Essentials of Enrollment Management: Cases in the Field
ERIC Educational Resources Information Center
Black, Jim
2004-01-01
In AACRAO's new publication Essentials of Enrollment Management: Cases in the Field experts in enrollment management representing all types of institutions reveal the evolution of the enrollment strategies implemented at their institutions, the results, and the lessons learned. The introductory chapter provides an overview of themes and models…
Corporate Information Management: A Case Study
1991-03-01
SUBJECT TERMS ( FIELD GROUP SUB-GROUP ICorporate Information Management (CIM), Case study, Strategic level decision making, Department Of Defense. 19...ABSTRACT ( This thesis documents in a case format the events, environment and decisions in the genesis and evolution of the Department of Defense’s...case format the events, environment and decisions in the genesis and evolution of the Department of Defense’s Corporate Information Management
Devos, Yann; Meihls, Lisa N; Kiss, József; Hibbard, Bruce E
2013-04-01
Western corn rootworm (Diabrotica virgifera virgifera; WCR) is a major coleopteran maize pest in North America and the EU, and has traditionally been managed through crop rotation and broad-spectrum soil insecticides. Genetically modified Bt-maize offers an additional management tool for WCR and has been valuable in reducing insecticide use and increasing farm income. A concern is that the widespread, repeated, and exclusive deployment of the same Bt-maize transformation event will result in the rapid evolution of resistance in WCR. This publication explores the potential of WCR to evolve resistance to plant-produced Bt-toxins from the first generation of Diabrotica-active Bt-maize events (MON 863 and MON 88017, DAS-59122-7 and MIR604), and whether currently implemented risk management strategies to delay and monitor resistance evolution are appropriate. In twelve of the twelve artificial selection experiments reported, resistant WCR populations were yielded rapidly. Field-selected resistance of WCR to Cry3Bb1 is documented in some US maize growing areas, where an increasing number of cases of unexpected damage of WCR larvae to Bt-maize MON 88017 has been reported. Currently implemented insect resistance management measures for Bt-crops usually rely on the high dose/refuge (HDR) strategy. Evidence (including laboratory, greenhouse and field data) indicates that several conditions contributing to the success of the HDR strategy may not be met for the first generation of Bt-maize events and WCR: (1) the Bt-toxins are expressed heterogeneously at a low-to-moderate dose in roots; (2) resistance alleles may be present at a higher frequency than initially assumed; (3) WCR may mate in a non-random manner; (4) resistance traits could have non-recessive inheritance; and (5) fitness costs may not necessarily be associated with resistance evolution. However, caution must be exercised when extrapolating laboratory and greenhouse results to field conditions. Model predictions suggest that a 20 % refuge of non-Diabrotica-active Bt-maize can delay resistance evolution in WCR under certain conditions. This publication concludes that further research is needed to resolve the remaining scientific uncertainty related to the appropriateness of the HDR in delaying resistance evolution in WCR, resistance monitoring is essential to detect early warning signs indicating resistance evolution in the field, and that integrated pest management reliant on multiple tactics should be deployed to ensure effective long-term corn rootworm management and sustainable use of Bt-maize.
Rational Exploitation and Utilizing of Groundwater in Jiangsu Coastal Area
NASA Astrophysics Data System (ADS)
Kang, B.; Lin, X.
2017-12-01
Jiangsu coastal area is located in the southeast coast of China, where is a new industrial base and an important coastal and Land Resources Development Zone of China. In the areas with strong human exploitation activities, regional groundwater evolution is obviously affected by human activities. In order to solve the environmental geological problems caused by groundwater exploitation fundamentally, we must find out the forming conditions of regional groundwater hydrodynamic field, and the impact of human activities on groundwater hydrodynamic field evolution and hydrogeochemical evolition. Based on these results, scientific management and reasonable exploitation of the regional groundwater resources can be provided for the utilization. Taking the coastal area of Jiangsu as the research area, we investigate and analyze of the regional hydrogeological conditions. The numerical simulation model of groundwater flow was established according to the water power, chemical and isotopic methods, the conditions of water flow and the influence of hydrodynamic field on the water chemical field. We predict the evolution of regional groundwater dynamics under the influence of human activities and climate change and evaluate the influence of groundwater dynamic field evolution on the environmental geological problems caused by groundwater exploitation under various conditions. We get the following conclusions: Three groundwater exploitation optimal schemes were established. The groundwater salinization was taken as the primary control condition. The substitution model was proposed to model groundwater exploitation and water level changes by BP network method.Then genetic algorithm was used to solve the optimization solution. Three groundwater exploitation optimal schemes were submit to local water resource management. The first sheme was used to solve the groundwater salinization problem. The second sheme focused on dual water supply. The third sheme concerned on emergency water supppy. This is the first time environment problem taken as water management objectinve in this coastal area.
The Arts Management Handbook: New Directions for Students and Practitioners
ERIC Educational Resources Information Center
Brindle, Meg, Ed.; DeVereaux, Constance, Ed.
2011-01-01
Whether the art form is theater, dance, music, festival, or the visual arts and galleries, the arts manager is the liaison between the artists and their audience. Bringing together the insights of educators and practitioners, this groundbreaker links the fields of management and organizational management with the ongoing evolution in arts…
Liu, Chun; Bridges, Melissa E; Kaundun, Shiv S; Glasgow, Les; Owen, Micheal Dk; Neve, Paul
2017-02-01
Simulation models are useful tools for predicting and comparing the risk of herbicide resistance in weed populations under different management strategies. Most existing models assume a monogenic mechanism governing herbicide resistance evolution. However, growing evidence suggests that herbicide resistance is often inherited in a polygenic or quantitative fashion. Therefore, we constructed a generalised modelling framework to simulate the evolution of quantitative herbicide resistance in summer annual weeds. Real-field management parameters based on Amaranthus tuberculatus (Moq.) Sauer (syn. rudis) control with glyphosate and mesotrione in Midwestern US maize-soybean agroecosystems demonstrated that the model can represent evolved herbicide resistance in realistic timescales. Sensitivity analyses showed that genetic and management parameters were impactful on the rate of quantitative herbicide resistance evolution, whilst biological parameters such as emergence and seed bank mortality were less important. The simulation model provides a robust and widely applicable framework for predicting the evolution of quantitative herbicide resistance in summer annual weed populations. The sensitivity analyses identified weed characteristics that would favour herbicide resistance evolution, including high annual fecundity, large resistance phenotypic variance and pre-existing herbicide resistance. Implications for herbicide resistance management and potential use of the model are discussed. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.
The Evolution of Public Health Emergency Management as a Field of Practice.
Rose, Dale A; Murthy, Shivani; Brooks, Jennifer; Bryant, Jeffrey
2017-09-01
The health impacts of recent global infectious disease outbreaks and other disasters have demonstrated the importance of strengthening public health systems to better protect communities from naturally occurring and human-caused threats. Public health emergency management (PHEM) is an emergent field of practice that draws on specific sets of knowledge, techniques, and organizing principles necessary for the effective management of complex health events. We highlight how the nascent field of PHEM has evolved in recent years. We explore this development by first examining multiple sites of intersection between the fields of public health and emergency management. We then analyze 2 of the principal pillars on which PHEM was built: organizational and programmatic (i.e., industry) standards and the incident management system. This is followed by a sketch of the key domains, or functional areas, of PHEM and their application to the emergency management cycle. We conclude with some observations about PHEM in a global context and discuss how the field might continue to evolve.
The Evolution of Public Health Emergency Management as a Field of Practice
Murthy, Shivani; Brooks, Jennifer; Bryant, Jeffrey
2017-01-01
The health impacts of recent global infectious disease outbreaks and other disasters have demonstrated the importance of strengthening public health systems to better protect communities from naturally occurring and human-caused threats. Public health emergency management (PHEM) is an emergent field of practice that draws on specific sets of knowledge, techniques, and organizing principles necessary for the effective management of complex health events. We highlight how the nascent field of PHEM has evolved in recent years. We explore this development by first examining multiple sites of intersection between the fields of public health and emergency management. We then analyze 2 of the principal pillars on which PHEM was built: organizational and programmatic (i.e., industry) standards and the incident management system. This is followed by a sketch of the key domains, or functional areas, of PHEM and their application to the emergency management cycle. We conclude with some observations about PHEM in a global context and discuss how the field might continue to evolve. PMID:28892444
Expanding the eco-evolutionary context of herbicide resistance research.
Neve, Paul; Busi, Roberto; Renton, Michael; Vila-Aiub, Martin M
2014-09-01
The potential for human-driven evolution in economically and environmentally important organisms in medicine, agriculture and conservation management is now widely recognised. The evolution of herbicide resistance in weeds is a classic example of rapid adaptation in the face of human-mediated selection. Management strategies that aim to slow or prevent the evolution of herbicide resistance must be informed by an understanding of the ecological and evolutionary factors that drive selection in weed populations. Here, we argue for a greater focus on the ultimate causes of selection for resistance in herbicide resistance studies. The emerging fields of eco-evolutionary dynamics and applied evolutionary biology offer a means to achieve this goal and to consider herbicide resistance in a broader and sometimes novel context. Four relevant research questions are presented, which examine (i) the impact of herbicide dose on selection for resistance, (ii) plant fitness in herbicide resistance studies, (iii) the efficacy of herbicide rotations and mixtures and (iv) the impacts of gene flow on resistance evolution and spread. In all cases, fundamental ecology and evolution have the potential to offer new insights into herbicide resistance evolution and management. © 2014 Society of Chemical Industry.
Managing the evolution of herbicide resistance.
Evans, Jeffrey A; Tranel, Patrick J; Hager, Aaron G; Schutte, Brian; Wu, Chenxi; Chatham, Laura A; Davis, Adam S
2016-01-01
Understanding and managing the evolutionary responses of pests and pathogens to control efforts is essential to human health and survival. Herbicide-resistant (HR) weeds undermine agricultural sustainability, productivity and profitability, yet the epidemiology of resistance evolution - particularly at landscape scales - is poorly understood. We studied glyphosate resistance in a major agricultural weed, Amaranthus tuberculatus (common waterhemp), using landscape, weed and management data from 105 central Illinois grain farms, including over 500 site-years of herbicide application records. Glyphosate-resistant (GR) A. tuberculatus occurrence was greatest in fields with frequent glyphosate applications, high annual rates of herbicide mechanism of action (MOA) turnover and few MOAs field(-1) year(-1) . Combining herbicide MOAs at the time of application by herbicide mixing reduced the likelihood of GR A. tuberculatus. These findings illustrate the importance of examining large-scale evolutionary processes at relevant spatial scales. Although measures such as herbicide mixing may delay GR or other HR weed traits, they are unlikely to prevent them. Long-term weed management will require truly diversified management practices that minimize selection for herbicide resistance traits. © 2015 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
NASA Astrophysics Data System (ADS)
Toussaint, Bert
In this paper, the author wants to explore the knowledge development in two crucial fields, river management and coast management in the 19th century and first decades of the 20th century. Were there similar characteristics in this development? Which types of knowledge can be distinguished? Who were the principal actors in these processes? Did the knowledge evolution have a Dutch stamp or a rather international flavour? To structure the analysis, the author uses the concept of technology regime, a set of technical rules which shapes the know-how of engineers, their design rules and research processes. The analysis shows that the knowledge development of river management and coastal management followed different evolution paths between 1800 and 1940. In the field of river management, a substantial amount of mathematical and physical theories had been gradually developed since the end of the 17th century. After 1850, the regularization approach met gradually a widespread support. Empirical data, design rules, theoretical knowledge and engineering pivoted around the regularization approach, and a technology regime around this approach emerged. The regularization regime further developed in the 20th century, and handbooks were increasingly shaped by mathematical and physical reasoning and formulas. On the other hand, coastal management was until the 1880s a rather marginal activity. Coastal engineering was an extremely complex and multidimensional field of knowledge which no engineer was able to grasp. The foundation of a Dutch weather institute was a first important step towards a more theoretical approach. The Zuiderzee works (starting in 1925) gave probably the most important stimuli to scientific coastal research. It was also a main factor in setting up scientific institutes by Rijkswaterstaat. So from the 1920s, Rijkswaterstaat became a major producer of scientific knowledge, not only in tidal modelling but also in coastal research. Due to a multidisciplinary knowledge network, coastal research transformed from a marginal to a first-rank scientific field, and this transformation enabled Rijkswaterstaat to set a much higher level of ambition in coastal management. The 1953 flood and the Deltaworks marked a new era. New design rules for sea dykes and river levees, based on a revolutionary statistical risk approach were determined, and design rules for the Deltaworks estuary closures were developed, being enabled by the development of hydraulic research.
Gu, Hao; Goodale, Eben; Chen, Jin
2015-03-18
The study of mutualistic plant and animal networks is an emerging field of ecological research. We reviewed progress in this field over the past 30 years. While earlier studies mostly focused on network structure, stability, and biodiversity maintenance, recent studies have investigated the conservation implications of mutualistic networks, specifically the influence of invasive species and how networks respond to habitat loss. Current research has also focused on evolutionary questions including phylogenetic signal in networks, impact of networks on the coevolution of interacting partners, and network influences on the evolution of interacting species. We outline some directions for future research, particularly the evolution of specialization in mutualistic networks, and provide concrete recommendations for environmental managers.
Friend, Milton; Franson, J. Christian; Friend, Milton; Gibbs, Samantha E.J.; Wild, Margaret A.
2015-01-01
This is the third iteration of the National Wildlife Health Center's (NWHC) field guide developed primarily to assist field managers and biologists address diseases they encounter. By itself, the first iteration, “Field Guide of Wildlife Diseases: General Field Procedures and Diseases of Migratory Birds,” was simply another addition to an increasing array of North American field guides and other publications focusing on disease in free-ranging wildlife populations. Collectively, those publications were reflecting the ongoing transition in the convergence of wildlife management and wildlife disease as foundational components within the structure of wildlife conservation as a social enterprise serving the stewardship of our wildlife resources. For context, it is useful to consider those publications relative to a timeline of milestones involving the evolution of wildlife conservation in North America.
Monetizing French Distance Education: A Field Enquiry on Higher Education Value(s)
ERIC Educational Resources Information Center
Olivier, Marty
2014-01-01
A field enquiry in French distance education allows us to analyze the evolution of a specific institution towards new public management: Parallel to a trend of free courseware and open education, there is a paradoxical reality of distance education monetization. Whereas history shows how traditional French education is a state controlled public…
Chandra, Yanto
2018-01-01
This article applies scientometric techniques to study the evolution of the field of entrepreneurship between 1990 and 2013. Using a combination of topic mapping, author and journal co-citation analyses, and overlay visualization of new and hot topics in the field, this article makes important contribution to the entrepreneurship research by identifying 46 topics in the 24-year history of entrepreneurship research and demonstrates how they appear, disappear, reappear and stabilize over time. It also identifies five topics that are persistent across the 24-year study period--institutions and institutional entrepreneurship, innovation and technology management, policy and development, entrepreneurial process and opportunity, and new ventures--which I labeled as The Pentagon of Entrepreneurship. Overall, the analyses revealed patterns of convergence and divergence and the diversity of topics, specialization, and interdisciplinary engagement in entrepreneurship research, thus offering the latest insights on the state of the art of the field.
Kuparinen, Anna; Kuikka, Sakari; Merilä, Juha
2009-05-01
The study of fisheries-induced evolution is a research field which is becoming recognized both as an important and interesting problem in applied evolution, as well as a practical management problem in fisheries. Much of the research in fisheries-induced evolution has focussed on quantifying and proving that an evolutionary response has taken place, but less effort has been invested on the actual processes and traits underlying capture of a fish by a fishing gear. This knowledge is not only needed to understand possible phenotypic selection associated to fishing but also to help to device sustainable fisheries and management strategies. Here, we draw attention to the existing knowledge about selectivity of fishing gears and outline the ways in which this information could be utilized in the context of fisheries-induced evolution. To these ends, we will introduce a mathematical framework commonly applied to quantify fishing gear selectivity, illustrate the link between gear selectivity and the change in the distribution of phenotypes induced by fishing, review what is known about selectivity of commonly used fishing gears, and discuss how this knowledge could be applied to improve attempts to predict evolutionary impacts of fishing.
Senior, Brent A
2008-01-01
Endoscopic skull base surgery has undergone rapid advancement in the past decade moving from pituitary surgery to suprasellar lesions and now to a myriad of lesions extending from the cribriform plate to C2 and laterally out to the infratemporal fossa and petrous apex. Evolution of several technological advances as well as advances in understanding of endoscopic anatomy and the development of surgical techniques both in resection and reconstruction have fostered this capability. Management of benign disease via endoscopic methods is largely accepted now but more data is needed before the controversy on the role of endoscopic management of malignant disease is decided. Continued advances in surgical technique, navigation systems, endoscopic imaging technology, and robotics assure continued brisk evolution in this expanding field. PMID:19434274
An overview of animal science research 1945-2011 through science mapping analysis.
Rodriguez-Ledesma, A; Cobo, M J; Lopez-Pujalte, C; Herrera-Viedma, E
2015-12-01
The conceptual structure of the field of Animal Science (AS) research is examined by means of a longitudinal science mapping analysis. The whole of the AS research field is analysed, revealing its conceptual evolution. To this end, an automatic approach to detecting and visualizing hidden themes or topics and their evolution across a consecutive span of years was applied to AS publications of the JCR category 'Agriculture, Dairy & Animal Science' during the period 1945-2011. This automatic approach was based on a coword analysis and combines performance analysis and science mapping. To observe the conceptual evolution of AS, six consecutive periods were defined: 1945-1969, 1970-1979, 1980-1989, 1990-1999, 2000-2005 and 2006-2011. Research in AS was identified as having focused on ten main thematic areas: ANIMAL-FEEDING, SMALL-RUMINANTS, ANIMAL-REPRODUCTION, DAIRY-PRODUCTION, MEAT-QUALITY, SWINE-PRODUCTION, GENETICS-AND-ANIMAL-BREEDING, POULTRY, ANIMAL-WELFARE and GROWTH-FACTORS-AND-FATTY-ACIDS. The results show how genomic studies gain in weight and integrate with other thematic areas. The whole of AS research has become oriented towards an overall framework in which animal welfare, sustainable management and human health play a major role. All this would affect the future structure and management of livestock farming. © 2014 Blackwell Verlag GmbH.
The Russo-Japanese War of 1904-1905 and the Evolution of Operational Art
2013-12-10
exhibited operational art as he could conceptualize the operation, and plan appropriate resources for an operation. The French army corps was able to...to manage massive forces and developed the corps under a Field Marshall that could maneuver and sustain until more French forces could arrive...Napoleon. Japan adopted the Western general staff model used by the French and Prussian armies to ensure effective management of armies at the
Development and Evolution of an Interactive HRM Course: A Case Study
ERIC Educational Resources Information Center
McClurg, Lucy A.
2005-01-01
A course in Human Resource consulting ("Human Resources Field Research") was designed and implemented at a university in cooperation with the Society for Human Resource Management (SHRM). Students work with local business executives, SHRM representatives, and the class instructor to complete projects for the client business firms. Trial…
Diagnosis and management of skin resurfacing-related complications.
Zhang, Alexandra Y; Obagi, Suzan
2009-02-01
The field of skin resurfacing is undergoing rapid evolution with many new technologies that have developed, providing more choices for physicians and patients. Knowing the potential adverse effects associated with each skin resurfacing modality is paramount in selecting the appropriate approach for each candidate, thereby minimizing complications and achieving optimal results.
The Value of Sustainability Education
ERIC Educational Resources Information Center
Bradfield, Steven L.
2009-01-01
This article offers the perspectives of a veteran in the field of sustainability. The author shares the steps in the development, evolution, and management of sustainability and sustainable practices at a leading flooring manufacturer. The author leverages over 20 years of experience in industry to discuss the necessary skills and mindsets to…
Bioinformatics: A History of Evolution "In Silico"
ERIC Educational Resources Information Center
Ondrej, Vladan; Dvorak, Petr
2012-01-01
Bioinformatics, biological databases, and the worldwide use of computers have accelerated biological research in many fields, such as evolutionary biology. Here, we describe a primer of nucleotide sequence management and the construction of a phylogenetic tree with two examples; the two selected are from completely different groups of organisms:…
Controlling the motion of solitons in 1-D magnonic crystal
NASA Astrophysics Data System (ADS)
Giridharan, D.; Sabareesan, P.; Daniel, M.
2018-04-01
We investigate nonlinear localized magnetic excitations in a simple form of one dimensional magnonic crystal by considering a ferromagnetic medium under periodic applied magnetic field of spatially varying strength. The governing Landau-Lifshitz equation is transformed into nonlinear evolution equation of a complex function through stereographic projection technique. The associated evolution equation numerically solved by using split-step Fourier method (SSFM). From the obtained results it is observed that the excitations appear in the form of solitons and the periodic magnetic field of spatially varying strength perturbs the soliton propagation. Bright and dark soliton solutions are constructed and studied the effect of tuning the strength of spatially periodic applied magnetic field on the nonlinear excitation of magnetization. The results show that the amplitude and velocity of the soliton can be effectively managed by varying the strength of spatially periodic applied magnetic field and it act as periodic potential which provides an additional degree of freedom to control the nature of soliton propagation in a ferromagnetic medium.
2018-01-01
This article applies scientometric techniques to study the evolution of the field of entrepreneurship between 1990 and 2013. Using a combination of topic mapping, author and journal co-citation analyses, and overlay visualization of new and hot topics in the field, this article makes important contribution to the entrepreneurship research by identifying 46 topics in the 24-year history of entrepreneurship research and demonstrates how they appear, disappear, reappear and stabilize over time. It also identifies five topics that are persistent across the 24-year study period––institutions and institutional entrepreneurship, innovation and technology management, policy and development, entrepreneurial process and opportunity, and new ventures––which I labeled as The Pentagon of Entrepreneurship. Overall, the analyses revealed patterns of convergence and divergence and the diversity of topics, specialization, and interdisciplinary engagement in entrepreneurship research, thus offering the latest insights on the state of the art of the field. PMID:29300735
Broadening the application of evolutionarily based genetic pest management.
Gould, Fred
2008-02-01
Insect- and tick-vectored diseases such as malaria, dengue fever, and Lyme disease cause human suffering, and current approaches for prevention are not adequate. Invasive plants and animals such as Scotch broom, zebra mussels, and gypsy moths continue to cause environmental damage and economic losses in agriculture and forestry. Rodents transmit diseases and cause major pre- and postharvest losses, especially in less affluent countries. Each of these problems might benefit from the developing field of Genetic Pest Management that is conceptually based on principles of evolutionary biology. This article briefly describes the history of this field, new molecular tools in this field, and potential applications of those tools. There will be a need for evolutionary biologists to interact with researchers and practitioners in a variety of other fields to determine the most appropriate targets for genetic pest management, the most appropriate methods for specific targets, and the potential of natural selection to diminish the effectiveness of genetic pest management. In addition to producing environmentally sustainable pest management solutions, research efforts in this area could lead to new insights about the evolution of selfish genetic elements in natural systems and will provide students with the opportunity to develop a more sophisticated understanding of the role of evolutionary biology in solving societal problems.
NASA Astrophysics Data System (ADS)
Yan, Q.; Kumar, P.
2017-12-01
Soil is the largest reservoir of carbon in the biosphere but in agricultural areas it is going through rapid erosion due disturbance arising from crop harvest, tillage, and tile drainage. Identifying whether the production of soil organic carbon (SOC) from the crops can compensate for the loss due to erosion is critical to ensure our food security and adapt to climate change. In the U.S. Midwest where large areas of land are intensively managed for agriculture practices, predicting soil quantity and quality are critical for maintaining crop yield and other Critical Zone services. This work focuses on modeling the coupled landscape evolutions soil organic carbon dynamics in agricultural fields. It couples landscape evolution, surface water runoff, organic matter transformation, and soil moisture dynamics to understand organic carbon gain and loss due to natural forcing and farming practices, such as fertilizer application and tillage. A distinctive feature of the model is the coupling of surface ad subsurface processes that predicts both surficial changes and transport along with the vertical transport and dynamics. Our results show that landscape evolution and farming practices play dominant roles in soil organic carbon (SOC) dynamics both above- and below-ground. Contrary to the common assumption that a vertical profile of SOC concentration decreases exponentially with depth, we find that in many situations SOC concentration below-ground could be higher than that at the surface. Tillage plays a complex role in organic matter dynamics. On one hand, tillage would accelerate the erosion rate, on the other hand, it would improve carbon storage by burying surface SOC into below ground. Our model consistently reproduces the observed above- and below-ground patterns of SOC in the field sites of Intensively Managed Landscapes Critical Zone Observatory (IMLCZO). This model bridges the gaps between the landscape evolution, below- and above-ground hydrologic cycle, and biogeochemical processes. This study not only helps us understand the coupled carbon-nitrogen cycle, but also serve as an instrument to develop practical approaches for reducing soil erosion and carbon loss when the landscape is affected by human activities.
Sedimentary Geology Context and Challenges for Cyberinfrastructure Data Management
NASA Astrophysics Data System (ADS)
Chan, M. A.; Budd, D. A.
2014-12-01
A cyberinfrastructure data management system for sedimentary geology is crucial to multiple facets of interdisciplinary Earth science research, as sedimentary systems form the deep-time framework for many geoscience communities. The breadth and depth of the sedimentary field spans research on the processes that form, shape and affect the Earth's sedimentary crust and distribute resources such as hydrocarbons, coal, and water. The sedimentary record is used by Earth scientists to explore questions such as the continental crust evolution, dynamics of Earth's past climates and oceans, evolution of the biosphere, and the human interface with Earth surface processes. Major challenges to a data management system for sedimentary geology are the volume and diversity of field, analytical, and experimental data, along with many types of physical objects. Objects include rock samples, biological specimens, cores, and photographs. Field data runs the gamut from discrete location and spatial orientation to vertical records of bed thickness, textures, color, sedimentary structures, and grain types. Ex situ information can include geochemistry, mineralogy, petrophysics, chronologic, and paleobiologic data. All data types cover multiple order-of-magnitude scales, often requiring correlation of the multiple scales with varying degrees of resolution. The stratigraphic framework needs dimensional context with locality, time, space, and depth relationships. A significant challenge is that physical objects represent discrete values at specific points, but measured stratigraphic sections are continuous. In many cases, field data is not easily quantified, and determining uncertainty can be difficult. Despite many possible hurdles, the sedimentary community is anxious to embrace geoinformatic resources that can provide better tools to integrate the many data types, create better search capabilities, and equip our communities to conduct high-impact science at unprecedented levels.
History of solid organ transplantation and organ donation.
Linden, Peter K
2009-01-01
Solid organ transplantation is one of the most remarkable and dramatic therapeutic advances in medicine during the past 60 years. This field has progressed initially from what can accurately be termed a "clinical experiment" to routine and reliable practice, which has proven to be clinically effective, life-saving and cost-effective. This remarkable evolution stems from a serial confluence of: cultural acceptance; legal and political evolution to facilitate organ donation, procurement and allocation; technical and cognitive advances in organ preservation, surgery, immunology, immunosuppression; and management of infectious diseases. Some of the major milestones of this multidisciplinary clinical science are reviewed in this article.
History and evolution of TMD concepts.
McNeill, C
1997-01-01
Historically the field of temporomandibular disorders (TMD) has been based on testimonials, clinical opinion, and blind faith rather than on science. Reparative procedures to the joints, jaws, or occlusal surfaces of the teeth to develop idealized structural relationships that may be required for dental health and function are less likely to be required for the management of chronic musculoskeletal disorders. Because of the concerns of many people today regarding professional credibility and intellectual honesty, the need for a scientific foundation to support the various belief systems is of paramount importance. In fact, therapeutic approaches for TMD are undergoing a major evolution away from the traditional mechanistic dental concepts of the past to the more current biopsychosocial medical concepts that emphasize multidisciplinary approaches. Recent advances in the understanding of pain mechanisms and management of chronic pain have improved long-term treatment outcome. The emphasis is on treatment that involves the patient in the physical and behavioral management of their own problem. The majority of patients with TMD achieve good relief of their symptoms with noninvasive, conservative therapy.
The evolution of resistance to two-toxin pyramid transgenic crops.
Ives, Anthony R; Glaum, Paul R; Ziebarth, Nicolas L; Andow, David A
2011-03-01
Pyramid transgenic crops that express two Bacillus thuringiensis (Bt) toxins hold great potential for reducing insect damage and slowing the evolution of resistance to the toxins. Here, we analyzed a suite of models for pyramid Bt crops to illustrate factors that should be considered when implementing the high dose-refuge strategy for resistance management; this strategy involves the high expression of toxins in Bt plants and use of non-Bt plants as refuges. Although resistance evolution to pyramid Bt varieties should in general be slower, resistance to pyramid Bt varieties is nonetheless driven by the same evolutionary processes as single Bt-toxin varieties. The main advantage of pyramid varieties is the low survival of insects heterozygous for resistance alleles. We show that there are two modes of resistance evolution. When populations of purely susceptible insects persist, leading to density dependence, the speed of resistance evolution changes slowly with the proportion of refuges. However, once the proportion of non-Bt plants crosses the threshold below which a susceptible population cannot persist, the speed of resistance evolution increases rapidly. This suggests that adaptive management be used to guarantee persistence of susceptible populations. We compared the use of seed mixtures in which Bt and non-Bt plants are sown in the same fields to the use of spatial refuges. As found for single Bt varieties, seed mixtures can speed resistance evolution if larvae move among plants. Devising optimal management plans for deploying spatial refuges is difficult because they depend on crop rotation patterns, whether males or females have limited dispersal, and other characteristics. Nonetheless, the effects of spatial refuges on resistance evolution can be understood by considering the three mechanisms determining the rate of resistance evolution: the force of selection (the proportion of insects killed by Bt), assortative mating (deviations of the proportion of heterozygotes from Hardy-Weinberg equilibrium at the total population level), and male mating success (when males carrying resistance alleles find fewer mates). Of these three, assortative mating is often the least important, even though this mechanism is the most frequently cited explanation for the efficacy of the high dose-refuge strategy.
Ives, Anthony R; Paull, Cate; Hulthen, Andrew; Downes, Sharon; Andow, David A; Haygood, Ralph; Zalucki, Myron P; Schellhorn, Nancy A
2017-01-01
Transgenic crops that express insecticide genes from Bacillus thuringiensis (Bt) are used worldwide against moth and beetle pests. Because these engineered plants can kill over 95% of susceptible larvae, they can rapidly select for resistance. Here, we use a model for a pyramid two-toxin Bt crop to explore the consequences of spatio-temporal variation in the area of Bt crop and non-Bt refuge habitat. We show that variability over time in the proportion of suitable non-Bt breeding habitat, Q, or in the total area of Bt and suitable non-Bt habitat, K, can increase the overall rate of resistance evolution by causing short-term surges of intense selection. These surges can be exacerbated when temporal variation in Q and/or K cause high larval densities in refuges that increase density-dependent mortality; this will give resistant larvae in Bt fields a relative advantage over susceptible larvae that largely depend on refuges. We address the effects of spatio-temporal variation in a management setting for two bollworm pests of cotton, Helicoverpa armigera and H. punctigera, and field data on landscape crop distributions from Australia. Even a small proportion of Bt fields available to egg-laying females when refuges are sparse may result in high exposure to Bt for just a single generation per year and cause a surge in selection. Therefore, rapid resistance evolution can occur when Bt crops are rare rather than common in the landscape. These results highlight the need to understand spatio-temporal fluctuations in the landscape composition of Bt crops and non-Bt habitats in order to design effective resistance management strategies.
NASA Astrophysics Data System (ADS)
Flor-Blanco, Germán; Flor, Germán; Pando, Luis
2013-04-01
The confining barrier comprising the Salinas-El Espartal beach/dune system forms part of the mouth complex of the Avilés estuary on the central coast of Asturias (NW Spain). In this study the evolution of the beach and its dune field, as well as the estuary, is established based on appraisal of both natural and anthropogenic processes. In particular, dredging in the estuary mouth has had a strong negative impact on the system, including the recession of the dune front by between 20 and 30 m, and degradation of the seafront, first built at the edge of the beach dunes in 1965 and rebuilt in 1994. By contrast, the dumping of dredged material at a nearby beach, Xagó, has caused a remarkable dune progradation of 45 m on average, creating aeolian tabular sheets. The future dredging management of the mouth of the Avilés estuary should be directly related to the evolution of the El Espartal and Xagó dune fields.
Design and field test of collaborative tools in the service of an innovative organization
DOE Office of Scientific and Technical Information (OSTI.GOV)
De Beler, N.; Parfouru, S.
2012-07-01
This paper presents the design process of collaborative tools, based on ICT, aiming at supporting the tasks of the team that manages an outage of an energy production plant for maintenance activities. The design process follows an iterative and multidisciplinary approach, based on a collective tasks modeling of the outage management team in the light of Socio Organizational and Human (SOH) field studies, and on the state of the art of ICT. Field test of the collaborative tools designed plays a great place in this approach, allowing taking into account the operational world but involves also some risks which mustmore » be managed. To implement tools on all the production plants, we build an 'operational concept' with a level of description which authorizes the evolution of tools and allows some local adaptations. The field tests provide lessons on the ICT topics. For examples: the status of the remote access tools, the potential of use of a given information input by an actor for several individual and collective purposes, the actors perception of the tools meaning, and the requirements for supporting the implementation of change. (authors)« less
Evolution of viral virulence: empirical studies
Kurath, Gael; Wargo, Andrew R.
2016-01-01
The concept of virulence as a pathogen trait that can evolve in response to selection has led to a large body of virulence evolution theory developed in the 1980-1990s. Various aspects of this theory predict increased or decreased virulence in response to a complex array of selection pressures including mode of transmission, changes in host, mixed infection, vector-borne transmission, environmental changes, host vaccination, host resistance, and co-evolution of virus and host. A fundamental concept is prediction of trade-offs between the costs and benefits associated with higher virulence, leading to selection of optimal virulence levels. Through a combination of observational and experimental studies, including experimental evolution of viruses during serial passage, many of these predictions have now been explored in systems ranging from bacteriophage to viruses of plants, invertebrates, and vertebrate hosts. This chapter summarizes empirical studies of viral virulence evolution in numerous diverse systems, including the classic models myxomavirus in rabbits, Marek's disease virus in chickens, and HIV in humans. Collectively these studies support some aspects of virulence evolution theory, suggest modifications for other aspects, and show that predictions may apply in some virus:host interactions but not in others. Finally, we consider how virulence evolution theory applies to disease management in the field.
NASA Technical Reports Server (NTRS)
Fang, Mao Fa
1996-01-01
The evolution of the field entropy in the two-photon JCM in the presence of the Stark shift is investigated, and the effects of the dynamic Stark shift on the evolution of the field entropy and entanglement between the atom and field, are examined. The results show that the dynamic Stark shift plays an important role in the evolution of the field entropy in two-photon processes.
Distinctive aspects of the evolution of galactic magnetic fields
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yar-Mukhamedov, D., E-mail: danial.su@gmail.com
2016-11-15
We perform an in-depth analysis of the evolution of galactic magnetic fields within a semi-analytic galaxy formation and evolution framework, determine various distinctive aspects of the evolution process, and obtain analytic solutions for a wide range of possible evolution scenarios.
Berkowitz, Eric N
2007-01-01
Over the past several years the discipline and practice of public relations has evolved. Historically, this field within health care organizations was a one-way management of communications and often was reactive in nature dealing with a crisis situation with an organization. Recent theoretical development within the discipline suggests that public relations involves more relationship building with key constituencies and on-going-dialogue. Concomitant with this evolution is the technological development of the internet. Most particularly is the use of podcasting and blogging as key tools which have been underutilized by health car providers but have significant potential in both communication and relationship opportunities as discussed in this article.
The evolution of lasers in urology
Zarrabi, Amir; Gross, Andreas J.
2011-01-01
The world’s first laser was developed by Theodore Maiman in 1960. Over the course of the past five decades, this technology has evolved into a highly specialized entity, also finding a niche market in the field of urology. Lasers obtained from various lasing mediums producing amplified light of different wavelengths have been tested for urological applications. Today, these lasers are most commonly used in the surgical management of benign prostatic hyperplasia and as intracorporeal lithotripters. Other uses include ablation of various urologic tumors and incising strictures of the upper- and lower urinary tract. A continuous process of evolution of this technology is taking place, resulting in surgical lasers becoming ever safer, more effective, and more affordable. PMID:21869908
Benchmark study on glyphosate-resistant crop systems in the United States. Part 2: Perspectives.
Owen, Micheal D K; Young, Bryan G; Shaw, David R; Wilson, Robert G; Jordan, David L; Dixon, Philip M; Weller, Stephen C
2011-07-01
A six-state, 5 year field project was initiated in 2006 to study weed management methods that foster the sustainability of genetically engineered (GE) glyphosate-resistant (GR) crop systems. The benchmark study field-scale experiments were initiated following a survey, conducted in the winter of 2005-2006, of farmer opinions on weed management practices and their views on GR weeds and management tactics. The main survey findings supported the premise that growers were generally less aware of the significance of evolved herbicide resistance and did not have a high recognition of the strong selection pressure from herbicides on the evolution of herbicide-resistant (HR) weeds. The results of the benchmark study survey indicated that there are educational challenges to implement sustainable GR-based crop systems and helped guide the development of the field-scale benchmark study. Paramount is the need to develop consistent and clearly articulated science-based management recommendations that enable farmers to reduce the potential for HR weeds. This paper provides background perspectives about the use of GR crops, the impact of these crops and an overview of different opinions about the use of GR crops on agriculture and society, as well as defining how the benchmark study will address these issues. Copyright © 2011 Society of Chemical Industry.
Knott, Anne Marie; Corredoira, Rafael; Kimberly, John
2008-09-01
Addiction treatment providers face serious problems in delivering consistent, high-quality services over time. Among those providers with multiple treatment sites, there is also intersite variability. This is a serious problem in the addiction field, likely to be made worse as new technologies are introduced and/or as there is industry consolidation (Corredoira, R., Kimberly, J. (2006) Industry evolution through consolidation: Implications for addiction treatment. Journal of Substance Abuse Treatment 31, 255-265.). Although serious, these problems in managing and monitoring to assure consistent service quality have been faced by many other industries. Here, we review evidence from research in other industries regarding three different forms of management (vertical integration, franchising, and licensing) across a chain of individual service providers. We show how each management form affects the level, consistency, and improvement of service delivery over time. In addition, we discuss how such performance advantages affect customer demand as well as regulatory endorsement of the consolidated firm and its approach.
Conceptual Modeling in the Time of the Revolution: Part II
NASA Astrophysics Data System (ADS)
Mylopoulos, John
Conceptual Modeling was a marginal research topic at the very fringes of Computer Science in the 60s and 70s, when the discipline was dominated by topics focusing on programs, systems and hardware architectures. Over the years, however, the field has moved to centre stage and has come to claim a central role both in Computer Science research and practice in diverse areas, such as Software Engineering, Databases, Information Systems, the Semantic Web, Business Process Management, Service-Oriented Computing, Multi-Agent Systems, Knowledge Management, and more. The transformation was greatly aided by the adoption of standards in modeling languages (e.g., UML), and model-based methodologies (e.g., Model-Driven Architectures) by the Object Management Group (OMG) and other standards organizations. We briefly review the history of the field over the past 40 years, focusing on the evolution of key ideas. We then note some open challenges and report on-going research, covering topics such as the representation of variability in conceptual models, capturing model intentions, and models of laws.
Defining terms for proactive management of resistance to Bt crops and pesticides.
Tabashnik, Bruce E; Mota-Sanchez, David; Whalon, Mark E; Hollingworth, Robert M; Carrière, Yves
2014-04-01
Evolution of pest resistance to pesticides is an urgent global problem with resistance recorded in at least 954 species of pests, including 546 arthropods, 218 weeds, and 190 plant pathogens. To facilitate understanding and management of resistance, we provide definitions of 50 key terms related to resistance. We confirm the broad, long-standing definition of resistance, which is a genetically based decrease in susceptibility to a pesticide, and the definition of "field-evolved resistance," which is a genetically based decrease in susceptibility to a pesticide in a population caused by exposure to the pesticide in the field. The impact of field-evolved resistance on pest control can vary from none to severe. We define "practical resistance" as field-evolved resistance that reduces pesticide efficacy and has practical consequences for pest control. Recognizing that resistance is not "all or none" and that intermediate levels of resistance can have a continuum of effects on pest control, we describe five categories of field-evolved resistance and use them to classify 13 cases of field-evolved resistance to five Bacillus thuringiensis (Bt) toxins in transgenic corn and cotton based on monitoring data from five continents for nine major pest species. We urge researchers to publish and analyze their resistance monitoring data in conjunction with data on management practices to accelerate progress in determining which actions will be most useful in response to specific data on the magnitude, distribution, and impact of resistance.
Evolution and structure of sustainability science.
Bettencourt, Luís M A; Kaur, Jasleen
2011-12-06
The concepts of sustainable development have experienced extraordinary success since their advent in the 1980s. They are now an integral part of the agenda of governments and corporations, and their goals have become central to the mission of research laboratories and universities worldwide. However, it remains unclear how far the field has progressed as a scientific discipline, especially given its ambitious agenda of integrating theory, applied science, and policy, making it relevant for development globally and generating a new interdisciplinary synthesis across fields. To address these questions, we assembled a corpus of scholarly publications in the field and analyzed its temporal evolution, geographic distribution, disciplinary composition, and collaboration structure. We show that sustainability science has been growing explosively since the late 1980s when foundational publications in the field increased its pull on new authors and intensified their interactions. The field has an unusual geographic footprint combining contributions and connecting through collaboration cities and nations at very different levels of development. Its decomposition into traditional disciplines reveals its emphasis on the management of human, social, and ecological systems seen primarily from an engineering and policy perspective. Finally, we show that the integration of these perspectives has created a new field only in recent years as judged by the emergence of a giant component of scientific collaboration. These developments demonstrate the existence of a growing scientific field of sustainability science as an unusual, inclusive and ubiquitous scientific practice and bode well for its continued impact and longevity.
Evolution and structure of sustainability science
Bettencourt, Luís M. A.; Kaur, Jasleen
2011-01-01
The concepts of sustainable development have experienced extraordinary success since their advent in the 1980s. They are now an integral part of the agenda of governments and corporations, and their goals have become central to the mission of research laboratories and universities worldwide. However, it remains unclear how far the field has progressed as a scientific discipline, especially given its ambitious agenda of integrating theory, applied science, and policy, making it relevant for development globally and generating a new interdisciplinary synthesis across fields. To address these questions, we assembled a corpus of scholarly publications in the field and analyzed its temporal evolution, geographic distribution, disciplinary composition, and collaboration structure. We show that sustainability science has been growing explosively since the late 1980s when foundational publications in the field increased its pull on new authors and intensified their interactions. The field has an unusual geographic footprint combining contributions and connecting through collaboration cities and nations at very different levels of development. Its decomposition into traditional disciplines reveals its emphasis on the management of human, social, and ecological systems seen primarily from an engineering and policy perspective. Finally, we show that the integration of these perspectives has created a new field only in recent years as judged by the emergence of a giant component of scientific collaboration. These developments demonstrate the existence of a growing scientific field of sustainability science as an unusual, inclusive and ubiquitous scientific practice and bode well for its continued impact and longevity. PMID:22114186
A Physically Based Coupled Chemical and Physical Weathering Model for Simulating Soilscape Evolution
NASA Astrophysics Data System (ADS)
Willgoose, G. R.; Welivitiya, D.; Hancock, G. R.
2015-12-01
A critical missing link in existing landscape evolution models is a dynamic soil evolution models where soils co-evolve with the landform. Work by the authors over the last decade has demonstrated a computationally manageable model for soil profile evolution (soilscape evolution) based on physical weathering. For chemical weathering it is clear that full geochemistry models such as CrunchFlow and PHREEQC are too computationally intensive to be couplable to existing soilscape and landscape evolution models. This paper presents a simplification of CrunchFlow chemistry and physics that makes the task feasible, and generalises it for hillslope geomorphology applications. Results from this simplified model will be compared with field data for soil pedogenesis. Other researchers have previously proposed a number of very simple weathering functions (e.g. exponential, humped, reverse exponential) as conceptual models of the in-profile weathering process. The paper will show that all of these functions are possible for specific combinations of in-soil environmental, geochemical and geologic conditions, and the presentation will outline the key variables controlling which of these conceptual models can be realistic models of in-profile processes and under what conditions. The presentation will finish by discussing the coupling of this model with a physical weathering model, and will show sample results from our SSSPAM soilscape evolution model to illustrate the implications of including chemical weathering in the soilscape evolution model.
Rouhani, M J
2016-06-01
The field of ENT surgery is one of the most varied specialties, with numerous subspecialties and continuing divergence. With this evolution there comes, however, a risk that specialists become de-skilled in certain areas. In the case of ENT emergencies, this can be particularly dangerous. Current guidance from relevant UK professional membership bodies regarding emergency surgery provision was inspected and a literature search was performed to identify studies relating to management of ENT emergencies in the context of increasing subspecialisation. The specialty currently has provisions in place to ensure timely, appropriate and safe management of emergencies, in the form of guidelines and emergency clinics; however, there is scope for improvement of the system.
Mapping the Evolution of Scientific Fields
Herrera, Mark; Roberts, David C.; Gulbahce, Natali
2010-01-01
Despite the apparent cross-disciplinary interactions among scientific fields, a formal description of their evolution is lacking. Here we describe a novel approach to study the dynamics and evolution of scientific fields using a network-based analysis. We build an idea network consisting of American Physical Society Physics and Astronomy Classification Scheme (PACS) numbers as nodes representing scientific concepts. Two PACS numbers are linked if there exist publications that reference them simultaneously. We locate scientific fields using a community finding algorithm, and describe the time evolution of these fields over the course of 1985–2006. The communities we identify map to known scientific fields, and their age depends on their size and activity. We expect our approach to quantifying the evolution of ideas to be relevant for making predictions about the future of science and thus help to guide its development. PMID:20463949
Mapping the evolution of scientific fields.
Herrera, Mark; Roberts, David C; Gulbahce, Natali
2010-05-04
Despite the apparent cross-disciplinary interactions among scientific fields, a formal description of their evolution is lacking. Here we describe a novel approach to study the dynamics and evolution of scientific fields using a network-based analysis. We build an idea network consisting of American Physical Society Physics and Astronomy Classification Scheme (PACS) numbers as nodes representing scientific concepts. Two PACS numbers are linked if there exist publications that reference them simultaneously. We locate scientific fields using a community finding algorithm, and describe the time evolution of these fields over the course of 1985-2006. The communities we identify map to known scientific fields, and their age depends on their size and activity. We expect our approach to quantifying the evolution of ideas to be relevant for making predictions about the future of science and thus help to guide its development.
Field Surveys to Identify Biocontrol Agents of Hydrilla verticillata from June - September 2012
2015-07-01
typically managed through the use of chemical control. Continuous use of a single herbicide has led to the development of resistance to the systemic... herbicide fluridone (Michel et al. 2004). The introduction of the herbivorous fish Ctenopharyngodon idella (grass carp) can remove hydrilla effectively...R. S. Arias, B. E. Scheffler, S. O. Duke, M. Netherland, F. E. Dayan. 2004. Somatic mutation-mediated evolution of herbicide resistance in the
NASA Technical Reports Server (NTRS)
Cacas, Joseph; Glaser, John; Copenhaver, Kenneth; May, George; Stephens, Karen
2008-01-01
The United States Environmental Protection Agency (EPA) has declared that "significant benefits accrue to growers, the public, and the environment" from the use of transgenic pesticidal crops due to reductions in pesticide usage for crop pest management. Large increases in the global use of transgenic pesticidal crops has reduced the amounts of broad spectrum pesticides used to manage pest populations, improved yield and reduced the environmental impact of crop management. A significant threat to the continued use of this technology is the evolution of resistance in insect pest populations to the insecticidal Bt toxins expressed by the plants. Management of transgenic pesticidal crops with an emphasis on conservation of Bt toxicity in field populations of insect pests is important to the future of sustainable agriculture. A vital component of this transgenic pesticidal crop management is establishing the proof of concept basic understanding, situational awareness, and monitoring and decision support system tools for more than 133650 square kilometers (33 million acres) of bio-engineered corn and cotton for development of insect resistance . Early and recent joint NASA, US EPA and ITD remote imagery flights and ground based field experiments have provided very promising research results that will potentially address future requirements for crop management capabilities.
Pérez-Belis, V; Bovea, M D; Ibáñez-Forés, V
2015-01-01
The consumption of electrical and electronic equipment (EEE) is continuously increasing worldwide and, consequently, so is the amount of waste electrical and electronic equipment (WEEE) it generates at its end-of-life. In parallel to this growth, legislation related to this issue has been passed in different countries with the aim of improving the management of WEEE. In order to raise awareness about the situation in which the generation, composition, management or final treatment of this kind of waste currently finds itself, an extensive number of articles have been published around the world. The aim of this paper is to define and analyse the main areas of research on WEEE by offering a broader analysis of the relevant literature in this field published between 1992 and August 2014. The literature researched comprises 307 articles, which are analysed according to the topic they focus on (WEEE management, WEEE generation, WEEE characterisation, social aspects of WEEE, re-use of EEE or economic aspects of WEEE). In addition, a deeper analysis is also presented, which takes into account the temporal evolution (globally and by topic), location of the study, categories and subcategories analysed, etc. © The Author(s) 2014.
Analytical Model of Steam Chamber Evolution from Vertical Well
NASA Astrophysics Data System (ADS)
Shevchenko, D. V.; Usmanov, S. A.; Shangaraeva, A. I.; Murtaizin, T. A.
2018-05-01
This paper is aimed to check the possibility of applying the Steam Assisted Gravity Drainage in vertical wells. This challenge seems to be vital because most of the natural bitumen reservoirs are found to occur above the oil fields being developed so that a well system is already available at the stage of field management. The existing vertical wells are hard to be used for horizontal sidetracking in most of cases as the bitumen reservoir occurs at a shallow depth. The matter is to use the existing wells as vertical ones. At the same time, it is possible to drill an additional sidetrack as a producer or an injector.
NASA Astrophysics Data System (ADS)
Akter, Masuda; Kader, Md. Abdul; Pierreux, Sofie; Boeckx, Pascal; Kamal, Ahammad Mostafa; Sleutel, Steven
2016-04-01
Water-saving irrigation such as AWD may significantly alter depth profiles of moisture content, pH, Eh and soil microbial activity. Modelling the effect of irrigation management on soil N mineralization, therefore requires detailed insight into depth distribution of these variables and dissolved organic carbon (DOC), and evolution of electron acceptors. We set up a field experiment at Bangladesh Agricultural University from January to May' 2015. The cultivated rice variety (BRRI dhan28) was grown under continuous flooding (CF) and alternate wetting and drying (AWD) management, with 120 kg N ha-1(N120) or without (N0)N fertilizer application. We measured soil mineral N and plant N uptake to evaluate N mineralization. CH4 emissions were monitored with timely gas sample collection and GC-analysis. Soil Eh at four depths and temperature at two depths were monitored continuously by Eh/T°-probes connected to a HYPNOS III data logger (MVH, The Netherlands). Simultaneously, soil solution from three depths were sampled with rhizon samplers to track DOC, Fe and Mn in solution. Over the growing season soil and air temperature increased by 8°C, and soil pH stayed near neutral (6.7 to 7.8). In all depths of AWD and CF, Eh dropped sharply to methanic conditions within 21 days after transplanting (DAT). Low redox-potential continued until 77DAT in all cases, except in the puddle layers under AWD, where redox raised to -200mV during drainage. Fe and Mn in soil solution increased gradually over the growing season, indicating continued reductive dissolution of Fe and Mn (hydro-)oxides. DOC increased continuously as well in all depths. Besides to release of DOC bound to pedogenic oxides upon their reductive dissolution, higher plant and soil microbial activity with increasing soil temperature (till 28°C) through the growing season explains the increasing DOC levels. Increasing methanogenic activity as indicated by the high CH4 emissions at 70-84DAT under both CF and AWD is logically linked. The elevated redox potential in puddle layer depth increments during AWD drainage events, significantly (p<0.01) declined the cumulative CH4 emission by 47% when compared to CF management. Moreover, seasonal CH4 emissions in N-fertilized fields (N120) decreased by 29 and 8% under CF and AWD, respectively relative to the control (N0), possibly due to promotion of methanotrophs, which were N-limited in N0. Mostly, mineral N content in N120 plots of AWD and CF exceeded contents in the N0 fields. Contrary to CH4 emission, irrigation management did not affect evolutions of pH, Fe, Mn and DOC in soil solution. Likewise, soil exchangeable N content evolution was unaffected and followed zero-order kinetics (N120: R2=0.53 to 0.81; N0: R2=0.12 to 0.48). Our results generally indicate that in Northern Bangladesh's Boro season, evolutions in paddy soil solution chemistry and CH4 emission are strongly depending on course soil temperature and only secondarily on irrigation management. Whether temperature steers microbial activity and methanogenesis directly or via concomitant plant activity and exudation is not known. Key words: Redox, CH4, emission, mineralization, Fe, Mn, DOC, water management
Time to Spread Your Wings: A Review of the Avian Ancient DNA Field
Grealy, Alicia; Rawlence, Nicolas J.
2017-01-01
Ancient DNA (aDNA) has the ability to inform the evolutionary history of both extant and extinct taxa; however, the use of aDNA in the study of avian evolution is lacking in comparison to other vertebrates, despite birds being one of the most species-rich vertebrate classes. Here, we review the field of “avian ancient DNA” by summarising the past three decades of literature on this topic. Most studies over this time have used avian aDNA to reconstruct phylogenetic relationships and clarify taxonomy based on the sequencing of a few mitochondrial loci, but recent studies are moving toward using a comparative genomics approach to address developmental and functional questions. Applying aDNA analysis with more practical outcomes in mind (such as managing conservation) is another increasingly popular trend among studies that utilise avian aDNA, but the majority of these have yet to influence management policy. We find that while there have been advances in extracting aDNA from a variety of avian substrates including eggshell, feathers, and coprolites, there is a bias in the temporal focus; the majority of the ca. 150 studies reviewed here obtained aDNA from late Holocene (100–1000 yBP) material, with few studies investigating Pleistocene-aged material. In addition, we identify and discuss several other issues within the field that require future attention. With more than one quarter of Holocene bird extinctions occurring in the last several hundred years, it is more important than ever to understand the mechanisms driving the evolution and extinction of bird species through the use of aDNA. PMID:28718817
Magnetic field evolution in white dwarfs: The hall effect and complexity of the field
NASA Technical Reports Server (NTRS)
Muslimov, A. G.; Van Horn, H. M.; Wood, M. A.
1995-01-01
We calculate the evolution of the magnetic fields in white dwarfs, taking into account the Hall effect. Because this effect depends nonlinearly upon the magnetic field strength B, the time dependences of the various multipole field components are coupled. The evolution of the field is thus significantly more complicated than has been indicated by previous investigations. Our calculations employ recent white dwarf evolutionary sequences computed for stars with masses 0.4, 0.6, 0.8, and 1.0 solar mass. We show that in the presence of a strong (up to approximately 10(exp 9) G) internal toroidal magnetic field; the evolution of even the lowest order poloidal modes can be substantially changed by the Hall effect. As an example, we compute the evolution of an initially weak quadrupole component, which we take arbitrarily to be approximately 0.1%-1% of the strength of a dominant dipole field. We find that coupling provided by the Hall effect can produce growth of the ratio of the quadrupole to the dipole component of the surface value of the magnetic field strength by more than a factor of 10 over the 10(exp 9) to 10(exp 10) year cooling lifetime of the white dwarf. Some consequences of these results for the process of magnetic-field evolution in white dwarfs are briefly discussed.
Zhang, Jin; Cornelia, Mueller-Niggemann; Wang, Minyan; Cao, Zhihong; Luo, Xiping; Wong, Minghung; Chen, Wei
2013-04-01
To evaluate the influence of hydroponics management on soil organic components with evolution of paddy soil over the last six millennia, PAHs, as a biomarker, as well as total organic carbon content were used to explore changes of paddy soil organic carbon in two entirely buried ancient paddy soil profiles. The results showed that hydroponics management can cause organic carbon deposition in rice paddy. The changing of total PAH concentrations was not always in accordance with the changing of total organic carbon contents in layers of the buried ancient paddy soils. The PAHs in 6280 BP prehistoric paddy soil layer was 3-ring>5-ring>4-ring>6-ring, while in layers of the present paddy soil and the prehistoric upland were 3-ring>4-ring>5-ring>6-ring. The contribution of phenanthrene to total PAHs in two profiles and the increasing ratio of phenanthrene to alkylated PAHs from parent material/6280 BP prehistoric upland to 6280 BP paddy suggested substantial increase of the anthropogenic influence of hydroponics management on rice paddy soil. And in view of the (14)C age and bioremains in the two profiles, it was only possible for PAHs to be derived from hydroponics management with evolution of the paddy soils form the Neolithic age. Cadalene could be used as an indicator for biological sources of PAHs released by rice plant residues, and benzo[g,h,i]fluoranthene and benzo[g,h,i]perylene for pyrogenic sources released by field vegetation fires. Crown Copyright © 2013. Published by Elsevier B.V. All rights reserved.
Patent portfolio management: literature review and a proposed model.
Conegundes De Jesus, Camila Kiyomi; Salerno, Mario Sergio
2018-05-09
Patents and patent portfolios are gaining attention in the last decades, from the called 'pro-patent era' to the recent billionaire transactions involving patent portfolios. The field is growing in importance, both theoretically and practically and despite having substantial literature on new product development portfolio management, we have not found an article relating this theory to patent portfolios. Areas covered: The paper develops a systematic literature review on patent portfolio management to organize the evolution and tendencies of patent portfolio management, highlighting distinctive features of patent portfolio management. Interview with IP manager of three life sciences companies, including a leading multinational group provided relevant information about patent portfolio management. Expert opinion: Based on the systematic literature review on portfolio management, more specifically, on new product development portfolio theory, and interview the paper proposes the paper proposes a reference model to manage patent portfolios. The model comprises four stages aligned with the three goals of the NPD portfolio management: 1 - Linking strategy of the Company's NPD Portfolio to Patent Portfolio; 2 - Balancing the portfolio in buckets; 3 - Patent Valuation (maximizing valuation); 4 - Regularly reviewing the patent portfolio.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Yulan; Hu, Shenyang; Sun, Xin
Here, complex microstructure changes occur in nuclear fuel and structural materials due to the extreme environments of intense irradiation and high temperature. This paper evaluates the role of the phase field method in predicting the microstructure evolution of irradiated nuclear materials and the impact on their mechanical, thermal, and magnetic properties. The paper starts with an overview of the important physical mechanisms of defect evolution and the significant gaps in simulating microstructure evolution in irradiated nuclear materials. Then, the phase field method is introduced as a powerful and predictive tool and its applications to microstructure and property evolution in irradiatedmore » nuclear materials are reviewed. The review shows that (1) Phase field models can correctly describe important phenomena such as spatial-dependent generation, migration, and recombination of defects, radiation-induced dissolution, the Soret effect, strong interfacial energy anisotropy, and elastic interaction; (2) The phase field method can qualitatively and quantitatively simulate two-dimensional and three-dimensional microstructure evolution, including radiation-induced segregation, second phase nucleation, void migration, void and gas bubble superlattice formation, interstitial loop evolution, hydrate formation, and grain growth, and (3) The Phase field method correctly predicts the relationships between microstructures and properties. The final section is dedicated to a discussion of the strengths and limitations of the phase field method, as applied to irradiation effects in nuclear materials.« less
Li, Yulan; Hu, Shenyang; Sun, Xin; ...
2017-04-14
Here, complex microstructure changes occur in nuclear fuel and structural materials due to the extreme environments of intense irradiation and high temperature. This paper evaluates the role of the phase field method in predicting the microstructure evolution of irradiated nuclear materials and the impact on their mechanical, thermal, and magnetic properties. The paper starts with an overview of the important physical mechanisms of defect evolution and the significant gaps in simulating microstructure evolution in irradiated nuclear materials. Then, the phase field method is introduced as a powerful and predictive tool and its applications to microstructure and property evolution in irradiatedmore » nuclear materials are reviewed. The review shows that (1) Phase field models can correctly describe important phenomena such as spatial-dependent generation, migration, and recombination of defects, radiation-induced dissolution, the Soret effect, strong interfacial energy anisotropy, and elastic interaction; (2) The phase field method can qualitatively and quantitatively simulate two-dimensional and three-dimensional microstructure evolution, including radiation-induced segregation, second phase nucleation, void migration, void and gas bubble superlattice formation, interstitial loop evolution, hydrate formation, and grain growth, and (3) The Phase field method correctly predicts the relationships between microstructures and properties. The final section is dedicated to a discussion of the strengths and limitations of the phase field method, as applied to irradiation effects in nuclear materials.« less
NASA Astrophysics Data System (ADS)
Jacquemin, I.; Fontaine, C. M.; Dendoncker, N.; François, L.; De Vreese, R.; Marek, A.; Mortelmans, D.; Van Herzele, A.; Devillet, G.
2012-04-01
Projecting the future of the evolution of socio-ecological systems to analyse their sustainability under climate or other environmental changes is not straightforward. Current projections usually use process-oriented models describing the complex interactions within the physical/biological systems (ecosystems), while the socio-economic constraints are represented with the help of scenarios. However, the actual evolution can be expected to be much more complex, because of the mutual interactions between ecological and socio-economic systems. To represent these interactions, models must integrate the complex process of human decision at individual or society levels. Moreover, models must be spatially explicit, defining elementary spatial units on which can act both the physical factors and the human decision process. These spatial units (e.g., farm fields) must be described not only in terms of energy, water, carbon and nutrient flows, but also in terms of the flow of ecosystem goods and services (EGS) they provide to the society together with the management costs required to sustain them. The provision of EGS may be altered in the future in response to changes in the climate system and the environment, but also through various human pressures on the landscape such as urbanization, as well as through the reaction of human societies to these changes in EGS provision. In the VOTES ("Valuation Of Terrestrial Ecosystem Services in a multifunctional peri-urban space") project, we attempt to model this coupled socio-ecological system by combining a dynamic vegetation model (DVM) with an agent-based model (ABM). The DVM (CARAIB; Dury et al., iForest - Biogeosciences and Forestry, 4:82-99, 2011) model describes the evolution of physical and biological processes in the ecosystems, i.e. the impact of climate change and land management on the energy, water and carbon budgets, as well as the productivity of each simulated plant species present on each land unit. The original version of the model developed for natural vegetation has been upgraded to include crop systems and pastures. The ABM (Murray-Rust, Journal of Land Use Science, 6(2-3):83-99, 2011) describes the management choices (e.g., crop rotation, intensive agriculture or organic farming, etc) for each land plot, as well as the possible change in their affectation (e.g., conversion of farm fields to residential areas in response to urbanization), under different socio-economic contexts described in the storyline of three scenarios depicting general societal orientations (business-as-usual; market oriented; sustainability oriented). As a result, the ABM produces a dynamic evolution of land use and management options to be passed on to the DVM for further analysis. The outputs from the DVM allow evaluating quantitatively the provision of EGS by each land plot. This DVM-ABM modelling tool is thus able to describe the future evolution of land use and land cover, as well as of EGS production, in the context of socio-economic scenarios. The model is applied to a case study area covering four municipalities located in central Belgium close to Brussels and Leuven. The area is mostly composed of agricultural fields (crops and meadows), residential areas and a large protected forest (Meerdaalbos) and is subject to intense urbanization pressure due to the proximity to Brussels.
Military pain management in 21st century war.
Buckenmaier, Chester C; Griffith, Scott
2010-07-01
Morphine and other opioid drugs have played a major role in austere environment pain management since the Civil War, particularly in the military. While the pre-eminence and success of such medications is without question, their use is accompanied by significant side effects that are undesirable in the most advanced medical settings, and are potentially devastating in the field environment. Recently, there have been significant improvements in pain care for America's wounded service members, along with a shift in how many care providers view pain management. An increasing number of healthcare providers are seeing pain not merely as a symptom, but as a disease process. In addition to dramatically improving care for wounded service members, the evolution in the military's approach to pain is enhancing care for civilians.
The Teaching of Evolution--We Need To Do Better.
ERIC Educational Resources Information Center
Linhart, Yan B.
1997-01-01
Analyzes 50 major textbooks in the fields of evolution, biology, ecology, genetics, paleontology, and systematics, focusing on how the conceptual framework of evolution as a process is presented and developed in those fields. Lists definitions of evolution provided in the textbooks and discusses the implications of the findings. Contains 56…
Simulation-Optimization Model for Seawater Intrusion Management at Pingtung Coastal Area, Taiwan
NASA Astrophysics Data System (ADS)
Huang, P. S.; Chiu, Y.
2015-12-01
In 1970's, the agriculture and aquaculture were rapidly developed at Pingtung coastal area in southern Taiwan. The groundwater aquifers were over-pumped and caused the seawater intrusion. In order to remedy the contaminated groundwater and find the best strategies of groundwater usage, a management model to search the optimal groundwater operational strategies is developed in this study. The objective function is to minimize the total amount of injection water and a set of constraints are applied to ensure the groundwater levels and concentrations are satisfied. A three-dimension density-dependent flow and transport simulation model, called SEAWAT developed by U.S. Geological Survey, is selected to simulate the phenomenon of seawater intrusion. The simulation model is well calibrated by the field measurements and replaced by the surrogate model of trained artificial neural networks (ANNs) to reduce the computational time. The ANNs are embedded in the management model to link the simulation and optimization models, and the global optimizer of differential evolution (DE) is applied for solving the management model. The optimal results show that the fully trained ANNs could substitute the original simulation model and reduce much computational time. Under appropriate setting of objective function and constraints, DE can find the optimal injection rates at predefined barriers. The concentrations at the target locations could decrease more than 50 percent within the planning horizon of 20 years. Keywords : Seawater intrusion, groundwater management, numerical model, artificial neural networks, differential evolution
Magnetic Flux Transport at the Solar Surface
NASA Astrophysics Data System (ADS)
Jiang, J.; Hathaway, D. H.; Cameron, R. H.; Solanki, S. K.; Gizon, L.; Upton, L.
2014-12-01
After emerging to the solar surface, the Sun's magnetic field displays a complex and intricate evolution. The evolution of the surface field is important for several reasons. One is that the surface field, and its dynamics, sets the boundary condition for the coronal and heliospheric magnetic fields. Another is that the surface evolution gives us insight into the dynamo process. In particular, it plays an essential role in the Babcock-Leighton model of the solar dynamo. Describing this evolution is the aim of the surface flux transport model. The model starts from the emergence of magnetic bipoles. Thereafter, the model is based on the induction equation and the fact that after emergence the magnetic field is observed to evolve as if it were purely radial. The induction equation then describes how the surface flows—differential rotation, meridional circulation, granular, supergranular flows, and active region inflows—determine the evolution of the field (now taken to be purely radial). In this paper, we review the modeling of the various processes that determine the evolution of the surface field. We restrict our attention to their role in the surface flux transport model. We also discuss the success of the model and some of the results that have been obtained using this model.
NASA Astrophysics Data System (ADS)
Mazé, Camille; Dahou, Tarik; Ragueneau, Olivier; Danto, Anatole; Mariat-Roy, Emilie; Raimonet, Mélanie; Weisbein, Julien
2017-10-01
This article presents an innovative collaborative approach, which aims to reinforce and institutionalize the field of the political anthropology of the sea combined with the natural sciences. It begins by relating the evolution in coastal areas, from integrated coastal zone management to the notion of adaptive co-management. It then sets out what contribution the social sciences of politics may bring to our understanding of the government/governance of the sea in terms of sustainable development, starting with political science and then highlighting the importance of a deep anthropological and socio-historical approach. Finally, it gives us a glimpse of the benefits of combining the human and social sciences with the natural sciences to produce a critical analysis of the categories of thought and action associated with the systemic management of the environment, especially the coastal areas.
Mitigating amphibian disease: strategies to maintain wild populations and control chytridiomycosis
Woodhams, Douglas C.; Bosch, Jaime; Briggs, Cheryl J.; Cashins, Scott; Davis, Leyla R.; Lauer, Antje; Muths, Erin L.; Puschendorf, Robert; Schmidt, Benedikt R.; Sheafor, Brandon; Voyles, Jamie
2011-01-01
Because sustainable conservation of amphibians in nature is dependent on long-term population persistence and co-evolution with potentially lethal pathogens, we suggest that disease mitigation not focus exclusively on the elimination or containment of the pathogen, or on the captive breeding of amphibian hosts. Rather, successful disease mitigation must be context specific with epidemiologically informed strategies to manage already infected populations by decreasing pathogenicity and host susceptibility. We propose population level treatments based on three steps: first, identify mechanisms of disease suppression; second, parameterize epizootiological models of disease and population dynamics for testing under semi-natural conditions; and third, begin a process of adaptive management in field trials with natural populations.
MAGIC: A Tool for Combining, Interpolating, and Processing Magnetograms
NASA Technical Reports Server (NTRS)
Allred, Joel
2012-01-01
Transients in the solar coronal magnetic field are ultimately the source of space weather. Models which seek to track the evolution of the coronal field require magnetogram images to be used as boundary conditions. These magnetograms are obtained by numerous instruments with different cadences and resolutions. A tool is required which allows modelers to fmd all available data and use them to craft accurate and physically consistent boundary conditions for their models. We have developed a software tool, MAGIC (MAGnetogram Interpolation and Composition), to perform exactly this function. MAGIC can manage the acquisition of magneto gram data, cast it into a source-independent format, and then perform the necessary spatial and temporal interpolation to provide magnetic field values as requested onto model-defined grids. MAGIC has the ability to patch magneto grams from different sources together providing a more complete picture of the Sun's field than is possible from single magneto grams. In doing this, care must be taken so as not to introduce nonphysical current densities along the seam between magnetograms. We have designed a method which minimizes these spurious current densities. MAGIC also includes a number of post-processing tools which can provide additional information to models. For example, MAGIC includes an interface to the DA VE4VM tool which derives surface flow velocities from the time evolution of surface magnetic field. MAGIC has been developed as an application of the KAMELEON data formatting toolkit which has been developed by the CCMC.
Transcultural Pain Management: Theory, Practice, and Nurse-Client Partnerships.
Rosa, William E
2018-02-01
Nursing is becoming increasingly aware of its impact as a global profession. Part of this evolution is the understanding that the Western evidence-based construct may not be reliably or universally applicable to transcultural settings and clients. In a global world, no 'one size fits all' and no singular approach to pain management is appropriate; there are, quite literally, infinite variations in cross-cultural dynamics. Nurses working in the field of pain management must be able to navigate their responsibilities within the global health context. The role of the pain management nurse in the global world is to provide individualized and culturally relevant pain management for clients, which is mindful of multifactorial contributors to the pain experience, such as the physiologic, affective, cognitive, behavioral, sociocultural, and environmental, and to view adequate pain management as an international human right. Through the skillful integration of theory, practice, and the ability to build respectful and responsible nurse-client partnerships, pain management nurses can deliver contextually relevant care that promotes safety, quality, and healing. Copyright © 2017 American Society for Pain Management Nursing. Published by Elsevier Inc. All rights reserved.
2017-09-15
technology opens the world to information in the computer database to all learners without the use of a human teacher other than the controller or manager ...THE EVOLUTION DE MI DEFENSE EQU AL OPPORTU NITY MANAG EMENT INST ITUTE IDENTITY TITLE: Dr. G · NAME: William Ga ry Mc u1re RACE: White NDER...The Evolution of DEOMI Defense Equal Opportunity Management Institute Research Directorate Written by William Gary McGuire, PhD
Rotation and magnetism in intermediate-mass stars
NASA Astrophysics Data System (ADS)
Quentin, Léo G.; Tout, Christopher A.
2018-06-01
Rotation and magnetism are increasingly recognized as important phenomena in stellar evolution. Surface magnetic fields from a few to 20 000 G have been observed and models have suggested that magnetohydrodynamic transport of angular momentum and chemical composition could explain the peculiar composition of some stars. Stellar remnants such as white dwarfs have been observed with fields from a few to more than 109 G. We investigate the origin of and the evolution, on thermal and nuclear rather than dynamical time-scales, of an averaged large-scale magnetic field throughout a star's life and its coupling to stellar rotation. Large-scale magnetic fields sustained until late stages of stellar evolution with conservation of magnetic flux could explain the very high fields observed in white dwarfs. We include these effects in the Cambridge stellar evolution code using three time-dependant advection-diffusion equations coupled to the structural and composition equations of stars to model the evolution of angular momentum and the two components of the magnetic field. We present the evolution in various cases for a 3 M_{⊙} star from the beginning to the late stages of its life. Our particular model assumes that turbulent motions, including convection, favour small-scale field at the expense of large-scale field. As a result, the large-scale field concentrates in radiative zones of the star and so is exchanged between the core and the envelope of the star as it evolves. The field is sustained until the end of the asymptotic giant branch, when it concentrates in the degenerate core.
Evolutionary principles and their practical application
Hendry, Andrew P; Kinnison, Michael T; Heino, Mikko; Day, Troy; Smith, Thomas B; Fitt, Gary; Bergstrom, Carl T; Oakeshott, John; Jørgensen, Peter S; Zalucki, Myron P; Gilchrist, George; Southerton, Simon; Sih, Andrew; Strauss, Sharon; Denison, Robert F; Carroll, Scott P
2011-01-01
Evolutionary principles are now routinely incorporated into medicine and agriculture. Examples include the design of treatments that slow the evolution of resistance by weeds, pests, and pathogens, and the design of breeding programs that maximize crop yield or quality. Evolutionary principles are also increasingly incorporated into conservation biology, natural resource management, and environmental science. Examples include the protection of small and isolated populations from inbreeding depression, the identification of key traits involved in adaptation to climate change, the design of harvesting regimes that minimize unwanted life-history evolution, and the setting of conservation priorities based on populations, species, or communities that harbor the greatest evolutionary diversity and potential. The adoption of evolutionary principles has proceeded somewhat independently in these different fields, even though the underlying fundamental concepts are the same. We explore these fundamental concepts under four main themes: variation, selection, connectivity, and eco-evolutionary dynamics. Within each theme, we present several key evolutionary principles and illustrate their use in addressing applied problems. We hope that the resulting primer of evolutionary concepts and their practical utility helps to advance a unified multidisciplinary field of applied evolutionary biology. PMID:25567966
Evolutionary principles and their practical application.
Hendry, Andrew P; Kinnison, Michael T; Heino, Mikko; Day, Troy; Smith, Thomas B; Fitt, Gary; Bergstrom, Carl T; Oakeshott, John; Jørgensen, Peter S; Zalucki, Myron P; Gilchrist, George; Southerton, Simon; Sih, Andrew; Strauss, Sharon; Denison, Robert F; Carroll, Scott P
2011-03-01
Evolutionary principles are now routinely incorporated into medicine and agriculture. Examples include the design of treatments that slow the evolution of resistance by weeds, pests, and pathogens, and the design of breeding programs that maximize crop yield or quality. Evolutionary principles are also increasingly incorporated into conservation biology, natural resource management, and environmental science. Examples include the protection of small and isolated populations from inbreeding depression, the identification of key traits involved in adaptation to climate change, the design of harvesting regimes that minimize unwanted life-history evolution, and the setting of conservation priorities based on populations, species, or communities that harbor the greatest evolutionary diversity and potential. The adoption of evolutionary principles has proceeded somewhat independently in these different fields, even though the underlying fundamental concepts are the same. We explore these fundamental concepts under four main themes: variation, selection, connectivity, and eco-evolutionary dynamics. Within each theme, we present several key evolutionary principles and illustrate their use in addressing applied problems. We hope that the resulting primer of evolutionary concepts and their practical utility helps to advance a unified multidisciplinary field of applied evolutionary biology.
Nonlinear Modeling of Forced Magnetic Reconnection with Transient Perturbations
NASA Astrophysics Data System (ADS)
Beidler, Matthew T.; Callen, James D.; Hegna, Chris C.; Sovinec, Carl R.
2017-10-01
Externally applied 3D magnetic fields in tokamaks can penetrate into the plasma and lead to forced magnetic reconnection, and hence magnetic islands, on resonant surfaces. Analytic theory has been reasonably successful in describing many aspects of this paradigm with regard to describing the time asymptotic-steady state. However, understanding the nonlinear evolution into a low-slip, field-penetrated state, especially how MHD events such as sawteeth and ELMs precipitate this transition, is in its early development. We present nonlinear computations employing the extended-MHD code NIMROD, building on previous work by incorporating a temporally varying external perturbation as a simple model for an MHD event that produces resonant magnetic signals. A parametric series of proof-of-principle computations and accompanying analytical theory characterize the transition into a mode-locked state with an emphasis on detailing the temporal evolution properties. Supported by DOE OFES Grants DE-FG02-92ER54139, DE-FG02-86ER53218, and the U.S. DOE FES Postdoctoral Research program administered by ORISE and managed by ORAU under DOE contract DE-SC0014664.
Mentor-mentee relationship in clinical microbiology.
Opota, O; Greub, G
2017-07-01
Clinical microbiology is a field in constant evolution, with increasing technological opportunities and a growing emphasis on human and social issues. Maintaining knowledge and skills and anticipating future changes is challenging both for laboratory managers and for all the co-workers. Training and succession preparation represents a unique opportunity to adapt/prepare future generations according to the evolutions of the field. The aim of this review is to provide to clinical microbiologists a reflection on ongoing technological and social changes in their field and a deepening of the central role of preparing future generations to these changes through a fruitful mentor-mentee relationship. This narrative review relies on selected publications addressing mentor-mentee interactions in various academic fields, on interview with our colleagues and pairs, as well as on our personal experience. From the qualities and aspects that emerged as necessary for a productive mentor-mentee interaction, we selected and discuss five of them for the mentor: the role and responsibility, the positioning, the vision, the scientific credibility, and the moral credibility, as well as five for the mentee: creativity, flexibility, energy, responsibility, and self evaluation. This review emphasizes the importance of both the scientific and the ethical credibility of the mentor and the mentee as well as the importance of human and social values such as solidarity, equality, equity, respectfulness, and empathy, and might support mentor and mentee in the field of clinical microbiology and also in the field of infectious disease in their intent for a fruitful interaction. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.
Workshop on Molecular Evolution
NASA Technical Reports Server (NTRS)
Cummings, Michael P.
2004-01-01
Molecular evolution has become the nexus of many areas of biological research. It both brings together and enriches such areas as biochemistry, molecular biology, microbiology, population genetics, systematics, developmental biology, genomics, bioinformatics, in vitro evolution, and molecular ecology. The Workshop provides an important contribution to these fields in that it promotes interdisciplinary research and interaction, and thus provides a glue that sticks together disparate fields. Due to the wide range of fields addressed by the study of molecular evolution, it is difficult to offer a comprehensive course in a university setting. It is rare for a single institution to maintain expertise in all necessary areas. In contrast, the Workshop is uniquely able to provide necessary breadth and depth by utilizing a large number of faculty with appropriate expertise. Furthermore, the flexible nature of the Workshop allows for rapid adaptation to changes in the dynamic field of molecular evolution. For example, the 2003 Workshop included recently emergent research areas of molecular evolution of development and genomics.
Using Decision Structures for Policy Analysis in Software Product-line Evolution - A Case Study
NASA Astrophysics Data System (ADS)
Sarang, Nita; Sanglikar, Mukund A.
Project management decisions are the primary basis for project success (or failure). Mostly, such decisions are based on an intuitive understanding of the underlying software engineering and management process and have a likelihood of being misjudged. Our problem domain is product-line evolution. We model the dynamics of the process by incorporating feedback loops appropriate to two decision structures: staffing policy, and the forces of growth associated with long-term software evolution. The model is executable and supports project managers to assess the long-term effects of possible actions. Our work also corroborates results from earlier studies of E-type systems, in particular the FEAST project and the rules for software evolution, planning and management.
Coronal evolution due to shear motion
NASA Technical Reports Server (NTRS)
Steinolfson, R. S.
1991-01-01
Numerical solutions of the compressible MHD equations are used here to simulate the evolution of an initially force-free magnetic field in a static corona as a result of slow photospheric motion of the magnetic field footpoints. Simulations have been completed for values of plasma beta from 0.1 to 0.5, maximum shear velocities from 0.5 to 10.3 km/s, and with various amounts of resistive and viscous dissipation. In all cases the evolution proceeds in two qualitatively different stages. In the earlier stage, the field evolves gradually with the field lines, expanding outward at a velocity not unlike the shear velocity. Then, the field begins to expand much more rapidly until it reaches velocities exceeding a characteristic Alfven velocity. Inclusion of the thermodynamics, gravity, and compressibility is shown to have only a quantitative effect on the onset of the eruptive phase, illustrating that the primary interactions are between the dynamics and the magnetic field evolution.
Quantum versus classical hyperfine-induced dynamics in a quantum dota)
NASA Astrophysics Data System (ADS)
Coish, W. A.; Loss, Daniel; Yuzbashyan, E. A.; Altshuler, B. L.
2007-04-01
In this article we analyze spin dynamics for electrons confined to semiconductor quantum dots due to the contact hyperfine interaction. We compare mean-field (classical) evolution of an electron spin in the presence of a nuclear field with the exact quantum evolution for the special case of uniform hyperfine coupling constants. We find that (in this special case) the zero-magnetic-field dynamics due to the mean-field approximation and quantum evolution are similar. However, in a finite magnetic field, the quantum and classical solutions agree only up to a certain time scale t <τc, after which they differ markedly.
New-generation diabetes management: glucose sensor-augmented insulin pump therapy
Cengiz, Eda; Sherr, Jennifer L; Weinzimer, Stuart A; Tamborlane, William V
2011-01-01
Diabetes is one of the most common chronic disorders with an increasing incidence worldwide. Technologic advances in the field of diabetes have provided new tools for clinicians to manage this challenging disease. For example, the development of continuous subcutaneous insulin infusion systems have allowed for refinement in the delivery of insulin, while continuous glucose monitors provide patients and clinicians with a better understanding of the minute to minute glucose variability, leading to the titration of insulin delivery based on this variability when applicable. Merging of these devices has resulted in sensor-augmented insulin pump therapy, which became a major building block upon which the artificial pancreas (closed-loop systems) can be developed. This article summarizes the evolution of sensor-augmented insulin pump therapy until present day and its future applications in new-generation diabetes management. PMID:21728731
New-generation diabetes management: glucose sensor-augmented insulin pump therapy.
Cengiz, Eda; Sherr, Jennifer L; Weinzimer, Stuart A; Tamborlane, William V
2011-07-01
Diabetes is one of the most common chronic disorders with an increasing incidence worldwide. Technologic advances in the field of diabetes have provided new tools for clinicians to manage this challenging disease. For example, the development of continuous subcutaneous insulin infusion systems have allowed for refinement in the delivery of insulin, while continuous glucose monitors provide patients and clinicians with a better understanding of the minute to minute glucose variability, leading to the titration of insulin delivery based on this variability when applicable. Merging of these devices has resulted in sensor-augmented insulin pump therapy, which became a major building block upon which the artificial pancreas (closed-loop systems) can be developed. This article summarizes the evolution of sensor-augmented insulin pump therapy until present day and its future applications in new-generation diabetes management.
Glyphosate-resistant weeds of South American cropping systems: an overview.
Vila-Aiub, Martin M; Vidal, Ribas A; Balbi, Maria C; Gundel, Pedro E; Trucco, Frederico; Ghersa, Claudio M
2008-04-01
Herbicide resistance is an evolutionary event resulting from intense herbicide selection over genetically diverse weed populations. In South America, orchard, cereal and legume cropping systems show a strong dependence on glyphosate to control weeds. The goal of this report is to review the current knowledge on cases of evolved glyphosate-resistant weeds in South American agriculture. The first reports of glyphosate resistance include populations of highly diverse taxa (Lolium multiflorum Lam., Conyza bonariensis L., C. canadensis L.). In all instances, resistance evolution followed intense glyphosate use in fruit fields of Chile and Brazil. In fruit orchards from Colombia, Parthenium hysterophorus L. has shown the ability to withstand high glyphosate rates. The recent appearance of glyphosate-resistant Sorghum halepense L. and Euphorbia heterophylla L. in glyphosate-resistant soybean fields of Argentina and Brazil, respectively, is of major concern. The evolution of glyphosate resistance has clearly taken place in those agroecosystems where glyphosate exerts a strong and continuous selection pressure on weeds. The massive adoption of no-till practices together with the utilization of glyphosate-resistant soybean crops are factors encouraging increase in glyphosate use. This phenomenon has been more evident in Argentina and Brazil. The exclusive reliance on glyphosate as the main tool for weed management results in agroecosystems biologically more prone to glyphosate resistance evolution. Copyright (c) 2007 Society of Chemical Industry.
GPU-accelerated phase-field simulation of dendritic solidification in a binary alloy
NASA Astrophysics Data System (ADS)
Yamanaka, Akinori; Aoki, Takayuki; Ogawa, Satoi; Takaki, Tomohiro
2011-03-01
The phase-field simulation for dendritic solidification of a binary alloy has been accelerated by using a graphic processing unit (GPU). To perform the phase-field simulation of the alloy solidification on GPU, a program code was developed with computer unified device architecture (CUDA). In this paper, the implementation technique of the phase-field model on GPU is presented. Also, we evaluated the acceleration performance of the three-dimensional solidification simulation by using a single NVIDIA TESLA C1060 GPU and the developed program code. The results showed that the GPU calculation for 5763 computational grids achieved the performance of 170 GFLOPS by utilizing the shared memory as a software-managed cache. Furthermore, it can be demonstrated that the computation with the GPU is 100 times faster than that with a single CPU core. From the obtained results, we confirmed the feasibility of realizing a real-time full three-dimensional phase-field simulation of microstructure evolution on a personal desktop computer.
Space Station fluid management logistics
NASA Technical Reports Server (NTRS)
Dominick, Sam M.
1990-01-01
Viewgraphs and discussion on space station fluid management logistics are presented. Topics covered include: fluid management logistics - issues for Space Station Freedom evolution; current fluid logistics approach; evolution of Space Station Freedom fluid resupply; launch vehicle evolution; ELV logistics system approach; logistics carrier configuration; expendable fluid/propellant carrier description; fluid carrier design concept; logistics carrier orbital operations; carrier operations at space station; summary/status of orbital fluid transfer techniques; Soviet progress tanker system; and Soviet propellant resupply system observations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kang, Peter K.; Lee, Jonghyun; Fu, Xiaojing
Managing recharge of freshwater into saline aquifers requires accurate estimation of the heterogeneous permeability field for maximizing injection and recovery efficiency. Here we present a methodology for subsurface characterization in saline aquifers that takes advantage of the density difference between the injected freshwater and the ambient saline groundwater. We combine high-resolution forward modeling of density-driven flow with an efficient Bayesian geostatistical inversion algorithm. In the presence of a density difference between the injected and ambient fluids due to differences in salinity, the pressure field is coupled to the spatial distribution of salinity. This coupling renders the pressure field transient: themore » time evolution of the salinity distribution controls the density distribution which then leads to a time-evolving pressure distribution. We exploit this coupling between pressure and salinity to obtain an improved characterization of the permeability field without multiple pumping tests or additional salinity measurements. We show that the inversion performance improves with an increase in the mixed convection ratio—the relative importance between viscous forces from injection and buoyancy forces from density difference. Thus, our work shows that measuring transient pressure data at multiple sampling points during freshwater injection into saline aquifers can be an effective strategy for aquifer characterization, key to the successful management of aquifer recharge.« less
Kang, Peter K.; Lee, Jonghyun; Fu, Xiaojing; ...
2017-05-31
Managing recharge of freshwater into saline aquifers requires accurate estimation of the heterogeneous permeability field for maximizing injection and recovery efficiency. Here we present a methodology for subsurface characterization in saline aquifers that takes advantage of the density difference between the injected freshwater and the ambient saline groundwater. We combine high-resolution forward modeling of density-driven flow with an efficient Bayesian geostatistical inversion algorithm. In the presence of a density difference between the injected and ambient fluids due to differences in salinity, the pressure field is coupled to the spatial distribution of salinity. This coupling renders the pressure field transient: themore » time evolution of the salinity distribution controls the density distribution which then leads to a time-evolving pressure distribution. We exploit this coupling between pressure and salinity to obtain an improved characterization of the permeability field without multiple pumping tests or additional salinity measurements. We show that the inversion performance improves with an increase in the mixed convection ratio—the relative importance between viscous forces from injection and buoyancy forces from density difference. Thus, our work shows that measuring transient pressure data at multiple sampling points during freshwater injection into saline aquifers can be an effective strategy for aquifer characterization, key to the successful management of aquifer recharge.« less
Historical Evolution of the Field View and Textbook Accounts.
ERIC Educational Resources Information Center
Pocovi, M. Cecilia; Finley, Fred N.
2003-01-01
Analyzes how two electromagnetism textbooks approach the concept of electric field. Uses historical evolution of the field representation. Indicates that one textbook mixes up the historical and pedagogical reasons for the introduction of the concept of field while the other one presents a sketch that might lead students to understand the field…
Evolution of Elections Management in Tanzania
ERIC Educational Resources Information Center
Norman, A. S.; Mdegella, O. M.; Lubawa, R. M.
2011-01-01
This paper provides a discussion on the evolution of elections management in Tanzania with a focus on technological advancement in administering registration of voters. The paper provides the merits that permanent voters register has brought over the thumb practice. It traces the management of elections during colonialism, after independence…
The influence of war on the development of neurosurgery.
Dowdy, Justin; Pait, T Glenn
2014-01-01
The treatment of craniospinal war wounds proved to be a significant driving force in the early growth of neurosurgery as a specialty. This publication explores the historical relationship between the evolution of combat methodology from antiquity through modern conflicts as it dovetails with and drives corresponding advancements in the field of neurosurgery. Whether it's the basic management principles for intracranial projectile wounds derived from World War I experiences, the drastic improvement in the outcomes and management of spinal cord injuries observed in World War II, or the fact that both of these wars played a crucial role in the development of a training system that is the origin of modern residency programs, the influence of wartime experiences is pervasive.
2011-09-06
CAPE CANAVERAL, Fla. – A Gravity Recovery and Interior Laboratory (GRAIL) prelaunch news conference is held in the NASA Press Site auditorium at NASA's Kennedy Space Center in Florida. From left are George Diller, NASA Public Affairs; Ed Weiler, NASA associate administrator, Science Mission Directorate; Tim Dunn, NASA launch director for the agency’s Launch Services Program; Vernon Thorp, program manager, NASA Missions, United Launch Alliance; David Lehman, GRAIL project manager, NASA’s Jet Propulsion Laboratory; John Henk, GRAIL program manager, Lockheed Martin Space Systems, Denver, Colo.; and Joel Tumbiolo, launch weather officer, 45th Weather Squadron, Cape Canaveral Air Force Station, Fla. GRAIL is scheduled to launch Sept. 8 aboard a United Launch Alliance Delta II Heavy rocket from Cape Canaveral Air Force Station in Florida. GRAIL will fly twin spacecraft in tandem around the moon to precisely measure and map variations in the moon's gravitational field. The mission will provide the most accurate global gravity field to date for any planet, including Earth. This detailed information will reveal differences in the density of the moon's crust and mantle and will help answer fundamental questions about the moon's internal structure, thermal evolution, and history of collisions with asteroids. The aim is to map the moon's gravity field so completely that future moon vehicles can safely navigate anywhere on the moon’s surface. For more information, visit http://www.nasa.gov/grail. Photo credit: NASA/Kim Shiflett
2011-09-06
CAPE CANAVERAL, Fla. – News media participate in the Gravity Recovery and Interior Laboratory (GRAIL) prelaunch news conference held in the NASA Press Site auditorium at NASA's Kennedy Space Center in Florida. On the dais, panelist from left are Ed Weiler, NASA associate administrator, Science Mission Directorate; Tim Dunn, NASA launch director for the agency’s Launch Services Program; Vernon Thorp, program manager, NASA Missions, United Launch Alliance; David Lehman, GRAIL project manager, NASA’s Jet Propulsion Laboratory; John Henk, GRAIL program manager, Lockheed Martin Space Systems, Denver, Colo.; and Joel Tumbiolo, launch weather officer, 45th Weather Squadron, Cape Canaveral Air Force Station, Fla. GRAIL is scheduled to launch Sept. 8 aboard a United Launch Alliance Delta II Heavy rocket from Cape Canaveral Air Force Station in Florida. GRAIL will fly twin spacecraft in tandem around the moon to precisely measure and map variations in the moon's gravitational field. The mission will provide the most accurate global gravity field to date for any planet, including Earth. This detailed information will reveal differences in the density of the moon's crust and mantle and will help answer fundamental questions about the moon's internal structure, thermal evolution, and history of collisions with asteroids. The aim is to map the moon's gravity field so completely that future moon vehicles can safely navigate anywhere on the moon’s surface. For more information, visit http://www.nasa.gov/grail. Photo credit: NASA/Kim Shiflett
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jain, Neeraj; Büchner, Jörg; Max Planck Institute for Solar System Research, Justus-Von-Liebig-Weg-3, Göttingen
Nonlinear evolution of three dimensional electron shear flow instabilities of an electron current sheet (ECS) is studied using electron-magnetohydrodynamic simulations. The dependence of the evolution on current sheet thickness is examined. For thin current sheets (half thickness =d{sub e}=c/ω{sub pe}), tearing mode instability dominates. In its nonlinear evolution, it leads to the formation of oblique current channels. Magnetic field lines form 3-D magnetic spirals. Even in the absence of initial guide field, the out-of-reconnection-plane magnetic field generated by the tearing instability itself may play the role of guide field in the growth of secondary finite-guide-field instabilities. For thicker current sheetsmore » (half thickness ∼5 d{sub e}), both tearing and non-tearing modes grow. Due to the non-tearing mode, current sheet becomes corrugated in the beginning of the evolution. In this case, tearing mode lets the magnetic field reconnect in the corrugated ECS. Later thick ECS develops filamentary structures and turbulence in which reconnection occurs. This evolution of thick ECS provides an example of reconnection in self-generated turbulence. The power spectra for both the thin and thick current sheets are anisotropic with respect to the electron flow direction. The cascade towards shorter scales occurs preferentially in the direction perpendicular to the electron flow.« less
Microbial symbionts: a resource for the management of insect‐related problems
Crotti, Elena; Balloi, Annalisa; Hamdi, Chadlia; Sansonno, Luigi; Marzorati, Massimo; Gonella, Elena; Favia, Guido; Cherif, Ameur; Bandi, Claudio; Alma, Alberto; Daffonchio, Daniele
2012-01-01
Summary Microorganisms establish with their animal hosts close interactions. They are involved in many aspects of the host life, physiology and evolution, including nutrition, reproduction, immune homeostasis, defence and speciation. Thus, the manipulation and the exploitation the microbiota could result in important practical applications for the development of strategies for the management of insect‐related problems. This approach, defined as ‘Microbial Resource Management’ (MRM), has been applied successfully in various environments and ecosystems, as wastewater treatments, prebiotics in humans, anaerobic digestion and so on. MRM foresees the proper management of the microbial resource present in a given ecosystem in order to solve practical problems through the use of microorganisms. In this review we present an interesting field for application for MRM concept, i.e. the microbial communities associated with arthropods and nematodes. Several examples related to this field of applications are presented. Insect microbiota can be manipulated: (i) to control insect pests for agriculture; (ii) to control pathogens transmitted by insects to humans, animals and plants; (iii) to protect beneficial insects from diseases and stresses. Besides, we prospect further studies aimed to verify, improve and apply MRM by using the insect–symbiont ecosystem as a model. PMID:22103294
NASA Astrophysics Data System (ADS)
Lachaal, Fethi; Chekirbane, Anis; Chargui, Sameh; Sellami, Haykel; Tsujimura, Maki; Hezzi, Hmida; Faycel, Jelassi; Mlayah, Ammar
2016-12-01
Information on groundwater quantity as well as quality is required by water managers and decision-makers for defining a sustainable management strategy. This requires a comprehensive assessment of the surface water and groundwater resources. This paper provides an assessment of water resources management strategy in the Grombalia region (Northeast Tunisia) and its impact on quantity and quality evolution of groundwater resources based on an approach that combines (i) hydro-climatic data, (ii) field monitoring, (iii) historic piezometric records, and (iv) geochemical and stable isotopes (δ18O and δ2H) analyses. We apply this approach to identify the origin of the various water resources and outline how the actual water management impact the quantity and quality of the groundwater in the region. As consequence of poor water resources management, the shallow groundwater levels have been disrupted: a groundwater rise is observed in the centre and a piezometric drawdown is observed in the upstream regions. Groundwater quality degradation was registered especially in the centre and downstream zones.
Technology for Space Station Evolution: the Data Management System
NASA Technical Reports Server (NTRS)
Abbott, L.
1990-01-01
Viewgraphs on the data management system (DMS) for the space station evolution are presented. Topics covered include DMS architecture and implementation approach; and an overview of the runtime object database.
Spin polarization effects and their time evolutions
NASA Astrophysics Data System (ADS)
Vernes, A.; Weinberger, P.
2015-04-01
The time evolution of the density corresponding to the polarization operator, originally constructed to commute with the Dirac Hamiltonian in the absence of an external electromagnetic field, is investigated in terms of the time-dependent Dirac equation taking the presence of an external electromagnetic field into account. It is found that this time evolution leads to 'tensorial' and 'vectorial' particle current densities and to the interaction of the spin density with the external electromagnetic field. As the time evolution of the spin density does not refer to a constant of motion (continuity condition) it only serves as auxiliary density. By taking the non-relativistic limit, it is shown that the polarization, spin and magnetization densities are independent of electric field effects and, in addition, no preferred directions can be defined.
The Evolution of the Data Scientist.
NASA Astrophysics Data System (ADS)
Parsons, M. A.
2011-12-01
When did the data scientist come into being? The National Science Board formally defined the term in 2005. Prior to that, the term was used sporadically, but typically to refer to statisticians or analysts. Nevertheless, the data scientist function has existed for a long time. Those who performed the function were called data managers or librarians or curators. Their role with digital data was critical but ill defined and poorly understood, especially by outsiders. Today, the tem data scientist is gaining currency and the discipline is gaining prominence, but it is a very dynamic field. And while it may be better defined, the term is still poorly understood. This lack of understanding can partly be attributed to the dynamic and evolutionary nature of the field. Domain scientists have developed new expectations for technology and services that enhance their ability to handle massive and complex data and present new challenges to data scientists. In response, data scientists are redefining and adapting their role to these rapidly changing demands of data-driven science and the fourth paradigm. In this paper, I explore the recent evolution of the field of data science as a socio-technical discipline. I discuss what has changed as well as what has remained the same and how some things that seem new may be a recasting of old problems. I take the view that data science is necessarily an evolutionary field that will need to continue to adapt in response to known and unknown challenges in order to ensure a healthy data ecosystem.
The rolling evolution of biomedical science as an essential tool in modern clinical practice.
Blann, Andrew
2016-01-01
The British Journal of Biomedical Science is committed to publishing high-quality original research that represents a clear advance in the practice of biomedical science, and reviews that summarise recent advances in the field of biomedical science. The overall aim of the Journal is to provide a platform for the dissemination of new and innovative information on the diagnosis and management of disease that is valuable to the practicing laboratory scientist. The Editorial that follows describes the Journal and provides a perspective of its aims and objectives.
Oblique Impact Ejecta Flow Fields: An Application of Maxwells Z Model
NASA Technical Reports Server (NTRS)
Anderson, J. L. B.; Schultz, P. H.; Heineck, J. T.
2001-01-01
Oblique impact flow fields show an evolution from asymmetric to symmetric ejecta flow. This evolution can be put into the simple analytical description of the evolving flow field origin using the Maxwell Z Model. Additional information is contained in the original extended abstract.
treeman: an R package for efficient and intuitive manipulation of phylogenetic trees.
Bennett, Dominic J; Sutton, Mark D; Turvey, Samuel T
2017-01-07
Phylogenetic trees are hierarchical structures used for representing the inter-relationships between biological entities. They are the most common tool for representing evolution and are essential to a range of fields across the life sciences. The manipulation of phylogenetic trees-in terms of adding or removing tips-is often performed by researchers not just for reasons of management but also for performing simulations in order to understand the processes of evolution. Despite this, the most common programming language among biologists, R, has few class structures well suited to these tasks. We present an R package that contains a new class, called TreeMan, for representing the phylogenetic tree. This class has a list structure allowing phylogenetic trees to be manipulated more efficiently. Computational running times are reduced because of the ready ability to vectorise and parallelise methods. Development is also improved due to fewer lines of code being required for performing manipulation processes. We present three use cases-pinning missing taxa to a supertree, simulating evolution with a tree-growth model and detecting significant phylogenetic turnover-that demonstrate the new package's speed and simplicity.
Patek, S N; Summers, A P
2017-05-22
Invertebrate biomechanics focuses on mechanical analyses of non-vertebrate animals, which at root is no different in aim and technique from vertebrate biomechanics, or for that matter the biomechanics of plants and fungi. But invertebrates are special - they are fabulously diverse in form, habitat, and ecology and manage this without the use of hard, internal skeletons. They are also numerous and, in many cases, tractable in an experimental and field setting. In this Primer, we will probe three axes of invertebrate diversity: worms (Phylum Annelida), spiders (Class Arachnida) and insects (Class Insecta); three habitats: subterranean, terrestrial and airborne; and three integrations with other fields: ecology, engineering and evolution. Our goal is to capture the field of invertebrate biomechanics, which has blossomed from having a primary focus on discoveries at the interface of physics and biology to being inextricably linked with integrative challenges that span biology, physics, mathematics and engineering. Copyright © 2017 Elsevier Ltd. All rights reserved.
How fisheries management can benefit from genomics?
Valenzuela-Quiñonez, Fausto
2016-09-01
Fisheries genomics is an emerging field that advocates the application of genomic tools to address questions in fisheries management. Genomic approaches bring a new paradigm for fisheries management by making it possible to integrate adaptive diversity to understand fundamental aspects of fisheries resources. Hence, this review is focused on the relevance of genomic approaches to solve fisheries-specific questions. Particularly the detection of adaptive diversity (outlier loci) provides unprecedented opportunity to understand bio-complexity, increased power to trace processed sample origin to allow enforcement and the potential to understand the genetic basis of micro-evolutionary effects of fisheries-induced evolution and climate change. The understanding of adaptive diversity patterns will be the cornerstone of the future links between fisheries and genomics. These studies will help stakeholders anticipate the potential effects of fishing or climate change on the resilience of fisheries stocks; consequently, in the near future, fisheries sciences might integrate evolutionary principles with fisheries management. © The Author 2016. Published by Oxford University Press. All rights reserved. For permissions, please email: journals.permissions@oup.com.
W. Edwards Deming, quality analysis, and total behavior management.
Saunders, R R; Saunders, J L
1994-01-01
During the past 10 years, the inclusion of the word "quality" in descriptions of production methods, management approaches, educational systems, service system changes, and so forth, has grown exponentially. It appears that no new approach to any problem is likely to be given much consideration today without overt acknowledgment that some improvement in quality must be the outcome. The origins of the importance of quality are primarily rooted in the awakening recognition of the influence of W. Edwards Deming in the post-World War II restoration of Japanese industry. We provide a brief overview of Deming's approach to modernizing management methods and discuss recent criticisms from the field of organizational behavior management that his approach lacks emphasis on the role of reinforcement. We offer a different analysis of Deming's approach and relate its evolution to the contingencies of reinforcement for the behavior of consulting. We also provide an example of problem solving with Deming's approach in a social service setting familiar to many behavior analysts.
Development of a new Clinical Engineering Management Tool & Information System (CLE-MANTIS).
Panousis, S G; Malataras, P; Patelodimou, C; Kolitsi, Z; Pallikarakis, N
1997-01-01
The evolution of the field of biomedical technology has led to the diffusion of an impressive number of medical devices into healthcare institutions. In this environment, Clinical Engineering Departments (CEDs) are expanding their role in healthcare technology management, by changing their structure and introducing quality systems in order to improve their services and monitor the outcomes. In the framework of the national project BIOTECHNET II, a software tool for the management of biomedical technology, named CLE-MANTIS, has been developed, with the aim to assist CEDs in their tasks. CLE-MANTIS functions include the upkeep of an inventory, the support and monitoring of scheduled maintenance, corrective maintenance, vigilance, equipment acquisition and replacement, service contract management and user training. The system offers clinical engineers the possibility to monitor and evaluate the quality and cost-effectiveness of their departments through the monitoring of quality and cost indicators. This paper presents the main features and functions of the system.
Innovation diffusion on time-varying activity driven networks
NASA Astrophysics Data System (ADS)
Rizzo, Alessandro; Porfiri, Maurizio
2016-01-01
Since its introduction in the 1960s, the theory of innovation diffusion has contributed to the advancement of several research fields, such as marketing management and consumer behavior. The 1969 seminal paper by Bass [F.M. Bass, Manag. Sci. 15, 215 (1969)] introduced a model of product growth for consumer durables, which has been extensively used to predict innovation diffusion across a range of applications. Here, we propose a novel approach to study innovation diffusion, where interactions among individuals are mediated by the dynamics of a time-varying network. Our approach is based on the Bass' model, and overcomes key limitations of previous studies, which assumed timescale separation between the individual dynamics and the evolution of the connectivity patterns. Thus, we do not hypothesize homogeneous mixing among individuals or the existence of a fixed interaction network. We formulate our approach in the framework of activity driven networks to enable the analysis of the concurrent evolution of the interaction and individual dynamics. Numerical simulations offer a systematic analysis of the model behavior and highlight the role of individual activity on market penetration when targeted advertisement campaigns are designed, or a competition between two different products takes place.
Modeling aeolian dune and dune field evolution
NASA Astrophysics Data System (ADS)
Diniega, Serina
Aeolian sand dune morphologies and sizes are strongly connected to the environmental context and physical processes active since dune formation. As such, the patterns and measurable features found within dunes and dune fields can be interpreted as records of environmental conditions. Using mathematical models of dune and dune field evolution, it should be possible to quantitatively predict dune field dynamics from current conditions or to determine past field conditions based on present-day observations. In this dissertation, we focus on the construction and quantitative analysis of a continuum dune evolution model. We then apply this model towards interpretation of the formative history of terrestrial and martian dunes and dune fields. Our first aim is to identify the controls for the characteristic lengthscales seen in patterned dune fields. Variations in sand flux, binary dune interactions, and topography are evaluated with respect to evolution of individual dunes. Through the use of both quantitative and qualitative multiscale models, these results are then extended to determine the role such processes may play in (de)stabilization of the dune field. We find that sand flux variations and topography generally destabilize dune fields, while dune collisions can yield more similarly-sized dunes. We construct and apply a phenomenological macroscale dune evolution model to then quantitatively demonstrate how dune collisions cause a dune field to evolve into a set of uniformly-sized dunes. Our second goal is to investigate the influence of reversing winds and polar processes in relation to dune slope and morphology. Using numerical experiments, we investigate possible causes of distinctive morphologies seen in Antarctic and martian polar dunes. Finally, we discuss possible model extensions and needed observations that will enable the inclusion of more realistic physical environments in the dune and dune field evolution models. By elucidating the qualitative and quantitative connections between environmental conditions, physical processes, and resultant dune and dune field morphologies, this research furthers our ability to interpret spacecraft images of dune fields, and to use present-day observations to improve our understanding of past terrestrial and martian environments.
RADIUS-DEPENDENT ANGULAR MOMENTUM EVOLUTION IN LOW-MASS STARS. I
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reiners, Ansgar; Mohanty, Subhanjoy, E-mail: Ansgar.Reiners@phys.uni-goettingen.de
2012-02-10
Angular momentum evolution in low-mass stars is determined by initial conditions during star formation, stellar structure evolution, and the behavior of stellar magnetic fields. Here we show that the empirical picture of angular momentum evolution arises naturally if rotation is related to magnetic field strength instead of to magnetic flux and formulate a corrected braking law based on this. Angular momentum evolution then becomes a strong function of stellar radius, explaining the main trends observed in open clusters and field stars at a few Gyr: the steep transition in rotation at the boundary to full convection arises primarily from themore » large change in radius across this boundary and does not require changes in dynamo mode or field topology. Additionally, the data suggest transient core-envelope decoupling among solar-type stars and field saturation at longer periods in very low mass stars. For solar-type stars, our model is also in good agreement with the empirical Skumanich law. Finally, in further support of the theory, we show that the predicted age at which low-mass stars spin down from the saturated to unsaturated field regimes in our model corresponds remarkably well to the observed lifetime of magnetic activity in these stars.« less
The meanings of recovery from addiction: evolution and promises.
El-Guebaly, Nady
2012-03-01
To review the evolution of the paradigm of recovery in addiction and its implications. A systematic literature review was conducted using the MEDLINE and PsychInfo databases over the past 10 years and key references from the retrieved literature. The historical evolution of the concept of recovery has been shaped by several driving forces, including consumer experience, the need to better define our treatment outcome and parallel elaboration of the concepts of health, quality of life, and chronic disorders. Similarities and differences with the concept of "recovery" in mental health and other biomedical fields are identified.The empirical basis is growing in support of various proposed attributions and features of recovery along with the temporal benchmarks involved. The various forms of recovery, such as "natural," "transformational," or "medication-assisted," describe a choice of pathways to a common goal.The management implications are far-reaching and call for system shifts from acute stabilization to sustained recovery, including the growth of alternative institutions, and roles complementary to mutual help. Tools for the sustenance of recovery, including educational kits, recovery workbooks, and e-recovery initiatives, are developing. Although first-person accounts of recovery abound, a more systematic empirical investigation of the concept has just begun, including demographic and cultural differences. Management implications are derived from the experience with other "mainstream" chronic disorders with treatment providing stabilization and initiation of recovery and a range of long-term resources becoming available to sustain it.
Busi, Roberto; Powles, Stephen B
2016-09-01
Weeds can be a greater constraint to crop production than animal pests and pathogens. Pre-emergence herbicides are crucial in many cropping systems to control weeds that have evolved resistance to selective post-emergence herbicides. In this study we assessed the potential to evolve resistance to the pre-emergence herbicides prosulfocarb + S-metolachlor or pyroxasulfone in 50 individual field Lolium rigidum populations collected in a random survey in Western Australia prior to commercialisation of these pre-emergence herbicides. This study shows for the first time that in randomly collected L. rigidum field populations the selection with either prosulfocarb + S-metolachlor or pyroxasulfone can result in concomitant evolution of resistance to both prosulfocarb + S-metolachlor and pyroxasulfone after three generations. In the major weed L. rigidum, traits conferring resistance to new herbicides can be present before herbicide commercialisation. Proactive and multidisciplinary research (evolutionary ecology, modelling and molecular biology) is required to detect and analyse resistant populations before they can appear in the field. Several studies show that evolved cross-resistance in weeds is complex and often unpredictable. Thus, long-term management of cross-resistant weeds must be achieved through heterogeneity of selection by effective chemical, cultural and physical weed control strategies that can delay herbicide resistance evolution. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.
THE EVOLUTION OF THE JOURNAL OF APPLIED ORAL SCIENCE: A BIBLIOMETRIC ANALYSIS
Ferraz, Valéria Cristina Trindade; Amadei, José Roberto Plácido; Santos, Carlos Ferreira
2008-01-01
The purpose of this study was to make a brief diagnosis of the evolution of the Journal of Applied Oral Science (JAOS) between 2005 and 2007, by reviewing quantitative and qualitative aspects of the articles published in the JAOS within this period. All articles published in the JAOS in the time span established for this survey were analyzed retrospectively and a discussion was undertaken on the data referring to the main bibliometric indexes of production, authorship, bibliographic sources of the published articles, and the most frequently cited scientific journals in the main dental research fields. A total of 247 papers authored and coauthored by 1,139 contributors were reviewed, most of them being original research articles. The number of authors per article was 4.61 on the average. Regarding the geographic distribution, the authors represented almost all of the Brazilian States. Most published articles belonged to the following dental research fields: Endodontics, Restorative Dentistry, Dental Materials and Prosthodontics. The ranking of the most frequently cited scientific journals included the most reputable publications in these dental research fields. In conclusion, between 2005 and 2007, the JAOS either maintained or improved considerably its bibliometric indexes. The analysis of the data retrieved in this study allowed evaluating the journal's current management strategies, and identifying important issues that will help outlining the future directions for the internationalization of this journal. PMID:19082402
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Yulan; Hu, Shenyang Y.; Sun, Xin
2011-06-15
Microstructure evolution kinetics in irradiated materials has strongly spatial correlation. For example, void and second phases prefer to nucleate and grow at pre-existing defects such as dislocations, grain boundaries, and cracks. Inhomogeneous microstructure evolution results in inhomogeneity of microstructure and thermo-mechanical properties. Therefore, the simulation capability for predicting three dimensional (3-D) microstructure evolution kinetics and its subsequent impact on material properties and performance is crucial for scientific design of advanced nuclear materials and optimal operation conditions in order to reduce uncertainty in operational and safety margins. Very recently the meso-scale phase-field (PF) method has been used to predict gas bubblemore » evolution, void swelling, void lattice formation and void migration in irradiated materials,. Although most results of phase-field simulations are qualitative due to the lake of accurate thermodynamic and kinetic properties of defects, possible missing of important kinetic properties and processes, and the capability of current codes and computers for large time and length scale modeling, the simulations demonstrate that PF method is a promising simulation tool for predicting 3-D heterogeneous microstructure and property evolution, and providing microstructure evolution kinetics for higher scale level simulations of microstructure and property evolution such as mean field methods. This report consists of two parts. In part I, we will present a new phase-field model for predicting interstitial loop growth kinetics in irradiated materials. The effect of defect (vacancy/interstitial) generation, diffusion and recombination, sink strength, long-range elastic interaction, inhomogeneous and anisotropic mobility on microstructure evolution kinetics is taken into account in the model. The model is used to study the effect of elastic interaction on interstitial loop growth kinetics, the interstitial flux, and sink strength of interstitial loop for interstitials. In part II, we present a generic phase field model and discuss the thermodynamic and kinetic properties in phase-field models including the reaction kinetics of radiation defects and local free energy of irradiated materials. In particular, a two-sublattice thermodynamic model is suggested to describe the local free energy of alloys with irradiated defects. Fe-Cr alloy is taken as an example to explain the required thermodynamic and kinetic properties for quantitative phase-field modeling. Finally the great challenges in phase-field modeling will be discussed.« less
NASA Astrophysics Data System (ADS)
Horváth, Zsolt; Keresztes, Zoltán; Kamenshchik, Alexander Yu.; Gergely, László Á.
2015-05-01
The evolution of a closed Friedmann universe filled by a tachyon scalar field with a trigonometric potential and cold dark matter (CDM) is investigated. A subset of the evolutions consistent to 1 σ confidence level with the Union 2.1 supernova data set is identified. The evolutions of the tachyon field are classified. Some of them evolve into a de Sitter attractor, while others proceed through a pseudotachyonic regime into a sudden future singularity. Critical evolutions leading to big brake singularities in the presence of CDM are found and a new type of cosmological evolution characterized by singularity avoidance in the pseudotachyon regime is presented.
Managing competing goals - a key role for the frontopolar cortex.
Mansouri, Farshad Alizadeh; Koechlin, Etienne; Rosa, Marcello G P; Buckley, Mark J
2017-11-01
Humans are set apart from other animals by many elements of advanced cognition and behaviour, including language, judgement and reasoning. What is special about the human brain that gives rise to these abilities? Could the foremost part of the prefrontal cortex (the frontopolar cortex), which has become considerably enlarged in humans during evolution compared with other animals, be important in this regard, especially as, in primates, it contains a unique cytoarchitectural field, area 10? The first studies of the function of the frontopolar cortex in monkeys have now provided critical new insights about its precise role in monitoring the significance of current and alternative goals. In human evolution, the frontopolar cortex may have acquired a further role in enabling the monitoring of the significance of multiple goals in parallel, as well as switching between them. Here, we argue that many other forms of uniquely human behaviour may benefit from this cognitive ability mediated by the frontopolar cortex.
NASA Astrophysics Data System (ADS)
Zhong, Jian; Aydina, Atilla; McGuinness, Deborah L.
2009-03-01
Fractures are fundamental structures in the Earth's crust and they can impact many societal and industrial activities including oil and gas exploration and production, aquifer management, CO 2 sequestration, waste isolation, the stabilization of engineering structures, and assessing natural hazards (earthquakes, volcanoes, and landslides). Therefore, an ontology which organizes the concepts of fractures could help facilitate a sound education within, and communication among, the highly diverse professional and academic community interested in the problems cited above. We developed a process-based ontology that makes explicit specifications about fractures, their properties, and the deformation mechanisms which lead to their formation and evolution. Our ontology emphasizes the relationships among concepts such as the factors that influence the mechanism(s) responsible for the formation and evolution of specific fracture types. Our ontology is a valuable resource with a potential to applications in a number of fields utilizing recent advances in Information Technology, specifically for digital data and information in computers, grids, and Web services.
Numerical modelling of the Madison Dynamo Experiment.
NASA Astrophysics Data System (ADS)
Bayliss, R. A.; Wright, J. C.; Forest, C. B.; O'Connell, R.; Truitt, J. L.
2000-10-01
Growth, saturation and turbulent evolution of the Madison dynamo experiment is investigated numerically using a newly developed 3-D pseudo-spectral simulation of the MHD equations; results of the simulations will be compared to the experimental results obtained from the experiment. The code, Dynamo, is in Fortran90 and allows for full evolution of the magnetic and velocity fields. The induction equation governing B and the Navier-Stokes equation governing V are solved. The code uses a spectral representation via spherical harmonic basis functions of the vector fields in longitude and latitude, and finite differences in the radial direction. The magnetic field evolution has been benchmarked against the laminar kinematic dynamo predicted by M.L. Dudley and R.W. James (M.L. Dudley and R.W. James, Time-dependant kinematic dynamos with stationary flows, Proc. R. Soc. Lond. A 425, p. 407 (1989)). Initial results on magnetic field saturation, generated by the simultaneous evolution of magnetic and velocity fields be presented using a variety of mechanical forcing terms.
Evolution of Large-Scale Magnetic Fields and State Transitions in Black Hole X-Ray Binaries
NASA Astrophysics Data System (ADS)
Wang, Ding-Xiong; Huang, Chang-Yin; Wang, Jiu-Zhou
2010-04-01
The state transitions of black hole (BH) X-ray binaries are discussed based on the evolution of large-scale magnetic fields, in which the combination of three energy mechanisms are involved: (1) the Blandford-Znajek (BZ) process related to the open field lines connecting a rotating BH with remote astrophysical loads, (2) the magnetic coupling (MC) process related to the closed field lines connecting the BH with its surrounding accretion disk, and (3) the Blandford-Payne (BP) process related to the open field lines connecting the disk with remote astrophysical loads. It turns out that each spectral state of the BH binaries corresponds to each configuration of magnetic field in BH magnetosphere, and the main characteristics of low/hard (LH) state, hard intermediate (HIM) state and steep power law (SPL) state are roughly fitted based on the evolution of large-scale magnetic fields associated with disk accretion.
NASA Astrophysics Data System (ADS)
Folsom, C. P.; Bouvier, J.; Petit, P.; Lèbre, A.; Amard, L.; Palacios, A.; Morin, J.; Donati, J.-F.; Vidotto, A. A.
2018-03-01
There is a large change in surface rotation rates of sun-like stars on the pre-main sequence and early main sequence. Since these stars have dynamo-driven magnetic fields, this implies a strong evolution of their magnetic properties over this time period. The spin-down of these stars is controlled by interactions between stellar and magnetic fields, thus magnetic evolution in turn plays an important role in rotational evolution. We present here the second part of a study investigating the evolution of large-scale surface magnetic fields in this critical time period. We observed stars in open clusters and stellar associations with known ages between 120 and 650 Myr, and used spectropolarimetry and Zeeman Doppler Imaging to characterize their large-scale magnetic field strength and geometry. We report 15 stars with magnetic detections here. These stars have masses from 0.8 to 0.95 M⊙, rotation periods from 0.326 to 10.6 d, and we find large-scale magnetic field strengths from 8.5 to 195 G with a wide range of geometries. We find a clear trend towards decreasing magnetic field strength with age, and a power law decrease in magnetic field strength with Rossby number. There is some tentative evidence for saturation of the large-scale magnetic field strength at Rossby numbers below 0.1, although the saturation point is not yet well defined. Comparing to younger classical T Tauri stars, we support the hypothesis that differences in internal structure produce large differences in observed magnetic fields, however for weak-lined T Tauri stars this is less clear.
Building Information Modelling for Cultural Heritage: A review
NASA Astrophysics Data System (ADS)
Logothetis, S.; Delinasiou, A.; Stylianidis, E.
2015-08-01
We discuss the evolution and state-of-the-art of the use of Building Information Modelling (BIM) in the field of culture heritage documentation. BIM is a hot theme involving different characteristics including principles, technology, even privacy rights for the cultural heritage objects. Modern documentation needs identified the potential of BIM in the recent years. Many architects, archaeologists, conservationists, engineers regard BIM as a disruptive force, changing the way professionals can document and manage a cultural heritage structure. The latest years, there are many developments in the BIM field while the developed technology and methods challenged the cultural heritage community in the documentation framework. In this review article, following a brief historic background for the BIM, we review the recent developments focusing in the cultural heritage documentation perspective.
Natural language processing: an introduction.
Nadkarni, Prakash M; Ohno-Machado, Lucila; Chapman, Wendy W
2011-01-01
To provide an overview and tutorial of natural language processing (NLP) and modern NLP-system design. This tutorial targets the medical informatics generalist who has limited acquaintance with the principles behind NLP and/or limited knowledge of the current state of the art. We describe the historical evolution of NLP, and summarize common NLP sub-problems in this extensive field. We then provide a synopsis of selected highlights of medical NLP efforts. After providing a brief description of common machine-learning approaches that are being used for diverse NLP sub-problems, we discuss how modern NLP architectures are designed, with a summary of the Apache Foundation's Unstructured Information Management Architecture. We finally consider possible future directions for NLP, and reflect on the possible impact of IBM Watson on the medical field.
Natural language processing: an introduction
Ohno-Machado, Lucila; Chapman, Wendy W
2011-01-01
Objectives To provide an overview and tutorial of natural language processing (NLP) and modern NLP-system design. Target audience This tutorial targets the medical informatics generalist who has limited acquaintance with the principles behind NLP and/or limited knowledge of the current state of the art. Scope We describe the historical evolution of NLP, and summarize common NLP sub-problems in this extensive field. We then provide a synopsis of selected highlights of medical NLP efforts. After providing a brief description of common machine-learning approaches that are being used for diverse NLP sub-problems, we discuss how modern NLP architectures are designed, with a summary of the Apache Foundation's Unstructured Information Management Architecture. We finally consider possible future directions for NLP, and reflect on the possible impact of IBM Watson on the medical field. PMID:21846786
Enrichment Ratio and Aggregate Stability Dynamics in Intensely Managed Landscapes
NASA Astrophysics Data System (ADS)
Wacha, K.; Papanicolaou, T.; Filley, T. R.; Hou, T.; Abban, B. K.; Wilson, C. G.; Boys, J.
2015-12-01
Challenges in understanding the soil carbon dynamics within intensely managed landscapes (IMLs), found throughout much the US Midwest, is highly complex due to the presence of heterogeneous landscape features and properties, as well as a mosaic of physical and biogeochemical processes occurring at different time scales. In addition, rainfall events exacerbate the effects of tillage by the impact of raindrops, which break down aggregates that encase carbon and dislodge and entrain soil particles and aggregates along the downslope. The redistribution of soil and carbon can have huge implications on biogeochemical cycling and overall carbon budgeting. In this study, we provide some rare field data on the mechanisms impacting aggregate stability, enrichment ratio values to estimate fluxes of carbon, as well as lignin chemistry to see influences on oxidation/mineralization rates. Rainfall simulation experiments were conducted within agricultural fields. Experiments were performed on the midslope (eroding) and toeslope (depositional) sections of representative hillslopes, under a variety of land managements, including row crop (conventional and conservation) and restored grasslands. Sensors were utilized to capture the evolution of soil moisture, temperature, microbial respiration pulses, and discharge rates to identify pseudo-steady state conditions. Samples collected at the weir outlet were tested for sediment concentrations and size fractions, as well as carbon and lignin fluxes. Preliminary findings show that conservation management practices have higher aggregate stability and decreased mass fluxes of carbon in the downslope than conventional tillage techniques.
NASA Astrophysics Data System (ADS)
Wardzinska, Aleksandra; Petit, Stephan; Bray, Rachel; Delamare, Christophe; Garcia Arza, Griselda; Krastev, Tsvetelin; Pater, Krzysztof; Suwalska, Anna; Widegren, David
2015-12-01
Large-scale long-term projects such as the LHC require the ability to store, manage, organize and distribute large amounts of engineering information, covering a wide spectrum of fields. This information is a living material, evolving in time, following specific lifecycles. It has to reach the next generations of engineers so they understand how their predecessors designed, crafted, operated and maintained the most complex machines ever built. This is the role of CERN EDMS. The Engineering and Equipment Data Management Service has served the High Energy Physics Community for over 15 years. It is CERN's official PLM (Product Lifecycle Management), supporting engineering communities in their collaborations inside and outside the laboratory. EDMS is integrated with the CAD (Computer-aided Design) and CMMS (Computerized Maintenance Management) systems used at CERN providing tools for engineers who work in different domains and who are not PLM specialists. Over the years, human collaborations and machines grew in size and complexity. So did EDMS: it is currently home to more than 2 million files and documents, and has over 6 thousand active users. In April 2014 we released a new major version of EDMS, featuring a complete makeover of the web interface, improved responsiveness and enhanced functionality. Following the results of user surveys and building upon feedback received from key users group, we brought what we think is a system that is more attractive and makes it easy to perform complex tasks. In this paper we will describe the main functions and the architecture of EDMS. We will discuss the available integration options, which enable further evolution and automation of engineering data management. We will also present our plans for the future development of EDMS.
NASA Technical Reports Server (NTRS)
Soula, Serge
1994-01-01
The evolution of the vertical electric field profile deduced from simultaneous field measurements at several levels below a thundercloud shows the development of a space charge layer at least up to 600 m. The average charge density in the whole layer from 0 m to 600 m can reach about 1 nC m(exp -3). The ions are generated at the ground by corona effect and the production rate is evaluated with a new method from the comparison of field evolutions at the ground and at altitude after a lightning flash. The modeling of the relevant processes shows tht ground corona accounts for the observed field evolutions and that the aerosol particles concentration has a very large effect on the evolution of corona ions. However, with a realistic value for this concentration a large amount of ground corona ions reach the level of 600 m.
Phylomemetic patterns in science evolution--the rise and fall of scientific fields.
Chavalarias, David; Cointet, Jean-Philippe
2013-01-01
We introduce an automated method for the bottom-up reconstruction of the cognitive evolution of science, based on big-data issued from digital libraries, and modeled as lineage relationships between scientific fields. We refer to these dynamic structures as phylomemetic networks or phylomemies, by analogy with biological evolution; and we show that they exhibit strong regularities, with clearly identifiable phylomemetic patterns. Some structural properties of the scientific fields - in particular their density -, which are defined independently of the phylomemy reconstruction, are clearly correlated with their status and their fate in the phylomemy (like their age or their short term survival). Within the framework of a quantitative epistemology, this approach raises the question of predictibility for science evolution, and sketches a prototypical life cycle of the scientific fields: an increase of their cohesion after their emergence, the renewal of their conceptual background through branching or merging events, before decaying when their density is getting too low.
Unraveling the Complexity of the Evolution of the Sun's Photospheric Magnetic Field
NASA Astrophysics Data System (ADS)
Hathaway, David H.
2016-10-01
Given the emergence of tilted, bipolar active regions, surface flux transport has been shown to reproduce much of the complex evolution of the Sun's photospheric magnetic field. Surface flux is transported by flows in the surface shear layer - the axisymmetric differential rotation and meridional flow and the non-axisymmetric convective motions (granules, supergranules, and giant cells). We have measured these flows by correlation tracking of the magnetic elements themselves, correlation tracking of the Doppler features (supergranules), and by direct Doppler measurements using SDO/HMI data. These measurements fully constrain (with no free parameters) the flows used in our surface flux transport code - the Advective Flux Transport or AFT code. Here we show the up-to-date evolution of these flows, their impact on the detailed evolution of the Sun's photospheric magnetic field, and predictions for what the polar fields will be at the next minimum in 2020.
Fardisi, Mahsa; Gondhalekar, Ameya D; Scharf, Michael E
2017-06-01
Insecticide resistance in German cockroaches (Blattella germanica (L.)) has been a barrier to effective control since its first documentation in the 1950s. A necessary first step toward managing resistance is to understand insecticide susceptibility profiles in field-collected strains so that active ingredients (AIs) with lowest resistance levels can be identified. As a first step in this study, diagnostic concentrations (DCs) were determined for 14 insecticide AIs based on lethal concentrations that killed 99% or 90% of the individuals from a susceptible lab strain (JWax-S). Next, cockroaches were collected from two low-income multifamily housing complexes in Danville, IL, and Indianapolis, IN, and used to establish laboratory strains. These strains were screened against the 14 AI-DCs in vial bioassays, and susceptibility profiles were determined by comparing percent mortalities between the field strains relative to the JWax-S strain. Results revealed lowest resistance of field strains to boric acid, abamectin, dinotefuran, clothianidin, thiamethoxam, and chlorfenapyr. For the AIs hydramethylnon and imidacloprid, field strains did not display survivorship different than the lab strain, but >90% mortality was never achieved. Lastly, both field strains displayed resistance to indoxacarb, fipronil, acetamiprid, beta-cyfluthrin, bifenthrin, and lambda-cyhalothrin, but at varying levels. These results satisfy two objectives. First, baseline monitoring DCs were established for 14 insecticides presently registered for use against cockroaches, which represents a useful resource. Second, our findings reveal insecticide AIs with lowest resistance levels for use in forthcoming field studies that will investigate impacts of different insecticide deployment strategies on resistance management and evolution in cockroach field populations. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America.
Fardisi, Mahsa; Gondhalekar, Ameya D.
2017-01-01
Abstract Insecticide resistance in German cockroaches (Blattella germanica (L.)) has been a barrier to effective control since its first documentation in the 1950s. A necessary first step toward managing resistance is to understand insecticide susceptibility profiles in field-collected strains so that active ingredients (AIs) with lowest resistance levels can be identified. As a first step in this study, diagnostic concentrations (DCs) were determined for 14 insecticide AIs based on lethal concentrations that killed 99% or 90% of the individuals from a susceptible lab strain (JWax-S). Next, cockroaches were collected from two low-income multifamily housing complexes in Danville, IL, and Indianapolis, IN, and used to establish laboratory strains. These strains were screened against the 14 AI-DCs in vial bioassays, and susceptibility profiles were determined by comparing percent mortalities between the field strains relative to the JWax-S strain. Results revealed lowest resistance of field strains to boric acid, abamectin, dinotefuran, clothianidin, thiamethoxam, and chlorfenapyr. For the AIs hydramethylnon and imidacloprid, field strains did not display survivorship different than the lab strain, but >90% mortality was never achieved. Lastly, both field strains displayed resistance to indoxacarb, fipronil, acetamiprid, beta-cyfluthrin, bifenthrin, and lambda-cyhalothrin, but at varying levels. These results satisfy two objectives. First, baseline monitoring DCs were established for 14 insecticides presently registered for use against cockroaches, which represents a useful resource. Second, our findings reveal insecticide AIs with lowest resistance levels for use in forthcoming field studies that will investigate impacts of different insecticide deployment strategies on resistance management and evolution in cockroach field populations. PMID:28334270
Slightly anharmonic systems in quantum optics
NASA Technical Reports Server (NTRS)
Klimov, Andrey B.; Chumakov, Sergey M.
1995-01-01
We consider an arbitrary atomic system (n-level atom or many such atoms) interacting with a strong resonant quantum field. The approximate evolution operator for a quantum field case can be produced from the atomic evolution operator in an external classical field by a 'quantization prescription', passing the operator arguments to Wigner D-functions. Many important phenomena arising from the quantum nature of the field can be described by such a way.
Evolution of epigenetic regulation in vertebrate genomes
Lowdon, Rebecca F.; Jang, Hyo Sik; Wang, Ting
2016-01-01
Empirical models of sequence evolution have spurred progress in the field of evolutionary genetics for decades. We are now realizing the importance and complexity of the eukaryotic epigenome. While epigenome analysis has been applied to genomes from single cell eukaryotes to human, comparative analyses are still relatively few, and computational algorithms to quantify epigenome evolution remain scarce. Accordingly, a quantitative model of epigenome evolution remains to be established. Here we review the comparative epigenomics literature and synthesize its overarching themes. We also suggest one mechanism, transcription factor binding site turnover, which relates sequence evolution to epigenetic conservation or divergence. Lastly, we propose a framework for how the field can move forward to build a coherent quantitative model of epigenome evolution. PMID:27080453
Documentation and Cultural Heritage Inventories - Case of the Historic City of Ahmadabad
NASA Astrophysics Data System (ADS)
Shah, K.
2015-08-01
Located in the western Indian state of Gujarat, the historic city of Ahmadabad is renowned for the unparalleled richness of its monumental architecture, traditional house form, community based settlement patterns, city structure, crafts and mercantile culture. This paper describes the process followed for documentation and development of comprehensive Heritage Inventories for the historic city with an aim of illustrating the Outstanding Universal Values of its Architectural and Urban Heritage. The exercise undertaken between 2011 & 2014 as part of the preparation of world heritage nomination dossier included thorough archival research, field surveys, mapping and preparation of inventories using a combination of traditional data procurement and presentation tools as well as creation of advanced digital database using GIS. The major challenges encountered were: need to adapt documentation methodology and survey formats to field conditions, changing and ever widening scope of work, corresponding changes in time frame, management of large quantities of data generated during the process along with difficulties in correlating existing databases procured from the local authority in varying formats. While the end result satisfied the primary aim, the full potential of Heritage Inventory as a protection and management tool will only be realised after its acceptance as the statutory list and its integration within the larger urban development plan to guide conservation, development and management strategy for the city. The rather detailed description of evolution of documentation process and the complexities involved is presented to understand the relevance of methods used in Ahmadabad and guide similar future efforts in the field.
Intensified agriculture favors evolved resistance to biological control.
Tomasetto, Federico; Tylianakis, Jason M; Reale, Marco; Wratten, Steve; Goldson, Stephen L
2017-04-11
Increased regulation of chemical pesticides and rapid evolution of pesticide resistance have increased calls for sustainable pest management. Biological control offers sustainable pest suppression, partly because evolution of resistance to predators and parasitoids is prevented by several factors (e.g., spatial or temporal refuges from attacks, reciprocal evolution by control agents, and contrasting selection pressures from other enemy species). However, evolution of resistance may become more probable as agricultural intensification reduces the availability of refuges and diversity of enemy species, or if control agents have genetic barriers to evolution. Here we use 21 y of field data from 196 sites across New Zealand to show that parasitism of a key pasture pest ( Listronotus bonariensis ; Argentine stem weevil) by an introduced parasitoid ( Microctonus hyperodae ) was initially nationally successful but then declined by 44% (leading to pasture damage of c. 160 million New Zealand dollars per annum). This decline was not attributable to parasitoid numbers released, elevation, or local climatic variables at sample locations. Rather, in all locations the decline began 7 y (14 host generations) following parasitoid introduction, despite releases being staggered across locations in different years. Finally, we demonstrate experimentally that declining parasitism rates occurred in ryegrass Lolium perenne , which is grown nationwide in high-intensity was significantly less than in adjacent plots of a less-common pasture grass ( Lolium multiflorum ), indicating that resistance to parasitism is host plant-dependent. We conclude that low plant and enemy biodiversity in intensive large-scale agriculture may facilitate the evolution of host resistance by pests and threaten the long-term viability of biological control.
Conciliation biology: the eco-evolutionary management of permanently invaded biotic systems
Carroll, Scott P
2011-01-01
Biotic invaders and similar anthropogenic novelties such as domesticates, transgenics, and cancers can alter ecology and evolution in environmental, agricultural, natural resource, public health, and medical systems. The resulting biological changes may either hinder or serve management objectives. For example, biological control and eradication programs are often defeated by unanticipated resistance evolution and by irreversibility of invader impacts. Moreover, eradication may be ill-advised when nonnatives introduce beneficial functions. Thus, contexts that appear to call for eradication may instead demand managed coexistence of natives with nonnatives, and yet applied biologists have not generally considered the need to manage the eco-evolutionary dynamics that commonly result from interactions of natives with nonnatives. Here, I advocate a conciliatory approach to managing systems where novel organisms cannot or should not be eradicated. Conciliatory strategies incorporate benefits of nonnatives to address many practical needs including slowing rates of resistance evolution, promoting evolution of indigenous biological control, cultivating replacement services and novel functions, and managing native–nonnative coevolution. Evolutionary links across disciplines foster cohesion essential for managing the broad impacts of novel biotic systems. Rather than signaling defeat, conciliation biology thus utilizes the predictive power of evolutionary theory to offer diverse and flexible pathways to more sustainable outcomes. PMID:25567967
Role of nonlinear refraction in the generation of terahertz field pulses by light fields
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zabolotskii, A. A., E-mail: zabolotskii@iae.nsk.su
2013-07-15
The generation of microwave (terahertz) pulses without any envelope in a four-level quasi-resonant medium is considered. Two intense quasi-monochromatic laser fields lead to a partial upper-level population. Microwave field pulses cause the transition between these levels. For appropriately chosen scales, the evolution of the fields is shown to be described by the pseudo-spin evolution equations in a microwave field with the inclusion of nonlinear refraction caused by an adiabatic upper-level population. The evolution of terahertz field pulses is described outside the scope of the slow-envelope approximation. When a number of standard approximations are taken into account, this system of equationsmore » is shown to be equivalent to an integrable version of the generalized reduced Maxwell-Bloch equations or to the generalized three-wave mixing equations. The soliton solution found by the inverse scattering transform method is used as an example to show that nonlinear refraction leads to a strong compression of the microwave (terahertz) field soliton.« less
Magnetic field decay in black widow pulsars
NASA Astrophysics Data System (ADS)
Mendes, Camile; de Avellar, Marcio G. B.; Horvath, J. E.; Souza, Rodrigo A. de; Benvenuto, O. G.; De Vito, M. A.
2018-04-01
We study in this work the evolution of the magnetic field in `redback-black widow' pulsars. Evolutionary calculations of these `spider' systems suggest that first the accretion operates in the redback stage, and later the companion star ablates matter due to winds from the recycled pulsar. It is generally believed that mass accretion by the pulsar results in a rapid decay of the magnetic field when compared to the rate of an isolated neutron star. We study the evolution of the magnetic field in black widow pulsars by solving numerically the induction equation using the modified Crank-Nicolson method with intermittent episodes of mass accretion on to the neutron star. Our results show that the magnetic field does not fall below a minimum value (`bottom field') in spite of the long evolution time of the black widow systems, extending the previous conclusions for much younger low-mass X-ray binary systems. We find that in this scenario, the magnetic field decay is dominated by the accretion rate, and that the existence of a bottom field is likely related to the fact that the surface temperature of the pulsar does not decay as predicted by the current cooling models. We also observe that the impurity of the pulsar crust is not a dominant factor in the decay of magnetic field for the long evolution time of black widow systems.
NASA Astrophysics Data System (ADS)
Hopkins, J. L.; Leonard, G.; Timm, C.; Wilson, C. J. N.; Neil, H.; Millet, M. A.
2014-12-01
Establishing volcanic hazard and risk management strategies hinges on a detailed understanding of the type, timing and tephra dispersal of past eruptions. In order to unravel the pyroclastic eruption history of a volcanic field, genetic links between the deposits and eruption source centre need to be established. The Auckland Volcanic Field (AVF; New Zealand) has been active for ca. 200 kyr and comprises ca. 53 individual centres covering an area of ca. 360km2. These centres show a range of sizes and eruptive styles from maar craters and tuff rings, to scoria cones and lava flows consistent with both phreatomagmatic and magmatic eruptions. Superimposition of the metropolitan area of Auckland (ca. 1.4 million inhabitants) on the volcanic field makes it critically important to assess the characteristics of the volcanic activity, on which to base assessment and management of the consequent hazards. Here we present a geochemical approach for correlating tephra deposits to their source centres. To acquire the most complete stratigraphic record of pyroclastic events, maar crater cores from different locations, covering various depths and thus ages across the field were selected. Magnetic susceptibility and x-ray density scanning of the cores was used to identify the basaltic tephra horizons, which were sampled and in-situ analysis of individual shards undertaken for major and trace elements using EPMA and LA-ICP-MS techniques, respectively. Our results show that tephra shard trace element ratios are comparable and complementary to the AVF whole rock database. The use of specific trace element ratios (e.g. Gd/Yb vs. Zr/Yb) allows us to fingerprint and cross correlate tephra horizons between cores and, when coupled with newly acquired 40Ar-39Ar age dating and eruption size estimates, correlate horizons to their source centres. This integrated style of study can provide valuable information to help volcanic hazard management and forecasting, and mitigation of related risks.
2011-08-25
David Lehman, GRAIL project manager, NASA's Jet Propulsion Laboratory, Pasadena, Calif., speaks at a press conference about the upcoming launch to the moon of the Gravity Recovery and Interior Laboratory (GRAIL) mission, Thursday, Aug. 25, 2011 in Washington. GRAIL's primary science objectives are to determine the structure of the lunar interior, from crust to core, and to advance understanding of the thermal evolution of the moon. The mission will place two spacecraft into the same orbit around the moon which will gather information about the its gravitational field enabling scientists to create a high-resolution map. Photo Credit: (NASA/Carla Cioffi)
Cosmological evolution of a tachyon-quintom model of dark energy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shi, Shang-Gang; Piao, Yun-Song; Qiao, Cong-Feng, E-mail: shishanggang06@mails.gucas.ac.cn, E-mail: yspiao@gucas.ac.cn, E-mail: qiaocf@gucas.ac.cn
2009-04-15
In this work we study the cosmological evolution of a dark energy model with two scalar fields, i.e. the tachyon and the phantom tachyon. This model enables the equation of state w to change from w > -1 to w < -1 in the evolution of the universe. The phase-space analysis for such a system with inverse square potentials shows that there exists a unique stable critical point, which has power-law solution. In this paper, we also study another form of tachyon-quintom model with two fields, which involves the interactions between both fields.
Tachyon field in loop quantum cosmology: Inflation and evolution picture
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xiong Huaui; Zhu Jianyang
2007-04-15
Loop quantum cosmology (LQC) predicts a nonsingular evolution of the universne through a bounce in the high energy region. We show that this is always true in tachyon matter LQC. Differing from the classical Friedman-Robertson-Walker (FRW) cosmology, the super inflation can appear in the tachyon matter LQC; furthermore, the inflation can be extended to the region where classical inflation stops. Using the numerical method, we give an evolution picture of the tachyon field with an exponential potential in the context of LQC. It indicates that the quantum dynamical solutions have the same attractive behavior as the classical solutions do. Themore » whole evolution of the tachyon field is that in the distant past, the tachyon field--being in the contracting cosmology--accelerates to climb up the potential hill with a negative velocity; then at the boundary the tachyon field is bounced into an expanding universe with positive velocity rolling down to the bottom of the potential. In the slow roll limit, we compare the quantum inflation with the classical case in both an analytic and a numerical way.« less
NASA Astrophysics Data System (ADS)
Rogers, Adam; Safi-Harb, Samar
2016-04-01
A wealth of X-ray and radio observations has revealed in the past decade a growing diversity of neutron stars (NSs) with properties spanning orders of magnitude in magnetic field strength and ages, and with emission processes explained by a range of mechanisms dictating their radiation properties. However, serious difficulties exist with the magneto-dipole model of isolated NS fields and their inferred ages, such as a large range of observed braking indices (n, with values often <3) and a mismatch between the NS and associated supernova remnant (SNR) ages. This problem arises primarily from the assumptions of a constant magnetic field with n = 3, and an initial spin period that is much smaller than the observed current period. It has been suggested that a solution to this problem involves magnetic field evolution, with some NSs having magnetic fields buried within the crust by accretion of fall-back supernova material following their birth. In this work, we explore a parametric phenomenological model for magnetic field growth that generalizes previous suggested field evolution functions, and apply it to a variety of NSs with both secure SNR associations and known ages. We explore the flexibility of the model by recovering the results of previous work on buried magnetic fields in young NSs. Our model fits suggest that apparently disparate classes of NSs may be related to one another through the time evolution of the magnetic field.
Efficient Analysis of Simulations of the Sun's Magnetic Field
NASA Astrophysics Data System (ADS)
Scarborough, C. W.; Martínez-Sykora, J.
2014-12-01
Dynamics in the solar atmosphere, including solar flares, coronal mass ejections, micro-flares and different types of jets, are powered by the evolution of the sun's intense magnetic field. 3D Radiative Magnetohydrodnamics (MHD) computer simulations have furthered our understanding of the processes involved: When non aligned magnetic field lines reconnect, the alteration of the magnetic topology causes stored magnetic energy to be converted into thermal and kinetic energy. Detailed analysis of this evolution entails tracing magnetic field lines, an operation which is not time-efficient on a single processor. By utilizing a graphics card (GPU) to trace lines in parallel, conducting such analysis is made feasible. We applied our GPU implementation to the most advanced 3D Radiative-MHD simulations (Bifrost, Gudicksen et al. 2011) of the solar atmosphere in order to better understand the evolution of the modeled field lines.
From evolutionary computation to the evolution of things.
Eiben, Agoston E; Smith, Jim
2015-05-28
Evolution has provided a source of inspiration for algorithm designers since the birth of computers. The resulting field, evolutionary computation, has been successful in solving engineering tasks ranging in outlook from the molecular to the astronomical. Today, the field is entering a new phase as evolutionary algorithms that take place in hardware are developed, opening up new avenues towards autonomous machines that can adapt to their environment. We discuss how evolutionary computation compares with natural evolution and what its benefits are relative to other computing approaches, and we introduce the emerging area of artificial evolution in physical systems.
Lemaitre, D; Sauquet, D; Fofol, I; Tanguy, L; Jean, F C; Degoulet, P
1995-01-01
Legacy systems are crucial for organizations since they support key functionalities. But they become obsolete with aging and the apparition of new techniques. Managing their evolution is a key issue in software engineering. This paper presents a strategy that has been developed at Broussais University Hospital in Paris to make a legacy system devoted to the management of health care units evolve towards a new up-to-date software. A two-phase evolution pathway is described. The first phase consists in separating the interface from the data storage and application control and in using a communication channel between the individualized components. The second phase proposes to use an object-oriented DBMS in place of the homegrown system. An application example for the management of hypertensive patients is described.
NASA Astrophysics Data System (ADS)
Caballero, L. B.; Castillo, M. M.; Van Balen, K.
2017-08-01
Recent policies adopted in Cuba are producing a significant turn into the country's socioeconomic dynamics. Past shifting circumstances have demonstrated the positive and negative implications on heritage sites. In this regard, this paper presents a first stage of a research project aimed at monitoring the impact of socioeconomic dynamics on local heritage sites. The research partial results focus on the documentation of the evolution of a case study: Vista Alegre District in the city of Santiago de Cuba. Scholars have noted that the District's urban design and historic building stock represent its most significant heritage values. Such qualities are under permanent threat due to transformations and deterioration. In order to analyse current site condition, and to understand transformations as a result of socioeconomic dynamics, a Geographic Information System (GIS) was implemented as a monitoring and documenting tool. The GIS allowed integrating data related to the evolution of the urban layout, and the heritage buildings. Data was sourced from heritage management and urban planning offices, as well as from previous studies on the site. In addition, the analysis of remote sensing imagery, and a field survey helped to update the existing records, and to include new information with the purpose of assessing the integrity of heritage values. At this stage, maps that describe the site evolution, the significant changes over time, and the alterations to character defining elements served to identify sectors of different scenic qualities. Results are essential to contribute to draft management strategies as part of decision making.
An improved harmony search algorithm for emergency inspection scheduling
NASA Astrophysics Data System (ADS)
Kallioras, Nikos A.; Lagaros, Nikos D.; Karlaftis, Matthew G.
2014-11-01
The ability of nature-inspired search algorithms to efficiently handle combinatorial problems, and their successful implementation in many fields of engineering and applied sciences, have led to the development of new, improved algorithms. In this work, an improved harmony search (IHS) algorithm is presented, while a holistic approach for solving the problem of post-disaster infrastructure management is also proposed. The efficiency of IHS is compared with that of the algorithms of particle swarm optimization, differential evolution, basic harmony search and the pure random search procedure, when solving the districting problem that is the first part of post-disaster infrastructure management. The ant colony optimization algorithm is employed for solving the associated routing problem that constitutes the second part. The comparison is based on the quality of the results obtained, the computational demands and the sensitivity on the algorithmic parameters.
Sex chromosome evolution: historical insights and future perspectives
Nordén, Anna K.
2017-01-01
Many separate-sexed organisms have sex chromosomes controlling sex determination. Sex chromosomes often have reduced recombination, specialized (frequently sex-specific) gene content, dosage compensation and heteromorphic size. Research on sex determination and sex chromosome evolution has increased over the past decade and is today a very active field. However, some areas within the field have not received as much attention as others. We therefore believe that a historic overview of key findings and empirical discoveries will put current thinking into context and help us better understand where to go next. Here, we present a timeline of important conceptual and analytical models, as well as empirical studies that have advanced the field and changed our understanding of the evolution of sex chromosomes. Finally, we highlight gaps in our knowledge so far and propose some specific areas within the field that we recommend a greater focus on in the future, including the role of ecology in sex chromosome evolution and new multilocus models of sex chromosome divergence. PMID:28469017
MAGNETAR FIELD EVOLUTION AND CRUSTAL PLASTICITY
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lander, S. K., E-mail: skl@soton.ac.uk
2016-06-20
The activity of magnetars is believed to be powered by colossal magnetic energy reservoirs. We sketch an evolutionary picture in which internal field evolution in magnetars generates a twisted corona, from which energy may be released suddenly in a single giant flare, or more gradually through smaller outbursts and persistent emission. Given the ages of magnetars and the energy of their giant flares, we suggest that their evolution is driven by a novel mechanism: magnetic flux transport/decay due to persistent plastic flow in the crust, which would invalidate the common assumption that the crustal lattice is static and evolves onlymore » under Hall drift and Ohmic decay. We estimate the field strength required to induce plastic flow as a function of crustal depth, and the viscosity of the plastic phase. The star’s superconducting core may also play a role in magnetar field evolution, depending on the star’s spindown history and how rotational vortices and magnetic fluxtubes interact.« less
NASA Astrophysics Data System (ADS)
Liu, Zhi Feng; Wang, Ying; Huang, Dong Hui
2018-06-01
In the wake of big data and Internet plus era, continuous infiltration of digital technology has been happening in various fields of social and economic development. As the most important material carrier of historical culture, the historical value of historical buildings is produced and accumulated in its historical evolution, and it can only be protected from being created again. Based on the background of digitization of cultural resources, this paper summarizes the relevant digital technologies for the digital translation of information on buildings of historical and cultural heritage, as a means to promote the spread of the PDA+APPS mobile terminal, so as to achieve the purpose of preservation, protection, management and publicity. Meanwhile, this paper analyzes the application of digital technology in this field and the prospect of its function.
Nichols, J.D.
2004-01-01
The EURING meetings and the scientists who have attended them have contributed substantially to the growth of knowledge in the field of estimating parameters of animal populations. The contributions of David R. Anderson to process modeling, parameter estimation and decision analysis are briefly reviewed. Metrics are considered for assessing individual contributions to a field of inquiry, and it is concluded that Anderson’s contributions have been substantial. Important characteristics of Anderson and his career are the ability to identify and focus on important topics, the premium placed on dissemination of new methods to prospective users, the ability to assemble teams of complementary researchers, and the innovation and vision that characterized so much of his work. The paper concludes with a list of interesting current research topics for consideration by EURING participants.
Psychiatric Management, Administration, and Leadership: a Continuum or Distinct Concepts?
Saeed, Sy Atezaz; Silver, Stuart; Buwalda, Victor J A; Khin, Eindra Khin; Petit, Jorge R; Mohyuddin, Farooq; Weinberg, Pamela; Merlino, Joseph P; Lekwauwa, Nena; Levin, Saul
2018-06-01
To clarify the relationship between the concepts of management, administration, and leadership in psychiatry. The authors provide a review of the conceptual evolution of administrative psychiatry and develop operational definitions of these three domains. Based upon their experiences, they discuss relevant core competencies and personal attributes. The authors found that the terms psychiatric management, psychiatric administration, and psychiatric leadership are often used interchangeably, yet they each have a different and distinct focus. Additionally, some in the field consider the concepts overlapping, existing on a continuum, while others draw distinct conceptual boundaries between these terms. Psychiatrists in leadership positions function in all three domains. While these are distinct concepts, the authors recommend that administrative psychiatrists integrate all three in their everyday work. The authors suggest the distinctions among these concepts should inform training and identify core competencies related to these distinctions. Mentoring should focus on the practical integration of the concepts of management, administration, and leadership in administrative psychiatry. The authors present a cohesive framework for future development of a curriculum for education and research.
The evolution of telemedicine and nano-technology
NASA Astrophysics Data System (ADS)
Park, Dong Kyun; Young Jung, Eun; Chan Moon, Byung
2012-10-01
This paper will cover definition and history of telemedicine, changes in medical paradigm and roll of telemedicine and roll of nano-technology for evolution of telemedicine. Hypothetically, telemedicine is distance communication for medical purpose and modern definition explains telemedicine as `a system of health care delivery in which physicians examine distant patients through the use of telecommunications technology. Medical service will change to personalized medicine based on gene information to prevent and manage diseases due to decrease of acute diseases, population aging and increase of prevalence in chronic diseases, which means current medical services based on manualized treatment for diseases will change to personalized medicine based on individual gene information. Also, international healthcare will be activated to provide high quality medical services with low cost using developed transportation. Moreover, hospital centered medical services will change to patients centered medical service due to increase of patient's rights. Development in sensor technology is required for telemedicine to be applied as basic infrastructure for medical services. Various researches in nano-biosensor field are conducted due to introduction of new technologies. However, most researches are in fundamental levels that requires more researches for stability and clinical usefulness. Nano technology is expected to achieve innovative development and define new criteria for disease prevention and management.
The red queen in the corn: agricultural weeds as models of rapid adaptive evolution.
Vigueira, C C; Olsen, K M; Caicedo, A L
2013-04-01
Weeds are among the greatest pests of agriculture, causing billions of dollars in crop losses each year. As crop field management practices have changed over the past 12 000 years, weeds have adapted in turn to evade human removal. This evolutionary change can be startlingly rapid, making weeds an appealing system to study evolutionary processes that occur over short periods of time. An understanding of how weeds originate and adapt is needed for successful management; however, relatively little emphasis has been placed on genetically characterizing these systems. Here, we review the current literature on agricultural weed origins and their mechanisms of adaptation. Where possible, we have included examples that have been genetically well characterized. Evidence for three possible, non-mutually exclusive weed origins (from wild species, crop-wild hybrids or directly from crops) is discussed with respect to what is known about the microevolutionary signatures that result from these processes. We also discuss what is known about the genetic basis of adaptive traits in weeds and the range of genetic mechanisms that are responsible. With a better understanding of genetic mechanisms underlying adaptation in weedy species, we can address the more general process of adaptive evolution and what can be expected as we continue to apply selective pressures in agroecosystems around the world.
The red queen in the corn: agricultural weeds as models of rapid adaptive evolution
Vigueira, C C; Olsen, K M; Caicedo, A L
2013-01-01
Weeds are among the greatest pests of agriculture, causing billions of dollars in crop losses each year. As crop field management practices have changed over the past 12 000 years, weeds have adapted in turn to evade human removal. This evolutionary change can be startlingly rapid, making weeds an appealing system to study evolutionary processes that occur over short periods of time. An understanding of how weeds originate and adapt is needed for successful management; however, relatively little emphasis has been placed on genetically characterizing these systems. Here, we review the current literature on agricultural weed origins and their mechanisms of adaptation. Where possible, we have included examples that have been genetically well characterized. Evidence for three possible, non-mutually exclusive weed origins (from wild species, crop-wild hybrids or directly from crops) is discussed with respect to what is known about the microevolutionary signatures that result from these processes. We also discuss what is known about the genetic basis of adaptive traits in weeds and the range of genetic mechanisms that are responsible. With a better understanding of genetic mechanisms underlying adaptation in weedy species, we can address the more general process of adaptive evolution and what can be expected as we continue to apply selective pressures in agroecosystems around the world. PMID:23188175
1990-03-01
MANAGEMENT ................................... 62 Scope of Current Operations 62 Evolution of the Original RMD Plan 66 Financial Management Support Operations...Scope of Current Operations 76 Evolution of SMD From IPG Plan 78 SMD Support to RPMA 81 Efficiency of Supply Service 85 7 PROCUREMENT AND CONTRACTING...RPMA are to be realized. This chapter investigates these controls in terms of scope, evolution , operations (a functional assessment), and efficiency
Velocity Space Evolution of Dayside Reconnection Outflow
NASA Astrophysics Data System (ADS)
Broll, J. M.; Fuselier, S. A.; Trattner, K. J.
2015-12-01
Magnetic reconnection is a universal phenomenon occurring when energy stored in a complicated magnetic field topology is released into the surrounding plasma as the field simplifies its configuration. At Earth's dayside magnetopause, reconnection is responsible for mass and energy input from the solar wind into the magnetosphere. We describe the evolution of the velocity-space evolution of plasma outflow from a dayside magnetic reconnection region. We analyze Cluster magnetopause crossings between 1 and 10 Earth radii from the reconnection X-line predicted by the maximum magnetic shear model. The effects of nonadiabatic processes, such as deformation of the profile due to finite-gyroradius-induced pitch-angle scattering and wave-particle interactions, are described. We compare observations and simulation results to describe the outflow evolution and infer the field-aligned distance between an observation and the reconnection site producing it.
The 4MOST instrument concept overview
NASA Astrophysics Data System (ADS)
Haynes, Roger; Barden, Samuel; de Jong, Roelof; Schnurr, Olivier; Bellido, Olga; Walcher, Jakob; Haynes, Dionne; Winkler, Roland; Bauer, Svend-Marian; Dionies, Frank; Saviauk, Allar; Chiappini, Cristina; Schwope, Axel; Brynnel, Joar; Steinmetz, Matthias; McMahon, Richard; Feltzing, Sofia; Francois, Patrick; Trager, Scott; Parry, Ian; Irwin, Mike; Walton, Nicholas; King, David; Sun, David; Gonzalez-Solares, Eduaro; Tosh, Ian; Dalton, Gavin; Middleton, Kevin; Bonifacio, Piercarlo; Jagourel, Pascal; Mignot, Shan; Cohen, Mathieu; Amans, Jean-Philippe; Royer, Frederic; Sartoretti, Paola; Pragt, Johan; Gerlofsma, Gerrit; Roelfsema, Ronald; Navarro, Ramon; Thimm, Guido; Seifert, Walter; Christlieb, Norbert; Mandel, Holger; Trifonov, Trifon; Xu, Wenli; Lang-Bardl, Florian; Muschielok, Bernard; Schlichter, Jörg; Hess, Hans-Joachim; Grupp, Frank; Boehringer, Hans; Boller, Thomas; Dwelly, Tom; Bender, Ralf; Rosati, Piero; Iwert, Olaf; Finger, Gert; Lizon L'Allemand, Jean-Louis; Saunders, Will; Sheinis, Andrew; Frost, Gabriella; Farrell, Tony; Waller, Lewis; Depagne, Eric; Laurent, Florence; Caillier, Patrick; Kosmalski, Johan; Richard, Johan; Bacon, Roland; Ansorge, Wolfgang
2014-07-01
The 4MOST[1] instrument is a concept for a wide-field, fibre-fed high multiplex spectroscopic instrument facility on the ESO VISTA telescope designed to perform a massive (initially >25x106 spectra in 5 years) combined all-sky public survey. The main science drivers are: Gaia follow up of chemo-dynamical structure of the Milky Way, stellar radial velocities, parameters and abundances, chemical tagging; eROSITA follow up of cosmology with x-ray clusters of galaxies, X-ray AGN/galaxy evolution to z~5, Galactic X-ray sources and resolving the Galactic edge; Euclid/LSST/SKA and other survey follow up of Dark Energy, Galaxy evolution and transients. The surveys will be undertaken simultaneously requiring: highly advanced targeting and scheduling software, also comprehensive data reduction and analysis tools to produce high-level data products. The instrument will allow simultaneous observations of ~1600 targets at R~5,000 from 390-900nm and ~800 targets at R<18,000 in three channels between ~395-675nm (channel bandwidth: 45nm blue, 57nm green and 69nm red) over a hexagonal field of view of ~ 4.1 degrees. The initial 5-year 4MOST survey is currently expect to start in 2020. We provide and overview of the 4MOST systems: optomechanical, control, data management and operations concepts; and initial performance estimates.
Wang, Yanjun; Zheng, Jianzhong; Zhang, Ailian; Zhou, Wei; Dong, Haiyuan
2018-03-01
The aim of this study was to reveal research hotspots in the field of regional health information networks (RHINs) and use visualization techniques to explore their evolution over time and differences between countries. We conducted a literature review for a 50-year period and compared the prevalence of certain index terms during the periods 1963-1993 and 1994-2014 and in six countries. We applied keyword frequency analysis, keyword co-occurrence analysis, multidimensional scaling analysis, and network visualization technology. The total number of keywords was found to increase with time. From 1994 to 2014, the research priorities shifted from hospital planning to community health planning. The number of keywords reflecting information-based research increased. The density of the knowledge network increased significantly, and partial keywords condensed into knowledge groups. All six countries focus on keywords including Information Systems; Telemedicine; Information Service; Medical Records Systems, Computerized; Internet; etc.; however, the level of development and some research priorities are different. RHIN research has generally increased in popularity over the past 50 years. The research hotspots are evolving and are at different levels of development in different countries. Knowledge network mapping and perceptual maps provide useful information for scholars, managers, and policy-makers.
2011-09-06
CAPE CANAVERAL, Fla. – David Lehman, GRAIL project manager, NASA’s Jet Propulsion Laboratory, participates in the Gravity Recovery and Interior Laboratory (GRAIL) prelaunch news conference in the NASA Press Site auditorium at NASA's Kennedy Space Center in Florida. GRAIL is scheduled to launch Sept. 8 aboard a United Launch Alliance Delta II Heavy rocket from Cape Canaveral Air Force Station in Florida. GRAIL will fly twin spacecraft in tandem around the moon to precisely measure and map variations in the moon's gravitational field. The mission will provide the most accurate global gravity field to date for any planet, including Earth. This detailed information will reveal differences in the density of the moon's crust and mantle and will help answer fundamental questions about the moon's internal structure, thermal evolution, and history of collisions with asteroids. The aim is to map the moon's gravity field so completely that future moon vehicles can safely navigate anywhere on the moon’s surface. For more information, visit http://www.nasa.gov/grail. Photo credit: NASA/Kim Shiflett
2011-09-06
CAPE CANAVERAL, Fla. – John Henk, GRAIL program manager, Lockheed Martin Space Systems, Denver, Colo., participates in the Gravity Recovery and Interior Laboratory (GRAIL) prelaunch news conference in the NASA Press Site auditorium at NASA's Kennedy Space Center in Florida. GRAIL is scheduled to launch Sept. 8 aboard a United Launch Alliance Delta II Heavy rocket from Cape Canaveral Air Force Station in Florida. GRAIL will fly twin spacecraft in tandem around the moon to precisely measure and map variations in the moon's gravitational field. The mission will provide the most accurate global gravity field to date for any planet, including Earth. This detailed information will reveal differences in the density of the moon's crust and mantle and will help answer fundamental questions about the moon's internal structure, thermal evolution, and history of collisions with asteroids. The aim is to map the moon's gravity field so completely that future moon vehicles can safely navigate anywhere on the moon’s surface. For more information, visit http://www.nasa.gov/grail. Photo credit: NASA/Kim Shiflett
NASA Astrophysics Data System (ADS)
Nadelson, Louis S.; Southerland, Sherry
2012-07-01
The potential influences of affective perceptions on cognitive engagement in learning, particularly with emotionally charged topics such as evolution, provide justification for acknowledging and assessing learners' attitudes toward content. One approach to determining students' attitudes toward a construct is to explicitly ask them to what degree they accept the related content. This was the approach we took as we developed the Inventory of Student Evolution Acceptance. Our goal was to make a finer-grained instrument that would assess acceptance on three evolution subscales: microevolution, macroevolution, and human evolution. Further, we sought to not conflate understanding with acceptance of the constructs. We began our instrument development with a series of interviews and open-ended questionnaires to determine students' perceptions of evolution acceptance. Based on the responses we developed and field tested a 49-item Likert scale instrument with stems distributed across our three targeted subscales. Using the data from our field test, we reduced the instrument to 24 items evenly distributed across the three subscales, and the revised instrument was again field tested with high school and undergraduate college students. The final instrument has an internal reliability of Cronbach's alpha of 0.96 and the items loaded onto three components that reflect documented evolution acceptance conditions. The instrument development, implications, and applications are discussed.
Blouin, Manuel; Sery, Nicolas; Cluzeau, Daniel; Brun, Jean-Jacques; Bédécarrats, Alain
2013-08-01
Energy crisis, climate changes, and biodiversity losses have reinforced the drive for more ecologically-based approaches for environmental management. Such approaches are characterized by the use of organisms rather than energy-consuming technologies. Although earthworms are believed to be potentially useful organisms for managing ecosystem services, there is actually no quantification of such a trend in literature. This bibliometric analysis aimed to measure the evolution of the association of "earthworms" and other terms such as ecosystem services (primary production, nutrient cycling, carbon sequestration, soil structure, and pollution remediation), "ecological engineering" or "biodiversity," to assess their convergence or divergence through time. In this aim, we calculated the similarity index, an indicator of the paradigmatic proximity defined in applied epistemology, for each year between 1900 and 2009. We documented the scientific fields and the geographical origins of the studies, as well as the land uses, and compare these characteristics with a 25 years old review on earthworm management. The association of earthworm related keywords with ecosystem services related keywords was increasing with time, reflecting the growing interest in earthworm use in biodiversity and ecosystem services management. Conversely, no significant increase in the association between earthworms and disciplines such as ecological engineering or restoration ecology was observed. This demonstrated that general ecologically-based approaches have yet to emerge and that there is little exchange of knowledge, methods or concepts among balkanized application realms. Nevertheless, there is a strong need for crossing the frontiers between fields of application and for developing an umbrella discipline to provide a framework for the use of organisms to manage ecosystem services.
Martins, G; Brito, A G; Nogueira, R; Ureña, M; Fernández, D; Luque, F J; Alcácer, C
2013-04-15
European countries are facing increasing pressures on their water resources despite stringent regulations and systematic efforts on environmental protection. In this context, research and innovation play a strategic role reinforcing the efficiency of water policies. The present study provides a multilevel assessment of research and innovation practices in the field of water resource management in southern European countries and regions (more specifically; Cyprus, Albania, Poitou-Charentes in France, Andalusia in Spain and the North of Portugal). The analysis was based on a strategic framework aimed at gaining an insight of the current constraints, as well as of the existing and future technological solutions for a better water resource management. The triple helix model proved to be a useful analytical framework for assessing the efforts of different groups towards a common goal. The analysis proved the existence of a significant evolution in the use of technological tools to assist decision-making processes in integrated river basin management in all regions. Nevertheless, the absence of formal channels for knowledge and data exchange between researchers and water resource managers complicates the formers involvement in the decision-making process regarding water allocation. Both researchers and consultants emphasize the low availability of data, together with the need to advance on water resource economics as relevant constraints in the field. The SWOT analysis showed similar concerns among the participating regions and provided a battery of effective projects that resulted in the preparation of a Joint Action Plan. Copyright © 2013 Elsevier Ltd. All rights reserved.
Mitigating amphibian disease: strategies to maintain wild populations and control chytridiomycosis
2011-01-01
Background Rescuing amphibian diversity is an achievable conservation challenge. Disease mitigation is one essential component of population management. Here we assess existing disease mitigation strategies, some in early experimental stages, which focus on the globally emerging chytrid fungus Batrachochytrium dendrobatidis. We discuss the precedent for each strategy in systems ranging from agriculture to human medicine, and the outlook for each strategy in terms of research needs and long-term potential. Results We find that the effects of exposure to Batrachochytrium dendrobatidis occur on a spectrum from transient commensal to lethal pathogen. Management priorities are divided between (1) halting pathogen spread and developing survival assurance colonies, and (2) prophylactic or remedial disease treatment. Epidemiological models of chytridiomycosis suggest that mitigation strategies can control disease without eliminating the pathogen. Ecological ethics guide wildlife disease research, but several ethical questions remain for managing disease in the field. Conclusions Because sustainable conservation of amphibians in nature is dependent on long-term population persistence and co-evolution with potentially lethal pathogens, we suggest that disease mitigation not focus exclusively on the elimination or containment of the pathogen, or on the captive breeding of amphibian hosts. Rather, successful disease mitigation must be context specific with epidemiologically informed strategies to manage already infected populations by decreasing pathogenicity and host susceptibility. We propose population level treatments based on three steps: first, identify mechanisms of disease suppression; second, parameterize epizootiological models of disease and population dynamics for testing under semi-natural conditions; and third, begin a process of adaptive management in field trials with natural populations. PMID:21496358
Rapid evolution of analog circuits configured on a field programmable transistor array
NASA Technical Reports Server (NTRS)
Stoica, A.; Ferguson, M. I.; Zebulum, R. S.; Keymeulen, D.; Duong, V.; Daud, T.
2002-01-01
The purpose of this paper is to illustrate evolution of analog circuits on a stand-alone board-level evolvable system (SABLES). SABLES is part of an effort to achieve integrated evolvable systems. SABLES provides autonomous, fast (tens to hundreds of seconds), on-chip circuit evolution involving about 100,000 circuit evaluations. Its main components are a JPL Field Programmable Transistor Array (FPTA) chip used as transistor-level reconfigurable hardware, and a TI DSP that implements the evolutionary algorithm controlling the FPTA reconfiguration. The paper details an example of evolution on SABLES and points out to certain transient and memory effects that affect the stability of solutions obtained reusing the same piece of hardware for rapid testing of individuals during evolution.
NASA Technical Reports Server (NTRS)
Lewis, Kemper; Mistree, Farrokh
1998-01-01
The evolution of multidisciplinary design optimization (MDO) over the past several years has been one of rapid expansion and development. In this paper, the evolution of MDO as a field is investigated as well as the evolution of its individual linguistic components: multidisciplinary, design, and optimization. The theory and application of each component have indeed evolved on their own, but the true net gain for MDO is how these piecewise evolutions coalesce to form the basis for MDO, present and future. Originating in structural applications, MDO technology has also branched out into diverse fields and application arenas. The evolution and diversification of MDO as a discipline is explored but details are left to the references cited.
Cosmological Ohm's law and dynamics of non-minimal electromagnetism
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hollenstein, Lukas; Jain, Rajeev Kumar; Urban, Federico R., E-mail: lukas.hollenstein@cea.fr, E-mail: jain@cp3.dias.sdu.dk, E-mail: furban@ulb.ac.be
2013-01-01
The origin of large-scale magnetic fields in cosmic structures and the intergalactic medium is still poorly understood. We explore the effects of non-minimal couplings of electromagnetism on the cosmological evolution of currents and magnetic fields. In this context, we revisit the mildly non-linear plasma dynamics around recombination that are known to generate weak magnetic fields. We use the covariant approach to obtain a fully general and non-linear evolution equation for the plasma currents and derive a generalised Ohm law valid on large scales as well as in the presence of non-minimal couplings to cosmological (pseudo-)scalar fields. Due to the sizeablemore » conductivity of the plasma and the stringent observational bounds on such couplings, we conclude that modifications of the standard (adiabatic) evolution of magnetic fields are severely limited in these scenarios. Even at scales well beyond a Mpc, any departure from flux freezing behaviour is inhibited.« less
Studying the laws of software evolution in a long-lived FLOSS project.
Gonzalez-Barahona, Jesus M; Robles, Gregorio; Herraiz, Israel; Ortega, Felipe
2014-07-01
Some free, open-source software projects have been around for quite a long time, the longest living ones dating from the early 1980s. For some of them, detailed information about their evolution is available in source code management systems tracking all their code changes for periods of more than 15 years. This paper examines in detail the evolution of one of such projects, glibc, with the main aim of understanding how it evolved and how it matched Lehman's laws of software evolution. As a result, we have developed a methodology for studying the evolution of such long-lived projects based on the information in their source code management repository, described in detail several aspects of the history of glibc, including some activity and size metrics, and found how some of the laws of software evolution may not hold in this case. © 2013 The Authors. Journal of Software: Evolution and Process published by John Wiley & Sons Ltd.
Studying the laws of software evolution in a long-lived FLOSS project
Gonzalez-Barahona, Jesus M; Robles, Gregorio; Herraiz, Israel; Ortega, Felipe
2014-01-01
Some free, open-source software projects have been around for quite a long time, the longest living ones dating from the early 1980s. For some of them, detailed information about their evolution is available in source code management systems tracking all their code changes for periods of more than 15 years. This paper examines in detail the evolution of one of such projects, glibc, with the main aim of understanding how it evolved and how it matched Lehman's laws of software evolution. As a result, we have developed a methodology for studying the evolution of such long-lived projects based on the information in their source code management repository, described in detail several aspects of the history of glibc, including some activity and size metrics, and found how some of the laws of software evolution may not hold in this case. © 2013 The Authors. Journal of Software: Evolution and Process published by John Wiley & Sons Ltd. PMID:25893093
Alyokhin, Andrei; Mota-Sanchez, David; Baker, Mitchell; Snyder, William E; Menasha, Sandra; Whalon, Mark; Dively, Galen; Moarsi, Wassem F
2015-03-01
Originally designed to reconcile insecticide applications with biological control, the concept of integrated pest management (IPM) developed into the systems-based judicious and coordinated use of multiple control techniques aimed at reducing pest damage to economically tolerable levels. Chemical control, with scheduled treatments, was the starting point for most management systems in the 1950s. Although chemical control is philosophically compatible with IPM practices as a whole, reduction in pesticide use has been historically one of the main goals of IPM practitioners. In the absence of IPM, excessive reliance on pesticides has led to repeated control failures due to the evolution of resistance by pest populations. This creates the need for constant replacement of failed chemicals with new compounds, known as the 'insecticide treadmill'. In evolutionary biology, a similar phenomenon is known as the Red Queen principle - continuing change is needed for a population to persevere because its competitors undergo constant evolutionary adaptation. The Colorado potato beetle, Leptinotarsa decemlineata (Say), is an insect defoliator of potatoes that is notorious for its ability to develop insecticide resistance. In the present article, a review is given of four case studies from across the United States to demonstrate the importance of using IPM for sustainable management of a highly adaptable insect pest. Excessive reliance on often indiscriminate insecticide applications and inadequate use of alternative control methods, such as crop rotation, appear to expedite evolution of insecticide resistance in its populations. Resistance to IPM would involve synchronized adaptations to multiple unfavorable factors, requiring statistically unlikely genetic changes. Therefore, integrating different techniques is likely to reduce the need for constant replacement of failed chemicals with new ones. © 2014 Society of Chemical Industry.
Lemaitre, D.; Sauquet, D.; Fofol, I.; Tanguy, L.; Jean, F. C.; Degoulet, P.
1995-01-01
Legacy systems are crucial for organizations since they support key functionalities. But they become obsolete with aging and the apparition of new techniques. Managing their evolution is a key issue in software engineering. This paper presents a strategy that has been developed at Broussais University Hospital in Paris to make a legacy system devoted to the management of health care units evolve towards a new up-to-date software. A two-phase evolution pathway is described. The first phase consists in separating the interface from the data storage and application control and in using a communication channel between the individualized components. The second phase proposes to use an object-oriented DBMS in place of the homegrown system. An application example for the management of hypertensive patients is described. PMID:8563252
3D-MHD Simulations of the Madison Dynamo Experiment
NASA Astrophysics Data System (ADS)
Bayliss, R. A.; Forest, C. B.; Wright, J. C.; O'Connell, R.
2003-10-01
Growth, saturation and turbulent evolution of the Madison dynamo experiment is investigated numerically using a 3-D pseudo-spectral simulation of the MHD equations; results of the simulations are used to predict behavior of the experiment. The code solves the self-consistent full evolution of the magnetic and velocity fields. The code uses a spectral representation via spherical harmonic basis functions of the vector fields in longitude and latitude, and fourth order finite differences in the radial direction. The magnetic field evolution has been benchmarked against the laminar kinematic dynamo predicted by M.L. Dudley and R.W. James [Proc. R. Soc. Lond. A 425. 407-429 (1989)]. Initial results indicate that saturation of the magnetic field occurs so that the resulting perturbed backreaction of the induced magnetic field changes the velocity field such that it would no longer be linearly unstable, suggesting non-linear terms are necessary for explaining the resulting state. Saturation and self-excitation depend in detail upon the magnetic Prandtl number.
The Evolution of a Management Information System in an Outpatient Mental Health Institute.
ERIC Educational Resources Information Center
Davis, Doryn; Allen, Richard
1979-01-01
To promote greater accountability, supervisors in mental health facilities will be required to monitor activities of their organizations. The Outpatient Division of the Texas Research Institute of Mental Sciences has developed an administrative accounting based on management by objectives. Presents the evolution, philosophy, and format of the…
In 1990, Managing Troubled Waters concluded by stating three primary conclusions and then developing specific recommendations regarding their execution. Using the decade of the 90s, we examine the evolution of the U.S. EPA's Environmental Monitoring and Assessment Program's Coast...
Téllez-Rodríguez, Pilar; Raymond, Ben; Morán-Bertot, Ivis; Rodríguez-Cabrera, Lianet; Wright, Denis J; Borroto, Carlos G; Ayra-Pardo, Camilo
2014-06-16
Transgenic crops expressing Bt toxins have substantial benefits for growers in terms of reduced synthetic insecticide inputs, area-wide pest management and yield. This valuable technology depends upon delaying the evolution of resistance. The 'high dose/refuge strategy', in which a refuge of non-Bt plants is planted in close proximity to the Bt crop, is the foundation of most existing resistance management. Most theoretical analyses of the high dose/refuge strategy assume random oviposition across refugia and Bt crops. In this study we examined oviposition and survival of Spodoptera frugiperda across conventional and Bt maize and explored the impact of oviposition behavior on the evolution of resistance in simulation models. Over six growing seasons oviposition rates per plant were higher in Bt crops than in refugia. The Cry1F Bt maize variety retained largely undamaged leaves, and oviposition preference was correlated with the level of feeding damage in the refuge. In simulation models, damage-avoiding oviposition accelerated the evolution of resistance and either led to requirements for larger refugia or undermined resistance management altogether. Since larval densities affected oviposition preferences, pest population dynamics affected resistance evolution: larger refugia were weakly beneficial for resistance management if they increased pest population sizes and the concomitant degree of leaf damage. Damaged host plants have reduced attractiveness to many insect pests, and crops expressing Bt toxins are generally less damaged than conventional counterparts. Resistance management strategies should take account of this behavior, as it has the potential to undermine the effectiveness of existing practice, especially in the tropics where many pests are polyvoltinous. Efforts to bring down total pest population sizes and/or increase the attractiveness of damaged conventional plants will have substantial benefits for slowing the evolution of resistance.
Fourth Symposium on Chemical Evolution and the Origin and Evolution of Life
NASA Technical Reports Server (NTRS)
Wharton, Robert A., Jr. (Editor); Andersen, Dale T. (Editor); Bzik, Sara E. (Editor); Rummel, John D. (Editor)
1991-01-01
This symposium was held at the NASA Ames Research Center, Moffett Field, California, July 24-27, 1990. The NASA exobiology investigators reported their recent research findings. Scientific papers were presented in the following areas: cosmic evolution of biogenic compounds, prebiotic evolution (planetary and molecular), early evolution of life (biological and geochemical), evolution of advanced life, solar system exploration, and the Search for Extraterrestrial Intelligence (SETI).
IMPRESS: medical location-aware decision making during emergencies
NASA Astrophysics Data System (ADS)
Gkotsis, I.; Eftychidis, G.; Leventakis, G.; Mountzouris, M.; Diagourtas, D.; Kostaridis, A.; Hedel, R.; Olunczek, A.; Hahmann, S.
2017-09-01
Emergency situations and mass casualties involve several agencies and public authorities, which need to gather data from the incident scene and exchange geo-referenced information to provide fast and accurate first aid to the people in need. Tracking patients on their way to the hospitals can prove critical in taking lifesaving decisions. Increased and continuous flow of information combined by vital signs and geographic location of emergency victims can greatly reduce the response time of the medical emergency chain and improve the efficiency of disaster medicine activity. Recent advances in mobile positioning systems and telecommunications are providing the technology needed for the development of location-aware medical applications. IMPRESS is an advanced ICT platform based on adequate technologies for developing location-aware medical response during emergencies. The system incorporates mobile and fixed components that collect field data from diverse sources, support medical location and situation-based services and share information on the patient's transport from the field to the hospitals. In IMPRESS platform tracking of victims, ambulances and emergency services vehicles is integrated with medical, traffic and crisis management information into a common operational picture. The Incident Management component of the system manages operational resources together with patient tracking data that contain vital sign values and patient's status evolution. Thus, it can prioritize emergency transport decisions, based on medical and location-aware information. The solution combines positioning and information gathered and owned by various public services involved in MCIs or large-scale disasters. IMPRESS solution, were validated in field and table top exercises in cooperation with emergency services and hospitals.
Kilpatrick, K E; Romani, J H
1995-01-01
Health administration education in schools of public health has undergone a steady but remarkable evolution over the last five decades. What was once taught was simply an enumeration of statutory requirements and programs managed by public health agencies. This changed dramatically in the 1960s with the incorporation of both theoretical concepts and skills from the fields of public administration and business administration. In the 1990s, the differentiation between training required for public health administration and for health services administration has become increasingly blurred as institutional responsibility for the health of defined populations has necessitated the adoption of the community epidemiology perspective, long the centerpiece of public health programs, by all health services administration programs. The future challenge for programs located in schools of public health is to identify the unique characteristics of public health practice and to prepare graduates to assure that core public health functions are met adequately in the communities in which they will serve.
Update on Legionnaires’ disease: pathogenesis, epidemiology, detection and control
Hilbi, Hubert; Jarraud, Sophie; Hartland, Elizabeth; Buchrieser, Carmen
2010-01-01
Summary Legionellosis or Legionnaires’ disease is an emerging and often-fatal form of pneumonia that is most severe in elderly and immunocompromised people, an ever-increasing risk group for infection. In recent years, the genomics of Legionella spp. has significantly increased our knowledge of the pathogenesis of this disease by providing new insights into the evolution and genetic and physiological basis of Legionella–host interactions. The 7th international conference on Legionella, Legionella 2009, illustrated many recent conceptual advances in epidemiology, pathogenesis and ecology. Experts in different fields presented new findings on basic mechanisms of pathogen–host interactions and bacterial evolution, as well as the clinical management and environmental prevalence and persistence of Legionella. The presentations revealed remarkable facts about the genetic and metabolic basis of the intracellular lifestyle of Legionella and reported on its striking ability to manipulate host cell processes by molecular mimicry. Together, these investigations will lead to new approaches for the treatment and prevention of Legionnaires’ disease. PMID:20149105
Quantum gates by periodic driving.
Shi, Z C; Wang, W; Yi, X X
2016-02-25
Topological quantum computation has been extensively studied in the past decades due to its robustness against decoherence. One way to realize the topological quantum computation is by adiabatic evolutions-it requires relatively long time to complete a gate, so the speed of quantum computation slows down. In this work, we present a method to realize single qubit quantum gates by periodic driving. Compared to adiabatic evolution, the single qubit gates can be realized at a fixed time much shorter than that by adiabatic evolution. The driving fields can be sinusoidal or square-well field. With the sinusoidal driving field, we derive an expression for the total operation time in the high-frequency limit, and an exact analytical expression for the evolution operator without any approximations is given for the square well driving. This study suggests that the period driving could provide us with a new direction in regulations of the operation time in topological quantum computation.
Diversifying mechanisms in the on-farm evolution of crop mixtures.
Thomas, Mathieu; Thépot, Stéphanie; Galic, Nathalie; Jouanne-Pin, Sophie; Remoué, Carine; Goldringer, Isabelle
2015-06-01
While modern agriculture relies on genetic homogeneity, diversifying practices associated with seed exchange and seed recycling may allow crops to adapt to their environment. This socio-genetic model is an original experimental evolution design referred to as on-farm dynamic management of crop diversity. Investigating such model can help in understanding how evolutionary mechanisms shape crop diversity submitted to diverse agro-environments. We studied a French farmer-led initiative where a mixture of four wheat landraces called 'Mélange de Touselles' (MDT) was created and circulated within a farmers' network. The 15 sampled MDT subpopulations were simultaneously submitted to diverse environments (e.g. altitude, rainfall) and diverse farmers' practices (e.g. field size, sowing and harvesting date). Twenty-one space-time samples of 80 individuals each were genotyped using 17 microsatellite markers and characterized for their heading date in a 'common-garden' experiment. Gene polymorphism was studied using four markers located in earliness genes. An original network-based approach was developed to depict the particular and complex genetic structure of the landraces composing the mixture. Rapid differentiation among populations within the mixture was detected, larger at the phenotypic and gene levels than at the neutral genetic level, indicating potential divergent selection. We identified two interacting selection processes: variation in the mixture component frequencies, and evolution of within-variety diversity, that shaped the standing variability available within the mixture. These results confirmed that diversifying practices and environments maintain genetic diversity and allow for crop evolution in the context of global change. Including concrete measurements of farmers' practices is critical to disentangle crop evolution processes. © 2015 John Wiley & Sons Ltd.
2011-01-01
Background Ontologies are increasingly used to structure and semantically describe entities of domains, such as genes and proteins in life sciences. Their increasing size and the high frequency of updates resulting in a large set of ontology versions necessitates efficient management and analysis of this data. Results We present GOMMA, a generic infrastructure for managing and analyzing life science ontologies and their evolution. GOMMA utilizes a generic repository to uniformly and efficiently manage ontology versions and different kinds of mappings. Furthermore, it provides components for ontology matching, and determining evolutionary ontology changes. These components are used by analysis tools, such as the Ontology Evolution Explorer (OnEX) and the detection of unstable ontology regions. We introduce the component-based infrastructure and show analysis results for selected components and life science applications. GOMMA is available at http://dbs.uni-leipzig.de/GOMMA. Conclusions GOMMA provides a comprehensive and scalable infrastructure to manage large life science ontologies and analyze their evolution. Key functions include a generic storage of ontology versions and mappings, support for ontology matching and determining ontology changes. The supported features for analyzing ontology changes are helpful to assess their impact on ontology-dependent applications such as for term enrichment. GOMMA complements OnEX by providing functionalities to manage various versions of mappings between two ontologies and allows combining different match approaches. PMID:21914205
Data Management System (DMS) Evolution Analysis
NASA Technical Reports Server (NTRS)
Douglas, Katherine
1990-01-01
The all encompassing goal for the Data Management System (DMS) Evolution Analysis task is to develop an advocacy for ensuring that growth and technology insertion issues are properly and adequately addressed during DMS requirements specification, design, and development. The most efficient methods of addressing those issues are via planned and graceful evolution, technology transparency, and system growth margins. It is necessary that provisions, such as those previously mentioned, are made to accommodate advanced missions requirements (e.g., Human Space Exploration Programs) in addition to evolving Space Station Freedom operations and user requirements .
Multidimensional Simulations of Filament Channel Structure and Evolution
NASA Astrophysics Data System (ADS)
Karpen, J. T.
2007-10-01
Over the past decade, the NRL Solar Theory group has made steady progress toward formulating a comprehensive model of filament-channel structure and evolution, combining the results of our sheared 3D arcade model for the magnetic field with our thermal nonequilibrium model for the cool, dense material suspended in the corona. We have also discovered that, when a sheared arcade is embedded within the global dipolar field, the resulting stressed filament channel can erupt through the mechanism of magnetic breakout. Our progress has been largely enabled by the development and implementation of state-of-the-art 1D hydrodynamic and 3D magnetohydrodynamic (MHD) codes to simulate the field-aligned plasma thermodynamics and large-scale magnetic-field evolution, respectively. Significant questions remain, however, which could be answered with the advanced observations anticipated from Solar-B. In this review, we summarize what we have learned from our simulations about the magnetic and plasma structure, evolution, and eruption of filament channels, and suggest key observational objectives for Solar-B that will test our filament-channel and CME-initiation models and augment our understanding of the underlying physical processes.
Numerical modeling of the Madison Dynamo Experiment.
NASA Astrophysics Data System (ADS)
Bayliss, R. A.; Wright, J. C.; Forest, C. B.; O'Connell, R.
2002-11-01
Growth, saturation and turbulent evolution of the Madison dynamo experiment is investigated numerically using a 3-D pseudo-spectral simulation of the MHD equations; results of the simulations will be compared to results obtained from the experiment. The code, Dynamo (Fortran90), allows for full evolution of the magnetic and velocity fields. The induction equation governing B and the curl of the momentum equation governing V are separately or simultaneously solved. The code uses a spectral representation via spherical harmonic basis functions of the vector fields in longitude and latitude, and fourth order finite differences in the radial direction. The magnetic field evolution has been benchmarked against the laminar kinematic dynamo predicted by M.L. Dudley and R.W. James (M.L. Dudley and R.W. James, Time-dependent kinematic dynamos with stationary flows, Proc. R. Soc. Lond. A 425, p. 407 (1989)). Power balance in the system has been verified in both mechanically driven and perturbed hydrodynamic, kinematic, and dynamic cases. Evolution of the vacuum magnetic field has been added to facilitate comparison with the experiment. Modeling of the Madison Dynamo eXperiment will be presented.
Human Resource Management and Human Resource Development: Evolution and Contributions
ERIC Educational Resources Information Center
Richman, Nicole
2015-01-01
Research agrees that a high performance organization (HPO) cannot exist without an elevated value placed on human resource management (HRM) and human resource development (HRD). However, a complementary pairing of HRM and HRD has not always existed. The evolution of HRD from its roots in human knowledge transference to HRM and present day HRD…
Technologies for ECLSS Evolution
NASA Technical Reports Server (NTRS)
Diamant, Bryce L.
1990-01-01
Viewgraphs and discussion on technologies for Environmental Control and Life Support System (ECLSS) evolution are presented. Topics covered include: atmosphere revitalization including CO2 removal, CO2 reduction, O2 generation, and trace contaminant control; water recovery and management including urine processing, hygiene water processing, and potable water processing; and waste management. ECLSS technology schematics, process diagrams, and fluid interfaces are included.
Can composite digital monitoring biomarkers come of age? A framework for utilization.
Kovalchick, Christopher; Sirkar, Rhea; Regele, Oliver B; Kourtis, Lampros C; Schiller, Marie; Wolpert, Howard; Alden, Rhett G; Jones, Graham B; Wright, Justin M
2017-12-01
The application of digital monitoring biomarkers in health, wellness and disease management is reviewed. Harnessing the near limitless capacity of these approaches in the managed healthcare continuum will benefit from a systems-based architecture which presents data quality, quantity, and ease of capture within a decision-making dashboard. A framework was developed which stratifies key components and advances the concept of contextualized biomarkers. The framework codifies how direct, indirect, composite, and contextualized composite data can drive innovation for the application of digital biomarkers in healthcare. The de novo framework implies consideration of physiological, behavioral, and environmental factors in the context of biomarker capture and analysis. Application in disease and wellness is highlighted, and incorporation in clinical feedback loops and closed-loop systems is illustrated. The study of contextualized biomarkers has the potential to offer rich and insightful data for clinical decision making. Moreover, advancement of the field will benefit from innovation at the intersection of medicine, engineering, and science. Technological developments in this dynamic field will thus fuel its logical evolution guided by inputs from patients, physicians, healthcare providers, end-payors, actuarists, medical device manufacturers, and drug companies.
Barbier, O; Anract, P; Pluot, E; Larouserie, F; Sailhan, F; Babinet, A; Tomeno, B
2010-12-01
Extra-abdominal desmoid fibromatosis (EADF) is a benign tumoral condition, classically managed by more or less radical and sometimes mutilating excision. This treatment strategy is associated with a recurrence rate of nearly 50% according to various reports. EADF may show spontaneous stabilization over time. A retrospective series of 26 cases of EADF managed by simple observation was studied to assess spontaneous favorable evolution and identify possible factors impacting evolution. Eleven cases were of primary EADF with no treatment or surgery, and 15 of recurrence after surgery with no adjuvant treatment. MRI was the reference examination during follow-up. Twenty-four cases showed stabilization at a median 14 months; there were no cases of renewed evolution after stabilization. One primary tumor showed spontaneous regression, and one recurrence still showed evolution at end of follow-up (23 months). The sole factor impacting potential for evolution was prior surgery. No radiologic or pathologic criteria of evolution emerged from analysis. The present series, one of the largest dedicated to EADF managed by observation, confirmed recent literature findings: a conservative "wait-and-see" attitude is reasonable and should be considered when large-scale resection would entail significant functional or esthetic impairment. Level IV, retrospective study. Copyright © 2010 Elsevier Masson SAS. All rights reserved.
Karlen, Sarah J; Krubitzer, Leah
2006-01-01
The neocortex is that portion of the brain that is involved in volitional motor control, perception, cognition and a number of other complex behaviours exhibited by mammals, including humans. Indeed, the increase in the size of the cortical sheet and cortical field number is one of the hallmarks of human brain evolution. Fossil records and comparative studies of the neocortex indicate that early mammalian neocortices were composed of only a few parts or cortical fields, and that in some lineages such as primates, the neocortex expanded dramatically. More significantly, the number of cortical fields increased and the connectivity between cortical fields became more complex. While we do not know the exact transformation between this type of increase in cortical field number and connectivity; and the emergence of complex behaviours like those mentioned above, we know that species that have large neocorticies with multiple parts generally have more complex behaviours, both overt and covert. Although a number of inroads have been made into understanding how neurons in the neocortex respond to a variety of stimuli, the micro and macro circuitry of particular neocortical fields, and the molecular developmental events that construct current organization, very little is known about how more cortical fields are added in evolution. In particular, we do not know the rules of change, nor the constraints imposed on evolving nervous systems that dictate the particular phenotype that will ultimately emerge. One reason why these issues are unresolved is that the brain is a compromise between existing genetic constraints and the need to adapt. Thus, the functions that the brain generates are absolutely imperfect, although functionally optimized. This makes it very difficult to determine the rules of construction, to generate viable computational models of brain evolution, and to predict the direction of changes that may occur over time. Despite these obstacles, it is still possible to study the evolution of the neocortex. One way is to study the products of the evolutionary process--extant mammal brains-and to make inferences about the process. The second way to study brain evolution is to examine the developmental mechanisms that give rise to complex brains. We have begun to test our theories regarding cortical evolution, generated from comparative studies, by 'tweaking' in a developing nervous system what we believe is naturally being modified in evolution. Our goals are to identify the constraints imposed on the evolving neocortex, to disentangle the genetic and activity dependent mechanisms that give rise to complex brains, and ultimately to produce a cortical phenotype that is consistent with what would naturally occur in evolution.
Molecular Evolution in Historical Perspective.
Suárez-Díaz, Edna
2016-12-01
In the 1960s, advances in protein chemistry and molecular genetics provided new means for the study of biological evolution. Amino acid sequencing, nucleic acid hybridization, zone gel electrophoresis, and immunochemistry were some of the experimental techniques that brought about new perspectives to the study of the patterns and mechanisms of evolution. New concepts, such as the molecular evolutionary clock, and the discovery of unexpected molecular phenomena, like the presence of repetitive sequences in eukaryotic genomes, eventually led to the realization that evolution might occur at a different pace at the organismic and the molecular levels, and according to different mechanisms. These developments sparked important debates between defendants of the molecular and organismic approaches. The most vocal confrontations focused on the relation between primates and humans, and the neutral theory of molecular evolution. By the 1980s and 1990s, the construction of large protein and DNA sequences databases, and the development of computer-based statistical tools, facilitated the coming together of molecular and evolutionary biology. Although in its contemporary form the field of molecular evolution can be traced back to the last five decades, the field has deep roots in twentieth century experimental life sciences. For historians of science, the origins and consolidation of molecular evolution provide a privileged field for the study of scientific debates, the relation between technological advances and scientific knowledge, and the connection between science and broader social concerns.
Big Data Analytics in Healthcare
Belle, Ashwin; Thiagarajan, Raghuram; Soroushmehr, S. M. Reza; Beard, Daniel A.
2015-01-01
The rapidly expanding field of big data analytics has started to play a pivotal role in the evolution of healthcare practices and research. It has provided tools to accumulate, manage, analyze, and assimilate large volumes of disparate, structured, and unstructured data produced by current healthcare systems. Big data analytics has been recently applied towards aiding the process of care delivery and disease exploration. However, the adoption rate and research development in this space is still hindered by some fundamental problems inherent within the big data paradigm. In this paper, we discuss some of these major challenges with a focus on three upcoming and promising areas of medical research: image, signal, and genomics based analytics. Recent research which targets utilization of large volumes of medical data while combining multimodal data from disparate sources is discussed. Potential areas of research within this field which have the ability to provide meaningful impact on healthcare delivery are also examined. PMID:26229957
Big Data Analytics in Healthcare.
Belle, Ashwin; Thiagarajan, Raghuram; Soroushmehr, S M Reza; Navidi, Fatemeh; Beard, Daniel A; Najarian, Kayvan
2015-01-01
The rapidly expanding field of big data analytics has started to play a pivotal role in the evolution of healthcare practices and research. It has provided tools to accumulate, manage, analyze, and assimilate large volumes of disparate, structured, and unstructured data produced by current healthcare systems. Big data analytics has been recently applied towards aiding the process of care delivery and disease exploration. However, the adoption rate and research development in this space is still hindered by some fundamental problems inherent within the big data paradigm. In this paper, we discuss some of these major challenges with a focus on three upcoming and promising areas of medical research: image, signal, and genomics based analytics. Recent research which targets utilization of large volumes of medical data while combining multimodal data from disparate sources is discussed. Potential areas of research within this field which have the ability to provide meaningful impact on healthcare delivery are also examined.
Simulating the Coronal Evolution of AR 11437 Using SDO/HMI Magnetograms
NASA Astrophysics Data System (ADS)
Yardley, Stephanie L.; Mackay, Duncan H.; Green, Lucie M.
2018-01-01
The coronal magnetic field evolution of AR 11437 is simulated by applying the magnetofrictional relaxation technique of Mackay et al. A sequence of photospheric line-of-sight magnetograms produced by the Solar Dynamics Observatory (SDO)/Helioseismic Magnetic Imager (HMI) is used to drive the simulation and continuously evolve the coronal magnetic field of the active region through a series of nonlinear force-free equilibria. The simulation is started during the first stages of the active region emergence so that its full evolution from emergence to decay can be simulated. A comparison of the simulation results with SDO/Atmospheric Imaging Assembly (AIA) observations show that many aspects of the active region’s observed coronal evolution are reproduced. In particular, it shows the presence of a flux rope, which forms at the same location as sheared coronal loops in the observations. The observations show that eruptions occurred on 2012 March 17 at 05:09 UT and 10:45 UT and on 2012 March 20 at 14:31 UT. The simulation reproduces the first and third eruption, with the simulated flux rope erupting roughly 1 and 10 hr before the observed ejections, respectively. A parameter study is conducted where the boundary and initial conditions are varied along with the physical effects of Ohmic diffusion, hyperdiffusion, and an additional injection of helicity. When comparing the simulations, the evolution of the magnetic field, free magnetic energy, relative helicity and flux rope eruption timings do not change significantly. This indicates that the key element in reproducing the coronal evolution of AR 11437 is the use of line-of-sight magnetograms to drive the evolution of the coronal magnetic field.
NASA Astrophysics Data System (ADS)
Samaras, Achilleas G.; Koutitas, Christopher G.
2014-04-01
Coastal morphology evolves as the combined result of both natural- and human- induced factors that cover a wide range of spatial and temporal scales of effect. Areas in the vicinity of natural stream mouths are of special interest, as the direct connection with the upstream watershed extends the search for drivers of morphological evolution from the coastal area to the inland as well. Although the impact of changes in watersheds on the coastal sediment budget is well established, references that study concurrently the two fields and the quantification of their connection are scarce. In the present work, the impact of land-use changes in a watershed on coastal erosion is studied for a selected site in North Greece. Applications are based on an integrated approach to quantify the impact of watershed management on coastal morphology through numerical modeling. The watershed model SWAT and a shoreline evolution model developed by the authors (PELNCON-M) are used, evaluating with the latter the performance of the three longshore sediment transport rate formulae included in the model formulation. Results document the impact of crop abandonment on coastal erosion (agricultural land decrease from 23.3% to 5.1% is accompanied by the retreat of ~ 35 m in the vicinity of the stream mouth) and show the effect of sediment transport formula selection on the evolution of coastal morphology. Analysis denotes the relative importance of the parameters involved in the dynamics of watershed-coast systems, and - through the detailed description of a case study - is deemed to provide useful insights for researchers and policy-makers involved in their study.
Planetary Origin Evolution and Structure
NASA Technical Reports Server (NTRS)
Stevenson, David J.
2005-01-01
This wide-ranging grant supported theoretical modeling on many aspects of the formation, evolution and structure of planets and satellites. Many topics were studied during this grant period, including the evolution of icy bodies; the origin of magnetic fields in Ganymede; the thermal histories of terrestrial planets; the nature of flow inside giant planets (especially the coupling to the magnetic field) and the dynamics of silicate/iron mixing during giant impacts and terrestrial planet core formation. Many of these activities are ongoing and have not reached completion. This is the nature of this kind of research.
Phase-field model of domain structures in ferroelectric thin films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Y. L.; Hu, S. Y.; Liu, Z. K.
A phase-field model for predicting the coherent microstructure evolution in constrained thin films is developed. It employs an analytical elastic solution derived for a constrained film with arbitrary eigenstrain distributions. The domain structure evolution during a cubic{r_arrow}tetragonal proper ferroelectric phase transition is studied. It is shown that the model is able to simultaneously predict the effects of substrate constraint and temperature on the volume fractions of domain variants, domain-wall orientations, domain shapes, and their temporal evolution. {copyright} 2001 American Institute of Physics.
Magnetic field diffusion and dissipation in reversed-field plasmas
NASA Technical Reports Server (NTRS)
Drake, J. F.; Gladd, N. T.; Huba, J. D.
1981-01-01
A diffusion equation is derived which describes the evolution of a magnetic field in a plasma of arbitrary beta and resistivity. The equation is valid for a one-dimensional slab geometry, assumes the plasma remains in quasi-equilibrium throughout its evolution and does not include thermal transport. Scaling laws governing the rate of change of the magnetic energy, particle drift energy, and magnetic flux are calculated. It is found that the magnetic free energy can be substantially larger than the particle drift energy and can be an important energy reservoir in driving plasma instabilities (e.g., the lower-hybrid-drift instability). In addition, the effect of a spatially varying resistivity on the evolution of a reversed-field plasma is studied. The resistivity model used is based upon the anomalous transport properties associated with the nonlocal mode structure of the lower-hybrid-drift instability. The relevance of this research to laboratory plasmas (e.g., theta pinches, reversed-field theta pinches) and space plasmas (e.g., the earth's magnetotail) is discussed.
Genetic Epidemiology and Public Health: The Evolution From Theory to Technology.
Fallin, M Daniele; Duggal, Priya; Beaty, Terri H
2016-03-01
Genetic epidemiology represents a hybrid of epidemiologic designs and statistical models that explicitly consider both genetic and environmental risk factors for disease. It is a relatively new field in public health; the term was first coined only 35 years ago. In this short time, the field has been through a major evolution, changing from a field driven by theory, without the technology for genetic measurement or computational capacity to apply much of the designs and methods developed, to a field driven by rapidly expanding technology in genomic measurement and computational analyses while epidemiologic theory struggles to keep up. In this commentary, we describe 4 different eras of genetic epidemiology, spanning this evolution from theory to technology, what we have learned, what we have added to the broader field of public health, and what remains to be done. © The Author 2016. Published by Oxford University Press on behalf of the Johns Hopkins Bloomberg School of Public Health. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Potential drivers of virulence evolution in aquaculture
Kennedy, David A.; Kurath, Gael; Brito, Ilana L.; Purcell, Maureen K.; Read, Andrew F.; Winton, James R.; Wargo, Andrew R.
2016-01-01
Infectious diseases are economically detrimental to aquaculture, and with continued expansion and intensification of aquaculture, the importance of managing infectious diseases will likely increase in the future. Here, we use evolution of virulence theory, along with examples, to identify aquaculture practices that might lead to the evolution of increased pathogen virulence. We identify eight practices common in aquaculture that theory predicts may favor evolution toward higher pathogen virulence. Four are related to intensive aquaculture operations, and four others are related specifically to infectious disease control. Our intention is to make aquaculture managers aware of these risks, such that with increased vigilance, they might be able to detect and prevent the emergence and spread of increasingly troublesome pathogen strains in the future.
2015-02-02
CHRISTOPHER CRUMBLY, MANAGER OF THE SPACECRAFT PAYLOAD INTEGRATION AND EVOLUTION OFFICE, GAVE VISITORS AN INSIDER'S PERSPECTIVE ON THE CORE STAGE SIMULATOR AT MARSHALL AND ITS IMPORTANCE TO DEVELOPMENT OF THE SPACE LAUNCH SYSTEM. CHRISTOPHER CRUMBLY, MANAGER OF THE SPACECRAFT PAYLOAD INTEGRATION AND EVOLUTION OFFICE, GAVE VISITORS AN INSIDER'S PERSPECTIVE ON THE CORE STAGE SIMULATOR AT MARSHALL AND ITS IMPORTANCE TO DEVELOPMENT OF THE SPACE LAUNCH SYSTEM.
ERIC Educational Resources Information Center
Girardet, Céline; Berger, Jean-Louis
2018-01-01
Two studies were conducted to investigate the evolution of 71 Swiss vocational teachers' classroom management as a result of the inputs of a teacher education program, and to identify the factors that encouraged or impeded teacher change. Study 1 consisted of a longitudinal survey, and Study 2 of interviews. Longitudinal analyses were performed…
NASA Astrophysics Data System (ADS)
Voronin, A. A.; Panchenko, V. Ya; Zheltikov, A. M.
2016-06-01
High-intensity ultrashort laser pulses propagating in gas media or in condensed matter undergo complex nonlinear spatiotemporal evolution where temporal transformations of optical field waveforms are strongly coupled to an intricate beam dynamics and ultrafast field-induced ionization processes. At the level of laser peak powers orders of magnitude above the critical power of self-focusing, the beam exhibits modulation instabilities, producing random field hot spots and breaking up into multiple noise-seeded filaments. This problem is described by a (3 + 1)-dimensional nonlinear field evolution equation, which needs to be solved jointly with the equation for ultrafast ionization of a medium. Analysis of this problem, which is equivalent to solving a billion-dimensional evolution problem, is only possible by means of supercomputer simulations augmented with coordinated big-data processing of large volumes of information acquired through theory-guiding experiments and supercomputations. Here, we review the main challenges of supercomputations and big-data processing encountered in strong-field ultrafast optical physics and discuss strategies to confront these challenges.
A Strain of Bacillus sphaericus Causes Slower Development of Resistance in Culex quinquefasciatus
Pei, Guofeng; Oliveira, Cláudia M. F.; Yuan, Zhiming; Nielsen-LeRoux, Christina; Silva-Filha, Maria Helena; Yan, Jianpin; Regis, Lêda
2002-01-01
Two field-collected Culex quinquefasciatus colonies were subjected to selection pressure by three strains of Bacillus sphaericus, C3-41, 2362, and IAB59, under laboratory conditions. After 13 and 18 generations of exposure to high concentrations of C3-41 and IAB59, a field-collected low-level-resistant colony developed >144,000- and 46.3-fold resistance to strains C3-41 and IAB59, respectively. A field-collected susceptible colony was selected with 2362 and IAB59 for 46 and 12 generations and attained >162,000- and 5.7-fold resistance to the two agents, respectively. The pattern of resistance evolution in mosquitoes depended on continuous selection pressure, and the stronger the selection pressure, the more quickly resistance developed. The resistant colonies obtained after selection with B. sphaericus C3-41 and 2362 showed very high levels of cross-resistance to B. sphaericus 2362 and C3-41, respectively, but they displayed only low-level cross-resistance to IAB59. On the other hand, the IAB59-selected colonies had high cross-resistance to both strains C3-41 and 2362. Additionally, the slower evolution of resistance against strain IAB59 may be explained by the presence of another larvicidal factor. This is in agreement with the nontoxicity of the cloned and purified binary toxin (Bin1) of IAB59 for 2362-resistant larvae. We also verified that all the B. sphaericus-selected colonies showed no cross-resistance to Bacillus thuringiensis subsp. israelensis, suggesting that it would be a promising alternative in managing resistance to B. sphaericus in C. quinquefasciatus larvae. PMID:12039761
Influence of the turbulent motion on the chiral magnetic effect in the early universe
NASA Astrophysics Data System (ADS)
Dvornikov, Maxim; Semikoz, Victor B.
2017-02-01
We study the magnetohydrodynamics of relativistic plasmas accounting for the chiral magnetic effect (CME). To take into account the evolution of the plasma velocity, obeying the Navier-Stokes equation, we approximate it by the Lorentz force accompanied by the phenomenological drag time parameter. On the basis of this ansatz, we obtain the contributions of both the turbulence effects, resulting from the dynamo term, and the magnetic field instability, caused by the CME, to the evolution of the magnetic field governed by the modified Faraday equation. In this way, we explore the evolution of the magnetic field energy and the magnetic helicity density spectra in the early Universe plasma. We find that the right-left electron asymmetry is enhanced by the turbulent plasma motion in a strong seed magnetic field compared to the pure CME case studied earlier for the hot Universe plasma in the same broken phase.
Higher-Order Advection-Based Remap of Magnetic Fields in an Arbitrary Lagrangian-Eulerian Code
NASA Astrophysics Data System (ADS)
Cornille, Brian; White, Dan
2017-10-01
We will present methods formulated for the Eulerian advection stage of an arbitrary Lagrangian-Eulerian code for the new addition of magnetohydrodynamic (MHD) effects. The various physical fields are advanced in time using a Lagrangian formulation of the system. When this Lagrangian motion produces substantial distortion of the mesh, it can be difficult or impossible to progress the simulation forward. This is overcome by relaxation of the mesh while the physical fields are frozen. The code has already successfully been extended to include evolution of magnetic field diffusion during the Lagrangian motion stage. This magnetic field is discretized using an H(div) compatible finite element basis. The advantage of this basis is that the divergence-free constraint of magnetic fields is maintained exactly during the Lagrangian motion evolution. Our goal is to preserve this property during Eulerian advection as well. We will demonstrate this property and the importance of MHD effects in several numerical experiments. In pulsed-power experiments magnetic fields may be imposed or spontaneously generated. When these magnetic fields are present, the evolution of the experiment may differ from a comparable configuration without magnetic fields. Prepared by LLNL under Contract DE-AC52-07NA27344. Supported by DOE CSGF under Grant Number DE-FG02-97ER25308.
Origin and Evolution of Magnetic Field in PMS Stars: Influence of Rotation and Structural Changes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Emeriau-Viard, Constance; Brun, Allan Sacha, E-mail: constance.emeriau@cea.fr, E-mail: sacha.brun@cea.fr
During stellar evolution, especially in the pre-main-sequence phase, stellar structure and rotation evolve significantly, causing major changes in the dynamics and global flows of the star. We wish to assess the consequences of these changes on stellar dynamo, internal magnetic field topology, and activity level. To do so, we have performed a series of 3D HD and MHD simulations with the ASH code. We choose five different models characterized by the radius of their radiative zone following an evolutionary track computed by a 1D stellar evolution code. These models characterized stellar evolution from 1 to 50 Myr. By introducing amore » seed magnetic field in the fully convective model and spreading its evolved state through all four remaining cases, we observe systematic variations in the dynamical properties and magnetic field amplitude and topology of the models. The five MHD simulations develop a strong dynamo field that can reach an equipartition state between the kinetic and magnetic energies and even superequipartition levels in the faster-rotating cases. We find that the magnetic field amplitude increases as it evolves toward the zero-age main sequence. Moreover, the magnetic field topology becomes more complex, with a decreasing axisymmetric component and a nonaxisymmetric one becoming predominant. The dipolar components decrease as the rotation rate and the size of the radiative core increase. The magnetic fields possess a mixed poloidal-toroidal topology with no obvious dominant component. Moreover, the relaxation of the vestige dynamo magnetic field within the radiative core is found to satisfy MHD stability criteria. Hence, it does not experience a global reconfiguration but slowly relaxes by retaining its mixed stable poloidal-toroidal topology.« less
Teaching Evolution & the Nature of Science.
ERIC Educational Resources Information Center
Farber, Paul
2003-01-01
The theory of evolution provides direction in many fields, such as ecology, genetics, and embryology. Examines issues concerning the teaching of the subject in the United States. Presents a case study approach to teach about the nature of science using the theory of evolution. (SOE)
Spatially structured superinfection and the evolution of disease virulence.
Caraco, Thomas; Glavanakov, Stephan; Li, Shengua; Maniatty, William; Szymanski, Boleslaw K
2006-06-01
When pathogen strains differing in virulence compete for hosts, spatial structuring of disease transmission can govern both evolved levels of virulence and patterns in strain coexistence. We develop a spatially detailed model of superinfection, a form of contest competition between pathogen strains; the probability of superinfection depends explicitly on the difference in levels of virulence. We apply methods of adaptive dynamics to address the interplay of spatial dynamics and evolution. The mean-field approximation predicts evolution to criticality; any small increase in virulence capable of dynamical persistence is favored. Both pair approximation and simulation of the detailed model indicate that spatial structure constrains disease virulence. Increased spatial clustering reduces the maximal virulence capable of single-strain persistence and, more importantly, reduces the convergent-stable virulence level under strain competition. The spatially detailed model predicts that increasing the probability of superinfection, for given difference in virulence, increases the likelihood of between-strain coexistence. When strains differing in virulence can coexist ecologically, our results may suggest policies for managing diseases with localized transmission. Comparing equilibrium densities from the pair approximation, we find that introducing a more virulent strain into a host population infected by a less virulent strain can sometimes reduce total host mortality and increase global host density.
The origin, evolution and signatures of primordial magnetic fields.
Subramanian, Kandaswamy
2016-07-01
The universe is magnetized on all scales probed so far. On the largest scales, galaxies and galaxy clusters host magnetic fields at the micro Gauss level coherent on scales up to ten kpc. Recent observational evidence suggests that even the intergalactic medium in voids could host a weak ∼ 10(-16) Gauss magnetic field, coherent on Mpc scales. An intriguing possibility is that these observed magnetic fields are a relic from the early universe, albeit one which has been subsequently amplified and maintained by a dynamo in collapsed objects. We review here the origin, evolution and signatures of primordial magnetic fields. After a brief summary of magnetohydrodynamics in the expanding universe, we turn to magnetic field generation during inflation and phase transitions. We trace the linear and nonlinear evolution of the generated primordial fields through the radiation era, including viscous effects. Sensitive observational signatures of primordial magnetic fields on the cosmic microwave background, including current constraints from Planck, are discussed. After recombination, primordial magnetic fields could strongly influence structure formation, especially on dwarf galaxy scales. The resulting signatures on reionization, the redshifted 21 cm line, weak lensing and the Lyman-α forest are outlined. Constraints from radio and γ-ray astronomy are summarized. Astrophysical batteries and the role of dynamos in reshaping the primordial field are briefly considered. The review ends with some final thoughts on primordial magnetic fields.
The structure and evolution of coronal holes
NASA Technical Reports Server (NTRS)
Timothy, A. F.; Krieger, A. S.; Vaiana, G. S.
1975-01-01
Soft X-ray observations of coronal holes are analyzed to determine the structure, temporal evolution, and rotational properties of those features as well as possible mechanisms which may account for their almost rigid rotational characteristics. It is shown that coronal holes are open features with a divergent magnetic-field configuration resulting from a particular large-scale magnetic-field topology. They are apparently formed when the successive emergence and dispersion of active-region fields produce a swath of unipolar field founded by fields of opposite polarity, and they die when large-scale field patterns emerge which significantly distort the original field configuration. Two types of holes are described (compact and elongated), and three possible rotation mechanisms are considered: a rigidly rotating subphotospheric phenomenon, a linking of high and low latitudes by closed field lines, and an interaction between moving coronal material and open field lines.
NASA Technical Reports Server (NTRS)
Wei, C. Q.; Lee, L. C.; Wang, S.; Akasofu, S.-I.
1991-01-01
Spacecraft observations suggest that flux transfer events and interplanetary magnetic clouds may be associated with magnetic flux ropes which are magnetic flux tubes containing helical magnetic field lines. In the magnetic flux ropes, the azimuthal magnetic field is superposed on the axial field. The time evolution of a localized magnetic flux rope is studied. A two-dimensional compressible MHD simulation code with a cylindrical symmetry is developed to study the wave modes associated with the evolution of flux ropes. It is found that in the initial phase both the fast magnetosonic wave and the Alfven wave are developed in the flux rope. After this initial phase, the Alfven wave becomes the dominant wave mode for the evolution of the magnetic flux rope and the radial expansion velocity of the flux rope is found to be negligible. Numerical results further show that even for a large initial azimuthal component of the magnetic field, the propagation velocity along the axial direction of the flux rope remains the Alfven velocity. It is also found that the localized magnetic flux rope tends to evolve into two separate magnetic ropes propagating in opposite directions. The simulation results are used to study the evolution of magnetic flux ropes associated with flux transfer events observed at the earth's dayside magnetopause and magnetic clouds in the interplanetary space.
The dynamics of magnetic flux rings
NASA Technical Reports Server (NTRS)
Deluca, E. E.; Fisher, G. H.; Patten, B. M.
1993-01-01
The evolution of magnetic fields in the presence of turbulent convection is examined using results of numerical simulations of closed magnetic flux tubes embedded in a steady 'ABC' flow field, which approximate some of the important characteristics of a turbulent convecting flow field. Three different evolutionary scenarios were found: expansion to a steady deformed ring; collapse to a compact fat flux ring, separated from the expansion type of behavior by a critical length scale; and, occasionally, evolution toward an advecting, oscillatory state. The work suggests that small-scale flows will not have a strong effect on large-scale, strong fields.
NASA Astrophysics Data System (ADS)
Peltier, Yann; Erpicum, Sébastien; Archambeau, Pierre; Pirotton, Michel; Dewals, Benjamin
2016-04-01
Deltas are complex hydrosystems and ecosystems resulting from the interactions of a river system with a water body almost at rest. Anthropogenic factors (hydropower, flood management, development in the floodplains) lead to dramatic changes in sediment transport in the rivers and in sediment management practice. From continuous, the sediment transport becomes increasingly intermittent, with long periods of deficit in the sediment supply and short periods characterized by large supplies. Understanding how these intermittencies in the sediment supply affect the delta morphodynamics is of paramount importance for predicting the possible evolution and functioning of deltas. Deltas can reasonably be idealised as a reservoir, with an inlet channel representing the river and the sudden enlargement of the reservoir representing the water body at rest. Using such an ideal configuration enables the assessment of the influence of individual geometric and hydraulic parameters on the depositional patterns responsible for the morphodynamic evolution of the delta. Recent literature has shown that for very similar hydraulic boundary conditions, two very different types of flow fields may develop ("straight jet" vs. "meandering jet"), leading to totally different depositional patterns. In turn, these distinct depositional patterns affect the flow itself through a two-way coupling between the hydrodynamics and the morphodynamics of the deposits. These complex processes will be discussed in the proposed presentation, based on the results of over 160 experimental tests and corresponding numerical simulations.
Craddock, Charles; Hoelzer, Dieter; Komanduri, Krishna V
2018-05-31
In recent years we have seen a dramatic evolution of therapeutic approaches in the management of acute leukemia with hematopoietic stem cell transplantation (HCT). For both acute myeloid leukemia (AML) and acute lymphoblastic leukemia (ALL), alloHCT provides the best chance of long-term disease-free survival for significant subsets of patients. During this interval, we have witnessed an evolution of HCT from a therapy based on high-dose conditioning to our current understanding that its success depends both on cytoreduction and graft-versus-leukemia (GVL) effects mediated by adoptively transferred donor immune cells. Improvements in conditioning, infectious disease monitoring and management, histocompatibility testing and graft selection have successively improved outcomes, primarily due to a reduction in non-relapse mortality. Unfortunately, disease relapse remains a significant cause of treatment failure in both AML and ALL. Here, two distinguished experts, Prof. Charles Craddock and Prof. Dieter Hoelzer, reflect on the significant challenge of disease relapse following allogeneic HCT for AML and ALL, respectively. This is a review of the biology, current approaches, and future directions in the field and reflects concepts that were presented at the Third International Workshop on Biology, Prevention, and Treatment of Relapse after Stem Cell Transplantation held in Hamburg, Germany in November 2016 under the auspices of the EBMT and the ASBMT.
NASA Astrophysics Data System (ADS)
Jacob, Frédéric; Mekki, Insaf; Chikhaoui, Mohamed
2014-05-01
In the context of mitigating the pressures induced by global change combined with demography and market pressures, there is increasing societal demand and scientific need to understand the functioning of Mediterranean Rainfed Agrosystems (MRAs) for their potential to provide various environmental and economic services of importance such as food production, preservation of employment and local knowhow, downstream water delivery or mitigation of rural exodus. Efficient MRAs management strategies that allow for compromises between economic development and natural resources preservation are needed. Such strategies require innovative system based research, integration across approaches and scales. One of the major challenges is to make all contributions from different disciplines converging towards a reproducible transdisciplinary approach. The objective of this communication is to present the ALMIRA project, a Tunisian - Moroccan - French project which lasts four years (2014 - 2017). The communication details the societal context, the scientific positioning and the related work hypothesis, the study areas, the project structure, the expected outcomes and the partnership which capitalizes on long term collaborations. ALMIRA aims to explore the modulation of landscape mosaics within MRAs to optimize landscape services. To explore this new lever, ALMIRA proposes to design, implement and test a new Integrated Assessment Modelling approach that explicitly i) includes innovations and action means into prospective scenarii for landscape evolutions, and ii) addresses landscape mosaics and processes of interest from the agricultural field to the resource governance catchment. This requires tackling methodological challenges in relation to i) the design of spatially explicit landscape evolution scenarii, ii) the coupling of biophysical processes related to agricultural catchment hydrology, iii) the digital mapping of landscape properties and iv) the economic assessment of the landscape services. The new Integrated Assessment Modelling approach is implemented and tested within three catchments located in Tunisia, France, and Morocco. Beyond the obtaining of significant advances in the aforementioned methodological domains, and the understanding of landscape functioning and services for the considered catchments, outcomes are expected to help in revisiting former recommendations at the levels of agricultural field and resource governance catchment, and in identifying new levers that improve MRA management at the intermediate level of landscape mosaics.
The reversed and normal flux contributions to axial dipole decay for 1880-2015
NASA Astrophysics Data System (ADS)
Metman, M. C.; Livermore, P. W.; Mound, J. E.
2018-03-01
The axial dipole component of Earth's internal magnetic field has been weakening since at least 1840, an effect widely believed to be attributed to the evolution of reversed flux patches (RFPs). These are regions on the core-mantle boundary (CMB) where the sign of radial flux deviates from that of the dominant sign of hemispheric radial flux. We study dipole change over the past 135 years using the field models gufm1, COV-OBS.x1 and CHAOS-6; we examine the impact of the choice of magnetic equator on the identification of reversed flux, the contribution of reversed and normal flux to axial dipole decay, and how reversed and normal field evolution has influenced the axial dipole. We show that a magnetic equator defined as a null-flux curve of the magnetic field truncated at spherical harmonic degree 3 allows us to robustly identify reversed flux, which we demonstrate is a feature of at least degree 4 or 5. Additionally, our results indicate that the evolution of reversed flux accounts for approximately two-thirds of the decay of the axial dipole, while one third of the decay is attributed to the evolution of the normal field. We find that the decay of the axial dipole over the 20th century is associated with both the expansion and poleward migration of reversed flux patches. In contrast to this centennial evolution, changes in the structure of secular variation since epoch 2000 indicate that poleward migration currently plays a much reduced role in the ongoing dipole decay.
Evolution and convergence of the patterns of international scientific collaboration.
Coccia, Mario; Wang, Lili
2016-02-23
International research collaboration plays an important role in the social construction and evolution of science. Studies of science increasingly analyze international collaboration across multiple organizations for its impetus in improving research quality, advancing efficiency of the scientific production, and fostering breakthroughs in a shorter time. However, long-run patterns of international research collaboration across scientific fields and their structural changes over time are hardly known. Here we show the convergence of international scientific collaboration across research fields over time. Our study uses a dataset by the National Science Foundation and computes the fraction of papers that have international institutional coauthorships for various fields of science. We compare our results with pioneering studies carried out in the 1970s and 1990s by applying a standardization method that transforms all fractions of internationally coauthored papers into a comparable framework. We find, over 1973-2012, that the evolution of collaboration patterns across scientific disciplines seems to generate a convergence between applied and basic sciences. We also show that the general architecture of international scientific collaboration, based on the ranking of fractions of international coauthorships for different scientific fields per year, has tended to be unchanged over time, at least until now. Overall, this study shows, to our knowledge for the first time, the evolution of the patterns of international scientific collaboration starting from initial results described by literature in the 1970s and 1990s. We find a convergence of these long-run collaboration patterns between the applied and basic sciences. This convergence might be one of contributing factors that supports the evolution of modern scientific fields.
The thermal evolution of Mercury's Fe-Si core
NASA Astrophysics Data System (ADS)
Knibbe, Jurriën Sebastiaan; van Westrenen, Wim
2018-01-01
We have studied the thermal and magnetic field evolution of planet Mercury with a core of Fe-Si alloy to assess whether an Fe-Si core matches its present-day partially molten state, Mercury's magnetic field strength, and the observed ancient crustal magnetization. The main advantages of an Fe-Si core, opposed to a previously assumed Fe-S core, are that a Si-bearing core is consistent with the highly reduced nature of Mercury and that no compositional convection is generated upon core solidification, in agreement with magnetic field indications of a stable layer at the top of Mercury's core. This study also present the first implementation of a conductive temperature profile in the core where heat fluxes are sub-adiabatic in a global thermal evolution model. We show that heat migrates from the deep core to the outer part of the core as soon as heat fluxes at the outer core become sub-adiabatic. As a result, the deep core cools throughout Mercury's evolution independent of the temperature evolution at the core-mantle boundary, causing an early start of inner core solidification and magnetic field generation. The conductive layer at the outer core suppresses the rate of core growth after temperature differences between the deep and shallow core are relaxed, such that a magnetic field can be generated until the present. Also, the outer core and mantle operate at higher temperatures than previously thought, which prolongs mantle melting and mantle convection. The results indicate that S is not a necessary ingredient of Mercury's core, bringing bulk compositional models of Mercury more in line with reduced meteorite analogues.
NASA Astrophysics Data System (ADS)
Van de Put, Maarten L.; Sorée, Bart; Magnus, Wim
2017-12-01
The Wigner-Liouville equation is reformulated using a spectral decomposition of the classical force field instead of the potential energy. The latter is shown to simplify the Wigner-Liouville kernel both conceptually and numerically as the spectral force Wigner-Liouville equation avoids the numerical evaluation of the highly oscillatory Wigner kernel which is nonlocal in both position and momentum. The quantum mechanical evolution is instead governed by a term local in space and non-local in momentum, where the non-locality in momentum has only a limited range. An interpretation of the time evolution in terms of two processes is presented; a classical evolution under the influence of the averaged driving field, and a probability-preserving quantum-mechanical generation and annihilation term. Using the inherent stability and reduced complexity, a direct deterministic numerical implementation using Chebyshev and Fourier pseudo-spectral methods is detailed. For the purpose of illustration, we present results for the time-evolution of a one-dimensional resonant tunneling diode driven out of equilibrium.
NASA Astrophysics Data System (ADS)
Dao-ming, Lu
2018-05-01
The negativity of Wigner function (WF) is one of the important symbols of non-classical properties of light field. Therefore, it is of great significance to study the evolution of WF in dissipative process. The evolution formula of WF in laser process under the action of linear resonance force is given by virtue of thermo entangled state representation and the technique of integration within an ordered product of operator. As its application, the evolution of WF of thermal field and that of single-photon-added coherent state are discussed. The results show that the WF of thermal field maintains its original character. On the other hand, the negative region size and the depth of negativity of WF of single- photon-added coherent state decrease until it vanishes with dissipation. This shows that the non-classical property of single-photon-added coherent state is weakened, until it disappears with dissipation time increasing.
Dispersion Modeling Using Ensemble Forecasts Compared to ETEX Measurements.
NASA Astrophysics Data System (ADS)
Straume, Anne Grete; N'dri Koffi, Ernest; Nodop, Katrin
1998-11-01
Numerous numerical models are developed to predict long-range transport of hazardous air pollution in connection with accidental releases. When evaluating and improving such a model, it is important to detect uncertainties connected to the meteorological input data. A Lagrangian dispersion model, the Severe Nuclear Accident Program, is used here to investigate the effect of errors in the meteorological input data due to analysis error. An ensemble forecast, produced at the European Centre for Medium-Range Weather Forecasts, is then used as model input. The ensemble forecast members are generated by perturbing the initial meteorological fields of the weather forecast. The perturbations are calculated from singular vectors meant to represent possible forecast developments generated by instabilities in the atmospheric flow during the early part of the forecast. The instabilities are generated by errors in the analyzed fields. Puff predictions from the dispersion model, using ensemble forecast input, are compared, and a large spread in the predicted puff evolutions is found. This shows that the quality of the meteorological input data is important for the success of the dispersion model. In order to evaluate the dispersion model, the calculations are compared with measurements from the European Tracer Experiment. The model manages to predict the measured puff evolution concerning shape and time of arrival to a fairly high extent, up to 60 h after the start of the release. The modeled puff is still too narrow in the advection direction.
NASA Astrophysics Data System (ADS)
Yang, Fan; Fang, Dai-Ning; Liu, Bin
2012-01-01
An oxidation kinetics model is developed to account for the effects of the oxidation interface curvature and the oxidation-induced volume change or Pilling-Bedworth ratio. For the oxidation of Fe-Cr-Al-Y alloy fiber, the predictions agree well with experimental results. By considering the influence of the oxidation interface curvature on oxidation rates, the evolution of fluctuant oxidation interface is predicted. We also developed the phase field method (PFM) to simulate the evolution of the interface roughness. Both the theoretical model and the PFM results show that the interface will become smooth during high temperature oxidation. Stress distribution and evolution are calculated by PFM, which indicates that the stress level decreases as the interface morphology evolves.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lei, Yinkai; Cheng, Tian -Le; Wen, You -Hai
Microstructure evolution plays an important role in the performance degradation of SOFC electrodes. In this work, we propose a much improved phase field model to simulate the microstructure evolution in the electrodes of solid oxide fuel cell. We demonstrate that the tunability of the interfacial energy in this model has been significantly enhanced. Parameters are set to fit for the interfacial energies of a typical Ni-YSZ anode, an LSM-YSZ cathode and an artificial reference electrode, respectively. The contact angles at various triple junctions and the microstructure evolutions in two dimensions are calibrated to verify the model. As a demonstration ofmore » the capabilities of the model, three dimensional microstructure evolutions are simulated applying the model to the three different electrodes. The time evolutions of grain size and triple phase boundary density are analyzed. In addition, a recently proposed bound charge successive approximation algorithm is employed to calculate the effective conductivity of the electrodes during microstructure evolution. Furthermore, the effective conductivity of all electrodes are found to decrease during the microstructure evolution, which is attributed to the increased tortuosity and the loss of percolated volume fraction of the electrode phase.« less
Lei, Yinkai; Cheng, Tian -Le; Wen, You -Hai
2017-02-13
Microstructure evolution plays an important role in the performance degradation of SOFC electrodes. In this work, we propose a much improved phase field model to simulate the microstructure evolution in the electrodes of solid oxide fuel cell. We demonstrate that the tunability of the interfacial energy in this model has been significantly enhanced. Parameters are set to fit for the interfacial energies of a typical Ni-YSZ anode, an LSM-YSZ cathode and an artificial reference electrode, respectively. The contact angles at various triple junctions and the microstructure evolutions in two dimensions are calibrated to verify the model. As a demonstration ofmore » the capabilities of the model, three dimensional microstructure evolutions are simulated applying the model to the three different electrodes. The time evolutions of grain size and triple phase boundary density are analyzed. In addition, a recently proposed bound charge successive approximation algorithm is employed to calculate the effective conductivity of the electrodes during microstructure evolution. Furthermore, the effective conductivity of all electrodes are found to decrease during the microstructure evolution, which is attributed to the increased tortuosity and the loss of percolated volume fraction of the electrode phase.« less
2014-01-01
Background Transgenic crops expressing Bt toxins have substantial benefits for growers in terms of reduced synthetic insecticide inputs, area-wide pest management and yield. This valuable technology depends upon delaying the evolution of resistance. The ‘high dose/refuge strategy’, in which a refuge of non-Bt plants is planted in close proximity to the Bt crop, is the foundation of most existing resistance management. Most theoretical analyses of the high dose/refuge strategy assume random oviposition across refugia and Bt crops. Results In this study we examined oviposition and survival of Spodoptera frugiperda across conventional and Bt maize and explored the impact of oviposition behavior on the evolution of resistance in simulation models. Over six growing seasons oviposition rates per plant were higher in Bt crops than in refugia. The Cry1F Bt maize variety retained largely undamaged leaves, and oviposition preference was correlated with the level of feeding damage in the refuge. In simulation models, damage-avoiding oviposition accelerated the evolution of resistance and either led to requirements for larger refugia or undermined resistance management altogether. Since larval densities affected oviposition preferences, pest population dynamics affected resistance evolution: larger refugia were weakly beneficial for resistance management if they increased pest population sizes and the concomitant degree of leaf damage. Conclusions Damaged host plants have reduced attractiveness to many insect pests, and crops expressing Bt toxins are generally less damaged than conventional counterparts. Resistance management strategies should take account of this behavior, as it has the potential to undermine the effectiveness of existing practice, especially in the tropics where many pests are polyvoltinous. Efforts to bring down total pest population sizes and/or increase the attractiveness of damaged conventional plants will have substantial benefits for slowing the evolution of resistance. PMID:24935031
The Evolution of iSchool Movement (1988-2013): A Bibliometric View
ERIC Educational Resources Information Center
Shu, Fei; Mongeon, Phillippe
2016-01-01
The iSchool movement is a controversial topic within the library and information science (LIS) community. While some argue that the movement isolates small size schools and splits the LIS community others insist it will broaden the field of LIS and form an open and boundaryless iField. This study investigates the evolution of the iSchool movement…
NASA Astrophysics Data System (ADS)
Sharkov, N. A.; Sharkova, O. A.
2018-05-01
The paper identifies the importance of the Leonhard Euler's discoveries in the field of shipbuilding for the scientific evolution of academician A. N. Krylov and for the modern knowledge in survivability and safety of ships. The works by Leonard Euler "Marine Science" and "The Moon Motion New Theory" are discussed.
Distributed Data Processing in a United States Naval Shipyard.
1979-12-01
25 1. Evolution ........ ..................... 25 2. Motivations for Distributed Processing ... ....... 30 a. Extensibility...51 B. EVOLUTION ...... ........................ ... 51 C. CONCEPTS .... ... ........................ . 55 D. FORM AND STRUCTURE OF THE...motivations for, and the characteristics of, distributed processing as they apply to management information systems. 1. Evolution Prior to the advent of
Magnetic white dwarfs: Observations, theory and future prospects
NASA Astrophysics Data System (ADS)
García-Berro, Enrique; Kilic, Mukremin; Kepler, Souza Oliveira
2016-01-01
Isolated magnetic white dwarfs have field strengths ranging from 103G to 109G, and constitute an interesting class of objects. The origin of the magnetic field is still the subject of a hot debate. Whether these fields are fossil, hence the remnants of original weak magnetic fields amplified during the course of the evolution of the progenitor of white dwarfs, or on the contrary, are the result of binary interactions or, finally, other physical mechanisms that could produce such large magnetic fields during the evolution of the white dwarf itself, remains to be elucidated. In this work, we review the current status and paradigms of magnetic fields in white dwarfs, from both the theoretical and observational points of view.
NASA Astrophysics Data System (ADS)
Armigliato, Alberto; Pagnoni, Gianluca; Zaniboni, Filippo; Tinti, Stefano
2013-04-01
TRIDEC is a EU-FP7 Project whose main goal is, in general terms, to develop suitable strategies for the management of crises possibly arising in the Earth management field. The general paradigms adopted by TRIDEC to develop those strategies include intelligent information management, the capability of managing dynamically increasing volumes and dimensionality of information in complex events, and collaborative decision making in systems that are typically very loosely coupled. The two areas where TRIDEC applies and tests its strategies are tsunami early warning and industrial subsurface development. In the field of tsunami early warning, TRIDEC aims at developing a Decision Support System (DSS) that integrates 1) a set of seismic, geodetic and marine sensors devoted to the detection and characterisation of possible tsunamigenic sources and to monitoring the time and space evolution of the generated tsunami, 2) large-volume databases of pre-computed numerical tsunami scenarios, 3) a proper overall system architecture. Two test areas are dealt with in TRIDEC: the western Iberian margin and the eastern Mediterranean. In this study, we focus on the western Iberian margin with special emphasis on the Portuguese coasts. The strategy adopted in TRIDEC plans to populate two different databases, called "Virtual Scenario Database" (VSDB) and "Matching Scenario Database" (MSDB), both of which deal only with earthquake-generated tsunamis. In the VSDB we simulate numerically few large-magnitude events generated by the major known tectonic structures in the study area. Heterogeneous slip distributions on the earthquake faults are introduced to simulate events as "realistically" as possible. The members of the VSDB represent the unknowns that the TRIDEC platform must be able to recognise and match during the early crisis management phase. On the other hand, the MSDB contains a very large number (order of thousands) of tsunami simulations performed starting from many different simple earthquake sources of different magnitudes and located in the "vicinity" of the virtual scenario earthquake. In the DSS perspective, the members of the MSDB have to be suitably combined based on the information coming from the sensor networks, and the results are used during the crisis evolution phase to forecast the degree of exposition of different coastal areas. We provide examples from both databases whose members are computed by means of the in-house software called UBO-TSUFD, implementing the non-linear shallow-water equations and solving them over a set of nested grids that guarantee a suitable spatial resolution (few tens of meters) in specific, suitably chosen, coastal areas.
Maximally Entangled States of a Two-Qubit System
NASA Astrophysics Data System (ADS)
Singh, Manu P.; Rajput, B. S.
2013-12-01
Entanglement has been explored as one of the key resources required for quantum computation, the functional dependence of the entanglement measures on spin correlation functions has been established, correspondence between evolution of maximally entangled states (MES) of two-qubit system and representation of SU(2) group has been worked out and the evolution of MES under a rotating magnetic field has been investigated. Necessary and sufficient conditions for the general two-qubit state to be maximally entangled state (MES) have been obtained and a new set of MES constituting a very powerful and reliable eigen basis (different from magic bases) of two-qubit systems has been constructed. In terms of the MES constituting this basis, Bell’s States have been generated and all the qubits of two-qubit system have been obtained. It has shown that a MES corresponds to a point in the SO(3) sphere and an evolution of MES corresponds to a trajectory connecting two points on this sphere. Analysing the evolution of MES under a rotating magnetic field, it has been demonstrated that a rotating magnetic field is equivalent to a three dimensional rotation in real space leading to the evolution of a MES.
Dynamical evolution of topology of large-scale structure. [in distribution of galaxies
NASA Technical Reports Server (NTRS)
Park, Changbom; Gott, J. R., III
1991-01-01
The nonlinear effects of statistical biasing and gravitational evolution on the genus are studied. The biased galaxy subset is picked for the first time by actually identifying galaxy-sized peaks above a fixed threshold in the initial conditions, and their subsequent evolution is followed. It is found that in the standard cold dark matter (CDM) model the statistical biasing in the locations of galaxies produces asymmetry in the genus curve and coupling with gravitational evolution gives rise to a shift in the genus curve to the left in moderately nonlinear regimes. Gravitational evolution alone reduces the amplitude of the genus curve due to strong phase correlations in the density field and also produces asymmetry in the curve. Results on the genus of the mass density field for both CDM and hot dark matter models are consistent with previous work by Melott, Weinberg, and Gott (1987).
Echave, Julian; Wilke, Claus O.
2018-01-01
For decades, rates of protein evolution have been interpreted in terms of the vague concept of “functional importance”. Slowly evolving proteins or sites within proteins were assumed to be more functionally important and thus subject to stronger selection pressure. More recently, biophysical models of protein evolution, which combine evolutionary theory with protein biophysics, have completely revolutionized our view of the forces that shape sequence divergence. Slowly evolving proteins have been found to evolve slowly because of selection against toxic misfolding and misinteractions, linking their rate of evolution primarily to their abundance. Similarly, most slowly evolving sites in proteins are not directly involved in function, but mutating them has large impacts on protein structure and stability. Here, we review the studies of the emergent field of biophysical protein evolution that have shaped our current understanding of sequence divergence patterns. We also propose future research directions to develop this nascent field. PMID:28301766
Successes and challenges of managing resistance in Helicoverpa armigera to Bt cotton in Australia.
Downes, Sharon; Mahon, Rod
2012-01-01
Bt cotton has been gradually released and adopted by Australian growers since 1996. It was initially deployed in Australia primarily to control the polyphagous pest Helicoverpa armigera (Hübner), which in the 1990s became increasingly difficult to control due to widespread resistance to synthetic chemical insecticides. Bt-cotton has become a key tool in a program of integrated pest management for the production system that reduces pesticide dependence and the problems associated with its use. Herein we overview the deployment of Bt cotton in Australia including its performance and the approaches used to prolong the evolution of resistance to it by H. armigera. An integral component of this approach is monitoring resistance in this pest. We outline resistance screening methods, as well as the characteristics of resistant strains of H. armigera that have been isolated from field populations, or selected in the laboratory. We then highlight the successes and challenges for Bt cotton in Australia by way of discussing adaptive resistance management in light of potential changes in resistance.
Relaxation of the chiral imbalance and the generation of magnetic fields in magnetars
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dvornikov, M. S., E-mail: maxdvo@izmiran.ru
2016-12-15
The model for the generation of magnetic fields in a neutron star, based on the magnetic field instability caused by the electroweak interaction between electrons and nucleons, is developed. Using the methods of the quantum field theory, the helicity flip rate of electrons in their scattering off protons in dense matter of a neutron star is calculated. The influence of the electroweak interaction between electrons and background nucleons on the process of the helicity flip is studied. The kinetic equation for the evolution of the chiral imbalance is derived. The obtained results are applied for the description of the magneticmore » fields evolution in magnetars.« less
NASA Technical Reports Server (NTRS)
Nakagawa, Y.
1980-01-01
A method of analysis for the MHD initial-boundary problem is presented in which the model's formulation is based on the method of nearcharacteristics developed by Werner (1968) and modified by Shin and Kot (1978). With this method, the physical causality relationship can be traced from the perturbation to the response as in the method of characteristics, while achieving the advantage of a considerable reduction in mathematical procedures. The method offers the advantage of examining not only the evolution of nonforce free fields, but also the changes of physical conditions in the atmosphere accompanying the evolution of magnetic fields. The physical validity of the method is demonstrated with examples, and their significance in interpreting observations is discussed.
Evolution of complexity following a quantum quench in free field theory
NASA Astrophysics Data System (ADS)
Alves, Daniel W. F.; Camilo, Giancarlo
2018-06-01
Using a recent proposal of circuit complexity in quantum field theories introduced by Jefferson and Myers, we compute the time evolution of the complexity following a smooth mass quench characterized by a time scale δ t in a free scalar field theory. We show that the dynamics has two distinct phases, namely an early regime of approximately linear evolution followed by a saturation phase characterized by oscillations around a mean value. The behavior is similar to previous conjectures for the complexity growth in chaotic and holographic systems, although here we have found that the complexity may grow or decrease depending on whether the quench increases or decreases the mass, and also that the time scale for saturation of the complexity is of order δ t (not parametrically larger).
MIGHTEE: The MeerKAT International GHz Tiered Extragalactic Exploration
NASA Astrophysics Data System (ADS)
Taylor, A. Russ; Jarvis, Matt
2017-05-01
The MeerKAT telescope is the precursor of the Square Kilometre Array mid-frequency dish array to be deployed later this decade on the African continent. MIGHTEE is one of the MeerKAT large survey projects designed to pathfind SKA key science in cosmology and galaxy evolution. Through a tiered radio continuum deep imaging project including several fields totaling 20 square degrees to microJy sensitivities and an ultra-deep image of a single 1 square degree field of view, MIGHTEE will explore dark matter and large scale structure, the evolution of galaxies, including AGN activity and star formation as a function of cosmic time and environment, the emergence and evolution of magnetic fields in galaxies, and the magnetic counter part to large scale structure of the universe.
NASA Astrophysics Data System (ADS)
Kumar, Ashish; Dasgupta, Dwaipayan; Maroudas, Dimitrios
2017-07-01
We report a systematic study of complex pattern formation resulting from the driven dynamics of single-layer homoepitaxial islands on surfaces of face-centered-cubic (fcc) crystalline conducting substrates under the action of an externally applied electric field. The analysis is based on an experimentally validated nonlinear model of mass transport via island edge atomic diffusion, which also accounts for edge diffusional anisotropy. We analyze the morphological stability and simulate the field-driven evolution of rounded islands for an electric field oriented along the fast edge diffusion direction. For larger-than-critical island sizes on {110 } and {100 } fcc substrates, we show that multiple necking instabilities generate complex island patterns, including not-simply-connected void-containing islands mediated by sequences of breakup and coalescence events and distributed symmetrically with respect to the electric field direction. We analyze the dependence of the formed patterns on the original island size and on the duration of application of the external field. Starting from a single large rounded island, we characterize the evolution of the number of daughter islands and their average size and uniformity. The evolution of the average island size follows a universal power-law scaling relation, and the evolution of the total edge length of the islands in the complex pattern follows Kolmogorov-Johnson-Mehl-Avrami kinetics. Our study makes a strong case for the use of electric fields, as precisely controlled macroscopic forcing, toward surface patterning involving complex nanoscale features.
ECOSYSTEM MANAGEMENT: DESPERATELY SEEKING A PARADIGM
Two competing views of ecosystem management have emerged. One is that ecosystem management is another stage in the continual evolution of the basic management paradigm - one that natural resource managers have followed in North America for a century. The other view is that ecosys...
Coronal and heliospheric magnetic flux circulation and its relation to open solar flux evolution
NASA Astrophysics Data System (ADS)
Lockwood, Mike; Owens, Mathew J.; Imber, Suzanne M.; James, Matthew K.; Bunce, Emma J.; Yeoman, Timothy K.
2017-06-01
Solar cycle 24 is notable for three features that can be found in previous cycles but which have been unusually prominent: (1) sunspot activity was considerably greater in the northern/southern hemisphere during the rising/declining phase; (2) accumulation of open solar flux (OSF) during the rising phase was modest, but rapid in the early declining phase; (3) the heliospheric current sheet (HCS) tilt showed large fluctuations. We show that these features had a major influence on the progression of the cycle. All flux emergence causes a rise then a fall in OSF, but only OSF with foot points in opposing hemispheres progresses the solar cycle via the evolution of the polar fields. Emergence in one hemisphere, or symmetric emergence without some form of foot point exchange across the heliographic equator, causes poleward migrating fields of both polarities in one or both (respectively) hemispheres which temporarily enhance OSF but do not advance the polar field cycle. The heliospheric field observed near Mercury and Earth reflects the asymmetries in emergence. Using magnetograms, we find evidence that the poleward magnetic flux transport (of both polarities) is modulated by the HCS tilt, revealing an effect on OSF loss rate. The declining phase rise in OSF was caused by strong emergence in the southern hemisphere with an anomalously low HCS tilt. This implies the recent fall in the southern polar field will be sustained and that the peak OSF has limited implications for the polar field at the next sunspot minimum and hence for the amplitude of cycle 25.
Liu, Zhuorong; Gao, Yulin; Luo, Ju; Lai, Fengxiang; Li, Yunhe; Fu, Qiang; Peng, Yufa
2011-06-01
Although rice (Oryza sativa L.) lines that express Bacillus thuringiensis (Bt) toxins have shown great potential for managing the major Lepidoptera pests of rice in southern China, including Sesamia inferens, their long-term use is dependent on managing resistance development to Bt toxins in pest populations. The maintenance of "natural" refuges, non-Bt expressing plants that are hosts for a target pest, has been proposed as a means to minimize the evolution of resistance to Bt toxins in transgenic plants. In the current study, field surveys and greenhouse experiments were conducted to identify host plants of S. inferens that could serve as "natural" refuges in rice growing areas of southern China. A field survey showed that 34 plant species in four families can be alternative host plants of S. inferens. Based on injury level under field conditions, rice (Oryza sativa L.); water oat (Zizania latifolia Griseb.); corn (Zea mays L.); tidalmarsh flatsedge (Cyperus serotinus Rottb.); and narrow-leaved cat-tail (Typha angustifolia Linn.) were identified as the primary host plant species of S. inferens. Greenhouse experiments further demonstrated that water oat, corn, and narrow-leaved cat-tail could support the survival and development of S. inferens. Interestingly, greenhouse experiments showed that S. inferens preferred to lay eggs on tidalmarsh flatsedge compared with the other three nonrice host species, although no pupae were found in the plants examined in field surveys. Few larvae were found to survive on tidalmarsh flatsedge in greenhouse bioassays, suggesting that tidalmarsh flatsedge could serve as a "dead-end" trap crop for S. inferens, but is not a candidate to serve as natural refuge to maintain susceptible S. inferens. Overall, these results suggest that water-oat, corn, and narrow-leaved cat-tail might serve as "natural refuge" for S. inferens in rice planting area of southern China when Bt rice varieties are planted.
Managing Risk in Safety Critical Operations - Lessons Learned from Space Operations
NASA Technical Reports Server (NTRS)
Gonzalez, Steven A.
2002-01-01
The Mission Control Center (MCC) at Johnson Space Center (JSC) has a rich legacy of supporting Human Space Flight operations throughout the Apollo, Shuttle and International Space Station eras. Through the evolution of ground operations and the Mission Control Center facility, NASA has gained a wealth of experience of what it takes to manage the risk in Safety Critical Operations, especially when human life is at risk. The focus of the presentation will be on the processes (training, operational rigor, team dynamics) that enable the JSC/MCC team to be so successful. The presentation will also share the evolution of the Mission Control Center architecture and how the evolution was introduced while managing the risk to the programs supported by the team. The details of the MCC architecture (e.g., the specific software, hardware or tools used in the facility) will not be shared at the conference since it would not give any additional insight as to how risk is managed in Space Operations.
Searching for quantum optimal controls under severe constraints
Riviello, Gregory; Tibbetts, Katharine Moore; Brif, Constantin; ...
2015-04-06
The success of quantum optimal control for both experimental and theoretical objectives is connected to the topology of the corresponding control landscapes, which are free from local traps if three conditions are met: (1) the quantum system is controllable, (2) the Jacobian of the map from the control field to the evolution operator is of full rank, and (3) there are no constraints on the control field. This paper investigates how the violation of assumption (3) affects gradient searches for globally optimal control fields. The satisfaction of assumptions (1) and (2) ensures that the control landscape lacks fundamental traps, butmore » certain control constraints can still prevent successful optimization of the objective. Using optimal control simulations, we show that the most severe field constraints are those that limit essential control resources, such as the number of control variables, the control duration, and the field strength. Proper management of these resources is an issue of great practical importance for optimization in the laboratory. For each resource, we show that constraints exceeding quantifiable limits can introduce artificial traps to the control landscape and prevent gradient searches from reaching a globally optimal solution. These results demonstrate that careful choice of relevant control parameters helps to eliminate artificial traps and facilitate successful optimization.« less
Managing Decisions on Changes in the Virtual Enterprise Evolution
NASA Astrophysics Data System (ADS)
Drissen-Silva, Marcus Vinicius; Rabelo, Ricardo José
VE evolution deals with problems that happen during the VE operation and that put on risk planned results. This requires the application of problem-solving mechanisms to guarantee the construction of a new but feasible VE plan. Grounded on Project Management and Decision Support Systems foundations, this paper proposes a distributed collaborative decision support system to manage the VE evolution. Its main rationale is that VE’s members are autonomous and hence that all the affected partners should discuss about the necessary changes on the current VE’s plan. In the proposed approach, this discussion is guided by a decision protocol, and the impact of decisions can be evaluated. Results of a first prototype implementation are presented and discussed, with a special focus on the part which regulates the argumentation, voting and comparison of possible solutions.
Teaching Evolution in the Galápagos
ERIC Educational Resources Information Center
Bruce, Katherine E.; Horan, Jennifer E.; Kelley, Patricia H.; Galizio, Mark
2009-01-01
Experiential learning can be an effective way to teach many concepts, and evolution is no exception. We describe the pedagogical techniques, class structure and learning objectives, travel logistics, and impact of three undergraduate honors-level experiential learning seminars that combined teaching topics related to evolution with a field trip to…
Two Types of Long-duration Quasi-static Evolution of Solar Filaments
NASA Astrophysics Data System (ADS)
Xing, C.; Li, H. C.; Jiang, B.; Cheng, X.; Ding, M. D.
2018-04-01
In this Letter, we investigate the long-duration quasi-static evolution of 12 pre-eruptive filaments (four active region (AR) and eight quiescent filaments), mainly focusing on the evolution of the filament height in 3D and the decay index of the background magnetic field. The filament height in 3D is derived through two-perspective observations of Solar Dynamics Observatory (SDO) and Solar TErrestrial RElations Observatory (STEREO). The coronal magnetic field is reconstructed using the potential field source surface model. A new finding is that the filaments we studied show two types of long-duration evolution: one type comprises a long-duration static phase and a short, slow rise phase with a duration of less than 12 hr and a speed of 0.1–0.7 km s‑1, while the other one only presents a slow rise phase but with an extremely long duration of more than 60 hr and a smaller speed of 0.01–0.2 km s‑1. At the moment approaching the eruption, the decay index of the background magnetic field at the filament height is similar for both AR and quiescent filaments. The average value and upper limit are ∼0.9 and ∼1.4, close to the critical index of torus instability. Moreover, the filament height and background magnetic field strength are also found to be linearly and exponentially related with the filament length, respectively.
Structure and evolution of the large scale solar and heliospheric magnetic fields. Ph.D. Thesis
NASA Technical Reports Server (NTRS)
Hoeksema, J. T.
1984-01-01
Structure and evolution of large scale photospheric and coronal magnetic fields in the interval 1976-1983 were studied using observations from the Stanford Solar Observatory and a potential field model. The solar wind in the heliosphere is organized into large regions in which the magnetic field has a componenet either toward or away from the sun. The model predicts the location of the current sheet separating these regions. Near solar minimum, in 1976, the current sheet lay within a few degrees of the solar equator having two extensions north and south of the equator. Soon after minimum the latitudinal extent began to increase. The sheet reached to at least 50 deg from 1978 through 1983. The complex structure near maximum occasionally included multiple current sheets. Large scale structures persist for up to two years during the entire interval. To minimize errors in determining the structure of the heliospheric field particular attention was paid to decreasing the distorting effects of rapid field evolution, finding the optimum source surface radius, determining the correction to the sun's polar field, and handling missing data. The predicted structure agrees with direct interplanetary field measurements taken near the ecliptic and with coronameter and interplanetary scintillation measurements which infer the three dimensional interplanetary magnetic structure. During most of the solar cycle the heliospheric field cannot be adequately described as a dipole.
Changes and Stability in Reasoning after a Field Trip to a Natural History Museum
ERIC Educational Resources Information Center
Tenenbaum, Harriet R.; To, Cheryl; Wormald, Daniel; Pegram, Emma
2015-01-01
Darwinian evolution is difficult to understand because of conceptual barriers stemming from intuitive ideas. This study examined understanding of evolution in 52 students (M = 14.48 years, SD = 0.89) before and after a guided field trip to a natural history museum and in a comparison group of 18 students (M = 14.17 years, SD = 0.79) who did not…
Reflections on the Evolution of Higher Education as a Field of Study in Canada
ERIC Educational Resources Information Center
Jones, Glen A.
2012-01-01
This paper provides a reflective analysis of the evolution of higher education as a field of scholarship in Canada. The first professors of higher education in Canada were appointed in the mid-1960s and, by the early-1970s, a small higher-education research community had emerged, with the creation of a national association and a scholarly journal.…
Radiation-MHD models of elephant trunks and globules in HII regions
NASA Astrophysics Data System (ADS)
Mackey, Jonathan; Lim, Andrew J.
2011-01-01
We study the formation and evolution of pillars of dense gas, known as elephant trunks, at the boundaries of HII regions, formed by shadowing of ionising radiation by dense clumps. The effects of magnetic fields on this process are investigated using 3D radiation-magnetohydrodynamics simulations. For a simulation in which an initially uniform magnetic field of strength \\vert B\\vert≃50 μG is oriented perpendicular to the radiation propagation direction, the field is swept into alignment with the pillar during its dynamical evolution, in agreement with observations of the ``Pillars of Creation'' in M16, and of some cometary globules. This effect is significantly enhanced when the simulation is re-run with a weaker field of ≃18 μG. A stronger field with \\vert B\\vert≃ 160 μG is sufficient to prevent this evolution completely, also significantly affecting the photoionisation process. Using a larger simulation domain it is seen that the pillar formation models studied in Mackey & Lim (2010) ultimately evolve to cometary structures in the absence of dense gas further from the star.
Risk evaluation mitigation strategies: the evolution of risk management policy.
Hollingsworth, Kristen; Toscani, Michael
2013-04-01
The United States Food and Drug Administration (FDA) has the primary regulatory responsibility to ensure that medications are safe and effective both prior to drug approval and while the medication is being actively marketed by manufacturers. The responsibility for safe medications prior to marketing was signed into law in 1938 under the Federal Food, Drug, and Cosmetic Act; however, a significant risk management evolution has taken place since 1938. Additional federal rules, entitled the Food and Drug Administration Amendments Act, were established in 2007 and extended the government's oversight through the addition of a Risk Evaluation and Mitigation Strategy (REMS) for certain drugs. REMS is a mandated strategy to manage a known or potentially serious risk associated with a medication or biological product. Reasons for this extension of oversight were driven primarily by the FDA's movement to ensure that patients and providers are better informed of drug therapies and their specific benefits and risks prior to initiation. This article provides an historical perspective of the evolution of medication risk management policy and includes a review of REMS programs, an assessment of the positive and negative aspects of REMS, and provides suggestions for planning and measuring outcomes. In particular, this publication presents an overview of the evolution of the REMS program and its implications.
NASA Technical Reports Server (NTRS)
1990-01-01
NASA's Office of Aeronautics and Space Technology conducted a workshop on technology for space station evolution 16-19 Jan. 1990. The purpose of the workshop was to collect and clarify Space Station Freedom technology requirements for evolution and to describe technologies that can potentially fill those requirements. These proceedings are organized into an Executive Summary and Overview and five volumes containing the Technology Discipline Presentations. Volume 2 consists of the technology discipline sections for the Data Management System and the Environmental Control and Life Support Systems. For each technology discipline, there is a Level 3 subsystem description, along with the invited papers.
Technology for Space Station Evolution. Volume 3: EVA/Manned Systems/Fluid Management System
NASA Technical Reports Server (NTRS)
1990-01-01
NASA's Office of Aeronautics and Space Technology (OAST) conducted a workshop on technology for space station evolution 16-19 Jan. 1990 in Dallas, Texas. The purpose of this workshop was to collect and clarify Space Station Freedom technology requirements for evolution and to describe technologies that can potentially fill those requirements. These proceedings are organized into an Executive Summary and Overview and five volumes containing the Technology Discipline Presentations. Volume 3 consists of the technology discipline sections for Extravehicular Activity/Manned Systems and the Fluid Management System. For each technology discipline, there is a Level 3 subsystem description, along with the papers.
Novel Aspects of Evolution of the Stokes Parameters for an Electromagnetic Wave in Anisotropic Media
NASA Astrophysics Data System (ADS)
Botet, R.; Kuratsuji, H.; Seto, R.
2006-08-01
Polarization of a plane electromagnetic wave travelling through a medium is studied in the slowly-varying field envelope approximation. It is shown that the problem is identical to the 4-momentum evolution of a negatively-charged massless relativistic particle in an electromagnetic field. The approach is exemplified by the resonant oscillations of circular polarization in a medium embedded in a static magnetic field and a modulated electric field. The effect of dissipation in the medium is discussed. It is shown that the Rabi oscillations are stable below a threshold depending on the absorption coefficient. Above it, oscillations disappear.
Wilson, Robert G; Young, Bryan G; Matthews, Joseph L; Weller, Stephen C; Johnson, William G; Jordan, David L; Owen, Micheal D K; Dixon, Philip M; Shaw, David R
2011-07-01
Weed management in glyphosate-resistant (GR) maize, cotton and soybean in the United States relies almost exclusively on glyphosate, which raises criticism for facilitating shifts in weed populations. In 2006, the benchmark study, a field-scale investigation, was initiated in three different GR cropping systems to characterize academic recommendations for weed management and to determine the level to which these recommendations would reduce weed population shifts. A majority of growers used glyphosate as the only herbicide for weed management, as opposed to 98% of the academic recommendations implementing at least two herbicide active ingredients and modes of action. The additional herbicides were applied with glyphosate and as soil residual treatments. The greater herbicide diversity with academic recommendations reduced weed population densities before and after post-emergence herbicide applications in 2006 and 2007, particularly in continuous GR crops. Diversifying herbicides reduces weed population densities and lowers the risk of weed population shifts and the associated potential for the evolution of glyphosate-resistant weeds in continuous GR crops. Altered weed management practices (e.g. herbicides or tillage) enabled by rotating crops, whether GR or non-GR, improves weed management and thus minimizes the effectiveness of only using chemical tactics to mitigate weed population shifts. Copyright © 2011 Society of Chemical Industry.
Lower crustal mush generation and evolution
NASA Astrophysics Data System (ADS)
Karakas, Ozge; Bachmann, Olivier; Dufek, Josef; Wright, Heather; Mangan, Margaret
2016-04-01
Recent seismic, field, and petrologic studies on several active and fossil volcanic settings provide important constraints on the time, volume, and melt fraction of their lower crustal magma bodies. However, these studies provide an incomplete picture of the time and length scales involved during their thermal and compositional evolution. What has been lacking is a thermal model that explains the temporal evolution and state of the lower crustal magma bodies during their growth. Here we use a two-dimensional thermal model and quantify the time and length scales involved in the long-term thermal and compositional evolution of the lower crustal mush regions underlying the Salton Sea Geothermal Field (USA), Mt St Helens (USA), and the Ivrea-Verbano Zone (North Italy). Although a number of seismic, tectonic, petrologic, and field studies explained the tectonic and magmatic evolution of these regions, controversy remains on their lower crustal heat sources, melt fraction, and origin of erupted magmas. Our thermal modeling results suggest that given a geologically reasonable range of basalt fluxes (~10^-3 to 10^-4 km3/yr), a long-lived (>105 yr) crystalline mush is formed in the lower crust. The state of the lower crustal mush is strongly influenced by the magma flux, crustal thickness, and water content of intruded basalt, giving an average melt fraction of <0.2 in thin crust with dry injections (Salton Sea Geothermal Field) and up to 0.4-0.5 in thicker crust with wet injections (Mt St Helens and Ivrea Zone). The melt in the lower crustal mush is mainly evolving through fractional crystallization of basalt with minor crustal assimilation in all regions, in agreement with isotopic studies. Quantification of the lower crustal mush regions is key to understanding the mass and heat balance in the crust, evolution of magma plumbing systems, and geothermal energy exploration.
Evolution and inheritance of animal mitochondrial DNA: rules and exceptions.
Ladoukakis, Emmanuel D; Zouros, Eleftherios
2017-12-01
Mitochondrial DNA (mtDNA) has been studied intensely for "its own" merit. Its role for the function of the cell and the organism remains a fertile field, its origin and evolution is an indispensable part of the evolution of life and its interaction with the nuclear DNA is among the most important cases of genome synergism and co-evolution. Also, mtDNA was proven one of the most useful tools in population genetics and molecular phylogenetics. In this article we focus on animal mtDNA and discuss briefly how our views about its structure, function and transmission have changed, how these changes affect the information we have accumulated through its use in the fields of phylogeny and population structure and what are the most important questions that remain open for future research.
Integrating Competition for Food, Hosts, or Mates via Experimental Evolution.
Rodrigues, Leonor R; Duncan, Alison B; Clemente, Salomé H; Moya-Laraño, Jordi; Magalhães, Sara
2016-02-01
Competitive interactions shape the evolution of organisms. However, often it is not clear whether competition is the driving force behind the patterns observed. The recent use of experimental evolution in competitive environments can help establish such causality. Unfortunately, this literature is scattered, as competition for food, mates, and hosts are subject areas that belong to different research fields. Here, we group these bodies of literature, extract common processes and patterns concerning the role of competition in shaping evolutionary trajectories, and suggest perspectives stemming from an integrative view of competition across these research fields. This review reinstates the power of experimental evolution in addressing the evolutionary consequences of competition, but highlights potential pitfalls in the design of such experiments. Copyright © 2015 Elsevier Ltd. All rights reserved.
THE EVOLUTION OF THE ELECTRIC CURRENT DURING THE FORMATION AND ERUPTION OF ACTIVE-REGION FILAMENTS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Jincheng; Yan, Xiaoli; Qu, Zhongquan
We present a comprehensive study of the electric current related to the formation and eruption of active region filaments in NOAA AR 11884. The vertical current on the solar surface was investigated by using vector magnetograms (VMs) observed by HMI on board the Solar Dynamics Observatory. To obtain the electric current along the filament's axis, we reconstructed the magnetic fields above the photosphere by using nonlinear force-free field extrapolation based on photospheric VMs. Spatio-temporal evolutions of the vertical current on the photospheric surface and the horizontal current along the filament's axis were studied during the long-term evolution and eruption-related period,more » respectively. The results show that the vertical currents of the entire active region behaved with a decreasing trend and the magnetic fields also kept decreasing during the long-term evolution. For the eruption-related evolution, the mean transverse field strengths decreased before two eruptions and increased sharply after two eruptions in the vicinity of the polarity inversion lines underneath the filament. The related vertical current showed different behaviors in two of the eruptions. On the other hand, a very interesting feature was found: opposite horizontal currents with respect to the current of the filament's axis appeared and increased under the filament before the eruptions and disappeared after the eruptions. We suggest that these opposite currents were carried by the new flux emerging from the photosphere bottom and might be the trigger mechanism for these filament eruptions.« less
Evolution of the magnetic field generated by the Kelvin-Helmholtz instability
DOE Office of Scientific and Technical Information (OSTI.GOV)
Modestov, M.; Bychkov, V.; Brodin, G.
2014-07-15
The Kelvin-Helmholtz instability in an ionized plasma is studied with a focus on the magnetic field generation via the Biermann battery (baroclinic) mechanism. The problem is solved by using direct numerical simulations of two counter-directed flows in 2D geometry. The simulations demonstrate the formation of eddies and their further interaction and merging resulting in a large single vortex. In contrast to general belief, it is found that the instability generated magnetic field may exhibit significantly different structures from the vorticity field, despite the mathematically identical equations controlling the magnetic field and vorticity evolution. At later stages of the nonlinear instabilitymore » development, the magnetic field may keep growing even after the hydrodynamic vortex strength has reached its maximum and started decaying due to dissipation.« less
Enterprise Framework for the Disciplined Evolution of Legacy Systems
1997-10-01
out important global issues early in the planning cycle and provides insight for developing a synergistic set of management and technical practices to achieve a disciplined approach to system evolution.
Paolino, Aubrey R; Gassmann, Aaron J
2017-05-11
The western corn rootworm, Diabrotica virgifera virgifera LeConte, is among the most serious insect pests of maize in North America. One strategy used to manage this pest is transgenic maize that produces one or more crystalline (Cry) toxins derived from the bacterium Bacillus thuringiensis (Bt). To delay Bt resistance by insect pests, refuges of non-Bt maize are grown in conjunction with Bt maize. Two factors influencing the success of the refuge strategy to delay resistance are the inheritance of resistance and fitness costs, with greater delays in resistance expected when inheritance of resistance is recessive and fitness costs are present. We measured inheritance and fitness costs of resistance for two strains of western corn rootworm with field-evolved resistance to Cry3Bb1 maize. Plant-based and diet-based bioassays revealed that the inheritance of resistance was non-recessive. In a greenhouse experiment, in which larvae were reared on whole maize plants in field soil, no fitness costs of resistance were detected. In a laboratory experiment, in which larvae experienced intraspecific and interspecific competition for food, a fitness cost of delayed larval development was identified, however, no other fitness costs were found. These findings of non-recessive inheritance of resistance and minimal fitness costs, highlight the potential for the rapid evolution of resistance to Cry3Bb1 maize by western corn rootworm, and may help to improve resistance management strategies for this pest.
NASA Technical Reports Server (NTRS)
Wu, S. T.; Nakagawa, Y.; Han, S. M.; Dryer, M.
1982-01-01
The evolution of the magnetic field and the manner of conversion of thermal energy into different forms in the corona following a solar flare are investigated by means of a nonplane magnetohydrodynamic (MHD) analysis. All three components of magnetic field and velocity are treated in a physically self-consistent manner, with all physical variables as functions of time (t) and two spatial coordinates (r, theta). The difference arising from the initial magnetic field, either twisted (force-free) or non-twisted (potential), is demonstrated. Consideration is given to two initial field topologies (open vs. closed). The results demonstrate that the conversion of magnetic energy is faster for the case of the initially twisted (force-free) field than for the initially untwisted (potential) field. In addition, the twisted field is found to produce a complex structure of the density enhancements.
Role of electric fields in the MHD evolution of the kink instability
Lapenta, Giovanni; Skender, Marina
2017-02-17
Here, the discovery of electrostatic fields playing a crucial role in establishing plasma motion in the flux conversion and dynamo processes in reversed field pinches is revisited. In order to further elucidate the role of the electrostatic fields, a flux rope configuration susceptible to the kink instability is numerically studied with anMHDcode. Simulated nonlinear evolution of the kink instability is found to confirm the crucial role of the electrostatic fields. Anew insight is gained on the special function of the electrostatic fields: they lead the plasma towards the reconnection site at the mode resonant surface. Without this step the plasmamore » column could not relax to its nonlinear state, since no other agent is present to perform this role. While the inductive field generated directly by the kink instability is the dominant flow driver, the electrostatic field is found to allow the motion in the vicinity of the reconnection region.« less
Role of electric fields in the MHD evolution of the kink instability
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lapenta, Giovanni; Skender, Marina
Here, the discovery of electrostatic fields playing a crucial role in establishing plasma motion in the flux conversion and dynamo processes in reversed field pinches is revisited. In order to further elucidate the role of the electrostatic fields, a flux rope configuration susceptible to the kink instability is numerically studied with anMHDcode. Simulated nonlinear evolution of the kink instability is found to confirm the crucial role of the electrostatic fields. Anew insight is gained on the special function of the electrostatic fields: they lead the plasma towards the reconnection site at the mode resonant surface. Without this step the plasmamore » column could not relax to its nonlinear state, since no other agent is present to perform this role. While the inductive field generated directly by the kink instability is the dominant flow driver, the electrostatic field is found to allow the motion in the vicinity of the reconnection region.« less
NASA Astrophysics Data System (ADS)
Chicrala, André; Dallaqua, Renato Sergio; Antunes Vieira, Luis Eduardo; Dal Lago, Alisson; Rodríguez Gómez, Jenny Marcela; Palacios, Judith; Coelho Stekel, Tardelli Ronan; Rezende Costa, Joaquim Eduardo; da Silva Rockenbach, Marlos
2017-10-01
The behavior of Active Regions (ARs) is directly related to the occurrence of some remarkable phenomena in the Sun such as solar flares or coronal mass ejections (CME). In this sense, changes in the magnetic field of the region can be used to uncover other relevant features like the evolution of the ARs magnetic structure and the plasma flow related to it. In this work we describe the evolution of the magnetic structure of the active region AR NOAA12443 observed from 2015/10/30 to 2015/11/10, which may be associated with several X-ray flares of classes C and M. The analysis is based on observations of the solar surface and atmosphere provided by HMI and AIA instruments on board of the SDO spacecraft. In order to investigate the magnetic energy buildup and release of the ARs, we shall employ potential and linear force free extrapolations based on the solar surface magnetic field distribution and the photospheric velocity fields.
Evolutionary ethnobiology and cultural evolution: opportunities for research and dialog.
Santoro, Flávia Rosa; Nascimento, André Luiz Borba; Soldati, Gustavo Taboada; Ferreira Júnior, Washington Soares; Albuquerque, Ulysses Paulino
2018-01-09
The interest in theoretical frameworks that improve our understanding of social-ecological systems is growing within the field of ethnobiology. Several evolutionary questions may underlie the relationships between people and the natural resources that are investigated in this field. A new branch of research, known as evolutionary ethnobiology (EE), focuses on these questions and has recently been formally conceptualized. The field of cultural evolution (CE) has significantly contributed to the development of this new field, and it has introduced the Darwinian concepts of variation, competition, and heredity to studies that focus on the dynamics of local knowledge. In this article, we introduce CE as an important theoretical framework for evolutionary ethnobiological research. We present the basic concepts and assumptions of CE, along with the adjustments that are necessary for its application in EE. We discuss different ethnobiological studies in the context of this new framework and the new opportunities for research that exist in this area. We also propose a dialog that includes our findings in the context of cultural evolution.
Cáceres, Rafaela; Coromina, Narcís; Malińska, Krystyna; Marfà, Oriol
2015-03-01
This study aimed to monitor process parameters when two by-products (green waste - GW, and the solid fraction of cattle slurry - SFCS) were composted to obtain growing media. Using compost in growing medium mixtures involves prolonged composting processes that can last at least half a year. It is therefore crucial to study the parameters that affect compost stability as measured in the field in order to shorten the composting process at composting facilities. Two mixtures were prepared: GW25 (25% GW and 75% SFCS, v/v) and GW75 (75% GW and 25% SFCS, v/v). The different raw mixtures resulted in the production of two different growing media, and the evolution of process management parameters was different. A new parameter has been proposed to deal with attaining the thermophilic temperature range and maintaining it during composting, not only it would be useful to optimize composting processes, but also to assess the hygienization degree. Copyright © 2014 Elsevier Ltd. All rights reserved.
Evolution of Software-Only-Simulation at NASA IV and V
NASA Technical Reports Server (NTRS)
McCarty, Justin; Morris, Justin; Zemerick, Scott
2014-01-01
Software-Only-Simulations have been an emerging but quickly developing field of study throughout NASA. The NASA Independent Verification Validation (IVV) Independent Test Capability (ITC) team has been rapidly building a collection of simulators for a wide range of NASA missions. ITC specializes in full end-to-end simulations that enable developers, VV personnel, and operators to test-as-you-fly. In four years, the team has delivered a wide variety of spacecraft simulations that have ranged from low complexity science missions such as the Global Precipitation Management (GPM) satellite and the Deep Space Climate Observatory (DSCOVR), to the extremely complex missions such as the James Webb Space Telescope (JWST) and Space Launch System (SLS).This paper describes the evolution of ITCs technologies and processes that have been utilized to design, implement, and deploy end-to-end simulation environments for various NASA missions. A comparison of mission simulators are discussed with focus on technology and lessons learned in complexity, hardware modeling, and continuous integration. The paper also describes the methods for executing the missions unmodified flight software binaries (not cross-compiled) for verification and validation activities.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Yuan; Bei, Hongbin; Wang, Yanli
Deformation behavior and local strain evolutions upon loading and unloading of a bulk metallic glass (BMG) were systematically investigated by in situ digital image correlation (DIC). Distinct fluctuations and irreversible local strains were observed before the onset of macroscopic yielding. Statistical analysis shows that these fluctuations might be related to intrinsic structural heterogeneities, and that the evolution history and characteristics of local strain fields play an important role in the subsequent initiation of shear bands. Effects of sample size, pre-strain, and loading conditions were systematically analyzed in terms of the probability distributions of the resulting local strain fields. It ismore » found that a higher degree of local shear strain heterogeneity corresponds to a more ductile stressestrain curve. Implications of these findings are discussed for the design of new materials.« less
Wu, Yuan; Bei, Hongbin; Wang, Yanli; ...
2015-05-16
Deformation behavior and local strain evolutions upon loading and unloading of a bulk metallic glass (BMG) were systematically investigated by in situ digital image correlation (DIC). Distinct fluctuations and irreversible local strains were observed before the onset of macroscopic yielding. Statistical analysis shows that these fluctuations might be related to intrinsic structural heterogeneities, and that the evolution history and characteristics of local strain fields play an important role in the subsequent initiation of shear bands. Effects of sample size, pre-strain, and loading conditions were systematically analyzed in terms of the probability distributions of the resulting local strain fields. It ismore » found that a higher degree of local shear strain heterogeneity corresponds to a more ductile stressestrain curve. Implications of these findings are discussed for the design of new materials.« less
NASA Astrophysics Data System (ADS)
Inoue, Shunsuke; Tokita, Shigeki; Hashida, Masaki; Sakabe, Shuji
2015-04-01
The temporal evolutions of electromagnetic fields generated by the interaction between ultraintense lasers (1.3 ×1018 and 8.2 ×1018W /c m2 ) and solid targets at a distance of several millimeters from the laser-irradiated region have been investigated by electron deflectometry. For three types of foil targets (insulating foil, conductive foil, and insulating foil onto which a metal disk was deposited), transient changes in the fields were observed. We found that the direction, strength, and temporal evolution of the generated fields differ markedly for these three types of targets. The results provide an insight for studying the emission dynamics of laser-accelerated fast electrons.
Scalar fields in black hole spacetimes
NASA Astrophysics Data System (ADS)
Thuestad, Izak; Khanna, Gaurav; Price, Richard H.
2017-07-01
The time evolution of matter fields in black hole exterior spacetimes is a well-studied subject, spanning several decades of research. However, the behavior of fields in the black hole interior spacetime has only relatively recently begun receiving some attention from the research community. In this paper, we numerically study the late-time evolution of scalar fields in both Schwarzschild and Kerr spacetimes, including the black hole interior. We recover the expected late-time power-law "tails" on the exterior (null infinity, timelike infinity, and the horizon). In the interior region, we find an interesting oscillatory behavior that is characterized by the multipole index ℓ of the scalar field. In addition, we also study the extremal Kerr case and find strong indications of an instability developing at the horizon.
Taming instability of magnetic field in chiral medium
NASA Astrophysics Data System (ADS)
Tuchin, Kirill
2018-01-01
Magnetic field is unstable in a medium with time-independent chiral conductivity. Owing to the chiral anomaly, the electromagnetic field and the medium exchange helicity which results in time-evolution of the chiral conductivity. Using the fastest growing momentum and helicity state of the vector potential as an ansatz, the time-evolution of the chiral conductivity and magnetic field is solved analytically. The solution for the hot and cold equations of state shows that the magnetic field does not develop an instability due to helicity conservation. Moreover, as a function of time, it develops a peak only if a significant part of the initial helicity is stored in the medium. The initial helicity determines the height and position of the peak.
An evolutionary outlook of air traffic flow management techniques
NASA Astrophysics Data System (ADS)
Kistan, Trevor; Gardi, Alessandro; Sabatini, Roberto; Ramasamy, Subramanian; Batuwangala, Eranga
2017-01-01
In recent years Air Traffic Flow Management (ATFM) has become pertinent even in regions without sustained overload conditions caused by dense traffic operations. Increasing traffic volumes in the face of constrained resources has created peak congestion at specific locations and times in many areas of the world. Increased environmental awareness and economic drivers have combined to create a resurgent interest in ATFM as evidenced by a spate of recent ATFM conferences and workshops mediated by official bodies such as ICAO, IATA, CANSO the FAA and Eurocontrol. Significant ATFM acquisitions in the last 5 years include South Africa, Australia and India. Singapore, Thailand and Korea are all expected to procure ATFM systems within a year while China is expected to develop a bespoke system. Asia-Pacific nations are particularly pro-active given the traffic growth projections for the region (by 2050 half of all air traffic will be to, from or within the Asia-Pacific region). National authorities now have access to recently published international standards to guide the development of national and regional operational concepts for ATFM, geared to Communications, Navigation, Surveillance/Air Traffic Management and Avionics (CNS+A) evolutions. This paper critically reviews the field to determine which ATFM research and development efforts hold the best promise for practical technological implementations, offering clear benefits both in terms of enhanced safety and efficiency in times of growing air traffic. An evolutionary approach is adopted starting from an ontology of current ATFM techniques and proceeding to identify the technological and regulatory evolutions required in the future CNS+A context, as the aviation industry moves forward with a clearer understanding of emerging operational needs, the geo-political realities of regional collaboration and the impending needs of global harmonisation.
A Review of Texture Evolution Mechanisms During Deformation by Rolling in Aluminum Alloys
NASA Astrophysics Data System (ADS)
Li, Shasha; Zhao, Qi; Liu, Zhiyi; Li, Fudong
2018-06-01
The current understanding of texture evolution during deformation by rolling in aluminum alloys was summarized. This included understanding the evolution mechanisms and several key factors of initial texture, microstructure, alloy composition, deformation temperature, stress-strain condition, and rolling geometry. Related models on predicting texture evolution during rolling were also discussed. Finally, for this research field, the recommendations for controlling the formation of rolling textures were proposed.
Fang, Wei; Li, Gao-Xiang; Yang, Yaping; Ficek, Zbigniew
2017-02-06
We study the dynamics of two two-level atoms embedded near to the interface of paired meta-material slabs, one of negative permeability and the other of negative permittivity. This combination generates a strong surface plasmon field at the interface between the meta-materials. It is found that the symmetric and antisymmetric modes of the two-atom system couple to the plasmonic field with different Rabi frequencies. Including the Ohmic losses of the materials we find that the Rabi frequencies exhibit threshold behaviour which distinguish between the non-Markovian (memory preserving) and Markovian (memoryless) regimes of the evolution. Moreover, it is found that significantly different dynamics occur for the resonant and an off-resonant couplings of the plasmon field to the atoms. In the case of the resonant coupling, the field does not appear as a dissipative reservoir to the atoms. We adopt the image method and show that the dynamics of the two atoms coupled to the plasmon field are analogous to the dynamics of a four-atom system in a rectangular configuration. A large and long living entanglement mediated by the plasmonic field in both Markovian and non-Markovian regimes of the evolution is predicted. We also show that a simultaneous Markovian and non-Markovian regime of the evolution may occur in which the memory effects exist over a finite evolution time. In the case of an off-resonant coupling of the atoms to the plasmon field, the atoms interact with each other by exchanging virtual photons which results in the dynamics corresponding to those of two atoms coupled to a common reservoir. In addition, the entanglement is significantly enhanced.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vemareddy, P.; Wiegelmann, T., E-mail: vema@prl.res.in, E-mail: wiegelmann@mps.mpg.de
We study the quasi-static evolution of coronal magnetic fields constructed from the non-linear force-free field (NLFFF) approximation aiming to understand the relation between the magnetic field topology and ribbon emission during an X1.5 flare in active region (AR) NOAA 11166. The flare with a quasi-elliptical and two remote ribbons occurred on 2011 March 9 at 23:13 UT over a positive flux region surrounded by negative flux at the center of the bipolar AR. Our analysis of the coronal magnetic structure with potential and NLFFF solutions unveiled the existence of a single magnetic null point associated with a fan-spine topology andmore » is co-spatial with the hard X-ray source. The footpoints of the fan separatrix surface agree with the inner edge of the quasi-elliptical ribbon and the outer spine is linked to one of the remote ribbons. During the evolution, the slow footpoint motions stressed the field lines along the polarity inversion line and caused electric current layers in the corona around the fan separatrix surface. These current layers trigger magnetic reconnection as a consequence of dissipating currents, which are visible as cusp-shaped structures at lower heights. The reconnection process reorganized the magnetic field topology whose signatures are observed at the separatrices/quasi-separatrix layer structure in both the photosphere and the corona during the pre-to-post flare evolution. In agreement with previous numerical studies, our results suggest that the line-tied footpoint motions perturb the fan-spine system and cause null point reconnection, which eventually causes the flare emission at the footpoints of the field lines.« less
Pragmatics and the aims of language evolution.
Scott-Phillips, Thomas C
2017-02-01
Pragmatics has historically played a relatively peripheral role in language evolution research. This is a profound mistake. Here I describe how a pragmatic perspective can inform language evolution in the most fundamental way: by making clear what the natural objects of study are, and hence what the aims of the field should be.
NASA Astrophysics Data System (ADS)
Brazelton, W. J.; Mehta, M. P.; Baross, J. A.
2010-04-01
DNA sequencing and metabolic activity measurements show that lateral gene transfer promotes phenotypic diversity in single-species archaeal biofilms attached to hydrothermal chimneys. This system may be a useful model for early cellular evolution.
Thermal Evolution of Neutron Stars
NASA Astrophysics Data System (ADS)
Geppert, Ulrich R. M. E.
The thermal evolution of neutron stars is a subject of intense research, both theoretical and observational. The evolution depends very sensitively on the state of dense matter at supranuclear densities, which essentially controls the neutrino emission. The evolution depends, too, on the structure of the stellar outer layers which control the photon emission. Various internal heating processes and the magnetic field strength and structure will influence the thermal evolution. Of great importance for the cooling processes is also whether, when, and where superfluidity and superconductivity appear within the neutron star. This article describes and discusses these issues and presents neutron star cooling calculations based on a broad collection of equations of state for neutron star matter and internal magnetic field geometries. X-ray observations provide reliable data, which allow conclusions about the surface temperatures of neutron stars. To verify the thermal evolution models, the results of model calculations are compared with the body of observed surface temperatures and their distribution. Through these comparisons, a better understanding can be obtained of the physical processes that take place under extreme conditions in the interior of neutron
NASA Astrophysics Data System (ADS)
Ushakov, A. D.; Esin, A. A.; Chezganov, D. S.; Turygin, A. P.; Akhmatkhanov, A. R.; Hu, Q.; Sun, L.; Wei, X.; Shur, V. Ya
2017-10-01
The evolution of the domain structure during in-field cooling was in situ studied in [001]-cut single crystals of relaxor ferroelectric (1-x)Pb(Mg1/3Nb2/3)O3-xPbTiO3 (PMN-PT) with x = 0.33 with maximum of dielectric permittivity at 150°C. The main stages of domain evolution have been separated. The visualization of the static as-grown and polarized domain structures with high spatial resolution by piezoresponse force microscopy and scanning electron microscopy allowed measuring the characteristic features of maze and needle-like domain structures.
Agrawal, Anurag A; Johnson, Marc T J; Hastings, Amy P; Maron, John L
2013-05-01
The extent to which evolutionary change occurs in a predictable manner under field conditions and how evolutionary changes feed back to influence ecological dynamics are fundamental, yet unresolved, questions. To address these issues, we established eight replicate populations of native common evening primrose (Oenothera biennis). Each population was planted with 18 genotypes in identical frequency. By tracking genotype frequencies with microsatellite DNA markers over the subsequent three years (up to three generations, ≈5,000 genotyped plants), we show rapid and consistent evolution of two heritable plant life-history traits (shorter life span and later flowering time). This rapid evolution was only partially the result of differential seed production; genotypic variation in seed germination also contributed to the observed evolutionary response. Since evening primrose genotypes exhibited heritable variation for resistance to insect herbivores, which was related to flowering time, we predicted that evolutionary changes in genotype frequencies would feed back to influence populations of a seed predator moth that specializes on O. biennis. By the conclusion of the experiment, variation in the genotypic composition among our eight replicate field populations was highly predictive of moth abundance. These results demonstrate how rapid evolution in field populations of a native plant can influence ecological interactions.
Dynamics of Intense Currents in the Solar Wind
NASA Astrophysics Data System (ADS)
Artemyev, Anton V.; Angelopoulos, Vassilis; Halekas, Jasper S.; Vinogradov, Alexander A.; Vasko, Ivan Y.; Zelenyi, Lev M.
2018-06-01
Transient currents in the solar wind are carried by various magnetic field discontinuities that contribute significantly to the magnetic field fluctuation spectrum. Internal instabilities and dynamics of these discontinuities are believed to be responsible for magnetic field energy dissipation and corresponding charged particle acceleration and heating. Accurate modeling of these phenomena requires detailed investigation of transient current formation and evolution. By examining such evolution using a unique data set compiled from observations of the same solar wind flow by two spacecraft at Earth’s and Mars’s orbits, we show that it consists of several processes: discontinuity thinning (decrease in thickness normalized by the ion inertial length), intensification of currents normalized to the proton thermal current (i.e., the product of proton charge, density, and thermal velocity), and increase in the compressional component of magnetic field variations across discontinuities. The significant proton temperature variation around most observed discontinuities indicates possible proton heating. Plasma velocity jumps across the discontinuities are well correlated with Alfvén velocity changes. We discuss possible explanations of the observed discontinuity evolution. We also compare the observed evolution with predictions of models describing discontinuity formation due to Alfvén wave steepening. Our results show that discontinuity modeling likely requires taking into account both the effects of nonlinear Alfvén wave dynamics and solar wind expansion.
NASA Astrophysics Data System (ADS)
Virtanen, I. O. I.; Virtanen, I. I.; Pevtsov, A. A.; Yeates, A.; Mursula, K.
2017-07-01
Aims: We aim to use the surface flux transport model to simulate the long-term evolution of the photospheric magnetic field from historical observations. In this work we study the accuracy of the model and its sensitivity to uncertainties in its main parameters and the input data. Methods: We tested the model by running simulations with different values of meridional circulation and supergranular diffusion parameters, and studied how the flux distribution inside active regions and the initial magnetic field affected the simulation. We compared the results to assess how sensitive the simulation is to uncertainties in meridional circulation speed, supergranular diffusion, and input data. We also compared the simulated magnetic field with observations. Results: We find that there is generally good agreement between simulations and observations. Although the model is not capable of replicating fine details of the magnetic field, the long-term evolution of the polar field is very similar in simulations and observations. Simulations typically yield a smoother evolution of polar fields than observations, which often include artificial variations due to observational limitations. We also find that the simulated field is fairly insensitive to uncertainties in model parameters or the input data. Due to the decay term included in the model the effects of the uncertainties are somewhat minor or temporary, lasting typically one solar cycle.
Che, Wunan; Huang, Jianlei; Guan, Fang; Wu, Yidong; Yang, Yihua
2015-08-01
Beet armyworm, Spodoptera exigua (Hübner), is a worldwide pest of many crops. Chemical insecticides are heavily used for its control in China, and serious resistance has been evolved in the field to a variety of insecticides including emamectin benzoate. Through repeated backcrossing to a susceptible strain (WH-S) and selection with emamectin benzoate, the trait conferring resistance to emamectin benzoate in a field-collected population of S. exigua (moderately resistant to emamectin benzoate and strongly resistant to pyrethroids and indoxacarb) was introgressed into WH-S to generate a near-isogenic resistant strain (WH-EB). Compared with WH-S, the WH-EB strain developed a 1,110-fold resistance to emamectin benzoate and a high level of cross-resistance to abamectin (202-fold), with low levels of cross-resistance to cypermethrin (10-fold) and chlorfluazuron (7-fold), but no cross-resistance to representatives of another six different classes of insecticides (chlorantraniliprole, chlorfenapyr, indoxacarb, spinosad, tebufenozide, and chlorpyrifos). Resistance to emamectin benzoate in WH-EB was autosomal, incompletely dominant, and polygenic. Limited cross-resistance in WH-EB indicates that emamectin benzoate can be rotated with other classes of insecticides to which it does not show cross-resistance to delay the evolution of resistance in S. exigua. The incompletely dominant nature of resistance in S. exigua may explain the rapid evolution of resistance to emamectin benzoate in the field, and careful deployment of this chemical within a resistance management program should be considered. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
The missing links of neutron star evolution in the eROSITA all-sky X-ray survey
NASA Astrophysics Data System (ADS)
Pires, A. M.
2017-12-01
The observational manifestation of a neutron star is strongly connected with the properties of its magnetic field. During the star’s lifetime, the field strength and its changes dominate the thermo-rotational evolution and the source phenomenology across the electromagnetic spectrum. Signatures of magnetic field evolution are best traced among elusive groups of X-ray emitting isolated neutron stars (INSs), which are mostly quiet in the radio and γ-ray wavelengths. It is thus important to investigate and survey INSs in X-rays in the hope of discovering peculiar sources and the long-sought missing links that will help us to advance our understanding of neutron star evolution. The Extended Röntgen Survey with an Imaging Telescope Array (eROSITA), the primary instrument on the forthcoming Spectrum-RG mission, will scan the X-ray sky with unprecedented sensitivity and resolution. The survey has thus the unique potential to unveil the X-ray faint end of the neutron star population and probe sources that cannot be assessed by standard pulsar surveys.
The federal wildland policy: opportunities for wilderness fire management
G. Thomas Zimmerman; David L. Bunnell
2000-01-01
The Federal Wildland Fire Management Policy and Program Review represents the latest stage in the evolution of wildland fire management. This policy directs changes that consolidate past fire management practices into a single direction to achieve multidimensional objectives and creates increased opportunities for wilderness fire management. Objectives previously...
The evolution of the Pharma-CRO working relationship: AstraZeneca and Covance.
2017-08-01
Christopher Bailey (AstraZeneca) and Lee Goodwin (Covance) speak to Sankeetha Nadarajah (Managing Commissioning Editor, Bioanalysis) about the evolution of the Pharma-CRO working relationship between AstraZeneca and Covance.
Modelling of squall with the generalised kinetic equation
NASA Astrophysics Data System (ADS)
Annenkov, Sergei; Shrira, Victor
2014-05-01
We study the long-term evolution of random wind waves using the new generalised kinetic equation (GKE). The GKE derivation [1] does not assume the quasi-stationarity of a random wave field. In contrast with the Hasselmann kinetic equation, the GKE can describe fast spectral changes occurring when a wave field is driven out of a quasi-equilibrium state by a fast increase or decrease of wind, or by other factors. In these cases, a random wave field evolves on the dynamic timescale typical of coherent wave processes, rather than on the kinetic timescale predicted by the conventional statistical theory. Besides that, the generalised theory allows to trace the evolution of higher statistical moments of the field, notably the kurtosis, which is important for assessing the risk of freak waves and other applications. A new efficient and highly parallelised algorithm for the numerical simulation of the generalised kinetic equation is presented and discussed. Unlike in the case of the Hasselmann equation, the algorithm takes into account all (resonant and non-resonant) nonlinear wave interactions, but only approximately resonant interactions contribute to the spectral evolution. However, counter-intuitively, all interactions contribute to the kurtosis. Without forcing or dissipation, the algorithm is shown to conserve the relevant integrals. We show that under steady wind forcing the wave field evolution predicted by the GKE is close to the predictions of the conventional statistical theory, which is applicable in this case. In particular, we demonstrate the known long-term asymptotics for the evolution of the spectrum. When the wind forcing is not steady (in the simplest case, an instant increase or decrease of wind occurs), the generalised theory is the only way to study the spectral evolution, apart from the direct numerical simulation. The focus of the work is a detailed analysis of the fast evolution after an instant change of forcing, and of the subsequent transition to the new quasi-stationary state of a wave field. It is shown that both increase and decrease of wind lead to a significant transient increase of the dynamic kurtosis, although these changes remain small compared to the changes of the other component of the kurtosis, which is due to bound harmonics. A special consideration is given to the case of the squall, i.e. an instant and large (by a factor of 2-4) increase of wind, which lasts for O(102) characteristic wave periods. We show that fast adjustment processes lead to the formation of a transient spectrum, which has a considerably narrower peak than the spectra developed under a steady forcing. These transient spectra differ qualitatively from those predicted by the Hasselmann kinetic equation under the squall with the same parameters. 1. S.Annenkov, V.Shrira (2006) Role of non-resonant interactions in evolution of nonlinear random water wave fields, J. Fluid Mech. 561, 181-207.
Completing the evolution of supernova remnants and their bubbles
NASA Technical Reports Server (NTRS)
Slavin, Jonathan D.; Cox, Donald P.
1992-01-01
The filling fraction of hot gas in the ISM is reexamined with new calculations of the very long term evolution of SNRs and their fossil hot bubbles. Results are presented of a 1D numerical solution of the evolution of an SNR in a homogeneous medium with a nonthermal pressure corresponding to a 5-micro-G magnetic field and density of 0.2/cu cm. Comparison is made with a control simulation having no magnetic field pressure. It is found that the evolutions, once they have become radiative, differ in several significant ways, while both differ appreciably from qualitative pictures presented in the past. Over most of the evolution of either case, the hot bubble in the interior occupies only a small fraction of the shocked volume, the remainder in a thick shell of slightly compressed material. Column densities and radial distributions of O VI, N V, C IV, and Si IV as well as examples of absorption profiles for their strong UV lines are presented.
NASA Technical Reports Server (NTRS)
Ouandji, Cynthia; Wang, Jonathan; Arismendi, Dillon; Lee, Alonzo; Blaich, Justin; Gentry, Diana
2017-01-01
At its core, the field of microbial experimental evolution seeks to elucidate the natural laws governing the history of microbial life by understanding its underlying driving mechanisms. However, observing evolution in nature is complex, as environmental conditions are difficult to control. Laboratory-based experiments for observing population evolution provide more control, but manually culturing and studying multiple generations of microorganisms can be time consuming, labor intensive, and prone to inconsistency. We have constructed a prototype, closed system device that automates the process of directed evolution experiments in microorganisms. It is compatible with any liquid microbial culture, including polycultures and field samples, provides flow control and adjustable agitation, continuously monitors optical density (OD), and can dynamically control environmental pressures such as ultraviolet-C (UV-C) radiation and temperature. Here, the results of the prototype are compared to iterative exposure and survival assays conducted using a traditional hood, UV-C lamp, and shutter system.
77 FR 64394 - Redelegation of Authority for Office of Field Policy and Management
Federal Register 2010, 2011, 2012, 2013, 2014
2012-10-19
...'s decision, through the Office of Field Policy and Management leadership. Only the program Assistant... for Office of Field Policy and Management AGENCY: Office of Field Policy and Management, HUD. [[Page... Secretary for Field Policy and Management redelegates certain operational management authority to the HUD...
Crustal evolution inferred from Apollo magnetic measurements
NASA Technical Reports Server (NTRS)
Dyal, P.; Daily, W. D.; Vanyan, L. L.
1978-01-01
Magnetic field and solar wind plasma density measurements were analyzed to determine the scale size characteristics of remanent fields at the Apollo 12, 15, and 16 landing sites. Theoretical model calculations of the field-plasma interaction, involving diffusion of the remanent field into the solar plasma, were compared to the data. The information provided by all these experiments shows that remanent fields over most of the lunar surface are characterized by spatial variations as small as a few kilometers. Large regions (50 to 100 km) of the lunar crust were probably uniformly magnetized during early crustal evolution. Bombardment and subsequent gardening of the upper layers of these magnetized regions left randomly oriented, smaller scale (5 to 10 km) magnetic sources close to the surface. The larger scale size fields of magnitude approximately 0.1 gammas are measured by the orbiting subsatellite experiments and the small scale sized remanent fields of magnitude approximately 100 gammas are measured by the surface experiments.
Success stories and emerging themes in conservation physiology
Madliger, Christine L.; Cooke, Steven J.; Crespi, Erica J.; Funk, Jennifer L.; Hultine, Kevin R.; Hunt, Kathleen E.; Rohr, Jason R.; Sinclair, Brent J.; Suski, Cory D.; Willis, Craig K. R.; Love, Oliver P.
2016-01-01
The potential benefits of physiology for conservation are well established and include greater specificity of management techniques, determination of cause–effect relationships, increased sensitivity of health and disturbance monitoring and greater capacity for predicting future change. While descriptions of the specific avenues in which conservation and physiology can be integrated are readily available and important to the continuing expansion of the discipline of ‘conservation physiology’, to date there has been no assessment of how the field has specifically contributed to conservation success. However, the goal of conservation physiology is to foster conservation solutions and it is therefore important to assess whether physiological approaches contribute to downstream conservation outcomes and management decisions. Here, we present eight areas of conservation concern, ranging from chemical contamination to invasive species to ecotourism, where physiological approaches have led to beneficial changes in human behaviour, management or policy. We also discuss the shared characteristics of these successes, identifying emerging themes in the discipline. Specifically, we conclude that conservation physiology: (i) goes beyond documenting change to provide solutions; (ii) offers a diversity of physiological metrics beyond glucocorticoids (stress hormones); (iii) includes approaches that are transferable among species, locations and times; (iv) simultaneously allows for human use and benefits to wildlife; and (v) is characterized by successes that can be difficult to find in the primary literature. Overall, we submit that the field of conservation physiology has a strong foundation of achievements characterized by a diversity of conservation issues, taxa, physiological traits, ecosystem types and spatial scales. We hope that these concrete successes will encourage the continued evolution and use of physiological tools within conservation-based research and management plans. PMID:27382466
Success stories and emerging themes in conservation physiology.
Madliger, Christine L; Cooke, Steven J; Crespi, Erica J; Funk, Jennifer L; Hultine, Kevin R; Hunt, Kathleen E; Rohr, Jason R; Sinclair, Brent J; Suski, Cory D; Willis, Craig K R; Love, Oliver P
2016-01-01
The potential benefits of physiology for conservation are well established and include greater specificity of management techniques, determination of cause-effect relationships, increased sensitivity of health and disturbance monitoring and greater capacity for predicting future change. While descriptions of the specific avenues in which conservation and physiology can be integrated are readily available and important to the continuing expansion of the discipline of 'conservation physiology', to date there has been no assessment of how the field has specifically contributed to conservation success. However, the goal of conservation physiology is to foster conservation solutions and it is therefore important to assess whether physiological approaches contribute to downstream conservation outcomes and management decisions. Here, we present eight areas of conservation concern, ranging from chemical contamination to invasive species to ecotourism, where physiological approaches have led to beneficial changes in human behaviour, management or policy. We also discuss the shared characteristics of these successes, identifying emerging themes in the discipline. Specifically, we conclude that conservation physiology: (i) goes beyond documenting change to provide solutions; (ii) offers a diversity of physiological metrics beyond glucocorticoids (stress hormones); (iii) includes approaches that are transferable among species, locations and times; (iv) simultaneously allows for human use and benefits to wildlife; and (v) is characterized by successes that can be difficult to find in the primary literature. Overall, we submit that the field of conservation physiology has a strong foundation of achievements characterized by a diversity of conservation issues, taxa, physiological traits, ecosystem types and spatial scales. We hope that these concrete successes will encourage the continued evolution and use of physiological tools within conservation-based research and management plans.
Large-scale properties of the interplanetary magnetic field
NASA Technical Reports Server (NTRS)
Schatten, K. H.
1972-01-01
Early theoretical work of Parker is presented along with the observational evidence supporting his Archimedes spiral model. Variations present in the interplanetary magnetic field from the spiral angle are related to structures in the solar wind. The causes of these structures are found to be either nonuniform radial solar wind flow or the time evolution of the photospheric field. Coronal magnetic models are related to the connection between the solar magnetic field and the interplanetary magnetic field. Direct extension of the solar field-magnetic nozzle controversy is discussed along with the coronal magnetic models. Effects of active regions on the interplanetary magnetic field is discussed with particular reference to the evolution of interplanetary sectors. Interplanetary magnetic field magnitude variations are shown throughout the solar cycle. The percentage of time the field magnitude is greater than 10 gamma is shown to closely parallel sunspot number. The sun's polar field influence on the interplanetary field and alternative views of the magnetic field structure out of the ecliptic plane are presented. In addition, a variety of significantly different interplanetary field structures are discussed.
Near-Field Spectroscopy and Imaging of Subwavelength Plasmonic Terahertz Resonators
Mitrofanov, Oleg; Khromova, Irina; Siday, Thomas; ...
2016-04-22
We describe the temporal evolution of the terahertz (THz) field leading to the excitation of plasmonic resonances in carbon microfibers. The field evolution is mapped in space and time for the 3/2 wavelength resonance using a subwavelength aperture THz near-field probe with an embedded THz photoconductive detector. The excitation of surface waves at the fiber tips leads to the formation of a standing wave along the fiber. Local THz time-domain spectroscopy at one of the standing wave crests shows a clear third-order resonance peak at 1.65 THz, well described by the Lorentz model. Lastly, this application of the subwavelength aperturemore » THz near-field microscopy for mode mapping and local spectroscopy demonstrates the potential of near-field methods for studies of subwavelength plasmonic THz resonators.« less
EVOLUTION OF THE MAGNETIC FIELD LINE DIFFUSION COEFFICIENT AND NON-GAUSSIAN STATISTICS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Snodin, A. P.; Ruffolo, D.; Matthaeus, W. H.
The magnetic field line random walk (FLRW) plays an important role in the transport of energy and particles in turbulent plasmas. For magnetic fluctuations that are transverse or almost transverse to a large-scale mean magnetic field, theories describing the FLRW usually predict asymptotic diffusion of magnetic field lines perpendicular to the mean field. Such theories often depend on the assumption that one can relate the Lagrangian and Eulerian statistics of the magnetic field via Corrsin’s hypothesis, and additionally take the distribution of magnetic field line displacements to be Gaussian. Here we take an ordinary differential equation (ODE) model with thesemore » underlying assumptions and test how well it describes the evolution of the magnetic field line diffusion coefficient in 2D+slab magnetic turbulence, by comparisons to computer simulations that do not involve such assumptions. In addition, we directly test the accuracy of the Corrsin approximation to the Lagrangian correlation. Over much of the studied parameter space we find that the ODE model is in fairly good agreement with computer simulations, in terms of both the evolution and asymptotic values of the diffusion coefficient. When there is poor agreement, we show that this can be largely attributed to the failure of Corrsin’s hypothesis rather than the assumption of Gaussian statistics of field line displacements. The degree of non-Gaussianity, which we measure in terms of the kurtosis, appears to be an indicator of how well Corrsin’s approximation works.« less
NASA Astrophysics Data System (ADS)
Maneva, Y. G.; Poedts, S.
2018-05-01
The power spectra of magnetic field fluctuations in the solar wind typically follow a power-law dependence with respect to the observed frequencies and wave-numbers. The background magnetic field often influences the plasma properties, setting a preferential direction for plasma heating and acceleration. At the same time the evolution of the solar-wind turbulence at the ion and electron scales is influenced by the plasma properties through local micro-instabilities and wave-particle interactions. The solar-wind-plasma temperature and the solar-wind turbulence at sub- and sup-ion scales simultaneously show anisotropic features, with different components and fluctuation power in parallel with and perpendicular to the orientation of the background magnetic field. The ratio between the power of the magnetic field fluctuations in parallel and perpendicular direction at the ion scales may vary with the heliospheric distance and depends on various parameters, including the local wave properties and nonthermal plasma features, such as temperature anisotropies and relative drift speeds. In this work we have performed two-and-a-half-dimensional hybrid simulations to study the generation and evolution of anisotropic turbulence in a drifting multi-ion species plasma. We investigate the evolution of the turbulent spectral slopes along and across the background magnetic field for the cases of initially isotropic and anisotropic turbulence. Finally, we show the effect of the various turbulent spectra for the local ion heating in the solar wind.
NASA Astrophysics Data System (ADS)
Page, D.; Geppert, U.; Zannias, T.
2000-08-01
We investigate the thermal, magnetic and rotational evolution of isolated neutron stars assuming that the dipolar magnetic field is confined to the crust. Our treatment, for the first time, uses a fully general relativistic formalism not only for the thermal but also for the magnetic part, and includes partial general relativistic effects in the rotational part. Due to the fact that the combined evolution depends crucially upon the compactness of the star, three different equations of state have been employed in the calculations. In the absence of general relativistic effects, while upon increasing compactness a decrease of the crust thickness takes place leading into an accelerating field decay, the inclusion of general relativistic effects intend to "decelerate this acceleration". As a consequence we find that, within the crustal field hypothesis, a given equation of state is compatible with the observed distribution of pulsar periods P and period derivative &mathaccent "705Frelax dot; provided the initial field strength and current location as well as the magnitude of the impurity content are appropriately constrained. Finally, we access the flexibility of the soft, medium and stiff classes of equations of state as candidates in describing the state of the matter in the neutron star interiors. The comparison of our model calculations with observations, together with the consideration of independent information about neutron star evolution, suggests that a not too soft equation of state describes neutron star interiors and its cooling proceeds along the `standard' scenario.
Benelli, Giovanni
2014-12-30
True fruit flies (Diptera: Tephritidae) include over 4000 species, many of which constitute enormous threats to fruit and vegetable production worldwide. A number of Tephritidae are lekking species, forming aggregations in which males fight to defend a small territory where they court females and mate. Male-male contests also occur in non-lekking species, characterized by resource defense polygyny. Tephritidae females display agonistic behavior to maintain single oviposition sites and reduce larval competition for food. Here, how, where, when and why aggressive interactions occur in Tephritidae flies is reviewed. A number of neglected issues deserving further research are highlighted, with a special focus on diel periodicity of aggression, cues evoking aggressive behavior, the role of previous experience on fighting success and the evolution of behavioral lateralization of aggressive displays. In the final section, future directions to exploit this knowledge in Integrated Pest Management, with particular emphasis on enhancement of Sterile Insect Technique and interspecific competitive displacement in the field are suggested.
Benelli, Giovanni
2014-01-01
True fruit flies (Diptera: Tephritidae) include over 4000 species, many of which constitute enormous threats to fruit and vegetable production worldwide. A number of Tephritidae are lekking species, forming aggregations in which males fight to defend a small territory where they court females and mate. Male-male contests also occur in non-lekking species, characterized by resource defense polygyny. Tephritidae females display agonistic behavior to maintain single oviposition sites and reduce larval competition for food. Here, how, where, when and why aggressive interactions occur in Tephritidae flies is reviewed. A number of neglected issues deserving further research are highlighted, with a special focus on diel periodicity of aggression, cues evoking aggressive behavior, the role of previous experience on fighting success and the evolution of behavioral lateralization of aggressive displays. In the final section, future directions to exploit this knowledge in Integrated Pest Management, with particular emphasis on enhancement of Sterile Insect Technique and interspecific competitive displacement in the field are suggested. PMID:26463064
DOE Office of Scientific and Technical Information (OSTI.GOV)
Warren, Laura E.G.; Punglia, Rinaa S.; Wong, Julia S.
2014-11-15
Radiation therapy to the breast following breast conservation surgery has been the standard of care since randomized trials demonstrated equivalent survival compared to mastectomy and improved local control and survival compared to breast conservation surgery alone. Recent controversies regarding adjuvant radiation therapy have included the potential role of additional radiation to the regional lymph nodes. This review summarizes the evolution of regional nodal management focusing on 2 topics: first, the changing paradigm with regard to surgical evaluation of the axilla; second, the role for regional lymph node irradiation and optimal design of treatment fields. Contemporary data reaffirm prior studies showingmore » that complete axillary dissection may not provide additional benefit relative to sentinel lymph node biopsy in select patient populations. Preliminary data also suggest that directed nodal radiation therapy to the supraclavicular and internal mammary lymph nodes may prove beneficial; publication of several studies are awaited to confirm these results and to help define subgroups with the greatest likelihood of benefit.« less
[Involvement in a voluntary association in the field of cardiovascular disease prevention].
Robert, Bruno
2007-03-01
The progress of this research enables to consider the field of health from the angle of voluntary help by the involvement of an association of voluntary ill people in the field of the prevention of cardiovascular diseases. The evolution of the health system with scientific progress, ever-changing political scenes, currents of thought, interests at stake make that since the 50s, health and its standards have been considered from a biomedical angle by legitimizing the dominant position of experts. In this context, what is the place of the laymen in the management of the risk of arisen chronic disease? What are their representations of health? What appropriation do they make of the domestic work of health which tends to make them interiorize new standards and rules of life and modify their health behavior? Some conceptual and theoretical lights and the encounter in the field within an association in an anthropological position through immersion, participating observation at various demonstrations with a preventive aim and conversations led with ill or former ill volunteers put in light certain aspects of the problem. The investment of the volunteers makes sense and tends to come true around the concepts of donation, counter donation, socialization in a new health under the influence of the symbolism of the rites of passage and the testimony to work in the distribution of educational messages. The activity of the volunteer is transformed with a logic which is far from philanthropy. He becomes a mediatory health agent where some genuine work of organization, management, negotiation and training seems to fill the space little invested by experts in health prevention and education.
Management: The Missing Link to Army Leadership Doctrine
2003-01-01
46 B. FUNCTIONS AND PRINCIPLES OF MANAGEMENT ......................... 47 C. EVOLUTION OF COMMAND AND...business. 46 APPENDIX B FUNCTIONS AND PRINCIPLES OF MANAGEMENT Henri Fayol (1841-1925) Henri Fayol, a French engineer and director of mines, was
NASA Astrophysics Data System (ADS)
Sekimoto, K.; Takayama, M.
2010-12-01
The change in the distribution pattern of negative ions HO-, NOx- and COx- observed on arbitrary point-to-plane electrode configuration has been investigated by varying the angle of needle to the plane electrode, under atmospheric pressure corona discharge conditions. The stationary inhomogeneous electric field distributions between the point-to-plane electrodes with arbitrary needle angle were calculated. The experimental and theoretical results obtained suggested that the negative ion evolutions progress along field lines established between the electrodes with arbitrary configurations and the resulting terminal ion formation on a given field line is attributable to the electric field strength on the needle tip surface where the field line arose. The NOx- and COx- ions were dominantly produced on the field lines arising from the needle tip apex region with the highest electric field strength, while the field lines emanating from the tip peripheral regions with lower field strength resulted in the formation of the HO- ion.
Observations of two-dimensional magnetic field evolution in a plasma opening switch
NASA Astrophysics Data System (ADS)
Shpitalnik, R.; Weingarten, A.; Gomberoff, K.; Krasik, Ya.; Maron, Y.
1998-03-01
The time dependent magnetic field distribution was studied in a coaxial 100-ns positive-polarity Plasma Opening Switch (POS) by observing the Zeeman effect in ionic line emission. Measurements local in three dimensions are obtained by doping the plasma using laser evaporation techniques. Fast magnetic field penetration with a relatively sharp magnetic field front (⩽1 cm) is observed at the early stages of the pulse (t≲25). Later in the pulse, the magnetic field is observed at the load-side edge of the plasma, leaving "islands" of low magnetic field at the plasma center that last for about 10 ns. The two-dimensional (2-D) structure of the magnetic field in the r,z plane is compared to the results of an analytical model based on electron-magneto-hydrodynamics, that utilizes the measured 2-D plasma density distribution and assumes fast magnetic field penetration along both POS electrodes. The model results provide quantitative explanation for the magnetic field evolution observed.
Manipulation of quantum evolution
NASA Technical Reports Server (NTRS)
Cabera, David Jose Fernandez; Mielnik, Bogdan
1994-01-01
The free evolution of a non-relativistic charged particle is manipulated using time-dependent magnetic fields. It is shown that the application of a programmed sequence of magnetic pulses can invert the free evolution process, forcing an arbitrary wave packet to 'go back in time' to recover its past shape. The possibility of more general operations upon the Schrodinger wave packet is discussed.
NASA Astrophysics Data System (ADS)
Bourne, S. J.; Oates, S. J.; van Elk, J.
2018-06-01
Induced seismicity typically arises from the progressive activation of recently inactive geological faults by anthropogenic activity. Faults are mechanically and geometrically heterogeneous, so their extremes of stress and strength govern the initial evolution of induced seismicity. We derive a statistical model of Coulomb stress failures and associated aftershocks within the tail of the distribution of fault stress and strength variations to show initial induced seismicity rates will increase as an exponential function of induced stress. Our model provides operational forecasts consistent with the observed space-time-magnitude distribution of earthquakes induced by gas production from the Groningen field in the Netherlands. These probabilistic forecasts also match the observed changes in seismicity following a significant and sustained decrease in gas production rates designed to reduce seismic hazard and risk. This forecast capability allows reliable assessment of alternative control options to better inform future induced seismic risk management decisions.
Huang, Yu; Ma, Lingwei; Hou, Mengjing; Xie, Zheng; Zhang, Zhengjun
2016-01-28
By three-dimensional (3D) finite element method (FEM) plasmon mapping, gradual plasmon evolutions of both bonding dipole plasmon (BDP) and charge transfer plasmon (CTP) modes are visualized. In particular, the evolved BDP mode provides a physical insight into the rapid degeneration of electromagnetic hot spots in practical applications, while the rising CTP mode enables a huge near-field enhancement for potential plasmonic devices at infrared wavelengths.
Gravitational field calculations on a dynamic lattice by distributed computing.
NASA Astrophysics Data System (ADS)
Mähönen, P.; Punkka, V.
A new method of calculating numerically time evolution of a gravitational field in general relativity is introduced. Vierbein (tetrad) formalism, dynamic lattice and massively parallelized computation are suggested as they are expected to speed up the calculations considerably and facilitate the solution of problems previously considered too hard to be solved, such as the time evolution of a system consisting of two or more black holes or the structure of worm holes.
Gravitation Field Calculations on a Dynamic Lattice by Distributed Computing
NASA Astrophysics Data System (ADS)
Mähönen, Petri; Punkka, Veikko
A new method of calculating numerically time evolution of a gravitational field in General Relatity is introduced. Vierbein (tetrad) formalism, dynamic lattice and massively parallelized computation are suggested as they are expected to speed up the calculations considerably and facilitate the solution of problems previously considered too hard to be solved, such as the time evolution of a system consisting of two or more black holes or the structure of worm holes.
Speckle evolution with multiple steps of least-squares phase removal
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen Mingzhou; Dainty, Chris; Roux, Filippus S.
2011-08-15
We study numerically the evolution of speckle fields due to the annihilation of optical vortices after the least-squares phase has been removed. A process with multiple steps of least-squares phase removal is carried out to minimize both vortex density and scintillation index. Statistical results show that almost all the optical vortices can be removed from a speckle field, which finally decays into a quasiplane wave after such an iterative process.
Quantum gates by periodic driving
Shi, Z. C.; Wang, W.; Yi, X. X.
2016-01-01
Topological quantum computation has been extensively studied in the past decades due to its robustness against decoherence. One way to realize the topological quantum computation is by adiabatic evolutions—it requires relatively long time to complete a gate, so the speed of quantum computation slows down. In this work, we present a method to realize single qubit quantum gates by periodic driving. Compared to adiabatic evolution, the single qubit gates can be realized at a fixed time much shorter than that by adiabatic evolution. The driving fields can be sinusoidal or square-well field. With the sinusoidal driving field, we derive an expression for the total operation time in the high-frequency limit, and an exact analytical expression for the evolution operator without any approximations is given for the square well driving. This study suggests that the period driving could provide us with a new direction in regulations of the operation time in topological quantum computation. PMID:26911900
Lankinen, Åsa; Karlsson Green, Kristina
2015-01-01
Today it is accepted that the theories of sexual selection and sexual conflict are general and can be applied to both animals and plants. However, potentially due to a controversial history, plant studies investigating sexual selection and sexual conflict are relatively rare. Moreover, these theories and concepts are seldom implemented in research fields investigating related aspects of plant ecology and evolution. Even though these theories are complex, and can be difficult to study, we suggest that several fields in plant biology would benefit from incorporating and testing the impact of selection pressures generated by sexual selection and sexual conflict. Here we give examples of three fields where we believe such incorporation would be particularly fruitful, including (i) mechanisms of pollen–pistil interactions, (ii) mating-system evolution in hermaphrodites and (iii) plant immune responses to pests and pathogens. PMID:25613227
Lagrangian model for the evolution of turbulent magnetic and passive scalar fields
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hater, T.; Grauer, R.; Homann, H.
2011-01-15
In this Brief Report we present an extension of the recent fluid deformation (RFD) closure introduced by Chevillard and Meneveau [L. Chevillard and C. Meneveau, Phys. Rev. Lett. 97, 174501 (2006)] which was developed for modeling the time evolution of Lagrangian fluctuations in incompressible Navier-Stokes turbulence. We apply the RFD closure to study the evolution of magnetic and passive scalar fluctuations. This comparison is especially interesting since the stretching term for the magnetic field and for the gradient of the passive scalar are similar but differ by a sign such that the effect of stretching and compression by the turbulentmore » velocity field is reversed. Probability density functions (PDFs) of magnetic fluctuations and fluctuations of the gradient of the passive scalar obtained from the RFD closure are compared against PDFs obtained from direct numerical simulations.« less
NASA Astrophysics Data System (ADS)
Keszthelyi, Zsolt; Wade, Gregg A.; Petit, Veronique
2017-11-01
Large-scale dipolar surface magnetic fields have been detected in a fraction of OB stars, however only few stellar evolution models of massive stars have considered the impact of these fossil fields. We are performing 1D hydrodynamical model calculations taking into account evolutionary consequences of the magnetospheric-wind interactions in a simplified parametric way. Two effects are considered: i) the global mass-loss rates are reduced due to mass-loss quenching, and ii) the surface angular momentum loss is enhanced due to magnetic braking. As a result of the magnetic mass-loss quenching, the mass of magnetic massive stars remains close to their initial masses. Thus magnetic massive stars - even at Galactic metallicity - have the potential to be progenitors of "heavy" stellar mass black holes. Similarly, at Galactic metallicity, the formation of pair instability supernovae is plausible with a magnetic progenitor.
Long-term evolution of the force-free twisted magnetosphere of a magnetar
NASA Astrophysics Data System (ADS)
Akgün, T.; Cerdá-Durán, P.; Miralles, J. A.; Pons, J. A.
2017-12-01
We study the long-term quasi-steady evolution of the force-free magnetosphere of a magnetar coupled to its internal magnetic field. We find that magnetospheric currents can be maintained on long time-scales of the order of thousands of years. Meanwhile, the energy, helicity and twist stored in the magnetosphere all gradually increase over the course of this evolution, until a critical point is reached, beyond which a force-free magnetosphere cannot be constructed. At this point, some large-scale magnetospheric rearrangement, possibly resulting in an outburst or a flare, must occur, releasing a large fraction of the stored energy, helicity and twist. After that, the quasi-steady evolution should continue in a similar manner from the new initial conditions. The time-scale for reaching this critical point depends on the overall magnetic field strength and on the relative fraction of the toroidal field. The energy stored in the force-free magnetosphere is found to be up to ∼30 per cent larger than the corresponding vacuum energy. This implies that for a 1014 G field at the pole, the energy budget available for fast magnetospheric events is of the order of a few 1044 erg. The spin-down rate is estimated to increase by up to ∼60 per cent, since the dipole content in the magnetosphere is enhanced by the currents present there. A rough estimate of the braking index n reveals that it is systematically n < 3 for the most part of the evolution, consistent with actual measurements for pulsars and early estimates for several magnetars.
Star-Forming Regions in Orion as a Dust Evolution Laboratory
NASA Astrophysics Data System (ADS)
Wiebe, D.; Murga, M.; Sivkova, E.
2017-06-01
Star-forming regions (SFR) represent a convenient opportunity to study various processes related both to dust growth and to dust destruction. While extragalactic SFRs allow considering these processes in a wide range of metallicities, UV field intensities, etc., the Orion star-forming complex opens up a possibility to observe dust evolution with an unprecedented angular resolution. We review various observations related to dust evolution in some most prominent Orion regions, paying special attention to organic dust evolution, and introduce a new model of organic dust evolution.
TEMHD Effects on Solidification Under Microgravity Conditions
NASA Technical Reports Server (NTRS)
Kao, Andrew; Pericleous, Koulis
2012-01-01
An unexplored potential exists to control microstructure evolution through the use of external DC magnetic fields. Thermoelectric currents form during solidification and interact with this external field to drive microscopic fluid dynamics within the inter-dendritic region. The convective heat and mass transport can lead to profound changes on the dendritic structure. In this paper the effect of high magnetic fields is demonstrated through the use of both 3-dimensional and 2-dimensional numerical models. The results show that the application of a magnetic field causes significant disruption to the dendritic morphology. Investigation into the underlying mechanism gives initial indicators of how external magnetic fields can either lead to unexpected growth behaviour, or alternatively can be used to control the evolution of microstructure in undercooled melts as encountered in levitated droplet solidification.
Testing the Accuracy of Data-driven MHD Simulations of Active Region Evolution and Eruption
NASA Astrophysics Data System (ADS)
Leake, J. E.; Linton, M.; Schuck, P. W.
2017-12-01
Models for the evolution of the solar coronal magnetic field are vital for understanding solar activity, yet the best measurements of the magnetic field lie at the photosphere, necessitating the recent development of coronal models which are "data-driven" at the photosphere. Using magnetohydrodynamic simulations of active region formation and our recently created validation framework we investigate the source of errors in data-driven models that use surface measurements of the magnetic field, and derived MHD quantities, to model the coronal magnetic field. The primary sources of errors in these studies are the temporal and spatial resolution of the surface measurements. We will discuss the implications of theses studies for accurately modeling the build up and release of coronal magnetic energy based on photospheric magnetic field observations.
Dynamics of aging magnetic clouds. [interacted with solar wind
NASA Technical Reports Server (NTRS)
Osherovich, V. A.; Farrugia, C. J.; Burlaga, L. F.
1993-01-01
The dynamics of radially expanding magnetic clouds is rigorously analyzed within the framework of ideal MHD. The cloud is modelled as a cylindrically symmetric magnetic flux rope. In the force balance we include the gas pressure gradient and the Lorentz force. Interaction with the ambient solar wind due to expansion of the magnetic cloud is represented by a drag force proportional to the bulk velocity. We consider the self-similar expansion of a polytrope, and reduce the problem to an ordinary nonlinear differential equation for the evolution function. Analyzing the asymptotic behavior of the evolution function, we formulate theoretical expectations for the long-term behavior of cloud parameters. We focus on the temporal evolution of (1) the magnetic field strength; (2) the twist of the field lines; (3) the asymmetry of the total field profile; and (4) the bulk flow speed. We present data from two magnetic clouds observed at 1 AU and 2 AU, respectively, and find good agreement with theoretical expectations. For a peak magnetic field strength at 1 AU of 25 nT and a polytropic index of 0.5, we find that a magnetic cloud can be distinguished from the background interplanetary field up to a distance of about 5 AU. Taking larger magnetic fields and bigger polytropic indices this distance can double.
Morphological change on the River Towy, Wales assessed using aerial photogrammetry
NASA Astrophysics Data System (ADS)
Ahmed, Joshua; Hodge, Michael
2017-04-01
The dynamic nature of meandering channels has fascinated geomorphologists for decades; with the onset of remote sensing, and technological advances in field equipment, scientists are able to capture high-resolution data from the Earth's surface using cost-effective techniques that require minimal manual labour. Here we present a morphological assessment of three meander bends on the River Towy, Wales, using aerial photography captured by the Welsh Assembly Government and supplemented by data captured by a UAV. Migration rates and changes in channel length were measured between 1969 and 2016 and compared to a coupled discharge record to quantify the effects of discharge variability on the morphological evolution of the channel. A short-term (seasonal) assessment of channel change was conducted by comparing sub-metre resolution 3D point cloud and digital elevation models, generated using a UAV and Structure-from-Motion (SfM) photogrammetry. Our results suggest that discharge variability plays a crucial role in controlling the evolution of meandering planforms and can be an effective means of excavating floodplain material over relatively short timescales, although erosion rates can be suppressed by bankline roughness, which effectively disrupts outwardly directed flow momentum. These findings have implications for land managers and those modelling the effects of climate change on hydrological regimes which are ultimately used to forecast channel planform changes. Additionally, our results demonstrate the potential of low-cost field surveying techniques in producing high resolution models of landscape change.
2013-10-31
Evidence from NASA Wide-field Infrared Survey Explorer and Galaxy Evolution Explorer missions provide support for the inside-out theory of galaxy evolution, which holds that star formation starts at the core of the galaxy and spreads outward.
The Genomic Evolution of Prostate Cancer
2017-06-01
management and grant writing skills. 15. SUBJECT TERMS Cancer genetics , tumor evolution, tumor heterogeneity, prostate cancer, exome sequencing 16...aggressive disease, it is unclear if the genetic alterations more common in late disease are present early on, but at low frequency, or if they only...from localized to metastatic prostate cancer. 2. KEYWORDS: Cancer genetics , tumor evolution, tumor heterogeneity, prostate cancer, exome sequencing
NASA Astrophysics Data System (ADS)
Nishikawa, Ken-Ichi; Hartmann, Dieter; Mizuno, Yosuke; Niemiec, Jacek; Dutan, Ioana; Kobzar, Oleh; Gomez, Jose; Meli, Athina; POHL, Martin
2018-01-01
In the study of relativistic jets one of the key open questions is their interaction with theenvironment on the microscopic level. Here, we study the initial evolution of both electron–proton and electron–positron relativistic jets containing helical magnetic fields, focusing on their interaction with an ambient plasma. We have performed simulations of “global” jets containing helical magnetic fields in order to examine how helical magnetic fields affect kinetic instabilities such as the Weibel instability, the kinetic Kelvin-Helmholtz instability (kKHI) and the Mushroom instability (MI) using a larger jet radius. In our initial simulation study these kinetic instabilities are suppressed and new types of instabilities can grow. In the electron-proton jet simulation a recollimation-like instability occurs near the center of jet. In the electron-positron jet simulation mixed kinetic instabilities grow and the jet electrons are accelerated. The evolution of electron-ion jets will be investigated with different mass ratios. Simulations using much larger systems are required in order to thoroughly follow the evolution of global jets containing helical magnetic fields. We will investigate mechanisms of flares possibly due to reconnection.
AFT: Extending Solar Cycle Prediction with Data Assimilation
NASA Astrophysics Data System (ADS)
Upton, L.; Hathaway, D. H.
2017-12-01
The Advective Flux Transport (AFT) model is an innovative surface flux transport model that simulates the evolution of the radial magnetic field on the surface of the Sun. AFT was designed to be as realistic as possible by 1: incorporating the observed surface flows (meridional flow, differential rotation, and an explicit evolving convective pattern) and by 2: using data assimilation to incorporate the observed magnetic fields directly from line-of-sight (LOS) magnetograms. AFT has proven to be successful in simulating the evolution of the surface magnetic fields on both short time scales (days-weeks) as well as for long time scales (years). In particular, AFT has been shown to accurately predict the evolution of the Sun's dipolar magnetic field 3-5 years in advance. Since the Sun's polar magnetic field strength at solar cycle minimum is the best indicator of the amplitude of the next cycle, this has in turn extended our ability to make solar cycle predictions to 3-5 years before solar minimum occurs. Here, we will discuss some of the challenges of implementing data assimilation into AFT. We will also discuss the role of data assimilation in advancing solar cycle predictive capability.
Competencies for population-based clinical managers. A survey of managed care medical directors.
Halbert, R J; Bokor, A; Castrence-Nazareno, R; Parkinson, M D; Lewis, C E
1998-07-01
The evolution of American health care into integrated systems of delivery and finance requires a specialized set of population-based skills for physicians. The field of preventive medicine represents one source of this expertise. Specific competencies for the emerging area of managerial medicine have not been well delineated. Using concept documents from the Residency Review Committee for Preventive Medicine and the American Board of Preventive Medicine, a list of proposed competencies for managerial medicine was identified. Surveys were mailed to medical directors of all members of the American Association of Health Plans and to a random sample of diplomates of the American Board of Preventive Medicine. Respondents were asked to rate the importance of these competencies for a population-oriented clinician manager. Areas rated highly by medical directors included health services research (including outcome research), quality assurance and improvement, health risk assessment and reduction, programmatic skills, and clinical preventive skills. Responses from preventive medicine specialists were similar, but placed lower emphasis on these skills. Despite its limited response rate, this survey may be useful in the implementation of specialty training in managerial medicine. Residency training programs may choose to emphasize specific content area that reflect the priorities expressed by physicians actively involved in management.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuhre, W.L.
This book was written to help the environmental and safety student learn about the field and to help the working professional manage hazardous material and waste issues. For example, one issue that will impact virtually all of these people mentioned is the upcoming environmental standardization movement. The International Standards Organization (ISO) is in the process of adding comprehensive environmental and hazardous waste management systems to their future certification requirements. Most industries worldwide will be working hard to achieve this new level of environmental management. This book presents many of the systems needed to receive certification. In order to properly managemore » hazardous waste, it is important to consider the entire life cycle, including when the waste was a useful chemical or hazardous material. Waste minimization is built upon this concept. Understanding the entire life cycle is also important in terms of liability, since many regulations hold generators responsible from cradle to grave. This book takes the life-cycle concept even further, in order to provide additional insight. The discussion starts with the conception of the chemical and traces its evolution into a waste and even past disposal. At this point the story continues into the afterlife, where responsibility still remains.« less
Formation and evolution of magnetised filaments in wind-swept turbulent clumps
NASA Astrophysics Data System (ADS)
Banda-Barragan, Wladimir Eduardo; Federrath, Christoph; Crocker, Roland M.; Bicknell, Geoffrey Vincent; Parkin, Elliot Ross
2015-08-01
Using high-resolution three-dimensional simulations, we examine the formation and evolution of filamentary structures arising from magnetohydrodynamic interactions between supersonic winds and turbulent clumps in the interstellar medium. Previous numerical studies assumed homogenous density profiles, null velocity fields, and uniformly distributed magnetic fields as the initial conditions for interstellar clumps. Here, we have, for the first time, incorporated fractal clumps with log-normal density distributions, random velocity fields and turbulent magnetic fields (superimposed on top of a uniform background field). Disruptive processes, instigated by dynamical instabilities and akin to those observed in simulations with uniform media, lead to stripping of clump material and the subsequent formation of filamentary tails. The evolution of filaments in uniform and turbulent models is, however, radically different as evidenced by comparisons of global quantities in both scenarios. We show, for example, that turbulent clumps produce tails with higher velocity dispersions, increased gas mixing, greater kinetic energy, and lower plasma beta than their uniform counterparts. We attribute the observed differences to: 1) the turbulence-driven enhanced growth of dynamical instabilities (e.g. Kelvin-Helmholtz and Rayleigh-Taylor instabilities) at fluid interfaces, and 2) the localised amplification of magnetic fields caused by the stretching of field lines trapped in the numerous surface deformations of fractal clumps. We briefly discuss the implications of this work to the physics of the optical filaments observed in the starburst galaxy M82.
Improving animal health and livestock productivity to reduce poverty.
Pradère, J-P
2014-12-01
This study is based on scientific publications, statistics and field observations. It shows the importance of livestock in the economy and in the risk management strategies implemented by poor farming households. A comparison of livestock performance trends with the evolution of rural poverty in developing countries indicates that growth in livestock production alone is not enough to reduce rural poverty. To help reduce poverty, sustainable production should be based on productivity gains. Prerequisites for improving productivity include better public policies, enhanced research and the reduction of animal disease risk. The study draws attention to the economic, social and environmental consequences of inadequate support for animal health and production in the least developed countries, especially those of sub-Saharan Africa.
Cosmological evolution and Solar System consistency of massive scalar-tensor gravity
NASA Astrophysics Data System (ADS)
de Pirey Saint Alby, Thibaut Arnoulx; Yunes, Nicolás
2017-09-01
The scalar-tensor theory of Damour and Esposito-Farèse recently gained some renewed interest because of its ability to suppress modifications to general relativity in the weak field, while introducing large corrections in the strong field of compact objects through a process called scalarization. A large sector of this theory that allows for scalarization, however, has been shown to be in conflict with Solar System observations when accounting for the cosmological evolution of the scalar field. We here study an extension of this theory by endowing the scalar field with a mass to determine whether this allows the theory to pass Solar System constraints upon cosmological evolution for a larger sector of coupling parameter space. We show that the cosmological scalar field goes first through a quiescent phase, similar to the behavior of a massless field, but then it enters an oscillatory phase, with an amplitude (and frequency) that decays (and grows) exponentially. We further show that after the field enters the oscillatory phase, its effective energy density and pressure are approximately those of dust, as expected from previous cosmological studies. Due to these oscillations, we show that the scalar field cannot be treated as static today on astrophysical scales, and so we use time-dependent perturbation theory to compute the scalar-field-induced modifications to Solar System observables. We find that these modifications are suppressed when the mass of the scalar field and the coupling parameter of the theory are in a wide range, allowing the theory to pass Solar System constraints, while in principle possibly still allowing for scalarization.
MHD simulations of magnetic reconnection in a skewed three-dimensional tail configuration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Birn, J.; Hesse, M.
1991-01-01
Using the three-dimensional MHD code, the authors have studied the dynamic evolution of a non-symmetric magnetotail configuration, initiated by the sudden occurence of (anomalous) resistivity. The initial configuration included variations in all three space dimensions, consistent with average tail observations. In addition, it was skewed due to the presence of a net cross-tail magnetic field component B{sub yN} with a magnitude as typically observed, so that it lacked commonly assumed mirror symmetries around the midnight meridian and the equatorial planes. The field evolution was found to be very similar to that of a symmetric configuration studied earlier, indicating plasmoid formationmore » and ejection. The most noticeable new feature in the evolution of the individual field components is a reduction of B{sub y} on the reconnected dipole-like field lines earthward from the reconnection region. The topological structure of the magnetic field, however, defined by the field line connections, shows remarkable differences from the symmetric case, consistent with conclusions by Hughes and Sibeck (1987) and Birn et al. (1989). The plasmoid, which is a magnetically separate entity in the symmetric case, becomes open, connected initially with the Earth, but getting gradually connected with the interplanetary field, as reconnection of lobe field lines proceeds from the midnight region to the flanks of the tail. The separation of the plasmoid from the Earth is thus found to take a finite amount of time. When the plasmoid begins to separate from the Earth, a filamentary structure of field connections develops, not present in the spatial variation of the fields; this confirms predictions by Birn et al. (1989). A localization of the electric field parallel to the magnetic field is found consistent with conclusions on general magnetic reconnection.« less
Ogbunugafor, C Brandon; Hartl, Daniel
2016-01-25
The study of reverse evolution from resistant to susceptible phenotypes can reveal constraints on biological evolution, a topic for which evolutionary theory has relatively few general principles. The public health catastrophe of antimicrobial resistance in malaria has brought these constraints on evolution into a practical realm, with one proposed solution: withdrawing anti-malarial medication use in high resistance settings, built on the assumption that reverse evolution occurs readily enough that populations of pathogens may revert to their susceptible states. While past studies have suggested limits to reverse evolution, there have been few attempts to properly dissect its mechanistic constraints. Growth rates were determined from empirical data on the growth and resistance from a set of combinatorially complete set of mutants of a resistance protein (dihydrofolate reductase) in Plasmodium vivax, to construct reverse evolution trajectories. The fitness effects of individual mutations were calculated as a function of drug environment, revealing the magnitude of epistatic interactions between mutations and genetic backgrounds. Evolution across the landscape was simulated in two settings: starting from the population fixed for the quadruple mutant, and from a polymorphic population evenly distributed between double mutants. A single mutation of large effect (S117N) serves as a pivot point for evolution to high resistance regions of the landscape. Through epistatic interactions with other mutations, this pivot creates an epistatic ratchet against reverse evolution towards the wild type ancestor, even in environments where the wild type is the most fit of all genotypes. This pivot mutation underlies the directional bias in evolution across the landscape, where evolution towards the ancestor is precluded across all examined drug concentrations from various starting points in the landscape. The presence of pivot mutations can dictate dynamics of evolution across adaptive landscape through epistatic interactions within a protein, leaving a population trapped on local fitness peaks in an adaptive landscape, unable to locate ancestral genotypes. This irreversibility suggests that the structure of an adaptive landscape for a resistance protein should be understood before considering resistance management strategies. This proposed mechanism for constraints on reverse evolution corroborates evidence from the field indicating that phenotypic reversal often occurs via compensatory mutation at sites independent of those associated with the forward evolution of resistance. Because of this, molecular methods that identify resistance patterns via single SNPs in resistance-associated markers might be missing signals for resistance and compensatory mutation throughout the genome. In these settings, whole genome sequencing efforts should be used to identify resistance patterns, and will likely reveal a more complicated genomic signature for resistance and susceptibility, especially in settings where anti-malarial medications have been used intermittently. Lastly, the findings suggest that, given their role in dictating the dynamics of evolution across the landscape, pivot mutations might serve as future targets for therapy.
Enrollment Management: Successor to Marketing or Its Synonym?
ERIC Educational Resources Information Center
Albright, John W.
1986-01-01
While enrollment management bears a great resemblance to marketing, the interest in it is symbolic of a new step in the evolution of American colleges, acknowledging that higher education needs a more professional approach to self-management. (MSE)
Coronal hole evolution by sudden large scale changes
NASA Technical Reports Server (NTRS)
Nolte, J. T.; Gerassimenko, M.; Krieger, A. S.; Solodyna, C. V.
1978-01-01
Sudden shifts in coronal-hole boundaries observed by the S-054 X-ray telescope on Skylab between May and November, 1973, within 1 day of CMP of the holes, at latitudes not exceeding 40 deg, are compared with the long-term evolution of coronal-hole area. It is found that large-scale shifts in boundary locations can account for most if not all of the evolution of coronal holes. The temporal and spatial scales of these large-scale changes imply that they are the results of a physical process occurring in the corona. It is concluded that coronal holes evolve by magnetic-field lines' opening when the holes are growing, and by fields' closing as the holes shrink.
DOT National Transportation Integrated Search
2012-01-01
This report documents the evolution, development, and lessons learned while attempting to identify, modify, and deploy Intelligent Transportation System (ITS) and advanced technology tools to facilitate coordination of public transit and social (huma...
Diffusion of external magnetic fields into the cone-in-shell target in the fast ignition
NASA Astrophysics Data System (ADS)
Sunahara, Atsushi; Morita, Hiroki; Johzaki, Tomoyuki; Nagatomo, Hideo; Fujioka, Shinsuke; Hassanein, Ahmed; Firex Project Team
2017-10-01
We simulated the diffusion of externally applied magnetic fields into cone-in-shell target in the fast ignition. Recently, in the fast ignition scheme, the externally magnetic fields up to kilo-Tesla is used to guide fast electrons to the high-dense imploded core. In order to study the profile of the magnetic field, we have developed 2D cylindrical Maxwell equation solver with Ohm's law, and carried out simulations of diffusion of externally applied magnetic fields into a cone-in-shell target. We estimated the conductivity of the cone and shell target based on the assumption of Saha-ionization equilibrium. Also, we calculated the temporal evolution of the target temperature heated by the eddy current driven by temporal variation of magnetic fields, based on the accurate equation of state. Both, the diffusion of magnetic field and the increase of target temperature interact with each other. We present our results of temporal evolution of the magnetic field and its diffusion into the cone and shell target.
Chemical Evolution of Protostellar Matter
NASA Technical Reports Server (NTRS)
Langer, William D.; vanDishoeck, Ewine F.; Bergin, Edwin A.; Blake, Geoffrey A.; Tielens, Alexander G. G. M.; Velusamy, Thangasamy; Whittet, Douglas C. B.
2000-01-01
We review the chemical processes that are important in the evolution from a molecular cloud core to a protostellar disk. These cover both gas phase and gas grain interactions. The current observational and theoretical state of this field are discussed.
Evolution of Management Thought in the Ancient Times.
ERIC Educational Resources Information Center
Sharma, C. L.
This paper argues that although systematic management thought is a distinctly modern development, the writings of ancient scholars and records of ancient rulers infer that they understood the rudiments of management principles and concepts. To support this thesis, the author reviews the evidence of management practices and concepts in various…
Forest operations for ecosystem management
Robert B. Rummer; John Baumgras; Joe McNeel
1997-01-01
The evolution of modern forest resource management is focusing on ecologically sensitive forest operations. This shift in management strategies is producing a new set of functional requirements for forest operations. Systems to implement ecosystem management prescriptions may need to be economically viable over a wider range of piece sizes, for example. Increasing...
Anastasiou, Evilena; Mitchell, Piers D
2013-10-01
The development of molecular tools for the extraction, analysis and interpretation of DNA from the remains of ancient organisms (paleogenetics) has revolutionised a range of disciplines as diverse as the fields of human evolution, bioarchaeology, epidemiology, microbiology, taxonomy and population genetics. The paper draws attention to some of the challenges associated with the extraction and interpretation of ancient DNA from archaeological material, and then reviews the influence of paleogenetics on the field of human evolution. It discusses the main contributions of molecular studies to reconstructing the evolutionary and phylogenetic relationships between extinct hominins (human ancestors) and anatomically modern humans. It also explores the evidence for evolutionary changes in the genetic structure of anatomically modern humans in recent millennia. This breadth of research has led to discoveries that would never have been possible using traditional approaches to human evolution. Copyright © 2013 Elsevier B.V. All rights reserved.
The Evolution of the Earth's Magnetic Field.
ERIC Educational Resources Information Center
Bloxham, Jeremy; Gubbins, David
1989-01-01
Describes the change of earth's magnetic field at the boundary between the outer core and the mantle. Measurement techniques used during the last 300 years are considered. Discusses the theories and research for explaining the field change. (YP)
Evolution of vector magnetic fields and the August 27 1990 X-3 flare
NASA Technical Reports Server (NTRS)
Wang, Haimin
1992-01-01
Vector magnetic fields in an active region of the sun are studied by means of continuous observations of magnetic-field evolution emphasizing magnetic shear build-up. The vector magnetograms are shown to measure magnetic fields correctly based on concurrent observations and a comparison of the transverse field with the H alpha fibril structure. The morphology and velocity pattern are examined, and these data and the shear build-up suggest that the active region's two major footprints are separated by a region with flows, new flux emergence, and several neutral lines. The magnetic shear appears to be caused by the collision and shear motion of two poles of opposite polarities. The transverse field is shown to turn from potential to sheared during the process of flux cancellation, and this effect can be incorporated into existing models of magnetic flux cancellation.
Decoherence in quantum systems in a static gravitational field
NASA Astrophysics Data System (ADS)
Shariati, Ahmad; Khorrami, Mohammad; Loran, Farhang
2016-09-01
A small quantum system is studied which is a superposition of states localized in different positions in a static gravitational field. The time evolution of the correlation between different positions is investigated, and it is seen that there are two time scales for such an evolution (decoherence). Both time scales are inversely proportional to the red shift difference between the two points. These time scales correspond to decoherences which are linear and quadratic, respectively, in time.
Cosmological bounce and Genesis beyond Horndeski
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kolevatov, R.; Mironov, S.; Volkova, V.
2017-08-01
We study 'classical' bouncing and Genesis models in beyond Horndeski theory. We give an example of spatially flat bouncing solution that is non-singular and stable throughout the whole evolution. We also provide an example of stable geodesically complete Genesis with similar features. The model is arranged in such a way that the scalar field driving the cosmological evolution initially behaves like full-fledged beyond Horndeski, whereas at late times it becomes a massless scalar field minimally coupled to gravity.
Accumulation of electric currents driving jetting events in the solar atmosphere
NASA Astrophysics Data System (ADS)
Vargas Domínguez, S.; Guo, Y.; Demoulin, P.; Schmieder, B.; Ding, M.; Liu, Y.
2013-12-01
The solar atmosphere is populated with a wide variety of structures and phenomena at different spatial and temporal scales. Explosive phenomena are of particular interest due to their contribution to the atmosphere's energy budget and their implications, e.g. coronal heating. Recent instrumental developments have provided important observations and therefore new insights for tracking the dynamic evolution of the solar atmosphere. Jets of plasma are frequently observed in the solar corona and are thought to be a consequence of magnetic reconnection, however, the physics involved is not fully understood. Unprecedented observations (EUV and vector magnetic fields) are used to study solar jetting events, from which we derive the magnetic flux evolution, the photospheric velocity field, and the vertical electric current evolution. The evolution of magnetic parasitic polarities displaying diverging flows are detected to trigger recurrent jets in a solar regionon 17 September 2010. The interaction drive the build up of electric currents. Observed diverging flows are proposed to build continuously such currents. Magnetic reconnection is proposed to occur periodically, in the current layer created between the emerging bipole and the large scale active region field. SDO/AIA EUV composite images. Upper: SDO/AIA 171 Å image overlaid by the line-of-sight magnetic field observed at the same time as that of the 171 Å image. Lower: Map of photospheric transverse velocities derived from LCT analysis with the HMI magnetograms.
Yago, Tomoaki; Wakasa, Masanobu
2015-04-21
A practical method to calculate time evolutions of magnetic field effects (MFEs) on photochemical reactions involving radical pairs is developed on the basis of the theory of the chemically induced dynamic spin polarization proposed by Pedersen and Freed. In theory, the stochastic Liouville equation (SLE), including the spin Hamiltonian, diffusion motions of the radical pair, chemical reactions, and spin relaxations, is solved by using the Laplace and the inverse Laplace transformation technique. In our practical approach, time evolutions of the MFEs are successfully calculated by applying the Miller-Guy method instead of the final value theorem to the inverse Laplace transformation process. Especially, the SLE calculations are completed in a short time when the radical pair dynamics can be described by the chemical kinetics consisting of diffusions, reactions and spin relaxations. The SLE analysis with a short calculation time enables one to examine the various parameter sets for fitting the experimental date. Our study demonstrates that simultaneous fitting of the time evolution of the MFE and of the magnetic field dependence of the MFE provides valuable information on the diffusion motions of the radical pairs in nano-structured materials such as micelles where the lifetimes of radical pairs are longer than hundreds of nano-seconds and the magnetic field dependence of the spin relaxations play a major role for the generation of the MFE.
NASA Technical Reports Server (NTRS)
Scales, W. A.; Bernhardt, P. A.; Ganguli, G.
1994-01-01
Two-dimensional electrostatic particle-in-cell simulations are used to study the early time evolution of electron depletions and negative ion clouds produced during electron attachment chemical releases in the ionosphere. The simulation model considers the evolution in the plane perpendicular to the magnetic field and a three-species plasma that contains electrons, positive ions, and also heavy negative ions that result as a by-product of the electron attachment reaction. The early time evolution (less than the negative ion cyclotron period) of the system shows that a negative charge surplus initially develops outside of the depletion boundary as the heavy negative ions move across the boundary. The electrons are initially restricted from moving into the depletion due to the magnetic field. An inhomogenous electric field develops across the boundary layer due to this charge separation. A highly sheared electron flow velocity develops in the depletion boundary due to E x B and Delta-N x B drifts that result from electron density gradients and this inhomogenous electric field. Structure eventually develops in the depletion boundary layer due to low-frequency electrostatic waves that have growth times shorter than the negative ion cyclotron period. It is proposed that these waves are most likely produced by the electron-ion hybrid instability that results from sufficiently large shears in the electron flow velocity.
From Nehemiah Grew to Genomics: the emerging field of evo-devo research for woody plants
Andrew Groover; Quentin Cronk
2013-01-01
Wood has played a primary role in the evolution of land plants (Spicer and Groover 2010), but our understanding of the genes and mechanisms underlying wood evolution and development has been limited until recently. Importantly, many of the fundamental questions of woody plant evolution and development are now tractable using genomics and high-capacity sequencing...
Evolution of an Intelligent Information Fusion System
NASA Technical Reports Server (NTRS)
Campbell, William J.; Cromp, Robert F.
1990-01-01
Consideration is given to the hardware and software needed to manage the enormous amount and complexity of data that the next generation of space-borne sensors will provide. An anthology is presented illustrating the evolution of artificial intelligence, science data processing, and management from the 1960s to the near future. Problems and limitations of technologies, data structures, data standards, and conceptual thinking are addressed. The development of an end-to-end Intelligent Information Fusion System that embodies knowledge of the user's domain-specific goals is proposed.
Electron Cyclotron Maser Emissions from Evolving Fast Electron Beams
NASA Astrophysics Data System (ADS)
Tang, J. F.; Wu, D. J.; Chen, L.; Zhao, G. Q.; Tan, C. M.
2016-05-01
Fast electron beams (FEBs) are common products of solar active phenomena. Solar radio bursts are an important diagnostic tool for understanding FEBs and the solar plasma environment in which they propagate along solar magnetic fields. In particular, the evolution of the energy spectrum and velocity distribution of FEBs due to the interaction with the ambient plasma and field during propagation can significantly influence the efficiency and properties of their emissions. In this paper, we discuss the possible evolution of the energy spectrum and velocity distribution of FEBs due to energy loss processes and the pitch-angle effect caused by magnetic field inhomogeneity, and we analyze the effects of the evolution on electron-cyclotron maser (ECM) emission, which is one of the most important mechanisms for producing solar radio bursts by FEBs. Our results show that the growth rates all decrease with the energy loss factor Q, but increase with the magnetic mirror ratio σ as well as with the steepness index δ. Moreover, the evolution of FEBs can also significantly influence the fastest growing mode and the fastest growing phase angle. This leads to the change of the polarization sense of the ECM emission. In particular, our results also reveal that an FEB that undergoes different evolution processes will generate different types of ECM emission. We believe the present results to be very helpful for a more comprehensive understanding of the dynamic spectra of solar radio bursts.
Expected rate of fisheries-induced evolution is slow.
Andersen, Ken H; Brander, Keith
2009-07-14
Commercial fisheries exert high mortalities on the stocks they exploit, and the consequent selection pressure leads to fisheries-induced evolution of growth rate, age and size at maturation, and reproductive output. Productivity and yields may decline as a result, but little is known about the rate at which such changes are likely to occur. Fisheries-induced evolution of exploited populations has recently become a subject of concern for policy makers, fisheries managers, and the general public, with prominent calls for mitigating management action. We make a general evolutionary impact assessment of fisheries by calculating the expected rate of fisheries-induced evolution and the consequent changes in yield. Rates of evolution are expected to be approximately 0.1-0.6% per year, and the consequent reductions in fisheries yield are <0.7% per year. These rates are at least a factor of 5 lower than published values based on experiments and analyses of population time series, and we explain why the published rates may be overestimates. Dealing with evolutionary effects of fishing is less urgent than reducing the direct detrimental effects of overfishing on exploited stocks and on their marine ecosystems.
Cry1F resistance among lepidopteran pests: a model for improved resistance management?
Vélez, Ana M; Vellichirammal, Neetha Nanoth; Jurat-Fuentes, Juan Luis; Siegfried, Blair D
2016-06-01
The Cry1Fa protein from the bacterium Bacillus thuringiensis (Bt) is known for its potential to control lepidopteran pests, especially through transgenic expression in maize and cotton. The maize event TC1507 expressing the cry1Fa toxin gene became commercially available in the United States in 2003 for the management of key lepidopteran pests including the European corn borer, Ostrinia nubilalis, and the fall armyworm, Spodoptera frugiperda. A high-dose/refuge strategy has been widely adopted to delay evolution of resistance to event TC1507 and other transgenic Bt crops. Efficacy of this strategy depends on the crops expressing a high dose of the Bt toxin to targeted pests and adjacent refuges of non-Bt host plants serving as a source of abundant susceptible insects. While this strategy has proved effective in delaying O. nubilalis resistance, field-evolved resistance to event TC1507 has been reported in S. frugiperda populations in Puerto Rico, Brazil, and the southeastern United States. This paper examines available information on resistance to Cry1Fa in O. nubilalis and S. frugiperda and discusses how this information identifies opportunities to refine resistance management recommendations for Bt maize. Copyright © 2016 Elsevier Inc. All rights reserved.
VHR satellite imagery for humanitarian crisis management: a case study
NASA Astrophysics Data System (ADS)
Bitelli, Gabriele; Eleias, Magdalena; Franci, Francesca; Mandanici, Emanuele
2017-09-01
During the last years, remote sensing data along with GIS have been largely employed for supporting emergency management activities. In this context, the use of satellite images and derived map products has become more common also in the different phases of humanitarian crisis response. In this work very high resolution satellite imagery was processed to assess the evolution of Za'atari Refugee Camp, built in Jordan in 2012 by the UN Refugee Agency to host Syrian refugees. Multispectral satellite scenes of the Za'atari area were processed by means of object-based classifications. The main aim of the present work is the development of a semiautomated procedure for multi-temporal camp monitoring with particular reference to the dwellings detection. Whilst in the emergency mapping domain automation of feature extraction is widely investigated, in the field of humanitarian missions the information is often extracted by means of photointerpretation of the satellite data. This approach requires time for the interpretation; moreover, it is not reliable enough in complex situations, where features of interest are often small, heterogeneous and inconsistent. Therefore, the present paper discusses a methodology to obtain information for assisting humanitarian crisis management, using a semi-automatic classification approach applied to satellite imagery.
NASA Astrophysics Data System (ADS)
Tisseyre, Bruno
2015-04-01
For more than 15 years, research projects are conducted in the precision viticulture (PV) area around the world. These research projects have provided new insights into the within-field variability in viticulture. Indeed, access to high spatial resolution data (remote sensing, embedded sensors, etc.) changes the knowledge we have of the fields in viticulture. In particular, the field which was until now considered as a homogeneous management unit, presents actually a high spatial variability in terms of yield, vigour an quality. This knowledge will lead (and is already causing) changes on how to manage the vineyard and the quality of the harvest at the within field scale. From the experimental results obtained in various countries of the world, the goal of the presentation is to provide figures on: - the spatial variability of the main parameters (yield, vigor, quality), and how this variability is organized spatially, - the temporal stability of the observed spatial variability and the potential link with environmental parameters like soil, topography, soil water availability, etc. - information sources available at a high spatial resolution conventionally used in precision agriculture likely to highlight this spatial variability (multi-spectral images, soil electrical conductivity, etc.) and the limitations that these information sources are likely to present in viticulture. Several strategies are currently being developed to take into account the within field variability in viticulture. They are based on the development of specific equipments, sensors, actuators and site specific strategies with the aim of adapting the vineyard operations at the within-field level. These strategies will be presented briefly in two ways : - Site specific operations (fertilization, pruning, thinning, irrigation, etc.) in order to counteract the effects of the environment and to obtain a final product with a controlled and consistent wine quality, - Differential harvesting with the objective to take advantage of the observed spatial variability to produce different quality of wines. These later approach tends to produce very different quality wines which will be blended to control the final quality and/or marketed differently. These applications show that the environment and its spatial variability can be valued with the goal of controlling the final quality of the wine produced. Technologies to characterize the spatial variability of vine fields are currently in rapid evolution. They will significantly impact production methods and management strategies of the vineyard. In its last part, the presentation will summarize the technologies likely to impact the knowledge and the vineyard management either at the field level, at the vineyard level or at the regional level. A brief overview of the needs in terms of information processing will be also performed. A reflection on the difficulties that might limit the adoption of precision viticulture technologies (PV) will be done. Indeed, although very informative, PV entails high costs of information acquisition and data processing. Cost is one of the major obstacles to the dissemination of these tools and services to the majority of wine producers. In this context, the pooling of investments is a choke point to make the VP accessible to the highest number of growers. Thus, to be adopted, the VP will necessarily satisfy the operational requirements at the field level, but also throughout the whole production area (at the regional level). This working scale raises new scientific questions to be addressed.
Glazoff, Michael V.; Dufek, Eric J.; Shalashnikov, Egor V.
2016-09-15
Morphological analysis and synthesis operations were employed for analysis of electrode microstructure transformations and evolution accompanying the application of charge/discharge cycles to electrochemical storage systems (batteries). Using state-of-the-art morphological algorithms, it was possible to predict microstructure evolution in porous Si electrodes for Li-ion batteries with sufficient accuracy. Algorithms for image analyses (segmentation, feature extraction, and 3D-reconstructions using 2D-images) were also developed. Altogether, these techniques could be considered supplementary to phase-field mesoscopic approach to microstructure evolution that is based upon clear and definitive changes in the appearance of microstructure. However, unlike in phase-field, the governing equations for morphological approach are geometry-,more » not physics-based. Similar non-physics based approach to understanding different phenomena was attempted with the introduction of cellular automata. It is anticipated that morphological synthesis and analysis will represent a useful supplementary tool to phase-field and will render assistance to unraveling the underlying microstructure-property relationships. The paper contains data on electrochemical characterization of different electrode materials that was conducted in parallel to morphological study.« less
NASA Astrophysics Data System (ADS)
Huang, Shiquan; Yi, Youping; Li, Pengchuan
2011-05-01
In recent years, multi-scale simulation technique of metal forming is gaining significant attention for prediction of the whole deformation process and microstructure evolution of product. The advances of numerical simulation at macro-scale level on metal forming are remarkable and the commercial FEM software, such as Deform2D/3D, has found a wide application in the fields of metal forming. However, the simulation method of multi-scale has little application due to the non-linearity of microstructure evolution during forming and the difficulty of modeling at the micro-scale level. This work deals with the modeling of microstructure evolution and a new method of multi-scale simulation in forging process. The aviation material 7050 aluminum alloy has been used as example for modeling of microstructure evolution. The corresponding thermal simulated experiment has been performed on Gleeble 1500 machine. The tested specimens have been analyzed for modeling of dislocation density, nucleation and growth of recrystallization(DRX). The source program using cellular automaton (CA) method has been developed to simulate the grain nucleation and growth, in which the change of grain topology structure caused by the metal deformation was considered. The physical fields at macro-scale level such as temperature field, stress and strain fields, which can be obtained by commercial software Deform 3D, are coupled with the deformed storage energy at micro-scale level by dislocation model to realize the multi-scale simulation. This method was explained by forging process simulation of the aircraft wheel hub forging. Coupled the results of Deform 3D with CA results, the forging deformation progress and the microstructure evolution at any point of forging could be simulated. For verifying the efficiency of simulation, experiments of aircraft wheel hub forging have been done in the laboratory and the comparison of simulation and experiment result has been discussed in details.
Bipolar Jets Launched by a Mean-field Accretion Disk Dynamo
NASA Astrophysics Data System (ADS)
Fendt, Christian; Gaßmann, Dennis
2018-03-01
By applying magnetohydrodynamic simulations, we investigate the launching of jets driven by a disk magnetic field generated by a mean-field disk dynamo. Extending our earlier studies, we explore the bipolar evolution of the disk α 2Ω-dynamo and the outflow. We confirm that a negative dynamo-α leads to a dipolar field geometry, whereas positive values generate quadrupolar fields. The latter remain mainly confined to the disk and cannot launch outflows. We investigate a parameter range for the dynamo-α ranging from a critical value below which field generation is negligible, {α }0,{crit}=-0.0005, to α 0 = ‑1.0. For weak | {α }0| ≤slant 0.07, two magnetic loop structures with opposite polarity may arise, which leads to reconnection and disturbs the field evolution and accretion-ejection process. For a strong dynamo-α, a higher poloidal magnetic energy is reached, roughly scaling with {E}mag}∼ | {α }0| , which also leads to higher accretion and ejection rates. The terminal jet speed is governed by the available magnetic energy and increases with the dynamo-α. We find jet velocities on the order of the inner disk Keplerian velocity. For a strong dynamo-α, oscillating dynamo modes may occur that can lead to a pulsed ejection. This is triggered by an oscillating mode in the toroidal field component. The oscillation period is comparable to the Keplerian timescale in the launching region, thus too short to be associated with the knots in observed jets. We find a hemispherically asymmetric evolution for the jet and counter-jet in the mass flux and field structure.
Modelling the temperature evolution of bone under high intensity focused ultrasound
NASA Astrophysics Data System (ADS)
ten Eikelder, H. M. M.; Bošnački, D.; Elevelt, A.; Donato, K.; Di Tullio, A.; Breuer, B. J. T.; van Wijk, J. H.; van Dijk, E. V. M.; Modena, D.; Yeo, S. Y.; Grüll, H.
2016-02-01
Magnetic resonance-guided high intensity focused ultrasound (MR-HIFU) has been clinically shown to be effective for palliative pain management in patients suffering from skeletal metastasis. The underlying mechanism is supposed to be periosteal denervation caused by ablative temperatures reached through ultrasound heating of the cortex. The challenge is exact temperature control during sonication as MR-based thermometry approaches for bone tissue are currently not available. Thus, in contrast to the MR-HIFU ablation of soft tissue, a thermometry feedback to the HIFU is lacking, and the treatment of bone metastasis is entirely based on temperature information acquired in the soft tissue adjacent to the bone surface. However, heating of the adjacent tissue depends on the exact sonication protocol and requires extensive modelling to estimate the actual temperature of the cortex. Here we develop a computational model to calculate the spatial temperature evolution in bone and the adjacent tissue during sonication. First, a ray-tracing technique is used to compute the heat production in each spatial point serving as a source term for the second part, where the actual temperature is calculated as a function of space and time by solving the Pennes bio-heat equation. Importantly, our model includes shear waves that arise at the bone interface as well as all geometrical considerations of transducer and bone geometry. The model was compared with a theoretical approach based on the far field approximation and an MR-HIFU experiment using a bone phantom. Furthermore, we investigated the contribution of shear waves to the heat production and resulting temperatures in bone. The temperature evolution predicted by our model was in accordance with the far field approximation and agreed well with the experimental data obtained in phantoms. Our model allows the simulation of the HIFU treatments of bone metastasis in patients and can be extended to a planning tool prior to MR-HIFU treatments.
Dynamic evolution of double Λ five-level atom interacting with one-mode electromagnetic cavity field
NASA Astrophysics Data System (ADS)
Abdel-Wahab, N. H.; Salah, Ahmed
2017-12-01
In this paper, the model describing a double Λ five-level atom interacting with a single mode electromagnetic cavity field in the (off) non-resonate case is studied. We obtained the constants of motion for the considered model. Also, the state vector of the wave function is given by using the Schrödinger equation when the atom is initially prepared in its excited state. The dynamical evolutions for the collapse revivals, the antibunching of photons and the field squeezing phenomena are investigated when the field is considered in a coherent state. The influence of detuning parameters on these phenomena is investigated. We noticed that the atom-field properties are influenced by changing the detuning parameters. The investigation of these aspects by numerical simulations is carried out using the Quantum Toolbox in Python (QuTip).
Vagal nerve stimulator: Evolving trends
Ogbonnaya, Sunny; Kaliaperumal, Chandrasekaran
2013-01-01
Over three decades ago, it was found that intermittent electrical stimulation from the vagus nerve produces inhibition of neural processes, which can alter brain activity and terminate seizures. This paved way for the concept of vagal nerve stimulator (VNS). We describe the evolution of the VNS and its use in different fields of medicine. We also review the literature focusing on the mechanism of action of VNS producing desired effects in different conditions. PUBMED and EMBASE search was performed for ‘VNS’ and its use in refractory seizure management, depression, obesity, memory, and neurogenesis. VNS has been in vogue over for the past three decades and has proven to reduce the intensity and frequency of seizure by 50% in the management of refractory seizures. Apart from this, VNS has been shown to promote neurogenesis in the dentate gyrus of rat hippocampus after 48 hours of stimulation of the vagus nerve. Improvement has also been observed in non-psychotic major depression from a randomized trial conducted 7 years ago. The same concept has been utilized to alter behavior and cognition in rodents, and good improvement has been observed. Recent studies have proven that VNS is effective in obesity management in patients with depression. Several hypotheses have been postulated for the mechanism of action of VNS contributing to its success. VNS has gained significant popularity with promising results in epilepsy surgery and treatment-resistant depression. The spectrum of its use has also extended to other fields of medicine including obesity, memory, and neurogenesis, and there is still a viable scope for its utility in the future. PMID:23633829
The Evolution of Networked Computing in the Teaching of Japanese as a Foreign Language.
ERIC Educational Resources Information Center
Harrison, Richard
1998-01-01
Reviews the evolution of Internet-based projects in Japanese computer-assisted language learning and suggests future directions in which the field may develop, based on emerging network technology and learning theory. (Author/VWL)
Workshop on Early Crustal Genesis: The World's Oldest Rocks
NASA Technical Reports Server (NTRS)
Ashwal, L. D. (Editor)
1986-01-01
Topics addressed include: a general review of Precambrain crustal evolution; geology and geochemistry of the Archean Craton in Greenland and Labrador; Precambrian crustal evolution in North and South America; and the field excursion to the Ameralik Fjord.
Magnetic field effects on plant growth, development, and evolution
Maffei, Massimo E.
2014-01-01
The geomagnetic field (GMF) is a natural component of our environment. Plants, which are known to sense different wavelengths of light, respond to gravity, react to touch and electrical signaling, cannot escape the effect of GMF. While phototropism, gravitropism, and tigmotropism have been thoroughly studied, the impact of GMF on plant growth and development is not well-understood. This review describes the effects of altering magnetic field (MF) conditions on plants by considering plant responses to MF values either lower or higher than those of the GMF. The possible role of GMF on plant evolution and the nature of the magnetoreceptor is also discussed. PMID:25237317
Environment-Assisted Speed-up of the Field Evolution in Cavity Quantum Electrodynamics
Cimmarusti, A. D.; Yan, Z.; Patterson, B. D.; ...
2015-06-11
We measure the quantum speed of the state evolution of the field in a weakly-driven optical cavity QED system. To this end, the mode of the electromagnetic field is considered as a quantum system of interest with a preferential coupling to a tunable environment: the atoms. By controlling the environment, i.e., changing the number of atoms coupled to the optical cavity mode, an environment assisted speed-up is realized: the quantum speed of the state re-population in the optical cavity increases with the coupling strength between the optical cavity mode and this non-Markovian environment (the number of atoms).
Investing in our future: unrealized opportunities for funding graduate psychology training.
Reid-Arndt, Stephanie A; Stucky, Kirk; Cheak-Zamora, Nancy; DeLeon, Patrick H; Frank, Robert G
2010-11-01
Changes in the health care environment have brought challenges and opportunities to the field of psychology. Practitioners have been successful in modifying service models to absorb losses of financial support for behavioral health care, due to managed care and public policy changes, while simultaneously managing the growing need for these services. However, in this reactive mode of responding to evolutions in the health care system, the field of psychology has at times lost sight of the long-term vision required to promote psychology's inclusion in the health care system of the future. In particular, a focus on training psychologists and ensuring the availability of funding to support these activities must be a priority in planning for the future. This article provides an overview of federal programs that currently offer funding for psychology training, as well as other opportunities for federal funding that have been unrealized. Details regarding advocacy efforts that were required to secure available sources of funding are given, followed by consideration of strategies for taking advantage of existing resources and prioritizing advocacy for additional funding. Funding for psychology training provides an avenue for increasing the number of well-trained psychologists who can serve patients' mental and behavioral health needs and thereby improve health outcomes. Moreover, capitalizing on available funding opportunities for psychology training and promoting efforts to expand these opportunities will help ensure that the field of psychology is positioned to remain an important contributor to the health care system of the future. (PsycINFO Database Record (c) 2010 APA, all rights reserved).
Spinor Field Nonlinearity and Space-Time Geometry
NASA Astrophysics Data System (ADS)
Saha, Bijan
2018-03-01
Within the scope of Bianchi type VI,VI0,V, III, I, LRSBI and FRW cosmological models we have studied the role of nonlinear spinor field on the evolution of the Universe and the spinor field itself. It was found that due to the presence of non-trivial non-diagonal components of the energy-momentum tensor of the spinor field in the anisotropic space-time, there occur some severe restrictions both on the metric functions and on the components of the spinor field. In this report we have considered a polynomial nonlinearity which is a function of invariants constructed from the bilinear spinor forms. It is found that in case of a Bianchi type-VI space-time, depending of the sign of self-coupling constants, the model allows either late time acceleration or oscillatory mode of evolution. In case of a Bianchi VI 0 type space-time due to the specific behavior of the spinor field we have two different scenarios. In one case the invariants constructed from bilinear spinor forms become trivial, thus giving rise to a massless and linear spinor field Lagrangian. This case is equivalent to the vacuum solution of the Bianchi VI 0 type space-time. The second case allows non-vanishing massive and nonlinear terms and depending on the sign of coupling constants gives rise to accelerating mode of expansion or the one that after obtaining some maximum value contracts and ends in big crunch, consequently generating space-time singularity. In case of a Bianchi type-V model there occur two possibilities. In one case we found that the metric functions are similar to each other. In this case the Universe expands with acceleration if the self-coupling constant is taken to be a positive one, whereas a negative coupling constant gives rise to a cyclic or periodic solution. In the second case the spinor mass and the spinor field nonlinearity vanish and the Universe expands linearly in time. In case of a Bianchi type-III model the space-time remains locally rotationally symmetric all the time, though the isotropy of space-time can be attained for a large proportionality constant. As far as evolution is concerned, depending on the sign of coupling constant the model allows both accelerated and oscillatory mode of expansion. A negative coupling constant leads to an oscillatory mode of expansion, whereas a positive coupling constant generates expanding Universe with late time acceleration. Both deceleration parameter and EoS parameter in this case vary with time and are in agreement with modern concept of space-time evolution. In case of a Bianchi type-I space-time the non-diagonal components lead to three different possibilities. In case of a full BI space-time we find that the spinor field nonlinearity and the massive term vanish, hence the spinor field Lagrangian becomes massless and linear. In two other cases the space-time evolves into either LRSBI or FRW Universe. If we consider a locally rotationally symmetric BI( LRSBI) model, neither the mass term nor the spinor field nonlinearity vanishes. In this case depending on the sign of coupling constant we have either late time accelerated mode of expansion or oscillatory mode of evolution. In this case for an expanding Universe we have asymptotical isotropization. Finally, in case of a FRW model neither the mass term nor the spinor field nonlinearity vanishes. Like in LRSBI case we have either late time acceleration or cyclic mode of evolution. These findings allow us to conclude that the spinor field is very sensitive to the gravitational one.
Multiplicity in Early Stellar Evolution
NASA Astrophysics Data System (ADS)
Reipurth, B.; Clarke, C. J.; Boss, A. P.; Goodwin, S. P.; Rodríguez, L. F.; Stassun, K. G.; Tokovinin, A.; Zinnecker, H.
Observations from optical to centimeter wavelengths have demonstrated that multiple systems of two or more bodies is the norm at all stellar evolutionary stages. Multiple systems are widely agreed to result from the collapse and fragmentation of cloud cores, despite the inhibiting influence of magnetic fields. Surveys of class 0 protostars with millimeter interferometers have revealed a very high multiplicity frequency of about 2/3, even though there are observational difficulties in resolving close protobinaries, thus supporting the possibility that all stars could be born in multiple systems. Near-infrared adaptive optics observations of class I protostars show a lower binary frequency relative to the class 0 phase, a declining trend that continues through the class II/III stages to the field population. This loss of companions is a natural consequence of dynamical interplay in small multiple systems, leading to ejection of members. We discuss observational consequences of this dynamical evolution, and its influence on circumstellar disks, and we review the evolution of circumbinary disks and their role in defining binary mass ratios. Special attention is paid to eclipsing PMS binaries, which allow for observational tests of evolutionary models of early stellar evolution. Many stars are born in clusters and small groups, and we discuss how interactions in dense stellar environments can significantly alter the distribution of binary separations through dissolution of wider binaries. The binaries and multiples we find in the field are the survivors of these internal and external destructive processes, and we provide a detailed overview of the multiplicity statistics of the field, which form a boundary condition for all models of binary evolution. Finally, we discuss various formation mechanisms for massive binaries, and the properties of massive trapezia.
Combined cosmological tests of a bivalent tachyonic dark energy scalar field model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Keresztes, Zoltán; Gergely, László Á., E-mail: zkeresztes@titan.physx.u-szeged.hu, E-mail: gergely@physx.u-szeged.hu
A recently investigated tachyonic scalar field dark energy dominated universe exhibits a bivalent future: depending on initial parameters can run either into a de Sitter exponential expansion or into a traversable future soft singularity followed by a contraction phase. We also include in the model (i) a tiny amount of radiation, (ii) baryonic matter (Ω{sub b}h{sup 2} = 0.022161, where the Hubble constant is fixed as h = 0.706) and (iii) cold dark matter (CDM). Out of a variety of six types of evolutions arising in a more subtle classification, we identify two in which in the past the scalar field effectively degenerates intomore » a dust (its pressure drops to an insignificantly low negative value). These are the evolutions of type IIb converging to de Sitter and type III hitting the future soft singularity. We confront these background evolutions with various cosmological tests, including the supernova type Ia Union 2.1 data, baryon acoustic oscillation distance ratios, Hubble parameter-redshift relation and the cosmic microwave background (CMB) acoustic scale. We determine a subset of the evolutions of both types which at 1σ confidence level are consistent with all of these cosmological tests. At perturbative level we derive the CMB temperature power spectrum to find the best agreement with the Planck data for Ω{sub CDM} = 0.22. The fit is as good as for the ΛCDM model at high multipoles, but the power remains slightly overestimated at low multipoles, for both types of evolutions. The rest of the CDM is effectively generated by the tachyonic field, which in this sense acts as a combined dark energy and dark matter model.« less
Evolution Of The Galaxy Major Merger Rate Since Z 6 In The Muse Hubble Ultra Deep Field Survey.
NASA Astrophysics Data System (ADS)
Ventou, E.; Contini, T.; MUSE-GTO Collaboration
2017-06-01
Over the past two decades, strong evidence that galaxies have undergone a significant evolution over cosmic time were found. Do galaxy mergers, one of the main driving mechanisms behind the growth of galaxies, played a key role in their evolution at significant look-back time? Due to the difficulty to identify these violent interactions between galaxies at high redshifts, the major merger rate, involving two galaxies of similar masses, was constrained so far up to redshift z 3, from previous studies of spectrocopic pair counts. Thanks to MUSE, which is perfectly suited to identify close pairs of galaxies with secure spectroscopic redshifts, we are now able to extend such studies up to z 6. I will present the results obtained from deep (10-30h) MUSE observations in the Hubble Ultra Deep Field. We provide the first constraints on the galaxy major merger evolution over 12 Gyrs (0.2 < z < 6) and over a broad range of stellar masses, showing that there is a flattening of the major merger rate evolution at very high redshift.
The Role of Small-Scale Processes in Solar Active Region Decay
NASA Astrophysics Data System (ADS)
Meyer, Karen; Mackay, Duncan
2017-08-01
Active regions are locations of intense magnetic activity on the Sun, whose evolution can result in highly energetic eruptive phenomena such as solar flares and coronal mass ejections (CMEs). Therefore, fast and accurate simulation of their evolution and decay is essential in the prediction of Space Weather events. In this talk we present initial results from our new model for the photospheric evolution of active region magnetic fields. Observations show that small-scale processes appear to play a role in the dispersal and decay of solar active regions, for example through cancellation at the boundary of sunspot outflows and erosion of flux by surrounding convective cells. Our active region model is coupled to our existing model for the evolution of small-scale photospheric magnetic features. Focusing first on the active region decay phase, we consider the evolution of its magnetic field due to both large-scale (e.g. differential rotation) and small-scale processes, such as its interaction with surrounding small-scale magnetic features and convective flows.This project is funded by The Carnegie Trust for the Universities of Scotland, through their Research Incentives Grant scheme.
The Evolution of Oblique Impact Flow Fields Using Maxwell's Z Model
NASA Technical Reports Server (NTRS)
Anderson, J. L. B.; Schultz, P. H.; Heineck, J. T.
2003-01-01
Oblique impacts are the norm rather than the exception for impact craters on planetary surfaces. This work focuses on the excavation of experimental oblique impact craters using the NASA Ames Vertical Gun Range (AVGR). Three-dimensional particle image velocimetry (3D PIV) is used to obtain quantitative data on ejection positions, three dimensional velocities and angles. These data are then used to constrain Maxwell's Z Model and follow the subsurface evolution of the excavation-stage flow-field center during oblique impacts.
Happy Anniversary to a Galactic Explorer
2004-05-24
The Galaxy Evolution Explorer specializes in surveying galaxies in ultraviolet light. Its telescope, 50 centimeters (19.7 inches) in diameter, has a field of view that is much wider than most ground-based and space-based telescopes. This field of view, nearly three times the diameter of the Moon, allowed the Galaxy Evolution Explorer to discover seemingly newborn galaxies in our local universe. The telescope surveyed thousands of galaxies before finding three-dozen of these newborns. http://photojournal.jpl.nasa.gov/catalog/PIA05979
On the evolution of the Galactic pulsar population
NASA Astrophysics Data System (ADS)
Sierpowska, A.; Bednarek, W.
2001-09-01
We analyse the evolution of periods of the observed population of radio pulsars from their birth up to the present time assuming that pulsars lose rotational energy in emission of electromagnetic dipole and gravitational radiation. We consider the hypothesis that all pulsars are born with the same period close to 10 ms. We found strong correlation between the ellipticity of pulsars and their surface magnetic field. Such correlation is expected if the deformation of the pulsar shape is due to the strong magnetic field.
Employment and Self-Management: A Meta-Evaluation of Seven Literature Reviews
ERIC Educational Resources Information Center
Rusch, Frank R.; Dattilo, John
2012-01-01
Efforts focused on teaching individuals with intellectual disabilities to manage their own affairs have evolved over the past 30 years. Self-management strategies, in particular, hold much promise when the goal is to promote self-determination. In this article, the authors describe trends in the evolution of self-management strategies by analyzing…
ERIC Educational Resources Information Center
Szymczak, Conrad C.; Walker, Derek H. T.
2003-01-01
The evolution of the Boeing Company illustrates how to achieve an enterprise project management culture through organizational learning. Project management can be a survival technique for adapting to change as well as a proactive mechanism. An organizational culture that supports commitment and enthusiasm and a knowledge management infrastructure…
The Solar Wind Source Cycle: Relationship to Dynamo Behavior
NASA Astrophysics Data System (ADS)
Luhmann, J. G.; Li, Y.; Lee, C. O.; Jian, L. K.; Petrie, G. J. D.; Arge, C. N.
2017-12-01
Solar cycle trends of interest include the evolving properties of the solar wind, the heliospheric medium through which the Sun's plasmas and fields interact with Earth and the planets -including the evolution of CME/ICMEs enroute. Solar wind sources include the coronal holes-the open field regions that constantly evolve with solar magnetic fields as the cycle progresses, and the streamers between them. The recent cycle has been notably important in demonstrating that not all solar cycles are alike when it comes to contributions from these sources, including in the case of ecliptic solar wind. In particular, it has modified our appreciation of the low latitude coronal hole and streamer sources because of their relative prevalence. One way to understand the basic relationship between these source differences and what is happening inside the Sun and on its surface is to use observation-based models like the PFSS model to evaluate the evolution of the coronal field geometry. Although the accuracy of these models is compromised around solar maximum by lack of global surface field information and the sometimes non-potential evolution of the field related to more frequent and widespread emergence of active regions, they still approximate the character of the coronal field state. We use these models to compare the inferred recent cycle coronal holes and streamer belt sources of solar wind with past cycle counterparts. The results illustrate how (still) hemispherically asymmetric weak polar fields maintain a complex mix of low-to-mid latitude solar wind sources throughout the latest cycle, with a related marked asymmetry in the hemispheric distribution of the ecliptic wind sources. This is likely to be repeated until the polar field strength significantly increases relative to the fields at low latitudes, and the latter symmetrize.
NASA Astrophysics Data System (ADS)
Xu, K.; Miner, M. D.; Bentley, S. J.; Li, C.; Obelcz, J.; O'Connor, M. C.
2016-02-01
The shelf offshore Louisiana is characterized by a dominantly muddy seafloor with a paucity of restoration-quality sand proximal to shore. Discrete sand deposits associated with ancient rivers that incised the shelf during lower sea-level positions occur close to shore. These shelf channel sands have been targeted for coastal restoration projects resulting in significant cost savings over more distal deposits. Several recent projects targeted shelf paleo-fluvial deposits comprising relatively deep (10 m) channel sands underlying a muddy overburden. Because of contrasting characteristics of cohesive mud vs. non-cohesive sand and potential modern fluvial mud supply from the Mississippi and Atchafalaya Rivers, long term pit evolution is poorly understood relative to their more common sand-only counterparts. Alterations to seafloor topography from dredging shelf sediment resources can potentially affect oil and gas infrastructure or other resources of concern (i.e. historic shipwrecks) located proximal to dredge pits. Site-specific data required to make accurate predictions and empirical measurements to test and validate predictive models were only available for Peveto Channel offshore Holly Beach, Louisiana. Here we present new geophysical and geological data (bathymetry, sidescan, subbottom, and radionuclide of sediment cores) and physical oceanographic observations (hydrodynamics and sediment dynamics) collected at Raccoon Island (dredged in 2013) dredge pit in Louisiana. These field data collections along with pre-existing data provide a time-series to capture evolution at Raccoon Island post-excavation. Conceptual morphological models will be developed for dredge pit evolution and testing effectiveness of setback buffers protecting pipelines, habitats, and cultural resources. Our results will increase decision making ability regarding safety and protecting environmental and cultural resources, and better management of valuable sand resources.
NASA Astrophysics Data System (ADS)
Oh, W. S.; Yu, D. J.; Davis, T.; Hillis, V.; Waring, T. M.
2017-12-01
One ongoing challenge to socio-hydrology is the problem of generalization: to what extent do common human-water co-evolutions exist across distinct cases and what are underlying mechanisms of these co-evolutions. This problem stems in part from a lack of unifying theories in socio-hydrology, which hinders the explanation and generalization of results between cases in different regions. Theories help an analyst to make assumptions that are necessary to diagnose a specific phenomenon, to explain the general mechanisms of causation, and, thus, to predict future outcomes. To help address the issue, this study introduces two theories that are increasingly used in the fields of sustainability science and social-ecological systems research: robustness-fragility tradeoff (RFTO) and cultural multi-level selection (CMLS). We apply each of these theories to two distinct cases (water management issues in southwest Bangladesh and the Kissimmee River Basin, Florida) and interpret the phenomena of the levee and adaptation effects. CMLS and RFTO focus on complementary aspects of socio-hydrological phenomena. The theory of RFTO, which is mostly about inherent tradeoffs associated with infrastructure improvements, explains how efforts to increase system robustness can generate hidden endogenous risks. CMLS theory, rooted in the broader theory of cultural evolution, concerns how human cultural dynamics can act as an endogenous driver of system change across multiple levels of social organizations. Using the applied examples, we demonstrate that these two theories can provide an effective way to study social-hydrological systems and to overcome the generalization problem. Our work shows that multiple theories can be synthesized to give a richer understanding of diverse socio-hydrological patterns.
A new heart for a new head in vertebrate cardiopharyngeal evolution.
Diogo, Rui; Kelly, Robert G; Christiaen, Lionel; Levine, Michael; Ziermann, Janine M; Molnar, Julia L; Noden, Drew M; Tzahor, Eldad
2015-04-23
It has been more than 30 years since the publication of the new head hypothesis, which proposed that the vertebrate head is an evolutionary novelty resulting from the emergence of neural crest and cranial placodes. Neural crest generates the skull and associated connective tissues, whereas placodes produce sensory organs. However, neither crest nor placodes produce head muscles, which are a crucial component of the complex vertebrate head. We discuss emerging evidence for a surprising link between the evolution of head muscles and chambered hearts - both systems arise from a common pool of mesoderm progenitor cells within the cardiopharyngeal field of vertebrate embryos. We consider the origin of this field in non-vertebrate chordates and its evolution in vertebrates.
A new heart for a new head in vertebrate cardiopharyngeal evolution
Diogo, Rui; Kelly, Robert G.; Christiaen, Lionel; Levine, Michael; Ziermann, Janine M.; Molnar, Julia L.; Noden, Drew M.; Tzahor, Eldad
2015-01-01
It has been more than 30 years since the publication of the new head hypothesis, which proposed that the vertebrate head is an evolutionary novelty resulting from the emergence of neural crest and cranial placodes. Neural crest generates the skull and associated connective tissues, whereas placodes produce sensory organs. However, neither crest nor placodes produce head muscles, which are a crucial component of the complex vertebrate head. We discuss emerging evidence for a surprising link between the evolution of head muscles and chambered hearts — both systems arise from a common pool of mesoderm progenitor cells within the cardiopharyngeal field of vertebrate embryos. We consider the origin of this field in non-vertebrate chordates and its evolution in vertebrates. PMID:25903628
Firework Model: Time Dependent Spectral Evolution of GRB
NASA Astrophysics Data System (ADS)
Barbiellini, Guido; Longo, Francesco; Ghirlanda, G.; Celotti, A.; Bosnjak, Z.
2004-09-01
The energetics of the long duration GRB phenomenon is compared with models of a rotating BH in a strong magnetic field generated by an accreting torus. The GRB energy emission is attributed to magnetic field vacuum breakdown that gives origin to a e +/- fireball. Its subsequent evolution is hypothesized in analogy with the in-flight decay of an elementary particle. An anisotropy in the fireball propagation is thus naturally produced. The recent discovery in some GRB of an initial phase characterized by a thermal spectrum could be interpreted as the photon emission of the fireball photosphere when it becomes transparent. In particular, the temporal evolution of the emission can be explained as the effect of a radiative deceleration of the out-moving ejecta.
Evolution of an experiential learning partnership in emergency management higher education.
Knox, Claire Connolly; Harris, Alan S
2016-01-01
Experiential learning allows students to step outside the classroom and into a community setting to integrate theory with practice, while allowing the community partner to reach goals or address needs within their organization. Emergency Management and Homeland Security scholars recognize the importance, and support the increased implementation, of this pedagogical method in the higher education curriculum. Yet challenges to successful implementation exist including limited resources and time. This longitudinal study extends the literature by detailing the evolution of a partnership between a university and office of emergency management in which a functional exercise is strategically integrated into an undergraduate course. The manuscript concludes with a discussion of lessons learned from throughout the multiyear process.
A GLOBAL GALACTIC DYNAMO WITH A CORONA CONSTRAINED BY RELATIVE HELICITY
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prasad, A.; Mangalam, A., E-mail: avijeet@iiap.res.in, E-mail: mangalam@iiap.res.in
We present a model for a global axisymmetric turbulent dynamo operating in a galaxy with a corona that treats the parameters of turbulence driven by supernovae and by magneto-rotational instability under a common formalism. The nonlinear quenching of the dynamo is alleviated by the inclusion of small-scale advective and diffusive magnetic helicity fluxes, which allow the gauge-invariant magnetic helicity to be transferred outside the disk and consequently to build up a corona during the course of dynamo action. The time-dependent dynamo equations are expressed in a separable form and solved through an eigenvector expansion constructed using the steady-state solutions ofmore » the dynamo equation. The parametric evolution of the dynamo solution allows us to estimate the final structure of the global magnetic field and the saturated value of the turbulence parameter α{sub m}, even before solving the dynamical equations for evolution of magnetic fields in the disk and the corona, along with α-quenching. We then solve these equations simultaneously to study the saturation of the large-scale magnetic field, its dependence on the small-scale magnetic helicity fluxes, and the corresponding evolution of the force-free field in the corona. The quadrupolar large-scale magnetic field in the disk is found to reach equipartition strength within a timescale of 1 Gyr. The large-scale magnetic field in the corona obtained is much weaker than the field inside the disk and has only a weak impact on the dynamo operation.« less
Evosystem Services: Rapid Evolution and the Provision of Ecosystem Services.
Rudman, Seth M; Kreitzman, Maayan; Chan, Kai M A; Schluter, Dolph
2017-06-01
Evolution is recognized as the source of all organisms, and hence many ecosystem services. However, the role that contemporary evolution might play in maintaining and enhancing specific ecosystem services has largely been overlooked. Recent advances at the interface of ecology and evolution have demonstrated how contemporary evolution can shape ecological communities and ecosystem functions. We propose a definition and quantitative criteria to study how rapid evolution affects ecosystem services (here termed contemporary evosystem services) and present plausible scenarios where such services might exist. We advocate for the direct measurement of contemporary evosystem services to improve understanding of how changing environments will alter resource availability and human well-being, and highlight the potential utility of managing rapid evolution for future ecosystem services. Copyright © 2017 Elsevier Ltd. All rights reserved.
Identifying open magnetic field regions of the Sun and their heliospheric counterparts
NASA Astrophysics Data System (ADS)
Krista, L. D.; Reinard, A.
2017-12-01
Open magnetic regions on the Sun are either long-lived (coronal holes) or transient (dimmings) in nature. Both phenomena are fundamental to our understanding of the solar behavior as a whole. Coronal holes are the sources of high-speed solar wind streams that cause recurrent geomagnetic storms. Furthermore, the variation of coronal hole properties (area, location, magnetic field strength) over the solar activity cycle is an important marker of the global evolution of the solar magnetic field. Dimming regions, on the other hand, are short-lived coronal holes that often emerge in the wake of solar eruptions. By analyzing their physical properties and their temporal evolution, we aim to understand their connection with their eruptive counterparts (flares and coronal mass ejections) and predict the possibility of a geomagnetic storm. The author developed the Coronal Hole Automated Recognition and Monitoring (CHARM) and the Coronal Dimming Tracker (CoDiT) algorithms. These tools not only identify but track the evolution of open magnetic field regions. CHARM also provides daily coronal hole maps, that are used for forecasts at the NOAA Space Weather Prediction Center. Our goal is to better understand the processes that give rise to eruptive and non-eruptive open field regions and investigate how these regions evolve over time and influence space weather.
An MHD 3-D solution to the evolution of a CME observed by the STEREO mission on May 2007
NASA Astrophysics Data System (ADS)
Berdichevsky, D. B.; Stenborg, G. A.
2009-12-01
Nature offers a variety of examples on the dynamics of matter trapped electromagnetic fields. In particular, sudden ejections of large amounts of solar mass embedded in magnetic field structures develop in the heliosphere, their evolution being affected by the background solar wind. Their plasma and magnetic field values can be obtained by in-situ instruments onboard existing space missions. A particular example of such process is the passage of a magnetic field flux tube-like structure (~ 0.1 AU in cross section) exhibiting a flux-rope topology observed on May 2007 with their in-situ instruments by the Venus Express and Messenger missions. STEREO remote observations obtained with the SECCHI instruments allowed the tracking of this quite weak event from its origins in the Sun to approximately the orbit of Mercury. In this work, we i) discuss on the dynamic evolution of the event as described by the magnetic force-free magneto-hydrodynamic solution proposed in [1], and ii) generalize it to add curvature to the MHD solution. The magneto-hydrodynamic analytical solution obtained allows us to make quantitative estimates on the size of the flux tube just after the ejection, magnetic field intensity, and mass density. [1] Berdichevsky, DB, RP Lepping, and CJ Farrugia, Phys Rev E, 67(3), 036405, 2003.
Jiang, Fan; Zhang, Tiantao; Bai, Shuxiong; Wang, Zhenying; He, Kanglai
2016-01-01
A Bt corn hybrid (AcIe) with two Bt genes (cry1Ie and cry1Ac) was derived by breeding stack from line expressing Cry1Ie and a line expressing Cry1Ac. Efficacy of this pyramided Bt corn hybrid against the Asian corn borer (ACB), Ostrinia furnacalis, was evaluated. We conducted laboratory bioassays using susceptible and resistant ACB strains fed on artificial diet or fresh plant tissues. We also conducted field trials with artificial infestations of ACB neonates at the V6 and silk stages. The toxin-diet bioassay data indicated that mixtures of Cry1Ac and Cry1Ie proteins had synergistic insecticidal efficacy. The plant tissue bioassay data indicated that Bt corn hybrids expressing either a single toxin (Cry1Ac or Cry1Ie) or two toxins had high efficacy against susceptible ACB. Damage ratings in the field trials indicated that the Bt corn hybrids could effectively protect against 1st and the 2nd generation ACB in China. The hybrid line with two Bt genes showed a higher efficacy against ACB larvae resistant to Cry1Ac or CryIe than the hybrid containing one Bt gene, and the two gene hybrid would have increased potential for managing or delaying the evolution of ACB resistance to Bt corn plants.
Santos-Amaya, Oscar F.; Rodrigues, João V. C.; Souza, Thadeu C.; Tavares, Clébson S.; Campos, Silverio O.; Guedes, Raul N.C.; Pereira, Eliseu J.G.
2015-01-01
Transgenic crop “pyramids” producing two or more Bacillus thuringiensis (Bt) toxins active against the same pest are used to delay evolution of resistance in insect pest populations. Laboratory and greenhouse experiments were performed with fall armyworm, Spodoptera frugiperda, to characterize resistance to Bt maize producing Cry1A.105 and Cry2Ab and test some assumptions of the “pyramid” resistance management strategy. Selection of a field-derived strain of S. frugiperda already resistant to Cry1F maize with Cry1A.105 + Cry2Ab maize for ten generations produced resistance that allowed the larvae to colonize and complete the life cycle on these Bt maize plants. Greenhouse experiments revealed that the resistance was completely recessive (Dx = 0), incomplete, autosomal, and without maternal effects or cross-resistance to the Vip3Aa20 toxin produced in other Bt maize events. This profile of resistance supports some of the assumptions of the pyramid strategy for resistance management. However, laboratory experiments with purified Bt toxin and plant leaf tissue showed that resistance to Cry1A.105 + Cry2Ab2 maize further increased resistance to Cry1Fa, which indicates that populations of fall armyworm have high potential for developing resistance to some currently available pyramided maize used against this pest, especially where resistance to Cry1Fa was reported in the field. PMID:26675246
Santos-Amaya, Oscar F; Rodrigues, João V C; Souza, Thadeu C; Tavares, Clébson S; Campos, Silverio O; Guedes, Raul N C; Pereira, Eliseu J G
2015-12-17
Transgenic crop "pyramids" producing two or more Bacillus thuringiensis (Bt) toxins active against the same pest are used to delay evolution of resistance in insect pest populations. Laboratory and greenhouse experiments were performed with fall armyworm, Spodoptera frugiperda, to characterize resistance to Bt maize producing Cry1A.105 and Cry2Ab and test some assumptions of the "pyramid" resistance management strategy. Selection of a field-derived strain of S. frugiperda already resistant to Cry1F maize with Cry1A.105 + Cry2Ab maize for ten generations produced resistance that allowed the larvae to colonize and complete the life cycle on these Bt maize plants. Greenhouse experiments revealed that the resistance was completely recessive (Dx = 0), incomplete, autosomal, and without maternal effects or cross-resistance to the Vip3Aa20 toxin produced in other Bt maize events. This profile of resistance supports some of the assumptions of the pyramid strategy for resistance management. However, laboratory experiments with purified Bt toxin and plant leaf tissue showed that resistance to Cry1A.105 + Cry2Ab2 maize further increased resistance to Cry1Fa, which indicates that populations of fall armyworm have high potential for developing resistance to some currently available pyramided maize used against this pest, especially where resistance to Cry1Fa was reported in the field.
Positive Approaches to Business Management: Conference Proceedings.
ERIC Educational Resources Information Center
LaVire, Willis A., Ed.
In August 1970, an institute for newly appointed junior college business managers was planned around the business management function. This function would include purchasing, physical plant, personnel, auxiliary services, and financial records. The following seven speeches from the proceedings are presented: Evolution of Responsibility in the…
Intelligent Resource Management for Local Area Networks: Approach and Evolution
NASA Technical Reports Server (NTRS)
Meike, Roger
1988-01-01
The Data Management System network is a complex and important part of manned space platforms. Its efficient operation is vital to crew, subsystems and experiments. AI is being considered to aid in the initial design of the network and to augment the management of its operation. The Intelligent Resource Management for Local Area Networks (IRMA-LAN) project is concerned with the application of AI techniques to network configuration and management. A network simulation was constructed employing real time process scheduling for realistic loads, and utilizing the IEEE 802.4 token passing scheme. This simulation is an integral part of the construction of the IRMA-LAN system. From it, a causal model is being constructed for use in prediction and deep reasoning about the system configuration. An AI network design advisor is being added to help in the design of an efficient network. The AI portion of the system is planned to evolve into a dynamic network management aid. The approach, the integrated simulation, project evolution, and some initial results are described.
24 CFR 203.681 - Authority of HUD Field Office Managers.
Code of Federal Regulations, 2010 CFR
2010-04-01
... Managers. 203.681 Section 203.681 Housing and Urban Development Regulations Relating to Housing and Urban... Authority of HUD Field Office Managers. Field Office Managers shall act for the Secretary in all matters relating to assignment and occupied conveyance determinations. The decision of the Field Office Manager...
24 CFR 203.681 - Authority of HUD Field Office Managers.
Code of Federal Regulations, 2013 CFR
2013-04-01
... Authority of HUD Field Office Managers. Field Office Managers shall act for the Secretary in all matters relating to assignment and occupied conveyance determinations. The decision of the Field Office Manager... 24 Housing and Urban Development 2 2013-04-01 2013-04-01 false Authority of HUD Field Office...
24 CFR 203.681 - Authority of HUD Field Office Managers.
Code of Federal Regulations, 2011 CFR
2011-04-01
... Authority of HUD Field Office Managers. Field Office Managers shall act for the Secretary in all matters relating to assignment and occupied conveyance determinations. The decision of the Field Office Manager... 24 Housing and Urban Development 2 2011-04-01 2011-04-01 false Authority of HUD Field Office...
24 CFR 203.681 - Authority of HUD Field Office Managers.
Code of Federal Regulations, 2012 CFR
2012-04-01
... Authority of HUD Field Office Managers. Field Office Managers shall act for the Secretary in all matters relating to assignment and occupied conveyance determinations. The decision of the Field Office Manager... 24 Housing and Urban Development 2 2012-04-01 2012-04-01 false Authority of HUD Field Office...
24 CFR 203.681 - Authority of HUD Field Office Managers.
Code of Federal Regulations, 2014 CFR
2014-04-01
... Authority of HUD Field Office Managers. Field Office Managers shall act for the Secretary in all matters relating to assignment and occupied conveyance determinations. The decision of the Field Office Manager... 24 Housing and Urban Development 2 2014-04-01 2014-04-01 false Authority of HUD Field Office...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Yulan; Hu, Shenyang; Sun, Xin
Complex microstructure changes occur in nuclear fuel and structural materials due to the extreme environments of intense irradiation and high temperature. This paper evaluates the role of the phase field (PF) method in predicting the microstructure evolution of irradiated nuclear materials and the impact on their mechanical, thermal, and magnetic properties. The paper starts with an overview of the important physical mechanisms of defect evolution and the significant gaps in simulating microstructure evolution in irradiated nuclear materials. Then, the PF method is introduced as a powerful and predictive tool and its applications to microstructure and property evolution in irradiated nuclearmore » materials are reviewed. The review shows that 1) FP models can correctly describe important phenomena such as spatial dependent generation, migration, and recombination of defects, radiation-induced dissolution, the Soret effect, strong interfacial energy anisotropy, and elastic interaction; 2) The PF method can qualitatively and quantitatively simulate 2-D and 3-D microstructure evolution, including radiation-induced segregation, second phase nucleation, void migration, void and gas bubble superlattice formation, interstitial loop evolution, hydrate formation, and grain growth, and 3) The FP method correctly predicts the relationships between microstructures and properties. The final section is dedicated to a discussion of the strengths and limitations of the PF method, as applied to irradiation effects in nuclear materials.« less
The South Atlantic Anomaly throughout the solar cycle
NASA Astrophysics Data System (ADS)
Domingos, João; Jault, Dominique; Pais, Maria Alexandra; Mandea, Mioara
2017-09-01
The Sun-Earth's interaction is characterized by a highly dynamic electromagnetic environment, in which the magnetic field produced in the Earth's core plays an important role. One of the striking characteristics of the present geomagnetic field is denoted the South Atlantic Anomaly (SAA) where the total field intensity is unusually low and the flux of charged particles, trapped in the inner Van Allen radiation belts, is maximum. Here, we use, on one hand, a recent geomagnetic field model, CHAOS-6, and on the other hand, data provided by different platforms (satellites orbiting the Earth - POES NOAA for 1998-2014 and CALIPSO for 2006-2014). Evolution of the SAA particle flux can be seen as the result of two main effects, the secular variation of the Earth's core magnetic field and the modulation of the density of the inner radiation belts during the solar cycle, as a function of the L value that characterises the drift shell, where charged particles are trapped. To study the evolution of the particle flux anomaly, we rely on a Principal Component Analysis (PCA) of either POES particle flux or CALIOP dark noise. Analysed data are distributed on a geographical grid at satellite altitude, based on a L-shell reference frame constructed from the moving eccentric dipole. Changes in the main magnetic field are responsible for the observed westward drift. Three PCA modes account for the time evolution related to solar effects. Both the first and second modes have a good correlation with the thermospheric density, which varies in response to the solar cycle. The first mode represents the total intensity variation of the particle flux in the SAA, and the second the movement of the anomaly between different L-shells. The proposed analysis allows us to well recover the westward drift rate, as well as the latitudinal and longitudinal solar cycle oscillations, although the analysed data do not cover a complete (Hale) magnetic solar cycle (around 22 yr). Moreover, the developments made here would enable us to forecast the impact of the South Atlantic Anomaly on space weather. A model of the evolution of the eccentric dipole field (magnitude, offset and tilt) would suffice, together with a model for the solar cycle evolution.
Experimental evolution reveals high insecticide tolerance in Daphnia inhabiting farmland ponds
Jansen, Mieke; Coors, Anja; Vanoverbeke, Joost; Schepens, Melissa; De Voogt, Pim; De Schamphelaere, Karel A C; De Meester, Luc
2015-01-01
Exposure of nontarget populations to agricultural chemicals is an important aspect of global change. We quantified the capacity of natural Daphnia magna populations to locally adapt to insecticide exposure through a selection experiment involving carbaryl exposure and a control. Carbaryl tolerance after selection under carbaryl exposure did not increase significantly compared to the tolerance of the original field populations. However, there was evolution of a decreased tolerance in the control experimental populations compared to the original field populations. The magnitude of this decrease was positively correlated with land use intensity in the neighbourhood of the ponds from which the original populations were sampled. The genetic change in carbaryl tolerance in the control rather than in the carbaryl treatment suggests widespread selection for insecticide tolerance in the field associated with land use intensity and suggests that this evolution comes at a cost. Our data suggest a strong impact of current agricultural land use on nontarget natural Daphnia populations. PMID:26029258
Evolution of Supernova Remnants
NASA Astrophysics Data System (ADS)
Arbutina, B.
2017-12-01
This book, both a monograph and a graduate textbook, is based on my original research and partly on the materials prepared earlier for the 2007 and 2008 IARS Astrophysics Summer School in Istanbul, AstroMundus course 'Supernovae and Their Remnants' that was held for the first time in 2011 at the Department of Astronomy, Faculty of Mathematics, University of Belgrade, and a graduate course 'Evolution of Supernova Remnants' that I teach at the aforementioned university. The first part Supernovae (introduction, thermonuclear supernovae, core-collapse supernovae) provides introductory information and explains the classification and physics of supernova explosions, while the second part Supernova remnants (introduction, shock waves, cosmic rays and particle acceleration, magnetic fields, synchrotron radiation, hydrodynamic and radio evolution of supernova remnants), which is the field I work in, is more detailed in scope i.e. technical/mathematical. Special attention is paid to details of mathematical derivations that often cannot be found in original works or available literature. Therefore, I believe it can be useful to both, graduate students and researchers interested in the field.
Cosmic evolution of AGN with moderate-to-high radiative luminosity in the COSMOS field
NASA Astrophysics Data System (ADS)
Ceraj, L.; Smolčić, V.; Delvecchio, I.; Delhaize, J.; Novak, M.
2018-05-01
We study the moderate-to-high radiative luminosity active galactic nuclei (HLAGN) within the VLA-COSMOS 3 GHz Large Project. The survey covers 2.6 square degrees centered on the COSMOS field with a 1σ sensitivity of 2.3 μJy/beam across the field. This provides the simultaneously largest and deepest radio continuum survey available to date with exquisite multi-wavelength coverage. The survey yields 10,830 radio sources with signal-to-noise ratios >=5. A subsample of 1,604 HLAGN is analyzed here. These were selected via a combination of X-ray luminosity and mid-infrared colors. We derive luminosity functions for these AGN and constrain their cosmic evolution out to a redshift of z ~ 6, for the first time decomposing the star formation and AGN contributions to the radio continuum emission in the AGN. We study the evolution of number density and luminosity density finding a peak at z ~ 1.5 followed by a decrease out to a redshift z ~ 6.
Evolution of the magnetic field structure of the Crab pulsar.
Lyne, Andrew; Graham-Smith, Francis; Weltevrede, Patrick; Jordan, Christine; Stappers, Ben; Bassa, Cees; Kramer, Michael
2013-11-01
Pulsars are highly magnetized rotating neutron stars and are well known for the stability of their signature pulse shapes, allowing high-precision studies of their rotation. However, during the past 22 years, the radio pulse profile of the Crab pulsar has shown a steady increase in the separation of the main pulse and interpulse components at 0.62° ± 0.03° per century. There are also secular changes in the relative strengths of several components of the profile. The changing component separation indicates that the axis of the dipolar magnetic field, embedded in the neutron star, is moving toward the stellar equator. This evolution of the magnetic field could explain why the pulsar does not spin down as expected from simple braking by a rotating dipolar magnetic field.
NASA Astrophysics Data System (ADS)
Zuo, S. L.; Zhang, B.; Qiao, K. M.; Peng, L. C.; Li, R.; Xiong, J. F.; Zhang, Y.; Zhao, X.; Liu, D.; Zhao, T. Y.; Sun, J. R.; Hu, F. X.; Zhang, Y.; Shen, B. G.
2018-05-01
The magnetic domain evolution behavior under external field stimuli of temperature and magnetic field in PrMn2Ge0.4Si1.6 compound is investigated using Lorentz transmission electron microscopy. A spontaneous 180° magnetic domain is observed at room temperature and it changes with temperature. Dynamic magnetization process is related to the rotation of magnetic moments, resulting in the transforming of magnetic domains from 180° type to a uniform ferromagnetic state with almost no pinning effects under the in-plane magnetic field at room temperature. X-ray powder diffraction is performed on PrMn2Ge0.4Si1.6 at different temperatures to study the temperature dependence of crystal structure and lattice parameter.
Ecology and evolution of pine life histories
Keeley, Jon E.
2012-01-01
Conclusion - Understanding the current pattern of pine distribution requires interpreting their evolution in terms of climate, geology, and fire. All three of these factors have played a role since the Mesozoic origin of the genus. All are important to the appropriate management of these resources.
Pediatric melanoma: incidence, treatment, and prognosis
Saiyed, Faiez K; Hamilton, Emma C; Austin, Mary T
2017-01-01
The purpose of this review is to outline recent advancements in diagnosis, treatment, and prevention of pediatric melanoma. Despite the recent decline in incidence, it continues to be the deadliest form of skin cancer in children and adolescents. Pediatric melanoma presents differently from adult melanoma; thus, the traditional asymmetry, border irregularity, color variegation, diameter >6 mm, and evolution (ABCDE) criteria have been modified to include features unique to pediatric melanoma (amelanotic, bleeding/bump, color uniformity, de novo/any diameter, evolution of mole). Surgical and medical management of pediatric melanoma continues to derive guidelines from adult melanoma treatment. However, more drug trials are being conducted to determine the specific impact of drug combinations on pediatric patients. Alongside medical and surgical treatment, prevention is a central component of battling the incidence, as ultraviolet (UV)-related mutations play a central role in the vast majority of pediatric melanoma cases. Aggressive prevention measures targeting sun safety and tanning bed usage have shown positive sun-safety behavior trends, as well as the potential to decrease melanomas that manifest later in life. As research into the field of pediatric melanoma continues to expand, a prevention paradigm needs to continue on a community-wide level. PMID:29388632
Dixon, Shane Michael; Theberge, Nancy
2011-11-01
This article provides an analysis of the evolution of the division of labour in participatory ergonomics (PE) programmes in two worksites. The analysis is based on interviews and field observations in the worksites. In both settings there was meaningful participation by both worker and management members of ergonomic change teams (ECTs) in the hazard assessment and solution identification stages, but as the teams moved to the implementation stage, worker representatives were marginalised and the participatory nature of the programmes was severely curtailed. The removal of workers from the process was the outcome of the interplay among the type of activities pursued in the implementation stage, the skills and knowledge required to carry out those activities, and workers' limited influence in the organisational hierarchies. Findings highlight the salience of the social context in which participatory programmes are located and the importance of examining participatory programmes as they evolve over time. STATEMENT OF RELEVANCE: This article contributes to a growing literature on the process and implementation of PE programmes. The article's focus on social and organisational factors that affect the division of labour and attention to the evolution of involvement over time extend current understandings of participation in ergonomics programmes.
Combining Selective Pressures to Enhance the Durability of Disease Resistance Genes.
2016-01-01
The efficacy of disease resistance genes in plants decreases over time because of the selection of virulent pathogen genotypes. A key goal of crop protection programs is to increase the durability of the resistance conferred by these genes. The spatial and temporal deployment of plant disease resistance genes is considered to be a major factor determining their durability. In the literature, four principal strategies combining resistance genes over time and space have been considered to delay the evolution of virulent pathogen genotypes. We reviewed this literature with the aim of determining which deployment strategy results in the greatest durability of resistance genes. Although theoretical and empirical studies comparing deployment strategies of more than one resistance gene are very scarce, they suggest that the overall durability of disease resistance genes can be increased by combining their presence in the same plant (pyramiding). Retrospective analyses of field monitoring data also suggest that the pyramiding of disease resistance genes within a plant is the most durable strategy. By extension, we suggest that the combination of disease resistance genes with other practices for pathogen control (pesticides, farming practices) may be a relevant management strategy to slow down the evolution of virulent pathogen genotypes.
Global enhancement and structure formation of the magnetic field in spiral galaxies
NASA Astrophysics Data System (ADS)
Khoperskov, Sergey A.; Khrapov, Sergey S.
2018-01-01
In this paper we study numerically large-scale magnetic field evolution and its enhancement in gaseous disks of spiral galaxies. We consider a set of models with the various spiral pattern parameters and the initial magnetic field strength with taking into account gas self-gravity and cooling and heating processes. In agreement with previous studies we find out that galactic magnetic field is mostly aligned with gaseous structures, however small-scale gaseous structures (spurs and clumps) are more chaotic than the magnetic field structure. In spiral arms magnetic field often coexists with the gas distribution, in the inter-arm region we see filamentary magnetic field structure. These filaments connect several isolated gaseous clumps. Simulations reveal the presence of the small-scale irregularities of the magnetic field as well as the reversal of magnetic field at the outer edge of the large-scale spurs. We provide evidences that the magnetic field in the spiral arms has a stronger mean-field component, and there is a clear inverse correlation between gas density and plasma-beta parameter, compared to the rest of the disk with a more turbulent component of the field and an absence of correlation between gas density and plasma-beta. We show the mean field growth up to >3-10 μG in the cold gas during several rotation periods (>500-800 Myr), whereas ratio between azimuthal and radial field is equal to >4/1. We find an enhancement of random and ordered components of the magnetic field. Mean field strength increases by a factor of >1.5-2.5 for models with various spiral pattern parameters. Random magnetic field component can reach up to 25% from the total strength. By making an analysis of the time-dependent evolution of the radial Poynting flux, we point out that the magnetic field strength is enhanced more strongly at the galactic outskirts which is due to the radial transfer of magnetic energy by the spiral arms pushing the magnetic field outward. Our results also support the presence of sufficient conditions for the development of magnetorotational instability at distances >11 kpc after >300 Myr of evolution.
ERIC Educational Resources Information Center
Taylor, Maurice C., Ed.; Draper, James A., Ed.
This book, intended to serve as a professional reference work, proposes to define the field of Adult Basic Education in its evolution, its contribution to professional education, and the principal problems and issues. The volume contains the following treatises: "Definitions and Evolution of the Concepts" (Thomas); "Selected…
The evolution of stable magnetic fields in stars: an analytical approach
NASA Astrophysics Data System (ADS)
Mestel, Leon; Moss, David
2010-07-01
The absence of a rigorous proof of the existence of dynamically stable, large-scale magnetic fields in radiative stars has been for many years a missing element in the fossil field theory for the magnetic Ap/Bp stars. Recent numerical simulations, by Braithwaite & Spruit and Braithwaite & Nordlund, have largely filled this gap, demonstrating convincingly that coherent global scale fields can survive for times of the order of the main-sequence lifetimes of A stars. These dynamically stable configurations take the form of magnetic tori, with linked poloidal and toroidal fields, that slowly rise towards the stellar surface. This paper studies a simple analytical model of such a torus, designed to elucidate the physical processes that govern its evolution. It is found that one-dimensional numerical calculations reproduce some key features of the numerical simulations, with radiative heat transfer, Archimedes' principle, Lorentz force and Ohmic decay all playing significant roles.
Radiation-MHD Simulations of Pillars and Globules in HII Regions
NASA Astrophysics Data System (ADS)
Mackey, J.
2012-07-01
Implicit and explicit raytracing-photoionisation algorithms have been implemented in the author's radiation-magnetohydrodynamics code. The algorithms are described briefly and their efficiency and parallel scaling are investigated. The implicit algorithm is more efficient for calculations where ionisation fronts have very supersonic velocities, and the explicit algorithm is favoured in the opposite limit because of its better parallel scaling. The implicit method is used to investigate the effects of initially uniform magnetic fields on the formation and evolution of dense pillars and cometary globules at the boundaries of HII regions. It is shown that for weak and medium field strengths an initially perpendicular field is swept into alignment with the pillar during its dynamical evolution, matching magnetic field observations of the ‘Pillars of Creation’ in M16. A strong perpendicular magnetic field remains in its initial configuration and also confines the photoevaporation flow into a bar-shaped, dense, ionised ribbon which partially shields the ionisation front.
NASA Astrophysics Data System (ADS)
Eied, A. A.
2018-05-01
In this paper, the linear entropy and collapse-revival phenomenon through the relation (< {\\hat{a}}+{\\hat{a}} > -{\\bar{n}}) in a system of N-configuration four-level atom interacting with a single-mode field with additional forms of nonlinearities of both the field and the intensity-dependent atom-field coupling functional are investigated. A factorization of the initial density operator is assumed, considering the field to be initially in a squeezed coherent states and the atom initially in its most upper excited state. The dynamical behavior of the linear entropy and the time evolution of (< {\\hat{a}}+ {\\hat{a}} > -{\\bar{n}}) are analyzed. In particular, the effects of the mean photon number, detuning, Kerr-like medium and the intensity-dependent coupling functional on the entropy and the evolution of (< {\\hat{a}}+ {\\hat{a}} > -{\\bar{n}}) are examined.
The Interplanetary Magnetic Field Observed by Juno Enroute to Jupiter
NASA Technical Reports Server (NTRS)
Gruesbeck, Jacob R.; Gershman, Daniel J.; Espley, Jared R.; Connerney, John E. P.
2017-01-01
The Juno spacecraft was launched on 5 August 2011 and spent nearly 5 years traveling through the inner heliosphere on its way to Jupiter. The Magnetic Field Investigation was powered on shortly after launch and obtained vector measurements of the interplanetary magnetic field (IMF) at sample rates from 1 to 64 samples/second. The evolution of the magnetic field with radial distance from the Sun is compared to similar observations obtained by Voyager 1 and 2 and the Ulysses spacecraft, allowing a comparison of the radial evolution between prior solar cycles and the current depressed one. During the current solar cycle, the strength of the IMF has decreased throughout the inner heliosphere. A comparison of the variance of the normal component of the magnetic field shows that near Earth the variability of the IMF is similar during all three solar cycles but may be less at greater radial distances.
Holocene evolution of Dahab coastline - Gulf of Aqaba, Sinai Peninsula, Egypt
NASA Astrophysics Data System (ADS)
Magdy, Torab
2016-04-01
Dahab was a little Bedouin-village in Sinai Peninsula at the mid-western coast of Gulf of Aqaba approx. 90 km north of Sharm-el-Sheikh City and it means "gold" in Arabic language. But in the past 20 years ago it becomes one of the most tourist sites in Egypt. The basement complex is composed mostly of biotiteaplite-granite, mica-aplitegranite, granodiorite, quartzdiorite, alaskite, and diorite. Based on correlation with similar igneous in the most southern part of Sinai and the Red Sea area. Wadi Dahab composed of igneous and metamorphic rocks and the coastline is formed of the fragments of its rocks, mixed with fragments of coral reef and fluvial deposits of Wadi Dahab. The morphology of Dahab coastline is characterized by hooked marine spit, which composed of fluvial sediments carried by marine current from wadi Dahab mouth, this spit encloses shallow lagoon, but the active deposition on the lagoon bottom will evaluate it into saline marsh. This paper dealing with the evolution of Dahab spit and lagoon during the Holocene in addition to the recent time for last 100 years, and it impacts of the future management of the coast area. The coastline mapping during the period of study depends upon GIS technique for data were collected during field measuring by using total station, aerial photo and satellite image interpretation as well as soil sample dating. Suggested geomorphological evolution of Dahab area during the Holocene depending upon geomorphic investigation of the sedimentological process into 6 stages.
2012-07-01
3.3.4 User Community Management 14 3.3.5 Uncontrolled Prototype Growth 14 3.3.6 Project Manager Decisions 15 3.3.7 The 90% Syndrome 15 3.3.8 Re...Figure 3: 90% Syndrome Due to Rippling Rework in the Production Development 21 Figure 4: Causal Loop Diagram of "The Evolution of a Science Project...Unintended Burnout Due to Overtime 60 V | CMU/SEI-2012-TR-001 Acknowledgments Many people have worked to sponsor and improve this report and the
[Environmental health: the evolution of Colombia's current regulatory framework].
García-Ubaque, Cesar A; García-Ubaque, Juan C; Vaca-Bohórquez, Martha L
2013-01-01
This essay presents an analysis of the evolution of environmental health management in Colombia, covering the period from the introduction of the Colombian Healthcare Code (1979) to laws 99 and 100 in 1993 and the introduction of Environmental Health Policy in Bogotá DC (2011). It proposes a conceptual model for environmental health management at three levels: proximal (physical, chemical and biological setting), intermediate (natural and cultural environment) and distal (economic, political and social structures). Relevant aspects of environmental health policy in Bogotá are analysed based on the proposed model.
NASA Astrophysics Data System (ADS)
Kwiatek, G.; Orlecka-Sikora, B.; Goebel, T.; Martínez-Garzón, P.; Dresen, G.; Bohnhoff, M.
2017-12-01
In this study we investigate details of spatial and temporal evolution of the stress field and damage at a pre-existing fault plane in laboratory stick-slip friction experiments performed on Westerly Granite sample. Specimen of 10 cm height and 4 cm diameter was deformed at a constant strain rate of 3×10-6 s-1 and confining pressure of 150 MPa. Here we analyze a series of 6 macroscopic slip events occurring on a rough fault during the course of experiment. Each macroscopic slip was associated with an intense femtoseismic acoustic emission (AE) activity recorded using a 16-channel transient recording system. To monitor the the spatiotemporal damage evolution, and unravel the micromechanical processes governing nucleation and propagation of slip events, we analyzed AE source characteristics (magnitude, seismic moment tensors, focal mechanisms), as well as the statistical properties (b-, c-, d- value) of femtoseismicity. In addition, the calculated AE focal mechanisms were used to reveal the spatiotemporal evolution of local stress field orientations and stress shape ratio coefficients over the fault plane, as well as additional parameters quantifying proximity to failure of individual fault patches. The calculated characteristics are used to comprehensively describe the complexity of the spatial and temporal evolution of the stress over the fault plane, and properties of the corresponding seismicity before and after the macroscopic slips. The observed faulting processes and characteristics are discussed in the context of global strain and stress changes, fault maturation, and earthquake stress drop.
Experimental evolution and the dynamics of adaptation and genome evolution in microbial populations.
Lenski, Richard E
2017-10-01
Evolution is an on-going process, and it can be studied experimentally in organisms with rapid generations. My team has maintained 12 populations of Escherichia coli in a simple laboratory environment for >25 years and 60 000 generations. We have quantified the dynamics of adaptation by natural selection, seen some of the populations diverge into stably coexisting ecotypes, described changes in the bacteria's mutation rate, observed the new ability to exploit a previously untapped carbon source, characterized the dynamics of genome evolution and used parallel evolution to identify the genetic targets of selection. I discuss what the future might hold for this particular experiment, briefly highlight some other microbial evolution experiments and suggest how the fields of experimental evolution and microbial ecology might intersect going forward.
Evolution of a rotating black hole with a magnetized accretion disk.
NASA Astrophysics Data System (ADS)
Lee, H. K.; Kim, H.-K.
2000-03-01
The effect of an accretion disk on the Blandford-Znajek process and the evolution of a black hole are discussed using a simplified system for the black hole-accretion disk in which the accretion rate is supposed to be dominated by the strong magnetic field on the disk. The evolution of the mass and the angular momentum of the black hole are formulated and discussed with numerical calculations.
Integrative studies of cultural evolution: crossing disciplinary boundaries to produce new insights.
Kolodny, Oren; Feldman, Marcus W; Creanza, Nicole
2018-04-05
Culture evolves according to dynamics on multiple temporal scales, from individuals' minute-by-minute behaviour to millennia of cultural accumulation that give rise to population-level differences. These dynamics act on a range of entities-including behavioural sequences, ideas and artefacts as well as individuals, populations and whole species-and involve mechanisms at multiple levels, from neurons in brains to inter-population interactions. Studying such complex phenomena requires an integration of perspectives from a diverse array of fields, as well as bridging gaps between traditionally disparate areas of study. In this article, which also serves as an introduction to the current special issue, we highlight some specific respects in which the study of cultural evolution has benefited and should continue to benefit from an integrative approach. We showcase a number of pioneering studies of cultural evolution that bring together numerous disciplines. These studies illustrate the value of perspectives from different fields for understanding cultural evolution, such as cognitive science and neuroanatomy, behavioural ecology, population dynamics, and evolutionary genetics. They also underscore the importance of understanding cultural processes when interpreting research about human genetics, neuroscience, behaviour and evolution.This article is part of the theme issue 'Bridging cultural gaps: interdisciplinary studies in human cultural evolution'. © 2018 The Author(s).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Falceta-Gonçalves, D.; Kowal, G.
2015-07-20
In this work we report on a numerical study of the cosmic magnetic field amplification due to collisionless plasma instabilities. The collisionless magnetohydrodynamic equations derived account for the pressure anisotropy that leads, in specific conditions, to the firehose and mirror instabilities. We study the time evolution of seed fields in turbulence under the influence of such instabilities. An approximate analytical time evolution of the magnetic field is provided. The numerical simulations and the analytical predictions are compared. We found that (i) amplification of the magnetic field was efficient in firehose-unstable turbulent regimes, but not in the mirror-unstable models; (ii) the growthmore » rate of the magnetic energy density is much faster than the turbulent dynamo; and (iii) the efficient amplification occurs at small scales. The analytical prediction for the correlation between the growth timescales and pressure anisotropy is confirmed by the numerical simulations. These results reinforce the idea that pressure anisotropies—driven naturally in a turbulent collisionless medium, e.g., the intergalactic medium, could efficiently amplify the magnetic field in the early universe (post-recombination era), previous to the collapse of the first large-scale gravitational structures. This mechanism, though fast for the small-scale fields (∼kpc scales), is unable to provide relatively strong magnetic fields at large scales. Other mechanisms that were not accounted for here (e.g., collisional turbulence once instabilities are quenched, velocity shear, or gravitationally induced inflows of gas into galaxies and clusters) could operate afterward to build up large-scale coherent field structures in the long time evolution.« less
NASA Astrophysics Data System (ADS)
Hood, Alan W.; Hughes, David W.
2011-08-01
This review provides an introduction to the generation and evolution of the Sun's magnetic field, summarising both observational evidence and theoretical models. The eleven year solar cycle, which is well known from a variety of observed quantities, strongly supports the idea of a large-scale solar dynamo. Current theoretical ideas on the location and mechanism of this dynamo are presented. The solar cycle influences the behaviour of the global coronal magnetic field and it is the eruptions of this field that can impact on the Earth's environment. These global coronal variations can be modelled to a surprising degree of accuracy. Recent high resolution observations of the Sun's magnetic field in quiet regions, away from sunspots, show that there is a continual evolution of a small-scale magnetic field, presumably produced by small-scale dynamo action in the solar interior. Sunspots, a natural consequence of the large-scale dynamo, emerge, evolve and disperse over a period of several days. Numerical simulations can help to determine the physical processes governing the emergence of sunspots. We discuss the interaction of these emerging fields with the pre-existing coronal field, resulting in a variety of dynamic phenomena.
NASA Technical Reports Server (NTRS)
Kulsrud, Russell M.; Anderson, Stephen W.
1992-01-01
The fluctuation spectrum that must arise in a mean field dynamo generation of galactic fields if the initial field is weak is considered. A kinetic equation for its evolution is derived and solved. The spectrum evolves by transfer of energy from one magnetic mode to another by interaction with turbulent velocity modes. This kinetic equation is valid in the limit that the rate of evolution of the magnetic modes is slower than the reciprocal decorrelation time of the turbulent modes. This turns out to be the case by a factor greater than 3. Most of the fluctuation energy concentrates on small scales, shorter than the hydrodynamic turbulent scales. The fluctuation energy builds up to equipartition with the turbulent energy in times that are short compared to the e-folding time of the mean field. The turbulence becomes strongly modified before the dynamo amplification starts. Thus, the kinematic assumption of the mean dynamo theory is invalid. Thus, the galactic field must have a primordial origin, although it may subsequently be modified by dynamo action.
ERIC Educational Resources Information Center
Shockley-Zalabak, Pamela; Morley, Donald Dean
1994-01-01
Provides an examination of management and employee values as influential for organizational rule formation. Demonstrates that management values are directly related to employee values but indirectly influence the evolution of organization rules. Supports a view of rule emergence based on management and employee values. (HB)
Agile Methods: Selected DoD Management and Acquisition Concerns
2011-10-01
SIDRE Software Intensive Innovative Development and Reengineering/Evolution SLIM Software Lifecycle Management -Estimate SLOC source lines of code...ISBN #0321502752 Coaching Agile Teams Lyssa Adkins ISBN #0321637704 Agile Project Management : Creating Innovative Products – Second Edition Jim...Accessed July 13, 2011. [Highsmith 2009] Highsmith, J. Agile Project Management : Creating Innovative Products, 2nd ed. Addison- Wesley, 2009
QoS Challenges and Opportunities in Wireless Sensor/Actuator Networks
Xia, Feng
2008-01-01
A wireless sensor/actuator network (WSAN) is a group of sensors and actuators that are geographically distributed and interconnected by wireless networks. Sensors gather information about the state of physical world. Actuators react to this information by performing appropriate actions. WSANs thus enable cyber systems to monitor and manipulate the behavior of the physical world. WSANs are growing at a tremendous pace, just like the exploding evolution of Internet. Supporting quality of service (QoS) will be of critical importance for pervasive WSANs that serve as the network infrastructure of diverse applications. To spark new research and development interests in this field, this paper examines and discusses the requirements, critical challenges, and open research issues on QoS management in WSANs. A brief overview of recent progress is given. PMID:27879755
NASA Astrophysics Data System (ADS)
Freeman, Ray; Morris, Gareth A.
2015-01-01
This Perspective offers a personal view of the story of Varian NMR, a courageous initiative that began in the 1950s but came to an abrupt end some 60 years later. Without doubt, Varian leaves behind a priceless legacy, particularly in the field of structural chemistry. The highlights are set out in four main sections, named after the four seasons, but not necessarily in strict chronology. How did the accepted business practices influence the evolution, growth, and eventual demise of this exciting venture? How well did management handle an unconventional group of young scientific entrepreneurs? What does it all mean for the future of magnetic resonance? The subject can be viewed on two different levels, the Varian story itself, and the larger picture - the Silicon Valley phenomenon as a whole, with Varian considered as an interesting microcosm.
Evolution of in vitro fertilization at the University of the West Indies, Jamaica.
Pottinger, A M; Everett-Keane, D; McKenzie, C
2012-07-01
In vitro fertilization (IVF) provides hope for many couples who believed that they could not have children. This paper tracks the development of IVF treatment at The University of the West Indies (UWI), Mona, from its genesis in 2000. It highlights changes over the years in the population seeking IVF at UWI, Mona, and describes clinical services offered to clients, comparing success rates of services internationally. It also reports on seminal research emerging out of UWI, Mona, in the field of assisted reproductive health. The Hugh Wynter Fertility Management Unit (HWFMU), UWI, Mona, leads the way in shaping how society views those challenged with infertility and in its use of assisted reproductive technologies that improve the quality of life for many locally, within the Caribbean and the Diaspora.
Peter J. W. Debye - a whole life devoted to science.
Dalba, Giuseppe
2016-11-01
In 1915 P. Debye, one of the most prominent scientists in the field of condensed-matter physics and physical chemistry, published an X-ray scattering equation for randomly oriented scattering sites. This formula, since then used for describing the structure of powders, liquids and gases, has become a model for material analysis at the nanoscale. This paper re-examines briefly Debye's works on the origin and evolution of the scattering equation and its first uses. The career of the great scientist and some of his other numerous and diverse contributions to science are also reviewed. Additionally the paper addresses aspects of his life as a teacher, as a science manager and as a man, including the recent controversy about his conduct during the Third Reich regime.
Aspen Global Change Institute: 25 Years of Interdisciplinary Global Change Science
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meehl, Gerald A.; Moss, Richard
Global environmental changes such as climate change result from the interaction of human and natural systems. Research to understand these changes and options for addressing them requires the physical, environmental, and social sciences, as well as engineering and other applied fields. In this essay, we describe how the Aspen Global Change Institute (AGCI) has provided leadership in global change science over the past 25 years—in particular how it has contributed to the integration of the natural and social sciences needed to research the drivers of change, Earth system response, natural and human system impacts, and options for risk management. Wemore » illustrate the ways the history of AGCI has been intertwined with the evolution of global change science as it has become an increasingly interdisciplinary endeavor.« less
Modeling of microstructure evolution in direct metal laser sintering: A phase field approach
NASA Astrophysics Data System (ADS)
Nandy, Jyotirmoy; Sarangi, Hrushikesh; Sahoo, Seshadev
2017-02-01
Direct Metal Laser Sintering (DMLS) is a new technology in the field of additive manufacturing, which builds metal parts in a layer by layer fashion directly from the powder bed. The process occurs within a very short time period with rapid solidification rate. Slight variations in the process parameters may cause enormous change in the final build parts. The physical and mechanical properties of the final build parts are dependent on the solidification rate which directly affects the microstructure of the material. Thus, the evolving of microstructure plays a vital role in the process parameters optimization. Nowadays, the increase in computational power allows for direct simulations of microstructures during materials processing for specific manufacturing conditions. In this study, modeling of microstructure evolution of Al-Si-10Mg powder in DMLS process was carried out by using a phase field approach. A MATLAB code was developed to solve the set of phase field equations, where simulation parameters include temperature gradient, laser scan speed and laser power. The effects of temperature gradient on microstructure evolution were studied and found that with increase in temperature gradient, the dendritic tip grows at a faster rate.
MAGNETIC FLUX TRANSPORT AND THE LONG-TERM EVOLUTION OF SOLAR ACTIVE REGIONS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ugarte-Urra, Ignacio; Upton, Lisa; Warren, Harry P.
2015-12-20
With multiple vantage points around the Sun, Solar Terrestrial Relations Observatory (STEREO) and Solar Dynamics Observatory imaging observations provide a unique opportunity to view the solar surface continuously. We use He ii 304 Å data from these observatories to isolate and track ten active regions and study their long-term evolution. We find that active regions typically follow a standard pattern of emergence over several days followed by a slower decay that is proportional in time to the peak intensity in the region. Since STEREO does not make direct observations of the magnetic field, we employ a flux-luminosity relationship to infermore » the total unsigned magnetic flux evolution. To investigate this magnetic flux decay over several rotations we use a surface flux transport model, the Advective Flux Transport model, that simulates convective flows using a time-varying velocity field and find that the model provides realistic predictions when information about the active region's magnetic field strength and distribution at peak flux is available. Finally, we illustrate how 304 Å images can be used as a proxy for magnetic flux measurements when magnetic field data is not accessible.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pozdeeva, Ekaterina O.; Vernov, Sergey Yu.; Skugoreva, Maria A.
2016-12-01
We explore dynamics of cosmological models with bounce solutions evolving on a spatially flat Friedmann-Lemaître-Robertson-Walker background. We consider cosmological models that contain the Hilbert-Einstein curvature term, the induced gravity term with a negative coupled constant, and even polynomial potentials of the scalar field. Bounce solutions with non-monotonic Hubble parameters have been obtained and analyzed. The case when the scalar field has the conformal coupling and the Higgs-like potential with an opposite sign is studied in detail. In this model the evolution of the Hubble parameter of the bounce solution essentially depends on the sign of the cosmological constant.
Using text analysis to quantify the similarity and evolution of scientific disciplines
Dias, Laércio; Scharloth, Joachim
2018-01-01
We use an information-theoretic measure of linguistic similarity to investigate the organization and evolution of scientific fields. An analysis of almost 20 M papers from the past three decades reveals that the linguistic similarity is related but different from experts and citation-based classifications, leading to an improved view on the organization of science. A temporal analysis of the similarity of fields shows that some fields (e.g. computer science) are becoming increasingly central, but that on average the similarity between pairs of disciplines has not changed in the last decades. This suggests that tendencies of convergence (e.g. multi-disciplinarity) and divergence (e.g. specialization) of disciplines are in balance. PMID:29410857
Using text analysis to quantify the similarity and evolution of scientific disciplines.
Dias, Laércio; Gerlach, Martin; Scharloth, Joachim; Altmann, Eduardo G
2018-01-01
We use an information-theoretic measure of linguistic similarity to investigate the organization and evolution of scientific fields. An analysis of almost 20 M papers from the past three decades reveals that the linguistic similarity is related but different from experts and citation-based classifications, leading to an improved view on the organization of science. A temporal analysis of the similarity of fields shows that some fields (e.g. computer science) are becoming increasingly central, but that on average the similarity between pairs of disciplines has not changed in the last decades. This suggests that tendencies of convergence (e.g. multi-disciplinarity) and divergence (e.g. specialization) of disciplines are in balance.
Evolution of flare ribbons, electric currents, and quasi-separatrix layers during an X-class flare
NASA Astrophysics Data System (ADS)
Janvier, M.; Savcheva, A.; Pariat, E.; Tassev, S.; Millholland, S.; Bommier, V.; McCauley, P.; McKillop, S.; Dougan, F.
2016-07-01
Context. The standard model for eruptive flares has been extended to three dimensions (3D) in the past few years. This model predicts typical J-shaped photospheric footprints of the coronal current layer, forming at similar locations as the quasi-separatrix layers (QSLs). Such a morphology is also found for flare ribbons observed in the extreme ultraviolet (EUV) band, and in nonlinear force-free field (NLFFF) magnetic field extrapolations and models. Aims: We study the evolution of the photospheric traces of the current density and flare ribbons, both obtained with the Solar Dynamics Observatory instruments. We aim to compare their morphology and their time evolution, before and during the flare, with the topological features found in a NLFFF model. Methods: We investigated the photospheric current evolution during the 06 September 2011 X-class flare (SOL2011-09-06T22:20) occurring in NOAA AR 11283 from observational data of the magnetic field obtained with the Helioseismic and Magnetic Imager aboard the Solar Dynamics Observatory. We compared this evolution with that of the flare ribbons observed in the EUV filters of the Atmospheric Imager Assembly. We also compared the observed electric current density and the flare ribbon morphology with that of the QSLs computed from the flux rope insertion method-NLFFF model. Results: The NLFFF model shows the presence of a fan-spine configuration of overlying field lines, due to the presence of a parasitic polarity, embedding an elongated flux rope that appears in the observations as two parts of a filament. The QSL signatures of the fan configuration appear as a circular flare ribbon that encircles the J-shaped ribbons related to the filament ejection. The QSLs, evolved via a magnetofrictional method, also show similar morphology and evolution as both the current ribbons and the EUV flare ribbons obtained several times during the flare. Conclusions: For the first time, we propose a combined analysis of the photospheric traces of an eruptive flare, in a complex topology, with direct measurements of electric currents and QSLs from observational data and a magnetic field model. The results, obtained by two different and independent approaches 1) confirm previous results of current increase during the impulsive phase of the flare and 2) show how NLFFF models can capture the essential physical signatures of flares even in a complex magnetic field topology. A movie associated to Fig. 1 is available in electronic form at http://www.aanda.org
The Properties of Faint Field Galaxies
NASA Astrophysics Data System (ADS)
Driver, Simon. P.
1994-12-01
One of the current drawbacks of Charge Coupled Devices (CCDs) is their restrictive fields of view. The Hitchhiker CCD camera overcomes this limitation by operating in parallel with existing instrumentation and is able to cover a large area as well as large volumes. Hitchhiker is mounted on the 4.2m William Herschel Telescope and has been operating for two years. The first use of the Hitchhiker data set has been to study the general properties of faint galaxies. The observed trend of how the differential numbers of galaxies vary with magnitude agrees extremely well with those of other groups and covers, for the first time, all four major optical bandpasses. This multi-band capability has also allowed the study of how the colors of galaxies change with magnitude and how the correlation of galaxies on the sky varies between the optical bandpasses. A dwarf dominated model has been developed to explain these observations and challenges our knowledge of the space-density of dwarf galaxies. The model demonstrates that a simple upward turn in the luminosity distribution of galaxies, similar to that observed in clusters, would remain undetected by the field surveys yet can explain many of the observations without recourse to non-passive galaxy evolution. The conclusion is that the field luminosity distribution is not constrained at faint absolute magnitudes. A combination of a high density of dwarf galaxies and mild evolution could explain all the observations. Continuing work with HST and the Medium Deep Survey Team now reveals the morphological mix of galaxies down to mI ~ 24.0. The results confirm that ellipticals and early-type spirals are well fitted by standard no-evolution models whilst the late-type spirals can only be fitted by strong evolution and/or a significant turn-up in the local field LF.
Biomarkers in Scleroderma: Progressing from Association to Clinical Utility.
Ligon, Colin; Hummers, Laura K
2016-03-01
Scleroderma is a heterogenous disease characterized by autoimmunity, a characteristic vasculopathy, and often widely varying extents of deep organ fibrosis. Recent advances in the understanding of scleroderma's evolution have improved the ability to identify subgroups of patients with similar prognosis in order to improve risk stratification, enrich clinical trials for patients likely to benefit from specific therapies, and identify promising therapeutic targets for intervention. High-throughput technologies have recently identified fibrotic and inflammatory effectors in scleroderma that exhibit strong prognostic ability and may be tied to disease evolution. Increasingly, the use of collections of assayed circulating proteins and patterns of gene expression in tissue has replaced single-marker investigations in understanding the evolution of scleroderma and in objectively characterizing disease extent. Lastly, identification of shared patterns of disease evolution has allowed classification of patients into latent disease subtypes, which may allow rapid clinical prognostication and targeted management in both clinical and research settings. The concept of biomarkers in scleroderma is expanding to include nontraditional measures of aggregate protein signatures and disease evolution. This review examines the recent advances in biomarkers with a focus on those approaches poised to guide prospective management or themselves serve as quantitative surrogate disease outcomes.
Expected rate of fisheries-induced evolution is slow
Andersen, Ken H.; Brander, Keith
2009-01-01
Commercial fisheries exert high mortalities on the stocks they exploit, and the consequent selection pressure leads to fisheries-induced evolution of growth rate, age and size at maturation, and reproductive output. Productivity and yields may decline as a result, but little is known about the rate at which such changes are likely to occur. Fisheries-induced evolution of exploited populations has recently become a subject of concern for policy makers, fisheries managers, and the general public, with prominent calls for mitigating management action. We make a general evolutionary impact assessment of fisheries by calculating the expected rate of fisheries-induced evolution and the consequent changes in yield. Rates of evolution are expected to be ≈0.1–0.6% per year, and the consequent reductions in fisheries yield are <0.7% per year. These rates are at least a factor of 5 lower than published values based on experiments and analyses of population time series, and we explain why the published rates may be overestimates. Dealing with evolutionary effects of fishing is less urgent than reducing the direct detrimental effects of overfishing on exploited stocks and on their marine ecosystems. PMID:19564596
Evolution of protoplanetary disks with dynamo magnetic fields
NASA Technical Reports Server (NTRS)
Reyes-Ruiz, M.; Stepinski, Tomasz F.
1994-01-01
The notion that planetary systems are formed within dusty disks is certainly not a new one; the modern planet formation paradigm is based on suggestions made by Laplace more than 200 years ago. More recently, the foundations of accretion disk theory where initially developed with this problem in mind, and in the last decade astronomical observations have indicated that many young stars have disks around them. Such observations support the generally accepted model of a viscous Keplerian accretion disk for the early stages of planetary system formation. However, one of the major uncertainties remaining in understanding the dynamical evolution of protoplanetary disks is the mechanism responsible for the transport of angular momentum and subsequent mass accretion through the disk. This is a fundamental piece of the planetary system genesis problem since such mechanisms will determine the environment in which planets are formed. Among the mechanisms suggested for this effect is the Maxwell stress associated with a magnetic field treading the disk. Due to the low internal temperatures through most of the disk, even the question of the existence of a magnetic field must be seriously studied before including magnetic effects in the disk dynamics. On the other hand, from meteoritic evidence it is believed that magnetic fields of significant magnitude existed in the earliest, PP-disk-like, stage of our own solar system's evolution. Hence, the hypothesis that PP disks are magnetized is not made solely on the basis of theory. Previous studies have addressed the problem of the existence of a magnetic field in a steady-state disk and have found that the low conductivity results in a fast diffusion of the magnetic field on timescales much shorter than the evolutionary timescale. Hence the only way for a magnetic field to exist in PP disks for a considerable portion of their lifetimes is for it to be continuously regenerated. In the present work, we present results on the self-consistent evolution of a turbulent PP disk including the effects of a dynamo-generated magnetic field.
Evolution of Cuphea PSR23 under cultivation
USDA-ARS?s Scientific Manuscript database
A series of experiments carried out under controlled environments and field conditions (2002-2008) evaluated populations of the potential oilseed crop PSR23, a selection from a cross between two wild Cuphea species (C. viscosissima and C. lanceolata) for indicators of evolution under cultivation and...
NASA Astrophysics Data System (ADS)
Karakas, O.; Dufek, J.; Mangan, M.; Wright, H. M. N.
2014-12-01
Heat transfer in active volcanic areas is governed by complex coupling between tectonic and magmatic processes. These two processes provide unique imprints on the petrologic and thermal evolution of magma by controlling the geometry, depth, longevity, composition, and fraction of melt in the crust. The active volcanism, tectonic extension, and significantly high surface heat flow in Salton Sea Geothermal Field, CA, provides information about the dynamic heat transfer processes in its crust. The volcanism in the area is associated with tectonic extension over the last 500 ka, followed by subsidence and sedimentation at the surface level and dike emplacement in the lower crust. Although significant progress has been made describing the tectonic evolution and petrology of the erupted products of the Salton Buttes, their coupled control on the crustal heat transfer and feedback on the melt evolution remain unclear. To address these concepts, we develop a two-dimensional finite volume model and investigate the compositional and thermal evolution of the melt and crust in the Salton Sea Geothermal Field through a one-way coupled thermal model that accounts for tectonic extension, lower crustal magma emplacement, sedimentation, and subsidence. Through our simulations, we give quantitative estimates to the thermal and compositional evolution and longevity of the lower crustal melt source in the crustal section. We further compare the model results with petrologic constraints. Our thermal balance equations show that crustal melting is limited and the melt is dominated by mantle-derived material. Similarly, petrologic work on δ18O isotope ratios suggests fractional crystallization of basalt with minor crustal assimilation. In addition, we suggest scenarios for the melt fraction, composition, enthalpy release, geometry and depth of magma reservoirs, their temporal evolution, and the timescales of magmatic storage and evolution processes. These parameters provide the source conditions for the dynamics of surface volcanism and the presence of a geothermal system, which modify the thermal and mechanical structure of the crust.
NASA Astrophysics Data System (ADS)
Xie, Xi; Kan, Qianhua; Kang, Guozheng; Li, Jian; Qiu, Bo; Yu, Chao
2016-04-01
The strain field of a super-elastic NiTi shape memory alloy (SMA) and its variation during uniaxial cyclic tension-unloading were observed by a non-contact digital image correlation method, and then the transformation domains and their evolutions were indirectly investigated and discussed. It is seen that the super-elastic NiTi (SMA) exhibits a remarkable localized deformation and the transformation domains evolve periodically with the repeated cyclic tension-unloading within the first several cycles. However, the evolutions of transformation domains at the stage of stable cyclic transformation depend on applied peak stress: when the peak stress is low, no obvious transformation band is observed and the strain field is nearly uniform; when the peak stress is large enough, obvious transformation bands occur due to the residual martensite caused by the prevention of enriched dislocations to the reverse transformation from induced martensite to austenite. Temperature variations measured by an infrared thermal imaging method further verifies the formation and evolution of transformation domains.
Evolution of the Global Aurora During Positive IMP Bz and Varying IMP By Conditions
NASA Technical Reports Server (NTRS)
Cumnock, J. A.; Sharber, J. R.; Heelis. R. A.; Hairston, M. R.; Carven, J. D.
1997-01-01
The DE 1 imaging instrumentation provides a full view of the entire auroral oval every 12 min for several hours during each orbit. We examined five examples of global evolution of the aurora that occurred during the northern hemisphere winter of 1981-1982 when the z component of the interplanetary magnetic field was positive and the y component was changing sign. Evolution of an expanded auroral emission region into a theta aurora appears to require a change in the sign of By during northward interplanetary magnetic field (IMF). Theta aurora are formed both from expanded duskside emission regions (By changes from positive to negative) and dawnside emission regions (By changes from negative to positive), however the dawnside-originating and duskside-originating evolutions are not mirror images. The persistence of a theta aurora after its formation suggests that there may be no clear relationship between the theta aurora pattern and the instantaneous configuration of the IMF.
Allowing for Slow Evolution of Background Plasma in the 3D FDTD Plasma, Sheath, and Antenna Model
NASA Astrophysics Data System (ADS)
Smithe, David; Jenkins, Thomas; King, Jake
2015-11-01
We are working to include a slow-time evolution capability for what has previously been the static background plasma parameters, in the 3D finite-difference time-domain (FDTD) plasma and sheath model used to model ICRF antennas in fusion plasmas. A key aspect of this is SOL-density time-evolution driven by ponderomotive rarefaction from the strong fields in the vicinity of the antenna. We demonstrate and benchmark a Scalar Ponderomotive Potential method, based on local field amplitudes, which is included in the 3D simulation. And present a more advanced Tensor Ponderomotive Potential approach, which we hope to employ in the future, which should improve the physical fidelity in the highly anisotropic environment of the SOL. Finally, we demonstrate and benchmark slow time (non-linear) evolution of the RF sheath, and include realistic collisional effects from the neutral gas. Support from US DOE Grants DE-FC02-08ER54953, DE-FG02-09ER55006.
Anemone, R L; Conroy, G C; Emerson, C W
2011-01-01
The incorporation of research tools and analytical approaches from the geospatial sciences is a welcome trend for the study of primate and human evolution. The use of remote sensing (RS) imagery and geographic information systems (GIS) allows vertebrate paleontologists, paleoanthropologists, and functional morphologists to study fossil localities, landscapes, and individual specimens in new and innovative ways that recognize and analyze the spatial nature of much paleoanthropological data. Whether one is interested in locating and mapping fossiliferous rock units in the field, creating a searchable and georeferenced database to catalog fossil localities and specimens, or studying the functional morphology of fossil teeth, bones, or artifacts, the new geospatial sciences provide an essential element in modern paleoanthropological inquiry. In this article we review recent successful applications of RS and GIS within paleoanthropology and related fields and argue for the importance of these methods for the study of human evolution in the twenty first century. We argue that the time has come for inclusion of geospatial specialists in all interdisciplinary field research in paleoanthropology, and suggest some promising areas of development and application of the methods of geospatial science to the science of human evolution. Copyright © 2011 Wiley Periodicals, Inc.
2001-12-01
This thesis explores whether there is a uniquely Japanese method of conflict management Given the delicate balance of stability in Northeast Asia...Japanese leadership needs to use conflict management tools to resolve territorial claims with the governments of China, Russia, and South Korea, Given
1992-06-01
presents the concept of software Total Quality Management (TQM) which focuses on the entire process of software acquisition, as a partial solution to...software TQM can be applied to software acquisition. Software Development, Software Acquisition, Total Quality management (TQM), Army Tactical Missile
Evolution of Management Thought in the Medieval Times.
ERIC Educational Resources Information Center
Sharma, C. L.
The medieval times witnessed progress toward the growth of larger and more complex organizations and the application of increasingly sophisticated management techniques. Feudalism contributed the concept of decentralization. The concepts evolved by the Catholic Church can scarcely be improved on and are very much pertinent to the management of…
NASA Astrophysics Data System (ADS)
Nunes, Paulo; Correia, Anacleto; Teodoro, M. Filomena
2017-06-01
Since long ago, information is a key factor for military organizations. In military context the success of joint and combined operations depends on the accurate information and knowledge flow concerning the operational theatre: provision of resources, environment evolution, targets' location, where and when an event will occur. Modern military operations cannot be conceive without maps and geospatial information. Staffs and forces on the field request large volume of information during the planning and execution process, horizontal and vertical geospatial information integration is critical for decision cycle. Information and knowledge management are fundamental to clarify an environment full of uncertainty. Geospatial information (GI) management rises as a branch of information and knowledge management, responsible for the conversion process from raw data collect by human or electronic sensors to knowledge. Geospatial information and intelligence systems allow us to integrate all other forms of intelligence and act as a main platform to process and display geospatial-time referenced events. Combining explicit knowledge with person know-how to generate a continuous learning cycle that supports real time decisions, mitigates the influences of fog of war and provides the knowledge supremacy. This paper presents the analysis done after applying a questionnaire and interviews about the GI and intelligence management in a military organization. The study intended to identify the stakeholder's requirements for a military spatial data infrastructure as well as the requirements for a future software system development.
Student Teachers' Approaches to Teaching Biological Evolution
NASA Astrophysics Data System (ADS)
Borgerding, Lisa A.; Klein, Vanessa A.; Ghosh, Rajlakshmi; Eibel, Albert
2015-06-01
Evolution is fundamental to biology and scientific literacy, but teaching high school evolution is often difficult. Evolution teachers face several challenges including limited content knowledge, personal conflicts with evolution, expectations of resistance, concerns about students' conflicts with religion, and curricular constraints. Evolution teaching can be particularly challenging for student teachers who are just beginning to gain pedagogical knowledge and pedagogical content knowledge related to evolution teaching and who seek approval from university supervisors and cooperating teachers. Science teacher educators need to know how to best support student teachers as they broach the sometimes daunting task of teaching evolution within student teaching placements. This multiple case study report documents how three student teachers approached evolution instruction and what influenced their approaches. Data sources included student teacher interviews, field note observations for 4-5 days of evolution instruction, and evolution instructional artifacts. Data were analyzed using grounded theory approaches to develop individual cases and a cross-case analysis. Seven influences (state exams and standards, cooperating teacher, ideas about teaching and learning, concerns about evolution controversy, personal commitment to evolution, knowledge and preparation for teaching evolution, and own evolution learning experiences) were identified and compared across cases. Implications for science teacher preparation and future research are provided.
Integrated System Health Management: Pilot Operational Implementation in a Rocket Engine Test Stand
NASA Technical Reports Server (NTRS)
Figueroa, Fernando; Schmalzel, John L.; Morris, Jonathan A.; Turowski, Mark P.; Franzl, Richard
2010-01-01
This paper describes a credible implementation of integrated system health management (ISHM) capability, as a pilot operational system. Important core elements that make possible fielding and evolution of ISHM capability have been validated in a rocket engine test stand, encompassing all phases of operation: stand-by, pre-test, test, and post-test. The core elements include an architecture (hardware/software) for ISHM, gateways for streaming real-time data from the data acquisition system into the ISHM system, automated configuration management employing transducer electronic data sheets (TEDS?s) adhering to the IEEE 1451.4 Standard for Smart Sensors and Actuators, broadcasting and capture of sensor measurements and health information adhering to the IEEE 1451.1 Standard for Smart Sensors and Actuators, user interfaces for management of redlines/bluelines, and establishment of a health assessment database system (HADS) and browser for extensive post-test analysis. The ISHM system was installed in the Test Control Room, where test operators were exposed to the capability. All functionalities of the pilot implementation were validated during testing and in post-test data streaming through the ISHM system. The implementation enabled significant improvements in awareness about the status of the test stand, and events and their causes/consequences. The architecture and software elements embody a systems engineering, knowledge-based approach; in conjunction with object-oriented environments. These qualities are permitting systematic augmentation of the capability and scaling to encompass other subsystems.
Type of fitness cost influences the rate of evolution of resistance to transgenic Bt crops.
Hackett, Sean C; Bonsall, Michael B
2016-10-01
The evolution of resistance to pesticides by insect pests is a significant challenge for sustainable agriculture. For transgenic crops expressing Bacillus thuringiensis (Bt), crystalline (Cry) toxins resistance evolution may be delayed by the high-dose/refuge strategy in which a non-toxic refuge is planted to promote the survival of susceptible insects. The high-dose/refuge strategy may interact with fitness costs associated with resistance alleles to further delay resistance. However, while a diverse range of fitness costs are reported in the field, they are typically represented as a fixed reduction in survival or viability which is insensitive to ecological conditions such as competition. Furthermore, the potential dynamic consequences of restricting susceptible insects to a refuge which represents only a fraction of the available space have rarely been considered.We present a generalized discrete time model which utilizes dynamic programming methods to derive the optimal management decisions for the control of a theoretical insect pest population exposed to Bt crops. We consider three genotypes (susceptible homozygotes, resistant homozygotes and heterozygotes) and implement fitness costs of resistance to Bt toxins as either a decrease in the relative competitive ability of resistant insects or as a penalty on fecundity. Model analysis is repeated and contrasted for two types of density dependence: uniform density dependence which operates equally across the landscape and heterogeneous density dependence where the intensity of competition scales inversely with patch size and is determined separately for the refuge and Bt crop.When the planting of Bt is decided optimally, fitness costs to fecundity allow for the planting of larger areas of Bt crops than equivalent fitness costs that reduce the competitive ability of resistant insects.Heterogeneous competition only influenced model predictions when the proportional area of Bt planted in each season was decided optimally and resistance was not recessive. Synthesis and applications . The high-dose/refuge strategy alone is insufficient to preserve susceptibility to transgenic Bacillus thuringiensis (Bt) crops in the long term when constraints upon the evolution of resistance are not insurmountable. Fitness costs may enhance the delaying effect of the refuge, but the extent to which they do so depends upon how the cost is realized biologically. Fitness costs which apply independently of other variables may be more beneficial to resistance management than costs which are only visible to selection under a limited range of ecological conditions.
Juvenile Angiofibroma: Evolution of Management
Nicolai, Piero; Schreiber, Alberto; Bolzoni Villaret, Andrea
2012-01-01
Juvenile angiofibroma is a rare benign lesion originating from the pterygopalatine fossa with distinctive epidemiologic features and growth patterns. The typical patient is an adolescent male with a clinical history of recurrent epistaxis and nasal obstruction. Although the use of nonsurgical therapies is described in the literature, surgery is currently considered the ideal treatment for juvenile angiofibroma. Refinement in preoperative embolization has provided significant reduction of complications and intraoperative bleeding with minimal risk of residual disease. During the last decade, an endoscopic technique has been extensively adopted as a valid alternative to external approaches in the management of small-intermediate size juvenile angiofibromas. Herein, we review the evolution in the management of juvenile angiofibroma with particular reference to recent advances in diagnosis and treatment. PMID:22164185
Evolution of shuttle avionics redundancy management/fault tolerance
NASA Technical Reports Server (NTRS)
Boykin, J. C.; Thibodeau, J. R.; Schneider, H. E.
1985-01-01
The challenge of providing redundancy management (RM) and fault tolerance to meet the Shuttle Program requirements of fail operational/fail safe for the avionics systems was complicated by the critical program constraints of weight, cost, and schedule. The basic and sometimes false effectivity of less than pure RM designs is addressed. Evolution of the multiple input selection filter (the heart of the RM function) is discussed with emphasis on the subtle interactions of the flight control system that were found to be potentially catastrophic. Several other general RM development problems are discussed, with particular emphasis on the inertial measurement unit RM, indicative of the complexity of managing that three string system and its critical interfaces with the guidance and control systems.
The evolution of culture (or the lack thereof): mapping the conceptual space.
Gadagkar, Raghavendra
2017-07-01
This short essay is based on a lecture that I gave at short notice on a subject in which I am by no means an expert. The combination of lack of expertise and time for preparation, created an unexpectedly unique opportunity for thinking outside the box. I decided not to try to read up (as there was no time in any case) but instead to organize the little that I already knew about cultural evolution in a systematic schema-I attempted to create a scaffolding, on which I could hang everything I knew about cultural evolution, and hopefully, everything I might ever discover about cultural evolution in the future. I considered three dimensions of the study of cultural evolution, namely (i) the phenomenon of cultural evolution, (ii) production of knowledge in the field of cultural evolution, and (iii) the consequences or applications of an understanding of the evolution of culture.
The Evolution of Oblique Impact Flow Fields Using Maxwell's Z Model
NASA Technical Reports Server (NTRS)
Anderson, J. L. B.; Schultz, P. H.; Heineck, J. T.
2003-01-01
Oblique impacts are the norm rather than the exception for impact craters on planetary surfaces. This work focuses on the excavation of experimental oblique impact craters using the NASA Ames Vertical Gun Range (AVGR). Three-dimensional particle image velocimetry (3D PIV) is used to obtain quantitative data on ejection positions, three-dimensional velocities and angles. These data are then used to test the applicability and limitations of Maxwell's Z Model in representing the subsurface evolution of the excavation-stage flow-field center during vertical and oblique impacts.
Zhebrun, A V; Mukomolov, S L; Narvskaia, O V; Tseneva, G Ia; Kaftyreva, L A; Mokrousov, I V
2011-01-01
Biodiversity and evolution of circulating bacteria and virus populations is a serious scientific problem, solving this problem is necessary for effective prophylaxis of infectious diseases. Principal trends of development in this field of science are described. Results of studies that were carried out and investigated biodiversity of principal pathogens in Russia and St. Petersburg in particular are presented. Risk of infectious security of society caused by increasing diversity of pathogenic microorganisms is described, and priority trends of research development in this field are specified.
NASA Astrophysics Data System (ADS)
Niemi, N. A.; Clark, M. K.
2017-12-01
For the past 6 years, the University of Michigan has implemented geodetic techniques into both summer field courses and on-campus courses. The primary means for incorporating these technologies has been a partnership with UNAVCO to introduce terrestrial laser scanning (TLS) at summer field courses, although employing Structure from Motion(SfM), ArcCollector for iPads and RTK GPS surveying have also been explored. The nature of these types of data lend themselves readily to geomorphology, environmental, and natural hazards-based projects, and we have developed field projects or labs around neotectonics (fault-scarp scanning and diffusion analysis), change detection (braided stream evolution, landslide and rock glacier motion, coastal change) and mass wasting processes (rock avalanche scanning and analysis). While we have primarily developed multi-day projects that use these tools in a field camp setting, we have also developed weekend field trip projects and traditional afternoon lab exercises associated with on-campus courses. The use of geodetic technology is generally well received by students. Reasons for this are the use of somewhat different skill sets from traditional geologic mapping problems, including research survey design, real-time data acquisition, and quantitative data analysis. Students also perceive that they are engaged in learning technology which they may use in their future employment. Challenges encountered, particularly in the field, include managing large student groups with a finite pool of equipment, rapid data processing pressures, variable student experience with analysis software and limited technical support for field-based computational resources. We will describe the positive attributes of incorporating geodetic technologies into undergraduate courses and elaborate on some best practices learned from our experiences.
1961-2011: Fifty years of Hayashi tracks
NASA Astrophysics Data System (ADS)
Palla, Francesco
2012-09-01
Fifty years after the seminal paper by Prof. C. Hayashi, the field of pre-main sequence (PMS) evolution still plays a fundamental role in observational and theoretical astrophysics. In this contribution, I highlight the contribution made by Hayashi in establishing the theoretical foundation of early stellar evolution. Then, I discuss the changes of the classical theory introduced by the inclusion of protostellar evolution in PMS models and present selected results on young stars.
Controllable continuous evolution of electronic states in a single quantum ring
NASA Astrophysics Data System (ADS)
Chakraborty, Tapash; Manaselyan, Aram; Barseghyan, Manuk; Laroze, David
2018-02-01
An intense terahertz laser field is shown to have a profound effect on the electronic and optical properties of quantum rings where the isotropic and anisotropic quantum rings can now be treated on equal footing. We have demonstrated that in isotropic quantum rings the laser field creates unusual Aharonov-Bohm oscillations that are usually expected in anisotropic rings. Furthermore, we have shown that intense laser fields can restore the isotropic physical properties in anisotropic quantum rings. In principle, all types of anisotropies (structural, effective masses, defects, etc.) can evolve as in isotropic rings in our present approach. Most importantly, we have found a continuous evolution of the energy spectra and intraband optical characteristics of structurally anisotropic quantum rings to those of isotropic rings in a controlled manner with the help of a laser field.
Singular cosmological evolution using canonical and ghost scalar fields
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nojiri, Shin'ichi; Odintsov, S.D.; Oikonomou, V.K.
2015-09-01
We demonstrate that finite time singularities of Type IV can be consistently incorporated in the Universe's cosmological evolution, either appearing in the inflationary era, or in the late-time regime. While using only one scalar field instabilities can in principle occur at the time of the phantom-divide crossing, when two fields are involved we are able to avoid such instabilities. Additionally, the two-field scalar-tensor theories prove to be able to offer a plethora of possible viable cosmological scenarios, at which various types of cosmological singularities can be realized. Amongst others, it is possible to describe inflation with the appearance of amore » Type IV singularity, and phantom late-time acceleration which ends in a Big Rip. Finally, for completeness, we also present the Type IV realization in the context of suitably reconstructed F(R) gravity.« less
On the Dynamical Foundations of the Lidov-Kozai Theory
NASA Astrophysics Data System (ADS)
Prokhorenko, V. I.
2018-01-01
The Lidov-Kozai theory developed by each of the authors independently in 1961-1962 is based on qualitative methods of studying the evolution of orbits for the satellite version of the restricted three-body problem (Hill's problem). At present, this theory is in demand in various fields of science: in the field of planetary research within the Solar system, the field of exoplanetary systems, and the field of high-energy physics in interstellar and intergalactic space. This has prompted me to popularize the ideas that underlie the Lidov-Kozai theory based on the experience of using this theory as an efficient tool for solving various problems related to the study of the secular evolution of the orbits of artificial planetary satellites under the influence of external gravitational perturbations with allowance made for the perturbations due to the polar planetary oblateness.
A Cosserat crystal plasticity and phase field theory for grain boundary migration
NASA Astrophysics Data System (ADS)
Ask, Anna; Forest, Samuel; Appolaire, Benoit; Ammar, Kais; Salman, Oguz Umut
2018-06-01
The microstructure evolution due to thermomechanical treatment of metals can largely be described by viscoplastic deformation, nucleation and grain growth. These processes take place over different length and time scales which present significant challenges when formulating simulation models. In particular, no overall unified field framework exists to model concurrent viscoplastic deformation and recrystallization and grain growth in metal polycrystals. In this work a thermodynamically consistent diffuse interface framework incorporating crystal viscoplasticity and grain boundary migration is elaborated. The Kobayashi-Warren-Carter (KWC) phase field model is extended to incorporate the full mechanical coupling with material and lattice rotations and evolution of dislocation densities. The Cosserat crystal plasticity theory is shown to be the appropriate framework to formulate the coupling between phase field and mechanics with proper distinction between bulk and grain boundary behaviour.
Gamma-Ray Burst Optical Afterglows with Two-component Jets: Polarization Evolution Revisited
NASA Astrophysics Data System (ADS)
Lan, Mi-Xiang; Wu, Xue-Feng; Dai, Zi-Gao
2018-06-01
Gamma-ray bursts have been widely argued to originate from binary compact object mergers or core collapse of massive stars. Jets from these systems may have two components: an inner, narrow sub-jet and an outer, wider sub-jet. Such a jet subsequently interacts with its ambient gas, leading to a reverse shock (RS) and a forward shock. The magnetic field in the narrow sub-jet is very likely to be mixed by an ordered component and a random component during the afterglow phase. In this paper, we calculate light curves and polarization evolution of optical afterglows with this mixed magnetic field in the RS region of the narrow sub-jet in a two-component jet model. The resultant light curve has two peaks: an early peak arising from the narrow sub-jet and a late-time rebrightening due to the wider sub-jet. We find the polarization degree (PD) evolution under such a mixed magnetic field confined in the shock plane is very similar to that under the purely ordered magnetic field condition. The two-dimensional “mixed” magnetic fields confined in the shock plane are essentially the ordered magnetic fields only with different configurations. The position angle (PA) of the two-component jet can change gradually or abruptly by 90°. In particular, an abrupt 90° change of the PA occurs when the PD changes from its decline phase to the rise phase.
Science, Religion and Difficult Dialectics
ERIC Educational Resources Information Center
Long, David E.
2010-01-01
Discussing themes from my paper "Scientists at play in a field of the Lord," three forum participants identify and discuss continuing social and epistemological issues which continue to challenge effective evolution education. I extend these themes and further amplify the vexing nature of an effective dialectic regarding evolution, especially for…
GIS technology for spatiotemporal measurements of gully channel width evolution
USDA-ARS?s Scientific Manuscript database
Field observations of gully evolution in active croplands have often revealed the presence of a less erodible soil layer that is typically associated with tillage practices (i.e. plowpan). This more erosion-resistant layer limits channel incision forcing the gully channel to expand laterally through...
The Evolution of Distance Learning: Technology-Mediated Interactive Learning.
ERIC Educational Resources Information Center
Dede, Christopher J.
1990-01-01
Summarizes a paper prepared for the Office of Technology Assessment (OTA) on the evolution of distance learning which begins by describing technological, the demographic, economic, political, and pedagogical forces involved. A new field is proposed called technology-mediated interactive learning (TMIL), which synthesizes distance learning,…
Evolution of an experimental population of Phytophthora capsici in the field
USDA-ARS?s Scientific Manuscript database
Populations of the vegetable pathogen Phytophthora capsici are often highly diverse, with limited gene flow between fields. To investigate the structure of a newly established, experimental population, an uninfested research field was inoculated with two single zoospore isolates of P. capsici in Sep...
Molecular evolution: concepts and the origin of disciplines.
Suárez-Díaz, Edna
2009-03-01
This paper focuses on the consolidation of Molecular Evolution, a field originating in the 1960s at the interface of molecular biology, biochemistry, evolutionary biology, biophysics and studies on the origin of life and exobiology. The claim is made that Molecular Evolution became a discipline by integrating different sorts of scientific traditions: experimental, theoretical and comparative. The author critically incorporates Timothy Lenoir's treatment of disciplines (1997), as well as ideas developed by Stephen Toulmin (1962) on the same subject. On their account disciplines are spaces where the social and epistemic dimensions of science are deeply and complexly interwoven. However, a more detailed account of discipline formation and the dynamics of an emerging disciplinary field is lacking in their analysis. The present essay suggests focusing on the role of scientific concepts in the double configuration of disciplines: the social/political and the epistemic order. In the case of Molecular Evolution the concepts of molecular clock and informational molecules played a central role, both in differentiating molecular from classical evolutionists, and in promoting communication between the different sorts of traditions integrated in Molecular Evolution. The paper finishes with a reflection on the historicity of disciplines, and the historicity of our concepts of disciplines.
Dubner, Sergio; Auricchio, Angelo; Steinberg, Jonathan S; Vardas, Panos; Stone, Peter; Brugada, Josep; Piotrowicz, Ryszard; Hayes, David L; Kirchhof, Paulus; Breithardt, Günter; Zareba, Wojciech; Schuger, Claudio; Aktas, Mehmet K; Chudzik, Michal; Mittal, Suneet; Varma, Niraj
2012-02-01
We are in the midst of a rapidly evolving era of technology-assisted medicine. The field of telemedicine provides the opportunity for highly individualized medical management in a way that has never been possible before. Evolving medical technologies using cardiac implantable devices (CIEDs) with capabilities for remote monitoring permit evaluation of multiple parameters of cardiovascular physiology and risk, including cardiac rhythm, device function, blood pressure values, the presence of myocardial ischaemia, and the degree of compensation of congestive heart failure. Cardiac risk, device status, and response to therapies can now be assessed with these electronic systems of detection and reporting. This document reflects the extensive experience from investigators and innovators around the world who are shaping the evolution of this rapidly expanding field, focusing in particular on implantable pacemakers (IPGs), implantable cardioverter-defibrillators (ICDs), devices for cardiac resynchronization therapy (CRT) (both, with and without defibrillation properties), loop recorders, and haemodynamic monitoring devices. This document covers the basic methodologies, guidelines for their use, experience with existing applications, and the legal and reimbursement aspects associated with their use. To adequately cover this important emerging topic, the International Society for Holter and Noninvasive Electrocardiology (ISHNE) and the European Heart Rhythm Association (EHRA) combined their expertise in this field. We hope that the development of this field can contribute to improve care of our cardiovascular patients.
Cosmological stochastic Higgs field stabilization
NASA Astrophysics Data System (ADS)
Gong, Jinn-Ouk; Kitajima, Naoya
2017-09-01
We show that the stochastic evolution of an interacting system of the Higgs field and a spectator scalar field naturally gives rise to an enhanced probability of settling down at the electroweak vacuum at the end of inflation. Subsequent destabilization due to parametric resonance between the Higgs field and the spectator field can be avoided in a wide parameter range. We further argue that the spectator field can play the role of dark matter.
USA National Phenology Network observational data documentation
Rosemartin, Alyssa H.; Denny, Ellen G.; Gerst, Katharine L.; Marsh, R. Lee; Posthumus, Erin E.; Crimmins, Theresa M.; Weltzin, Jake F.
2018-04-25
The goals of the USA National Phenology Network (USA-NPN, www.usanpn.org) are to advance science, inform decisions, and communicate and connect with the public regarding phenology and species’ responses to environmental variation and climate change. The USA-NPN seeks to advance the science of phenology and facilitate ecosystem stewardship by providing phenological information freely and openly. To accomplish these goals, the USA-NPN National Coordinating Office (NCO) delivers observational data on plant and animal phenology in several formats, including minimally processed status and intensity datasets and derived phenometrics for individual plants, sites, and regions. This document describes the suite of observational data products delivered by the USA National Phenology Network, covering the period 2009–present for the United States and accessible via the Phenology Observation Portal (http://dx.doi.org/10.5066/F78S4N1V) and via an Application Programming Interface. The data described here have been used in diverse research and management applications, including over 30 publications in fields such as remote sensing, plant evolution, and resource management.
Enhanced service zone architecture for multiservices over IP
NASA Astrophysics Data System (ADS)
Michaely, Boaz; Mohan, Seshadri
2001-07-01
Recently, the field of IP Telephony has been experienced considerable evolution through the specification of new protocols and introduction of products implementing these protocols. We visualize IP Telephony evolving to soon offer multiservices encompassing not only voice, but also data, video and multimedia. While the progress has focused on refining protocols and architectures, very little attention has been given to business models for offering these services. This paper introduces the concept of a Service Zone, which from a service provider/network operator perspective fits within the operator's administrative domain, but is viewed as an independent zone with its own management and services, requiring minimal integration with the core network services. Besides its own management, the Enhanced Services Zone may also provide provisioning and maintenance features needed to provide the customer services and availability that subscribers expect from a telephony service providers. The platform must provide reliable service over time, be scalable to meet increased capacity demands, and be upgradeable to incorporate advanced services and features as they become available. Signaling flows are illustrated using SIP and H.323.
The era of sport concussion: Evolution of knowledge, practice, and the role of psychology.
Guay, Julie L; Lebretore, Brittany M; Main, Jesse M; DeFrangesco, Katelyn E; Taylor, Jessica L; Amedoro, Sarah M
2016-12-01
The topic of sport concussion has gained significant prominence over the last 20 years, resulting in dramatic growth in research funding, widespread media coverage, and increased public awareness. Although the knowledge base has greatly expanded, there is still much that is unknown or controversial about the long-term effects of sports-related head injury. Because of the high stakes of mismanaging these injuries, professional sports organizations, federal/state government, and various health-related disciplines have responded with efforts to educate the public and improve treatment and management of this injury. This has resulted in changes to laws, game rules and policies, and recovery management protocols. The field of psychology has also made significant contributions to research on sports concussions, resulting in the development of new assessment and treatment protocols. This article summarizes the latest research findings on sport concussion, highlights areas that require more research before consensus can be reached, and discusses the ways that multiple disciplines within psychology (clinical, neuropsychology, school) can continue to play a critical role in enhancing patient care. (PsycINFO Database Record (c) 2016 APA, all rights reserved).
Infantile wheeze: rethinking dogma.
de Benedictis, Fernando Maria; Bush, Andrew
2017-04-01
Wheeze is a common symptom in young children and is usually associated with viral illnesses. It is a major source of morbidity and is responsible for a high consumption of healthcare and economic resources worldwide. A few children have a condition resembling classical asthma. Rarer specific conditions may have a wheezy component and should be considered in the differential diagnosis. Over the last half century, there have been many circular discussions about the best way of managing preschool wheeze. In general, intermittent wheezing should be treated with intermittent bronchodilator therapy, and a controller therapy should be prescribed for a young child with recurrent wheezing only if positively indicated, and only then if carefully monitored for efficacy. Good multidisciplinary support, attention to environmental exposition and education are essential in managing this common condition. This article analyses the pathophysiological basis of wheezing in infancy and critically discusses the evolution of the scientific progress over time in this unique field of respiratory medicine. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.
POEMS: A Case Study of an Italian Wine-Producing Firm
NASA Astrophysics Data System (ADS)
Ardente, Fulvio; Beccali, Giorgio; Cellura, Maurizio; Marvuglia, Antonino
2006-09-01
Over the last decade, researchers paid much attention to concepts such as Design for Environment, Extended Producer Responsibility, Responsible Chain Management, and Eco-design. Many management tools and standards (such as EMAS, ISO 14001, LCA, EPD, Ecolabel) have been developed to support companies in the evaluation and management of their environmental performance and to pursue continual environmental improvement. The more recent development of the aforesaid fields looks at interorganizational environmental management. Such an approach can complement the more traditional intraorganizational corporate environmental management approaches and tools. A typical example of this new trend is the Product Oriented Environmental Management System (POEMS), which represents the natural evolution of the above-mentioned tools, combining the features of EMS, EPD and Ecolabel. Although the structure of the POEMS is still not standardized, many experimental applications have yet been carried out in Europe. In developing a POEMS, a company needs to determine all of the environmental impacts caused at all life-cycle stages of the product and, ideally, to reduce all of them through a continual commitment. The aim of the present study was to perform a survey of the developed POEMS models and to analyze their peculiarities and drawbacks in the application to Small and Medium Enterprises. A case study regarding an Italian winery company is presented. The study analyzes the structure and the activities of the examined firm, in order to estimate direct and indirect environmental impacts following a life-cycle approach. The chosen functional unit is a 0.75-L bottle of red wine. The article also suggests some solutions to improve the environmental performances of the firm’s products.
POEMS: a case study of an Italian wine-producing firm.
Ardente, Fulvio; Beccali, Giorgio; Cellura, Maurizio; Marvuglia, Antonino
2006-09-01
Over the last decade, researchers paid much attention to concepts such as Design for Environment, Extended Producer Responsibility, Responsible Chain Management, and Eco-design. Many management tools and standards (such as EMAS, ISO 14001, LCA, EPD, Ecolabel) have been developed to support companies in the evaluation and management of their environmental performance and to pursue continual environmental improvement. The more recent development of the aforesaid fields looks at interorganizational environmental management. Such an approach can complement the more traditional intraorganizational corporate environmental management approaches and tools. A typical example of this new trend is the Product Oriented Environmental Management System (POEMS), which represents the natural evolution of the above-mentioned tools, combining the features of EMS, EPD and Ecolabel. Although the structure of the POEMS is still not standardized, many experimental applications have yet been carried out in Europe. In developing a POEMS, a company needs to determine all of the environmental impacts caused at all life-cycle stages of the product and, ideally, to reduce all of them through a continual commitment. The aim of the present study was to perform a survey of the developed POEMS models and to analyze their peculiarities and drawbacks in the application to Small and Medium Enterprises. A case study regarding an Italian winery company is presented. The study analyzes the structure and the activities of the examined firm, in order to estimate direct and indirect environmental impacts following a life-cycle approach. The chosen functional unit is a 0.75-L bottle of red wine. The article also suggests some solutions to improve the environmental performances of the firm's products.
Evolution across the Curriculum: Microbiology
Burmeister, Alita R.; Smith, James J.
2016-01-01
An integrated understanding of microbiology and evolutionary biology is essential for students pursuing careers in microbiology and healthcare fields. In this Perspective, we discuss the usefulness of evolutionary concepts and an overall evolutionary framework for students enrolled in microbiology courses. Further, we propose a set of learning goals for students studying microbial evolution concepts. We then describe some barriers to microbial evolution teaching and learning and encourage the continued incorporation of evidence-based teaching practices into microbiology courses at all levels. Next, we review the current status of microbial evolution assessment tools and describe some education resources available for teaching microbial evolution. Successful microbial evolution education will require that evolution be taught across the undergraduate biology curriculum, with a continued focus on applications and applied careers, while aligning with national biology education reform initiatives. Journal of Microbiology & Biology Education PMID:27158306
Co-evolution of electric and telecommunications networks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rivkin, S.R.
1998-05-01
There are potentially significant societal benefits in co-evolution between electricity and telecommunications in the areas of common infrastructure, accelerated deployment of distributed energy, tighter integration of information flow for energy management and distribution, and improved customer care. With due regard for natural processes that are more potent than any regulation and more real than any ideology, the gains from co-evolution would far outweigh the attenuated and speculative savings from restructuring of electricity that is too simplistic.
Prediction of Ripple Properties in Shelf Seas. Mark 2 Predictor for Time Evolution
2005-12-01
respectively. It is seen in Figure 15 that the time -evolving ripple predictor manages to predict many of the features seen in the data: the growth from a...UNCLASSIFIED Prediction of Ripple Properties in Shelf Seas Mark 2 Predictor for Time Evolution Final Technical Report Prepared for US Office of Naval...distribution is unlimited j~j HR Wallingford UNCLASSIFIED Prediction of Ripple Properties in Shelf Seas Mark 2 Predictor for Time Evolution
NASA Astrophysics Data System (ADS)
Pattle, Kate; Ward-Thompson, Derek; Hasegawa, Tetsuo; Bastien, Pierre; Kwon, Woojin; Lai, Shih-Ping; Qiu, Keping; Furuya, Ray; Berry, David; JCMT BISTRO Survey Team
2018-06-01
We present the first high-resolution, submillimeter-wavelength polarimetric observations of—and thus direct observations of the magnetic field morphology within—the dense gas of the Pillars of Creation in M16. These 850 μm observations, taken as part of the B-Fields in Star-forming Region Observations Survey (BISTRO) using the POL-2 polarimeter on the Submillimeter Common-User Bolometer Array 2 (SCUBA-2) camera on the James Clerk Maxwell Telescope (JCMT), show that the magnetic field runs along the length of the Pillars, perpendicular to and decoupled from the field in the surrounding photoionized cloud. Using the Chandrasekhar–Fermi method we estimate a plane-of-sky magnetic field strength of 170–320 μG in the Pillars, consistent with their having been formed through the compression of gas with initially weak magnetization. The observed magnetic field strength and morphology suggests that the magnetic field may be slowing the Pillars’ evolution into cometary globules. We thus hypothesize that the evolution and lifetime of the Pillars may be strongly influenced by the strength of the coupling of their magnetic field to that of their parent photoionized cloud—i.e., that the Pillars’ longevity results from magnetic support.
A prevalence of dynamo-generated magnetic fields in the cores of intermediate-mass stars.
Stello, Dennis; Cantiello, Matteo; Fuller, Jim; Huber, Daniel; García, Rafael A; Bedding, Timothy R; Bildsten, Lars; Aguirre, Victor Silva
2016-01-21
Magnetic fields play a part in almost all stages of stellar evolution. Most low-mass stars, including the Sun, show surface fields that are generated by dynamo processes in their convective envelopes. Intermediate-mass stars do not have deep convective envelopes, although 10 per cent exhibit strong surface fields that are presumed to be residuals from the star formation process. These stars do have convective cores that might produce internal magnetic fields, and these fields might survive into later stages of stellar evolution, but information has been limited by our inability to measure the fields below the stellar surface. Here we report the strength of dipolar oscillation modes for a sample of 3,600 red giant stars. About 20 per cent of our sample show mode suppression, by strong magnetic fields in the cores, but this fraction is a strong function of mass. Strong core fields occur only in red giants heavier than 1.1 solar masses, and the occurrence rate is at least 50 per cent for intermediate-mass stars (1.6-2.0 solar masses), indicating that powerful dynamos were very common in the previously convective cores of these stars.
Strong magnetic field generated by the extreme oxygen-rich red supergiant VY Canis Majoris
NASA Astrophysics Data System (ADS)
Shinnaga, Hiroko; Claussen, Mark J.; Yamamoto, Satoshi; Shimojo, Masumi
2017-12-01
Evolved stars experience high mass-loss rates forming thick circumstellar envelopes (CSEs). The circumstellar material is made of the result of stellar nucleosynthesis and, as such, plays a crucial role in the chemical evolution of galaxies and the universe. Since asymmetric geometries of CSEs are common, and with very complex structures for some cases, radiative pressure from the stars can explain only a small portion of the mass-loss processes; thus the essential driving mechanism is still unknown, particularly for high-mass stars. Here we report on magnetic field measurements associated with the well-known extreme red supergiant (RSG) VY Canis Majoris (VY CMa). We measured the linear polarization and the Zeeman splitting of the SiO v = 0, J = 1-0 transition using a sensitive radio interferometer. The measured magnetic field strengths are surprisingly high; their upper limits range between 150 and 650 G within 530 au (˜80 R*) of the star. The lower limit of the field strength is expected to be at least ˜10 G based on the high degree of linear polarization. Since the field strengths are very high, the magnetic field must be a key element in understanding the stellar evolution of VY CMa, as well as the dynamical and chemical evolution of the complex CSE of the star. M-type RSGs, with large stellar surface, were thought to be very slow rotators. This would seem to make a dynamo in operation difficult, and would also dilute any fossil magnetic field. At least for VY CMa, we expect that powerful dynamo processes must still be active to generate the intense magnetic field.
Influence of toroidal magnetic field in multiaccreting tori
NASA Astrophysics Data System (ADS)
Pugliese, D.; Montani, G.
2018-06-01
We analysed the effects of a toroidal magnetic field in the formation of several magnetized accretion tori, dubbed as ringed accretion discs (RADs), orbiting around one central Kerr supermassive black hole (SMBH) in active galactic nuclei (AGNs), where both corotating and counterotating discs are considered. Constraints on tori formation and emergence of RADs instabilities, accretion on to the central attractor and tori collision emergence, are investigated. The results of this analysis show that the role of the central BH spin-mass ratio, the magnetic field and the relative fluid rotation and tori rotation with respect the central BH, are crucial elements in determining the accretion tori features, providing ultimately evidence of a strict correlation between SMBH spin, fluid rotation, and magnetic fields in RADs formation and evolution. More specifically, we proved that magnetic field and discs rotation are in fact strongly constrained, as tori formation and evolution in RADs depend on the toroidal magnetic fields parameters. Eventually, this analysis identifies specific classes of tori, for restrict ranges of magnetic field parameter, that can be observed around some specific SMBHs identified by their dimensionless spin.
NASA Astrophysics Data System (ADS)
Ivannikova, E.; Kruglyakov, M.; Kuvshinov, A. V.; Rastaetter, L.; Pulkkinen, A. A.; Ngwira, C. M.
2017-12-01
During extreme space weather events electric currents in the Earth's magnetosphere and ionosphere experience large variations, which leads to dramatic intensification of the fluctuating magnetic field at the surface of the Earth. According to Faraday's law of induction, the fluctuating geomagnetic field in turn induces electric field that generates harmful currents (so-called "geomagnetically induced currents"; GICs) in grounded technological systems. Understanding (via modeling) of the spatio-temporal evolution of the geoelectric field during enhanced geomagnetic activity is a key consideration in estimating the hazard to technological systems from space weather. We present the results of ground geoelectric field modeling for the Northeast United States, which is performed with the use of our novel numerical tool based on integral equation approach. The tool exploits realistic regional three-dimensional (3-D) models of the Earth's electrical conductivity and realistic global models of the spatio-temporal evolution of the magnetospheric and ionospheric current systems responsible for geomagnetic disturbances. We also explore in detail the manifestation of the coastal effect (anomalous intensification of the geoelectric field near the coasts) in this region.
Pulsating Magnetic Reconnection Driven by Three-Dimensional Flux-Rope Interactions.
Gekelman, W; De Haas, T; Daughton, W; Van Compernolle, B; Intrator, T; Vincena, S
2016-06-10
The dynamics of magnetic reconnection is investigated in a laboratory experiment consisting of two magnetic flux ropes, with currents slightly above the threshold for the kink instability. The evolution features periodic bursts of magnetic reconnection. To diagnose this complex evolution, volumetric three-dimensional data were acquired for both the magnetic and electric fields, allowing key field-line mapping quantities to be directly evaluated for the first time with experimental data. The ropes interact by rotating about each other and periodically bouncing at the kink frequency. During each reconnection event, the formation of a quasiseparatrix layer (QSL) is observed in the magnetic field between the flux ropes. Furthermore, a clear correlation is demonstrated between the quasiseparatrix layer and enhanced values of the quasipotential computed by integrating the parallel electric field along magnetic field lines. These results provide clear evidence that field lines passing through the quasiseparatrix layer are undergoing reconnection and give a direct measure of the nonlinear reconnection rate. The measurements suggest that the parallel electric field within the QSL is supported predominantly by electron pressure; however, resistivity may play a role.
Evolving, innovating, and revolutionary changes in cardiovascular imaging: We've only just begun!
Shaw, Leslee J; Hachamovitch, Rory; Min, James K; Di Carli, Marcelo; Mieres, Jennifer H; Phillips, Lawrence; Blankstein, Ron; Einstein, Andrew; Taqueti, Viviany R; Hendel, Robert; Berman, Daniel S
2018-06-01
In this review, we highlight the need for innovation and creativity to reinvent the field of nuclear cardiology. Revolutionary ideas brought forth today are needed to create greater value in patient care and highlight the need for more contemporary evidence supporting the use of nuclear cardiology practices. We put forth discussions on the need for disruptive innovation in imaging-guided care that places the imager as a central force in care coordination. Value-based nuclear cardiology is defined as care that is both efficient and effective. Novel testing strategies that defer testing in lower risk patients are examples of the kind of innovation needed in today's healthcare environment. A major focus of current research is the evolution of the importance of ischemia and the prognostic significance of non-obstructive atherosclerotic plaque and coronary microvascular dysfunction. Embracing novel paradigms, such as this, can aid in the development of optimal strategies for coronary disease management. We hope that our article will spurn the field toward greater innovation and focus on transformative imaging leading the way for new generations of novel cardiovascular care.
Choi, Jae Young; Jeong, Seongkyoon; Jung, Jung-Kyu
2018-01-01
This study investigates the temporal changes in development of technology convergence networks by institution type, i.e., public research institute (PRI), university and industry. Using the co-classification of technological domains of patents, we identified technology convergence of Korean patents, which were filed at Korea Intellectual Properties Office (KIPO) from 1997 to 2011. We conducted a network analysis at the technology level to search for the key technology fields and frequent instances of technology convergence. The results show that technology convergence networks have grown significantly in the recent period regardless of the institution type. While industries started to conspicuously engage in technology convergence in the late 1990s, universities or PRIs did not do so until the mid-2000s. This discrepancy in the phase of technology convergence is attributed to the temporal difference in R&D stage (e.g., basic research and commercial product development). Our findings imply that corporal and governmental R&D management decision on promising technology fields will be more effective if the decision makers carefully consider the type of R&D entity in analyzing technological landscapes.
Domain walls in the extensions of the Standard Model
NASA Astrophysics Data System (ADS)
Krajewski, Tomasz; Lalak, Zygmunt; Lewicki, Marek; Olszewski, Paweł
2018-05-01
Our main interest is the evolution of domain walls of the Higgs field in the early Universe. The aim of this paper is to understand how dynamics of Higgs domain walls could be influenced by yet unknown interactions from beyond the Standard Model. We assume that the Standard Model is valid up to certain, high, energy scale Λ and use the framework of the effective field theory to describe physics below that scale. Performing numerical simulations with different values of the scale Λ we are able to extend our previous analysis [1]. Our recent numerical simulations show that evolution of Higgs domain walls is rather insensitive to interactions beyond the Standard Model as long as masses of new particles are grater than 1012 GeV. For lower values of Λ the RG improved effective potential is strongly modified at field strengths crucial to the evolution of domain walls. However, we find that even for low values of Λ, Higgs domain walls decayed shortly after their formation for generic initial conditions. On the other hand, in simulations with specifically chosen initial conditions Higgs domain walls can live longer and enter the scaling regime. We also determine the energy spectrum of gravitational waves produced by decaying domain walls of the Higgs field. For generic initial field configurations the amplitude of the signal is too small to be observed in planned detectors.
Shaban-Nejad, Arash; Haarslev, Volker
2015-01-01
The issue of ontology evolution and change management is inadequately addressed by available tools and algorithms, mostly due to the lack of suitable knowledge representation formalisms to deal with temporal abstract notations and the overreliance on human factors. Also most of the current approaches have been focused on changes within the internal structure of ontologies and interactions with other existing ontologies have been widely neglected. In our research, after revealing and classifying some of the common alterations in a number of popular biomedical ontologies, we present a novel agent-based framework, Represent, Legitimate and Reproduce (RLR), to semi-automatically manage the evolution of bio-ontologies, with emphasis on the FungalWeb Ontology, with minimal human intervention. RLR assists and guides ontology engineers through the change management process in general and aids in tracking and representing the changes, particularly through the use of category theory and hierarchical graph transformation.
Management of fire affected areas. Beyond the environmental question
NASA Astrophysics Data System (ADS)
Pereira, Paulo
2016-04-01
Fire is considered a natural element of the ecosystems. With exception of the polar areas, fire visited with more or less frequency all the earth biomes, determining the ecosystems characteristics, to the point that several species are fire-dependent to survive and are very resilient to their impact. Fire was a fundamental element for human evolution, which allowed us to cook, manipulation of metals, hunt, protect from predators and clear fields for agriculture. In some extension, we are only humans because of fire. In the last millennium fire was used to shape the landscape as we know today. One good example of this is the Mediterranean environment, a landscape where the ecology is not understood without the presence of fire. Until the end of the first half of the last century, fire was used frequently by farmers to landscape management. However, due to rural abandonment, change of life styles, disconnection with rural environment and lack of understanding of fire role in the ecosystems. The perception of fire changed and nowadays is understood by the population as a threat to the ecosystems, rather than a tool that helped to manage the landscape and help us in our evolution. This change of vision promoted the idea that fire has negative impacts in the ecosystems and should be banned from the nature. Something that is impossible. All these perceptions facilitated the implementation of fire-suppression policies, which today are recognized by science as one of the causes of the occurrence of frequent high-severity wildfires, with important impacts on the ecosystems, economy and society. However, most of the ecosystems can regenerate sooner or later, depending of the fire severity and the ecosystem affected. Thus, fire is not an ecological, but social and economic problem, due to lives loss and the temporary destruction of ecosystems, which local communities depend on. In this context, when we are managing fire affected areas, it goes much beyond environmental questions, and our actions aim more to reduce the social and economic impacts of fire.
Analysis of Multipsectral Time Series for supporting Forest Management Plans
NASA Astrophysics Data System (ADS)
Simoniello, T.; Carone, M. T.; Costantini, G.; Frattegiani, M.; Lanfredi, M.; Macchiato, M.
2010-05-01
Adequate forest management requires specific plans based on updated and detailed mapping. Multispectral satellite time series have been largely applied to forest monitoring and studies at different scales tanks to their capability of providing synoptic information on some basic parameters descriptive of vegetation distribution and status. As a low expensive tool for supporting forest management plans in operative context, we tested the use of Landsat-TM/ETM time series (1987-2006) in the high Agri Valley (Southern Italy) for planning field surveys as well as for the integration of existing cartography. As preliminary activity to make all scenes radiometrically consistent the no-change regression normalization was applied to the time series; then all the data concerning available forest maps, municipal boundaries, water basins, rivers, and roads were overlapped in a GIS environment. From the 2006 image we elaborated the NDVI map and analyzed the distribution for each land cover class. To separate the physiological variability and identify the anomalous areas, a threshold on the distributions was applied. To label the non homogenous areas, a multitemporal analysis was performed by separating heterogeneity due to cover changes from that linked to basilar unit mapping and classification labelling aggregations. Then a map of priority areas was produced to support the field survey plan. To analyze the territorial evolution, the historical land cover maps were elaborated by adopting a hybrid classification approach based on a preliminary segmentation, the identification of training areas, and a subsequent maximum likelihood categorization. Such an analysis was fundamental for the general assessment of the territorial dynamics and in particular for the evaluation of the efficacy of past intervention activities.
Bovea, M D; Powell, J C
2016-04-01
This paper provides a review of the literature that applies the life cycle assessment (LCA) methodology to the assessment of the environmental performance of the life cycle of construction and demolition waste (CDW) management systems. This article is focused on generating a general mapping of the literature and on identifying the best practices in compliance with LCA framework and proposing directions for future LCA studies in this field. The temporal evolution of the research in this field and the aim of the studies have grown in parallel with the legal framework related to waste and energy efficiency of buildings. Most studies have been published in Europe, followed by USA. Asia and Australia, being at an incipient application stage to the rest of the world. Topics related to "LCA of buildings, including their EoL" and "LCA of general CDW management strategies" are the most frequently analysed, followed by "LCA of EoL of construction elements" and "LCA of natural material vs recycled material". Regarding the strategies, recycling off-site and incineration, both combined with landfill for the rejected fractions, are the most commonly applied. Re-use or recycling on-site is the strategy least applied. The key aspect when LCA is applied to evaluate CDW management systems is the need to normalise which processes to include in the system boundary and the functional unit, the use of inventory data adapted to the context of the case study and the definition of a common set of appropriate impact assessment categories. Also, it is important to obtain results disaggregated by unit processes. This will allow the comparison between case studies. Copyright © 2016 Elsevier Ltd. All rights reserved.
Field-Evolved Resistance in Corn Earworm to Cry Proteins Expressed by Transgenic Sweet Corn.
Dively, Galen P; Venugopal, P Dilip; Finkenbinder, Chad
2016-01-01
Transgenic corn engineered with genes expressing insecticidal toxins from the bacterium Bacillus thuringiensis (Berliner) (Bt) are now a major tool in insect pest management. With its widespread use, insect resistance is a major threat to the sustainability of the Bt transgenic technology. For all Bt corn expressing Cry toxins, the high dose requirement for resistance management is not achieved for corn earworm, Helicoverpa zea (Boddie), which is more tolerant to the Bt toxins. We present field monitoring data using Cry1Ab (1996-2016) and Cry1A.105+Cry2Ab2 (2010-2016) expressing sweet corn hybrids as in-field screens to measure changes in field efficacy and Cry toxin susceptibility to H. zea. Larvae successfully damaged an increasing proportion of ears, consumed more kernel area, and reached later developmental stages (4th - 6th instars) in both types of Bt hybrids (Cry1Ab-event Bt11, and Cry1A.105+Cry2Ab2-event MON89034) since their commercial introduction. Yearly patterns of H. zea population abundance were unrelated to reductions in control efficacy. There was no evidence of field efficacy or tissue toxicity differences among different Cry1Ab hybrids that could contribute to the decline in control efficacy. Supportive data from laboratory bioassays demonstrate significant differences in weight gain and fitness characteristics between the Maryland H. zea strain and a susceptible strain. In bioassays with Cry1Ab expressing green leaf tissue, Maryland H. zea strain gained more weight than the susceptible strain at all concentrations tested. Fitness of the Maryland H. zea strain was significantly lower than that of the susceptible strain as indicated by lower hatch rate, longer time to adult eclosion, lower pupal weight, and reduced survival to adulthood. After ruling out possible contributing factors, the rapid change in field efficacy in recent years and decreased susceptibility of H. zea to Bt sweet corn provide strong evidence of field-evolved resistance in H. zea populations to multiple Cry toxins. The high adoption rate of Bt field corn and cotton, along with the moderate dose expression of Cry1Ab and related Cry toxins in these crops, and decreasing refuge compliance probably contributed to the evolution of resistance. Our results have important implications for resistance monitoring, refuge requirements and other regulatory policies, cross-resistance issues, and the sustainability of the pyramided Bt technology.
Nonlinear evolution of magnetic flux ropes. 2: Finite beta plasma
NASA Technical Reports Server (NTRS)
Osherovich, V. A.; Farrugia, C. J.; Burlaga, L. F.
1995-01-01
In this second paper on the evolution of magnetic flux ropes we study the effects of gas pressure. We assume that the energy transport is described by a polytropic relationship and reduce the set of ideal MHD equations to a single, second-order, nonlinear, ordinary differential equation for the evolution function. For this conservative system we obtain a first integral of motion. To analyze the possible motions, we use a mechanical analogue -- a one-dimensional, nonlinear oscillator. We find that the effective potential for such an oscillator depends on two parameters: the polytropic index gamma and a dimensionless quantity kappa the latter being a function of the plasma beta, the strength of the azimuthal magnetic field relative to the axial field of the flux rope, and gamma. Through a study of this effective potential we classify all possible modes of evolution of the system. In the main body of the paper, we focus on magnetic flux ropes whose field and gas pressure increase steadily towards the symmetry axis. In this case, for gamma greater than 1 and all values of kappa, only oscillations are possible. For gamma less than 1, however, both oscillations and expansion are allowed. For gamma less than 1 and kappa below a critical value, the energy of the nonlinear oscillator determines whether the flux rope will oscillate or expand to infinity. For gamma less than 1 and kappa above critical, however, only expansion occurs. Thus by increasing kappa while keeping gamma fixed (less than 1), a phase transition occurs at kappa = kappa(sub critical) and the oscillatory mode disappears. We illustrate the above theoretical considerations by the example of a flux rope of constant field line twist evolving self-similarly. For this example, we present the full numerical MHD solution. In an appendix to the paper we catalogue all possible evolutions when (1) either the magnetic field or (2) the gas pressure decreases monotonically toward the axis. We find that in these cases critical conditions can occur for gamma greater than 1. While in most cases the flux rope collapses, there are notable exceptions when, for certain ranges of kappa and gamma, collapse may be averted.
Petersen, J.H.; DeAngelis, D.L.; Paukert, C.P.
2008-01-01
Many fish species are at risk to some degree, and conservation efforts are planned or underway to preserve sensitive populations. For many imperiled species, models could serve as useful tools for researchers and managers as they seek to understand individual growth, quantify predator-prey dynamics, and identify critical sources of mortality. Development and application of models for rare species however, has been constrained by small population sizes, difficulty in obtaining sampling permits, limited opportunities for funding, and regulations on how endangered species can be used in laboratory studies. Bioenergetic and life history models should help with endangered species-recovery planning since these types of models have been used successfully in the last 25 years to address management problems for many commercially and recreationally important fish species. In this paper we discuss five approaches to developing models and parameters for rare species. Borrowing model functions and parameters from related species is simple, but uncorroborated results can be misleading. Directly estimating parameters with laboratory studies may be possible for rare species that have locally abundant populations. Monte Carlo filtering can be used to estimate several parameters by means of performing simple laboratory growth experiments to first determine test criteria. Pattern-oriented modeling (POM) is a new and developing field of research that uses field-observed patterns to build, test, and parameterize models. Models developed using the POM approach are closely linked to field data, produce testable hypotheses, and require a close working relationship between modelers and empiricists. Artificial evolution in individual-based models can be used to gain insight into adaptive behaviors for poorly understood species and thus can fill in knowledge gaps. ?? Copyright by the American Fisheries Society 2008.