Dynamic mapping of EDDL device descriptions to OPC UA
NASA Astrophysics Data System (ADS)
Atta Nsiah, Kofi; Schappacher, Manuel; Sikora, Axel
2017-07-01
OPC UA (Open Platform Communications Unified Architecture) is already a well-known concept used widely in the automation industry. In the area of factory automation, OPC UA models the underlying field devices such as sensors and actuators in an OPC UA server to allow connecting OPC UA clients to access device-specific information via a standardized information model. One of the requirements of the OPC UA server to represent field device data using its information model is to have advanced knowledge about the properties of the field devices in the form of device descriptions. The international standard IEC 61804 specifies EDDL (Electronic Device Description Language) as a generic language for describing the properties of field devices. In this paper, the authors describe a possibility to dynamically map and integrate field device descriptions based on EDDL into OPCUA.
Optical Potential Field Mapping System
NASA Technical Reports Server (NTRS)
Reid, Max B. (Inventor)
1996-01-01
The present invention relates to an optical system for creating a potential field map of a bounded two dimensional region containing a goal location and an arbitrary number of obstacles. The potential field mapping system has an imaging device and a processor. Two image writing modes are used by the imaging device, electron deposition and electron depletion. Patterns written in electron deposition mode appear black and expand. Patterns written in electron depletion mode are sharp and appear white. The generated image represents a robot's workspace. The imaging device under processor control then writes a goal location in the work-space using the electron deposition mode. The black image of the goal expands in the workspace. The processor stores the generated images, and uses them to generate a feedback pattern. The feedback pattern is written in the workspace by the imaging device in the electron deposition mode to enhance the expansion of the original goal pattern. After the feedback pattern is written, an obstacle pattern is written by the imaging device in the electron depletion mode to represent the obstacles in the robot's workspace. The processor compares a stored image to a previously stored image to determine a change therebetween. When no change occurs, the processor averages the stored images to produce the potential field map.
A campus-based course in field geology
NASA Astrophysics Data System (ADS)
Richard, G. A.; Hanson, G. N.
2009-12-01
GEO 305: Field Geology offers students practical experience in the field and in the computer laboratory conducting geological field studies on the Stony Brook University campus. Computer laboratory exercises feature mapping techniques and field studies of glacial and environmental geology, and include geophysical and hydrological analysis, interpretation, and mapping. Participants learn to use direct measurement and mathematical techniques to compute the location and geometry of features and gain practical experience in representing raster imagery and vector geographic data as features on maps. Data collecting techniques in the field include the use of hand-held GPS devices, compasses, ground-penetrating radar, tape measures, pacing, and leveling devices. Assignments that utilize these skills and techniques include mapping campus geology with GPS, using Google Earth to explore our geologic context, data file management and ArcGIS, tape and compass mapping of woodland trails, pace and compass mapping of woodland trails, measuring elevation differences on a hillside, measuring geologic sections and cores, drilling through glacial deposits, using ground penetrating radar on glaciotectonic topography, mapping the local water table, and the identification and mapping of boulders. Two three-hour sessions are offered per week, apportioned as needed between lecture; discussion; guided hands-on instruction in geospatial and other software such as ArcGIS, Google Earth, spreadsheets, and custom modules such as an arc intersection calculator; outdoor data collection and mapping; and writing of illustrated reports.
Experimental Results from a Resonant Dielectric Laser Accelerator
NASA Astrophysics Data System (ADS)
Yoder, Rodney; McNeur, Joshua; Sozer, Esin; Travish, Gil; Hazra, Kiran Shankar; Matthews, Brian; England, Joel; Peralta, Edgar; Wu, Ziran
2015-04-01
Laser-powered accelerators have the potential to operate with very large accelerating gradients (~ GV/m) and represent a path toward extremely compact colliders and accelerator technology. Optical-scale laser-powered devices based on field-shaping structures (known as dielectric laser accelerators, or DLAs) have been described and demonstrated recently. Here we report on the first experimental results from the Micro-Accelerator Platform (MAP), a DLA based on a slab-symmetric resonant optical-scale structure. As a resonant (rather than near-field) device, the MAP is distinct from other DLAs. Its cavity resonance enhances its accelerating field relative to the incoming laser fields, which are coupled efficiently through a diffractive optic on the upper face of the device. The MAP demonstrated modest accelerating gradients in recent experiments, in which it was powered by a Ti:Sapphire laser well below its breakdown limit. More detailed results and some implications for future developments will be discussed. Supported in part by the U.S. Defense Threat Reduction Agency (UCLA); U.S. Dept of Energy (SLAC); and DARPA (SLAC).
A hot wire radiant energy source for mapping the field of view of a radiometer
NASA Technical Reports Server (NTRS)
Edwards, S. F.; Stewart, W. F.; Vann, D. S.
1977-01-01
The design and performance of a calibration device that allows the measurement of a radiometer's field of view are described. The heart of the device is a heated 0.0254-mm (0.001-inch) diameter filament that provides a variable, isothermal line source of radiant energy against a cold background. By moving this discrete line source across the field of view of a radiometer, the radiometer's spatial response can be completely mapped. The use of a platinum filament provides a durable radiation source whose temperature is stable and repeatable to 10 K over the range of 600 to 1200 K. By varying the energy emitted by the filament, the field of view of radiometers with different sensitivities (or multiple channel radiometers) can be totally mapped.
FreshAiR and Field Studies—Augmenting Geological Reality with Mobile Devices
NASA Astrophysics Data System (ADS)
De Paor, D. G.; Crompton, H.; Dunleavy, M.
2014-12-01
During the last decade, mobile devices have fomented a revolution in geological mapping. Present Clinton set the stage for this revolution in the year 2000 when he ordered a cessation to Selective Availability, making reliable GPS available for civilian use. Geologists began using personal digital assistants and ruggedized tablet PCs for geolocation and data recording and the pace of change accelerated with the development of mobile apps such as Google Maps, digital notebooks, and digital compass-clinometers. Despite these changes in map-making technologies, most students continue to learn geology in the field the old-fashioned way, by following a field trip leader as a group and trying to hear and understand lecturettes at the outcrop. In this presentation, we demonstrate the potential of a new Augment Reality (AR) mobile app called "FreshAiR" to change fundamentally the way content-knowledge and learning objectives are delivered to students in the field. FreshAiR, which was developed by co-author and ODU alumnus M.D., triggers content delivery to mobile devices based on proximity. Students holding their mobile devices to the horizon see trigger points superimposed on the field of view of the device's built-in camera. When they walk towards the trigger, information about the location pops up. This can include text, images, movies, and quiz questions (multiple choice and fill-in-the-blank). Students can use the app to reinforce the field trip leader's presentations or they can visit outcrops individuals at different times. This creates the possibility for asynchronous field class, a concept that has profound implications for distance education in the geosciences.
Managing mapping data using commercial data base management software.
Elassal, A.A.
1985-01-01
Electronic computers are involved in almost every aspect of the map making process. This involvement has become so thorough that it is practically impossible to find a recently developed process or device in the mapping field which does not employ digital processing in some form or another. This trend, which has been evolving over two decades, is accelerated by the significant improvements in capility, reliability, and cost-effectiveness of electronic devices. Computerized mapping processes and devices share a common need for machine readable data. Integrating groups of these components into automated mapping systems requires careful planning for data flow amongst them. Exploring the utility of commercial data base management software to assist in this task is the subject of this paper. -Author
NASA Astrophysics Data System (ADS)
Ochiai, T.; Nacher, J. C.
2011-09-01
Recently, the application of geometry and conformal mappings to artificial materials (metamaterials) has attracted the attention in various research communities. These materials, characterized by a unique man-made structure, have unusual optical properties, which materials found in nature do not exhibit. By applying the geometry and conformal mappings theory to metamaterial science, it may be possible to realize so-called "Harry Potter cloaking device". Although such a device is still in the science fiction realm, several works have shown that by using such metamaterials it may be possible to control the direction of the electromagnetic field at will. We could then make an object hidden inside of a cloaking device. Here, we will explain how to design invisibility device using differential geometry and conformal mappings.
Infrared spectroscopic near-field mapping of single nanotransistors.
Huber, A J; Wittborn, J; Hillenbrand, R
2010-06-11
We demonstrate the application of scattering-type scanning near-field optical microscopy (s-SNOM) for infrared (IR) spectroscopic material recognition in state-of-the-art semiconductor devices. In particular, we employ s-SNOM for imaging of industrial CMOS transistors with a resolution better than 20 nm, which allows for the first time IR spectroscopic recognition of amorphous SiO(2) and Si(3)N(4) components in a single transistor device. The experimentally recorded near-field spectral signature of amorphous SiO(2) shows excellent agreement with model calculations based on literature dielectric values, verifying that the characteristic near-field contrasts of SiO(2) stem from a phonon-polariton resonant near-field interaction between the probing tip and the SiO(2) nanostructures. Local material recognition by s-SNOM in combination with its capabilities of contact-free and non-invasive conductivity- and strain-mapping makes IR near-field microscopy a versatile metrology technique for nanoscale material characterization and semiconductor device analysis with application potential in research and development, failure analysis and reverse engineering.
Microwave platform as a valuable tool for characterization of nanophotonic devices
Shishkin, Ivan; Baranov, Dmitry; Slobozhanyuk, Alexey; Filonov, Dmitry; Lukashenko, Stanislav; Samusev, Anton; Belov, Pavel
2016-01-01
The rich potential of the microwave experiments for characterization and optimization of optical devices is discussed. While the control of the light fields together with their spatial mapping at the nanoscale is still laborious and not always clear, the microwave setup allows to measure both amplitude and phase of initially determined magnetic and electric field components without significant perturbation of the near-field. As an example, the electromagnetic properties of an add-drop filter, which became a well-known workhorse of the photonics, is experimentally studied with the aid of transmission spectroscopy measurements in optical and microwave ranges and through direct mapping of the near fields at microwave frequencies. We demonstrate that the microwave experiments provide a unique platform for the comprehensive studies of electromagnetic properties of micro- and nanophotonic devices, and allow to obtain data which are hardly acquirable by conventional optical methods. PMID:27759058
Bao, Rongrong; Wang, Chunfeng; Dong, Lin; Shen, Changyu; Zhao, Kun; Pan, Caofeng
2016-04-21
As widely applied in light-emitting diodes and optical devices, CdS has attracted the attention of many researchers due to its nonlinear properties and piezo-electronic effect. Here, we demonstrate a LED array composed of PSS and CdS nanorods and research the piezo-photonic effect of the array device. The emission intensity of the device depends on the electron-hole recombination at the interface of the p-n junction which can be adjusted using the piezo-phototronic effect and can be used to map the pressure applied on the surface of the device with spatial resolution as high as 1.5 μm. A flexible LED device array has been prepared using a CdS nanorod array on a Au/Cr/kapton substrate. This device may be used in the field of strain mapping using its high pressure spatial-resolution and flexibility.
First experimental demonstration of an isotropic electromagnetic cloak with strict conformal mapping
Ma, Yungui; Liu, Yichao; Lan, Lu; Wu, Tiantian; Jiang, Wei; Ong, C. K.; He, Sailing
2013-01-01
In the past years quasi-conformal mapping has been generally used to design broadband electromagnetic cloaks. However, this technique has some inherit practical limitations such as the lateral beam shift, rendering the device visible or difficult to hide a large object. In this work we circumvent these issues by using strict conformal mapping to build the first isotropic cloak. Microwave near-field measurement shows that our device (with dielectric constant larger than unity everywhere) has a very good cloaking performance and a broad frequency response. The present dielectric approach could be technically extended to the fabrication of other conformal devices at higher frequencies. PMID:23851589
Nogueira d'Eurydice, Marcel; Galvosas, Petrik
2014-11-01
Single-sided NMR systems are becoming a relevant tool in industry and laboratory environments due to their low cost, low maintenance and capacity to evaluate quantity and quality of hydrogen based materials. The performance of such devices has improved significantly over the last decade, providing increased field homogeneity, field strength and even controlled static field gradients. For a class of these devices, the configuration of the permanent magnets provides a linear variation of the magnetic field and can be used in diffusion measurements. However, magnet design depends directly on its application and, according to the purpose, the field homogeneity may significantly be compromised. This may prevent the determination of diffusion properties of fluids based on the natural inhomogeneity of the field using known techniques. This work introduces a new approach that extends the applicability of diffusion-editing CPMG experiments to NMR devices with highly inhomogeneous magnetic fields, which do not vary linearly in space. Herein, we propose a method to determine a custom diffusion kernel based on the gradient distribution, which can be seen as a signature of each NMR device. This new diffusion kernel is then utilised in the 2D inverse Laplace transform (2D ILT) in order to determine diffusion-relaxation correlation maps of homogeneous multi-phasic fluids. The experiments were performed using NMR MObile Lateral Explore (MOLE), which is a single-sided NMR device designed to maximise the volume at the sweet spot with enhanced depth penetration. Copyright © 2014 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Giardino, Marco; Magagna, Alessandra; Ferrero, Elena; Perrone, Gianluigi
2015-04-01
Digital field mapping has certainly provided geoscientists with the opportunity to map and gather data in the field directly using digital tools and software rather than using paper maps, notebooks and analogue devices and then subsequently transferring the data to a digital format for subsequent analysis. But, the same opportunity has to be recognized for Geoscience education, as well as for stimulating and helping students in the recognition of landforms and interpretation of the geological and geomorphological components of a landscape. More, an early exposure to mapping during school and prior to university can optimise the ability to "read" and identify uncertainty in 3d models. During 2014, about 200 Secondary School students (aged 12-15) of the Piedmont region (NW Italy) participated in a research program involving the use of mobile devices (smartphone and tablet) in the field. Students, divided in groups, used the application Trimble Outdoors Navigators for tracking a geological trail in the Sangone Valley and for taking georeferenced pictures and notes. Back to school, students downloaded the digital data in a .kml file for the visualization on Google Earth. This allowed them: to compare the hand tracked trail on a paper map with the digital trail, and to discuss about the functioning and the precision of the tools; to overlap a digital/semitransparent version of the 2D paper map (a Regional Technical Map) used during the field trip on the 2.5D landscape of Google Earth, as to help them in the interpretation of conventional symbols such as contour lines; to perceive the landforms seen during the field trip as a part of a more complex Pleistocene glacial landscape; to understand the classical and innovative contributions from different geoscientific disciplines to the generation of a 3D structural geological model of the Rivoli-Avigliana Morainic Amphitheatre. In 2013 and 2014, some other pilot projects have been carried out in different areas of the Piedmont region, and in the Sesia Val Grande Geopark, for testing the utility of digital field mapping in Geoscience education. Feedback from students are positive: they are stimulated and involved by the use of ICT for learning Geoscience, and they voluntary choose to work with their personal mobile device (more than 90% of them own a smartphone); they are interested in knowing the features of GPS, and of software for the visualization of satellite and aerial images, but they recognize the importance of integrating and comparing traditional and innovative methods in the field.
Travagliati, Marco; Girardo, Salvatore; Pisignano, Dario; Beltram, Fabio; Cecchini, Marco
2013-09-03
Spatiotemporal image correlation spectroscopy (STICS) is a simple and powerful technique, well established as a tool to probe protein dynamics in cells. Recently, its potential as a tool to map velocity fields in lab-on-a-chip systems was discussed. However, the lack of studies on its performance has prevented its use for microfluidics applications. Here, we systematically and quantitatively explore STICS microvelocimetry in microfluidic devices. We exploit a simple experimental setup, based on a standard bright-field inverted microscope (no fluorescence required) and a high-fps camera, and apply STICS to map liquid flow in polydimethylsiloxane (PDMS) microchannels. Our data demonstrates optimal 2D velocimetry up to 10 mm/s flow and spatial resolution down to 5 μm.
NASA Astrophysics Data System (ADS)
Yashin, A. A.
1985-04-01
A semiconductor or hybrid structure into a calculable two-dimensional region mapped by the Schwarz-Christoffel transformation and a universal algorithm can be constructed on the basis of Maxwell's electro-magnetic-thermal similarity principle for engineering design of integrated-circuit elements. The design procedure involves conformal mapping of the original region into a polygon and then the latter into a rectangle with uniform field distribution, where conductances and capacitances are calculated, using tabulated standard mapping functions. Subsequent synthesis of a device requires inverse conformal mapping. Devices adaptable as integrated-circuit elements are high-resistance film resistors with periodic serration, distributed-resistance film attenuators with high transformation ratio, coplanar microstrip lines, bipolar transistors, directional couplers with distributed coupling to microstrip lines for microwave bulk devices, and quasirregular smooth matching transitions from asymmetric to coplanar microstrip lines.
Electromagnetic field tapering using all-dielectric gradient index materials.
Yi, Jianjia; Piau, Gérard-Pascal; de Lustrac, André; Burokur, Shah Nawaz
2016-07-28
The concept of transformation optics (TO) is applied to control the flow of electromagnetic fields between two sections of different dimensions through a tapering device. The broadband performance of the field taper is numerically and experimentally validated. The taper device presents a graded permittivity profile and is fabricated through three-dimensional (3D) polyjet printing technology using low-cost all-dielectric materials. Calculated and measured near-field mappings are presented in order to validate the proposed taper. A good qualitative agreement is obtained between full-wave simulations and experimental tests. Such all-dielectric taper paves the way to novel types of microwave devices that can be easily fabricated through low-cost additive manufacturing processes.
Beebook: light field mapping app
NASA Astrophysics Data System (ADS)
De Donatis, Mauro; Di Pietro, Gianfranco; Rinnone, Fabio
2014-05-01
In the last decade the mobile systems for field digital mapping were developed (see Wikipedia for "Digital geologic mapping"), also against many skeptic traditional geologists. Until now, hardware was often heavy (tablet PC) and software sometime difficult also for expert GIS users. At present, the advent of light tablet and applications makes things easier, but we are far to find a whole solution for a complex survey like the geological one where you have to manage complexities such information, hypothesis, data, interpretation. Beebook is a new app for Android devices, has been developed for fast ad easy mapping work in the field trying to try to solve this problem. The main features are: • off-line raster management, GeoTIFF ed other raster format using; • on-line map visualisation (Google Maps, OSM, WMS, WFS); • SR management and conversion using PROJ.4; • vector file mash-up (KML and SQLite format); • editing of vector data on the map (lines, points, polygons); • augmented reality using "Mixare" platform; • export of vector data in KML, CSV, SQLite (Spatialite) format; • note: GPS or manual point inserting linked to other application files (pictures, spreadsheet, etc.); • form: creation, edition and filling of customized form; • GPS: status control, tracker and positioning on map; • sharing: synchronization and sharing of data, forms, positioning and other information can be done among users. The input methods are different from digital keyboard to fingers touch, from voice recording to stylus. In particular the most efficient way of inserting information is the stylus (or pen): field geologists are familiar with annotation and sketches. Therefore we suggest the use of devices with stylus. The main point is that Beebook is the first "transparent" mobile GIS for tablet and smartphone deriving from previous experience as traditional mapping and different previous digital mapping software ideation and development (MapIT, BeeGIS, Geopaparazzi). Deriving from those experiences, we developed a tool which is easy to use and applicable not only for geology but also to every field survey.
Dioptric defocus maps across the visual field for different indoor environments.
García, Miguel García; Ohlendorf, Arne; Schaeffel, Frank; Wahl, Siegfried
2018-01-01
One of the factors proposed to regulate the eye growth is the error signal derived from the defocus in the retina and actually, this might arise from defocus not only in the fovea but the whole visual field. Therefore, myopia could be better predicted by spatio-temporally mapping the 'environmental defocus' over the visual field. At present, no devices are available that could provide this information. A 'Kinect sensor v1' camera (Microsoft Corp.) and a portable eye tracker were used for developing a system for quantifying 'indoor defocus error signals' across the central 58° of the visual field. Dioptric differences relative to the fovea (assumed to be in focus) were recorded over the visual field and 'defocus maps' were generated for various scenes and tasks.
S-Band POSIX Device Drivers for RTEMS
NASA Technical Reports Server (NTRS)
Lux, James P.; Lang, Minh; Peters, Kenneth J.; Taylor, Gregory H.
2011-01-01
This is a set of POSIX device driver level abstractions in the RTEMS RTOS (Real-Time Executive for Multiprocessor Systems real-time operating system) to SBand radio hardware devices that have been instantiated in an FPGA (field-programmable gate array). These include A/D (analog-to-digital) sample capture, D/A (digital-to-analog) sample playback, PLL (phase-locked-loop) tuning, and PWM (pulse-width-modulation)-controlled gain. This software interfaces to Sband radio hardware in an attached Xilinx Virtex-2 FPGA. It uses plug-and-play device discovery to map memory to device IDs. Instead of interacting with hardware devices directly, using direct-memory mapped access at the application level, this driver provides an application programming interface (API) offering that easily uses standard POSIX function calls. This simplifies application programming, enables portability, and offers an additional level of protection to the hardware. There are three separate device drivers included in this package: sband_device (ADC capture and DAC playback), pll_device (RF front end PLL tuning), and pwm_device (RF front end AGC control).
Near-Field Magneto-Optical Microscope
Vlasko-Vlasov, Vitalii; Welp, Ulrich; and Crabtree, George W.
2005-12-06
A device and method for mapping magnetic fields of a sample at a resolution less than the wavelength of light without altering the magnetic field of the sample is disclosed. A device having a tapered end portion with a magneto-optically active particle positioned at the distal end thereof in communication with a fiber optic for transferring incoming linearly polarized light from a source thereof to the particle and for transferring reflected light from the particle is provided. The fiber optic has a reflective material trapping light within the fiber optic and in communication with a light detector for determining the polarization of light reflected from the particle as a function of the strength and direction of the magnetic field of the sample. Linearly polarized light from the source thereof transferred to the particle positioned proximate the sample is affected by the magnetic field of the sample sensed by the particle such that the difference in polarization of light entering and leaving the particle is due to the magnetic field of the sample. Relative movement between the particle and sample enables mapping.
Near Field Magneto-Optical Microscope
Vlasko-Vlasov, Vitalii K.; Welp, Ulrich; Crabtree, George W.
2005-12-06
A device and method for mapping magnetic fields of a sample at a resolution less than the wavelength of light without altering the magnetic field of the sample is disclosed. A device having a tapered end portion with a magneto-optically active particle positioned at the distal end thereof in communication with a fiber optic for transferring incoming linearly polarized light from a source thereof to the particle and for transferring reflected light from the particle is provided. The fiber optic has a reflective material trapping light within the fiber optic and in communication with a light detector for determining the polarization of light reflected from the particle as a function of the strength and direction of the magnetic field of the sample. Linearly polarized light from the source thereof transferred to the particle positioned proximate the sample is affected by the magnetic field of the sample sensed by the particle such that the difference in polarization of light entering and leaving the particle is due to the magnetic field of the sample. Relative movement between the particle and sample enables mapping.
King, Andrew J; Hochheiser, Harry; Visweswaran, Shyam; Clermont, Gilles; Cooper, Gregory F
2017-01-01
Eye-tracking is a valuable research tool that is used in laboratory and limited field environments. We take steps toward developing methods that enable widespread adoption of eye-tracking and its real-time application in clinical decision support. Eye-tracking will enhance awareness and enable intelligent views, more precise alerts, and other forms of decision support in the Electronic Medical Record (EMR). We evaluated a low-cost eye-tracking device and found the device's accuracy to be non-inferior to a more expensive device. We also developed and evaluated an automatic method for mapping eye-tracking data to interface elements in the EMR (e.g., a displayed laboratory test value). Mapping was 88% accurate across the six participants in our experiment. Finally, we piloted the use of the low-cost device and the automatic mapping method to label training data for a Learning EMR (LEMR) which is a system that highlights the EMR elements a physician is predicted to use.
Advanced Map For Real-Time Process Control
NASA Astrophysics Data System (ADS)
Shiobara, Yasuhisa; Matsudaira, Takayuki; Sashida, Yoshio; Chikuma, Makoto
1987-10-01
MAP, a communications protocol for factory automation proposed by General Motors [1], has been accepted by users throughout the world and is rapidly becoming a user standard. In fact, it is now a LAN standard for factory automation. MAP is intended to interconnect different devices, such as computers and programmable devices, made by different manufacturers, enabling them to exchange information. It is based on the OSI intercomputer com-munications protocol standard under development by the ISO. With progress and standardization, MAP is being investigated for application to process control fields other than factory automation [2]. The transmission response time of the network system and centralized management of data exchanged with various devices for distributed control are import-ant in the case of a real-time process control with programmable controllers, computers, and instruments connected to a LAN system. MAP/EPA and MINI MAP aim at reduced overhead in protocol processing and enhanced transmission response. If applied to real-time process control, a protocol based on point-to-point and request-response transactions limits throughput and transmission response. This paper describes an advanced MAP LAN system applied to real-time process control by adding a new data transmission control that performs multicasting communication voluntarily and periodically in the priority order of data to be exchanged.
Mapping the magnetic field generated by a supercurrent in a ring of YBa2Cu3O7-δ
NASA Astrophysics Data System (ADS)
Sulca, P. D.; Gómez, R. W.
2017-11-01
We design and construct a device to map the magnetic field generated by a supercurrent in a rectangular cross section ring of YBa2Cu3O7-δ . For the measurements of the magnetic field, we develop a Gaussmeter based on a commercial Hall effect sensor coupled to an Arduino microprocessor. Our results show an asymmetric distribution of the magnetic field intensity measured at a certain distance along a plane parallel to the ring surface. The behavior of the magnetic field intensity with distance along the ring axis is closely related to what is expected for a toroid. Using the Biot-Savart law and the measured magnetic field values, the induced supercurrent is determined.
Electric Field Sensor for Lightning Early Warning System
NASA Astrophysics Data System (ADS)
Premlet, B.; Mohammed, R.; Sabu, S.; Joby, N. E.
2017-12-01
Electric field mills are used popularly for atmospheric electric field measurements. Atmospheric Electric Field variation is the primary signature for Lightning Early Warning systems. There is a characteristic change in the atmospheric electric field before lightning during a thundercloud formation.A voltage controlled variable capacitance is being proposed as a method for non-contacting measurement of electric fields. A varactor based mini electric field measurement system is developed, to detect any change in the atmospheric electric field and to issue lightning early warning system. Since this is a low-cost device, this can be used for developing countries which are facing adversities. A network of these devices can help in forming a spatial map of electric field variations over a region, and this can be used for more improved atmospheric electricity studies in developing countries.
A Bidirectional Brain-Machine Interface Algorithm That Approximates Arbitrary Force-Fields
Semprini, Marianna; Mussa-Ivaldi, Ferdinando A.; Panzeri, Stefano
2014-01-01
We examine bidirectional brain-machine interfaces that control external devices in a closed loop by decoding motor cortical activity to command the device and by encoding the state of the device by delivering electrical stimuli to sensory areas. Although it is possible to design this artificial sensory-motor interaction while maintaining two independent channels of communication, here we propose a rule that closes the loop between flows of sensory and motor information in a way that approximates a desired dynamical policy expressed as a field of forces acting upon the controlled external device. We previously developed a first implementation of this approach based on linear decoding of neural activity recorded from the motor cortex into a set of forces (a force field) applied to a point mass, and on encoding of position of the point mass into patterns of electrical stimuli delivered to somatosensory areas. However, this previous algorithm had the limitation that it only worked in situations when the position-to-force map to be implemented is invertible. Here we overcome this limitation by developing a new non-linear form of the bidirectional interface that can approximate a virtually unlimited family of continuous fields. The new algorithm bases both the encoding of position information and the decoding of motor cortical activity on an explicit map between spike trains and the state space of the device computed with Multi-Dimensional-Scaling. We present a detailed computational analysis of the performance of the interface and a validation of its robustness by using synthetic neural responses in a simulated sensory-motor loop. PMID:24626393
Improving depth estimation from a plenoptic camera by patterned illumination
NASA Astrophysics Data System (ADS)
Marshall, Richard J.; Meah, Chris J.; Turola, Massimo; Claridge, Ela; Robinson, Alex; Bongs, Kai; Gruppetta, Steve; Styles, Iain B.
2015-05-01
Plenoptic (light-field) imaging is a technique that allows a simple CCD-based imaging device to acquire both spatially and angularly resolved information about the "light-field" from a scene. It requires a microlens array to be placed between the objective lens and the sensor of the imaging device1 and the images under each microlens (which typically span many pixels) can be computationally post-processed to shift perspective, digital refocus, extend the depth of field, manipulate the aperture synthetically and generate a depth map from a single image. Some of these capabilities are rigid functions that do not depend upon the scene and work by manipulating and combining a well-defined set of pixels in the raw image. However, depth mapping requires specific features in the scene to be identified and registered between consecutive microimages. This process requires that the image has sufficient features for the registration, and in the absence of such features the algorithms become less reliable and incorrect depths are generated. The aim of this study is to investigate the generation of depth-maps from light-field images of scenes with insufficient features for accurate registration, using projected patterns to impose a texture on the scene that provides sufficient landmarks for the registration methods.
Visualizing Soil Landscapes on Mobile Devices
NASA Astrophysics Data System (ADS)
Schulze, Darrell; Lindbo, David
2016-04-01
The Integrating Spatial Educational Experiences (Isee) project utilizes the most detailed US soil survey data to create thematic maps of soil properties that are then combined with a highly optimized hillshade basemap for display. The Isee app, currently available for the iPad platform from the Apple App Store, allows the cached maps to be zoomed and panned quickly to any location down to a scale of 1:18,000. Maps currently available for the states of Indiana, Illinois, Kentucky, Ohio, Texas, West Virginia, and Wisconsin include, Dominant Soil Parent Materials, Natural Soil Drainage Classes, Limiting Layers, Surface Soil Colors, and Acid Subsoils. Other thematic maps will be added in the future. The ability to zoom, pan, and change maps quickly allows the user to see and understand soil landscape relationships that are not often apparent using static maps, while the ability to access the maps conveniently in the field allows the user to see how soil landscape features on the maps appear in the field.
NASA Astrophysics Data System (ADS)
Rapoport, B. I.; Pavlenko, I.; Weyssow, B.; Carati, D.
2002-11-01
Recent studies of ion and electron transport indicate that the safety factor profile, q(r), affects internal transport barrier (ITB) formation in magnetic confinement devices [1, 2]. These studies are consistent with experimental observations that low shear suppresses magnetic island interaction and associated stochasticity when the ITB is formed [3]. In this sense the position and quality of the ITB depend on the stochasticity of the magnetic field, and can be controlled by q(r). This study explores effects of the q-profile on magnetic field stochasticity using two-dimensional mapping techniques. Q-profiles typical of ITB experiments are incorporated into Hamiltonian maps to investigate the relation between magnetic field stochasticity and ITB parameters predicted by other models. It is shown that the mapping technique generates results consistent with these predictions, and suggested that Hamiltonian mappings can be useful as simple and computationally inexpensive approximation methods for describing the magnetic field in ITB experiments. 1. I. Voitsekhovitch et al. 29th EPS Conference on Plasma Physics and Controlled Fusion (2002). O-4.04. 2. G.M.D. Hogeweij et al. Nucl. Fusion. 38 (1998): 1881. 3. K.A. Razumova et al. Plasma Phys. Contr. Fusion. 42 (2000): 973.
From field data collection to earth sciences dissemination: mobile examples in the digital era
NASA Astrophysics Data System (ADS)
Giardino, Marco; Ghiraldi, Luca; Palomba, Mauro; Perotti, Luigi
2015-04-01
In the framework of the technological and cultural revolution related to the massive diffusion of mobile devices, as smartphones and tablets, the information management and accessibility is changing, and many software houses and developer communities realized applications that can meet various people's needs. Modern collection, storing and sharing of data have radically changed, and advances in ICT increasingly involve field-based activities. Progresses in these researches and applications depend on three main components: hardware, software and web system. Since 2008 the geoSITLab multidisciplinary group (Earth Sciences Department and NatRisk Centre of the University of Torino and the Natural Sciences Museum of the Piemonte Region) is active in defining and testing methods for collecting, managing and sharing field information using mobile devices. Key issues include: Geomorphological Digital Mapping, Natural Hazards monitoring, Geoheritage assessment and applications for the teaching of Earth Sciences. An overview of the application studies is offered here, including the use of Mobile tools for data collection, the construction of relational databases for inventory activities and the test of Web-Mapping tools and mobile apps for data dissemination. The fil rouge of connection is a standardized digital approach allowing the use of mobile devices in each step of the process, which will be analysed within different projects set up by the research group (Geonathaz, EgeoFieldwork, Progeo Piemonte, GeomediaWeb). The hardware component mainly consists of the availability of handheld mobile devices (e.g. smartphones, PDAs and Tablets). The software component corresponds to applications for spatial data visualization on mobile devices, such as composite mobile GIS or simple location-based apps. The web component allows the integration of collected data into geodatabase based on client-server architecture, where the information can be easily loaded, uploaded and shared between field staff and data management team, in order to disseminate collected information to media or to inform the decision makers. Results demonstrated the possibility to record field observations in a fast and reliable way, using standardized formats that can improve the precision of collected information and lower the possibility of errors and data omission. Dedicated forms have been set up for gathering different thematic data (geologic/geomorphologic, faunal and floristic, path system…etc.). Field data allowed to arrange maps and SDI useful for many application purposes: from country-planning to disaster risk management, from Geoheritage management to Earth Science concepts dissemination.
Experimental determination of the PTW 60019 microDiamond dosimeter active area and volume
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marinelli, Marco, E-mail: marco.marinelli@uniroma2
Purpose: Small field output correction factors have been studied by several research groups for the PTW 60019 microDiamond (MD) dosimeter, by comparing the response of such a device with both reference dosimeters and Monte Carlo simulations. A general good agreement is observed for field sizes down to about 1 cm. However, evident inconsistencies can be noticed when comparing some experimental results and Monte Carlo simulations obtained for smaller irradiation fields. This issue was tentatively attributed by some authors to unintentional large variations of the MD active surface area. The aim of the present study is a nondestructive experimental determination ofmore » the MD active surface area and active volume. Methods: Ten MD dosimeters, one MD prototype, and three synthetic diamond samples were investigated in the present work. 2D maps of the MD response were recorded under scanned soft x-ray microbeam irradiation, leading to an experimental determination of the device active surface area. Profiles of the device responses were measured as well. In order to evaluate the MD active volume, the thickness of the diamond sensing layer was independently evaluated by capacitance measurements and alpha particle detection experiments. The MD sensitivity, measured at the PTW calibration laboratory, was also used to calculate the device active volume thickness. Results: An average active surface area diameter of (2.19 ± 0.02) mm was evaluated by 2D maps and response profiles of all the MDs. Average active volume thicknesses of (1.01 ± 0.13) μm and (0.97 ± 0.14) μm were derived by capacitance and sensitivity measurements, respectively. The obtained results are well in agreement with the nominal values reported in the manufacturer dosimeter specifications. A homogeneous response was observed over the whole device active area. Besides the one from the device active volume, no contributions from other components of the housing nor from encapsulation materials were observed in the 2D response maps. Conclusions: The obtained results demonstrate the high reproducibility of the MD fabrication process. The observed discrepancies among the output correction factors reported by several authors for MD response in very small fields are very unlikely to be ascribed to unintentional variations of the device active surface area and volume. It is the opinion of the authors that the role of the volume averaging as well as of other perturbation effects should be separately investigated instead, both experimentally and by Monte Carlo simulations, in order to better clarify the behaviour of the MD response in very small fields.« less
ERIC Educational Resources Information Center
Huang, Kuo-Liang; Chen, Kuo-Hsiang; Ho, Chun-Heng
2014-01-01
It is possible that e-textbook readers and tablet PC's will become mainstream reading devices in the future. However, knowledge about instructional design in this field of learning sciences is inadequate. This study aimed to analyse how two factors, that is, presentation methods and concept maps, interact with cognitive load and learning…
NASA Astrophysics Data System (ADS)
Bogan, A.; Studenikin, S. A.; Korkusinski, M.; Aers, G. C.; Gaudreau, L.; Zawadzki, P.; Sachrajda, A. S.; Tracy, L. A.; Reno, J. L.; Hargett, T. W.
2017-04-01
Hole transport experiments were performed on a gated double quantum dot device defined in a p -GaAs /AlGaAs heterostructure with a single hole occupancy in each dot. The charging diagram of the device was mapped out using charge detection confirming that the single hole limit is reached. In that limit, a detailed study of the two-hole spin system was performed using high bias magnetotransport spectroscopy. In contrast to electron systems, the hole spin was found not to be conserved during interdot resonant tunneling. This allows one to fully map out the two-hole energy spectrum as a function of the magnitude and the direction of the external magnetic field. The heavy-hole g factor was extracted and shown to be strongly anisotropic, with a value of 1.45 for a perpendicular field and close to zero for an in-plane field as required for hybridizing schemes between spin and photonic quantum platforms.
Bogan, A; Studenikin, S A; Korkusinski, M; Aers, G C; Gaudreau, L; Zawadzki, P; Sachrajda, A S; Tracy, L A; Reno, J L; Hargett, T W
2017-04-21
Hole transport experiments were performed on a gated double quantum dot device defined in a p-GaAs/AlGaAs heterostructure with a single hole occupancy in each dot. The charging diagram of the device was mapped out using charge detection confirming that the single hole limit is reached. In that limit, a detailed study of the two-hole spin system was performed using high bias magnetotransport spectroscopy. In contrast to electron systems, the hole spin was found not to be conserved during interdot resonant tunneling. This allows one to fully map out the two-hole energy spectrum as a function of the magnitude and the direction of the external magnetic field. The heavy-hole g factor was extracted and shown to be strongly anisotropic, with a value of 1.45 for a perpendicular field and close to zero for an in-plane field as required for hybridizing schemes between spin and photonic quantum platforms.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bogan, A.; Studenikin, Sergei A.; Korkusinski, M.
Hole transport experiments were performed on a gated double quantum dot device defined in a p-GaAs/AlGaAs heterostructure with a single hole occupancy in each dot. The charging diagram of the device was mapped out using charge detection confirming that the single hole limit is reached. In that limit, a detailed study of the two-hole spin system was performed using high bias magnetotransport spectroscopy. In contrast to electron systems, the hole spin was found not to be conserved during interdot resonant tunneling. This allows one to fully map out the two-hole energy spectrum as a function of the magnitude and themore » direction of the external magnetic field. As a result, the heavy-hole g factor was extracted and shown to be strongly anisotropic, with a value of 1.45 for a perpendicular field and close to zero for an in-plane field as required for hybridizing schemes between spin and photonic quantum platforms.« less
Bogan, A.; Studenikin, Sergei A.; Korkusinski, M.; ...
2017-04-20
Hole transport experiments were performed on a gated double quantum dot device defined in a p-GaAs/AlGaAs heterostructure with a single hole occupancy in each dot. The charging diagram of the device was mapped out using charge detection confirming that the single hole limit is reached. In that limit, a detailed study of the two-hole spin system was performed using high bias magnetotransport spectroscopy. In contrast to electron systems, the hole spin was found not to be conserved during interdot resonant tunneling. This allows one to fully map out the two-hole energy spectrum as a function of the magnitude and themore » direction of the external magnetic field. As a result, the heavy-hole g factor was extracted and shown to be strongly anisotropic, with a value of 1.45 for a perpendicular field and close to zero for an in-plane field as required for hybridizing schemes between spin and photonic quantum platforms.« less
1984-12-01
best trained by instruction alone or with simple demonstration materials. Training Devices are judged best for training the routine use of specific...pieces of equipment (e.g., Howitzer, BCS, DMD/FIST DMD, GLLD, LRF, map/compass/ plotting tools). Simulations are judged best for training more complex...at all phases of engagement operations. Simulations are also judged best for conducting training of any task under extreme environments and
NASA Astrophysics Data System (ADS)
Novakova, Lucie; Pavlis, Terry L.
2017-04-01
Although paper and pencil approaches to geological mapping continue, digital mapping tools are being increasing implemented in field geology. Of particular note is the use of an electronic compass/inclinometer built into tablets and smartphones for obtaining orientation data where an important question is the reliability of these digital devices relative to conventional, analogue compass/inclinometers. This paper deals with this question through detailed tests of two android devices: an Honor 3C smartphone and a Lenovo B8080-F tablet. In order to evaluate potential electronic noise effects the devices were tested in two modes, standard and airplane. Over 14,000 readings from the sensors were collected to evaluate the stability of the sensor's readings and showed that the magnetic sensor in the tablet was unacceptably unstable. Seven geological compass applications were installed on the Honor 3C smartphone and tested against the analogue Freiberg geological compass in a field experiment. During the experiment 25 fractures varying in azimuth and dip were measured using both devices. A high level of disagreement was observed with discrepancies as high as 80° with azimuthal errors dominant. Analysis of the time series in the data suggest the source of the problem was instability in the magnetic sensor for the smartphone, despite the fact the device passed the initial stability test. Although only two devices were studied these data indicate care must be taken to evaluate compass accuracy on these devices.
King, Andrew J.; Hochheiser, Harry; Visweswaran, Shyam; Clermont, Gilles; Cooper, Gregory F.
2017-01-01
Eye-tracking is a valuable research tool that is used in laboratory and limited field environments. We take steps toward developing methods that enable widespread adoption of eye-tracking and its real-time application in clinical decision support. Eye-tracking will enhance awareness and enable intelligent views, more precise alerts, and other forms of decision support in the Electronic Medical Record (EMR). We evaluated a low-cost eye-tracking device and found the device’s accuracy to be non-inferior to a more expensive device. We also developed and evaluated an automatic method for mapping eye-tracking data to interface elements in the EMR (e.g., a displayed laboratory test value). Mapping was 88% accurate across the six participants in our experiment. Finally, we piloted the use of the low-cost device and the automatic mapping method to label training data for a Learning EMR (LEMR) which is a system that highlights the EMR elements a physician is predicted to use. PMID:28815151
Two-dimensional strain-mapping by electron backscatter diffraction and confocal Raman spectroscopy
NASA Astrophysics Data System (ADS)
Gayle, Andrew J.; Friedman, Lawrence H.; Beams, Ryan; Bush, Brian G.; Gerbig, Yvonne B.; Michaels, Chris A.; Vaudin, Mark D.; Cook, Robert F.
2017-11-01
The strain field surrounding a spherical indentation in silicon is mapped in two dimensions (2-D) using electron backscatter diffraction (EBSD) cross-correlation and confocal Raman spectroscopy techniques. The 200 mN indentation created a 4 μm diameter residual contact impression in the silicon (001) surface. Maps about 50 μm × 50 μm area with 128 pixels × 128 pixels were generated in several hours, extending, by comparison, assessment of the accuracy of both techniques to mapping multiaxial strain states in 2-D. EBSD measurements showed a residual strain field dominated by in-surface normal and shear strains, with alternating tensile and compressive lobes extending about three to four indentation diameters from the contact and exhibiting two-fold symmetry. Raman measurements showed a residual Raman shift field, dominated by positive shifts, also extending about three to four indentation diameters from the contact but exhibiting four-fold symmetry. The 2-D EBSD results, in combination with a mechanical-spectroscopic analysis, were used to successfully predict the 2-D Raman shift map in scale, symmetry, and shift magnitude. Both techniques should be useful in enhancing the reliability of microelectromechanical systems (MEMS) through identification of the 2-D strain fields in MEMS devices.
Experimental Mapping and Benchmarking of Magnetic Field Codes on the LHD Ion Accelerator
NASA Astrophysics Data System (ADS)
Chitarin, G.; Agostinetti, P.; Gallo, A.; Marconato, N.; Nakano, H.; Serianni, G.; Takeiri, Y.; Tsumori, K.
2011-09-01
For the validation of the numerical models used for the design of the Neutral Beam Test Facility for ITER in Padua [1], an experimental benchmark against a full-size device has been sought. The LHD BL2 injector [2] has been chosen as a first benchmark, because the BL2 Negative Ion Source and Beam Accelerator are geometrically similar to SPIDER, even though BL2 does not include current bars and ferromagnetic materials. A comprehensive 3D magnetic field model of the LHD BL2 device has been developed based on the same assumptions used for SPIDER. In parallel, a detailed experimental magnetic map of the BL2 device has been obtained using a suitably designed 3D adjustable structure for the fine positioning of the magnetic sensors inside 27 of the 770 beamlet apertures. The calculated values have been compared to the experimental data. The work has confirmed the quality of the numerical model, and has also provided useful information on the magnetic non-uniformities due to the edge effects and to the tolerance on permanent magnet remanence.
Experimental Mapping and Benchmarking of Magnetic Field Codes on the LHD Ion Accelerator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chitarin, G.; University of Padova, Dept. of Management and Engineering, strad. S. Nicola, 36100 Vicenza; Agostinetti, P.
2011-09-26
For the validation of the numerical models used for the design of the Neutral Beam Test Facility for ITER in Padua [1], an experimental benchmark against a full-size device has been sought. The LHD BL2 injector [2] has been chosen as a first benchmark, because the BL2 Negative Ion Source and Beam Accelerator are geometrically similar to SPIDER, even though BL2 does not include current bars and ferromagnetic materials. A comprehensive 3D magnetic field model of the LHD BL2 device has been developed based on the same assumptions used for SPIDER. In parallel, a detailed experimental magnetic map of themore » BL2 device has been obtained using a suitably designed 3D adjustable structure for the fine positioning of the magnetic sensors inside 27 of the 770 beamlet apertures. The calculated values have been compared to the experimental data. The work has confirmed the quality of the numerical model, and has also provided useful information on the magnetic non-uniformities due to the edge effects and to the tolerance on permanent magnet remanence.« less
Wide-Field-of-View, High-Resolution, Stereoscopic Imager
NASA Technical Reports Server (NTRS)
Prechtl, Eric F.; Sedwick, Raymond J.
2010-01-01
A device combines video feeds from multiple cameras to provide wide-field-of-view, high-resolution, stereoscopic video to the user. The prototype under development consists of two camera assemblies, one for each eye. One of these assemblies incorporates a mounting structure with multiple cameras attached at offset angles. The video signals from the cameras are fed to a central processing platform where each frame is color processed and mapped into a single contiguous wide-field-of-view image. Because the resolution of most display devices is typically smaller than the processed map, a cropped portion of the video feed is output to the display device. The positioning of the cropped window will likely be controlled through the use of a head tracking device, allowing the user to turn his or her head side-to-side or up and down to view different portions of the captured image. There are multiple options for the display of the stereoscopic image. The use of head mounted displays is one likely implementation. However, the use of 3D projection technologies is another potential technology under consideration, The technology can be adapted in a multitude of ways. The computing platform is scalable, such that the number, resolution, and sensitivity of the cameras can be leveraged to improve image resolution and field of view. Miniaturization efforts can be pursued to shrink the package down for better mobility. Power savings studies can be performed to enable unattended, remote sensing packages. Image compression and transmission technologies can be incorporated to enable an improved telepresence experience.
Sriram, K. K.; Yeh, Jia-Wei; Lin, Yii-Lih; Chang, Yi-Ren; Chou, Chia-Fu
2014-01-01
Mapping transcription factor (TF) binding sites along a DNA backbone is crucial in understanding the regulatory circuits that control cellular processes. Here, we deployed a method adopting bioconjugation, nanofluidic confinement and fluorescence single molecule imaging for direct mapping of TF (RNA polymerase) binding sites on field-stretched single DNA molecules. Using this method, we have mapped out five of the TF binding sites of E. coli RNA polymerase to bacteriophage λ-DNA, where two promoter sites and three pseudo-promoter sites are identified with the corresponding binding frequency of 45% and 30%, respectively. Our method is quick, robust and capable of resolving protein-binding locations with high accuracy (∼ 300 bp), making our system a complementary platform to the methods currently practiced. It is advantageous in parallel analysis and less prone to false positive results over other single molecule mapping techniques such as optical tweezers, atomic force microscopy and molecular combing, and could potentially be extended to general mapping of protein–DNA interaction sites. PMID:24753422
Vectorial nanoscale mapping of optical antenna fields by single molecule dipoles.
Singh, Anshuman; Calbris, Gaëtan; van Hulst, Niek F
2014-08-13
Optical nanoantennas confine light on the nanoscale, enabling strong light-matter interactions and ultracompact optical devices. Such confined nanovolumes of light have nonzero field components in all directions (x, y, and z). Unfortunately mapping of the actual nanoscale field vectors has so far remained elusive, though antenna hotspots have been explored by several techniques. In this paper, we present a novel method to probe all three components of the local antenna field. To this end a resonant nanoantenna is fabricated at the vertex of a scanning tip. Next, the nanoantenna is deterministically scanned in close proximity to single fluorescent molecules, whose fixed excitation dipole moment reads out the local field vector. With nanometer molecular resolution, we distinctly map x-, y-, and z-field components of the dipole antenna, i.e. a full vectorial mode map, and show good agreement with full 3D FDTD simulations. Moreover, the fluorescence polarization maps the localized coupling, with emission through the longitudinal antenna mode. Finally, the resonant antenna probe is used for single molecule imaging with 40 nm fwhm response function. The total fluorescence enhancement is 7.6 times, while out-of-plane molecules, almost undetectable in far-field, are made visible by the strong antenna z-field with a fluorescence enhancement up to 100 times. Interestingly, the apparent position of molecules shifts up to 20 nm depending on their orientation. The capability to resolve orientational information on the single molecule level makes the scanning resonant antenna an ideal tool for extreme resolution bioimaging.
Koelle, A.R.; Landt, J.A.
An instrument is disclosed for mapping vertical conductive fractures in a resistive bedrock, magnetically inducing eddy currents by a pair of vertically oriented, mutually perpendicular, coplanar coils. The eddy currents drive magnetic fields which are picked up by a second, similar pair of coils.
Video-rate terahertz electric-field vector imaging
DOE Office of Scientific and Technical Information (OSTI.GOV)
Takai, Mayuko; Takeda, Masatoshi; Sasaki, Manabu
We present an experimental setup to dramatically reduce a measurement time for obtaining spatial distributions of terahertz electric-field (E-field) vectors. The method utilizes the electro-optic sampling, and we use a charge-coupled device to detect a spatial distribution of the probe beam polarization rotation by the E-field-induced Pockels effect in a 〈110〉-oriented ZnTe crystal. A quick rotation of the ZnTe crystal allows analyzing the terahertz E-field direction at each image position, and the terahertz E-field vector mapping at a fixed position of an optical delay line is achieved within 21 ms. Video-rate mapping of terahertz E-field vectors is likely to bemore » useful for achieving real-time sensing of terahertz vector beams, vector vortices, and surface topography. The method is also useful for a fast polarization analysis of terahertz beams.« less
Optimizing the Usability of Brain-Computer Interfaces.
Zhang, Yin; Chase, Steve M
2018-05-01
Brain-computer interfaces are in the process of moving from the laboratory to the clinic. These devices act by reading neural activity and using it to directly control a device, such as a cursor on a computer screen. An open question in the field is how to map neural activity to device movement in order to achieve the most proficient control. This question is complicated by the fact that learning, especially the long-term skill learning that accompanies weeks of practice, can allow subjects to improve performance over time. Typical approaches to this problem attempt to maximize the biomimetic properties of the device in order to limit the need for extensive training. However, it is unclear if this approach would ultimately be superior to performance that might be achieved with a nonbiomimetic device once the subject has engaged in extended practice and learned how to use it. Here we approach this problem using ideas from optimal control theory. Under the assumption that the brain acts as an optimal controller, we present a formal definition of the usability of a device and show that the optimal postlearning mapping can be written as the solution of a constrained optimization problem. We then derive the optimal mappings for particular cases common to most brain-computer interfaces. Our results suggest that the common approach of creating biomimetic interfaces may not be optimal when learning is taken into account. More broadly, our method provides a blueprint for optimal device design in general control-theoretic contexts.
Dioptric defocus maps across the visual field for different indoor environments
García, Miguel García; Ohlendorf, Arne; Schaeffel, Frank; Wahl, Siegfried
2017-01-01
One of the factors proposed to regulate the eye growth is the error signal derived from the defocus in the retina and actually, this might arise from defocus not only in the fovea but the whole visual field. Therefore, myopia could be better predicted by spatio-temporally mapping the ‘environmental defocus’ over the visual field. At present, no devices are available that could provide this information. A ‘Kinect sensor v1’ camera (Microsoft Corp.) and a portable eye tracker were used for developing a system for quantifying ‘indoor defocus error signals’ across the central 58° of the visual field. Dioptric differences relative to the fovea (assumed to be in focus) were recorded over the visual field and ‘defocus maps’ were generated for various scenes and tasks. PMID:29359108
Defect and field-enhancement characterization through electron-beam-induced current analysis
NASA Astrophysics Data System (ADS)
Umezawa, Hitoshi; Gima, Hiroki; Driche, Khaled; Kato, Yukako; Yoshitake, Tsuyoshi; Mokuno, Yoshiaki; Gheeraert, Etienne
2017-05-01
To investigate the effects of defects and field enhancement in diamond power devices, a biased Schottky barrier diode was characterized by electron-beam-induced current (EBIC) analysis. The nonuniform distribution of the electrical field was revealed by bright spots on the laterally expanded depletion layer of the EBIC intensity map when the applied electrical field exceeded 0.95 MV/cm. The nonuniformity is partly due to a structural effect: the roughness at the edge of the Schottky electrode, induced by lithography and lift-off processes. A second family of spots was shown to increase the leakage current of the device. The time constant associated with this second spot family was 0.98 ms, which is three orders of magnitude shorter than that for defects previously characterized by deep-level transient spectroscopy.
Sensing Home: A Cost-Effective Design for Smart Home via Heterogeneous Wireless Networks
Fan, Xiaohu; Huang, Hao; Qi, Shipeng; Luo, Xincheng; Zeng, Jing; Xie, Qubo; Xie, Changsheng
2015-01-01
The aging population has inspired the marketing of advanced real time devices for home health care, more and more wearable devices and mobile applications, which have emerged in this field. However, to properly collect behavior information, accurately recognize human activities, and deploy the whole system in a real living environment is a challenging task. In this paper, we propose a feasible wireless-based solution to deploy a data collection scheme, activity recognition model, feedback control and mobile integration via heterogeneous networks. We compared and found a suitable algorithm that can be run on cost-efficient embedded devices. Specifically, we use the Super Set Transformation method to map the raw data into a sparse binary matrix. Furthermore, designed front-end devices of low power consumption gather the living data of the habitant via ZigBee to reduce the burden of wiring work. Finally, we evaluated our approach and show it can achieve a theoretical time-slice accuracy of 98%. The mapping solution we propose is compatible with more wearable devices and mobile apps. PMID:26633424
Sensing Home: A Cost-Effective Design for Smart Home via Heterogeneous Wireless Networks.
Fan, Xiaohu; Huang, Hao; Qi, Shipeng; Luo, Xincheng; Zeng, Jing; Xie, Qubo; Xie, Changsheng
2015-12-03
The aging population has inspired the marketing of advanced real time devices for home health care, more and more wearable devices and mobile applications, which have emerged in this field. However, to properly collect behavior information, accurately recognize human activities, and deploy the whole system in a real living environment is a challenging task. In this paper, we propose a feasible wireless-based solution to deploy a data collection scheme, activity recognition model, feedback control and mobile integration via heterogeneous networks. We compared and found a suitable algorithm that can be run on cost-efficient embedded devices. Specifically, we use the Super Set Transformation method to map the raw data into a sparse binary matrix. Furthermore, designed front-end devices of low power consumption gather the living data of the habitant via ZigBee to reduce the burden of wiring work. Finally, we evaluated our approach and show it can achieve a theoretical time-slice accuracy of 98%. The mapping solution we propose is compatible with more wearable devices and mobile apps.
INERTIAL INSTRUMENT SYSTEM FOR AERIAL SURVEYING.
Brown, Russell H.; Chapman, William H.; Hanna, William F.; Mongan, Charles E.; Hursh, John W.
1987-01-01
The purpose of this report is to describe an inertial guidance or navigation system that will enable use of relatively light aircraft for efficient data-gathering in geologgy, hydrology, terrain mapping, and gravity-field mapping. The instrument system capitalizes not only on virtual state-of-the-art inertial guidance technology but also on similarly advanced technology for measuring distance with electromagnetic radiating devices. The distance measurement can be made with a transceiver beamed at either a cooperative taget, with a specially designed reflecting surface, or a noncooperative target, such as the Earth's surface. The instrument system features components that use both techniques. Thus, a laser tracker device, which updates the inertial guidance unit or navigator in flight, makes distance measurements to a retroreflector target mounted at a ground-control point; a laser profiler device, beamed vertically downward, makes distance measurements to the Earth's surface along a path that roughly mirrors the aircraft flight path.
NASA Astrophysics Data System (ADS)
Song, Ai-Ling; Chen, Tian-Ning; Wang, Xiao-Peng; Wan, Le-Le
2016-08-01
The waveform distortion happens in most of the unidirectional acoustic transmission (UAT) devices proposed before. In this paper, a novel type of waveform-preserved UAT device composed of an impedance-matched acoustic metasurface (AMS) and a phononic crystal (PC) structure is proposed and numerically investigated. The acoustic pressure field distributions and transmittance are calculated by using the finite element method. The subwavelength AMS that can modulate the wavefront of the transmitted wave at will is designed and the band structure of the PC structure is calculated and analyzed. The sound pressure field distributions demonstrate that the unidirectional acoustic transmission can be realized by the proposed UAT device without changing the waveforms of the output waves, which is the distinctive feature compared with the previous UAT devices. The physical mechanism of the unidirectional acoustic transmission is discussed by analyzing the refraction angle changes and partial band gap map. The calculated transmission spectra show that the UAT device is valid within a relatively broad frequency range. The simulation results agree well with the theoretical predictions. The proposed UAT device provides a good reference for designing waveform-preserved UAT devices and has potential applications in many fields, such as medical ultrasound, acoustic rectifiers, and noise insulation.
3D-printed components for quantum devices.
Saint, R; Evans, W; Zhou, Y; Barrett, T; Fromhold, T M; Saleh, E; Maskery, I; Tuck, C; Wildman, R; Oručević, F; Krüger, P
2018-05-30
Recent advances in the preparation, control and measurement of atomic gases have led to new insights into the quantum world and unprecedented metrological sensitivities, e.g. in measuring gravitational forces and magnetic fields. The full potential of applying such capabilities to areas as diverse as biomedical imaging, non-invasive underground mapping, and GPS-free navigation can only be realised with the scalable production of efficient, robust and portable devices. We introduce additive manufacturing as a production technique of quantum device components with unrivalled design freedom and rapid prototyping. This provides a step change in efficiency, compactness and facilitates systems integration. As a demonstrator we present an ultrahigh vacuum compatible ultracold atom source dissipating less than ten milliwatts of electrical power during field generation to produce large samples of cold rubidium gases. This disruptive technology opens the door to drastically improved integrated structures, which will further reduce size and assembly complexity in scalable series manufacture of bespoke portable quantum devices.
Integrated optical sensors for 2D spatial chemical mapping (Conference Presentation)
NASA Astrophysics Data System (ADS)
Flores, Raquel; Janeiro, Ricardo; Viegas, Jaime
2017-02-01
Sensors based on optical waveguides for chemical sensing have attracted increasing interest over the last two decades, fueled by potential applications in commercial lab-on-a-chip devices for medical and food safety industries. Even though the early studies were oriented for single-point detection, progress in device size reduction and device yield afforded by photonics foundries have opened the opportunity for distributed dynamic chemical sensing at the microscale. This will allow researchers to follow the dynamics of chemical species in field of microbiology, and microchemistry, with a complementary method to current technologies based on microfluorescence and hyperspectral imaging. The study of the chemical dynamics at the surface of photoelectrodes in water splitting cells are a good candidate to benefit from such optochemical sensing devices that includes a photonic integrated circuit (PIC) with multiple sensors for real-time detection and spatial mapping of chemical species. In this project, we present experimental results on a prototype integrated optical system for chemical mapping based on the interaction of cascaded resonant optical devices, spatially covered with chemically sensitive polymers and plasmon-enhanced nanostructured metal/metal-oxide claddings offering chemical selectivity in a pixelated surface. In order to achieve a compact footprint, the prototype is based in a silicon photonics platform. A discussion on the relative merits of a photonic platform based on large bandgap metal oxides and nitrides which have higher chemical resistance than silicon is also presented.
Han, Myung-Geun; Garlow, Joseph A.; Marshall, Matthew S. J.; ...
2017-03-23
The ability to map out electrostatic potentials in materials is critical for the development and the design of nanoscale electronic and spintronic devices in modern industry. Electron holography has been an important tool for revealing electric and magnetic field distributions in microelectronics and magnetic-based memory devices, however, its utility is hindered by several practical constraints, such as charging artifacts and limitations in sensitivity and in field of view. In this article, we report electron-beam-induced-current (EBIC) and secondary-electron voltage-contrast (SE-VC) with an aberration-corrected electron probe in a transmission electron microscope (TEM), as complementary techniques to electron holography, to measure electric fieldsmore » and surface potentials, respectively. These two techniques were applied to ferroelectric thin films, multiferroic nanowires, and single crystals. Electrostatic potential maps obtained by off-axis electron holography were compared with EBIC and SE-VC to show that these techniques can be used as a complementary approach to validate quantitative results obtained from electron holography analysis.« less
Developing a mapping tool for tablets
NASA Astrophysics Data System (ADS)
Vaughan, Alan; Collins, Nathan; Krus, Mike
2014-05-01
Digital field mapping offers significant benefits when compared with traditional paper mapping techniques in that it provides closer integration with downstream geological modelling and analysis. It also provides the mapper with the ability to rapidly integrate new data with existing databases without the potential degradation caused by repeated manual transcription of numeric, graphical and meta-data. In order to achieve these benefits, a number of PC-based digital mapping tools are available which have been developed for specific communities, eg the BGS•SIGMA project, Midland Valley's FieldMove®, and a range of solutions based on ArcGIS® software, which can be combined with either traditional or digital orientation and data collection tools. However, with the now widespread availability of inexpensive tablets and smart phones, a user led demand for a fully integrated tablet mapping tool has arisen. This poster describes the development of a tablet-based mapping environment specifically designed for geologists. The challenge was to deliver a system that would feel sufficiently close to the flexibility of paper-based geological mapping while being implemented on a consumer communication and entertainment device. The first release of a tablet-based geological mapping system from this project is illustrated and will be shown as implemented on an iPad during the poster session. Midland Valley is pioneering tablet-based mapping and, along with its industrial and academic partners, will be using the application in field based projects throughout this year and will be integrating feedback in further developments of this technology.
NASA Astrophysics Data System (ADS)
Lynn, W. D.; Escalona, O. J.; McEneaney, D. J.
2013-06-01
This study addresses an important question in the development of a ECG device that enables long term monitoring of cardiac rhythm. This device would utilise edge sensor technologies for dry, non-irritant skin contact suitable for distal limb application and would be supported by embedded ECG denoising processes. Contemporary ECG databases including those provided by MIT-BIH and Physionet are focused on interpretation of cardiac disease and rhythm tracking. The data is recorded using chest leads as in standard clinical practise. For the development of a peripherally located heart rhythm monitor, such data would be of limited use. To provide a useful database adequate for the development of the above mentioned cardiac monitoring device a unipolar body surface potential map from the left arm and wrist was gathered in 37 volunteer patients and characterized in this study. For this, the reference electrode was placed at the wrist. Bipolar far-field electrogram leads were derived and analysed. Factors such as skin variability, 50Hz noise interference, electrode contact noise, motion artifacts and electromyographic noise, presented a challenge. The objective was quantify the signal-to-noise ratio (SNR) at the far-field locations. Preliminary results reveal that an electrogram indicative of the QRS complex can be recorded on the distal portion of the left arm when denoised using signal averaging techniques.
McKenzie, Elizabeth M.; Balter, Peter A.; Stingo, Francesco C.; Jones, Jimmy; Followill, David S.; Kry, Stephen F.
2014-01-01
Purpose: The authors investigated the performance of several patient-specific intensity-modulated radiation therapy (IMRT) quality assurance (QA) dosimeters in terms of their ability to correctly identify dosimetrically acceptable and unacceptable IMRT patient plans, as determined by an in-house-designed multiple ion chamber phantom used as the gold standard. A further goal was to examine optimal threshold criteria that were consistent and based on the same criteria among the various dosimeters. Methods: The authors used receiver operating characteristic (ROC) curves to determine the sensitivity and specificity of (1) a 2D diode array undergoing anterior irradiation with field-by-field evaluation, (2) a 2D diode array undergoing anterior irradiation with composite evaluation, (3) a 2D diode array using planned irradiation angles with composite evaluation, (4) a helical diode array, (5) radiographic film, and (6) an ion chamber. This was done with a variety of evaluation criteria for a set of 15 dosimetrically unacceptable and 9 acceptable clinical IMRT patient plans, where acceptability was defined on the basis of multiple ion chamber measurements using independent ion chambers and a phantom. The area under the curve (AUC) on the ROC curves was used to compare dosimeter performance across all thresholds. Optimal threshold values were obtained from the ROC curves while incorporating considerations for cost and prevalence of unacceptable plans. Results: Using common clinical acceptance thresholds, most devices performed very poorly in terms of identifying unacceptable plans. Grouping the detector performance based on AUC showed two significantly different groups. The ion chamber, radiographic film, helical diode array, and anterior-delivered composite 2D diode array were in the better-performing group, whereas the anterior-delivered field-by-field and planned gantry angle delivery using the 2D diode array performed less well. Additionally, based on the AUCs, there was no significant difference in the performance of any device between gamma criteria of 2%/2 mm, 3%/3 mm, and 5%/3 mm. Finally, optimal cutoffs (e.g., percent of pixels passing gamma) were determined for each device and while clinical practice commonly uses a threshold of 90% of pixels passing for most cases, these results showed variability in the optimal cutoff among devices. Conclusions: IMRT QA devices have differences in their ability to accurately detect dosimetrically acceptable and unacceptable plans. Field-by-field analysis with a MapCheck device and use of the MapCheck with a MapPhan phantom while delivering at planned rotational gantry angles resulted in a significantly poorer ability to accurately sort acceptable and unacceptable plans compared with the other techniques examined. Patient-specific IMRT QA techniques in general should be thoroughly evaluated for their ability to correctly differentiate acceptable and unacceptable plans. Additionally, optimal agreement thresholds should be identified and used as common clinical thresholds typically worked very poorly to identify unacceptable plans. PMID:25471949
McKenzie, Elizabeth M; Balter, Peter A; Stingo, Francesco C; Jones, Jimmy; Followill, David S; Kry, Stephen F
2014-12-01
The authors investigated the performance of several patient-specific intensity-modulated radiation therapy (IMRT) quality assurance (QA) dosimeters in terms of their ability to correctly identify dosimetrically acceptable and unacceptable IMRT patient plans, as determined by an in-house-designed multiple ion chamber phantom used as the gold standard. A further goal was to examine optimal threshold criteria that were consistent and based on the same criteria among the various dosimeters. The authors used receiver operating characteristic (ROC) curves to determine the sensitivity and specificity of (1) a 2D diode array undergoing anterior irradiation with field-by-field evaluation, (2) a 2D diode array undergoing anterior irradiation with composite evaluation, (3) a 2D diode array using planned irradiation angles with composite evaluation, (4) a helical diode array, (5) radiographic film, and (6) an ion chamber. This was done with a variety of evaluation criteria for a set of 15 dosimetrically unacceptable and 9 acceptable clinical IMRT patient plans, where acceptability was defined on the basis of multiple ion chamber measurements using independent ion chambers and a phantom. The area under the curve (AUC) on the ROC curves was used to compare dosimeter performance across all thresholds. Optimal threshold values were obtained from the ROC curves while incorporating considerations for cost and prevalence of unacceptable plans. Using common clinical acceptance thresholds, most devices performed very poorly in terms of identifying unacceptable plans. Grouping the detector performance based on AUC showed two significantly different groups. The ion chamber, radiographic film, helical diode array, and anterior-delivered composite 2D diode array were in the better-performing group, whereas the anterior-delivered field-by-field and planned gantry angle delivery using the 2D diode array performed less well. Additionally, based on the AUCs, there was no significant difference in the performance of any device between gamma criteria of 2%/2 mm, 3%/3 mm, and 5%/3 mm. Finally, optimal cutoffs (e.g., percent of pixels passing gamma) were determined for each device and while clinical practice commonly uses a threshold of 90% of pixels passing for most cases, these results showed variability in the optimal cutoff among devices. IMRT QA devices have differences in their ability to accurately detect dosimetrically acceptable and unacceptable plans. Field-by-field analysis with a MapCheck device and use of the MapCheck with a MapPhan phantom while delivering at planned rotational gantry angles resulted in a significantly poorer ability to accurately sort acceptable and unacceptable plans compared with the other techniques examined. Patient-specific IMRT QA techniques in general should be thoroughly evaluated for their ability to correctly differentiate acceptable and unacceptable plans. Additionally, optimal agreement thresholds should be identified and used as common clinical thresholds typically worked very poorly to identify unacceptable plans.
NASA Astrophysics Data System (ADS)
Semenishchev, E. A.; Marchuk, V. I.; Fedosov, V. P.; Stradanchenko, S. G.; Ruslyakov, D. V.
2015-05-01
This work aimed to study computationally simple method of saliency map calculation. Research in this field received increasing interest for the use of complex techniques in portable devices. A saliency map allows increasing the speed of many subsequent algorithms and reducing the computational complexity. The proposed method of saliency map detection based on both image and frequency space analysis. Several examples of test image from the Kodak dataset with different detalisation considered in this paper demonstrate the effectiveness of the proposed approach. We present experiments which show that the proposed method providing better results than the framework Salience Toolbox in terms of accuracy and speed.
Induction logging device with a pair of mutually perpendicular bucking coils
Koelle, Alfred R.; Landt, Jeremy A.
1981-01-01
An instrument is disclosed for mapping vertical conductive fractures in a resistive bedrock, magnetically inducing eddy currents by a pair of vertically oriented, mutually perpendicular, coplanar coils. The eddy currents drive magnetic fields which are picked up by a second, similar pair of coils.
Static Electric Field Mapping Using a Mosquito Racket and Baby Oil
ERIC Educational Resources Information Center
Rediansyah, Herfien; Khairurrijal; Viridi, Sparisoma
2015-01-01
The aim of this research was to design a simple experimental device to see electric field force lines using common components which are readily available in everyday life. A solution of baby oil was placed in a plastic container, 4.5 × 4.5 × 1 inches, with both ends of the electrodes (metal wire) immersed in the solution at a depth of 0.2 inches.…
Digital mapping in extreme and remote environments
NASA Astrophysics Data System (ADS)
Andersson, Joel; Bauer, Tobias; Sarlus, Zimer; Zainy, Maher; Brethes, Anais
2017-04-01
During the last few years, Luleå University of Technology has performed a series of research projects in remote areas with extreme climatic conditions using digital mapping technologies. The majority of past and ongoing research projects focus on the arctic regions of the Fennoscandian Shield and Greenland but also on the Zagros fold-and-thrust belt in northern Iraq. Currently, we use the Midland Valley application FieldMove on iPad mini devices with ruggedized casings. As all projects have a strong focus on geological field work, harsh climatic conditions are a challenge not only for the geologists but also for the digital mapping hardware. In the arctic regions especially cold temperatures affect battery lifetime and performance of the screens. But also high temperatures are restricting digital mapping. From experience, a typical temperature range where digital mapping, using iPad tablets, is possible lies between -20 and +40 degrees. Furthermore, the remote character of field areas complicates access but also availability of electricity. By a combination of robust solar chargers and ruggedized batteries we are able to work entirely autarkical. Additionally, we are currently installing a drone system that allows us to map outcrops normally inaccessible because of safety reasons or time deficiency. The produced data will subsequently be taken into our Virtual Reality studio for interpretation and processing. There we will be able to work also with high resolution DEM data from Lidar scanning allowing us to interpret structural features such as post-glacial faults in areas that are otherwise only accessible by helicopter. By combining digital field mapping with drone technique and a Virtual Reality studio we are able to work in hardly accessible areas, improve safety during field work and increase efficiency substantially.
Moore, Lindsay S; Rosenthal, Eben L; Chung, Thomas K; de Boer, Esther; Patel, Neel; Prince, Andrew C; Korb, Melissa L; Walsh, Erika M; Young, E Scott; Stevens, Todd M; Withrow, Kirk P; Morlandt, Anthony B; Richman, Joshua S; Carroll, William R; Zinn, Kurt R; Warram, Jason M
2017-02-01
The purpose of this study was to assess the potential of U.S. Food and Drug Administration-cleared devices designed for indocyanine green-based perfusion imaging to identify cancer-specific bioconjugates with overlapping excitation and emission wavelengths. Recent clinical trials have demonstrated potential for fluorescence-guided surgery, but the time and cost of the approval process may impede clinical translation. To expedite this translation, we explored the feasibility of repurposing existing optical imaging devices for fluorescence-guided surgery. Consenting patients (n = 15) scheduled for curative resection were enrolled in a clinical trial evaluating the safety and specificity of cetuximab-IRDye800 (NCT01987375). Open-field fluorescence imaging was performed preoperatively and during the surgical resection. Fluorescence intensity was quantified using integrated instrument software, and the tumor-to-background ratio characterized fluorescence contrast. In the preoperative clinic, the open-field device demonstrated potential to guide preoperative mapping of tumor borders, optimize the day of surgery, and identify occult lesions. Intraoperatively, the device demonstrated robust potential to guide surgical resections, as all peak tumor-to-background ratios were greater than 2 (range, 2.2-14.1). Postresection wound bed fluorescence was significantly less than preresection tumor fluorescence (P < 0.001). The repurposed device also successfully identified positive margins. The open-field imaging device was successfully repurposed to distinguish cancer from normal tissue in the preoperative clinic and throughout surgical resection. This study illuminated the potential for existing open-field optical imaging devices with overlapping excitation and emission spectra to be used for fluorescence-guided surgery. © 2017 by the Society of Nuclear Medicine and Molecular Imaging.
Overview of superconductivity in Japan Strategy road map and R&D status
NASA Astrophysics Data System (ADS)
Tsukamoto, O.
2008-09-01
Superconducting technology benefits society in broad fields; environment/energy, life science, manufacturing industry and information and communication. Superconducting equipments and devices used in various fields are divided into two categories, electric and electronic applications. Technologies in those applications are progressing remarkably owing to firm and consistent supports by various national projects. The final target of the NEDO R&D project of fundamental technology for superconductivity applications to develop 500 m long coated conductors (CCs) of the critical current 300 A/cm (at 77 K, 0 T) will be fulfilled by the end of JFY 2007 and manufacturing process to produce extremely low-cost CCs is to be developed to make the applications realistic. Preliminary works to develop power apparatuses using CCs have started in the frame of the R&D project for the fundamental technology and have produced significant results. Performance of BSCCO/Ag-sheathed wires has been improved greatly and various applications using those wires are being developed. R&D projects for SMES, power cable, flywheel energy storage and rotating machines are going to introduce those equipments to the real world. Technologies of SQUID and SFQ, basic devices of the electronic applications, are progressing dramatically also owing to various national projects. In this back ground the technology strategy map in the field of superconducting technology was formulated to prioritize investments in R&D by clearly defining the objectives and inspire autonomous R&D actives in various fields of industries. R&D activities in the superconducting technologies are to be scheduled following this strategy map.
Computer vision research with new imaging technology
NASA Astrophysics Data System (ADS)
Hou, Guangqi; Liu, Fei; Sun, Zhenan
2015-12-01
Light field imaging is capable of capturing dense multi-view 2D images in one snapshot, which record both intensity values and directions of rays simultaneously. As an emerging 3D device, the light field camera has been widely used in digital refocusing, depth estimation, stereoscopic display, etc. Traditional multi-view stereo (MVS) methods only perform well on strongly texture surfaces, but the depth map contains numerous holes and large ambiguities on textureless or low-textured regions. In this paper, we exploit the light field imaging technology on 3D face modeling in computer vision. Based on a 3D morphable model, we estimate the pose parameters from facial feature points. Then the depth map is estimated through the epipolar plane images (EPIs) method. At last, the high quality 3D face model is exactly recovered via the fusing strategy. We evaluate the effectiveness and robustness on face images captured by a light field camera with different poses.
Characterizing permanent magnet blocks with Helmholtz coils
NASA Astrophysics Data System (ADS)
Carnegie, D. W.; Timpf, J.
1992-08-01
Most of the insertion devices to be installed at the Advanced Photon Source will utilize permanent magnets in their magnetic structures. The quality of the spectral output is sensitive to the errors in the field of the device which are related to variations in the magnetic properties of the individual blocks. The Advanced Photon Source will have a measurement facility to map the field in the completed insertion devices and equipment to test and modify the magnetic strength of the individual magnet blocks. One component of the facility, the Helmholtz coil permanent magnet block measurement system, has been assembled and tested. This system measures the total magnetic moment vector of a block with a precision better than 0.01% and a directional resolution of about 0.05°. The design and performance of the system will be presented.
Huang, Yu; Ma, Lingwei; Hou, Mengjing; Xie, Zheng; Zhang, Zhengjun
2016-01-28
By three-dimensional (3D) finite element method (FEM) plasmon mapping, gradual plasmon evolutions of both bonding dipole plasmon (BDP) and charge transfer plasmon (CTP) modes are visualized. In particular, the evolved BDP mode provides a physical insight into the rapid degeneration of electromagnetic hot spots in practical applications, while the rising CTP mode enables a huge near-field enhancement for potential plasmonic devices at infrared wavelengths.
NASA Astrophysics Data System (ADS)
Gruber, D.; Skotnicki, S.; Gootee, B.
2016-12-01
The work of citizen scientists has become very important to researchers doing field work and internet-based projects but has not been widely utilized in digital mapping. The McDowell Mountains - located in Scottsdale, Arizona, at the edge of the basin-and-range province and protected as part of the McDowell Sonoran Preserve - are geologically complex. Until recently, no comprehensive geologic survey of the entire range had been done. Over the last 9 years geologist Steven Skotnicki spent 2000 hours mapping the complex geology of the range. His work, born of personal interest and partially supported by the McDowell Sonoran Conservancy, resulted in highly detailed hand-drawn survey maps. Dr. Skotnicki's work provides important new information and raises interesting research questions about the geology of this range. Citizen scientists of the McDowell Sonoran Conservancy Field Institute digitized Dr. Skotnicki's maps. A team of 10 volunteers, trained in ArcMap digitization techniques and led by volunteer project leader Daniel Gruber, performed the digitization work. Technical oversight of mapping using ArcMap, including provision of USGS-based mapping toolbars, was provided by Arizona Geological Survey (AZGS) research geologist Brian Gootee. The map digitization process identified and helped resolve a number of mapping questions. The citizen-scientist team spent 900 hours on training, digitization, quality checking, and project coordination with support and review by Skotnicki and Gootee. The resulting digital map has approximately 3000 polygons, 3000 points, and 86 map units with complete metadata and unit descriptions. The finished map is available online through AZGS and can be accessed in the field on mobile devices. User location is shown on the map and metadata can be viewed with a tap. The citizen scientist map digitization team has made this important geologic information available to the public and accessible to other researchers quickly and efficiently.
Corrected body surface potential mapping.
Krenzke, Gerhard; Kindt, Carsten; Hetzer, Roland
2007-02-01
In the method for body surface potential mapping described here, the influence of thorax shape on measured ECG values is corrected. The distances of the ECG electrodes from the electrical heart midpoint are determined using a special device for ECG recording. These distances are used to correct the ECG values as if they had been measured on the surface of a sphere with a radius of 10 cm with its midpoint localized at the electrical heart midpoint. The equipotential lines of the electrical heart field are represented on the virtual surface of such a sphere. It is demonstrated that the character of a dipole field is better represented if the influence of the thorax shape is reduced. The site of the virtual reference electrode is also important for the dipole character of the representation of the electrical heart field.
NASA Astrophysics Data System (ADS)
Liewald, C.; Reiser, D.; Westermeier, C.; Nickel, B.
2016-08-01
We use a pentacene transistor with asymmetric source drain contacts to test the sensitivity of scanning photocurrent microscopy (SPCM) for contact resistance and charge traps. The drain current of the device strongly depends on the choice of the drain electrode. In one case, more than 94% of the source drain voltage is lost due to contact resistance. Here, SPCM maps show an enhanced photocurrent signal at the hole-injecting contact. For the other bias condition, i.e., for ohmic contacts, the SPCM signal peaks heterogeneously along the channel. We argue from basic transport models that bright areas in SPCM maps indicate areas of large voltage gradients or high electric field strength caused by injection barriers or traps. Thus, SPCM allows us to identify and image the dominant voltage loss mechanism in organic field-effect transistors.
Mapping of cavitational activity in a pilot plant dyeing equipment.
Actis Grande, G; Giansetti, M; Pezzin, A; Rovero, G; Sicardi, S
2015-11-01
A large number of papers of the literature quote dyeing intensification based on the application of ultrasound (US) in the dyeing liquor. Mass transfer mechanisms are described and quantified, nevertheless these experimental results in general refer to small laboratory apparatuses with a capacity of a few hundred millilitres and extremely high volumetric energy intensity. With the strategy of overcoming the scale-up inaccuracy consequent to the technological application of ultrasounds, a dyeing pilot-plant prototype of suitable liquor capacity (about 40 L) and properly simulating several liquor to textile hydraulic relationships was designed by including US transducers with different geometries. Optimal dyeing may be obtained by optimising the distance between transducer and textile material, the liquid height being a non-negligible operating parameter. Hence, mapping the cavitation energy in the machinery is expected to provide basic data on the intensity and distribution of the ultrasonic field in the aqueous liquor. A flat ultrasonic transducer (absorbed electrical power of 600 W), equipped with eight devices emitting at 25 kHz, was mounted horizontally at the equipment bottom. Considering industrial scale dyeing, liquor and textile substrate are reciprocally displaced to achieve a uniform colouration. In this technology a non uniform US field could affect the dyeing evenness to a large extent; hence, mapping the cavitation energy distribution in the machinery is expected to provide fundamental data and define optimal operating conditions. Local values of the cavitation intensity were recorded by using a carefully calibrated Ultrasonic Energy Meter, which is able to measure the power per unit surface generated by the cavitation implosion of bubbles. More than 200 measurements were recorded to define the map at each horizontal plane positioned at a different distance from the US transducer; tap water was heated at the same temperature used for dyeing tests (60°C). Different liquid flow rates were tested to investigate the effect of the hydrodynamics characterising the equipment. The mapping of the cavitation intensity in the pilot-plant machinery was performed to achieve with the following goals: (a) to evaluate the influence of turbulence on the cavitation intensity, and (b) to determine the optimal distance from the ultrasound device at which a fabric should be positioned, this parameter being a compromise between the cavitation intensity (higher next to the transducer) and the US field uniformity (achieved at some distance from this device). By carrying out dyeing tests of wool fabrics in the prototype unit, consistent results were confirmed by comparison with the mapping of cavitation intensity. Copyright © 2015 Elsevier B.V. All rights reserved.
iPads at Field Camp: A First Test of the Challenges and Opportunities
NASA Astrophysics Data System (ADS)
Hurst, S. D.; Stewart, M. A.
2011-12-01
An iPad 2 was given to approximately half of the University of Illinois students attending the Wasatch-Uinta Field Camp (WUFC) in summer 2011. The iPads were provisioned with orientation measuring, mapping and location software. The software would automatically transfer an orientation measurement to the current location on the Google Maps application, and was able to output a full list of orientation data. Students also had normal access to more traditional mapping tools such as Brunton compasses and GPS units and were required to map with these tools along with other students of WUFC not provided iPads. Compared to traditional tools, iPads have drawbacks such as increased weight, break-ability, need for power source and wireless connectivity; in sum, they need a substantial infrastructure that reduces range, availability, and probably most importantly, convenience. Some of these drawbacks inhibited adoption by our students, the primary reasons being the added weight and the inability to map directly to a GIS application with detailed topographic maps equivalent to the physical topographic map sheets used at WUFC. In their favor, the iPads combine a host of tools into one, including software that can measure orientation in a fashion more intuitively than a Brunton. They also allow storage, editing and analysis of data, notes (spoken and/or written) and potentially unlimited access to a variety of maps. Via a post-field camp survey of the University of Illinois students at WUFC, we have identified some of the important issues that need to be addressed before portable tablets like the iPad become the tool of choice for general field work. Some problems are intrinsic to almost any advanced technology, some are artifacts of the current generations of hardware and software available for these devices. Technical drawbacks aside, the adoption of iPads was further inhibited primarily by inexperience with their use as a mapping tool and secondarily by their redundancy with traditional tools. We are addressing some aspects of software limitations and future technology improvements by the industry will naturally reduce other limitations. We will continue testing iPads during field trips and courses for the foreseeable future. As we begin to deal with these limitations and students become more accustomed to their use in the field, we expect our students to more fully embrace iPads as a convenient field and mapping tool.
NASA Technical Reports Server (NTRS)
Groza, Michael; Krawczynski, Henic; Garson, Alfred, III; Martin, Jerrad W.; Lee, Kuen; Li, Qiang; Beilicke, Matthias; Cui, Yunlong; Buliga, Vladimir; Guo, Mingsheng;
2010-01-01
The Pockels electro-optic effect can be used to investigate the internal electric field in cadmium zinc telluride (CZT) single crystals that are used to fabricate room temperature x and gamma radiation detectors. An agreement is found between the electric field mapping obtained from Pockels effect images and the measurements of charge transients generated by alpha particles. The Pockels effect images of a CZT detector along two mutually perpendicular directions are used to optimize the detector response in a dual anode configuration, a device in which the symmetry of the internal electric field with respect to the anode strips is of critical importance. The Pockels effect is also used to map the electric field in a CZT detector with dual anodes and an attempt is made to find a correlation with the simulated electric potential in such detectors. Finally, the stress-induced birefringence effects seen in the Pockels images are presented and discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Groza, Michael; Cui Yunlong; Buliga, Vladimir
2010-01-15
The Pockels electro-optic effect can be used to investigate the internal electric field in cadmium zinc telluride (CZT) single crystals that are used to fabricate room temperature x and gamma radiation detectors. An agreement is found between the electric field mapping obtained from Pockels effect images and the measurements of charge transients generated by alpha particles. The Pockels effect images of a CZT detector along two mutually perpendicular directions are used to optimize the detector response in a dual anode configuration, a device in which the symmetry of the internal electric field with respect to the anode strips is ofmore » critical importance. The Pockels effect is also used to map the electric field in a CZT detector with dual anodes and an attempt is made to find a correlation with the simulated electric potential in such detectors. Finally, the stress-induced birefringence effects seen in the Pockels images are presented and discussed.« less
Human Machine Interface Programming and Testing
NASA Technical Reports Server (NTRS)
Foster, Thomas Garrison
2013-01-01
Human Machine Interface (HMI) Programming and Testing is about creating graphical displays to mimic mission critical ground control systems in order to provide NASA engineers with the ability to monitor the health management of these systems in real time. The Health Management System (HMS) is an online interactive human machine interface system that monitors all Kennedy Ground Control Subsystem (KGCS) hardware in the field. The Health Management System is essential to NASA engineers because it allows remote control and monitoring of the health management systems of all the Programmable Logic Controllers (PLC) and associated field devices. KGCS will have equipment installed at the launch pad, Vehicle Assembly Building, Mobile Launcher, as well as the Multi-Purpose Processing Facility. I am designing graphical displays to monitor and control new modules that will be integrated into the HMS. The design of the display screen will closely mimic the appearance and functionality of the actual modules. There are many different field devices used to monitor health management and each device has its own unique set of health management related data, therefore each display must also have its own unique way to display this data. Once the displays are created, the RSLogix5000 application is used to write software that maps all the required data read from the hardware to the graphical display. Once this data is mapped to its corresponding display item, the graphical display and hardware device will be connected through the same network in order to test all possible scenarios and types of data the graphical display was designed to receive. Test Procedures will be written to thoroughly test out the displays and ensure that they are working correctly before being deployed to the field. Additionally, the Kennedy Ground Controls Subsystem's user manual will be updated to explain to the NASA engineers how to use the new module displays.
Announcing Workshop on High Gradient RF
Cavities at Argonne National Laboratory Workshop on High Gradient RF October 7-9, 2003 Agenda Accommodation Argonne Guest House SLAC Workshop August 2000 Attendees ANL Map High energy physics and other the gradient limits of these devices. Although the limits on high fields in rf cavities have been
Recent Advances in Transformation Optics
2012-01-01
posts in a SOI wafer. Light is coupled into the device via an input waveguide and reflected by the Bragg mirror towards the x–z plane . Reprinted from...coordinate in a two -dimensional (2D) plane and z* stands for the conjugate of z. Such a function defines a conformal mapping that preserves the angles...resonators with carefully designed geometries (Fig. 2(a)). In the experiment, a field-sensing antenna is used to record the field amplitude and phase inside
Visual map and instruction-based bicycle navigation: a comparison of effects on behaviour.
de Waard, Dick; Westerhuis, Frank; Joling, Danielle; Weiland, Stella; Stadtbäumer, Ronja; Kaltofen, Leonie
2017-09-01
Cycling with a classic paper map was compared with navigating with a moving map displayed on a smartphone, and with auditory, and visual turn-by-turn route guidance. Spatial skills were found to be related to navigation performance, however only when navigating from a paper or electronic map, not with turn-by-turn (instruction based) navigation. While navigating, 25% of the time cyclists fixated at the devices that present visual information. Navigating from a paper map required most mental effort and both young and older cyclists preferred electronic over paper map navigation. In particular a turn-by-turn dedicated guidance device was favoured. Visual maps are in particular useful for cyclists with higher spatial skills. Turn-by-turn information is used by all cyclists, and it is useful to make these directions available in all devices. Practitioner Summary: Electronic navigation devices are preferred over a paper map. People with lower spatial skills benefit most from turn-by-turn guidance information, presented either auditory or on a dedicated device. People with higher spatial skills perform well with all devices. It is advised to keep in mind that all users benefit from turn-by-turn information when developing a navigation device for cyclists.
Augmented paper maps: Exploring the design space of a mixed reality system
NASA Astrophysics Data System (ADS)
Paelke, Volker; Sester, Monika
Paper maps and mobile electronic devices have complementary strengths and shortcomings in outdoor use. In many scenarios, like small craft sailing or cross-country trekking, a complete replacement of maps is neither useful nor desirable. Paper maps are fail-safe, relatively cheap, offer superior resolution and provide large scale overview. In uses like open-water sailing it is therefore mandatory to carry adequate maps/charts. GPS based mobile devices, on the other hand, offer useful features like automatic positioning and plotting, real-time information update and dynamic adaptation to user requirements. While paper maps are now commonly used in combination with mobile GPS devices, there is no meaningful integration between the two, and the combined use leads to a number of interaction problems and potential safety issues. In this paper we explore the design space of augmented paper maps in which maps are augmented with additional functionality through a mobile device to achieve a meaningful integration between device and map that combines their respective strengths.
Modelling and analysis of flux surface mapping experiments on W7-X
NASA Astrophysics Data System (ADS)
Lazerson, Samuel; Otte, Matthias; Bozhenkov, Sergey; Sunn Pedersen, Thomas; Bräuer, Torsten; Gates, David; Neilson, Hutch; W7-X Team
2015-11-01
The measurement and compensation of error fields in W7-X will be key to the device achieving high beta steady state operations. Flux surface mapping utilizes the vacuum magnetic flux surfaces, a feature unique to stellarators and heliotrons, to allow direct measurement of magnetic topology, and thereby allows a highly accurate determination of remnant magnetic field errors. As will be reported separately at this meeting, the first measurements confirming the existence of nested flux surfaces in W7-X have been made. In this presentation, a synthetic diagnostic for the flux surface mapping diagnostic is presented. It utilizes Poincaré traces to construct an image of the flux surface consistent with the measured camera geometry, fluorescent rod sweep plane, and emitter beam position. Forward modeling of the high-iota configuration will be presented demonstrating an ability to measure the intrinsic error field using the U.S. supplied trim coil system on W7-X, and a first experimental assessment of error fields in W7-X will be presented. This work has been authored by Princeton University under Contract Number DE-AC02-09CH11466 with the US Department of Energy.
NASA Astrophysics Data System (ADS)
Berthias, F.; Feketeová, L.; Della Negra, R.; Dupasquier, T.; Fillol, R.; Abdoul-Carime, H.; Farizon, B.; Farizon, M.; Märk, T. D.
2017-08-01
In the challenging field of imaging molecular dynamics, a novel method has been developed and implemented that allows the measurement of the velocity of neutral fragments produced in collision induced dissociation experiments on an event-by-event basis. This has been made possible by combining a correlated ion and neutral time of flight method with a velocity map imaging technique. This new method relies on a multiparametric correlated detection of the neutral and charged fragments from collision induced dissociation on one single detector. Its implementation on the DIAM device (Device for irradiation of biomolecular clusters) (Dispositif d'Irradiation d'Agrégats bioMoléculaires) allowed us to measure the velocity distribution of water molecules evaporated from collision induced dissociation of mass- and energy-selected protonated water clusters.
Luo, Yanqi; Khoram, Parisa; Brittman, Sarah; Zhu, Zhuoying; Lai, Barry; Ong, Shyue Ping; Garnett, Erik C; Fenning, David P
2017-11-01
Optoelectronic devices based on hybrid perovskites have demonstrated outstanding performance within a few years of intense study. However, commercialization of these devices requires barriers to their development to be overcome, such as their chemical instability under operating conditions. To investigate this instability and its consequences, the electric field applied to single crystals of methylammonium lead bromide (CH 3 NH 3 PbBr 3 ) is varied, and changes are mapped in both their elemental composition and photoluminescence. Synchrotron-based nanoprobe X-ray fluorescence (nano-XRF) with 250 nm resolution reveals quasi-reversible field-assisted halide migration, with corresponding changes in photoluminescence. It is observed that higher local bromide concentration is correlated to superior optoelectronic performance in CH 3 NH 3 PbBr 3 . A lower limit on the electromigration rate is calculated from these experiments and the motion is interpreted as vacancy-mediated migration based on nudged elastic band density functional theory (DFT) simulations. The XRF mapping data provide direct evidence of field-assisted ionic migration in a model hybrid-perovskite thin single crystal, while the link with photoluminescence proves that the halide stoichiometry plays a key role in the optoelectronic properties of the perovskite. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Mapping Ionic Currents and Reactivity on the Nanoscale: Electrochemical Strain Microscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kalinin, S.V.
2010-10-19
Solid-state electrochemical processes in oxides underpin a broad spectrum of energy and information storage devices, ranging from Li-ion and Li-air batteries, to solid oxide fuel cells (SOFC) to electroresistive and memristive systems. These functionalities are controlled by the bias-driven diffusive and electromigration transport of mobile ionic species, as well as intricate a set of electrochemical and defect-controlled reactions at interfaces and in bulk. Despite the wealth of device-level and atomistic studies, little is known on the mesoscopic mechanisms of ion diffusion and electronic transport on the level of grain clusters, individual grains, and extended defects. The development of the capabilitymore » for probing ion transport on the nanometer scale is a key to deciphering complex interplay between structure, functionality, and performance in these systems. Here we introduce Electrochemical Strain Microscopy, a scanning probe microscopy technique based on strong strain-bias coupling in the systems in which local ion concentrations are changed by electrical fields. The imaging capability, as well as time- and voltage spectroscopies analogous to traditional current based electrochemical characterization methods are developed. The reversible intercalation of Li and mapping electrochemical activity in LiCoO2 is demonstrated, illustrating higher Li diffusivity at non-basal planes and grain boundaries. In Si-anode device structure, the direct mapping of Li diffusion at extended defects and evolution of Li-activity with charge state is explored. The electrical field-dependence of Li mobility is studied to determine the critical bias required for the onset of electrochemical transformation, allowing reaction and diffusion processes in the battery system to be separated at each location. Finally, the applicability of ESM for probing oxygen vacancy diffusion and oxygen reduction/evolution reactions is illustrated, and the high resolution ESM maps are correlated with aberration corrected scanning transmission electron microscopy imaging. The future potential for deciphering mechanisms of electrochemical transformations on an atomically-defined single-defect level is discussed.« less
System for photometric calibration of optoelectronic imaging devices especially streak cameras
Boni, Robert; Jaanimagi, Paul
2003-11-04
A system for the photometric calibration of streak cameras and similar imaging devices provides a precise knowledge of the camera's flat-field response as well as a mapping of the geometric distortions. The system provides the flat-field response, representing the spatial variations in the sensitivity of the recorded output, with a signal-to-noise ratio (SNR) greater than can be achieved in a single submicrosecond streak record. The measurement of the flat-field response is carried out by illuminating the input slit of the streak camera with a signal that is uniform in space and constant in time. This signal is generated by passing a continuous wave source through an optical homogenizer made up of a light pipe or pipes in which the illumination typically makes several bounces before exiting as a spatially uniform source field. The rectangular cross-section of the homogenizer is matched to the usable photocathode area of the streak tube. The flat-field data set is obtained by using a slow streak ramp that may have a period from one millisecond (ms) to ten seconds (s), but may be nominally one second in duration. The system also provides a mapping of the geometric distortions, by spatially and temporarily modulating the output of the homogenizer and obtaining a data set using the slow streak ramps. All data sets are acquired using a CCD camera and stored on a computer, which is used to calculate all relevant corrections to the signal data sets. The signal and flat-field data sets are both corrected for geometric distortions prior to applying the flat-field correction. Absolute photometric calibration is obtained by measuring the output fluence of the homogenizer with a "standard-traceable" meter and relating that to the CCD pixel values for a self-corrected flat-field data set.
Simultaneous orientation and thickness mapping in transmission electron microscopy
Tyutyunnikov, Dmitry; Özdöl, V. Burak; Koch, Christoph T.
2014-12-04
In this paper we introduce an approach for simultaneous thickness and orientation mapping of crystalline samples by means of transmission electron microscopy. We show that local thickness and orientation values can be extracted from experimental dark-field (DF) image data acquired at different specimen tilts. The method has been implemented to automatically acquire the necessary data and then map thickness and crystal orientation for a given region of interest. We have applied this technique to a specimen prepared from a commercial semiconductor device, containing multiple 22 nm technology transistor structures. The performance and limitations of our method are discussed and comparedmore » to those of other techniques available.« less
Ultra-high sensitivity moment magnetometry of geological samples using magnetic microscopy
NASA Astrophysics Data System (ADS)
Lima, Eduardo A.; Weiss, Benjamin P.
2016-09-01
Useful paleomagnetic information is expected to be recorded by samples with moments up to three orders of magnitude below the detection limit of standard superconducting rock magnetometers. Such samples are now detectable using recently developed magnetic microscopes, which map the magnetic fields above room-temperature samples with unprecedented spatial resolutions and field sensitivities. However, realizing this potential requires the development of techniques for retrieving sample moments from magnetic microscopy data. With this goal, we developed a technique for uniquely obtaining the net magnetic moment of geological samples from magnetic microscopy maps of unresolved or nearly unresolved magnetization. This technique is particularly powerful for analyzing small, weakly magnetized samples such as meteoritic chondrules and terrestrial silicate crystals like zircons. We validated this technique by applying it to field maps generated from synthetic sources and also to field maps measured using a superconducting quantum interference device (SQUID) microscope above geological samples with moments down to 10-15 Am2. For the most magnetic rock samples, the net moments estimated from the SQUID microscope data are within error of independent moment measurements acquired using lower sensitivity standard rock magnetometers. In addition to its superior moment sensitivity, SQUID microscope net moment magnetometry also enables the identification and isolation of magnetic contamination and background sources, which is critical for improving accuracy in paleomagnetic studies of weakly magnetic samples.
Feedback mechanism for smart nozzles and nebulizers
Montaser, Akbar [Potomac, MD; Jorabchi, Kaveh [Arlington, VA; Kahen, Kaveh [Kleinburg, CA
2009-01-27
Nozzles and nebulizers able to produce aerosol with optimum and reproducible quality based on feedback information obtained using laser imaging techniques. Two laser-based imaging techniques based on particle image velocimetry (PTV) and optical patternation map and contrast size and velocity distributions for indirect and direct pneumatic nebulizations in plasma spectrometry. Two pulses from thin laser sheet with known time difference illuminate droplets flow field. Charge coupled device (CCL)) captures scattering of laser light from droplets, providing two instantaneous particle images. Pointwise cross-correlation of corresponding images yields two-dimensional velocity map of aerosol velocity field. For droplet size distribution studies, solution is doped with fluorescent dye and both laser induced florescence (LIF) and Mie scattering images are captured simultaneously by two CCDs with the same field of view. Ratio of LIF/Mie images provides relative droplet size information, then scaled by point calibration method via phase Doppler particle analyzer.
NASA Astrophysics Data System (ADS)
Timonen, Jussi; Vankka, Jouko
2013-05-01
This paper presents a solution for information integration and sharing architecture, which is able to receive data simultaneously from multiple different sensor networks. Creating a Common Operational Picture (COP) object along with the base map of the building plays a key role in the research. The object is combined with desired map sources and then shared to the mobile devices worn by soldiers in the field. The sensor networks we used focus on location techniques indoors, and a simple set of symbols is created to present the information, as an addition to NATO APP6B symbols. A core element in this research is the MUSAS (Mobile Urban Situational Awareness System), a demonstration environment that implements central functionalities. Information integration of the system is handled by the Internet Connection Engine (Ice) middleware, as well as the server, which hosts COP information and maps. The entire system is closed, such that it does not need any external service, and the information transfer with the mobile devices is organized by a tactical 5 GHz WLAN solution. The demonstration environment is implemented using only commercial off-theshelf (COTS) products. We have presented a field experiment event in which the system was able to integrate and share real time information of a blue force tracking system, received signal strength indicator (RSSI) based intrusion detection system, and a robot using simultaneous location and mapping technology (SLAM), where all the inputs were based on real activities. The event was held in a training area on urban area warfare.
4D light-field sensing system for people counting
NASA Astrophysics Data System (ADS)
Hou, Guangqi; Zhang, Chi; Wang, Yunlong; Sun, Zhenan
2016-03-01
Counting the number of people is still an important task in social security applications, and a few methods based on video surveillance have been proposed in recent years. In this paper, we design a novel optical sensing system to directly acquire the depth map of the scene from one light-field camera. The light-field sensing system can count the number of people crossing the passageway, and record the direction and intensity of rays at a snapshot without any assistant light devices. Depth maps are extracted from the raw light-ray sensing data. Our smart sensing system is equipped with a passive imaging sensor, which is able to naturally discern the depth difference between the head and shoulders for each person. Then a human model is built. Through detecting the human model from light-field images, the number of people passing the scene can be counted rapidly. We verify the feasibility of the sensing system as well as the accuracy by capturing real-world scenes passing single and multiple people under natural illumination.
NASA Astrophysics Data System (ADS)
Knight, J.; Adam, E.
2015-12-01
Mapping spatial patterns of soil organic carbon (SOC) using high resolution satellite imagery is especially important in inaccessible or upland areas that have limited field measurements, where land use and land cover (LULC) are changing rapidly, or where the land surface is sensitive to overgrazing and high rates of soil erosion and thus sediment, nutrient and carbon export. Here we outline the methods and results of mapping soil organic carbon in highland areas (~2400 m) of eastern Lesotho, southern Africa, across different land uses. Bedrock summit areas with very thin soils are dominated by xeric alpine grassland; terrace agriculture with strip fields and thicker soils is found within river valleys. Multispectral Worldview 2 imagery was used to map LULC across the region. An overall accuracy of 88% and kappa value of 0.83 were achieved using a support vector machine model. Soils were examined in the field from different LULC areas for properties such as soil depth, maturity and structure. In situ soils in the field were also evaluated using a portable analytical spectral device (ASD) in order to ground truth spectral signatures from Worldview. Soil samples were examined in the lab for chemical properties including organic carbon. Regression modeling was used in order to establish a relationship between soil characteristics and soil spectral reflectance. We were thus able to map SOC across this diverse landscape. Results show that there are notable differences in SOC between upland and agricultural areas which reflect both soil thickness and maturity, and land use practices such as manuring of fields by cattle. Soil erosion and thus carbon (nutrient) export is significant issue in this region, which this project will now be examining.
In-Operando Spatial Imaging of Edge Termination Electric Fields in GaN Vertical p-n Junction Diodes
Leonard, Francois; Dickerson, J. R.; King, M. P.; ...
2016-05-03
Control of electric fields with edge terminations is critical to maximize the performance of high-power electronic devices. We proposed a variety of edge termination designs which makes the optimization of such designs challenging due to many parameters that impact their effectiveness. And while modeling has recently allowed new insight into the detailed workings of edge terminations, the experimental verification of the design effectiveness is usually done through indirect means, such as the impact on breakdown voltages. In this letter, we use scanning photocurrent microscopy to spatially map the electric fields in vertical GaN p-n junction diodes in operando. We alsomore » reveal the complex behavior of seemingly simple edge termination designs, and show how the device breakdown voltage correlates with the electric field behavior. Modeling suggests that an incomplete compensation of the p-type layer in the edge termination creates a bilayer structure that leads to these effects, with variations that significantly impact the breakdown voltage.« less
Towards on-chip time-resolved thermal mapping with micro-/nanosensor arrays
2012-01-01
In recent years, thin-film thermocouple (TFTC) array emerged as a versatile candidate in micro-/nanoscale local temperature sensing for its high resolution, passive working mode, and easy fabrication. However, some key issues need to be taken into consideration before real instrumentation and industrial applications of TFTC array. In this work, we will demonstrate that TFTC array can be highly scalable from micrometers to nanometers and that there are potential applications of TFTC array in integrated circuits, including time-resolvable two-dimensional thermal mapping and tracing the heat source of a device. Some potential problems and relevant solutions from a view of industrial applications will be discussed in terms of material selection, multiplexer reading, pattern designing, and cold-junction compensation. We show that the TFTC array is a powerful tool for research fields such as chip thermal management, lab-on-a-chip, and other novel electrical, optical, or thermal devices. PMID:22931306
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuvychko, Igor V.; Whitaker, James B.; Larson, Bryon W.
Substituent effects are of paramount importance in virtually all fields of fundamental and applied chemistry. Classical and modern examples can be found in organic chemistry (Hammett parameters and Charton steric parameters), inorganic chemistry (trans effect and trans influence), organometallic chemistry (phosphine cone angles), physical chemistry (linear free energy relationships and DFT), biochemistry (protein tertiary structure), medicinal chemistry (SAR maps and BioMAP analysis), polymer chemistry (nonlinear optical and permeation properties and glass transition temperatures), and materials chemistry (stability and luminescent properties of electroluminescent devices and light-to-power conversion efficiencies of fullerene-derivative-based OPV devices).
Dust remobilization in fusion plasmas under steady state conditions
NASA Astrophysics Data System (ADS)
Tolias, P.; Ratynskaia, S.; De Angeli, M.; De Temmerman, G.; Ripamonti, D.; Riva, G.; Bykov, I.; Shalpegin, A.; Vignitchouk, L.; Brochard, F.; Bystrov, K.; Bardin, S.; Litnovsky, A.
2016-02-01
The first combined experimental and theoretical studies of dust remobilization by plasma forces are reported. The main theoretical aspects of remobilization in fusion devices under steady state conditions are analyzed. In particular, the dominant role of adhesive forces is highlighted and generic remobilization conditions—direct lift-up, sliding, rolling—are formulated. A novel experimental technique is proposed, based on controlled adhesion of dust grains on tungsten samples combined with detailed mapping of the dust deposition profile prior and post plasma exposure. Proof-of-principle experiments in the TEXTOR tokamak and the EXTRAP-T2R reversed-field pinch are presented. The versatile environment of the linear device Pilot-PSI allowed for experiments with different magnetic field topologies and varying plasma conditions that were complemented with camera observations.
Rico-Olarte, Carolina; López, Diego M; Blobel, Bernd; Kepplinger, Sara
2017-01-01
In recent years, the interest in user experience (UX) evaluation methods for assessing technology solutions, especially in health systems for children with special needs like cognitive disabilities, has increased. Conduct a systematic mapping study to provide an overview in the field of UX evaluations in rehabilitation video games for children. The definition of research questions, the search for primary studies and the extraction of those studies by inclusion and exclusion criteria lead to the mapping of primary papers according to a classification scheme. Main findings from this study include the detection of the target population of the selected studies, the recognition of two different ways of evaluating UX: (i) user evaluation and (ii) system evaluation, and UX measurements and devices used. This systematic mapping specifies the research gaps identified for future research works in the area.
Particle acceleration on a chip: A laser-driven micro-accelerator for research and industry
NASA Astrophysics Data System (ADS)
Yoder, R. B.; Travish, G.
2013-03-01
Particle accelerators are conventionally built from radio-frequency metal cavities, but this technology limits the maximum energy available and prevents miniaturization. In the past decade, laser-powered acceleration has been intensively studied as an alternative technology promising much higher accelerating fields in a smaller footprint and taking advantage of recent advances in photonics. Among the more promising approaches are those based on dielectric field-shaping structures. These ``dielectric laser accelerators'' (DLAs) scale with the laser wavelength employed and can be many orders of magnitude smaller than conventional accelerators; DLAs may enable the production of high-intensity, ultra-short relativistic electron bunches in a chip-scale device. When combined with a high- Z target or an optical-period undulator, these systems could produce high-brilliance x-rays from a breadbox-sized device having multiple applications in imaging, medicine, and homeland security. In our research program we have developed one such DLA, the Micro-Accelerator Platform (MAP). We describe the fundamental physics, our fabrication and testing program, and experimental results to date, along with future prospects for MAP-based light-sources and some remaining challenges. Supported in part by the Defense Threat Reduction Agency and National Nuclear Security Administration.
Spatial mapping and analysis of aerosols during a forest fire using computational mobile microscopy
NASA Astrophysics Data System (ADS)
Wu, Yichen; Shiledar, Ashutosh; Luo, Yi; Wong, Jeffrey; Chen, Cheng; Bai, Bijie; Zhang, Yibo; Tamamitsu, Miu; Ozcan, Aydogan
2018-02-01
Forest fires are a major source of particulate matter (PM) air pollution on a global scale. The composition and impact of PM are typically studied using only laboratory instruments and extrapolated to real fire events owing to a lack of analytical techniques suitable for field-settings. To address this and similar field test challenges, we developed a mobilemicroscopy- and machine-learning-based air quality monitoring platform called c-Air, which can perform air sampling and microscopic analysis of aerosols in an integrated portable device. We tested its performance for PM sizing and morphological analysis during a recent forest fire event in La Tuna Canyon Park by spatially mapping the PM. The result shows that with decreasing distance to the fire site, the PM concentration increases dramatically, especially for particles smaller than 2 µm. Image analysis from the c-Air portable device also shows that the increased PM is comparatively strongly absorbing and asymmetric, with an aspect ratio of 0.5-0.7. These PM features indicate that a major portion of the PM may be open-flame-combustion-generated element carbon soot-type particles. This initial small-scale experiment shows that c-Air has some potential for forest fire monitoring.
NASA Astrophysics Data System (ADS)
Smieska, Louisa Marion
Organic semiconductors could have wide-ranging applications in lightweight, efficient electronic circuits. However, several fundamental questions regarding organic electronic device behavior have not yet been fully addressed, including the nature of chemical charge traps, and robust models for injection and transport. Many studies focus on engineering devices through bulk transport measurements, but it is not always possible to infer the microscopic behavior leading to the observed measurements. In this thesis, we present scanning-probe microscope studies of organic semiconductor devices in an effort to connect local properties with local device behavior. First, we study the chemistry of charge trapping in pentacene transistors. Working devices are doped with known pentacene impurities and the extent of charge trap formation is mapped across the transistor channel. Trap-clearing spectroscopy is employed to measure an excitation of the pentacene charge trap species, enabling identification of the degradationrelated chemical trap in pentacene. Second, we examine transport and trapping in peryelene diimide (PDI) transistors. Local mobilities are extracted from surface potential profiles across a transistor channel, and charge injection kinetics are found to be highly sensitive to electrode cleanliness. Trap-clearing spectra generally resemble PDI absorption spectra, but one derivative yields evidence indicating variation in trap-clearing mechanisms for different surface chemistries. Trap formation rates are measured and found to be independent of surface chemistry, contradicting a proposed silanol trapping mechanism. Finally, we develop a variation of scanning Kelvin probe microscopy that enables measurement of electric fields through a position modulation. This method avoids taking a numeric derivative of potential, which can introduce high-frequency noise into the electric field signal. Preliminary data is presented, and the theoretical basis for electric field noise in both methods is examined.
NASA Astrophysics Data System (ADS)
Roberts, John
2005-11-01
The rapid advancements in micro/nano biotechnology demand quantitative tools for characterizing microfluidic flows in lab-on-a-chip applications, validation of computational results for fully 3D flows in complex micro-devices, and efficient observation of cellular dynamics in 3D. We present a novel 3D micron-scale DPTV (defocused particle tracking velocimetry) that is capable of mapping out 3D Lagrangian, as well as 3D Eulerian velocity flow fields at sub-micron resolution and with one camera. The main part of the imaging system is an epi-fluorescent microscope (Olympus IX 51), and the seeding particles are fluorescent particles with diameter range 300nm - 10um. A software package has been developed for identifying (x,y,z,t) coordinates of the particles using the defocused images. Using the imaging system, we successfully mapped the pressure driven flow fields in microfluidic channels. In particular, we measured the Laglangian flow fields in a microfluidic channel with a herring bone pattern at the bottom, the later is used to enhance fluid mixing in lateral directions. The 3D particle tracks revealed the flow structure that has only been seen in numerical computation. This work is supported by the National Science Foundation (CTS - 0514443), the Nanobiotechnology Center at Cornell, and The New York State Center for Life Science Enterprise.
A method for safety testing of radiofrequency/microwave-emitting devices using MRI.
Alon, Leeor; Cho, Gene Y; Yang, Xing; Sodickson, Daniel K; Deniz, Cem M
2015-11-01
Strict regulations are imposed on the amount of radiofrequency (RF) energy that devices can emit to prevent excessive deposition of RF energy into the body. In this study, we investigated the application of MR temperature mapping and 10-g average specific absorption rate (SAR) computation for safety evaluation of RF-emitting devices. Quantification of the RF power deposition was shown for an MRI-compatible dipole antenna and a non-MRI-compatible mobile phone via phantom temperature change measurements. Validation of the MR temperature mapping method was demonstrated by comparison with physical temperature measurements and electromagnetic field simulations. MR temperature measurements alongside physical property measurements were used to reconstruct 10-g average SAR. The maximum temperature change for a dipole antenna and the maximum 10-g average SAR were 1.83°C and 12.4 W/kg, respectively, for simulations and 1.73°C and 11.9 W/kg, respectively, for experiments. The difference between MR and probe thermometry was <0.15°C. The maximum temperature change and the maximum 10-g average SAR for a cell phone radiating at maximum output for 15 min was 1.7°C and 0.54 W/kg, respectively. Information acquired using MR temperature mapping and thermal property measurements can assess RF/microwave safety with high resolution and fidelity. © 2014 Wiley Periodicals, Inc.
A Method for Safety Testing of Radiofrequency/Microwave-Emitting Devices Using MRI
Alon, Leeor; Cho, Gene Y.; Yang, Xing; Sodickson, Daniel K.; Deniz, Cem M.
2015-01-01
Purpose Strict regulations are imposed on the amount of radiofrequency (RF) energy that devices can emit to prevent excessive deposition of RF energy into the body. In this study, we investigated the application of MR temperature mapping and 10-g average specific absorption rate (SAR) computation for safety evaluation of RF-emitting devices. Methods Quantification of the RF power deposition was shown for an MRI-compatible dipole antenna and a non–MRI-compatible mobile phone via phantom temperature change measurements. Validation of the MR temperature mapping method was demonstrated by comparison with physical temperature measurements and electromagnetic field simulations. MR temperature measurements alongside physical property measurements were used to reconstruct 10-g average SAR. Results The maximum temperature change for a dipole antenna and the maximum 10-g average SAR were 1.83° C and 12.4 W/kg, respectively, for simulations and 1.73° C and 11.9 W/kg, respectively, for experiments. The difference between MR and probe thermometry was <0.15° C. The maximum temperature change and the maximum 10-g average SAR for a cell phone radiating at maximum output for 15 min was 1.7° C and 0.54 W/kg, respectively. Conclusion Information acquired using MR temperature mapping and thermal property measurements can assess RF/microwave safety with high resolution and fidelity. PMID:25424724
Efficient design of nanoplasmonic waveguide devices using the space mapping algorithm.
Dastmalchi, Pouya; Veronis, Georgios
2013-12-30
We show that the space mapping algorithm, originally developed for microwave circuit optimization, can enable the efficient design of nanoplasmonic waveguide devices which satisfy a set of desired specifications. Space mapping utilizes a physics-based coarse model to approximate a fine model accurately describing a device. Here the fine model is a full-wave finite-difference frequency-domain (FDFD) simulation of the device, while the coarse model is based on transmission line theory. We demonstrate that simply optimizing the transmission line model of the device is not enough to obtain a device which satisfies all the required design specifications. On the other hand, when the iterative space mapping algorithm is used, it converges fast to a design which meets all the specifications. In addition, full-wave FDFD simulations of only a few candidate structures are required before the iterative process is terminated. Use of the space mapping algorithm therefore results in large reductions in the required computation time when compared to any direct optimization method of the fine FDFD model.
Perez, Camilo; Chen, Hong; Matula, Thomas J; Karzova, Maria; Khokhlova, Vera A
2013-08-01
Extracorporeal shock wave therapy (ESWT) uses acoustic pulses to treat certain musculoskeletal disorders. In this paper the acoustic field of a clinical portable ESWT device (Duolith SD1) was characterized. Field mapping was performed in water for two different standoffs of the electromagnetic head (15 or 30 mm) using a fiber optic probe hydrophone. Peak positive pressures at the focus ranged from 2 to 45 MPa, while peak negative pressures ranged from -2 to -11 MPa. Pulse rise times ranged from 8 to 500 ns; shock formation did not occur for any machine settings. The maximum standard deviation in peak pressure at the focus was 1.2%, indicating that the Duolith SD1 generates stable pulses. The results compare qualitatively, but not quantitatively with manufacturer specifications. Simulations were carried out for the short standoff by matching a Khokhlov-Zabolotskaya-Kuznetzov equation to the measured field at a plane near the source, and then propagating the wave outward. The results of modeling agree well with experimental data. The model was used to analyze the spatial structure of the peak pressures. Predictions from the model suggest that a true shock wave could be obtained in water if the initial pressure output of the device were doubled.
Perez, Camilo; Chen, Hong; Matula, Thomas J.; Karzova, Maria; Khokhlova, Vera A.
2013-01-01
Extracorporeal shock wave therapy (ESWT) uses acoustic pulses to treat certain musculoskeletal disorders. In this paper the acoustic field of a clinical portable ESWT device (Duolith SD1) was characterized. Field mapping was performed in water for two different standoffs of the electromagnetic head (15 or 30 mm) using a fiber optic probe hydrophone. Peak positive pressures at the focus ranged from 2 to 45 MPa, while peak negative pressures ranged from −2 to −11 MPa. Pulse rise times ranged from 8 to 500 ns; shock formation did not occur for any machine settings. The maximum standard deviation in peak pressure at the focus was 1.2%, indicating that the Duolith SD1 generates stable pulses. The results compare qualitatively, but not quantitatively with manufacturer specifications. Simulations were carried out for the short standoff by matching a Khokhlov-Zabolotskaya-Kuznetzov equation to the measured field at a plane near the source, and then propagating the wave outward. The results of modeling agree well with experimental data. The model was used to analyze the spatial structure of the peak pressures. Predictions from the model suggest that a true shock wave could be obtained in water if the initial pressure output of the device were doubled. PMID:23927207
Imaging snake orbits at graphene n -p junctions
NASA Astrophysics Data System (ADS)
Kolasiński, K.; Mreńca-Kolasińska, A.; Szafran, B.
2017-01-01
We consider conductance mapping of the snake orbits confined along the n -p junction defined in graphene by the electrostatic doping in the quantum Hall regime. We explain the periodicity of conductance oscillations at the magnetic field and the Fermi energy scales by the properties of the n -p junction as a conducting channel. We evaluate the conductance maps for a floating gate scanning the surface of the device. In the quantum Hall conditions the currents flow near the edges of the sample and along the n -p junction. The conductance mapping resolves only the n -p junction and not the edges. The conductance oscillations along the junction are found in the maps with periodicity related to the cyclotron orbits of the scattering current. Stronger probe potentials provide support to localized resonances at one of the sides of the junction with current loops that interfere with the n -p junction currents. The interference results in a series of narrow lines parallel to the junction with positions that strongly depend on the magnetic field through the Aharonov-Bohm effect. The consequences of a limited transparency of finite-width n -p junctions are also discussed.
Conformal mapping in optical biosensor applications.
Zumbrum, Matthew E; Edwards, David A
2015-09-01
Optical biosensors are devices used to investigate surface-volume reaction kinetics. Current mathematical models for reaction dynamics rely on the assumption of unidirectional flow within these devices. However, new devices, such as the Flexchip, include a geometry that introduces two-dimensional flow, complicating the depletion of the volume reactant. To account for this, a previous mathematical model is extended to include two-dimensional flow, and the Schwarz-Christoffel mapping is used to relate the physical device geometry to that for a device with unidirectional flow. Mappings for several Flexchip dimensions are considered, and the ligand depletion effect is investigated for one of these mappings. Estimated rate constants are produced for simulated data to quantify the inclusion of two-dimensional flow in the mathematical model.
Application of full field optical studies for pulsatile flow in a carotid artery phantom
Nemati, M.; Loozen, G. B.; van der Wekken, N.; van de Belt, G.; Urbach, H. P.; Bhattacharya, N.; Kenjeres, S.
2015-01-01
A preliminary comparative measurement between particle imaging velocimetry (PIV) and laser speckle contrast analysis (LASCA) to study pulsatile flow using ventricular assist device in a patient-specific carotid artery phantom is reported. These full-field optical techniques have both been used to study flow and extract complementary parameters. We use the high spatial resolution of PIV to generate a full velocity map of the flow field and the high temporal resolution of LASCA to extract the detailed frequency spectrum of the fluid pulses. Using this combination of techniques a complete study of complex pulsatile flow in an intricate flow network can be studied. PMID:26504652
Magnetic Sensitivity of AlMn TESes and Shielding Considerations for Next-Generation CMB Surveys
NASA Astrophysics Data System (ADS)
Vavagiakis, E. M.; Henderson, S. W.; Zheng, K.; Cho, H.-M.; Cothard, N. F.; Dober, B.; Duff, S. M.; Gallardo, P. A.; Hilton, G.; Hubmayr, J.; Irwin, K. D.; Koopman, B. J.; Li, D.; Nati, F.; Niemack, M. D.; Reintsema, C. D.; Simon, S.; Stevens, J. R.; Suzuki, A.; Westbrook, B.
2018-05-01
In the next decade, new ground-based cosmic microwave background (CMB) experiments such as Simons Observatory, CCAT-prime, and CMB-S4 will increase the number of detectors observing the CMB by an order of magnitude or more, dramatically improving our understanding of cosmology and astrophysics. These projects will deploy receivers with as many as hundreds of thousands of transition edge sensor (TES) bolometers coupled to superconducting quantum interference device (SQUID)-based readout systems. It is well known that superconducting devices such as TESes and SQUIDs are sensitive to magnetic fields. However, the effects of magnetic fields on TESes are not easily predicted due to the complex behavior of the superconducting transition, which motivates direct measurements of the magnetic sensitivity of these devices. We present comparative four-lead measurements of the critical temperature versus applied magnetic field of AlMn TESes varying in geometry, doping, and leg length, including Advanced ACT and POLARBEAR-2/Simons Array bolometers. MoCu ACTPol TESes are also tested and are found to be more sensitive to magnetic fields than the AlMn devices. We present an observation of weak-link-like behavior in AlMn TESes at low critical currents. We also compare measurements of magnetic sensitivity for time division multiplexing SQUIDs and frequency division multiplexing microwave (μ MUX) rf-SQUIDs. We discuss the implications of our measurements on the magnetic shielding required for future experiments that aim to map the CMB to near-fundamental limits.
Map synchronization in optical communication systems
NASA Technical Reports Server (NTRS)
Gagliardi, R. M.; Mohanty, N.
1973-01-01
The time synchronization problem in an optical communication system is approached as a problem of estimating the arrival time (delay variable) of a known transmitted field. Maximum aposteriori (MAP) estimation procedures are used to generate optimal estimators, with emphasis placed on their interpretation as a practical system device, Estimation variances are used to aid in the design of the transmitter signals for best synchronization. Extension is made to systems that perform separate acquisition and tracking operations during synchronization. The closely allied problem of maintaining timing during pulse position modulation is also considered. The results have obvious application to optical radar and ranging systems, as well as the time synchronization problem.
Development of a telemetry and yield-mapping system of olive harvester.
Castillo-Ruiz, Francisco J; Pérez-Ruiz, Manuel; Blanco-Roldán, Gregorio L; Gil-Ribes, Jesús A; Agüera, Juan
2015-02-10
Sensors, communication systems and geo-reference units are required to achieve an optimized management of agricultural inputs with respect to the economic and environmental aspects of olive groves. In this study, three commercial olive harvesters were tracked during two harvesting seasons in Spain and Chile using remote and autonomous equipment that was developed to determine their time efficiency and effective based on canopy shaking for fruit detachment. These harvesters work in intensive/high-density (HD) and super-high-density (SHD) olive orchards. A GNSS (Global Navigation Satellite System) and GSM (Global System for Mobile Communications) device was installed to track these harvesters. The GNSS receiver did not affect the driver's work schedule. Time elements methodology was adapted to the remote data acquisition system. The effective field capacity and field efficiency were investigated. In addition, the field shape, row length, angle between headland alley and row, and row alley width were measured to determinate the optimum orchard design parameters value. The SHD olive harvester showed significant lower effective field capacity values when alley width was less than 4 m. In addition, a yield monitor was developed and installed on a traditional olive harvester to obtain a yield map from the harvested area. The hedge straddle harvester stood out for its highly effective field capacity; nevertheless, a higher field efficiency was provided by a non-integral lateral canopy shaker. All of the measured orchard parameters have influenced machinery yields, whether effective field capacity or field efficiency. A saving of 40% in effective field capacity was achieved with a reduction from 4 m or higher to 3.5 m in alley width for SHD olive harvester. A yield map was plotted using data that were acquired by a yield monitor, reflecting the yield gradient in spite of the larger differences between tree yields.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Geyuan
My research projects are focused on application of photonics, optics and micro- fabrication technology in energy related fields. Photonic crystal fabrication research has the potential to help us generate and use light more efficiently. In order to fabricate active 3D woodpile photonic structure devices, a woodpile template is needed to enable the crystal growth process. We developed a silica woodpile template fabrication process based on two polymer transfer molding technique. A silica woodpile template is demonstrated to work with temperature up to 900 C. It provides a more economical way to explore making better 3D active woodpile photonic devices likemore » 3D photonic light emitting diodes (LED). Optical research on solar cell testing has the potential to make our energy generation more e cient and greener. PL imaging and LBIC mapping are used to measure CdTe solar cells with different back contacts. A strong correlation between PL image defects and LBIC map defects is observed. This opens up potential application for PL imaging in fast solar cell inspection. 2D laser IV scan shows its usage in 2D parameter mapping. We show its ability to generate important information about solar cell performance locally around PL image defects.« less
NASA Astrophysics Data System (ADS)
Noguchi, A.; Oda, H.; Yamamoto, Y.; Usui, A.; Sato, M.; Kawai, J.
2017-06-01
Ferromanganese crusts record long-term deep-sea environmental changes. Thus, providing their reliable high-resolution age models is important. We applied a magnetostratigraphic technique to estimate the growth rate of a ferromanganese crust using scanning SQUID (superconducting quantum interference device) microscope (SSM). SSM is designed to map the magnetic field across thin sections with submillimeter resolution. The crust sample was taken from the Takuyo-Daigo Seamount, northwestern Pacific, and recorded a limited supply of dust and sediment from continents. After drift correction and removal of spike noises, the magnetic field values were stacked within the areas of high signal-to-noise ratios. By correlating the obtained profiles with a standard geomagnetic polarity timescale, we obtained an average growth rate of 3.37 ± 0.06 mm/Ma, which is consistent with that obtained by 10Be/9Be geochronology (2.93 ± 0.15 mm/Ma). S ratio mapping shows low values after 3 Ma, associated with voids between columnar structures.
2016-04-15
The newest instrument, an infrared camera called the High-resolution Airborne Wideband Camera-Plus (HAWC+), was installed on the Stratospheric Observatory for Infrared Astronomy, SOFIA, in April of 2016. This is the only currently operating astronomical camera that makes images using far-infrared light, allowing studies of low-temperature early stages of star and planet formation. HAWC+ includes a polarimeter, a device that measures the alignment of incoming light waves. With the polarimeter, HAWC+ can map magnetic fields in star forming regions and in the environment around the supermassive black hole at the center of the Milky Way galaxy. These new maps can reveal how the strength and direction of magnetic fields affect the rate at which interstellar clouds condense to form new stars. A team led by C. Darren Dowell at NASA’s Jet Propulsion Laboratory and including participants from more than a dozen institutions developed the instrument.
NASA Astrophysics Data System (ADS)
Poggio, Matteo; Brown, David J.; Gasch, Caley K.; Brooks, Erin S.; Yourek, Matt A.
2015-04-01
In the Palouse region of eastern Washington and northern Idaho (USA), spatially discontinuous restrictive layers impede rooting growth and water infiltration. Consequently, accurate maps showing the depth and spatial extent of these restrictive layers are essential for watershed hydrologic modeling appropriate for precision agriculture. In this presentation, we report on the use of a Visible and Near-Infrared (VisNIR) penetrometer fore optic to construct detailed maps of three wheat fields in the Palouse region. The VisNIR penetrometer was used to deliver in situ soil reflectance to an Analytical Spectral Devices (ASD, Boulder, CO, USA) spectrometer and simultaneously acquire insertion force. With a hydraulic push-type soil coring systems for insertion (e.g. Giddings), we collected soil spectra and insertion force data along 41m x 41m grid points (2 fields) and 50m x 50m grid points (1 field) to ≈80cm depth, in addition to interrogation points at 36 representative instrumented locations per field. At each of the 36 instrumented locations, two soil cores were extracted for laboratory determination of clay content and bulk density. We developed calibration models of soil clay content and bulk density with spectra and insertion force collected in situ, using partial least squares regression 2 (PLSR2). Applying spline functions, we delineated clay and bulk density profiles at each points (grid and 24 locations). The soil profiles were then used as inputs in a regression-kriging model with terrain indexes and ECa data (derived from an EM38 field survey, Geonics, Mississauga, Ontario, Canada) as covariates to generate 3D soil maps. Preliminary results show that the VisNIR penetrometer can capture the spatial patterns of restrictive layers. Work is ongoing to evaluate the prediction accuracy of penetrometer-derived 3D clay content and restriction layer maps.
Beam shaping to provide round and square-shaped beams in optical systems of high-power lasers
NASA Astrophysics Data System (ADS)
Laskin, Alexander; Laskin, Vadim
2016-05-01
Optical systems of modern high-power lasers require control of irradiance distribution: round or square-shaped flat-top or super-Gaussian irradiance profiles are optimum for amplification in MOPA lasers and for thermal load management while pumping of crystals of solid-state ultra-short pulse lasers to control heat and minimize its impact on the laser power and beam quality while maximizing overall laser efficiency, variable profiles are also important in irradiating of photocathode of Free Electron lasers (FEL). It is suggested to solve the task of irradiance re-distribution using field mapping refractive beam shapers like piShaper. The operational principle of these devices presumes transformation of laser beam intensity from Gaussian to flat-top one with high flatness of output wavefront, saving of beam consistency, providing collimated output beam of low divergence, high transmittance, extended depth of field, negligible residual wave aberration, and achromatic design provides capability to work with ultra-short pulse lasers having broad spectrum. Using the same piShaper device it is possible to realize beams with flat-top, inverse Gauss or super Gauss irradiance distribution by simple variation of input beam diameter, and the beam shape can be round or square with soft edges. This paper will describe some design basics of refractive beam shapers of the field mapping type and optical layouts of their applying in optical systems of high-power lasers. Examples of real implementations and experimental results will be presented as well.
NASA Technical Reports Server (NTRS)
Mcmurtry, G. J.; Petersen, G. W. (Principal Investigator); Wilson, A. D.
1974-01-01
The author has identified the following significant results. ERTS data was used to map land cover in agricultural areas, although in some parts of Pennsylvania, with small irregular fields, many of the pixels overlap field boundaries and cause difficulties in classification. Various techniques and devices were used to display the results of these land cover analyses. The most promising approach would be a user-interactive color monitor interfaced with a large computer so that classification results could be displayed on the CRT and these results output by a hard complete copier.
Semantic Data And Visualization Techniques Applied To Geologic Field Mapping
NASA Astrophysics Data System (ADS)
Houser, P. I. Q.; Royo-Leon, M.; Munoz, R.; Estrada, E.; Villanueva-Rosales, N.; Pennington, D. D.
2015-12-01
Geologic field mapping involves the use of technology before, during, and after visiting a site. Geologists utilize hardware such as Global Positioning Systems (GPS) connected to mobile computing platforms such as tablets that include software such as ESRI's ArcPad and other software to produce maps and figures for a final analysis and report. Hand written field notes contain important information and drawings or sketches of specific areas within the field study. Our goal is to collect and geo-tag final and raw field data into a cyber-infrastructure environment with an ontology that allows for large data processing, visualization, sharing, and searching, aiding in connecting field research with prior research in the same area and/or aid with experiment replication. Online searches of a specific field area return results such as weather data from NOAA and QuakeML seismic data from USGS. These results that can then be saved to a field mobile device and searched while in the field where there is no Internet connection. To accomplish this we created the GeoField ontology service using the Web Ontology Language (OWL) and Protégé software. Advanced queries on the dataset can be made using reasoning capabilities can be supported that go beyond a standard database service. These improvements include the automated discovery of data relevant to a specific field site and visualization techniques aimed at enhancing analysis and collaboration while in the field by draping data over mobile views of the site using augmented reality. A case study is being performed at University of Texas at El Paso's Indio Mountains Research Station located near Van Horn, Texas, an active multi-disciplinary field study site. The user can interactively move the camera around the study site and view their data digitally. Geologist's can check their data against the site in real-time and improve collaboration with another person as both parties have the same interactive view of the data.
Vitale, W. A.; Tamagnone, M.; Émond, N.; Le Drogoff, B.; Capdevila, S.; Skrivervik, A.; Chaker, M.; Mosig, J. R.; Ionescu, A. M.
2017-01-01
The modulated scattering technique is based on the use of reconfigurable electromagnetic scatterers, structures able to scatter and modulate an impinging electromagnetic field in function of a control signal. The modulated scattering technique is used in a wide range of frequencies up to millimeter waves for various applications, such as field mapping of circuits or antennas, radio-frequency identification devices and imaging applications. However, its implementation in the terahertz domain remains challenging. Here, we describe the design and experimental demonstration of the modulated scattering technique at terahertz frequencies. We characterize a modulated scatterer consisting in a bowtie antenna loaded with a vanadium dioxide switch, actuated using a continuous current. The modulated scatterer behavior is demonstrated using a time domain terahertz spectroscopy setup and shows significant signal strength well above 0.5 THz, which makes this device a promising candidate for the development of fast and energy-efficient THz communication devices and imaging systems. Moreover, our experiments allowed us to verify the operation of a single micro-meter sized VO2 switch at terahertz frequencies, thanks to the coupling provided by the antenna. PMID:28145523
DC current distribution mapping system of the solar panels using a HTS-SQUID gradiometer
NASA Astrophysics Data System (ADS)
Miyazaki, Shingo; Kasuya, Syohei; Mawardi Saari, Mohd; Sakai, Kenji; Kiwa, Toshihiko; Tsukamoto, Akira; Adachi, Seiji; Tanabe, Keiichi; Tsukada, Keiji
2014-05-01
Solar panels are expected to play a major role as a source of sustainable energy. In order to evaluate solar panels, non-destructive tests, such as defect inspections and response property evaluations, are necessary. We developed a DC current distribution mapping system of the solar panels using a High Critical Temperature Superconductor Superconducting Quantum Interference Device (HTS-SQUID) gradiometer with ramp edge type Josephson junctions. Two independent components of the magnetic fields perpendicular to the panel surface (∂Bz/∂x, ∂Bz/∂y) were detected. The direct current of the solar panel is visualized by calculating the composition of the two signal components, the phase angle, and mapping the DC current vector. The developed system can evaluate the uniformity of DC current distributions precisely and may be applicable for defect detection of solar panels.
Energetic mapping of oxide traps in MoS2 field-effect transistors
NASA Astrophysics Data System (ADS)
Illarionov, Yury Yu; Knobloch, Theresia; Waltl, Michael; Rzepa, Gerhard; Pospischil, Andreas; Polyushkin, Dmitry K.; Furchi, Marco M.; Mueller, Thomas; Grasser, Tibor
2017-06-01
The performance of MoS2 transistors is strongly affected by charge trapping in oxide traps with very broad distributions of time constants. These defects degrade the mobility and additionally lead to the hysteresis of the gate transfer characteristics, which presents a crucial performance and reliability issue for these new technologies. Here we perform a detailed study of the hysteresis in double-gated MoS2 FETs and show that this issue is nothing else than a combination of threshold voltage shifts resulting from positive and negative bias-temperature instabilities. While these instabilities are well known from silicon devices, they are even more important in 2D devices given the considerably larger defect densities. Most importantly, the magnitudes of these threshold voltage shifts depend strongly on the density and energetic alignment of the active oxide traps. Based on this, we introduce the incremental hysteresis sweep method which allows for an accurate mapping of these defects and extract their energy distributions from simulations. By applying our method to analyze the impact of oxide traps situated in the Al2O3 top gate of several devices, we confirm its versatility. Since all 2D devices investigated so far suffer from a similar hysteresis behavior, the incremental hysteresis sweep method provides a unique and powerful way for the detailed characterization of their defect bands.
Pereira, Maria J; Amaral, Joao S; Silva, Nuno J O; Amaral, Vitor S
2016-12-01
Determining and acting on thermo-physical properties at the nanoscale is essential for understanding/managing heat distribution in micro/nanostructured materials and miniaturized devices. Adequate thermal nano-characterization techniques are required to address thermal issues compromising device performance. Scanning thermal microscopy (SThM) is a probing and acting technique based on atomic force microscopy using a nano-probe designed to act as a thermometer and resistive heater, achieving high spatial resolution. Enabling direct observation and mapping of thermal properties such as thermal conductivity, SThM is becoming a powerful tool with a critical role in several fields, from material science to device thermal management. We present an overview of the different thermal probes, followed by the contribution of SThM in three currently significant research topics. First, in thermal conductivity contrast studies of graphene monolayers deposited on different substrates, SThM proves itself a reliable technique to clarify the intriguing thermal properties of graphene, which is considered an important contributor to improve the performance of downscaled devices and materials. Second, SThM's ability to perform sub-surface imaging is highlighted by thermal conductivity contrast analysis of polymeric composites. Finally, an approach to induce and study local structural transitions in ferromagnetic shape memory alloy Ni-Mn-Ga thin films using localized nano-thermal analysis is presented.
NASA Astrophysics Data System (ADS)
Bursztyn, N.; Walker, A.; Shelton, B.; Pederson, J. L.
2015-12-01
Geoscience educators have long considered field trips to be the most effective way of attracting students into the discipline. A solution for bringing student-driven, engaging, kinesthetic field experiences to a broader audience lies in ongoing advances in mobile-communication technology. This NSF-TUES funded project developed three virtual field trip experiences for smartphones and tablets (on geologic time, geologic structures, and hydrologic processes), and then tested their performance in terms of student interest in geoscience as well as gains in learning. The virtual field trips utilize the GPS capabilities of smartphones and tablets, requiring the students to navigate outdoors in the real world while following a map on their smart device. This research, involving 873 students at five different college campuses, used analysis of covariance (ANCOVA) and multiple regression for statistical methods. Gains in learning across all participants are minor, and not statistically different between intervention and control groups. Predictors of gains in content comprehension for all three modules are the students' initial interest in the subject and their base level knowledge. For the Geologic Time and Structures modules, being a STEM major is an important predictor of student success. Most pertinent for this research, for Geologic Time and Hydrologic Processes, gains in student learning can be predicted by having completed those particular virtual field trips. Gender and race had no statistical impact, indicating that the virtual field trip modules have broad reach across student demographics. In related research, these modules have been shown to increase student interest in the geosciences more definitively than the learning gains here. Thus, future work should focus on improving the educational impact of mobile-device field trips, as their eventual incorporation into curricula is inevitable.
Interpretation and mapping of geological features using mobile devices for 3D outcrop modelling
NASA Astrophysics Data System (ADS)
Buckley, Simon J.; Kehl, Christian; Mullins, James R.; Howell, John A.
2016-04-01
Advances in 3D digital geometric characterisation have resulted in widespread adoption in recent years, with photorealistic models utilised for interpretation, quantitative and qualitative analysis, as well as education, in an increasingly diverse range of geoscience applications. Topographic models created using lidar and photogrammetry, optionally combined with imagery from sensors such as hyperspectral and thermal cameras, are now becoming commonplace in geoscientific research. Mobile devices (tablets and smartphones) are maturing rapidly to become powerful field computers capable of displaying and interpreting 3D models directly in the field. With increasingly high-quality digital image capture, combined with on-board sensor pose estimation, mobile devices are, in addition, a source of primary data, which can be employed to enhance existing geological models. Adding supplementary image textures and 2D annotations to photorealistic models is therefore a desirable next step to complement conventional field geoscience. This contribution reports on research into field-based interpretation and conceptual sketching on images and photorealistic models on mobile devices, motivated by the desire to utilise digital outcrop models to generate high quality training images (TIs) for multipoint statistics (MPS) property modelling. Representative training images define sedimentological concepts and spatial relationships between elements in the system, which are subsequently modelled using artificial learning to populate geocellular models. Photorealistic outcrop models are underused sources of quantitative and qualitative information for generating TIs, explored further in this research by linking field and office workflows through the mobile device. Existing textured models are loaded to the mobile device, allowing rendering in a 3D environment. Because interpretation in 2D is more familiar and comfortable for users, the developed application allows new images to be captured with the device's digital camera, and an interface is available for annotating (interpreting) the image using lines and polygons. Image-to-geometry registration is then performed using a developed algorithm, initialised using the coarse pose from the on-board orientation and positioning sensors. The annotations made on the captured images are then available in the 3D model coordinate system for overlay and export. This workflow allows geologists to make interpretations and conceptual models in the field, which can then be linked to and refined in office workflows for later MPS property modelling.
NASA Astrophysics Data System (ADS)
Elitez, İrem; Yaltırak, Cenk; Zabcı, Cengiz; Şahin, Murat
2015-04-01
The precise geological mapping is one of the most important issues in geological studies. Documenting the spatial distribution of geological bodies and their contacts play a crucial role on interpreting the tectonic evolution of any region. Although the traditional field techniques are still accepted to be the most fundamental tools in construction of geological maps, we suggest that the integration of digital technologies to the classical methods significantly increases the resolution and the quality of such products. We simply follow the following steps in integration of the digital data with the traditional field observations. First, we create the digital elevation model (DEM) of the region of interest by interpolating the digital contours of 1:25000 scale topographic maps to 10 m of ground pixel resolution. The non-commercial Google Earth satellite imagery and geological maps of previous studies are draped over the interpolated DEMs in the second stage. The integration of all spatial data is done by using the market leading GIS software, ESRI ArcGIS. We make the preliminary interpretation of major structures as tectonic lineaments and stratigraphic contacts. These preliminary maps are controlled and precisely coordinated during the field studies by using mobile tablets and/or phablets with GPS receivers. The same devices are also used in measuring and recording the geologic structures of the study region. Finally, all digitally collected measurements and observations are added to the GIS database and we finalise our geological map with all available information. We applied this integrated method to map the Burdur-Fethiye Shear Zone (BFSZ) in the southwest Turkey. The BFSZ is an active sinistral 60-to-90 km-wide shear zone, which prolongs about 300 km-long between Suhut-Cay in the northeast and Köyceğiz Lake-Kalkan in the southwest on land. The numerous studies suggest contradictory models not only about the evolution but also about the fault geometry of this wide deformation zone. In our study, we have mapped this complicated region since 2008 by using the data and the steps, which are described briefly above. After our joint-analyses, we show that there is no continuous single and narrow fault, the Burdur-Fethiye Fault, as it was previously suggested by many researches. Instead, the whole region is deformed under the oblique-sinistral shearing with considerable amount of extension, which causes a counterclockwise rotation within the zone.
Kavuma, Awusi; Glegg, Martin; Metwaly, Mohamed; Currie, Garry; Elliott, Alex
2010-01-21
In vivo dosimetry is one of the quality assurance tools used in radiotherapy to monitor the dose delivered to the patient. Electronic portal imaging device (EPID) images for a set of solid water phantoms of varying thicknesses were acquired and the data fitted onto a quadratic equation, which relates the reduction in photon beam intensity to the attenuation coefficient and material thickness at a reference condition. The quadratic model is used to convert the measured grey scale value into water equivalent path length (EPL) at each pixel for any material imaged by the detector. For any other non-reference conditions, scatter, field size and MU variation effects on the image were corrected by relative measurements using an ionization chamber and an EPID. The 2D EPL is linked to the percentage exit dose table, for different thicknesses and field sizes, thereby converting the plane pixel values at each point into a 2D dose map. The off-axis ratio is corrected using envelope and boundary profiles generated from the treatment planning system (TPS). The method requires field size, monitor unit and source-to-surface distance (SSD) as clinical input parameters to predict the exit dose, which is then used to determine the entrance dose. The measured pixel dose maps were compared with calculated doses from TPS for both entrance and exit depth of phantom. The gamma index at 3% dose difference (DD) and 3 mm distance to agreement (DTA) resulted in an average of 97% passing for the square fields of 5, 10, 15 and 20 cm. The exit dose EPID dose distributions predicted by the algorithm were in better agreement with TPS-calculated doses than phantom entrance dose distributions.
NASA Astrophysics Data System (ADS)
Kavuma, Awusi; Glegg, Martin; Metwaly, Mohamed; Currie, Garry; Elliott, Alex
2010-01-01
In vivo dosimetry is one of the quality assurance tools used in radiotherapy to monitor the dose delivered to the patient. Electronic portal imaging device (EPID) images for a set of solid water phantoms of varying thicknesses were acquired and the data fitted onto a quadratic equation, which relates the reduction in photon beam intensity to the attenuation coefficient and material thickness at a reference condition. The quadratic model is used to convert the measured grey scale value into water equivalent path length (EPL) at each pixel for any material imaged by the detector. For any other non-reference conditions, scatter, field size and MU variation effects on the image were corrected by relative measurements using an ionization chamber and an EPID. The 2D EPL is linked to the percentage exit dose table, for different thicknesses and field sizes, thereby converting the plane pixel values at each point into a 2D dose map. The off-axis ratio is corrected using envelope and boundary profiles generated from the treatment planning system (TPS). The method requires field size, monitor unit and source-to-surface distance (SSD) as clinical input parameters to predict the exit dose, which is then used to determine the entrance dose. The measured pixel dose maps were compared with calculated doses from TPS for both entrance and exit depth of phantom. The gamma index at 3% dose difference (DD) and 3 mm distance to agreement (DTA) resulted in an average of 97% passing for the square fields of 5, 10, 15 and 20 cm. The exit dose EPID dose distributions predicted by the algorithm were in better agreement with TPS-calculated doses than phantom entrance dose distributions.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-11-15
... Devices, Navigation and Display Systems, Radar Systems, Navigational Aids, Mapping Systems and Related... navigation products, including GPS devices, navigation and display systems, radar systems, navigational aids..., radar systems, navigational aids, mapping systems and related software by reason of infringement of one...
Out of the lab and into the fab: Nano-alignment as an enabler for Silicon Photonics' next chapter
NASA Astrophysics Data System (ADS)
Jordan, Scott
2017-06-01
The rapid advent of Silicon Photonics presents many challenges for test and packaging. Here we concisely review SiP device attributes that differ significantly from classical photonic configurations, with a view to the future beyond current, connectivity-oriented silicon photonics developments, looking to such endeavors as all-optical computing and quantum computing. The necessity for nano-precision alignment of optical elements in test and packaging operations quickly emerges as the unfilled need. We review the industrial test and packaging solutions developed back in the 1997-2001 photonics boom to address the needs of that era's devices, and map their gaps with the new SiP device classes. Finally we review the new state-of-the-art of recent advances in the field that address these gaps.
Přibil, Jiří; Přibilová, Anna; Frollo, Ivan
2018-04-05
This article compares open-air and whole-body magnetic resonance imaging (MRI) equipment working with a weak magnetic field as regards the methods of its generation, spectral properties of mechanical vibration and acoustic noise produced by gradient coils during the scanning process, and the measured noise intensity. These devices are used for non-invasive MRI reconstruction of the human vocal tract during phonation with simultaneous speech recording. In this case, the vibration and noise have negative influence on quality of speech signal. Two basic measurement experiments were performed within the paper: mapping sound pressure levels in the MRI device vicinity and picking up vibration and noise signals in the MRI scanning area. Spectral characteristics of these signals are then analyzed statistically and compared visually and numerically.
DOE Office of Scientific and Technical Information (OSTI.GOV)
White, E. R., E-mail: ewhite@physics.ucla.edu; Kerelsky, Alexander; Hubbard, William A.
2015-11-30
Heterostructure devices with specific and extraordinary properties can be fabricated by stacking two-dimensional crystals. Cleanliness at the inter-crystal interfaces within a heterostructure is crucial for maximizing device performance. However, because these interfaces are buried, characterizing their impact on device function is challenging. Here, we show that electron-beam induced current (EBIC) mapping can be used to image interfacial contamination and to characterize the quality of buried heterostructure interfaces with nanometer-scale spatial resolution. We applied EBIC and photocurrent imaging to map photo-sensitive graphene-MoS{sub 2} heterostructures. The EBIC maps, together with concurrently acquired scanning transmission electron microscopy images, reveal how a device's photocurrentmore » collection efficiency is adversely affected by nanoscale debris invisible to optical-resolution photocurrent mapping.« less
Ultrathin strain-gated field effect transistor based on In-doped ZnO nanobelts
NASA Astrophysics Data System (ADS)
Zhang, Zheng; Du, Junli; Li, Bing; Zhang, Shuhao; Hong, Mengyu; Zhang, Xiaomei; Liao, Qingliang; Zhang, Yue
2017-08-01
In this work, we fabricated a strain-gated piezoelectric transistor based on single In-doped ZnO nanobelt with ±(0001) top/bottom polar surfaces. In the vertical structured transistor, the Pt tip of the AFM and Au film are used as source and drain electrode. The electrical transport performance of the transistor is gated by compressive strains. The working mechanism is attributed to the Schottky barrier height changed under the coupling effect of piezoresistive and piezoelectric. Uniquely, the transistor turns off under the compressive stress of 806 nN. The strain-gated transistor is likely to have important applications in high resolution mapping device and MEMS devices.
Simultaneous localization and calibration for electromagnetic tracking systems.
Sadjadi, Hossein; Hashtrudi-Zaad, Keyvan; Fichtinger, Gabor
2016-06-01
In clinical environments, field distortion can cause significant electromagnetic tracking errors. Therefore, dynamic calibration of electromagnetic tracking systems is essential to compensate for measurement errors. It is proposed to integrate the motion model of the tracked instrument with redundant EM sensor observations and to apply a simultaneous localization and mapping algorithm in order to accurately estimate the pose of the instrument and create a map of the field distortion in real-time. Experiments were conducted in the presence of ferromagnetic and electrically-conductive field distorting objects and results compared with those of a conventional sensor fusion approach. The proposed method reduced the tracking error from 3.94±1.61 mm to 1.82±0.62 mm in the presence of steel, and from 0.31±0.22 mm to 0.11±0.14 mm in the presence of aluminum. With reduced tracking error and independence from external tracking devices or pre-operative calibrations, the approach is promising for reliable EM navigation in various clinical procedures. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
He, Pan; Zhang, Steven S.-L.; Zhu, Dapeng; Liu, Yang; Wang, Yi; Yu, Jiawei; Vignale, Giovanni; Yang, Hyunsoo
2018-05-01
Surface states of three-dimensional topological insulators exhibit the phenomenon of spin-momentum locking, whereby the orientation of an electron spin is determined by its momentum. Probing the spin texture of these states is of critical importance for the realization of topological insulator devices, but the main technique currently available is spin- and angle-resolved photoemission spectroscopy. Here we reveal a close link between the spin texture and a new kind of magnetoresistance, which depends on the relative orientation of the current with respect to the magnetic field as well as the crystallographic axes, and scales linearly with both the applied electric and magnetic fields. This bilinear magnetoelectric resistance can be used to map the spin texture of topological surface states by simple transport measurements. For a prototypical Bi2Se3 single layer, we can map both the in-plane and out-of-plane components of the spin texture (the latter arising from hexagonal warping). Theoretical calculations suggest that the bilinear magnetoelectric resistance originates from conversion of a non-equilibrium spin current into a charge current under application of the external magnetic field.
Paleomagnetic Analysis Using SQUID Microscopy
NASA Technical Reports Server (NTRS)
Weiss, Benjamin P.; Lima, Eduardo A.; Fong, Luis E.; Baudenbacher, Franz J.
2007-01-01
Superconducting quantum interference device (SQUID) microscopes are a new generation of instruments that map magnetic fields with unprecedented spatial resolution and moment sensitivity. Unlike standard rock magnetometers, SQUID microscopes map magnetic fields rather than measuring magnetic moments such that the sample magnetization pattern must be retrieved from source model fits to the measured field data. In this paper, we presented the first direct comparison between paleomagnetic analyses on natural samples using joint measurements from SQUID microscopy and moment magnetometry. We demonstrated that in combination with apriori geologic and petrographic data, SQUID microscopy can accurately characterize the magnetization of lunar glass spherules and Hawaiian basalt. The bulk moment magnitude and direction of these samples inferred from inversions of SQUID microscopy data match direct measurements on the same samples using moment magnetometry. In addition, these inversions provide unique constraints on the magnetization distribution within the sample. These measurements are among the most sensitive and highest resolution quantitative paleomagnetic studies of natural remanent magnetization to date. We expect that this technique will be able to extend many other standard paleomagnetic techniques to previously inaccessible microscale samples.
A study of atmospheric effects on pattern recognition devices. [Sacramento Valley, California
NASA Technical Reports Server (NTRS)
Thomson, F. J. (Principal Investigator); Sadowski, F. G.
1975-01-01
The author has identified the following significant results. ERTS-1 imagery can be applied in the broadscale assessment of forest resources as a supplement to aerial photography and field survey. There was no application to inventory of crop and pasture diseases mainly because of poor quality and low resolution, and unreliability of image acquisition. Inventory of soil erosion was satisfactory in humid eastern New South Wales, but not in semi-arid areas. Patterns of snow cover, areas of water in natural and artificial water bodies, extent of bushfires, and location of coastal mobile sand bodies were readily apparent. ERTS-1 imagery was judged to be a valuable addition to conventional techniques of regional small scale geological mapping. ERTS data was successfully used to map flooding and flood progression. The imagery was found suitable for mapping at 1:1,000,000 scale both on the mainland and in Antarctica, but did not meet accuracy specifications for 1:250,000 mapping.
Color reproduction system based on color appearance model and gamut mapping
NASA Astrophysics Data System (ADS)
Cheng, Fang-Hsuan; Yang, Chih-Yuan
2000-06-01
By the progress of computer, computer peripherals such as color monitor and printer are often used to generate color image. However, cross media color reproduction by human perception is usually different. Basically, the influence factors are device calibration and characterization, viewing condition, device gamut and human psychology. In this thesis, a color reproduction system based on color appearance model and gamut mapping is proposed. It consists of four parts; device characterization, color management technique, color appearance model and gamut mapping.
Simulation of Strain Induced Pseudomagnetic Fields in Graphene Suspended on MEMS Chevron Actuators
NASA Astrophysics Data System (ADS)
Vutukuru, Mounika; Christopher, Jason; Bishop, David; Swan, Anna
Graphene has been shown to withstand remarkable levels of mechanical strain an order of magnitude larger than bulk crystalline materials. This exceptional stretchability of graphene allows for the direct tuning of fundamental material properties, as well as for the investigation of novel physics such as generation of strain induced pseudomagnetic fields. However, current methods for strain such as polymer elongation or pressurized wells do not integrate well into devices. We propose microelectromechanical (MEMS) Chevron actuators as a reliable platform for applying strain to graphene. In addition to their advantageous controllable output force, low input power and ease of integration into existing technologies, MEMS allow for different strain orientations to optimize pseudomagnetic field generation in graphene. Here, we model nonuniform strain in suspended graphene on Chevron actuators using COMSOL Multiphysics. By simulating the deformation of the graphene geometry under the device actuation, we explore the pseudomagnetic field map induced by numerically calculating the components of the strain tensor. Our models provide the theoretical framework with which experimental analysis is compared, and optimize our MEMS designs for further exploration of novel physics in graphene. The authors would like to thank NSF DMR 1411008 for their support on this project.
NASA Astrophysics Data System (ADS)
Heon Kim, Tae; Yoon, Jong-Gul; Hyub Baek, Seung; Park, Woong-Kyu; Mo Yang, Sang; Yup Jang, Seung; Min, Taeyuun; Chung, Jin-Seok; Eom, Chang-Beom; Won Noh, Tae
2015-07-01
Fundamental understanding of domain dynamics in ferroic materials has been a longstanding issue because of its relevance to many systems and to the design of nanoscale domain-wall devices. Despite many theoretical and experimental studies, a full understanding of domain dynamics still remains incomplete, partly due to complex interactions between domain-walls and disorder. We report domain-shape-preserving deterministic domain-wall motion, which directly confirms microscopic return point memory, by observing domain-wall breathing motion in ferroelectric BiFeO3 thin film using stroboscopic piezoresponse force microscopy. Spatial energy landscape that provides new insights into domain dynamics is also mapped based on the breathing motion of domain walls. The evolution of complex domain structure can be understood by the process of occupying the lowest available energy states of polarization in the energy landscape which is determined by defect-induced internal fields. Our result highlights a pathway for the novel design of ferroelectric domain-wall devices through the engineering of energy landscape using defect-induced internal fields such as flexoelectric fields.
Kim, Tae Heon; Yoon, Jong-Gul; Baek, Seung Hyub; Park, Woong-kyu; Yang, Sang Mo; Yup Jang, Seung; Min, Taeyuun; Chung, Jin-Seok; Eom, Chang-Beom; Noh, Tae Won
2015-07-01
Fundamental understanding of domain dynamics in ferroic materials has been a longstanding issue because of its relevance to many systems and to the design of nanoscale domain-wall devices. Despite many theoretical and experimental studies, a full understanding of domain dynamics still remains incomplete, partly due to complex interactions between domain-walls and disorder. We report domain-shape-preserving deterministic domain-wall motion, which directly confirms microscopic return point memory, by observing domain-wall breathing motion in ferroelectric BiFeO3 thin film using stroboscopic piezoresponse force microscopy. Spatial energy landscape that provides new insights into domain dynamics is also mapped based on the breathing motion of domain walls. The evolution of complex domain structure can be understood by the process of occupying the lowest available energy states of polarization in the energy landscape which is determined by defect-induced internal fields. Our result highlights a pathway for the novel design of ferroelectric domain-wall devices through the engineering of energy landscape using defect-induced internal fields such as flexoelectric fields.
Heon Kim, Tae; Yoon, Jong-Gul; Hyub Baek, Seung; Park, Woong-kyu; Mo Yang, Sang; Yup Jang, Seung; Min, Taeyuun; Chung, Jin-Seok; Eom, Chang-Beom; Won Noh, Tae
2015-01-01
Fundamental understanding of domain dynamics in ferroic materials has been a longstanding issue because of its relevance to many systems and to the design of nanoscale domain-wall devices. Despite many theoretical and experimental studies, a full understanding of domain dynamics still remains incomplete, partly due to complex interactions between domain-walls and disorder. We report domain-shape-preserving deterministic domain-wall motion, which directly confirms microscopic return point memory, by observing domain-wall breathing motion in ferroelectric BiFeO3 thin film using stroboscopic piezoresponse force microscopy. Spatial energy landscape that provides new insights into domain dynamics is also mapped based on the breathing motion of domain walls. The evolution of complex domain structure can be understood by the process of occupying the lowest available energy states of polarization in the energy landscape which is determined by defect-induced internal fields. Our result highlights a pathway for the novel design of ferroelectric domain-wall devices through the engineering of energy landscape using defect-induced internal fields such as flexoelectric fields. PMID:26130159
DOE Office of Scientific and Technical Information (OSTI.GOV)
BIRKEL, GARRETT; GARCIA MARTIN, HECTOR; MORRELL, WILLIAM
"Arrowland" is a web-based software application primarily for mapping, integrating and visualizing a variety of metabolism data of living organisms, including but not limited to metabolomics, proteomics, transcriptomics and fluxomics. This software application makes multi-omics data analysis intuitive and interactive. It improves data sharing and communication by enabling users to visualize their omics data using a web browser (on a PC or mobile device). It increases user's productivity by simplifying multi-omics data analysis using well developed maps as a guide. Users using this tool can gain insights into their data sets that would be difficult or even impossible to teasemore » out by looking at raw number, or using their currently existing toolchains to generate static single-use maps. Arrowland helps users save time by visualizing relative changes in different conditions or over time, and helps users to produce more significant insights faster. Preexisting maps decrease the learning curve for beginners in the omics field. Sets of multi-omics data are presented in the browser, as a two-dimensional flowchart resembling a map, with varying levels of detail information, based on the scaling of the map. Users can pan and zoom to explore different maps, compare maps, upload their own research data sets onto desired maps, alter map appearance in ways that facilitate interpretation, visualization and analysis of the given data, and export data, reports and actionable items to help the user initiative.« less
Zwolan, Teresa A; O'Sullivan, Mary Beth; Fink, Nancy E; Niparko, John K
2008-02-01
To evaluate mapping characteristics of children with cochlear implants who are enrolled in the Childhood Development After Cochlear Implantation (CDACI) multicenter study. Longitudinal evaluation during 24 months of speech processor maps of children with cochlear implants prospectively enrolled in the study. Six tertiary referral centers. One hundred eighty-eight children enrolled in the CDACI study who were 5 years old or younger at the time of enrollment. Of these children, 184 received unilateral implants, and 4 received simultaneous bilateral implants. Children attended regular mapping sessions at their implant clinic as part of the study protocol. Maps were examined for each subject at 4 different time intervals: at device activation and 6, 12, and 24 months postactivation. Mean C/M levels (in charge per phase) were compared for 4 different time intervals, for 3 different devices, for 6 different implant centers, and for children with normal and abnormal cochleae. All 3 types of implant devices demonstrate significant increases in C/M levels between device activation and the 24-month appointment. Significant differences in mean C/M levels were noted between devices. Children with cochlear anomalies demonstrate significantly greater C/M levels than children with normal cochleae. The CDACI study has enabled us to evaluate the mapping characteristics of pediatric patients who use 3 different devices and were implanted at a variety of implant centers. Analysis of such data enables us to better understand the mapping characteristics of children with cochlear implants.
2015-09-30
an AUV mounted acoustic source, 2) moored multi-element SHRU acoustic receiver arrays, 3) a shipboard acoustic resonator, 4) fish-attraction...devices (FAD’s), 5) a three- AUV fish-field mapping effort (employing sidescan sonar plus optics) and 6) ScanFish, ADCP, and moored sensor oceanographic...The acoustic model has been further refined. To obtain a better estimate of source positions, the navigation data of the source AUV (Snoopy) was
Toward Development of a Field-Deployable Imaging Device for TBI
2015-06-01
proportional to the Young modulus with the following relationship: E = 3ρc2, where E is the Young modulus (kilopascals), a measure of the resistance of...Fang M, Jiang WQ, Zhu GF, Zeng HK. Effect of hydroxyethyl starch on intracranial pressure and plasma colloid osmotic pressure in rats with cerebral...creates images of Young’s Modulus, a measure of 81 the resistance to such that larger values describe stiffer tissue. Therefore, maps of Young’s 82
Building the Joint Battlespace Infosphere. Volume 1: Summary
1999-12-17
portable devices , including wearable computer technology for mobile or field application 7.1.4.4.3 The Far Term (2009) The technology will be...graphic on a 2-D map image, or change the list of weapons to be loaded on an F/A-18, or sound an audible alarm in conjunction with flashing red...information automatically through a subscribe process. (3) At the same time, published information can be automatically changed into a new representation or
Smartphones for Geological Data Collection- an Android Phone Application
NASA Astrophysics Data System (ADS)
Sun, F.; Weng, Y.; Grigsby, J. D.
2010-12-01
Recently, smartphones have attracted great attention in the wireless device market because of their powerful processors, ample memory capacity, advanced connectivity, and numerous utility programs. Considering the prominent new features a smartphone has, such as the large touch screen, speaker, microphone, camera, GPS receiver, accelerometer, and Internet connections, it can serve as a perfect digital aide for data recording on any geological field trip. We have designed and developed an application by using aforementioned features in an Android phone to provide functionalities used in field studies. For example, employing the accelerometer in the Android phone, the application turns the handset into a brunton-like device by which users can measure directions, strike and dip of a bedding plane or trend and plunge of a fold. Our application also includes functionalities of image taking, GPS coordinates tracking, videotaping, audio recording, and note writing. Data recorded from the application are tied together by the time log, which makes the task easy to track all data regarding a specific geologic object. The application pulls the GPS reading from the phone’s built-in GPS receiver and uses it as a spatial index to link up the other type of data, then maps them to the Google Maps/Earth for visualization. In this way, notes, pictures, audio or video recordings to depict the characteristics of the outcrops and their spatial relations, all can be well documented and organized in one handy gadget.
New Improvements in Magnetic Measurements Laboratory of the ALBA Synchrotron Facility
NASA Astrophysics Data System (ADS)
Campmany, Josep; Marcos, Jordi; Massana, Valentí
ALBA synchrotron facility has a complete insertion devices (ID) laboratory to characterize and produce magnetic devices needed to satisfy the requirements of ALBA's user community. The laboratory is equipped with a Hall-probe bench working in on-the-fly measurement mode allowing the measurement of field maps of big magnetic structures with high accuracy, both in magnetic field magnitude and position. The whole control system of this bench is based on TANGO. The Hall probe calibration range extends between sub-Gauss to 2 Tesla with an accuracy of 100 ppm. Apart from the Hall probe bench, the ID laboratory has a flipping coil bench dedicated to measuring field integrals and a Helmholtz coil bench specially designed to characterize permanent magnet blocks. Also, a fixed stretched wire bench is used to measure field integrals of magnet sets. This device is specifically dedicated to ID construction. Finally, the laboratory is equipped with a rotating coil bench, specially designed for measuring multipolar devices used in accelerators, such as quadrupoles, sextupoles, etc. Recent improvements of the magnetic measurements laboratory of ALBA synchrotron include the design and manufacturing of very thin 3D Hall probe heads, the design and manufacturing of coil sensors for the Rotating coil bench based on multilayered PCB, and the improvement of calibration methodology in order to improve the accuracy of the measurements. ALBA magnetic measurements laboratory is open for external contracts, and has been widely used by national and international institutes such as CERN, ESRF or CIEMAT, as well as magnet manufacturing companies, such as ANTEC, TESLA and I3 M. In this paper, we will present the main features of the measurement benches as well as improvements made so far.
Development of a Telemetry and Yield-Mapping System of Olive Harvester
Castillo-Ruiz, Francisco J.; Pérez-Ruiz, Manuel; Blanco-Roldán, Gregorio L.; Gil-Ribes, Jesús A.; Agüera, Juan
2015-01-01
Sensors, communication systems and geo-reference units are required to achieve an optimized management of agricultural inputs with respect to the economic and environmental aspects of olive groves. In this study, three commercial olive harvesters were tracked during two harvesting seasons in Spain and Chile using remote and autonomous equipment that was developed to determine their time efficiency and effective based on canopy shaking for fruit detachment. These harvesters work in intensive/high-density (HD) and super-high-density (SHD) olive orchards. A GNSS (Global Navigation Satellite System) and GSM (Global System for Mobile Communications) device was installed to track these harvesters. The GNSS receiver did not affect the driver’s work schedule. Time elements methodology was adapted to the remote data acquisition system. The effective field capacity and field efficiency were investigated. In addition, the field shape, row length, angle between headland alley and row, and row alley width were measured to determinate the optimum orchard design parameters value. The SHD olive harvester showed significant lower effective field capacity values when alley width was less than 4 m. In addition, a yield monitor was developed and installed on a traditional olive harvester to obtain a yield map from the harvested area. The hedge straddle harvester stood out for its highly effective field capacity; nevertheless, a higher field efficiency was provided by a non-integral lateral canopy shaker. All of the measured orchard parameters have influenced machinery yields, whether effective field capacity or field efficiency. A saving of 40% in effective field capacity was achieved with a reduction from 4 m or higher to 3.5 m in alley width for SHD olive harvester. A yield map was plotted using data that were acquired by a yield monitor, reflecting the yield gradient in spite of the larger differences between tree yields. PMID:25675283
Straume, Aksel; Johnsson, Anders; Oftedal, Gunnhild; Wilén, Jonna
2007-10-01
The frequency spectra of electromagnetic fields have to be determined to evaluate human exposure in accordance to ICNIRP guidelines. In the literature, comparisons with magnetic field guidelines have been performed by using the frequency distribution of the current drawn from the battery. In the present study we compared the frequency spectrum in the range 217 Hz to 2.4 kHz of the magnetic flux density measured near the surface of a mobile phone with the frequency spectrum of the supply current. By using the multiple frequency rule, recommended in the ICNIRP guidelines, we estimated the magnetic field exposure in the two cases. Similar measurements and estimations were done for an electric drill, a hair dryer, and a fluorescent desk lamp. All the devices have a basic frequency of 50 Hz, and the frequency spectra were evaluated up to 550 Hz. We also mapped the magnetic field in 3D around three mobile phones. The frequency distributions obtained from the two measurement methods are not equal. The frequency content of the current leads to an overestimation of the magnetic field exposure by a factor up to 2.2 for the mobile phone. For the drill, the hair dryer, and the fluorescent lamp, the supply current signal underestimated the exposure by a factor up to 2.3. In conclusion, an accurate exposure evaluation requires the magnetic flux density spectrum of the device to be measured directly. There was no indication that the devices studied would exceed the reference levels at the working distances normally used.
Yaguchi, Toshie; Konno, Mitsuru; Kamino, Takeo; Watanabe, Masashi
2008-11-01
A technique for preparation of a pillar-shaped specimen and its multidirectional observation using a combination of a scanning transmission electron microscope (STEM) and a focused ion beam (FIB) instrument has been developed. The system employs an FIB/STEM compatible holder with a specially designed tilt mechanism, which allows the specimen to be tilted through 360 degrees [T. Yaguchi, M. Konno, T. Kamino, T. Hashimoto, T. Ohnishi, K. Umemura, K. Asayama, Microsc. Microanal. 9 (Suppl. 2) (2003) 118; T. Yaguchi, M. Konno, T. Kamino, T. Hashimoto, T. Ohnishi, M. Watanabe, Microsc. Microanal. 10 (Suppl. 2) (2004) 1030]. This technique was applied to obtain the three-dimensional (3D) elemental distributions around a contact plug of a Si device used in a 90-nm technology. A specimen containing only one contact plug was prepared in the shape of a pillar with a diameter of 200nm and a length of 5mum. Elemental maps were obtained from the pillar specimen using a 200-kV cold-field emission gun (FEG) STEM model HD-2300C equipped with the EDAX genesis X-ray energy-dispersive spectrometry (XEDS) system through a spectrum imaging technique. In this study, elemental distributions of minor elements with weak signals were enhanced by applying principal component analysis (PCA), which is a superior technique to extract weak signals from a large dataset. The distributions of elements, especially the metallization component Ti and minor dopant As in this particular device, were successfully extracted by PCA. Finally, the 3D elemental distributions around the contact plug could be visualized by reconstruction from the tilt series of maps.
Two dimensional thermal and charge mapping of power thyristors
NASA Technical Reports Server (NTRS)
Hu, S. P.; Rabinovici, B. M.
1975-01-01
The two dimensional static and dynamic current density distributions within the junction of semiconductor power switching devices and in particular the thyristors were obtained. A method for mapping the thermal profile of the device junctions with fine resolution using an infrared beam and measuring the attenuation through the device as a function of temperature were developed. The results obtained are useful in the design and quality control of high power semiconductor switching devices.
Orientation-resolved domain mapping in tetragonal SrTiO 3 using polarized Raman spectroscopy
Gray, Jr., Dodd J.; Merz, Tyler A.; Hikita, Yasuyuki; ...
2016-12-16
Here, we present microscopically resolved, polarized spectroscopy of Raman scattering collected from tetragonal SrTiO 3. The anisotropic response of first-order Raman peaks within a single tetragonal domain has been measured. From these data, we assign symmetries to the phonons seen in the first-order Raman spectrum which is normally complicated by uncontrolled domain structure. Using a translation stage, we map the local domain orientation of a 3–μm 3 crystal volume near the laser focus and compare it to wide-field polarized images. This technique can be performed with readily available instruments and is relevant to the study of a wide range ofmore » related materials, interfaces, and devices.« less
Two-dimensional periodic structures in solid state laser resonator
NASA Astrophysics Data System (ADS)
Okulov, Alexey Y.
1991-07-01
Transverse effects in nonlinear optical devices are being widely investigated. Recently, synchronization of a laser set by means of the Talbot effect has been demonstrated experimentally. This paper considers a Talbot cavity formed by a solid-state amplifying laser separated from the output mirror by a free space interval. This approach involves the approximation of the nonlinear medium as a thin layer, within which the diffraction is negligible. The other part of a resonator is empty, and the wave field is transformed by the Fresnel-Kirchoff integral. As a result, the dynamics of the transverse (and temporal) structure is computed by a successively iterated nonlinear local map (one- or two-dimensional) and a linear nonlocal map (generally speaking, infinitely dimensional).
Global and local magnetic mapping using CrowdMag data
NASA Astrophysics Data System (ADS)
Saltus, R.; Nair, M. C.
2016-12-01
NOAA's National Centers for Environmental Information (NCEI), in partnership with the University of Colorado's CIRES develop magnetic field models to aid navigation, resource exploration and scientific research. We use observatories, satellites and ship/airborne surveys to map and model the Earth's magnetic field. However, the available measurements leave gaps in coverage, particularly for short-wavelength anomalies associated with man-made infrastructure ("urban noise"). In 2014, we started a project to address these gaps through the collection of vector magnetic data from digital magnetometers in smartphones. In October 2014, we released the "CrowdMag" Android and iOS apps for harvesting data from phones. Currently, the CrowdMag project has more than 10,000 enthusiastic users contributing more than 12 million magnetic data measurements from around the world. We present the first analysis results from the crowdsourced magnetic data. A global magnetic model derived solely from CrowdMag data is consistent to degree and order 4 with satellite-derived models such as World Magnetic Model. A unique contribution of CrowdMag project is the collection of ground level magnetic data in densely populated regions with an unprecedented spatial resolution. To demonstrate, we generated a magnetic map (by binning the data collected in 200x200m cells) of central Boulder, Colorado using 170,000 data points collected by about 60 devices over the duration October 2014- January 2016. The median value is consistent with the expected magnitude of the Earth's background magnetic field. The standard deviation of the CrowdMag total field (F) values is much higher than the expected natural (i.e., diurnal and geologic) magnetic field variation. However, the phone's magnetometer is sensitive enough to capture the larger magnitude magnetic signature from the urban magnetic sources. We discuss the potential reliability of crowdsourced magnetic maps and their applications to navigation and other applications.
Positive Contrast Visualization of Nitinol Devices using Susceptibility Gradient Mapping
Vonken, Evert-jan P.A.; Schär, Michael; Stuber, Matthias
2008-01-01
MRI visualization of devices is traditionally based on the signal loss due to T2* effects originating from the local susceptibility differences. To visualize nitinol devices with positive contrast a recently introduced post processing method is adapted to map the induced susceptibility gradients. This method operates on regular gradient echo MR images and maps the shift in k-space in a (small) neighborhood of every voxel by Fourier analysis followed by a center of mass calculation. The quantitative map of the local shifts generates the positive contrast image of the devices, while areas without susceptibility gradients render a background with noise only. The positive signal response of this method depends only on the choice of the voxel neighborhood size. The properties of the method are explained and the visualization of a nitinol wire and two stents are shown for illustration. PMID:18727096
Image display device in digital TV
Choi, Seung Jong [Seoul, KR
2006-07-18
Disclosed is an image display device in a digital TV that is capable of carrying out the conversion into various kinds of resolution by using single bit map data in the digital TV. The image display device includes: a data processing part for executing bit map conversion, compression, restoration and format-conversion for text data; a memory for storing the bit map data obtained according to the bit map conversion and compression in the data processing part and image data inputted from an arbitrary receiving part, the receiving part receiving one of digital image data and analog image data; an image outputting part for reading the image data from the memory; and a display processing part for mixing the image data read from the image outputting part and the bit map data converted in format from the a data processing part. Therefore, the image display device according to the present invention can convert text data in such a manner as to correspond with various resolution, carry out the compression for bit map data, thereby reducing the memory space, and support text data of an HTML format, thereby providing the image with the text data of various shapes.
The insertion device magnetic measurement facility: Prototype and operational procedures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burkel, L.; Dejus, R.; Maines, J.
1993-03-01
This report is a description of the current status of the magnetic measurement facility and is a basic instructional manual for the operation of the facility and its components. Please refer to the appendices for more detailed information about specific components and procedures. The purpose of the magnetic measurement facility is to take accurate measurements of the magnetic field in the gay of the IDs in order to determine the effect of the ID on the stored particle beam and the emitted radiation. The facility will also play an important role when evaluating new ideas, novel devices, and inhouse prototypesmore » as part of the ongoing research and development program at the APS. The measurements will be performed with both moving search coils and moving Hall probes. The IDs will be evaluated by computer modeling of the emitted radiation for any given (measured) magnetic field map. The quality of the magnetic field will be described in terms of integrated multipoles for the effect on Storage Ring performance and in terms of the derived trajectories for the emitted radiation. Before being installed on the Storage Ring, every device will be measured and characterized to assure that it is compatible with Storage Ring requirements and radiation specifications. The accuracy that the APS needs to achieve for magnetic measurements will be based on these specifications.« less
Stone, B N; Griesinger, G L; Modelevsky, J L
1984-01-01
We describe an interactive computational tool, PLASMAP, which allows the user to electronically store, retrieve, and display circular restriction maps. PLASMAP permits users to construct libraries of plasmid restriction maps as a set of files which may be edited in the laboratory at any time. The display feature of PLASMAP quickly generates device-independent, artist-quality, full-color or monochrome, hard copies or CRT screens of complex, conventional circular restriction maps. PMID:6320096
Color Reproduction System Based on Color Appearance Model and Gamut Mapping
2000-07-01
and Gamut Mapping DISTRIBUTION: Approved for public release, distribution unlimited This paper is part of the following report: TITLE: Input/Output...report: ADP011333 thru ADP011362 UNCLASSIFIED Color reproduction system based on color appearance model and gamut mapping Fang-Hsuan Cheng, Chih-Yuan...perception is usually different. Basically, the influence factors are device calibration and characterization, viewing condition, device gamut and human
The Trial Software version for DEMETER power spectrum files visualization and mapping
NASA Astrophysics Data System (ADS)
Lozbin, Anatoliy; Inchin, Alexander; Shpadi, Maxim
2010-05-01
In the frame of Kazakhstan's Scientific Space System creation for earthquakes precursors research, the hardware and software of DEMETER satellite was investigated. The data processing Software of DEMETER is based on package SWAN under IDL Virtual machine and realizes many features, but we can't find an important tool for the spectrograms analysis - space-time visualization of power spectrum files from electromagnetic devices as ICE and IMSC. For elimination of this problem we have developed Software which is offered to use. The DeSS (DEMETER Spectrogram Software) - it is Software for visualization, analysis and a mapping of power spectrum data from electromagnetic devices ICE and IMSC. The Software primary goal is to give the researcher friendly tool for the analysis of electromagnetic data from DEMETER Satellite for earthquake precursors and other ionosphere events researches. The Input data for DeSS Software is a power spectrum files: - Power spectrum of 1 component of the electric field in the VLF range (APID 1132); - Power spectrum of 1 component of the electric field in the HF range (APID 1134); - Power spectrum of 1 component of the magnetic field in the VLF range (APID 1137). The main features and operations of the software is possible: - various time and frequency filtration; - visualization of time dependence of signal intensity on fixed frequency; - spectral density visualization for fixed frequency range; - spectrogram autosize and smooth spectrogram; - the information in each point of the spectrogram: time, frequency and intensity; - the spectrum information in the separate window, consisting of 4 blocks; - data mapping with 6 range scale. On the map we can browse next information: - satellite orbit; - conjugate point at the satellite altitude; - north conjugate point at the altitude 110 km; - south conjugate point at the altitude 110 km. This is only trial software version to help the researchers and we always ready collaborate with scientists for software improvement. References: 1. D.Lagoutte, J.Y. Brochot, D. de Carvalho, L.Madrias and M. Parrot. DEMETER Microsatellite. Scientific Mission Center. Data product description. DMT-SP-9-CM-6054-LPC. 2. D.Lagoutte, J.Y. Brochot, P.Latremoliere. SWAN - Software for Waveform Analysis. LPCE/NI/003.E - Part 1 (User's guide), Part 2 (Analysis tools), Part 3 (User's project interface).
Mobile devices, Virtual Reality, Augmented Reality, and Digital Geoscience Education.
NASA Astrophysics Data System (ADS)
Crompton, H.; De Paor, D. G.; Whitmeyer, S. J.; Bentley, C.
2016-12-01
Mobile devices are playing an increasing role in geoscience education. Affordances include instructor-student communication and class management in large classrooms, virtual and augmented reality applications, digital mapping, and crowd-sourcing. Mobile technologies have spawned the sub field of mobile learning or m-learning, which is defined as learning across multiple contexts, through social and content interactions. Geoscientists have traditionally engaged in non-digital mobile learning via fieldwork, but digital devices are greatly extending the possibilities, especially for non-traditional students. Smartphones and tablets are the most common devices but smart glasses such as Pivothead enable live streaming of a first-person view (see for example, https://youtu.be/gWrDaYP5w58). Virtual reality headsets such as Google Cardboard create an immersive virtual field experience and digital imagery such as GigaPan and Structure from Motion enables instructors and/or students to create virtual specimens and outcrops that are sharable across the globe. Whereas virtual reality (VR) replaces the real world with a virtual representation, augmented reality (AR) overlays digital data on the live scene visible to the user in real time. We have previously reported on our use of the AR application called FreshAiR for geoscientific "egg hunts." The popularity of Pokémon Go demonstrates the potential of AR for mobile learning in the geosciences.
He, Pan; Zhang, Steven S. -L.; Zhu, Dapeng; ...
2018-02-05
Surface states of three-dimensional topological insulators exhibit the phenomenon of spin-momentum locking, whereby the orientation of an electron spin is determined by its momentum. Probing the spin texture of these states is of critical importance for the realization of topological insulator devices, but the main technique currently available is spin-and angle-resolved photoemission spectroscopy. Here in this paper we reveal a close link between the spin texture and a new kind of magnetoresistance, which depends on the relative orientation of the current with respect to the magnetic field as well as the crystallographic axes, and scales linearly with both the appliedmore » electric and magnetic fields. This bilinear magnetoelectric resistance can be used to map the spin texture of topological surface states by simple transport measurements. For a prototypical Bi 2Se 3 single layer, we can map both the in-plane and out-of-plane components of the spin texture (the latter arising from hexagonal warping). Theoretical calculations suggest that the bilinear magnetoelectric resistance originates from conversion of a non-equilibrium spin current into a charge current under application of the external magnetic field.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
He, Pan; Zhang, Steven S. -L.; Zhu, Dapeng
Surface states of three-dimensional topological insulators exhibit the phenomenon of spin-momentum locking, whereby the orientation of an electron spin is determined by its momentum. Probing the spin texture of these states is of critical importance for the realization of topological insulator devices, but the main technique currently available is spin-and angle-resolved photoemission spectroscopy. Here in this paper we reveal a close link between the spin texture and a new kind of magnetoresistance, which depends on the relative orientation of the current with respect to the magnetic field as well as the crystallographic axes, and scales linearly with both the appliedmore » electric and magnetic fields. This bilinear magnetoelectric resistance can be used to map the spin texture of topological surface states by simple transport measurements. For a prototypical Bi 2Se 3 single layer, we can map both the in-plane and out-of-plane components of the spin texture (the latter arising from hexagonal warping). Theoretical calculations suggest that the bilinear magnetoelectric resistance originates from conversion of a non-equilibrium spin current into a charge current under application of the external magnetic field.« less
Development of a Transportable Gravity Gradiometer Based on Atom Interferometry
NASA Astrophysics Data System (ADS)
Yu, N.; Kohel, J. M.; Aveline, D. C.; Kellogg, J. R.; Thompson, R. J.; Maleki, L.
2007-12-01
JPL is developing a transportable gravity gradiometer based on light-pulse atom interferometers for NASA's Earth Science Technology Office's Instrument Incubator Program. The inertial sensors in this instrument employ a quantum interference measurement technique, analogous to the precise phase measurements in atomic clocks, which offers increased sensitivity and improved long-term stability over traditional mechanical devices. We report on the implementation of this technique in JPL's gravity gradiometer, and on the current performance of the mobile instrument. We also discuss the prospects for satellite-based gravity field mapping, including high-resolution monitoring of time-varying fields from a single satellite platform and multi-component measurements of the gravitational gradient tensor, using atom interferometer-based instruments.
In situ electrical and thermal monitoring of printed electronics by two-photon mapping.
Pastorelli, Francesco; Accanto, Nicolò; Jørgensen, Mikkel; van Hulst, Niek F; Krebs, Frederik C
2017-06-19
Printed electronics is emerging as a new, large scale and cost effective technology that will be disruptive in fields such as energy harvesting, consumer electronics and medical sensors. The performance of printed electronic devices relies principally on the carrier mobility and molecular packing of the polymer semiconductor material. Unfortunately, the analysis of such materials is generally performed with destructive techniques, which are hard to make compatible with in situ measurements, and pose a great obstacle for the mass production of printed electronics devices. A rapid, in situ, non-destructive and low-cost testing method is needed. In this study, we demonstrate that nonlinear optical microscopy is a promising technique to achieve this goal. Using ultrashort laser pulses we stimulate two-photon absorption in a roll coated polymer semiconductor and map the resulting two-photon induced photoluminescence and second harmonic response. We show that, in our experimental conditions, it is possible to relate the total amount of photoluminescence detected to important material properties such as the charge carrier density and the molecular packing of the printed polymer material, all with a spatial resolution of 400 nm. Importantly, this technique can be extended to the real time mapping of the polymer semiconductor film, even during the printing process, in which the high printing speed poses the need for equally high acquisition rates.
RFEA measurements of high-energy electrons in a helicon plasma device with expanding magnetic field
NASA Astrophysics Data System (ADS)
Gulbrandsen, Njål; Fredriksen, Åshild
2017-01-01
In the inductively coupled plasma of the Njord helicon device we have, for the same parameters as for which an ion beam exists, measured a downstream population of high-energy electrons emerging from the source. Separated measurements of energetic tail electrons was carried out by Retarding Field Energy Analyzer (RFEA) with a grounded entrance grid, operated in an electron collection mode. In a radial scan with the RFEA pointed toward the source, we found a significant population of high-energy electrons just inside the magnetic field line mapping to the edge of the source. A second peak in high-energy electrons density was observed in a radial position corresponding to the radius of the source. Also, throughout the main column a small contribution of high-energy electrons was observed. In a radial scan with a RFEA biased to collect ions a localized increase in the plasma ion density near the magnetic field line emerging from the plasma near the wall of the source was observed. This is interpreted as a signature of high-energy electrons ionizing the neutral gas. Also, a dip in the floating potential of a Langmuir probe is evident in this region where high-energy electrons is observed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Atari, N.A.; Svensson, G.K.
1986-05-01
A high-resolution digital dosimetric system has been developed for the spatial characterization of radiation fields. The system comprises the following: 0.5-mm-thick, 25-mm-diam CaF/sub 2/:Dy thermoluminescent crystal; intensified charge coupled device video camera; video cassette recorder; and a computerized image processing subsystem. The optically flat single crystal is used as a radiation imaging device and the subsequent thermally stimulated phosphorescence is viewed by the intensified camera for further processing and analysis. Parameters governing the performance characteristics of the system were measured. A spatial resolution limit of 31 +- 2 ..mu..m (1sigma) corresponding to 16 +- 1 line pair/mm measured at themore » 4% level of the modulation transfer function has been achieved. The full width at half maximum of the line spread function measured independently by the slit method or derived from the edge response function was found to be 69 +- 4 ..mu..m (1sigma). The high resolving power, speed of readout, good precision, wide dynamic range, and the large image storage capacity make the system suitable for the digital mapping of the relative distribution of absorbed doses for various small radiation fields and the edges of larger fields.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Atari, N.A.; Svensson, G.K.
1986-05-01
A high-resolution digital dosimetric system has been developed for the spatial characterization of radiation fields. The system comprises the following: 0.5-mm-thick, 25-mm-diam CaF2:Dy thermoluminescent crystal; intensified charge coupled device video camera; video cassette recorder; and a computerized image processing subsystem. The optically flat single crystal is used as a radiation imaging device and the subsequent thermally stimulated phosphorescence is viewed by the intensified camera for further processing and analysis. Parameters governing the performance characteristics of the system were measured. A spatial resolution limit of 31 +/- 2 microns (1 sigma) corresponding to 16 +/- 1 line pairs/mm measured at themore » 4% level of the modulation transfer function has been achieved. The full width at half maximum of the line spread function measured independently by the slit method or derived from the edge response function was found to be 69 +/- 4 microns (1 sigma). The high resolving power, speed of readout, good precision, wide dynamic range, and the large image storage capacity make the system suitable for the digital mapping of the relative distribution of absorbed doses for various small radiation fields and the edges of larger fields.« less
Scanning SQUID microscope with an in-situ magnetization/demagnetization field for geological samples
NASA Astrophysics Data System (ADS)
Du, Junwei; Liu, Xiaohong; Qin, Huafeng; Wei, Zhao; Kong, Xiangyang; Liu, Qingsong; Song, Tao
2018-04-01
Magnetic properties of rocks are crucial for paleo-, rock-, environmental-magnetism, and magnetic material sciences. Conventional rock magnetometers deal with bulk properties of samples, whereas scanning microscope can map the distribution of remanent magnetization. In this study, a new scanning microscope based on a low-temperature DC superconducting quantum interference device (SQUID) equipped with an in-situ magnetization/demagnetization device was developed. To realize the combination of sensitive instrument as SQUID with high magnetizing/demagnetizing fields, the pick-up coil, the magnetization/demagnetization coils and the measurement mode of the system were optimized. The new microscope has a field sensitivity of 250 pT/√Hz at a coil-to-sample spacing of ∼350 μm, and high magnetization (0-1 T)/ demagnetization (0-300 mT, 400 Hz) functions. With this microscope, isothermal remanent magnetization (IRM) acquisition and the according alternating field (AF) demagnetization curves can be obtained for each point without transferring samples between different procedures, which could result in position deviation, waste of time, and other interferences. The newly-designed SQUID microscope, thus, can be used to investigate the rock magnetic properties of samples at a micro-area scale, and has a great potential to be an efficient tool in paleomagnetism, rock magnetism, and magnetic material studies.
NASA Astrophysics Data System (ADS)
Na, Dong-Yeop; Omelchenko, Yuri A.; Moon, Haksu; Borges, Ben-Hur V.; Teixeira, Fernando L.
2017-10-01
We present a charge-conservative electromagnetic particle-in-cell (EM-PIC) algorithm optimized for the analysis of vacuum electronic devices (VEDs) with cylindrical symmetry (axisymmetry). We exploit the axisymmetry present in the device geometry, fields, and sources to reduce the dimensionality of the problem from 3D to 2D. Further, we employ 'transformation optics' principles to map the original problem in polar coordinates with metric tensor diag (1 ,ρ2 , 1) to an equivalent problem on a Cartesian metric tensor diag (1 , 1 , 1) with an effective (artificial) inhomogeneous medium introduced. The resulting problem in the meridian (ρz) plane is discretized using an unstructured 2D mesh considering TEϕ-polarized fields. Electromagnetic field and source (node-based charges and edge-based currents) variables are expressed as differential forms of various degrees, and discretized using Whitney forms. Using leapfrog time integration, we obtain a mixed E - B finite-element time-domain scheme for the full-discrete Maxwell's equations. We achieve a local and explicit time update for the field equations by employing the sparse approximate inverse (SPAI) algorithm. Interpolating field values to particles' positions for solving Newton-Lorentz equations of motion is also done via Whitney forms. Particles are advanced using the Boris algorithm with relativistic correction. A recently introduced charge-conserving scatter scheme tailored for 2D unstructured grids is used in the scatter step. The algorithm is validated considering cylindrical cavity and space-charge-limited cylindrical diode problems. We use the algorithm to investigate the physical performance of VEDs designed to harness particle bunching effects arising from the coherent (resonance) Cerenkov electron beam interactions within micro-machined slow wave structures.
Comparison of Current and Field Driven Domain Wall Motion in Beaded Permalloy Nanowires
NASA Astrophysics Data System (ADS)
Lage, Enno; Dutta, Sumit; Ross, Caroline A.
2015-03-01
Domain wall based devices are promising candidates for non-volatile memory devices with no static power consumption. A common approach is the use of (field assisted) current driven domain wall motion in magnetic nanowires. In such systems local variations in linewidth act as obstacles for propagating domain walls. In this study we compare simulated field driven and current driven domain wall motion in permalloy nanowires with anti-notches. The simulations were obtained using the Object Oriented MicroMagnetics Framework (OOMMF). The wires with a constant thickness of 8 nm exhibit linewidths ranging from 40 nm to 300 nm. Circular shaped anti-notches extend the linewidth locally by 10% to 30% and raise information about the domain wall propagation in such beaded nanowires. The results are interpreted in terms of the observed propagation behavior and summarized in maps indicating ranges of different ability to overcome the pinning caused by anti-notches of different sizes. Furthermore, regimes of favored domain wall type (transverse walls or vortex walls) and complex propagation effects like walker breakdown behavior or dynamic change between domain wall structures are identified The authors thank the German Academic Exchange Service (DAAD) for funding.
Scaling of Turbulence and Transport with ρ* in LAPD
NASA Astrophysics Data System (ADS)
Guice, Daniel; Carter, Troy; Rossi, Giovanni
2014-10-01
The plasma column size of the Large Plasma Device (LAPD) is varied in order to investigate the variation of turbulence and transport with ρ* =ρs / a . The data set includes plasmas produced by the standard BaO plasma source (straight field plasma radius a 30 cm) as well as the new higher density, higher temperature LaB6 plasma source (straight field plasma radius a 10 cm). The size of the plasma column is scaled in order to observe a Bohm to Gyro-Bohm diffusion transition. The main plasma column magnetic field is held fixed while the field in the cathode region is changed in order to map the cathode to different plasma column scales in the main chamber. Past experiments in the LAPD have shown a change in the observed diffusion but no transition to Gyro-Bohm diffusion. Results will be presented from an ongoing campaign to push the LAPD into the Gyro-Bohm diffusion regime.
Indoor Positioning System Using Magnetic Field Map Navigation and an Encoder System
Kim, Han-Sol; Seo, Woojin; Baek, Kwang-Ryul
2017-01-01
In the indoor environment, variation of the magnetic field is caused by building structures, and magnetic field map navigation is based on this feature. In order to estimate position using this navigation, a three-axis magnetic field must be measured at every point to build a magnetic field map. After the magnetic field map is obtained, the position of the mobile robot can be estimated with a likelihood function whereby the measured magnetic field data and the magnetic field map are used. However, if only magnetic field map navigation is used, the estimated position can have large errors. In order to improve performance, we propose a particle filter system that integrates magnetic field map navigation and an encoder system. In this paper, multiple magnetic sensors and three magnetic field maps (a horizontal intensity map, a vertical intensity map, and a direction information map) are used to update the weights of particles. As a result, the proposed system estimates the position and orientation of a mobile robot more accurately than previous systems. Also, when the number of magnetic sensors increases, this paper shows that system performance improves. Finally, experiment results are shown from the proposed system that was implemented and evaluated. PMID:28327513
Indoor Positioning System Using Magnetic Field Map Navigation and an Encoder System.
Kim, Han-Sol; Seo, Woojin; Baek, Kwang-Ryul
2017-03-22
In the indoor environment, variation of the magnetic field is caused by building structures, and magnetic field map navigation is based on this feature. In order to estimate position using this navigation, a three-axis magnetic field must be measured at every point to build a magnetic field map. After the magnetic field map is obtained, the position of the mobile robot can be estimated with a likelihood function whereby the measured magnetic field data and the magnetic field map are used. However, if only magnetic field map navigation is used, the estimated position can have large errors. In order to improve performance, we propose a particle filter system that integrates magnetic field map navigation and an encoder system. In this paper, multiple magnetic sensors and three magnetic field maps (a horizontal intensity map, a vertical intensity map, and a direction information map) are used to update the weights of particles. As a result, the proposed system estimates the position and orientation of a mobile robot more accurately than previous systems. Also, when the number of magnetic sensors increases, this paper shows that system performance improves. Finally, experiment results are shown from the proposed system that was implemented and evaluated.
Imaging quantum transport using scanning gate microscopy
NASA Astrophysics Data System (ADS)
Hackens, Benoit
2014-03-01
Quantum transport in nanodevices is usually probed thanks to measurements of the electrical resistance or conductance, which lack the spatial resolution necessary to probe electron behaviour inside the devices. In this talk, we will show that scanning gate microscopy (SGM) yields real-space images of quantum transport phenomena inside archetypal mesoscopic devices such as quantum point contacts and quantum rings. We will first discuss the SGM technique, which is based on mapping the electrical conductance of a device as an electrically-biased sharp metallic tip scans in its vicinity. With SGM, we demonstrated low temperature imaging of the electron probability density and interferences in embedded mesoscopic quantum rings [B. Hackens et al., Nat. Phys. 2, 826 (2006)]. At high magnetic field, thanks to the SGM conductance maps, one can decrypt complex transport phenomena such as tunneling between quantum Hall edge state, either direct or through localized states [B. Hackens et al., Nat. Comm. 1, 39 (2010)]. Moreover, the technique also allows to perform local spectroscopy of electron transport through selected localized states [F. Martins et al., New J. of Phys. 15, 013049 (2013); F. Martins et al., Sci. Rep. 3, 1416 (2013)]. Overall, these examples show that scanning gate microscopy is a powerful tool for imaging charge carrier behavior inside devices fabricated from a variety of materials, and opens the way towards a more intimate manipulation of charge and quasiparticle transport. This work was performed in collaboration with F. Martins, S. Faniel, B. Brun, M. Pala, X. Wallart, L. Desplanque, B. Rosenow, T. Ouisse, H. Sellier, S. Huant and V. Bayot.
Captur, Gabriella; Gatehouse, Peter; Keenan, Kathryn E; Heslinga, Friso G; Bruehl, Ruediger; Prothmann, Marcel; Graves, Martin J; Eames, Richard J; Torlasco, Camilla; Benedetti, Giulia; Donovan, Jacqueline; Ittermann, Bernd; Boubertakh, Redha; Bathgate, Andrew; Royet, Celine; Pang, Wenjie; Nezafat, Reza; Salerno, Michael; Kellman, Peter; Moon, James C
2016-09-22
T 1 mapping and extracellular volume (ECV) have the potential to guide patient care and serve as surrogate end-points in clinical trials, but measurements differ between cardiovascular magnetic resonance (CMR) scanners and pulse sequences. To help deliver T 1 mapping to global clinical care, we developed a phantom-based quality assurance (QA) system for verification of measurement stability over time at individual sites, with further aims of generalization of results across sites, vendor systems, software versions and imaging sequences. We thus created T1MES: The T1 Mapping and ECV Standardization Program. A design collaboration consisting of a specialist MRI small-medium enterprise, clinicians, physicists and national metrology institutes was formed. A phantom was designed covering clinically relevant ranges of T 1 and T 2 in blood and myocardium, pre and post-contrast, for 1.5 T and 3 T. Reproducible mass manufacture was established. The device received regulatory clearance by the Food and Drug Administration (FDA) and Conformité Européene (CE) marking. The T1MES phantom is an agarose gel-based phantom using nickel chloride as the paramagnetic relaxation modifier. It was reproducibly specified and mass-produced with a rigorously repeatable process. Each phantom contains nine differently-doped agarose gel tubes embedded in a gel/beads matrix. Phantoms were free of air bubbles and susceptibility artifacts at both field strengths and T 1 maps were free from off-resonance artifacts. The incorporation of high-density polyethylene beads in the main gel fill was effective at flattening the B 1 field. T 1 and T 2 values measured in T1MES showed coefficients of variation of 1 % or less between repeat scans indicating good short-term reproducibility. Temperature dependency experiments confirmed that over the range 15-30 °C the short-T 1 tubes were more stable with temperature than the long-T 1 tubes. A batch of 69 phantoms was mass-produced with random sampling of ten of these showing coefficients of variations for T 1 of 0.64 ± 0.45 % and 0.49 ± 0.34 % at 1.5 T and 3 T respectively. The T1MES program has developed a T 1 mapping phantom to CE/FDA manufacturing standards. An initial 69 phantoms with a multi-vendor user manual are now being scanned fortnightly in centers worldwide. Future results will explore T 1 mapping sequences, platform performance, stability and the potential for standardization.
Gamut mapping in a high-dynamic-range color space
NASA Astrophysics Data System (ADS)
Preiss, Jens; Fairchild, Mark D.; Ferwerda, James A.; Urban, Philipp
2014-01-01
In this paper, we present a novel approach of tone mapping as gamut mapping in a high-dynamic-range (HDR) color space. High- and low-dynamic-range (LDR) images as well as device gamut boundaries can simultaneously be represented within such a color space. This enables a unified transformation of the HDR image into the gamut of an output device (in this paper called HDR gamut mapping). An additional aim of this paper is to investigate the suitability of a specific HDR color space to serve as a working color space for the proposed HDR gamut mapping. For the HDR gamut mapping, we use a recent approach that iteratively minimizes an image-difference metric subject to in-gamut images. A psychophysical experiment on an HDR display shows that the standard reproduction workflow of two subsequent transformations - tone mapping and then gamut mapping - may be improved by HDR gamut mapping.
Mapping the yeast genome by melting in nanofluidic devices
NASA Astrophysics Data System (ADS)
Welch, Robert L.; Czolkos, Ilja; Sladek, Rob; Reisner, Walter
2012-02-01
Optical mapping of DNA provides large-scale genomic information that can be used to assemble contigs from next-generation sequencing, and to detect re-arrangements between single cells. A recent optical mapping technique called denaturation mapping has the unique advantage of using physical principles rather than the action of enzymes to probe genomic structure. The absence of reagents or reaction steps makes denaturation mapping simpler than other protocols. Denaturation mapping uses fluorescence microscopy to image the pattern of partial melting along a DNA molecule extended in a channel of cross-section ˜100nm at the heart of a nanofluidic device. We successfully aligned melting maps from single DNA molecules to a theoretical map of the yeast genome (11.6Mbp) to identify their location. By aligning hundreds of molecules we assembled a consensus melting map of the yeast genome with 95% coverage.
Recent advances in dental optics - Part I: 3D intraoral scanners for restorative dentistry
NASA Astrophysics Data System (ADS)
Logozzo, Silvia; Zanetti, Elisabetta M.; Franceschini, Giordano; Kilpelä, Ari; Mäkynen, Anssi
2014-03-01
Intra-oral scanning technology is a very fast-growing field in dentistry since it responds to the need of an accurate three-dimensional mapping of the mouth, as required in a large number of procedures such as restorative dentistry and orthodontics. Nowadays, more than 10 intra-oral scanning devices for restorative dentistry have been developed all over the world even if only some of those devices are currently available on the market. All the existing intraoral scanners try to face with problems and disadvantages of traditional impression fabrication process and are based on different non-contact optical technologies and principles. The aim of this publication is to provide an extensive review of existing intraoral scanners for restorative dentistry evaluating their working principles, features and performances.
Magnetocardiography with sensors based on giant magnetoresistance
NASA Astrophysics Data System (ADS)
Pannetier-Lecoeur, M.; Parkkonen, L.; Sergeeva-Chollet, N.; Polovy, H.; Fermon, C.; Fowley, C.
2011-04-01
Biomagnetic signals, mostly due to the electrical activity in the body, are very weak and they can only be detected by the most sensitive magnetometers, such as Superconducting Quantum Interference Devices (SQUIDs). We report here biomagnetic recordings with hybrid sensors based on Giant MagnetoResistance (GMR). We recorded magnetic signatures of the electric activity of the human heart (magnetocardiography) in healthy volunteers. The P-wave and QRS complex, known from the corresponding electric recordings, are clearly visible in the recordings after an averaging time of about 1 min. Multiple recordings at different locations over the chest yielded a dipolar magnetic field map and allowed localizing the underlying current sources. The sensitivity of the GMR-based sensors is now approaching that of SQUIDs and paves way for spin electronics devices for functional imaging of the body.
EXiO-A Brain-Controlled Lower Limb Exoskeleton for Rhesus Macaques.
Vouga, Tristan; Zhuang, Katie Z; Olivier, Jeremy; Lebedev, Mikhail A; Nicolelis, Miguel A L; Bouri, Mohamed; Bleuler, Hannes
2017-02-01
Recent advances in the field of brain-machine interfaces (BMIs) have demonstrated enormous potential to shape the future of rehabilitation and prosthetic devices. Here, a lower-limb exoskeleton controlled by the intracortical activity of an awake behaving rhesus macaque is presented as a proof-of-concept for a locomotorBMI. A detailed description of the mechanical device, including its innovative features and first experimental results, is provided. During operation, BMI-decoded position and velocity are directly mapped onto the bipedal exoskeleton's motions, which then move the monkey's legs as the monkey remains physicallypassive. To meet the unique requirements of such an application, the exoskeleton's features include: high output torque with backdrivable actuation, size adjustability, and safe user-robot interface. In addition, a novel rope transmission is introduced and implemented. To test the performance of the exoskeleton, a mechanical assessment was conducted, which yielded quantifiable results for transparency, efficiency, stiffness, and tracking performance. Usage under both brain control and automated actuation demonstrates the device's capability to fulfill the demanding needs of this application. These results lay the groundwork for further advancement in BMI-controlled devices for primates including humans.
Ground EMI: designing the future trends in shallow depth surveying
NASA Astrophysics Data System (ADS)
Thiesson, J.; Schamper, C.; Simon, F. X.; Tabbagh, A.
2017-12-01
In theory, electromagnetic induction phenomena are driven by three fundamental properties (conductivity, susceptibility, permittivity). Since the 1930's, the developments of EMI prospecting were based on assumptions (Low frequency VS High frequency, low/high induction number). The design of the devices was focused on specific aims (diffusive/propagative, mapping/sounding) and, in the last thirty years the progressive transition from analog to numeric electronics completely enhanced the potency of measurements (multi-channeling, automatic positioning) a) as it did in model computation. In the field of metric sized devices for lower depths of investigation, the measurements have been first restricted to electrical conductivity. However, the measurement of the magnetic susceptibility proved to be possible thanks to in phase and quadrature separation, and the last developed commercially available multi-frequency and/or multi-receivers devices permit, thanks to accurate calibration, the measurements of the three properties with various geometries or frequencies simultaneously. The aims of this study is to present theoretical results in order to give hints for designing a device which can be optimal to evaluate the three properties and their frequency dependence.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ralph B. James
2000-01-07
Device simulations of (1) the laterally-contacted-unipolar-nuclear detector (LUND), (2) the SpectrumPlus, (3) and the coplanar grid made of Cd{sub 0.9}Zn{sub 0.1}Te (CZT) were performed for {sup 137}Cs irradiation by 662.15 keV gamma-rays. Realistic and controlled simulations of the gamma-ray interactions with the CZT material were done using the MCNP4B2 Monte Carlo program, and the detector responses were simulated using the Sandia three-dimensional multielectrode simulation program (SandTMSP). The simulations were done for the best and the worst expected carrier nobilities and lifetimes of currently commercially available CZT materials for radiation detector applications. For the simulated unipolar devices, the active device volumesmore » were relatively large and the energy resolutions were fairly good, but these performance characteristics were found to be very sensitive to the materials properties. The internal electric fields, the weighting potentials, and the charge induced efficiency maps were calculated to give insights into the operation of these devices.« less
Optical metrology for DMD™ characterization
NASA Astrophysics Data System (ADS)
Miller, Seth A.; Mezenner, Rabah; Doane, Dennis
2001-01-01
The Digital Micromirror Device™ (DMD™) developed at Texas Instruments is a spatial light modulator composed of 500,000 to 1.3 million movable micromachined aluminum mirrors. The DMD™ serves as the engine for the current generation of computer-driven slide and video projectors, and for next generation devices in digital television and movie projectors. Because of the unique architecture and applications of the device, Texas Instruments has developed a series of customized optical testers for characterizing DMD™ performance. This paper provides a general overview of the MirrorMaster, a custom optical inspection tool. Particular attention is given to Bias Adhesion Mapping (BAM) as a device performance metric. BAM is an optical test that monitors the performance of the mirrors as a function of an applied voltage. This voltage drives the mirrors to the `on' or `off' position, and as the bias is stepped down the mirrors return to their neutral orientations. Important forces involved in this process include the electrostatic field applied, the compliance of the hinge, and static friction (stiction). BAM curves can help characterize device stiction and allow us to examine the efficacy of the lubrication system over the lifetime of the device.
NASA Astrophysics Data System (ADS)
Van Den Broeke, Douglas J.; Laidig, Thomas L.; Chen, J. Fung; Wampler, Kurt E.; Hsu, Stephen D.; Shi, Xuelong; Socha, Robert J.; Dusa, Mircea V.; Corcoran, Noel P.
2004-08-01
Imaging contact and via layers continues to be one of the major challenges to be overcome for 65nm node lithography. Initial results of using ASML MaskTools' CPL Technology to print contact arrays through pitch have demonstrated the potential to further extend contact imaging to a k1 near 0.30. While there are advantages and disadvantages for any potential RET, the benefits of not having to solve the phase assignment problem (which can lead to unresolvable phase conflicts), of it being a single reticle - single exposure technique, and its application to multiple layers within a device (clear field and dark field) make CPL an attractive, cost effective solution to low k1 imaging. However, real semiconductor circuit designs consist of much more than regular arrays of contact holes and a method to define the CPL reticle design for a full chip circuit pattern is required in order for this technique to be feasible in volume manufacturing. Interference Mapping Lithography (IML) is a novel approach for defining optimum reticle patterns based on the imaging conditions that will be used when the wafer is exposed. Figure 1 shows an interference map for an isolated contact simulated using ASML /1150 settings of 0.75NA and 0.92/0.72/30deg Quasar illumination. This technique provides a model-based approach for placing all types features (scattering bars, anti-scattering bars, non-printing assist features, phase shifted and non-phase shifted) for the purpose of enhancing the resolution of the target pattern and it can be applied to any reticle type including binary (COG), attenuated phase shifting mask (attPSM), alternating aperture phase shifting mask (altPSM), and CPL. In this work, we investigate the application of IML to generate CPL reticle designs for random contact patterns that are typical for 65nm node logic devices. We examine the critical issues related to using CPL with Interference Mapping Lithography including controlling side lobe printing, contact patterns with odd symmetry, forbidden pitch regions, and reticle manufacturing constraints. Multiple methods for deriving the interference map used to define reticle patterns for various RET's will be discussed. CPL reticle designs that were created from implementing automated algorithms for contact pattern decomposition using MaskWeaver will also be presented.
Campanile Near-Field Probes Fabricated by Nanoimprint Lithography on the Facet of an Optical Fiber
Calafiore, Giuseppe; Koshelev, Alexander; Darlington, Thomas P.; ...
2017-05-10
One of the major challenges to the widespread adoption of plasmonic and nano-optical devices in real-life applications is the difficulty to mass-fabricate nano-optical antennas in parallel and reproducible fashion, and the capability to precisely place nanoantennas into devices with nanometer-scale precision. In this study, we present a solution to this challenge using the state-of-the-art ultraviolet nanoimprint lithography (UV-NIL) to fabricate functional optical transformers onto the core of an optical fiber in a single step, mimicking the 'campanile' near-field probes. Imprinted probes were fabricated using a custom-built imprinter tool with co-axial alignment capability with sub < 100 nm position accuracy, followedmore » by a metallization step. Scanning electron micrographs confirm high imprint fidelity and precision with a thin residual layer to facilitate efficient optical coupling between the fiber and the imprinted optical transformer. The imprinted optical transformer probe was used in an actual NSOM measurement performing hyperspectral photoluminescence mapping of standard fluorescent beads. The calibration scans confirmed that imprinted probes enable sub-diffraction limited imaging with a spatial resolution consistent with the gap size. This novel nano-fabrication approach promises a low-cost, high-throughput, and reproducible manufacturing of advanced nano-optical devices.« less
Campanile Near-Field Probes Fabricated by Nanoimprint Lithography on the Facet of an Optical Fiber
DOE Office of Scientific and Technical Information (OSTI.GOV)
Calafiore, Giuseppe; Koshelev, Alexander; Darlington, Thomas P.
One of the major challenges to the widespread adoption of plasmonic and nano-optical devices in real-life applications is the difficulty to mass-fabricate nano-optical antennas in parallel and reproducible fashion, and the capability to precisely place nanoantennas into devices with nanometer-scale precision. In this study, we present a solution to this challenge using the state-of-the-art ultraviolet nanoimprint lithography (UV-NIL) to fabricate functional optical transformers onto the core of an optical fiber in a single step, mimicking the 'campanile' near-field probes. Imprinted probes were fabricated using a custom-built imprinter tool with co-axial alignment capability with sub < 100 nm position accuracy, followedmore » by a metallization step. Scanning electron micrographs confirm high imprint fidelity and precision with a thin residual layer to facilitate efficient optical coupling between the fiber and the imprinted optical transformer. The imprinted optical transformer probe was used in an actual NSOM measurement performing hyperspectral photoluminescence mapping of standard fluorescent beads. The calibration scans confirmed that imprinted probes enable sub-diffraction limited imaging with a spatial resolution consistent with the gap size. This novel nano-fabrication approach promises a low-cost, high-throughput, and reproducible manufacturing of advanced nano-optical devices.« less
Final report: Mapping Interactions in Hybrid Systems with Active Scanning Probes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berezovsky, Jesse
2017-09-29
This project aimed to study and map interactions between components of hybrid nanodevices using a novel scanning probe approach. To enable this work, we initially constructed a flexible experimental apparatus allowing for simultaneous scanning probe and confocal optical microscopy measurements. This setup was first used for all-optical measurements of nanostructures, with the focus then shifting to hybrid devices in which single coherent electron spins are coupled to micron-scale ferromagnetic elements, which may prove useful for addressing single spins, enhanced sensing, or spin-wave-mediated coupling of spins for quantum information applications. A significant breakthrough was the realization that it is not necessarymore » to fabricate a magnetic structure on a scanning probe – instead a ferromagnetic vortex core can act as an integrated, solid state, scanning probe. The core of the vortex produces a very strong, localized fringe field which can be used analogously to an MFM tip. Unlike a traditional MFM tip, however, the vortex core is scanned within an integrated device (eliminating drift), and can be moved on vastly faster timescales. This approach allows the detailed investigation of interactions between single spins and complex driven ferromagnetic dynamics.« less
NASA Astrophysics Data System (ADS)
Roth, Wolff-Michael; Bowen, G. Michael
The purpose of this classroom study was to investigate the use of mathematical representations in three Grade 8 general science classes that engaged in a 10-week open inquiry about the correlations between biological and physical variables in the environment. A constructivist perspective was used to design the study and to assemble the data sources. These data sources included videotapes of students in their work, audiotapes of teacher-student interactions and teacher interviews, the transcripts of these tapes, the students' field notebooks, field reports, special problem assignments, examinations, and the teachers' curriculum guides, field notes, and reflective journal. An interpretive method was used to construct assertions and the supporting data. In the setting provided, students increasingly used mathematical representations such as graphs and data tables to support their claims in a convincing manner; the use of abstract equations and percent calculations did not change over the course of the study. Representations such as graphs, maps, averages, and equations were not only useful as inscriptions (representations in some permanent medium, usually paper), but also as conscription devices in the construction of, and through which, students engaged each other to collaboratively construct meaning. This study demonstrates the use of representations as conscription devices, and illustrates how the use and understanding of inscriptions changes over time. Understanding representations as inscription and conscription devices focuses on the social aspects of knowing, which has important implications for teachers' conceptualization of learning and their organization of science classrooms.
Bechtold, Christoph; de Miranda, Rodrigo Lima; Chluba, Christoph; Quandt, Eckhard
2016-12-01
Self-expandable medical devices provide mechanical functionality at a specific location of the human body and are viable for minimal invasive procedures. Besides radiopaque markers and drug-eluting coatings, next generation self-expandable devices can be equipped with additional functionality, such as conductive and flexible electrodes, which enables chronic recording of bioelectrical signals, stimulating or ablating tissue. This promises new therapeutic options in various medical fields, among them in particular neuromodulation (e.g. deep brain stimulation), BioMEMS, radio frequency ablation, mapping or denervation. However, the fabrication of such multi-functional devices is challenging. For this study we have realized a 35 μm thick, superelastic NiTi thin film stent structure with six isolated electrodes on the outer circumference, each electrode connected to a contact pad at the end of the stent structure, using magnetron sputtering, UV lithography and wet chemical etching. Mechanical and electrical properties of the device during typical loading conditions, i.e. crimping, simulated pulsatile and electrochemical testing, were characterized and reveal promising results. For the fabrication of future multifunctional, minimal invasive medical devices, such as electroceuticals or other intelligent implants, NiTi thin film technology is therefore a versatile alternative to conventional fabrication routes.
Cloud Quantum Computing of an Atomic Nucleus
NASA Astrophysics Data System (ADS)
Dumitrescu, E. F.; McCaskey, A. J.; Hagen, G.; Jansen, G. R.; Morris, T. D.; Papenbrock, T.; Pooser, R. C.; Dean, D. J.; Lougovski, P.
2018-05-01
We report a quantum simulation of the deuteron binding energy on quantum processors accessed via cloud servers. We use a Hamiltonian from pionless effective field theory at leading order. We design a low-depth version of the unitary coupled-cluster ansatz, use the variational quantum eigensolver algorithm, and compute the binding energy to within a few percent. Our work is the first step towards scalable nuclear structure computations on a quantum processor via the cloud, and it sheds light on how to map scientific computing applications onto nascent quantum devices.
Cloud Quantum Computing of an Atomic Nucleus
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dumitrescu, Eugene F.; McCaskey, Alex J.; Hagen, Gaute
Here, we report a quantum simulation of the deuteron binding energy on quantum processors accessed via cloud servers. We use a Hamiltonian from pionless effective field theory at leading order. We design a low-depth version of the unitary coupled-cluster ansatz, use the variational quantum eigensolver algorithm, and compute the binding energy to within a few percent. Our work is the first step towards scalable nuclear structure computations on a quantum processor via the cloud, and it sheds light on how to map scientific computing applications onto nascent quantum devices.
2008-08-01
Figure 17: USGS Helmholtz coils with SQUID and fluxgate magnetometers installed. 22 Figure 18: Plot of SQUID and fluxgate data from a rotating... fluxgate magnetometer , each sensor measures flux in only one direction. Combinations of SQUID sensor elements are arranged in various configurations...than the absolute field value the way that a fluxgate magnetometer would do. If the SQUID is shut down or loses lock, it has no way to relate the new
Cloud Quantum Computing of an Atomic Nucleus.
Dumitrescu, E F; McCaskey, A J; Hagen, G; Jansen, G R; Morris, T D; Papenbrock, T; Pooser, R C; Dean, D J; Lougovski, P
2018-05-25
We report a quantum simulation of the deuteron binding energy on quantum processors accessed via cloud servers. We use a Hamiltonian from pionless effective field theory at leading order. We design a low-depth version of the unitary coupled-cluster ansatz, use the variational quantum eigensolver algorithm, and compute the binding energy to within a few percent. Our work is the first step towards scalable nuclear structure computations on a quantum processor via the cloud, and it sheds light on how to map scientific computing applications onto nascent quantum devices.
Cloud Quantum Computing of an Atomic Nucleus
Dumitrescu, Eugene F.; McCaskey, Alex J.; Hagen, Gaute; ...
2018-05-23
Here, we report a quantum simulation of the deuteron binding energy on quantum processors accessed via cloud servers. We use a Hamiltonian from pionless effective field theory at leading order. We design a low-depth version of the unitary coupled-cluster ansatz, use the variational quantum eigensolver algorithm, and compute the binding energy to within a few percent. Our work is the first step towards scalable nuclear structure computations on a quantum processor via the cloud, and it sheds light on how to map scientific computing applications onto nascent quantum devices.
An imaging colorimeter for noncontact tissue color mapping.
Balas, C
1997-06-01
There has been a considerable effort in several medical fields, for objective color analysis and characterization of biological tissues. Conventional colorimeters have proved inadequate for this purpose, since they do not provide spatial color information and because the measuring procedure randomly affects the color of the tissue. In this paper an imaging colorimeter is presented, where the nonimaging optical photodetector of colorimeters is replaced with the charge-coupled device (CCD) sensor of a color video camera, enabling the independent capturing of the color information for any spatial point within its field-of-view. Combining imaging and colorimetry methods, the acquired image is calibrated and corrected, under several ambient light conditions, providing noncontact reproducible color measurements and mapping, free of the errors and the limitations present in conventional colorimeters. This system was used for monitoring of blood supply changes of psoriatic plaques, that have undergone Psoralens and ultraviolet-A radiation (PUVA) therapy, where reproducible and reliable measurements were demonstrated. These features highlight the potential of the imaging colorimeters as clinical and research tools for the standardization of clinical diagnosis and for the objective evaluation of treatment effectiveness.
NASA Astrophysics Data System (ADS)
Dubey, Satish Kumar; Singh Mehta, Dalip; Anand, Arun; Shakher, Chandra
2008-01-01
We demonstrate simultaneous topography and tomography of latent fingerprints using full-field swept-source optical coherence tomography (OCT). The swept-source OCT system comprises a superluminescent diode (SLD) as broad-band light source, an acousto-optic tunable filter (AOTF) as frequency tuning device, and a compact, nearly common-path interferometer. Both the amplitude and the phase map of the interference fringe signal are reconstructed. Optical sectioning of the latent fingerprint sample is obtained by selective Fourier filtering and the topography is retrieved from the phase map. Interferometry, selective filtering, low coherence and hence better resolution are some of the advantages of the proposed system over the conventional fingerprint detection techniques. The present technique is non-invasive in nature and does not require any physical or chemical processing. Therefore, the quality of the sample does not alter and hence the same fingerprint can be used for other types of forensic test. Exploitation of low-coherence interferometry for fingerprint detection itself provides an edge over other existing techniques as fingerprints can even be lifted from low-reflecting surfaces. The proposed system is very economical and compact.
Exposure assessment of extremely low frequency electric fields in Tehran, Iran, 2010.
Nassiri, Parvin; Esmaeilpour, Mohammad Reza Monazzam; Gharachahi, Ehsan; Haghighat, Gholamali; Yunesian, Masoud; Zaredar, Narges
2013-01-01
Extremely Low-Frequency (ELF) electric and magnetic fields belonging to the nonionizing electromagnetic radiation spectrum have a frequency of 50 - 60 Hz. All people are exposed to a complex set of electric and magnetic fields that spread throughout the environment. The current study was carried out to assess people's exposure to an ELF electric field in the Tehran metropolitan area in 2010. The measurement of the electronic fields was performed using an HI-3604 power frequency field strength measurement device. A total number of 2,753 measurements were performed. Afterward, the data obtained were transferred to the base map using Arc View Version 3.2 and Arc Map Version 9.3. Finally, an interpolation method was applied to expand the intensity of the electric field to the entire city. Based on the results obtained, the electric field was divided into three parts with various intensities including 0-5 V m, 5-15 V m, and >15 V m. It should be noted that the status of high voltage transmission lines, electric substations, and specific points including schools and hospitals were also marked on the map. Minimum and maximum electric field intensities were measured tantamount to 0.31 V m and 19.80 V m, respectively. In all measurements, the electric field was much less than the amount provided in the ICNIRP Guide. The results revealed that 141 hospitals and 6,905 schools are situated in an area with electric field intensity equal to 0-5 V m, while 15 hospitals and 95 schools are located in zones of 5-15 V m and more than 15 V m. Examining high voltage transmission lines and electric substations in Tehran and its suburbs suggested that the impact of the lines on the background electric field of the city was low. Accordingly, 0.97 km of Tehran located on the city border adjacent to the high voltage transmission lines have an electric field in the range of 5 to 15 V m. The noted range is much lower than the available standards. In summary, it can be concluded that the public is not exposed to a risky background electric field in metropolitan Tehran. The result of comparing sensitive recipients showed that the schools have a more desirable status than the hospitals. Nonetheless, epidemiologic studies can lead to more understanding of the impact on public health.
Navigation within the heart and vessels in clinical practice.
Beyar, Rafael
2010-02-01
The field of interventional cardiology has developed at an unprecedented pace on account of the visual and imaging power provided by constantly improving biomedical technologies. Transcatheter-based technology is now routinely used for coronary revascularization and noncoronary interventions using balloon angioplasty, stents, and many other devices. In the early days of interventional practice, the operating physician had to manually navigate catheters and devices under fluoroscopic imaging and was exposed to radiation, with its comcomitant necessity for wearing heavy lead aprons for protection. Until recently, very little has changed in the way procedures have been carried out in the catheterization laboratory. The technological capacity to remotely manipulate devices, using robotic arms and computational tools, has been developed for surgery and other medical procedures. This has brought to practice the powerful combination of the abilities afforded by imaging, navigational tools, and remote control manipulation. This review covers recent developments in navigational tools for catheter positioning, electromagnetic mapping, magnetic resonance imaging (MRI)-based cardiac electrophysiological interventions, and navigation tools through coronary arteries.
Characterization of Pressure Fields of Focused Transducers at TÜBİTAK UME
NASA Astrophysics Data System (ADS)
Karaböce, B.; Şahin, A.; İnce, A. T.; Skarlatos, Y.
Field radiated by HIFU (High Intensity Focused Ultrasound) has been investigated by measuring its pressure field and mapping in 2-D and 3-D. A new ultrasound pressure measurement system has been designed and constructed at TÜBİTAK UME (The Scientific and Technological Research Council of Turkey, the National Metrology Institute). System consists of a water tank, positioning system, measurement devices and a controlling program. The hydrophone was attached to a 3-axis, computer-controlled positioning system for alignment with the ultrasound source. The signal was captured and analyzed by the commercially available LabVIEW 8.1 software. The measurements of the ultrasound field were carried out with a needle hydrophone. For each waveform, p, p+ and p-pressures have been calculated. Wave behaviors produced by the KZK model and from experiments look like similar in general. In p, p+, p- the focal point, zero point after the primary peak (focus) and extremum points in the near field well match.
NASA Technical Reports Server (NTRS)
Bridges, James
2002-01-01
As part of the Advanced Subsonic Technology Program, a series of experiments was conducted at NASA Glenn Research Center on the effect of mixing enhancement devices on the aeroacoustic performance of separate flow nozzles. Initial acoustic evaluations of the devices showed that they reduced jet noise significantly, while creating very little thrust loss. The explanation for the improvement required that turbulence measurements, namely single point mean and RMS statistics and two-point spatial correlations, be made to determine the change in the turbulence caused by the mixing enhancement devices that lead to the noise reduction. These measurements were made in the summer of 2000 in a test program called Separate Nozzle Flow Test 2000 (SFNT2K) supported by the Aeropropulsion Research Program at NASA Glenn Research Center. Given the hot high-speed flows representative of a contemporary bypass ratio 5 turbofan engine, unsteady flow field measurements required the use of an optical measurement method. To achieve the spatial correlations, the Particle Image Velocimetry technique was employed, acquiring high-density velocity maps of the flows from which the required statistics could be derived. This was the first successful use of this technique for such flows, and shows the utility of this technique for future experimental programs. The extensive statistics obtained were likewise unique and give great insight into the turbulence which produces noise and how the turbulence can be modified to reduce jet noise.
Battery-free, wireless sensors for full-body pressure and temperature mapping
Han, Seungyong; Kim, Jeonghyun; Won, Sang Min; Ma, Yinji; Kang, Daeshik; Xie, Zhaoqian; Lee, Kyu-Tae; Chung, Ha Uk; Banks, Anthony; Min, Seunghwan; Heo, Seung Yun; Davies, Charles R.; Lee, Jung Woo; Lee, Chi-Hwan; Kim, Bong Hoon; Li, Kan; Zhou, Yadong; Wei, Chen; Feng, Xue; Huang, Yonggang; Rogers, John A.
2018-01-01
Thin, soft, skin-like sensors capable of precise, continuous measurements of physiological health have broad potential relevance to clinical health care. Use of sensors distributed over a wide area for full-body, spatiotemporal mapping of physiological processes would be a considerable advance for this field. We introduce materials, device designs, wireless power delivery and communication strategies, and overall system architectures for skin-like, battery-free sensors of temperature and pressure that can be used across the entire body. Combined experimental and theoretical investigations of the sensor operation and the modes for wireless addressing define the key features of these systems. Studies with human subjects in clinical sleep laboratories and in adjustable hospital beds demonstrate functionality of the sensors, with potential implications for monitoring of circadian cycles and mitigating risks for pressure-induced skin ulcers. PMID:29618561
Yang, Bin; Dyck, Ondrej K.; Univ. of Tennessee, Knoxville, TN; ...
2016-11-04
The chemical stability of organometallic halide perovskites is a major barrier facing their application in the fast rising field of next generation photovoltaics. These materials were shown to undergo degradation due to the influence of heat or moisture, significantly limiting the lifetime of associated devices. To overcome this stability issue, a fundamental understanding of degradation mechanisms is of foremost importance. Here, high resolution in situ transmission electron microscopy and electron energy loss spectroscopy elemental mapping were applied to probe morphological and structural changes in perovskite films during controlled environmental exposure treatments. Both moisture and oxygen in ambient air are revealedmore » to facilitate degradation in CH 3NH 3PbI 3 perovskites through decomposition and oxidation pathways, respectively. In addition, even in moisture- and oxygen-free environment evident degradation could be induced by heating at the solar cell s real-field operating temperature and the degradation was found to originate from defect sites. These findings provide fundamental insight to prevent degradation of perovskite materials and associated devices for realistic applications.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Bin; Dyck, Ondrej K.; Univ. of Tennessee, Knoxville, TN
The chemical stability of organometallic halide perovskites is a major barrier facing their application in the fast rising field of next generation photovoltaics. These materials were shown to undergo degradation due to the influence of heat or moisture, significantly limiting the lifetime of associated devices. To overcome this stability issue, a fundamental understanding of degradation mechanisms is of foremost importance. Here, high resolution in situ transmission electron microscopy and electron energy loss spectroscopy elemental mapping were applied to probe morphological and structural changes in perovskite films during controlled environmental exposure treatments. Both moisture and oxygen in ambient air are revealedmore » to facilitate degradation in CH 3NH 3PbI 3 perovskites through decomposition and oxidation pathways, respectively. In addition, even in moisture- and oxygen-free environment evident degradation could be induced by heating at the solar cell s real-field operating temperature and the degradation was found to originate from defect sites. These findings provide fundamental insight to prevent degradation of perovskite materials and associated devices for realistic applications.« less
NASA Astrophysics Data System (ADS)
Sopori, Bhushan; Wei, Chen; Yi, Zhang; Madjdpour, Jamal
2000-03-01
A scanning system for mapping defects, and for measuring their influence on the photovoltaic of Si solar cells, is described. The system uses optical scattering patterns to identify the nature of defects. The local density of the defects is statistically determined from the integrated scattered light. The optical system can also measure the reflectance and the light-induced current which is then used to yield maps of the internal photoresponse of the device.
Design and application of a fish-shaped lateral line probe for flow measurement
NASA Astrophysics Data System (ADS)
Tuhtan, J. A.; Fuentes-Pérez, J. F.; Strokina, N.; Toming, G.; Musall, M.; Noack, M.; Kämäräinen, J. K.; Kruusmaa, M.
2016-04-01
We introduce the lateral line probe (LLP) as a measurement device for natural flows. Hydraulic surveys in rivers and hydraulic structures are currently based on time-averaged velocity measurements using propellers or acoustic Doppler devices. The long-term goal is thus to develop a sensor system, which includes spatial gradients of the flow field along a fish-shaped sensor body. Interpreting the biological relevance of a collection of point velocity measurements is complicated by the fact that fish and other aquatic vertebrates experience the flow field through highly dynamic fluid-body interactions. To collect body-centric flow data, a bioinspired fish-shaped probe is equipped with a lateral line pressure sensing array, which can be applied both in the laboratory and in the field. Our objective is to introduce a new type of measurement device for body-centric data and compare its output to estimates of conventional point-based technologies. We first provide the calibration workflow for laboratory investigations. We then provide a review of two velocity estimation workflows, independent of calibration. Such workflows are required as existing field investigations consist of measurements in environments where calibration is not feasible. The mean difference for uncalibrated LLP velocity estimates from 0 to 50 cm/s under in a closed flow tunnel and open channel flume was within 4 cm/s when compared to conventional measurement techniques. Finally, spatial flow maps in a scale vertical slot fishway are compared for the LLP, direct measurements, and 3D numerical models where it was found that the LLP provided a slight overestimation of the current velocity in the jet and underestimated the velocity in the recirculation zone.
Demonstration of Hadoop-GIS: A Spatial Data Warehousing System Over MapReduce.
Aji, Ablimit; Sun, Xiling; Vo, Hoang; Liu, Qioaling; Lee, Rubao; Zhang, Xiaodong; Saltz, Joel; Wang, Fusheng
2013-11-01
The proliferation of GPS-enabled devices, and the rapid improvement of scientific instruments have resulted in massive amounts of spatial data in the last decade. Support of high performance spatial queries on large volumes data has become increasingly important in numerous fields, which requires a scalable and efficient spatial data warehousing solution as existing approaches exhibit scalability limitations and efficiency bottlenecks for large scale spatial applications. In this demonstration, we present Hadoop-GIS - a scalable and high performance spatial query system over MapReduce. Hadoop-GIS provides an efficient spatial query engine to process spatial queries, data and space based partitioning, and query pipelines that parallelize queries implicitly on MapReduce. Hadoop-GIS also provides an expressive, SQL-like spatial query language for workload specification. We will demonstrate how spatial queries are expressed in spatially extended SQL queries, and submitted through a command line/web interface for execution. Parallel to our system demonstration, we explain the system architecture and details on how queries are translated to MapReduce operators, optimized, and executed on Hadoop. In addition, we will showcase how the system can be used to support two representative real world use cases: large scale pathology analytical imaging, and geo-spatial data warehousing.
How the Hilbert integral theorem inspired flow lines
NASA Astrophysics Data System (ADS)
Winston, Roland; Jiang, Lun
2017-09-01
Nonimaging Optics has been shown to achieve the theoretical limits constrained only by thermodynamic principles. The designing principles of nonimaging optics allow a non-conventional way of thinking about and generating new optical devices. Compared to conventional imaging optics which rarely utilizes the framework of thermodynamic arguments, nonimaging optics chooses to map etendue instead of rays. This fundamental shift of design paradigm frees the optics design from ray based designs which heavily relies on error tolerance analysis. Instead, the underlying thermodynamic principles guide the nonimaging design to be naturally constructed for extended light source for illumination, non-tracking concentrators and sensors that require sharp cut-off angles. We argue in this article that such optical devices which has enabled a multitude of applications depends on probabilities, geometric flux field and radiative heat transfer while "optics" in the conventional sense recedes into the background.
NASA Technical Reports Server (NTRS)
Neudeck, P. G.; Huang, W.; Dudley, M.
1998-01-01
It is well-known that SiC wafer quality deficiencies are delaying the realization of outstandingly superior 4H-SiC power electronics. While efforts to date have centered on eradicating micropipes (i.e., hollow core super-screw dislocations with Burgers vector greater than 2c), 4H-SiC wafers and epilayers also contain elementary screw dislocations (i.e., Burgers vector = lc with no hollow core) in densities on the order of thousands per sq cm, nearly 100-fold micropipe densities. This paper describes an initial study into the impact of elementary screw dislocations on the reverse-bias current-voltage (I-V) characteristics of 4H-SiC p(+)n diodes. First, Synchrotron White Beam X-ray Topography (SWBXT) was employed to map the exact locations of elementary screw dislocations within small-area 4H-SiC p(+)n mesa diodes. Then the high-field reverse leakage and breakdown properties of these diodes were subsequently characterized on a probing station outfitted with a dark box and video camera. Most devices without screw dislocations exhibited excellent characteristics, with no detectable leakage current prior to breakdown, a sharp breakdown I-V knee, and no visible concentration of breakdown current. In contrast devices that contained at least one elementary screw dislocation exhibited a 5% to 35% reduction in breakdown voltage, a softer breakdown I-V knee, and visible microplasmas in which highly localized breakdown current was concentrated. The locations of observed breakdown microplasmas corresponded exactly to the locations of elementary screw dislocations identified by SWBXT mapping. While not as detrimental to SiC device performance as micropipes, the undesirable breakdown characteristics of elementary screw dislocations could nevertheless adversely affect the performance and reliability of 4H-SiC power devices.
Technological advances in the surgical treatment of movement disorders.
Gross, Robert E; McDougal, Margaret E
2013-08-01
Technological innovations have driven the advancement of the surgical treatment of movement disorders, from the invention of the stereotactic frame to the adaptation of deep brain stimulation (DBS). Along these lines, this review will describe recent advances in inserting neuromodulation modalities, including DBS, to the target, and in the delivery of therapy at the target. Recent radiological advances are altering the way that DBS leads are targeted and inserted, by refining the ability to visualize the subcortical targets using high-field strength magnetic resonance imaging and other innovations, such as diffusion tensor imaging, and the development of novel targeting devices enabling purely anatomical implantations without the need for neurophysiological monitoring. New portable computed tomography scanners also are facilitating lead implantation without monitoring, as well as improving radiological verification of DBS lead location. Advances in neurophysiological mapping include efforts to develop automatic target verification algorithms, and probabilistic maps to guide target selection. The delivery of therapy at the target is being improved by the development of the next generation of internal pulse generators (IPGs). These include constant current devices that mitigate the variability introduced by impedance changes of the stimulated tissue and, in the near future, devices that deliver novel stimulation patterns with improved efficiency. Closed-loop adaptive IPGs are being tested, which may tailor stimulation to ongoing changes in the nervous system, reflected in biomarkers continuously recorded by the devices. Finer-grained DBS leads, in conjunction with new IPGs and advanced programming tools, may offer improved outcomes via current steering algorithms. Finally, even thermocoagulation-essentially replaced by DBS-is being advanced by new minimally-invasive approaches that may improve this therapy for selected patients in whom it may be preferred. Functional neurosurgery has a history of being driven by technological innovation, a tradition that continues into its future.
A mobile app for delivering in-field soil data for precision agriculture
NASA Astrophysics Data System (ADS)
Isaacs, John P.; Stojanovic, Vladeta; Falconer, Ruth E.
2015-04-01
In the last decade precision agriculture has grown from a concept to an emerging technology, largely due to the maturing of GPS and mobile mapping. We investigated methods for reliable delivery and display of appropriate and context aware in-field farm data on mobile devices by developing a prototype android mobile app. The 3D app was developed using OpenGL ES 2.0 and written in Java, using the Android Development Tools (ADT) SDK. The app is able to obtain GPS coordinates and automatically synchronise the view and load relevant data based on the user's location. The intended audience of the mobile app is farmers and agronomists. Apps are becoming an essential tool in an agricultural professional's arsenal however most existing apps are limited to 2D display of data even though the modern chips in mobile devices can support the display of 3D graphics at interactive rates using technologies such as webGL. This project investigated the use of games techniques in the delivery and 3D display of field data, recognising that this may be a departure from the way the field data is currently delivered and displayed to farmers and agronomists. Different interactive 3D visualisation methods presenting spatial and temporal variation in yield values were developed and tested. It is expected that this app can be used by farmers and agronomists to support decision making in the field of precision agriculture and this is a growing market in UK and Europe.
Current trends in geomorphological mapping
NASA Astrophysics Data System (ADS)
Seijmonsbergen, A. C.
2012-04-01
Geomorphological mapping is a world currently in motion, driven by technological advances and the availability of new high resolution data. As a consequence, classic (paper) geomorphological maps which were the standard for more than 50 years are rapidly being replaced by digital geomorphological information layers. This is witnessed by the following developments: 1. the conversion of classic paper maps into digital information layers, mainly performed in a digital mapping environment such as a Geographical Information System, 2. updating the location precision and the content of the converted maps, by adding more geomorphological details, taken from high resolution elevation data and/or high resolution image data, 3. (semi) automated extraction and classification of geomorphological features from digital elevation models, broadly separated into unsupervised and supervised classification techniques and 4. New digital visualization / cartographic techniques and reading interfaces. Newly digital geomorphological information layers can be based on manual digitization of polygons using DEMs and/or aerial photographs, or prepared through (semi) automated extraction and delineation of geomorphological features. DEMs are often used as basis to derive Land Surface Parameter information which is used as input for (un) supervised classification techniques. Especially when using high-res data, object-based classification is used as an alternative to traditional pixel-based classifications, to cluster grid cells into homogeneous objects, which can be classified as geomorphological features. Classic map content can also be used as training material for the supervised classification of geomorphological features. In the classification process, rule-based protocols, including expert-knowledge input, are used to map specific geomorphological features or entire landscapes. Current (semi) automated classification techniques are increasingly able to extract morphometric, hydrological, and in the near future also morphogenetic information. As a result, these new opportunities have changed the workflows for geomorphological mapmaking, and their focus have shifted from field-based techniques to using more computer-based techniques: for example, traditional pre-field air-photo based maps are now replaced by maps prepared in a digital mapping environment, and designated field visits using mobile GIS / digital mapping devices now focus on gathering location information and attribute inventories and are strongly time efficient. The resulting 'modern geomorphological maps' are digital collections of geomorphological information layers consisting of georeferenced vector, raster and tabular data which are stored in a digital environment such as a GIS geodatabase, and are easily visualized as e.g. 'birds' eye' views, as animated 3D displays, on virtual globes, or stored as GeoPDF maps in which georeferenced attribute information can be easily exchanged over the internet. Digital geomorphological information layers are increasingly accessed via web-based services distributed through remote servers. Information can be consulted - or even build using remote geoprocessing servers - by the end user. Therefore, it will not only be the geomorphologist anymore, but also the professional end user that dictates the applied use of digital geomorphological information layers.
A device for multimodal imaging of skin
NASA Astrophysics Data System (ADS)
Spigulis, Janis; Garancis, Valerijs; Rubins, Uldis; Zaharans, Eriks; Zaharans, Janis; Elste, Liene
2013-03-01
A compact prototype device for diagnostic imaging of skin has been developed and tested. Polarized LED light at several spectral regions is used for illumination, and round skin spot of diameter 30mm is imaged by a CMOS sensor via crossoriented polarizing filter. Four consecutive imaging series are performed: (1) RGB image at white LED illumination for revealing subcutaneous structures; (2) four spectral images at narrowband LED illumination (450nm, 540nm, 660nm, 940nm) for mapping of the main skin chromophores; (3) video-imaging under green LED illumination for mapping of skin blood perfusion; (4) autofluorescence video-imaging under UV (365nm) LED irradiation for mapping of the skin fluorophores. Design details of the device as well as preliminary results of clinical tests are presented.
U.S. Level III and IV Ecoregions (U.S. EPA)
This map service displays Level III and Level IV Ecoregions of the United States and was created from ecoregion data obtained from the U.S. Environmental Protection Agency Office of Research and Development's Western Ecology Division. The original ecoregion data was projected from Albers to Web Mercator for this map service. To download shapefiles of ecoregion data (in Albers), please go to: ftp://newftp.epa.gov/EPADataCommons/ORD/Ecoregions/. IMPORTANT NOTE ABOUT LEVEL IV POLYGON LEGEND DISPLAY IN ARCMAP: Due to the limitations of Graphical Device Interface (GDI) resources per application on Windows, ArcMap does not display the legend in the Table of Contents for the ArcGIS Server service layer if the legend has more than 100 items. As of December 2011, there are 968 unique legend items in the Level IV Ecoregion Polygon legend. Follow this link (http://support.esri.com/en/knowledgebase/techarticles/detail/33741) for instructions about how to increase the maximum number of ArcGIS Server service layer legend items allowed for display in ArcMap. Note the instructions at this link provide a slightly incorrect path to Maximum Legend Count. The correct path is HKEY_CURRENT_USER > Software > ESRI > ArcMap > Server > MapServerLayer > Maximum Legend Count. When editing the Maximum Legend Count, update the field, Value data to 1000. To download a PDF version of the Level IV ecoregion map and legend, go to ftp://newftp.epa.gov/EPADataCommons/ORD/Ecoregions/us/Eco_Level_IV
A wide field-of-view imaging DOAS instrument for two-dimensional trace gas mapping from aircraft
NASA Astrophysics Data System (ADS)
Schönhardt, A.; Altube, P.; Gerilowski, K.; Krautwurst, S.; Hartmann, J.; Meier, A. C.; Richter, A.; Burrows, J. P.
2015-12-01
The Airborne imaging differential optical absorption spectroscopy (DOAS) instrument for Measurements of Atmospheric Pollution (AirMAP) has been developed for the purpose of trace gas measurements and pollution mapping. The instrument has been characterized and successfully operated from aircraft. Nitrogen dioxide (NO2) columns were retrieved from the AirMAP observations. A major benefit of the push-broom imaging instrument is the spatially continuous, gap-free measurement sequence independent of flight altitude, a valuable characteristic for mapping purposes. This is made possible by the use of a charge coupled device (CCD) frame-transfer detector. A broad field of view across track of around 48° is achieved with wide-angle entrance optics. This leads to a swath width of about the same size as the flight altitude. The use of fibre coupled light intake optics with sorted light fibres allows flexible instrument positioning within the aircraft and retains the very good imaging capabilities. The measurements yield ground spatial resolutions below 100 m depending on flight altitude. The number of viewing directions is chosen from a maximum of 35 individual viewing directions (lines of sight, LOS) represented by 35 individual fibres. The selection is adapted to each situation by averaging according to signal-to-noise or spatial resolution requirements. Observations at 30 m spatial resolution are obtained when flying at 1000 m altitude and making use of all 35 viewing directions. This makes the instrument a suitable tool for mapping trace gas point sources and small-scale variability. The position and aircraft attitude are taken into account for accurate spatial mapping using the Attitude and Heading Reference System of the aircraft. A first demonstration mission using AirMAP was undertaken in June 2011. AirMAP was operated on the AWI Polar-5 aircraft in the framework of the AIRMETH-2011 campaign. During a flight above a medium-sized coal-fired power plant in north-west Germany, AirMAP clearly detected the emission plume downwind from the exhaust stack, with NO2 vertical columns around 2 × 1016 molecules cm-2 in the plume centre. NOx emissions estimated from the AirMAP observations are consistent with reports in the European Pollutant Release and Transfer Register. Strong spatial gradients and variability in NO2 amounts across and along flight direction are observed, and small-scale enhancements of NO2 above a motorway are detected.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burkel, L.; Dejus, R.; Maines, J.
This report is a description of the current status of the magnetic measurement facility and is a basic instructional manual for the operation of the facility and its components. Please refer to the appendices for more detailed information about specific components and procedures. The purpose of the magnetic measurement facility is to take accurate measurements of the magnetic field in the gay of the IDs in order to determine the effect of the ID on the stored particle beam and the emitted radiation. The facility will also play an important role when evaluating new ideas, novel devices, and inhouse prototypesmore » as part of the ongoing research and development program at the APS. The measurements will be performed with both moving search coils and moving Hall probes. The IDs will be evaluated by computer modeling of the emitted radiation for any given (measured) magnetic field map. The quality of the magnetic field will be described in terms of integrated multipoles for the effect on Storage Ring performance and in terms of the derived trajectories for the emitted radiation. Before being installed on the Storage Ring, every device will be measured and characterized to assure that it is compatible with Storage Ring requirements and radiation specifications. The accuracy that the APS needs to achieve for magnetic measurements will be based on these specifications.« less
Simulation of electrokinetic flow in microfluidic channels
NASA Astrophysics Data System (ADS)
Sabur, Romena; Matin, M.
2005-08-01
Electrokinetic phenomena become an increasingly efficient fluid transport mechanism in micro- and nano-fluidic fields. These phenomena have also been applied successfully in microfluidic devices to achieve particle separation, pre-concentration and mixing. Electrokinetic is the flow produced by the action of an electric field on a fluid with a net charge, where the charged ions of fluid are able to drag the whole solution through the channels in the microfluidic device from one analyzing point to the other. We will present the simulation results of electrokinetic transports of fluid in various typical micro-channel geometries such as T-channel, Y-channel, cross channel and straight channel. In practice, high-speed micro-PIV technique is used to measure transient fluidic phenomena in a microfluidic channel. Particle Image Velocimetry (PIV) systems provide two- or three-dimensional velocity maps in flows using whole field techniques based on imaging the light scattered by small particles in the flow illuminated by a laser light sheet. The system generally consists of an epifluorescent microscope, CW laser and a high-speed CMOS of CCD camera. The flow of a liquid, (water for example), containing fluorescent particle is then analyzed in a counter microchannel by the highly accurate PIV method. One can then compare the simulated and experimental microfluidic flow due to electroosmotic effect.
Dark-field X-ray microscopy for multiscale structural characterization
NASA Astrophysics Data System (ADS)
Simons, H.; King, A.; Ludwig, W.; Detlefs, C.; Pantleon, W.; Schmidt, S.; Snigireva, I.; Snigirev, A.; Poulsen, H. F.
2015-01-01
Many physical and mechanical properties of crystalline materials depend strongly on their internal structure, which is typically organized into grains and domains on several length scales. Here we present dark-field X-ray microscopy; a non-destructive microscopy technique for the three-dimensional mapping of orientations and stresses on lengths scales from 100 nm to 1 mm within embedded sampling volumes. The technique, which allows ‘zooming’ in and out in both direct and angular space, is demonstrated by an annealing study of plastically deformed aluminium. Facilitating the direct study of the interactions between crystalline elements is a key step towards the formulation and validation of multiscale models that account for the entire heterogeneity of a material. Furthermore, dark-field X-ray microscopy is well suited to applied topics, where the structural evolution of internal nanoscale elements (for example, positioned at interfaces) is crucial to the performance and lifetime of macro-scale devices and components thereof.
Color visualization for fluid flow prediction
NASA Technical Reports Server (NTRS)
Smith, R. E.; Speray, D. E.
1982-01-01
High-resolution raster scan color graphics allow variables to be presented as a continuum, in a color-coded picture that is referenced to a geometry such as a flow field grid or a boundary surface. Software is used to map a scalar variable such as pressure or temperature, defined on a two-dimensional slice of a flow field. The geometric shape is preserved in the resulting picture, and the relative magnitude of the variable is color-coded onto the geometric shape. The primary numerical process for color coding is an efficient search along a raster scan line to locate the quadrilteral block in the grid that bounds each pixel on the line. Tension spline interpolation is performed relative to the grid for specific values of the scalar variable, which is then color coded. When all pixels for the field of view are color-defined, a picture is played back from a memory device onto a television screen.
NASA Astrophysics Data System (ADS)
Salerno, Antonio; de la Fuente, Isabel; Hsu, Zack; Tai, Alan; Chang, Hammer; McNamara, Elliott; Cramer, Hugo; Li, Daoping
2018-03-01
In next generation Logic devices, overlay control requirements shrink to sub 2.5nm level on-product overlay. Historically on-product overlay has been defined by the overlay capability of after-develop in-scribe targets. However, due to design and dimension, the after development metrology targets are not completely representative for the final overlay of the device. In addition, they are confined to the scribe-lane area, which limits the sampling possibilities. To address these two issues, metrology on structures matching the device structure and which can be sampled with high density across the device is required. Conventional after-etch CDSEM techniques on logic devices present difficulties in discerning the layers of interest, potential destructive charging effects and finally, they are limited by the long measurement times[1] [2] [3] . All together, limit the sampling densities and making CDSEM less attractive for control applications. Optical metrology can overcome most of these limitations. Such measurement, however, does require repetitive structures. This requirement is not fulfilled by logic devices, as the features vary in pitch and CD over the exposure field. The solution is to use small targets, with a maximum pad size of 5x5um2 , which can easily be placed in the logic cell area. These targets share the process and architecture of the device features of interest, but with a modified design that replicates as close as possible the device layout, allowing for in-device metrology for both CD and Overlay. This solution enables measuring closer to the actual product feature location and, not being limited to scribe-lanes, it opens the possibility of higher-density sampling schemes across the field. In summary, these targets become the facilitator of in-device metrology (IDM), that is, enabling the measurements both in-device Overlay and the CD parameters of interest and can deliver accurate, high-throughput, dense and after-etch measurements for Logic. Overlay improvements derived from a high-densely sampled Overlay map measured with 5x5 um2 In Device Metrology (IDM) targets were investigated on a customer Logic application. In this work we present both the main design aspects of the 5x5 um2 IDM targets, as well as the results on the improved Overlay performance.
Electronic compressibility of bilayer graphene
NASA Astrophysics Data System (ADS)
Henriksen, Erik
2011-03-01
We have recently measured the electronic compressibility of bilayer graphene, allowing exploration of the thermodynamic density of states as a function of applied electric and magnetic fields. Utilizing dual-gated field-effect devices, we can independently vary both the carrier density and the size of the tunable band gap. An oscillating voltage applied to a back gate generates corresponding signals in the top gate via electric fields lines which penetrate the graphene, thereby allowing a direct measurement of the inverse compressibility, K-1 , of the bilayer. We have mapped K-1 , which is proportional to the inverse density of states, as a function of the top and back gate voltages in zero and finite magnetic field. A sharp increase in K-1 near zero density is observed with increasing electric field strength, signaling the controlled opening of a band gap. At high magnetic fields, broad Landau level (LL) oscillations are observed, directly revealing the doubled degeneracy of the lowest LL and allowing for a determination of the disorder broadening of the levels. We compare our results to tight-binding calculations of the bilayer band structure, and to recent theoretical studies of the compressibility of bilayer graphene. Together, these clearly illustrate the unusual hyperbolic nature of the low energy band structure, reveal a sizeable electron-hole asymmetry, and suggest that many-body interactions play only a small role in bilayer-on-substrate devices. This work is a collaboration with J. P. Eisenstein of Caltech, and is supported by the NSF under Grant No. DMR-0552270 and the DOE under Grant No. DE-FG03-99ER45766.
Michael Goodchild recently gave eight reasons why traditional maps are limited as communication devices, and how interactive internet mapping can overcome these limitations. In the past, many authorities in cartography, from Jenks to Bertin, have emphasized the importance of sim...
He, Ziyang; Zhang, Xiaoqing; Cao, Yangjie; Liu, Zhi; Zhang, Bo; Wang, Xiaoyan
2018-04-17
By running applications and services closer to the user, edge processing provides many advantages, such as short response time and reduced network traffic. Deep-learning based algorithms provide significantly better performances than traditional algorithms in many fields but demand more resources, such as higher computational power and more memory. Hence, designing deep learning algorithms that are more suitable for resource-constrained mobile devices is vital. In this paper, we build a lightweight neural network, termed LiteNet which uses a deep learning algorithm design to diagnose arrhythmias, as an example to show how we design deep learning schemes for resource-constrained mobile devices. Compare to other deep learning models with an equivalent accuracy, LiteNet has several advantages. It requires less memory, incurs lower computational cost, and is more feasible for deployment on resource-constrained mobile devices. It can be trained faster than other neural network algorithms and requires less communication across different processing units during distributed training. It uses filters of heterogeneous size in a convolutional layer, which contributes to the generation of various feature maps. The algorithm was tested using the MIT-BIH electrocardiogram (ECG) arrhythmia database; the results showed that LiteNet outperforms comparable schemes in diagnosing arrhythmias, and in its feasibility for use at the mobile devices.
LiteNet: Lightweight Neural Network for Detecting Arrhythmias at Resource-Constrained Mobile Devices
Zhang, Xiaoqing; Cao, Yangjie; Liu, Zhi; Zhang, Bo; Wang, Xiaoyan
2018-01-01
By running applications and services closer to the user, edge processing provides many advantages, such as short response time and reduced network traffic. Deep-learning based algorithms provide significantly better performances than traditional algorithms in many fields but demand more resources, such as higher computational power and more memory. Hence, designing deep learning algorithms that are more suitable for resource-constrained mobile devices is vital. In this paper, we build a lightweight neural network, termed LiteNet which uses a deep learning algorithm design to diagnose arrhythmias, as an example to show how we design deep learning schemes for resource-constrained mobile devices. Compare to other deep learning models with an equivalent accuracy, LiteNet has several advantages. It requires less memory, incurs lower computational cost, and is more feasible for deployment on resource-constrained mobile devices. It can be trained faster than other neural network algorithms and requires less communication across different processing units during distributed training. It uses filters of heterogeneous size in a convolutional layer, which contributes to the generation of various feature maps. The algorithm was tested using the MIT-BIH electrocardiogram (ECG) arrhythmia database; the results showed that LiteNet outperforms comparable schemes in diagnosing arrhythmias, and in its feasibility for use at the mobile devices. PMID:29673171
Photo-Detection on Narrow-Bandgap High-Mobility 2D Semiconductors
NASA Astrophysics Data System (ADS)
Charnas, Adam; Qiu, Gang; Deng, Yexin; Wang, Yixiu; Du, Yuchen; Yang, Lingming; Wu, Wenzhuo; Ye, Peide
Photo-detection and energy harvesting device concepts have been demonstrated widely in 2D materials such as graphene, TMDs, and black phosphorus. In this work, we demonstrate anisotropic photo-detection achieved using devices fabricated from hydrothermally grown narrow-bandgap high-mobility 2D semiconductor. Back-gated FETs were fabricated by transferring the 2D flakes onto a Si/SiO2 substrate and depositing various metal contacts across the flakes to optimize the access resistance for optoelectronic devices. Photo-responsivity was measured and mapped by slightly biasing the devices and shining a laser spot at different locations of the device to observe and map the resulting photo-generated current. Optimization of the Schottky barrier height for both n and p at the metal-2D interfaces using asymmetric contact engineering was performed to improve device performance.
Electric-field control of local ferromagnetism using a magnetoelectric multiferroic.
Chu, Ying-Hao; Martin, Lane W; Holcomb, Mikel B; Gajek, Martin; Han, Shu-Jen; He, Qing; Balke, Nina; Yang, Chan-Ho; Lee, Donkoun; Hu, Wei; Zhan, Qian; Yang, Pei-Ling; Fraile-Rodríguez, Arantxa; Scholl, Andreas; Wang, Shan X; Ramesh, R
2008-06-01
Multiferroics are of interest for memory and logic device applications, as the coupling between ferroelectric and magnetic properties enables the dynamic interaction between these order parameters. Here, we report an approach to control and switch local ferromagnetism with an electric field using multiferroics. We use two types of electromagnetic coupling phenomenon that are manifested in heterostructures consisting of a ferromagnet in intimate contact with the multiferroic BiFeO(3). The first is an internal, magnetoelectric coupling between antiferromagnetism and ferroelectricity in the BiFeO(3) film that leads to electric-field control of the antiferromagnetic order. The second is based on exchange interactions at the interface between a ferromagnet (Co(0.9)Fe(0.1)) and the antiferromagnet. We have discovered a one-to-one mapping of the ferroelectric and ferromagnetic domains, mediated by the colinear coupling between the magnetization in the ferromagnet and the projection of the antiferromagnetic order in the multiferroic. Our preliminary experiments reveal the possibility to locally control ferromagnetism with an electric field.
Electric-field control of local ferromagnetism using a magnetoelectric multiferroic
NASA Astrophysics Data System (ADS)
Chu, Ying-Hao; Martin, Lane W.; Holcomb, Mikel B.; Gajek, Martin; Han, Shu-Jen; He, Qing; Balke, Nina; Yang, Chan-Ho; Lee, Donkoun; Hu, Wei; Zhan, Qian; Yang, Pei-Ling; Fraile-Rodríguez, Arantxa; Scholl, Andreas; Wang, Shan X.; Ramesh, R.
2008-06-01
Multiferroics are of interest for memory and logic device applications, as the coupling between ferroelectric and magnetic properties enables the dynamic interaction between these order parameters. Here, we report an approach to control and switch local ferromagnetism with an electric field using multiferroics. We use two types of electromagnetic coupling phenomenon that are manifested in heterostructures consisting of a ferromagnet in intimate contact with the multiferroic BiFeO3. The first is an internal, magnetoelectric coupling between antiferromagnetism and ferroelectricity in the BiFeO3 film that leads to electric-field control of the antiferromagnetic order. The second is based on exchange interactions at the interface between a ferromagnet (Co0.9Fe0.1) and the antiferromagnet. We have discovered a one-to-one mapping of the ferroelectric and ferromagnetic domains, mediated by the colinear coupling between the magnetization in the ferromagnet and the projection of the antiferromagnetic order in the multiferroic. Our preliminary experiments reveal the possibility to locally control ferromagnetism with an electric field.
Lee, Yoon Ho; Lee, Tae Kyung; Kim, Hongki; Song, Inho; Lee, Jiwon; Kang, Saewon; Ko, Hyunhyub; Kwak, Sang Kyu; Oh, Joon Hak
2018-03-01
In insect eyes, ommatidia with hierarchical structured cornea play a critical role in amplifying and transferring visual signals to the brain through optic nerves, enabling the perception of various visual signals. Here, inspired by the structure and functions of insect ommatidia, a flexible photoimaging device is reported that can simultaneously detect and record incoming photonic signals by vertically stacking an organic photodiode and resistive memory device. A single-layered, hierarchical multiple-patterned back reflector that can exhibit various plasmonic effects is incorporated into the organic photodiode. The multiple-patterned flexible organic photodiodes exhibit greatly enhanced photoresponsivity due to the increased light absorption in comparison with the flat systems. Moreover, the flexible photoimaging device shows a well-resolved spatiotemporal mapping of optical signals with excellent operational and mechanical stabilities at low driving voltages below half of the flat systems. Theoretical calculation and scanning near-field optical microscopy analyses clearly reveal that multiple-patterned electrodes have much stronger surface plasmon coupling than flat and single-patterned systems. The developed methodology provides a versatile and effective route for realizing high-performance optoelectronic and photonic systems. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Morishige, Ashley E.; Laine, Hannu S.; Looney, Erin E.; ...
2017-04-03
Optimizing photovoltaic (PV) devices requires characterization and optimization across several length scales, from centimeters to nanometers. Synchrotron-based micro-X-ray fluorescence spectromicroscopy (μ-XRF) is a valuable link in the PV-related material and device characterization suite. μ-XRF maps of elemental distributions in PV materials have high spatial resolution and excellent sensitivity and can be measured on absorber materials and full devices. Recently, we implemented on-the-fly data collection (flyscan) at Beamline 2-ID-D at the Advanced Photon Source at Argonne National Laboratory, eliminating a 300 ms per-pixel overhead time. This faster scanning enables high-sensitivity (~10 14 atoms/cm 2), large-area (10 000s of μm 2), high-spatialmore » resolution (<;200 nm scale) maps to be completed within a practical scanning time. We specifically show that when characterizing detrimental trace metal precipitate distributions in multicrystalline silicon wafers for PV, flyscans can increase the productivity of μ-XRF by an order of magnitude. Additionally, flyscan μ-XRF mapping enables relatively large-area correlative microscopy. As an example, we map the transition metal distribution in a 50 μm-diameter laser-fired contact of a silicon solar cell before and after lasing. As a result, while we focus on μ-XRF of mc-Si wafers for PV, our results apply broadly to synchrotron-based mapping of PV absorbers and devices.« less
Synthetic aperture tomographic phase microscopy for 3D imaging of live cells in translational motion
Lue, Niyom; Choi, Wonshik; Popescu, Gabriel; Badizadegan, Kamran; Dasari, Ramachandra R.; Feld, Michael S.
2009-01-01
We present a technique for 3D imaging of live cells in translational motion without need of axial scanning of objective lens. A set of transmitted electric field images of cells at successive points of transverse translation is taken with a focused beam illumination. Based on Hyugens’ principle, angular plane waves are synthesized from E-field images of a focused beam. For a set of synthesized angular plane waves, we apply a filtered back-projection algorithm and obtain 3D maps of refractive index of live cells. This technique, which we refer to as synthetic aperture tomographic phase microscopy, can potentially be combined with flow cytometry or microfluidic devices, and will enable high throughput acquisition of quantitative refractive index data from large numbers of cells. PMID:18825263
The World in Spatial Terms: Mapmaking and Map Reading
ERIC Educational Resources Information Center
Ekiss, Gale Olp; Trapido-Lurie, Barbara; Phillips, Judy; Hinde, Elizabeth
2007-01-01
Maps and mapping activities are essential in the primary grades. Maps are truly ubiquitous today, as evidenced by the popularity of websites such as Google Earth and Mapquest, and by devices such as Global Positioning System (GPS) units in cars, planes, and boats. Maps can give visual settings to travel stories and historical narratives and can…
Measurement of the electronic compressibility of bilayer graphene
NASA Astrophysics Data System (ADS)
Henriksen, E. A.; Eisenstein, J. P.
2010-03-01
We report on recent measurements of the electronic compressibility in bilayer graphene. The devices consist of a mechanically exfoliated bilayer graphene flake in a dual-gated configuration, having a global back gate from the underlying Si substrate and a lithographically defined top gate. With suitable shielding, an oscillating voltage applied to the back gate will generate corresponding signals in the top gate only via electric fields which penetrate the graphene, thereby allowing a direct measurement of the compressibility of the bilayer [1]. In our experiments, we map this quantity as a function of the back and top gate bias voltages and compare it to similar maps of the graphene sheet resistivity and capacitance. We discuss our results in light of numerical calculations of the underlying band structure as well as recent theoretical predictions. [1] J. P. Eisenstein, L. N. Pfeiffer, K. W. West, Phys. Rev. B 50, 1760 (1994).
NASA Astrophysics Data System (ADS)
Jakovels, Dainis; Saknite, Inga; Spigulis, Janis
2014-05-01
Laser speckle contrast analysis (LASCA) offers a non-contact, full-field, and real-time mapping of capillary blood flow and can be considered as an alternative method to Laser Doppler perfusion imaging. LASCA technique has been implemented in several commercial instruments. However, these systems are still too expensive and bulky to be widely available. Several optical techniques have found new implementations as connection kits for mobile phones thus offering low cost screening devices. In this work we demonstrate simple implementation of LASCA imaging technique as connection kit for mobile phone for primary low-cost assessment of skin blood flow. Stabilized 650 nm and 532 nm laser diode modules were used for LASCA illumination. Dual wavelength illumination could provide additional information about skin hemoglobin and oxygenation level. The proposed approach was tested for arterial occlusion and heat test. Besides, blood flow maps of injured and provoked skin were demonstrated.
Mapping brain activity with flexible graphene micro-transistors
NASA Astrophysics Data System (ADS)
Blaschke, Benno M.; Tort-Colet, Núria; Guimerà-Brunet, Anton; Weinert, Julia; Rousseau, Lionel; Heimann, Axel; Drieschner, Simon; Kempski, Oliver; Villa, Rosa; Sanchez-Vives, Maria V.; Garrido, Jose A.
2017-06-01
Establishing a reliable communication interface between the brain and electronic devices is of paramount importance for exploiting the full potential of neural prostheses. Current microelectrode technologies for recording electrical activity, however, evidence important shortcomings, e.g. challenging high density integration. Solution-gated field-effect transistors (SGFETs), on the other hand, could overcome these shortcomings if a suitable transistor material were available. Graphene is particularly attractive due to its biocompatibility, chemical stability, flexibility, low intrinsic electronic noise and high charge carrier mobilities. Here, we report on the use of an array of flexible graphene SGFETs for recording spontaneous slow waves, as well as visually evoked and also pre-epileptic activity in vivo in rats. The flexible array of graphene SGFETs allows mapping brain electrical activity with excellent signal-to-noise ratio (SNR), suggesting that this technology could lay the foundation for a future generation of in vivo recording implants.
Folding Digital Mapping into a Traditional Field Camp Program
NASA Astrophysics Data System (ADS)
Kelley, D. F.
2011-12-01
Louisiana State University runs a field camp with a permanent fixed-base which has continually operated since 1928 in the Front Range just to the south of Colorado Springs, CO. The field camp program which offers a 6-credit hour course in Field Geology follows a very traditional structure. The first week is spent collecting data for the construction of a detailed stratigraphic column of the local geology. The second week is spent learning the skills of geologic mapping, while the third applies these skills to a more geologically complicated mapping area. The final three weeks of the field camp program are spent studying and mapping igneous and metamorphic rocks as well as conducting a regional stratigraphic correlation exercise. Historically there has been a lack of technology involved in this program. All mapping has been done in the field without the use of any digital equipment and all products have been made in the office without the use of computers. In the summer of 2011 the use of GPS units, and GIS software were introduced to the program. The exercise that was chosen for this incorporation of technology was one in which metamorphic rocks are mapped within Golden Gate Canyon State Park in Colorado. This same mapping exercise was carried out during the 2010 field camp session with no GPS or GIS use. The students in both groups had the similar geologic backgrounds, similar grade point averages, and similar overall performances at field camp. However, the group that used digital mapping techniques mapped the field area more quickly and reportedly with greater ease. Additionally, the students who used GPS and GIS included more detailed rock descriptions with their final maps indicating that they spent less time in the field focusing on mapping contacts between units. The outcome was a better overall product. The use of GPS units also indirectly caused the students to produce better field maps. In addition to greater ease in mapping, the use of GIS software to create maps was rewarding to the students and gave them mapping experience that is in line with industry standards.
NASA Technical Reports Server (NTRS)
Honess, Shawn B. (Inventor); Narvaez, Pablo (Inventor); Mcauley, James M. (Inventor)
1992-01-01
An apparatus for characterizing the magnetic field of a device under test is discussed. The apparatus is comprised of five separate devices: (1) a device for nullifying the ambient magnetic fields in a test environment area with a constant applied magnetic field; (2) a device for rotating the device under test in the test environment area; (3) a device for sensing the magnetic field (to obtain a profile of the magnetic field) at a sensor location which is along the circumference of rotation; (4) a memory for storing the profiles; and (5) a processor coupled to the memory for characterizing the magnetic field of the device from the magnetic field profiles thus obtained.
Multichannel optical mapping: investigation of depth information
NASA Astrophysics Data System (ADS)
Sase, Ichiro; Eda, Hideo; Seiyama, Akitoshi; Tanabe, Hiroki C.; Takatsuki, Akira; Yanagida, Toshio
2001-06-01
Near infrared (NIR) light has become a powerful tool for non-invasive imaging of human brain activity. Many systems have been developed to capture the changes in regional brain blood flow and hemoglobin oxygenation, which occur in the human cortex in response to neural activity. We have developed a multi-channel reflectance imaging system, which can be used as a `mapping device' and also as a `multi-channel spectrophotometer'. In the present study, we visualized changes in the hemodynamics of the human occipital region in multiple ways. (1) Stimulating left and right primary visual cortex independently by showing sector shaped checkerboards sequentially over the contralateral visual field, resulted in corresponding changes in the hemodynamics observed by `mapping' measurement. (2) Simultaneous measurement of functional-MRI and NIR (changes in total hemoglobin) during visual stimulation showed good spatial and temporal correlation with each other. (3) Placing multiple channels densely over the occipital region demonstrated spatial patterns more precisely, and depth information was also acquired by placing each pair of illumination and detection fibers at various distances. These results indicate that optical method can provide data for 3D analysis of human brain functions.
Development of a mobile borehole investigation software using augmented reality
NASA Astrophysics Data System (ADS)
Son, J.; Lee, S.; Oh, M.; Yun, D. E.; Kim, S.; Park, H. D.
2015-12-01
Augmented reality (AR) is one of the most developing technologies in smartphone and IT areas. While various applications have been developed using the AR, there are a few geological applications which adopt its advantages. In this study, a smartphone application to manage boreholes using AR has been developed. The application is consisted of three major modules, an AR module, a map module and a data management module. The AR module calculates the orientation of the device and displays nearby boreholes distributed in three dimensions using the orientation. This module shows the boreholes in a transparent layer on a live camera screen so the user can find and understand the overall characteristics of the underground geology. The map module displays the boreholes on a 2D map to show their distribution and the location of the user. The database module uses SQLite library which has proper characteristics for mobile platforms, and Binary XML is adopted to enable containing additional customized data. The application is able to provide underground information in an intuitive and refined forms and to decrease time and general equipment required for geological field investigations.
Google Maps for Crowdsourced Emergency Routing
NASA Astrophysics Data System (ADS)
Nedkov, S.; Zlatanova, S.
2012-08-01
Gathering infrastructure data in emergency situations is challenging. The affected by a disaster areas are often large and the needed observations numerous. Spaceborne remote sensing techniques cover large areas but they are of limited use as their field of view may be blocked by clouds, smoke, buildings, highways, etc. Remote sensing products furthermore require specialists to collect and analyze the data. This contrasts the nature of the damage detection problem: almost everyone is capable of observing whether a street is usable or not. The crowd is fit for solving these challenges as its members are numerous, they are willing to help and are often in the vicinity of the disaster thereby forming a highly dispersed sensor network. This paper proposes and implements a small WebGIS application for performing shortest path calculations based on crowdsourced information about the infrastructure health. The application is built on top of Google Maps and uses its routing service to calculate the shortest distance between two locations. Impassable areas are indicated on a map by people performing in-situ observations on a mobile device, and by users on a desktop machine who consult a multitude of information sources.
BowMapCL: Burrows-Wheeler Mapping on Multiple Heterogeneous Accelerators.
Nogueira, David; Tomas, Pedro; Roma, Nuno
2016-01-01
The computational demand of exact-search procedures has pressed the exploitation of parallel processing accelerators to reduce the execution time of many applications. However, this often imposes strict restrictions in terms of the problem size and implementation efforts, mainly due to their possibly distinct architectures. To circumvent this limitation, a new exact-search alignment tool (BowMapCL) based on the Burrows-Wheeler Transform and FM-Index is presented. Contrasting to other alternatives, BowMapCL is based on a unified implementation using OpenCL, allowing the exploitation of multiple and possibly different devices (e.g., NVIDIA, AMD/ATI, and Intel GPUs/APUs). Furthermore, to efficiently exploit such heterogeneous architectures, BowMapCL incorporates several techniques to promote its performance and scalability, including multiple buffering, work-queue task-distribution, and dynamic load-balancing, together with index partitioning, bit-encoding, and sampling. When compared with state-of-the-art tools, the attained results showed that BowMapCL (using a single GPU) is 2 × to 7.5 × faster than mainstream multi-threaded CPU BWT-based aligners, like Bowtie, BWA, and SOAP2; and up to 4 × faster than the best performing state-of-the-art GPU implementations (namely, SOAP3 and HPG-BWT). When multiple and completely distinct devices are considered, BowMapCL efficiently scales the offered throughput, ensuring a convenient load-balance of the involved processing in the several distinct devices.
JIGSAW: Joint Inhomogeneity estimation via Global Segment Assembly for Water-fat separation.
Lu, Wenmiao; Lu, Yi
2011-07-01
Water-fat separation in magnetic resonance imaging (MRI) is of great clinical importance, and the key to uniform water-fat separation lies in field map estimation. This work deals with three-point field map estimation, in which water and fat are modelled as two single-peak spectral lines, and field inhomogeneities shift the spectrum by an unknown amount. Due to the simplified spectrum modelling, there exists inherent ambiguity in forming field maps from multiple locally feasible field map values at each pixel. To resolve such ambiguity, spatial smoothness of field maps has been incorporated as a constraint of an optimization problem. However, there are two issues: the optimization problem is computationally intractable and even when it is solved exactly, it does not always separate water and fat images. Hence, robust field map estimation remains challenging in many clinically important imaging scenarios. This paper proposes a novel field map estimation technique called JIGSAW. It extends a loopy belief propagation (BP) algorithm to obtain an approximate solution to the optimization problem. The solution produces locally smooth segments and avoids error propagation associated with greedy methods. The locally smooth segments are then assembled into a globally consistent field map by exploiting the periodicity of the feasible field map values. In vivo results demonstrate that JIGSAW outperforms existing techniques and produces correct water-fat separation in challenging imaging scenarios.
Wireless modification of the intraoperative examination monitor for awake surgery.
Yoshimitsu, Kitaro; Maruyama, Takashi; Muragaki, Yoshihiro; Suzuki, Takashi; Saito, Taiichi; Nitta, Masayuki; Tanaka, Masahiko; Chernov, Mikhail; Tamura, Manabu; Ikuta, Soko; Okamoto, Jun; Okada, Yoshikazu; Iseki, Hiroshi
2011-01-01
The dedicated intraoperative examination monitor for awake surgery (IEMAS) was originally developed by us to facilitate the process of brain mapping during awake craniotomy and successfully used in 186 neurosurgical procedures. This information-sharing device provides the opportunity for all members of the surgical team to visualize a wide spectrum of the integrated intraoperative information related to the condition of the patient, nuances of the surgical procedure, and details of the cortical mapping, practically without interruption of the surgical manipulations. The wide set of both anatomical and functional parameters, such as view of the patient's mimic and face movements while answering the specific questions, type of the examination test, position of the surgical instruments, parameters of the bispectral index monitor, and general view of the surgical field through the operating microscope, is presented compactly in one screen with several displays. However, the initially designed IEMAS system was occasionally affected by interruption or detachment of the connecting cables, which sometimes interfered with its effective clinical use. Therefore, a new modification of the device was developed. The specific feature is installation of wireless information transmitting technology using audio-visual transmitters and receivers for transfer of images and verbal information. The modified IEMAS system is very convenient to use in the narrow space of the operating room.
Airframe Noise Results from the QTD II Flight Test Program
NASA Technical Reports Server (NTRS)
Elkoby, Ronen; Brusniak, Leon; Stoker, Robert W.; Khorrami, Mehdi R.; Abeysinghe, Amal; Moe, Jefferey W.
2007-01-01
With continued growth in air travel, sensitivity to community noise intensifies and materializes in the form of increased monitoring, regulations, and restrictions. Accordingly, realization of quieter aircraft is imperative, albeit only achievable with reduction of both engine and airframe components of total aircraft noise. Model-scale airframe noise testing has aided in this pursuit; however, the results are somewhat limited due to lack of fidelity of model hardware, particularly in simulating full-scale landing gear. Moreover, simulation of true in-flight conditions is non-trivial if not infeasible. This paper reports on an investigation of full-scale landing gear noise measured as part of the 2005 Quiet Technology Demonstrator 2 (QTD2) flight test program. Conventional Boeing 777-300ER main landing gear were tested, along with two noise reduction concepts, namely a toboggan fairing and gear alignment with the local flow, both of which were down-selected from various other noise reduction devices evaluated in model-scale testing at Virginia Tech. The full-scale toboggan fairings were designed by Goodrich Aerostructures as add-on devices allowing for complete retraction of the main gear. The baseline-conventional gear, faired gear, and aligned gear were all evaluated with the high-lift system in the retracted position and deployed at various flap settings, all at engine idle power setting. Measurements were taken with flyover community noise microphones and a large aperture acoustic phased array, yielding far-field spectra, and localized sources (beamform maps). The results were utilized to evaluate qualitatively and quantitatively the merit of each noise reduction concept. Complete similarity between model-scale and full-scale noise reduction levels was not found and requires further investigation. Far-field spectra exhibited no noise reduction for both concepts across all angles and frequencies. Phased array beamform maps show inconclusive evidence of noise reduction at selective frequencies (1500 to 3000 Hz) but are otherwise in general agreement with the far-field spectra results (within measurement uncertainty).
NASA Astrophysics Data System (ADS)
Katz, Itai; Fehr, Matthias; Schnegg, Alexander; Lips, Klaus; Blank, Aharon
2015-02-01
The in-operando detection and high resolution spatial imaging of paramagnetic defects, impurities, and states becomes increasingly important for understanding loss mechanisms in solid-state electronic devices. Electron spin resonance (ESR), commonly employed for observing these species, cannot meet this challenge since it suffers from limited sensitivity and spatial resolution. An alternative and much more sensitive method, called electrically-detected magnetic resonance (EDMR), detects the species through their magnetic fingerprint, which can be traced in the device's electrical current. However, until now it could not obtain high resolution images in operating electronic devices. In this work, the first spatially-resolved electrically-detected magnetic resonance images (EDMRI) of paramagnetic states in an operating real-world electronic device are provided. The presented method is based on a novel microwave pulse sequence allowing for the coherent electrical detection of spin echoes in combination with powerful pulsed magnetic-field gradients. The applicability of the method is demonstrated on a device-grade 1-μm-thick amorphous silicon (a-Si:H) solar cell and an identical device that was degraded locally by an electron beam. The degraded areas with increased concentrations of paramagnetic defects lead to a local increase in recombination that is mapped by EDMRI with ∼20-μm-scale pixel resolution. The novel approach presented here can be widely used in the nondestructive in-operando three-dimensional characterization of solid-state electronic devices with a resolution potential of less than 100 nm.
On the design of random metasurface based devices.
Dupré, Matthieu; Hsu, Liyi; Kanté, Boubacar
2018-05-08
Metasurfaces are generally designed by placing scatterers in periodic or pseudo-periodic grids. We propose and discuss design rules for functional metasurfaces with randomly placed anisotropic elements that randomly sample a well-defined phase function. By analyzing the focusing performance of random metasurface lenses as a function of their density and the density of the phase-maps used to design them, we find that the performance of 1D metasurfaces is mostly governed by their density while 2D metasurfaces strongly depend on both the density and the near-field coupling configuration of the surface. The proposed approach is used to design all-polarization random metalenses at near infrared frequencies. Challenges, as well as opportunities of random metasurfaces compared to periodic ones are discussed. Our results pave the way to new approaches in the design of nanophotonic structures and devices from lenses to solar energy concentrators.
Origami silicon optoelectronics for hemispherical electronic eye systems.
Zhang, Kan; Jung, Yei Hwan; Mikael, Solomon; Seo, Jung-Hun; Kim, Munho; Mi, Hongyi; Zhou, Han; Xia, Zhenyang; Zhou, Weidong; Gong, Shaoqin; Ma, Zhenqiang
2017-11-24
Digital image sensors in hemispherical geometries offer unique imaging advantages over their planar counterparts, such as wide field of view and low aberrations. Deforming miniature semiconductor-based sensors with high-spatial resolution into such format is challenging. Here we report a simple origami approach for fabricating single-crystalline silicon-based focal plane arrays and artificial compound eyes that have hemisphere-like structures. Convex isogonal polyhedral concepts allow certain combinations of polygons to fold into spherical formats. Using each polygon block as a sensor pixel, the silicon-based devices are shaped into maps of truncated icosahedron and fabricated on flexible sheets and further folded either into a concave or convex hemisphere. These two electronic eye prototypes represent simple and low-cost methods as well as flexible optimization parameters in terms of pixel density and design. Results demonstrated in this work combined with miniature size and simplicity of the design establish practical technology for integration with conventional electronic devices.
Haacke, Jon E.; Barclay, C. S. Venable; Hettinger, Robert D.
2016-09-30
In the 1970s and 1980s, C.S. Venable Barclay conducted geologic mapping of areas primarily underlain by Cretaceous coals in the eastern part of the Little Snake River coal field (LSR) in Carbon County, southwest Wyoming. With some exceptions, most of the mapping data were never published. Subsequently, after his retirement from the U.S. Geological Survey (USGS), his field maps and field notebooks were archived in the USGS Field Records. Due to a pending USGS coal assessment of the Little Snake River coal field area and planned geological mapping to be conducted by the Wyoming State Geological Survey, Barclay’s mapping data needed to be published to support these efforts. Subsequently, geologic maps were scanned and georeferenced into a geographic information system, and project and field notes were scanned into Portable Document Format (PDF) files. Data for seventeen 7½-minute quadrangles are presented in this report. This publication is solely intended to compile the mapping data as it was last worked on by Barclay and provides no interpretation or modification of his work.
Free space and waveguide Talbot effect: phase relations and planar light circuit applications
NASA Astrophysics Data System (ADS)
Nikkhah, H.; Zheng, Q.; Hasan, I.; Abdul-Majid, S.; Hall, T. J.
2012-10-01
Optical fields that are periodic in the transverse plane self-image periodically as they propagate along the optical axis: a phenomenon known as the Talbot effect. A transfer matrix may be defined that relates the amplitude and phase of point sources placed on a particular grid at the input to their respective multiple images at an image plane. The free-space Talbot effect may be mapped to the waveguide Talbot effect. Applying this mapping to the transfer matrix enables the prediction of the phase and amplitude relations between the ports of a Multimode Interference (MMI) coupler- a planar waveguide device. The transfer matrix approach has not previously been applied to the free-space case and its mapping to the waveguide case provides greater clarity and physical insight into the phase relationships than previous treatments. The paper first introduces the underlying physics of the Talbot effect in free space with emphasis on the positions along the optical axis at which images occur; their multiplicity; and their relative phase relations determined by the Gauss Quadratic Sum of number theory. The analysis is then adapted to predict the phase relationships between the ports of an MMI. These phase relationships are critical to planar light circuit (PLC) applications such as 90° optical hybrids for coherent optical receiver front-ends, external optical I-Q modulators for coherent optical transmitters; and optical phased array switches. These applications are illustrated by results obtained from devices that have been fabricated and tested by the PTLab in Si micro-photonic integration platforms.
Online Maps and Cloud-Supported Location-Based Services across a Manifold of Devices
NASA Astrophysics Data System (ADS)
Kröpfl, M.; Buchmüller, D.; Leberl, F.
2012-07-01
Online mapping, miniaturization of computing devices, the "cloud", Global Navigation Satellite System (GNSS) and cell tower triangulation all coalesce into an entirely novel infrastructure for numerous innovative map applications. This impacts the planning of human activities, navigating and tracking these activities as they occur, and finally documenting their outcome for either a single user or a network of connected users in a larger context. In this paper, we provide an example of a simple geospatial application making use of this model, which we will use to explain the basic steps necessary to deploy an application involving a web service hosting geospatial information and a client software consuming the web service through an API. The application allows an insurance claim specialist to add claims to a cloud-based database including a claim location. A field agent then uses a smartphone application to query the database by proximity, and heads out to capture photographs as supporting documentation for the claim. Once the photos have been uploaded to the web service, a second web service for image matching is called in order to try and match the current photograph to previously submitted assets. Image matching is used as a pre-verification step to determine whether the coverage of the respective object is sufficient for the claim specialist to process the claim. The development of the application was based on Microsoft's® Bing Maps™, Windows Phone™, Silverlight™, Windows Azure™ and Visual Studio™, and was completed in approximately 30 labour hours split among two developers.
Testing geoscience data visualization systems for geological mapping and training
NASA Astrophysics Data System (ADS)
Head, J. W.; Huffman, J. N.; Forsberg, A. S.; Hurwitz, D. M.; Basilevsky, A. T.; Ivanov, M. A.; Dickson, J. L.; Senthil Kumar, P.
2008-09-01
Traditional methods of planetary geological mapping have relied on photographic hard copy and light-table tracing and mapping. In the last several decades this has given way to the availability and analysis of multiple digital data sets, and programs and platforms that permit the viewing and manipulation of multiple annotated layers of relevant information. This has revolutionized the ability to incorporate important new data into the planetary mapping process at all scales. Information on these developments and approaches can be obtained at http://astrogeology.usgs. gov/ Technology/. The processes is aided by Geographic Information Systems (GIS) (see http://astrogeology. usgs.gov/Technology/) and excellent analysis packages (such as ArcGIS) that permit co-registration, rapid viewing, and analysis of multiple data sets on desktop displays (see http://astrogeology.usgs.gov/Projects/ webgis/). We are currently investigating new technological developments in computer visualization and analysis in order to assess their importance and utility in planetary geological analysis and mapping. Last year we reported on the range of technologies available and on our application of these to various problems in planetary mapping. In this contribution we focus on the application of these techniques and tools to Venus geological mapping at the 1:5M quadrangle scale. In our current Venus mapping projects we have utilized and tested the various platforms to understand their capabilities and assess their usefulness in defining units, establishing stratigraphic relationships, mapping structures, reaching consensus on interpretations and producing map products. We are specifically assessing how computer visualization display qualities (e.g., level of immersion, stereoscopic vs. monoscopic viewing, field of view, large vs. small display size, etc.) influence performance on scientific analysis and geological mapping. We have been exploring four different environments: 1) conventional desktops (DT), 2) semi-immersive Fishtank VR (FT) (i.e., a conventional desktop with head-tracked stereo and 6DOF input), 3) tiled wall displays (TW), and 4) fully immersive virtual reality (IVR) (e.g., "Cave Automatic Virtual Environment", or Cave system). Formal studies demonstrate that fully immersive Cave environments are superior to desktop systems for many tasks. There is still much to learn and understand, however, about how the varying degrees of immersive displays affect task performance. For example, in using a 1280x1024 desktop monitor to explore an image, the mapper wastes a lot of time in image zooming/panning to balance the analysis-driven need for both detail as well as context. Therefore, we have spent a considerable amount of time exploring higher-resolution media, such as an IBM Bertha display 3840x2400 or a tiled wall with multiple projectors. We have found through over a year of weekly meetings and assessment that they definitely improve the efficiency of analysis and mapping. Here we outline briefly the nature of the major systems and our initial assessment of these in 1:5M Scale NASA-USGS Venus Geological Mapping Program (http://astrogeology.usgs. gov/Projects/PlanetaryMapping/MapStatus/VenusStatus/V enus_Status.html). 1. Immersive Virtual Reality (Cave): ADVISER System Description: Our Cave system is an 8'x8'x8' cube with four projection surfaces (three walls and the floor). Four linux machines (identical in performance to the desktop machine) provide data for the Cave. Users utilize a handheld 3D tracked input device to navigate. Our 3D input device has a joystick and is simple to use. To navigate, the user simply points in the direction he/she wants to fly and pushes the joystick forward or backward to move relative to that direction. The user can push the joystick to the left and right to rotate his/her position in the virtual world. A collision detection algorithm is used to prevent the user from going underneath the surface. We have developed ADVISER (ADvanced VIsualization for Solar system Exploration) [1,2] as a tool for taking planetary geologists virtually "into the field" in the IVR Cave environment in support of several scientific themes and have assessed its application to geological mapping of Venus. ADVISER aims to create a field experience by integrating multiple data sources and presenting them as a unified environment to the scientist. Additionally, we have developed a virtual field kit, tailored to supporting research tasks dictated by scientific and mapping themes. Technically, ADVISER renders high-resolution topographic and image datasets (8192x8192 samples) in stereo at interactive frame-rates (25+ frames-per-second). The system is based on a state-of-the-art terrain rendering system and is highly interactive; for example, vertical exaggeration, lighting geometry, image contrast, and contour lines can be modified by the user in real time. High-resolution image data can be overlaid on the terrain and other data can be rendered in this context. A detailed description and case studies of ADVISER are available.
Chiang, Kai-Wei; Liao, Jhen-Kai; Tsai, Guang-Je; Chang, Hsiu-Wen
2015-01-01
Hardware sensors embedded in a smartphone allow the device to become an excellent mobile navigator. A smartphone is ideal for this task because its great international popularity has led to increased phone power and since most of the necessary infrastructure is already in place. However, using a smartphone for indoor pedestrian navigation can be problematic due to the low accuracy of sensors, imprecise predictability of pedestrian motion, and inaccessibility of the Global Navigation Satellite System (GNSS) in some indoor environments. Pedestrian Dead Reckoning (PDR) is one of the most common technologies used for pedestrian navigation, but in its present form, various errors tend to accumulate. This study introduces a fuzzy decision tree (FDT) aided by map information to improve the accuracy and stability of PDR with less dependency on infrastructure. First, the map is quickly surveyed by the Indoor Mobile Mapping System (IMMS). Next, Bluetooth beacons are implemented to enable the initializing of any position. Finally, map-aided FDT can estimate navigation solutions in real time. The experiments were conducted in different fields using a variety of smartphones and users in order to verify stability. The contrast PDR system demonstrates low stability for each case without pre-calibration and post-processing, but the proposed low-complexity FDT algorithm shows good stability and accuracy under the same conditions. PMID:26729114
A new gradient shimming method based on undistorted field map of B0 inhomogeneity.
Bao, Qingjia; Chen, Fang; Chen, Li; Song, Kan; Liu, Zao; Liu, Chaoyang
2016-04-01
Most existing gradient shimming methods for NMR spectrometers estimate field maps that resolve B0 inhomogeneity spatially from dual gradient-echo (GRE) images acquired at different echo times. However, the distortions induced by B0 inhomogeneity that always exists in the GRE images can result in estimated field maps that are distorted in both geometry and intensity, leading to inaccurate shimming. This work proposes a new gradient shimming method based on undistorted field map of B0 inhomogeneity obtained by a more accurate field map estimation technique. Compared to the traditional field map estimation method, this new method exploits both the positive and negative polarities of the frequency encoded gradients to eliminate the distortions caused by B0 inhomogeneity in the field map. Next, the corresponding automatic post-data procedure is introduced to obtain undistorted B0 field map based on knowledge of the invariant characteristics of the B0 inhomogeneity and the variant polarity of the encoded gradient. The experimental results on both simulated and real gradient shimming tests demonstrate the high performance of this new method. Copyright © 2015 Elsevier Inc. All rights reserved.
de Miguel-Bilbao, Silvia; Martín, Miguel Angel; Del Pozo, Alejandro; Febles, Victor; Hernández, José A; de Aldecoa, José C Fernández; Ramos, Victoria
2013-11-01
Recent advances in wireless technologies have lead to an increase in wireless instrumentation present in healthcare centers. This paper presents an analytical method for characterizing electric field (E-field) exposure within these environments. The E-field levels of the different wireless communications systems have been measured in two floors of the Canary University Hospital Consortium (CUHC). The electromagnetic (EM) conditions detected with the experimental measures have been estimated using the software EFC-400-Telecommunications (Narda Safety Test Solutions, Sandwiesenstrasse 7, 72793 Pfullingen, Germany). The experimental and simulated results are represented through 2D contour maps, and have been compared with the recommended safety and exposure thresholds. The maximum value obtained is much lower than the 3 V m(-1) that is established in the International Electrotechnical Commission Standard of Electromedical Devices. Results show a high correlation in terms of E-field cumulative distribution function (CDF) between the experimental and simulation results. In general, the CDFs of each pair of experimental and simulated samples follow a lognormal distribution with the same mean.
Cacace, Teresa; Bianco, Vittorio; Paturzo, Melania; Memmolo, Pasquale; Vassalli, Massimo; Fraldi, Massimiliano; Mensitieri, Giuseppe; Ferraro, Pietro
2018-06-26
The development of techniques able to characterize and map the pressure field is crucial for the widespread use of acoustofluidic devices in biotechnology and lab-on-a-chip platforms. In fact, acoustofluidic devices are powerful tools for driving precise manipulation of microparticles and cells in microfluidics in non-contact modality. Here, we report a full and accurate characterization of the movement of particles subjected to acoustophoresis in a microfluidic environment by holographic imaging. The particle displacement along the direction of the ultrasound wave propagation, coinciding with the optical axis, is observed and investigated. Two resonance frequencies are explored, varying for each the amplitude of the applied signal. The trajectories of individual tracers, accomplished by holographic measurements, are fitted with the theoretical model thus allowing the retrieval of the acoustic energy densities and pressure amplitudes through full holographic analysis. The absence of prior calibration, being independent of the object shape and the possibility of implementing automatic analysis make the use of holography very appealing for applications in devices for biotechnologies.
Quantum Phase Transition in Few-Layer NbSe2 Probed through Quantized Conductance Fluctuations
NASA Astrophysics Data System (ADS)
Kundu, Hemanta Kumar; Ray, Sujay; Dolui, Kapildeb; Bagwe, Vivas; Choudhury, Palash Roy; Krupanidhi, S. B.; Das, Tanmoy; Raychaudhuri, Pratap; Bid, Aveek
2017-12-01
We present the first observation of dynamically modulated quantum phase transition between two distinct charge density wave (CDW) phases in two-dimensional 2 H -NbSe2 . There is recent spectroscopic evidence for the presence of these two quantum phases, but its evidence in bulk measurements remained elusive. We studied suspended, ultrathin 2 H -NbSe2 devices fabricated on piezoelectric substrates—with tunable flakes thickness, disorder level, and strain. We find a surprising evolution of the conductance fluctuation spectra across the CDW temperature: the conductance fluctuates between two precise values, separated by a quantum of conductance. These quantized fluctuations disappear for disordered and on-substrate devices. With the help of mean-field calculations, these observations can be explained as to arise from dynamical phase transition between the two CDW states. To affirm this idea, we vary the lateral strain across the device via piezoelectric medium and map out the phase diagram near the quantum critical point. The results resolve a long-standing mystery of the anomalously large spectroscopic gap in NbSe2 .
Jara, Antonio J.; Moreno-Sanchez, Pedro; Skarmeta, Antonio F.; Varakliotis, Socrates; Kirstein, Peter
2013-01-01
Sensors utilize a large number of heterogeneous technologies for a varied set of application environments. The sheer number of devices involved requires that this Internet be the Future Internet, with a core network based on IPv6 and a higher scalability in order to be able to address all the devices, sensors and things located around us. This capability to connect through IPv6 devices, sensors and things is what is defining the so-called Internet of Things (IoT). IPv6 provides addressing space to reach this ubiquitous set of sensors, but legacy technologies, such as X10, European Installation Bus (EIB), Controller Area Network (CAN) and radio frequency ID (RFID) from the industrial, home automation and logistic application areas, do not support the IPv6 protocol. For that reason, a technique must be devised to map the sensor and identification technologies to IPv6, thus allowing homogeneous access via IPv6 features in the context of the IoT. This paper proposes a mapping between the native addressing of each technology and an IPv6 address following a set of rules that are discussed and proposed in this work. Specifically, the paper presents a technology-dependent IPv6 addressing proxy, which maps each device to the different subnetworks built under the IPv6 prefix addresses provided by the internet service provider for each home, building or user. The IPv6 addressing proxy offers a common addressing environment based on IPv6 for all the devices, regardless of the device technology. Thereby, this offers a scalable and homogeneous solution to interact with devices that do not support IPv6 addressing. The IPv6 addressing proxy has been implemented in a multi-protocol card and evaluated successfully its performance, scalability and interoperability through a protocol built over IPv6. PMID:23686145
Jara, Antonio J; Moreno-Sanchez, Pedro; Skarmeta, Antonio F; Varakliotis, Socrates; Kirstein, Peter
2013-05-17
Sensors utilize a large number of heterogeneous technologies for a varied set of application environments. The sheer number of devices involved requires that this Internet be the Future Internet, with a core network based on IPv6 and a higher scalability in order to be able to address all the devices, sensors and things located around us. This capability to connect through IPv6 devices, sensors and things is what is defining the so-called Internet of Things (IoT). IPv6 provides addressing space to reach this ubiquitous set of sensors, but legacy technologies, such as X10, European Installation Bus (EIB), Controller Area Network (CAN) and radio frequency ID (RFID) from the industrial, home automation and logistic application areas, do not support the IPv6 protocol. For that reason, a technique must be devised to map the sensor and identification technologies to IPv6, thus allowing homogeneous access via IPv6 features in the context of the IoT. This paper proposes a mapping between the native addressing of each technology and an IPv6 address following a set of rules that are discussed and proposed in this work. Specifically, the paper presents a technology-dependent IPv6 addressing proxy, which maps each device to the different subnetworks built under the IPv6 prefix addresses provided by the internet service provider for each home, building or user. The IPv6 addressing proxy offers a common addressing environment based on IPv6 for all the devices, regardless of the device technology. Thereby, this offers a scalable and homogeneous solution to interact with devices that do not support IPv6 addressing. The IPv6 addressing proxy has been implemented in a multi-protocol Sensors 2013, 13 6688 card and evaluated successfully its performance, scalability and interoperability through a protocol built over IPv6.
NASA Astrophysics Data System (ADS)
Miller, J. D.; Hudak, G. J.; Peterson, D.
2011-12-01
Since 2007, the central program of the Precambrian Research Center (PRC) at the University of Minnesota Duluth has been a six-week geology field camp focused on the Precambrian geology of the Canadian Shield. This field camp has two main purposes. First and foremost is to teach students specialized field skills and field mapping techniques that can be utilized to map and interpret Precambrian shield terranes characterized by sparse outcrop and abundant glacial cover. In addition to teaching basic outcrop mapping technique , students are introduced to geophysical surveying (gravity, magnetics), glacial drift prospecting, and drill core logging techniques in several of our geological mapping exercises. These mapping methodologies are particularly applicable to minerals exploration in shield terranes. The second and equally important goal of the PRC field camp is to teach students modern map-making and map production skills. During the fifth and sixth weeks of field camp, students conduct "capstone" mapping projects. These projects encompass one week of detailed bedrock mapping in remote regions of northern Minnesota that have not been mapped in detail (e.g. scales greater than 1:24,000) and a second week of map-making and map generation utilizing geographic information systems (currently ArcGIS10), graphics software packages (Adobe Illustrator CS4), and various imaging software for geophysical and topographic data. Over the past five years, PRC students and faculty have collaboratively published 21 geologic maps through the Precambrian Research Center Map Series. These maps are currently being utilized in a variety of ways by industry, academia, and government for mineral exploration programs, development of undergraduate, graduate, and faculty research projects, and for planning, archeological studies, and public education programs in Minnesota's state parks. Acquisition of specialized Precambrian geological mapping skills and geologic map-making proficiencies has enabled our students to be highly sought after for employment and/or subsequent graduate studies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu Yuan; Li Xiaobo, E-mail: liuyuan@ihep.ac.cn, E-mail: lixb@ihep.ac.cn
The properties of the dusty tori in active galactic nuclei (AGNs) have been investigated in detail, mainly focusing on the geometry and components; however, the kinematics of the torus are still not clear. The narrow iron K α line at 6.4 keV is thought to be produced by the X-ray reflection from the torus. Thus, the velocity-resolved reverberation mapping of it is able to constrain the kinematics of the torus. Such effort is limited by the spectral resolution of current charged coupled device (CCD) detectors and should be possible with the microcalorimeter on the next generation X-ray satellite. In thismore » paper, we first construct the response functions of the torus under a uniform inflow, a Keplerian rotation, and a uniform outflow. Then the energy-dependent light curve of the narrow iron K α line is simulated according to the performance of the X-ray Integral Field Unit in Athena. Finally, the energy-dependent cross-correlation function is calculated to reveal the kinematic signal. According to our results, 100 observations with 5 ks exposure of each are sufficient to distinguish the above three velocity fields. Although the real geometry and velocity field of the torus could be more complex than we assumed, the present result proves the feasibility of the velocity-resolved reverberation mapping of the narrow iron K α line. The combination of the dynamics of the torus with those of the broad-line region and the host galaxy is instructive for the understanding of the feeding and feedback process of AGNs.« less
Li, Gang; Wang, Zhenhai; Mao, Xinyu; Zhang, Yinghuang; Huo, Xiaoye; Liu, Haixiao; Xu, Shengyong
2016-01-01
Dynamic mapping of an object’s local temperature distribution may offer valuable information for failure analysis, system control and improvement. In this letter we present a computerized measurement system which is equipped with a hybrid, low-noise mechanical-electrical multiplexer for real-time two-dimensional (2D) mapping of surface temperatures. We demonstrate the performance of the system on a device embedded with 32 pieces of built-in Cr-Pt thin-film thermocouples arranged in a 4 × 8 matrix. The system can display a continuous 2D mapping movie of relative temperatures with a time interval around 1 s. This technique may find applications in a variety of practical devices and systems. PMID:27347969
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Qing, E-mail: yangqing@cqu.edu.cn; Yu, Fei; Sima, Wenxia
Transformer oil-based nanofluids (NFs) with 0.03 g/L Fe{sub 3}O{sub 4} nanoparticle content exhibit 11.2% higher positive impulse breakdown voltage levels than pure transformer oils. To study the effects of the Fe{sub 3}O{sub 4} nanoparticles on the space charge in transformer oil and to explain why the nano-modified transformer oil exhibits improved impulse breakdown voltage characteristics, the traditional Kerr electro-optic field mapping technique is improved by increasing the length of the parallel-plate electrodes and by using a photodetector array as a high light sensitivity device. The space charge distributions of pure transformer oil and of NFs containing Fe{sub 3}O{sub 4} nanoparticlesmore » can be measured using the improved Kerr electro-optic field mapping technique. Test results indicate a significant reduction in space charge density in the transformer oil-based NFs with the Fe{sub 3}O{sub 4} nanoparticles. The fast electrons are captured by the nanoparticles and are converted into slow-charged particles in the NFs, which then reduce the space charge density and result in a more uniform electric field distribution. Streamer propagation in the NFs is also obstructed, and the breakdown strengths of the NFs under impulse voltage conditions are also improved.« less
Robust Dehaze Algorithm for Degraded Image of CMOS Image Sensors.
Qu, Chen; Bi, Du-Yan; Sui, Ping; Chao, Ai-Nong; Wang, Yun-Fei
2017-09-22
The CMOS (Complementary Metal-Oxide-Semiconductor) is a new type of solid image sensor device widely used in object tracking, object recognition, intelligent navigation fields, and so on. However, images captured by outdoor CMOS sensor devices are usually affected by suspended atmospheric particles (such as haze), causing a reduction in image contrast, color distortion problems, and so on. In view of this, we propose a novel dehazing approach based on a local consistent Markov random field (MRF) framework. The neighboring clique in traditional MRF is extended to the non-neighboring clique, which is defined on local consistent blocks based on two clues, where both the atmospheric light and transmission map satisfy the character of local consistency. In this framework, our model can strengthen the restriction of the whole image while incorporating more sophisticated statistical priors, resulting in more expressive power of modeling, thus, solving inadequate detail recovery effectively and alleviating color distortion. Moreover, the local consistent MRF framework can obtain details while maintaining better results for dehazing, which effectively improves the image quality captured by the CMOS image sensor. Experimental results verified that the method proposed has the combined advantages of detail recovery and color preservation.
Narayan, Sreenath; Kalhan, Satish C.; Wilson, David L.
2012-01-01
I.Abstract Purpose To reduce swaps in fat-water separation methods, a particular issue on 7T small animal scanners due to field inhomogeneity, using image postprocessing innovations that detect and correct errors in the B0 field map. Materials and Methods Fat-water decompositions and B0 field maps were computed for images of mice acquired on a 7T Bruker BioSpec scanner, using a computationally efficient method for solving the Markov Random Field formulation of the multi-point Dixon model. The B0 field maps were processed with a novel hole-filling method, based on edge strength between regions, and a novel k-means method, based on field-map intensities, which were iteratively applied to automatically detect and reinitialize error regions in the B0 field maps. Errors were manually assessed in the B0 field maps and chemical parameter maps both before and after error correction. Results Partial swaps were found in 6% of images when processed with FLAWLESS. After REFINED correction, only 0.7% of images contained partial swaps, resulting in an 88% decrease in error rate. Complete swaps were not problematic. Conclusion Ex post facto error correction is a viable supplement to a priori techniques for producing globally smooth B0 field maps, without partial swaps. With our processing pipeline, it is possible to process image volumes rapidly, robustly, and almost automatically. PMID:23023815
Narayan, Sreenath; Kalhan, Satish C; Wilson, David L
2013-05-01
To reduce swaps in fat-water separation methods, a particular issue on 7 Tesla (T) small animal scanners due to field inhomogeneity, using image postprocessing innovations that detect and correct errors in the B0 field map. Fat-water decompositions and B0 field maps were computed for images of mice acquired on a 7T Bruker BioSpec scanner, using a computationally efficient method for solving the Markov Random Field formulation of the multi-point Dixon model. The B0 field maps were processed with a novel hole-filling method, based on edge strength between regions, and a novel k-means method, based on field-map intensities, which were iteratively applied to automatically detect and reinitialize error regions in the B0 field maps. Errors were manually assessed in the B0 field maps and chemical parameter maps both before and after error correction. Partial swaps were found in 6% of images when processed with FLAWLESS. After REFINED correction, only 0.7% of images contained partial swaps, resulting in an 88% decrease in error rate. Complete swaps were not problematic. Ex post facto error correction is a viable supplement to a priori techniques for producing globally smooth B0 field maps, without partial swaps. With our processing pipeline, it is possible to process image volumes rapidly, robustly, and almost automatically. Copyright © 2012 Wiley Periodicals, Inc.
Evaluation of using digital gravity field models for zoning map creation
NASA Astrophysics Data System (ADS)
Loginov, Dmitry
2018-05-01
At the present time the digital cartographic models of geophysical fields are taking a special significance into geo-physical mapping. One of the important directions to their application is the creation of zoning maps, which allow taking into account the morphology of geophysical field in the implementation automated choice of contour intervals. The purpose of this work is the comparative evaluation of various digital models in the creation of integrated gravity field zoning map. For comparison were chosen the digital model of gravity field of Russia, created by the analog map with scale of 1 : 2 500 000, and the open global model of gravity field of the Earth - WGM2012. As a result of experimental works the four integrated gravity field zoning maps were obtained with using raw and processed data on each gravity field model. The study demonstrates the possibility of open data use to create integrated zoning maps with the condition to eliminate noise component of model by processing in specialized software systems. In this case, for solving problem of contour intervals automated choice the open digital models aren't inferior to regional models of gravity field, created for individual countries. This fact allows asserting about universality and independence of integrated zoning maps creation regardless of detail of a digital cartographic model of geo-physical fields.
Shifman, M. A.; Nadkarni, P.; Miller, P. L.
1992-01-01
Pulse field gel electrophoresis mapping is an important technique for characterizing large segments of DNA. We have developed two tools to aid in the construction of pulse field electrophoresis gel maps: PFGE READER which stores experimental conditions and calculates fragment sizes and PFGE MAPPER which constructs pulse field gel electrophoresis maps. PMID:1482898
Engineering a robotic approach to mapping exposed volcanic fissures
NASA Astrophysics Data System (ADS)
Parcheta, C. E.; Parness, A.; Mitchell, K. L.
2014-12-01
Field geology provides a framework for advanced computer models and theoretical calculations of volcanic systems. Some field terrains, though, are poorly preserved or accessible, making documentation, quantification, and investigation impossible. Over 200 volcanologists at the 2012 Kona Chapman Conference on volcanology agreed that and important step forward in the field over the next 100 years should address the realistic size and shape of volcanic conduits. The 1969 Mauna Ulu eruption of Kīlauea provides a unique opportunity to document volcanic fissure conduits, thus, we have an ideal location to begin addressing this topic and provide data on these geometries. Exposed fissures can be mapped with robotics using machine vision. In order to test the hypothesis that fissures have irregularities with depth that will influence their fluid dynamical behavior, we must first map the fissure vents and shallow conduit to deci- or centimeter scale. We have designed, constructed, and field-tested the first version of a robotic device that will image an exposed volcanic fissure in three dimensions. The design phase included three steps: 1) create the payload harness and protective shell to prevent damage to the electronics and robot, 2) construct a circuit board to have the electronics communicate with a surface-based computer, and 3) prototype wheel shapes that can handle a variety of volcanic rock textures. The robot's mechanical parts were built using 3d printing, milling, casting and laser cutting techniques, and the electronics were assembled from off the shelf components. The testing phase took place at Mauna Ulu, Kīlauea, Hawai'i, from May 5 - 9, 2014. Many valuable design lessons were learned during the week, and the first ever 3D map from inside a volcanic fissure were successfully collected. Three vents had between 25% and 95% of their internal surfaces imaged. A fourth location, a non-eruptive crack (possibly a fault line) had two transects imaging the textures of the walls with depth to compare to the fissure vents. The vent surface irregularity documented by Parcheta et al., (accepted) continues with depth into the fissure; depths are variable depending on the amount of talus filling them. We will show and discuss data from the main field vent location, and movies of descents in to the other vents.
Demonstration of Hadoop-GIS: A Spatial Data Warehousing System Over MapReduce
Aji, Ablimit; Sun, Xiling; Vo, Hoang; Liu, Qioaling; Lee, Rubao; Zhang, Xiaodong; Saltz, Joel; Wang, Fusheng
2016-01-01
The proliferation of GPS-enabled devices, and the rapid improvement of scientific instruments have resulted in massive amounts of spatial data in the last decade. Support of high performance spatial queries on large volumes data has become increasingly important in numerous fields, which requires a scalable and efficient spatial data warehousing solution as existing approaches exhibit scalability limitations and efficiency bottlenecks for large scale spatial applications. In this demonstration, we present Hadoop-GIS – a scalable and high performance spatial query system over MapReduce. Hadoop-GIS provides an efficient spatial query engine to process spatial queries, data and space based partitioning, and query pipelines that parallelize queries implicitly on MapReduce. Hadoop-GIS also provides an expressive, SQL-like spatial query language for workload specification. We will demonstrate how spatial queries are expressed in spatially extended SQL queries, and submitted through a command line/web interface for execution. Parallel to our system demonstration, we explain the system architecture and details on how queries are translated to MapReduce operators, optimized, and executed on Hadoop. In addition, we will showcase how the system can be used to support two representative real world use cases: large scale pathology analytical imaging, and geo-spatial data warehousing. PMID:27617325
Computed inverse resonance imaging for magnetic susceptibility map reconstruction.
Chen, Zikuan; Calhoun, Vince
2012-01-01
This article reports a computed inverse magnetic resonance imaging (CIMRI) model for reconstructing the magnetic susceptibility source from MRI data using a 2-step computational approach. The forward T2*-weighted MRI (T2*MRI) process is broken down into 2 steps: (1) from magnetic susceptibility source to field map establishment via magnetization in the main field and (2) from field map to MR image formation by intravoxel dephasing average. The proposed CIMRI model includes 2 inverse steps to reverse the T2*MRI procedure: field map calculation from MR-phase image and susceptibility source calculation from the field map. The inverse step from field map to susceptibility map is a 3-dimensional ill-posed deconvolution problem, which can be solved with 3 kinds of approaches: the Tikhonov-regularized matrix inverse, inverse filtering with a truncated filter, and total variation (TV) iteration. By numerical simulation, we validate the CIMRI model by comparing the reconstructed susceptibility maps for a predefined susceptibility source. Numerical simulations of CIMRI show that the split Bregman TV iteration solver can reconstruct the susceptibility map from an MR-phase image with high fidelity (spatial correlation ≈ 0.99). The split Bregman TV iteration solver includes noise reduction, edge preservation, and image energy conservation. For applications to brain susceptibility reconstruction, it is important to calibrate the TV iteration program by selecting suitable values of the regularization parameter. The proposed CIMRI model can reconstruct the magnetic susceptibility source of T2*MRI by 2 computational steps: calculating the field map from the phase image and reconstructing the susceptibility map from the field map. The crux of CIMRI lies in an ill-posed 3-dimensional deconvolution problem, which can be effectively solved by the split Bregman TV iteration algorithm.
Microfilming maps of abandoned anthracite mines: mines in the southern anthracite field
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gait, G.B.
1978-01-01
This report is the fifth in a series concerning the Bureau of Mines program for microfilming maps of abandoned mines in the Pennsylvania anthracite region. A catalog of the microfilmed maps of 47 of 49 major mines and 18 independent mines in the Southern field is presented. Previous reports included catalogs of microfilmed maps of mines in the Eastern Middle field, the Wyoming and Lackawanna Basins of the Northern field, and the Western Middle anthracite field.
Electronic transport in graphene: p-n junctions, shot noise, and nanoribbons
NASA Astrophysics Data System (ADS)
Williams, James Ryan
2009-12-01
Novel, two-dimensional materials have allowed for the inception and elucidation of a plethora of physical phenomena. On such material, a hexagonal lattice of carbon atoms called graphene, is a unique, truly two-dimensional molecular conductor. This thesis describes six experiments that elucidate some interesting physical properties and technological applications of graphene, with an emphasis on graphene-based p-n junctions. A technique for the creation of high-quality p-n junctions of graphene is described. Transport measurements at zero magnetic field demonstrate local control of the carrier type and density bipolar graphene-based junctions. In the quantum Hall regime, new plateaus in the conductance are observed and explained in terms of mode mixing at the p-n interface. Shot noise in unipolar and bipolar graphene devices is measured. A density-independent Fano factor is observed, contrary to theoretical expectations. Further, an independence on device geometry is also observed. The role of disorder on the measured Fano factor is discussed, and comparison to recent theory for disordered graphene is made. The effect of a two-terminal geometry, where the device aspect ratio is different from unity, is measured experimentally and analyzed theoretically. A method for extracting layer number from the conductance extrema is proposed. A method for a conformal mapping of a device with asymmetric contacts to a rectangle is demonstrated. Finally, possible origins of discrepancies between theory and experiment are discussed. Transport along p-n junctions in graphene is reported. Enhanced transport along the junction is observed and attributed to states that exist at the p-n interface. A correspondence between the observed phenomena at low-field and in the quantum Hall regime is observed. An electric field perpendicular to the junction is found to reduce the enhanced conductance at the p-n junction. A corollary between the p-n interface states and "snake states" in an inhomogeneous magnetic field is proposed and its relationship to the minimum conductivity in graphene is discussed. A final pair of experiments demonstrate how a helium ion microscope can be used to reduce the dimensionality of graphene one further, producing graphene nanoribbons. The effect of etching on transport and doping level of the graphene nanoribbons is discussed.
Laamrani, Ahmed; Pardo Lara, Renato; Berg, Aaron A; Branson, Dave; Joosse, Pamela
2018-02-27
Quantifying the amount of crop residue left in the field after harvest is a key issue for sustainability. Conventional assessment approaches (e.g., line-transect) are labor intensive, time-consuming and costly. Many proximal remote sensing devices and systems have been developed for agricultural applications such as cover crop and residue mapping. For instance, current mobile devices (smartphones & tablets) are usually equipped with digital cameras and global positioning systems and use applications (apps) for in-field data collection and analysis. In this study, we assess the feasibility and strength of a mobile device app developed to estimate crop residue cover. The performance of this novel technique (from here on referred to as "app" method) was compared against two point counting approaches: an established digital photograph-grid method and a new automated residue counting script developed in MATLAB at the University of Guelph. Both photograph-grid and script methods were used to count residue under 100 grid points. Residue percent cover was estimated using the app, script and photograph-grid methods on 54 vertical digital photographs (images of the ground taken from above at a height of 1.5 m) collected from eighteen fields (9 corn and 9 soybean, 3 samples each) located in southern Ontario. Results showed that residue estimates from the app method were in good agreement with those obtained from both photograph-grid and script methods (R² = 0.86 and 0.84, respectively). This study has found that the app underestimates the residue coverage by -6.3% and -10.8% when compared to the photograph-grid and script methods, respectively. With regards to residue type, soybean has a slightly lower bias than corn (i.e., -5.3% vs. -7.4%). For photos with residue <30%, the app derived residue measurements are within ±5% difference (bias) of both photograph-grid- and script-derived residue measurements. These methods could therefore be used to track the recommended minimum soil residue cover of 30%, implemented to reduce farmland topsoil and nutrient losses that impact water quality. Overall, the app method was found to be a good alternative to the point counting methods, which are more time-consuming.
ERIC Educational Resources Information Center
Gropper, George L.
2016-01-01
A prescription favored in this article calls for the joint use of "learning maps" and "instructional maps." Why then the "Vs." in the title? Simply put, it is a rhetorical device. It calls attention to a key difference between the two. This article explicates the difference. It also informs how alone and in…
Designing Security-Hardened Microkernels For Field Devices
NASA Astrophysics Data System (ADS)
Hieb, Jeffrey; Graham, James
Distributed control systems (DCSs) play an essential role in the operation of critical infrastructures. Perimeter field devices are important DCS components that measure physical process parameters and perform control actions. Modern field devices are vulnerable to cyber attacks due to their increased adoption of commodity technologies and that fact that control networks are no longer isolated. This paper describes an approach for creating security-hardened field devices using operating system microkernels that isolate vital field device operations from untrusted network-accessible applications. The approach, which is influenced by the MILS and Nizza architectures, is implemented in a prototype field device. Whereas, previous microkernel-based implementations have been plagued by poor inter-process communication (IPC) performance, the prototype exhibits an average IPC overhead for protected device calls of 64.59 μs. The overall performance of field devices is influenced by several factors; nevertheless, the observed IPC overhead is low enough to encourage the continued development of the prototype.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Greenbaum, Elias; Sanders, Charlene A; Kandagor, Vincent
The development of a retinal prosthesis for artificial sight includes a study of the factors affecting the structural and functional stability of chronically implanted microelectrode arrays. Although neuron depolarization and propagation of electrical signals have been studied for nearly a century, the use of multielectrode stimulation as a proposed therapy to treat blindness is a frontier area of modern ophthalmology research. Mapping and characterizing the topographic information contained in the electric field potentials and understanding how this information is transmitted and interpreted in the visual cortex is still very much a work in progress. In order to characterize the electricalmore » field patterns generated by the device, an in vitro prototype that mimics several of the physical and chemical parameters of the in vivo visual implant device was fabricated. We carried out multiple electrical measurements in a model 'eye,' beginning with a single electrode, followed by a 9-electrode array structure, both idealized components based on the Argus II retinal implants. Correlating the information contained in the topographic features of the electric fields with psychophysical testing in patients may help reduce the time required for patients to convert the electrical patterns into graphic signals.« less
System and method for evaluating wind flow fields using remote sensing devices
Schroeder, John; Hirth, Brian; Guynes, Jerry
2016-12-13
The present invention provides a system and method for obtaining data to determine one or more characteristics of a wind field using a first remote sensing device and a second remote sensing device. Coordinated data is collected from the first and second remote sensing devices and analyzed to determine the one or more characteristics of the wind field. The first remote sensing device is positioned to have a portion of the wind field within a first scanning sector of the first remote sensing device. The second remote sensing device is positioned to have the portion of the wind field disposed within a second scanning sector of the second remote sensing device.
Reaching the Next Generation of College Students via Their Digital Devices.
NASA Astrophysics Data System (ADS)
Whitmeyer, S. J.; De Paor, D. G.; Bentley, C.
2015-12-01
Current college students attended school during a decade in which many school districts banned cellphones from the classroom or even from school grounds. These students are used to being told to put away their mobile devices and concentrate on traditional classroom activities such as watching PowerPoint presentations or calculating with pencil and paper. However, due to a combination of parental security concerns and recent education research, schools are rapidly changing policy and embracing mobile devices for ubiquitous learning opportunities inside and outside of the classroom. Consequently, many of the next generation of college students will have expectations of learning via mobile technology. We have developed a range of digital geology resources to aid mobile-based geoscience education at college level, including mapping on iPads and other tablets, "crowd-sourced" field projects, augmented reality-supported asynchronous field classes, 3D and 4D split-screen virtual reality tours, macroscopic and microscopic gigapixel imagery, 360° panoramas, assistive devices for inclusive field education, and game-style educational challenges. Class testing of virtual planetary tours shows modest short-term learning gains, but more work is needed to ensure long-term retention. Many of our resources rely on the Google Earth browser plug-in and application program interface (API). Because of security concerns, browser plug-ins in general are being phased out and the Google Earth API will not be supported in future browsers. However, a new plug-in-free API is promised by Google and an alternative open-source virtual globe called Cesium is undergoing rapid development. It already supports the main aspects of Keyhole Markup Language and has features of significant benefit to geoscience, including full support on mobile devices and sub-surface viewing and touring. The research team includes: Heather Almquist, Stephen Burgin, Cinzia Cervato, Filis Coba, Chloe Constants, Gene Cooper, Mladen Dordevic, Marissa Dudek, Brandon Fitzwater, Bridget Gomez, Tyler Hansen, Paul Karabinos, Terry Pavlis, Jen Piatek, Alan Pitts, Robin Rohrback, Bill Richards, Caroline Robinson, Jeff Rollins, Jeff Ryan, Ron Schott, Kristen St. John, and Barb Tewksbury. Supported by NSF DUE 1323419 and by Google Geo Curriculum Awards.
Plasphonics: local hybridization of plasmons and phonons.
Marty, Renaud; Mlayah, Adnen; Arbouet, Arnaud; Girard, Christian; Tripathy, Sudhiranjan
2013-02-25
We show that the interaction between localized surface plasmons sustained by a metallic nano-antenna and delocalized phonons lying at the surface of an heteropolar semiconductor can generate a new class of hybrid electromagnetic modes. These plasphonic modes are investigated using an analytical model completed by accurate Green dyadic numerical simulations. When surface plasmon and surface phonon frequencies match, the optical resonances exhibit a large Rabi splitting typical of strongly interacting two-level systems. Based on numerical simulations of the electric near-field maps, we investigate the nature of the plaphonic excitations. In particular, we point out a strong local field enhancement boosted by the phononic surface. This effect is interpreted in terms of light harvesting by the plasmonic antenna from the phononic surface. We thus introduce the concept of active phononic surfaces that may be exploited for far-infared optoelectronic devices and sensors.
Integrated Dual Imaging Detector
NASA Technical Reports Server (NTRS)
Rust, David M.
1999-01-01
A new type of image detector was designed to simultaneously analyze the polarization of light at all picture elements in a scene. The integrated Dual Imaging detector (IDID) consists of a lenslet array and a polarizing beamsplitter bonded to a commercial charge coupled device (CCD). The IDID simplifies the design and operation of solar vector magnetographs and the imaging polarimeters and spectroscopic imagers used, for example, in atmosphere and solar research. When used in a solar telescope, the vector magnetic fields on the solar surface. Other applications include environmental monitoring, robot vision, and medical diagnoses (through the eye). Innovations in the IDID include (1) two interleaved imaging arrays (one for each polarization plane); (2) large dynamic range (well depth of 10(exp 5) electrons per pixel); (3) simultaneous readout and display of both images; and (4) laptop computer signal processing to produce polarization maps in field situations.
Template‐based field map prediction for rapid whole brain B0 shimming
Shi, Yuhang; Vannesjo, S. Johanna; Miller, Karla L.
2017-01-01
Purpose In typical MRI protocols, time is spent acquiring a field map to calculate the shim settings for best image quality. We propose a fast template‐based field map prediction method that yields near‐optimal shims without measuring the field. Methods The template‐based prediction method uses prior knowledge of the B0 distribution in the human brain, based on a large database of field maps acquired from different subjects, together with subject‐specific structural information from a quick localizer scan. The shimming performance of using the template‐based prediction is evaluated in comparison to a range of potential fast shimming methods. Results Static B0 shimming based on predicted field maps performed almost as well as shimming based on individually measured field maps. In experimental evaluations at 7 T, the proposed approach yielded a residual field standard deviation in the brain of on average 59 Hz, compared with 50 Hz using measured field maps and 176 Hz using no subject‐specific shim. Conclusions This work demonstrates that shimming based on predicted field maps is feasible. The field map prediction accuracy could potentially be further improved by generating the template from a subset of subjects, based on parameters such as head rotation and body mass index. Magn Reson Med 80:171–180, 2018. © 2017 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. PMID:29193340
NASA Technical Reports Server (NTRS)
Eppler, Dean B.; Bleacher, Jacob F.; Evans, Cynthia A.; Feng, Wanda; Gruener, John; Hurwitz, Debra M.; Skinner, J. A., Jr.; Whitson, Peggy; Janoiko, Barbara
2013-01-01
Geologic maps integrate the distributions, contacts, and compositions of rock and sediment bodies as a means to interpret local to regional formative histories. Applying terrestrial mapping techniques to other planets is challenging because data is collected primarily by orbiting instruments, with infrequent, spatiallylimited in situ human and robotic exploration. Although geologic maps developed using remote data sets and limited "Apollo-style" field access likely contain inaccuracies, the magnitude, type, and occurrence of these are only marginally understood. This project evaluates the interpretative and cartographic accuracy of both field- and remote-based mapping approaches by comparing two 1:24,000 scale geologic maps of the San Francisco Volcanic Field (SFVF), north-central Arizona. The first map is based on traditional field mapping techniques, while the second is based on remote data sets, augmented with limited field observations collected during NASA Desert Research & Technology Studies (RATS) 2010 exercises. The RATS mission used Apollo-style methods not only for pre-mission traverse planning but also to conduct geologic sampling as part of science operation tests. Cross-comparison demonstrates that the Apollo-style map identifies many of the same rock units and determines a similar broad history as the field-based map. However, field mapping techniques allow markedly improved discrimination of map units, particularly unconsolidated surficial deposits, and recognize a more complex eruptive history than was possible using Apollo-style data. Further, the distribution of unconsolidated surface units was more obvious in the remote sensing data to the field team after conducting the fieldwork. The study raises questions about the most effective approach to balancing mission costs with the rate of knowledge capture, suggesting that there is an inflection point in the "knowledge capture curve" beyond which additional resource investment yields progressively smaller gains in geologic knowledge.
PenMap demonstration project, landslide mapping system
DOT National Transportation Integrated Search
2002-12-01
This report documents the findings of a technology transfer project to demonstrate the effectiveness of a portable field mapping system to landslide field reconnaissance work. The objective of this project was to expose the latest field data collecti...
Yuksel, Mustafa; Dogac, Asuman
2011-07-01
Medical devices are essential to the practice of modern healthcare services. Their benefits will increase if clinical software applications can seamlessly acquire the medical device data. The need to represent medical device observations in a format that can be consumable by clinical applications has already been recognized by the industry. Yet, the solutions proposed involve bilateral mappings from the ISO/IEEE 11073 Domain Information Model (DIM) to specific message or document standards. Considering that there are many different types of clinical applications such as the electronic health record and the personal health record systems, the clinical workflows, and the clinical decision support systems each conforming to different standard interfaces, detailing a mapping mechanism for every one of them introduces significant work and, thus, limits the potential health benefits of medical devices. In this paper, to facilitate the interoperability of clinical applications and the medical device data, we use the ISO/IEEE 11073 DIM to derive an HL7 v3 Refined Message Information Model (RMIM) of the medical device domain from the HL7 v3 Reference Information Mode (RIM). This makes it possible to trace the medical device data back to a standard common denominator, that is, HL7 v3 RIM from which all the other medical domains under HL7 v3 are derived. Hence, once the medical device data are obtained in the RMIM format, it can easily be transformed into HL7-based standard interfaces through XML transformations because these interfaces all have their building blocks from the same RIM. To demonstrate this, we provide the mappings from the developed RMIM to some of the widely used HL7 v3-based standard interfaces.
Pump-probe Kelvin-probe force microscopy: Principle of operation and resolution limits
DOE Office of Scientific and Technical Information (OSTI.GOV)
Murawski, J.; Graupner, T.; Milde, P., E-mail: peter.milde@tu-dresden.de
Knowledge on surface potential dynamics is crucial for understanding the performance of modern-type nanoscale devices. We describe an electrical pump-probe approach in Kelvin-probe force microscopy that enables a quantitative measurement of dynamic surface potentials at nanosecond-time and nanometer-length scales. Also, we investigate the performance of pump-probe Kelvin-probe force microscopy with respect to the relevant experimental parameters. We exemplify a measurement on an organic field effect transistor that verifies the undisturbed functionality of our pump-probe approach in terms of simultaneous and quantitative mapping of topographic and electronic information at a high lateral and temporal resolution.
Making a Place for Space: Spatial Thinking in Social Science
Logan, John R.
2013-01-01
New technologies and multilevel data sets that include geographic identifiers have heightened sociologists’ interest in spatial analysis. I review several of the key concepts, measures, and methods that are brought into play in this work, and offer examples of their application in a variety of substantive fields. I argue that the most effective use of the new tools requires greater emphasis on spatial thinking. A device as simple as an illustrative map requires some understanding of how people respond to visual cues; models as complex as HLM with spatial lags require thoughtful measurement decisions and raise questions about what a spatial effect represents. PMID:24273374
DOE Office of Scientific and Technical Information (OSTI.GOV)
Buehler, Marc; Tartaglia, Michael; Tompkins, John
The Mu2e experiment at Fermilab is designed to explore charged lepton flavor violation by searching for muon-to-electron conversion. The magnetic field generated by a system of solenoids is crucial for Mu2e and requires accurate characterization to detect any flaws and to produce a detailed field map. Stringent physics goals are driving magnetic field specifications for the Mu2e solenoids. A field mapper is being designed, which will produce detailed magnetic field maps. The uniform field region of the spectrometer volume requires the highest level of precision (1 Gauss per 1 Tesla). During commissioning, multiple magnetic field maps will be generated tomore » verify proper alignment of all magnet coils, and to create the final magnetic field map. In order to design and build a precise field mapping system consisting of Hall and NRM probes, tolerances and precision for such a system need to be evaluated. In this paper we present a design for the Mu2e field mapping hardware, and discuss results from OPERA-3D simulations to specify parameters for Hall and NMR probes. We also present a fitting procedure for the analytical treatment of our expected magnetic measurements.« less
System and method for calibrating a rotary absolute position sensor
NASA Technical Reports Server (NTRS)
Davis, Donald R. (Inventor); Permenter, Frank Noble (Inventor); Radford, Nicolaus A (Inventor)
2012-01-01
A system includes a rotary device, a rotary absolute position (RAP) sensor generating encoded pairs of voltage signals describing positional data of the rotary device, a host machine, and an algorithm. The algorithm calculates calibration parameters usable to determine an absolute position of the rotary device using the encoded pairs, and is adapted for linearly-mapping an ellipse defined by the encoded pairs to thereby calculate the calibration parameters. A method of calibrating the RAP sensor includes measuring the rotary position as encoded pairs of voltage signals, linearly-mapping an ellipse defined by the encoded pairs to thereby calculate the calibration parameters, and calculating an absolute position of the rotary device using the calibration parameters. The calibration parameters include a positive definite matrix (A) and a center point (q) of the ellipse. The voltage signals may include an encoded sine and cosine of a rotary angle of the rotary device.
21 CFR 886.1360 - Visual field laser instrument.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Visual field laser instrument. 886.1360 Section... (CONTINUED) MEDICAL DEVICES OPHTHALMIC DEVICES Diagnostic Devices § 886.1360 Visual field laser instrument. (a) Identification. A visual field laser instrument is an AC-powered device intended to provide...
21 CFR 886.1360 - Visual field laser instrument.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Visual field laser instrument. 886.1360 Section... (CONTINUED) MEDICAL DEVICES OPHTHALMIC DEVICES Diagnostic Devices § 886.1360 Visual field laser instrument. (a) Identification. A visual field laser instrument is an AC-powered device intended to provide...
21 CFR 886.1360 - Visual field laser instrument.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Visual field laser instrument. 886.1360 Section... (CONTINUED) MEDICAL DEVICES OPHTHALMIC DEVICES Diagnostic Devices § 886.1360 Visual field laser instrument. (a) Identification. A visual field laser instrument is an AC-powered device intended to provide...
21 CFR 886.1360 - Visual field laser instrument.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Visual field laser instrument. 886.1360 Section... (CONTINUED) MEDICAL DEVICES OPHTHALMIC DEVICES Diagnostic Devices § 886.1360 Visual field laser instrument. (a) Identification. A visual field laser instrument is an AC-powered device intended to provide...
Echoes from the Field: An Ethnographic Investigation of Outdoor Science Field Trips
NASA Astrophysics Data System (ADS)
Boxerman, Jonathan Zvi
As popular as field trips are, one might think they have been well-studied. Nonetheless, field trips have not been heavily studied, and little research has mapped what actually transpires during field trips. Accordingly, to address this research gap, I asked two related research questions. The first question is a descriptive one: What happens on field trips? The second question is explanatory: What field trip events are memorable and why? I employed design research and ethnographic methodologies to study learning in naturally occurring contexts. I collaborated with middle-school science teachers to design and implement more than a dozen field trips. The field trips were nested in particular biology and earth sciences focal units. Students were tasked with making scientific observations in the field and then analyzing this data during classroom activities. Audio and video recording devices captured what happened during the field trips, classroom activities and discussions, and the interviews. I conducted comparative microanalysis of videotaped interactions. I observed dozens of events during the field trips that reverberated across time and place. I characterize the features of these events and the objects that drew interest. Then, I trace the residue across contexts. This study suggests that field trips could be more than one-off experiences and have the potential to be resources to seed and enrich learning and to augment interest in the practice of science.
Panoramic Epipolar Image Generation for Mobile Mapping System
NASA Astrophysics Data System (ADS)
Chen, T.; Yamamoto, K.; Chhatkuli, S.; Shimamura, H.
2012-07-01
The notable improvements on performance and low cost of digital cameras and GPS/IMU devices have caused MMSs (Mobile Mapping Systems) to be gradually becoming one of the most important devices for mapping highway and railway networks, generating and updating road navigation data and constructing urban 3D models over the last 20 years. Moreover, the demands for large scale visual street-level image database construction by the internet giants such as Google and Microsoft have made the further rapid development of this technology. As one of the most important sensors, the omni-directional cameras are being commonly utilized on many MMSs to collect panoramic images for 3D close range photogrammetry and fusion with 3D laser point clouds since these cameras could record much visual information of the real environment in one image at field view angle of 360° in longitude direction and 180° in latitude direction. This paper addresses the problem of panoramic epipolar image generation for 3D modelling and mapping by stereoscopic viewing. These panoramic images are captured with Point Grey's Ladybug3 mounted on the top of Mitsubishi MMS-X 220 at 2m intervals along the streets in urban environment. Onboard GPS/IMU, speedometer and post sequence image analysis technology such as bundle adjustment provided high accuracy position and attitude data for these panoramic images and laser data, this makes it possible to construct the epipolar geometric relationship between any two adjacent panoramic images and then the panoramic epipolar images could be generated. Three kinds of projection planes: sphere, cylinder and flat plane are selected as the epipolar images' planes. In final we select the flat plane and use its effective parts (middle parts of base line's two sides) for epipolar image generation. The corresponding geometric relations and results will be presented in this paper.
Organic transistors for electrophysiology (Presentation Recording)
NASA Astrophysics Data System (ADS)
Rivnay, Jonathan
2015-10-01
Efficient local transduction of biological signals is of critical importance for mapping brain activity and diagnosing pathological conditions. Traditional devices used to record electrophysiological signals are passive electrodes that require (pre)amplification with downstream electronics. Organic electrochemical transistors (OECTs) that utilize conducting polymer films as the channel have shown considerable promise as amplifying transducers due to their stability in aqueous conditions and high transconductance (>3 mS). The materials properties and physics of such transistors, however, remains largely unexplored thus limiting their potential. Here we show that the uptake of ionic charge from an electrolyte into a poly(3,4-ethylenedioxythiophene) doped with polystyrene sulfonate (PEDOT:PSS) OECT channel leads to a dependence of the effective capacitance on the entire volume of the film. Subsequently, device transconductance and time response vary with channel thickness, a defining characteristic that differentiates OECTs from field effect transistors, and provides a new degree of freedom for device engineering. Using this understanding we tailor OECTs for a variety of low (1-100 Hz) and high (1-10 kHz) frequency applications, including human electroencephalography, where high transconductance devices impart richer signal content without the need for additional amplification circuitry. We also show that the materials figure of merit OECTs is the product of hole mobility and volumetric capacitance of the channel, leading to design rules for novel high performance materials.
Using Mobile Devices to Display, Overlay, and Animate Geophysical Data and Imagery
NASA Astrophysics Data System (ADS)
Batzli, S.; Parker, D.
2011-12-01
A major challenge in mobile-device map application development is to offer rich content and features with simple and intuitive controls and fast performance. Our goal is to bring visualization, animation, and notifications of near real-time weather and earth observation information derived from satellite and sensor data to mobile devices. Our robust back-end processing infrastructure can deliver content in the form of images, shapes, standard descriptive formats (eg. KML, JSON) or raw data to a variety of desktop software, browsers, and mobile devices on demand. We have developed custom interfaces for low-bandwidth browsers (including mobile phones) and high-feature browsers (including smartphones), as well as native applications for Android and iOS devices. Mobile devices offer time- and location-awareness and persistent data connections, allowing us to tailor timely notifications and displays to the user's geographic and time context. This presentation includes a live demo of how our mobile apps deliver animation of standard and custom data products in an interactive map interface.
Optical magnetic imaging of living cells
Le Sage, D.; Arai, K.; Glenn, D. R.; DeVience, S. J.; Pham, L. M.; Rahn-Lee, L.; Lukin, M. D.; Yacoby, A.; Komeili, A.; Walsworth, R. L.
2013-01-01
Magnetic imaging is a powerful tool for probing biological and physical systems. However, existing techniques either have poor spatial resolution compared to optical microscopy and are hence not generally applicable to imaging of sub-cellular structure (e.g., magnetic resonance imaging [MRI]1), or entail operating conditions that preclude application to living biological samples while providing sub-micron resolution (e.g., scanning superconducting quantum interference device [SQUID] microscopy2, electron holography3, and magnetic resonance force microscopy [MRFM]4). Here we demonstrate magnetic imaging of living cells (magnetotactic bacteria) under ambient laboratory conditions and with sub-cellular spatial resolution (400 nm), using an optically-detected magnetic field imaging array consisting of a nanoscale layer of nitrogen-vacancy (NV) colour centres implanted at the surface of a diamond chip. With the bacteria placed on the diamond surface, we optically probe the NV quantum spin states and rapidly reconstruct images of the vector components of the magnetic field created by chains of magnetic nanoparticles (magnetosomes) produced in the bacteria, and spatially correlate these magnetic field maps with optical images acquired in the same apparatus. Wide-field sCMOS acquisition allows parallel optical and magnetic imaging of multiple cells in a population with sub-micron resolution and >100 micron field-of-view. Scanning electron microscope (SEM) images of the bacteria confirm that the correlated optical and magnetic images can be used to locate and characterize the magnetosomes in each bacterium. The results provide a new capability for imaging bio-magnetic structures in living cells under ambient conditions with high spatial resolution, and will enable the mapping of a wide range of magnetic signals within cells and cellular networks5, 6. PMID:23619694
The implementation of a modernized Dynamic Digital Map on Gale Crater, Mars
NASA Astrophysics Data System (ADS)
McBeck, J.; Condit, C. D.
2012-12-01
Currently, geology instructors present information to students via PowerPoint, Word, Excel and other programs that are not designed to parse or present geologic data. More tech-savvy, and perhaps better-funded, instructors use Google Earth or ArcGIS to display geologic maps and other visual information. However, Google Earth lacks the ability to present large portions of text, and ArcGIS restricts such functionality to labels and annotations. The original Dynamic Digital Map, which we have renamed Dynamic Digital Map Classic (DDMC), allows instructors to represent both visual and large portions of textual information to students. This summer we generalized the underlying architecture of DDMC, redesigned the user interface, modernized the analytical functionality, renamed the older version and labeled this new creature Dynamic Digital Map Extended (DDME). With the new DDME instructors can showcase maps, images, articles and movies, and create digital field trips. They can set the scale, coordinate system and caption of maps and images, add symbol links to maps and images that can transport the user to any specified destination—either internally (to data contained within the DDME) or externally (to a website address). Instructors and students can also calculate non-linear distances and irregular areas of maps and images, and create digital field trips with any number of stops—complete with notes and driving directions. DDMEs are perhaps best described as a sort of computerized, self-authored, interactive textbook. To display the vast capabilities of DDME, we created a DDME of Gale Crater (DDME-GC), which is the landing site of the most sophisticated NASA Mars Rover—Curiosity. DDME-GC hosts six thematic maps: a detailed geologic map provided by Brad Thompson of the Boston University Center for Remote Sensing (Thompson, et al., 2010), and five maps maintained in ASU's JMARS system, including global mosaics from Mars Global Surveyor's Mars Orbiter Laser Altimeter (MOLA), Mars Odyssey's Thermal Emission Imaging System (THEMIS), and the Mars Digital Image Model. DDME-GC offers a diverse suite of images, with over 40 images captured in the High Resolution Imaging Science Experiment (HiRISE), as well as several global mosaics created from Viking Orbiter, Hubble Telescope, THEMIS, MOLA and HiRISE data. DDME-GC also provides more than 25 articles that span subjects from the possible origins of the mound located in Gale Crater to the goals of NASA's Mars Exploration Program. The movies hosted by DDME-GC describe the difficulties of selecting a landing site for Curiosity, landing Curiosity on Mars and several other dynamic topics. The most significant advantage of the modernized DDME is its easily augmented functionality. In the future, DDME will be able to communicate with databases, import Keyhole Markup Language (KML) files from Google Earth, and be available on iOS and Android operating system. (Imagine: a field trip without the burden of notebooks, pens or pencils, paper or clipboards, with this information maintained on a mobile device.) The most recent DDME is a mere skeleton of its full capabilities—a robust architecture upon which myriad functionality can be supplemented.
Novice to Expert Cognition During Geologic Bedrock Mapping
NASA Astrophysics Data System (ADS)
Petcovic, H. L.; Libarkin, J.; Hambrick, D. Z.; Baker, K. M.; Elkins, J. T.; Callahan, C. N.; Turner, S.; Rench, T. A.; LaDue, N.
2011-12-01
Bedrock geologic mapping is a complex and cognitively demanding task. Successful mapping requires domain-specific content knowledge, visuospatial ability, navigation through the field area, creating a mental model of the geology that is consistent with field data, and metacognition. Most post-secondary geology students in the United States receive training in geologic mapping, however, not much is known about the cognitive processes that underlie successful bedrock mapping, or about how these processes change with education and experience. To better understand cognition during geologic mapping, we conducted a 2-year research study in which 67 volunteers representing a range from undergraduate sophomore to 20+ years professional experience completed a suite of cognitive measures plus a 1-day bedrock mapping task in the Rocky Mountains, Montana, USA. In addition to participants' geologic maps and field notes, the cognitive suite included tests and questionnaires designed to measure: (1) prior geologic experience, via a self-report survey; (2) geologic content knowledge, via a modified version of the Geoscience Concept Inventory; (3) visuospatial ability, working memory capacity, and perceptual speed, via paper-and-pencil and computerized tests; (4) use of space and time during mapping via GPS tracking; and (5) problem-solving in the field via think-aloud audio logs during mapping and post-mapping semi-structured interviews. Data were examined for correlations between performance on the mapping task and other measures. We found that both geological knowledge and spatial visualization ability correlated positively with accuracy in the field mapping task. More importantly, we found a Visuospatial Ability × Geological Knowledge interaction, such that visuospatial ability positively predicted mapping performance at low, but not high, levels of geological knowledge. In other words, we found evidence to suggest that visuospatial ability mattered for bedrock mapping for the novices in our sample, but not for the experts. For experienced mappers, we found a significant correlation between GCI scores and the thoroughness with which they covered the map area, plus a relationship between speed and map accuracy such that faster mappers produced better maps. However, fast novice mappers tended to produce the worst maps. Successful mappers formed a mental model of the underlying geologic structure immediately to early in the mapping task, then spent field time collecting observations to confirm, disconfirm, or modify their initial model. In contrast, the least successful mappers (all inexperienced) rarely generated explanations or models of the underlying geologic structure in the field.
Color management with a hammer: the B-spline fitter
NASA Astrophysics Data System (ADS)
Bell, Ian E.; Liu, Bonny H. P.
2003-01-01
To paraphrase Abraham Maslow: If the only tool you have is a hammer, every problem looks like a nail. We have a B-spline fitter customized for 3D color data, and many problems in color management can be solved with this tool. Whereas color devices were once modeled with extensive measurement, look-up tables and trilinear interpolation, recent improvements in hardware have made B-spline models an affordable alternative. Such device characterizations require fewer color measurements than piecewise linear models, and have uses beyond simple interpolation. A B-spline fitter, for example, can act as a filter to remove noise from measurements, leaving a model with guaranteed smoothness. Inversion of the device model can then be carried out consistently and efficiently, as the spline model is well behaved and its derivatives easily computed. Spline-based algorithms also exist for gamut mapping, the composition of maps, and the extrapolation of a gamut. Trilinear interpolation---a degree-one spline---can still be used after nonlinear spline smoothing for high-speed evaluation with robust convergence. Using data from several color devices, this paper examines the use of B-splines as a generic tool for modeling devices and mapping one gamut to another, and concludes with applications to high-dimensional and spectral data.
NASA Astrophysics Data System (ADS)
Huang, Zan; Chen, Hsinchun; Yip, Alan; Ng, Gavin; Guo, Fei; Chen, Zhi-Kai; Roco, Mihail C.
2003-08-01
Nanoscale science and engineering (NSE) and related areas have seen rapid growth in recent years. The speed and scope of development in the field have made it essential for researchers to be informed on the progress across different laboratories, companies, industries and countries. In this project, we experimented with several analysis and visualization techniques on NSE-related United States patent documents to support various knowledge tasks. This paper presents results on the basic analysis of nanotechnology patents between 1976 and 2002, content map analysis and citation network analysis. The data have been obtained on individual countries, institutions and technology fields. The top 10 countries with the largest number of nanotechnology patents are the United States, Japan, France, the United Kingdom, Taiwan, Korea, the Netherlands, Switzerland, Italy and Australia. The fastest growth in the last 5 years has been in chemical and pharmaceutical fields, followed by semiconductor devices. The results demonstrate potential of information-based discovery and visualization technologies to capture knowledge regarding nanotechnology performance, transfer of knowledge and trends of development through analyzing the patent documents.
Detection of IMRT delivery errors based on a simple constancy check of transit dose by using an EPID
NASA Astrophysics Data System (ADS)
Baek, Tae Seong; Chung, Eun Ji; Son, Jaeman; Yoon, Myonggeun
2015-11-01
Beam delivery errors during intensity modulated radiotherapy (IMRT) were detected based on a simple constancy check of the transit dose by using an electronic portal imaging device (EPID). Twenty-one IMRT plans were selected from various treatment sites, and the transit doses during treatment were measured by using an EPID. Transit doses were measured 11 times for each course of treatment, and the constancy check was based on gamma index (3%/3 mm) comparisons between a reference dose map (the first measured transit dose) and test dose maps (the following ten measured dose maps). In a simulation using an anthropomorphic phantom, the average passing rate of the tested transit dose was 100% for three representative treatment sites (head & neck, chest, and pelvis), indicating that IMRT was highly constant for normal beam delivery. The average passing rate of the transit dose for 1224 IMRT fields from 21 actual patients was 97.6% ± 2.5%, with the lower rate possibly being due to inaccuracies of patient positioning or anatomic changes. An EPIDbased simple constancy check may provide information about IMRT beam delivery errors during treatment.
Technological Advances In The Surgical Treatment Of Movement Disorders
Gross, Robert E.; McDougal, Margaret E.
2013-01-01
Technological innovations have driven the advancement of the surgical treatment of movement disorders, from the invention of the stereotactic frame to the adaptation of deep brain stimulation (DBS). Along these lines, this review will describe recent advances in getting neuromodulation modalities, including DBS, to the target; and in the delivery of therapy at the target. Recent radiological advances are altering the way that DBS leads are targeted and inserted, by refining the ability to visualize the subcortical targets using high-field strength MRI and other innovations such as diffusion tensor imaging, and the development of novel targeting devices enabling purely anatomical implantations without the need for neurophysiological monitoring. New portable CT scanners also are facilitating lead implantation without monitoring as well as improving radiological verification of DBS lead location. Advances in neurophysiological mapping include efforts to develop automatic target verification algorithms, and probabilistic maps to guide target selection. The delivery of therapy at the target is being improved by the development of the next generation of internal pulse generators (IPGs). These include constant current devices that mitigate the variability introduced by impedance changes of the stimulated tissue, and in the near future, devices that deliver novel stimulation patterns with improved efficiency. Closed-loop adaptive IPGs are being tested, which may tailor stimulation to ongoing changes in the nervous system reflected in Œbiomarkers1 continuously recorded by the devices. Finer grained DBS leads, in conjunction with new IPGs and advanced programming tools, may offer improved outcomes via Œcurrent steering1 algorithms. Finally, even thermocoagulation - essentially replaced by DBS - is being advanced by new Œminimally-invasive1 approaches that may improve this therapy for selected patients in whom it may be preferred. Functional neurosurgery has a history of being driven by technological innovation, a tradition that continues into its future. PMID:23812894
Lee, Won June; Na, Kyeong Ik; Kim, Young Kook; Jeoung, Jin Wook; Park, Ki Ho
2017-06-01
To evaluate the diagnostic ability of wide-field retinal nerve fiber layer (RNFL) maps with swept-source optical coherence tomography (SS-OCT) for detection of preperimetric (PPG) and early perimetric glaucoma (EG). One hundred eighty-four eyes, including 67 healthy eyes, 43 eyes with PPG, and 74 eyes with EG, were analyzed. Patients underwent a comprehensive ocular examination including red-free RNFL photography, visual field testing and wide-field SS-OCT scanning (DRI-OCT-1 Atlantis; Topcon, Tokyo, Japan). SS-OCT provides a wide-field RNFL thickness map and a SuperPixel map, which are composed of the RNFL deviation map of the peripapillary area and the deviation map of the composition of the ganglion cell layer with the inner plexiform layer and RNFL (GC-IPL+RNFL) in the macular area. The ability to discriminate PPG and EG from healthy eyes was assessed using sensitivity, specificity, and area under the receiver operating characteristic curve (AUC) for all parameters and criteria provided by the wide-field SS-OCT scan. The wide-field RNFL thickness map using SS-OCT showed the highest sensitivity of PPG-diagnostic and EG-diagnostic performance compared with the other SS-OCT criteria based on the internal normative base (93.0 and 97.3%, respectively). Among the SS-OCT continuous parameters, the RFNL thickness of the 7 clock-hour, inferior and inferotemporal macular ganglion cell analyses showed the largest AUC of PPG-diagnostic and EG-diagnostic performance (AUC=0.809 to 0.865). The wide-field RNFL thickness map using SS-OCT performed well in distinguishing eyes with PPG and EG from healthy eyes. In the clinical setting, wide-field RNFL maps of SS-OCT can be useful tools for detection of early-stage glaucoma.
Salamon, Johannes; Hofmann, Martin; Jung, Caroline; Kaul, Michael Gerhard; Werner, Franziska; Them, Kolja; Reimer, Rudolph; Nielsen, Peter; Vom Scheidt, Annika; Adam, Gerhard; Knopp, Tobias; Ittrich, Harald
2016-01-01
In-vitro evaluation of the feasibility of 4D real time tracking of endovascular devices and stenosis treatment with a magnetic particle imaging (MPI) / magnetic resonance imaging (MRI) road map approach and an MPI-guided approach using a blood pool tracer. A guide wire and angioplasty-catheter were labeled with a thin layer of magnetic lacquer. For real time MPI a custom made software framework was developed. A stenotic vessel phantom filled with saline or superparamagnetic iron oxide nanoparticles (MM4) was equipped with bimodal fiducial markers for co-registration in preclinical 7T MRI and MPI. In-vitro angioplasty was performed inflating the balloon with saline or MM4. MPI data were acquired using a field of view of 37.3×37.3×18.6 mm3 and a frame rate of 46 volumes/sec. Analysis of the magnetic lacquer-marks on the devices were performed with electron microscopy, atomic absorption spectrometry and micro-computed tomography. Magnetic marks allowed for MPI/MRI guidance of interventional devices. Bimodal fiducial markers enable MPI/MRI image fusion for MRI based roadmapping. MRI roadmapping and the blood pool tracer approach facilitate MPI real time monitoring of in-vitro angioplasty. Successful angioplasty was verified with MPI and MRI. Magnetic marks consist of micrometer sized ferromagnetic plates mainly composed of iron and iron oxide. 4D real time MP imaging, tracking and guiding of endovascular instruments and in-vitro angioplasty is feasible. In addition to an approach that requires a blood pool tracer, MRI based roadmapping might emerge as a promising tool for radiation free 4D MPI-guided interventions.
Sonic depth sounder for laboratory and field use
Richardson, E.V.; Simons, Daryl B.; Posakony, G.J.
1961-01-01
The laboratory investigation of roughness in alluvial channels has led to the development of a special electronic device capable of mapping the streambed configuration under dynamic conditions. This electronic device employs an ultrasonic pulse-echo principle, similar to that of a fathometer, that utilizes microsecond techniques to give high accuracy in shallow depths. This instrument is known as the sonic depth sounder and was designed to cover a depth range of 0 to 4 feet with an accuracy of ? 0.5 percent. The sonic depth sounder is capable of operation at frequencies of 500, 1,000 and 2,000 kilocycles. The ultrasonic beam generated at the transducer is designed to give a minimum-diameter interrogating signal over the extended depth range. The information obtained from a sonic depth sounder is recorded on a strip-chart recorder. This permanent record allows an analysis to be made of the streambed configuration under different dynamic conditions. The model 1024 sonic depth sounder was designed principally as a research instrument to meet laboratory needs. As such, it is somewhat limited in its application as a field instrument on large streams and rivers. The principles employed in this instrument, however, have many potentials for field applications such as the indirect measurement of bed load when the bed roughness is ripples and (or) dunes, depth measurement, determination of bed configuration, and determination of depth of scour around bridge piers and abutments. For field application a modification of the present system into a battery-operated lightweight instrument designed to operate at a depth range of 0 to 30 feet is possible and desirable.
NASA Astrophysics Data System (ADS)
Chen, Zhu-an; Zhang, Li-ting; Liu, Lu
2009-10-01
ESRI's GIS components MapObjects are applied in many cadastral information system because of its miniaturization and flexibility. Some cadastral information was saved in cadastral database directly by MapObjects's Shape file format in this cadastral information system. However, MapObjects didn't provide the function of building attribute field for map layer's attribute data file in cadastral database and user cann't save the result of analysis. This present paper designed and realized the function of building attribute field in MapObjects based on the method of Jackson's system development.
PRoViScout: a planetary scouting rover demonstrator
NASA Astrophysics Data System (ADS)
Paar, Gerhard; Woods, Mark; Gimkiewicz, Christiane; Labrosse, Frédéric; Medina, Alberto; Tyler, Laurence; Barnes, David P.; Fritz, Gerald; Kapellos, Konstantinos
2012-01-01
Mobile systems exploring Planetary surfaces in future will require more autonomy than today. The EU FP7-SPACE Project ProViScout (2010-2012) establishes the building blocks of such autonomous exploration systems in terms of robotics vision by a decision-based combination of navigation and scientific target selection, and integrates them into a framework ready for and exposed to field demonstration. The PRoViScout on-board system consists of mission management components such as an Executive, a Mars Mission On-Board Planner and Scheduler, a Science Assessment Module, and Navigation & Vision Processing modules. The platform hardware consists of the rover with the sensors and pointing devices. We report on the major building blocks and their functions & interfaces, emphasizing on the computer vision parts such as image acquisition (using a novel zoomed 3D-Time-of-Flight & RGB camera), mapping from 3D-TOF data, panoramic image & stereo reconstruction, hazard and slope maps, visual odometry and the recognition of potential scientifically interesting targets.
Elliott, Amicia D.; Gao, Liang; Ustione, Alessandro; Bedard, Noah; Kester, Robert; Piston, David W.; Tkaczyk, Tomasz S.
2012-01-01
Summary The development of multi-colored fluorescent proteins, nanocrystals and organic fluorophores, along with the resulting engineered biosensors, has revolutionized the study of protein localization and dynamics in living cells. Hyperspectral imaging has proven to be a useful approach for such studies, but this technique is often limited by low signal and insufficient temporal resolution. Here, we present an implementation of a snapshot hyperspectral imaging device, the image mapping spectrometer (IMS), which acquires full spectral information simultaneously from each pixel in the field without scanning. The IMS is capable of real-time signal capture from multiple fluorophores with high collection efficiency (∼65%) and image acquisition rate (up to 7.2 fps). To demonstrate the capabilities of the IMS in cellular applications, we have combined fluorescent protein (FP)-FRET and [Ca2+]i biosensors to measure simultaneously intracellular cAMP and [Ca2+]i signaling in pancreatic β-cells. Additionally, we have compared quantitatively the IMS detection efficiency with a laser-scanning confocal microscope. PMID:22854044
NASA Astrophysics Data System (ADS)
Sikorski, B. L.; Szkulmowski, M.; Kałużny, J. J.; Bajraszewski, T.; Kowalczyk, A.; Wojtkowski, M.
2008-02-01
The ability to obtain reliable information on functional status of photoreceptor layer is essential for assessing vision impairment in patients with macular diseases. The reconstruction of three-dimensional retinal structure in vivo using Spectral Optical Coherence Tomography (Spectral OCT) became possible with a recent progress of the OCT field. Three-dimensional data collected by Spectral OCT devices comprise information on light intensity back-reflected from the junction between photoreceptor outer and inner segments (IS/OS) and thus can be used for evaluating photoreceptors impairment. In this paper, we introduced so called Spectral OCT reflectivity maps - a new method of selecting and displaying the spatial distribution of reflectivity of individual retinal layers. We analyzed the reflectivity of the IS/OS layer in various macular diseases. We have measured eyes of 49 patients with photoreceptor dysfunction in course of age-related macular degeneration, macular holes, central serous chorioretinopathy, acute zonal occult outer retinopathy, multiple evanescent white dot syndrome, acute posterior multifocal placoid pigment epitheliopathy, drug-induced retinopathy and congenital disorders.
Battery-free, wireless sensors for full-body pressure and temperature mapping.
Han, Seungyong; Kim, Jeonghyun; Won, Sang Min; Ma, Yinji; Kang, Daeshik; Xie, Zhaoqian; Lee, Kyu-Tae; Chung, Ha Uk; Banks, Anthony; Min, Seunghwan; Heo, Seung Yun; Davies, Charles R; Lee, Jung Woo; Lee, Chi-Hwan; Kim, Bong Hoon; Li, Kan; Zhou, Yadong; Wei, Chen; Feng, Xue; Huang, Yonggang; Rogers, John A
2018-04-04
Thin, soft, skin-like sensors capable of precise, continuous measurements of physiological health have broad potential relevance to clinical health care. Use of sensors distributed over a wide area for full-body, spatiotemporal mapping of physiological processes would be a considerable advance for this field. We introduce materials, device designs, wireless power delivery and communication strategies, and overall system architectures for skin-like, battery-free sensors of temperature and pressure that can be used across the entire body. Combined experimental and theoretical investigations of the sensor operation and the modes for wireless addressing define the key features of these systems. Studies with human subjects in clinical sleep laboratories and in adjustable hospital beds demonstrate functionality of the sensors, with potential implications for monitoring of circadian cycles and mitigating risks for pressure-induced skin ulcers. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
Strain and structure heterogeneity in MoS 2 atomic layers grown by chemical vapour deposition
Liu, Zheng; Amani, Matin; Najmaei, Sina; ...
2014-11-18
Monolayer molybdenum disulfide (MoS 2) has attracted tremendous attention due to its promising applications in high-performance field-effect transistors, phototransistors, spintronic devices, and nonlinear optics. The enhanced photoluminescence effect in monolayer MoS 2 was discovered and, as a strong tool, was employed for strain and defect analysis in MoS 2. Recently, large-size monolayer MoS 2 has been produced by chemical vapor deposition but has not yet been fully explored. Here we systematically characterize chemical vapor deposition grown MoS 2 by PL spectroscopy and mapping, and demonstrate non-uniform strain in single-crystalline monolayer MoS 2 and strain-induced band gap engineering. We also evaluatemore » the effective strain transferred from polymer substrates to MoS 2 by three-dimensional finite element analysis. In addition, our work demonstrates that PL mapping can be used as a non-contact approach for quick identification of grain boundaries in MoS 2.« less
Paridaens, J
2006-02-01
A low cost extension to a standard handheld radiation monitor was developed, allowing one to perform outdoor georeferenced gamma measurements. It consists of a commercial wireless Bluetooth GPS receiver, a commercial RS-232 to Bluetooth converter combined with a standard Bluetooth enabled pocket personal computer (PPC). The system is intended for use in difficult to access areas, typically for foot campaigns. As the operator walks, a straightforward homemade visual basic program alternately reads GPS position and gamma dose rate into the PPC, creating a data log. This allows a single operator on foot to map between 50 and 200 ha of environmental radiation per day in very rugged areas, depending on the accessibility of the terrain and the detail required. On a test field with known contamination, a spatial precision of about 5-10 m was obtainable. The device was also used to reveal complex contamination patterns in the flooding zones of a radioactively contaminated small river.
Vacuum Microelectronic Field Emission Array Devices for Microwave Amplification.
NASA Astrophysics Data System (ADS)
Mancusi, Joseph Edward
This dissertation presents the design, analysis, and measurement of vacuum microelectronic devices which use field emission to extract an electron current from arrays of silicon cones. The arrays of regularly-spaced silicon cones, the field emission cathodes or emitters, are fabricated with an integrated gate electrode which controls the electric field at the tip of the cone, and thus the electron current. An anode or collector electrode is placed above the array to collect the emission current. These arrays, which are fabricated in a standard silicon processing facility, are developed for use as high power microwave amplifiers. Field emission has been studied extensively since it was first characterized in 1928, however due to the large electric fields required practical field emission devices are difficult to make. With the development of the semiconductor industry came the development of fabrication equipment and techniques which allow for the manufacture of the precision micron-scale structures necessary for practical field emission devices. The active region of a field emission device is a vacuum, therefore the electron travel is ballistic. This analysis of field emission devices includes electric field and electron emission modeling, development of a device equivalent circuit, analysis of the parameters in the equivalent circuit, and device testing. Variations in device structure are taken into account using a statistical model based upon device measurements. Measurements of silicon field emitter arrays at DC and RF are presented and analyzed. In this dissertation, the equivalent circuit is developed from the analysis of the device structure. The circuit parameters are calculated from geometrical considerations and material properties, or are determined from device measurements. It is necessary to include the emitter resistance in the equivalent circuit model since relatively high resistivity silicon wafers are used. As is demonstrated, the circuit model accurately predicts the magnitude of the emission current at a number of typical bias current levels when the device is operating at frequencies within the range of 10 MHz to 1 GHz. At low frequencies and at high frequencies within this range, certain parameters are negligible, and simplifications may be made in the equivalent circuit model.
Appropriating Invention through Concept Maps in Writing for Multimedia and the Web
ERIC Educational Resources Information Center
Bacabac, Florence Elizabeth
2015-01-01
As an alternative approach to web preproduction, I propose the use of concept maps for invention of website projects in business and professional writing courses. This mapping device approximates our students' initial site plans since rough ideas are formed based on a substantial exploratory technique. Incorporated in various disciplines, the…
Cross-disciplinary Undergraduate Research: A Case Study in Digital Mapping, western Ireland
NASA Astrophysics Data System (ADS)
Whitmeyer, S. J.; de Paor, D. G.; Nicoletti, J.; Rivera, M.; Santangelo, B.; Daniels, J.
2008-12-01
As digital mapping technology becomes ever more advanced, field geologists spend a greater proportion of time learning digital methods relative to analyzing rocks and structures. To explore potential solutions to the time commitment implicit in learning digital field methods, we paired James Madison University (JMU) geology majors (experienced in traditional field techniques) with Worcester Polytechnic Institute (WPI) engineering students (experienced in computer applications) during a four week summer mapping project in Connemara, western Ireland. The project consisted of approximately equal parts digital field mapping (directed by the geology students), and lab-based map assembly, evaluation and formatting for virtual 3D terrains (directed by the engineering students). Students collected geologic data in the field using ruggedized handheld computers (Trimble GeoExplorer® series) with ArcPAD® software. Lab work initially focused on building geologic maps in ArcGIS® from the digital field data and then progressed to developing Google Earth-based visualizations of field data and maps. Challenges included exporting GIS data, such as locations and attributes, to KML tags for viewing in Google Earth, which we accomplished using a Linux bash script written by one of our engineers - a task outside the comfort zone of the average geology major. We also attempted to expand the scope of Google Earth by using DEMs of present-day geologically-induced landforms as representative models for paleo-geographic reconstructions of the western Ireland field area. As our integrated approach to digital field work progressed, we found that our digital field mapping produced data at a faster rate than could be effectively managed during our allotted time for lab work. This likely reflected the more developed methodology for digital field data collection, as compared with our lab-based attempts to develop new methods for 3D visualization of geologic maps. However, this experiment in cross-disciplinary undergraduate research was a big success, with an enthusiastic interchange of expertise between undergraduate geology and engineering students that produced new, cutting-edge methods for visualizing geologic data and maps.
Analysing magnetism using scanning SQUID microscopy.
Reith, P; Renshaw Wang, X; Hilgenkamp, H
2017-12-01
Scanning superconducting quantum interference device microscopy (SSM) is a scanning probe technique that images local magnetic flux, which allows for mapping of magnetic fields with high field and spatial accuracy. Many studies involving SSM have been published in the last few decades, using SSM to make qualitative statements about magnetism. However, quantitative analysis using SSM has received less attention. In this work, we discuss several aspects of interpreting SSM images and methods to improve quantitative analysis. First, we analyse the spatial resolution and how it depends on several factors. Second, we discuss the analysis of SSM scans and the information obtained from the SSM data. Using simulations, we show how signals evolve as a function of changing scan height, SQUID loop size, magnetization strength, and orientation. We also investigated 2-dimensional autocorrelation analysis to extract information about the size, shape, and symmetry of magnetic features. Finally, we provide an outlook on possible future applications and improvements.
Analysing magnetism using scanning SQUID microscopy
NASA Astrophysics Data System (ADS)
Reith, P.; Renshaw Wang, X.; Hilgenkamp, H.
2017-12-01
Scanning superconducting quantum interference device microscopy (SSM) is a scanning probe technique that images local magnetic flux, which allows for mapping of magnetic fields with high field and spatial accuracy. Many studies involving SSM have been published in the last few decades, using SSM to make qualitative statements about magnetism. However, quantitative analysis using SSM has received less attention. In this work, we discuss several aspects of interpreting SSM images and methods to improve quantitative analysis. First, we analyse the spatial resolution and how it depends on several factors. Second, we discuss the analysis of SSM scans and the information obtained from the SSM data. Using simulations, we show how signals evolve as a function of changing scan height, SQUID loop size, magnetization strength, and orientation. We also investigated 2-dimensional autocorrelation analysis to extract information about the size, shape, and symmetry of magnetic features. Finally, we provide an outlook on possible future applications and improvements.
Through-silicon via-induced strain distribution in silicon interposer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vianne, B., E-mail: benjamin.vianne@st.com; STMicroelectronics, 850 rue Jean Monnet, 38926 Crolles; Richard, M.-I.
2015-04-06
Strain in silicon induced by Through-Silicon Via (TSV) integration is of particular interest in the frame of the integration of active devices in silicon interposer. Nano-focused X-ray beam diffraction experiments were conducted using synchrotron radiation to investigate the thermally induced strain field in silicon around copper filled TSVs. Measurements were performed on thinned samples at room temperature and during in situ annealing at 400 °C. In order to correlate the 2D strain maps with finite elements analysis, an analytical model was developed, which takes into account beam absorption in the sample for a given diffraction geometry. The strain field along themore » [335] direction is found to be in the 10{sup −5} range at room temperature and around 10{sup −4} at 400 °C. Simulations support the expected plastification in some regions of the TSV during the annealing step.« less
Acousto-optic modulation and opto-acoustic gating in piezo-optomechanical circuits
Balram, Krishna C.; Davanço, Marcelo I.; Ilic, B. Robert; Kyhm, Ji-Hoon; Song, Jin Dong; Srinivasan, Kartik
2017-01-01
Acoustic wave devices provide a promising chip-scale platform for efficiently coupling radio frequency (RF) and optical fields. Here, we use an integrated piezo-optomechanical circuit platform that exploits both the piezoelectric and photoelastic coupling mechanisms to link 2.4 GHz RF waves to 194 THz (1550 nm) optical waves, through coupling to propagating and localized 2.4 GHz acoustic waves. We demonstrate acousto-optic modulation, resonant in both the optical and mechanical domains, in which waveforms encoded on the RF carrier are mapped to the optical field. We also show opto-acoustic gating, in which the application of modulated optical pulses interferometrically gates the transmission of propagating acoustic pulses. The time-domain characteristics of this system under both pulsed RF and pulsed optical excitation are considered in the context of the different physical pathways involved in driving the acoustic waves, and modelled through the coupled mode equations of cavity optomechanics. PMID:28580373
NASA Technical Reports Server (NTRS)
1977-01-01
Integrated set of manual procedures, computer programs, and graphic devices processes multispectral scanner data from orbiting Landsat into precisely registered and formatted maps of surface water and other resources at variety of scales, sheet formats, and tick intervals.
Non- contacting capacitive diagnostic device
Ellison, Timothy
2005-07-12
A non-contacting capacitive diagnostic device includes a pulsed light source for producing an electric field in a semiconductor or photovoltaic device or material to be evaluated and a circuit responsive to the electric field. The circuit is not in physical contact with the device or material being evaluated and produces an electrical signal characteristic of the electric field produced in the device or material. The diagnostic device permits quality control and evaluation of semiconductor or photovoltaic device properties in continuous manufacturing processes.
Gow, J.D.; Wilcox, J.M.
1961-12-26
A device is designed for producing and confining highenergy plasma from which neutrons are generated in copious quantities. A rotating sheath of electrons is established in a radial electric field and axial magnetic field produced within the device. The electron sheath serves as a strong ionizing medium to gas introdueed thereto and also functions as an extremely effective heating mechanism to the resulting plasma. In addition, improved confinement of the plasma is obtained by ring magnetic mirror fields produced at the ends of the device. Such ring mirror fields are defined by the magnetic field lines at the ends of the device diverging radially outward from the axis of the device and thereafter converging at spatial annular surfaces disposed concentrically thereabout. (AFC)
Patterns of Progressive Ganglion Cell-Inner Plexiform Layer Thinning in Glaucoma Detected by OCT.
Shin, Joong Won; Sung, Kyung Rim; Park, Sun-Won
2018-04-25
To investigate the spatial characteristics and patterns of progressive macular ganglion cell-inner plexiform layer (GCIPL) thinning in glaucomatous eyes assessed by OCT Guided Progression Analysis (GPA). Longitudinal, retrospective, observational study. Two hundred ninety-two eyes of 192 patients with primary open-angle glaucoma with a mean follow-up of 6.0 years (range, 3.2-8.1 years) were included. Macular GCIPL imaging and visual field (VF) examination were performed at 6-month intervals for 3 years or more. Progressive GCIPL thinning was evaluated by a Cirrus HD-OCT (Carl Zeiss Meditec, Dublin, CA) GPA device. Spatial characteristics of progressive GCIPL thinning were assessed by the GCIPL thickness change map. The pattern of progressive GCIPL thinning was evaluated by comparing the baseline GCIPL thickness deviation map and the final GCIPL thickness change map. Visual field progression was determined by Early Manifest Glaucoma Trial criteria and linear regression of the VF index. Spatial characteristics and patterns of progressive GCIPL thinning. Seventy-two eyes of 62 participants (24.7% [72/292]) showed progressive GCIPL thinning in the GCIPL thickness change map. Progressive GCIPL thinning was detected most frequently (25.0%) at 2.08 mm from the fovea, and it extended in an arcuate shape in the inferotemporal region (250°-339°). Compared with the baseline GCIPL defects, the progressive GCIPL thinning extended toward the fovea and optic disc. The most common pattern of progressive GCIPL thinning was widening of GCIPL defects (42 eyes [58.3%]), followed by deepening of GCIPL defects (19 eyes [26.4%]) and newly developed GCIPL defects (15 eyes [20.8%]). Visual field progression was accompanied by progressive GCIPL thinning in 41 of 72 eyes (56.9%). Progressive GCIPL thinning preceded (61.0% [25/41]) or occurred concomitantly with (21.9% [9/41]) VF progression. The use of OCT GPA maps offers an effective approach to evaluate the topographic patterns of progressive GCIPL thinning in glaucomatous eyes. Progression of GCIPL thinning occurred before apparent progression on standard automated perimetry in most glaucomatous eyes. Understanding specific patterns and sequences of macular damage may provide important insights in the monitoring of glaucomatous progression. Copyright © 2018 American Academy of Ophthalmology. Published by Elsevier Inc. All rights reserved.
Mapping the layer count of few-layer hexagonal boron nitride at high lateral spatial resolutions
NASA Astrophysics Data System (ADS)
Mohsin, Ali; Cross, Nicholas G.; Liu, Lei; Watanabe, Kenji; Taniguchi, Takashi; Duscher, Gerd; Gu, Gong
2018-01-01
Layer count control and uniformity of two dimensional (2D) layered materials are critical to the investigation of their properties and to their electronic device applications, but methods to map 2D material layer count at nanometer-level lateral spatial resolutions have been lacking. Here, we demonstrate a method based on two complementary techniques widely available in transmission electron microscopes (TEMs) to map the layer count of multilayer hexagonal boron nitride (h-BN) films. The mass-thickness contrast in high-angle annular dark-field (HAADF) imaging in the scanning transmission electron microscope (STEM) mode allows for thickness determination in atomically clean regions with high spatial resolution (sub-nanometer), but is limited by surface contamination. To complement, another technique based on the boron K ionization edge in the electron energy loss spectroscopy spectrum (EELS) of h-BN is developed to quantify the layer count so that surface contamination does not cause an overestimate, albeit at a lower spatial resolution (nanometers). The two techniques agree remarkably well in atomically clean regions with discrepancies within ±1 layer. For the first time, the layer count uniformity on the scale of nanometers is quantified for a 2D material. The methodology is applicable to layer count mapping of other 2D layered materials, paving the way toward the synthesis of multilayer 2D materials with homogeneous layer count.
High Fidelity Raman Chemical Imaging of Materials
NASA Astrophysics Data System (ADS)
Bobba, Venkata Nagamalli Koteswara Rao
The development of high fidelity Raman imaging systems is important for a number of application areas including material science, bio-imaging, bioscience and healthcare, pharmaceutical analysis, and semiconductor characterization. The use of Raman imaging as a characterization tool for detecting the amorphous and crystalline regions in the biopolymer poly-L-lactic acid (PLLA) is the precis of my thesis. In the first chapter, a brief insight about the basics of Raman spectroscopy, Raman chemical imaging, Raman mapping, and Raman imaging techniques has been provided. The second chapter contains details about the successful development of tailored sample of PLLA. Biodegradable polymers are used in areas of tissue engineering, agriculture, packaging, and in medical field for drug delivery, implant devices, and surgical sutures. Detailed information about the sample preparation and characterization of these cold-drawn PLLA polymer substrates has been provided. Wide-field Raman hyperspectral imaging using an acousto-optic tunable filter (AOTF) was demonstrated in the early 1990s. The AOTF contributed challenges such as image walk, distortion, and image blur. A wide-field AOTF Raman imaging system has been developed as part of my research and methods to overcome some of the challenges in performing AOTF wide-field Raman imaging are discussed in the third chapter. This imaging system has been used for studying the crystalline and amorphous regions on the cold-drawn sample of PLLA. Of all the different modalities that are available for performing Raman imaging, Raman point-mapping is the most extensively used method. The ease of obtaining the Raman hyperspectral cube dataset with a high spectral and spatial resolution is the main motive of performing this technique. As a part of my research, I have constructed a Raman point-mapping system and used it for obtaining Raman hyperspectral image data of various minerals, pharmaceuticals, and polymers. Chapter four offers information about the techniques used for characterization of pharmaceutical drugs and mapping of the crystalline domains in polymers. In addition, image processing algorithms that yield chemical-based image contrast have been designed to better enable quantitative estimates of chemical heterogeneity. Some of the problems that are needed to be solved for image processing and the need for developing a volumetric imaging system is discussed in chapter five.
A mapping closure for turbulent scalar mixing using a time-evolving reference field
NASA Technical Reports Server (NTRS)
Girimaji, Sharath S.
1992-01-01
A general mapping-closure approach for modeling scalar mixing in homogeneous turbulence is developed. This approach is different from the previous methods in that the reference field also evolves according to the same equations as the physical scalar field. The use of a time-evolving Gaussian reference field results in a model that is similar to the mapping closure model of Pope (1991), which is based on the methodology of Chen et al. (1989). Both models yield identical relationships between the scalar variance and higher-order moments, which are in good agreement with heat conduction simulation data and can be consistent with any type of epsilon(phi) evolution. The present methodology can be extended to any reference field whose behavior is known. The possibility of a beta-pdf reference field is explored. The shortcomings of the mapping closure methods are discussed, and the limit at which the mapping becomes invalid is identified.
Pollard, Shawn D.; Garlow, Joseph A.; Yu, Jiawei; ...
2017-03-10
Néel skyrmions are of high interest due to their potential applications in a variety of spintronic devices, currently accessible in ultrathin heavy metal/ferromagnetic bilayers and multilayers with a strong Dzyaloshinskii–Moriya interaction. Here in this paper we report on the direct imaging of chiral spin structures including skyrmions in an exchange-coupled cobalt/palladium multilayer at room temperature with Lorentz transmission electron microscopy, a high-resolution technique previously suggested to exhibit no Néel skyrmion contrast. Phase retrieval methods allow us to map the internal spin structure of the skyrmion core, identifying a 25 nm central region of uniform magnetization followed by a larger regionmore » characterized by rotation from in- to out-of-plane. The formation and resolution of the internal spin structure of room temperature skyrmions without a stabilizing out-of-plane field in thick magnetic multilayers opens up a new set of tools and materials to study the physics and device applications associated with chiral ordering and skyrmions.« less
FPGA cluster for high-performance AO real-time control system
NASA Astrophysics Data System (ADS)
Geng, Deli; Goodsell, Stephen J.; Basden, Alastair G.; Dipper, Nigel A.; Myers, Richard M.; Saunter, Chris D.
2006-06-01
Whilst the high throughput and low latency requirements for the next generation AO real-time control systems have posed a significant challenge to von Neumann architecture processor systems, the Field Programmable Gate Array (FPGA) has emerged as a long term solution with high performance on throughput and excellent predictability on latency. Moreover, FPGA devices have highly capable programmable interfacing, which lead to more highly integrated system. Nevertheless, a single FPGA is still not enough: multiple FPGA devices need to be clustered to perform the required subaperture processing and the reconstruction computation. In an AO real-time control system, the memory bandwidth is often the bottleneck of the system, simply because a vast amount of supporting data, e.g. pixel calibration maps and the reconstruction matrix, need to be accessed within a short period. The cluster, as a general computing architecture, has excellent scalability in processing throughput, memory bandwidth, memory capacity, and communication bandwidth. Problems, such as task distribution, node communication, system verification, are discussed.
A perfect spin filtering device through Mach-Zehnder interferometry in a GaAs/AlGaAs electron gas
NASA Astrophysics Data System (ADS)
López, Alexander; Medina, Ernesto; Bolívar, Nelson; Berche, Bertrand
2010-03-01
A spin filtering device based on quantum spin interference is addressed, for use with a two-dimensional GaAs/AlGaAs electron gas that has both Rashba and Dresselhaus spin-orbit (SO) couplings and an applied external magnetic field. We propose an experimentally feasible electronic Mach-Zehnder interferometer and derive a map, in parameter space, that determines perfect spin filtering conditions. We find two broad spin filtering regimes: one where filtering is achieved in the original incoming quantization basis, that takes advantage of the purely non-Abelian nature of the spin rotations; and another where one needs a tilted preferential axis in order to observe the polarized output spinor. Both solutions apply for arbitrary incoming electron polarization and energy, and are only limited in output amplitude by the randomness of the incoming spinor state. Including a full account of the beam splitter and mirror effects on spin yields solutions only for the tilted basis, but encompasses a broad range of filtering conditions.
A perfect spin filtering device through Mach-Zehnder interferometry in a GaAs/AlGaAs electron gas.
López, Alexander; Medina, Ernesto; Bolívar, Nelson; Berche, Bertrand
2010-03-24
A spin filtering device based on quantum spin interference is addressed, for use with a two-dimensional GaAs/AlGaAs electron gas that has both Rashba and Dresselhaus spin-orbit (SO) couplings and an applied external magnetic field. We propose an experimentally feasible electronic Mach-Zehnder interferometer and derive a map, in parameter space, that determines perfect spin filtering conditions. We find two broad spin filtering regimes: one where filtering is achieved in the original incoming quantization basis, that takes advantage of the purely non-Abelian nature of the spin rotations; and another where one needs a tilted preferential axis in order to observe the polarized output spinor. Both solutions apply for arbitrary incoming electron polarization and energy, and are only limited in output amplitude by the randomness of the incoming spinor state. Including a full account of the beam splitter and mirror effects on spin yields solutions only for the tilted basis, but encompasses a broad range of filtering conditions.
Mapping the Coulomb Environment in Interference-Quenched Ballistic Nanowires.
Gutstein, D; Lynall, D; Nair, S V; Savelyev, I; Blumin, M; Ercolani, D; Ruda, H E
2018-01-10
The conductance of semiconductor nanowires is strongly dependent on their electrostatic history because of the overwhelming influence of charged surface and interface states on electron confinement and scattering. We show that InAs nanowire field-effect transistor devices can be conditioned to suppress resonances that obscure quantized conduction thereby revealing as many as six sub-bands in the conductance spectra as the Fermi-level is swept across the sub-band energies. The energy level spectra extracted from conductance, coupled with detailed modeling shows the significance of the interface state charge distribution revealing the Coulomb landscape of the nanowire device. Inclusion of self-consistent Coulomb potentials, the measured geometrical shape of the nanowire, the gate geometry and nonparabolicity of the conduction band provide a quantitative and accurate description of the confinement potential and resulting energy level structure. Surfaces of the nanowire terminated by HfO 2 are shown to have their interface donor density reduced by a factor of 30 signifying the passivating role played by HfO 2 .
Characterization of N-doped multilayer graphene grown on 4H-SiC (0001)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arezki, Hakim, E-mail: hakim.arezki@lgep.supelec.fr; Jaffré, Alexandre; Alamarguy, David
Large-area graphene film doped with hetero-atoms is of great interest for a wide spectrum of nanoelectronics applications, such as field effect devices, super capacitors, fuel cells among many others. Here, we report the structural and electronic properties of nitrogen doped multilayer graphene on 4H-SiC (0001). The incorporation of nitrogen during the growth causes an increase in the D band on the Raman signature indicating that the nitrogen is creating defects. The analysis of micro-Raman mapping of G, D, 2D bands shows a predominantly trilayer graphene with a D band inherent to doping and inhomogeneous dopant distribution at the step edges.more » Ultraviolet photoelectron spectroscopy (UPS) indicates an n type work function (WF) of 4.1 eV. In addition, a top gate FET device was fabricated showing n-type I-V characteristic after the desorption of oxygen with high electron and holes mobilities.« less
Ertürk, M Arcan; Sathyanarayana Hegde, Shashank; Bottomley, Paul A
2016-12-01
Purpose To develop and demonstrate in vitro and in vivo a single interventional magnetic resonance (MR)-active device that integrates the functions of precise identification of a tissue site with the delivery of radiofrequency (RF) energy for ablation, high-spatial-resolution thermal mapping to monitor thermal dose, and quantitative MR imaging relaxometry to document ablation-induced tissue changes for characterizing ablated tissue. Materials and Methods All animal studies were approved by the institutional animal care and use committee. A loopless MR imaging antenna composed of a tuned microcable either 0.8 or 2.2 mm in diameter with an extended central conductor was switched between a 3-T MR imaging unit and an RF power source to monitor and perform RF ablation in bovine muscle and human artery samples in vitro and in rabbits in vivo. High-spatial-resolution (250-300-μm) proton resonance frequency shift MR thermometry was interleaved with ablations. Quantitative spin-lattice (T1) and spin-spin (T2) relaxation time MR imaging mapping was performed before and after ablation. These maps were compared with findings from gross tissue examination of the region of ablated tissue after MR imaging. Results High-spatial-resolution MR imaging afforded temperature mapping in less than 8 seconds for monitoring ablation temperatures in excess of 85°C delivered by the same device. This produced irreversible thermal injury and necrosis. Quantitative MR imaging relaxation time maps demonstrated up to a twofold variation in mean regional T1 and T2 after ablation versus before ablation. Conclusion A simple, integrated, minimally invasive interventional probe that provides image-guided therapy delivery, thermal mapping of dose, and detection of ablation-associated MR imaging parametric changes was developed and demonstrated. With this single-device approach, coupling-related safety concerns associated with multiple conductor approaches were avoided. © RSNA, 2016 Online supplemental material is available for this article.
NASA Astrophysics Data System (ADS)
Winters, Victoria; Green, Jonathan; Hershkowitz, Noah; Schmitz, Oliver; Severn, Greg
2015-11-01
The versatile helicon plasma device, MARIA (Magnetized AnisotRopic Ion-distribution Apparatus), was upgraded with stronger magnetic field B <= 1200G. The main focus is to understand the neutral particle dynamics and ionization mechanism with helicon waves to establish a high-density plasma (10 ∧ 20/m ∧ 3) at substantial electron (Te ~5-15eV) and ion (Ti ~1-3eV) temperature. To achieve this, installation of higher RF Power <= 15kW is planned as well as design of an ion cyclotron-heating antenna. To quantify the plasma characteristics, diagnostics including a Triple Langmuir Probe, Emissive Probe, and Laser Induced Fluorescence were established. We show first results from characterization of the device. The coupling of the helicon mode in the electron temperature and density parameter space in Argon was mapped out with regard to neutral pressure, B-field and RF power. In addition, validity of the Bohm Criterion and of the Chodura model starting in the weakly collisional regime is tested. A key goal in all efforts is to develop methods of quantitative spectroscopy based on cutting-edge models and active laser spectroscopy. This work was funded by Startup funds of the Department of Engineering Physics at UW Madison, the NSF CAREER award PHY-1455210 and NSF grant PHY-1206421.
A comparison of contour maps derived from independent methods of measuring lunar magnetic fields
NASA Technical Reports Server (NTRS)
Lichtenstein, B. R.; Coleman, P. J., Jr.; Russell, C. T.
1978-01-01
Computer-generated contour maps of strong lunar remanent magnetic fields are presented and discussed. The maps, obtained by previously described (Eliason and Soderblom, 1977) techniques, are derived from a variety of direct and indirect measurements from Apollo 15 and 16 and Explorer 35 magnetometer and electron reflection data. A common display format is used to facilitate comparison of the maps over regions of overlapping coverage. Most large scale features of either weak or strong magnetic field regions are found to correlate fairly well on all the maps considered.
Stiffness mapping prostate biopsy samples using a tactile sensor.
Peng, Qiyu; Omata, Sadao; Peehl, Donna M; Constantinou, Chris E
2011-01-01
Previous studies have demonstrated that the stiffness of cancerous cells reflects their pathological stage and progression rates, with increased cancerous cell stiffness associated with increased aggressiveness. Therefore, the elasticity of the cancerous cells has the potential to be used as an indicator of the cancer's aggressiveness. However, the sensitivity and resolution of current palpation and imaging techniques are not sufficient to detect small cancerous tissues. In previous studies, we developed a tactile-based device to map with high resolution the stiffness of a tissue section. The purpose of this study is to evaluate this device using different tissues (BPH, Cancer and PZ) collected from human prostates. The preliminary results show that the tactile device is sensitive enough to tell the differences of the stiffness of different tissues. The results also disclosed the factors (humidity, temperature and tissue degradation) which could dramatically affect the results of stiffness mapping. The tactile technology described in this paper has the potential to help disclose the underlying mechanical mechanisms that lead to increased stiffness in prostate tumors.
Alaska and Yukon magnetic compilation, residual total magnetic field
Miles, W.; Saltus, Richard W.; Hayward, N.; Oneschuk, D.
2017-01-01
This map is a compilation of aeromagnetic surveys over Yukon and eastern Alaska. Aeromagnetic surveys measure the total intensity of the earth's magnetic field. The field was measured by a magnetometer aboard an aircraft flown in parallel lines spaced at 200 m to 10000 m across the map area. The magnetic field reflects magnetic properties of bedrock and provides qualitative and quantitative information used in geological mapping. Understanding the geology will help geologists map the area, assist mineral/hydrocarbon exploration activities, and provide useful information necessary for communities, aboriginal associations, and government to make land use decisions. This survey was flown to improve our knowledge of the area. It will support ongoing geological mapping and resource assessment.
The Topographic Data Deluge - Collecting and Maintaining Data in a 21ST Century Mapping Agency
NASA Astrophysics Data System (ADS)
Holland, D. A.; Pook, C.; Capstick, D.; Hemmings, A.
2016-06-01
In the last few years, the number of sensors and data collection systems available to a mapping agency has grown considerably. In the field, in addition to total stations measuring position, angles and distances, the surveyor can choose from hand-held GPS devices, multi-lens imaging systems or laser scanners, which may be integrated with a laptop or tablet to capture topographic data directly in the field. These systems are joined by mobile mapping solutions, mounted on large or small vehicles, or sometimes even on a backpack carried by a surveyor walking around a site. Such systems allow the raw data to be collected rapidly in the field, while the interpretation of the data can be performed back in the office at a later date. In the air, large format digital cameras and airborne lidar sensors are being augmented with oblique camera systems, taking multiple views at each camera position and being used to create more realistic 3D city models. Lower down in the atmosphere, Unmanned Aerial Vehicles (or Remotely Piloted Aircraft Systems) have suddenly become ubiquitous. Hundreds of small companies have sprung up, providing images from UAVs using ever more capable consumer cameras. It is now easy to buy a 42 megapixel camera off the shelf at the local camera shop, and Canon recently announced that they are developing a 250 megapixel sensor for the consumer market. While these sensors may not yet rival the metric cameras used by today's photogrammetrists, the rapid developments in sensor technology could eventually lead to the commoditization of high-resolution camera systems. With data streaming in from so many sources, the main issue for a mapping agency is how to interpret, store and update the data in such a way as to enable the creation and maintenance of the end product. This might be a topographic map, ortho-image or a digital surface model today, but soon it is just as likely to be a 3D point cloud, textured 3D mesh, 3D city model, or Building Information Model (BIM) with all the data interpretation and modelling that entails. In this paper, we describe research/investigations into the developing technologies and outline the findings for a National Mapping Agency (NMA). We also look at the challenges that these new data collection systems will bring to an NMA, and suggest ways that we may work to meet these challenges and deliver the products desired by our users.
Field-based Information Technology in Geology Education: GeoPads
NASA Astrophysics Data System (ADS)
Knoop, P. A.; van der Pluijm, B.
2004-12-01
During the past two summers, we have successfully incorporated a field-based information technology component into our senior-level, field geology course (GS-440) at the University of Michigan's Camp Davis Geology Field Station, near Jackson, WY. Using GeoPads -- rugged TabletPCs equipped with electronic notebook software, GIS, GPS, and wireless networking -- we have significantly enhanced our field mapping exercises and field trips. While fully retaining the traditional approaches and advantages of field instruction, GeoPads offer important benefits in the development of students' spatial reasoning skills. GeoPads enable students to record observations and directly create geologic maps in the field, using a combination of an electronic field notebook (Microsoft OneNote) tightly integrated with pen-enabled GIS software (ArcGIS-ArcMap). Specifically, this arrangement permits students to analyze and manipulate their data in multiple contexts and representations -- while still in the field -- using both traditional 2-D map views, as well as richer 3-D contexts. Such enhancements provide students with powerful exploratory tools that aid the development of spatial reasoning skills, allowing more intuitive interactions with 2-D representations of our 3-D world. Additionally, field-based GIS mapping enables better error-detection, through immediate interaction with current observations in the context of both supporting data (e.g., topographic maps, aerial photos, magnetic surveys) and students' ongoing observations. The overall field-based IT approach also provides students with experience using tools that are increasingly relevant to their future academic or professional careers.
Rapid and long-lasting plasticity of input-output mapping.
Yamamoto, Kenji; Hoffman, Donna S; Strick, Peter L
2006-11-01
Skilled use of tools requires us to learn an "input-output map" for the device, i.e., how our movements relate to the actions of the device. We used the paradigm of visuo-motor rotation to examine two questions about the plasticity of input-output maps: 1) does extensive practice on one mapping make it difficult to modify and/or to form a new input-output map and 2) once a map has been modified or a new map has been formed, does this map survive a gap in performance? Humans and monkeys made wrist movements to control the position of a cursor on a computer monitor. Humans practiced the task for approximately 1.5 h; monkeys practiced for 3-9 yr. After this practice, we gradually altered the direction of cursor movement relative to wrist movement while subjects moved either to a single target or to four targets. Subjects were unaware of the change in cursor-movement relationship. Despite their prior practice on the task, the humans and the monkeys quickly adjusted their motor output to compensate for the visuo-motor rotation. Monkeys retained the modified input-output map during a 2-wk gap in motor performance. Humans retained the altered map during a gap of >1 yr. Our results show that sensorimotor performance remains flexible despite considerable practice on a specific task, and even relatively short-term exposure to a new input-output mapping leads to a long-lasting change in motor performance.
NASA Astrophysics Data System (ADS)
Fong de Los Santos, Luis E.
Development of a scanning superconducting quantum interference device (SQUID) microscope system with interchangeable sensor configurations for imaging magnetic fields of room-temperature (RT) samples with sub-millimeter resolution. The low-critical-temperature (Tc) niobium-based monolithic SQUID sensor is mounted in the tip of a sapphire rod and thermally anchored to the cryostat helium reservoir. A 25 mum sapphire window separates the vacuum space from the RT sample. A positioning mechanism allows adjusting the sample-to-sensor spacing from the top of the Dewar. I have achieved a sensor-to-sample spacing of 100 mum, which could be maintained for periods of up to 4 weeks. Different SQUID sensor configurations are necessary to achieve the best combination of spatial resolution and field sensitivity for a given magnetic source. For imaging thin sections of geological samples, I used a custom-designed monolithic low-Tc niobium bare SQUID sensor, with an effective diameter of 80 mum, and achieved a field sensitivity of 1.5 pT/Hz1/2 and a magnetic moment sensitivity of 5.4 x 10-18 Am2/Hz1/2 at a sensor-to-sample spacing of 100 mum in the white noise region for frequencies above 100 Hz. Imaging action currents in cardiac tissue requires higher field sensitivity, which can only be achieved by compromising spatial resolution. I developed a monolithic low-Tc niobium multiloop SQUID sensor, with sensor sizes ranging from 250 mum to 1 mm, and achieved sensitivities of 480 - 180 fT/Hz1/2 in the white noise region for frequencies above 100 Hz, respectively. For all sensor configurations, the spatial resolution was comparable to the effective diameter and limited by the sensor-to-sample spacing. Spatial registration allowed us to compare high-resolution images of magnetic fields associated with action currents and optical recordings of transmembrane potentials to study the bidomain nature of cardiac tissue or to match petrography to magnetic field maps in thin sections of geological samples.
NASA Technical Reports Server (NTRS)
Feng, Wanda; Evans, Cynthia; Gruener, John; Eppler, Dean
2014-01-01
Geologic mapping involves interpreting relationships between identifiable units and landforms to understand the formative history of a region. Traditional field techniques are used to accomplish this on Earth. Mapping proves more challenging for other planets, which are studied primarily by orbital remote sensing and, less frequently, by robotic and human surface exploration. Systematic comparative assessments of geologic maps created by traditional mapping versus photogeology together with data from planned traverses are limited. The objective of this project is to produce a geologic map from data collected on the Desert Research and Technology Studies (RATS) 2010 analog mission using Apollo-style traverses in conjunction with remote sensing data. This map is compared with a geologic map produced using standard field techniques.
The synoptic maps of Br from HMI observations
NASA Astrophysics Data System (ADS)
Hayashi, Keiji; Hoeksema, J. Todd; Liu, Sun; Yang, Xudong; Centeno, Rebecca; Leka, K. D.; Barnes, Graham
2012-03-01
The vector magnetic field measurement can, in principal, give the "true" radial component of the magnetic field. We prepare 4 types of synoptic maps of the radial photospheric magnetic field, from the vector magnetic field data disambiguated by means of the minimum energy method developed at NWRA/CoRA, the vector data determined under the potential-field acute assumption, and the vector data determined under the radial-acute assumption, and the standard line-of-sight magnetogram. The models of the global corona, the MHD and the PFSS, are applied to different types of maps. Although the three-dimensional structures of the global coronal magnetic field with different maps are similar and overall agreeing well the AIA full-disk images, noticeable differences among the model outputs are found especially in the high latitude regions. We will show details of these test maps and discuss the issues in determining the radial component of the photospheric magnetic field near the poles and limb.
Use of a remote computer terminal during field checking of Landsat digital maps
Robinove, Charles J.; Hutchinson, C.F.
1978-01-01
Field checking of small-scale land classification maps made digitally from Landsat data is facilitated by use of a remote portable teletypewriter terminal linked by teleplume to the IDIMS (Interactive Digital Image Manipulation System) at the EDC (EROS Data Center), Sioux Falls, S. Dak. When field checking of maps 20 miles northeast of Baker, Calif., during the day showed that changes in classification were needed, the terminal was used at night to combine image statistical files, remap portions of images, and produce new alphanumeric maps for field checking during the next day. The alphanumeric maps can be used without serious difficulty in location in the field even though the scale is distorted, and statistical files created during the field check can be used for full image classification and map output at the EDC. This process makes field checking faster than normal, provides interaction with the statistical data while in the field, and reduces to a minimum the number of trips needed to work interactively with the IDIMS at the EDC, thus saving significant amounts of time and money. The only significant problem is using telephone lines which at times create spurious characters in the printout or prevent the line feed (paper advance) signal from reaching the terminal, thus overprinting lines which should be sequential. We recommend that maps for field checking be made with more spectral classes than are expected because in the field it is much easier to group classes than to reclassify or separate classes when only the remote terminal is available for display.
A novel fully integrated handheld gamma camera
NASA Astrophysics Data System (ADS)
Massari, R.; Ucci, A.; Campisi, C.; Scopinaro, F.; Soluri, A.
2016-10-01
In this paper, we present an innovative, fully integrated handheld gamma camera, namely designed to gather in the same device the gamma ray detector with the display and the embedded computing system. The low power consumption allows the prototype to be battery operated. To be useful in radioguided surgery, an intraoperative gamma camera must be very easy to handle since it must be moved to find a suitable view. Consequently, we have developed the first prototype of a fully integrated, compact and lightweight gamma camera for radiopharmaceuticals fast imaging. The device can operate without cables across the sterile field, so it may be easily used in the operating theater for radioguided surgery. The prototype proposed consists of a Silicon Photomultiplier (SiPM) array coupled with a proprietary scintillation structure based on CsI(Tl) crystals. To read the SiPM output signals, we have developed a very low power readout electronics and a dedicated analog to digital conversion system. One of the most critical aspects we faced designing the prototype was the low power consumption, which is mandatory to develop a battery operated device. We have applied this detection device in the lymphoscintigraphy technique (sentinel lymph node mapping) comparing the results obtained with those of a commercial gamma camera (Philips SKYLight). The results obtained confirm a rapid response of the device and an adequate spatial resolution for the use in the scintigraphic imaging. This work confirms the feasibility of a small gamma camera with an integrated display. This device is designed for radioguided surgery and small organ imaging, but it could be easily combined into surgical navigation systems.
Tuning contact transport mechanisms in bilayer MoSe2 transistors up to Fowler-Nordheim regime
NASA Astrophysics Data System (ADS)
Mouafo, L. D. N.; Godel, F.; Froehlicher, G.; Berciaud, S.; Doudin, B.; Venkata Kamalakar, M.; Dayen, J.-F.
2017-03-01
Atomically thin molybdenum diselenide (MoSe2) is an emerging two-dimensional (2D) semiconductor with significant potential for electronic, optoelectronic, spintronic applications and a common platform for their possible integration. Tuning interface charge transport between such new 2D materials and metallic electrodes is a key issue in 2D device physics and engineering. Here, we report tunable interface charge transport in bilayer MoSe2 field effect transistors with Ti/Au contacts showing high on/off ratio up to 107 at room temperature. Our experiments reveal a detailed map of transport mechanisms obtained by controlling the interface band bending profile via temperature, gate and source-drain bias voltages. This comprehensive investigation leads to demarcating regimes and tuning in transport mechanisms while controlling the interface barrier profile. The careful analysis allows us to identify thermally activated regime at low carrier density, and Schottky barrier driven mechanisms at higher carrier density demonstrating the transition from low-field direct tunneling/ thermionic emission to high-field Fowler-Nordheim tunneling. Furthermore, we show that the transition voltage Vtrans to Fowler-Nordheim correlates directly to the difference between the chemical potential of the metal electrode and the conduction band minimum in the 2D semiconductor, which opens up opportunities for new theoretical and experimental investigations. Our approach being generic can be extended to other 2D materials, and the possibility of tuning contact transport regimes is promising for designing MoSe2 device applications.
ERIC Educational Resources Information Center
Adams, W. P.
1972-01-01
Orienteering is a rapidly growing sport, developed in Sweden, which has great possibilities for education in geography. It can be conceived as an organizing device for outdoor work and as a basis for developing map skills and for map construction. (Author)
A High-Performance Optical Memory Array Based on Inhomogeneity of Organic Semiconductors.
Pei, Ke; Ren, Xiaochen; Zhou, Zhiwen; Zhang, Zhichao; Ji, Xudong; Chan, Paddy Kwok Leung
2018-03-01
Organic optical memory devices keep attracting intensive interests for diverse optoelectronic applications including optical sensors and memories. Here, flexible nonvolatile optical memory devices are developed based on the bis[1]benzothieno[2,3-d;2',3'-d']naphtho[2,3-b;6,7-b']dithiophene (BBTNDT) organic field-effect transistors with charge trapping centers induced by the inhomogeneity (nanosprouts) of the organic thin film. The devices exhibit average mobility as high as 7.7 cm 2 V -1 s -1 , photoresponsivity of 433 A W -1 , and long retention time for more than 6 h with a current ratio larger than 10 6 . Compared with the standard floating gate memory transistors, the BBTNDT devices can reduce the fabrication complexity, cost, and time. Based on the reasonable performance of the single device on a rigid substrate, the optical memory transistor is further scaled up to a 16 × 16 active matrix array on a flexible substrate with operating voltage less than 3 V, and it is used to map out 2D optical images. The findings reveal the potentials of utilizing [1]benzothieno[3,2-b][1]benzothiophene (BTBT) derivatives as organic semiconductors for high-performance optical memory transistors with a facile structure. A detailed study on the charge trapping mechanism in the derivatives of BTBT materials is also provided, which is closely related to the nanosprouts formed inside the organic active layer. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Voltage-based device tracking in a 1.5 Tesla MRI during imaging: initial validation in swine models.
Schmidt, Ehud J; Tse, Zion T H; Reichlin, Tobias R; Michaud, Gregory F; Watkins, Ronald D; Butts-Pauly, Kim; Kwong, Raymond Y; Stevenson, William; Schweitzer, Jeffrey; Byrd, Israel; Dumoulin, Charles L
2014-03-01
Voltage-based device-tracking (VDT) systems are commonly used for tracking invasive devices in electrophysiological cardiac-arrhythmia therapy. During electrophysiological procedures, electro-anatomic mapping workstations provide guidance by integrating VDT location and intracardiac electrocardiogram information with X-ray, computerized tomography, ultrasound, and MR images. MR assists navigation, mapping, and radiofrequency ablation. Multimodality interventions require multiple patient transfers between an MRI and the X-ray/ultrasound electrophysiological suite, increasing the likelihood of patient-motion and image misregistration. An MRI-compatible VDT system may increase efficiency, as there is currently no single method to track devices both inside and outside the MRI scanner. An MRI-compatible VDT system was constructed by modifying a commercial system. Hardware was added to reduce MRI gradient-ramp and radiofrequency unblanking pulse interference. VDT patches and cables were modified to reduce heating. Five swine cardiac VDT electro-anatomic mapping interventions were performed, navigating inside and thereafter outside the MRI. Three-catheter VDT interventions were performed at >12 frames per second both inside and outside the MRI scanner with <3 mm error. Catheters were followed on VDT- and MRI-derived maps. Simultaneous VDT and imaging was possible in repetition time >32 ms sequences with <0.5 mm errors, and <5% MRI signal-to-noise ratio (SNR) loss. At shorter repetition times, only intracardiac electrocardiogram was reliable. Radiofrequency heating was <1.5°C. An MRI-compatible VDT system is feasible. Copyright © 2013 Wiley Periodicals, Inc.
Voltage-based Device Tracking in a 1.5 Tesla MRI during Imaging: Initial validation in swine models
Schmidt, Ehud J; Tse, Zion TH; Reichlin, Tobias R; Michaud, Gregory F; Watkins, Ronald D; Butts-Pauly, Kim; Kwong, Raymond Y; Stevenson, William; Schweitzer, Jeffrey; Byrd, Israel; Dumoulin, Charles L
2013-01-01
Purpose Voltage-based device-tracking (VDT) systems are commonly used for tracking invasive devices in electrophysiological (EP) cardiac-arrhythmia therapy. During EP procedures, electro-anatomic-mapping (EAM) workstations provide guidance by integrating VDT location and intra-cardiac-ECG information with X-ray, CT, Ultrasound, and MR images. MR assists navigation, mapping and radio-frequency-ablation. Multi-modality interventions require multiple patient transfers between an MRI and the X-ray/ultrasound EP suite, increasing the likelihood of patient-motion and image mis-registration. An MRI-compatible VDT system may increase efficiency, since there is currently no single method to track devices both inside and outside the MRI scanner. Methods An MRI-compatible VDT system was constructed by modifying a commercial system. Hardware was added to reduce MRI gradient-ramp and radio-frequency-unblanking-pulse interference. VDT patches and cables were modified to reduce heating. Five swine cardiac VDT EAM-mapping interventions were performed, navigating inside and thereafter outside the MRI. Results Three-catheter VDT interventions were performed at >12 frames-per-second both inside and outside the MRI scanner with <3mm error. Catheters were followed on VDT- and MRI-derived maps. Simultaneous VDT and imaging was possible in repetition-time (TR) >32 msec sequences with <0.5mm errors, and <5% MRI SNR loss. At shorter TRs, only intra-cardiac-ECG was reliable. RF Heating was <1.5C°. Conclusion An MRI-compatible VDT system is feasible. PMID:23580479
Alshami, Iyad Husni; Sahibuddin, Shamsul; Firdaus, Firdaus
2017-01-01
The Global Positioning System demonstrates the significance of Location Based Services but it cannot be used indoors due to the lack of line of sight between satellites and receivers. Indoor Positioning Systems are needed to provide indoor Location Based Services. Wireless LAN fingerprints are one of the best choices for Indoor Positioning Systems because of their low cost, and high accuracy, however they have many drawbacks: creating radio maps is time consuming, the radio maps will become outdated with any environmental change, different mobile devices read the received signal strength (RSS) differently, and peoples’ presence in LOS between access points and mobile device affects the RSS. This research proposes a new Adaptive Indoor Positioning System model (called DIPS) based on: a dynamic radio map generator, RSS certainty technique and peoples’ presence effect integration for dynamic and multi-floor environments. Dynamic in our context refers to the effects of people and device heterogeneity. DIPS can achieve 98% and 92% positioning accuracy for floor and room positioning, and it achieves 1.2 m for point positioning error. RSS certainty enhanced the positioning accuracy for floor and room for different mobile devices by 11% and 9%. Then by considering the peoples’ presence effect, the error is reduced by 0.2 m. In comparison with other works, DIPS achieves better positioning without extra devices. PMID:28783047
2016-02-04
indicative of what happens to the system in the steady state (Section 3.3, Equation 1). 3.4.3 Adaptation For this model, agents/entities do not exhibit...device or span multiple devices. MapDevicesToEnclaves For each device in the inventory of devices found in a hardware inventory, determine what enclave...service s in enclave ej filters(ei, ej , s) Determine what filter types are used on the information flow between enclave ei and service s in enclave ej
Revealing Nanostructures through Plasmon Polarimetry.
Kleemann, Marie-Elena; Mertens, Jan; Zheng, Xuezhi; Cormier, Sean; Turek, Vladimir; Benz, Felix; Chikkaraddy, Rohit; Deacon, William; Lombardi, Anna; Moshchalkov, Victor V; Vandenbosch, Guy A E; Baumberg, Jeremy J
2017-01-24
Polarized optical dark-field spectroscopy is shown to be a versatile noninvasive probe of plasmonic structures that trap light to the nanoscale. Clear spectral polarization splittings are found to be directly related to the asymmetric morphology of nanocavities formed between faceted gold nanoparticles and an underlying gold substrate. Both experiment and simulation show the influence of geometry on the coupled system, with spectral shifts Δλ = 3 nm from single atoms. Analytical models allow us to identify the split resonances as transverse cavity modes, tightly confined to the nanogap. The direct correlation of resonance splitting with atomistic morphology allows mapping of subnanometre structures, which is crucial for progress in extreme nano-optics involving chemistry, nanophotonics, and quantum devices.
Applications of magnetic resonance image segmentation in neurology
NASA Astrophysics Data System (ADS)
Heinonen, Tomi; Lahtinen, Antti J.; Dastidar, Prasun; Ryymin, Pertti; Laarne, Paeivi; Malmivuo, Jaakko; Laasonen, Erkki; Frey, Harry; Eskola, Hannu
1999-05-01
After the introduction of digital imagin devices in medicine computerized tissue recognition and classification have become important in research and clinical applications. Segmented data can be applied among numerous research fields including volumetric analysis of particular tissues and structures, construction of anatomical modes, 3D visualization, and multimodal visualization, hence making segmentation essential in modern image analysis. In this research project several PC based software were developed in order to segment medical images, to visualize raw and segmented images in 3D, and to produce EEG brain maps in which MR images and EEG signals were integrated. The software package was tested and validated in numerous clinical research projects in hospital environment.
NASA Astrophysics Data System (ADS)
Fritz, S.; Nordling, J.; See, L. M.; McCallum, I.; Perger, C.; Becker-Reshef, I.; Mucher, S.; Bydekerke, L.; Havlik, P.; Kraxner, F.; Obersteiner, M.
2014-12-01
The International Institute for Applied Systems Analysis (IIASA) has developed a global cropland extent map, which supports the monitoring and assessment activities of GEOGLAM (Group on Earth Observations Global Agricultural Monitoring Initiative). Through the European-funded SIGMA (Stimulating Innovation for Global Monitoring of Agriculture and its Impact on the Environment in support of GEOGLAM) project, IIASA is continuing to support GEOGLAM by providing cropland projections in the future and modelling environmental impacts on agriculture under various scenarios. In addition, IIASA is focusing on two specific elements within SIGMA: the development of a global field size and irrigation map; and mobile app development for in-situ data collection and validation of remotely-sensed products. Cropland field size is a very useful indicator for agricultural monitoring yet the information we have at a global scale is currently very limited. IIASA has already created a global map of field size at a 1 km resolution using crowdsourced data from Geo-Wiki as a first approximation. Using automatic classification of Landsat imagery and algorithms contained within Google Earth Engine, initial experimentation has shown that circular fields and landscape structures can easily be extracted. Not only will this contribute to improving the global map of field size, it can also be used to create a global map that contains a large proportion of the world's irrigated areas, which will be another useful contribution to GEOGLAM. The field size map will also be used to stratify and develop a global crop map in SIGMA. Mobile app development in support of in-situ data collection is another area where IIASA is currently working. An Android app has been built using the Open Data Toolkit (ODK) and extended further with spatial mapping capabilities called GeoODK. The app allows users to collect data on different crop types and delineate fields on the ground, which can be used to validate the field size map. The app can also cache map data so that high resolution satellite imagery and reference data from the users can be viewed in the field without the need for an internet connection. This app will be used for calibration and validation of the data products in SIGMA, e.g. data collection at JECAM (Joint Experiment of Crop Assessment and Monitoring) sites.
Surface-material maps of Viking landing sites on Mars
NASA Technical Reports Server (NTRS)
Moore, H. J.; Keller, J. M.
1991-01-01
Researchers mapped the surface materials at the Viking landing sites on Mars to gain a better understanding of the materials and rock populations at the sites and to provide information for future exploration. The maps extent to about 9 m in front of each lander and are about 15 m wide - an area comparable to the area of a pixel in high resolution Viking Orbiter images. The maps are divided into the near and far fields. Data for the near fields are from 1/10 scale maps, umpublished maps, and lander images. Data for the far fields are from 1/20 scale contour maps, contoured lander camera mosaics, and lander images. Rocks are located on these maps using stereometric measurements and the contour maps. Frequency size distribution of rocks and the responses of soil-like materials to erosion by engine exhausts during landings are discussed.
Evaluation of Mapping Methodologies at a Legacy Test Site
NASA Astrophysics Data System (ADS)
Sussman, A. J.; Schultz-Fellenz, E. S.; Roback, R. C.; Kelley, R. E.; Drellack, S.; Reed, D.; Miller, E.; Cooper, D. I.; Sandoval, M.; Wang, R.
2013-12-01
On June 12th, 1985, a nuclear test with an announced yield between 20-150kt was detonated in rhyolitic lava in a vertical emplacement borehole at a depth of 608m below the surface. This test did not collapse to the surface and form a crater, but rather resulted in a subsurface collapse with more subtle surface expressions of deformation, providing an opportunity to evaluate the site using a number of surface mapping methodologies. The site was investigated over a two-year time span by several mapping teams. In order to determine the most time efficient and accurate approach for mapping post-shot surface features at a legacy test site, a number of different techniques were employed. The site was initially divided into four quarters, with teams applying various methodologies, techniques, and instrumentations to each quarter. Early methods included transect lines and site gridding with a Brunton pocket transit, flagging tape, measuring tape, and stakes; surveying using a hand-held personal GPS to locate observed features with an accuracy of × 5-10m; and extensive photo-documentation. More recent methods have incorporated the use of near survey grade GPS devices to allow careful location and mapping of surface features. Initially, gridding was employed along with the high resolution GPS surveys, but this was found to be time consuming and of little observational value. Raw visual observation (VOB) data included GPS coordinates for artifacts or features of interest, field notes, and photographs. A categorization system was used to organize the myriad of items, in order to aid in database searches and for visual presentation of findings. The collected data set was imported into a geographic information system (GIS) as points, lines, or polygons and overlain onto a digital color orthophoto map of the test site. Once these data were mapped, spectral data were collected using a high resolution field spectrometer. In addition to geo-locating the field observations with 10cm resolution GPS, LiDAR and hyperspectral imagery were also acquired. The LiDAR and hyperspectral data are being processed and will be added to the existing geo-referenced database as separate information layers for remote sensing analysis of surface features associated with the legacy test. By consolidating the various components of a VOB data point (coordinates, photo and item description) into a standalone database, searching or querying for other components or collects such as subsurface geophysical and/or airborne imagery is made much easier. Work by Los Alamos National Laboratory was sponsored by the National Nuclear Security Administration Award No. DE-AC52-06NA25946/NST10-NCNS-PD00. Work by National Security Technologies, LLC, was performed under Contract No. DE AC52 06NA25946 with the U.S. Department of Energy.
Schein, M H; Gavish, B; Herz, M; Rosner-Kahana, D; Naveh, P; Knishkowy, B; Zlotnikov, E; Ben-Zvi, N; Melmed, R N
2001-04-01
To examine the efficacy of a new device, which slows and regularises breathing, as a non-pharmacological treatment of hypertension and thus to evaluate the contribution of breathing modulation in the blood pressure (BP) reduction. Randomised, double-blind controlled study, carried out in three urban family practice clinics in Israel. Sixty-five male and female hypertensives, either receiving antihypertensive drug therapy or unmedicated. Four patients dropped out at the beginning of the study. Self treatment at home, 10 minutes daily for 8 consecutive weeks, using either the device (n = 32), which guides the user towards slow and regular breathing using musical sound patterns, or a Walkman, with which patients listened to quiet music (n = 29). Medication was unchanged 2 months prior to and during the study period. Systolic BP, diastolic BP and mean arterial pressure (MAP) changes from baseline. BP reduction in the device group was significantly greater than a predetermined 'clinically meaningful threshold' of 10.0, 5.0 and 6.7 mm Hg for the systolic BP, diastolic BP and MAP respectively (P = 0.035, P = 0.0002 and P = 0.001). Treatment with the device reduced systolic BP, diastolic BP and MAP by 15.2, 10.0 and 11.7 mm Hg respectively, as compared to 11.3, 5.6 and 7.5 mm Hg (P = 0.14, P = 0.008, P = 0.03) with the Walkman. Six months after treatment had stopped, diastolic BP reduction in the device group remained greater than the 'threshold' (P < 0.02) and also greater than in the walkman group (P = 0.001). The device was found to be efficacious in reducing high BP during 2 months of self-treatment by patients at home. Breathing pattern modification appears to be an important component in this reduction.
Busch, Martin H J; Vollmann, Wolfgang; Schnorr, Jörg; Grönemeyer, Dietrich H W
2005-04-08
Active Magnetic Resonance Imaging implants are constructed as resonators tuned to the Larmor frequency of a magnetic resonance system with a specific field strength. The resonating circuit may be embedded into or added to the normal metallic implant structure. The resonators build inductively coupled wireless transmit and receive coils and can amplify the signal, normally decreased by eddy currents, inside metallic structures without affecting the rest of the spin ensemble. During magnetic resonance imaging the resonators generate heat, which is additional to the usual one described by the specific absorption rate. This induces temperature increases of the tissue around the circuit paths and inside the lumen of an active implant and may negatively influence patient safety. This investigation provides an overview of the supplementary power absorbed by active implants with a cylindrical geometry, corresponding to vessel implants such as stents, stent grafts or vena cava filters. The knowledge of the overall absorbed power is used in a finite volume analysis to estimate temperature maps around different implant structures inside homogeneous tissue under worst-case assumptions. The "worst-case scenario" assumes thermal heat conduction without blood perfusion inside the tissue around the implant and mostly without any cooling due to blood flow inside vessels. The additional power loss of a resonator is proportional to the volume and the quality factor, as well as the field strength of the MRI system and the specific absorption rate of the applied sequence. For properly working devices the finite volume analysis showed only tolerable heating during MRI investigations in most cases. Only resonators transforming a few hundred mW into heat may reach temperature increases over 5 K. This requires resonators with volumes of several ten cubic centimeters, short inductor circuit paths with only a few 10 cm and a quality factor above ten. Using MR sequences, for which the MRI system manufacturer declares the highest specific absorption rate of 4 W/kg, vascular implants with a realistic construction, size and quality factor do not show temperature increases over a critical value of 5 K. The results show dangerous heating for the assumed "worst-case scenario" only for constructions not acceptable for vascular implants. Realistic devices are safe with respect to temperature increases. However, this investigation discusses only properly working devices. Ruptures or partial ruptures of the wires carrying the electric current of the resonance circuits or other defects can set up a power source inside an extremely small volume. The temperature maps around such possible "hot spots" should be analyzed in an additional investigation.
Mauser, Stanislas; Burgert, Oliver
2014-01-01
There are several intra-operative use cases which require the surgeon to interact with medical devices. We used the Leap Motion Controller as input device and implemented two use-cases: 2D-Interaction (e.g. advancing EPR data) and selection of a value (e.g. room illumination brightness). The gesture detection was successful and we mapped its output to several devices and systems.
NASA Astrophysics Data System (ADS)
Singh, Arun K.; Auton, Gregory; Hill, Ernie; Song, Aimin
2018-07-01
Due to a very high carrier concentration and low band gap, graphene based self-switching diodes do not demonstrate a very high rectification ratio. Despite that, it takes the advantage of graphene’s high carrier mobility and has been shown to work at very high microwave frequencies. However, the AC component of these devices is hidden in the very linear current–voltage characteristics. Here, we extract and quantitatively study the device capacitance that determines the device nonlinearity by implementing a conformal mapping technique. The estimated value of the nonlinear component or curvature coefficient from DC results based on Shichman–Hodges model predicts the rectified output voltage, which is in good agreement with the experimental RF results.
Mapping global cropland and field size.
Fritz, Steffen; See, Linda; McCallum, Ian; You, Liangzhi; Bun, Andriy; Moltchanova, Elena; Duerauer, Martina; Albrecht, Fransizka; Schill, Christian; Perger, Christoph; Havlik, Petr; Mosnier, Aline; Thornton, Philip; Wood-Sichra, Ulrike; Herrero, Mario; Becker-Reshef, Inbal; Justice, Chris; Hansen, Matthew; Gong, Peng; Abdel Aziz, Sheta; Cipriani, Anna; Cumani, Renato; Cecchi, Giuliano; Conchedda, Giulia; Ferreira, Stefanus; Gomez, Adriana; Haffani, Myriam; Kayitakire, Francois; Malanding, Jaiteh; Mueller, Rick; Newby, Terence; Nonguierma, Andre; Olusegun, Adeaga; Ortner, Simone; Rajak, D Ram; Rocha, Jansle; Schepaschenko, Dmitry; Schepaschenko, Maria; Terekhov, Alexey; Tiangwa, Alex; Vancutsem, Christelle; Vintrou, Elodie; Wenbin, Wu; van der Velde, Marijn; Dunwoody, Antonia; Kraxner, Florian; Obersteiner, Michael
2015-05-01
A new 1 km global IIASA-IFPRI cropland percentage map for the baseline year 2005 has been developed which integrates a number of individual cropland maps at global to regional to national scales. The individual map products include existing global land cover maps such as GlobCover 2005 and MODIS v.5, regional maps such as AFRICOVER and national maps from mapping agencies and other organizations. The different products are ranked at the national level using crowdsourced data from Geo-Wiki to create a map that reflects the likelihood of cropland. Calibration with national and subnational crop statistics was then undertaken to distribute the cropland within each country and subnational unit. The new IIASA-IFPRI cropland product has been validated using very high-resolution satellite imagery via Geo-Wiki and has an overall accuracy of 82.4%. It has also been compared with the EarthStat cropland product and shows a lower root mean square error on an independent data set collected from Geo-Wiki. The first ever global field size map was produced at the same resolution as the IIASA-IFPRI cropland map based on interpolation of field size data collected via a Geo-Wiki crowdsourcing campaign. A validation exercise of the global field size map revealed satisfactory agreement with control data, particularly given the relatively modest size of the field size data set used to create the map. Both are critical inputs to global agricultural monitoring in the frame of GEOGLAM and will serve the global land modelling and integrated assessment community, in particular for improving land use models that require baseline cropland information. These products are freely available for downloading from the http://cropland.geo-wiki.org website. © 2015 John Wiley & Sons Ltd.
Cell force mapping using a double-sided micropillar array based on the moiré fringe method
NASA Astrophysics Data System (ADS)
Zhang, F.; Anderson, S.; Zheng, X.; Roberts, E.; Qiu, Y.; Liao, R.; Zhang, X.
2014-07-01
The mapping of traction forces is crucial to understanding the means by which cells regulate their behavior and physiological function to adapt to and communicate with their local microenvironment. To this end, polymeric micropillar arrays have been used for measuring cell traction force. However, the small scale of the micropillar deflections induced by cell traction forces results in highly inefficient force analyses using conventional optical approaches; in many cases, cell forces may be below the limits of detection achieved using conventional microscopy. To address these limitations, the moiré phenomenon has been leveraged as a visualization tool for cell force mapping due to its inherent magnification effect and capacity for whole-field force measurements. This Letter reports an optomechanical cell force sensor, namely, a double-sided micropillar array (DMPA) made of poly(dimethylsiloxane), on which one side is employed to support cultured living cells while the opposing side serves as a reference pattern for generating moiré patterns. The distance between the two sides, which is a crucial parameter influencing moiré pattern contrast, is predetermined during fabrication using theoretical calculations based on the Talbot effect that aim to optimize contrast. Herein, double-sided micropillar arrays were validated by mapping mouse embryo fibroblast contraction forces and the resulting force maps compared to conventional microscopy image analyses as the reference standard. The DMPA-based approach precludes the requirement for aligning two independent periodic substrates, improves moiré contrast, and enables efficient moiré pattern generation. Furthermore, the double-sided structure readily allows for the integration of moiré-based cell force mapping into microfabricated cell culture environments or lab-on-a-chip devices.
Combined ultrasound and MR imaging to guide focused ultrasound therapies in the brain
NASA Astrophysics Data System (ADS)
Arvanitis, Costas D.; Livingstone, Margaret S.; McDannold, Nathan
2013-07-01
Several emerging therapies with potential for use in the brain, harness effects produced by acoustic cavitation—the interaction between ultrasound and microbubbles either generated during sonication or introduced into the vasculature. Systems developed for transcranial MRI-guided focused ultrasound (MRgFUS) thermal ablation can enable their clinical translation, but methods for real-time monitoring and control are currently lacking. Acoustic emissions produced during sonication can provide information about the location, strength and type of the microbubble oscillations within the ultrasound field, and they can be mapped in real-time using passive imaging approaches. Here, we tested whether such mapping can be achieved transcranially within a clinical brain MRgFUS system. We integrated an ultrasound imaging array into the hemisphere transducer of the MRgFUS device. Passive cavitation maps were obtained during sonications combined with a circulating microbubble agent at 20 targets in the cingulate cortex in three macaques. The maps were compared with MRI-evident tissue effects. The system successfully mapped microbubble activity during both stable and inertial cavitation, which was correlated with MRI-evident transient blood-brain barrier disruption and vascular damage, respectively. The location of this activity was coincident with the resulting tissue changes within the expected resolution limits of the system. While preliminary, these data clearly demonstrate, for the first time, that it is possible to construct maps of stable and inertial cavitation transcranially, in a large animal model, and under clinically relevant conditions. Further, these results suggest that this hybrid ultrasound/MRI approach can provide comprehensive guidance for targeted drug delivery via blood-brain barrier disruption and other emerging ultrasound treatments, facilitating their clinical translation. We anticipate that it will also prove to be an important research tool that will further the development of a broad range of microbubble-enhanced therapies.
O'Connor, Timothy; Rawat, Siddharth; Markman, Adam; Javidi, Bahram
2018-03-01
We propose a compact imaging system that integrates an augmented reality head mounted device with digital holographic microscopy for automated cell identification and visualization. A shearing interferometer is used to produce holograms of biological cells, which are recorded using customized smart glasses containing an external camera. After image acquisition, segmentation is performed to isolate regions of interest containing biological cells in the field-of-view, followed by digital reconstruction of the cells, which is used to generate a three-dimensional (3D) pseudocolor optical path length profile. Morphological features are extracted from the cell's optical path length map, including mean optical path length, coefficient of variation, optical volume, projected area, projected area to optical volume ratio, cell skewness, and cell kurtosis. Classification is performed using the random forest classifier, support vector machines, and K-nearest neighbor, and the results are compared. Finally, the augmented reality device displays the cell's pseudocolor 3D rendering of its optical path length profile, extracted features, and the identified cell's type or class. The proposed system could allow a healthcare worker to quickly visualize cells using augmented reality smart glasses and extract the relevant information for rapid diagnosis. To the best of our knowledge, this is the first report on the integration of digital holographic microscopy with augmented reality devices for automated cell identification and visualization.
NASA Technical Reports Server (NTRS)
Young, Kelsey E.; Evans, C. A.; Hodges, K. V.
2012-01-01
While traditional geologic mapping includes the examination of structural relationships between rock units in the field, more advanced technology now enables us to simultaneously collect and combine analytical datasets with field observations. Information about tectonomagmatic processes can be gleaned from these combined data products. Historically, construction of multi-layered field maps that include sample data has been accomplished serially (first map and collect samples, analyze samples, combine data, and finally, readjust maps and conclusions about geologic history based on combined data sets). New instruments that can be used in the field, such as a handheld xray fluorescence (XRF) unit, are now available. Targeted use of such instruments enables geologists to collect preliminary geochemical data while in the field so that they can optimize scientific data return from each field traverse. Our study tests the application of this technology and projects the benefits gained by real-time geochemical data in the field. The integrated data set produces a richer geologic map and facilitates a stronger contextual picture for field geologists when collecting field observations and samples for future laboratory work. Real-time geochemical data on samples also provide valuable insight regarding sampling decisions by the field geologist
Laamrani, Ahmed; Branson, Dave; Joosse, Pamela
2018-01-01
Quantifying the amount of crop residue left in the field after harvest is a key issue for sustainability. Conventional assessment approaches (e.g., line-transect) are labor intensive, time-consuming and costly. Many proximal remote sensing devices and systems have been developed for agricultural applications such as cover crop and residue mapping. For instance, current mobile devices (smartphones & tablets) are usually equipped with digital cameras and global positioning systems and use applications (apps) for in-field data collection and analysis. In this study, we assess the feasibility and strength of a mobile device app developed to estimate crop residue cover. The performance of this novel technique (from here on referred to as “app” method) was compared against two point counting approaches: an established digital photograph-grid method and a new automated residue counting script developed in MATLAB at the University of Guelph. Both photograph-grid and script methods were used to count residue under 100 grid points. Residue percent cover was estimated using the app, script and photograph-grid methods on 54 vertical digital photographs (images of the ground taken from above at a height of 1.5 m) collected from eighteen fields (9 corn and 9 soybean, 3 samples each) located in southern Ontario. Results showed that residue estimates from the app method were in good agreement with those obtained from both photograph–grid and script methods (R2 = 0.86 and 0.84, respectively). This study has found that the app underestimates the residue coverage by −6.3% and −10.8% when compared to the photograph-grid and script methods, respectively. With regards to residue type, soybean has a slightly lower bias than corn (i.e., −5.3% vs. −7.4%). For photos with residue <30%, the app derived residue measurements are within ±5% difference (bias) of both photograph-grid- and script-derived residue measurements. These methods could therefore be used to track the recommended minimum soil residue cover of 30%, implemented to reduce farmland topsoil and nutrient losses that impact water quality. Overall, the app method was found to be a good alternative to the point counting methods, which are more time-consuming. PMID:29495497
Synthesis of a fiber-optic magnetostrictive sensor (FOMS) pixel for RF magnetic field imaging
NASA Astrophysics Data System (ADS)
Rengarajan, Suraj
The principal objective of this dissertation was to synthesize a sensor element with properties specifically optimized for integration into arrays capable of imaging RF magnetic fields. The dissertation problem was motivated by applications in nondestructive eddy current testing, smart skins, etc., requiring sensor elements that non-invasively detect millimeter-scale variations over several square meters, in low level magnetic fields varying at frequencies in the 100 kHz-1 GHz range. The poor spatial and temporal resolution of FOMS elements available prior to this dissertation research, precluded their use in non-invasive large area mapping applications. Prior research had been focused on large, discrete devices for detecting extremely low level magnetic fields varying at a few kHz. These devices are incompatible with array integration and imaging applications. The dissertation research sought to overcome the limitations of current technology by utilizing three new approaches; synthesizing magnetostrictive thin films and optimizing their properties for sensor applications, integrating small sensor elements into an array compatible fiber optic interferometer, and devising a RF mixing approach to measure high frequency magnetic fields using the integrated sensor element. Multilayer thin films were used to optimize the magnetic properties of the magnetostrictive elements. Alternating soft (Nisb{80}Fesb{20}) and hard (Cosb{50}Fesb{50}) magnetic alloy layers were selected for the multilayer and the layer thicknesses were varied to obtain films with a combination of large magnetization, high frequency permeability and large magnetostrictivity. X-Ray data and measurement of the variations in the magnetization, resistivity and magnetostriction with layer thicknesses, indicated that an interfacial layer was responsible for enhancing the sensing performance of the multilayers. A FOMS pixel was patterned directly onto the sensing arm of a fiber-optic interferometer, by sputtering a multilayer film with favorable sensor properties. After calibrating the interferometer response with a piezo, the mechanical and magnetic responses of the FOMS element were evaluated for various test fields. High frequency magnetic fields were detected using a local oscillator field to downconvert the RF signal fields to the lower mechanical resonant frequency of the element. A field sensitivity of 0.3 Oe/cm sensor element length was demonstrated at 1 MHz. A coherent magnetization rotation model was developed to predict the magnetostrictive response of the element, and identify approaches for optimizing its performance. This model predicts that an optimized element could resolve ˜1 mm variations in fields varying at frequencies >10 MHz with a sensitivity of ˜10sp{-3} Oe/mm. The results demonstrate the potential utility of integrating this device as a FOMS pixel in RF magnetic field imaging arrays.
Experimental Characterization of Plasma Detachment from Magnetic Nozzles
NASA Astrophysics Data System (ADS)
Olsen, Christopher Scott
Magnetic nozzles, like Laval nozzles, are observed in several natural systems and have application in areas such as electric propulsion and plasma processing. Plasma flowing through these nozzles is inherently tied to the field lines and must separate for momentum redirection or particle transport to occur. Plasma detachment and associated mechanisms from a magnetic nozzle are investigated. Experimental results are presented from the plume of the VASIMRRTM VX-200 device flowing along an axisymmetric magnetic nozzle and operated at two ion energies to explore momentum dependent detachment. The argon plume expanded into a 150m3 vacuum chamber where the background pressure was low enough that charge-exchange mean-free-paths were longer than experiment scale lengths. This magnetic nozzle system is demonstrated to hydrodynamically scale up to astrophysical plasmas, particularly the solar chromosphere, implying general relevance to many systems. Plasma parameters were mapped over a large spatial range using measurements from multiple plasma diagnostics. The data show that the plume does not follow the magnetic field lines. A mapped integration of the ion flux shows the plume may be divided into three regions where 1) the plume briefly follows the magnetic flux, 2) diverges quadratically before 3) expanding with linear trajectories. Transitioning from region 1→2, the ion flux departs from the magnetic flux suggesting ion detachment. An instability forms in region 2 driving an oscillating electric field that causes ions to expand before enhancing electron cross-field transport through anomalous resistivity. Transitioning from region 2→3 the electric field dissipates, the trajectories linearize, and the plume effectively detaches. A delineation of sub-to-super Alfvenic flow aligns well with the inflection points of the linearization without a change in magnetic topology. The detachment process is best described as a two part process: First, ions detach by a breakdown of the magnetic moment when the quantity |v/fcLB| becomes of order unity. Second, the turbulent electric field enhances electron transport up to a factor of 4+/-1 above collisional diffusion; electron cross-field velocities approximate that of the ions and depart on more centralized field lines. Electrons are believed to detach by breakdown of magnetic moment further downstream in the weaker magnetic field.
Rothschild, Freda; Bishop, Alexis I; Kitchen, Marcus J; Paganin, David M
2014-03-24
The Cornu spiral is, in essence, the image resulting from an Argand-plane map associated with monochromatic complex scalar plane waves diffracting from an infinite edge. Argand-plane maps can be useful in the analysis of more general optical fields. We experimentally study particular features of Argand-plane mappings known as "vorticity singularities" that are associated with mapping continuous single-valued complex scalar speckle fields to the Argand plane. Vorticity singularities possess a hierarchy of Argand-plane catastrophes including the fold, cusp and elliptic umbilic. We also confirm their connection to vortices in two-dimensional complex scalar waves. The study of vorticity singularities may also have implications for higher-dimensional fields such as coherence functions and multi-component fields such as vector and spinor fields.
NASA Astrophysics Data System (ADS)
Zhong, Bo; Chen, Wuhan; Wu, Shanlong; Liu, Qinhuo
2016-10-01
Cloud detection of satellite imagery is very important for quantitative remote sensing research and remote sensing applications. However, many satellite sensors don't have enough bands for a quick, accurate, and simple detection of clouds. Particularly, the newly launched moderate to high spatial resolution satellite sensors of China, such as the charge-coupled device on-board the Chinese Huan Jing 1 (HJ-1/CCD) and the wide field of view (WFV) sensor on-board the Gao Fen 1 (GF-1), only have four available bands including blue, green, red, and near infrared bands, which are far from the requirements of most could detection methods. In order to solve this problem, an improved and automated cloud detection method for Chinese satellite sensors called OCM (Object oriented Cloud and cloud-shadow Matching method) is presented in this paper. It firstly modified the Automatic Cloud Cover Assessment (ACCA) method, which was developed for Landsat-7 data, to get an initial cloud map. The modified ACCA method is mainly based on threshold and different threshold setting produces different cloud map. Subsequently, a strict threshold is used to produce a cloud map with high confidence and large amount of cloud omission and a loose threshold is used to produce a cloud map with low confidence and large amount of commission. Secondly, a corresponding cloud-shadow map is also produced using the threshold of near-infrared band. Thirdly, the cloud maps and cloud-shadow map are transferred to cloud objects and cloud-shadow objects. Cloud and cloud-shadow are usually in pairs; consequently, the final cloud and cloud-shadow maps are made based on the relationship between cloud and cloud-shadow objects. OCM method was tested using almost 200 HJ-1/CCD images across China and the overall accuracy of cloud detection is close to 90%.
75 FR 2886 - Notice of Availability of Travel Map, Challis Field Office, Idaho
Federal Register 2010, 2011, 2012, 2013, 2014
2010-01-19
... travel management map depicting designated roads, vehicle ways and trails on public lands managed by the BLM Challis Field Office, Idaho. The map describes seasonal closure areas and trails and the daytime...
Quantitative Susceptibility Mapping: Contrast Mechanisms and Clinical Applications
Liu, Chunlei; Wei, Hongjiang; Gong, Nan-Jie; Cronin, Matthew; Dibb, Russel; Decker, Kyle
2016-01-01
Quantitative susceptibility mapping (QSM) is a recently developed MRI technique for quantifying the spatial distribution of magnetic susceptibility within biological tissues. It first uses the frequency shift in the MRI signal to map the magnetic field profile within the tissue. The resulting field map is then used to determine the spatial distribution of the underlying magnetic susceptibility by solving an inverse problem. The solution is achieved by deconvolving the field map with a dipole field, under the assumption that the magnetic field is a result of the superposition of the dipole fields generated by all voxels and that each voxel has its unique magnetic susceptibility. QSM provides improved contrast to noise ratio for certain tissues and structures compared to its magnitude counterpart. More importantly, magnetic susceptibility is a direct reflection of the molecular composition and cellular architecture of the tissue. Consequently, by quantifying magnetic susceptibility, QSM is becoming a quantitative imaging approach for characterizing normal and pathological tissue properties. This article reviews the mechanism generating susceptibility contrast within tissues and some associated applications. PMID:26844301
Virtual Field Reconnaissance to enable multi-site collaboration in geoscience fieldwork in Chile.
NASA Astrophysics Data System (ADS)
Hughes, Leanne; Bateson, Luke; Ford, Jonathan; Napier, Bruce; Creixell, Christian; Contreras, Juan-Pablo; Vallette, Jane
2017-04-01
The unique challenges of geological mapping in remote terrains can make cross-organisation collaboration challenging. Cooperation between the British and Chilean Geological Surveys and the Chilean national mining company used the BGS digital Mapping Workflow and virtual field reconnaissance software (GeoVisionary) to undertake geological mapping in a complex area of Andean Geology. The international team undertook a pre-field evaluation using GeoVisionary to integrate massive volumes of data and interpret high resolution satellite imagery, terrain models and existing geological information to capture, manipulate and understand geological features and re-interpret existing maps. This digital interpretation was then taken into the field and verified using the BGS digital data capture system (SIGMA.mobile). This allowed the production of final geological interpretation and creation of a geological map. This presentation describes the digital mapping workflow used in Chile and highlights the key advantages of increased efficiency and communication to colleagues, stakeholders and funding bodies.
Enabling cost-effective multimodal trip planners through open transit data : [summary].
DOT National Transportation Integrated Search
2011-01-01
Electronic navigation systems are now common : and widely used -- via Internet services, handheld : devices, and devices in vehicles -- to guide drivers : using instructions and maps. Next generation : systems will plan trips by other modes, includin...
Modeling a color-rendering operator for high dynamic range images using a cone-response function
NASA Astrophysics Data System (ADS)
Choi, Ho-Hyoung; Kim, Gi-Seok; Yun, Byoung-Ju
2015-09-01
Tone-mapping operators are the typical algorithms designed to produce visibility and the overall impression of brightness, contrast, and color of high dynamic range (HDR) images on low dynamic range (LDR) display devices. Although several new tone-mapping operators have been proposed in recent years, the results of these operators have not matched those of the psychophysical experiments based on the human visual system. A color-rendering model that is a combination of tone-mapping and cone-response functions using an XYZ tristimulus color space is presented. In the proposed method, the tone-mapping operator produces visibility and the overall impression of brightness, contrast, and color in HDR images when mapped onto relatively LDR devices. The tone-mapping resultant image is obtained using chromatic and achromatic colors to avoid well-known color distortions shown in the conventional methods. The resulting image is then processed with a cone-response function wherein emphasis is placed on human visual perception (HVP). The proposed method covers the mismatch between the actual scene and the rendered image based on HVP. The experimental results show that the proposed method yields an improved color-rendering performance compared to conventional methods.
Map reading tools for map libraries.
Greenberg, G.L.
1982-01-01
Engineers, navigators and military strategists employ a broad array of mechanical devices to facilitate map use. A larger number of map users such as educators, students, tourists, journalists, historians, politicians, economists and librarians are unaware of the available variety of tools which can be used with maps to increase the speed and efficiency of their application and interpretation. This paper identifies map reading tools such as coordinate readers, protractors, dividers, planimeters, and symbol-templets according to a functional classification. Particularly, arrays of tools are suggested for use in determining position, direction, distance, area and form (perimeter-shape-pattern-relief). -from Author
Ant Colony Optimization for Mapping, Scheduling and Placing in Reconfigurable Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ferrandi, Fabrizio; Lanzi, Pier Luca; Pilato, Christian
Modern heterogeneous embedded platforms, com- posed of several digital signal, application specific and general purpose processors, also include reconfigurable devices support- ing partial dynamic reconfiguration. These devices can change the behavior of some of their parts during execution, allowing hardware acceleration of more sections of the applications. Never- theless, partial dynamic reconfiguration imposes severe overheads in terms of latency. For such systems, a critical part of the design phase is deciding on which processing elements (mapping) and when (scheduling) executing a task, but also how to place them on the reconfigurable device to guarantee the most efficient reuse of themore » programmable logic. In this paper we propose an algorithm based on Ant Colony Optimization (ACO) that simultaneously executes the scheduling, the mapping and the linear placing of tasks, hiding reconfiguration overheads through prefetching. Our heuristic gradually constructs solutions and then searches around the best ones, cutting out non-promising areas of the design space. We show how to consider the partial dynamic reconfiguration constraints in the scheduling, placing and mapping problems and compare our formulation to other heuristics that address the same problems. We demonstrate that our proposal is more general and robust, and finds better solutions (16.5% in average) with respect to competing solutions.« less
Magnetometric mapping of superconducting RF cavities
NASA Astrophysics Data System (ADS)
Schmitz, B.; Köszegi, J.; Alomari, K.; Kugeler, O.; Knobloch, J.
2018-05-01
A scalable mapping system for superconducting RF (SRF) cavities is presented. Currently, it combines local temperature measurement with 3D magnetic field mapping along the outer surface of the resonator. This allows for the observation of dynamic effects that have an impact on the superconducting properties of a cavity, such as the normal to superconducting phase transition or a quench. The system was developed for a single cell 1.3 GHz TESLA-type cavity, but can be easily adopted to arbitrary other cavity types. A data acquisition rate of 500 Hz for all channels simultaneously (i.e., 2 ms acquisition time for a complete map) and a magnetic field resolution of currently up to 14 mA/m/μ0 = 17 nT have been implemented. While temperature mapping is a well known technique in SRF research, the integration of magnetic field mapping opens the possibility of detailed studies of trapped magnetic flux and its impact on the surface resistance. It is shown that magnetic field sensors based on the anisotropic magnetoresistance effect can be used in the cryogenic environment with improved sensitivity compared to room temperature. Furthermore, examples of first successful combined temperature and magnetic-field maps are presented.
NASA Technical Reports Server (NTRS)
Skinner, J. A., Jr.; Eppler, D. B.; Bleacher, J. E.; Evans, C. A.; Feng, W.; Gruener, J.; Hurwitz, D. M.; Janoiko, B.; Whitson, P.
2014-01-01
Cartographic products and - specifically - geologic maps provide critical assistance for establishing physical and temporal frameworks of planetary surfaces. The technical methods that result in the creation of geologic maps vary depending on how observations are made as well as the overall intent of the final products [1-3]. These methods tend to follow a common linear work flow, including the identification and delineation of spatially and temporally discrete materials (units), the documentation of their primary (emplacement) and secondary (erosional) characteristics, analysis of the relative and absolute age relationships between these materials, and the collation of observations and interpretations into an objective map product. The "objectivity" of a map is critical cross comparison with overlapping maps and topical studies as well as its relevance to scientific posterity. However, the "accuracy" and "correctness" of a geologic map is very subject to debate. This can be evidenced by comparison of existing geologic maps at various scales, particularly those compiled through field- and remote-based mapped efforts. Our study focuses on comparing the fidelity of (1) "Apollo-style" geologic investigations, where typically non-geologist crew members follow static traverse routes established through pre-mission planning, and (2) "traditional" field-based investigations, where geologists are given free rein to observe without preplanned routes. This abstract summarizes the regional geology wherein our study was conducted, presents the geologic map created from traditional field mapping techniques, and offers basic insights into how geologic maps created from different tactics can be reconciled in support of exploratory missions. Additional abstracts [4-6] from this study discuss various exploration and science results of these efforts.
NASA Astrophysics Data System (ADS)
Gavazzi, Bruno; Alkhatib-Alkontar, Rozan; Munschy, Marc; Colin, Frédéric; Duvette, Catherine
2016-04-01
Fluxgate 3-components magnetometers allow vector measurements of the magnetic field. Moreover, they are the magnetometers measuring the intensity of the magnetic field with the lightest weight and the lowest power consumption. Vector measurements make them the only kind of magnetometer allowing compensation of magnetic perturbations due to the equipment carried with the magnetometer. Fluxgate 3-components magnetometers are common in space magnetometry and in aero-geophysics but are never used in archaeology due to the difficulty to calibrate them. This problem is overcome by the use of a simple calibration and compensation procedure on the field developed initially for space research (after calibration and compensation, rms noise is less than 1 nT). It is therefore possible to build a multi-sensor (up to 8) and georeferenced device for investigations at different scales down to the centimetre: because the locus of magnetic measurements is less than a cubic centimetre, magnetic profiling or mapping can be performed a few centimetres outside magnetized bodies. Such an equipment is used in a context of heavy sediment coverage and uneven topography on the 1st millennium BC site of Qasr ʿAllam in the western desert of Egypt. Magnetic measurements with a line spacing of 0.5 m allow to compute a magnetic grid. Interpretation using potential field operators such as double reduction to the pole and fractional vertical derivatives reveals a widespread irrigation system and a vast cultic facility. In some areas, magnetic profiling with a 0.1 m line spacing and at 0.1 m above the ground is performed. Results of interpretations give enough proof to the local authorities to enlarge the protection of the site against the threatening progression of agricultural fields.
DIY-style GIS service in mobile navigation system integrated with web and wireless GIS
NASA Astrophysics Data System (ADS)
Yan, Yongbin; Wu, Jianping; Fan, Caiyou; Wang, Minqi; Dai, Sheng
2007-06-01
Mobile navigation system based on handheld device can not only provide basic GIS services, but also enable these GIS services to be provided without location limit, to be more instantly interacted between users and devices. However, we still see that most navigation systems have common defects on user experience like limited map format, few map resources, and unable location share. To overcome the above defects, we propose DIY-style GIS service which provide users a more free software environment and allow uses to customize their GIS services. These services include defining geographical coordinate system of maps which helps to hugely enlarge the map source, editing vector feature, related property information and hotlink images, customizing covered area of download map via General Packet Radio Service (GPRS), and sharing users' location information via SMS (Short Message Service) which establishes the communication between users who needs GIS services. The paper introduces the integration of web and wireless GIS service in a mobile navigation system and presents an implementation sample of a DIY-Style GIS service in a mobile navigation system.
Boson mapping techniques applied to constant gauge fields in QCD
NASA Technical Reports Server (NTRS)
Hess, Peter Otto; Lopez, J. C.
1995-01-01
Pairs of coordinates and derivatives of the constant gluon modes are mapped to new gluon-pair fields and their derivatives. Applying this mapping to the Hamiltonian of constant gluon fields results for large coupling constants into an effective Hamiltonian which separates into one describing a scalar field and another one for a field with spin two. The ground state is dominated by pairs of gluons coupled to color and spin zero with slight admixtures of color zero and spin two pairs. As color group we used SU(2).
Solar monochromatic images in magneto-sensitive spectral lines and maps of vector magnetic fields
NASA Technical Reports Server (NTRS)
Shihui, Y.; Jiehai, J.; Minhan, J.
1985-01-01
A new method which allows by use of the monochromatic images in some magneto-sensitive spectra line to derive both the magnetic field strength as well as the angle between magnetic field lines and line of sight for various places in solar active regions is described. In this way two dimensional maps of vector magnetic fields may be constructed. This method was applied to some observational material and reasonable results were obtained. In addition, a project for constructing the three dimensional maps of vector magnetic fields was worked out.
Improvement of Human Keratinocyte Migration by a Redox Active Bioelectric Dressing
Banerjee, Jaideep; Das Ghatak, Piya; Roy, Sashwati; Khanna, Savita; Sequin, Emily K.; Bellman, Karen; Dickinson, Bryan C.; Suri, Prerna; Subramaniam, Vish V.; Chang, Christopher J.; Sen, Chandan K.
2014-01-01
Exogenous application of an electric field can direct cell migration and improve wound healing; however clinical application of the therapy remains elusive due to lack of a suitable device and hence, limitations in understanding the molecular mechanisms. Here we report on a novel FDA approved redox-active Ag/Zn bioelectric dressing (BED) which generates electric fields. To develop a mechanistic understanding of how the BED may potentially influence wound re-epithelialization, we direct emphasis on understanding the influence of BED on human keratinocyte cell migration. Mapping of the electrical field generated by BED led to the observation that BED increases keratinocyte migration by three mechanisms: (i) generating hydrogen peroxide, known to be a potent driver of redox signaling, (ii) phosphorylation of redox-sensitive IGF1R directly implicated in cell migration, and (iii) reduction of protein thiols and increase in integrinαv expression, both of which are known to be drivers of cell migration. BED also increased keratinocyte mitochondrial membrane potential consistent with its ability to fuel an energy demanding migration process. Electric fields generated by a Ag/Zn BED can cross-talk with keratinocytes via redox-dependent processes improving keratinocyte migration, a critical event in wound re-epithelialization. PMID:24595050
Smith, N.; Zhong, P.
2012-01-01
To investigate the roles of lithotripter shock wave (LSW) parameters and cavitation in stone comminution, a series of in vitro fragmentation experiments have been conducted in water and 1,3-butanediol (a cavitation-suppressive fluid) at a variety of acoustic field positions of an electromagnetic shock wave lithotripter. Using field mapping data and integrated parameters averaged over a circular stone holder area (Rh = 7 mm), close logarithmic correlations between the average peak pressure (P+(avg)) incident on the stone (D = 10 mm BegoStone) and comminution efficiency after 500 and 1,000 shocks have been identified. Moreover, the correlations have demonstrated distinctive thresholds in P+(avg) (5.3 MPa and 7.6 MPa for soft and hard stones, respectively), that are required to initiate stone fragmentation independent of surrounding fluid medium and LSW dose. These observations, should they be confirmed using other shock wave lithotripters, may provide an important field parameter (i.e., P+(avg)) to guide appropriate application of SWL in clinics, and facilitate device comparison and design improvements in future lithotripters. PMID:22935690
Smith, N; Zhong, P
2012-10-11
To investigate the roles of lithotripter shock wave (LSW) parameters and cavitation in stone comminution, a series of in vitro fragmentation experiments have been conducted in water and 1,3-butanediol (a cavitation-suppressive fluid) at a variety of acoustic field positions of an electromagnetic shock wave lithotripter. Using field mapping data and integrated parameters averaged over a circular stone holder area (R(h)=7 mm), close logarithmic correlations between the average peak pressure (P(+(avg))) incident on the stone (D=10 mm BegoStone) and comminution efficiency after 500 and 1000 shocks have been identified. Moreover, the correlations have demonstrated distinctive thresholds in P(+(avg)) (5.3 MPa and 7.6 MPa for soft and hard stones, respectively), that are required to initiate stone fragmentation independent of surrounding fluid medium and LSW dose. These observations, should they be confirmed using other shock wave lithotripters, may provide an important field parameter (i.e., P(+(avg))) to guide appropriate application of SWL in clinics, and facilitate device comparison and design improvements in future lithotripters. Copyright © 2012 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Mnich, M.; Condit, C.
2016-12-01
The Springerville Volcanic Field (SVF), located in east-central Arizona, is one of the best-characterized basaltic monogenetic volcanic fields in the world, with it's expanse of over 3000 km2 now mapped in it's entirety as a result of recent efforts in 2010 and 2011. The methods used, called "magmatic mapping" (Condit, 2007), provide a standardized, volcanic unit focused approach to characterizing volcanic fields. This approach focuses on delineating contacts between flows, completely characterizing each flow, and placing them into a temporal framework. Results of magmatic mapping in the SVF now provide a comprehensive overview of the lifespan of the field, representing a unique resource, useful not only in studying the petrogenetic evolution of this field, but in serving as a template for comparing similar volcanic fields. On Earth, several fields pose a significant risk to population centers, though these hazards are often poorly understood due to long intervals between eruptions. On other planets, remote mapping can be greatly enhanced by comparing it with a well-studied terrestrial analog that has been analyzed in detail; an area with ever heightening necessity as high-resolution data is becoming increasingly available. In the SVF, olivine phyric lavas are most abundance (22% of volcanic outcrop), followed by diktytaxitic and olivine/plagioclase phyric flows. However, lithology will vary depending on when an eruption takes place in a volcanic fields lifecycle. On the whole, the SVF is younger to the east and younger lavas are dominantly more alkalic. These trends are also displayed within individual geographic divisions, many of which correspond to temporal-geographic clusters as defined by Condit and Connor (1996). The mapping methods and patterns in geochemistry, lithology and age progression within the SVF represent a unique template for which to base basaltic mapping.
The complex magnetic field topology of the cool Ap star 49 Cam
NASA Astrophysics Data System (ADS)
Silvester, J.; Kochukhov, O.; Rusomarov, N.; Wade, G. A.
2017-10-01
49 Cam is a cool magnetic chemically peculiar star that has been noted for showing strong, complex Zeeman linear polarization signatures. This paper describes magnetic and chemical surface maps obtained for 49 Cam using the Invers10 magnetic Doppler imaging code and high-resolution spectropolarimetric data in all four Stokes parameters collected with the ESPaDOnS and Narval spectropolarimeters at the Canada-France-Hawaii Telescope and Pic du Midi Observatory. The reconstructed magnetic field maps of 49 Cam show a relatively complex structure. Describing the magnetic field topology in terms of spherical harmonics, we find significant contributions of modes up to ℓ = 3, including toroidal components. Observations cannot be reproduced using a simple low-order multipolar magnetic field structure. 49 Cam exhibits a level of field complexity that has not been seen in magnetic maps of other cool Ap stars. Hence, we concluded that relatively complex magnetic fields are observed in Ap stars at both low and high effective temperatures. In addition to mapping the magnetic field, we also derive surface abundance distributions of nine chemical elements, including Ca, Sc, Ti, Cr, Fe, Ce, Pr, Nd and Eu. Comparing these abundance maps with the reconstructed magnetic field geometry, we find no clear relationship of the abundance distributions with the magnetic field for some elements. However, for other elements some distinct patterns are found. We discuss these results in the context of other recent magnetic mapping studies and theoretical predictions of radiative diffusion.
NASA Astrophysics Data System (ADS)
Vrabec, Marko; Dolžan, Erazem
2016-04-01
The undergraduate field course in Geological Mapping at the University of Ljubljana involves 20-40 students per year, which precludes the use of specialized rugged digital field equipment as the costs would be way beyond the capabilities of the Department. A different mapping area is selected each year with the aim to provide typical conditions that a professional geologist might encounter when doing fieldwork in Slovenia, which includes rugged relief, dense tree cover, and moderately-well- to poorly-exposed bedrock due to vegetation and urbanization. It is therefore mandatory that the digital tools and workflows are combined with classical methods of fieldwork, since, for example, full-time precise GNSS positioning is not viable under such circumstances. Additionally, due to the prevailing combination of complex geological structure with generally poor exposure, students cannot be expected to produce line (vector) maps of geological contacts on the go, so there is no need for such functionality in hardware and software that we use in the field. Our workflow therefore still relies on paper base maps, but is strongly complemented with digital tools to provide robust positioning, track recording, and acquisition of various point-based data. Primary field hardware are students' Android-based smartphones and optionally tablets. For our purposes, the built-in GNSS chips provide adequate positioning precision most of the time, particularly if they are GLONASS-capable. We use Oruxmaps, a powerful free offline map viewer for the Android platform, which facilitates the use of custom-made geopositioned maps. For digital base maps, which we prepare in free Windows QGIS software, we use scanned topographic maps provided by the National Geodetic Authority, but also other maps such as aerial imagery, processed Digital Elevation Models, scans of existing geological maps, etc. Point data, like important outcrop locations or structural measurements, are entered into Oruxmaps as waypoints. Students are also encouraged to directly measure structural data with specialized Android apps such as the MVE FieldMove Clino. Digital field data is exported from Oruxmaps to Windows computers primarily in the ubiquitous GPX data format and then integrated in the QGIS environment. Recorded GPX tracks are also used with the free Geosetter Windows software to geoposition and tag any digital photographs taken in the field. With minimal expenses, our workflow provides the students with basic familiarity and experience in using digital field tools and methods. The workflow is also practical enough for the prevailing field conditions of Slovenia that the faculty staff is using it in geological mapping for scientific research and consultancy work.
A PSD (position sensing device) to map the shift and tilt of the SRT secondary mirror
NASA Astrophysics Data System (ADS)
Pisanu, Tonino; Buffa, Franco; Concu, Raimondo; Marongiu, Pasqualino; Pili, Mauro; Poppi, Sergio; Serra, Giampaolo; Urru, Enrico; Vargiu, Gianpaolo
2014-07-01
The Sardinia Radio Telescope (SRT) Metrology team has started to install the initial group of devices on the new 64 meters radio-telescope. These devices will be devoted for the realization of the antenna deformation control system: an electronic inclinometer able to monitor the alidade deformations and a Position Sensing Device (PSD) able to map the secondary mirror (M2) displacements and tilts. The inclinometer is used to map the rail conditions, the azimuthal axis inclination and the thermal effects on the alidade structure. The PSD will be used to measure the secondary mirror displacements induced by the gravity and by the thermal deformations that produce shifts and tilts with respect to it s ideal optical alignment. The PSD will be traced by a laser diode installed on a mechanically stable position inside the vertex room. Preliminarly we decided to characterize excursion range of M2, in order to know if the PSD measuring range of about +/- 10 mm is enough for our purposes. We designed, built and tested an optical measuring device, based on commercial CMOS with a wider measurement range of +/- 40 mm and with a resolution of around 0.1 mm. After a laboratory characterization at the 23 meters real distance, the PSD and the laser have been installed in the antenna. In this paper we show the results of the measurements performed by moving the antenna in elevation.
Srivastava, Nishant R; Troyk, Philip R; Dagnelie, Gislin
2014-01-01
In order to assess visual performance using a future cortical prosthesis device, the ability of normally sighted and low vision subjects to adapt to a dotted ‘phosphene’ image was studied. Similar studies have been conduced in the past and adaptation to phosphene maps has been shown but the phosphene maps used have been square or hexagonal in pattern. The phosphene map implemented for this testing is what is expected from a cortical implantation of the arrays of intracortical electrodes, generating multiple phosphenes. The dotted image created depends upon the surgical location of electrodes decided for implantation and the expected cortical response. The subjects under tests were required to perform tasks requiring visual inspection, eye–hand coordination and way finding. The subjects did not have any tactile feedback and the visual information provided was live dotted images captured by a camera on a head-mounted low vision enhancing system and processed through a filter generating images similar to the images we expect the blind persons to perceive. The images were locked to the subject’s gaze by means of video-based pupil tracking. In the detection and visual inspection task, the subject scanned a modified checkerboard and counted the number of square white fields on a square checkerboard, in the eye–hand coordination task, the subject placed black checkers on the white fields of the checkerboard, and in the way-finding task, the subjects maneuvered themselves through a virtual maze using a game controller. The accuracy and the time to complete the task were used as the measured outcome. As per the surgical studies by this research group, it might be possible to implant up to 650 electrodes; hence, 650 dots were used to create images and performance studied under 0% dropout (650 dots), 25% dropout (488 dots) and 50% dropout (325 dots) conditions. It was observed that all the subjects under test were able to learn the given tasks and showed improvement in performance with practice even with a dropout condition of 50% (325 dots). Hence, if a cortical prosthesis is implanted in human subjects, they might be able to perform similar tasks and with practice should be able to adapt to dotted images even with a low resolution of 325 dots of phosphene. PMID:19458397
Direct mapping of electrical noise sources in molecular wire-based devices
Cho, Duckhyung; Lee, Hyungwoo; Shekhar, Shashank; Yang, Myungjae; Park, Jae Yeol; Hong, Seunghun
2017-01-01
We report a noise mapping strategy for the reliable identification and analysis of noise sources in molecular wire junctions. Here, different molecular wires were patterned on a gold substrate, and the current-noise map on the pattern was measured and analyzed, enabling the quantitative study of noise sources in the patterned molecular wires. The frequency spectra of the noise from the molecular wire junctions exhibited characteristic 1/f2 behavior, which was used to identify the electrical signals from molecular wires. This method was applied to analyze the molecular junctions comprising various thiol molecules on a gold substrate, revealing that the noise in the junctions mainly came from the fluctuation of the thiol bonds. Furthermore, we quantitatively compared the frequencies of such bond fluctuations in different molecular wire junctions and identified molecular wires with lower electrical noise, which can provide critical information for designing low-noise molecular electronic devices. Our method provides valuable insights regarding noise phenomena in molecular wires and can be a powerful tool for the development of molecular electronic devices. PMID:28233821
Direct mapping of electrical noise sources in molecular wire-based devices
NASA Astrophysics Data System (ADS)
Cho, Duckhyung; Lee, Hyungwoo; Shekhar, Shashank; Yang, Myungjae; Park, Jae Yeol; Hong, Seunghun
2017-02-01
We report a noise mapping strategy for the reliable identification and analysis of noise sources in molecular wire junctions. Here, different molecular wires were patterned on a gold substrate, and the current-noise map on the pattern was measured and analyzed, enabling the quantitative study of noise sources in the patterned molecular wires. The frequency spectra of the noise from the molecular wire junctions exhibited characteristic 1/f2 behavior, which was used to identify the electrical signals from molecular wires. This method was applied to analyze the molecular junctions comprising various thiol molecules on a gold substrate, revealing that the noise in the junctions mainly came from the fluctuation of the thiol bonds. Furthermore, we quantitatively compared the frequencies of such bond fluctuations in different molecular wire junctions and identified molecular wires with lower electrical noise, which can provide critical information for designing low-noise molecular electronic devices. Our method provides valuable insights regarding noise phenomena in molecular wires and can be a powerful tool for the development of molecular electronic devices.
NASA Astrophysics Data System (ADS)
D'Elia, A.; Cibin, G.; Robbins, P. E.; Maggi, V.; Marcelli, A.
2017-11-01
We report on the development of a device designed to improve X-ray Powder Diffraction data acquisition through mapping coupled to a rotational motion of the sample. The device and procedures developed aim at overcoming the experimental issues that accompany the analysis of inhomogeneous samples, such as powders, dust or aerosols deposited on a flat substrate. Introducing the mapping of the substrate on which powders are deposited and at the same time the rotation, we may overcome drawbacks associated to inhomogeneous distributions such as ring-like patterns due to the coffee stain effect generated by the evaporation of a solution. Experimental data have been collected from powders of a NIST standard soil sample (11 μg) and from an airborne dust extracted from deep ice cores in Antarctica (9.6 μg). Both particulate samples have been deposited on polycarbonate membranes from ultra-dilute solutions. Data show that this approach makes possible to collect XRD patterns useful to identify mineral fractions present in these low density samples.
NASA Astrophysics Data System (ADS)
Prentice, C. S.; Koehler, R. D.; Baldwin, J. N.; Harding, D. J.
2004-12-01
We are mapping in detail active traces of the San Andreas Fault in Mendocino and Sonoma Counties in northern California, using recently acquired airborne LiDAR (also known as ALSM) data. The LiDAR data set provides a powerful new tool for mapping geomorphic features related to the San Andreas Fault because it can be used to produce high-resolution images of the ground surfaces beneath the forest canopy along the 70-km-long section of the fault zone encompassed by the data. Our effort represents the first use of LiDAR data to map active fault traces in a densely vegetated region along the San Andreas Fault. We are using shaded relief images generated from bare-earth DEMs to conduct detailed mapping of fault-related geomorphic features (e.g. scarps, offset streams, linear valleys, shutter ridges, and sag ponds) between Fort Ross and Point Arena. Initially, we map fault traces digitally, on-screen, based only on the geomorphology interpreted from LiDAR images. We then conduct field reconnaissance using the initial computer-based maps in order to verify and further refine our mapping. We found that field reconnaissance is of utmost importance in producing an accurate and detailed map of fault traces. Many lineaments identified as faults from the on-screen images were determined in the field to be old logging roads or other features unrelated to faulting. Also, in areas where the resolution of LiDAR data is poor, field reconnaissance, coupled with topographic maps and aerial photographs, permits a more accurate location of fault-related geomorphic features. LiDAR images are extremely valuable as a base for field mapping in this heavily forested area, and the use of LiDAR is far superior to traditional mapping techniques relying only on aerial photography and 7.5 minute USGS quadrangle topographic maps. Comparison with earlier mapping of the northern San Andreas fault (Brown and Wolfe, 1972) shows that in some areas the LiDAR data allow a correction of the fault trace location of up to several hundred meters. To date we have field checked approximately 24 km of the 70-km-long section of the fault for which LiDAR data is available. The remaining 46 km will be field checked in 2005. The result will be a much more accurate map of the active traces of the northern San Andreas Fault, which will be of great use for future fault studies.
Evaluating a medical error taxonomy.
Brixey, Juliana; Johnson, Todd R; Zhang, Jiajie
2002-01-01
Healthcare has been slow in using human factors principles to reduce medical errors. The Center for Devices and Radiological Health (CDRH) recognizes that a lack of attention to human factors during product development may lead to errors that have the potential for patient injury, or even death. In response to the need for reducing medication errors, the National Coordinating Council for Medication Errors Reporting and Prevention (NCC MERP) released the NCC MERP taxonomy that provides a standard language for reporting medication errors. This project maps the NCC MERP taxonomy of medication error to MedWatch medical errors involving infusion pumps. Of particular interest are human factors associated with medical device errors. The NCC MERP taxonomy of medication errors is limited in mapping information from MEDWATCH because of the focus on the medical device and the format of reporting.
Opening the cusp. [using magnetic field topology
NASA Technical Reports Server (NTRS)
Crooker, N. U.; Toffoletto, F. R.; Gussenhoven, M. S.
1991-01-01
This paper discusses the magnetic field topology (determined by the superposition of dipole, image, and uniform fields) for mapping the cusp to the ionosphere. The model results are compared to both new and published observations and are then used to map the footprint of a flux transfer event caused by a time variation in the merging rate. It is shown that the cusp geometry distorts the field lines mapped from the magnetopause to yield footprints with dawn and dusk protrusions into the region of closed magnetic flux.
A study of the suitability of ferrite for use in low-field insertion devices
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, K.; Hassenzahl, W.V.
1995-02-01
Most insertion devices built to date use rare-earth permanent-magnet materials, which have a high remanent field and are more expensive than many other permanent-magnet materials. Low-field insertion devices could use less-expensive, lower performance magnetic materials if they had suitable magnetic characteristics. These materials must be resistant to demagnetization during construction and operation of the insertion device, have uniform magnetization, possess low minor-axis magnetic moments, and have small minor field components on the surfaces. This paper describes an investigation to determine if ferrite possesses magnetic qualities suitable for insertion device applications. The type of ferrite investigated, MMPA Ceramic 8 from Stackpolemore » Inc., was found to be acceptable for insertion device applications.« less
Detection And Mapping (DAM) package. Volume 4B: Software System Manual, part 2
NASA Technical Reports Server (NTRS)
Schlosser, E. H.
1980-01-01
Computer programs, graphic devices, and an integrated set of manual procedures designed for efficient production of precisely registered and formatted maps from digital data are presented. The software can be used on any Univac 1100 series computer. The software includes pre-defined spectral limits for use in classifying and mapping surface water for LANDSAT-1, LANDSAT-2, and LANDSAT-3.
Emulating Industrial Control System Field Devices Using Gumstix Technology
2012-06-01
EMULATING INDUSTRIAL CONTROL SYSTEM FIELD DEVICES USING GUMSTIX TECHNOLOGY THESIS Dustin J...APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED. The views expressed in this thesis are those of the...EMULATING INDUSTRIAL CONTROL SYSTEM FIELD DEVICES USING GUMSTIX TECHNOLOGY THESIS Presented to the Faculty Department of
An integrated system for land resources supervision based on the IoT and cloud computing
NASA Astrophysics Data System (ADS)
Fang, Shifeng; Zhu, Yunqiang; Xu, Lida; Zhang, Jinqu; Zhou, Peiji; Luo, Kan; Yang, Jie
2017-01-01
Integrated information systems are important safeguards for the utilisation and development of land resources. Information technologies, including the Internet of Things (IoT) and cloud computing, are inevitable requirements for the quality and efficiency of land resources supervision tasks. In this study, an economical and highly efficient supervision system for land resources has been established based on IoT and cloud computing technologies; a novel online and offline integrated system with synchronised internal and field data that includes the entire process of 'discovering breaches, analysing problems, verifying fieldwork and investigating cases' was constructed. The system integrates key technologies, such as the automatic extraction of high-precision information based on remote sensing, semantic ontology-based technology to excavate and discriminate public sentiment on the Internet that is related to illegal incidents, high-performance parallel computing based on MapReduce, uniform storing and compressing (bitwise) technology, global positioning system data communication and data synchronisation mode, intelligent recognition and four-level ('device, transfer, system and data') safety control technology. The integrated system based on a 'One Map' platform has been officially implemented by the Department of Land and Resources of Guizhou Province, China, and was found to significantly increase the efficiency and level of land resources supervision. The system promoted the overall development of informatisation in fields related to land resource management.
A conformal, bio-interfaced class of silicon electronics for mapping cardiac electrophysiology.
Viventi, Jonathan; Kim, Dae-Hyeong; Moss, Joshua D; Kim, Yun-Soung; Blanco, Justin A; Annetta, Nicholas; Hicks, Andrew; Xiao, Jianliang; Huang, Younggang; Callans, David J; Rogers, John A; Litt, Brian
2010-03-24
In all current implantable medical devices such as pacemakers, deep brain stimulators, and epilepsy treatment devices, each electrode is independently connected to separate control systems. The ability of these devices to sample and stimulate tissues is hindered by this configuration and by the rigid, planar nature of the electronics and the electrode-tissue interfaces. Here, we report the development of a class of mechanically flexible silicon electronics for multiplexed measurement of signals in an intimate, conformal integrated mode on the dynamic, three-dimensional surfaces of soft tissues in the human body. We demonstrate this technology in sensor systems composed of 2016 silicon nanomembrane transistors configured to record electrical activity directly from the curved, wet surface of a beating porcine heart in vivo. The devices sample with simultaneous submillimeter and submillisecond resolution through 288 amplified and multiplexed channels. We use this system to map the spread of spontaneous and paced ventricular depolarization in real time, at high resolution, on the epicardial surface in a porcine animal model. This demonstration is one example of many possible uses of this technology in minimally invasive medical devices.
NASA Astrophysics Data System (ADS)
Une, Hiroshi; Nakano, Takayuki
2018-05-01
Geographic location is one of the most fundamental and indispensable information elements in the field of disaster response and prevention. For example, in the case of the Tohoku Earthquake in 2011, aerial photos taken immediately after the earthquake greatly improved information sharing among different government offices and facilitated rescue and recovery operations, and maps prepared after the disaster assisted in the rapid reconstruction of affected local communities. Thanks to the recent development of geospatial information technology, this information has become more essential for disaster response activities. Advancements in web mapping technology allows us to better understand the situation by overlaying various location-specific data on base maps on the web and specifying the areas on which activities should be focused. Through 3-D modelling technology, we can have a more realistic understanding of the relationship between disaster and topography. Geospatial information technology can sup-port proper preparation and emergency responses against disasters by individuals and local communities through hazard mapping and other information services using mobile devices. Thus, geospatial information technology is playing a more vital role on all stages of disaster risk management and responses. In acknowledging geospatial information's vital role in disaster risk reduction, the Sendai Framework for Disaster Risk Reduction 2015-2030, adopted at the Third United Nations World Conference on Disaster Risk Reduction, repeatedly reveals the importance of utilizing geospatial information technology for disaster risk reduction. This presentation aims to report the recent practical applications of geospatial information technology for disaster risk management and responses.
High-resolution three-dimensional imaging with compress sensing
NASA Astrophysics Data System (ADS)
Wang, Jingyi; Ke, Jun
2016-10-01
LIDAR three-dimensional imaging technology have been used in many fields, such as military detection. However, LIDAR require extremely fast data acquisition speed. This makes the manufacture of detector array for LIDAR system is very difficult. To solve this problem, we consider using compress sensing which can greatly decrease the data acquisition and relax the requirement of a detection device. To use the compressive sensing idea, a spatial light modulator will be used to modulate the pulsed light source. Then a photodetector is used to receive the reflected light. A convex optimization problem is solved to reconstruct the 2D depth map of the object. To improve the resolution in transversal direction, we use multiframe image restoration technology. For each 2D piecewise-planar scene, we move the SLM half-pixel each time. Then the position where the modulated light illuminates will changed accordingly. We repeat moving the SLM to four different directions. Then we can get four low-resolution depth maps with different details of the same plane scene. If we use all of the measurements obtained by the subpixel movements, we can reconstruct a high-resolution depth map of the sense. A linear minimum-mean-square error algorithm is used for the reconstruction. By combining compress sensing and multiframe image restoration technology, we reduce the burden on data analyze and improve the efficiency of detection. More importantly, we obtain high-resolution depth maps of a 3D scene.
Geologic Map of the Eaton Reservoir Quadrangle, Larimer County, Colorado and Albany County, Wyoming
Workman, Jeremiah B.
2008-01-01
New geologic mapping of the Eaton Reservoir 7.5' quadrangle defines geologic relationships in the northern Front Range along the Colorado/Wyoming border approximately 35 km south of Laramie, Wyo. Previous mapping within the quadrangle was limited to regional reconnaissance mapping (Tweto, 1979; Camp, 1979; Burch, 1983) and some minor site-specific studies (Carlson and Marsh, 1986; W. Braddock, unpub. mapping, 1982). Braddock and others (1989) mapped the Diamond Peak 7.5' quadrangle to the east, Burch (1983) mapped rocks of the Rawah batholith to the south, W. Braddock (unpub. mapping, 1981) mapped the Sand Creek Pass 7.5' quadrangle to the west, and Ver Ploeg and Boyd (2000) mapped the Laramie 30' x 60' quadrangle to the north. Field work was completed during 2005 and 2006 and the mapping was compiled at a scale of 1:24,000. Minimal petrographic work and isotope dating was done in connection with the present mapping, but detailed petrographic and isotope studies were carried out on correlative map units in surrounding areas as part of a related regional study of the northern Front Range. Classification of Proterozoic rocks is primarily based upon field observation of bulk mineral composition, macroscopic textural features, and field relationships that allow for correlation with rocks studied in greater detail outside of the map area.
Automated high resolution mapping of coffee in Rwanda using an expert Bayesian network
NASA Astrophysics Data System (ADS)
Mukashema, A.; Veldkamp, A.; Vrieling, A.
2014-12-01
African highland agro-ecosystems are dominated by small-scale agricultural fields that often contain a mix of annual and perennial crops. This makes such systems difficult to map by remote sensing. We developed an expert Bayesian network model to extract the small-scale coffee fields of Rwanda from very high resolution data. The model was subsequently applied to aerial orthophotos covering more than 99% of Rwanda and on one QuickBird image for the remaining part. The method consists of a stepwise adjustment of pixel probabilities, which incorporates expert knowledge on size of coffee trees and fields, and on their location. The initial naive Bayesian network, which is a spectral-based classification, yielded a coffee map with an overall accuracy of around 50%. This confirms that standard spectral variables alone cannot accurately identify coffee fields from high resolution images. The combination of spectral and ancillary data (DEM and a forest map) allowed mapping of coffee fields and associated uncertainties with an overall accuracy of 87%. Aggregated to district units, the mapped coffee areas demonstrated a high correlation with the coffee areas reported in the detailed national coffee census of 2009 (R2 = 0.92). Unlike the census data our map provides high spatial resolution of coffee area patterns of Rwanda. The proposed method has potential for mapping other perennial small scale cropping systems in the East African Highlands and elsewhere.
Predicting successful tactile mapping of virtual objects.
Brayda, Luca; Campus, Claudio; Gori, Monica
2013-01-01
Improving spatial ability of blind and visually impaired people is the main target of orientation and mobility (O&M) programs. In this study, we use a minimalistic mouse-shaped haptic device to show a new approach aimed at evaluating devices providing tactile representations of virtual objects. We consider psychophysical, behavioral, and subjective parameters to clarify under which circumstances mental representations of spaces (cognitive maps) can be efficiently constructed with touch by blindfolded sighted subjects. We study two complementary processes that determine map construction: low-level perception (in a passive stimulation task) and high-level information integration (in an active exploration task). We show that jointly considering a behavioral measure of information acquisition and a subjective measure of cognitive load can give an accurate prediction and a practical interpretation of mapping performance. Our simple TActile MOuse (TAMO) uses haptics to assess spatial ability: this may help individuals who are blind or visually impaired to be better evaluated by O&M practitioners or to evaluate their own performance.
NASA Astrophysics Data System (ADS)
Shaw, Adam; Nunn, John
2010-06-01
In treatment planning for ultrasound therapy, it is desirable to know the 3D structure of the ultrasound field. However, mapping an ultrasound field in 3D is very slow, with even a single planar raster scan taking typically several hours. Additionally, hydrophones that are used for field mapping are expensive and can be damaged in some therapy fields. So there is value in rapid methods which enable visualization and mapping of the ultrasound field in about 1 min. In this note we explore the feasibility of mapping the intensity distribution by measuring the temperature distribution produced in a thin sheet of absorbing material. A 0.2 mm thick acetate sheet forms a window in the wall of a water tank containing the transducer. The window is oriented at 45° to the beam axis, and the distance from the transducer to the window can be varied. The temperature distribution is measured with an infrared camera; thermal images of the inclined plane could be viewed in real time or images could be captured for later analysis and 3D field reconstruction. We conclude that infrared thermography can be used to gain qualitative information about ultrasound fields. Thermal images are easily visualized with good spatial and thermal resolutions (0.044 mm and 0.05 °C in our system). The focus and field structure such as side lobes can be identified in real time from the direct video output. 3D maps and image planes at arbitrary orientations to the beam axis can be obtained and reconstructed within a few minutes. In this note we are primarily interested in the technique for characterization of high intensity focused ultrasound (HIFU) fields, but other applications such as physiotherapy fields are also possible.
The feasibility of an infrared system for real-time visualization and mapping of ultrasound fields.
Shaw, Adam; Nunn, John
2010-06-07
In treatment planning for ultrasound therapy, it is desirable to know the 3D structure of the ultrasound field. However, mapping an ultrasound field in 3D is very slow, with even a single planar raster scan taking typically several hours. Additionally, hydrophones that are used for field mapping are expensive and can be damaged in some therapy fields. So there is value in rapid methods which enable visualization and mapping of the ultrasound field in about 1 min. In this note we explore the feasibility of mapping the intensity distribution by measuring the temperature distribution produced in a thin sheet of absorbing material. A 0.2 mm thick acetate sheet forms a window in the wall of a water tank containing the transducer. The window is oriented at 45 degrees to the beam axis, and the distance from the transducer to the window can be varied. The temperature distribution is measured with an infrared camera; thermal images of the inclined plane could be viewed in real time or images could be captured for later analysis and 3D field reconstruction. We conclude that infrared thermography can be used to gain qualitative information about ultrasound fields. Thermal images are easily visualized with good spatial and thermal resolutions (0.044 mm and 0.05 degrees C in our system). The focus and field structure such as side lobes can be identified in real time from the direct video output. 3D maps and image planes at arbitrary orientations to the beam axis can be obtained and reconstructed within a few minutes. In this note we are primarily interested in the technique for characterization of high intensity focused ultrasound (HIFU) fields, but other applications such as physiotherapy fields are also possible.
Optical biosensors: a revolution towards quantum nanoscale electronics device fabrication.
Dey, D; Goswami, T
2011-01-01
The dimension of biomolecules is of few nanometers, so the biomolecular devices ought to be of that range so a better understanding about the performance of the electronic biomolecular devices can be obtained at nanoscale. Development of optical biomolecular device is a new move towards revolution of nano-bioelectronics. Optical biosensor is one of such nano-biomolecular devices that has a potential to pave a new dimension of research and device fabrication in the field of optical and biomedical fields. This paper is a very small report about optical biosensor and its development and importance in various fields.
Uniform rotating field network structure to efficiently package a magnetic bubble domain memory
NASA Technical Reports Server (NTRS)
Murray, Glen W. (Inventor); Chen, Thomas T. (Inventor); Wolfshagen, Ronald G. (Inventor); Ypma, John E. (Inventor)
1978-01-01
A unique and compact open coil rotating magnetic field network structure to efficiently package an array of bubble domain devices is disclosed. The field network has a configuration which effectively enables selected bubble domain devices from the array to be driven in a vertical magnetic field and in an independent and uniform horizontal rotating magnetic field. The field network is suitably adapted to minimize undesirable inductance effects, improve capabilities of heat dissipation, and facilitate repair or replacement of a bubble device.
Correlation of LANDSAT lineaments with Devonian gas fields in Lawrence County, Ohio
NASA Technical Reports Server (NTRS)
Johnson, G. O.
1981-01-01
In an effort to locate sources of natural gas in Ohio, the fractures and lineaments in Black Devonian shale were measured by: (1) field mapping of joints, swarms, and fractures; (2) stereophotointerpretation of geomorphic lineaments with precise photoquads; and (3) by interpreting the linear features on LANDSAT images. All results were compiled and graphically represented on 1:250,000 scale maps. The geologic setting of Lawrence County was defined and a field fracture map was generated and plotted as rose patterns at the exposure site. All maps were compared, contrasted, and correlated by superimposing each over the other as a transparency. The LANDSAT lineaments had significant correlation with the limits of oil and gas producing fields. These limits included termination of field production as well as extensions to other fields. The lineaments represent real rock fractures with zones of increased permeability in the near surface bedrock.
Multifunctional three-dimensional macroporous nanoelectronic networks for smart materials.
Liu, Jia; Xie, Chong; Dai, Xiaochuan; Jin, Lihua; Zhou, Wei; Lieber, Charles M
2013-04-23
Seamless and minimally invasive integration of 3D electronic circuitry within host materials could enable the development of materials systems that are self-monitoring and allow for communication with external environments. Here, we report a general strategy for preparing ordered 3D interconnected and addressable macroporous nanoelectronic networks from ordered 2D nanowire nanoelectronic precursors, which are fabricated by conventional lithography. The 3D networks have porosities larger than 99%, contain approximately hundreds of addressable nanowire devices, and have feature sizes from the 10-μm scale (for electrical and structural interconnections) to the 10-nm scale (for device elements). The macroporous nanoelectronic networks were merged with organic gels and polymers to form hybrid materials in which the basic physical and chemical properties of the host were not substantially altered, and electrical measurements further showed a >90% yield of active devices in the hybrid materials. The positions of the nanowire devices were located within 3D hybrid materials with ∼14-nm resolution through simultaneous nanowire device photocurrent/confocal microscopy imaging measurements. In addition, we explored functional properties of these hybrid materials, including (i) mapping time-dependent pH changes throughout a nanowire network/agarose gel sample during external solution pH changes, and (ii) characterizing the strain field in a hybrid nanoelectronic elastomer structures subject to uniaxial and bending forces. The seamless incorporation of active nanoelectronic networks within 3D materials reveals a powerful approach to smart materials in which the capabilities of multifunctional nanoelectronics allow for active monitoring and control of host systems.
Can direct electron detectors outperform phosphor-CCD systems for TEM?
NASA Astrophysics Data System (ADS)
Moldovan, G.; Li, X.; Kirkland, A.
2008-08-01
A new generation of imaging detectors is being considered for application in TEM, but which device architectures can provide the best images? Monte Carlo simulations of the electron-sensor interaction are used here to calculate the expected modulation transfer of monolithic active pixel sensors (MAPS), hybrid active pixel sensors (HAPS) and double sided Silicon strip detectors (DSSD), showing that ideal and nearly ideal transfer can be obtained using DSSD and MAPS sensors. These results highly recommend the replacement of current phosphor screen and charge coupled device imaging systems with such new directly exposed position sensitive electron detectors.
NASA Technical Reports Server (NTRS)
Realmuto, Vincent J.; Hon, Ken; Kahle, Anne B.; Abbott, Elsa A.; Pieri, David C.
1992-01-01
Multispectral thermal infrared radiance measurements of the Kupaianaha flow field were acquired with the NASA airborne Thermal Infrared Multispectral Scanner (TIMS) on the morning of 1 October 1988. The TIMS data were used to map both the temperature and emissivity of the surface of the flow field. The temperature map depicted the underground storage and transport of lava. The presence of molten lava in a tube or tumulus resulted in surface temperatures that were at least 10 C above ambient. The temperature map also clearly defined the boundaries of hydrothermal plumes which resulted from the entry of lava into the ocean. The emissivity map revealed the boundaries between individual flow units within the Kupaianaha field. Distinct spectral anomalies, indicative of silica-rich surface materials, were mapped near fumaroles and ocean entry sites. This apparent enrichment in silica may have resulted from an acid-induced leaching of cations from the surfaces of glassy flows.
Parallel mapping of optical near-field interactions by molecular motor-driven quantum dots.
Groß, Heiko; Heil, Hannah S; Ehrig, Jens; Schwarz, Friedrich W; Hecht, Bert; Diez, Stefan
2018-04-30
In the vicinity of metallic nanostructures, absorption and emission rates of optical emitters can be modulated by several orders of magnitude 1,2 . Control of such near-field light-matter interaction is essential for applications in biosensing 3 , light harvesting 4 and quantum communication 5,6 and requires precise mapping of optical near-field interactions, for which single-emitter probes are promising candidates 7-11 . However, currently available techniques are limited in terms of throughput, resolution and/or non-invasiveness. Here, we present an approach for the parallel mapping of optical near-field interactions with a resolution of <5 nm using surface-bound motor proteins to transport microtubules carrying single emitters (quantum dots). The deterministic motion of the quantum dots allows for the interpolation of their tracked positions, resulting in an increased spatial resolution and a suppression of localization artefacts. We apply this method to map the near-field distribution of nanoslits engraved into gold layers and find an excellent agreement with finite-difference time-domain simulations. Our technique can be readily applied to a variety of surfaces for scalable, nanometre-resolved and artefact-free near-field mapping using conventional wide-field microscopes.
Application of remote sensing techniques to the geology of the bonanza volcanic center
NASA Technical Reports Server (NTRS)
Marrs, R. W.
1973-01-01
A program is reported for evaluating remote sensing as an aid to geologic mapping for the past four years. Data tested in this evaluation include color and color infrared photography, multiband photography, low sun-angle photography, thermal infrared scanner imagery, and side-looking airborne radar. The relative utility of color and color infrared photography was tested as it was used to refine geologic maps in previously mapped areas, as field photos while mapping in the field, and in making photogeologic maps prior to field mapping. The latter technique served as a test of the maximum utility of the photography. In this application the photography was used successfully to locate 75% of all faults in a portion of the geologically complex Bonanza volcanic center and to map and correctly identify 93% of all Quaternary deposits and 62% of all areas of Tertiary volcanic outcrop in the area.
A Waist-Worn Inertial Measurement Unit for Long-Term Monitoring of Parkinson’s Disease Patients
Rodríguez-Martín, Daniel; Pérez-López, Carlos; Samà, Albert; Català, Andreu; Moreno Arostegui, Joan Manuel; Cabestany, Joan; Mestre, Berta; Alcaine, Sheila; Prats, Anna; de la Cruz Crespo, María; Bayés, Àngels
2017-01-01
Inertial measurement units (IMUs) are devices used, among other fields, in health applications, since they are light, small and effective. More concretely, IMUs have been demonstrated to be useful in the monitoring of motor symptoms of Parkinson’s disease (PD). In this sense, most of previous works have attempted to assess PD symptoms in controlled environments or short tests. This paper presents the design of an IMU, called 9 × 3, that aims to assess PD symptoms, enabling the possibility to perform a map of patients’ symptoms at their homes during long periods. The device is able to acquire and store raw inertial data for artificial intelligence algorithmic training purposes. Furthermore, the presented IMU enables the real-time execution of the developed and embedded learning models. Results show the great flexibility of the 9 × 3, storing inertial information and algorithm outputs, sending messages to external devices and being able to detect freezing of gait and bradykinetic gait. Results obtained in 12 patients exhibit a sensitivity and specificity over 80%. Additionally, the system enables working 23 days (at waking hours) with a 1200 mAh battery and a sampling rate of 50 Hz, opening up the possibility to be used for other applications like wellbeing and sports. PMID:28398265
Beta Testing StraboSpot: Perspectives on mobile field mapping and data collection
NASA Astrophysics Data System (ADS)
Bunse, E.; Graham, K. A.; Rufledt, C.; Walker, J. D.; Müller, A.; Tikoff, B.
2017-12-01
Geologic field mapping has recently transitioned away from traditional techniques (e.g. field notebooks, paper mapping, Brunton compasses) and towards mobile `app' mapping technology. The StraboSpot system (Strabo) is an open-source solution for collection and storage for geologic field, microstructural, and lab-based data. Strabo's mission is to "enable recording and sharing data within the geoscience community, encourage interdisciplinary research, and facilitate the investigation of scientific questions that cannot currently be addressed" (Walker et al., 2015). Several mobile application beta tests of the system, on both Android and Apple iOS platforms using smartphones and tablets, began in Summer 2016. Students at the 2016 and 2017 University of Kansas Field Camps used Strabo in place of ArcGIS for Desktop on Panasonic Toughbooks, to field map two study areas. Strabo was also field tested by students of graduate and undergraduate level for both geo/thermochronologic sample collection and reconnaissance mapping associated with regional tectonic analysis in California. Throughout this period of testing, the app was geared toward structural and tectonic geologic data collection, but is versatile enough for other communities to currently use and is expanding to accommodate the sedimentology and petrology communities. Overall, users in each of the beta tests acclimated quickly to using Strabo for field data collection. Some key advantages to using Strabo over traditional mapping methods are: (1) Strabo allows for consolidation of materials in the field; (2) helps students track their position in the field with integrated GPS; and (3) Strabo data is in a uniform format making it simple for geologists to collaborate. While traditional field methods are not likely to go out of style in the near future, Strabo acts as a bridge between professional and novice geologists by providing a tool that is intuitive on all levels of geological and technological experience and allows for more effective collaboration in the field. Walker, J. Douglas, et al. (2015), Development of Structural Geology and Tectonics Data System with Field and Lab Interface, Abstract IN21E-04 presented at 2015 Fall Meeting, AGU, San Francisco, Calif., 14-18 Dec.
NASA Astrophysics Data System (ADS)
Lang, K. A.; Petrie, G.
2014-12-01
Extended field-based summer courses provide an invaluable field experience for undergraduate majors in the geosciences. These courses often utilize the construction of geological maps and structural cross sections as the primary pedagogical tool to teach basic map orientation, rock identification and structural interpretation. However, advances in the usability and ubiquity of Geographic Information Systems in these courses presents new opportunities to evaluate student work. In particular, computer-based quantification of systematic mapping errors elucidates the factors influencing student success in the field. We present a case example from a mapping exercise conducted in a summer Field Geology course at a popular field location near Dillon, Montana. We use a computer algorithm to automatically compare the placement and attribution of unit contacts with spatial variables including topographic slope, aspect, bedding attitude, ground cover and distance from starting location. We compliment analyses with anecdotal and survey data that suggest both physical factors (e.g. steep topographic slope) as well as structural nuance (e.g. low angle bedding) may dominate student frustration, particularly in courses with a high student to instructor ratio. We propose mechanisms to improve student experience by allowing students to practice skills with orientation games and broadening student background with tangential lessons (e.g. on colluvial transport processes). As well, we suggest low-cost ways to decrease the student to instructor ratio by supporting returning undergraduates from previous years or staging mapping over smaller areas. Future applications of this analysis might include a rapid and objective system for evaluation of student maps (including point-data, such as attitude measurements) and quantification of temporal trends in student work as class sizes, pedagogical approaches or environmental variables change. Long-term goals include understanding and characterizing stochasticity in geological mapping beyond the undergraduate classroom, and better quantifying uncertainty in published map products.
Ryder, Robert T.; Kinney, Scott A.; Suitt, Stephen E.; Merrill, Matthew D.; Trippi, Michael H.; Ruppert, Leslie F.; Ryder, Robert T.
2014-01-01
In 2006 and 2007, the greenline Appalachian basin field maps were digitized under the supervision of Scott Kinney and converted to geographic information system (GIS) files for chapter I.1 (this volume). By converting these oil and gas field maps to a digital format and maintaining the field names where noted, they are now available for a variety of oil and gas and possibly carbon-dioxide sequestration projects. Having historical names assigned to known digitized conventional fields provides a convenient classification scheme into which cumulative production and ultimate field-size databases can be organized. Moreover, as exploratory and development drilling expands across the basin, many previously named fields that were originally treated as conventional fields have evolved into large, commonly unnamed continuous-type accumulations. These new digital maps will facilitate a comparison between EUR values from recently drilled, unnamed parts of continuous accumulations and EUR values from named fields discovered early during the exploration cycle of continuous accumulations.
Polarization imaging of imperfect m-plane GaN surfaces
NASA Astrophysics Data System (ADS)
Sakai, Yuji; Kawayama, Iwao; Nakanishi, Hidetoshi; Tonouchi, Masayoshi
2017-04-01
Surface polar states in m-plane GaN wafers were studied using a laser terahertz (THz) emission microscope (LTEM). Femtosecond laser illumination excites THz waves from the surface due to photocarrier acceleration by local spontaneous polarization and/or the surface built-in electric field. The m-plane, in general, has a large number of unfavorable defects and unintentional polarization inversion created during the regrowth process. The LTEM images can visualize surface domains with different polarizations, some of which are hard to visualize with photoluminescence mapping, i.e., non-radiative defect areas. The present study demonstrates that the LTEM provides rich information about the surface polar states of GaN, which is crucial to improve the performance of GaN-based optoelectronic and power devices.
Technical and commerical challenges in high Tc SQUIDs and their industrial applications
NASA Technical Reports Server (NTRS)
Lu, D. F.
1995-01-01
A SQUID is the most sensitive device for measuring changes in magnetic flux. Since its discovery in the sixties, scientists have made consistent efforts to apply SQUID's to various applications. Instruments that are the most sensitive in their respective categories have been built, such as SQUID DC susceptometer that is now manufactured by Quantum Design, pico-voltmeter which could measure 10(exp -14) volts, and gravitational wave detectors. One of the most successful applications of SQUID's is in magnetoencephalography, a non-invasive technique for investigating neuronal activity in the living human brain. This technique employs a multi-channel SQUID magnetometer that maps the weak magnetic field generated by small current when information is processed in brain, and its performance is marvelous.
Simulating the room-temperature dynamic motion of a ferromagnetic vortex in a bistable potential
NASA Astrophysics Data System (ADS)
Haber, E.; Badea, R.; Berezovsky, J.
2018-05-01
The ability to precisely and reliably control the dynamics of ferromagnetic (FM) vortices could lead to novel nonvolatile memory devices and logic gates. Intrinsic and fabricated defects in the FM material can pin vortices and complicate the dynamics. Here, we simulated switching a vortex between bistable pinning sites using magnetic field pulses. The dynamic motion was modeled with the Thiele equation for a massless, rigid vortex subject to room-temperature thermal noise. The dynamics were explored both when the system was at zero temperature and at room-temperature. The probability of switching for different pulses was calculated, and the major features are explained using the basins of attraction map of the two pinning sites.
NASA Technical Reports Server (NTRS)
Derochemont, L. Pierre; Oakes, Carlton E.; Squillante, Michael R.; Duan, Hong-Min; Hermann, Allen M.; Andrews, Robert J.; Poeppel, Roger B.; Maroni, Victor A.; Carlberg, Ingrid A.; Kelliher, Warren C.
1992-01-01
This paper reviews superconducting magnets and high T(sub c) superconducting oxide ceramic materials technology to identify areas of fundamental impasse to the fabrication of components and devices that tap what are believed to be the true potential of these new materials. High T(sub c) ceramics pose problems in fundamentally different areas which need to be solved unlike low T(sub c) materials. The authors map out an experimental plan designed to research process technologies which, if suitably implemented, should allow these deficiencies to be solved. Finally, assessments are made of where and on what regimes magnetic system designers should focus their attention to advance the practical development of systems based on these new materials.
Contrast Transmission In Medical Image Display
NASA Astrophysics Data System (ADS)
Pizer, Stephen M.; Zimmerman, John B.; Johnston, R. Eugene
1982-11-01
The display of medical images involves transforming recorded intensities such at CT numbers into perceivable intensities such as combinations of color and luminance. For the viewer to extract the most information about patterns of decreasing and increasing recorded intensity, the display designer must pay attention to three issues: 1) choice of display scale, including its discretization; 2) correction for variations in contrast sensitivity across the display scale due to the observer and the display device (producing an honest display); and 3) contrast enhancement based on the information in the recorded image and its importance, determined by viewing objectives. This paper will present concepts and approaches in all three of these areas. In choosing display scales three properties are important: sensitivity, associability, and naturalness of order. The unit of just noticeable difference (jnd) will be carefully defined. An observer experiment to measure the jnd values across a display scale will be specified. The overall sensitivity provided by a scale as measured in jnd's gives a measure of sensitivity called the perceived dynamic range (PDR). Methods for determining the PDR fran the aforementioned PDR values, and PDR's for various grey and pseudocolor scales will be presented. Methods of achieving sensitivity while retaining associability and naturalness of order with pseudocolor scales will be suggested. For any display device and scale it is useful to compensate for the device and observer by preceding the device with an intensity mapping (lookup table) chosen so that perceived intensity is linear with display-driving intensity. This mapping can be determined from the aforementioned jnd values. With a linearized display it is possible to standardize display devices so that the same image displayed on different devices or scales (e.g. video and hard copy) will be in sane sense perceptually equivalent. Furthermore, with a linearized display, it is possible to design contrast enhancement mappings that optimize the transmission of information from the recorded image to the display-driving signal with the assurance that this information will not then be lost by a -further nonlinear relation between display-driving and perceived intensity. It is suggested that optimal contrast enhancement mappings are adaptive to the local distribution of recorded intensities.
Research on facial expression simulation based on depth image
NASA Astrophysics Data System (ADS)
Ding, Sha-sha; Duan, Jin; Zhao, Yi-wu; Xiao, Bo; Wang, Hao
2017-11-01
Nowadays, face expression simulation is widely used in film and television special effects, human-computer interaction and many other fields. Facial expression is captured by the device of Kinect camera .The method of AAM algorithm based on statistical information is employed to detect and track faces. The 2D regression algorithm is applied to align the feature points. Among them, facial feature points are detected automatically and 3D cartoon model feature points are signed artificially. The aligned feature points are mapped by keyframe techniques. In order to improve the animation effect, Non-feature points are interpolated based on empirical models. Under the constraint of Bézier curves we finish the mapping and interpolation. Thus the feature points on the cartoon face model can be driven if the facial expression varies. In this way the purpose of cartoon face expression simulation in real-time is came ture. The experiment result shows that the method proposed in this text can accurately simulate the facial expression. Finally, our method is compared with the previous method. Actual data prove that the implementation efficiency is greatly improved by our method.
SHUTTLE IMAGING RADAR PROVIDES FRAMEWORK FOR SUBSURFACE GEOLOGIC EXPLORATION IN EGYPT AND SUDAN.
Breed, Carol S.; McCauley, John F.; Schaber, Gerald G.
1984-01-01
Shuttle Imaging Radar provides a pictorial framework to guide exploration for mineral resources (potential placers), groundwater sources, and prehistoric archaeological sites in the Western Desert of Egypt and Sudan. Documented penetration by the SIR-A signal of dry surficial sediment to depths of a meter or more revealed bedrock geologic features and networks of former stream valleys otherwise concealed beneath windblown sand, alluvium, and colluvial deposits. 'Radar units' mapped on SIR-A images according to relative brightness and degree of mottling correspond to subsurface geologic and topographic features identified in more than 50 test pits. Petrologic examination of pit samples confirms that a variety of depositional environments existed in this now hyper-arid region before it was mantled by windblown sand sheets and dunes. Wet sand was discovered in two buried valleys shown on the radar images and located in the field with the aid of co-registered maps and Landsat images, and a satellite navigation device. Buried valleys whose streams once traversed mineralized zones are potential sites of placers (gold, tin).
21 CFR 886.1360 - Visual field laser instrument.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Visual field laser instrument. 886.1360 Section 886.1360 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES OPHTHALMIC DEVICES Diagnostic Devices § 886.1360 Visual field laser instrument...
DOE Office of Scientific and Technical Information (OSTI.GOV)
McPherson, J. W., E-mail: mcpherson.reliability@yahoo.com
The local electric field (the field that distorts, polarizes, and weakens polar molecular bonds in dielectrics) has been investigated for hyper-thin dielectrics. Hyper-thin dielectrics are currently required for advanced semiconductor devices. In the work presented, it is shown that the common practice of using a Lorentz factor of L = 1/3, to describe the local electric field in a dielectric layer, remains valid for hyper-thin dielectrics. However, at the very edge of device structures, a rise in the macroscopic/Maxwell electric field E{sub diel} occurs and this causes a sharp rise in the effective Lorentz factor L{sub eff}. At capacitor and transistor edges,more » L{sub eff} is found to increase to a value 2/3 < L{sub eff} < 1. The increase in L{sub eff} results in a local electric field, at device edge, that is 50%–100% greater than in the bulk of the dielectric. This increase in local electric field serves to weaken polar bonds thus making them more susceptible to breakage by standard Boltzmann and/or current-driven processes. This has important time-dependent dielectric breakdown (TDDB) implications for all electronic devices utilizing polar materials, including GaN devices that suffer from device-edge TDDB.« less
A high performance cost-effective digital complex correlator for an X-band polarimetry survey.
Bergano, Miguel; Rocha, Armando; Cupido, Luís; Barbosa, Domingos; Villela, Thyrso; Boas, José Vilas; Rocha, Graça; Smoot, George F
2016-01-01
The detailed knowledge of the Milky Way radio emission is important to characterize galactic foregrounds masking extragalactic and cosmological signals. The update of the global sky models describing radio emissions over a very large spectral band requires high sensitivity experiments capable of observing large sky areas with long integration times. Here, we present the design of a new 10 GHz (X-band) polarimeter digital back-end to map the polarization components of the galactic synchrotron radiation field of the Northern Hemisphere sky. The design follows the digital processing trends in radio astronomy and implements a large bandwidth (1 GHz) digital complex cross-correlator to extract the Stokes parameters of the incoming synchrotron radiation field. The hardware constraints cover the implemented VLSI hardware description language code and the preliminary results. The implementation is based on the simultaneous digitized acquisition of the Cartesian components of the two linear receiver polarization channels. The design strategy involves a double data rate acquisition of the ADC interleaved parallel bus, and field programmable gate array device programming at the register transfer mode. The digital core of the back-end is capable of processing 32 Gbps and is built around an Altera field programmable gate array clocked at 250 MHz, 1 GSps analog to digital converters and a clock generator. The control of the field programmable gate array internal signal delays and a convenient use of its phase locked loops provide the timing requirements to achieve the target bandwidths and sensitivity. This solution is convenient for radio astronomy experiments requiring large bandwidth, high functionality, high volume availability and low cost. Of particular interest, this correlator was developed for the Galactic Emission Mapping project and is suitable for large sky area polarization continuum surveys. The solutions may also be adapted to be used at signal processing subsystem levels for large projects like the square kilometer array testbeds.
The CrowdMag App - turning your smartphone into a travelling magnetic observatory
NASA Astrophysics Data System (ADS)
Saltus, Richard; Nair, Manoj
2017-04-01
In 2014, we started the "CrowdMag" Project to collect vector magnetic data from digital magnetometers in smartphones. In October 2014, we released our first-generation Android and iOS apps. Currently, the CrowdMag Project has more than 15,000 enthusiastic users contributing more than 12 million magnetic data points from around the world. NOAA's National Centers for Environmental Information (NCEI), in partnership with the University of Colorado's Cooperative Institute for Research in the Environmental Sciences (CIRES) develops magnetic field models to aid navigation, resource exploration and scientific research. We use observatories, satellites and ship/airborne surveys to measure the magnetic data. However, the measurements leave gaps in coverage, particularly for short-wavelength urban noise. Our ultimate goal is to use data from the CrowdMag Project to improve global magnetic data coverage. Here we present some early results from the analysis of the crowdsourced magnetic data. A global magnetic model derived solely based on CrowdMag data is generally consistent with satellite-derived models such as World Magnetic Model. A unique contribution of the CrowdMag Project is the collection of ground level magnetic data in densely populated regions with an unprecedented spatial resolution. For example, we show a magnetic map (by binning the data collected into 100x100m cells) of central Boulder using 170,000 data points collected by about 60 devices over the duration October 2014- January 2016. The median magnetic field value is consistent with the expected magnitude of the Earth's background magnetic field. The standard deviation of the CrowdMag total field (F) values is much higher than the expected natural (i.e., diurnal and geologic) magnetic field variation. However, the phone's magnetometer is sensitive enough to capture the larger magnitude magnetic signature from the urban magnetic sources. We discuss the reliability of crowdsourced magnetic maps and their applications to navigation, global models, and local geologic or environmental investigations.
Low Field Squid MRI Devices, Components and Methods
NASA Technical Reports Server (NTRS)
Hahn, Inseob (Inventor); Penanen, Konstantin I. (Inventor); Eom, Byeong H. (Inventor)
2013-01-01
Low field SQUID MRI devices, components and methods are disclosed. They include a portable low field (SQUID)-based MRI instrument and a portable low field SQUID-based MRI system to be operated under a bed where a subject is adapted to be located. Also disclosed is a method of distributing wires on an image encoding coil system adapted to be used with an NMR or MRI device for analyzing a sample or subject and a second order superconducting gradiometer adapted to be used with a low field SQUID-based MRI device as a sensing component for an MRI signal related to a subject or sample.
Low Field Squid MRI Devices, Components and Methods
NASA Technical Reports Server (NTRS)
Penanen, Konstantin I. (Inventor); Eom, Byeong H. (Inventor); Hahn, Inseob (Inventor)
2014-01-01
Low field SQUID MRI devices, components and methods are disclosed. They include a portable low field (SQUID)-based MRI instrument and a portable low field SQUID-based MRI system to be operated under a bed where a subject is adapted to be located. Also disclosed is a method of distributing wires on an image encoding coil system adapted to be used with an NMR or MRI device for analyzing a sample or subject and a second order superconducting gradiometer adapted to be used with a low field SQUID-based MRI device as a sensing component for an MRI signal related to a subject or sample.
Low field SQUID MRI devices, components and methods
NASA Technical Reports Server (NTRS)
Penanen, Konstantin I. (Inventor); Eom, Byeong H. (Inventor); Hahn, Inseob (Inventor)
2011-01-01
Low field SQUID MRI devices, components and methods are disclosed. They include a portable low field (SQUID)-based MRI instrument and a portable low field SQUID-based MRI system to be operated under a bed where a subject is adapted to be located. Also disclosed is a method of distributing wires on an image encoding coil system adapted to be used with an NMR or MRI device for analyzing a sample or subject and a second order superconducting gradiometer adapted to be used with a low field SQUID-based MRI device as a sensing component for an MRI signal related to a subject or sample.
Low field SQUID MRI devices, components and methods
NASA Technical Reports Server (NTRS)
Penanen, Konstantin I. (Inventor); Eom, Byeong H (Inventor); Hahn, Inseob (Inventor)
2010-01-01
Low field SQUID MRI devices, components and methods are disclosed. They include a portable low field (SQUID)-based MRI instrument and a portable low field SQUID-based MRI system to be operated under a bed where a subject is adapted to be located. Also disclosed is a method of distributing wires on an image encoding coil system adapted to be used with an NMR or MRI device for analyzing a sample or subject and a second order superconducting gradiometer adapted to be used with a low field SQUID-based MRI device as a sensing component for an MRI signal related to a subject or sample.
A Detailed Study of Transom Breaking Waves
2009-05-01
be effectively mapped over a desired area. The novel projection optics of the DLP-enhanced QViz system used a Digital Micromirror Device (DMD), an...optical semiconductor instrument. The DMD device (Texas Instruments, DMD Discovery 1100) contains an array of 1024 by 768 micromirrors . In the
,
2006-01-01
GDA (Geologic Data Assistant) is an extension to ArcPad, a mobile mapping software program by Environmental Systems Research Institute (ESRI) designed to run on personal digital assistant (PDA) computers. GDA and ArcPad allow a PDA to replace the paper notebook and field map traditionally used for geologic mapping. GDA allows easy collection of field data.
Multiple Concurrent Visual-Motor Mappings: Implications for Models of Adaptation
NASA Technical Reports Server (NTRS)
Cunningham, H. A.; Welch, Robert B.
1994-01-01
Previous research on adaptation to visual-motor rearrangement suggests that the central nervous system represents accurately only 1 visual-motor mapping at a time. This idea was examined in 3 experiments where subjects tracked a moving target under repeated alternations between 2 initially interfering mappings (the 'normal' mapping characteristic of computer input devices and a 108' rotation of the normal mapping). Alternation between the 2 mappings led to significant reduction in error under the rotated mapping and significant reduction in the adaptation aftereffect ordinarily caused by switching between mappings. Color as a discriminative cue, interference versus decay in adaptation aftereffect, and intermanual transfer were also examined. The results reveal a capacity for multiple concurrent visual-motor mappings, possibly controlled by a parametric process near the motor output stage of processing.
7 CFR 12.22 - Highly erodible field determination criteria.
Code of Federal Regulations, 2014 CFR
2014-01-01
... percent or more of the total field acreage is identified as soil map units which are highly erodible; or (2) 50 or more acres in such field are identified as soil map units which are highly erodible. (b...
7 CFR 12.22 - Highly erodible field determination criteria.
Code of Federal Regulations, 2013 CFR
2013-01-01
... percent or more of the total field acreage is identified as soil map units which are highly erodible; or (2) 50 or more acres in such field are identified as soil map units which are highly erodible. (b...
7 CFR 12.22 - Highly erodible field determination criteria.
Code of Federal Regulations, 2011 CFR
2011-01-01
... percent or more of the total field acreage is identified as soil map units which are highly erodible; or (2) 50 or more acres in such field are identified as soil map units which are highly erodible. (b...
7 CFR 12.22 - Highly erodible field determination criteria.
Code of Federal Regulations, 2012 CFR
2012-01-01
... percent or more of the total field acreage is identified as soil map units which are highly erodible; or (2) 50 or more acres in such field are identified as soil map units which are highly erodible. (b...
Computer-Aided Design and Optimization of High-Performance Vacuum Electronic Devices
2006-08-15
approximations to the metric, and space mapping wherein low-accuracy (coarse mesh) solutions can potentially be used more effectively in an...interface and algorithm development. • Work on space - mapping or related methods for utilizing models of varying levels of approximation within an
Express RGB mapping of three to five skin chromophores
NASA Astrophysics Data System (ADS)
Oshina, Ilze; Spigulis, Janis; Rubins, Uldis; Kviesis-Kipge, Edgars; Lauberts, Kalvis
2017-07-01
Skin melanin, oxy- and deoxy-hemoglobin were snapshot-mapped under simultaneous 448-532-659 nm laser illumination by a smartphone RGB camera. Experimental prototypes for double-snapshot RGB mapping of four (melanin, bilirubin, oxy- and deoxy-hemoglobin) and five (melanin, bilirubin, lipids, oxy- and deoxy-hemoglobin) skin chromophores with reduced laser speckle artefacts have been developed and tested. A set of 405-448-532-659 nm lasers were used for four chromophores mapping, and a set of 405-448-532-659-842 nm lasers for five chromophores mapping. Clinical tests confirmed functionality of the developed devices.
2010-11-05
The Food and Drug Administration (FDA) is announcing the reclassification of the full-field digital mammography (FFDM) system from class III (premarket approval) to class II (special controls). The device type is intended to produce planar digital x-ray images of the entire breast; this generic type of device may include digital mammography acquisition software, full-field digital image receptor, acquisition workstation, automatic exposure control, image processing and reconstruction programs, patient and equipment supports, component parts, and accessories. The special control that will apply to the device is the guidance document entitled "Class II Special Controls Guidance Document: Full-Field Digital Mammography System." FDA is reclassifying the device into class II (special controls) because general controls along with special controls will provide a reasonable assurance of safety and effectiveness of the device. Elsewhere in this issue of the Federal Register, FDA is announcing the availability of the guidance document that will serve as the special control for this device.
Inferring the most probable maps of underground utilities using Bayesian mapping model
NASA Astrophysics Data System (ADS)
Bilal, Muhammad; Khan, Wasiq; Muggleton, Jennifer; Rustighi, Emiliano; Jenks, Hugo; Pennock, Steve R.; Atkins, Phil R.; Cohn, Anthony
2018-03-01
Mapping the Underworld (MTU), a major initiative in the UK, is focused on addressing social, environmental and economic consequences raised from the inability to locate buried underground utilities (such as pipes and cables) by developing a multi-sensor mobile device. The aim of MTU device is to locate different types of buried assets in real time with the use of automated data processing techniques and statutory records. The statutory records, even though typically being inaccurate and incomplete, provide useful prior information on what is buried under the ground and where. However, the integration of information from multiple sensors (raw data) with these qualitative maps and their visualization is challenging and requires the implementation of robust machine learning/data fusion approaches. An approach for automated creation of revised maps was developed as a Bayesian Mapping model in this paper by integrating the knowledge extracted from sensors raw data and available statutory records. The combination of statutory records with the hypotheses from sensors was for initial estimation of what might be found underground and roughly where. The maps were (re)constructed using automated image segmentation techniques for hypotheses extraction and Bayesian classification techniques for segment-manhole connections. The model consisting of image segmentation algorithm and various Bayesian classification techniques (segment recognition and expectation maximization (EM) algorithm) provided robust performance on various simulated as well as real sites in terms of predicting linear/non-linear segments and constructing refined 2D/3D maps.
Mapping of wildlife habitat in Farmington Bay, Utah
NASA Technical Reports Server (NTRS)
Jaynes, R. A.; Willie, R. D. (Principal Investigator)
1982-01-01
Mapping was accomplished through the interpretation of high-altitude color infrared photography. The feasibility of utilizing LANDSAT digital data to augment the analysis was explored; complex patterns of wildlife habitat and confusion of spectral classes resulted in the decision to make limited use of LANDSAT data in the analysis. The final product is a map which delineates wildlife habitat at a scale of 1:24,000. The map is registered to and printed on a screened U.S.G.S. quadrangle base map. Screened delineations of shoreline contours, mapped from a previous study, are also shown on the map. Intensive field checking of the map was accomplished for the Farmington Bay Waterfowl Management Area in August 1981; other areas on the map received only spot field checking.
Ibrahim, Yehia M.; Smith, Richard D.
2016-01-26
An ion trap device is disclosed. The device includes a series of electrodes that define an ion flow path. A radio frequency (RF) field is applied to the series of electrodes such that each electrode is phase shifted approximately 180 degrees from an adjacent electrode. A DC voltage is superimposed with the RF field to create a DC gradient to drive ions in the direction of the gradient. A second RF field or DC voltage is applied to selectively trap and release the ions from the device. Further, the device may be gridless and utilized at high pressure.
Hoffmann, M B; Kaule, F; Grzeschik, R; Behrens-Baumann, W; Wolynski, B
2011-07-01
Since its initial introduction in the mid-1990 s, retinotopic mapping of the human visual cortex, based on functional magnetic resonance imaging (fMRI), has contributed greatly to our understanding of the human visual system. Multiple cortical visual field representations have been demonstrated and thus numerous visual areas identified. The organisation of specific areas has been detailed and the impact of pathophysiologies of the visual system on the cortical organisation uncovered. These results are based on investigations at a magnetic field strength of 3 Tesla or less. In a field-strength comparison between 3 and 7 Tesla, it was demonstrated that retinotopic mapping benefits from a magnetic field strength of 7 Tesla. Specifically, the visual areas can be mapped with high spatial resolution for a detailed analysis of the visual field maps. Applications of fMRI-based retinotopic mapping in ophthalmological research hold promise to further our understanding of plasticity in the human visual cortex. This is highlighted by pioneering studies in patients with macular dysfunction or misrouted optic nerves. © Georg Thieme Verlag KG Stuttgart · New York.
Magnetoelectric(ME) Composites and Functional Devices Based on ME Effect
NASA Astrophysics Data System (ADS)
Gao, Junqi
Magnetoelectric (ME) effect, a cross-coupling effect between magnetic and electric orders, has stimulated lots of investigations due to the potential for applications as multifunctional devices. In this thesis, I have investigated and optimized the ME effect in Metglas/piezo-fibers ME composites with a multi-push pull configuration. Moreover, I have also proposed several devices based on such composites. In this thesis, several methods for ME composites optimization have been investigated. (i) the ME coefficients can be enhanced greatly by using single crystal fibers with high piezoelectric properties; (ii) the influence of volume ratio between Metglas and piezo-fibers on ME coefficients has been studied both experimentally and theoretically. Modulating the volume ratio can increase the ME coefficient greatly; and (iii) the annealing process can change the properties of Metglas, which can enhance the ME response as well. Moreover, one differential structure for ME composites has been proposed, which can reject the external vibration noise by a factor of 10 to 20 dB. This differential structure may allow for practical applications of such sensors in real-world environments. Based on optimized ME composites, two types of AC magnetic sensor have been developed. The objective is to develop one alternative type of magnetic sensor with low noise, low cost and room-temperature operation; that makes the sensor competitive with the commercially available magnetic sensor, such as Fluxgate, GMR, SQUID, etc. Conventional passive sensors have been fully investigated, including the design of sensor working at specific frequency range, sensitivity, noise density characterization, etc. Furthermore, the extremely low frequency (< 10-3 Hz) magnetic sensor has undergone a redesign of the charge amplifier circuit. Additionally, the noise model has been established to simulate the noise density for this device which can predict the noise floor precisely. Based on theoretical noise analysis, the noise floor can be eliminated greatly. Moreover, another active magnetic senor based on nonlinear ME voltage coefficient is also developed. Such sensor is not required for external DC bias that can help the sensor for sensor arrays application. Inspired by the bio-behaviors in nature, the geomagnetic sensor is designed for sensing geomagnetic fields; it is also potentially used for positioning systems based on the geomagnetic field. In this section, some works for DC sensor optimization have been performed, including the different piezo-fibers, driving frequency and magnetic flux concentration. Meanwhile, the lock-in circuit is designed for the magnetic sensor to replace of the commercial instruments. Finally, the man-portable multi-axial geomagnetic sensor has been developed which has the highest resolution of 10 nT for DC magnetic field. Based on the geomagnetic sensor, some demonstrations have been finished, such as orientation monitor, magnetic field mapping, and geomagnetic sensing. Other devices have been also developed besides the magnetic sensor: (i) magnetic energy harvesters are developed under the resonant frequency condition. Especially, one 60 Hz magnetic harvester is designed which can harvester the magnetic energy source generated by instruments; and (ii) frequency multiplication tuned by geomagnetic field is investigated which potentially can be used for frequency multiplier or geomagnetic guidance devices.
Multifunctional Catheters Combining Intracardiac Ultrasound Imaging and Electrophysiology Sensing
Stephens, Douglas N.; Cannata, Jonathan; Liu, Ruibin; Zhao, Jian Zhong; Shung, K. Kirk; Nguyen, Hien; Chia, Raymond; Dentinger, Aaron; Wildes, Douglas; Thomenius, Kai E.; Mahajan, Aman; Shivkumar, Kalyanam; Kim, Kang; O’Donnell, Matthew; Nikoozadeh, Amin; Oralkan, Omer; Khuri-Yakub, Pierre T.; Sahn, David J.
2015-01-01
A family of 3 multifunctional intracardiac imaging and electrophysiology (EP) mapping catheters has been in development to help guide diagnostic and therapeutic intracardiac EP procedures. The catheter tip on the first device includes a 7.5 MHz, 64-element, side-looking phased array for high resolution sector scanning. The second device is a forward-looking catheter with a 24-element 14 MHz phased array. Both of these catheters operate on a commercial imaging system with standard software. Multiple EP mapping sensors were mounted as ring electrodes near the arrays for electrocardiographic synchronization of ultrasound images and used for unique integration with EP mapping technologies. To help establish the catheters’ ability for integration with EP interventional procedures, tests were performed in vivo in a porcine animal model to demonstrate both useful intracardiac echocardiographic (ICE) visualization and simultaneous 3-D positional information using integrated electroanatomical mapping techniques. The catheters also performed well in high frame rate imaging, color flow imaging, and strain rate imaging of atrial and ventricular structures. The companion paper of this work discusses the catheter design of the side-looking catheter with special attention to acoustic lens design. The third device in development is a 10 MHz forward-looking ring array that is to be mounted at the distal tip of a 9F catheter to permit use of the available catheter lumen for adjunctive therapy tools. PMID:18986948
Multifunctional catheters combining intracardiac ultrasound imaging and electrophysiology sensing.
Stephens, D N; Cannata, J; Liu, Ruibin; Zhao, Jian Zhong; Shung, K K; Nguyen, Hien; Chia, R; Dentinger, A; Wildes, D; Thomenius, K E; Mahajan, A; Shivkumar, K; Kim, Kang; O'Donnell, M; Nikoozadeh, A; Oralkan, O; Khuri-Yakub, P T; Sahn, D J
2008-07-01
A family of 3 multifunctional intracardiac imaging and electrophysiology (EP) mapping catheters has been in development to help guide diagnostic and therapeutic intracardiac EP procedures. The catheter tip on the first device includes a 7.5 MHz, 64-element, side-looking phased array for high resolution sector scanning. The second device is a forward-looking catheter with a 24-element 14 MHz phased array. Both of these catheters operate on a commercial imaging system with standard software. Multiple EP mapping sensors were mounted as ring electrodes near the arrays for electrocardiographic synchronization of ultrasound images and used for unique integration with EP mapping technologies. To help establish the catheters' ability for integration with EP interventional procedures, tests were performed in vivo in a porcine animal model to demonstrate both useful intracardiac echocardiographic (ICE) visualization and simultaneous 3-D positional information using integrated electroanatomical mapping techniques. The catheters also performed well in high frame rate imaging, color flow imaging, and strain rate imaging of atrial and ventricular structures. The companion paper of this work discusses the catheter design of the side-looking catheter with special attention to acoustic lens design. The third device in development is a 10 MHz forward-looking ring array that is to be mounted at the distal tip of a 9F catheter to permit use of the available catheter lumen for adjunctive therapy tools.
Geologic Map of the Central Marysvale Volcanic Field, Southwestern Utah
Rowley, Peter D.; Cunningham, Charles G.; Steven, Thomas A.; Workman, Jeremiah B.; Anderson, John J.; Theissen, Kevin M.
2002-01-01
The geologic map of the central Marysvale volcanic field, southwestern Utah, shows the geology at 1:100,000 scale of the heart of one of the largest Cenozoic volcanic fields in the Western United States. The map shows the area of 38 degrees 15' to 38 degrees 42'30' N., and 112 degrees to 112 degrees 37'30' W. The Marysvale field occurs mostly in the High Plateaus, a subprovince of the Colorado Plateau and structurally a transition zone between the complexly deformed Great Basin to the west and the stable, little-deformed main part of the Colorado Plateau to the east. The western part of the field is in the Great Basin proper. The volcanic rocks and their source intrusions in the volcanic field range in age from about 31 Ma (Oligocene) to about 0.5 Ma (Pleistocene). These rocks overlie sedimentary rocks exposed in the mapped area that range in age from Ordovician to early Cenozoic. The area has been deformed by thrust faults and folds formed during the late Mesozoic to early Cenozoic Sevier deformational event, and later by mostly normal faults and folds of the Miocene to Quaternary basin-range episode. The map revises and updates knowledge gained during a long-term U.S. Geological Survey investigation of the volcanic field, done in part because of its extensive history of mining. The investigation also was done to provide framework geologic knowledge suitable for defining geologic and hydrologic hazards, for locating hydrologic and mineral resources, and for an understanding of geologic processes in the area. A previous geologic map (Cunningham and others, 1983, U.S. Geological Survey Miscellaneous Investigations Series I-1430-A) covered the same area as this map but was published at 1:50,000 scale and is obsolete due to new data. This new geologic map of the central Marysvale field, here published as U.S. Geological Survey Geologic Investigations Series I-2645-A, is accompanied by gravity and aeromagnetic maps of the same area and the same scale (Campbell and others, 1999, U.S. Geological Survey Geologic Investigations Series I-2645-B).
Field errors in hybrid insertion devices
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schlueter, R.D.
1995-02-01
Hybrid magnet theory as applied to the error analyses used in the design of Advanced Light Source (ALS) insertion devices is reviewed. Sources of field errors in hybrid insertion devices are discussed.
Localization noise in deep subwavelength plasmonic devices
NASA Astrophysics Data System (ADS)
Ghoreyshi, Ali; Victora, R. H.
2018-05-01
The grain shape dependence of absorption has been investigated in metal-insulator thin films. We demonstrate that randomness in the size and shape of plasmonic particles can lead to Anderson localization of polarization modes in the deep subwavelength regime. These localized modes can contribute to significant variation in the local field. In the case of plasmonic nanodevices, the effects of the localized modes have been investigated by mapping an electrostatic Hamiltonian onto the Anderson Hamiltonian in the presence of a random vector potential. We show that local behavior of the optical beam can be understood in terms of the weighted local density of the localized modes of the depolarization field. Optical nanodevices that operate on a length scale with high variation in the density of states of localized modes will experience a previously unidentified localized noise. This localization noise contributes uncertainty to the output of plasmonic nanodevices and limits their scalability. In particular, the resulting impact on heat-assisted magnetic recording is discussed.
Amenabar, Iban; Poly, Simon; Goikoetxea, Monika; Nuansing, Wiwat; Lasch, Peter; Hillenbrand, Rainer
2017-01-01
Infrared nanospectroscopy enables novel possibilities for chemical and structural analysis of nanocomposites, biomaterials or optoelectronic devices. Here we introduce hyperspectral infrared nanoimaging based on Fourier transform infrared nanospectroscopy with a tunable bandwidth-limited laser continuum. We describe the technical implementations and present hyperspectral infrared near-field images of about 5,000 pixel, each one covering the spectral range from 1,000 to 1,900 cm−1. To verify the technique and to demonstrate its application potential, we imaged a three-component polymer blend and a melanin granule in a human hair cross-section, and demonstrate that multivariate data analysis can be applied for extracting spatially resolved chemical information. Particularly, we demonstrate that distribution and chemical interaction between the polymer components can be mapped with a spatial resolution of about 30 nm. We foresee wide application potential of hyperspectral infrared nanoimaging for valuable chemical materials characterization and quality control in various fields ranging from materials sciences to biomedicine. PMID:28198384
NASA Astrophysics Data System (ADS)
Amenabar, Iban; Poly, Simon; Goikoetxea, Monika; Nuansing, Wiwat; Lasch, Peter; Hillenbrand, Rainer
2017-02-01
Infrared nanospectroscopy enables novel possibilities for chemical and structural analysis of nanocomposites, biomaterials or optoelectronic devices. Here we introduce hyperspectral infrared nanoimaging based on Fourier transform infrared nanospectroscopy with a tunable bandwidth-limited laser continuum. We describe the technical implementations and present hyperspectral infrared near-field images of about 5,000 pixel, each one covering the spectral range from 1,000 to 1,900 cm-1. To verify the technique and to demonstrate its application potential, we imaged a three-component polymer blend and a melanin granule in a human hair cross-section, and demonstrate that multivariate data analysis can be applied for extracting spatially resolved chemical information. Particularly, we demonstrate that distribution and chemical interaction between the polymer components can be mapped with a spatial resolution of about 30 nm. We foresee wide application potential of hyperspectral infrared nanoimaging for valuable chemical materials characterization and quality control in various fields ranging from materials sciences to biomedicine.
Dopant mapping in thin FIB prepared silicon samples by Off-Axis Electron Holography.
Pantzer, Adi; Vakahy, Atsmon; Eliyahou, Zohar; Levi, George; Horvitz, Dror; Kohn, Amit
2014-03-01
Modern semiconductor devices function due to accurate dopant distribution. Off-Axis Electron Holography (OAEH) in the transmission electron microscope (TEM) can map quantitatively the electrostatic potential in semiconductors with high spatial resolution. For the microelectronics industry, ongoing reduction of device dimensions, 3D device geometry, and failure analysis of specific devices require preparation of thin TEM samples, under 70 nm thick, by focused ion beam (FIB). Such thicknesses, which are considerably thinner than the values reported to date in the literature, are challenging due to FIB induced damage and surface depletion effects. Here, we report on preparation of TEM samples of silicon PN junctions in the FIB completed by low-energy (5 keV) ion milling, which reduced amorphization of the silicon to 10nm thick. Additional perpendicular FIB sectioning enabled a direct measurement of the TEM sample thickness in order to determine accurately the crystalline thickness of the sample. Consequently, we find that the low-energy milling also resulted in a negligible thickness of electrically inactive regions, approximately 4nm thick. The influence of TEM sample thickness, FIB induced damage and doping concentrations on the accuracy of the OAEH measurements were examined by comparison to secondary ion mass spectrometry measurements as well as to 1D and 3D simulations of the electrostatic potentials. We conclude that for TEM samples down to 100 nm thick, OAEH measurements of Si-based PN junctions, for the doping levels examined here, resulted in quantitative mapping of potential variations, within ~0.1 V. For thinner TEM samples, down to 20 nm thick, mapping of potential variations is qualitative, due to a reduced accuracy of ~0.3 V. This article is dedicated to the memory of Zohar Eliyahou. Copyright © 2014 Elsevier B.V. All rights reserved.
Adaptive metalenses with simultaneous electrical control of focal length, astigmatism, and shift.
She, Alan; Zhang, Shuyan; Shian, Samuel; Clarke, David R; Capasso, Federico
2018-02-01
Focal adjustment and zooming are universal features of cameras and advanced optical systems. Such tuning is usually performed longitudinally along the optical axis by mechanical or electrical control of focal length. However, the recent advent of ultrathin planar lenses based on metasurfaces (metalenses), which opens the door to future drastic miniaturization of mobile devices such as cell phones and wearable displays, mandates fundamentally different forms of tuning based on lateral motion rather than longitudinal motion. Theory shows that the strain field of a metalens substrate can be directly mapped into the outgoing optical wavefront to achieve large diffraction-limited focal length tuning and control of aberrations. We demonstrate electrically tunable large-area metalenses controlled by artificial muscles capable of simultaneously performing focal length tuning (>100%) as well as on-the-fly astigmatism and image shift corrections, which until now were only possible in electron optics. The device thickness is only 30 μm. Our results demonstrate the possibility of future optical microscopes that fully operate electronically, as well as compact optical systems that use the principles of adaptive optics to correct many orders of aberrations simultaneously.
Atomically resolved tissue integration.
Karlsson, Johan; Sundell, Gustav; Thuvander, Mattias; Andersson, Martin
2014-08-13
In the field of biomedical technology, a critical aspect is the ability to control and understand the integration of an implantable device in living tissue. Despite the technical advances in the development of biomaterials, the elaborate interplay encompassing materials science and biology on the atomic level is not very well understood. Within implantology, anchoring a biomaterial device into bone tissue is termed osseointegration. In the most accepted theory, osseointegration is defined as an interfacial bonding between implant and bone; however, there is lack of experimental evidence to confirm this. Here we show that atom probe tomography can be used to study the implant-tissue interaction, allowing for three-dimensional atomic mapping of the interface region. Interestingly, our analyses demonstrated that direct contact between Ca atoms and the implanted titanium oxide surface is formed without the presence of a protein interlayer, which means that a pure inorganic interface is created, hence giving experimental support to the current theory of osseointegration. We foresee that this result will be of importance in the development of future biomaterials as well as in the design of in vitro evaluation techniques.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bolotnikov,A.
2009-06-02
The project goals are: (1) Develop CMT radiation detectors - Demonstrate feasibility (Phase 1 is complete) and Improve material properties and device performance; (2) This project will lead to novel radiation detectors - high detection efficiency, high energy-resolution, ambient-temperature operation, and low production cost; and (3) Such detectors are needed in areas of nonproliferation and national security for detection of SNM. Research highlights are: (1) We achieved our Phase-I goal - Demonstration of CMT detector performance approaching that of CZT detectors; (2) Demonstrated that In-doped CMT is much closer to its anticipated performance as radiation detectors than other alternative materials,more » TlBr and HgI{sub 2} - Large crystal volumes, 10{sup 10}{Omega}{center_dot}cm, 3 x 10{sup -3}cm{sup 2}/V, and stable response; and (3) Conducted material and device characterization experiments - Detectors: I-V, {mu}{sub e}, ({mu}{tau}){sub e}, internal E fields, energy spectra, and high-resolution x-ray response mapping data and Materials - DLTS, TCT, PL, EPDs, XRD, PCD and IR transmission.« less
Owgis 2.0: Open Source Java Application that Builds Web GIS Interfaces for Desktop Andmobile Devices
NASA Astrophysics Data System (ADS)
Zavala Romero, O.; Chassignet, E.; Zavala-Hidalgo, J.; Pandav, H.; Velissariou, P.; Meyer-Baese, A.
2016-12-01
OWGIS is an open source Java and JavaScript application that builds easily configurable Web GIS sites for desktop and mobile devices. The current version of OWGIS generates mobile interfaces based on HTML5 technology and can be used to create mobile applications. The style of the generated websites can be modified using COMPASS, a well known CSS Authoring Framework. In addition, OWGIS uses several Open Geospatial Consortium standards to request datafrom the most common map servers, such as GeoServer. It is also able to request data from ncWMS servers, allowing the websites to display 4D data from NetCDF files. This application is configured by XML files that define which layers, geographic datasets, are displayed on the Web GIS sites. Among other features, OWGIS allows for animations; streamlines from vector data; virtual globe display; vertical profiles and vertical transects; different color palettes; the ability to download data; and display text in multiple languages. OWGIS users are mainly scientists in the oceanography, meteorology and climate fields.
Progress in Piezo-Phototronic-Effect-Enhanced Light-Emitting Diodes and Pressure Imaging.
Pan, Caofeng; Chen, Mengxiao; Yu, Ruomeng; Yang, Qing; Hu, Youfan; Zhang, Yan; Wang, Zhong Lin
2016-02-24
Wurtzite materials exhibit both semiconductor and piezoelectric properties under strains due to the non-central symmetric crystal structures. The three-way coupling of semiconductor properties, piezoelectric polarization and optical excitation in ZnO, GaN, CdS and other piezoelectric semiconductors leads to the emerging field of piezo-phototronics. This effect can efficiently manipulate the emission intensity of light-emitting diodes (LEDs) by utilizing the piezo-polarization charges created at the junction upon straining to modulate the energy band diagrams and the optoelectronic processes, such as generation, separation, recombination and/or transport of charge carriers. Starting from fundamental physics principles, recent progress in piezo-phototronic-effect-enhanced LEDs is reviewed; following their development from single-nanowire pressure-sensitive devices to high-resolution array matrices for pressure-distribution mapping applications. The piezo-phototronic effect provides a promising method to enhance the light emission of LEDs based on piezoelectric semiconductors through applying static strains, and may find perspective applications in various optoelectronic devices and integrated systems. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Magnetic bead detection using domain wall-based nanosensor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Corte-León, H., E-mail: hector.corte@npl.co.uk; Royal Holloway University of London, Egham TW20 0EX; Krzysteczko, P.
2015-05-07
We investigate the effect of a single magnetic bead (MB) on the domain wall (DW) pinning/depinning fields of a DW trapped at the corner of an L-shaped magnetic nanodevice. DW propagation across the device is investigated using magnetoresistance measurements. DW pinning/depinning fields are characterized in as-prepared devices and after placement of a 1 μm-sized MB (Dynabeads{sup ®} MyOne{sup ™}) at the corner. The effect of the MB on the DW dynamics is seen as an increase in the depinning field for specific orientations of the device with respect to the external magnetic field. The shift of the depinning field, ΔB{sub dep} = 4.5–27.0 mT,more » is highly stable and reproducible, being significantly above the stochastic deviation which is about 0.5 mT. The shift in the deppinning field is inversely proportional to the device width and larger for small negative angles between the device and the external magnetic field. Thus, we demonstrate that DW-based devices can be successfully used for detection of single micron size MB.« less
Cross-Modal Correspondences Enhance Performance on a Colour-to-Sound Sensory Substitution Device.
Hamilton-Fletcher, Giles; Wright, Thomas D; Ward, Jamie
Visual sensory substitution devices (SSDs) can represent visual characteristics through distinct patterns of sound, allowing a visually impaired user access to visual information. Previous SSDs have avoided colour and when they do encode colour, have assigned sounds to colour in a largely unprincipled way. This study introduces a new tablet-based SSD termed the ‘Creole’ (so called because it combines tactile scanning with image sonification) and a new algorithm for converting colour to sound that is based on established cross-modal correspondences (intuitive mappings between different sensory dimensions). To test the utility of correspondences, we examined the colour–sound associative memory and object recognition abilities of sighted users who had their device either coded in line with or opposite to sound–colour correspondences. Improved colour memory and reduced colour-errors were made by users who had the correspondence-based mappings. Interestingly, the colour–sound mappings that provided the highest improvements during the associative memory task also saw the greatest gains for recognising realistic objects that also featured these colours, indicating a transfer of abilities from memory to recognition. These users were also marginally better at matching sounds to images varying in luminance, even though luminance was coded identically across the different versions of the device. These findings are discussed with relevance for both colour and correspondences for sensory substitution use.
Expert system-based mineral mapping using AVIRIS
NASA Technical Reports Server (NTRS)
Kruse, Fred A.; Lefkoff, A. B.; Dietz, J. B.
1992-01-01
Integrated analysis of imaging spectrometer data and field spectral measurements were used in conjunction with conventional geologic field mapping to characterize bedrock and surficial geology at the northern end of Death Valley, California and Nevada. A knowledge-based expert system was used to automatically produce image maps from Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) data showing the principal surface mineralogy. The imaging spectrometer data show the spatial distribution of spectrally distinct minerals occurring both as primary rock-forming minerals and as alteration and weathering products. Field spectral measurements were used to verify the mineral maps and field mapping was used to extend the remote sensing results. Geographically referenced image-maps produced from these data form new base maps from which to develop improved understanding of the processes of deposition and erosion affecting the present land surface. The 'northern Grapevine Mountains' (NGM) study area was reported on in numerous papers. This area is an unnamed northwestward extension of the range. Most of the research here has concentrated on mapping of Jurassic-age plutons and associated hydrothermal alteration, however, the nature and scope of these studies is much broader, pertaining to the geologic history and development of the entire Death Valley region. AVIRIS data for the NGM site were obtained during May 1989. Additional AVIRIS data were acquired during September 1989 as part of the Geologic Remote Sensing Field Experiment (GRSFE). The area covered by these data overlaps slightly with the May 1989 data. Three and one-half AVIRIS scenes total were analyzed.
Code of Federal Regulations, 2010 CFR
2010-04-01
... AFFAIRS, DEPARTMENT OF THE INTERIOR LAND AND WATER RIGHTS-OF-WAY OVER INDIAN LANDS § 169.7 Field notes. Field notes of the survey shall appear along the line indicating the right-of-way on the maps, unless the maps would be too crowded thereby to be easily legible, in which event the field notes may be...
Reconstruction of flux coordinates from discretized magnetic field maps
NASA Astrophysics Data System (ADS)
Predebon, I.; Momo, B.; Suzuki, Y.; Auriemma, F.
2018-04-01
We provide a simple method to build a straight field-line coordinate system from discretized (Poincaré) magnetic field maps. The method is suitable for any plasma domain with nested flux surfaces, including magnetic islands. Illustrative examples are shown for tokamak, heliotron, and reversed-field-pinch plasmas with m = 1 islands.
Interoperability in digital electrocardiography: harmonization of ISO/IEEE x73-PHD and SCP-ECG.
Trigo, Jesús D; Chiarugi, Franco; Alesanco, Alvaro; Martínez-Espronceda, Miguel; Serrano, Luis; Chronaki, Catherine E; Escayola, Javier; Martínez, Ignacio; García, José
2010-11-01
The ISO/IEEE 11073 (x73) family of standards is a reference frame for medical device interoperability. A draft for an ECG device specialization (ISO/IEEE 11073-10406-d02) has already been presented to the Personal Health Device (PHD) Working Group, and the Standard Communications Protocol for Computer-Assisted ElectroCardioGraphy (SCP-ECG) Standard for short-term diagnostic ECGs (EN1064:2005+A1:2007) has recently been approved as part of the x73 family (ISO 11073-91064:2009). These factors suggest the coordinated use of these two standards in foreseeable telecardiology environments, and hence the need to harmonize them. Such harmonization is the subject of this paper. Thus, a mapping of the mandatory attributes defined in the second draft of the ISO/IEEE 11073-10406-d02 and the minimum SCP-ECG fields is presented, and various other capabilities of the SCP-ECG Standard (such as the messaging part) are also analyzed from an x73-PHD point of view. As a result, this paper addresses and analyzes the implications of some inconsistencies in the coordinated use of these two standards. Finally, a proof-of-concept implementation of the draft x73-PHD ECG device specialization is presented, along with the conversion from x73-PHD to SCP-ECG. This paper, therefore, provides recommendations for future implementations of telecardiology systems that are compliant with both x73-PHD and SCP-ECG.
Smartphone and Curriculum Opportunities for College Faculty
ERIC Educational Resources Information Center
Migdalski, Scott T.
2017-01-01
The ever-increasing popularity of the smartphone continues to impact many professions. Physicians use the device for medication dosing, professional drivers use the GPS application, mariners use the navigation maps, builders use materials-estimator applications, property appraisers use the camera capability, and students use the device to search…
Tanaka, Yuji; Yamashita, Takako; Nagoshi, Masayasu
2017-04-01
Hydrocarbon contamination introduced during point, line and map analyses in a field emission electron probe microanalysis (FE-EPMA) was investigated to enable reliable quantitative analysis of trace amounts of carbon in steels. The increment of contamination on pure iron in point analysis is proportional to the number of iterations of beam irradiation, but not to the accumulated irradiation time. A combination of a longer dwell time and single measurement with a liquid nitrogen (LN2) trap as an anti-contamination device (ACD) is sufficient for a quantitative point analysis. However, in line and map analyses, contamination increases with irradiation time in addition to the number of iterations, even though the LN2 trap and a plasma cleaner are used as ACDs. Thus, a shorter dwell time and single measurement are preferred for line and map analyses, although it is difficult to eliminate the influence of contamination. While ring-like contamination around the irradiation point grows during electron-beam irradiation, contamination at the irradiation point increases during blanking time after irradiation. This can explain the increment of contamination in iterative point analysis as well as in line and map analyses. Among the ACDs, which are tested in this study, specimen heating at 373 K has a significant contamination inhibition effect. This technique makes it possible to obtain line and map analysis data with minimum influence of contamination. The above-mentioned FE-EPMA data are presented and discussed in terms of the contamination-formation mechanisms and the preferable experimental conditions for the quantification of trace carbon in steels. © The Author 2016. Published by Oxford University Press on behalf of The Japanese Society of Microscopy. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Remote sensing. [land use mapping
NASA Technical Reports Server (NTRS)
Jinich, A.
1979-01-01
Various imaging techniques are outlined for use in mapping, land use, and land management in Mexico. Among the techniques discussed are pattern recognition and photographic processing. The utilization of information from remote sensing devices on satellites are studied. Multispectral band scanners are examined and software, hardware, and other program requirements are surveyed.
77 FR 2054 - Proposed Agency Information Collection
Federal Register 2010, 2011, 2012, 2013, 2014
2012-01-13
... Consumption Data Access and Control Questionnaire; (3) Type of Request: New; (4) Purpose: The U.S. Department of Energy (DOE) will generate a ``crowd-sourced map'' that discloses consumer access to personal... questionnaire device that captures and publishes the necessary information as a series of web-based maps upon...
Mobile field data acquisition in geosciences
NASA Astrophysics Data System (ADS)
Golodoniuc, Pavel; Klump, Jens; Reid, Nathan; Gray, David
2016-04-01
The Discovering Australia's Mineral Resources Program of CSIRO is conducting a study to develop novel methods and techniques to reliably define distal footprints of mineral systems under regolith cover in the Capricorn Orogen - the area that lies between two well-known metallogenic provinces of Pilbara and Yilgarn Cratons in Western Australia. The multidisciplinary study goes beyond the boundaries of a specific discipline and aims at developing new methods to integrate heterogeneous datasets to gain insight into the key indicators of mineralisation. The study relies on large regional datasets obtained from previous hydrogeochemical, regolith, and resistate mineral studies around known deposits, as well as new data obtained from the recent field sampling campaigns around areas of interest. With thousands of water, vegetation, rock and soil samples collected over the past years, it has prompted us to look at ways to standardise field sampling procedures and review the data acquisition process. This process has evolved over the years (Golodoniuc et al., 2015; Klump et al., 2015) and has now reached the phase where fast and reliable collection of scientific data in remote areas is possible. The approach is backed by a unified discipline-agnostic platform - the Federated Archaeological Information Management System (FAIMS). FAIMS is an open source framework for mobile field data acquisition, developed at the University of New South Wales for archaeological field data collection. The FAIMS framework can easily be adapted to a diverse range of scenarios, different kinds of samples, each with its own peculiarities, integration with GPS, and the ability to associate photographs taken with the device embedded camera with captured data. Three different modules have been developed so far, dedicated to geochemical water, plant and rock sampling. All modules feature automatic date and position recording, and reproduce the established data recording workflows. The rock sampling module also features an interactive GIS component allowing to enter field observations as annotations to a map. The open communication protocols and file formats used by FAIMS modules allow easy integration with existing spatial data infrastructures and third-party applications, such as ArcGIS. The remoteness of the focus areas in the Capricorn region required reliable mechanisms for data replication and an added level of redundancy. This was achieved through the use of the FAIMS Server without adding a tightly coupled dependency on it - the mobile devices could continue to work independently in the case the server fails. To support collaborative fieldwork, "FAIMS on a Truck" offers networked collaboration within a field team using mobile applications as asynchronous rich clients. The framework runs on compatible Android devices (e.g., tablets, smart phones) with the network infrastructure supported by a FAIMS Server. The server component is installed in a field vehicle to provide data synchronisation between multiple mobile devices, backup and data transfer. The data entry process was streamlined and followed the workflow that field crews were accustomed to with added data validation capabilities. The use of a common platform allowed us to adopt the framework within multiple disciplines, improve data acquisition times, and reduce human-introduced errors. We continue to work with other research groups and continue to explore the possibilities to adopt the technology in other applications, e.g., agriculture.
NASA Astrophysics Data System (ADS)
Chan, Y. C.; Shih, N. C.; Hsieh, Y. C.
2016-12-01
Geologic maps have provided fundamental information for many scientific and engineering applications in human societies. Geologic maps directly influence the reliability of research results or the robustness of engineering projects. In the past, geologic maps were mainly produced by field geologists through direct field investigations and 2D topographic maps. However, the quality of traditional geologic maps was significantly compromised by field conditions, particularly, when the map area is covered by heavy forest canopies. Recent developments in airborne LiDAR technology may virtually remove trees or buildings, thus, providing a useful data set for improving geological mapping. Because high-quality topographic information still needs to be interpreted in terms of geology, there are many fundamental questions regarding how to best apply the data set for high-resolution geological mapping. In this study, we aim to test the quality and reliability of high-resolution geologic maps produced by recent technological methods through an example from the fold-and-thrust belt in northern Taiwan. We performed the geological mapping by applying the LiDAR-derived DEM, self-developed program tools and many layers of relevant information at interactive 3D environments. Our mapping results indicate that the proposed methods will considerably improve the quality and consistency of the geologic maps. The study also shows that in order to gain consistent mapping results, future high-resolution geologic maps should be produced at interactive 3D environments on the basis of existing geologic maps.
NASA Astrophysics Data System (ADS)
Watkins, Hannah; Bond, Clare; Butler, Rob
2016-04-01
Geological mapping techniques have advanced significantly in recent years from paper fieldslips to Toughbook, smartphone and tablet mapping; but how do the methods used to create a geological map affect the thought processes that result in the final map interpretation? Geological maps have many key roles in the field of geosciences including understanding geological processes and geometries in 3D, interpreting geological histories and understanding stratigraphic relationships in 2D and 3D. Here we consider the impact of the methods used to create a map on the thought processes that result in the final geological map interpretation. As mapping technology has advanced in recent years, the way in which we produce geological maps has also changed. Traditional geological mapping is undertaken using paper fieldslips, pencils and compass clinometers. The map interpretation evolves through time as data is collected. This interpretive process that results in the final geological map is often supported by recording in a field notebook, observations, ideas and alternative geological models explored with the use of sketches and evolutionary diagrams. In combination the field map and notebook can be used to challenge the map interpretation and consider its uncertainties. These uncertainties and the balance of data to interpretation are often lost in the creation of published 'fair' copy geological maps. The advent of Toughbooks, smartphones and tablets in the production of geological maps has changed the process of map creation. Digital data collection, particularly through the use of inbuilt gyrometers in phones and tablets, has changed smartphones into geological mapping tools that can be used to collect lots of geological data quickly. With GPS functionality this data is also geospatially located, assuming good GPS connectivity, and can be linked to georeferenced infield photography. In contrast line drawing, for example for lithological boundary interpretation and sketching, is yet to find the digital flow that is achieved with pencil on notebook page or map. Free-form integrated sketching and notebook functionality in geological mapping software packages is in its nascence. Hence, the result is a tendency for digital geological mapping to focus on the ease of data collection rather than on the thoughts and careful observations that come from notebook sketching and interpreting boundaries on a map in the field. The final digital geological map can be assessed for when and where data was recorded, but the thought processes of the mapper are less easily assessed, and the use of observations and sketching to generate ideas and interpretations maybe inhibited by reliance on digital mapping methods. All mapping methods used have their own distinct advantages and disadvantages and with more recent technologies both hardware and software issues have arisen. We present field examples of using conventional fieldslip mapping, and compare these with more advanced technologies to highlight some of the main advantages and disadvantages of each method and discuss where geological mapping may be going in the future.
NASA Astrophysics Data System (ADS)
Luhmann, J. G.; Ma, Y.-J.; Brain, D. A.; Ulusen, D.; Lillis, R. J.; Halekas, J. S.; Espley, J. R.
2015-11-01
The first unambiguous detections of the crustal remanent magnetic fields of Mars were obtained by Mars Global Surveyor (MGS) during its initial orbits around Mars, which probed altitudes to within ∼110 km of the surface. However, the majority of its measurements were carried out around 400 km altitude, fixed 2 a.m. to 2 p.m. local time, mapping orbit. While the general character and planetary origins of the localized crustal fields were clearly revealed by the mapping survey data, their effects on the solar wind interaction could not be investigated in much detail because of the limited mapping orbit sampling. Previous analyses (Brain et al., 2006) of the field measurements on the dayside nevertheless provided an idea of the extent to which the interaction of the solar wind and planetary fields leads to non-ideal field draping at the mapping altitude. In this study we use numerical simulations of the global solar wind interaction with Mars as an aid to interpreting that observed non-ideal behavior. In addition, motivated by models for different interplanetary field orientations, we investigate the effects of induced and reconnected (planetary and external) fields on the Martian field's properties derived at the MGS mapping orbit altitude. The results suggest that inference of the planetary low order moments is compromised by their influence. In particular, the intrinsic dipole contribution may differ from that in the current models because the induced component is so dominant.
Recent progress in nanostructured next-generation field emission devices
NASA Astrophysics Data System (ADS)
Mittal, Gaurav; Lahiri, Indranil
2014-08-01
Field emission has been known to mankind for more than a century, and extensive research in this field for the last 40-50 years has led to development of exciting applications such as electron sources, miniature x-ray devices, display materials, etc. In the last decade, large-area field emitters were projected as an important material to revolutionize healthcare and medical devices, and space research. With the advent of nanotechnology and advancements related to carbon nanotubes, field emitters are demonstrating highly enhanced performance and novel applications. Next-generation emitters need ultra-high emission current density, high brightness, excellent stability and reproducible performance. Novel design considerations and application of new materials can lead to achievement of these capabilities. This article presents an overview of recent developments in this field and their effects on improved performance of field emitters. These advancements are demonstrated to hold great potential for application in next-generation field emission devices.
Predicting scattering scanning near-field optical microscopy of mass-produced plasmonic devices
NASA Astrophysics Data System (ADS)
Otto, Lauren M.; Burgos, Stanley P.; Staffaroni, Matteo; Ren, Shen; Süzer, Özgün; Stipe, Barry C.; Ashby, Paul D.; Hammack, Aeron T.
2018-05-01
Scattering scanning near-field optical microscopy enables optical imaging and characterization of plasmonic devices with nanometer-scale resolution well below the diffraction limit. This technique enables developers to probe and understand the waveguide-coupled plasmonic antenna in as-fabricated heat-assisted magnetic recording heads. In order to validate and predict results and to extract information from experimental measurements that is physically comparable to simulations, a model was developed to translate the simulated electric field into expected near-field measurements using physical parameters specific to scattering scanning near-field optical microscopy physics. The methods used in this paper prove that scattering scanning near-field optical microscopy can be used to determine critical sub-diffraction-limited dimensions of optical field confinement, which is a crucial metrology requirement for the future of nano-optics, semiconductor photonic devices, and biological sensing where the near-field character of light is fundamental to device operation.
Measuring novices' field mapping abilities using an in-class exercise based on expert task analysis
NASA Astrophysics Data System (ADS)
Caulkins, J. L.
2010-12-01
We are interested in developing a model of expert-like behavior for improving the teaching methods of undergraduate field geology. Our aim is to assist students in mastering the process of field mapping more efficiently and effectively and to improve their ability to think creatively in the field. To examine expert-mapping behavior, a cognitive task analysis was conducted with expert geologic mappers in an attempt to define the process of geologic mapping (i.e. to understand how experts carry out geological mapping). The task analysis indicates that expert mappers have a wealth of geologic scenarios at their disposal that they compare against examples seen in the field, experiences that most undergraduate mappers will not have had. While presenting students with many geological examples in class may increase their understanding of geologic processes, novices still struggle when presented with a novel field situation. Based on the task analysis, a short (45-minute) paper-map-based exercise was designed and tested with 14 pairs of 3rd year geology students. The exercise asks students to generate probable geologic models based on a series of four (4) data sets. Each data set represents a day’s worth of data; after the first “day,” new sheets simply include current and previously collected data (e.g. “Day 2” data set includes data from “Day 1” plus the new “Day 2” data). As the geologic complexity increases, students must adapt, reject or generate new geologic models in order to fit the growing data set. Preliminary results of the exercise indicate that students who produced more probable geologic models, and produced higher ratios of probable to improbable models, tended to go on to do better on the mapping exercises at the 3rd year field school. These results suggest that those students with more cognitively available geologic models may be more able to use these models in field settings than those who are unable to draw on these models for whatever reason. Giving students practice at generating geologic models to explain data may be useful in preparing our students for field mapping exercises.
Carbon and metal nanotube hybrid structures on graphene as efficient electron field emitters
NASA Astrophysics Data System (ADS)
Heo, Kwang; Lee, Byung Yang; Lee, Hyungwoo; Cho, Dong-guk; Arif, Muhammad; Kim, Kyu Young; Choi, Young Jin; Hong, Seunghun
2016-07-01
We report a facile and efficient method for the fabrication of highly-flexible field emission devices by forming tubular hybrid structures based on carbon nanotubes (CNTs) and nickel nanotubes (Ni NTs) on graphene-based flexible substrates. By employing an infiltration process in anodic alumina oxide (AAO) templates followed by Ni electrodeposition, we could fabricate CNT-wrapped Ni NT/graphene hybrid structures. During the electrodeposition process, the CNTs served as Ni nucleation sites, resulting in a large-area array of high aspect-ratio field emitters composed of CNT-wrapped Ni NT hybrid structures. As a proof of concepts, we demonstrate that high-quality flexible field emission devices can be simply fabricated using our method. Remarkably, our proto-type field emission devices exhibited a current density higher by two orders of magnitude compared to other devices fabricated by previous methods, while maintaining its structural integrity in various bending deformations. This novel fabrication strategy can be utilized in various applications such as optoelectronic devices, sensors and energy storage devices.
Carbon and metal nanotube hybrid structures on graphene as efficient electron field emitters.
Heo, Kwang; Lee, Byung Yang; Lee, Hyungwoo; Cho, Dong-Guk; Arif, Muhammad; Kim, Kyu Young; Choi, Young Jin; Hong, Seunghun
2016-07-08
We report a facile and efficient method for the fabrication of highly-flexible field emission devices by forming tubular hybrid structures based on carbon nanotubes (CNTs) and nickel nanotubes (Ni NTs) on graphene-based flexible substrates. By employing an infiltration process in anodic alumina oxide (AAO) templates followed by Ni electrodeposition, we could fabricate CNT-wrapped Ni NT/graphene hybrid structures. During the electrodeposition process, the CNTs served as Ni nucleation sites, resulting in a large-area array of high aspect-ratio field emitters composed of CNT-wrapped Ni NT hybrid structures. As a proof of concepts, we demonstrate that high-quality flexible field emission devices can be simply fabricated using our method. Remarkably, our proto-type field emission devices exhibited a current density higher by two orders of magnitude compared to other devices fabricated by previous methods, while maintaining its structural integrity in various bending deformations. This novel fabrication strategy can be utilized in various applications such as optoelectronic devices, sensors and energy storage devices.
NASA Astrophysics Data System (ADS)
Qin, Yuanwei; Xiao, Xiangming; Dong, Jinwei; Zhou, Yuting; Zhu, Zhe; Zhang, Geli; Du, Guoming; Jin, Cui; Kou, Weili; Wang, Jie; Li, Xiangping
2015-07-01
Accurate and timely rice paddy field maps with a fine spatial resolution would greatly improve our understanding of the effects of paddy rice agriculture on greenhouse gases emissions, food and water security, and human health. Rice paddy field maps were developed using optical images with high temporal resolution and coarse spatial resolution (e.g., Moderate Resolution Imaging Spectroradiometer (MODIS)) or low temporal resolution and high spatial resolution (e.g., Landsat TM/ETM+). In the past, the accuracy and efficiency for rice paddy field mapping at fine spatial resolutions were limited by the poor data availability and image-based algorithms. In this paper, time series MODIS and Landsat ETM+/OLI images, and the pixel- and phenology-based algorithm are used to map paddy rice planting area. The unique physical features of rice paddy fields during the flooding/open-canopy period are captured with the dynamics of vegetation indices, which are then used to identify rice paddy fields. The algorithm is tested in the Sanjiang Plain (path/row 114/27) in China in 2013. The overall accuracy of the resulted map of paddy rice planting area generated by both Landsat ETM+ and OLI is 97.3%, when evaluated with areas of interest (AOIs) derived from geo-referenced field photos. The paddy rice planting area map also agrees reasonably well with the official statistics at the level of state farms (R2 = 0.94). These results demonstrate that the combination of fine spatial resolution images and the phenology-based algorithm can provide a simple, robust, and automated approach to map the distribution of paddy rice agriculture in a year.
Qin, Yuanwei; Xiao, Xiangming; Dong, Jinwei; Zhou, Yuting; Zhu, Zhe; Zhang, Geli; Du, Guoming; Jin, Cui; Kou, Weili; Wang, Jie; Li, Xiangping
2015-07-01
Accurate and timely rice paddy field maps with a fine spatial resolution would greatly improve our understanding of the effects of paddy rice agriculture on greenhouse gases emissions, food and water security, and human health. Rice paddy field maps were developed using optical images with high temporal resolution and coarse spatial resolution (e.g., Moderate Resolution Imaging Spectroradiometer (MODIS)) or low temporal resolution and high spatial resolution (e.g., Landsat TM/ETM+). In the past, the accuracy and efficiency for rice paddy field mapping at fine spatial resolutions were limited by the poor data availability and image-based algorithms. In this paper, time series MODIS and Landsat ETM+/OLI images, and the pixel- and phenology-based algorithm are used to map paddy rice planting area. The unique physical features of rice paddy fields during the flooding/open-canopy period are captured with the dynamics of vegetation indices, which are then used to identify rice paddy fields. The algorithm is tested in the Sanjiang Plain (path/row 114/27) in China in 2013. The overall accuracy of the resulted map of paddy rice planting area generated by both Landsat ETM+ and OLI is 97.3%, when evaluated with areas of interest (AOIs) derived from geo-referenced field photos. The paddy rice planting area map also agrees reasonably well with the official statistics at the level of state farms ( R 2 = 0.94). These results demonstrate that the combination of fine spatial resolution images and the phenology-based algorithm can provide a simple, robust, and automated approach to map the distribution of paddy rice agriculture in a year.
Trajectories of charged particles in radial electric and uniform axial magnetic fields
NASA Technical Reports Server (NTRS)
Englert, G. W.
1979-01-01
Trajectories of charged particles were determined over a wide range of parameters characterizing motion in cylindrical low-pressure gas discharges and plasma heating devices which have steady radial electric fields perpendicular to uniform steady magnetic fields. Consideration was given to radial distributions characteristic of fields measured in a modified Penning discharge, in two NASA Lewis burnout-type plasma heating devices, and that estimated for the Ixion device. Numerical calculations of trajectories for such devices showed that differences between cyclotron frequency and qB/m and between azimuthal drift and a guiding center approximation are appreciable.
Geologic map and structure sections of the Clear Lake Volcanics, Northern California
Hearn, B.C.; Donnelly-Nolan, J. M.; Goff, F.E.
1995-01-01
The Clear Lake Volcanics are located in the California Coast Ranges about 150 km north of San Francisco. This Quaternary volcanic field has erupted intermittently since 2.1 million years ago. This volcanic field is considered a high-threat volcanic system (Ewert and others, 2005) The adjacent Geysers geothermal field, largest power-producing geothermal field in the world, is powered by the magmatic heat source for the volcanic field. This report consists of three sheets that include the geologic map, one table, two figures, three cross sections, description of map units, charts of standard and diagrammatic correlation of map units, and references. This map supersedes U.S. Geological Survey Open-File Report 76-751. Descriptions of map units are grouped by geographic area. Summaries of the evolution, chemistry, structure, and tectonic setting of the Clear Lake Volcanics are given in Hearn and others (1981) and Donnelly-Nolan and others (1981). The geology of parts of the area underlain by the Cache Formation is based on mapping by Rymer (1981); the geology of parts of the areas underlain by the Sonoma Volcanics, Franciscan assemblage, and Great Valley sequence is based on mapping by McLaughlin (1978). Volcanic compositional map units are basalt, basaltic andesite, andesite, dacite, rhyodacite, and rhyolite, based on SiO2 content. Included in this report are maps showing the distribution of volcanic rocks through time and a chart showing erupted volumes of different lava types through time. A table gives petrographic data for each map unit by mineral type, abundance, and size. Most ages are potassium-argon (K/Ar) ages determined for whole-rock samples and mineral separates by Donnelly-Nolan and others (1981), unless otherwise noted. A few ages are carbon-14 ages or were estimated from geologic relationships. Magnetic polarities are from Mankinen and others (1978; 1981) or were determined in the field by B.C. Hearn, Jr., using a portable fluxgate magnetometer. Thickness for most units is estimated from topographic relief except where drill-hole data were available.
Norman, Laura M.; Middleton, Barry R.; Wilson, Natalie R.
2018-01-01
Mapping of vegetation types is of great importance to the San Carlos Apache Tribe and their management of forestry and fire fuels. Various remote sensing techniques were applied to classify multitemporal Landsat 8 satellite data, vegetation index, and digital elevation model data. A multitiered unsupervised classification generated over 900 classes that were then recoded to one of the 16 generalized vegetation/land cover classes using the Southwest Regional Gap Analysis Project (SWReGAP) map as a guide. A supervised classification was also run using field data collected in the SWReGAP project and our field campaign. Field data were gathered and accuracy assessments were generated to compare outputs. Our hypothesis was that a resulting map would update and potentially improve upon the vegetation/land cover class distributions of the older SWReGAP map over the 24,000 km2 study area. The estimated overall accuracies ranged between 43% and 75%, depending on which method and field dataset were used. The findings demonstrate the complexity of vegetation mapping, the importance of recent, high-quality-field data, and the potential for misleading results when insufficient field data are collected.
GNSS Wristwatch Device for Networked Operations Supporting Location Based Services
2008-09-01
Coordinates, Volume 4, Issue 9, Sep 2008 GNSS WRISTWATCH DEVICE FOR NETWORKED OPERATIONS SUPPORTING LOCATION BASED SERVICES Alison Brown...TITLE AND SUBTITLE GNSS Wristwatch Device for Networked Operations Supporting Location Based Services 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c...LocatorNet Portal also supports Location Based Services (LBS) based on the TIDGET solution data using an Oracle Mapping Server with an open architecture
PREFACE: 3rd International Workshop on Materials Analysis and Processing in Magnetic Fields (MAP3)
NASA Astrophysics Data System (ADS)
Sakka, Yoshio; Hirota, Noriyuki; Horii, Shigeru; Ando, Tsutomu
2009-07-01
The 3rd International Workshop on Materials Analysis and Processing in Materials Fields (MAP3) was held on 14-16 May 2008 at the University of Tokyo, Japan. The first was held in March 2004 at the National High Magnetic Field Laboratory in Tallahassee, USA. Two years later the second took place in Grenoble, France. MAP3 was held at The University of Tokyo International Symposium, and jointly with MANA Workshop on Materials Processing by External Stimulation, and JSPS CORE Program of Construction of the World Center on Electromagnetic Processing of Materials. At the end of MAP3 it was decided that the next MAP4 will be held in Atlanta, USA in 2010. Processing in magnetic fields is a rapidly expanding research area with a wide range of promising applications in materials science. MAP3 focused on the magnetic field interactions involved in the study and processing of materials in all disciplines ranging from physics to chemistry and biology: Magnetic field effects on chemical, physical, and biological phenomena Magnetic field effects on electrochemical phenomena Magnetic field effects on thermodynamic phenomena Magnetic field effects on hydrodynamic phenomena Magnetic field effects on crystal growth Magnetic processing of materials Diamagnetic levitation Magneto-Archimedes effect Spin chemistry Application of magnetic fields to analytical chemistry Magnetic orientation Control of structure by magnetic fields Magnetic separation and purification Magnetic field-induced phase transitions Materials properties in high magnetic fields Development of NMR and MRI Medical application of magnetic fields Novel magnetic phenomena Physical property measurement by Magnetic fields High magnetic field generation> MAP3 consisted of 84 presentations including 16 invited talks. This volume of Journal of Physics: Conference Series contains the proceeding of MAP3 with 34 papers that provide a scientific record of the topics covered by the conference with the special topics (13 papers) in the journal Science and Technology of Advanced Materials. All articles have been refereed by experts in the field. Both of these journals are fully accessible electronically and can be cited and referenced in the usual way. It is our hope that the reader will enjoy and profit from the MAP3 Proceedings. Hitoshi Wada (Kashiwa, Japan) Chair Eric Beaugon (Grenoble, France) Hans J Schneider-Muntau (Tallahassee, USA) Co-chair Advisory Board Shigeo Asai (Nagoya, Japan) Koichi Kitazawa (Tokyo, Japan) Mitsuhiro Motokawa (Sendai, Japan) Shoogo Ueno (Fukuoka, Japan) Robert Tournier (Grenoble, France) Justin Schwartz (Tallahassee, USA) J C Maan (Nijmegen, Netherland) Scientific Committee Yoshifumi Tanimoto (Hiroshima, Japan) Masuhiro Yamaguchi (Yokohama, Japan) Tsunehisa Kimura (Kyoto, Japan) Yoshio Sakka (Tsukuba Japan) Ryoichi Aogaki (Tokyo, Japan) Jyunji Miyakoshi (Hirosaki, Japan) Kazuo Watanabe (Sendai, Japan) James M Valles Jr. (Providence, USA) Joon Pyo Park (Pohang, Korea) Qiang Wang (Shenyang, China) Nicole Pamme (Hull, UK) Sophie Rivoirard (Grenoble, France) P C M Christianen (Nijmegen, Netherland) Local Organizing Committee Isao Yamamoto Masafumi Yamato Shigeru Horii Norihito Sogoshi Masateru Ikehata Noriyuki Hirota Tsutomu Ando Proceedings Editorial Board Yoshio Sakka Noriyuki Hirota Shigeru Horii Tsutomu Ando Conference photograph
Mazerand, Edouard; Le Renard, Marc; Hue, Sophie; Lemée, Jean-Michel; Klinger, Evelyne; Menei, Philippe
2017-01-01
Brain mapping during awake craniotomy is a well-known technique to preserve neurological functions, especially the language. It is still challenging to map the optic radiations due to the difficulty to test the visual field intraoperatively. To assess the visual field during awake craniotomy, we developed the Functions' Explorer based on a virtual reality headset (FEX-VRH). The impaired visual field of 10 patients was tested with automated perimetry (the gold standard examination) and the FEX-VRH. The proof-of-concept test was done during the surgery performed on a patient who was blind in his right eye and presenting with a left parietotemporal glioblastoma. The FEX-VRH was used intraoperatively, simultaneously with direct subcortical electrostimulation, allowing identification and preservation of the optic radiations. The FEX-VRH detected 9 of the 10 visual field defects found by automated perimetry. The patient who underwent an awake craniotomy with intraoperative mapping of the optic tract using the FEX-VRH had no permanent postoperative visual field defect. Intraoperative visual field assessment with the FEX-VRH during direct subcortical electrostimulation is a promising approach to mapping the optical radiations and preventing a permanent visual field defect during awake surgery for epilepsy or tumor. Copyright © 2016 Elsevier Inc. All rights reserved.
Resistive field structures for semiconductor devices and uses therof
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marinella, Matthew; DasGupta, Sandeepan; Kaplar, Robert
The present disclosure relates to resistive field structures that provide improved electric field profiles when used with a semiconductor device. In particular, the resistive field structures provide a uniform electric field profile, thereby enhancing breakdown voltage and improving reliability. In example, the structure is a field cage that is configured to be resistive, in which the potential changes significantly over the distance of the cage. In another example, the structure is a resistive field plate. Using these resistive field structures, the characteristics of the electric field profile can be independently modulated from the physical parameters of the semiconductor device. Additionalmore » methods and architectures are described herein.« less
NASA Astrophysics Data System (ADS)
Duttmann, Rainer; Kuhwald, Michael; Nolde, Michael
2015-04-01
Soil compaction is one of the main threats to cropland soils in present days. In contrast to easily visible phenomena of soil degradation, soil compaction, however, is obscured by other signals such as reduced crop yield, delayed crop growth, and the ponding of water, which makes it difficult to recognize and locate areas impacted by soil compaction directly. Although it is known that trafficking intensity is a key factor for soil compaction, until today only modest work has been concerned with the mapping of the spatially distributed patterns of field traffic and with the visual representation of the loads and pressures applied by farm traffic within single fields. A promising method for for spatial detection and mapping of soil compaction risks of individual fields is to process dGPS data, collected from vehicle-mounted GPS receivers and to compare the soil stress induced by farm machinery to the load bearing capacity derived from given soil map data. The application of position-based machinery data enables the mapping of vehicle movements over time as well as the assessment of trafficking intensity. It also facilitates the calculation of the trafficked area and the modeling of the loads and pressures applied to soil by individual vehicles. This paper focuses on the modeling and mapping of the spatial patterns of traffic intensity in silage maize fields during harvest, considering the spatio-temporal changes in wheel load and ground contact pressure along the loading sections. In addition to scenarios calculated for varying mechanical soil strengths, an example for visualizing the three-dimensional stress propagation inside the soil will be given, using the Visualization Toolkit (VTK) to construct 2D or 3D maps supporting to decision making due to sustainable field traffic management.
Magnetic-field-dosimetry system
Lemon, D.K.; Skorpik, J.R.; Eick, J.L.
1981-01-21
A device is provided for measuring the magnetic field dose and peak field exposure. The device includes three Hall-effect sensors all perpendicular to each other, sensing the three dimensional magnetic field and associated electronics for data storage, calculating, retrieving and display.
Methods for enhancing mapping of thermal fronts in oil recovery
Lee, David O.; Montoya, Paul C.; Wayland, Jr., James R.
1987-01-01
A method for enhancing the resistivity contrasts of a thermal front in an oil recovery production field as measured by the CSAMT technique is disclosed. This method includes the steps of: (a) preparing a CSAMT-determined topological resistivity map of the production field; (b) introducing a solution of a dopant material into the production field at a concentration effective to alter the resistivity associated with the thermal front; said dopant material having a high cation exchange capacity which might be selected from the group consisting of montmorillonite, illite, and chlorite clays; said material being soluble in the connate water of the production field; (c) preparing a CSAMT-determined topological resistivity map of the production field while said dopant material is moving therethrough; and (d) mathematically comparing the maps from step (a) and step (c) to determine the location of the thermal front. This method is effective with the steam flood, fire flood and water flood techniques.