection (CME). The first external breakout reconnection apparently releases an underlying sheared core field and allows it to erupt, leading to internal reconnection in the wake of the erupting helix. This internal reconnection releases the helix and heats the two-ribbon flare. These events lead to the first CME and are followed by a second breakout that initiates a second and larger halo CME. The strong magnetic shear in the region is compatible with the observed rapid proper motion and evolution of the active region. The multiple-turn helix originates from above a sheared-field magnetic inversion line within a filament channel. and starts to erupt only after fast breakout reconnection has started. These observations are counter to the standard flare model and support the breakout model for eruptive flare initiation.
NASA Astrophysics Data System (ADS)
Saneev, Boris; Sokolov, Alexander; Lagerev, Anatoly; Popov, Sergei; Ivanova, Irina; Izbuldin, Alexander; Korneyev, Anatoly; Muzychuk, Svetlana; Sokolov, Dmitry
2018-01-01
The paper is concerned with the specific features of Russia's economic development in a new economic environment that caused the need to revise the priorities of energy policy. The research presents the initial conditions, targets and strategic directions of energy development in the East of the country. The focus is made on the priority lines of innovation and technology cooperation between Russia and Northeast Asian countries in the field of energy, and recommendations on necessary conditions and initiatives for their successful implementation are given.
Failure modes for compression loaded angle-ply plates with holes
NASA Technical Reports Server (NTRS)
Burns, S. W.; Herakovich, C. T.; Williams, J. G.
1987-01-01
A combined theoretical-experimental investigation of failure in notched, graphite-epoxy, angle-ply laminates subjected to far-field compression loading indicates that failure generally initiates on the hole boundary and propagates along a line parallel to the fiber orientation of the laminate. The strength of notched laminates with specimen width-to-hole diameter ratios of 5 and 10 are compared to the strength of unnotched laminates. The experimental results are complemented by a three-dimensional finite element stress analysis that includes interlaminar stresses around holes in (+/- theta)s laminates. The finite element predictions indicate that failure is initiated by shear stresses at the hole boundary.
NASA Astrophysics Data System (ADS)
Berlanga, Juan M.; Harbaugh, John W.
The Tabasco region contains a number of major oilfields, including some of the emerging "giant" oil fields which have received extensive publicity. Fields in the Tabasco region are associated with large geologic structures which are detected readily by seismic surveys. The structures seem to be associated with deepseated movement of salt, and they are complexly faulted. Some structures have as much as 1000 milliseconds relief of seismic lines. A study, interpreting the structure of the area, used initially only a fraction of the total seismic lines That part of Tabasco region that has been studied was surveyed with a close-spaced rectilinear network of seismic lines. A, interpreting the structure of the area, used initially only a fraction of the total seismic data available. The purpose was to compare "predictions" of reflection time based on widely spaced seismic lines, with "results" obtained along more closely spaced lines. This process of comparison simulates the sequence of events in which a reconnaissance network of seismic lines is used to guide a succession of progressively more closely spaced lines. A square gridwork was established with lines spaced at 10 km intervals, and using machine contour maps, compared the results with those obtained with seismic grids employing spacings of 5 and 2.5 km respectively. The comparisons of predictions based on widely spaced lines with observations along closely spaced lines provide information by which an error function can be established. The error at any point can be defined as the difference between the predicted value for that point, and the subsequently observed value at that point. Residuals obtained by fitting third-degree polynomial trend surfaces were used for comparison. The root mean square of the error measurement, (expressed in seconds or milliseconds reflection time) was found to increase more or less linearly with distance from the nearest seismic point. Oil-occurrence probabilities were established on the basis of frequency distributions of trend-surface residuals obtained by fitting and subtracting polynomial trend surfaces from the machine-contoured reflection time maps. We found that there is a strong preferential relationship between the occurrence of petroleum (i.e. its presence versus absence) and particular ranges of trend-surface residual values. An estimate of the probability of oil occurring at any particular geographic point can be calculated on the basis of the estimated trend-surface residual value. This estimate, however, must be tempered by the probable error in the estimate of the residual value provided by the error function. The result, we believe, is a simple but effective procedure for estimating exploration outcome probabilities where seismic data provide the principal form of information in advance of drilling. Implicit in this approach is the comparison between a maturely explored area, for which both seismic and production data are available, and which serves as a statistical "training area", with the "target" area which is undergoing exploration and for which probability forecasts are to be calculated.
The global distribution of magnetic helicity in the solar corona
NASA Astrophysics Data System (ADS)
Yeates, A. R.; Hornig, G.
2016-10-01
By defining an appropriate field line helicity, we apply the powerful concept of magnetic helicity to the problem of global magnetic field evolution in the Sun's corona. As an ideal-magnetohydrodynamic invariant, the field line helicity is a meaningful measure of how magnetic helicity is distributed within the coronal volume. It may be interpreted, for each magnetic field line, as a magnetic flux linking with that field line. Using magneto-frictional simulations, we investigate how field line helicity evolves in the non-potential corona as a result of shearing by large-scale motions on the solar surface. On open magnetic field lines, the helicity injected by the Sun is largely output to the solar wind, provided that the coronal relaxation is sufficiently fast. But on closed magnetic field lines, helicity is able to build up. We find that the field line helicity is non-uniformly distributed, and is highly concentrated in twisted magnetic flux ropes. Eruption of these flux ropes is shown to lead to sudden bursts of helicity output, in contrast to the steady flux along the open magnetic field lines. Movies are available at http://www.aanda.org
Coannular supersonic ejector nozzles
NASA Technical Reports Server (NTRS)
Bishop, A. R.
1979-01-01
The nozzles described exhibit a flow field which is supersonic except for the initial flow region, and the secondary mass flow is typically about five percent of the primary core flow. The features to improve the accuracy of the performance calculations are discussed. A special calculation is made to get as realistic a sonic line as possible for this geometry, using an analysis developed by Brown. The mixing between the secondary and core flows is treated to account for entrainment of the secondary flow into core. Both of these phenomena directly affect the pressure distribution on the shroud and therefore, the thrust that the nozzle produces. The importance of using a realistic sonic line and a mixing analysis is stressed.
NASA Technical Reports Server (NTRS)
Jefferies, J. T.
1971-01-01
A large number of distant clusters of galaxies was examined for the presence of a bright compact galaxy or blue stellar object. Nearly 600 square degrees of sky were searched using glass copies of the National Geographic Society-Palomar Observatory Sky Survey plates, and over 20 fields were selected for observation. The objects were examined for infrared and ultraviolet excesses, using wideband filter photography and spectroscopy. Initial findings include a faint, distant cluster of galaxies near the quasi-stellar radio source 4C 37.43 with a red shift of 0.370. One of these galaxies has an emission line at 6895 A, indicating a possible red shift of 0.377 of the 5007 A line of (0 III).
Microchannel plate life testing for UV spectroscopy instruments
NASA Astrophysics Data System (ADS)
Darling, N. T.; Siegmund, O. H. W.; Curtis, T.; McPhate, J.; Tedesco, J.; Courtade, S.; Holsclaw, G.; Hoskins, A.; Al Dhafri, S.
2017-08-01
The Emirates Mars Mission (EMM) UV Spectrograph (EMUS) is a far ultraviolet (102 nm to 170 nm) imaging spectrograph for characterization of the Martian exosphere and thermosphere. Imaging is accomplished by a photon counting open-face microchannel plate (MCP) detector using a cross delay line (XDL) readout. An MCP gain stabilization ("scrub") followed by lifetime spectral line burn-in simulation has been completed on a bare MCP detector at SSL. Gain and sensitivity stability of better than 7% has been demonstrated for total dose of 2.5 × 1012 photons cm-2 (2 C · cm-2 ) at 5.5 kHz mm-2 counting rates, validating the efficacy of an initial low gain full-field scrub.
NASA Astrophysics Data System (ADS)
Li, Xin; Zeng, Mingjian; Wang, Yuan; Wang, Wenlan; Wu, Haiying; Mei, Haixia
2016-10-01
Different choices of control variables in variational assimilation can bring about different influences on the analyzed atmospheric state. Based on the WRF model's three-dimensional variational assimilation system, this study compares the behavior of two momentum control variable options—streamfunction velocity potential ( ψ-χ) and horizontal wind components ( U-V)—in radar wind data assimilation for a squall line case that occurred in Jiangsu Province on 24 August 2014. The wind increment from the single observation test shows that the ψ-χ control variable scheme produces negative increments in the neighborhood around the observation point because streamfunction and velocity potential preserve integrals of velocity. On the contrary, the U-V control variable scheme objectively reflects the information of the observation itself. Furthermore, radial velocity data from 17 Doppler radars in eastern China are assimilated. As compared to the impact of conventional observation, the assimilation of radar radial velocity based on the U-V control variable scheme significantly improves the mesoscale dynamic field in the initial condition. The enhanced low-level jet stream, water vapor convergence and low-level wind shear result in better squall line forecasting. However, the ψ-χ control variable scheme generates a discontinuous wind field and unrealistic convergence/divergence in the analyzed field, which lead to a degraded precipitation forecast.
Transverse motion of high-speed barium clouds in the ionosphere
NASA Technical Reports Server (NTRS)
Mitchell, H. G., Jr.; Fedder, J. A.; Huba, J. D.; Zalesak, S. T.
1985-01-01
Simulation results, based on a field-line-integrated, two-dimensional, electrostatic model, are presented for the motion of a barium cloud injected transverse to the geomagnetic field in the ionosphere at high speeds. It is found that the gross evaluation of injected plasma clouds depends on the initial conditions, as well as the nature of the background coupling. For a massive (mass of about 10 kg), orbital (velocity of about 5 km/s) release in the F region (350-450 km), it is found that plasma clouds can drift tens of kilometers across the magnetic field in tens of seconds after ionization. This type of release is similar to those which are planned for the Combined Release and Radiation Effects Satellite mission.
DMSP F7 observations of a substorm field-aligned current
NASA Technical Reports Server (NTRS)
Lopez, R. E.; Spence, H. E.; Meng, C.-I.
1991-01-01
Observations are described of a substorm field-aligned current (FAC) system traversed by the DMSP F7 spacecraft just after 0300 UT on April 25, 1985. It is shown that the substorm FAC portion of the current system was located equatorward of the boundary between open and closed field lines. The equatorward boundary of the substorm FAC into the magnetotail was mapped using the Tsyganenko (1987) model, showing that the boundary corresponds to 6.9 earth radii. The result is consistent with the suggestion of Akasofu (1972) and Lopez and Lui (1990) that the region of substorm initiation lies relatively close to the earth and the concept that an essential feature of substorms is the disruption and diversion of the near-earth current sheet.
49 CFR 192.9 - What requirements apply to gathering lines?
Code of Federal Regulations, 2014 CFR
2014-10-01
... gathering line must comply with requirements of this part applicable to transmission lines, except the... onshore gathering line must comply with the requirements of this part applicable to transmission lines... design, installation, construction, initial inspection, and initial testing must be in accordance with...
49 CFR 192.9 - What requirements apply to gathering lines?
Code of Federal Regulations, 2012 CFR
2012-10-01
... gathering line must comply with requirements of this part applicable to transmission lines, except the... onshore gathering line must comply with the requirements of this part applicable to transmission lines... design, installation, construction, initial inspection, and initial testing must be in accordance with...
49 CFR 192.9 - What requirements apply to gathering lines?
Code of Federal Regulations, 2013 CFR
2013-10-01
... gathering line must comply with requirements of this part applicable to transmission lines, except the... onshore gathering line must comply with the requirements of this part applicable to transmission lines... design, installation, construction, initial inspection, and initial testing must be in accordance with...
Unique topological characterization of braided magnetic fields
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yeates, A. R.; Hornig, G.
We introduce a topological flux function to quantify the topology of magnetic braids: non-zero, line-tied magnetic fields whose field lines all connect between two boundaries. This scalar function is an ideal invariant defined on a cross-section of the magnetic field, and measures the average poloidal magnetic flux around any given field line, or the average pairwise crossing number between a given field line and all others. Moreover, its integral over the cross-section yields the relative magnetic helicity. Using the fact that the flux function is also an action in the Hamiltonian formulation of the field line equations, we prove thatmore » it uniquely characterizes the field line mapping and hence the magnetic topology.« less
Deriving the Coronal Magnetic Field Using Parametric Transformation Analysis
NASA Technical Reports Server (NTRS)
Gary, G. Allen; Rose, M. Franklin (Technical Monitor)
2001-01-01
When plasma-beta greater than 1 then the gas pressure dominates over the magnetic pressure. This ratio as a function along the coronal magnetic field lines varies from beta greater than 1 in the photosphere at the base of the field lines, to beta much less than 1 in the mid-corona, to beta greater than 1 in the upper corona. Almost all magnetic field extrapolations do not or cannot take into account the full range of beta. They essentially assume beta much less than 1, since the full boundary conditions do not exist in the beta greater than 1 regions. We use a basic parametric representation of the magnetic field lines such that the field lines can be manipulated to match linear features in the EUV and SXR coronal images in a least squares sense. This research employs free-form deformation mathematics to generate the associated coronal magnetic field. In our research program, the complex magnetic field topology uses Parametric Transformation Analysis (PTA) which is a new and innovative method to describe the coronal fields that we are developing. In this technique the field lines can be viewed as being embedded in a plastic medium, the frozen-in-field-line concept. As the medium is deformed the field lines are similarly deformed. However the advantage of the PTA method is that the field line movement represents a transformation of one magnetic field solution into another magnetic field solution. When fully implemented, this method will allow the resulting magnetic field solution to fully match the magnetic field lines with EUV/SXR coronal loops by minimizing the differences in direction and dispersion of a collection of PTA magnetic field lines and observed field lines. The derived magnetic field will then allow beta greater than 1 regions to be included, the electric currents to be calculated, and the Lorentz force to be determined. The advantage of this technique is that the solution is: (1) independent of the upper and side boundary conditions, (2) allows non-vanishing magnetic forces, and (3) provides a global magnetic field solution, which contains high- and low-beta regimes and maximizes the similarity between the field lines structure and all the coronal images of the region. The coronal image analysis is crucial to the investigation and for the first time these images can be exploited to derive the coronal magnetic field in a well-posed mathematical formulation. This program is an outgrowth of an investigation in which an extrapolated potential field was required to be "inflated" in order to have the field lines match the Yohkoh/SXT images. The field lines were radially stretched resulting in a better match to the coronal loops of an active region. The PTA method of radial and non-radial deformations of field lines to provide a match to the EUV/SXR images will be presented.
The Solar UV-x-Ray Spectrum from 1.5 to 2000 A
2010-01-01
the field lines reconnect to a lower magnetic energy state than the initial state, the difference in energy going into plasma heating, particle ... simulations including physics such as wave propagation and radiative transfer are now being developed to explain the many fine-scale features of Figure...reconnection in the corona. In this model, reconnection heats plasma and accelerates high- energy particles . In the model some of these particles as well as
Influence of Soil Heterogeneity on Mesoscale Land Surface Fluxes During Washita '92
NASA Technical Reports Server (NTRS)
Jasinski, Michael F.; Jin, Hao
1998-01-01
The influence of soil heterogeneity on the partitioning of mesoscale land surface energy fluxes at diurnal time scales is investigated over a 10(exp 6) sq km domain centered on the Little Washita Basin, Oklahoma, for the period June 10 - 18, 1992. The sensitivity study is carried out using MM5/PLACE, the Penn State/NCAR MM5 model enhanced with the Parameterization for Land-Atmosphere-Cloud Exchange or PLACE. PLACE is a one-dimensional land surface model possessing detailed plant and soil water physics algorithms, multiple soil layers, and the capacity to model subgrid heterogeneity. A series of 12-hour simulations were conducted with identical atmospheric initialization and land surface characterization but with different initial soil moisture and texture. A comparison then was made of the simulated land surface energy flux fields, the partitioning of net radiation into latent and sensible heat, and the soil moisture fields. Results indicate that heterogeneity in both soil moisture and texture affects the spatial distribution and partitioning of mesoscale energy balance. Spatial averaging results in an overprediction of latent heat flux, and an underestimation of sensible heat flux. In addition to the primary focus on the partitioning of the land surface energy, the modeling effort provided an opportunity to examine the issue of initializing the soil moisture fields for coupled three-dimensional models. For the present case, the initial soil moisture and temperature were determined from off-line modeling using PLACE at each grid box, driven with a combination of observed and assimilated data fields.
West, Ana; Ma, Kevin; Chung, Jonathan L; Kindt, James T
2013-08-15
Molecular dynamics simulations of lipid bilayer ribbons have been performed to investigate the structures and line tensions associated with free bilayer edges. Simulations carried out for dioleoyl phosphatidylcholine with three different force-field parameter sets yielded edge line tensions of 45 ± 2 pN, over 50% greater than the most recently reported experimentally determined value for this lipid. Edge tensions obtained from simulations of a series of phosphatidylcholine lipid bilayer ribbons with saturated acyl tails of length 12-16 carbons and with monounsaturated acyl tails of length 14-18 carbons could be correlated with the excess area associated with forming the edge, through a two-parameter fit. Saturated-tail lipids underwent local thickening near the edge, producing denser packing that correlated with lower line tensions, while unsaturated-tail lipids showed little or no local thickening. In a dipalmitoyl phosphatidylcholine ribbon initiated in a tilted gel-phase structure, lipid headgroups tended to tilt toward the nearer edge producing a herringbone pattern, an accommodation that may account for the reported edge-induced stabilization of an ordered structure at temperatures near a lipid gel-fluid phase transition.
Chen, Yuxi; Tóth, Gábor; Cassak, Paul; ...
2017-09-18
Here, we perform a three-dimensional (3D) global simulation of Earth's magnetosphere with kinetic reconnection physics to study the flux transfer events (FTEs) and dayside magnetic reconnection with the recently developed magnetohydrodynamics with embedded particle-in-cell model (MHD-EPIC). During the one-hour long simulation, the FTEs are generated quasi-periodically near the subsolar point and move toward the poles. We also find the magnetic field signature of FTEs at their early formation stage is similar to a ‘crater FTE’, which is characterized by a magnetic field strength dip at the FTE center. After the FTE core field grows to a significant value, it becomesmore » an FTE with typical flux rope structure. When an FTE moves across the cusp, reconnection between the FTE field lines and the cusp field lines can dissipate the FTE. The kinetic features are also captured by our model. A crescent electron phase space distribution is found near the reconnection site. A similar distribution is found for ions at the location where the Larmor electric field appears. The lower hybrid drift instability (LHDI) along the current sheet direction also arises at the interface of magnetosheath and magnetosphere plasma. Finally, the LHDI electric field is about 8 mV/m and its dominant wavelength relative to the electron gyroradius agrees reasonably with MMS observations.« less
Localized Models of Charged Particle Motion in Martian Crustal Magnetic Cusps
NASA Astrophysics Data System (ADS)
Brain, D. A.; Poppe, A. R.; Jarvinen, R.; Dong, Y.; Egan, H. L.; Fang, X.
2017-12-01
The induced magnetosphere of Mars is punctuated by localized but strong crustal magnetic fields that are observed to play host to a variety of phenomena typically associated with global magnetic fields, such as auroral processes and particle precipitation, field-aligned current systems, and ion outflow. Each of these phenomena occur on the night side, in small-scale magnetic `cusp' regions of vertically aligned field. Cusp regions are not yet capable of being spatially resolved in global scale models that include the ion kinetics necessary for simulating charged particle transport along cusps. Local models are therefore necessary if we are to understand how cusp processes operate at Mars. Here we present the first results of an effort to model the kinetic particle motion and electric fields in Martian cusps. We are adapting both a 1.5D Particle-in-Cell (PIC) model for lunar magnetic cusps regions to the Martian case and a hybrid model framework (used previously for the global Martian plasma interaction and for lunar magnetic anomaly regions) to cusps in 2D. By comparing the models we can asses the importance of electron kinetics in particle transport along cusp field lines. In this first stage of our study we model a moderately strong nightside cusp, with incident hot hydrogen plasma from above, and cold planetary (oxygen) plasma entering the simulation from below. We report on the spatial and temporal distribution of plasma along cusp field lines for this initial case.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Yuxi; Tóth, Gábor; Cassak, Paul
Here, we perform a three-dimensional (3D) global simulation of Earth's magnetosphere with kinetic reconnection physics to study the flux transfer events (FTEs) and dayside magnetic reconnection with the recently developed magnetohydrodynamics with embedded particle-in-cell model (MHD-EPIC). During the one-hour long simulation, the FTEs are generated quasi-periodically near the subsolar point and move toward the poles. We also find the magnetic field signature of FTEs at their early formation stage is similar to a ‘crater FTE’, which is characterized by a magnetic field strength dip at the FTE center. After the FTE core field grows to a significant value, it becomesmore » an FTE with typical flux rope structure. When an FTE moves across the cusp, reconnection between the FTE field lines and the cusp field lines can dissipate the FTE. The kinetic features are also captured by our model. A crescent electron phase space distribution is found near the reconnection site. A similar distribution is found for ions at the location where the Larmor electric field appears. The lower hybrid drift instability (LHDI) along the current sheet direction also arises at the interface of magnetosheath and magnetosphere plasma. Finally, the LHDI electric field is about 8 mV/m and its dominant wavelength relative to the electron gyroradius agrees reasonably with MMS observations.« less
Underwater spark discharge with long transmission line for cleaning horizontal wells
NASA Astrophysics Data System (ADS)
Lee, Kern; Chung, Kyoung-Jae; Hwang, Y. S.; Kim, C. Y.
2017-06-01
A transmission line is discussed for application in an underwater spark-discharge technique in the cleaning of a horizontal well by incorporating a power-transmission model into the simulation. The pulsed-spark-discharge technique has been proposed for clogged-well rehabilitation, because it removes incrustations that are attached to well screens by using strong pressure waves that are generated by the rapid expansion of a spark channel. To apply the pulsed-spark-discharge technique to the cleaning of horizontal wells, the coaxial cable between the pulsed power supply and the spark gap as a load needs to be extended to a few hundred meters. Prior to field application, pulsed-spark-discharge experiments were conducted and the role of the transmission line was examined using an improved simulation model. In the model, a non-linear interaction of the spark channel and the capacitor bank is described by the pulse-forming action of the coaxial cable. Based on the accurate physical properties of the water plasma, such as the equation of state and electrical conductivity within the region of interest, the amount of energy contributed to the development of a shock wave was evaluated. The simulation shows that if the initial conditions of the spark channel are the same, no further reduction in strength of the pressure wave occurs, even if the cable length is increased above 50 m. Hence, the degraded peak pressure that was observed in the experiments using the longer cable is attributed to a change in the initial condition of the spark channel. The parametric study suggests that the low initial charging voltage, the high ambient water pressure, and the long cable length yield the low initial spark-channel density, which results in a reduced peak pressure. The simulation of line charging is presented to discuss the principle of disturbing the pre-breakdown process by an extended cable.
NASA Technical Reports Server (NTRS)
Thottappillil, Rajeev; Uman, Martin A.; Diendorfer, Gerhard
1991-01-01
Compared here are the calculated fields of the Traveling Current Source (TCS), Modified Transmission Line (MTL), and the Diendorfer-Uman (DU) models with a channel base current assumed in Nucci et al. on the one hand and with the channel base current assumed in Diendorfer and Uman on the other hand. The characteristics of the field wave shapes are shown to be very sensitive to the channel base current, especially the field zero crossing at 100 km for the TCS and DU models, and the magnetic hump after the initial peak at close range for the TCS models. Also, the DU model is theoretically extended to include any arbitrarily varying return stroke speed with height. A brief discussion is presented on the effects of an exponentially decreasing speed with height on the calculated fields for the TCS, MTL, and DU models.
Interaction quench dynamics in the Kondo model in the presence of a local magnetic field.
Heyl, M; Kehrein, S
2010-09-01
In this work we investigate the quench dynamics in the Kondo model on the Toulouse line in the presence of a local magnetic field. It is shown that this setup can be realized by either applying the local magnetic field directly or by preparing the system in a macroscopically spin-polarized initial state. In the latter case, the magnetic field results from a subtlety in applying the bosonization technique where terms that are usually referred to as finite-size corrections become important in the present non-equilibrium setting. The transient dynamics are studied by analyzing exact analytical results for the local spin dynamics. The timescale for the relaxation of the local dynamical quantities turns out to be exclusively determined by the Kondo scale. In the transient regime, one observes damped oscillations in the local correlation functions with a frequency set by the magnetic field.
Return Stroke Current Reflections in Rocket-Triggered Lightning
NASA Astrophysics Data System (ADS)
Caicedo, J.; Uman, M. A.; Jordan, D.; Biagi, C. J.; Hare, B.
2015-12-01
In the six years from 2009 to 2014, there have been eight triggered flashes at the ICLRT, from a total of 125, in which a total of ten return stroke channel-base currents exhibited a dip 3.0 to 16.6 μs after the initial current peak. Close range electric field measurements show a related dip following the initial electric field peak, and electric field derivative measurements show an associated bipolar pulse, confirming that this phenomenon is not an instrumentation effect in the current measurement. For six of the eight flashes, high-speed video frames show what appears to be suspended sections of unexploded triggering wire at heights of about 150 to 300 m that are illuminated when the upward current wave reaches them. The suspended wire can act as an impedance discontinuity, perhaps as it explodes, and cause a downward reflection of some portion of the upward-propagating current wave. This reflected wave travels down the channel and causes the dip in the measured channel-base current when it reaches ground and reflects upward. The modified transmission line model with exponential decay (MTLE) is used to model the close electric field and electric field derivatives of the postulated initial and reflected current waves, starting with the measured channel base current, and the results are compared favorably with measurements made at distances ranging from 92 to 444 m. From the measured time between current impulse initiation and the time the current reflection reaches the channel base and the current dip initiates, along with the reflection height from the video records, we find the average return stroke current speed for each of the ten strokes to be from 0.28 to 1.9×108 ms-1, with an error of ±0.01×108 ms-1 due to a ±0.1 μs uncertainty in the measurement. This represents the first direct measurement of return stroke current speed, all previous return stroke speed measurements being derived from the luminosity of the process.
Magnetohydrodynamic Modeling of Coronal Evolution and Disruption
NASA Technical Reports Server (NTRS)
Linker, Jon
2002-01-01
Flux cancellation, defined observationally as the mutual disappearance of magnetic fields of opposite polarity at the neutral line separating them, has been found to occur frequently at the site of filaments (called prominences when observed on the limb of the Sun). During the second year of this project, we have studied theoretically the role that flux cancellation may play in prominence formation, prominence eruption, and the initiation of coronal mass ejections. This work has been in published in two papers: "Magnetic Field Topology in Prominences" by Lionello, Mikic, Linker, and Amari and "Flux Cancellation and Coronal Mass Ejections" by Linker, Mikic, Riley, Lionello, Amari, and Odstrcil.
Serial Sonographic Assessment of Pulmonary Edema in Patients With Hypertensive Acute Heart Failure.
Martindale, Jennifer L; Secko, Michael; Kilpatrick, John F; deSouza, Ian S; Paladino, Lorenzo; Aherne, Andrew; Mehta, Ninfa; Conigiliaro, Alyssa; Sinert, Richard
2018-02-01
Objective measures of clinical improvement in patients with acute heart failure (AHF) are lacking. The aim of this study was to determine whether repeated lung sonography could semiquantitatively capture changes in pulmonary edema (B-lines) in patients with hypertensive AHF early in the course of treatment. We conducted a feasibility study in a cohort of adults with acute onset of dyspnea, severe hypertension in the field or at triage (systolic blood pressure ≥ 180 mm Hg), and a presumptive diagnosis of AHF. Patients underwent repeated dyspnea and lung sonographic assessments using a 10-cm visual analog scale (VAS) and an 8-zone scanning protocol. Lung sonographic assessments were performed at the time of triage, initial VAS improvement, and disposition from the emergency department. Sonographic pulmonary edema was independently scored offline in a randomized and blinded fashion by using a scoring method that accounted for both the sum of discrete B-lines and degree of B-line fusion. Sonographic pulmonary edema scores decreased significantly from initial to final sonographic assessments (P < .001). The median percentage decrease among the 20 included patient encounters was 81% (interquartile range, 55%-91%). Although sonographic pulmonary edema scores correlated with VAS scores (ρ = 0.64; P < .001), the magnitude of the change in these scores did not correlate with each other (ρ = -0.04; P = .89). Changes in sonographic pulmonary edema can be semiquantitatively measured by serial 8-zone lung sonography using a scoring method that accounts for B-line fusion. Sonographic pulmonary edema improves in patients with hypertensive AHF during the initial hours of treatment. © 2017 by the American Institute of Ultrasound in Medicine.
Abuasbi, Falastine; Lahham, Adnan; Abdel-Raziq, Issam Rashid
2018-05-01
In this study, levels of extremely low-frequency electric and magnetic fields originated from overhead power lines were investigated in the outdoor environment in Ramallah city, Palestine. Spot measurements were applied to record fields intensities over 6-min period. The Spectrum Analyzer NF-5035 was used to perform measurements at 1 m above ground level and directly underneath 40 randomly selected power lines distributed fairly within the city. Levels of electric fields varied depending on the line's category (power line, transformer or distributor), a minimum mean electric field of 3.9 V/m was found under a distributor line, and a maximum of 769.4 V/m under a high-voltage power line (66 kV). However, results of electric fields showed a log-normal distribution with the geometric mean and the geometric standard deviation of 35.9 and 2.8 V/m, respectively. Magnetic fields measured at power lines, on contrast, were not log-normally distributed; the minimum and maximum mean magnetic fields under power lines were 0.89 and 3.5 μT, respectively. As a result, none of the measured fields exceeded the ICNIRP's guidelines recommended for general public exposures to extremely low-frequency fields.
Fun at Antarctic grounding lines: Ice-shelf channels and sediment transport
NASA Astrophysics Data System (ADS)
Drews, Reinhard; Mayer, Christoph; Eisen, Olaf; Helm, Veit; Ehlers, Todd A.; Pattyn, Frank; Berger, Sophie; Favier, Lionel; Hewitt, Ian H.; Ng, Felix; Fürst, Johannes J.; Gillet-Chaulet, Fabien; Bergeot, Nicolas; Matsuoka, Kenichi
2017-04-01
Meltwater beneath the polar ice sheets drains, in part, through subglacial conduits. Landforms created by such drainages are abundant in areas formerly covered by ice sheets during the last glacial maximum. However, observations of subglacial conduit dynamics under a contemporary ice sheet are lacking. We present results from ice-penetrating radar to infer the existence of subglacial conduits upstream of the grounding line of Roi Baudouin Ice Shelf, Antarctica. The conduits are aligned with ice-shelf channels, and underlain by esker ridges formed from sediment deposition due to reduced water outflow speed near the grounding line. In turn, the eskers modify local ice flow to initiate the bottom topography of the ice-shelf channels, and create small surface ridges extending onto the shelf. Relict features on the shelf are interpreted to indicate a history of these interactions and variability of past subglacial drainages. Because ice-shelf channels are loci where intense melting occurs to thin an ice shelf, these findings expose a novel link between subglacial drainage, sedimentation, and ice-shelf stability. To investigate the role of sediment transport beneath ice sheets further, we model the sheet-shelf system of the Ekstömisen catchment, Antarctica. A 3D finite element model (Elmer/ICE) is used to solve the transients full Stokes equation for isotropic, isothermal ice with a dynamic grounding line. We initialize the model with surface topography from the TanDEM-X satellites and by inverting simultaneously for ice viscosity and basal drag using present-day surface velocities. Results produce a flow field which is consitent with sattelite and on-site observations. Solving the age-depth relationship allows comparison with radar isochrones from airborne data, and gives information about the atmospheric/dynamic history of this sector. The flow field will eventually be used to identify potential sediment sources and sinks which we compare with more than 400 km of seismic profiles collected over the floating ice shelves and the grounded ice sheet.
Remote online monitoring and measuring system for civil engineering structures
NASA Astrophysics Data System (ADS)
Kujawińska, Malgorzata; Sitnik, Robert; Dymny, Grzegorz; Karaszewski, Maciej; Michoński, Kuba; Krzesłowski, Jakub; Mularczyk, Krzysztof; Bolewicki, Paweł
2009-06-01
In this paper a distributed intelligent system for civil engineering structures on-line measurement, remote monitoring, and data archiving is presented. The system consists of a set of optical, full-field displacement sensors connected to a controlling server. The server conducts measurements according to a list of scheduled tasks and stores the primary data or initial results in a remote centralized database. Simultaneously the server performs checks, ordered by the operator, which may in turn result with an alert or a specific action. The structure of whole system is analyzed along with the discussion on possible fields of application and the ways to provide a relevant security during data transport. Finally, a working implementation consisting of a fringe projection, geometrical moiré, digital image correlation and grating interferometry sensors and Oracle XE database is presented. The results from database utilized for on-line monitoring of a threshold value of strain for an exemplary area of interest at the engineering structure are presented and discussed.
Recent Developments on Airborne Forward Looking Interferometer for the Detection of Wake Vortices
NASA Technical Reports Server (NTRS)
Daniels, Taumi S.; Smith, William L.; Kirev, Stanislav
2012-01-01
A goal of these studies was development of the measurement methods and algorithms necessary to detect wake vortex hazards in real time from either an aircraft or ground-based hyperspectral Fourier Transform Spectrometer (FTS). This paper provides an update on research to model FTS detection of wake vortices. The Terminal Area Simulation System (TASS) was used to generate wake vortex fields of 3-D winds, temperature, and absolute humidity. These fields were input to the Line by Line Radiative Transfer Model (LBLRTM), a hyperspectral radiance model in the infrared, employed for the FTS numerical modeling. An initial set of cases has been analyzed to identify a wake vortex IR signature and signature sensitivities to various state variables. Results from the numerical modeling case studies will be presented. Preliminary results indicated that an imaging IR instrument sensitive to six narrow bands within the 670 to 3150 per centimeter spectral region would be sufficient for wake vortex detection. Noise floor estimates for a recommended instrument are a current research topic.
Hot spine loops and the nature of a late-phase solar flare
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun, Xudong; Todd Hoeksema, J.; Liu, Yang
2013-12-01
The fan-spine magnetic topology is believed to be responsible for many curious features in solar explosive events. A spine field line links distinct flux domains, but direct observation of such a feature has been rare. Here we report a unique event observed by the Solar Dynamic Observatory where a set of hot coronal loops (over 10 MK) connected to a quasi-circular chromospheric ribbon at one end and a remote brightening at the other. Magnetic field extrapolation suggests that these loops are partly tracers of the evolving spine field line. Continuous slipping- and null-point-type reconnections were likely at work, energizing themore » loop plasma and transferring magnetic flux within and across the fan quasi-separatrix layer. We argue that the initial reconnection is of the 'breakout' type, which then transitioned to a more violent flare reconnection with an eruption from the fan dome. Significant magnetic field changes are expected and indeed ensued. This event also features an extreme-ultraviolet (EUV) late phase, i.e., a delayed secondary emission peak in warm EUV lines (about 2-7 MK). We show that this peak comes from the cooling of large post-reconnection loops beside and above the compact fan, a direct product of eruption in such topological settings. The long cooling time of the large arcades contributes to the long delay; additional heating may also be required. Our result demonstrates the critical nature of cross-scale magnetic coupling—topological change in a sub-system may lead to explosions on a much larger scale.« less
Conjugate Observations of Optical Aurora with POLAR Satellite and Ground Based Imagers in Antarctica
NASA Technical Reports Server (NTRS)
Mende, S. H.; Frey, H.; Vo, H.; Geller, S. P.; Doolittle, J. H.; Spann, J. F., Jr.
1998-01-01
Operation of the ultraviolet imager on the POLAR satellite permits the observation of Aurora Borealis in daylight during northern summer. With optical imagers in the Automatic Geophysical Observatories (AGO-s) large regions of the oval of Aurora Australis can be observed simultaneously during the southern winter polar night. This opportunity permits conducting a systematic study of the properties of auroras on opposite ends of the same field line. It is expected that simultaneously observed conjugate auroras occurring on closed field lines should be similar to each other in appearance because of the close connection between the two hemispheres through particle scattering and mirroring processes. On open or greatly distorted field lines there is no a priori expectation of similarity between conjugate auroras. To investigate the influence of different IMF conditions on auroral behavior we have examined conjugate data for periods of southward IMF. Sudden brightening and subsequent poleward expansions are observed to occur simultaneously in both hemispheres. The POLAR data show that sudden brightening are initiated at various local time regions. When the local time of this region is in the field of view of the AGO station network then corresponding brightening is also found to occur in the southern hemisphere. Large features such as substorm induced westward propagation and resulting auroral brightening seem to occur simultaneously on conjugate hemispheres. The widely different view scales make it difficult to make unique identification of individual auroral forms in the POLAR and in the ground based data but in a general sense the data is consistent with conjugate behavior.
Hashim, Rauzah; Sugimura, Akihiko; Nguan, Hock-Seng; Rahman, Matiur; Zimmermann, Herbert
2017-02-28
A static deuterium nuclear magnetic resonance ( 2 HNMR) technique (magnetic field, B = 7.05 T) was employed to monitor the thermotropic lamellar phase of the anhydrous 1:1 mixture sample of octyl-b-D-glucoside (βOG) and that of partially deuterium labelled at the alpha position on the chain, i.e.,βOG-d 2 In the absence of an electric field, the 2 H NMR spectrum of the mixture gives a typical quadrupolar doublet representing the aligned lamellar phase. Upon heating to beyond the clearing temperature at 112 °C, this splitting converts to a single line expected for an isotropic phase. Simultaneous application of magnetic and electric fields (E = 0.4 MV/m) at 85 °C in the lamellar phase, whose direction was set to be parallel or perpendicular to the magnetic field, resulted in the change of the doublet into a single line and this recovers to the initial doublet with time for both experimental geometries. This implies E- and B-field-induced phase transitions from the lamellar to an isotropic phase and a recovery to the lamellar phase again with time. Moreover, these phase transformations are accompanied by a transient current. A similar observation was made in a computational study when an electric field was applied to a water cluster system. Increasing the field strength distorts the water cluster and weakens its hydrogen bonds leading to a structural breakdown beyond a threshold field-strength. Therefore, we suggest the observed field-induced transition is likely due to a structure change of the βOG lamellar assembly caused by the field effect and not due to Joule heating.
INTERACTION OF TWO FILAMENT CHANNELS OF DIFFERENT CHIRALITIES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Joshi, Navin Chandra; Magara, Tetsuya; Moon, Yong-Jae
2016-07-10
We present observations of the interactions between the two filament channels of different chiralities and associated dynamics that occurred during 2014 April 18–20. While two flux ropes of different helicity with parallel axial magnetic fields can only undergo a bounce interaction when they are brought together, the observations at first glance show that the heated plasma is moving from one filament channel to the other. The SDO /AIA 171 Å observations and the potential-field source-surface magnetic field extrapolation reveal the presence of a fan-spine magnetic configuration over the filament channels with a null point located above them. Three different eventsmore » of filament activations, partial eruptions, and associated filament channel interactions have been observed. The activation initiated in one filament channel seems to propagate along the neighboring filament channel. We believe that the activation and partial eruption of the filaments brings the field lines of flux ropes containing them closer to the null point and triggers the magnetic reconnection between them and the fan-spine magnetic configuration. As a result, the hot plasma moves along the outer spine line toward the remote point. Utilizing the present observations, for the first time we have discussed how two different-chirality filament channels can interact and show interrelation.« less
Topology and convection of a northward interplanetary magnetic field reconnection event
NASA Astrophysics Data System (ADS)
Wendel, Deirdre E.
>From observations and global MHD simulations, we deduce the local and global magnetic topology and current structure of a northward IMF reconnection event in the dayside magnetopause. The ESA four-satellite Cluster suite crossed the magnetopause at a location mapping along field lines to an ionospheric H-alpha emission observed by the IMAGE spacecraft. Therefore, we seek reconnection signatures in the Cluster data. From the four-point Cluster observations, we develop a superposed epoch method to find the instantaneous x-line, its associated current sheet, and the nature of the reconnecting particle flows. This method is unique in that it removes the motion of the hyperbolic structure and the magnetopause relative to the spacecraft. We detect singular field line reconnection--planar hyperbolic reconnecting fields superposed on an out-of- plane field. We also detect the non-ideal electric field that is required to certify reconnection at locations where the magnetic field does not vanish, and estimate a reconnection electric field of - 4 mV/m. The current sheet appears bifurcated, embedding a 30 km current sheet of opposite polarity within a broader current sheet about 130 km thick. Using a resistive MHD simulation and ionospheric satellite data, we examine the same event at global length scales. This gives a 3D picture of where reconnection occurs on the magnetopause for northward IMF with B x and B y components and a tilted dipole field. It also demonstrates that northward IMF 3D reconnection couples the reconnection electric field and field-aligned currents to the ionosphere, driving sunward convection in a manner that agrees with satellite measurements of sunward flows. We find singular field line reconnection of the IMF with both open and closed field lines near nulls in both hemispheres. The reconnection in turn produces both open and closed field lines. We discuss for the first time how line-tying in the ionosphere and draping of open and IMF field lines produce a torsion of the reconnecting singular magnetic field lines within the magnetopause. The simulation and data show that magnetopause reconnection topology is three-dimensional in a way that challenges accepted models of neutral lines and x-lines with guide fields.
Ness, N F; Acuña, M H; Behannon, K W; Burlaga, L F; Connerney, J E; Lepping, R P; Neubauer, F M
1986-07-04
The magnetic field experiment on the Voyager 2 spacecraft revealed a strong planetary magnetic field of Uranus and an associated magnetosphere and fully developed bipolar masnetic tail. The detached bow shock wave in the solar wind supersonic flow was observed upstream at 23.7 Uranus radii (1 R(U) = 25,600 km) and the magnetopause boundary at 18.0 R(U), near the planet-sun line. A miaximum magnetic field of 413 nanotesla was observed at 4.19 R(U ), just before closest approach. Initial analyses reveal that the planetary magnetic field is well represented by that of a dipole offset from the center of the planet by 0.3 R(U). The angle between Uranus' angular momentum vector and the dipole moment vector has the surprisingly large value of 60 degrees. Thus, in an astrophysical context, the field of Uranus may be described as that of an oblique rotator. The dipole moment of 0.23 gauss R(3)(U), combined with the large spatial offset, leads to minimum and maximum magnetic fields on the surface of the planet of approximately 0.1 and 1.1 gauss, respectively. The rotation period of the magnetic field and hence that of the interior of the planet is estimated to be 17.29+/- 0.10 hours; the magnetotail rotates about the planet-sun line with the same period. Thelarge offset and tilt lead to auroral zones far from the planetary rotation axis poles. The rings and the moons are embedded deep within the magnetosphere, and, because of the large dipole tilt, they will have a profound and diurnally varying influence as absorbers of the trapped radiation belt particles.
ON THE POLARIZATION PROPERTIES OF MAGNETAR GIANT FLARE PULSATING TAILS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Yuan-Pei; Zhang, Bing, E-mail: yypspore@gmail.com, E-mail: zhang@physics.unlv.edu
Three giant flares have been detected so far from soft gamma-ray repeaters, each characterized by an initial short hard spike and a pulsating tail. The observed pulsating tails are characterized by a duration of ∼100 s, an isotropic energy of ∼10{sup 44} erg, and a pulse period of a few seconds. The pulsating tail emission likely originates from the residual energy after the intense energy release during the initial spike, which forms a trapped fireball composed of a photon-pair plasma in a closed-field-line region of the magnetars. Observationally the spectra of pulsating tails can be fitted by the superposition ofmore » a thermal component and a power-law component, with the thermal component dominating the emission in the early and late stages of the pulsating-tail observations. In this paper, assuming that the trapped fireball is from a closed-field-line region in the magnetosphere, we calculate the atmospheric structure of the optically thick trapped fireball and the polarization properties of the trapped fireball. By properly treating the photon propagation in a hot, highly magnetized, electron–positron pair plasma, we tally photons in two modes (O mode and E mode) at a certain observational angle through Monte Carlo simulations. Our results suggest that the polarization degree depends on the viewing angle with respect to the magnetic axis of the magnetar, and can be as high as Π ≃ 30% in the 1–30 keV band, and Π ≃ 10% in the 30–100 keV band, if the line of sight is perpendicular to the magnetic axis.« less
Plasma dynamics in solar macrospicules from high-cadence extreme-UV observations
NASA Astrophysics Data System (ADS)
Loboda, I. P.; Bogachev, S. A.
2017-01-01
Macrospicules are relatively large spicule-like formations found mainly over the polar coronal holes when observing in the transition region spectral lines. In this study, we took advantage of the two short series of observations in the He II 304 Å line obtained by the TESIS solar observatory with a cadence of up to 3.5 s to study the dynamics of macrospicules in unprecedented detail. We used a one-dimensional hydrodynamic method based on the assumption of their axial symmetry and on a simple radiative transfer model to reconstruct the evolution of the internal velocity field of 18 macrospicules from this dataset. Besides the internal dynamics, we studied the motion of the apparent end points of the same 18 macrospicules and found 15 of them to follow parabolic trajectories with high precision which correspond closely to the obtained velocity fields. We found that in a clear, unperturbed case these macrospicules move with a constant deceleration inconsistent with a purely ballistic motion and have roughly the same velocity along their entire axis, with the obtained decelerations typically ranging from 160 to 230 m s-2, and initial velocities from 80 to 130 km s-1. We also found a propagating acoustic wave for one of the macrospicules and a clear linear correlation between the initial velocities of the macrospicules and their decelerations, which indicates that they may be driven by magneto-acoustic shocks. Finally, we inverted our previous method by taking velocities from the parabolic fits to give rough estimates of the percentage of mass lost by 12 of the macrospicules. We found that typically from 10 to 30% of their observed mass fades out of the line (presumably being heated to higher coronal temperatures) with three exceptions of 50% and one of 80%.
Thomson, G.P.; Blackman, M.
1961-07-25
BS>A device is descrined for producing nuclear fusion reactions by additional acceleration of a hydrogen isotope plasma formed and initially accelerated by a collapsing magnetic field. The plasma is enclosed in a toroidal cavity within a vessel composed of a plurality of insulated coaxial segments. The added acceleration is caused by providing progressing potentials to the insulated segments acting as electrodes by means of a segmented delay transmission line coupled to the electrode segments and excited by a two phase alternating current supply.
A Screening Matrix for an Initial Line of Inquiry
ERIC Educational Resources Information Center
Nordness, Philip D.; Swain, Kristine D.; Haverkost, Ann
2012-01-01
The Screening for Understanding: Initial Line of Inquiry was designed to be used in conjunction with the child study team planning process for dealing with continuous problem behaviors prior to conducting a formal functional behavioral assessment. To conduct the initial line of inquiry a one-page reproducible screening matrix was used during child…
Fritz, Jonathan B; Elhilali, Mounya; David, Stephen V; Shamma, Shihab A
2007-07-01
Acoustic filter properties of A1 neurons can dynamically adapt to stimulus statistics, classical conditioning, instrumental learning and the changing auditory attentional focus. We have recently developed an experimental paradigm that allows us to view cortical receptive field plasticity on-line as the animal meets different behavioral challenges by attending to salient acoustic cues and changing its cortical filters to enhance performance. We propose that attention is the key trigger that initiates a cascade of events leading to the dynamic receptive field changes that we observe. In our paradigm, ferrets were initially trained, using conditioned avoidance training techniques, to discriminate between background noise stimuli (temporally orthogonal ripple combinations) and foreground tonal target stimuli. They learned to generalize the task for a wide variety of distinct background and foreground target stimuli. We recorded cortical activity in the awake behaving animal and computed on-line spectrotemporal receptive fields (STRFs) of single neurons in A1. We observed clear, predictable task-related changes in STRF shape while the animal performed spectral tasks (including single tone and multi-tone detection, and two-tone discrimination) with different tonal targets. A different set of task-related changes occurred when the animal performed temporal tasks (including gap detection and click-rate discrimination). Distinctive cortical STRF changes may constitute a "task-specific signature". These spectral and temporal changes in cortical filters occur quite rapidly, within 2min of task onset, and fade just as quickly after task completion, or in some cases, persisted for hours. The same cell could multiplex by differentially changing its receptive field in different task conditions. On-line dynamic task-related changes, as well as persistent plastic changes, were observed at a single-unit, multi-unit and population level. Auditory attention is likely to be pivotal in mediating these task-related changes since the magnitude of STRF changes correlated with behavioral performance on tasks with novel targets. Overall, these results suggest the presence of an attention-triggered plasticity algorithm in A1 that can swiftly change STRF shape by transforming receptive fields to enhance figure/ground separation, by using a contrast matched filter to filter out the background, while simultaneously enhancing the salient acoustic target in the foreground. These results favor the view of a nimble, dynamic, attentive and adaptive brain that can quickly reshape its sensory filter properties and sensori-motor links on a moment-to-moment basis, depending upon the current challenges the animal faces. In this review, we summarize our results in the context of a broader survey of the field of auditory attention, and then consider neuronal networks that could give rise to this phenomenon of attention-driven receptive field plasticity in A1.
A Case Study of Magnetotail Conditions at Substorm and Pseudosubstorm Onsets
NASA Astrophysics Data System (ADS)
Miyashita, Y.; Angelopoulos, V.; Fukui, K.; Machida, S.
2017-12-01
While a substorm involves initial brightening and growth of wave-like structure of the auroral onset arc and the subsequent auroral poleward expansion, a pseudosubstorm (pseudobreakup) involves only the first two steps of auroral development and subsides without progressing to poleward expansion. To understand what makes this difference, we studied magnetotail conditions at a pseudosubstorm onset and the subsequent substorm onset, using multipoint Time History of Events and Macroscale Interactions during Substorms (THEMIS) spacecraft data. In the present event, near-Earth magnetic reconnection possibly occurred before initial brightening for both pseudosubstorm and substorm. In the near-Earth magnetotail at X -10 Re, the ion beta, ion pressure, and radial pressure gradient were smaller and magnetic field lines were less stretched at pseudosubstorm initial brightening than at substorm initial brightening. Dipolarization did not occur for the pseudosubstorm, whereas it began just before poleward expansion for the substorm. These observations suggest that conditions of the near-Earth magnetotail possibly affect whether the initial action develops into a full-fledged substorm.
Where do field lines go in the quiet magnetosphere?
NASA Technical Reports Server (NTRS)
Stern, David P.; Alekseev, Igor' I.
1988-01-01
The state of knowledge concerning the global pattern of geomagnetic field lines is reviewed. Sources of information on that pattern include (1) magnetic-field models, derived directly from magnetic data or indirectly from generally observed properties and from physics; (2) the tracing of magnetospheric features (e.g., polar cusps or the inner edge of the plasma sheet); (3) matching of magnetic flux; and (4) analysis of magnetic fields. Field-line structure inside about 8 earth radii is known fairly well, but beyond that, especially in the tail, the situation becomes rather uncertain and variable. Two particularly difficult problems are the linkage between open field lines and the interplanetary field and the field-line structure of the quiescent magnetosphere following periods of prolonged northward Bz.
NASA Astrophysics Data System (ADS)
Nakayama, T.; Hanao, T.; Hirono, H.; Hyobu, T.; Ito, K.; Matsumoto, K.; Kikuchi, Y.; Fukumoto, N.; Nagata, M.; Kanki, T.
2012-10-01
Spherical torus (ST) plasmas have been successfully maintained by Muti-pulsing Coaxial Helicity Injection (M-CHI) on HIST. This research object is to clarify relations between plasma characteristics and magnetic flux amplifications, and to compare magnetic field structures measured in the plasma interior to a flowing equilibrium calculation. Two-dimensional magnetic probe array has been newly introduced nearby the gun muzzle. The initial result shows that the diverter configuration with a single X-point can be formed after a bubble burst process of the plasma. The closed magnetic flux is surrounded by the open magnetic field lines intersecting with the gun electrodes. To evaluate the sustained configurations, we use the two-fluid equilibrium code containing generalized Bernoulli and Grad-Shafranov equations which was developed by L.C. Steinhauer. The radial profiles of plasma flow, density and magnetic fields measured on the midplane of the FC are consistent to the calculation. We also found that the poloidal shear flow generation is attributed to ExB drift and ion diamagnetic drift. In addition, we will study temporal behaviors of impurity lines such as OV and OVI during the flux amplification by VUV spectroscopic measurements.
Gradient of the stellar magnetic field in measurements of hydrogen line cores
NASA Astrophysics Data System (ADS)
Kudryavtsev, Dimitry O.; Romanyuk, Iosif I.
2009-04-01
We report the observed systematic differences in longitudinal magnetic field values, obtained from measurements of metal lines and the core of the Hβ line for a number of Ap stars, having strong global magnetic fields. In overwhelming majority of cases the magnetic field values, obtained from measurements of hydrogen lines cores, is smaller then the ones obtained from metal lines. We discuss some possible explanations of this effect, the most probable of which is the existence of the gradient of the magnetic field in stellar atmospheres.
NASA Astrophysics Data System (ADS)
Sydorenko, D.; Rankin, R.; Kabin, K.
2009-12-01
This paper presents initial results based on kinetic extensions of a nonlinear two-dimensional (2D) multi-fluid (three ion species and fluid electrons) MHD model that is designed to study propagation of shear Alfven waves in low-altitude auroral flux tubes. It is intended to use the model for scientific support of the “enhanced polar outflow probe” e-POP/CASSIOPE spacecraft mission (launch scheduled in 2010). Effects of gravity, thermal pressure, and geomagnetic field curvature are included, while the parallel electric field along geomagnetic field lines is calculated under the assumption of plasma quasineutrality. The model has been used successfully to study excitation of eigenmodes of the ionospheric Alfven resonator (IAR) by an Alfven wave packet injected from the magnetospheric end of the simulated plasma region. The formation of density cavities due to the ponderomotive force of standing oscillations in the IAR [Sydorenko, Rankin, and Kabin, 2008], and excitation of double layers and ion-acoustic wave packets, has been demonstrated. The kinetic extension of the multi-fluid code involves replacing the fluid electron model with a kinetic module that solves the simplified drift-kinetic Vlasov equation for the electron velocity distribution function (EVDF). To avoid undue complexity, it is assumed that (i) the electrons move only along geomagnetic field lines and (ii) the electron magnetic moment is conserved. As a result, the evolution of the EVDF is reduced to the problem of advection in 2D phase space “distance along the field line - velocity along the field line”. This problem is solved using a semi-Lagrangian algorithm [Staniforth and Cote, 1991]. The kinetic simulation starts from the initial equilibrium state similar to [Ergun et al., 2000]. The equilibrium assumes that the plasma consists of two electron populations: cold electrons with isotropic EVDF originating from the ionosphere, and hot anisotropic electrons with a loss-cone EVDF coming from the high-altitude end. The loss-cone distribution is prone to strong numerical dispersion, which is compensated by tracing the interface of the EVDF in the coordinate-velocity phase space. Ergun R. E., C. W. Carlson, J. P. McFadden, F. S. Mozer, and R. J. Strangeway (2000), Geophys. Res. Lett., 27, 4053-4056. Staniforth A. and J. Cote (1991), Mon. Wea. Rev., 119, 2206-2223 Sydorenko, D., R. Rankin, and K. Kabin (2008), J. Geophys. Res., 113, A10206, doi:10.1029/2008JA013579.
NASA Technical Reports Server (NTRS)
Kepko, L.
2011-01-01
For nearly 30 years an often-times heated debate has engaged the substorm community: Do substorms begin with the formation of a new reconnection site in the midtail plasma sheet (the Near-Earth Neutral Line model) or do they begin near the transition region between stretched tail and dipolar field lines (the Current Disruption model). The THEMIS mission, with a coordinated suite of five in-situ spacecraft and ground observatories, has greatly extended our understanding of how substorms initiate and evolve. But have the new data resolved the fundamental question? In this talk I review the last few year's of sub storm research, with an emphasis of how the THEMIS data have revolutionized our understanding.
NASA Astrophysics Data System (ADS)
Staff, J. E.; Koning, N.; Ouyed, R.; Thompson, A.; Pudritz, R. E.
2015-02-01
We present the results of large scale, three-dimensional magnetohydrodynamics simulations of disc winds for different initial magnetic field configurations. The jets are followed from the source to 90 au scale, which covers several pixels of Hubble Space Telescope images of nearby protostellar jets. Our simulations show that jets are heated along their length by many shocks. We compute the emission lines that are produced, and find excellent agreement with observations. The jet width is found to be between 20 and 30 au while the maximum velocities perpendicular to the jet are found to be up to above 100 km s-1. The initially less open magnetic field configuration simulations result in a wider, two-component jet; a cylindrically shaped outer jet surrounding a narrow and much faster, inner jet. These simulations preserve the underlying Keplerian rotation profile of the inner jet to large distances from the source. However, for the initially most open magnetic field configuration the kink mode creates a narrow corkscrew-like jet without a clear Keplerian rotation profile and even regions where we observe rotation opposite to the disc (counter-rotating). The RW Aur jet is narrow, indicating that the disc field in that case is very open meaning the jet can contain a counter-rotating component that we suggest explains why observations of rotation in this jet have given confusing results. Thus magnetized disc winds from underlying Keplerian discs can develop rotation profiles far down the jet that is not Keplerian.
Virtual navigation performance: the relationship to field of view and prior video gaming experience.
Richardson, Anthony E; Collaer, Marcia L
2011-04-01
Two experiments examined whether learning a virtual environment was influenced by field of view and how it related to prior video gaming experience. In the first experiment, participants (42 men, 39 women; M age = 19.5 yr., SD = 1.8) performed worse on a spatial orientation task displayed with a narrow field of view in comparison to medium and wide field-of-view displays. Counter to initial hypotheses, wide field-of-view displays did not improve performance over medium displays, and this was replicated in a second experiment (30 men, 30 women; M age = 20.4 yr., SD = 1.9) presenting a more complex learning environment. Self-reported video gaming experience correlated with several spatial tasks: virtual environment pointing and tests of Judgment of Line Angle and Position, mental rotation, and Useful Field of View (with correlations between .31 and .45). When prior video gaming experience was included as a covariate, sex differences in spatial tasks disappeared.
NASA Astrophysics Data System (ADS)
Lapenta, Giovanni; Oieroset, Marit; Phan, Tai; Eastwood, Jonathan; Goldman, Martin; Newman, David L.; Russel, Christopher; Strangeway, Robert; Paterson, William; Giles, Barbara; Lavraud, Benoit; Khotyaintsev, Yuri; Ergun, Robert; Torbert, Roy; Burch, James
2017-04-01
Recently Øieroset et al. [2016] reported evidence for reconnection between colliding reconnection jets in a compressed current sheet at the center of a magnetic flux rope at Earth's magnetopause. Here, we set up a simulation with parameters similar to those observed: in particular we used the same guide field ratio to the in plane field. The initial state is a Harris sheet with mass ratio 256 and temperature ratio 10. The domain is 3D with box size 20x15x10 di. Reconnection is initiated at the two edges of the box by seeding an initial localized x-line. Reconnection starts at the two x-lines by design due to the strong perturbation. The subsequent evolution shows reconnection taking root in the initially seeded x-lines. Later an instability develops within the flux rope, likely similar to those reported in Lapenta et al. [2015], and secondary reconnection starts in a ring near the center of the flux rope. The analogy with the kink mode of laboratory and solar wind flux ropes[Lapenta et al., 2006] is striking and future work will be needed to investigate if the instability satisfies the Kruskal-Shafranov limit [Shafranov, 1957, Kruskal and Tuck, 1958]. At late times, the primary reconnection site becomes inactive and the secondary reconnection site becomes dominant. In this later stage, agyrotropy and J · E' are stronger in the center. But more strikingly, the ions are outflowing predominantly away from the secondary reconnection site in the central region of the flux rope and the ring near the center where reconnection signatures (agyrotropy and J · E') are strongest. The electron pressure presents several intense loci, identifying where strong electron energization by secondary reconnection takes place. The results of the simulation are studied producing synthetic virtual satellite diagnostics obtained from the simulation results but with a format similar to in situ spacecraft observations. With these data formats the results can be more readily be compared with the MMS data reported in Øieroset et al. [2016]. References M. Kruskal and J. Tuck. The instability of a pinched fluid with a longitudinal magnetic field. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 245(1241):222-237, 1958. G. Lapenta, I. Furno, and T. Intrator. Kink instability of flux ropes anchored at one end and free at the other. J. Geophys. Res., 111:A12S06, 2006. G. Lapenta, S. Markidis, M. V. Goldman, and D. L. Newman. Secondary reconnection sites in reconnection-generated flux ropes and reconnection fronts. Nature Physics, 11(8):690-695, 2015. M. Øieroset, T. Phan, C. Haggerty, M. Shay, J. Eastwood, et al. Mms observations of large guide field symmetric reconnection between colliding reconnection jets at the center of a magnetic flux rope at the magnetopause. Geophysical Research Letters, 2016.
Nanoscale shift of the intensity distribution of dipole radiation.
Shu, Jie; Li, Xin; Arnoldus, Henk F
2009-02-01
The energy flow lines (field lines of the Poynting vector) for radiation emitted by a dipole are in general curves, rather than straight lines. For a linear dipole the field lines are straight, but when the dipole moment of a source rotates, the field lines wind numerous times around an axis, which is perpendicular to the plane of rotation, before asymptotically approaching a straight line. We consider an elliptical dipole moment, representing the most general state of oscillation, and this includes the linear dipole as a special case. Due to the spiraling near the source, for the case of a rotating dipole moment, the field lines in the far field are displaced with respect to the outward radial direction, and this leads to a shift of the intensity distribution of the radiation in the far field. This shift is shown to be independent of the distance to the source and, although of nanoscale dimension, should be experimentally observable.
Sensor, method and system of monitoring transmission lines
Syracuse, Steven J.; Clark, Roy; Halverson, Peter G.; Tesche, Frederick M.; Barlow, Charles V.
2012-10-02
An apparatus, method, and system for measuring the magnetic field produced by phase conductors in multi-phase power lines. The magnetic field measurements are used to determine the current load on the conductors. The magnetic fields are sensed by coils placed sufficiently proximate the lines to measure the voltage induced in the coils by the field without touching the lines. The x and y components of the magnetic fields are used to calculate the conductor sag, and then the sag data, along with the field strength data, can be used to calculate the current load on the line and the phase of the current. The sag calculations of this invention are independent of line voltage and line current measurements. The system applies a computerized fitter routine to measured and sampled voltages on the coils to accurately determine the values of parameters associated with the overhead phase conductors.
Emergence of magnetic flux from the convection zone into the corona
NASA Astrophysics Data System (ADS)
Archontis, V.; Moreno-Insertis, F.; Galsgaard, K.; Hood, A.; O'Shea, E.
2004-11-01
Numerical experiments of the emergence of magnetic flux from the uppermost layers of the solar interior to the photosphere and its further eruption into the low atmosphere and corona are carried out. We use idealized models for the initial stratification and magnetic field distribution below the photosphere similar to those used for multidimensional flux emergence experiments in the literature. The energy equation is adiabatic except for the inclusion of ohmic and viscous dissipation terms, which, however, become important only at interfaces and reconnection sites. Three-dimensional experiments for the eruption of magnetic flux both into an unmagnetized corona and into a corona with a preexisting ambient horizontal field are presented. The shocks preceding the rising plasma present the classical structure of nonlinear Lamb waves. The expansion of the matter when rising into the atmosphere takes place preferentially in the horizontal directions: a flattened (or oval) low plasma-β ball ensues, in which the field lines describe loops in the corona with increasing inclination away from the vertical as one goes toward the sides of the structure. Magnetograms and velocity field distributions on horizontal planes are presented simultaneously for the solar interior and various levels in the atmosphere. Since the background pressure and density drop over many orders of magnitude with increasing height, the adiabatic expansion of the rising plasma yields very low temperatures. To avoid this, the entropy of the rising fluid elements should be increased to the high values of the original atmosphere via heating mechanisms not included in the present numerical experiments. The eruption of magnetic flux into a corona with a preexisting magnetic field pointing in the horizontal direction yields a clear case of essentially three-dimensional reconnection when the upcoming and ambient field systems come into contact. The coronal ambient field is chosen at time t=0 perpendicular to the direction of the tube axis and thus, given the twist of the magnetic tube, almost anti-parallel to the field lines at the upper boundary of the rising plasma ball. A thin, dome-shaped current layer is formed at the interface between the two flux systems, in which ohmic dissipation and heating are taking place. The reconnection proceeds by merging successive layers on both sides of the reconnection site; however, this occurs not only at the cusp of the interface, but, also, gradually along its sides in the direction transverse to the ambient magnetic field. The topology of the magnetic field in the atmosphere is thereby modified: the reconnected field lines typically are part of the flanks of the tube below the photosphere but then join the ambient field system in the corona and reach the boundaries of the domain as horizontal field lines.
NASA JSC water monitor system: City of Houston field demonstration
NASA Technical Reports Server (NTRS)
Taylor, R. E.; Jeffers, E. L.; Fricks, D. H.
1979-01-01
A water quality monitoring system with on-line and real time operation similar to the function in a spacecraft was investigated. A system with the capability to determine conformance to future high effluent quality standards and to increase the potential for reclamation and reuse of water was designed. Although all system capabilities were not verified in the initial field trial, fully automated operation over a sustained period with only routine manual adjustments was accomplished. Two major points were demonstrated: (1) the water monitor system has great potential in water monitoring and/or process control applications; and (2) the water monitor system represents a vast improvement over conventional (grab sample) water monitoring techniques.
The L = 6.6 Oosik barium plasma injection experiment and magnetic storm of March 7, 1972
NASA Technical Reports Server (NTRS)
Wescott, E. M.; Stenbaek-Nielsen, H. C.; Davis, T. N.; Murcray, W. B.; Peek, H. M.; Bottoms, P. J.
1975-01-01
A high-explosive shaped charge vaporizing a hollow conical liner of Ba metal and producing a fast field-aligned jet of plasma was detonated at high altitude, during a quiescent phase of a magnetic storm initiated by an ssc 10 hrs prior to the experiment, in an attempt to trace out and observe the dynamics of an auroral field line in the magnetosphere. Observations offer evidence for an upward Birkeland current sheet at the poleward edge of the auroral spiral of 8 x 10 to the minus second power A/m. Unusual features of the substorm leave open the possibility that the plasma injection may have triggered it.
Water depth measurement using an airborne pulsed neon laser system
NASA Technical Reports Server (NTRS)
Hoge, F. E.; Swift, R. N.; Frederick, E. B.
1980-01-01
The paper presents the water depth measurement using an airborne pulsed neon laser system. The results of initial base-line field test results of NASA airborne oceanographic lidar in the bathymetry mode are given, with water-truth measurements of depth and beam attenuation coefficients by boat taken at the same time as overflights to aid in determining the system's operational performance. The nadir-angle tests and field-of-view data are presented; this laser bathymetry system is an improvement over prior models in that (1) the surface-to-bottom pulse waveform is digitally recorded on magnetic tape, and (2) wide-swath mapping data may be routinely acquired using a 30 deg full-angle conical scanner.
Blanchette, Craig D.; Lin, Wan-Chen; Orme, Christine A.; Ratto, Timothy V.; Longo, Marjorie L.
2008-01-01
Domains within the plane of the plasma membrane, referred to as membrane rafts, have been a topic of considerable interest in the field of membrane biophysics. Although model membrane systems have been used extensively to study lipid phase behavior as it relates to the existence of rafts, very little work has focused on either the initial stage of lipid domain nucleation, or the relevant physical parameters such as temperature and interfacial line tension which control nucleation. In this work, we utilize a method in which the kinetic process of lipid domain nucleation is imaged by atomic force microscopy and modeled using classical theory of nucleation to map interfacial line tension in ternary lipid mixtures. These mixtures consist of a fluid phase lipid component (1,2-dilauroyl-sn-glycero-3-phosphocholine, 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine, or 1,2-dioleoyl-sn-glycero-3-phosphocholine), a solid phase component (galactosylceramide), and cholesterol. Interfacial line tension measurements of galactosylceramide-rich domains track with our previously measured area/perimeter ratios and height mismatches measured here. Line tension also follows known trends in cholesterol interactions and partitioning, as we observed previously with area/perimeter ratios. Our line tension measurements are discussed in combination with recent line tension measurements to address line tension regulation by cholesterol and the dynamic nature of membrane rafts. PMID:18065459
Results from a limited area mesoscale numerical simulation for 10 April 1979
NASA Technical Reports Server (NTRS)
Kalb, M. W.
1985-01-01
Results are presented from a nine-hour limited area fine mesh (35-km) mesoscale model simulation initialized with SESAME-AVE I radiosonde data for Apr. 10, 1979 at 2100 GMT. Emphasis is on the diagnosis of mesoscale structure in the mass and precipitation fields. Along the Texas/Oklahoma border, independent of the short wave, convective precipitation formed several hours into the simulation and was organized into a narrow band suggestive of the observed April 10 squall line.
A Short History of The Air University, Maxwell AFB, and the 42nd Air Base Wing
2014-07-31
established Aircraft and Engine Repair Depot No. 3 at the former Wright flying field. The depot operations continued until early 1919. In 1921, the...1943 the Army Air Forces (AAF) announced the opening of a specialized four- engine pilot school, initially to train air crews for the B-24 Liberator...AFIT first offered a master’s degree in systems engineering in March 2007, followed three months later by ACSC’s offering an on-line graduate
Rietsch, Stefan H G; Quick, Harald H; Orzada, Stephan
2015-08-01
In this work, the transmit performance and interelement coupling characteristics of radio frequency (RF) antenna microstrip line elements are examined in simulations and measurements. The initial point of the simulations is a microstrip line element loaded with a phantom. Meander structures are then introduced at the end of the element. The size of the meanders is increased in fixed steps and the magnetic field is optimized. In continuative simulations, the coupling between identical elements is evaluated for different element spacing and loading conditions. Verification of the simulation results is accomplished in measurements of the coupling between two identical elements for four different meander sizes. Image acquisition on a 7 T magnetic resonance imaging (MRI) system provides qualitative and quantitative comparisons to confirm the simulation results. Simulations point out an optimum range of meander sizes concerning coupling in all chosen geometric setups. Coupling measurement results are in good agreement with the simulations. Qualitative and quantitative comparisons of the acquired MRI images substantiate the coupling results. The coupling between coil elements in RF antenna arrays consisting of the investigated element types can be optimized under consideration of the central magnetic field strength or efficiency depending on the desired application.
Polarization singularity indices in Gaussian laser beams
NASA Astrophysics Data System (ADS)
Freund, Isaac
2002-01-01
Two types of point singularities in the polarization of a paraxial Gaussian laser beam are discussed in detail. V-points, which are vector point singularities where the direction of the electric vector of a linearly polarized field becomes undefined, and C-points, which are elliptic point singularities where the ellipse orientations of elliptically polarized fields become undefined. Conventionally, V-points are characterized by the conserved integer valued Poincaré-Hopf index η, with generic value η=±1, while C-points are characterized by the conserved half-integer singularity index IC, with generic value IC=±1/2. Simple algorithms are given for generating V-points with arbitrary positive or negative integer indices, including zero, at arbitrary locations, and C-points with arbitrary positive or negative half-integer or integer indices, including zero, at arbitrary locations. Algorithms are also given for generating continuous lines of these singularities in the plane, V-lines and C-lines. V-points and C-points may be transformed one into another. A topological index based on directly measurable Stokes parameters is used to discuss this transformation. The evolution under propagation of V-points and C-points initially embedded in the beam waist is studied, as is the evolution of V-dipoles and C-dipoles.
Application of Townsend avalanche theory to tokamak startup by coaxial helicity injection
NASA Astrophysics Data System (ADS)
Hammond, K. C.; Raman, R.; Volpe, F. A.
2018-01-01
The Townsend avalanche theory is employed to model and interpret plasma initiation in NSTX by Ohmic heating and coaxial helicity injection (CHI). The model is informed by spatially resolved vacuum calculations of electric field and magnetic field line connection length in the poloidal cross-section. The model is shown to explain observations of Ohmic startup including the duration and location of breakdown. Adapting the model to discharges initiated by CHI offers insight into the causes of upper divertor (absorber) arcs in cases where the discharge fails to start in the lower divertor gap. Finally, upper and lower limits are established for vessel gas fill based on requirements for breakdown and radiation. It is predicted that CHI experiments on NSTX-U should be able to use as much as four times the amount of prefill gas employed in CHI experiments in NSTX. This should provide greater flexibility for plasma start-up, as the injector flux is projected to be increased in NSTX-U.
ELF field in the proximity of complex power line configuration measurement procedures.
Benes, M; Comelli, M; Villalta, R
2006-01-01
The issue of how to measure magnetic induction fields generated by various power line configurations, when there are several power lines that run across the same exposure area, has become a matter of interest and study within the Regional Environment Protection Agency of Friuli Venezia Giulia. In classifying the various power line typologies the definition of double circuit line was given: in this instance the magnetic field is determined by knowing the electrical and geometric parameters of the line. In the case of independent lines instead, the field is undetermined. It is therefore pointed out how, in the latter case, extracting previsional information from a set of measurements of the magnetic field alone is impossible. Making measurements throughout the territory of service has in several cases offered the opportunity to define standard operational procedures.
Extracts from black carrot tissue culture as potent anticancer agents.
Sevimli-Gur, Canan; Cetin, Burcu; Akay, Seref; Gulce-Iz, Sultan; Yesil-Celiktas, Ozlem
2013-09-01
Black carrots contain anthocyanins possessing enhanced physiological activities. Explants of young black carrot shoots were cultured in Murashige and Skoog (MS) medium for callus initiation and were transferred to new MS medium supplemented with four different combinations of 2,4-dichlorophenoxyacetic acid and kinetin. Subsequently, the lyophilized calli and black carrot harvested from fields were subjected to ultrasound extraction with ethanol at a ratio of 1:15 (w:v). Obtained extracts were applied to various human cancer cell lines including MCF-7 SK-BR-3 and MDA-MB-231 (human breast adenocarcinomas), HT-29 (human colon adenocarcinoma), PC-3 (human prostate adenocarcinoma), Neuro 2A (Musmusculus neuroblastoma) cancer cell lines and VERO (African green monkey kidney) normal cell line by MTT assay. The highest cytotoxic activity was achieved against Neuro-2A cell lines exhibiting viability of 38-46% at 6.25 μg/ml concentration for all calli and natural extracts. However, a significantly high IC50 value of 170.13 μg/ml was attained in normal cell line VERO indicating that its natural counterpart is an ideal candidate for treatment of brain cancer without causing negative effects to normal healthy cells.
Deformation and deceleration of coronal wave
NASA Astrophysics Data System (ADS)
Xue, Z. K.; Qu, Z. Q.; Yan, X. L.; Zhao, L.; Ma, L.
2013-08-01
Aims: We studied the kinematics and morphology of two coronal waves to better understand the nature and origin of coronal waves. Methods: Using multi-wavelength observations of the Atmospheric Imaging Assembly (AIA) on board the Solar Dynamics Observatory (SDO) and the Extreme Ultraviolet Imager (EUVI) on board the twin spacecraft Solar-TErrestrial RElations Observatory (STEREO), we present morphological and dynamic characteristics of consecutive coronal waves on 2011 March 24. We also show the coronal magnetic field based on the potential field source surface model. Results: This event contains several interesting aspects. The first coronal wave initially appeared after a surge-like eruption. Its front was changed and deformed significantly from a convex shape to a line-shaped appearance, and then to a concave configuration during its propagation to the northwest. The initial speeds ranged from 947 km s-1 to 560 km s-1. The first wave decelerated significantly after it passed through a filament channel. After the deceleration, the final propagation speeds of the wave were from 430 km s-1 to 312 km s-1. The second wave was found to appear after the first wave in the northwest side of the filament channel. Its wave front was more diffused and the speed was around 250 km s-1, much slower than that of the first wave. Conclusions: The deformation of the first coronal wave was caused by the different speeds along different paths. The sudden deceleration implies that the refraction of the first wave took place at the boundary of the filament channel. The event provides evidence that the first coronal wave may be a coronal MHD shock wave, and the second wave may be the apparent propagation of the brightenings caused by successive stretching of the magnetic field lines.
PWSCC Susceptibility in Heat Affected Zones of Alloy 600
NASA Astrophysics Data System (ADS)
Couvant, Thierry; Brossier, Thomas; Cossange, Christian
The recent field experience and several experimental results have shown the possible deleterious effect of a heat affected zone (HAZ) induced by welding on the susceptibility to the stress corrosion cracking (SCC) of Alloy 600 of bottom penetrations exposed to primary water of PWRs. This work tried to quantify the increasing susceptibility to initiation and crack propagation in 600/182 HAZ. The rolled plate did not exhibit any susceptibility to SCC except for a cold work higher than 10% typically. By contrast, the weld metal was well known for its high susceptibility to SCC. Metallurgical and mechanical characterizations of the HAZ indicated a slight gradient of Vickers micro hardness close to the fusion line (up to few mm) and a lack of intergranular precipitates up to 500 µm from the fusion line. SCC tests clearly demonstrated that a non-susceptible plate may exhibit a significant susceptibility to SCC propagation in the HAZ. Results of initiation tests did not allow to observe any SCC in the base metal, due to the high susceptibility to SCC of the weld.
A Long DNA Segment in a Linear Nanoscale Paul Trap
DOE Office of Scientific and Technical Information (OSTI.GOV)
Joseph, Sony nmn; Guan, Weihau; Reed, Mark A
2009-01-01
We study the dynamics of a linearly distributed line charge such as single stranded DNA (ssDNA) in a nanoscale, linear 2D Paul trap in vacuum. Using molecular dynamics simulations we show that a line charge can be trapped effectively in the trap for a well defined range of stability parameters. We investigated (i) a flexible bonded string of charged beads and (ii) a ssDNA polymer of variable length, for various trap parameters. A line charge undergoes oscillations or rotations as it moves, depending on its initial angle, the position of the center of mass and the velocity. The stability regionmore » for a strongly bonded line of charged beads is similar to that of a single ion with the same charge to mass ratio. Single stranded DNA as long as 40 nm does not fold or curl in the Paul trap, but could undergo rotations about the center of mass. However, we show that a stretching field in the axial direction can effectively prevent the rotations and increase the confinement stability.« less
A geometric model for initial orientation errors in pigeon navigation.
Postlethwaite, Claire M; Walker, Michael M
2011-01-21
All mobile animals respond to gradients in signals in their environment, such as light, sound, odours and magnetic and electric fields, but it remains controversial how they might use these signals to navigate over long distances. The Earth's surface is essentially two-dimensional, so two stimuli are needed to act as coordinates for navigation. However, no environmental fields are known to be simple enough to act as perpendicular coordinates on a two-dimensional grid. Here, we propose a model for navigation in which we assume that an animal has a simplified 'cognitive map' in which environmental stimuli act as perpendicular coordinates. We then investigate how systematic deviation of the contour lines of the environmental signals from a simple orthogonal arrangement can cause errors in position determination and lead to systematic patterns of directional errors in initial homing directions taken by pigeons. The model reproduces patterns of initial orientation errors seen in previously collected data from homing pigeons, predicts that errors should increase with distance from the loft, and provides a basis for efforts to identify further sources of orientation errors made by homing pigeons. Copyright © 2010 Elsevier Ltd. All rights reserved.
Observations of a Small Interplanetary Magnetic Flux Rope Opening by Interchange Reconnection
NASA Astrophysics Data System (ADS)
Wang, J. M.; Feng, H. Q.; Zhao, G. Q.
2018-01-01
Interchange reconnection, specifically magnetic reconnection between open magnetic fields and closed magnetic flux ropes, plays a major role in the heliospheric magnetic flux budget. It is generally accepted that closed magnetic field lines of interplanetary magnetic flux ropes (IMFRs) can gradually open through reconnection between one of its legs and other open field lines until no closed field lines are left to contribute flux to the heliosphere. In this paper, we report an IMFR associated with a magnetic reconnection exhaust, whereby its closed field lines were opening by a magnetic reconnection event near 1 au. The reconnection exhaust and the following IMFR were observed on 2002 February 2 by both the Wind and ACE spacecraft. Observations on counterstreaming suprathermal electrons revealed that most magnetic field lines of the IMFR were closed, especially those after the front boundary of the IMFR, with both ends connected to the Sun. The unidirectional suprathermal electron strahls before the exhaust manifested the magnetic field lines observed before the exhaust was open. These observations provide direct evidence that closed field lines of IMFRs can be opened by interchange reconnection in interplanetary space. This is the first report of the closed field lines of IMFRs being opened by interchange reconnection in interplanetary space. This type of interplanetary interchange reconnection may pose important implications for balancing the heliospheric flux budget.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guildenbecher, Daniel Robert; Munz, Elise Dahnke; Farias, Paul Abraham
2015-12-01
Digital in-line holography and plenoptic photography are two techniques for single-shot, volumetric measurement of 3D particle fields. Here we present a preliminary comparison of the two methods by applying plenoptic imaging to experimental configurations that have been previously investigated with digital in-line holography. These experiments include the tracking of secondary droplets from the impact of a water drop on a thin film of water and tracking of pellets from a shotgun. Both plenoptic imaging and digital in-line holography successfully quantify the 3D nature of these particle fields. This includes measurement of the 3D particle position, individual particle sizes, and three-componentmore » velocity vectors. For the initial processing methods presented here, both techniques give out-of-plane positional accuracy of approximately 1-2 particle diameters. For a fixed image sensor, digital holography achieves higher effective in-plane spatial resolutions. However, collimated and coherent illumination makes holography susceptible to image distortion through index of refraction gradients, as demonstrated in the shotgun experiments. On the other hand, plenotpic imaging allows for a simpler experimental configuration. Furthermore, due to the use of diffuse, white-light illumination, plenoptic imaging is less susceptible to image distortion in the shotgun experiments. Additional work is needed to better quantify sources of uncertainty, particularly in the plenoptic experiments, as well as develop data processing methodologies optimized for the plenoptic measurement.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guildenbecher, Daniel Robert; Munz, Elise Dahnke; Farias, Paul Abraham
2015-12-01
Digital in-line holography and plenoptic photography are two techniques for single-shot, volumetric measurement of 3D particle fields. Here we present a preliminary comparison of the two methods by applying plenoptic imaging to experimental configurations that have been previously investigated with digital in-line holography. These experiments include the tracking of secondary droplets from the impact of a water drop on a thin film of water and tracking of pellets from a shotgun. Both plenoptic imaging and digital in-line holography successfully quantify the 3D nature of these particle fields. This includes measurement of the 3D particle position, individual particle sizes, and three-componentmore » velocity vectors. For the initial processing methods presented here, both techniques give out-of-plane positional accuracy of approximately 1-2 particle diameters. For a fixed image sensor, digital holography achieves higher effective in-plane spatial resolutions. However, collimated and coherent illumination makes holography susceptible to image distortion through index of refraction gradients, as demonstrated in the shotgun experiments. On the other hand, plenotpic imaging allows for a simpler experimental configuration. Furthermore, due to the use of diffuse, white-light illumination, plenoptic imaging is less susceptible to image distortion in the shotgun experiments. Additional work is needed to better quantify sources of uncertainty, particularly in the plenoptic experiments, as well as develop data processing methodologies optimized for the plenoptic measurement.« less
CCMC Modeling of Magnetic Reconnection in Electron Diffusion Region Events
NASA Astrophysics Data System (ADS)
Marshall, A.; Reiff, P. H.; Daou, A.; Webster, J.; Sazykin, S. Y.; Kuznetsova, M.; Grocer, A.; Rastaetter, L.; Welling, D. T.; DeZeeuw, D.; Russell, C. T.
2017-12-01
We use the unprecedented spatial and temporal cadence of the Magnetospheric Multiscale Mission to study four electron diffusion events, and infer important physical properties of their respective magnetic reconnection processes. We couple these observations with numerical simulations using tools such as SWMF with RCM, and RECON-X, from the Coordinated Community Modeling Center, to provide, for a first time, a coherent temporal description of the magnetic reconnection process through tracing the coupling of IMF and closed Earth magnetic field lines, leading to the corresponding polar cap open field lines. We note that the reconnection geometry is far from slab-like: the IMF field lines drape over the magnetopause, lending to a stretching of the field lines. The stretched field lines become parallel to, and merge with the dayside separator. Surprisingly, the inner closed field lines also distort to become parallel to the separator. This parallel geometry allows a very sharp boundary between open and closed field lines. In three of the events, the MMS location was near the predicted separator location; in the fourth it was near the outflow region.
NASA Technical Reports Server (NTRS)
Voigt, Gerd-Hannes
1986-01-01
Field-aligned Birkeland currents and the angle of the magnetic line twist were calculated for an axially symmetric pole-on magnetosphere (assumed to be in MHD equilibrium). The angle of the field line twist was shown to have a strong radial dependence on the axisymmetric magnetotail as well as on the ionospheric conductivity and the amount of thermal plasma contained in closed magnetotail flux tubes. The field line twist results from the planetary rotation, which leads to the development of a toroidal magnetic B-sub-phi component and to differentially rotating magnetic field lines. It was shown that the time development of the toroidal magnetic B-sub-phi component and the rotation frequency are related through an induction equation.
Modeling the Earth's magnetospheric magnetic field confined within a realistic magnetopause
NASA Technical Reports Server (NTRS)
Tsyganenko, N. A.
1995-01-01
Empirical data-based models of the magnetosphereic magnetic field have been widely used during recent years. However, the existing models (Tsyganenko, 1987, 1989a) have three serious deficiencies: (1) an unstable de facto magnetopause, (2) a crude parametrization by the K(sub p) index, and (3) inaccuracies in the equatorial magnetotail B(sub z) values. This paper describes a new approach to the problem; the essential new features are (1) a realistic shape and size of the magnetopause, based on fits to a large number of observed crossing (allowing a parametrization by the solar wind pressure), (2) fully controlled shielding of the magnetic field produced by all magnetospheric current systems, (3) new flexible representations for the tail and ring currents, and (4) a new directional criterion for fitting the model field to spacecraft data, providing improved accuracy for field line mapping. Results are presented from initial efforts to create models assembled from these modules and calibrated against spacecraft data sets.
Transient behavior of a flare-associated solar wind. I - Gas dynamics in a radial open field region
NASA Technical Reports Server (NTRS)
Nagai, F.
1984-01-01
A numerical investigation is conducted into the way in which a solar wind model initially satisfying both steady state and energy balance conditions is disturbed and deformed, under the assumption of heating that correspoonds to the energy release of solar flares of an importance value of approximately 1 which occur in radial open field regions. Flare-associated solar wind transient behavior is modeled for 1-8 solar radii. The coronal temperature around the heat source region rises, and a large thermal conductive flux flows inward to the chromosphere and outward to interplanetary space along field lines. The speed of the front of expanding chromospheric material generated by the impingement of the conduction front on the upper chromosphere exceeds the local sound velocity in a few minutes and eventually exceeds 100 million cm/sec.
Simulations of Flare Reconnection in Breakout Coronal Mass Ejections
NASA Astrophysics Data System (ADS)
DeVore, C. Richard; Karpen, J. T.; Antiochos, S. K.
2009-05-01
We report 3D MHD simulations of the flare reconnection in the corona below breakout coronal mass ejections (CMEs). The initial setup is a single bipolar active region imbedded in the global-scale background dipolar field of the Sun, forming a quadrupolar magnetic configuration with a coronal null point. Rotational motions applied to the active-region polarities at the base of the atmosphere introduce shear across the polarity inversion line (PIL). Eventually, the magnetic stress and energy reach the critical threshold for runaway breakout reconnection, at which point the sheared core field erupts outward at high speed. The vertical current sheet formed by the stretching of the departing sheared field suffers reconnection that reforms the initial low-lying arcade across the PIL, i.e., creates the flare loops. Our simulation model, the Adaptively Refined MHD Solver, exploits local grid refinement to resolve the detailed structure and evolution of the highly dynamic current sheet. We are analyzing the numerical experiments to identify and interpret observable signatures of the flare reconnection associated with CMEs, e.g., the flare loops and ribbons, coronal jets and shock waves, and possible origins of solar energetic particles. This research was supported by NASA and ONR.
Post-fall-back evolution of multipolar magnetic fields and radio pulsar activation
NASA Astrophysics Data System (ADS)
Igoshev, A. P.; Elfritz, J. G.; Popov, S. B.
2016-11-01
It has long been unclear if the small-scale magnetic structures on the neutron star (NS) surface could survive the fall-back episode. The study of the Hall cascade by Cumming, Arras & Zweibel hinted that energy in small-scales structures should dissipate on short time-scales. Our new 2D magneto-thermal simulations suggest the opposite. For the first ˜10 kyr after the fall-back episode with accreted mass 10-3 M⊙, the observed NS magnetic field appears dipolar, which is insensitive to the initial magnetic topology. In framework of the Ruderman & Sutherland, vacuum gap model during this interval, non-thermal radiation is strongly suppressed. After this time, the initial (I.e. multipolar) structure begins to re-emerge through the NS crust. We distinguish three evolutionary epochs for the re-emergence process: the growth of internal toroidal field, the advection of buried poloidal field, and slow Ohmic diffusion. The efficiency of the first two stages can be enhanced when small-scale magnetic structure is present. The efficient re-emergence of high-order harmonics might significantly affect the curvature of the magnetospheric field lines in the emission zone. So, only after few 104 yr would be the NS starts shining as a pulsar again, which is in correspondence with radio silence of central compact objects. In addition, these results can explain the absence of good candidates for thermally emitting NSs with freshly re-emerged field among radio pulsars (), as NSs have time to cool down, and supernova remnants can already dissipate.
NASA Technical Reports Server (NTRS)
Dorn, H. C.; Wang, J. S.; Glass, T. E.
1986-01-01
This study involves the development of C-13 nuclear resonance as an on-line detector for liquid chromatography (LC-C-13 NMR) for the chemical characterization of aviation fuels. The initial focus of this study was the development of a high sensitivity flow C-13 NMR probe. Since C-13 NMR sensitivity is of paramount concern, considerable effort during the first year was directed at new NMR probe designs. In particular, various toroid coil designs were examined. In addition, corresponding shim coils for correcting the main magnetic field (B sub 0) homogeneity were examined. Based on these initial probe design studies, an LC-C-13 NMR probe was built and flow C-13 NMR data was obtained for a limited number of samples.
Ravat, D.; Finn, C.; Hill, P.; Kucks, R.; Phillips, J.; Blakely, R.; Bouligand, C.; Sabaka, T.; Elshayat, A.; Aref, A.; Elawadi, E.
2009-01-01
Under an initiative started by Thomas G. Hildenbrand of the U.S. Geological Survey, we have improved the long-wavelength (50-2,500 km) content of the regional magnetic anomaly compilation for the conterminous United States by utilizing a nearly homogeneous set of National Uranium Resource Evaluation (NURE) magnetic surveys flown from 1975 to 1981. The surveys were flown in quadrangles of 2 deg of longitude by 1 deg of latitude with east-west flight lines spaced 4.8 to 9.6 km apart, north-south tie lines variably spaced, and a nominal terrain clearance of 122 m. Many of the surveys used base-station magnetometers to remove external field variations.
Proposal for a United Nations Basic Space Technology Initiative
NASA Astrophysics Data System (ADS)
Balogh, Werner
Putting space technology and its applications to work for sustainable economic and social development is the primary objective of the United Nations Programme on Space Applications, launched in 1971. A specific goal for achieving this objective is to establish a sustainable national space capacity. The traditional line of thinking has supported a logical progression from building capacity in basic space science, to using space applications and finally - possibly - to establishing indigenous space technology capabilities. The experience in some countries suggests that such a strict line of progression does not necessarily hold true and that priority given to the establishment of early indigenous space technology capabilities may contribute to promoting the operational use of space applications in support of sustainable economic and social development. Based on these findings and on the experiences with the United Nations Basic Space Science Initiative (UNBSSI) as well as on a series of United Nations/International Academy of Astronautics Workshops on Small Satellites in the Service of Developing Countries, the United Nations Office for Outer Space Affairs (UNOOSA) is considering the launch of a dedicated United Nations Basic Space Technology Initiative (UNBSTI). The initiative would aim to contribute to capacity building in basic space technology and could include, among other relevant fields, activities related to the space and ground segments of small satellites and their applications. It would also provide an international framework for enhancing cooperation between all interested actors, facilitate the exchange of information on best practices, and contribute to standardization efforts. It is expected that these activities would advance the operational use of space technology and its applications in an increasing number of space-using countries and emerging space nations. The paper reports on these initial considerations and on the potential value-adding role the United Nations could play with such an initiative.
Solar monochromatic images in magneto-sensitive spectral lines and maps of vector magnetic fields
NASA Technical Reports Server (NTRS)
Shihui, Y.; Jiehai, J.; Minhan, J.
1985-01-01
A new method which allows by use of the monochromatic images in some magneto-sensitive spectra line to derive both the magnetic field strength as well as the angle between magnetic field lines and line of sight for various places in solar active regions is described. In this way two dimensional maps of vector magnetic fields may be constructed. This method was applied to some observational material and reasonable results were obtained. In addition, a project for constructing the three dimensional maps of vector magnetic fields was worked out.
NASA Astrophysics Data System (ADS)
Kannberg, P. K.; Constable, S.
2014-12-01
Methane hydrate, an ice-like clathrate of water and methane, forms in shallow continental slope sediments, and is both a potential energy source and geologic hazard. Hydrates presence is traditionally inferred from the presence of the bottom simulating reflector (BSR), a seismic velocity inversion resulting from free gas pooling at the base of the hydrate stability field. The BSR is not a measure of hydrate, but rather a proxy for free gas presence. Whereas seismic methods are sensitive to velocity anomalies, controlled-source electromagnetic (CSEM) methods are sensitive to conductivity anomalies. The electrically resistive methane hydrate makes a favorable target for CSEM surveys, which are capable of detecting and potentially quantifying the presence of methane hydrate directly. Building on previous work 100km to the south in the San Nicolas Basin, we present initial results from a 6-day June 2014 survey in the Santa Cruz Basin, located 100km west of Los Angeles. CSEM surveys are performed by deep-towing an EM source that is transmitting a known signal; this signal is detected by towed and seafloor receivers. The initial EM source signal is altered by the electrical properties of the surrounding environment. Conductors such as brine and seawater are attenuating mediums, while resistors such as methane hydrate, gas, and oil are preservative of the original signal. Twenty-one seafloor receivers, as well as a 4 receiver towed array were deployed to image the resistivity structure of the Santa Cruz Basin. Using 30-year-old 2D seismic profiles as a guide, potential hydrate targets were identified, and the transmitter and array were towed over 150 km on 6 lines with 5 seafloor receivers each. The 6 towed lines were coincident with legacy seismic lines. The towed array is sensitive to sediment depths less than 1km, allowing for high data density through the hydrate stability field. The larger transmitter-receiver offsets of the seafloor receivers allow sensitivity to at least 3km below the seafloor. Combining the two data sets allows for both high resolution in the near-seafloor hydrate accumulations as well as imaging the potential gas-source regions of the hydrate field.
49 CFR 192.715 - Transmission lines: Permanent field repair of welds.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 49 Transportation 3 2014-10-01 2014-10-01 false Transmission lines: Permanent field repair of... § 192.715 Transmission lines: Permanent field repair of welds. Each weld that is unacceptable under § 192.241(c) must be repaired as follows: (a) If it is feasible to take the segment of transmission line...
49 CFR 192.715 - Transmission lines: Permanent field repair of welds.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 49 Transportation 3 2010-10-01 2010-10-01 false Transmission lines: Permanent field repair of... § 192.715 Transmission lines: Permanent field repair of welds. Each weld that is unacceptable under § 192.241(c) must be repaired as follows: (a) If it is feasible to take the segment of transmission line...
49 CFR 192.715 - Transmission lines: Permanent field repair of welds.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 49 Transportation 3 2013-10-01 2013-10-01 false Transmission lines: Permanent field repair of... § 192.715 Transmission lines: Permanent field repair of welds. Each weld that is unacceptable under § 192.241(c) must be repaired as follows: (a) If it is feasible to take the segment of transmission line...
49 CFR 192.715 - Transmission lines: Permanent field repair of welds.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 49 Transportation 3 2012-10-01 2012-10-01 false Transmission lines: Permanent field repair of... § 192.715 Transmission lines: Permanent field repair of welds. Each weld that is unacceptable under § 192.241(c) must be repaired as follows: (a) If it is feasible to take the segment of transmission line...
49 CFR 192.715 - Transmission lines: Permanent field repair of welds.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 49 Transportation 3 2011-10-01 2011-10-01 false Transmission lines: Permanent field repair of... § 192.715 Transmission lines: Permanent field repair of welds. Each weld that is unacceptable under § 192.241(c) must be repaired as follows: (a) If it is feasible to take the segment of transmission line...
Iterative Refinement of Transmission Map for Stereo Image Defogging Using a Dual Camera Sensor.
Kim, Heegwang; Park, Jinho; Park, Hasil; Paik, Joonki
2017-12-09
Recently, the stereo imaging-based image enhancement approach has attracted increasing attention in the field of video analysis. This paper presents a dual camera-based stereo image defogging algorithm. Optical flow is first estimated from the stereo foggy image pair, and the initial disparity map is generated from the estimated optical flow. Next, an initial transmission map is generated using the initial disparity map. Atmospheric light is then estimated using the color line theory. The defogged result is finally reconstructed using the estimated transmission map and atmospheric light. The proposed method can refine the transmission map iteratively. Experimental results show that the proposed method can successfully remove fog without color distortion. The proposed method can be used as a pre-processing step for an outdoor video analysis system and a high-end smartphone with a dual camera system.
Kuster, S; Riolfo, L A; Zalts, A; El Hasi, C; Almarcha, C; Trevelyan, P M J; De Wit, A; D'Onofrio, A
2011-10-14
Buoyancy-driven hydrodynamic instabilities of acid-base fronts are studied both experimentally and theoretically in the case where an aqueous solution of a strong acid is put above a denser aqueous solution of a color indicator in the gravity field. The neutralization reaction between the acid and the color indicator as well as their differential diffusion modifies the initially stable density profile in the system and can trigger convective motions both above and below the initial contact line. The type of patterns observed as well as their wavelength and the speed of the reaction front are shown to depend on the value of the initial concentrations of the acid and of the color indicator and on their ratio. A reaction-diffusion model based on charge balances and ion pair mobility explains how the instability scenarios change when the concentration of the reactants are varied.
Iterative Refinement of Transmission Map for Stereo Image Defogging Using a Dual Camera Sensor
Park, Jinho; Park, Hasil
2017-01-01
Recently, the stereo imaging-based image enhancement approach has attracted increasing attention in the field of video analysis. This paper presents a dual camera-based stereo image defogging algorithm. Optical flow is first estimated from the stereo foggy image pair, and the initial disparity map is generated from the estimated optical flow. Next, an initial transmission map is generated using the initial disparity map. Atmospheric light is then estimated using the color line theory. The defogged result is finally reconstructed using the estimated transmission map and atmospheric light. The proposed method can refine the transmission map iteratively. Experimental results show that the proposed method can successfully remove fog without color distortion. The proposed method can be used as a pre-processing step for an outdoor video analysis system and a high-end smartphone with a dual camera system. PMID:29232826
Externally-Driven Onset of Localized Magnetic Reconnection in a Magnetotail Configuration
NASA Astrophysics Data System (ADS)
Pritchett, P. L.; Lu, S.
2017-12-01
In observations of the nightside auroral arcs and ionospheric currents, the onset or breakup phase of a substorm is sharply defined in time and is highly localized in space. Attempts to understand this localization in terms of the onset of localized magnetic reconnection have generally been unsuccessful. Thus, a y-localized driving convection electric field Ey applied at the lobe boundaries spreads out before it reaches the equatorial plane and results only in 2-D reconnection. In this work, the response of a magnetotail equilibrium containing a dipole magnetic field and plasma sheet regions to the imposition of a longitudinally-limited, high-latitude driving electric field is investigated using 3-D particle-in-cell simulations. The initial response involves a reduction in the equatorial Bz field that is then followed by the development of a dawn-dusk asymmetric current sheet relative to the meridian plane of the driving field. The key feature is the presence of a dusk-side Hall electric field Ez that drives magnetic flux dawnward and thus further reduces the Bz field on the duskward side. The net result is that Bz is driven through zero in a localized region on the duskward side, leading to the onset of localized reconnection and the emergence of magnetic flux ropes. The cross-tail extent of the reconnection expands but remains limited to ˜30di, where di is the ion inertia length. The dissipation E' \\cdot J is peaked along the finite X line, with a load region (negative E' \\cdot J) forming tailward of this region. The particle energy spectra in the downtail region show shoulders for the ions in the energy range ˜3-8Eth (Eth is the initial thermal energy) and extended tails for the electrons in the range ˜10-20Eth. These results demonstrate the ability of a high-latitude disturbance that may be connected to dayside flow channels [Nishimura et al., 2014] to initiate localized magnetic reconnection in the magnetotail.
NASA Astrophysics Data System (ADS)
Fernandez, M. A.; Covey, Kevin R.; De Lee, Nathan; Chojnowski, S. Drew; Nidever, David; Ballantyne, Richard; Cottaar, Michiel; Da Rio, Nicola; Foster, Jonathan B.; Majewski, Steven R.; Meyer, Michael R.; Reyna, A. M.; Roberts, G. W.; Skinner, Jacob; Stassun, Keivan; Tan, Jonathan C.; Troup, Nicholas; Zasowski, Gail
2017-08-01
We present radial velocity measurements for 70 high confidence, and 34 potential binary systems in fields containing the Perseus Molecular Cloud, Pleiades, NGC 2264, and the Orion A star-forming region. Eighteen of these systems have been previously identified as binaries in the literature. Candidate double-lined spectroscopic binaries (SB2s) are identified by analyzing the cross-correlation functions (CCFs) computed during the reduction of each APOGEE spectrum. We identify sources whose CCFs are well fit as the sum of two Lorentzians as likely binaries, and provide an initial characterization of the system based on the radial velocities indicated by that dual fit. For systems observed over several epochs, we present mass ratios and systemic velocities; for two systems with observations on eight or more epochs, and which meet our criteria for robust orbital coverage, we derive initial orbital parameters. The distribution of mass ratios for multi-epoch sources in our sample peaks at q = 1, but with a significant tail toward lower q values. Tables reporting radial velocities, systemic velocities, and mass ratios are provided online. We discuss future improvements to the radial velocity extraction method we employ, as well as limitations imposed by the number of epochs currently available in the APOGEE database. The Appendix contains brief notes from the literature on each system in the sample, and more extensive notes for select sources of interest.
NASA Technical Reports Server (NTRS)
Khazanov, G. V.; Tripathi, A. K.; Singhal, R. P.; Himwich, Elizabeth; Glocer, A.; Sibeck, D. G.
2015-01-01
There are two main theories for the origin of the diffuse auroral electron precipitation: first, pitch angle scattering by electrostatic electron cyclotron harmonic (ECH) waves, and second, by whistler mode waves. Precipitating electrons initially injected from the plasma sheet to the loss cone via wave-particle interaction processes degrade in the atmosphere toward lower energies and produce secondary electrons via impact ionization of the neutral atmosphere. These secondary electrons can escape back to the magnetosphere, become trapped on closed magnetic field lines, and deposit their energy back to the inner magnetosphere. ECH and whistler mode waves can also move electrons in the opposite direction, from the loss cone into the trap zone, if the source of such electrons exists in conjugate ionospheres located at the same field lines as the trapped magnetospheric electron population. Such a situation exists in the simulation scenario of superthermal electron energy interplay in the region of diffuse aurora presented and discussed by Khazanov et al. (2014) and will be quantified in this paper by taking into account the interaction of secondary electrons with ECH waves.
NASA Astrophysics Data System (ADS)
Chandrashekar, Anand; Chen, Feng; Lin, Jasmine; Humayun, Raashina; Wongsenakhum, Panya; Chang, Sean; Danek, Michal; Itou, Takamasa; Nakayama, Tomoo; Kariya, Atsushi; Kawaguchi, Masazumi; Hizume, Shunichi
2010-09-01
This paper describes electrical testing results of new tungsten chemical vapor deposition (CVD-W) process concepts that were developed to address the W contact and bitline scaling issues on 55 nm node devices. Contact resistance (Rc) measurements in complementary metal oxide semiconductor (CMOS) devices indicate that the new CVD-W process for sub-32 nm and beyond - consisting of an advanced pulsed nucleation layer (PNL) combined with low resistivity tungsten (LRW) initiation - produces a 20-30% drop in Rc for diffused NiSi contacts. From cross-sectional bright field and dark field transmission electron microscopy (TEM) analysis, such Rc improvement can be attributed to improved plugfill and larger in-feature W grain size with the advanced PNL+LRW process. More experiments that measured contact resistance for different feature sizes point to favorable Rc scaling with the advanced PNL+LRW process. Finally, 40% improvement in line resistance was observed with this process as tested on 55 nm embedded dynamic random access memory (DRAM) devices, confirming that the advanced PNL+LRW process can be an effective metallization solution for sub-32 nm devices.
Factors that Influence RF Breakdown in Antenna Systems
NASA Astrophysics Data System (ADS)
Caughman, J. B. O.; Baity, F. W.; Rasmussen, D. A.; Aghazarian, M.; Castano Giraldo, C. H.; Ruzic, David
2007-11-01
One of the main power-limiting factors in antenna systems is the maximum voltage that the antenna or vacuum transmission line can sustain before breaking down. The factors that influence RF breakdown are being studied in a resonant 1/4-wavelength section of vacuum transmission line terminated with an open circuit electrode structure. Breakdown can be initiated via electron emission by high electric fields and by plasma formation in the structure, depending on the gas pressure. Recent experiments have shown that a 1 kG magnetic field can influence plasma formation at pressures as low as 8x10-5 Torr at moderate voltage levels (<5 kV). Ultraviolet light, with energies near the work function of the electrode material, can induce a multipactor discharge and limit power transmission. Details of these experimental results, including the effect of electrode materials (Ni and Cu), will be presented. Oak Ridge National Laboratory is managed by UT-Battelle, LLC, for the U.S. Dept. of Energy under contract DE-AC05-00OR22725. Work supported by USDOE with grant DE-FG02-04ER54765
NASA Astrophysics Data System (ADS)
Cao, Liji; Peter, Jörg
2013-06-01
The adoption of axially oriented line illumination patterns for fluorescence excitation in small animals for fluorescence surface imaging (FSI) and fluorescence optical tomography (FOT) is being investigated. A trimodal single-photon-emission-computed-tomography/computed-tomography/optical-tomography (SPECT-CT-OT) small animal imaging system is being modified for employment of point- and line-laser excitation sources. These sources can be arbitrarily positioned around the imaged object. The line source is set to illuminate the object along its entire axial direction. Comparative evaluation of point and line illumination patterns for FSI and FOT is provided involving phantom as well as mouse data. Given the trimodal setup, CT data are used to guide the optical approaches by providing boundary information. Furthermore, FOT results are also being compared to SPECT. Results show that line-laser illumination yields a larger axial field of view (FOV) in FSI mode, hence faster data acquisition, and practically acceptable FOT reconstruction throughout the whole animal. Also, superimposed SPECT and FOT data provide additional information on similarities as well as differences in the distribution and uptake of both probe types. Fused CT data enhance further the anatomical localization of the tracer distribution in vivo. The feasibility of line-laser excitation for three-dimensional fluorescence imaging and tomography is demonstrated for initiating further research, however, not with the intention to replace one by the other.
NASA Astrophysics Data System (ADS)
Sekimoto, K.; Takayama, M.
2010-12-01
The change in the distribution pattern of negative ions HO-, NOx- and COx- observed on arbitrary point-to-plane electrode configuration has been investigated by varying the angle of needle to the plane electrode, under atmospheric pressure corona discharge conditions. The stationary inhomogeneous electric field distributions between the point-to-plane electrodes with arbitrary needle angle were calculated. The experimental and theoretical results obtained suggested that the negative ion evolutions progress along field lines established between the electrodes with arbitrary configurations and the resulting terminal ion formation on a given field line is attributable to the electric field strength on the needle tip surface where the field line arose. The NOx- and COx- ions were dominantly produced on the field lines arising from the needle tip apex region with the highest electric field strength, while the field lines emanating from the tip peripheral regions with lower field strength resulted in the formation of the HO- ion.
Structure of chaotic magnetic field lines in IR-T1 tokamak due to ergodic magnetic limiter
NASA Astrophysics Data System (ADS)
Ahmadi, S.; Salar Elahi, A.; Ghorannevis, M.
2018-03-01
In this paper we have studied an Ergodic Magnetic Limiter (EML) based chaotic magnetic field for transport control in the edge plasma of IR-T1 tokamak. The resonance created by the EML causes perturbation of the equilibrium field line in tokamak and as a result, the field lines are chaotic in the vicinity of the dimerized island chains. Transport barriers are formed in the chaotic field line and actually observe in tokamak with reverse magnetic shear. We used area-preserving non-twist (and twist) Poincaré maps to describe the formation of transport barriers, which are actually features of Hamiltonian systems. This transport barrier is useful in reducing radial diffusion of the field line and thus improving the plasma confinement.
Henzlova, D.; Menlove, H. O.; Marlow, J. B.
2015-07-01
Thermal neutron counters utilized and developed for deployment as non-destructive assay (NDA) instruments in the field of nuclear safeguards traditionally rely on 3He-based proportional counting systems. 3He-based proportional counters have provided core NDA detection capabilities for several decades and have proven to be extremely reliable with range of features highly desirable for nuclear facility deployment. Facing the current depletion of 3He gas supply and the continuing uncertainty of options for future resupply, a search for detection technologies that could provide feasible short-term alternative to 3He gas was initiated worldwide. As part of this effort, Los Alamos National Laboratory (LANL) designedmore » and built a 3He-free full scale thermal neutron coincidence counter based on boron-lined proportional technology. The boronlined technology was selected in a comprehensive inter-comparison exercise based on its favorable performance against safeguards specific parameters. This paper provides an overview of the design and initial performance evaluation of the prototype High Level Neutron counter – Boron (HLNB). The initial results suggest that current HLNB design is capable to provide ~80% performance of a selected reference 3He-based coincidence counter (High Level Neutron Coincidence Counter, HLNCC). Similar samples are expected to be measurable in both systems, however, slightly longer measurement times may be anticipated for large samples in HLNB. The initial evaluation helped to identify potential for further performance improvements via additional tailoring of boron-layer thickness.« less
Spherical aberration correction with threefold symmetric line currents.
Hoque, Shahedul; Ito, Hiroyuki; Nishi, Ryuji; Takaoka, Akio; Munro, Eric
2016-02-01
It has been shown that N-fold symmetric line current (henceforth denoted as N-SYLC) produces 2N-pole magnetic fields. In this paper, a threefold symmetric line current (N3-SYLC in short) is proposed for correcting 3rd order spherical aberration of round lenses. N3-SYLC can be realized without using magnetic materials, which makes it free of the problems of hysteresis, inhomogeneity and saturation. We investigate theoretically the basic properties of an N3-SYLC configuration which can in principle be realized by simple wires. By optimizing the parameters of a system with beam energy of 5.5keV, the required excitation current for correcting 3rd order spherical aberration coefficient of 400 mm is less than 1AT, and the residual higher order aberrations can be kept sufficiently small to obtain beam size of less than 1 nm for initial slopes up to 5 mrad. Copyright © 2015 Elsevier B.V. All rights reserved.
On flares, substorms, and the theory of impulsive flux transfer events
NASA Technical Reports Server (NTRS)
Bratenahl, A.; Baum, P. J.
1976-01-01
Solar flares and magnetospheric substorms are discussed in the context of a general theory of impulsive flux transfer events (IFTE). IFTE theory, derived from laboratory observations in the Double Inverse Pinch Device (DIPD), provides a quantitative extension of 'neutral sheet' theories to include nonsteady field line reconnection. Current flow along the reconnection line increases with magnetic flux storage. When flux build-up exceeds the level corresponding to a critical limit on the current, instabilities induce a sudden transition in the mode of conduction. The resulting IFTE, indifferent to the specific modes and instabilities involved, is the more energetic, the lower the initial resistivity. It is the more violent, the greater the resulting resistivity increase and the faster its growth. Violent events can develop very large voltage transients along the reconnection line. Persistent build-up promoting conditions produce relaxation oscillations in the quantity of flux and energy stored (build-up-IFTE cycles). It is difficult to avoid the conclusion: flares and substorms are examples of IFTE.
Effects of low and high mode number tearing modes in divertor tokamaks
NASA Astrophysics Data System (ADS)
Punjabi, Alkesh; Ali, Halima; Boozer, Allen; Evans, Todd
2007-08-01
The topological effects of magnetic perturbations on a divertor tokamak, such as DIII-D, are studied using field-line maps that were developed by Punjabi et al. [A. Punjabi, A. Verma, and A. Boozer, Phys. Rev. Lett. 69, 3322 (1992)]. The studies consider both long-wavelength perturbations, such as those of m =1, n =1 tearing modes, and localized perturbations, which are represented as a magnetic dipole. The parameters of the dipole map are set using DIII-D data from shot 115467 in which the C-coils were activated [J. L. Luxon and L. E. Davis, Fusion Technol. 8, 441 (1985)]. The long-wavelength perturbations alter the structure of the interception of magnetic field lines with the divertor plates, but the interception is in sharp lines. The dipole perturbations cause a spreading of the interception of the field lines with the divertor plates, which alleviates problems associated with heat deposition. Magnetic field lines are the trajectories of a one-and-a-half degree of freedom Hamiltonian, which strongly constrains the topological features of the lines. Although the field line maps that we use do not accurately represent the trajectories through ordinary space of individual field lines, they do represent their topological structure.
Dipolarization Fronts from Reconnection Onset
NASA Astrophysics Data System (ADS)
Sitnov, M. I.; Swisdak, M. M.; Merkin, V. G.; Buzulukova, N.; Moore, T. E.
2012-12-01
Dipolarization fronts observed in the magnetotail are often viewed as signatures of bursty magnetic reconnection. However, until recently spontaneous reconnection was considered to be fully prohibited in the magnetotail geometry because of the linear stability of the ion tearing mode. Recent theoretical studies showed that spontaneous reconnection could be possible in the magnetotail geometries with the accumulation of magnetic flux at the tailward end of the thin current sheet, a distinctive feature of the magnetotail prior to substorm onset. That result was confirmed by open-boundary full-particle simulations of 2D current sheet equilibria, where two magnetotails were separated by an equilibrium X-line and weak external electric field was imposed to nudge the system toward the instability threshold. To investigate the roles of the equilibrium X-line, driving electric field and other parameters in the reconnection onset process we performed a set of 2D PIC runs with different initial settings. The investigated parameter space includes the critical current sheet thickness, flux tube volume per unit magnetic flux and the north-south component of the magnetic field. Such an investigation is critically important for the implementation of kinetic reconnection onset criteria into global MHD codes. The results are compared with Geotail visualization of the magnetotail during substorms, as well as Cluster and THEMIS observations of dipolarization fronts.
Particle-in-Cell Simulation of Collisionless Driven Reconnection with Open Boundaries
NASA Technical Reports Server (NTRS)
Kimas, Alex; Hesse, Michael; Zenitani, Seiji; Kuznetsova, Maria
2010-01-01
First results are discussed from an ongoing study of driven collisionless reconnection using a 2 1/2-dimensional electromagnetic particle-in-cell simulation model with open inflow and outflow boundaries. An extended electron diffusion region (EEDR) is defined as that region surrounding a reconnecting neutral line in which the out-of-plane nonideal electric field is positive. It is shown that the boundaries of this region in the directions of the outflow jets are at the positions where the electrons make the transition from unfrozen meandering motion in the current sheet to outward drifting with the magnetic field in the outflow jets; a turning length scale is defined to mark these positions, The initial width of the EEDR in the inflow directions is comparable to the electron bounce width. Later. as shoulders develop to form a two-scale structure. thc EEDR width expands to the ion bounce width scale. The inner portion of the EEDR or the electron diffusion region proper remains at the electron bounce width. Two methods are introduced for predicting the reconnection electric field using the dimensions of the EEDR. These results are interpreted as further evidence that the EEDR is the region that is relevant to understanding the electron role in the neutral line vicinity.
Physical mechanism of initial breakdown pulses and narrow bipolar events in lightning discharges
NASA Astrophysics Data System (ADS)
da Silva, Caitano L.; Pasko, Victor P.
2015-05-01
To date the true nature of initial breakdown pulses (IBPs) and narrow bipolar events (NBEs) in lightning discharges remains a mystery. Recent experimental evidence has correlated IBPs to the initial development of lightning leaders inside the thundercloud. NBE wideband waveforms resemble classic IBPs in both amplitude and duration. Most NBEs are quite peculiar in the sense that very frequently they occur in isolation from other lightning processes. The remaining fraction, 16% of positive polarity NBEs, according to Wu et al. (2014), happens as the first event in an otherwise regular intracloud lightning discharge. These authors point out that the initiator type of NBEs has no difference with other NBEs that did not start lightning, except for the fact that they occur deeper inside the thunderstorm (i.e., at lower altitudes). In this paper, we propose a new physical mechanism to explain the source of both IBPs and NBEs. We propose that IBPs and NBEs are the electromagnetic transients associated with the sudden (i.e., stepwise) elongation of the initial negative leader extremity in the thunderstorm electric field. To demonstrate our hypothesis a novel computational/numerical model of the bidirectional lightning leader tree is developed, consisting of a generalization of electrostatic and transmission line approximations found in the literature. Finally, we show how the IBP and NBE waveform characteristics directly reflect the properties of the bidirectional lightning leader (such as step length, for example) and amplitude of the thunderstorm electric field.
NASA Technical Reports Server (NTRS)
Debes, John H.; Hoard, D. W.; Kilic, Mukremin; Wachter, Stefanie; Leisawitz, David T.; Cohen, Martin; Kirkpatrick, J. Davy; Griffith, Roger L.
2011-01-01
With the launch of the Wide-Field Infrared Survey Explorer (WISE), a new era of detecting planetary debris around white dwarfs (WDs) has begun with the WISE InfraRed Excesses around Degenerates (WIRED) Survey. The WIRED survey will be sensitive to substellar objects and dusty debris around WDs out to distances exceeding 100 pc, well beyond the completeness level of local WDs and covering a large fraction of known WDs detected with the SDSS DR4 WD catalog. In this paper, we report an initial result of the WIRED survey, the detection of the heavily polluted hydrogen WD (spectral type DAZ) GALEX Jl93156.S-KlI1745 at 3.35 and 4.6/Lm. We find that the excess is consistent with either a narrow dusty ring with an inner radius of 29 RWD. outer radius of 40 RWD, and a face-on inclination, or a disk with an inclination of 70 , an inner radius of 23 RWD. and an outer radius of 80 RWD. We also report initial optical spectroscopic monitoring of several metal lines present in the photosphere and find no variability in the line strengths or radial velocities of the lines. We rule out all but planetary mass companions to GALEXl931 out to 0.5 AU.
Mini-CME eruptions in a flux emergence event in a coronal hole environment
NASA Astrophysics Data System (ADS)
Galsgaard, K.; Moreno-Insertis, F.
2016-10-01
Small scale jets are observed to take place at the interface between the open magnetic field in coronal holes and bipolar magnetic field concentrations. A fraction of these shows an eruptive behavior, where a combination of cold dense and hot light plasma has been observed to propagate out along the jet region, combining traditional jets with what looks like the eruption of mini-CMEs. Here we discuss a simple model scenario for the explosive energy release process that leads to a mixture of hot and cold plasma being accelerated upwards simultaneously. The model explains both the typical steady state inverted-Y jet and the subsequent mini-CME eruptions found in blowout jets. The numerical experiment consists of a buoyant unstable flux rope that emerges into an overlying slanted coronal field, thereby creating a bipolar magnetic field distribution in the photosphere with coronal loops linking the polarities. Reconnection between the emerged and preexisting magnetic systems including the launching of a classical inverted-Y jet. The experiment shows that this simple model provides for a very complicated dynamical behavior in its late phases. Five independent mini-CME eruptions follow the initial near steady-state jet phase. The first one is a direct consequence of the reconnection of the emerged magnetic flux, is mediated by the formation of a strongly sheared arcade followed by a tether-cutting reconnection process, and leads to the eruption of a twisted flux rope. The final four explosive eruptions, instead, are preceded by the formation of a twisted torus-like flux rope near the strong magnetic concentrations at the photosphere. As the tube center starts emerging an internal current sheet is formed below it. This sheet experiences a tether cutting process that provides the important upwards kick of the newly formed mini-CME structure. As the fast rising cold and dense tube interacts with the overlying magnetic field, it reconnects at different spatial locations, either through a null region or through a local strong shear region without nulls. The restructuring of the magnetic field lines generate magneto-acoustic waves that transport twist and cold plasma out along the less stressed parts of the newly reconnected field lines. The emphasis of the talk will be on the physical forces responsible for the initial flux tube rising and the effects and reasons for the following destruction of the mini-CMEs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Warne, Larry Kevin; Jorgenson, Roy Eberhardt; Hudson, Howard Gerald
When emitters of electromagnetic energy are operated in the vicinity of sensitive components, the electric field at the component location must be kept below a certain level in order to prevent the component from being damaged, or in the case of electro-explosive devices, initiating. The V-Curve is a convenient way to set the electric field limit because it requires minimal information about the problem configuration. In this report we will discuss the basis for the V-Curve. We also consider deviations from the original V-Curve resulting from inductive versus capacitive antennas, increases in directivity gain for long antennas, decreases in inputmore » impedance when operating in a bounded region, and mismatches dictated by transmission line losses. In addition, we consider mitigating effects resulting from limited antenna sizes.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
This paper reports on oil and gas operations that have taken a marked upturn in Qatar highlighted by production expansion projects. The long-delayed beginning of production from offshore supergiant North gas field was scheduled to begin at press time at a rate of 600 to 750 MMcfd and 50,000 bcpd. Delays in production startup were caused by gas leaks around casing strings in 14 of the 16 producing wells and by the Gulf war. The $1.3 billion Phase I of development included two 8-well platforms and three support structures, plus gas and condensate lines to an onshore NGL facility. Initially,more » gas will be utilized domestically. Eventually, 300 MMcfd will be re-injected into the old Dukhan oil field.« less
Reconnection at the earth's magnetopause - Magnetic field observations and flux transfer events
NASA Technical Reports Server (NTRS)
Russell, C. T.
1984-01-01
Theoretical models of plasma acceleration by magnetic-field-line reconnection at the earth magnetopause and the high-resolution three-dimensional plasma measurements obtained with the ISEE satellites are compared and illustrated with diagrams, graphs, drawings, and histograms. The history of reconnection theory and the results of early satellite observations are summarized; the thickness of the magnetopause current layer is discussed; problems in analyzing the polarization of current-layer rotation are considered; and the flux-transfer events responsible for periods of patchy reconnection are characterized in detail. The need for further observations and refinements of the theory to explain the initiation of reconnection and identify the mechanism determining whether it is patchy or steady-state is indicated.
NASA Astrophysics Data System (ADS)
Kim, Sun-Tae; Park, Yong-Gwon; Kim, Sung-Soo
2008-04-01
Magnetic and dielectric loss are systematically controlled by using iron flake powders with various initial sizes (7 μm and 70 μm) as the absorbent fillers in the rubber matrix, and their noise absorbing characteristics have been investigated as a function of frequency and sheet thickness. Flake iron particles were prepared by the mechanical forging of spherical powders using an attrition mill. Composite sheets (thickness=0.2 mm-1.0 mm) were prepared with a mixture of iron particles and silicone rubber. Attaching the composite sheets to a microstrip line of 50 Ω, a network analyzer was used to measure the reflection and transmission parameters (S11 and S21, respectively). A nearly constant value of S11 (about -10 dB) was observed, irrespective of particle size. However, S21 is strongly dependent upon initial particle size. For the composites of 7 μm particles (with high magnetic loss), S21 is reduced below -20 dB in the frequency range of 1 GHz to 10 GHz, and the corresponding bandwidth of noise absorption is not so greatly diminished by reducing the sheet thickness as low as 0.2 mm. For the composites of 70 μm particles (with high dielectric loss), however, the bandwidth is greatly reduced with a decrease in sheet thickness. It is concluded that the attenuation of conduction noise through the microstrip line is primarily controlled by the magnetic loss of the iron particles due to strong magnetic field around the microstrip line.
In-line interferometer for broadband near-field scanning optical spectroscopy.
Brauer, Jens; Zhan, Jinxin; Chimeh, Abbas; Korte, Anke; Lienau, Christoph; Gross, Petra
2017-06-26
We present and investigate a novel approach towards broad-bandwidth near-field scanning optical spectroscopy based on an in-line interferometer for homodyne mixing of the near field and a reference field. In scattering-type scanning near-field optical spectroscopy, the near-field signal is usually obscured by a large amount of unwanted background scattering from the probe shaft and the sample. Here we increase the light reflected from the sample by a semi-transparent gold layer and use it as a broad-bandwidth, phase-stable reference field to amplify the near-field signal in the visible and near-infrared spectral range. We experimentally demonstrate that this efficiently suppresses the unwanted background signal in monochromatic near-field measurements. For rapid acquisition of complete broad-bandwidth spectra we employ a monochromator and a fast line camera. Using this fast acquisition of spectra and the in-line interferometer we demonstrate the measurement of pure near-field spectra. The experimental observations are quantitatively explained by analytical expressions for the measured optical signals, based on Fourier decomposition of background and near field. The theoretical model and in-line interferometer together form an important step towards broad-bandwidth near-field scanning optical spectroscopy.
NASA Astrophysics Data System (ADS)
Raouafi, N.-E.; Solanki, S. K.; Wiegelmann, T.
2009-06-01
Our understanding of coronal phenomena, such as coronal plasma thermodynamics, faces a major handicap caused by missing coronal magnetic field measurements. Several lines in the UV wavelength range present suitable sensitivity to determine the coronal magnetic field via the Hanle effect. The latter is a largely unexplored diagnostic of coronal magnetic fields with a very high potential. Here we study the magnitude of the Hanle-effect signal to be expected outside the solar limb due to the Hanle effect in polarized radiation from the H I Lyα and β lines, which are among the brightest lines in the off-limb coronal FUV spectrum. For this purpose we use a magnetic field structure obtained by extrapolating the magnetic field starting from photospheric magnetograms. The diagnostic potential of these lines for determining the coronal magnetic field, as well as their limitations are studied. We show that these lines, in particular H I Lyβ, are useful for such measurements.
NASA Astrophysics Data System (ADS)
Li, Hua-bai
2017-10-01
Tai Chi, a Chinese martial art developed based on the laws of nature, emphasises how 'to conquer the unyielding with the yielding'. The recent observation of star formation shows that stars result from the interaction between gravity, turbulence and magnetic fields. This interaction again follows the nature rules that inspired Tai Chi. For example, if self-gravity is the force that dominates, the molecular cloud will collapse isotropically, which compresses magnetic field lines. The density of the yielding field lines increases until magnetic pressure reaches the critical value to support the cloud against the gravitational force in directions perpendicular to the field lines (Lorentz force). Then gravity gives way to Lorentz force, accumulating gas only along the field lines till the gas density achieves the critical value to again compress the field lines. The Tai Chi goes on in a self-similar way.
Diagnostics of Coronal Magnetic Fields Through the Hanle Effect in UV and IR Lines
NASA Astrophysics Data System (ADS)
Raouafi, Nour E.; Riley, Pete; Gibson, Sarah; Fineschi, Silvano; Solanki, Sami K.
2016-06-01
The plasma thermodynamics in the solar upper atmosphere, particularly in the corona, are dominated by the magnetic field, which controls the flow and dissipation of energy. The relative lack of knowledge of the coronal vector magnetic field is a major handicap for progress in coronal physics. This makes the development of measurement methods of coronal magnetic fields a high priority in solar physics. The Hanle effect in the UV and IR spectral lines is a largely unexplored diagnostic. We use magnetohydrodynamic (MHD) simulations to study the magnitude of the signal to be expected for typical coronal magnetic fields for selected spectral lines in the UV and IR wavelength ranges, namely the HI Ly-α and the He I 10830 Å lines. We show that the selected lines are useful for reliable diagnosis of coronal magnetic fields. The results show that the combination of polarization measurements of spectral lines with different sensitivities to the Hanle effect may be most appropriate for deducing coronal magnetic properties from future observations.
NASA Astrophysics Data System (ADS)
Pradillo, Gerardo; Heintz, Aneesh; Vlahovska, Petia
2017-11-01
The spontaneous rotation of a sphere in an applied uniform DC electric field (Quincke effect) has been utilized to engineer self-propelled particles: if the sphere is initially resting on a surface, it rolls. The Quincke rollers have been widely used as a model system to study collective behavior in ``active'' suspensions. If the applied field is DC, an isolated Quincke roller follows a straight line trajectory. In this talk, we discuss the design of a Quincke roller that executes a random-walk-like behavior. We utilize AC field - upon reversal of the field direction a fluctuation in the axis of rotation (which is degenerate in the plane perpendicular to the field and parallel to the surface) introduces randomness in the direction of motion. The MSD of an isolated Quincke walker depends on frequency, amplitude, and waveform of the electric field. Experiment and theory are compared. We also investigate the collective behavior of Quincke walkers,the transport of inert particles in a bath of Quincke walkers, and the spontaneous motion of a drop containing Quincke active particle. supported by NSF Grant CBET 1437545.
NASA Technical Reports Server (NTRS)
Deming, Drake; Boyle, Robert J.; Jennings, Donald E.; Wiedemann, Gunter
1988-01-01
The use of the extremely Zeeman-sensitive IR emission line Mg I, at 12.32 microns, to study solar magnetic fields. Time series observations of the line in the quiet sun were obtained in order to determine the response time of the line to the five-minute oscillations. Based upon the velocity amplitude and average period measured in the line, it is concluded that it is formed in the temperature minimum region. The magnetic structure of sunspots is investigated by stepping a small field of view in linear 'slices' through the spots. The region of penumbral line formation does not show the Evershed outflow common in photospheric lines. The line intensity is a factor of two greater in sunspot penumbrae than in the photosphere, and at the limb the penumbral emission begins to depart from optical thinness, the line source function increasing with height. For a spot near disk center, the radial decrease in absolute magnetic field strength is steeper than the generally accepted dependence.
MAJOR ELECTRON EVENTS AND CORONAL MAGNETIC CONFIGURATIONS OF THE RELATED SOLAR ACTIVE REGIONS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, C.; Owen, C. J.; Matthews, S. A.
A statistical survey of 26 major electron events during the period 2002 February through the end of solar cycle 23 is presented. We have obtained electron solar onset times and the peak flux spectra for each event by fitting to a power-law spectrum truncated by an exponential high-energy tail, i.e., f(E){approx}E{sup -{delta}}e{sup -E/E{sub 0}}. We also derived the coronal magnetic configurations of the related solar active regions (ARs) from the potential-field source-surface model. It is found that (1) 10 of the 11 well-connected open field-line events are prompt events whose solar onset times coincide with the maxima of flare emissionmore » and 13 of the 14 closed field-line events are delayed events. (2) A not-well-connected open field-line event and one of the closed field-line events are prompt events, they are both associated with large-scale coronal disturbances or dimming. (3) An averaged harder spectrum is found in open field-line events compared with the closed ones. Specifically, the averaged spectral index {delta} is of 1.6 {+-} 0.3 in open field-line events and of 2.0 {+-} 0.4 in closed ones. The spectra of three closed field-line events show infinite rollover energies E {sub 0}. These correlations clearly establish a significant link between the coronal magnetic field-line topology and the escape of charged particles from the flaring ARs into interplanetary space during the major solar energetic particle events.« less
Zmejkoski, Danica; Petković, Branka; Pavković-Lučić, Sofija; Prolić, Zlatko; Anđelković, Marko; Savić, Tatjana
2017-05-01
Extremely low frequency (ELF) magnetic fields as essential ecological factors may induce specific responses in genetically different lines. The object of this study was to investigate the impact of the ELF magnetic field on fitness components and locomotor activity of five Drosophila subobscura isofemale (IF) lines. Each D. subobscura IF line, arbitrarily named: B16/1, B24/4, B39/1, B57/2 and B69/5, was maintained in five full-sib inbreeding generations. Their genetic structures were defined based on the mitochondrial DNA variability. Egg-first instar larvae and 1-day-old flies were exposed to an ELF magnetic field (50 Hz, 0.5 mT, 48 h) and thereafter, fitness components and locomotor activity of males and females in an open field test were observed for each selected IF line, respectively. Exposure of egg-first instar larvae to an ELF magnetic field shortened developmental time, and did not affect the viability and sex ratio of D. subobscura IF lines. Exposure of 1-day-old males and females IF lines B16/1 and B24/4 to an ELF magnetic field significantly decreased their locomotor activity and this effect lasted longer in females than males. These results indicate various responses of D. subobscura IF lines to the applied ELF magnetic field depending on their genetic background.
FLiT: a field line trace code for magnetic confinement devices
NASA Astrophysics Data System (ADS)
Innocente, P.; Lorenzini, R.; Terranova, D.; Zanca, P.
2017-04-01
This paper presents a field line tracing code (FLiT) developed to study particle and energy transport as well as other phenomena related to magnetic topology in reversed-field pinch (RFP) and tokamak experiments. The code computes magnetic field lines in toroidal geometry using curvilinear coordinates (r, ϑ, ϕ) and calculates the intersections of these field lines with specified planes. The code also computes the magnetic and thermal diffusivity due to stochastic magnetic field in the collisionless limit. Compared to Hamiltonian codes, there are no constraints on the magnetic field functional formulation, which allows the integration of whichever magnetic field is required. The code uses the magnetic field computed by solving the zeroth-order axisymmetric equilibrium and the Newcomb equation for the first-order helical perturbation matching the edge magnetic field measurements in toroidal geometry. Two algorithms are developed to integrate the field lines: one is a dedicated implementation of a first-order semi-implicit volume-preserving integration method, and the other is based on the Adams-Moulton predictor-corrector method. As expected, the volume-preserving algorithm is accurate in conserving divergence, but slow because the low integration order requires small amplitude steps. The second algorithm proves to be quite fast and it is able to integrate the field lines in many partially and fully stochastic configurations accurately. The code has already been used to study the core and edge magnetic topology of the RFX-mod device in both the reversed-field pinch and tokamak magnetic configurations.
NASA Astrophysics Data System (ADS)
Afraimovich, E. L.; Ishin, A. B.; Tinin, M. V.; Yasyukevich, Yu. V.; Jin, S. G.
2011-05-01
The mid-latitude field-aligned irregularity (FAI) along the magnetic field line is a common phenomenon in the ionosphere. However, few data reveal the field-aligned ionospheric irregularities. They are insufficient to identify FAIs effects so far, particularly effect on global positioning system (GPS) signals. In this paper, the mid-latitude FAIs by line-of-sight angular scanning relative to the local magnetic field vector are investigated using the denser GPS network observations in Japan. It has been the first found that total GPS L2 phase slips over Japan, during the recovery phase of the 12 Feb 2000 geomagnetic storm were caused by GPS signal scattering on FAIs both for the lines-of-sight aligned to the magnetic field line (the field of aligned scattering, FALS) and across the magnetic field line (the field of across scattering, FACS). The FALS results are also in a good agreement with the data of the magnetic field orientation control of GPS occultation observations of equatorial scintillation during thorough low earth orbit (LEO) satellites measurements, e.g. Challenging Minisatellite Payload (CHAMP) and Satellite de Aplicaciones Cientificas-C (SAC-C). The role of large-angle scattering almost along the normal to the magnetic field line in GPS scintillation is determined by attenuation of the irregularity anisotropy factor as compared with the other factors.
Magnetic field line random walk in models and simulations of reduced magnetohydrodynamic turbulence
DOE Office of Scientific and Technical Information (OSTI.GOV)
Snodin, A. P.; Ruffolo, D.; Oughton, S.
2013-12-10
The random walk of magnetic field lines is examined numerically and analytically in the context of reduced magnetohydrodynamic (RMHD) turbulence, which provides a useful description of plasmas dominated by a strong mean field, such as in the solar corona. A recently developed non-perturbative theory of magnetic field line diffusion is compared with the diffusion coefficients obtained by accurate numerical tracing of magnetic field lines for both synthetic models and direct numerical simulations of RMHD. Statistical analysis of an ensemble of trajectories confirms the applicability of the theory, which very closely matches the numerical field line diffusion coefficient as a functionmore » of distance z along the mean magnetic field for a wide range of the Kubo number R. This theory employs Corrsin's independence hypothesis, sometimes thought to be valid only at low R. However, the results demonstrate that it works well up to R = 10, both for a synthetic RMHD model and an RMHD simulation. The numerical results from the RMHD simulation are compared with and without phase randomization, demonstrating a clear effect of coherent structures on the field line random walk for a very low Kubo number.« less
Open-field behavior of house mice selectively bred for high voluntary wheel-running.
Bronikowski, A M; Carter, P A; Swallow, J G; Girard, I A; Rhodes, J S; Garland, T
2001-05-01
Open-field behavioral assays are commonly used to test both locomotor activity and emotionality in rodents. We performed open-field tests on house mice (Mus domesticus) from four replicate lines genetically selected for high voluntary wheel-running for 22 generations and from four replicate random-bred control lines. Individual mice were recorded by video camera for 3 min in a 1-m2 open-field arena on 2 consecutive days. Mice from selected lines showed no statistical differences from control mice with respect to distance traveled, defecation, time spent in the interior, or average distance from the center of the arena during the trial. Thus, we found little evidence that open-field behavior, as traditionally defined, is genetically correlated with wheel-running behavior. This result is a useful converse test of classical studies that report no increased wheel-running in mice selected for increased open-field activity. However, mice from selected lines turned less in their travel paths than did control-line mice, and females from selected lines had slower travel times (longer latencies) to reach the wall. We discuss these results in the context of the historical open-field test and newly defined measures of open-field activity.
The source of the electric field in the nightside magnetosphere
NASA Technical Reports Server (NTRS)
Stern, D. P.
1975-01-01
In the open magnetosphere model magnetic field lines from the polar caps connect to the interplanetary magnetic field and conduct an electric field from interplanetary space to the polar ionosphere. By examining the magnetic flux involved it is concluded that only slightly more than half of the magnetic flux in the polar caps belongs to open field lines and that such field lines enter or leave the magnetosphere through narrow elongated windows stretching the tail. These window regions are identified with the tail's boundary region and shift their position with changes in the interplanetary magnetic field, in particular when a change of interplanetary magnetic sector occurs. The circuit providing electric current in the magnetopause and the plasma sheet is extended across those windows; thus energy is drained from the interplanetary electric field and an electric potential drop is produced across the plasma sheet. The polar cap receives its electric field from interplanetary space on the day side from open magnetic field lines and on the night side from closed field lines leading to the plasma sheet. The theory described provides improved understanding of magnetic flux bookkeeping, of the origin of Birkeland currents, and of the boundary layer of the geomagnetic tail.
Significance of Polarization Charges and Isomagnetic Surface in Magnetohydrodynamics
Liang, Zhu-Xing; Liang, Yi
2015-01-01
From the frozen-in field lines concept, a highly conducting fluid can move freely along, but not traverse to, magnetic field lines. We discuss this topic and find that in the study of the frozen-in field lines concept, the effects of inductive and capacitive reactance have been omitted. When admitted, the relationships among the motional electromotive field, the induced electric field, the eddy electric current, and the magnetic field becomes clearer. We emphasize the importance of isomagnetic surfaces and polarization charges, and show analytically that whether a conducting fluid can freely traverse magnetic field lines or not depends solely on the magnetic gradient along the path of the fluid. If a fluid does not change its density distribution and shape (can be regarded as a quasi-rigid body) and moves along isomagnetic surface, it can freely traverse magnetic field lines without any magnetic drag, no matter how strong the magnetic field is. Besides theoretical analysis, we also present experimental results to support our analysis. The main purpose of this work is to correct a fallacy among some astrophysicists. PMID:26322894
Stereo Science Results at Solar Minimum
NASA Technical Reports Server (NTRS)
Christian, Eric R.; Kaiser, Michael L.; Kucera Therese A.; St. Cyr, O. C.; van Driel-Gesztelyi, Lidia; Mandrini, Cristina H.
2009-01-01
The magnetic fields that drive solar activity are complex and inherently three-dimensional structures. Twisted flux ropes, magnetic reconnection and the initiation of solar storms, as well as space weather propagation through the heliosphere, are just a few of the topics that cannot properly be observed or modeled in only two dimensions. Examination of this three-dimensional complex has been hampered by the fact that solar remote sensing observations have occurred only from the Earth-Sun line, and in situ observations, while available from a greater variety of locations, have been sparse throughout the heliosphere.
Englert, Chris; Persaud, Brittany N; Oudejans, Raôul R D; Bertrams, Alex
2015-01-01
We tested the assumption that ego depletion would affect the sprint start in a sample of N = 38 athletes without track and field experience in an experiment by applying a mixed between- (depletion vs. non-depletion) within- (T1: before manipulation of ego depletion vs. T2: after manipulation of ego depletion) subjects design. We assumed that ego depletion would increase the possibility for a false start, as regulating the impulse to initiate the sprinting movement too soon before the starting signal requires self-control. In line with our assumption, we found a significant interaction as there was only a significant increase in the number of false starts from T1 to T2 for the depletion group while this was not the case for the non-depletion group. We conclude that ego depletion has a detrimental influence on the sprint start in athletes without track and field experience.
Englert, Chris; Persaud, Brittany N.; Oudejans, Raôul R. D.; Bertrams, Alex
2015-01-01
We tested the assumption that ego depletion would affect the sprint start in a sample of N = 38 athletes without track and field experience in an experiment by applying a mixed between- (depletion vs. non-depletion) within- (T1: before manipulation of ego depletion vs. T2: after manipulation of ego depletion) subjects design. We assumed that ego depletion would increase the possibility for a false start, as regulating the impulse to initiate the sprinting movement too soon before the starting signal requires self-control. In line with our assumption, we found a significant interaction as there was only a significant increase in the number of false starts from T1 to T2 for the depletion group while this was not the case for the non-depletion group. We conclude that ego depletion has a detrimental influence on the sprint start in athletes without track and field experience. PMID:26347678
Numerical optimization of perturbative coils for tokamaks
NASA Astrophysics Data System (ADS)
Lazerson, Samuel; Park, Jong-Kyu; Logan, Nikolas; Boozer, Allen; NSTX-U Research Team
2014-10-01
Numerical optimization of coils which apply three dimensional (3D) perturbative fields to tokamaks is presented. The application of perturbative 3D magnetic fields in tokamaks is now commonplace for control of error fields, resistive wall modes, resonant field drive, and neoclassical toroidal viscosity (NTV) torques. The design of such systems has focused on control of toroidal mode number, with coil shapes based on simple window-pane designs. In this work, a numerical optimization suite based on the STELLOPT 3D equilibrium optimization code is presented. The new code, IPECOPT, replaces the VMEC equilibrium code with the IPEC perturbed equilibrium code, and targets NTV torque by coupling to the PENT code. Fixed boundary optimizations of the 3D fields for the NSTX-U experiment are underway. Initial results suggest NTV torques can be driven by normal field spectrums which are not pitch-resonant with the magnetic field lines. Work has focused on driving core torque with n = 1 and edge torques with n = 3 fields. Optimizations of the coil currents for the planned NSTX-U NCC coils highlight the code's free boundary capability. This manuscript has been authored by Princeton University under Contract Number DE-AC02-09CH11466 with the U.S. Department of Energy.
Polarization of Coronal Forbidden Lines
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Hao; Qu, Zhongquan; Landi Degl’Innocenti, Egidio, E-mail: sayahoro@ynao.ac.cn
Since the magnetic field is responsible for most manifestations of solar activity, one of the most challenging problems in solar physics is the diagnostics of solar magnetic fields, particularly in the outer atmosphere. To this end, it is important to develop rigorous diagnostic tools to interpret polarimetric observations in suitable spectral lines. This paper is devoted to analyzing the diagnostic content of linear polarization imaging observations in coronal forbidden lines. Although this technique is restricted to off-limb observations, it represents a significant tool to diagnose the magnetic field structure in the solar corona, where the magnetic field is intrinsically weakmore » and still poorly known. We adopt the quantum theory of polarized line formation developed in the framework of the density matrix formalism, and synthesize images of the emergent linear polarization signal in coronal forbidden lines using potential-field source-surface magnetic field models. The influence of electronic collisions, active regions, and Thomson scattering on the linear polarization of coronal forbidden lines is also examined. It is found that active regions and Thomson scattering are capable of conspicuously influencing the orientation of the linear polarization. These effects have to be carefully taken into account to increase the accuracy of the field diagnostics. We also found that linear polarization observation in suitable lines can give valuable information on the long-term evolution of the magnetic field in the solar corona.« less
NASA Astrophysics Data System (ADS)
Zemek, Peter G.; Plowman, Steven V.
2010-04-01
Advances in hardware have miniaturized the emissions spectrometer and associated optics, rendering them easily deployed in the field. Such systems are also suitable for vehicle mounting, and can provide high quality data and concentration information in minutes. Advances in software have accompanied this hardware evolution, enabling the development of portable point-and-click OP-FTIR systems that weigh less than 16 lbs. These systems are ideal for first-responders, military, law enforcement, forensics, and screening applications using optical remote sensing (ORS) methodologies. With canned methods and interchangeable detectors, the new generation of OP-FTIR technology is coupled to the latest forward reference-type model software to provide point-and-click technology. These software models have been established for some time. However, refined user-friendly models that use active, passive, and solar occultation methodologies now allow the user to quickly field-screen and quantify plumes, fence-lines, and combustion incident scenarios in high-temporal-resolution. Synthetic background generation is now redundant as the models use highly accurate instrument line shape (ILS) convolutions and several other parameters, in conjunction with radiative transfer model databases to model a single calibration spectrum to collected sample spectra. Data retrievals are performed directly on single beam spectra using non-linear classical least squares (NLCLS). Typically, the Hitran line database is used to generate the initial calibration spectrum contained within the software.
A Turbulent Origin for the Complex Envelope Kinematics in the Young Low-mass Core Per-bolo 58
NASA Astrophysics Data System (ADS)
Maureira, María José; Arce, Héctor G.; Offner, Stella S. R.; Dunham, Michael M.; Pineda, Jaime E.; Fernández-López, Manuel; Chen, Xuepeng; Mardones, Diego
2017-11-01
We use CARMA 3 mm continuum and molecular lines (NH2D, N2H+, HCO+, HCN, and CS) at ˜1000 au resolution to characterize the structure and kinematics of the envelope surrounding the deeply embedded first core candidate Per-bolo 58. The line profile of the observed species shows two distinct peaks separated by 0.4-0.6 km s-1, which most likely arise from two different optically thin velocity components rather than the product of self-absorption in an optically thick line. The two velocity components, each with a mass of ˜0.5-0.6 {M}⊙ , overlap spatially at the position of the continuum emission and produce a general gradient along the outflow direction. We investigate whether these observations are consistent with infall in a turbulent and magnetized envelope. We compare the morphology and spectra of the N2H+ (1-0) with synthetic observations of an MHD simulation that considers the collapse of an isolated core that is initially perturbed with a turbulent field. The proposed model matches the data in the production of two velocity components, traced by the isolated hyperfine line of the N2H+ (1-0) spectra, and shows a general agreement in morphology and velocity field. We also use large maps of the region to compare the kinematics of the core with that of the surrounding large-scale filamentary structure and find that accretion from the large-scale filament could also explain the complex kinematics exhibited by this young dense core.
2D and 3D Numerical Simulations of Flux Cancellation
NASA Technical Reports Server (NTRS)
Karpen, Judith T.; DeVore, C.; Antiochos, S. K.; Linton, M. G.
2009-01-01
Cancellation of magnetic flux in the solar photosphere and chromosphere has been linked observationally and theoretically to a broad range of solar activity, from filament channel formation to CME initiation. Because this phenomenon is typically measured at only a single layer in the atmosphere, in the radial (line of sight) component of the magnetic field, the actual processes behind this observational signature are ambiguous. It is clear that reconnection is involved in some way, but the location of the reconnection sites and associated connectivity changes remain uncertain in most cases. We are using numerical modeling to demystify flux cancellation, beginning with the simplest possible configuration: a subphotospheric Lundquist flux tube surrounded by a potential field, immersed in a gravitationally stratified atmosphere, spanning many orders of magnitude in plasma beta. In this system, cancellation is driven slowly by a 2-cell circulation pattern imposed in the convection zone, such that the tops of the cells are located around the beta=1 level (i.e., the photosphere) and the flows converge and form a downdraft at the polarity inversion line; note however that no flow is imposed along the neutral line. We will present the results of 2D and 3D MHD-AMR simulations of flux cancellation, in which the flux at the photosphere begins in either an unsheared or sheared state. In all cases, a low-lying flux rope is formed by reconnection at the polarity inversion line within a few thousand seconds. The flux rope remains stable and does not rise, however, in contrast to models which do not include the presence of significant mass loading.
20 and 3D Numerical Simulations of Flux Cancellation
NASA Technical Reports Server (NTRS)
Karpen, Judith T.; DeVore, C.; Antiochos, S. K.; Linton, M. G.
2009-01-01
Cancellation of magnetic flux in the solar photosphere and chromosphere has been linked observationally and theoretically to a broad range of solar activity, from filament channel formation to CME initiation. Because this phenomenon is typically measured at only a single layer in the atmosphere, in the radial (line of sight) component of the magnetic field, the actual processes behind this observational signature are ambiguous. It is clear that reconnection is involved in some way, but the location of the reconnection sites and associated connectivity changes remain uncertain in most cases. We are using numerical modeling to demystify flux cancellation, beginning with the simplest possible configuration: a subphotospheric Lundquist flux tube surrounded by a potential field, immersed in a gravitationally stratified atmosphere, spanning many orders of magnitude in plasma beta. In this system, cancellation is driven slowly by a 2-cell circulation pattern imposed in the convection zone, such that the tops of the cells are located around the beta= 1 level (Le., the photosphere) and the flows converge and form a downdraft at the polarity inversion line; note however that no flow is imposed along the neutral line. We will present the results of 2D and 3D MHD-AMR simulations of flux cancellation, in which the flux at the photosphere begins in either an unsheared or sheared state. In all cases, a lOW-lying flux rope is formed by reconnection at the polarity inversion line within a few thousand seconds. The flux rope remains stable and does not rise, however, in contrast to models which do not include the presence of significant mass loading.
Experiments on the Expansion of a Dense Plasma into a Background Magnetoplasma
NASA Astrophysics Data System (ADS)
Gekelman, Walter; Vanzeeland, Mike; Vincena, Steve; Pribyl, Pat
2003-10-01
There are many situations, which occur in space (coronal mass ejections, or are man-made (upper atmospheric detonations) as well as the initial stages of a supernovae, in which a dense plasma expands into a background magnetized plasma, that can support Alfvèn waves. The upgraded LArge Plasma Device (LAPD) is a machine, at UCLA, in which Alfvèn wave propagation in homogeneous and inhomogeneous plasmas has been studied. We describe a series of experiments,which involve the expansion of a dense (initially, n_laser-plasma/n_0≫1) laser-produced plasma into an ambient highly magnetized background plasma capable of supporting Alfvèn waves will be presented. The 150 MW laser is pulsed at the same 1 Hz repetition rate as the plasma in a highly reproducible experiment. The interaction results in the production of intense shear Alfvèn waves, as well as large density perturbations. The waves propagate away from the target and are observed to become plasma column resonances. In the initial phase the background magnetic field is expelled from a plasma bubble. Currents in the main body of the plasma are generated to neutralize the positively charged bubble. The current system which results, becomes that of a spectrum of shear Alfvèn waves. Spatial patterns of the wave magnetic fields waves are measured at over 10^4 locations. As the dense plasma expands across the magnetic field it seeds the column with shear waves. Most of the Alfvèn wave energy is in shear waves, which become field line resonances after a machine transit time. The interplay between waves, currents, inductive electric fields and space charge is analyzed in great detail. Dramatic movies of the measured wave fields and their associated currents will be presented. Work supported by ONR, and DOE /NSF.
Austin chalk yields oil near basaltic cone
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1990-09-03
This paper reports on the completion of a Cretaceous Austin chalk horizontal oil well near a basaltic cone in the Uvalde volcanic field area of Dimmit County, Tex. The well is the HDP Inc. 1 autumn Unit, about 9 miles northeast to Carrizo Springs HDP, which stands for horizontal development and production, of Palo Alto, Calif., drilled the well on a farmout from American Exploration Co., Houston. It initially pumped and flowed 1,600 b/d of oil without stimulation from openhole. HDP drilled about 1,500 ft of horizontal and deviated hole in Austin chalk B-1, the producing horizon. Production in latemore » August was about 500 b/d of oil, pending determination of proration unit size and allowable. The well, in the greater Pearsall field Austin chalk play along the Dimmit-Savala county line, is the first horizontal chalk producer in Elaine field. The field has produced mainly from Escondido sand, Olmos sand and Anacacho limestone, all in the Upper Cretaceous.« less
Electrokinetic instability micromixing.
Oddy, M H; Santiago, J G; Mikkelsen, J C
2001-12-15
We have developed an electrokinetic process to rapidly stir micro- and nanoliter volume solutions for microfluidic bioanalytical applications. We rapidly stir microflow streams by initiating a flow instability, which we have observed in sinusoidally oscillating, electroosmotic channel flows. As the effect occurs within an oscillating electroosmotic flow, we refer to it here as an electrokinetic instability (EKI). The rapid stretching and folding of material lines associated with this instability can be used to stir fluid streams with Reynolds numbers of order unity, based on channel depth and rms electroosmotic velocity. This paper presents a preliminary description of the EKI and the design and fabrication of two micromixing devices capable of rapidly stirring two fluid streams using this flow phenomenon. A high-resolution CCD camera is used to record the stirring and diffusion of fluorescein from an initially unmixed configuration. Integration of fluorescence intensity over measurement volumes (voxels) provides a measure of the degree to which two streams are mixed to within the length scales of the voxels. Ensemble-averaged probability density functions and power spectra of the instantaneous spatial intensity profiles are used to quantify the mixing processes. Two-dimensional spectral bandwidths of the mixing images are initially anisotropic for the unmixed configuration, broaden as the stirring associated with the EKI rapidly stretches and folds material lines (adding high spatial frequencies to the concentration field), and then narrow to a relatively isotropic spectrum at the well-mixed conditions.
Tracking Objects with Networked Scattered Directional Sensors
NASA Astrophysics Data System (ADS)
Plarre, Kurt; Kumar, P. R.
2007-12-01
We study the problem of object tracking using highly directional sensors—sensors whose field of vision is a line or a line segment. A network of such sensors monitors a certain region of the plane. Sporadically, objects moving in straight lines and at a constant speed cross the region. A sensor detects an object when it crosses its line of sight, and records the time of the detection. No distance or angle measurements are available. The task of the sensors is to estimate the directions and speeds of the objects, and the sensor lines, which are unknown a priori. This estimation problem involves the minimization of a highly nonconvex cost function. To overcome this difficulty, we introduce an algorithm, which we call "adaptive basis algorithm." This algorithm is divided into three phases: in the first phase, the algorithm is initialized using data from six sensors and four objects; in the second phase, the estimates are updated as data from more sensors and objects are incorporated. The third phase is an optional coordinated transformation. The estimation is done in an "ad-hoc" coordinate system, which we call "adaptive coordinate system." When more information is available, for example, the location of six sensors, the estimates can be transformed to the "real-world" coordinate system. This constitutes the third phase.
Perception of straightness and parallelism with minimal distance information.
Rogers, Brian; Naumenko, Olga
2016-07-01
The ability of human observers to judge the straightness and parallelism of extended lines has been a neglected topic of study since von Helmholtz's initial observations 150 years ago. He showed that there were significant misperceptions of the straightness of extended lines seen in the peripheral visual field. The present study focused on the perception of extended lines (spanning 90° visual angle) that were directly fixated in the visual environment of a planetarium where there was only minimal information about the distance to the lines. Observers were asked to vary the curvature of 1 or more lines until they appeared to be straight and/or parallel, ignoring any perceived curvature in depth. When the horizon between the ground and the sky was visible, the results showed that observers' judgements of the straightness of a single line were significantly biased away from the veridical, great circle locations, and towards equal elevation settings. Similar biases can be seen in the jet trails of aircraft flying across the sky and in Rogers and Anstis's new moon illusion (Perception, 42(Abstract supplement) 18, 2013, 2016). The biasing effect of the horizon was much smaller when observers were asked to judge the straightness and parallelism of 2 or more extended lines. We interpret the results as showing that, in the absence of adequate distance information, observers tend to perceive the projected lines as lying on an approximately equidistant, hemispherical surface and that their judgements of straightness and parallelism are based on the perceived separation of the lines superimposed on that surface.
Coronal Magnetism: Hanle Effect in UV and IR Spectral Lines
NASA Astrophysics Data System (ADS)
Raouafi, N. E.; Riley, P.
2014-12-01
The plasma thermodynamics in the solar upper atmosphere, particularly in the corona, are dominated by the magnetic field, which controls the flow and dissipation of energy. The relative lack of knowledge of the coronal vector magnetic field is a major handicap for the progress in coronal physics. This makes the development of measurement methods of coronal magnetic fields a high priority in solar physics. The Hanle effect in the UV and IR spectral lines is a largely unexplored diagnostic. Here we use magnetohydrodynamic (MHD) simulations to study the magnitude of the signal to be expected for typical coronal magnetic fields for selected spectral lines in the UV and IR wavelength ranges, namely the H I Lyman series (i.e., α, β, and γ), O VI 103.2 nm line, and the He I 1083 nm line. We show that the selected lines may be useful for the diagnostic of coronal magnetic fields. We also show that the combination of polarization measurements of spectral lines with different sensitivities to the Hanle effect may be most appropriate for the interpretation of the data. We propose that UV coronal magnetic field mapper should be a central part of the science payload of any future spacebased solar observatory.
Cyclotron Line Measurements with INTEGRAL
NASA Technical Reports Server (NTRS)
Pottschmidt, K.; Kreykenbohm, I.; Caballero, I.; Fritz, S.; Schoenherr, G.; Kretschmar, P.; Wilms, J.; McBride, V. A.; Suchy, S.; Rothschild, R. E.
2008-01-01
Due to its broadband energy coverage, INTEGRAL has made important contributions to observing and interpreting cyclotron lines, which are present in the 10-100 keV range of a sample of accreting pulsars. In these systems photons with energies fulfilling the resonance condition inelastically Compton scatter off electrons quantized in the accretion column above the neutron star's magnetic pole(s). This process gives rise to the broad, absorption-like lines or 'cyclotron resonant scattering features' (CRSF). The observed lines allow to directly measure the B-fields of these sources, resulting in values of a few times 1E12G. In this overview I will present recent highlights regarding CRSF observations as well as discuss current ideas and models for the physical conditions in the accretion column. Among the former are the stability of the spectrum of Vela X-1 during giant flares in 2003, the observation of three cyclotron lines during the 2004 outburst of V0332+53, the confirmation of the fundamental line at approximately 45 keV during a 2005 normal outburst of A0535-26, and the simultaneous detection of the two lines in the dipping source 4U 1907+09 (for which also a torque reversal was detected for the first time). Through these and other observations it has become increasingly apparent that two types of observations can potentially be used to constrain the accretion column geometry: the determination of energy ratios for multiple harmonic lines (only two sources with greater than 2 lines are known), was well as the evolution of the fundamental line centroid, which, for different sources, may or may not be correlated with flux. Furthermore, first steps have been taken away from the usual phenomenological description of the lines, towards a physical approach based on self-consistent CRSF modeling. Initial applications are presented.
Martian low-altitude magnetic topology deduced from MAVEN/SWEA observations
NASA Astrophysics Data System (ADS)
Xu, Shaosui; Mitchell, David; Liemohn, Michael; Fang, Xiaohua; Ma, Yingjuan; Luhmann, Janet; Brain, David; Steckiewicz, Morgane; Mazelle, Christian; Connerney, Jack; Jakosky, Bruce
2017-02-01
The Mars Atmosphere and Volatile Evolution mission has obtained comprehensive particle and magnetic field measurements. The Solar Wind Electron Analyzer provides electron energy-pitch angle distributions along the spacecraft trajectory that can be used to infer magnetic topology. This study presents pitch angle-resolved electron energy shape parameters that can distinguish photoelectrons from solar wind electrons, which we use to deduce the Martian magnetic topology and connectivity to the dayside ionosphere. Magnetic topology in the Mars environment is mapped in three dimensions for the first time. At low altitudes (<400 km) in sunlight, the northern hemisphere is found to be dominated by closed field lines (both ends intersecting the collisional atmosphere), with more day-night connections through cross-terminator closed field lines than in the south. Although draped field lines with 100 km amplitude vertical fluctuations that intersect the electron exobase ( 160-220 km) in two locations could appear to be closed at the spacecraft, a more likely explanation is provided by crustal magnetic fields, which naturally have the required geometry. Around 30% of the time, we observe open field lines from 200 to 400 km, which implies three distinct topological layers over the northern hemisphere: closed field lines below 200 km, open field lines with foot points at lower latitudes that pass over the northern hemisphere from 200 to 400 km, and draped interplanetary magnetic field above 400 km. This study also identifies open field lines with one end attached to the dayside ionosphere and the other end connected with the solar wind, providing a path for ion outflow.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, Sung-Hong; Cho, Kyung-Suk; Bong, Su-Chan
To better understand a preferred magnetic field configuration and its evolution during coronal mass ejection (CME) events, we investigated the spatial and temporal evolution of photospheric magnetic fields in the active region NOAA 9236 that produced eight flare-associated CMEs during the time period of 2000 November 23-26. The time variations of the total magnetic helicity injection rate and the total unsigned magnetic flux are determined and examined not only in the entire active region but also in some local regions such as the main sunspots and the CME-associated flaring regions using SOHO/MDI magnetogram data. As a result, we found thatmore » (1) in the sunspots, a large amount of positive (right-handed) magnetic helicity was injected during most of the examined time period, (2) in the flare region, there was a continuous injection of negative (left-handed) magnetic helicity during the entire period, accompanied by a large increase of the unsigned magnetic flux, and (3) the flaring regions were mainly composed of emerging bipoles of magnetic fragments in which magnetic field lines have substantially favorable conditions for making reconnection with large-scale, overlying, and oppositely directed magnetic field lines connecting the main sunspots. These observational findings can also be well explained by some MHD numerical simulations for CME initiation (e.g., reconnection-favored emerging flux models). We therefore conclude that reconnection-favored magnetic fields in the flaring emerging flux regions play a crucial role in producing the multiple flare-associated CMEs in NOAA 9236.« less
Topological events on the lines of circular polarization in nonparaxial vector optical fields.
Freund, Isaac
2017-02-01
In nonparaxial vector optical fields, the following topological events are shown to occur in apparent violation of charge conservation: as one translates the observation plane along a line of circular polarization (a C line), the points on the line (C points) are seen to change not only the signs of their topological charges, but also their handedness, and, at turning points on the line, paired C points with the same topological charge and opposite handedness are seen to nucleate. These counter-intuitive events cannot occur in paraxial fields.
Measuring the magnetic field of a trans-equatorial loop system using coronal seismology
NASA Astrophysics Data System (ADS)
Long, D. M.; Valori, G.; Pérez-Suárez, D.; Morton, R. J.; Vásquez, A. M.
2017-07-01
Context. EIT waves are freely-propagating global pulses in the low corona which are strongly associated with the initial evolution of coronal mass ejections (CMEs). They are thought to be large-amplitude, fast-mode magnetohydrodynamic waves initially driven by the rapid expansion of a CME in the low corona. Aims: An EIT wave was observed on 6 July 2012 to impact an adjacent trans-equatorial loop system which then exhibited a decaying oscillation as it returned to rest. Observations of the loop oscillations were used to estimate the magnetic field strength of the loop system by studying the decaying oscillation of the loop, measuring the propagation of ubiquitous transverse waves in the loop and extrapolating the magnetic field from observed magnetograms. Methods: Observations from the Atmospheric Imaging Assembly onboard the Solar Dynamics Observatory (SDO/AIA) and the Coronal Multi-channel Polarimeter (CoMP) were used to study the event. An Empirical Mode Decomposition analysis was used to characterise the oscillation of the loop system in CoMP Doppler velocity and line width and in AIA intensity. Results: The loop system was shown to oscillate in the 2nd harmonic mode rather than at the fundamental frequency, with the seismological analysis returning an estimated magnetic field strength of ≈ 5.5 ± 1.5 G. This compares to the magnetic field strength estimates of ≈1-9 G and ≈3-9 G found using the measurements of transverse wave propagation and magnetic field extrapolation respectively. A movie associated to Figs. 1 and 2 is available at http://www.aanda.org
Distortion of Magnetic Fields in a Starless Core II: 3D Magnetic Field Structure of FeSt 1-457
NASA Astrophysics Data System (ADS)
Kandori, Ryo; Tamura, Motohide; Tomisaka, Kohji; Nakajima, Yasushi; Kusakabe, Nobuhiko; Kwon, Jungmi; Nagayama, Takahiro; Nagata, Tetsuya; Tatematsu, Ken'ichi
2017-10-01
Three-dimensional (3D) magnetic field information on molecular clouds and cores is important for revealing their kinematical stability (magnetic support) against gravity, which is fundamental for studying the initial conditions of star formation. In the present study, the 3D magnetic field structure of the dense starless core FeSt 1-457 is determined based on the near-infrared polarimetric observations of the dichroic polarization of background stars and simple 3D modeling. With an obtained angle of line-of-sight magnetic inclination axis {θ }{inc} of 45^\\circ +/- 10^\\circ and previously determined plane-of-sky magnetic field strength {B}{pol} of 23.8 ± 12.1 μ {{G}}, the total magnetic field strength for FeSt 1-457 is derived to be 33.7 ± 18.0 μ {{G}}. The critical mass of FeSt 1-457, evaluated using both magnetic and thermal/turbulent support is {M}{cr}=3.70+/- 0.92 {M}⊙ , which is identical to the observed core mass, {M}{core}=3.55+/- 0.75 {M}⊙ . We thus conclude that the stability of FeSt 1-457 is in a condition close to the critical state. Without infalling gas motion and no associated young stars, the core is regarded to be in the earliest stage of star formation, I.e., the stage just before the onset of dynamical collapse following the attainment of a supercritical condition. These properties could make FeSt 1-457 one of the best starless cores for future studies of the initial conditions of star formation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sampoorna, M.; Nagendra, K. N., E-mail: sampoorna@iiap.res.in, E-mail: knn@iiap.res.in
2015-10-10
The dynamical state of the solar and stellar atmospheres depends on the macroscopic velocity fields prevailing within them. The presence of such velocity fields in the line formation regions strongly affects the polarized radiation field emerging from these atmospheres. Thus it becomes necessary to solve the radiative transfer equation for polarized lines in moving atmospheres. Solutions based on the “observer’s frame method” are computationally expensive to obtain, especially when partial frequency redistribution (PRD) in line scattering and large-amplitude velocity fields are taken into account. In this paper we present an efficient alternative method of solution, namely, the comoving frame technique,more » to solve the polarized PRD line formation problems in the presence of velocity fields. We consider one-dimensional planar isothermal atmospheres with vertical velocity fields. We present a study of the effect of velocity fields on the emergent linear polarization profiles formed in optically thick moving atmospheres. We show that the comoving frame method is far superior when compared to the observer’s frame method in terms of the computational speed and memory requirements.« less
NASA Astrophysics Data System (ADS)
Burke, M. G.; Fonck, R. J.; McKee, G. R.; Winz, G. R.
2017-10-01
Local measurements of electrostatic and magnetic turbulence in fusion grade plasmas is a critical missing component in advancing our understanding of current experiments and validating nonlinear turbulence simulations. A novel diagnostic for measuring local electric and magnetic field fluctuations (Ẽ and B ) is being developed to address this need. It employs high-speed measurements of the spectral linewidth and/or line intensities of the Motional Stark Effect split neutral beam emission. This emission is split into several spectral components, with the amount of splitting being proportional to local magnetic and electric fields at the emission site. High spectral resolution ( 0.025 nm), high throughput ( 0.01 cm2str), and high speed (f 250 kHz) are required for the measurement of fast changes in the MSE spectrum. Spatial heterodyne spectroscopy (SHS) techniques coupled to a CMOS detector can meet these demands. A prototype SHS has been deployed to DIII-D for initial testing in the tokamak environment, SNR evaluation, and neutral beam efficacy. In addition, design studies of the SHS interferogram are ongoing to further optimize the measurement technique. One major contributor to loss of fringe contrast is line broadening arising from employing a large collection lens. This broadening can be mitigated by making the lens at the tokamak wall optically conjugate with the interference fringes image field. Work supported by US DOE Grant DE-FG02-89ER53296.
The response of ionospheric convection in the polar cap to substorm activity
NASA Technical Reports Server (NTRS)
Lester, M.; Lockwood, M.; Yeoman, T. K.; Cowley, S. W. H.; Luehr, H.; Bunting, R.; Farrugia, C. J.
1995-01-01
We report multi-instrument observations during an isolated substorm on 17 October 1989. The European Incoherent Scatter (EISCAT) radar operated in the SP-UK-POLI mode measuring ionospheric convection at latitudes 71 deg Lambda - 78 deg Lambda. Sub-Auroral Magnetometer Network (SAMNET) and the EISCAT Magnetometer Cross provide information on the timing of substorm expansion phase onset and subsequent intensifications, as well as the location of the field aligned and ionospheric currents associated with the substorm current wedge. Interplanetary Monitoring Platform-8 (IMP-8) magnetic field data are also included. Evidence of a substorm growth phase is provided by the equatorward motion of a flow reversal boundary across the EISCAT radar field of view at 2130 MLT, following a southward turning of the interplanetary magnetic field (IMF). We infer that the polar cap expanded as a result of the addition of open magnetic flux in the tail lobes during this interval. The flow reversal boundary, which is a lower limit to the polar cap boundary, reached an invariant latitude equatorward of 71 deg Lambda by the time of the expansion phase onset. We conclude that the substorm onset region in the ionosphere, defined by the westward electrojet, mapped to a part of the tail radially earthward of the boundary between open and closed magnetic flux, the distant neutral line. Thus the substorm was not initiated at the distant neutral line, although there is evidence that it remained active during the expansion phase.
Triggering of Solar Magnetic Eruptions on Various Size Scales Alphonse Sterling
NASA Technical Reports Server (NTRS)
Sterling, A.C.
2010-01-01
A solar eruption that produces a coronal mass ejection (CME) together with a flare is driven by the eruption of a closed-loop magnetic arcade that has a sheared-field core. Before eruption, the sheared core envelops a polarity inversion line along which cool filament material may reside. The sheared-core arcade erupts when there is a breakdown in the balance between the confining downward-directed magnetic tension of the overall arcade field and the upward-directed force of the pent-up magnetic pressure of the sheared field in the core of the arcade. What triggers the breakdown in this balance in favor of the upward-directed force is still an unsettled question. We consider several eruption examples, using imaging data from the SoHO, TRACE and Hinode satellites, and other sources, along with information about the magnetic field of the erupting regions. In several cases, observations of large-scale eruptions, where the magnetic neutral line spans few x 10,000 km, are consistent with magnetic flux cancellation being the trigger to the eruption's onset, even though the amount of flux canceled is only few percent of the total magnetic flux of the erupting region. In several other cases, an initial compact (small size-scale) eruption occurs embedded inside of a larger closed magnetic loop system, so that the smaller eruption destabilizes and causes the eruption of the much larger system. In this way, small-scale eruptive events can result in eruption of much larger-scale systems.
FORMATION OF THE PENUMBRA AND START OF THE EVERSHED FLOW
DOE Office of Scientific and Technical Information (OSTI.GOV)
Murabito, M.; Guglielmino, S. L.; Zuccarello, F.
We studied the variations of line of sight photospheric plasma flows during the formation phase of the penumbra around a pore in active region NOAA 11490. We used a high spatial, spectral, and temporal resolution data set acquired by the Interferometric BIdimensional Spectrometer operating at the NSO/Dunn Solar Telescope as well as data taken by the Helioseismic and Magnetic Imager on board the Solar Dynamics Observatory satellite ( SDO /HMI). Before the penumbra formed we observed a redshift of the spectral line in the inner part of the annular zone surrounding the pore as well as a blueshift of materialmore » associated with opposite magnetic polarity farther away from the pore. We found that the onset of the classical Evershed flow occurs on a very short timescale (1 to 3 hr) while the penumbra is forming. During the same time interval we found changes in the magnetic field inclination in the penumbra, with the vertical field actually changing sign near the penumbral edge, while the total magnetic field showed a significant increase, about 400 G. To explain these and other observations related to the formation of the penumbra and the onset of the Evershed flow we propose a scenario in which the penumbra is formed by magnetic flux dragged down from the canopy surrounding the initial pore. The Evershed flow starts when the sinking magnetic field dips below the solar surface and magnetoconvection sets in.« less
Mapping the Asymmetric Thick Disk. II. Distance, Size, and Mass of the Hercules Thick Disk Cloud
NASA Astrophysics Data System (ADS)
Larsen, Jeffrey A.; Cabanela, Juan E.; Humphreys, Roberta M.
2011-04-01
The Hercules Thick Disk Cloud was initially discovered as an excess in the number of faint blue stars between Quadrants 1 and 4 of the Galaxy. The origin of the Cloud could be an interaction with the disk bar, a triaxial Thick Disk, or a merger remnant or stream. To better map the spatial extent of the Cloud along the line of sight, we have obtained multi-color UBVR photometry for 1.2 million stars in 63 fields each of approximately 1 deg2. Our analysis of the fields beyond the apparent boundaries of the excess has already ruled out a triaxial Thick Disk as a likely explanation. In this paper, we present our results for the star counts over all of our fields, determine the spatial extent of the overdensity across and along the line of sight, and estimate the size and mass of the Cloud. Using photometric parallaxes, the stars responsible for the excess are between 1 and 6 kpc from the Sun, 0.5-4 kpc above the Galactic plane, and extend approximately 3-4 kpc across our line of sight. The Cloud is thus a major substructure in the Galaxy. The distribution of the excess along our sight lines corresponds with the density contours of the bar in the Disk, and its most distant stars are directly over the bar. We also see through the Cloud to its far side. Over the entire 500 deg2 of the sky containing the Cloud, we estimate more than 5.6 million stars and 1.9 million solar masses of material. If the overdensity is associated with the bar, it would exceed 1.4 billion stars and more than 50 million solar masses. Finally, we argue that the Hercules-Aquila Cloud is actually the Hercules Thick Disk Cloud.
MAPPING THE ASYMMETRIC THICK DISK. II. DISTANCE, SIZE, AND MASS OF THE HERCULES THICK DISK CLOUD
DOE Office of Scientific and Technical Information (OSTI.GOV)
Larsen, Jeffrey A.; Cabanela, Juan E.; Humphreys, Roberta M., E-mail: larsen@usna.edu, E-mail: cabanela@mnstate.edu, E-mail: roberta@umn.edu
2011-04-15
The Hercules Thick Disk Cloud was initially discovered as an excess in the number of faint blue stars between Quadrants 1 and 4 of the Galaxy. The origin of the Cloud could be an interaction with the disk bar, a triaxial Thick Disk, or a merger remnant or stream. To better map the spatial extent of the Cloud along the line of sight, we have obtained multi-color UBVR photometry for 1.2 million stars in 63 fields each of approximately 1 deg{sup 2}. Our analysis of the fields beyond the apparent boundaries of the excess has already ruled out a triaxialmore » Thick Disk as a likely explanation. In this paper, we present our results for the star counts over all of our fields, determine the spatial extent of the overdensity across and along the line of sight, and estimate the size and mass of the Cloud. Using photometric parallaxes, the stars responsible for the excess are between 1 and 6 kpc from the Sun, 0.5-4 kpc above the Galactic plane, and extend approximately 3-4 kpc across our line of sight. The Cloud is thus a major substructure in the Galaxy. The distribution of the excess along our sight lines corresponds with the density contours of the bar in the Disk, and its most distant stars are directly over the bar. We also see through the Cloud to its far side. Over the entire 500 deg{sup 2} of the sky containing the Cloud, we estimate more than 5.6 million stars and 1.9 million solar masses of material. If the overdensity is associated with the bar, it would exceed 1.4 billion stars and more than 50 million solar masses. Finally, we argue that the Hercules-Aquila Cloud is actually the Hercules Thick Disk Cloud.« less
Adaptable Miniature Initiation System Technology (AMIST)
2006-09-01
exploding foil initiator ( EFI ) to detonate an insensitive secondary explosive. The in-line (no moving parts) nature of EFIs increases their...reliability over out-of-line initiation systems. Likewise, EFI fire points increase the safety factor for two main reasons: (1) firing an EFI requires a very...AFRL-MN-EG-TP-2006-7410 ADAPTABLE MINIATURE INITIATION SYSTEM TECHNOLOGY (AMIST) Kenneth Bradley Chris Martin Ed Wild Air
Kinetic structures of quasi-perpendicular shocks in global particle-in-cell simulations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peng, Ivy Bo, E-mail: bopeng@kth.se; Markidis, Stefano; Laure, Erwin
2015-09-15
We carried out global Particle-in-Cell simulations of the interaction between the solar wind and a magnetosphere to study the kinetic collisionless physics in super-critical quasi-perpendicular shocks. After an initial simulation transient, a collisionless bow shock forms as a result of the interaction of the solar wind and a planet magnetic dipole. The shock ramp has a thickness of approximately one ion skin depth and is followed by a trailing wave train in the shock downstream. At the downstream edge of the bow shock, whistler waves propagate along the magnetic field lines and the presence of electron cyclotron waves has beenmore » identified. A small part of the solar wind ion population is specularly reflected by the shock while a larger part is deflected and heated by the shock. Solar wind ions and electrons are heated in the perpendicular directions. Ions are accelerated in the perpendicular direction in the trailing wave train region. This work is an initial effort to study the electron and ion kinetic effects developed near the bow shock in a realistic magnetic field configuration.« less
Irreversible reactions and diffusive escape: Stationary properties
Krapivsky, Paul L.; Ben-Naim, Eli
2015-05-01
We study three basic diffusion-controlled reaction processes—annihilation, coalescence, and aggregation. We examine the evolution starting with the most natural inhomogeneous initial configuration where a half-line is uniformly filled by particles, while the complementary half-line is empty. We show that the total number of particles that infiltrate the initially empty half-line is finite and has a stationary distribution. We determine the evolution of the average density from which we derive the average total number N of particles in the initially empty half-line; e.g. for annihilationmore » $$\\langle N\\rangle = \\frac{3}{16}+\\frac{1}{4\\π}$$ . For the coalescence process, we devise a procedure that in principle allows one to compute P(N), the probability to find exactly N particles in the initially empty half-line; we complete the calculations in the first non-trivial case (N = 1). As a by-product we derive the distance distribution between the two leading particles.« less
NASA Astrophysics Data System (ADS)
Subačius, L.; Jarašiūnas, K.; Ščajev, P.; Kato, M.
2015-12-01
The microwave conductance decay (MCD) technique combining an initially matched transmission line setup and picosecond optical excitation was developed and applied for the monitoring of transmitted and reflected microwave power transients in a 4H-SiC epilayer in a wide excitation range, from 2 × 1014 to 1018 cm-3. The excitation-dependent decrease in measurement sensitivity in the power-law relations of the transients was observed at excess carrier densities above 1016 cm-3 due to the line mismatches and decrease in the internal microwave field in the illuminated sample. The calibration procedure of MCD data on excess carrier density was applied for the correction of the MCD transients and resulted in nearly identical MCD kinetics in the reflection and transmission. In a 35 μm-thick n-type 4H-SiC epilayer, the tendencies of the gradual decrease of the initial decay time with an excitation increase and the excitation-enhanced carrier recombination rate in MCD tails were analyzed numerically. These tendencies were attributed to the excitation dependent surface recombination rate and the enhanced trap-related bulk recombination, correspondingly.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carey, D.C.
1999-12-09
TURTLE is a computer program useful for determining many characteristics of a particle beam once an initial design has been achieved, Charged particle beams are usually designed by adjusting various beam line parameters to obtain desired values of certain elements of a transfer or beam matrix. Such beam line parameters may describe certain magnetic fields and their gradients, lengths and shapes of magnets, spacings between magnetic elements, or the initial beam accepted into the system. For such purposes one typically employs a matrix multiplication and fitting program such as TRANSPORT. TURTLE is designed to be used after TRANSPORT. For conveniencemore » of the user, the input formats of the two programs have been made compatible. The use of TURTLE should be restricted to beams with small phase space. The lumped element approximation, described below, precludes the inclusion of the effect of conventional local geometric aberrations (due to large phase space) or fourth and higher order. A reading of the discussion below will indicate clearly the exact uses and limitations of the approach taken in TURTLE.« less
The EUV-observatory TESIS on board Coronas-Photon: scientific goals and initial plan of observations
NASA Astrophysics Data System (ADS)
Bogachev, Sergey
The TESIS a EUV-observatory for solar research from space will be launched in 2008 September on board the satellite Coronas-Photon from cosmodrome Plesetsk. TESIS is a project of Lebedev Physical Institute of Russian Academy of Science with contribution from Space Research Center of Polish Academy of Science (the spectrometer SphinX). The experiment will focus on quasi-monochromatic imaging of the Sun and XUV spectroscopy of solar plasma. The scientific payload of TESIS contains five instruments: (1) Bragg crystal spectroheliometer for Sun monochromatic imaging in the line MgXII 8.42 A, (2) the normal-incidence Herschelian EUV telescopes with a resolution of 1.7 arc sec operated in lines FeXXII 133 A, FeIX 171 A and HeII 304 A, (3) the EUV imaging spectrometer, (4) the wide-field Ritchey-Chretien coronograph and (5) the X-ray spectrometer SphinX. The TESIS will focus on coordinated study of solar activity from the transition region to the outer corona up to 4 solar radii in wide temperature range from 5*104 to 2*107 K. We describe the scientific goals of the TESIS and its initial plan of observations.
Parameter Calibration and Numerical Analysis of Twin Shallow Tunnels
NASA Astrophysics Data System (ADS)
Paternesi, Alessandra; Schweiger, Helmut F.; Scarpelli, Giuseppe
2017-05-01
Prediction of displacements and lining stresses in underground openings represents a challenging task. The main reason is primarily related to the complexity of this ground-structure interaction problem and secondly to the difficulties in obtaining a reliable geotechnical characterisation of the soil or the rock. In any case, especially when class A predictions fail in forecasting the system behaviour, performing class B or C predictions, which rely on a higher level of knowledge of the surrounding ground, can represent a useful resource for identifying and reducing model deficiencies. The case study presented in this paper deals with the construction works of twin-tube shallow tunnels excavated in a stiff and fine-grained deposit. The work initially focuses on the ground parameter calibration against experimental data, which together with the choice of an appropriate constitutive model plays a major role in the assessment of tunnelling-induced deformations. Since two-dimensional analyses imply initial assumptions to take into account the effect of the 3D excavation, three-dimensional finite element analyses were preferred. Comparisons between monitoring data and results of numerical simulations are provided. The available field data include displacements and deformation measurements regarding both the ground and tunnel lining.
Stochastic field-line wandering in magnetic turbulence with shear. I. Quasi-linear theory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shalchi, A.; Negrea, M.; Petrisor, I.
2016-07-15
We investigate the random walk of magnetic field lines in magnetic turbulence with shear. In the first part of the series, we develop a quasi-linear theory in order to compute the diffusion coefficient of magnetic field lines. We derive general formulas for the diffusion coefficients in the different directions of space. We like to emphasize that we expect that quasi-linear theory is only valid if the so-called Kubo number is small. We consider two turbulence models as examples, namely, a noisy slab model as well as a Gaussian decorrelation model. For both models we compute the field line diffusion coefficientsmore » and we show how they depend on the aforementioned Kubo number as well as a shear parameter. It is demonstrated that the shear effect reduces all field line diffusion coefficients.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kahler, S. W.; Haggerty, D. K.; Richardson, I. G., E-mail: AFRL.RVB.PA@hanscom.af.mil
About one quarter of the observed interplanetary coronal mass ejections (ICMEs) are characterized by enhanced magnetic fields that smoothly rotate in direction over timescales of about 10-50 hr. These ICMEs have the appearance of magnetic flux ropes and are known as 'magnetic clouds' (MCs). The total lengths of MC field lines can be determined using solar energetic particles of known speeds when the solar release times and the 1 AU onset times of the particles are known. A recent examination of about 30 near-relativistic (NR) electron events in and near 8 MCs showed no obvious indication that the field-line lengthsmore » were longest near the MC boundaries and shortest at the MC axes or outside the MCs, contrary to the expectations for a flux rope. Here we use the impulsive beamed NR electron events observed with the Electron Proton and Alpha Monitor instrument on the Advanced Composition Explorer spacecraft and type III radio bursts observed on the Wind spacecraft to determine the field-line lengths inside ICMEs included in the catalog of Richardson and Cane. In particular, we extend this technique to ICMEs that are not MCs and compare the field-line lengths inside MCs and non-MC ICMEs with those in the ambient solar wind outside the ICMEs. No significant differences of field-line lengths are found among MCs, ICMEs, and the ambient solar wind. The estimated number of ICME field-line turns is generally smaller than those deduced for flux-rope model fits to MCs. We also find cases in which the electron injections occur in solar active regions (ARs) distant from the source ARs of the ICMEs, supporting CME models that require extensive coronal magnetic reconnection with surrounding fields. The field-line lengths are found to be statistically longer for the NR electron events classified as ramps and interpreted as shock injections somewhat delayed from the type III bursts. The path lengths of the remaining spike and pulse electron events are compared with model calculations of solar wind field-line lengths resulting from turbulence and found to be in good agreement.« less
NASA Technical Reports Server (NTRS)
Kahler, S. W.; Haggerty, D. K.; Richardson, I. G.
2011-01-01
About one quarter of the observed interplanetary coronal mass ejections (ICMEs) are characterized by enhanced magnetic fields that smoothly rotate in direction over timescales of about 10-50 hr. These ICMEs have the appearance of magnetic flux ropes and are known as "magnetic clouds" (MCs). The total lengths of MC field lines can be determined using solar energetic particles of known speeds when the solar release times and the I AU onset times of the particles are known. A recent examination of about 30 near-relativistic (NR) electron events in and near 8 MCs showed no obvious indication that the field-line lengths were longest near the MC boundaries and shortest at the MC axes or outside the MCs, contrary to the expectations for a flux rope. Here we use the impulsive beamed NR electron events observed with the Electron Proton and Alpha Monitor instrument on the Advanced Composition Explorer spacecraft and type III radio bursts observed on the Wind spacecraft to determine the field-line lengths inside ICMEs included in the catalog of Richardson & Cane. In particular, we extend this technique to ICMEs that are not MCs and compare the field-line lengths inside MCs and non-MC ICMEs with those in the ambient solar wind outside the ICMEs. No significant differences of field-line lengths are found among MCs, ICMEs, and the ambient solar wind. The estimated number of ICME field-line turns is generally smaller than those deduced for flux-rope model fits to MCs. We also find cases in which the electron injections occur in solar active regions CARs) distant from the source ARs of the ICMEs, supporting CME models that require extensive coronal magnetic reconnection with surrounding fields. The field-line lengths are found to be statistically longer for the NR electron events classified as ramps and interpreted as shock injections somewhat delayed from the type III bursts. The path lengths of the remaining spike and pulse electron events are compared with model calculations of solar wind field-line lengths resulting from turbulence and found to be in good agreement.
Geomagnetic responses to the solar wind and the solar activity
NASA Technical Reports Server (NTRS)
Svalgaard, L.
1975-01-01
Following some historical notes, the formation of the magnetosphere and the magnetospheric tail is discussed. The importance of electric fields is stressed and the magnetospheric convection of plasma and magnetic field lines under the influence of large-scale magnetospheric electric fields is outlined. Ionospheric electric fields and currents are intimately related to electric fields and currents in the magnetosphere and the strong coupling between the two regions is discussed. The energy input of the solar wind to the magnetosphere and upper atmosphere is discussed in terms of the reconnection model where interplanetary magnetic field lines merge or connect with the terrestrial field on the sunward side of the magnetosphere. The merged field lines are then stretched behind earth to form the magnetotail so that kinetic energy from the solar wind is converted into magnetic energy in the field lines in the tail. Localized collapses of the crosstail current, which is driven by the large-scale dawn/dusk electric field in the magnetosphere, divert part of this current along geomagnetic field lines to the ionosphere, causing substorms with auroral activity and magnetic disturbances. The collapses also inject plasma into the radiation belts and build up a ring current. Frequent collapses in rapid succession constitute the geomagnetic storm.
Viezzer, E; Dux, R; Dunne, M G
2016-11-01
A new edge beam emission polarimetry diagnostic dedicated to the measurement of the magnetic field line angle has been installed on the ASDEX Upgrade tokamak. The new diagnostic relies on the motional Stark effect and is based on the simultaneous measurement of the polarization direction of the linearly polarized π (parallel to the electric field) and σ (perpendicular to the electric field) lines of the Balmer line D α . The technical properties of the system are described. The calibration procedures are discussed and first measurements are presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Viezzer, E., E-mail: eleonora.viezzer@ipp.mpg.de, E-mail: eviezzer@us.es; Department of Atomic, Molecular, and Nuclear Physics, University of Seville, Avda. Reina Mercedes, 41012 Seville; Dux, R.
2016-11-15
A new edge beam emission polarimetry diagnostic dedicated to the measurement of the magnetic field line angle has been installed on the ASDEX Upgrade tokamak. The new diagnostic relies on the motional Stark effect and is based on the simultaneous measurement of the polarization direction of the linearly polarized π (parallel to the electric field) and σ (perpendicular to the electric field) lines of the Balmer line D{sub α}. The technical properties of the system are described. The calibration procedures are discussed and first measurements are presented.
The Poincaré-Hopf Theorem for line fields revisited
NASA Astrophysics Data System (ADS)
Crowley, Diarmuid; Grant, Mark
2017-07-01
A Poincaré-Hopf Theorem for line fields with point singularities on orientable surfaces can be found in Hopf's 1956 Lecture Notes on Differential Geometry. In 1955 Markus presented such a theorem in all dimensions, but Markus' statement only holds in even dimensions 2 k ≥ 4. In 1984 Jänich presented a Poincaré-Hopf theorem for line fields with more complicated singularities and focussed on the complexities arising in the generalized setting. In this expository note we review the Poincaré-Hopf Theorem for line fields with point singularities, presenting a careful proof which is valid in all dimensions.
Parallel inhomogeneity and the Alfven resonance. 1: Open field lines
NASA Technical Reports Server (NTRS)
Hansen, P. J.; Harrold, B. G.
1994-01-01
In light of a recent demonstration of the general nonexistence of a singularity at the Alfven resonance in cold, ideal, linearized magnetohydrodynamics, we examine the effect of a small density gradient parallel to uniform, open ambient magnetic field lines. To lowest order, energy deposition is quantitatively unaffected but occurs continuously over a thickened layer. This effect is illustrated in a numerical analysis of a plasma sheet boundary layer model with perfectly absorbing boundary conditions. Consequences of the results are discussed, both for the open field line approximation and for the ensuing closed field line analysis.
Aissani, Sarra; Guendouz, Laouès; Marande, Pierre-Louis; Canet, Daniel
2015-01-01
As demonstrated before, the application of a weak static B0 magnetic field (less than 10 G) may produce definite effects on the ¹⁴N Quadrupole Resonance line when the electric field gradient tensor at the nitrogen nucleus level is of axial symmetry. Here, we address more precisely the problem of the relative orientation of the two magnetic fields (the static field and the radio-frequency field of the pure NQR experiment). For a field of 6G, the evolution of the signal intensity, as a function of this relative orientation, is in very good agreement with the theoretical predictions. There is in particular an intensity loss by a factor of three when going from the parallel configuration to the perpendicular configuration. By contrast, when dealing with a very weak magnetic field (as the earth field, around 0.5 G), this effect drops to ca. 1.5 in the case Hexamethylenetetramine (HMT).This is explained by the fact that the Zeeman shift (due to the very weak magnetic field) becomes comparable to the natural line-width. The latter can therefore be determined by accounting for this competition. Still in the case of HMT, the estimated natural line-width is half the observed line-width. The extra broadening is thus attributed to earth magnetic field. The latter constitutes therefore the main cause of the difference between the natural transverse relaxation time (T₂) and the transverse relaxation time derived from the observed line-width (T₂(⁎)). Copyright © 2015 Elsevier Inc. All rights reserved.
Kinetic-scale flux rope reconnection in periodic and line-tied geometries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sauppe, J. P.; Daughton, W.
Here, the collisionless reconnection of two parallel flux ropes driven by both the coalescence and kink instabilities is examined using fully kinetic simulations in periodic and line-tied geometries. The three-dimensional reconnection rate is computed from the maximum of the quasi-potential, Ξ≡-∫E·dℓ, where the integral of the electric field is taken along the magnetic field lines across the system. In periodic simulations in which the kink mode is nearly suppressed, reconnection is driven by the coalescence instability, and the peak rate is within 3%–8% of comparable 2D simulations. When a strong kink growth is observed, the peak reconnection rate drops bymore » 10%–25%, and there is a larger drop for lower guide field. With line-tied boundary conditions, the kink instability plays a key role in allowing the flux ropes to interact and partially reconnect. In this limit, the field lines with maximum quasi-potential are associated with a quasi-separatrix layer, and the electric field along these special field lines is supported predominantly by the divergence of the electron pressure tensor. Both of these features, along with the observed reconnection rate, are consistent with recent laboratory experiments on kinetic-scale flux ropes. In kinetic simulations, the non-gyrotropic pressure tensor terms contribute significantly more to the reconnecting electric field than do the gyrotropic terms, while contributions from the electron inertia are significant for field lines adjacent to the quasi-separatrix layer.« less
Kinetic-scale flux rope reconnection in periodic and line-tied geometries
Sauppe, J. P.; Daughton, W.
2017-12-28
Here, the collisionless reconnection of two parallel flux ropes driven by both the coalescence and kink instabilities is examined using fully kinetic simulations in periodic and line-tied geometries. The three-dimensional reconnection rate is computed from the maximum of the quasi-potential, Ξ≡-∫E·dℓ, where the integral of the electric field is taken along the magnetic field lines across the system. In periodic simulations in which the kink mode is nearly suppressed, reconnection is driven by the coalescence instability, and the peak rate is within 3%–8% of comparable 2D simulations. When a strong kink growth is observed, the peak reconnection rate drops bymore » 10%–25%, and there is a larger drop for lower guide field. With line-tied boundary conditions, the kink instability plays a key role in allowing the flux ropes to interact and partially reconnect. In this limit, the field lines with maximum quasi-potential are associated with a quasi-separatrix layer, and the electric field along these special field lines is supported predominantly by the divergence of the electron pressure tensor. Both of these features, along with the observed reconnection rate, are consistent with recent laboratory experiments on kinetic-scale flux ropes. In kinetic simulations, the non-gyrotropic pressure tensor terms contribute significantly more to the reconnecting electric field than do the gyrotropic terms, while contributions from the electron inertia are significant for field lines adjacent to the quasi-separatrix layer.« less
The Stereo Electron Spikes and the Interplanetary Magnetic Field
NASA Astrophysics Data System (ADS)
Jokipii, J. R.; Sheeley, N. R., Jr.; Wang, Y. M.; Giacalone, J.
2016-12-01
A recent paper (Klassen etal, 2015) discussed observations of a spike event of 55-65 keV electrons which occurred very nearly simultaneously at STEREO A and STEREO B, which at the time were separated in longitude by 38 degrees. The authors associated the spikes with a flare at the Sun near the footpoint of the nominal Archimedean spiral magnetic field line passing through STEREO A. The spike at STEREO A was delayed by 2.2 minutes from that at STEREOB. We discuss the observations in terms of a model in which the electrons, accelerated at the flare, propagate without significant scattering along magnetic field lines which separate or diverge as a function of radial distance from the Sun. The near simultaneity of the spikes at the two spacecraft is a natural consequence of this model. We interpret the divergence of the magnetic field lines as a consequence of field-line random walk and flux-tube expansion. We show that the field-line random walk in the absence of flux-tube expansion produces an rms spread of field lines significantly less than that which is required to produce to observed divergence. We find that observations of the solar wind and its source region at the time of the event can account for the observations in terms of propagation along interplanetary magnetic field-lines. Klassen, A., Dresing, N., Gomez-Herrero, R, and Heber, B., A&A 580, A115 (2015) Financial support for NS and YMW was provided by NASA and CNR.
US-1136, US-1137, and US-1138 cowpea lines for cover crop use
USDA-ARS?s Scientific Manuscript database
Following five years of field evaluation, three cowpea populations were selected as best adapted for use as a cover crop. A pure line selection procedure was used to develop genetically uniform lines from the segregating populations. Field evaluations demonstrated that the lines grow rapidly for u...
The 2013 February 17 Sunquake in the Context of the Active Region's Magnetic Field Configuration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Green, L. M.; Valori, G.; Zuccarello, F. P.
Sunquakes are created by the hydrodynamic response of the lower atmosphere to a sudden deposition of energy and momentum. In this study, we investigate a sunquake that occurred in NOAA active region 11675 on 2013 February 17. Observations of the corona, chromosphere, and photosphere are brought together for the first time with a nonlinear force-free model of the active region’s magnetic field in order to probe the magnetic environment in which the sunquake was initiated. We find that the sunquake was associated with the destabilization of a flux rope and an associated M-class GOES flare. Active region 11675 was inmore » its emergence phase at the time of the sunquake and photospheric motions caused by the emergence heavily modified the flux rope and its associated quasi-separatrix layers, eventually triggering the flux rope’s instability. The flux rope was surrounded by an extended envelope of field lines rooted in a small area at the approximate position of the sunquake. We argue that the configuration of the envelope, by interacting with the expanding flux rope, created a “magnetic lens” that may have focussed energy on one particular location of the photosphere, creating the necessary conditions for the initiation of the sunquake.« less
Wang, Qianjin; Han, Naishun; Dang, Cong; Lu, Zengbin; Wang, Fang; Yao, Hongwei; Peng, Yufa; Stanley, David
2017-01-01
The advent of genetically modified (GM) Bt rice creates the possibility of interactions among Bt crops, crop pathogens and non-target herbivores. In particular, information on how pathogen-infected Bt-expressing plants will influence non-target herbivores is necessary to predict the sustainability of GM cropping systems. Laboratory bioassays were conducted to evaluate the potential combined impacts of rice dwarf virus (RDV) and two Bt rice lines, T1C-19 (Cry1C) and T2A-1 (Cry2A), on non-target green rice leafhopper (GRLH), Nephotettix cincticeps (Uhler) (Hemiptera: Cicadellidae). In the first experiment, GRLHs feeding preference tests on Bt rice lines compared to a parental control rice line, MH63, were conducted. As rice plants were uninfected with RDV, GRLHs generally preferred the control MH63 line over the two Bt lines during the initial 8 h, with no significant preference during the following 64 h. As rice plants were infected with RDV, there were no clear preferences between the Bt rice lines and the control MH63 line. In the second experiment, we assessed the combined influence of RDV-infection status and Bt rice lines on GRLH biological parameters. Egg duration, adult weights, and male adult longevity were significantly affected on RDV-infected Bt rice. Other parameters, egg hatching rate, nymph survival and fecundity were not significantly influenced. We infer that interaction effect among two testing Bt rice lines and RDV will not lead to enlarged pest populations, thus demonstrating that growing these two Bt rice lines will poses negligible risk to GRLH in sustainable rice agroecosystems. Long-term field experiments to monitor the population dynamics of GRLHs at large scale need to be carried out to confirm the current results. PMID:28753622
Wang, Qianjin; Han, Naishun; Dang, Cong; Lu, Zengbin; Wang, Fang; Yao, Hongwei; Peng, Yufa; Stanley, David; Ye, Gongyin
2017-01-01
The advent of genetically modified (GM) Bt rice creates the possibility of interactions among Bt crops, crop pathogens and non-target herbivores. In particular, information on how pathogen-infected Bt-expressing plants will influence non-target herbivores is necessary to predict the sustainability of GM cropping systems. Laboratory bioassays were conducted to evaluate the potential combined impacts of rice dwarf virus (RDV) and two Bt rice lines, T1C-19 (Cry1C) and T2A-1 (Cry2A), on non-target green rice leafhopper (GRLH), Nephotettix cincticeps (Uhler) (Hemiptera: Cicadellidae). In the first experiment, GRLHs feeding preference tests on Bt rice lines compared to a parental control rice line, MH63, were conducted. As rice plants were uninfected with RDV, GRLHs generally preferred the control MH63 line over the two Bt lines during the initial 8 h, with no significant preference during the following 64 h. As rice plants were infected with RDV, there were no clear preferences between the Bt rice lines and the control MH63 line. In the second experiment, we assessed the combined influence of RDV-infection status and Bt rice lines on GRLH biological parameters. Egg duration, adult weights, and male adult longevity were significantly affected on RDV-infected Bt rice. Other parameters, egg hatching rate, nymph survival and fecundity were not significantly influenced. We infer that interaction effect among two testing Bt rice lines and RDV will not lead to enlarged pest populations, thus demonstrating that growing these two Bt rice lines will poses negligible risk to GRLH in sustainable rice agroecosystems. Long-term field experiments to monitor the population dynamics of GRLHs at large scale need to be carried out to confirm the current results.
Koller, Teresa; Brunner, Susanne; Herren, Gerhard; Hurni, Severine; Keller, Beat
2018-04-01
The combined effects of enhanced total transgene expression level and allele-specificity combination in transgenic allele-pyramided Pm3 wheat lines result in improved powdery mildew field resistance without negative pleiotropic effects. Allelic Pm3 resistance genes of wheat confer race-specific resistance to powdery mildew (Blumeria graminis f. sp. tritici, Bgt) and encode nucleotide-binding domain, leucine-rich repeat (NLR) receptors. Transgenic wheat lines overexpressing alleles Pm3a, b, c, d, f, and g have previously been generated by transformation of cultivar Bobwhite and tested in field trials, revealing varying degrees of powdery mildew resistance conferred by the transgenes. Here, we tested four transgenic lines each carrying two pyramided Pm3 alleles, which were generated by crossbreeding of lines transformed with single Pm3 alleles. All four allele-pyramided lines showed strongly improved powdery mildew resistance in the field compared to their parental lines. The improved resistance results from the two effects of enhanced total transgene expression levels and allele-specificity combinations. In contrast to leaf segment tests on greenhouse-grown seedlings, no allelic suppression was observed in the field. Plant development and yield scores of the pyramided lines were similar to the mean scores of the corresponding parental lines, and thus, the allele pyramiding did not cause any negative effects. On the contrary, in pyramided line, Pm3b × Pm3f normal plant development was restored compared to the delayed development and reduced seed set of parental line Pm3f. Allele-specific RT qPCR revealed additive transgene expression levels of the two Pm3 alleles in the pyramided lines. A positive correlation between total transgene expression level and powdery mildew field resistance was observed. In summary, allele pyramiding of Pm3 transgenes proved to be successful in enhancing powdery mildew field resistance.
On the Formation of Filament Channels
NASA Astrophysics Data System (ADS)
Wang, Y.-M.; Muglach, K.
2007-09-01
From the Hα archive of the Big Bear Solar Observatory (BBSO) we have selected three examples showing fibril structures that change their orientation, over 1 or 2 days, from nearly perpendicular to nearly parallel to the polarity inversion line (PIL). In one case, the filament channel forms within a single decaying bipole; in the other two cases, it forms along the boundary between an active region and its surroundings. Comparing the Hα filtergrams with magnetograms from the Michelson Doppler Imager (MDI), we find that the fibrils become aligned with the PIL as supergranular convection brings opposite-polarity magnetic flux together; shearing motions along the PIL, when present, act mainly to accelerate the rate of diffusive annihilation. We conclude that the reorientation of the fibrils is due to the cancellation and submergence of the transverse field component (B⊥), leaving behind the preexisting axial field component (B∥). The latter may have been generated by photospheric differential rotation over longer timescales, or else was already present when the flux emerged. The filament channel forms slowly if B∥/B⊥ is initially small, as along the internal neutral line of a newly emerged bipole, but may appear within hours if this ratio is initially substantial, as where the dipole-like loops of an active region curve around its periphery. In all of our examples, filaments form within a day or so after the fibrils become aligned with the PIL, while barbs appear at a later stage, as flux elements continue to diffuse across the PIL and cancel with the majority-polarity flux on the other side.
On the Distribution of Ion Density Depletion Along Magnetic Field Lines as Deduced Using C-NOFS
NASA Technical Reports Server (NTRS)
Dao, E.; Kelley, M. C.; Hysell, D. L.; Retterer, J. M.; Su, Y.-J.; Pfaff, Robert F.; Roddy, P. A.; Ballenthin, J. O.
2012-01-01
To investigate ion density depletion along magnetic field lines, we compare in situ-measured ion density fluctuations as seen from C/NOFS and compare them to the field-line-integrated depletion of the whole bubble as inferred from electric field measurements. Results show that, within C/NOFS' range, local measurement of the normalized density depletion, (Delta)n/n(sub 0), near the apex may be far less than at other points on the same field line. We argue that the distribution of (Delta)n/n(sub 0) is a weighted distribution concentrated at latitudes of the Appleton anomalies and becomes more heavily weighted the closer the field-aligned bubble rises to the peak of the anomalies. A three-dimensional simulation of an ionospheric bubble verifies our arguments.
NASA Astrophysics Data System (ADS)
Morales, Manuel D.; Sarbach, Olivier
2017-02-01
Motivated by the goal for high accuracy modeling of gravitational radiation emitted by isolated systems, recently, there has been renewed interest in the numerical solution of the hyperboloidal initial value problem for Einstein's field equations in which the outer boundary of the numerical grid is placed at null infinity. In this article, we numerically implement the tetrad-based approach presented by Bardeen, Sarbach, and Buchman [Phys. Rev. D 83, 104045 (2011), 10.1103/PhysRevD.83.104045] for a spherically symmetric, minimally coupled, self-gravitating scalar field. When this field is massless, the evolution system reduces to a regular, first-order symmetric hyperbolic system of equations for the conformally rescaled scalar field which is coupled to a set of singular elliptic constraints for the metric coefficients. We show how to solve this system based on a numerical finite-difference approximation, obtaining stable numerical evolutions for initial black hole configurations which are surrounded by a spherical shell of scalar field, part of which disperses to infinity and part of which is accreted by the black hole. As a nontrivial test, we study the tail decay of the scalar field along different curves, including one along the marginally trapped tube, one describing the world line of a timelike observer at a finite radius outside the horizon, and one corresponding to a generator of null infinity. Our results are in perfect agreement with the usual power-law decay discussed in previous work. This article also contains a detailed analysis for the asymptotic behavior and regularity of the lapse, conformal factor, extrinsic curvature and the Misner-Sharp mass function along constant mean curvature slices.
On the Construction and Dynamics of Knotted Fields
NASA Astrophysics Data System (ADS)
Kedia, Hridesh
Representing a physical field in terms of its field lines has often enabled a deeper understanding of complex physical phenomena, from Faraday's law of magnetic induction, to the Helmholtz laws of vortex motion, to the free energy density of liquid crystals in terms of the distortions of the lines of the director field. At the same time, the application of ideas from topology--the study of properties that are invariant under continuous deformations--has led to robust insights into the nature of complex physical systems from defects in crystal structures, to the earth's magnetic field, to topological conservation laws. The study of knotted fields, physical fields in which the field lines encode knots, emerges naturally from the application of topological ideas to the investigation of the physical phenomena best understood in terms of the lines of a field. A knot--a closed loop tangled with itself which can not be untangled without cutting the loop--is the simplest topologically non-trivial object constructed from a line. Remarkably, knots in the vortex (magnetic field) lines of a dissipationless fluid (plasma), persist forever as they are transported by the flow, stretching and rotating as they evolve. Moreover, deeply entwined with the topology-preserving dynamics of dissipationless fluids and plasmas, is an additional conserved quantity--helicity, a measure of the average linking of the vortex (magnetic field) lines in a fluid (plasma)--which has had far-reaching consequences for fluids and plasmas. Inspired by the persistence of knots in dissipationless flows, and their far-reaching physical consequences, we seek to understand the interplay between the dynamics of a field and the topology of its field lines in a variety of systems. While it is easy to tie a knot in a shoelace, tying a knot in the the lines of a space-filling field requires contorting the lines everywhere to match the knotted region. The challenge of analytically constructing knotted field configurations has impeded a deeper understanding of the interplay between topology and dynamics in fluids and plasmas. We begin by analytically constructing knotted field configurations which encode a desired knot in the lines of the field, and show that their helicity can be tuned independently of the encoded knot. The nonlinear nature of the physical systems in which these knotted field configurations arise, makes their analytical study challenging. We ask if a linear theory such as electromagnetism can allow knotted field configurations to persist with time. We find analytical expressions for an infinite family of knotted solutions to Maxwell's equations in vacuum and elucidate their connections to dissipationless flows. We present a design rule for constructing such persistently knotted electromagnetic fields, which could possibly be used to transfer knottedness to matter such as quantum fluids and plasmas. An important consequence of the persistence of knots in classical dissipationless flows is the existence of an additional conserved quantity, helicity, which has had far-reaching implications. To understand the existence of analogous conserved quantities, we ask if superfluids, which flow without dissipation just like classical dissipationless flows, have an additional conserved quantity akin to helicity. We address this question using an analytical approach based on defining the particle relabeling symmetry--the symmetry underlying helicity conservation--in superfluids, and find that an analogous conserved quantity exists but vanishes identically owing to the intrinsic geometry of complex scalar fields. Furthermore, to address the question of a ``classical limit'' of superfluid vortices which recovers classical helicity conservation, we perform numerical simulations of \\emph{bundles} of superfluid vortices, and find behavior akin to classical viscous flows.
The next generation Antarctic digital magnetic anomaly map
von Frese, R.R.B; Golynsky, A.V.; Kim, H.R.; Gaya-Piqué, L.; Thébault, E.; Chiappinii, M.; Ghidella, M.; Grunow, A.; ,
2007-01-01
S (Golynsky et al., 2001). This map synthesized over 7.1 million line-kms of survey data available up through 1999 from marine, airborne and Magsat satellite observations. Since the production of the initial map, a large number of new marine and airborne surveys and improved magnetic observations from the Ørsted and CHAMP satellite missions have become available. In addition, an improved core field model for the Antarctic has been developed to better isolate crustal anomalies in these data. The next generation compilation also will likely represent the magnetic survey observations of the region in terms of a high-resolution spherical cap harmonic model. In this paper, we review the progress and problems of developing an improved magnetic anomaly map to facilitate studies of the Antarctic crustal magnetic field
A 750 GeV portal: LHC phenomenology and dark matter candidates
D’Eramo, Francesco; de Vries, Jordy; Panci, Paolo
2016-05-16
We study the effective field theory obtained by extending the Standard Model field content with two singlets: a 750 GeV (pseudo-)scalar and a stable fermion. Accounting for collider productions initiated by both gluon and photon fusion, we investigate where the theory is consistent with both the LHC diphoton excess and bounds from Run 1. We analyze dark matter phenomenology in such regions, including relic density constraints as well as collider, direct, and indirect bounds. Scalar portal dark matter models are very close to limits from direct detection and mono-jet searches if gluon fusion dominates, and not constrained at all otherwise.more » In conclusion, pseudo-scalar models are challenged by photon line limits and mono-jet searches in most of the parameter space.« less
Structure and Dynamics of the Solar Corona
NASA Technical Reports Server (NTRS)
Schnack, D. D.
1994-01-01
Advanced computational techniques were used to study solar coronal heating and coronal mass ejections. A three dimensional, time dependent resistive magnetohydrodynamic code was used to study the dynamic response of a model corona to continuous, slow, random magnetic footpoint displacements in the photosphere. Three dimensional numerical simulations of the response of the corona to simple smooth braiding flows in the photosphere were calculated to illustrate and understand the spontaneous formation of current filaments. Two dimensional steady state helmet streamer configurations were obtained by determining the time asymptotic state of the interaction of an initially one dimensinal transponic solar wind with a spherical potential dipole field. The disruption of the steady state helmet streamer configuration was studied as a response to shearing of the magnetic footpoints of the closed field lines under the helmet.
A 750 GeV portal: LHC phenomenology and dark matter candidates
DOE Office of Scientific and Technical Information (OSTI.GOV)
D’Eramo, Francesco; de Vries, Jordy; Panci, Paolo
We study the effective field theory obtained by extending the Standard Model field content with two singlets: a 750 GeV (pseudo-)scalar and a stable fermion. Accounting for collider productions initiated by both gluon and photon fusion, we investigate where the theory is consistent with both the LHC diphoton excess and bounds from Run 1. We analyze dark matter phenomenology in such regions, including relic density constraints as well as collider, direct, and indirect bounds. Scalar portal dark matter models are very close to limits from direct detection and mono-jet searches if gluon fusion dominates, and not constrained at all otherwise.more » In conclusion, pseudo-scalar models are challenged by photon line limits and mono-jet searches in most of the parameter space.« less
Initial experimental test of a helicon plasma based mass filter
NASA Astrophysics Data System (ADS)
Gueroult, R.; Evans, E. S.; Zweben, S. J.; Fisch, N. J.; Levinton, F.
2016-06-01
High throughput plasma mass separation requires rotation control in a high density multi-species plasmas. A preliminary mass separation device based on a helicon plasma operating in gas mixtures and featuring concentric biasable ring electrodes is introduced. Plasma profile shows strong response to electrode biasing. In light of floating potential measurements, the density response is interpreted as the consequence of a reshaping of the radial electric field in the plasma. This field can be made confining or de-confining depending on the imposed potential at the electrodes, in a way which is consistent with single particle orbit radial stability. Concurrent spatially resolved spectroscopic measurements suggest ion separation, with heavy to light ion emission line ratio increasing with radius when a specific potential gradient is applied to the electrodes.
48. VIEW LOOKING NORTHEAST AT EXCITER RESISTANCE GRIDS LOCATED UNDER ...
48. VIEW LOOKING NORTHEAST AT EXCITER RESISTANCE GRIDS LOCATED UNDER THE CONTROL ROOM ON SOUTH SIDE OF TURBINE HALL. THE GRIDS WERE AN ESSENTIAL PART OF THE CONTROL SYSTEM THAT MAINTAINED CONSTANT VOLTAGE ON THE RAILROAD POWER LINES. TIRRILL VOLTAGE REGULATORS (SEE CT-142A-100) SENSED VOLTAGE VARIATIONS AND INITIATED SWITCHING SEQUENCES TO REGULATE THE VOLTAGE AND MAINTAIN A SYSTEM STANDARD VOLTAGE. THE RESISTANCE GRIDS WERE SEQUENTIALLY ADDED TO OR REMOVED FROM THE GENERATOR FIELD COIL CIRCUITS. THIS RESISTANCE LOAD DISSIPATED EXCITIR GENERATOR POWER AS HEAT. THIS IN TURN WOULD VARY THE STRENGTH OF THE FIELD MAGNET AND CONSEQUENTLY RAISE OR LOWER THE OUTPUT VOLTAGE FROM THE MAIN GENERATOR ARMATURE. - New York, New Haven & Hartford Railroad, Cos Cob Power Plant, Sound Shore Drive, Greenwich, Fairfield County, CT
Signature of open magnetic field lines in the extended solar corona and of solar wind acceleration
NASA Technical Reports Server (NTRS)
Antonucci, E.; Giordano, S.; Benna, C.; Kohl, J. L.; Noci, G.; Michels, J.; Fineschi, S.
1997-01-01
The observations carried out with the ultraviolet coronagraph spectrometer onboard the Solar and Heliospheric Observatory (SOHO) are discussed. The purpose of the observations was to determine the line of sight and radial velocity fields in coronal regions with different magnetic topology. The results showed that the regions where the high speed solar wind flows along open field lines are characterized by O VI 1032 and HI Lyman alpha 1216 lines. The global coronal maps of the line of sight velocity were reconstructed. The corona height, where the solar wind reaches 100 km/s, was determined.
NASA Technical Reports Server (NTRS)
Bommier, V.
1986-01-01
The Hanle effect is the modification of the linear polarization parameters of a spectral line due to the effect of the magnetic field. It has been successfully applied to the magnetic field vector diagnostic in solar prominences. The magnetic field vector is determined by comparing the measured polarization to the polarization computed, taking into account all the polarizing and depolarizing processes in line formation and the depolarizing effect of the magnetic field. The method was applied to simultaneous polarization measurements in the Helium D3 line and in the hydrogen beta line in 14 prominences. Four polarization parameters are measured, which lead to the determination of the three coordinates of the magnetic field vector and the electron density, owing to the sensitivity of the hydrogen beta line to the non-negligible effect of depolarizing collisions with electrons and protons of the medium. A mean value of 1.3 x 10 to the 10th power cu. cm. is derived in 14 prominences.
Relationship between Birkeland current regions, particle precipitation, and electric fields
NASA Technical Reports Server (NTRS)
De La Beaujardiere, O.; Watermann, J.; Newell, P.; Rich, F.
1993-01-01
The relationship of the large-scale dayside Birkeland currents to large-scale particle precipitation patterns, currents, and convection is examined using DMSP and Sondrestrom radar observations. It is found that the local time of the mantle currents is not limited to the longitude of the cusp proper, but covers a larger local time extent. The mantle currents flow entirely on open field lines. About half of region 1 currents flow on open field lines, consistent with the assumption that the region 1 currents are generated by the solar wind dynamo and flow within the surface that separates open and closed field lines. More than 80 percent of the Birkeland current boundaries do not correspond to particle precipitation boundaries. Region 2 currents extend beyond the plasma sheet poleward boundary; region 1 currents flow in part on open field lines; mantle currents and mantle particles are not coincident. On most passes when a triple current sheet is observed, the convection reversal is located on closed field lines.
Tracing Magnetic Fields With The Polarization Of Submillimeter Lines
NASA Astrophysics Data System (ADS)
Zhang, Heshou; Yan, Huirong
2017-10-01
Magnetic fields play important roles in many astrophysical processes. However, there is no universal diagnostic for the magnetic fields in the interstellar medium (ISM) and each magnetic tracer has its limitation. Any new detection method is thus valuable. Theoretical studies have shown that submillimeter fine-structure lines are polarized due to atomic alignment by Ultraviolet (UV) photon-excitation, which opens up a new avenue to probe interstellar magnetic fields. The method is applicable to all radiative-excitation dominant region, e.g., H II Regions, PDRs. The polarization of the submillimeter fine-structure lines induced by atomic alignment could be substantial and the applicability of using the spectro-polarimetry of atomic lines to trace magnetic fields has been supported by synthetic observations of simulated ISM in our recent paper. Our results demonstrate that the polarization of submillimeter atomic lines is a powerful magnetic tracer and add great value to the observational studies of the submilimeter astronomy.
Magnetic field direction differentially impacts the growth of different cell types.
Tian, Xiaofei; Wang, Dongmei; Zha, Meng; Yang, Xingxing; Ji, Xinmiao; Zhang, Lei; Zhang, Xin
2018-04-05
Magnetic resonance imaging (MRI) machines have horizontal or upright static magnetic field (SMF) of 0.1-3 T (Tesla) at sites of patients and operators, but the biological effects of these SMFs still remain elusive. We examined 12 different cell lines, including 5 human solid tumor cell lines, 2 human leukemia cell lines and 4 human non-cancer cell lines, as well as the Chinese hamster ovary cell line. Permanent magnets were used to provide 0.2-1 T SMFs with different magnetic field directions. We found that an upward magnetic field of 0.2-1 T could effectively reduce the cell numbers of all human solid tumor cell lines we tested, but a downward magnetic field mostly had no statistically significant effect. However, the leukemia cells in suspension, which do not have shape-induced anisotropy, were inhibited by both upward and downward magnetic fields. In contrast, the cell numbers of most non-cancer cells were not affected by magnetic fields of all directions. Moreover, the upward magnetic field inhibited GIST-T1 tumor growth in nude mice by 19.3% (p < 0.05) while the downward magnetic field did not produce significant effect. In conclusion, although still lack of mechanistical insights, our results show that different magnetic field directions produce divergent effects on cancer cell numbers as well as tumor growth in mice. This not only verified the safety of SMF exposure related to current MRI machines but also revealed the possible antitumor potential of magnetic field with an upward direction.
NASA Astrophysics Data System (ADS)
Logan, T. A.; Arko, S. A.; Rosen, P. A.
2013-12-01
To demonstrate the feasibility of orbital remote sensing for global ocean observations, NASA launched Seasat on June 27th, 1978. Being the first space borne SAR mission, Seasat produced the most detailed SAR images of Earth from space ever seen to that point in time. While much of the data collected in the USA was processed optically, a mere 150 scenes had been digitally processed by March 1980. In fact, only an estimated 3% of Seasat data was ever digitally processed. Thus, for over three decades, the majority of the SAR data from this historic mission has been dormant, virtually unavailable to scientists in the 21st century. Over the last year, researchers at the Alaska Satellite Facility (ASF) Distributed Active Archive Center (DAAC) have processed the Seasat SAR archives into imagery products. A telemetry decoding system was created and the data were filtered into readily processable signal files. Due to nearly 35 years of bit rot, the bit error rate (BER) for the ASF DAAC Seasat archives was on the order of 1 out of 100 to 1 out of 100,000. This extremely high BER initially seemed to make much of the data undecodable - because the minor frame numbers are just 7 bits and no range line numbers exist in the telemetry even the 'simple' tasks of tracking the minor frame number or locating the start of each range line proved difficult. Eventually, using 5 frame numbers in sequence and a handful of heuristics, the data were successfully decoded into full range lines. Concurrently, all metadata were stored into external files. Recovery of this metadata was also problematic, the BER making the information highly suspect and, initially at least, unusable in any sort of automated fashion. Because of the BER, all of the single bit metadata fields proved unreliable. Even fields that should be constant for a data take (e.g. receiving station, day of the year) showed high variability, each requiring a median filter to be usable. The most challenging, however, were the supposedly 'steadily' changing millisecond (MSEC) timing values. The elevated BER made even a basic linear fit difficult. In addition, the MSEC field often shows a 'stair step' function, assumed to be a spacecraft clock malfunction. To fix these issues, three separate levels of time filtering were applied. After the initial three-pass time filter, a fourth procedure located and removed discontinuities - missing data sections that occurred randomly throughout the data takes - by inserting random valued lines into the effected data file and repeated value lines into the corresponding header file. Finally, a fifth pass through the metadata was required to fix remaining start time anomalies. After the data were filtered, all times were linearly increasing, and all discontinuities filled, images could finally be formed. ASF DAAC utilized a custom version of ROI, the Repeat Orbit Interferometric SAR processor, to focus the data. Special focusing tasks for Seasat included dealing with Doppler ambiguity issues and filtering out 'spikes' in the power spectra. Once these obstacles were overcome via additional pre-processing software developed in house, well-focused SAR imagery was obtained from approximately 80% the ASF DAAC archives. These focused products, packaged in either HDF5 or geotiff formats with XML metadata, are downloadable from ASF DAAC free of charge.
Magnetic Topology and Ion Outflow in Mars' Magnetotail
NASA Astrophysics Data System (ADS)
Mitchell, D. L.; Xu, S.; McFadden, J. P.; Hara, T.; Luhmann, J. G.; Mazelle, C. X.; Andersson, L.; DiBraccio, G. A.; Connerney, J. E. P.
2017-12-01
Planetary ion outflow down the Martian magnetotail could be an important atmospheric loss mechanism. This process depends on magnetic connectivity to the day-side ionosphere and on acceleration of ions to escape velocity. The Mars Atmosphere and Volatile Evolution (MAVEN) mission has obtained comprehensive ion, electron, and magnetic field data in Mars' magnetotail. The spacecraft is in a 75°-inclination, elliptical orbit that samples altitudes from 150 to 6200 km. As the orbit precesses, it sweeps through the tail at a variety of altitudes in this range. Data from the Solar Wind Electron Analyzer (SWEA) and Magnetometer (MAG) are used to determine the magnetic field topology in the tail at high cadence (every 2-4 seconds), and in particular whether field lines are open, closed, or draped, and if open whether they have access to the day-side or night-side ionosphere. Simultaneous observations by the Supra-Thermal and Thermal Ion Composition (STATIC) instrument and the Langmuir Probe and Waves (LPW) experiment are used to measure the density, composition, and velocity of planetary plasma on these field lines. We find that magnetic topology in the tail is complex and variable, and is influenced by the IMF polarity and the orientation of Mars' crustal magnetic fields with respect to the Sun. We find that planetary ion outflow occurs on both open and draped field lines. On open field lines, outflow tends to occur parallel to the field line, with colder, denser, and slower outflow on field lines connected to the day-side ionosphere (Fig. 1). On these same field lines (after correction for the spacecraft potential) a shift in the position of the He-II photoelectron feature indicates a 1-Volt parallel electric potential directed away from the planet. Except for H+ and occasionally O+, this potential is insufficient by itself to accelerate planetary ions to escape velocity. Outflow is warmer, less dense, and faster moving on draped field lines. In this case, the ion bulk velocity can be at large angles to the magnetic field, suggesting JxB acceleration. This indicates that more than one mechanism is responsible for accelerating ions into the tail.
Kish, J K; Ward, M A; Garofalo, D; Ahmed, H V; McRoy, L; Laney, J; Zanotti, G; Braverman, J; Yu, H; Feinberg, B A
2018-05-02
Rapidly evolving understanding of cancer biology has presented novel opportunities to translate that understanding into clinically relevant therapy. Palbociclib, a novel, first-in-class cyclin-dependent kinase (CDK) 4/6 inhibitor was approved in the USA in February 2015 for the treatment of advanced/metastatic breast cancer. We examined real-world evidence in the first year post approval to understand the clinical and demographic characteristics of patients treated with palbociclib in community oncology practices and the dosing, treatment, and complete blood count (CBC) monitoring patterns. This was a retrospective observational study of structured data from a US electronic medical record (EMR) database. Female patients receiving palbociclib after 31 January 2015 were followed through 31 March 2016. Our methodological rules were constructed to aggregate drugs received according to the order in which they are given, i.e., identify the line of therapy as first, second, or third line, etc., using treatment order and course description fields from the EMR. There were 763 patients initiating palbociclib who met the selection criteria. Of those, 612 (80.2%) received palbociclib concomitantly with letrozole. Mean follow up was 6.4 months and mean age at palbociclib initiation was 64 years. Of patients with a known starting dose (n = 417), 79.9% started on palbociclib 125 mg. Dose reductions were observed in 20.1% of patients. Percentages of patients according to line of therapy at initiation of palbociclib were first-line, 39.5%; second-line, 15.7%; third-line, 13.1%; and fourth-line therapy or later, 31.7%. On average, two CBC tests were conducted during the first cycle of palbociclib treatment. Overall, 74.6% of patients had a neutropenic event during follow up including 47.3% and 8.0% of patients with a grade 3 or 4 occurrence, respectively. Real-world palbociclib use one year post US approval demonstrates a more heterogeneous patient population than that studied in the clinical trials with more than half of the patients receiving palbociclib plus letrozole in later lines of therapy. CBC testing rates suggested good provider compliance with monitoring guidelines in the USA prescribing information. The occurrence of grade 3 and 4 neutropenia (based on laboratory results) was consistent with the rates of grade 3 and 4 neutropenia in two phase-III studies (PALOMA-2, 56% and 10%; PALOMA-3, 55% and 11%, respectively). Understanding palbociclib utilization in real-world patients and how drug dosing and monitoring are performed aids in the understanding of safe and effective use of the drug.
The rate of separation of magnetic lines of force in a random magnetic field.
NASA Technical Reports Server (NTRS)
Jokipii, J. R.
1973-01-01
The mixing of magnetic lines of force, as represented by their rate of separation, as a function of distance along the magnetic field, is considered with emphasis on neighboring lines of force. This effect is particularly important in understanding the transport of charged particles perpendicular to the average magnetic field. The calculation is carried out in the approximation that the separation changes by an amount small compared with the correlation scale normal to the field, in a distance along the field of a few correlation scales. It is found that the rate of separation is very sensitive to the precise form of the power spectrum. Application to the interplanetary and interstellar magnetic fields is discussed, and it is shown that in some cases field lines, much closer together than the correlation scale, separate at a rate which is effectively as rapid as if they were many correlation lengths apart.
Mirror force induced wave dispersion in Alfvén waves
DOE Office of Scientific and Technical Information (OSTI.GOV)
Damiano, P. A.; Johnson, J. R.
2013-06-15
Recent hybrid MHD-kinetic electron simulations of global scale standing shear Alfvén waves along the Earth's closed dipolar magnetic field lines show that the upward parallel current region within these waves saturates and broadens perpendicular to the ambient magnetic field and that this broadening increases with the electron temperature. Using resistive MHD simulations, with a parallel Ohm's law derived from the linear Knight relation (which expresses the current-voltage relationship along an auroral field line), we explore the nature of this broadening in the context of the increased perpendicular Poynting flux resulting from the increased parallel electric field associated with mirror forcemore » effects. This increased Poynting flux facilitates wave energy dispersion across field lines which in-turn allows for electron acceleration to carry the field aligned current on adjacent field lines. This mirror force driven dispersion can dominate over that associated with electron inertial effects for global scale waves.« less
Marketing the `Broad Line': Invitations to STEM education in a Swedish recruitment campaign
NASA Astrophysics Data System (ADS)
Andrée, Maria; Hansson, Lena
2013-01-01
In many Western societies, there is a concern about the tendency of young people not choosing Science, Technology, Engineering, and Mathematics (STEM) education and occupations. In response, different initiatives have been launched. If one believes that science should have a place in more young people's lives, an important question is to what extent recruitment campaigns communicate messages that open up for STEM education to become relevant in young people's identity formation. Here, we analyse a Swedish government-initiated, primarily Internet-based recruitment attempt ('The Broad Line Campaign') aimed at increasing the number of young people choosing the natural science programme in upper secondary school. The campaign is based on marketing principles and deliberately draws on identity issues. The data analysed consists of campaign films and written resources describing the campaign. Data are analysed by use of the constant comparative approach in order to produce categories describing different messages about why to engage in STEM education. These messages are then analysed from an identity perspective using the concept of subjective values. Our results show that the messages communicated in the Broad Line campaign emphasise utility value, attainment value and relative cost rather than interest-enjoyment. The campaign communicates that the natural science programme is to be associated with a high attainment value without establishing relations to the field of science. Finally, potential consequences of the communicated messages in the campaign are discussed in light of previous research.
Mead, Emma J; Masterton, Rosalyn J; Feary, Marc; Obrezanova, Olga; Zhang, Lin; Young, Robert; Smales, C Mark
2015-12-15
Translation initiation is on the critical pathway for the production of monoclonal antibodies (mAbs) by mammalian cells. Formation of a closed loop structure comprised of mRNA, a number of eukaryotic initiation factors (eIFs) and ribosomal proteins has been proposed to aid re-initiation of translation and therefore increase global translational efficiency. We have determined mRNA and protein levels of the key components of the closed loop, eIFs (eIF3a, eIF3b, eIF3c, eIF3h, eIF3i and eIF4G1), poly(A)-binding protein (PABP) 1 and PABP-interacting protein 1 (PAIP1), across a panel of 30 recombinant mAb-producing GS-CHOK1SV cell lines with a broad range of growth characteristics and production levels of a model recombinant mAb. We have used a multi-level statistical approach to investigate the relationship between key performance indicators (cell growth and recombinant antibody productivity) and the intracellular amounts of target translation initiation factor proteins and the mRNAs encoding them. We show that high-producing cell lines maintain amounts of the translation initiation factors involved in the formation of the closed loop mRNA, maintaining these proteins at appropriate levels to deliver enhanced recombinant protein production. We then utilize knowledge of the amounts of these factors to build predictive models for and use cluster analysis to identify, high-producing cell lines. The present study therefore defines the translation initiation factor amounts that are associated with highly productive recombinant GS-CHOK1SV cell lines that may be targets for screening highly productive cell lines or to engineer new host cell lines with the potential for enhanced recombinant antibody productivity. © 2015 Authors; published by Portland Press Limited.
NASA Astrophysics Data System (ADS)
Bimagambetov, T. S.
2011-12-01
Stimulated infrared (IR) 5.231-μm line radiation is obtained upon two-photon and step-by-step excitations of the initial level. Dependences of the line power on the concentration of atoms and laser frequency are investigated. The mechanism of initial level occupation is explained.
Filament Channel Formation, Eruption, and Jet Generation
NASA Astrophysics Data System (ADS)
DeVore, C. Richard; Antiochos, Spiro K.; Karpen, Judith T.
2017-08-01
The mechanism behind filament-channel formation is a longstanding mystery, while that underlying the initiation of coronal mass ejections and jets has been studied intensively but is not yet firmly established. In previous work, we and collaborators have investigated separately the consequences of magnetic-helicity condensation (Antiochos 2013) for forming filament channels (Zhao et al. 2015; Knizhnik et al. 2015, 2017a,b) and of the embedded-bipole model (Antiochos 1996) for generating reconnection-driven jets (Pariat et al. 2009, 2010, 2015, 2016; Wyper et al. 2016, 2017). Now we have taken a first step toward synthesizing these two lines of investigation. Our recent study (Karpen et al. 2017) of coronal-hole jets with gravity and wind employed an ad hoc, large-scale shear flow at the surface to introduce magnetic free energy and form the filament channel. In this effort, we replace the shear flow with an ensemble of local rotation cells, to emulate the Sun’s ever-changing granules and supergranules. As in our previous studies, we find that reconnection between twisted flux tubes within the closed-field region concentrates magnetic shear and free energy near the polarity inversion line, forming the filament channel. Onset of reconnection between this field and the external, unsheared, open field releases stored energy to drive the impulsive jet. We discuss the results of our new simulations with implications for understanding solar activity and space weather.
BIDIRECTIONAL OUTFLOWS AS EVIDENCE OF MAGNETIC RECONNECTION LEADING TO A SOLAR MICROFLARE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hong, Jie; Ding, M. D.; Li, Ying
2016-03-20
Magnetic reconnection is a rapid energy release process that is believed to be responsible for flares on the Sun and stars. Nevertheless, such flare-related reconnection is mostly detected to occur in the corona, while there have been few studies concerning the reconnection in the chromosphere or photosphere. Here, we present both spectroscopic and imaging observations of magnetic reconnection in the chromosphere leading to a microflare. During the flare peak time, chromospheric line profiles show significant blueshifted/redshifted components on the two sides of the flaring site, corresponding to upflows and downflows with velocities of ±(70–80) km s{sup −1}, comparable with the localmore » Alfvén speed as expected by the reconnection in the chromosphere. The three-dimensional nonlinear force-free field configuration further discloses twisted field lines (a flux rope) at a low altitude, cospatial with the dark threads in He i 10830 Å images. The instability of the flux rope may initiate the flare-related reconnection. These observations provide clear evidence of magnetic reconnection in the chromosphere and show the similar mechanisms of a microflare to those of major flares.« less
Hall, Elise M; Thurow, Brian S; Guildenbecher, Daniel R
2016-08-10
Digital in-line holography (DIH) and plenoptic photography are two techniques for single-shot, volumetric measurement of 3D particle fields. Here we present a comparison of the two methods by applying plenoptic imaging to experimental configurations that have been previously investigated with DIH. These experiments include the tracking of secondary droplets from the impact of a water drop on a thin film of water and tracking of pellets from a shotgun. Both plenoptic imaging and DIH successfully quantify the 3D nature of these particle fields. This includes measurement of the 3D particle position, individual particle sizes, and three-component velocity vectors. For the initial processing methods presented here, both techniques give out-of-plane positional accuracy of approximately 1-2 particle diameters. For a fixed image sensor, digital holography achieves higher effective in-plane spatial resolutions. However, collimated and coherent illumination makes holography susceptible to image distortion through index of refraction gradients, as demonstrated in the shotgun experiments. In contrast, plenoptic imaging allows for a simpler experimental configuration and, due to the use of diffuse, white-light illumination, plenoptic imaging is less susceptible to image distortion in the shotgun experiments.
A sample of [C II] clouds tracing dense clouds in weak FUV fields observed by Herschel
NASA Astrophysics Data System (ADS)
Pineda, J. L.; Velusamy, T.; Langer, W. D.; Goldsmith, P. F.; Li, D.; Yorke, H. W.
2010-10-01
The [C ii] fine-structure line at 158 μm is an excellent tracer of the warm diffuse gas in the ISM and the interfaces between molecular clouds and their surrounding atomic and ionized envelopes. Here we present the initial results from Galactic observations of terahertz C+ (GOT C+), a Herschel key project devoted to studying the [C ii] emission in the Galactic plane using the HIFI instrument. We used the [C ii] emission, together with observations of CO, as a probe to understand the effects of newly formed stars on their interstellar environment and characterize the physical and chemical state of the star-forming gas. We collected data along 16 lines-of-sight passing near star-forming regions in the inner Galaxy near longitudes 330° and 20°. We identified fifty-eight [C ii] components that are associated with high-column density molecular clouds as traced by 13CO emission. We combined [C ii], 12CO, and 13CO observations to derive the physical conditions of the [C ii]-emitting regions in our sample of high-column density clouds based on comparing results from a grid of photon dominated region (PDR) models. From this unbiased sample, our results suggest that most of the [C ii] emission originates in clouds with H2 volume densities between 103.5 and 105.5 cm-3 and weak FUV strength (χ0 = 1-10). We find two regions where our analysis suggest high densities >105 cm-3 and strong FUV fields (χ0 = 104-106), likely associated with massive star formation. We suggest that [C ii] emission in conjunction with CO isotopes is a good tool for differentiating regions of massive star formation (high densities/strong FUV fields) and regions that are distant from massive stars (lower densities/weaker FUV fields) along the line-of-sight. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.
The generalization of upper atmospheric wind and temperature based on the Voigt line shape profile.
Zhang, Chunmin; He, Jian
2006-12-25
The principle of probing the upper atmospheric wind field, which is the Voigt profile spectral line shape, is presented for the first time. By the Fourier Transform of Voigt profile, with the Imaging Spectroscope and the Doppler effect of electromagnetic wave, the distribution and calculation formulae of the velocity field, temperature field, and pressure field of the upper atmosphere wind field are given. The probed source is the two major aurora emission lines originated from the metastable O(1S) and O(1D) at 557.7nm and 630.0nm. From computer simulation and error analysis, the Voigt profile, which is the correlation of the Gaussian profile and Lorentzian profile, is closest to the actual airglow emission lines.
NASA Technical Reports Server (NTRS)
Williams, D. J.; Frank, L. A.
1980-01-01
On November 20, 1977, at 0230-0300 UT, ISEE 1 encountered unusual charged particle distributions within the magnetosphere. The three-dimensional distribution observations for energetic (greater than 24 keV) ions and plasma show the development of field-aligned asymmetries in the energetic ion distributions simultaneously with a marked change in plasma flow. It is concluded that the most likely explanation for these observations is that ISEE 1 encountered open magnetospheric field lines at its position within the magnetosphere (1030 LT and 1200 plus or minus 300 km from the magnetopause). Field lines were open near the geomagnetic equator, and the geometry was spatially or temporally variable. Other features of the field line topology are presented.
Computer-Drawn Field Lines and Potential Surfaces for a Wide Range of Field Configurations
ERIC Educational Resources Information Center
Brandt, Siegmund; Schneider, Hermann
1976-01-01
Describes a computer program that computes field lines and equipotential surfaces for a wide range of field configurations. Presents the mathematical technique and details of the program, the input data, and different modes of graphical representation. (MLH)
NASA Technical Reports Server (NTRS)
Chandler, M.; Avanov, L.; Craven, P.; Mozer, F.; Moore, T. E.
2007-01-01
We have begun an investigation of the nature of the low-latitude boundary layer in the mid-altitude cusp region using data from the Polar spacecraft. Magnetosheath-like plasma is frequently observed deep (in terms of distance from the magnetopause and in invariant latitude) in the magnetosphere. One such case, taken during a long period of northward interplanetary magnetic field (IMP) on March 18, 2006, shows injected magnetosheath ions within the magnetosphere with velocity distributions resulting from two separate merging sites along the same field lines. Cold ionospheric ions were also observed counterstreaming along the field lines, evidence that these field lines were closed. Our results support the idea of double reconnection under northward IMP on the same group of field lines can provide a source for the LLBL. However, the flow direction of the accelerated magnetosheath ions antiparallel to the local magnetic field and given location of the spacecraft suggest that these two injection sites are located northward of the spacecraft position. Observed convection velocities of the magnetic field lines are inconsistent with those expected for double post-cusp reconnection in both hemispheres. These observations favor a scenario in which a group of newly closed field lines was created by a combination of high shear merging at high latitudes in the northern hemisphere and low shear merging at lower latitudes at the dayside magnetopause.
Dextrose 10% in the treatment of out-of-hospital hypoglycemia.
Kiefer, Matthew V; Gene Hern, H; Alter, Harrison J; Barger, Joseph B
2014-04-01
Prehospital first responders historically have treated hypoglycemia in the field with an IV bolus of 50 mL of 50% dextrose solution (D50). The California Contra Costa County Emergency Medical Services (EMS) system recently adopted a protocol of IV 10% dextrose solution (D10), due to frequent shortages and relatively high cost of D50. The feasibility, safety, and efficacy of this approach are reported using the experience of this EMS system. Over the course of 18 weeks, paramedics treated 239 hypoglycemic patients with D10 and recorded patient demographics and clinical outcomes. Of these, 203 patients were treated with 100 mL of D10 initially upon EMS arrival, and full data on response to treatment was available on 164 of the 203 patients. The 164 patients' capillary glucose response to initial infusion of 100 mL of D10 was calculated and a linear regression line fit between elapsed time and difference between initial and repeat glucose values. Feasibility, safety, and the need for repeat glucose infusions were examined. The study cohort included 102 men and 62 women with a median age of 68 years. The median initial field blood glucose was 38 mg/dL, with a subsequent blood glucose median of 98 mg/dL. The median time to second glucose testing was eight minutes after beginning the 100 mL D10 infusion. Of 164 patients, 29 (18%) required an additional dose of IV D10 solution due to persistent or recurrent hypoglycemia, and one patient required a third dose. There were no reported adverse events or deaths related to D10 administration. Linear regression analysis of elapsed time and difference between initial and repeat glucose values showed near-zero correlation. In addition to practical reasons of cost and availability, theoretical risks of using 50 mL of D50 in the out-of-hospital setting include extravasation injury, direct toxic effects of hypertonic dextrose, and potential neurotoxic effects of hyperglycemia. The results of one local EMS system over an 18-week period demonstrate the feasibility, safety, and efficacy of using 100 mL of D10 as an alternative. Additionally, the linear regression line of repeat glucose measurements suggests that there may be little or no short-term decay in blood glucose values after D10 administration.
A comparison of field-line resonances observed at the Goose Bay and Wick radars
NASA Astrophysics Data System (ADS)
Provan, G.; Yeoman, T. K.
1997-02-01
Previous observations with the Goose Bay HF coherent-scatter radar have revealed structured spectral peaks at ultra-low frequencies. The frequencies of these spectral peaks have been demonstrated to be extremely consistent from day to day. The stability of these spectral peaks can be seen as evidence for the existence of global magnetospheric cavity modes whose resonant frequencies are independent of latitude. Field-line resonances occur when successive harmonics of the eigenfrequency of the magnetospheric cavity or waveguide match either the first harmonic eigenfrequency of the geomagnetic field lines or higher harmonics of this frequency. Power spectra observed at the SABRE VHF coherent-scatter radar at Wick, Scotland, during night and early morning are revealed to show similarly clearly structured spectral peaks. These spectral peaks are the result of local field-line resonances due to Alfvén waves standing on magnetospheric field lines. A comparison of the spectra observed by the Goose Bay and Wick radars demonstrate that the frequencies of the field-line resonances are, on average, almost identical, despite the different latitudinal ranges covered by the two radars. Possible explanations for the similarity of the signatures on the two radar systems are discussed.
Synthetic observations of wave propagation in a sunspot umbra
DOE Office of Scientific and Technical Information (OSTI.GOV)
Felipe, T.; Socas-Navarro, H.; Khomenko, E.
2014-11-01
Spectropolarimetric temporal series from Fe I λ6301.5 Å and Ca II infrared triplet lines are obtained by applying the Stokes synthesis code NICOLE to a numerical simulation of wave propagation in a sunspot umbra from MANCHA code. The analysis of the phase difference between Doppler velocity and intensity core oscillations of the Fe I λ6301.5 Å line reveals that variations in the intensity are produced by opacity fluctuations rather than intrinsic temperature oscillations, except for frequencies between 5 and 6.5 mHz. On the other hand, the photospheric magnetic field retrieved from the weak field approximation provides the intrinsic magnetic fieldmore » oscillations associated to wave propagation. Our results suggest that this is due to the low magnetic field gradient of our sunspot model. The Stokes parameters of the chromospheric Ca II infrared triplet lines show striking variations as shock waves travel through the formation height of the lines, including emission self-reversals in the line core and highly abnormal Stokes V profiles. Magnetic field oscillations inferred from the Ca II infrared lines using the weak field approximation appear to be related with the magnetic field strength variation between the photosphere and the chromosphere.« less
NASA Astrophysics Data System (ADS)
Huang, Can; Lu, Quanming; Lu, San; Wang, Peiran; Wang, Shui
2014-02-01
A magnetic island plays an important role in magnetic reconnection. In this paper, using a series of two-dimensional particle-in-cell simulations, we investigate the magnetic structures of a magnetic island formed during multiple X line magnetic reconnections, considering the effects of the guide field in symmetric and asymmetric current sheets. In a symmetric current sheet, the current in the x direction forms a tripolar structure inside a magnetic island during antiparallel reconnection, which results in a quadrupole structure of the out-of-plane magnetic field. With the increase of the guide field, the symmetry of both the current system and out-of-plane magnetic field inside the magnetic island is distorted. When the guide field is sufficiently strong, the current forms a ring along the magnetic field lines inside a magnetic island. At the same time, the current carried by the energetic electrons accelerated in the vicinity of the X lines forms another ring at the edge of the magnetic island. Such a dual-ring current system enhances the out-of-plane magnetic field inside the magnetic island with a dip in the center of the magnetic island. In an asymmetric current sheet, when there is no guide field, electrons flow toward the X lines along the separatrices from the side with a higher density and are then directed away from the X lines along the separatrices to the side with a lower density. The formed current results in the enhancement of the out-of-plane magnetic field at one end of the magnetic island and the attenuation at the other end. With the increase of the guide field, the structures of both the current system and the out-of-plane magnetic field are distorted.
EVOLUTION OF THE MAGNETIC FIELD LINE DIFFUSION COEFFICIENT AND NON-GAUSSIAN STATISTICS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Snodin, A. P.; Ruffolo, D.; Matthaeus, W. H.
The magnetic field line random walk (FLRW) plays an important role in the transport of energy and particles in turbulent plasmas. For magnetic fluctuations that are transverse or almost transverse to a large-scale mean magnetic field, theories describing the FLRW usually predict asymptotic diffusion of magnetic field lines perpendicular to the mean field. Such theories often depend on the assumption that one can relate the Lagrangian and Eulerian statistics of the magnetic field via Corrsin’s hypothesis, and additionally take the distribution of magnetic field line displacements to be Gaussian. Here we take an ordinary differential equation (ODE) model with thesemore » underlying assumptions and test how well it describes the evolution of the magnetic field line diffusion coefficient in 2D+slab magnetic turbulence, by comparisons to computer simulations that do not involve such assumptions. In addition, we directly test the accuracy of the Corrsin approximation to the Lagrangian correlation. Over much of the studied parameter space we find that the ODE model is in fairly good agreement with computer simulations, in terms of both the evolution and asymptotic values of the diffusion coefficient. When there is poor agreement, we show that this can be largely attributed to the failure of Corrsin’s hypothesis rather than the assumption of Gaussian statistics of field line displacements. The degree of non-Gaussianity, which we measure in terms of the kurtosis, appears to be an indicator of how well Corrsin’s approximation works.« less
Comparisons of measured and calculated potential magnetic fields. [in solar corona
NASA Technical Reports Server (NTRS)
Hagyard, M. J.; Teuber, D.
1978-01-01
Photospheric line-of-sight and transverse-magnetic-field data obtained, with a vector magnetograph system for an isolated sunspot are described. A study of the linear polarization patterns and of the calculated transverse field lines indicates that the magnetic field of the region is very nearly potential. The H-alpha fibril structures of this region as seen in high-resolution photographs corroborate this conclusion. Consequently, a potential-field calculation is described using the measured line-of-sight fields together with assumed Neumann boundary conditions; both are necessary and sufficient for a unique solution. The computed transverse fields are then compared with the measured transverse fields to verify the potential-field model and assumed boundary values. The implications of these comparisons for the validity of magnetic-field extrapolations using potential theory are discussed.
NASA Astrophysics Data System (ADS)
Szadkowski, Zbigniew; Wiedeński, Michał
2017-06-01
We present first results from a trigger based on the discrete cosine transform (DCT) operating in new front-end boards with a Cyclone V E field-programmable gate array (FPGA) deployed in seven test surface detectors in the Pierre Auger Test Array. The patterns of the ADC traces generated by very inclined showers (arriving at 70° to 90° from the vertical) were obtained from the Auger database and from the CORSIKA simulation package supported by the Auger OffLine event reconstruction platform that gives predicted digitized signal profiles. Simulations for many values of the initial cosmic ray angle of arrival, the shower initialization depth in the atmosphere, the type of particle, and its initial energy gave a boundary on the DCT coefficients used for the online pattern recognition in the FPGA. Preliminary results validated the approach used. We recorded several showers triggered by the DCT for 120 Msamples/s and 160 Msamples/s.
New Approaches for DC Balanced SpaceWire
NASA Technical Reports Server (NTRS)
Kisin, Alex; Rakow, Glenn
2016-01-01
Direct Current (DC) line balanced SpaceWire is attractive for a number of reasons. Firstly, a DC line balanced interface provides the ability to isolate the physical layer with either a transformer or capacitor to achieve higher common mode voltage rejection and/or the complete galvanic isolation in the case of a transformer. Secondly, it provides the possibility to reduce the number of conductors and transceivers in the classical SpaceWire interface by half by eliminating the Strobe line. Depending on the modulator scheme - the clock data recovery frequency requirements may be only twice that of the transmit clock, or even match the transmit clock: depending on the Field Programmable Gate Array (FPGA) decoder design. In this paper, several different implementation scenarios will be discussed. Two of these scenarios are backward compatible with the existing SpaceWire hardware standards except for changes at the character level. Three other scenarios, while decreasing by half the standard SpaceWire hardware components, will require changes at both the character and signal levels and work with fixed rates. Other scenarios with variable data rates will require an additional SpaceWire interface handshake initialization sequence.
A STUDY ON MECHANICAL BEHAVIOR OF SUPPORT ELEMENTS INDUCED BY SHAFT SINKING
NASA Astrophysics Data System (ADS)
Tsusaka, Kimikazu; Inagaki, Daisuke; Hatsuyama, Yoshihiro; Koike, Masashi; Shimada, Tomohiro; Ijiri, Yuji
Japan Atomic Energy Agency has been excavating three deep shafts through soft sedimentary rock in the Horonobe Underground Research Laboratory. In this paper, the authors discussed change in stress and the stress distribution in a concrete lining and steel arch ribs induced by the 6.5 m diameter shaft sinking. They conducted not only field measurements of stress in support elements at a depth of around 220 m but also three-dimensional numerical analysis which models the shaft excavation procedure such as timing of installation of support elements and setting and removal of a concrete form. As a result, it was clarified that more than 10 MPa difference in circumferential stress occurred in a 2 m high and 400 mm thick concrete lining due to anisotropy of initial stress and three-dimensional effect of an excavation face. It was also found that a concrete lining gradually deformed from an original cylindrical form to a shape of an ellipsis with the long axis pallarel to the direction of the minimum horizontal principal stress after a concrete form was removed.
Vibronic transitions of trivalent Er and Ce in BaY2F8 single crystals
NASA Astrophysics Data System (ADS)
Baraldi, A.; Capelletti, R.; Mazzera, M.; Ponzoni, A.; Sani, E.; Tonelli, M.
2003-01-01
High resolution (0.02 cm(-1)) Fourier transform spectroscopy was applied in the 9-300 K and 100-24,000 cm(-1) ranges, respectively, to detect in Er3+ and Ce3+ doped Bay(2)F(8) single crystals (1) the narrow line spectra due to the intraconfigurational 4f-->4f transitions of the rare earths (RE) and (2) the possible vibronic tails accompanying the zero-phonon lines. The F-2(5/2) --> F-2(7/2) transition was monitored for the Ce3+-doping and the crystal field splitting of the initial and final manifold was determined. Weak vibronic spectra accompanying six among the nine investigated 4f-->4f transitions of Er3+ and the F-2(5/2) --> F-2(7/2) transition of Ce3+ were detected. The vibronic spectra amplitude was found to scale with the RE contents. On the basis of the IR- and Raman-active vibrational modes, either measured or quoted in the literature, most of the vibronic lines could be successfully assigned to the lattice modes. Violations of the selection rules were envisaged and discussed.
Planck intermediate results: XXXIV. The magnetic field structure in the Rosette Nebula
Aghanim, N.; Alves, M. I. R.; Arnaud, M.; ...
2016-02-09
Planck has mapped the polarized dust emission over the whole sky, making it possible to trace the Galactic magnetic field structure that pervades the interstellar medium (ISM). In this paper, we combine polarization data from Planck with rotation measure (RM) observations towards a massive star-forming region, the Rosette Nebula in the Monoceros molecular cloud, to study its magnetic field structure and the impact of an expanding H ii region on the morphology of the field. We derive an analytical solution for the magnetic field, assumed to evolve from an initially uniform configuration following the expansion of ionized gas and themore » formation of a shell of swept-up ISM. From the RM data we estimate a mean value of the line-of-sight component of the magnetic field of about 3 μG (towards the observer) in the Rosette Nebula, for a uniform electron density of about 12 cm -3. The dust shell that surrounds the Rosette H ii region is clearly observed in the Planck intensity map at 353 GHz, with a polarization signal significantly different from that of the local background when considered asa whole. The Planck observations constrain the plane-of-the-sky orientation of the magnetic field in the Rosette’s parent molecular cloud to be mostly aligned with the large-scale field along the Galactic plane. The Planck data are compared with the analytical model, which predicts the mean polarization properties of a spherical and uniform dust shell for a given orientation of the field. This comparison leads to an upper limit of about 45° on the angle between the line of sight and the magnetic field in the Rosette complex, for an assumed intrinsic dust polarization fraction of 4%. This field direction can reproduce the RM values detected in the ionized region if the magnetic field strength in the Monoceros molecular cloud is in the range 6.5–9 μG. Finally, the present analytical model is able to reproduce the RM distribution across the ionized nebula, as well as the mean dust polarization properties of the swept-up shell, and can be directly applied to other similar objects.« less
Planck intermediate results: XXXIV. The magnetic field structure in the Rosette Nebula
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aghanim, N.; Alves, M. I. R.; Arnaud, M.
Planck has mapped the polarized dust emission over the whole sky, making it possible to trace the Galactic magnetic field structure that pervades the interstellar medium (ISM). In this paper, we combine polarization data from Planck with rotation measure (RM) observations towards a massive star-forming region, the Rosette Nebula in the Monoceros molecular cloud, to study its magnetic field structure and the impact of an expanding H ii region on the morphology of the field. We derive an analytical solution for the magnetic field, assumed to evolve from an initially uniform configuration following the expansion of ionized gas and themore » formation of a shell of swept-up ISM. From the RM data we estimate a mean value of the line-of-sight component of the magnetic field of about 3 μG (towards the observer) in the Rosette Nebula, for a uniform electron density of about 12 cm -3. The dust shell that surrounds the Rosette H ii region is clearly observed in the Planck intensity map at 353 GHz, with a polarization signal significantly different from that of the local background when considered asa whole. The Planck observations constrain the plane-of-the-sky orientation of the magnetic field in the Rosette’s parent molecular cloud to be mostly aligned with the large-scale field along the Galactic plane. The Planck data are compared with the analytical model, which predicts the mean polarization properties of a spherical and uniform dust shell for a given orientation of the field. This comparison leads to an upper limit of about 45° on the angle between the line of sight and the magnetic field in the Rosette complex, for an assumed intrinsic dust polarization fraction of 4%. This field direction can reproduce the RM values detected in the ionized region if the magnetic field strength in the Monoceros molecular cloud is in the range 6.5–9 μG. Finally, the present analytical model is able to reproduce the RM distribution across the ionized nebula, as well as the mean dust polarization properties of the swept-up shell, and can be directly applied to other similar objects.« less
Energy buildup in sheared force-free magnetic fields
NASA Technical Reports Server (NTRS)
Wolfson, Richard; Low, Boon C.
1992-01-01
Photospheric displacement of the footpoints of solar magnetic field lines results in shearing and twisting of the field, and consequently in the buildup of electric currents and magnetic free energy in the corona. The sudden release of this free energy may be the origin of eruptive events like coronal mass ejections, prominence eruptions, and flares. An important question is whether such an energy release may be accompanied by the opening of magnetic field lines that were previously closed, for such open field lines can provide a route for matter frozen into the field to escape the sun altogether. This paper presents the results of numerical calculations showing that opening of the magnetic field is permitted energetically, in that it is possible to build up more free energy in a sheared, closed, force-free magnetic field than is in a related magnetic configuration having both closed and open field lines. Whether or not the closed force-free field attains enough energy to become partially open depends on the form of the shear profile; the results presented compare the energy buildup for different shear profiles. Implications for solar activity are discussed briefly.
On the electric field model for an open magnetosphere
NASA Technical Reports Server (NTRS)
Wang, Zhi; Ashour-Abdalla, Maha; Walker, Raymond J.
1993-01-01
We have developed a new canonical separator line type magnetospheric magnetic field and electric field model for use in magnetospheric calculations, we determine the magnetic and electric field by controlling the reconnection rate at the subsolar magnetopause. The model is applicable only for purely southward interplanetary magnetic field (IMF). We have obtained a more realistic magnetotail configuration by applying a stretch transformation to an axially symmetric field solution. We also discuss the Stern singularity in which there is an electric field singlarity in the canonical separate line models for B(sub y) not = to 0 by using a new technique that solves for the electric field along a field line directly instead of determining it by a potential mapping. The singularity not only causes an infinite electric field on the polar cap, but also causes the boundary conditions at plus infinity and minus infinity in the solar wind to contradict each other. This means that the canonical separator line models do not represent the open magnetosphere well, except for the case of purely southward IMF.
Pavlovsky, Federico
2003-01-01
This article summarizes the activity of the Programa de Investigaciones en Epidemiología Psiquiátrica (PEPSI) (Research Program in Psychiatric Epidemiology) of the CONICET, directed for more than thirty years by Fernando Pages Larraya. After an anthropologic psychiatric experience done in the Gran Chaco Gualamba, by the end of the 60s, Pages Larraya and his team developed the theory of Cultural Isoidias, zones into which the country could be divided for epidemiologic studies. This article summarizes some of the principal lines of investigation of this program which departures from an initial study of the prevalence of mental diseases in Argentina. Other lines of research (such as a study about marginality, about Alzheimer's disease, about alcoholism and about AIDS) are summarized very briefly so as to give the reader an idea about the enormous field of study embraced by the PEPSI.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Placidi, M.; Jung, J. -Y.; Ratti, A.
2014-07-25
This paper describes beam distribution schemes adopting a novel implementation based on low amplitude vertical deflections combined with horizontal ones generated by Lambertson-type septum magnets. This scheme offers substantial compactness in the longitudinal layouts of the beam lines and increased flexibility for beam delivery of multiple beam lines on a shot-to-shot basis. Fast kickers (FK) or transverse electric field RF Deflectors (RFD) provide the low amplitude deflections. Initially proposed at the Stanford Linear Accelerator Center (SLAC) as tools for beam diagnostics and more recently adopted for multiline beam pattern schemes, RFDs offer repetition capabilities and a likely better amplitude reproducibilitymore » when compared to FKs, which, in turn, offer more modest financial involvements both in construction and operation. Both solutions represent an ideal approach for the design of compact beam distribution systems resulting in space and cost savings while preserving flexibility and beam quality.« less
Retrospective analysis of a detector fault for a full field digital mammography system
NASA Astrophysics Data System (ADS)
Marshall, N. W.
2006-11-01
This paper describes objective and subjective image quality measurements acquired as part of a routine quality assurance (QA) programme for an amorphous selenium (a-Se) full field digital mammography (FFDM) system between August-04 and February-05. During this period, the FFDM detector developed a fault and was replaced. A retrospective analysis of objective image quality parameters (modulation transfer function (MTF), normalized noise power spectrum (NNPS) and detective quantum efficiency (DQE)) is presented to try and gain a deeper understanding of the detector problem that occurred. These measurements are discussed in conjunction with routine contrast-detail (c-d) results acquired with the CDMAM (Artinis, The Netherlands) test object. There was significant reduction in MTF over this period of time indicating an increase in blurring occurring within the a-Se converter layer. This blurring was not isotropic, being greater in the data line direction (left to right across the detector) than in the gate line direction (chest wall to nipple). The initial value of the 50% MTF point was 6 mm-1; for the faulty detector the 50% MTF points occurred at 3.4 mm-1 and 1.0 mm-1 in the gate line and data line directions, respectively. Prior to NNPS estimation, variance images were formed of the detector flat field images. Spatial distribution of variance was not uniform, suggesting that the physical blurring process was not constant across the detector. This change in variance with image position implied that the stationarity of the noise statistics within the image was limited and that care would be needed when performing objective measurements. The NNPS measurements confirmed the results found for the MTF, with a strong reduction in NNPS as a function of spatial frequency. This reduction was far more severe in the data line direction. A somewhat tentative DQE estimate was made; in the gate line direction there was little change in DQE up to 2.5 mm-1 but at the Nyquist frequency the DQE had fallen to approximately 35% of the original value. There was severe attenuation of DQE in the data line direction, the DQE falling to less than 0.01 above approximately 3.0 mm-1. C-d results showed an increase in threshold contrast of approximately 25% for details less than 0.2 mm in diameter, while no reduction in c-d performance was found at the largest detail diameters (1.0 mm and above). Despite the detector fault, the c-d curve was found to pass the European protocol acceptable c-d curve.
NASA Astrophysics Data System (ADS)
Negrea, M.; Petrisor, I.; Shalchi, A.
2017-11-01
We study the diffusion of magnetic field lines in turbulence with magnetic shear. In the first part of the series, we developed a quasi-linear theory for this type of scenario. In this article, we employ the so-called DeCorrelation Trajectory method in order to compute the diffusion coefficients of stochastic magnetic field lines. The magnetic field configuration used here contains fluctuating terms which are described by the dimensionless functions bi(X, Y, Z), i = (x, y) and they are assumed to be Gaussian processes and are perpendicular with respect to the main magnetic field B0. Furthermore, there is also a z-component of the magnetic field depending on radial coordinate x (representing the gradient of the magnetic field) and a poloidal average component. We calculate the diffusion coefficients for magnetic field lines for different values of the magnetic Kubo number K, the dimensionless inhomogeneous magnetic parallel and perpendicular Kubo numbers KB∥, KB⊥ , as well as Ka v=bya vKB∥/KB⊥ .
Qin, Qi-Zhong; Chen, Yu; Fu, Ting-Ting; Ding, Li; Han, Ling-Li; Li, Jian-Chao
2012-03-01
To understand electromagnetic radiation field strength and its influencing factors of certain 110-kV high-voltage lines in one urban area of Chongqing by measuring 110-kV high-voltage line's electromagnetic radiation level. According to the methodology as determined by the National Hygienic Standards, we selected certain adjacent residential buildings, high-voltage lines along a specific street and selected different distances around its vertical projection point as monitoring points. The levels of electromagnetic radiations were measured respectively. In this investigation within the frequency of 5-1,000 Hz both the electric field strength and magnetic field strength of each monitoring sites were lower than the public exposure standards as determined by the International Commission on Non-Ionizing Radiation Protection. However, the electrical field strength on the roof adjacent to the high-voltage lines was significantly higher than that as measured on the other floors in the same buildings (p < 0.05). The electromagnetic radiation measurements of different monitoring points, under the same high-voltage lines, showed the location which is nearer the high-voltage line maintain a consistently higher level of radiation than the more distant locations (p < 0.05). Electromagnetic radiation generated by high-voltage lines decreases proportionally to the distance from the lines. The buildings can to some extent shield (or absorb) the electric fields generated by high-voltage lines nearby. The electromagnetic radiation intensity near high-voltage lines may be mitigated or intensified by the manner in which the high-voltage lines are set up, and it merits attention for the potential impact on human health.
Lühr, Hermann; Huang, Tao; Wing, Simon; Kervalishvili, Guram; Rauberg, Jan; Korth, Haje
2017-01-01
ESA’s Swarm constellation mission makes it possible for the first time to determine field-aligned currents (FACs) in the ionosphere uniquely. In particular at high latitudes, the dual-satellite approach can reliably detect some FAC structures which are missed by the traditional single-satellite technique. These FAC events occur preferentially poleward of the auroral oval and during times of northward interplanetary magnetic field (IMF) orientation. Most events appear on the nightside. They are not related to the typical FAC structures poleward of the cusp, commonly termed NBZ. Simultaneously observed precipitating particle spectrograms and auroral images from Defense Meteorological Satellite Program (DMSP) satellites are consistent with the detected FACs and indicate that they occur on closed field lines mostly adjacent to the auroral oval. We suggest that the FACs are associated with Sun-aligned filamentary auroral arcs. Here we introduce in an initial study features of the high-latitude FAC structures which have been observed during the early phase of the Swarm mission. A more systematic survey over longer times is required to fully characterize the so far undetected field aligned currents. PMID:29056833
Vortex cutting in superconductors
Glatz, A.; Vlasko-Vlasov, V. K.; Kwok, W. K.; ...
2016-08-09
Vortex cutting and reconnection is an intriguing and still-unsolved problem central to many areas of classical and quantum physics, including hydrodynamics, astrophysics, and superconductivity. Here, in this paper, we describe a comprehensive investigation of the crossing of magnetic vortices in superconductors using time dependent Ginsburg-Landau modeling. Within a macroscopic volume, we simulate initial magnetization of an anisotropic high temperature superconductor followed by subsequent remagnetization with perpendicular magnetic fields, creating the crossing of the initial and newly generated vortices. The time resolved evolution of vortex lines as they approach each other, contort, locally conjoin, and detach, elucidates the fine details ofmore » the vortex-crossing scenario under practical situations with many interacting vortices in the presence of weak pinning. Finally, our simulations also reveal left-handed helical vortex instabilities that accompany the remagnetization process and participate in the vortex crossing events.« less
Vortex cutting in superconductors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Glatz, A.; Vlasko-Vlasov, V. K.; Kwok, W. K.
Vortex cutting and reconnection is an intriguing and still-unsolved problem central to many areas of classical and quantum physics, including hydrodynamics, astrophysics, and superconductivity. Here, in this paper, we describe a comprehensive investigation of the crossing of magnetic vortices in superconductors using time dependent Ginsburg-Landau modeling. Within a macroscopic volume, we simulate initial magnetization of an anisotropic high temperature superconductor followed by subsequent remagnetization with perpendicular magnetic fields, creating the crossing of the initial and newly generated vortices. The time resolved evolution of vortex lines as they approach each other, contort, locally conjoin, and detach, elucidates the fine details ofmore » the vortex-crossing scenario under practical situations with many interacting vortices in the presence of weak pinning. Finally, our simulations also reveal left-handed helical vortex instabilities that accompany the remagnetization process and participate in the vortex crossing events.« less
Planetary geology, stellar evolution and galactic cosmology
NASA Technical Reports Server (NTRS)
1972-01-01
Field studies of selected basalt flows in the Snake River Plain, Idaho, were made for comparative lunar and Mars geological investigations. Studies of basalt lava tubes were also initiated in Washington, Oregon, Hawaii, and northern California. The main effort in the stellar evolution research is toward the development of a computer code to calculate hydrodynamic flow coupled with radiative energy transport. Estimates of the rotation effects on a collapsing cloud indicate that the total angular momentum is the critical parameter. The study of Paschen and Balmer alpha lines of positronium atoms in the center of a galaxy is mentioned.
On the existence of the field line solutions of the Einstein-Maxwell equations
NASA Astrophysics Data System (ADS)
Vancea, Ion V.
The main result of this paper is the proof that there are local electric and magnetic field configurations expressed in terms of field lines on an arbitrary hyperbolic manifold. This electromagnetic field is described by (dual) solutions of the Maxwell’s equations of the Einstein-Maxwell theory. These solutions have the following important properties: (i) they are general, in the sense that the knot solutions are particular cases of them and (ii) they reduce to the electromagnetic fields in the field line representation in the flat space-time. Also, we discuss briefly the real representation of these electromagnetic configurations and write down the corresponding Einstein equations.
A new method of presentation the large-scale magnetic field structure on the Sun and solar corona
NASA Technical Reports Server (NTRS)
Ponyavin, D. I.
1995-01-01
The large-scale photospheric magnetic field, measured at Stanford, has been analyzed in terms of surface harmonics. Changes of the photospheric field which occur within whole solar rotation period can be resolved by this analysis. For this reason we used daily magnetograms of the line-of-sight magnetic field component observed from Earth over solar disc. We have estimated the period during which day-to-day full disc magnetograms must be collected. An original algorithm was applied to resolve time variations of spherical harmonics that reflect time evolution of large-scale magnetic field within solar rotation period. This method of magnetic field presentation can be useful enough in lack of direct magnetograph observations due to sometimes bad weather conditions. We have used the calculated surface harmonics to reconstruct the large-scale magnetic field structure on the source surface near the sun - the origin of heliospheric current sheet and solar wind streams. The obtained results have been compared with spacecraft in situ observations and geomagnetic activity. We tried to show that proposed technique can trace shon-time variations of heliospheric current sheet and short-lived solar wind streams. We have compared also our results with those obtained traditionally from potential field approximation and extrapolation using synoptic charts as initial boundary conditions.
NASA Astrophysics Data System (ADS)
Lee, Hwanhee; Magara, Tetsuya
2018-06-01
We present a magnetohydrodynamic model of solar eruption based on the dynamic state transition from the quasi-static state to the eruptive state of an active region (AR) magnetic field. For the quasi-static state before an eruption, we consider the existence of a slow solar wind originating from an AR, which may continuously make the AR magnetic field deviate from mechanical equilibrium. In this model, we perform a three-dimensional magnetohydrodynamic simulation of AR 12158 producing a coronal mass ejection, where the initial magnetic structure of the simulation is given by a nonlinear force-free field derived from an observed photospheric vector magnetic field. We then apply a pressure-driven outflow to the upper part of the magnetic structure to achieve a quasi-static pre-eruptive state. The simulation shows that the eruptive process observed in this AR may be caused by the dynamic state transition of an AR magnetic field, which is essentially different from the destabilization of a static magnetic field. The dynamic state transition is determined from the shape evolution of the magnetic field line according to the κH-mechanism. This work demonstrates how the mechanism works to produce a solar eruption in the dynamic solar corona governed by the gravitational field and the continuous outflows of solar wind.
NASA Astrophysics Data System (ADS)
Badman, S. V.; Wright, D. M.; Clausen, L. B. N.; Fear, R. C.; Robinson, T. R.; Yeoman, T. K.
2009-09-01
Space Plasma Exploration by Active Radar (SPEAR) is a high-latitude ionospheric heating facility capable of exciting ULF waves on local magnetic field lines. We examine an interval from 1 February 2006 when SPEAR was transmitting a 1 Hz modulation signal with a 10 min on-off cycle. Ground magnetometer data indicated that SPEAR modulated currents in the local ionosphere at 1 Hz, and enhanced a natural field line resonance with a 10 min period. During this interval the Cluster spacecraft passed over the heater site. Signatures of the SPEAR-enhanced field line resonance were present in the magnetic field data measured by the magnetometer on-board Cluster-2. These are the first joint ground- and space-based detections of field line tagging by SPEAR.
Shielding Design for the South Pole nToF Diagnostic at the NIF
NASA Astrophysics Data System (ADS)
Khater, Hesham; Sitaraman, Shiva; Hall, James; Hatarik, Robert; Caggiano, Joseph; Waltz, Cory
2017-09-01
Neutron time of flight (nToF) detectors are fielded at the National Ignition Facility (NIF) to measure neutron yield, ion temperature, and downscattering in the cold fuel for D-T implosions. Anisotropically assembled cold fuel may generate different nToF data when measured by detectors located at the Target Chamber equator and poles. A collimated nToF line of sight has been fielded near the Target Chamber South Pole (SP) to examine any possible anisotropy in the cold fuel. The SP nToF detector is located in the lowest floor level of the NIF's Target Bay and at a distance of 18 m from the Target Chamber Center. The detector utilizes a solid bibenzyl scintillator and four photomultiplier tubes. The line of sight includes a port collimator that is attached to the Target Chamber and a bore hole collimator in the concrete floor above the detector. In addition, a beam line get lost hole is constructed in the Target Bay floor to minimize the backscattered radiation at the detector location. Initial measurements indicated the need for installation of additional shielding to eliminate gamma background during the period before arrival of the 14.1 MeV neutrons to the detector. A set of MCNP Monte Carlo simulations with the full Target Bay model were conducted to provide an estimate of the expected neutron and gamma backgrounds during D-T shots. A new shielding scheme is designed to reduce the gamma background by an order of magnitude.
Wang, Ju; McClean, Phillip E; Lee, Rian; Goos, R Jay; Helms, Ted
2008-04-01
Association mapping is an alternative to mapping in a biparental population. A key to successful association mapping is to avoid spurious associations by controlling for population structure. Confirming the marker/trait association in an independent population is necessary for the implementation of the marker in other genetic studies. Two independent soybean populations consisting of advanced breeding lines representing the diversity within maturity groups 00, 0, and I were screened in multi-site, replicated field trials to discover molecular markers associated with iron deficiency chlorosis (IDC), a major yield-limiting factor in soybean. Lines with extreme phenotypes were initially screened to identify simple sequence repeat (SSR) markers putatively associated with the IDC. Marker data collected from all lines were used to control for population structure and kinship relationships. Single factor analysis of variance (SFA) and mixed linear model (MLM) analyses were used to discover marker/trait associations. The MLM analyses, which include population structure, kinship or both factors, reduced the number of markers significantly associated with IDC by 50% compared with SFA. With the MLM approach, three markers were found to be associated with IDC in the first population. Two of these markers, Satt114 and Satt239, were also found to be associated with IDC in the second confirmation population. For both populations, those lines with the tolerance allele at both these two marker loci had significantly lower IDC scores than lines with one or no tolerant alleles.
Magnetic flux ropes at the high-latitude magnetopause
NASA Technical Reports Server (NTRS)
Berchem, Jean; Raeder, Joachim; Ashour-Abdalla, Maha
1995-01-01
We examine the consequences of magnetic reconnection at the high-latitude magnetopause using a three-dimensional global magnetohydrodynamic simulation of the solar wind interaction with the Earth's magnetosphere. Magnetic field lines from the simulation reveal the formation of magnetic flux ropes during periods with northward interplanetary magnetic field. These flux ropes result from multiple reconnection processes between the lobes field lines and draped magnetosheath field lines that are convected around the flank of the magnetosphere. The flux ropes identified in the simulation are consistent with features observed in the magnetic field measured by Hawkeye-1 during some high-latitude magnetopause crossings.
Sheftman, D; Gupta, D; Roche, T; Thompson, M C; Giammanco, F; Conti, F; Marsili, P; Moreno, C D
2016-11-01
Knowledge and control of the axial outflow of plasma particles and energy along open-magnetic-field lines are of crucial importance to the stability and longevity of the advanced beam-driven field-reversed configuration plasma. An overview of the diagnostic methods used to perform measurements on the open field line plasma on C-2U is presented, including passive Doppler impurity spectroscopy, microwave interferometry, and triple Langmuir probe measurements. Results of these measurements provide the jet ion temperature and axial velocity, electron density, and high frequency density fluctuations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sheftman, D., E-mail: dsheftman@trialphaenergy.com; Gupta, D.; Roche, T.
Knowledge and control of the axial outflow of plasma particles and energy along open-magnetic-field lines are of crucial importance to the stability and longevity of the advanced beam-driven field-reversed configuration plasma. An overview of the diagnostic methods used to perform measurements on the open field line plasma on C-2U is presented, including passive Doppler impurity spectroscopy, microwave interferometry, and triple Langmuir probe measurements. Results of these measurements provide the jet ion temperature and axial velocity, electron density, and high frequency density fluctuations.
Solar and Interstellar Magnetic Fields Artist Concept
2012-12-03
This artist concept shows the different expected directions of the magnetic fields in interstellar space black lines and the magnetic field emanating from our sun white lines as NASA Voyager 1 spacecraft travels northward out of the heliosphere.
NASA Astrophysics Data System (ADS)
Laitinen, T. L.; Kopp, A.; Effenberger, F.; Dalla, S.; Marsh, M. S.
2014-12-01
Multi-spacecraft observations of Solar Energetic Particles (SEPs) show that the SEPs can spread large distances across the mean Parker spiral field. The SEPs accelerated during a solar eruption can be observed 360° around the Sun, and the dependence of SEP peak intensity on heliographic longitude at 1 AU has been fitted with Gaussian profiles with σ=30-50° for several events (e.g., Dresing et al 2014; Richardson et al 2014). SEP anisotropy measurements suggest that interplanetary transport is an important factor to the SEP cross-field extent (Dresing et al 2014). However, the currently used diffusive Fokker Planck (FP) description of SEP transport, with realistic diffusion coefficients, has been found insufficient to explain the SEP event cross-field extents. Recently Laitinen et al (2013) emphasised the importance of particle propagation along meandering field lines, which cannot be described as diffusion. They showed that early in an event field line meandering dominates particle cross-field transport and produces events wider than the FP description. They also introduced a new FP model that incorporates both field line meandering and SEP cross-field diffusion using stochastic differential equations and a constant background magnetic field. In this work, we implement the new FP model into Parker field geometry, to study the evolution of an SEP event in the interplanetary space. We compare the new model to the traditional FP approach by using particle and field line diffusion coefficients that are calculated consistently for both models using an assumed radial and spectral description of the turbulence evolution. We find that while the traditional SEP propagation modelling gives typically longitudinal extent with σ=10-20°, the new model results in values σ=30-50°, which is consistent with SEP observations. We conclude that field line meandering must be taken into account when modelling SEP propagation in the interplanetary space.
Hybrid simulations of radial transport driven by the Rayleigh-Taylor instability
NASA Astrophysics Data System (ADS)
Delamere, P. A.; Stauffer, B. H.; Ma, X.
2017-12-01
Plasma transport in the rapidly rotating giant magnetospheres is thought to involve a centrifugally-driven flux tube interchange instability, similar to the Rayleigh-Taylor (RT) instability. In three dimensions, the convective flow patterns associated with the RT instability can produce strong guide field reconnection, allowing plasma mass to move radially outward while conserving magnetic flux (Ma et al., 2016). We present a set of hybrid (kinetic ion / fluid electron) plasma simulations of the RT instability using high plasma beta conditions appropriate for Jupiter's inner and middle magnetosphere. A density gradient, combined with a centrifugal force, provide appropriate RT onset conditions. Pressure balance is achieved by initializing two ion populations: one with fixed temperature, but varying density, and the other with fixed density, but a temperature gradient that offsets the density gradient from the first population and the centrifugal force (effective gravity). We first analyze two-dimensional results for the plane perpendicular to the magnetic field by comparing growth rates as a function of wave vector following Huba et al. (1998). Prescribed perpendicular wave modes are seeded with an initial velocity perturbation. We then extend the model to three dimensions, introducing a stabilizing parallel wave vector. Boundary conditions in the parallel direction prohibit motion of the magnetic field line footprints to model the eigenmodes of the magnetodisc's resonant cavity. We again compare growth rates based on perpendicular wave number, but also on the parallel extent of the resonant cavity, which fixes the size of the largest parallel wavelength. Finally, we search for evidence of strong guide field magnetic reconnection within the domain by identifying areas with large parallel electric fields or changes in magnetic field topology.
Random Interchange of Magnetic Connectivity
NASA Astrophysics Data System (ADS)
Matthaeus, W. H.; Ruffolo, D. J.; Servidio, S.; Wan, M.; Rappazzo, A. F.
2015-12-01
Magnetic connectivity, the connection between two points along a magnetic field line, has a stochastic character associated with field lines random walking in space due to magnetic fluctuations, but connectivity can also change in time due to dynamical activity [1]. For fluctuations transverse to a strong mean field, this connectivity change be caused by stochastic interchange due to component reconnection. The process may be understood approximately by formulating a diffusion-like Fokker-Planck coefficient [2] that is asymptotically related to standard field line random walk. Quantitative estimates are provided, for transverse magnetic field models and anisotropic models such as reduced magnetohydrodynamics. In heliospheric applications, these estimates may be useful for understanding mixing between open and close field line regions near coronal hole boundaries, and large latitude excursions of connectivity associated with turbulence. [1] A. F. Rappazzo, W. H. Matthaeus, D. Ruffolo, S. Servidio & M. Velli, ApJL, 758, L14 (2012) [2] D. Ruffolo & W. Matthaeus, ApJ, 806, 233 (2015)
The Hanle effect applied to magnetic field measurements
NASA Technical Reports Server (NTRS)
Leroy, J. L.
1985-01-01
The Hanle effect is the modification by a local magnetic field of the polarization due to coherent scattering in spectral lines. It results from the precession of a classical oscillator about the magnetic field direction. The sophisticated quantum-mechanical treatment, which is required to compute the polarization parameters of scattered light, was developed. The main features of the Hanle effect concerning magnetic field measurements are: (1) a good sensitivity within the approximate range 0.1 B gamma rho to 10 B gamma rho where B gamma rho is the field strength yielding a Larmor period equal to the radiative lifetime, (2) there is no Hanle effect for field vectors parallel to the excitating beam, (3) the Hanle effect refers essentially to the linear polarization in a spectral line, (4) various points in the line profile are affected in the same way by change of linear polarization so that polarization parameters can be measured on the integrated line profile.
Experimental analysis of a TEM plane transmission line for DNA studies at 900 MHz EM fields
NASA Astrophysics Data System (ADS)
Belloni, F.; Doria, D.; Lorusso, A.; Nassisi, V.; Velardi, L.; Alifano, P.; Monaco, C.; Talà, A.; Tredici, M.; Rainò, A.
2006-07-01
A suitable plane transmission line was developed and its behaviour analysed at 900 MHz radiofrequency fields to study DNA mutability and the repair of micro-organisms. In this work, utilizing such a device, we investigated the behaviour of DNA mutability and repair of Escherichia coli strains. The transmission line was very simple and versatile in changing its characteristic resistance and field intensity by varying its sizes. In the absence of cell samples inside the transmission line, the relative modulation of the electric and/or magnetic field was ±31% with respect to the mean values, allowing the processing of more samples at different exposure fields in a single run. A slight decrease in spontaneous mutability to rifampicin-resistance of the E. coli JC411 strain was demonstrated in mismatch-repair proficient samples exposed to the radio-frequency fields during their growth on solid medium.
A Parametric Study of Erupting Flux Rope Rotation: Modeling the 'Cartwheel CME' on 9 April 2008
NASA Technical Reports Server (NTRS)
Kliem, B.; Toeroek, T.; Thompson, W. T.
2012-01-01
The rotation of erupting filaments in the solar corona is addressed through a parametric simulation study of unstable, rotating flux ropes in bipolar force-free initial equilibrium. The Lorentz force due to the external shear-field component and the relaxation of tension in the twisted field are the major contributors to the rotation in this model, while reconnection with the ambient field is of minor importance, due to the field's simple structure. In the low-beta corona, the rotation is not guided by the changing orientation of the vertical field component's polarity inversion line with height. The model yields strong initial rotations which saturate in the corona and differ qualitatively from the profile of rotation vs. height obtained in a recent simulation of an eruption without preexisting flux rope. Both major mechanisms writhe the flux rope axis, converting part of the initial twist helicity, and produce rotation profiles which, to a large part, are very similar within a range of shear-twist combinations. A difference lies in the tendency of twist-driven rotation to saturate at lower heights than shear-driven rotation. For parameters characteristic of the source regions of erupting filaments and coronal mass ejections, the shear field is found to be the dominant origin of rotations in the corona and to be required if the rotation reaches angles of order 90 degrees and higher; it dominates even if the twist exceeds the threshold of the helical kink instability. The contributions by shear and twist to the total rotation can be disentangled in the analysis of observations if the rotation and rise profiles are simultaneously compared with model calculations. The resulting twist estimate allows one to judge whether the helical kink instability occurred. This is demonstrated for the erupting prominence in the "Cartwheel CME" on 9 April 2008, which has shown a rotation of approximately 115 deg. up to a height of 1.5 Solar R above the photosphere. Out of a range of initial equilibria which include strongly kink-unstable (Phi = 5 pi), weakly kink-unstable (Phi = 3.5 pi), and kink-stable (Phi = 2.5 pi) configurations, only the evolution of the weakly kink-unstable flux rope matches the observations in their entirety.
NASA Technical Reports Server (NTRS)
Wendel, Deirdre E.; Reiff, Patricia H.; Goldstein, Melvyn L.
2010-01-01
We simulate a northward IMF cusp reconnection event at the magnetopause using the OpenGGCM resistive MHD code. The ACE input data, solar wind parameters, and dipole tilt belong to a 2002 reconnection event observed by IMAGE and Cluster. Based on a fully three-dimensional skeleton separators, nulls, and parallel electric fields, we show magnetic draping, convection, ionospheric field line tying play a role in producing a series of locally reconnecting nulls with flux ropes. The flux ropes in the cusp along the global separator line of symmetry. In 2D projection, the flux ropes the appearance of a tearing mode with a series of 'x's' and 'o's' but bearing a kind of 'guide field' that exists only within the magnetopause. The reconnecting field lines in the string of ropes involve IMF and both open and closed Earth magnetic field lines. The observed magnetic geometry reproduces the findings of a superposed epoch impact parameter study derived from the Cluster magnetometer data for the same event. The observed geometry has repercussions for spacecraft observations of cusp reconnection and for the imposed boundary conditions reconnection simulations.
Sardanyés, Josep; Arderiu, Andreu; Elena, Santiago F; Alarcón, Tomás
2018-05-01
Evolutionary and dynamical investigations into real viral populations indicate that RNA replication can range between the two extremes represented by so-called 'stamping machine replication' (SMR) and 'geometric replication' (GR). The impact of asymmetries in replication for single-stranded (+) sense RNA viruses has been mainly studied with deterministic models. However, viral replication should be better described by including stochasticity, as the cell infection process is typically initiated with a very small number of RNA macromolecules, and thus largely influenced by intrinsic noise. Under appropriate conditions, deterministic theoretical descriptions of viral RNA replication predict a quasi-neutral coexistence scenario, with a line of fixed points involving different strands' equilibrium ratios depending on the initial conditions. Recent research into the quasi-neutral coexistence in two competing populations reveals that stochastic fluctuations fundamentally alter the mean-field scenario, and one of the two species outcompetes the other. In this article, we study this phenomenon for viral RNA replication modes by means of stochastic simulations and a diffusion approximation. Our results reveal that noise has a strong impact on the amplification of viral RNAs, also causing the emergence of noise-induced bistability. We provide analytical criteria for the dominance of (+) sense strands depending on the initial populations on the line of equilibria, which are in agreement with direct stochastic simulation results. The biological implications of this noise-driven mechanism are discussed within the framework of the evolutionary dynamics of RNA viruses with different modes of replication. © 2018 The Author(s).
Rosenblatt, Amir; Klein, Ainat; Roemer, Ségolène; Borruat, François-Xavier; Meira, Dália; Silva, Marta; Gökçay, Figen; Çelebisoy, Neşe; Kesler, Anat
2016-09-01
Idiopathic intracranial hypertension (IIH) is a well-characterized syndrome, most commonly affecting obese women of childbearing age. Differences in its prevalence have been reported in various populations. The aim of this article was to determine whether differences in clinical presentation and management exist for patients with IIH between different regions the world. Retrospective database analysis of adult patients with IIH from 4 different neuro-ophthalmology clinics. The data collected included gender, age of onset, body mass index (BMI), lumbar puncture opening pressure, initial visual acuity (VA), initial visual field (VF) mean deviation (MD), pharmacological or surgical treatment, length of follow-up, final VA, and final VF MD. The study population consisted of 244 patients, with significant regional variations of female to male ratio. Overall, there was no significant difference regarding the age of diagnosis or the BMI. Acetazolamide was the first line of treatment in all groups but there was a difference between countries regarding second-line treatment, including the use of surgical interventions. Mean initial VA differed between groups but the final change in VA was the same among all the study groups. There are differences in IIH presentation, treatment, and response to therapy among different countries. International prospective studies involving multiple centers are needed to determine the potential influence of environmental and genetic factors on the development of IIH and to improve the management of this potentially blinding disorder.
Understanding the rotation of coronal holes
NASA Astrophysics Data System (ADS)
Wang, Y.-M.; Sheeley, N. R., Jr.
1993-09-01
In an earlier study we found that the rotation of coronal holes could be understood on the basis of a nearly current-free coronal field, with the holes representing open magnetic regions. In this paper we illustrate the model by focusing on the case of CH1, the rigidly rotating boot-shaped hole observed by Skylab. We show that the interaction between the polar fields and the flux associated with active regions produces distortions in the coronal field configuration and thus in the polar-hole boundaries; these distortions corotate with the perturbing nonaxisymmetric flux. In the case of CH1, positive-polarity field lines in the northern hemisphere 'collided' with like-polarity field lines fanning out from a decaying active region complex located just below the equator, producing a midlatitude corridor of open field lines rotating at the rate of the active region complex. Sheared coronal holes result when nonaxisymmetric flux is present at high latitudes, or equivalently, when the photospheric neutral line extends to high latitudes. We demonstrate how a small active region, rotating at the local photospheric rate, can drift through a rigidly rotating hole like CH1. Finally, we discuss the role of field-line reconnection in maintaining a quasi-potential coronal configuration.
Mitri, Ghaith; Wittbrodt, Eric T; Turpin, Robin S; Tidwell, Beni A; Schulman, Kathy L
2016-04-01
Patients with chronic kidney disease (CKD) are at increased risk for developing gout and having refractory disease. Gout flare prevention relies heavily on urate-lowering therapies such as allopurinol and febuxostat, but clinical decision making in patients with moderate-to-severe CKD is complicated by significant comorbidity and the scarcity of real-world cost-effectiveness studies. To compare total and disease-specific health care expenditures by line of therapy in allopurinol and febuxostat initiators after diagnosis with gout and moderate-to-severe CKD. A retrospective observational cohort study was conducted to compare mean monthly health care cost (in 2012 U.S. dollars) among gout patients with CKD (stage 3 or 4) who initiated allopurinol or febuxostat. The primary outcome was total mean monthly health care expenditures, and the secondary outcome was disease-specific (gout, diabetes, renal, and cardiovascular disease [CVD]) expenditures. Gout patients (ICD-9-CM 274.xx) aged ≥ 18 years with concurrent CKD (stage 3 or 4) were selected from the MarketScan databases (January 2009-June 2012) upon allopurinol or febuxostat initiation. Patients were followed until disenrollment, discontinuation of the qualifying study agent, or use of the alternate study agent. Patients initiating allopurinol were subsequently propensity score-matched (1:1) to patients initiating febuxostat. Five generalized linear models (GLMs) were developed, each controlling for propensity score, to identify the incremental costs (vs. allopurinol) associated with febuxostat initiation in first-line (without prior allopurinol exposure) and second-line (with prior allopurinol exposure) settings. Propensity score matching yielded 2 cohorts, each with 1,486 patients (64.6% male, mean [SD] age 67.4 [12.8] years). Post-match, 74.6% of patients had stage 3 CKD; 82.9% had CVD; and 42.1% had diabetes. The post-match sample was well balanced on numerous comorbidities and medication exposures with the following exception: 50.0% of febuxostat initiators were treated in the second-line setting; that is, they had baseline exposure to allopurinol, whereas only 4.2% of allopurinol initiators had baseline exposure to febuxostat. Unadjusted mean monthly cost was $1,490 allopurinol and $1,525 febuxostat (P = 0.809). GLM results suggest that first-line febuxostat users incurred significantly (P = 0.009) lower cost than allopurinol users ($1,299 vs. $1,487), whereas second-line febuxostat initiators incurred significantly (P = 0.001) higher cost ($1,751 vs. $1,487). Febuxostat initiators in both settings had significantly (P < 0.001) higher gout-specific cost, due to higher febuxostat acquisition cost. Increased gout-specific cost in the first-line febuxostat cohort was offset by significantly (P < 0.001) lower CVD ($288 vs. $459) and renal-related cost ($86 vs. $216). There were no significant differences in either renal or CVD costs (adjusted) between allopurinol initiators treated almost exclusively in the first-line setting and second-line febuxostat patients. Gout patients with concurrent CKD, initiating treatment with febuxostat in a first-line setting, incurred significantly less total cost than patients initiating allopurinol during the first exposure to each agent. Conversely, patients treated with second-line febuxostat following allopurinol incurred significantly higher total cost than patients initiating allopurinol. There was no significant difference in total cost between the agents across line of therapy. Although study findings suggest the potential for CVD and renal-related savings to offset febuxostat's higher acquisition cost in gout patients with moderate-to-severe CKD, this is the first such retrospective evaluation. Future research is warranted to both demonstrate the durability of study findings and to better elucidate the mechanism by which associated cost offsets occur. No outside funding supported this study. Turpin is an employee of Takeda Pharmaceuticals U.S.A. Mitri and Wittbrodt were employees of Takeda Pharmaceuticals U.S.A. at the time of this study. Tidwell and Schulman are employees of Outcomes Research Solutions, consultants to Takeda Pharmaceuticals U.S.A. All authors contributed to the design of the study and to the writing and review of the manuscript. All authors read and approved the final manuscript. Tidwell and Schulman collected the data, and all authors participated in data interpretation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maenchen, J.E.
1983-01-01
The coupling of energy from a high power pulsed accelerator through a long triplate magnetically insulated transmission line (MITL) in vacuum to an annular applied magnetic field insulated extraction ion diode is examined. The narrow power transport window and the wave front erosion of the MITL set stringent impedance history conditions on the diode load. A new ion diode design developed to satisfy these criteria with marginal electron insulation is presented. The LION accelerator is used to provide a positive polarity 1.5 MV, 350 kA, 40 ns FWHM pulse with a 30 kA/ns current rate from a triplate MITL source.more » A transition converts the triplate into a cylindrical cross section which flares into the ion diode load. Extensive current and voltage measurements performed along this structure and on the extracted ion beam provide conclusive evidence that the self insulation condition of the MITL is maintained in the transition by current loss alone. The ion diode utilizes a radial magnetic field between a grounded cathode annular emission tip and a disk anode. A 50 cm/sup 2/ dielectric/metal anode area serves as the ion plasma source subject to direct electron bombardment from the opposing cathode tip under marginal magnetic insulation conditions. The ions extracted cross the radial magnetic field and exit the diode volume as an annular cross section beam of peak current about 100 kA. The diode current gradually converts from the initial electron flow to nearly 100% ion current af« less
NASA Astrophysics Data System (ADS)
Tooprakai, P.; Seripienlert, A.; Ruffolo, D.; Chuychai, P.; Matthaeus, W. H.
2016-11-01
We simulate trajectories of energetic particles from impulsive solar flares for 2D+slab models of magnetic turbulence in spherical geometry to study dropout features, I.e., sharp, repeated changes in the particle density. Among random-phase realizations of two-dimensional (2D) turbulence, a spherical harmonic expansion can generate homogeneous turbulence over a sphere, but a 2D fast Fourier transform (FFT) locally mapped onto the lateral coordinates in the region of interest is much faster computationally, and we show that the results are qualitatively similar. We then use the 2D FFT field as input to a 2D MHD simulation, which dynamically generates realistic features of turbulence such as coherent structures. The magnetic field lines and particles spread non-diffusively (ballistically) to a patchy distribution reaching up to 25° from the injection longitude and latitude at r ˜ 1 au. This dropout pattern in field line trajectories has sharper features in the case of the more realistic 2D MHD model, in better qualitative agreement with observations. The initial dropout pattern in particle trajectories is relatively insensitive to particle energy, though the energy affects the pattern’s evolution with time. We make predictions for future observations of solar particles near the Sun (e.g., at 0.25 au), for which we expect a sharp pulse of outgoing particles along the dropout pattern, followed by backscattering that first remains close to the dropout pattern and later exhibits cross-field transport to a distribution that is more diffusive, yet mostly contained within the dropout pattern found at greater distances.
NASA Astrophysics Data System (ADS)
Wendel, D. E.; Olson, D. K.; Hesse, M.; Karimabadi, H.; Daughton, W. S.
2013-12-01
We investigate the distribution of parallel electric fields and their relationship to the location and rate of magnetic reconnection of a large particle-in-cell simulation of 3D turbulent magnetic reconnection with open boundary conditions. The simulation's guide field geometry inhibits the formation of topological features such as separators and null points. Therefore, we derive the location of potential changes in magnetic connectivity by finding the field lines that experience a large relative change between their endpoints, i.e., the quasi-separatrix layer. We find a correspondence between the locus of changes in magnetic connectivity, or the quasi-separatrix layer, and the map of large gradients in the integrated parallel electric field (or quasi-potential). Furthermore, we compare the distribution of parallel electric fields along field lines with the reconnection rate. We find the reconnection rate is controlled by only the low-amplitude, zeroth and first-order trends in the parallel electric field, while the contribution from high amplitude parallel fluctuations, such as electron holes, is negligible. The results impact the determination of reconnection sites within models of 3D turbulent reconnection as well as the inference of reconnection rates from in situ spacecraft measurements. It is difficult through direct observation to isolate the locus of the reconnection parallel electric field amidst the large amplitude fluctuations. However, we demonstrate that a positive slope of the partial sum of the parallel electric field along the field line as a function of field line length indicates where reconnection is occurring along the field line.
Electric and magnetic field exposures for people living near a 735-kilovolt power line.
Levallois, P; Gauvin, D; St-Laurent, J; Gingras, S; Deadman, J E
1995-01-01
The purpose of this study was to assess the effect of a 735-kV transmission line on the electric and magnetic field exposures of people living at the edge of the line's right of way. Exposure of 18 adults, mostly white-collar workers, living in different bungalows located 190-240 feet from the line (exposed subjects) was compared to that of 17 adults living in similar residences far away from any transmission line. Each subject carried a Positron meter for 24 hr during 1 workday, which measured 60-Hz electric and magnetic fields every minute. All measurements were carried out in parallel for exposed and unexposed subjects during the same weeks between September and December. During measurements the average loading on the line varied between 600 and 1100 A. The average magnetic field intensity while at home was 4.4 times higher among exposed subjects than unexposed (7.1 versus 1.6 mG, p = 0.0001) and 6.2 times higher when considering only the sleeping period (6.8 versus 1.1 mG, p = 0.0001). Based on the 24-hr measurement, average magnetic field exposure was three times higher among the exposed. Electric field intensity was also higher among the exposed while at home (26.3 versus 14.0 V/m, p = 0.03). Magnetic field intensity among the exposed was positively correlated with the loading on the line (r = 0.8, p = 0.001). Percentage of time above a magnetic field threshold (2 mG or 7.8 mG) was a good indicator to distinguish the two types of exposure.(ABSTRACT TRUNCATED AT 250 WORDS) Images Figure 1. PMID:7498095
Kim, Kimin; Ahn, J. -W.; Scotti, F.; ...
2015-09-03
Ideal plasma shielding and amplification of resonant magnetic perturbations in non-axisymmetric tokamak is presented by field line tracing simulation with full ideal plasma response, compared to measurements of divertor lobe structures. Magnetic field line tracing simulations in NSTX with toroidal non-axisymmetry indicate the ideal plasma response can significantly shield/amplify and phase shift the vacuum resonant magnetic perturbations. Ideal plasma shielding for n = 3 mode is found to prevent magnetic islands from opening as consistently shown in the field line connection length profile and magnetic footprints on the divertor target. It is also found that the ideal plasma shielding modifiesmore » the degree of stochasticity but does not change the overall helical lobe structures of the vacuum field for n = 3. Furthermore, amplification of vacuum fields by the ideal plasma response is predicted for low toroidal mode n = 1, better reproducing measurements of strong striation of the field lines on the divertor plate in NSTX.« less
Biological Effects of Nonionizing Electromagnetic Radiation. Volume IV. Number 3.
1980-03-01
lines that produce EMR. perimental evidence on human health effects due to electromagnetic field exposures from high-voltage transmission lines is...1311, Mrch YOW that a permissible occupational exposure level to The biologic effects of electromagnetic fields on MW and RF radiation of 500 PW/cm 2...along with the principal physical param- eters of exposure . 6402 REGULATING POSSIBLE HEALTH EFFECTS FROM AC TRANSMISSION LINE ELECTROMAGNETIC FIELDS
Emergent scar lines in chaotic advection of passive directors
NASA Astrophysics Data System (ADS)
Hejazi, Bardia; Mehlig, Bernhard; Voth, Greg A.
2017-12-01
We examine the spatial field of orientations of slender fibers that are advected by a two-dimensional fluid flow. The orientation field of these passive directors are important in a wide range of industrial and geophysical flows. We introduce emergent scar lines as the dominant coherent structures in the orientation field of passive directors in chaotic flows. Previous work has identified the existence of scar lines where the orientation rotates by π over short distances, but the lines that were identified disappeared as time progressed. As a result, earlier work focused on topological singularities in the orientation field, which we find to play a negligible role at long times. We use the standard map as a simple time-periodic two-dimensional flow that produces Lagrangian chaos. This class of flows produces persistent patterns in passive scalar advection and we find that a different kind of persistent pattern develops in the passive director orientation field. We identify the mechanism by which emergent scar lines grow to dominate these patterns at long times in complex flows. Emergent scar lines form where the recent stretching of the fluid element is perpendicular to earlier stretching. Thus these scar lines can be labeled by their age, defined as the time since their stretching reached a maximum.
High speed parallel spectral-domain OCT using spectrally encoded line-field illumination
NASA Astrophysics Data System (ADS)
Lee, Kye-Sung; Hur, Hwan; Bae, Ji Yong; Kim, I. Jong; Kim, Dong Uk; Nam, Ki-Hwan; Kim, Geon-Hee; Chang, Ki Soo
2018-01-01
We report parallel spectral-domain optical coherence tomography (OCT) at 500 000 A-scan/s. This is the highest-speed spectral-domain (SD) OCT system using a single line camera. Spectrally encoded line-field scanning is proposed to increase the imaging speed in SD-OCT effectively, and the tradeoff between speed, depth range, and sensitivity is demonstrated. We show that three imaging modes of 125k, 250k, and 500k A-scan/s can be simply switched according to the sample to be imaged considering the depth range and sensitivity. To demonstrate the biological imaging performance of the high-speed imaging modes of the spectrally encoded line-field OCT system, human skin and a whole leaf were imaged at the speed of 250k and 500k A-scan/s, respectively. In addition, there is no sensitivity dependence in the B-scan direction, which is implicit in line-field parallel OCT using line focusing of a Gaussian beam with a cylindrical lens.
A Semi-analytical Line Transfer (SALT) Model. II: The Effects of a Bi-conical Geometry
NASA Astrophysics Data System (ADS)
Carr, Cody; Scarlata, Claudia; Panagia, Nino; Henry, Alaina
2018-06-01
We generalize the semi-analytical line transfer model recently introduced by Scarlata & Panagia for modeling galactic outflows, to account for bi-conical geometries of various opening angles and orientations with respect to the line of sight to the observer, as well as generalized velocity fields. We model the absorption and emission component of the line profile resulting from resonant absorption in the bi-conical outflow. We show how the outflow geometry impacts the resulting line profile. We use simulated spectra with different geometries and velocity fields to study how well the outflow parameters can be recovered. We find that geometrical parameters (including the opening angle and the orientation) are always well recovered. The density and velocity field parameters are reliably recovered when both an absorption and an emission component are visible in the spectra. This condition implies that the velocity and density fields for narrow cones oriented perpendicular to the line of sight will remain unconstrained.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 12 2011-07-01 2009-07-01 true Initial Compliance With Work Practice Standards for HAP Emissions From Bypass Lines 38 Table 38 to Subpart UUU of Part 63 Protection of... Units Pt. 63, Subpt. UUU, Table 38 Table 38 to Subpart UUU of Part 63—Initial Compliance With Work...
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 13 2012-07-01 2012-07-01 false Initial Compliance With Work Practice Standards for HAP Emissions From Bypass Lines 38 Table 38 to Subpart UUU of Part 63 Protection of... Sulfur Recovery Units Pt. 63, Subpt. UUU, Table 38 Table 38 to Subpart UUU of Part 63—Initial Compliance...
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 12 2010-07-01 2010-07-01 true Initial Compliance With Work Practice Standards for HAP Emissions From Bypass Lines 38 Table 38 to Subpart UUU of Part 63 Protection of... Units Pt. 63, Subpt. UUU, Table 38 Table 38 to Subpart UUU of Part 63—Initial Compliance With Work...
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 13 2013-07-01 2012-07-01 true Initial Compliance With Work Practice Standards for HAP Emissions From Bypass Lines 38 Table 38 to Subpart UUU of Part 63 Protection of... Sulfur Recovery Units Pt. 63, Subpt. UUU, Table 38 Table 38 to Subpart UUU of Part 63—Initial Compliance...
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 13 2014-07-01 2014-07-01 false Initial Compliance With Work Practice Standards for HAP Emissions From Bypass Lines 38 Table 38 to Subpart UUU of Part 63 Protection of... Sulfur Recovery Units Pt. 63, Subpt. UUU, Table 38 Table 38 to Subpart UUU of Part 63—Initial Compliance...
NASA Technical Reports Server (NTRS)
Churchill, Dean D.; Houze, Robert A., Jr.
1991-01-01
A twi-dimensional kinematic model has been used to diagnose the thermodynamic, water vapor, and hydrometeor fields of the stratiform clouds associated with a mesoscale tropical cloud cluster. The model incorporates ice- and water-cloud microphysics, visible and infrared radiation, and convective adjustment. It is intended to determine the relative contributions of radiation, mycrophysics, and turbulence to diabatic heating, and the effects that radiation has on the water budget of the cluster in the absence of dynamical interactions. The model has been initialized with thermodynamic fields and wind velocities diagnosed from a GATE tropical squall line. It is found that radiation does not directly affect the water budget of the stratiform region, and any radiative effect on hydrometeors must involve interaction with dynamics.
The magnetic topology of the plasmoid flux rope in a MHD-simulation of magnetotail reconnection
NASA Technical Reports Server (NTRS)
Birn, J.; Hesse, M.
1990-01-01
On the basis of a 3D MHD simulation, the magnetic topology of a plasmoid that forms by a localized reconnection process in a magnetotail configuration (including a net dawn-dusk magnetic field component B sub y N is discussed. As a consequence of B sub y N not equalling 0, the plasmoid assumes a helical flux rope structure rather than an isolated island or bubble structure. Initially all field lines of the plasmoid flux rope remain connected with the earth, while at later times a gradually increasing amount of flux tubes becomes separated, connecting to either the distant boundary or to the flank boundaries. In this stage, topologically different flux tubes become tangled and wrapped around each other, consistent with predictions on the basis of an ad hoc plasmoid model.
Atom-atom interactions around the band edge of a photonic crystal waveguide.
Hood, Jonathan D; Goban, Akihisa; Asenjo-Garcia, Ana; Lu, Mingwu; Yu, Su-Peng; Chang, Darrick E; Kimble, H J
2016-09-20
Tailoring the interactions between quantum emitters and single photons constitutes one of the cornerstones of quantum optics. Coupling a quantum emitter to the band edge of a photonic crystal waveguide (PCW) provides a unique platform for tuning these interactions. In particular, the cross-over from propagating fields [Formula: see text] outside the bandgap to localized fields [Formula: see text] within the bandgap should be accompanied by a transition from largely dissipative atom-atom interactions to a regime where dispersive atom-atom interactions are dominant. Here, we experimentally observe this transition by shifting the band edge frequency of the PCW relative to the [Formula: see text] line of atomic cesium for [Formula: see text] atoms trapped along the PCW. Our results are the initial demonstration of this paradigm for coherent atom-atom interactions with low dissipation into the guided mode.
Analysis of Island Formation Due to RMPs in D3D Plasmas Using SIESTA
NASA Astrophysics Data System (ADS)
Hirshman, Steven; Shafer, Morgan; Seal, Sudip; Canik, John
2015-11-01
By varying the initial helical perturbation amplitude of Resonant Magnetic Perturbations (RMPs) applied to a Doublet III-D (DIII-D) plasma, a variety of meta-stable equilibrium are scanned using the SIESTA MHD equilibrium code. It is found that increasing the perturbation strength at the dominant m =2 resonant surface leads to lower MHD energies and significant increases in the equilibrium island widths at the m =2 (and sidebands) surfaces. Island overlap eventually leads to stochastic magnetic fields which correlate well with the experimentally inferred field line structure. The magnitude and spatial phase (around associated rational surfaces) of resonant (shielding) components of the parallel current is shown to be correlated with the magnetic island topology. Work supported by U.S. DOE under Contract DE-AC05-00OR22725 with UT-Battelle, LLC.
Sensor networks in the low lands.
Meratnia, Nirvana; van der Zwaag, Berend Jan; van Dijk, Hylke W; Bijwaard, Dennis J A; Havinga, Paul J M
2010-01-01
This paper provides an overview of scientific and industrial developments of the last decade in the area of sensor networks in The Netherlands (Low Lands). The goal is to highlight areas in which the Netherlands has made most contributions and is currently a dominant player in the field of sensor networks. On the one hand, motivations, addressed topics, and initiatives taken in this period are presented, while on the other hand, special emphasis is given to identifying current and future trends and formulating a vision for the coming five to ten years. The presented overview and trend analysis clearly show that Dutch research and industrial efforts, in line with recent worldwide developments in the field of sensor technology, present a clear shift from sensor node platforms, operating systems, communication, networking, and data management aspects of the sensor networks to reasoning/cognition, control, and actuation.
Initial experimental test of a helicon plasma based mass filter
Gueroult, R.; Evans, E. S.; Zweben, S. J.; ...
2016-05-12
High throughput plasma mass separation requires rotation control in a high density multi-species plasmas. A preliminary mass separation device based on a helicon plasma operating in gas mixtures and featuring concentric biasable ring electrodes is introduced. Plasma profile shows strong response to electrode biasing. In light of floating potential measurements, the density response is interpreted as the consequence of a reshaping of the radial electric field in the plasma. This field can be made confining or de-confining depending on the imposed potential at the electrodes, in a way which is consistent with single particle orbit radial stability. In conclusion, concurrentmore » spatially resolved spectroscopic measurements suggest ion separation, with heavy to light ion emission line ratio increasing with radius when a specific potential gradient is applied to the electrodes.« less
Long-term follow-up of two patients with oligocone trichromacy.
Smirnov, Vasily; Drumare, Isabelle; Bouacha, Ikram; Puech, Bernard; Defoort-Dhellemmes, Sabine
2015-10-01
Oligocone trichromacy (OT) is an uncommon cone dysfunction disorder, the mechanism of which remains poorly understood. OT has been thought to be non-progressive, but its long-term visual outcome has been seldom reported in the literature. Our aim was to present two OT patients followed at our institution over 18 years. Complete ocular examination, color vision, visual fields, and full-field electroretinography (ERG) were performed at initial presentation and follow-up. Spectral-domain optical coherence tomography (OCT) was performed during follow-up when available at our institution. Initial ocular examination showed satisfactory visual acuities with normal fundus examination and near-to-normal color vision. However, computerized perimetry demonstrated a ring-shaped scotoma around fixation, and ERG showed a profound cone dysfunction. The discrepancy between preserved color vision and profound cone dysfunction leads to the diagnosis of OT. Subsequent follow-ups over 18 years showed subtle degradation of visual acuities along with progression of the myopia in both patients and slight worsening of color vision in one patient. Initial OCT revealed a focal interruption of the ellipsoid line along with decreased thickness of the perifoveal macula. Subsequent OCT imaging performed 2 years later did not show any macular changes. Although OT is known to be a non-progressive cone dysfunction, our results suggest that subtle degradation of the visual function might happen over time.
Sources of magnetic fields in recurrent interplanetary streams
NASA Technical Reports Server (NTRS)
Burlaga, L. F.; Behannon, K. W.; Hansen, S. F.; Pneuman, G. W.; Feldman, W. C.
1978-01-01
The paper examines sources of magnetic fields in recurrent streams observed by the Imp 8 and Heos spacecraft at 1 AU and by Mariner 10 en route to Mercury between October 31, 1973 and February 9, 1974, during Carrington rotations 1607-1610. Although most fields and plasmas at 1 AU were related to coronal holes and the magnetic field lines were open in those holes, some of the magnetic fields and plasmas at 1 AU were related to open field line regions on the sun which were not associated with known coronal holes, indicating that open field lines may be more basic than coronal holes as sources of the solar wind. Magnetic field intensities in five equatorial coronal holes, certain photospheric magnetic fields, and the coronal footprints of the sector boundaries on the source surface are characterized.
Vector tomography for reconstructing electric fields with non-zero divergence in bounded domains
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koulouri, Alexandra, E-mail: koulouri@uni-muenster.de; Department of Electrical and Electronic Engineering, Imperial College London, Exhibition Road, London SW7 2BT; Brookes, Mike
In vector tomography (VT), the aim is to reconstruct an unknown multi-dimensional vector field using line integral data. In the case of a 2-dimensional VT, two types of line integral data are usually required. These data correspond to integration of the parallel and perpendicular projection of the vector field along the integration lines and are called the longitudinal and transverse measurements, respectively. In most cases, however, the transverse measurements cannot be physically acquired. Therefore, the VT methods are typically used to reconstruct divergence-free (or source-free) velocity and flow fields that can be reconstructed solely from the longitudinal measurements. In thismore » paper, we show how vector fields with non-zero divergence in a bounded domain can also be reconstructed from the longitudinal measurements without the need of explicitly evaluating the transverse measurements. To the best of our knowledge, VT has not previously been used for this purpose. In particular, we study low-frequency, time-harmonic electric fields generated by dipole sources in convex bounded domains which arise, for example, in electroencephalography (EEG) source imaging. We explain in detail the theoretical background, the derivation of the electric field inverse problem and the numerical approximation of the line integrals. We show that fields with non-zero divergence can be reconstructed from the longitudinal measurements with the help of two sparsity constraints that are constructed from the transverse measurements and the vector Laplace operator. As a comparison to EEG source imaging, we note that VT does not require mathematical modeling of the sources. By numerical simulations, we show that the pattern of the electric field can be correctly estimated using VT and the location of the source activity can be determined accurately from the reconstructed magnitudes of the field. - Highlights: • Vector tomography is used to reconstruct electric fields generated by dipole sources. • Inverse solutions are based on longitudinal and transverse line integral measurements. • Transverse line integral measurements are used as a sparsity constraint. • Numerical procedure to approximate the line integrals is described in detail. • Patterns of the studied electric fields are correctly estimated.« less
Strong transverse fields in delta-spots
NASA Technical Reports Server (NTRS)
Zirin, Harold; Wang, Haimin
1993-01-01
Spectroscopic measurements of the strength and direction of transverse magnetic fields in six delta-spots are presented. The field direction is determined by the relative strength of the pi- and sigma-components at different polarizer orientations, and is, with one exception, parallel to the neutral line and as strong as the umbral field. Field strengths determined by line splitting are as high as 3980 G.
NASA Technical Reports Server (NTRS)
Perez-Peraza, J.; Alvarez, M.; Gallegos, A.
1985-01-01
In order to study the overall phenomenology involved in solar flares, it is necessary to understand their individual manifestation before building a corresponding description of the global phenomenon. Here the concern is with the production of X and gamma rays in solar flares. Flares are initiated very often within the closed magnetic field configurations of active centers. According (2) when beta = kinetic energy density/magnetic energy density approximately 0.2, the magnetic trap configuration is destructed within the time scale of the impulsive phase of flares ( 100 s). A first particle acceleration stage occurs during this phase as indicated by impulsive microwave and hard X-rays bursts. In some flare events, when the field strength beta is very high, the broken field lines may close again, such that later, in the course of the flash and main phases more hot plasma of very high conductivity is created, and so, the field and frozen plasma expand outward, as the kinetic pressure inside the closed loops increases. The magnetically trapped particles excite strong Alfven wave turbulence of small transverse scale.
A Plant's Response to Gravity as a Wave Guide Phenomenon
NASA Astrophysics Data System (ADS)
Wagner, Orvin
1997-11-01
Plant experimental data provides a unifying wave theory (W-wave theory) for the growth and development of plants. A plant's response to gravity is an important aspect of this theory. It appears that a plant part is tuned to the angle with which it initially grew with respect to the gravitational field and changes produce correction responses. This is true because the velocity of W-waves (whose standing waves determine plant structure) within plant tissue is found to be different in different directions (angle a) with respect to the gravitational field. I found that there are preferred values of a, namely integral multiples of near 5 degrees for some plants. Conifers apparently are more sensitive to the gravitational field than deciduous trees, in the cases studied, so their structure is determined in more detail by the gravitational field. A plant's response to gravity appears to be a fundamental phenomenon and may provide a new model for gravity that can be experimentally verified in the laboratory. Along these same lines accelerometers placed in plant tissue indicate that plants produce gravity related forces that facilitate sap flow. See the
Alberio, Tiziana; Pieroni, Luisa; Ronci, Maurizio; Banfi, Cristina; Bongarzone, Italia; Bottoni, Patrizia; Brioschi, Maura; Caterino, Marianna; Chinello, Clizia; Cormio, Antonella; Cozzolino, Flora; Cunsolo, Vincenzo; Fontana, Simona; Garavaglia, Barbara; Giusti, Laura; Greco, Viviana; Lucacchini, Antonio; Maffioli, Elisa; Magni, Fulvio; Monteleone, Francesca; Monti, Maria; Monti, Valentina; Musicco, Clara; Petrosillo, Giuseppe; Porcelli, Vito; Saletti, Rosaria; Scatena, Roberto; Soggiu, Alessio; Tedeschi, Gabriella; Zilocchi, Mara; Roncada, Paola; Urbani, Andrea; Fasano, Mauro
2017-12-01
The Mitochondrial Human Proteome Project aims at understanding the function of the mitochondrial proteome and its crosstalk with the proteome of other organelles. Being able to choose a suitable and validated enrichment protocol of functional mitochondria, based on the specific needs of the downstream proteomics analysis, would greatly help the researchers in the field. Mitochondrial fractions from ten model cell lines were prepared using three enrichment protocols and analyzed on seven different LC-MS/MS platforms. All data were processed using neXtProt as reference database. The data are available for the Human Proteome Project purposes through the ProteomeXchange Consortium with the identifier PXD007053. The processed data sets were analyzed using a suite of R routines to perform a statistical analysis and to retrieve subcellular and submitochondrial localizations. Although the overall number of identified total and mitochondrial proteins was not significantly dependent on the enrichment protocol, specific line to line differences were observed. Moreover, the protein lists were mapped to a network representing the functional mitochondrial proteome, encompassing mitochondrial proteins and their first interactors. More than 80% of the identified proteins resulted in nodes of this network but with a different ability in coisolating mitochondria-associated structures for each enrichment protocol/cell line pair.
High-Resolution Spectroscopy of the Lunar Sodium Exosphere
NASA Technical Reports Server (NTRS)
Mierkiewicz, E. J.; Oliversen, R. J.; Roesler, F. L.; Lupie, O. L.
2014-01-01
We have applied high-resolution Fabry-Perot spectroscopy to the study of the lunar sodium exosphere for the study of exospheric effective temperature and velocity variations. Observing from the National Solar Observatory McMath-Pierce Telescope, we used a dual-etalon Fabry-Perot spectrometer with a resolving power of 180,000 to measure line widths and Doppler shifts of the sodium D2 (5889.95 Å) emission line. Our field of view was 360 km, and measurements were made in equatorial and polar regions from 500 km to 3500 km off the limb. Data were obtained from full moon to 3 days following full moon (waning phase) in March 2009. Measured Doppler line widths within 1100 km of the sunlit east and south lunar limbs for observations between 5 and 40 deg lunar phase imply effective temperatures ranging between 3260 +/- 190 and 1000 +/- 135 K. Preliminary line center analysis indicates velocity displacements between different locations off the lunar limb ranging between 100 and 600 m/s from the lunar rest velocity with a precision of +/-20 to +/-50 m/s depending on brightness. Based on the success of these exploratory observations, an extensive program has been initiated that is expected to constrain lunar atmospheric and surface-process modeling and help quantify source and escape mechanisms.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, S.; Li, Y.; Liu, C.
2015-08-15
This paper presents a statistical theory for the initial onset of multipactor breakdown in coaxial transmission lines, taking both the nonuniform electric field and random electron emission velocity into account. A general numerical method is first developed to construct the joint probability density function based on the approximate equation of the electron trajectory. The nonstationary dynamics of the multipactor process on both surfaces of coaxial lines are modelled based on the probability of various impacts and their corresponding secondary emission. The resonant assumption of the classical theory on the independent double-sided and single-sided impacts is replaced by the consideration ofmore » their interaction. As a result, the time evolutions of the electron population for exponential growth and absorption on both inner and outer conductor, in response to the applied voltage above and below the multipactor breakdown level, are obtained to investigate the exact mechanism of multipactor discharge in coaxial lines. Furthermore, the multipactor threshold predictions of the presented model are compared with experimental results using measured secondary emission yield of the tested samples which shows reasonable agreement. Finally, the detailed impact scenario reveals that single-surface multipactor is more likely to occur with a higher outer to inner conductor radius ratio.« less
Efficient Analysis of Simulations of the Sun's Magnetic Field
NASA Astrophysics Data System (ADS)
Scarborough, C. W.; Martínez-Sykora, J.
2014-12-01
Dynamics in the solar atmosphere, including solar flares, coronal mass ejections, micro-flares and different types of jets, are powered by the evolution of the sun's intense magnetic field. 3D Radiative Magnetohydrodnamics (MHD) computer simulations have furthered our understanding of the processes involved: When non aligned magnetic field lines reconnect, the alteration of the magnetic topology causes stored magnetic energy to be converted into thermal and kinetic energy. Detailed analysis of this evolution entails tracing magnetic field lines, an operation which is not time-efficient on a single processor. By utilizing a graphics card (GPU) to trace lines in parallel, conducting such analysis is made feasible. We applied our GPU implementation to the most advanced 3D Radiative-MHD simulations (Bifrost, Gudicksen et al. 2011) of the solar atmosphere in order to better understand the evolution of the modeled field lines.
Three-dimensional magnetic reconnection and the magnetic topology of coronal mass ejection events
NASA Technical Reports Server (NTRS)
Gosling, J. T.; Birn, J.; Hesse, M.
1995-01-01
Measurements of superthermal electron fluxes in the solar wind indicate that field lines within coronal mass ejections, CMEs, near and beyond 1 AU are normally connected to the Sun at both ends. However, on occasion some field lines embedded deep within CMEs appear to be connected to the Sun at only one end. Here we propose an explanation for how such field lines arise in terms of 3-dimensional reconnection close to the Sun. Such reconnection also provides a natural explanation for the flux rope topology characteristic of many CMEs as well as the coronal loops formed during long-duration, solar X-ray events. Our consideration of the field topologies resulting from 3-dimensional reconnection indicates that field lines within and near CMEs may on occasion be connected to the outer heliosphere at both ends.
Kahlon, Jagroop Gill; Jacobsen, Hans-Jörg; Cahill, James F; Hall, Linda M
2017-10-01
Genetically modified crops have raised concerns about unintended consequences on non-target organisms including beneficial soil associates. Pea transformed with four antifungal genes 1-3 β glucanase, endochitinase, polygalacturonase-inhibiting proteins, and stilbene synthase is currently under field-testing for efficacy against fungal diseases in Canada. Transgenes had lower expression in the roots than leaves in greenhouse experiment. To determine the impact of disease-tolerant pea or gene products on colonization by non-target arbuscular mycorrhizae and nodulation by rhizobium, a field trial was established. Transgene insertion, as single gene or stacked genes, did not alter root colonization by arbuscular mycorrhiza fungus (AMF) or root nodulation by rhizobium inoculation in the field. We found no effect of transgenes on the plant growth and performance although, having a dual inoculant with both AMF and rhizobium yielded higher fresh weight shoot-to-root ratio in all the lines tested. This initial risk assessment of transgenic peas expressing antifungal genes showed no deleterious effect on non-target organisms.
The area of isodensity contours in cosmological models and galaxy surveys
NASA Technical Reports Server (NTRS)
Ryden, Barbara S.; Melott, Adrian L.; Craig, David A.; Gott, J. Richard, III; Weinberg, David H.
1989-01-01
The contour crossing statistic, defined as the mean number of times per unit length that a straight line drawn through the field crosses a given contour, is applied to model density fields and to smoothed samples of galaxies. Models in which the matter is in a bubble structure, in a filamentary net, or in clusters can be distinguished from Gaussian density distributions. The shape of the contour crossing curve in the initially Gaussian fields considered remains Gaussian after gravitational evolution and biasing, as long as the smoothing length is longer than the mass correlation length. With a smoothing length of 5/h Mpc, models containing cosmic strings are indistinguishable from Gaussian distributions. Cosmic explosion models are significantly non-Gaussian, having a bubbly structure. Samples from the CfA survey and the Haynes and Giovanelli (1986) survey are more strongly non-Gaussian at a smoothing length of 6/h Mpc than any of the models examined. At a smoothing length of 12/h Mpc, the Haynes and Giovanelli sample appears Gaussian.
Polar Magnetic Field Experiment
NASA Technical Reports Server (NTRS)
Russell, C. T.
1999-01-01
This grant covers the initial data reduction and analysis of the magnetic field measurements of the Polar spacecraft. At this writing data for the first three years of the mission have been processed and deposited in the key parameter database. These data are also available in a variety of time resolutions and coordinate systems via a webserver at UCLA that provides both plots and digital data. The flight software has twice been reprogrammed: once to remove a glitch in the data where there were rare collisions between commands in the central processing unit and once to provide burst mode data at 100 samples per second on a regular basis. The instrument continues to function as described in the instrument paper (1.1 in the bibliography attached below). The early observations were compared with observations on the same field lines at lower altitude. The polar magnetic measurements also proved to be most useful for testing the accuracy of MHD models. WE also made important contributions to study of waves and turbulence.
NASA Astrophysics Data System (ADS)
Yokoyama, Takaaki
Temporal evolution of a current sheet with initial perturbations is studied by using the threedimensional resistive magnetohydrodynamic (MHD) simulations. The magnetic reconnection is considered to be the main engine of the energy rele ase in solar flares. The structure of the diffusion region is, however, not stil l understood under the circumstances with enormously large magnetic Reynolds num ber as the solar corona. In particular, the relationship between the flare's macroscopic physics and the microscopic ones are unclear. It is generally believed that the MHD turbulence s hould play a role in the intermediate scale. The initial current sheet is in an approximately hydromagnetic equilibrium with anti-parallel magnetic field in the y-direction. We imposed a finite-amplitude perturbations (=50ee what happens. Special attention is paid upon the evolution of a three-dimens ional structure in the direction along the initial electric current (z-direction ). Our preliminary results are as follows: (1) In the early phase of the evolut ion, high wavenumber modes in the z-direction are excited and grow. (2) Many "X "-type neutral points (lines) are generated along the magnetic neutral line (pla ne) in the current sheet. When they evolve into the non-linear phase, three-dime nsional structures in the z-direction also evolve. The spatial scale in the z-di rection seems to be almost comparable with that in the xy-plane. (3) The energy release rate is reduced in case of 3D simulations compared with 2D ones probably because of the reduction of the inflow cross sections by the formation of pattc hy structures in the current sheet.
Chang, Tien-Cheng; Liu, Ya-Guang; Eddy, Carlton A; Jacoby, Ethan S; Binkley, Peter A; Brzyski, Robert G; Schenken, Robert S
2011-06-01
The development of nonhuman primate (NHP) embryonic stem cell (ESC) models holds great promise for cell-mediated treatment of debilitating diseases and to address numerous unanswered questions regarding the therapeutic efficacy of ESCs while supplanting ethical considerations involved with human studies. Here we report successful establishment and characterization of 3 novel baboon (Papio cynocephalus) ESC lines from the inner cell mass of intracytoplasmic sperm injection-derived blastocysts. Embryos were cultured in an improved baboon embryo in vitro culture protocol. The inner cell mass of blastocyst was laser-dissected and plated on mouse embryonic fibroblast feeder cell monolayer in the NHP ESC culture medium. Three cell lines with characteristic ESC morphology have been cultured through an extended period (>14 months), with 2 male cell lines (UT-1 and -2) and 1 female cell line (UT-3) displaying normal baboon karyotypes. Reverse transcription-polymerase chain reaction analysis confirmed that all 3 lines express primate ESC pluripotency markers, including OCT-4, NANOG, SOX-2, TERT, TDGF, LEFTYA, and REX-1. All 3 lines demonstrated positive immunocytochemical staining for OCT-4, stage-specific embryonic antigen-3, stage-specific embryonic antigen-4, TRA-1-60, and TRA-1-81. Baboon ESCs injected into NOD/SCID mice formed teratomas with all 3 germ layers. In addition, embryoid body-like spherical structures were derived and initial outgrowth was observed when embedded into extracellular matrix Matrigel. The ESC lines established in this NHP model have the potential to extend our knowledge in the fields of developmental biology, regenerative medicine, and future applications, including preclinical safety assessment of in vivo stem cell therapy.
Dynamics of the Interstellar Matter in Galaxies
NASA Astrophysics Data System (ADS)
Kristen, H.
The dynamical components of six isolated barred spiral (SB) galaxies are investigated. No evidence is found supporting the hypothesis of a low amount of dark matter being characteristic of SB galaxies. The presence of companion galaxies is found to correlate with an increased statistical spread in the neutral hydrogen (HI) extent. It is concluded that the selection of galaxies with large HI~extent may introduce a bias towards tidally interacting systems. The circumnuclear region of the SB galaxy NGC 1365 is studied with the Hubble Space Telescope (HST). Numerous bright ``super star clusters'' (SSCs) are detected, surrounding the active nucleus. The bright compact radio source NGC 1365:A is found to coincide spatially with one of the SSCs. We conclude that the source is a ``radio supernova''. In the [OIII] 5007 line, the HST resolves individual clouds within the conical outflow from the nucleus, some of which gather in larger agglomerations. An in-depth study of the dynamics of the SB galaxy NGC 1300 is presented. Multi-wavelength data yield an estimate of the velocity field and gravitational potential. Subsequent hydrodynamical simulations are able to reproduce the morphology and kinematics in the bar region using a pure bar perturbing potential. To reproduce the spiral structure a weak spiral component has to be added, indicative of stellar spiral response to the bar and/or self-gravitating gas in the arms. Two separate models, differing mainly with respect to pattern speed and associated resonance structure, are found to reproduce the observations. We study numerically the linear polarization and extinction of light from background stars passing through molecular clouds, illuminating the intricacies of the derivation of the magnetic-field-line pattern in a cloud from the observed polarization pattern: Due to a higher gas-grain collision frequency within the cloud, the polarization caused by the cloud may well be dominated by background/foreground polarization. Furthermore, variations in field-orientation along the line-of-sight may cause notable differences between the observed polarization vectors and the true magnetic-field-line pattern. Small-scale, helical, interstellar filaments are discussed on the basis of optical observations of an ``elephant trunk'' structure in the Rosette nebula. The observed sinusoidal filaments are suggested to be helices lined up by magnetic fields. We propose that the Rosette elephant trunks form an interconnected system of rope-like structures which are relics from filamentary skeletons of magnetic fields in the primordial cloud. Stochastic mass fractionation of a molecular cloud is simulated numerically. It is found that geometry alone may constrain the resulting mass spectrum of molecular cloud clumps. We demonstrate that further fragmentation of the cloud clumps, under the assumption of a lower limit of the self-similar regime, produces a mass spectrum that has qualitative and quantitative similarities with the empirically determined stellar initial mass function.
NASA Astrophysics Data System (ADS)
Helmuth, Kristen
1998-12-01
The dynamical components of six isolated barred spiral (SB) galaxies are investigated. No evidence is found supporting the hypothesis of a low amount of dark matter being characteristic of SB galaxies. The presence of companion galaxies is found to correlate with an increased statistical spread in the neutral hydrogen (HI) extent. It is concluded that the selection of galaxies with large HI extent may introduce a bias towards tidally interacting systems. The circumnuclear region of the SB galaxy NGC 1365 is studied with the Hubble Space Telescope (HST). Numerous bright "super star clusters" (SSCs) are detected, surrounding the active nucleus. The bright compact radio source NGC 1365:A is found to coincide spatially with one of the SSCs. We conclude that the source is a "radio supernova". In the [OIII] l 5007 line, the HST resolves individual clouds within the conical outflow from the nucleus, some of which gather in larger agglomerations. An in-depth study of the dynamics of the SB galaxy NGC 1300 is presented. Multi-wavelength data yield an estimate of the velocity field and gravitational potential. Subsequent hydrodynamical simulations are able to reproduce the morphology and kinematics in the bar region using a pure bar perturbing potential. To reproduce the spiral structure a weak spiral component has to be added, indicative of stellar spiral response to the bar and/or self-gravitating gas in the arms. Two separate models, differing mainly with respect to pattern speed and associated resonance structure, are found to reproduce the observations. We study numerically the linear polarization and extinction of light from background stars passing through molecular clouds, illuminating the intricacies of the derivation of the magnetic-field-line pattern in a cloud from the observed polarization pattern: Due to a higher gas-grain collision frequency within the cloud, the polarization caused by the cloud may well be dominated by background/foreground polarization. Furthermore, variations in field-orientation along the line-of-sight may cause notable differences between the observed polarization vectors and the true magnetic-field-line pattern. Small-scale, helical, interstellar filaments are discussed on the basis of optical observations of an "elephant trunk" structure in the Rosette nebula. The observed sinusoidal filaments are suggested to be helices lined up by magnetic fields. We propose that the Rosette elephant trunks form an interconnected system of rope-like structures which are relics from filamentary skeletons of magnetic fields in the primordial cloud. Stochastic mass fractionation of a molecular cloud is simulated numerically. It is found that geometry alone may constrain the resulting mass spectrum of molecular cloud clumps. We demonstrate that further fragmentation of the cloud clumps, under the assumption of a lower limit of the self-similar regime, produces a mass spectrum that has qualitative and quantitative similarities with the empirically determined stellar initial mass function.
NASA Technical Reports Server (NTRS)
Lyons, L. R.; Pridmore-Brown, D. C.
1992-01-01
Conditions for which particle motion within the current sheet in the vicinity of an X line can give a current in the direction appropriate for E x J is less than 0. The way in which the balance between gyroviscosity and the electric force along an X line is maintained for any E x J is shown. It is concluded that observational evidence for the occasional existence of E x J is less than 0 along an X line provides support for the suggestion that collisionless graviscosity, rather than resistivity, balances the electric force along an X line. It is found that there is a maximum electric field magnitude for particles to be able to carry a significant current. For parameters typical of the distant magnetotail, the critical electric field magnitude was found to be about 0.15 mV/m, which is of the order of, though somewhat less than, the potential electric field magnitudes expected in the magnetotail. This maximum allowable field magnitude is about the same for protons as it is for electrons in the magnetotail.
First results from the LIFE project: discovery of two magnetic hot evolved stars
NASA Astrophysics Data System (ADS)
Martin, A. J.; Neiner, C.; Oksala, M. E.; Wade, G. A.; Keszthelyi, Z.; Fossati, L.; Marcolino, W.; Mathis, S.; Georgy, C.
2018-04-01
We present the initial results of the Large Impact of magnetic Fields on the Evolution of hot stars (LIFE) project. The focus of this project is the search for magnetic fields in evolved OBA giants and supergiants with visual magnitudes between 4 and 8, with the aim to investigate how the magnetic fields observed in upper main-sequence (MS) stars evolve from the MS until the late post-MS stages. In this paper, we present spectropolarimetric observations of 15 stars observed using the ESPaDOnS instrument of the Canada-France-Hawaii Telescope. For each star, we have determined the fundamental parameters and have used stellar evolution models to calculate their mass, age, and radius. Using the least-squared deconvolution technique, we have produced averaged line profiles for each star. From these profiles, we have measured the longitudinal magnetic field strength and have calculated the detection probability. We report the detection of magnetic fields in two stars of our sample: a weak field of Bl = 1.0 ± 0.2 G is detected in the post-MS A5 star 19 Aur and a stronger field of Bl = -230 ± 10 G is detected in the MS/post-MS B8/9 star HR 3042.
Holographic line field en-face OCT with digital adaptive optics in the retina in vivo.
Ginner, Laurin; Schmoll, Tilman; Kumar, Abhishek; Salas, Matthias; Pricoupenko, Nastassia; Wurster, Lara M; Leitgeb, Rainer A
2018-02-01
We demonstrate a high-resolution line field en-face time domain optical coherence tomography (OCT) system using an off-axis holography configuration. Line field en-face OCT produces high speed en-face images at rates of up to 100 Hz. The high frame rate favors good phase stability across the lateral field-of-view which is indispensable for digital adaptive optics (DAO). Human retinal structures are acquired in-vivo with a broadband light source at 840 nm, and line rates of 10 kHz to 100 kHz. Structures of different retinal layers, such as photoreceptors, capillaries, and nerve fibers are visualized with high resolution of 2.8 µm and 5.5 µm in lateral directions. Subaperture based DAO is successfully applied to increase the visibility of cone-photoreceptors and nerve fibers. Furthermore, en-face Doppler OCT maps are generated based on calculating the differential phase shifts between recorded lines.
NASA Astrophysics Data System (ADS)
Vemareddy, P.; Demóulin, P.
2018-04-01
We study the magnetic structure of a successively erupting sigmoid in active region 12371 by modeling the quasi-static coronal field evolution with nonlinear force-free field (NLFFF) equilibria. Helioseismic and Magnetic Imager/Solar Dynamic Observatory vector magnetograms are used as input to the NLFFF model. In all eruption events, the modeled structure resembles the observed pre-eruptive coronal sigmoid and the NLFFF core field is a combination of double inverse-J-shaped and inverse-S field lines with dips touching the photosphere. Such field lines are formed by the flux cancellation reconnection of opposite-J field lines at bald-patch locations, which in turn implies the formation of a weakly twisted flux-rope (FR) from large-scale sheared arcade field lines. Later on, this FR undergoes coronal tether-cutting reconnection until a coronal mass ejection is triggered. The modeled structure captured these major features of sigmoid-to-arcade-to-sigmoid transformation, which is reoccuring under continuous photospheric flux motions. Calculations of the field line twist reveal a fractional increase followed by a decrease of the number of pixels having a range of twist. This traces the buildup process of a twisted core field by slow photospheric motions and the relaxation after eruption, respectively. Our study infers that the large eruptivity of this AR is due to a steep decrease of the background coronal field meeting the torus instability criteria at a low height (≈40 Mm) in contrast to noneruptive ARs.
A predictor-corrector scheme for vortex identification
NASA Technical Reports Server (NTRS)
Singer, Bart A.; Banks, David C.
1994-01-01
A new algorithm for identifying and characterizing vortices in complex flows is presented. The scheme uses both the vorticity and pressure fields. A skeleton line along the center of a vortex is produced by a two-step predictor-corrector scheme. The technique uses the vector field to move in the direction of the skeleton line and the scalar field to correct the location in the plane perpendicular to the skeleton line. A general vortex cross section can be concisely defined with five parameters at each point along the skeleton line. The details of the method and examples of its use are discussed.
NASA Astrophysics Data System (ADS)
Sriwana, I. K.; Marie, I. A.; Mangala, D.
2017-12-01
Kencana Gemilang, Co. is one electronics industry engaging in the manufacture sector. This company manufactures and assembles household electronic products, such as rice cooker, fan, iron, blender, etc. The company deals with an issue of underachievement of an established production target on MCM products line 1. This study aimed to calculate line efficiencies, delay times, and initial line smoothness indexes. The research was carried out by means of depicting a precedence diagram and gathering time data of each work element followed by examination and calculation of standard time as well as line balancing using methods of Moodie Young and Generics Algorithm. Based on results of calculation, better line balancing than the existing initial conditions, i.e. improvement in the line efficiency by 18.39%, deterioration in balanced delay by 28.39%, and deterioration of a smoothness index by 23.85% was obtained.
Electromagnetic ray tracing model for line structures.
Tan, C B; Khoh, A; Yeo, S H
2008-03-17
In this paper, a model for electromagnetic scattering of line structures is established based on high frequency approximation approach - ray tracing. This electromagnetic ray tracing (ERT) model gives the advantage of identifying each physical field that contributes to the total solution of the scattering phenomenon. Besides the geometrical optics field, different diffracted fields associated with the line structures are also discussed and formulated. A step by step addition of each electromagnetic field is given to elucidate the causes of a disturbance in the amplitude profile. The accuracy of the ERT model is also discussed by comparing with the reference finite difference time domain (FDTD) solution, which shows a promising result for a single polysilicon line structure with width of as narrow as 0.4 wavelength.
Cloud-Resolving Model Simulations of LBA Convective Systems: Easterly and Westerly Regimes
NASA Technical Reports Server (NTRS)
Lang, Stephen E.; Tao, Wei-Kuo
2002-01-01
The 3D Goddard Cumulus Ensemble (GCE) model was used to simulate convection that occurred during the TRMM LBA field experiment in Brazil. Convection in this region can be categorized into two different regimes. Low-level easterly flow results in moderate to high CAPE and a drier environment. Convection is more intense like that seen over continents. Low-level westerly flow results in low CAPE and a moist environment. Convection is weaker and more widespread characteristic of oceanic or monsoon-like systems. The GCE model has been used to study both regimes in order to provide cloud data sets that are representative of both environments in support of TRMM rainfall and heating algorithm development. Two different case are presented: Jan 26,1999, an easterly regime case, and Feb 23,1999, a westerly regime case. The Jan 26 case is an organized squall line and is initialized with a standard cold pool. The sensitivity to mid-level sounding moisture and wind shear will also be shown. The Feb 23 case is less-organized with only transient lines and is initialized with either warm bubbles or prescribed surface fluxes. Heating profiles, rainfall statistics and storm characteristics are compared and validated for the two cases against observations collected during the experiment.
Transmission line transformer for reliable and low-jitter triggering of a railgap switch
NASA Astrophysics Data System (ADS)
Verma, Rishi; Mishra, Ekansh; Sagar, Karuna; Meena, Manraj; Shyam, Anurag
2014-09-01
The performance of railgap switch critically relies upon multichannel breakdown between the extended electrodes (rails) in order to ensure distributed current transfer along electrode length and to minimize the switch inductance. The initiation of several simultaneous arc channels along the switch length depends on the gap triggering technique and on the rate at which the electric field changes within the gap. This paper presents design, construction, and output characteristics of a coaxial cable based three-stage transmission line transformer (TLT) that is capable of initiating multichannel breakdown in a high voltage, low inductance railgap switch. In each stage three identical lengths of URM67 coaxial cables have been used in parallel and they have been wounded in separate cassettes to enhance the isolation of the output of transformer from the input. The cascaded output impedance of TLT is ˜50 Ω. Along with multi-channel formation over the complete length of electrode rails, significant reduction in jitter (≤2 ns) and conduction delay (≤60 ns) has been observed by the realization of large amplitude (˜80 kV), high dV/dt (˜6 kV/ns) pulse produced by the indigenously developed TLT based trigger generator. The superior performance of TLT over conventional pulse transformer for railgap triggering application has been compared and demonstrated experimentally.
Transmission line transformer for reliable and low-jitter triggering of a railgap switch.
Verma, Rishi; Mishra, Ekansh; Sagar, Karuna; Meena, Manraj; Shyam, Anurag
2014-09-01
The performance of railgap switch critically relies upon multichannel breakdown between the extended electrodes (rails) in order to ensure distributed current transfer along electrode length and to minimize the switch inductance. The initiation of several simultaneous arc channels along the switch length depends on the gap triggering technique and on the rate at which the electric field changes within the gap. This paper presents design, construction, and output characteristics of a coaxial cable based three-stage transmission line transformer (TLT) that is capable of initiating multichannel breakdown in a high voltage, low inductance railgap switch. In each stage three identical lengths of URM67 coaxial cables have been used in parallel and they have been wounded in separate cassettes to enhance the isolation of the output of transformer from the input. The cascaded output impedance of TLT is ~50 Ω. Along with multi-channel formation over the complete length of electrode rails, significant reduction in jitter (≤2 ns) and conduction delay (≤60 ns) has been observed by the realization of large amplitude (~80 kV), high dV/dt (~6 kV/ns) pulse produced by the indigenously developed TLT based trigger generator. The superior performance of TLT over conventional pulse transformer for railgap triggering application has been compared and demonstrated experimentally.
Nilsen, Erik T; Freeman, Joshua; Grene, Ruth; Tokuhisa, James
2014-01-01
The development of water stress resistant lines of commercial tomato by breeding or genetic engineering is possible, but will take considerable time before commercial varieties are available for production. However, grafting commercial tomato lines on drought resistant rootstock may produce drought tolerant commercial tomato lines much more rapidly. Due to changing climates and the need for commercial production of vegetables in low quality fields there is an urgent need for stress tolerant commercial lines of vegetables such as tomato. In previous observations we identified a scion root stock combination ('BHN 602' scion grafted onto 'Jjak Kkung' rootstock hereafter identified as 602/Jjak) that had a qualitative drought-tolerance phenotype when compared to the non-grafted line. Based on this initial observation, we studied photosynthesis and vegetative above-ground growth during mild-drought for the 602/Jjak compared with another scion-rootstock combination ('BHN 602' scion grafted onto 'Cheong Gang' rootstock hereafter identified as 602/Cheong) and a non-grafted control. Overall above ground vegetative growth was significantly lower for 602/Jjak in comparison to the other plant lines. Moreover, water potential reduction in response to mild drought was significantly less for 602/Jjak, yet stomatal conductance of all plant-lines were equally inhibited by mild-drought. Light saturated photosynthesis of 602/Jjak was less affected by low water potential than the other two lines as was the % reduction in mesophyll conductance. Therefore, the Jjak Kkung rootstock caused aboveground growth reduction, water conservation and increased photosynthetic tolerance of mild drought. These data show that different rootstocks can change the photosynthetic responses to drought of a high yielding, commercial tomato line. Also, this rapid discovery of one scion-rootstock combination that provided mild-drought tolerance suggests that screening more scion-rootstock combination for stress tolerance may rapidly yield commercially viable, stress tolerant lines of tomato.
Vector optical fields with polarization distributions similar to electric and magnetic field lines.
Pan, Yue; Li, Si-Min; Mao, Lei; Kong, Ling-Jun; Li, Yongnan; Tu, Chenghou; Wang, Pei; Wang, Hui-Tian
2013-07-01
We present, design and generate a new kind of vector optical fields with linear polarization distributions modeling to electric and magnetic field lines. The geometric configurations of "electric charges" and "magnetic charges" can engineer the spatial structure and symmetry of polarizations of vector optical field, providing additional degrees of freedom assisting in controlling the field symmetry at the focus and allowing engineering of the field distribution at the focus to the specific applications.
NASA Astrophysics Data System (ADS)
Sokolov, I.; van der Holst, B.; Jin, M.; Gombosi, T. I.; Taktakishvili, A.; Khazanov, G. V.
2013-12-01
In numerical simulations of the solar corona, both for the ambient state and especially for dynamical processes the most computational resources are spent for maintaining the numerical solution in the Low Solar Corona and in the transition region, where the temperature gradients are very sharp and the magnetic field has a complicated topology. The degraded computational efficiency is caused by the need in a highest resolution as well as the use of the fully three-dimensional implicit solver for electron heat conduction. On the other hand, the physical nature of the processes involved is rather simple (which still does not facilitate the numerical methods) as long as the heat fluxes as well as slow plasma motional velocities are aligned with the magnetic field. The Alfven wave turbulence, which is often believed to be the main driver of the solar wind and the main source of the coronal heating, is characterized by the Poynting flux of the waves, which is also aligned with the magnetic field. Therefore, the plasma state in any point of the three-dimensional grid in the Low Solar Corona can be found by solving a set of one-dimensional equations for the magnetic field line ('thread'), which passes through this point and connects it to the chromosphere and to the global Solar Corona. In the present paper we describe an innovative computational technology based upon the use of the magnetic-field-line-threads to find the local solution. We present the development of the AWSoM code of the University of Michigan with the field-lines-threaded Low Solar Corona. In the transition region, where the essentially kinetic description of the electron energy fluxes is required, we solve the Fokker-Plank equation on the system of threads, to achieve the physically consistent description of chromosphere evaporation. The third application for the field-lines-treaded model is the Solar Energetic Particle (SEP) acceleration and transport. Being the natural extension of the Field-Line-Advection Model for Particle Acceleration (FLAMPA), earlier suggested for a single magnetic field line advected with the plasma motion, the multiple-field-lines model allows us to simulate the SEP fluxes at multiple points of possible observation (at the Earth location, at STEREOs, at Mercury).
Zerga, Daniel P.
1980-01-01
A process of producing within a subterranean oil shale deposit a retort chamber containing permeable fragmented material wherein a series of explosive charges are emplaced in the deposit in a particular configuration comprising an initiating round which functions to produce an upward flexure of the overburden and to initiate fragmentation of the oil shale within the area of the retort chamber to be formed, the initiating round being followed in a predetermined time sequence by retreating lines of emplaced charges developing further fragmentation within the retort zone and continued lateral upward flexure of the overburden. The initiating round is characterized by a plurality of 5-spot patterns and the retreating lines of charges are positioned and fired along zigzag lines generally forming retreating rows of W's. Particular time delays in the firing of successive charges are disclosed.
Radiation from lightning return strokes over a finitely conducting earth
NASA Technical Reports Server (NTRS)
Le Vine, D. M.; Gesell, L.; Kao, Michael
1986-01-01
The effects of the conductivity of the earth on radiation from lightning return strokes are examined theoretically using a piecewise linear transmission line model for the return stroke. First, calculations are made of the electric field radiated during the return stroke, and then this electric field is used to compute the response of conventional AM radio receivers and electric field change systems during the return stroke. The calculations apply to the entire transient waveform (they are not restricted to the initial portions of the return stroke) and yield fast field changes and RF radiation in agreement with measurements made during real lightning. This research was motivated by measurements indicating that a time delay exists between the time of arrival of the fast electric field change and the RF radiation from first return strokes. The time delay is on the order of 20 microsec for frequencies in the HF-UHF range for lightning in Florida. The time delay is obtained theoretically in this paper. It occurs when both the effects of attenuation due to conductivity of the earth, and the finite velocity of propagation of the current pulse up the return stroke channel, are taken into account in the model.
Structure of small-scale magnetic fields in the kinematic dynamo theory.
Schekochihin, Alexander; Cowley, Steven; Maron, Jason; Malyshkin, Leonid
2002-01-01
A weak fluctuating magnetic field embedded into a a turbulent conducting medium grows exponentially while its characteristic scale decays. In the interstellar medium and protogalactic plasmas, the magnetic Prandtl number is very large, so a broad spectrum of growing magnetic fluctuations is excited at small (subviscous) scales. The condition for the onset of nonlinear back reaction depends on the structure of the field lines. We study the statistical correlations that are set up in the field pattern and show that the magnetic-field lines possess a folding structure, where most of the scale decrease is due to the field variation across itself (rapid transverse direction reversals), while the scale of the field variation along itself stays approximately constant. Specifically, we find that, though both the magnetic energy and the mean-square curvature of the field lines grow exponentially, the field strength and the field-line curvature are anticorrelated, i.e., the curved field is relatively weak, while the growing field is relatively flat. The detailed analysis of the statistics of the curvature shows that it possesses a stationary limiting distribution with the bulk located at the values of curvature comparable to the characteristic wave number of the velocity field and a power tail extending to large values of curvature where it is eventually cut off by the resistive regularization. The regions of large curvature, therefore, occupy only a small fraction of the total volume of the system. Our theoretical results are corroborated by direct numerical simulations. The implication of the folding effect is that the advent of the Lorentz back reaction occurs when the magnetic energy approaches that of the smallest turbulent eddies. Our results also directly apply to the problem of statistical geometry of the material lines in a random flow.
The design of a simulated in-line side-coupled 6 MV linear accelerator waveguide.
St Aubin, Joel; Steciw, Stephen; Fallone, B G
2010-02-01
The design of a 3D in-line side-coupled 6 MV linac waveguide for medical use is given, and the effect of the side-coupling and port irises on the radio frequency (RF), beam dynamics, and dosimetric solutions is examined. This work was motivated by our research on a linac-MR hybrid system, where accurate electron trajectory information for a clinical medical waveguide in the presence of an external magnetic field was needed. For this work, the design of the linac waveguide was generated using the finite element method. The design outlined here incorporates the necessary geometric changes needed to incorporate a full-end accelerating cavity with a single-coupling iris, a waveguide-cavity coupling port iris that allows power transfer into the waveguide from the magnetron, as well as a method to control the RF field magnitude within the first half accelerating cavity into which the electrons from the gun are injected. With the full waveguide designed to resonate at 2998.5 +/- 0.1 MHz, a full 3D RF field solution was obtained. The accuracy of the 3D RF field solution was estimated through a comparison of important linac parameters (Q factor, shunt impedance, transit time factor, and resonant frequency) calculated for one accelerating cavity with the benchmarked program SUPERFISH. It was found that the maximum difference between the 3D solution and SUPERFISH was less than 0.03%. The eigenvalue solver, which determines the resonant frequencies of the 3D side-coupled waveguide simulation, was shown to be highly accurate through a comparison with lumped circuit theory. Two different waveguide geometries were examined, one incorporating a 0.5 mm first side cavity shift and another with a 1.5 mm first side cavity shift. The asymmetrically placed side-coupling irises and the port iris for both models were shown to introduce asymmetries in the RF field large enough to cause a peak shift and skewing (center of gravity minus peak shift) of an initially cylindrically uniform electron beam accelerating within the waveguide. The shifting and skewing of the electron beam were found to be greatest due to the effects of the side-coupling irises on the RF field. A further Monte Carlo study showed that this effect translated into a 1% asymmetry in a 40 x 40 cm2 field dose profile. A full 3D design for an in-line side-coupled 6 MV linear accelerator that emulates a common commercial waveguide has been given. The effect of the side coupling on the dose distribution has been shown to create a slight asymmetry, but overall does not affect the clinical applicability of the linac. The 3D in-line side-coupled linac model further provides a tool for the investigation of linac performance within an external magnetic field, which exists in an integrated linac-MR system.
Synthesis of novel grafted hyaluronic acid with antitumor activity.
Abu Elella, Mahmoud H; Mohamed, Riham R; Sabaa, Magdy W
2018-06-01
In our study, we aimed to synthesize novel grafted hyaluronic acid with cationic biodegradable polymer, poly (N-vinyl imidazole) (PVI), through free radical polymerization using potassium persulfate as initiator. The effect of various grafting factors including initiator and monomer concentrations, reaction time and temperature was studied on the percentage of grafting parameters such as; graft yield (% GY), grafting efficiency (% GE) and amount of homopolymer formation (% H). Maximum grafted HA was% GY = 235% and%GE = 83% obtained on optimum conditions at [I n ] = 17.5 mmol L -1 , [M] = 1.25 mol L -1 , Temp. = 50 °C, time = 1.5 h and [HA] = 0.025 mol L -1 . The structure of grafted HA (HA-g-PVI) was elucidated via various analysis tools such as; elemental analyses, FTIR, 1 H NMR, XRD, TGA and Field emission scanning electron microscopy (FE-SEM). Hepatic and breast cancers are two common cancer types threatening people worldwide, so, the antitumor activity of two grafted HA samples (% GY = 155% and 235%) was studied against hepatic cancer (HepG-2) and breast cancer cell lines (MCF-7) compared to unmodified HA and PVI. The results showed that antitumor activity of grafted samples was more than unmodified HA and increased with increasing the grafting percentage of PVI onto HA chains, also, the antitumor activity of tested samples against HepG-2 cell lines was higher than MCF-7 cell lines. Copyright © 2018 Elsevier Ltd. All rights reserved.
A study of weak anisotropy in electron pressure in the tail current sheet
NASA Technical Reports Server (NTRS)
Lee, D.-Y.; Voigt, G.-H.
1995-01-01
We adopt a magnetotail model with stretched field lines where ion motions are generally nonadiabatic and where it is assumed that the pressure anisotropy resides only in the electron pressure tensor. We show that the magnetic field lines with p(perpendicular) greater than p(parallel) are less stretched than the corresponding field lines in the isotropic model. For p(parallel) greater than p(perpendicular), the magnetic field lines become more and more stretched as the anisotropy approaches the marginal firehose limit, p(parallel) = p(perpendicular) + B(exp 2)/mu(sub 0). We also show that the tail current density is highly enhanced at the firehose limit, a situation that might be subject to a microscopic instability. However, we emphasize that the enhancement in the current density is notable only near the center of the tail current sheet (z = 0). Thus it remains unclear whether any microscopic instability can significantly alter the global magnetic field configuration of the tail. By comparing the radius of the field-line curvature at z = 0 with the particle's gyroradius, we suspect that even the conventional adiabatic description of electrons may become questionable very close to the marginal firehose limit.
Observations of a Newly "Captured" Magnetosheath Field Line: Evidence for "Double Reconnection"
NASA Technical Reports Server (NTRS)
Chandler, Michael O.; Avanov, Levon A.; Craven, Paul D.; Mozer, Forrest S.; Moore, Thomas E.
2007-01-01
We have begun an investigation of the nature of the low-latitude boundary layer in the mid-altitude cusp region using data from the Polar spacecraft. This region has been routinely sampled for about three months each year for the periods 1999-2001 and 2004-2006. The low-to-mid-energy ion instruments frequently observed dense, magnetosheath-like plasma deep (in terms of distance from the magnetopause and in invariant latitude) in the magnetosphere. One such case, taken during a period of northward interplanetary magnetic field (IMF), shows magnetosheath ions within the magnetosphere with velocity distributions resulting from two separate merging sites along the same field lines. Cold ionospheric ions were also observed counterstreaming along the field lines, evidence that these field lines were closed. These results are consistent with the hypothesis that double merging can produce closed field .lines populated by solar wind plasma. Through the use of individual cases such as this and statistical studies of a broader database we seek to understand the morphology of the LLBL as it projects from the sub-solar region into the cusp. We will present preliminary results of our ongoing study.
A neutron diffraction study of the magnetic phases of CsCuCl3 for in-plane fields up to 17 T
NASA Astrophysics Data System (ADS)
Stüßer, N.; Schotte, U.; Hoser, A.; Meschke, M.; Meißner, M.; Wosnitza, J.
2002-05-01
Neutron diffraction investigations have been performed to study the magnetization process of CsCuCl3 with the magnetic field aligned within the ab-plane. In zero field the stacked, triangular-lattice antiferromagnet (TLA) CsCuCl3 has a helical structure incommensurate in the chain direction normal to the ab-plane. The magnetic phase diagram was investigated from 2 K up to TN in fields up to 17 T. The phase line for the expected incommensurate-commensurate (IC-C) phase transition could be determined throughout the whole phase diagram. At low temperature the IC-C transition is roughly at half the saturation field HS. The neutron diffraction patterns were found to be well described by a sinusoidally modulated spiral in fields up to HS/3. The initial increase of the scattering intensity in rising field indicates a continuous reduction of the spin frustration on the triangular lattice. Between HS/3 and HS/2 a new phase occurs where the spiral vector has a plateau in its field dependence. Close to the IC-C transition a growing asymmetry of magnetic satellite-peak intensities indicates domain effects which are related to the lifting of the chiral degeneracy in the ab-plane in rising field. The phase diagram obtained has some similarities with those calculated for stacked TLAs by considering the effects of quantum and thermal fluctuations.
Evolution of the magnetorotational instability on initially tangled magnetic fields
NASA Astrophysics Data System (ADS)
Bhat, Pallavi; Ebrahimi, Fatima; Blackman, Eric G.; Subramanian, Kandaswamy
2017-12-01
The initial magnetic field of previous magnetorotational instability (MRI) simulations has always included a significant system-scale component, even if stochastic. However, it is of conceptual and practical interest to assess whether the MRI can grow when the initial field is turbulent. The ubiquitous presence of turbulent or random flows in astrophysical plasmas generically leads to a small-scale dynamo (SSD), which would provide initial seed turbulent velocity and magnetic fields in the plasma that becomes an accretion disc. Can the MRI grow from these more realistic initial conditions? To address this, we supply a standard shearing box with isotropically forced SSD generated magnetic and velocity fields as initial conditions and remove the forcing. We find that if the initially supplied fields are too weak or too incoherent, they decay from the initial turbulent cascade faster than they can grow via the MRI. When the initially supplied fields are sufficient to allow MRI growth and sustenance, the saturated stresses, large-scale fields and power spectra match those of the standard zero net flux MRI simulation with an initial large-scale vertical field.
Rotating superconductor magnet for producing rotating lobed magnetic field lines
Hilal, Sadek K.; Sampson, William B.; Leonard, Edward F.
1978-01-01
This invention provides a rotating superconductor magnet for producing a rotating lobed magnetic field, comprising a cryostat; a superconducting magnet in the cryostat having a collar for producing a lobed magnetic field having oppositely directed adjacent field lines; rotatable support means for selectively rotating the superconductor magnet; and means for energizing the superconductor magnet.
The cancellation of magnetic flux. II - In a decaying active region. [of sun
NASA Technical Reports Server (NTRS)
Martin, S. F.; Livi, S. H. B.; Wang, J.
1985-01-01
H-alpha filtergrams and videomagnetograms are used to study an active region during its period of decay on August 3-8, 1984; the decay had been initiated by a fragmentation process in which very small knots of magnetic flux separated from larger concentration of flux. The disappearance of magnetic flux was always observed when the small fragments of flux encountered other small fragments or concentrations of flux of opposite polarity. Such 'cancellations' are shared by both polarities of magnetic field, and it is deduced that the disappearance of flux occurred either at or within 5 arcsec of the apparent dividing line between the opposite polarities. All of the 22 flares observed during the decay of this region were initiated around sites where magnetic flux was cancelling or was deduced to be cancelling during the flares. It is hypothesized that cancellation was one of the necessary conditions for flaring in this active region.
Characteristics of the three-half-turn-antenna-driven RF discharge in the Uragan-3M torsatron
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grigor’eva, L. I.; Chechkin, V. V., E-mail: chechkin@ipp.kharkov.ua; Moiseenko, V. E.
In the ℓ = 3 Uragan-3M torsatron hydrogen plasma is produced by RF fields in the Alfvén range of frequencies (ω ≤ ω{sub ci}). The initial (target) plasma with the line-averaged density of units 10{sup 12} cm{sup −3} is produced by a frame antenna with a broad spectrum of generated parallel wavenumbers. After this, to heat the plasma and bring its density to ∼10{sup 13} cm{sup –3}, another, shorter wavelength three-half-turn antenna with large transverse currents is used. The behavior of the density, electron temperature, and loss of the plasma supported by the three-half-turn antenna is studied depending on themore » RF power fed to the antenna and initial values of the density and electron temperature supplied by the frame antenna.« less
NASA Technical Reports Server (NTRS)
Moncrieff, Mitchell W.; Liu, Changhai
2002-01-01
Three-dimensional Cloud Resolving Model (CRM) simulations were conducted to examine the squall line observed on 26 January, 1999 from the Tropical Rainfall Measuring Mission Large Scale Biosphere Atmosphere Experiment in Amazonia (TRMM-LBA) field campaign. The computational domain was 600 kilometers x 180 kilometers x 20 kilometers with a horizontal resolution of 1 kilometer and a vertical resolution of 200 meters. The CRM was initialized from the Abracos Hill and Rebio soundings. Convection was initiated by a surface-based and NW-SE oriented cold pool over a region 60 kilometers in the y-direction and 30 kilometers wide in the x-direction. The cold pool temperature perturbation is a maximum of -6K at the surface, decreasing linearly to zero at 3 kilometers. The simulated convection is in the form of a NW-SE band that moves toward the southwest at a speed of 8 meters per second, and is generally comparable to radar observations.
[The neurological and embryological studies of Santiago Ramon y Cajal].
Baratas Diaz, L A
1997-01-01
The neurological and embryological work of Santiago Ramon y Cajal appeared in three stages: a) Between 1888 and 1893 observations on the development of neuron prolongations led to the observation of the growth cone and formulation of the neurotropic hypothesis. b) Between 1905 and 1908 the study of regenerative phenomena in nerves and nervours centers presented a large body of evidence consistent with the neurotropic hypothesis. c)Between 1910 and 1914 an experimental program was undertaken to test the neurotropic hypothesis; this program led to conclusions on the origin and chemical nature of the growth stimulating factor. These contributions initiated an important line of research that none of Ramon y Cajal's disciples could continue. In the nineteen fifties a group of researchers from three disciplines (biochemistry, embryology and neurohistology) discovered the existence of nerve growth factor (NGF), thus initiating a fertile new field of knowledge in cell biology.
NASA Astrophysics Data System (ADS)
Liu, Ping; Wu, Ding; Sun, Liying; Hai, Ran; Liu, Jiamin; Ding, Hongbin
2017-11-01
In this paper, the effect of magnetic field (1.1 T) on the atomic and ionic spectral emission of a laser produced lithium plasma at low pressure has been investigated. The experimental results indicate that magnetic field enhances the intensities of Li I spectral lines but reduces the Li II spectral lines intensities. In this study, two narrowband filters were placed before the ICCD camera to observe the evolution feature of Li II spectral line (548.39 nm, 2p3P2,1,0 → 2s3S1) and Li I spectral line (610.30 nm, 3d2P3/2, 5/2 → 2p2P1/2, 3/2), respectively. The plasma dynamic images show that with the magnetic field, the number density of luminous Li atoms is higher, while the number density of luminous Li ions is lower in comparison to the field-free case. The reduced Li II spectral intensities indicate that the quenching rate of Li ions in the excited state is greater than that without the magnetic field. The enhanced impact frequency of recombination indicates that magnetic field increases the recombination process of electron and Li ions. All of these observations strongly suggest that magnetic confinement increases the recombination process of the electrons with Li ions in the plasma, which results in the decrease in the intensity of Li II line. The results are useful for applying laser-induced breakdown spectroscopy (LIBS) to in-situ diagnose the processes of lithium wall conditioning in EAST tokamak.