Sample records for field mapping technique

  1. A campus-based course in field geology

    NASA Astrophysics Data System (ADS)

    Richard, G. A.; Hanson, G. N.

    2009-12-01

    GEO 305: Field Geology offers students practical experience in the field and in the computer laboratory conducting geological field studies on the Stony Brook University campus. Computer laboratory exercises feature mapping techniques and field studies of glacial and environmental geology, and include geophysical and hydrological analysis, interpretation, and mapping. Participants learn to use direct measurement and mathematical techniques to compute the location and geometry of features and gain practical experience in representing raster imagery and vector geographic data as features on maps. Data collecting techniques in the field include the use of hand-held GPS devices, compasses, ground-penetrating radar, tape measures, pacing, and leveling devices. Assignments that utilize these skills and techniques include mapping campus geology with GPS, using Google Earth to explore our geologic context, data file management and ArcGIS, tape and compass mapping of woodland trails, pace and compass mapping of woodland trails, measuring elevation differences on a hillside, measuring geologic sections and cores, drilling through glacial deposits, using ground penetrating radar on glaciotectonic topography, mapping the local water table, and the identification and mapping of boulders. Two three-hour sessions are offered per week, apportioned as needed between lecture; discussion; guided hands-on instruction in geospatial and other software such as ArcGIS, Google Earth, spreadsheets, and custom modules such as an arc intersection calculator; outdoor data collection and mapping; and writing of illustrated reports.

  2. Conditional Random Field-Based Offline Map Matching for Indoor Environments

    PubMed Central

    Bataineh, Safaa; Bahillo, Alfonso; Díez, Luis Enrique; Onieva, Enrique; Bataineh, Ikram

    2016-01-01

    In this paper, we present an offline map matching technique designed for indoor localization systems based on conditional random fields (CRF). The proposed algorithm can refine the results of existing indoor localization systems and match them with the map, using loose coupling between the existing localization system and the proposed map matching technique. The purpose of this research is to investigate the efficiency of using the CRF technique in offline map matching problems for different scenarios and parameters. The algorithm was applied to several real and simulated trajectories of different lengths. The results were then refined and matched with the map using the CRF algorithm. PMID:27537892

  3. Conditional Random Field-Based Offline Map Matching for Indoor Environments.

    PubMed

    Bataineh, Safaa; Bahillo, Alfonso; Díez, Luis Enrique; Onieva, Enrique; Bataineh, Ikram

    2016-08-16

    In this paper, we present an offline map matching technique designed for indoor localization systems based on conditional random fields (CRF). The proposed algorithm can refine the results of existing indoor localization systems and match them with the map, using loose coupling between the existing localization system and the proposed map matching technique. The purpose of this research is to investigate the efficiency of using the CRF technique in offline map matching problems for different scenarios and parameters. The algorithm was applied to several real and simulated trajectories of different lengths. The results were then refined and matched with the map using the CRF algorithm.

  4. Precambrian Field Camp at the University of Minnesota Duluth - Teaching Skills Applicable to Mapping Glaciated Terranes of the Canadian Shield

    NASA Astrophysics Data System (ADS)

    Miller, J. D.; Hudak, G. J.; Peterson, D.

    2011-12-01

    Since 2007, the central program of the Precambrian Research Center (PRC) at the University of Minnesota Duluth has been a six-week geology field camp focused on the Precambrian geology of the Canadian Shield. This field camp has two main purposes. First and foremost is to teach students specialized field skills and field mapping techniques that can be utilized to map and interpret Precambrian shield terranes characterized by sparse outcrop and abundant glacial cover. In addition to teaching basic outcrop mapping technique , students are introduced to geophysical surveying (gravity, magnetics), glacial drift prospecting, and drill core logging techniques in several of our geological mapping exercises. These mapping methodologies are particularly applicable to minerals exploration in shield terranes. The second and equally important goal of the PRC field camp is to teach students modern map-making and map production skills. During the fifth and sixth weeks of field camp, students conduct "capstone" mapping projects. These projects encompass one week of detailed bedrock mapping in remote regions of northern Minnesota that have not been mapped in detail (e.g. scales greater than 1:24,000) and a second week of map-making and map generation utilizing geographic information systems (currently ArcGIS10), graphics software packages (Adobe Illustrator CS4), and various imaging software for geophysical and topographic data. Over the past five years, PRC students and faculty have collaboratively published 21 geologic maps through the Precambrian Research Center Map Series. These maps are currently being utilized in a variety of ways by industry, academia, and government for mineral exploration programs, development of undergraduate, graduate, and faculty research projects, and for planning, archeological studies, and public education programs in Minnesota's state parks. Acquisition of specialized Precambrian geological mapping skills and geologic map-making proficiencies has enabled our students to be highly sought after for employment and/or subsequent graduate studies.

  5. Comparing Geologic Data Sets Collected by Planetary Analog Traverses and by Standard Geologic Field Mapping: Desert Rats Data Analysis

    NASA Technical Reports Server (NTRS)

    Feng, Wanda; Evans, Cynthia; Gruener, John; Eppler, Dean

    2014-01-01

    Geologic mapping involves interpreting relationships between identifiable units and landforms to understand the formative history of a region. Traditional field techniques are used to accomplish this on Earth. Mapping proves more challenging for other planets, which are studied primarily by orbital remote sensing and, less frequently, by robotic and human surface exploration. Systematic comparative assessments of geologic maps created by traditional mapping versus photogeology together with data from planned traverses are limited. The objective of this project is to produce a geologic map from data collected on the Desert Research and Technology Studies (RATS) 2010 analog mission using Apollo-style traverses in conjunction with remote sensing data. This map is compared with a geologic map produced using standard field techniques.

  6. Digital Mapping Techniques '11–12 workshop proceedings

    USGS Publications Warehouse

    Soller, David R.

    2014-01-01

    At these meetings, oral and poster presentations and special discussion sessions emphasized: (1) methods for creating and publishing map products (here, "publishing" includes Web-based release); (2) field data capture software and techniques, including the use of LiDAR; (3) digital cartographic techniques; (4) migration of digital maps into ArcGIS Geodatabase formats; (5) analytical GIS techniques; and (6) continued development of the National Geologic Map Database.

  7. Geologic Interpretation of Data Sets Collected by Planetary Analog Geology Traverses and by Standard Geologic Field Mapping. Part 1; A Comparison Study

    NASA Technical Reports Server (NTRS)

    Eppler, Dean B.; Bleacher, Jacob F.; Evans, Cynthia A.; Feng, Wanda; Gruener, John; Hurwitz, Debra M.; Skinner, J. A., Jr.; Whitson, Peggy; Janoiko, Barbara

    2013-01-01

    Geologic maps integrate the distributions, contacts, and compositions of rock and sediment bodies as a means to interpret local to regional formative histories. Applying terrestrial mapping techniques to other planets is challenging because data is collected primarily by orbiting instruments, with infrequent, spatiallylimited in situ human and robotic exploration. Although geologic maps developed using remote data sets and limited "Apollo-style" field access likely contain inaccuracies, the magnitude, type, and occurrence of these are only marginally understood. This project evaluates the interpretative and cartographic accuracy of both field- and remote-based mapping approaches by comparing two 1:24,000 scale geologic maps of the San Francisco Volcanic Field (SFVF), north-central Arizona. The first map is based on traditional field mapping techniques, while the second is based on remote data sets, augmented with limited field observations collected during NASA Desert Research & Technology Studies (RATS) 2010 exercises. The RATS mission used Apollo-style methods not only for pre-mission traverse planning but also to conduct geologic sampling as part of science operation tests. Cross-comparison demonstrates that the Apollo-style map identifies many of the same rock units and determines a similar broad history as the field-based map. However, field mapping techniques allow markedly improved discrimination of map units, particularly unconsolidated surficial deposits, and recognize a more complex eruptive history than was possible using Apollo-style data. Further, the distribution of unconsolidated surface units was more obvious in the remote sensing data to the field team after conducting the fieldwork. The study raises questions about the most effective approach to balancing mission costs with the rate of knowledge capture, suggesting that there is an inflection point in the "knowledge capture curve" beyond which additional resource investment yields progressively smaller gains in geologic knowledge.

  8. PFGE MAPPER and PFGE READER: two tools to aid in the analysis and data input of pulse field gel electrophoresis maps.

    PubMed Central

    Shifman, M. A.; Nadkarni, P.; Miller, P. L.

    1992-01-01

    Pulse field gel electrophoresis mapping is an important technique for characterizing large segments of DNA. We have developed two tools to aid in the construction of pulse field electrophoresis gel maps: PFGE READER which stores experimental conditions and calculates fragment sizes and PFGE MAPPER which constructs pulse field gel electrophoresis maps. PMID:1482898

  9. JIGSAW: Joint Inhomogeneity estimation via Global Segment Assembly for Water-fat separation.

    PubMed

    Lu, Wenmiao; Lu, Yi

    2011-07-01

    Water-fat separation in magnetic resonance imaging (MRI) is of great clinical importance, and the key to uniform water-fat separation lies in field map estimation. This work deals with three-point field map estimation, in which water and fat are modelled as two single-peak spectral lines, and field inhomogeneities shift the spectrum by an unknown amount. Due to the simplified spectrum modelling, there exists inherent ambiguity in forming field maps from multiple locally feasible field map values at each pixel. To resolve such ambiguity, spatial smoothness of field maps has been incorporated as a constraint of an optimization problem. However, there are two issues: the optimization problem is computationally intractable and even when it is solved exactly, it does not always separate water and fat images. Hence, robust field map estimation remains challenging in many clinically important imaging scenarios. This paper proposes a novel field map estimation technique called JIGSAW. It extends a loopy belief propagation (BP) algorithm to obtain an approximate solution to the optimization problem. The solution produces locally smooth segments and avoids error propagation associated with greedy methods. The locally smooth segments are then assembled into a globally consistent field map by exploiting the periodicity of the feasible field map values. In vivo results demonstrate that JIGSAW outperforms existing techniques and produces correct water-fat separation in challenging imaging scenarios.

  10. Efficient morse decompositions of vector fields.

    PubMed

    Chen, Guoning; Mischaikow, Konstantin; Laramee, Robert S; Zhang, Eugene

    2008-01-01

    Existing topology-based vector field analysis techniques rely on the ability to extract the individual trajectories such as fixed points, periodic orbits, and separatrices that are sensitive to noise and errors introduced by simulation and interpolation. This can make such vector field analysis unsuitable for rigorous interpretations. We advocate the use of Morse decompositions, which are robust with respect to perturbations, to encode the topological structures of a vector field in the form of a directed graph, called a Morse connection graph (MCG). While an MCG exists for every vector field, it need not be unique. Previous techniques for computing MCG's, while fast, are overly conservative and usually results in MCG's that are too coarse to be useful for the applications. To address this issue, we present a new technique for performing Morse decomposition based on the concept of tau-maps, which typically provides finer MCG's than existing techniques. Furthermore, the choice of tau provides a natural tradeoff between the fineness of the MCG's and the computational costs. We provide efficient implementations of Morse decomposition based on tau-maps, which include the use of forward and backward mapping techniques and an adaptive approach in constructing better approximations of the images of the triangles in the meshes used for simulation.. Furthermore, we propose the use of spatial tau-maps in addition to the original temporal tau-maps. These techniques provide additional trade-offs between the quality of the MCGs and the speed of computation. We demonstrate the utility of our technique with various examples in the plane and on surfaces including engine simulation data sets.

  11. Forest and range mapping in the Houston area with ERTS-1

    NASA Technical Reports Server (NTRS)

    Heath, G. R.; Parker, H. D.

    1973-01-01

    ERTS-1 data acquired over the Houston area has been analyzed for applications to forest and range mapping. In the field of forestry the Sam Houston National Forest (Texas) was chosen as a test site, (Scene ID 1037-16244). Conventional imagery interpretation as well as computer processing methods were used to make classification maps of timber species, condition and land-use. The results were compared with timber stand maps which were obtained from aircraft imagery and checked in the field. The preliminary investigations show that conventional interpretation techniques indicated an accuracy in classification of 63 percent. The computer-aided interpretations made by a clustering technique gave 70 percent accuracy. Computer-aided and conventional multispectral analysis techniques were applied to range vegetation type mapping in the gulf coast marsh. Two species of salt marsh grasses were mapped.

  12. A Method of Surrogate Model Construction which Leverages Lower-Fidelity Information using Space Mapping Techniques

    DTIC Science & Technology

    2014-03-27

    fidelity. This pairing is accomplished through the use of a space mapping technique, which is a process where the design space of a lower fidelity model...is aligned a higher fidelity model. The intent of applying space mapping techniques to the field of surrogate construction is to leverage the

  13. Application of remote sensing techniques to the geology of the bonanza volcanic center

    NASA Technical Reports Server (NTRS)

    Marrs, R. W.

    1973-01-01

    A program is reported for evaluating remote sensing as an aid to geologic mapping for the past four years. Data tested in this evaluation include color and color infrared photography, multiband photography, low sun-angle photography, thermal infrared scanner imagery, and side-looking airborne radar. The relative utility of color and color infrared photography was tested as it was used to refine geologic maps in previously mapped areas, as field photos while mapping in the field, and in making photogeologic maps prior to field mapping. The latter technique served as a test of the maximum utility of the photography. In this application the photography was used successfully to locate 75% of all faults in a portion of the geologically complex Bonanza volcanic center and to map and correctly identify 93% of all Quaternary deposits and 62% of all areas of Tertiary volcanic outcrop in the area.

  14. Three-dimensional analysis of magnetometer array data

    NASA Technical Reports Server (NTRS)

    Richmond, A. D.; Baumjohann, W.

    1984-01-01

    A technique is developed for mapping magnetic variation fields in three dimensions using data from an array of magnetometers, based on the theory of optimal linear estimation. The technique is applied to data from the Scandinavian Magnetometer Array. Estimates of the spatial power spectra for the internal and external magnetic variations are derived, which in turn provide estimates of the spatial autocorrelation functions of the three magnetic variation components. Statistical errors involved in mapping the external and internal fields are quantified and displayed over the mapping region. Examples of field mapping and of separation into external and internal components are presented. A comparison between the three-dimensional field separation and a two-dimensional separation from a single chain of stations shows that significant differences can arise in the inferred internal component.

  15. Methods for enhancing mapping of thermal fronts in oil recovery

    DOEpatents

    Lee, David O.; Montoya, Paul C.; Wayland, Jr., James R.

    1987-01-01

    A method for enhancing the resistivity contrasts of a thermal front in an oil recovery production field as measured by the CSAMT technique is disclosed. This method includes the steps of: (a) preparing a CSAMT-determined topological resistivity map of the production field; (b) introducing a solution of a dopant material into the production field at a concentration effective to alter the resistivity associated with the thermal front; said dopant material having a high cation exchange capacity which might be selected from the group consisting of montmorillonite, illite, and chlorite clays; said material being soluble in the connate water of the production field; (c) preparing a CSAMT-determined topological resistivity map of the production field while said dopant material is moving therethrough; and (d) mathematically comparing the maps from step (a) and step (c) to determine the location of the thermal front. This method is effective with the steam flood, fire flood and water flood techniques.

  16. Column ratio mapping: a processing technique for atomic resolution high-angle annular dark-field (HAADF) images.

    PubMed

    Robb, Paul D; Craven, Alan J

    2008-12-01

    An image processing technique is presented for atomic resolution high-angle annular dark-field (HAADF) images that have been acquired using scanning transmission electron microscopy (STEM). This technique is termed column ratio mapping and involves the automated process of measuring atomic column intensity ratios in high-resolution HAADF images. This technique was developed to provide a fuller analysis of HAADF images than the usual method of drawing single intensity line profiles across a few areas of interest. For instance, column ratio mapping reveals the compositional distribution across the whole HAADF image and allows a statistical analysis and an estimation of errors. This has proven to be a very valuable technique as it can provide a more detailed assessment of the sharpness of interfacial structures from HAADF images. The technique of column ratio mapping is described in terms of a [110]-oriented zinc-blende structured AlAs/GaAs superlattice using the 1 angstroms-scale resolution capability of the aberration-corrected SuperSTEM 1 instrument.

  17. Two-dimensional strain-mapping by electron backscatter diffraction and confocal Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Gayle, Andrew J.; Friedman, Lawrence H.; Beams, Ryan; Bush, Brian G.; Gerbig, Yvonne B.; Michaels, Chris A.; Vaudin, Mark D.; Cook, Robert F.

    2017-11-01

    The strain field surrounding a spherical indentation in silicon is mapped in two dimensions (2-D) using electron backscatter diffraction (EBSD) cross-correlation and confocal Raman spectroscopy techniques. The 200 mN indentation created a 4 μm diameter residual contact impression in the silicon (001) surface. Maps about 50 μm × 50 μm area with 128 pixels × 128 pixels were generated in several hours, extending, by comparison, assessment of the accuracy of both techniques to mapping multiaxial strain states in 2-D. EBSD measurements showed a residual strain field dominated by in-surface normal and shear strains, with alternating tensile and compressive lobes extending about three to four indentation diameters from the contact and exhibiting two-fold symmetry. Raman measurements showed a residual Raman shift field, dominated by positive shifts, also extending about three to four indentation diameters from the contact but exhibiting four-fold symmetry. The 2-D EBSD results, in combination with a mechanical-spectroscopic analysis, were used to successfully predict the 2-D Raman shift map in scale, symmetry, and shift magnitude. Both techniques should be useful in enhancing the reliability of microelectromechanical systems (MEMS) through identification of the 2-D strain fields in MEMS devices.

  18. Mapping of the surface rupture induced by the M 7.3 Kumamoto Earthquake along the Eastern segment of Futagawa fault using image correlation techniques

    NASA Astrophysics Data System (ADS)

    Ekhtari, N.; Glennie, C. L.; Fielding, E. J.; Liang, C.

    2016-12-01

    Near field surface deformation is vital to understanding the shallow fault physics of earthquakes but near-field deformation measurements are often sparse or not reliable. In this study, we use the Co-seismic Image Correlation (COSI-Corr) technique to map the near-field surface deformation caused by the M 7.3 April 16, 2016 Kumamoto Earthquake, Kyushu, Japan. The surface rupture around the Eastern segment of Futagawa fault is mapped using a pair of panchromatic 1.5 meter resolution SPOT 7 images. These images were acquired on January 16 and April 29, 2016 (3 months before and 13 days after the earthquake respectively) with close to nadir (less than 1.5 degree off nadir) viewing angle. The two images are ortho-rectified using SRTM Digital Elevation Model and further co-registered using tie points far away from the rupture field. Then the COSI-Corr technique is utilized to produce an estimated surface displacement map, and a horizontal displacement vector field is calculated which supplies a seamless estimate of near field displacement measurements along the Eastern segment of the Futagawa fault. The COSI-Corr estimated displacements are then compared to other existing displacement observations from InSAR, GPS and field observations.

  19. Digital Mapping Techniques '09-Workshop Proceedings, Morgantown, West Virginia, May 10-13, 2009

    USGS Publications Warehouse

    Soller, David R.

    2011-01-01

    As in the previous years' meetings, the objective was to foster informal discussion and exchange of technical information, principally in order to develop more efficient methods for digital mapping, cartography, GIS analysis, and information management. At this meeting, oral and poster presentations and special discussion sessions emphasized (1) methods for creating and publishing map products (here, "publishing" includes Web-based release); (2) field data capture software and techniques, including the use of LiDAR; (3) digital cartographic techniques; (4) migration of digital maps into ArcGIS Geodatabase format; (5) analytical GIS techniques; and (6) continued development of the National Geologic Map Database.

  20. Parallel mapping of optical near-field interactions by molecular motor-driven quantum dots.

    PubMed

    Groß, Heiko; Heil, Hannah S; Ehrig, Jens; Schwarz, Friedrich W; Hecht, Bert; Diez, Stefan

    2018-04-30

    In the vicinity of metallic nanostructures, absorption and emission rates of optical emitters can be modulated by several orders of magnitude 1,2 . Control of such near-field light-matter interaction is essential for applications in biosensing 3 , light harvesting 4 and quantum communication 5,6 and requires precise mapping of optical near-field interactions, for which single-emitter probes are promising candidates 7-11 . However, currently available techniques are limited in terms of throughput, resolution and/or non-invasiveness. Here, we present an approach for the parallel mapping of optical near-field interactions with a resolution of <5 nm using surface-bound motor proteins to transport microtubules carrying single emitters (quantum dots). The deterministic motion of the quantum dots allows for the interpolation of their tracked positions, resulting in an increased spatial resolution and a suppression of localization artefacts. We apply this method to map the near-field distribution of nanoslits engraved into gold layers and find an excellent agreement with finite-difference time-domain simulations. Our technique can be readily applied to a variety of surfaces for scalable, nanometre-resolved and artefact-free near-field mapping using conventional wide-field microscopes.

  1. A comparison of contour maps derived from independent methods of measuring lunar magnetic fields

    NASA Technical Reports Server (NTRS)

    Lichtenstein, B. R.; Coleman, P. J., Jr.; Russell, C. T.

    1978-01-01

    Computer-generated contour maps of strong lunar remanent magnetic fields are presented and discussed. The maps, obtained by previously described (Eliason and Soderblom, 1977) techniques, are derived from a variety of direct and indirect measurements from Apollo 15 and 16 and Explorer 35 magnetometer and electron reflection data. A common display format is used to facilitate comparison of the maps over regions of overlapping coverage. Most large scale features of either weak or strong magnetic field regions are found to correlate fairly well on all the maps considered.

  2. Methods for enhancing mapping of thermal fronts in oil recovery

    DOEpatents

    Lee, D.O.; Montoya, P.C.; Wayland, J.R. Jr.

    1984-03-30

    A method for enhancing the resistivity contrasts of a thermal front in an oil recovery production field as measured by the controlled source audio frequency magnetotelluric (CSAMT) technique is disclosed. This method includes the steps of: (1) preparing a CSAMT-determined topological resistivity map of the production field; (2) introducing a solution of a dopant material into the production field at a concentration effective to alter the resistivity associated with the thermal front; said dopant material having a high cation exchange capacity which might be selected from the group consisting of montmorillonite, illite, and chlorite clays; said material being soluble in the conate water of the production field; (3) preparing a CSAMT-determined topological resistivity map of the production field while said dopant material is moving therethrough; and (4) mathematically comparing the maps from step (1) and step (3) to determine the location of the thermal front. This method is effective with the steam flood, fire flood and water flood techniques.

  3. Testing the PV-Theta Mapping Technique in a 3-D CTM Model Simulation

    NASA Technical Reports Server (NTRS)

    Frith, Stacey M.

    2004-01-01

    Mapping lower stratospheric ozone into potential vorticity (PV)- potential temperature (Theta) coordinates is a common technique employed to analyze sparse data sets. Ozone transformed into a flow-following dynamical coordinate system is insensitive to meteorological variations. Therefore data from a wide range of times/locations can be compared, so long as the measurements were made in the same airmass (as defined by PV). Moreover, once a relationship between ozone and PV/Theta is established, a full 3D ozone field can be estimated from this relationship and the 3D analyzed PV field. However, ozone data mapped in this fashion can be hampered by noisy PV fields, or "mis-matches" in the resolution and/or exact location of the ozone and PV measurements. In this study, we investigate the PV-ozone relationship using output from a recent 50-year run of the Goddard 3D chemical transport model (CTM). Model constituents are transported using off-line dynamics from the finite volume general circulation model (FVGCM). By using the internally consistent model PV and ozone fields, we minimize noise due to mis-matching and resolution issues. We calculate correlations between model ozone and PV throughout the stratosphere, and test the sensitivity of the technique to initial data resolution. To do this we degrade the model data to that of various satellite instruments, then compare the mapped fields derived from the sub-sampled data to the full resolution model data. With these studies we can determine appropriate limits for the PV-theta mapping technique in latitude, altitude, and as a function of original data resolution.

  4. Validation and application of Acoustic Mapping Velocimetry

    NASA Astrophysics Data System (ADS)

    Baranya, Sandor; Muste, Marian

    2016-04-01

    The goal of this paper is to introduce a novel methodology to estimate bedload transport in rivers based on an improved bedform tracking procedure. The measurement technique combines components and processing protocols from two contemporary nonintrusive instruments: acoustic and image-based. The bedform mapping is conducted with acoustic surveys while the estimation of the velocity of the bedforms is obtained with processing techniques pertaining to image-based velocimetry. The technique is therefore called Acoustic Mapping Velocimetry (AMV). The implementation of this technique produces a whole-field velocity map associated with the multi-directional bedform movement. Based on the calculated two-dimensional bedform migration velocity field, the bedload transport estimation is done using the Exner equation. A proof-of-concept experiment was performed to validate the AMV based bedload estimation in a laboratory flume at IIHR-Hydroscience & Engineering (IIHR). The bedform migration was analysed at three different flow discharges. Repeated bed geometry mapping, using a multiple transducer array (MTA), provided acoustic maps, which were post-processed with a particle image velocimetry (PIV) method. Bedload transport rates were calculated along longitudinal sections using the streamwise components of the bedform velocity vectors and the measured bedform heights. The bulk transport rates were compared with the results from concurrent direct physical samplings and acceptable agreement was found. As a first field implementation of the AMV an attempt was made to estimate bedload transport for a section of the Ohio river in the United States, where bed geometry maps, resulted by repeated multibeam echo sounder (MBES) surveys, served as input data. Cross-sectional distributions of bedload transport rates from the AMV based method were compared with the ones obtained from another non-intrusive technique (due to the lack of direct samplings), ISSDOTv2, developed by the US Army Corps of Engineers. The good agreement between the results from the two different methods is encouraging and suggests further field tests in varying hydro-morphological situations.

  5. Boson mapping techniques applied to constant gauge fields in QCD

    NASA Technical Reports Server (NTRS)

    Hess, Peter Otto; Lopez, J. C.

    1995-01-01

    Pairs of coordinates and derivatives of the constant gluon modes are mapped to new gluon-pair fields and their derivatives. Applying this mapping to the Hamiltonian of constant gluon fields results for large coupling constants into an effective Hamiltonian which separates into one describing a scalar field and another one for a field with spin two. The ground state is dominated by pairs of gluons coupled to color and spin zero with slight admixtures of color zero and spin two pairs. As color group we used SU(2).

  6. Geochemistry and geophysics field maps used during the USGS 2011 field season in southwest Alaska

    USGS Publications Warehouse

    Giles, Stuart A.

    2013-01-01

    The US Geological Survey (USGS) has been studying a variety of geochemical and geophyscial assessment techniques for concealed mineral deposits. The 2011 field season for this project took place in southwest Alaska, northeast of Bristol Bay between Dillingham and Iliamna Lake. Four maps were created for the geochemistry and geophysics teams to use during field activities.

  7. Mode-selective mapping and control of vectorial nonlinear-optical processes in multimode photonic-crystal fibers.

    PubMed

    Hu, Ming-Lie; Wang, Ching-Yue; Song, You-Jian; Li, Yan-Feng; Chai, Lu; Serebryannikov, Evgenii; Zheltikov, Aleksei

    2006-02-06

    We demonstrate an experimental technique that allows a mapping of vectorial nonlinear-optical processes in multimode photonic-crystal fibers (PCFs). Spatial and polarization modes of PCFs are selectively excited in this technique by varying the tilt angle of the input beam and rotating the polarization of the input field. Intensity spectra of the PCF output plotted as a function of the input field power and polarization then yield mode-resolved maps of nonlinear-optical interactions in multimode PCFs, facilitating the analysis and control of nonlinear-optical transformations of ultrashort laser pulses in such fibers.

  8. A Mapping Model for Magnetic Fields with q-profile Variations Typical of Internal Transport Barrier Experiments

    NASA Astrophysics Data System (ADS)

    Rapoport, B. I.; Pavlenko, I.; Weyssow, B.; Carati, D.

    2002-11-01

    Recent studies of ion and electron transport indicate that the safety factor profile, q(r), affects internal transport barrier (ITB) formation in magnetic confinement devices [1, 2]. These studies are consistent with experimental observations that low shear suppresses magnetic island interaction and associated stochasticity when the ITB is formed [3]. In this sense the position and quality of the ITB depend on the stochasticity of the magnetic field, and can be controlled by q(r). This study explores effects of the q-profile on magnetic field stochasticity using two-dimensional mapping techniques. Q-profiles typical of ITB experiments are incorporated into Hamiltonian maps to investigate the relation between magnetic field stochasticity and ITB parameters predicted by other models. It is shown that the mapping technique generates results consistent with these predictions, and suggested that Hamiltonian mappings can be useful as simple and computationally inexpensive approximation methods for describing the magnetic field in ITB experiments. 1. I. Voitsekhovitch et al. 29th EPS Conference on Plasma Physics and Controlled Fusion (2002). O-4.04. 2. G.M.D. Hogeweij et al. Nucl. Fusion. 38 (1998): 1881. 3. K.A. Razumova et al. Plasma Phys. Contr. Fusion. 42 (2000): 973.

  9. Comparing and Reconciling Traditional Field and Photogeologic Mapping Techniques: Lessons from the San Francisco Volcanic Field, Arizona

    NASA Technical Reports Server (NTRS)

    Skinner, J. A., Jr.; Eppler, D. B.; Bleacher, J. E.; Evans, C. A.; Feng, W.; Gruener, J.; Hurwitz, D. M.; Janoiko, B.; Whitson, P.

    2014-01-01

    Cartographic products and - specifically - geologic maps provide critical assistance for establishing physical and temporal frameworks of planetary surfaces. The technical methods that result in the creation of geologic maps vary depending on how observations are made as well as the overall intent of the final products [1-3]. These methods tend to follow a common linear work flow, including the identification and delineation of spatially and temporally discrete materials (units), the documentation of their primary (emplacement) and secondary (erosional) characteristics, analysis of the relative and absolute age relationships between these materials, and the collation of observations and interpretations into an objective map product. The "objectivity" of a map is critical cross comparison with overlapping maps and topical studies as well as its relevance to scientific posterity. However, the "accuracy" and "correctness" of a geologic map is very subject to debate. This can be evidenced by comparison of existing geologic maps at various scales, particularly those compiled through field- and remote-based mapped efforts. Our study focuses on comparing the fidelity of (1) "Apollo-style" geologic investigations, where typically non-geologist crew members follow static traverse routes established through pre-mission planning, and (2) "traditional" field-based investigations, where geologists are given free rein to observe without preplanned routes. This abstract summarizes the regional geology wherein our study was conducted, presents the geologic map created from traditional field mapping techniques, and offers basic insights into how geologic maps created from different tactics can be reconciled in support of exploratory missions. Additional abstracts [4-6] from this study discuss various exploration and science results of these efforts.

  10. Remote Detection and Mapping of Supergene Iron Oxides in the Cripple Creek Mining District, Colorado

    NASA Technical Reports Server (NTRS)

    Taranik, D. L.; Kruse, F. A.; Goetz, A. F. H.; Atkinson, W. W.

    1990-01-01

    The Geophysical and Environmental Research Imaging Spectrometer (GERIS) was flown over the Cripple Creek mining district in south-central Colorado to improve the geological understanding of the district. As part of the study, an airborne mapping technique was developed for the discrimination of the ferric iron minerals hematite, goethite, and jarosite, minerals often important indicators of the distribution of economic mineralization. A software technique was developed which uses the binary encoding of spectral slopes to identify the mineral hematite from the group goethite/jarosite. Mixtures of hematite and goethite can also be detected with GERIS data. The study included district-wide field mapping and spectral measurements to evaluate the accuracy of the image classifications. The ARC/INFO geographic information system (GIS) was a useful tool which allowed quantitative comparison of the field mapping and GERIS image data sets. The study results demonstrate the ability to discriminate individual iron minerals using imaging spectroscopy, and the development of a rapid mapping technique useful in the reconnaissance stage of minerals exploration.

  11. Ultra-high sensitivity moment magnetometry of geological samples using magnetic microscopy

    NASA Astrophysics Data System (ADS)

    Lima, Eduardo A.; Weiss, Benjamin P.

    2016-09-01

    Useful paleomagnetic information is expected to be recorded by samples with moments up to three orders of magnitude below the detection limit of standard superconducting rock magnetometers. Such samples are now detectable using recently developed magnetic microscopes, which map the magnetic fields above room-temperature samples with unprecedented spatial resolutions and field sensitivities. However, realizing this potential requires the development of techniques for retrieving sample moments from magnetic microscopy data. With this goal, we developed a technique for uniquely obtaining the net magnetic moment of geological samples from magnetic microscopy maps of unresolved or nearly unresolved magnetization. This technique is particularly powerful for analyzing small, weakly magnetized samples such as meteoritic chondrules and terrestrial silicate crystals like zircons. We validated this technique by applying it to field maps generated from synthetic sources and also to field maps measured using a superconducting quantum interference device (SQUID) microscope above geological samples with moments down to 10-15 Am2. For the most magnetic rock samples, the net moments estimated from the SQUID microscope data are within error of independent moment measurements acquired using lower sensitivity standard rock magnetometers. In addition to its superior moment sensitivity, SQUID microscope net moment magnetometry also enables the identification and isolation of magnetic contamination and background sources, which is critical for improving accuracy in paleomagnetic studies of weakly magnetic samples.

  12. A NEW TECHNIQUE FOR THE PHOTOSPHERIC DRIVING OF NON-POTENTIAL SOLAR CORONAL MAGNETIC FIELD SIMULATIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weinzierl, Marion; Yeates, Anthony R.; Mackay, Duncan H.

    2016-05-20

    In this paper, we develop a new technique for driving global non-potential simulations of the Sun’s coronal magnetic field solely from sequences of radial magnetic maps of the solar photosphere. A primary challenge to driving such global simulations is that the required horizontal electric field cannot be uniquely determined from such maps. We show that an “inductive” electric field solution similar to that used by previous authors successfully reproduces specific features of the coronal field evolution in both single and multiple bipole simulations. For these cases, the true solution is known because the electric field was generated from a surfacemore » flux-transport model. The match for these cases is further improved by including the non-inductive electric field contribution from surface differential rotation. Then, using this reconstruction method for the electric field, we show that a coronal non-potential simulation can be successfully driven from a sequence of ADAPT maps of the photospheric radial field, without including additional physical observations which are not routinely available.« less

  13. Collaborative and Multilingual Approach to Learn Database Topics Using Concept Maps

    PubMed Central

    Calvo, Iñaki

    2014-01-01

    Authors report on a study using the concept mapping technique in computer engineering education for learning theoretical introductory database topics. In addition, the learning of multilingual technical terminology by means of the collaborative drawing of a concept map is also pursued in this experiment. The main characteristics of a study carried out in the database subject at the University of the Basque Country during the 2011/2012 course are described. This study contributes to the field of concept mapping as these kinds of cognitive tools have proved to be valid to support learning in computer engineering education. It contributes to the field of computer engineering education, providing a technique that can be incorporated with several educational purposes within the discipline. Results reveal the potential that a collaborative concept map editor offers to fulfil the above mentioned objectives. PMID:25538957

  14. Recent developments in machine learning applications in landslide susceptibility mapping

    NASA Astrophysics Data System (ADS)

    Lun, Na Kai; Liew, Mohd Shahir; Matori, Abdul Nasir; Zawawi, Noor Amila Wan Abdullah

    2017-11-01

    While the prediction of spatial distribution of potential landslide occurrences is a primary interest in landslide hazard mitigation, it remains a challenging task. To overcome the scarceness of complete, sufficiently detailed geomorphological attributes and environmental conditions, various machine-learning techniques are increasingly applied to effectively map landslide susceptibility for large regions. Nevertheless, limited review papers are devoted to this field, particularly on the various domain specific applications of machine learning techniques. Available literature often report relatively good predictive performance, however, papers discussing the limitations of each approaches are quite uncommon. The foremost aim of this paper is to narrow these gaps in literature and to review up-to-date machine learning and ensemble learning techniques applied in landslide susceptibility mapping. It provides new readers an introductory understanding on the subject matter and researchers a contemporary review of machine learning advancements alongside the future direction of these techniques in the landslide mitigation field.

  15. Mapping Planetary Volcanic Deposits: Identifying Vents and Distinguishing between Effects of Eruption Conditions and Local Storage and Release on Flow Field Morphology

    NASA Technical Reports Server (NTRS)

    Bleacher, J. E.; Eppler, D. B.; Skinner, J. A.; Evans, C. A.; Feng, W.; Gruener, J. E.; Hurwitz, D. M.; Whitson, P.; Janoiko, B.

    2014-01-01

    Terrestrial geologic mapping techniques are regularly used for "photogeologic" mapping of other planets, but these approaches are complicated by the diverse type, areal coverage, and spatial resolution of available data sets. When available, spatially-limited in-situ human and/or robotic surface observations can sometimes introduce a level of detail that is difficult to integrate with regional or global interpretations. To assess best practices for utilizing observations acquired from orbit and on the surface, our team conducted a comparative study of geologic mapping and interpretation techniques. We compared maps generated for the same area in the San Francisco Volcanic Field (SFVF) in northern Arizona using 1) data collected for reconnaissance before and during the 2010 Desert Research And Technology Studies campaign, and 2) during a traditional, terrestrial field geology study. The operations, related results, and direct mapping comparisons are discussed in companion LPSC abstracts. Here we present new geologic interpretations for a volcanic cone and related lava flows as derived from all approaches involved in this study. Mapping results indicate a need for caution when interpreting past eruption conditions on other planetary surfaces from orbital data alone.

  16. Mapping Planetary Volcanic Deposits: Identifying Vents and Distingushing between Effects of Eruption Conditions and Local Lava Storage and Release on Flow Field Morphology

    NASA Technical Reports Server (NTRS)

    Bleacher, J. E.; Eppler, D. B.; Skinner, J. A.; Evans, C. A.; Feng, W.; Gruener, J. E.; Hurwitz, D. M.; Whitson, P.; Janoiko, B.

    2014-01-01

    Terrestrial geologic mapping techniques are regularly used for "photogeologic" mapping of other planets, but these approaches are complicated by the diverse type, areal coverage, and spatial resolution of available data sets. When available, spatially-limited in-situ human and/or robotic surface observations can sometimes introduce a level of detail that is difficult to integrate with regional or global interpretations. To assess best practices for utilizing observations acquired from orbit and on the surface, our team conducted a comparative study of geologic mapping and interpretation techniques. We compared maps generated for the same area in the San Francisco Volcanic Field (SFVF) in northern Arizona using 1) data collected for reconnaissance before and during the 2010 Desert Research And Technology Studies campaign, and 2) during a traditional, terrestrial field geology study. The operations, related results, and direct mapping comparisons are discussed in companion LPSC abstracts [1-3]. Here we present new geologic interpretations for a volcanic cone and related lava flows as derived from all approaches involved in this study. Mapping results indicate a need for caution when interpreting past eruption conditions on other planetary surfaces from orbital data alone.

  17. A new gradient shimming method based on undistorted field map of B0 inhomogeneity.

    PubMed

    Bao, Qingjia; Chen, Fang; Chen, Li; Song, Kan; Liu, Zao; Liu, Chaoyang

    2016-04-01

    Most existing gradient shimming methods for NMR spectrometers estimate field maps that resolve B0 inhomogeneity spatially from dual gradient-echo (GRE) images acquired at different echo times. However, the distortions induced by B0 inhomogeneity that always exists in the GRE images can result in estimated field maps that are distorted in both geometry and intensity, leading to inaccurate shimming. This work proposes a new gradient shimming method based on undistorted field map of B0 inhomogeneity obtained by a more accurate field map estimation technique. Compared to the traditional field map estimation method, this new method exploits both the positive and negative polarities of the frequency encoded gradients to eliminate the distortions caused by B0 inhomogeneity in the field map. Next, the corresponding automatic post-data procedure is introduced to obtain undistorted B0 field map based on knowledge of the invariant characteristics of the B0 inhomogeneity and the variant polarity of the encoded gradient. The experimental results on both simulated and real gradient shimming tests demonstrate the high performance of this new method. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. On the derivation of coseismic displacement fields using differential radar interferometry: The Landers earthquake

    NASA Technical Reports Server (NTRS)

    Zebker, Howard A.; Rosen, Paul A.; Goldstein, Richard M.; Gabriel, Andrew; Werner, Charles L.

    1994-01-01

    We present a map of the coseimic displacement field resulting from the Landers, California, June 28, 1992, earthquake derived using data acquired from an orbiting high-resolution radar system. We achieve results more accurate than previous space studies and similar in accuracy to those obtained by conventional field survey techniques. Data from the ERS 1 synthetic aperture radar instrument acquired in April, July, and August 1992 are used to generate a high-resolution, wide area map of the displacements. The data represent the motion in the direction of the radar line of sight to centimeter level precision of each 30-m resolution element in a 113 km by 90 km image. Our coseismic displacement contour map gives a lobed pattern consistent with theoretical models of the displacement field from the earthquake. Fine structure observed as displacement tiling in regions several kilometers from the fault appears to be the result of local surface fracturing. Comparison of these data with Global Positioning System and electronic distance measurement survey data yield a correlation of 0.96; thus the radar measurements are a means to extend the point measurements acquired by traditional techniques to an area map format. The technique we use is (1) more automatic, (2) more precise, and (3) better validated than previous similar applications of differential radar interferometry. Since we require only remotely sensed satellite data with no additioanl requirements for ancillary information. the technique is well suited for global seismic monitoring and analysis.

  19. Procedures for woody vegetation surveys in the Kazgail rural council area, Kordofan, Sudan

    USGS Publications Warehouse

    Falconer, Allan; Cross, Matthew D.; Orr, Donald G.

    1990-01-01

    Efforts to reforest parts of the Kordofan Province of Sudan are receiving support from international development agencies. These efforts include planning and implementing reforestation activities that require the collection of natural resources and socioeconomic data, and the preparation of base maps. A combination of remote sensing, geographic information system and global positioning systems procedures are used in this study to meet these requirements.Remote sensing techniques were used to provide base maps and to guide the compilation of vegetation resources maps. These techniques provided a rapid and efficient method for documenting available resources. Pocket‐sized global positioning system units were used to establish the location of field data collected for mapping and resource analysis. A microcomputer data management system tabulated and displayed the field data. The resulting system for data analysis, management, and planning has been adopted for the mapping and inventory of the Gum Belt of Sudan.

  20. Spectral mapping of soil organic matter

    NASA Technical Reports Server (NTRS)

    Kristof, S. J.; Baumgardner, M. F.; Johannsen, C. J.

    1974-01-01

    Multispectral remote sensing data were examined for use in the mapping of soil organic matter content. Computer-implemented pattern recognition techniques were used to analyze data collected in May 1969 and May 1970 by an airborne multispectral scanner over a 40-km flightline. Two fields within the flightline were selected for intensive study. Approximately 400 surface soil samples from these fields were obtained for organic matter analysis. The analytical data were used as training sets for computer-implemented analysis of the spectral data. It was found that within the geographical limitations included in this study, multispectral data and automatic data processing techniques could be used very effectively to delineate and map surface soils areas containing different levels of soil organic matter.

  1. Digital Mapping Techniques '07 - Workshop Proceedings

    USGS Publications Warehouse

    Soller, David R.

    2008-01-01

    The Digital Mapping Techniques '07 (DMT'07) workshop was attended by 85 technical experts from 49 agencies, universities, and private companies, including representatives from 27 state geological surveys. This year's meeting, the tenth in the annual series, was hosted by the South Carolina Geological Survey, from May 20-23, 2007, on the University of South Carolina campus in Columbia, South Carolina. Each DMT workshop has been coordinated by the U.S. Geological Survey's National Geologic Map Database Project and the Association of American State Geologists (AASG). As in previous year's meetings, the objective was to foster informal discussion and exchange of technical information, principally in order to develop more efficient methods for digital mapping, cartography, GIS analysis, and information management. At this meeting, oral and poster presentations and special discussion sessions emphasized: 1) methods for creating and publishing map products (here, 'publishing' includes Web-based release); 2) field data capture software and techniques, including the use of LIDAR; 3) digital cartographic techniques; 4) migration of digital maps into ArcGIS Geodatabase format; 5) analytical GIS techniques; and 6) continued development of the National Geologic Map Database.

  2. Remote sensing of soils, land forms, and land use in the northern great plains in preparation for ERTS applications

    NASA Technical Reports Server (NTRS)

    Frazee, C. J.; Westin, F. C.; Gropper, J.; Myers, V. I.

    1972-01-01

    Research to determine the optimum time or season for obtaining imagery to identify and map soil limitations was conducted in the proposed Oahe irrigation project area in South Dakota. The optimum time for securing photographs or imagery is when the soil surface patterns are most apparent. For cultivated areas similar to the study area, May is the optimum time. The fields are cultivated or the planted crop has not yet masked soil surface features. Soil limitations in 59 percent of the field of the flight line could be mapped using the above criteria. The remaining fields cannot be mapped because the vegetation or growing crops do not express features related to soil differences. This suggests that imagery from more than one year is necessary to map completely the soil limitations of Oahe area by remote sensing techniques. Imagery from the other times studied is not suitable for identifying and mapping soil limitations of Oahe area by remote sensing techniques. Imagery from the other times studied is not suitable for identifying and mapping soil limitations because the vegetative cover masked the soil surface and does not reflect soil differences.

  3. Mapping chemicals in air using an environmental CAT scanning system: evaluation of algorithms

    NASA Astrophysics Data System (ADS)

    Samanta, A.; Todd, L. A.

    A new technique is being developed which creates near real-time maps of chemical concentrations in air for environmental and occupational environmental applications. This technique, we call Environmental CAT Scanning, combines the real-time measuring technique of open-path Fourier transform infrared spectroscopy with the mapping capabilitites of computed tomography to produce two-dimensional concentration maps. With this system, a network of open-path measurements is obtained over an area; measurements are then processed using a tomographic algorithm to reconstruct the concentrations. This research focussed on the process of evaluating and selecting appropriate reconstruction algorithms, for use in the field, by using test concentration data from both computer simultation and laboratory chamber studies. Four algorithms were tested using three types of data: (1) experimental open-path data from studies that used a prototype opne-path Fourier transform/computed tomography system in an exposure chamber; (2) synthetic open-path data generated from maps created by kriging point samples taken in the chamber studies (in 1), and; (3) synthetic open-path data generated using a chemical dispersion model to create time seires maps. The iterative algorithms used to reconstruct the concentration data were: Algebraic Reconstruction Technique without Weights (ART1), Algebraic Reconstruction Technique with Weights (ARTW), Maximum Likelihood with Expectation Maximization (MLEM) and Multiplicative Algebraic Reconstruction Technique (MART). Maps were evaluated quantitatively and qualitatively. In general, MART and MLEM performed best, followed by ARTW and ART1. However, algorithm performance varied under different contaminant scenarios. This study showed the importance of using a variety of maps, particulary those generated using dispersion models. The time series maps provided a more rigorous test of the algorithms and allowed distinctions to be made among the algorithms. A comprehensive evaluation of algorithms, for the environmental application of tomography, requires the use of a battery of test concentration data before field implementation, which models reality and tests the limits of the algorithms.

  4. Background field removal technique based on non-regularized variable kernels sophisticated harmonic artifact reduction for phase data for quantitative susceptibility mapping.

    PubMed

    Kan, Hirohito; Arai, Nobuyuki; Takizawa, Masahiro; Omori, Kazuyoshi; Kasai, Harumasa; Kunitomo, Hiroshi; Hirose, Yasujiro; Shibamoto, Yuta

    2018-06-11

    We developed a non-regularized, variable kernel, sophisticated harmonic artifact reduction for phase data (NR-VSHARP) method to accurately estimate local tissue fields without regularization for quantitative susceptibility mapping (QSM). We then used a digital brain phantom to evaluate the accuracy of the NR-VSHARP method, and compared it with the VSHARP and iterative spherical mean value (iSMV) methods through in vivo human brain experiments. Our proposed NR-VSHARP method, which uses variable spherical mean value (SMV) kernels, minimizes L2 norms only within the volume of interest to reduce phase errors and save cortical information without regularization. In a numerical phantom study, relative local field and susceptibility map errors were determined using NR-VSHARP, VSHARP, and iSMV. Additionally, various background field elimination methods were used to image the human brain. In a numerical phantom study, the use of NR-VSHARP considerably reduced the relative local field and susceptibility map errors throughout a digital whole brain phantom, compared with VSHARP and iSMV. In the in vivo experiment, the NR-VSHARP-estimated local field could sufficiently achieve minimal boundary losses and phase error suppression throughout the brain. Moreover, the susceptibility map generated using NR-VSHARP minimized the occurrence of streaking artifacts caused by insufficient background field removal. Our proposed NR-VSHARP method yields minimal boundary losses and highly precise phase data. Our results suggest that this technique may facilitate high-quality QSM. Copyright © 2017. Published by Elsevier Inc.

  5. A Science Mapping Analysis of 'Communication' WoS Subject Category (1980-2013)

    ERIC Educational Resources Information Center

    Montero-Díaz, Julio; Cobo, Manuel-Jesús; Gutiérrez-Salcedo, María; Segado-Boj, Francisco; Herrera-Viedma, Enrique

    2018-01-01

    Communication research field has an extraordinary growth pattern, indeed bigger than other research fields. In order to extract knowledge from such amount, intelligent techniques are needed. In such a way, using bibliometric techniques, the evolution of the conceptual, social and intellectual aspects of this research field could be analysed, and…

  6. Recovery of chemical Estimates by Field Inhomogeneity Neighborhood Error Detection (REFINED): Fat/Water Separation at 7T

    PubMed Central

    Narayan, Sreenath; Kalhan, Satish C.; Wilson, David L.

    2012-01-01

    I.Abstract Purpose To reduce swaps in fat-water separation methods, a particular issue on 7T small animal scanners due to field inhomogeneity, using image postprocessing innovations that detect and correct errors in the B0 field map. Materials and Methods Fat-water decompositions and B0 field maps were computed for images of mice acquired on a 7T Bruker BioSpec scanner, using a computationally efficient method for solving the Markov Random Field formulation of the multi-point Dixon model. The B0 field maps were processed with a novel hole-filling method, based on edge strength between regions, and a novel k-means method, based on field-map intensities, which were iteratively applied to automatically detect and reinitialize error regions in the B0 field maps. Errors were manually assessed in the B0 field maps and chemical parameter maps both before and after error correction. Results Partial swaps were found in 6% of images when processed with FLAWLESS. After REFINED correction, only 0.7% of images contained partial swaps, resulting in an 88% decrease in error rate. Complete swaps were not problematic. Conclusion Ex post facto error correction is a viable supplement to a priori techniques for producing globally smooth B0 field maps, without partial swaps. With our processing pipeline, it is possible to process image volumes rapidly, robustly, and almost automatically. PMID:23023815

  7. Recovery of chemical estimates by field inhomogeneity neighborhood error detection (REFINED): fat/water separation at 7 tesla.

    PubMed

    Narayan, Sreenath; Kalhan, Satish C; Wilson, David L

    2013-05-01

    To reduce swaps in fat-water separation methods, a particular issue on 7 Tesla (T) small animal scanners due to field inhomogeneity, using image postprocessing innovations that detect and correct errors in the B0 field map. Fat-water decompositions and B0 field maps were computed for images of mice acquired on a 7T Bruker BioSpec scanner, using a computationally efficient method for solving the Markov Random Field formulation of the multi-point Dixon model. The B0 field maps were processed with a novel hole-filling method, based on edge strength between regions, and a novel k-means method, based on field-map intensities, which were iteratively applied to automatically detect and reinitialize error regions in the B0 field maps. Errors were manually assessed in the B0 field maps and chemical parameter maps both before and after error correction. Partial swaps were found in 6% of images when processed with FLAWLESS. After REFINED correction, only 0.7% of images contained partial swaps, resulting in an 88% decrease in error rate. Complete swaps were not problematic. Ex post facto error correction is a viable supplement to a priori techniques for producing globally smooth B0 field maps, without partial swaps. With our processing pipeline, it is possible to process image volumes rapidly, robustly, and almost automatically. Copyright © 2012 Wiley Periodicals, Inc.

  8. Photocurrent mapping of near-field optical antenna resonances

    NASA Astrophysics Data System (ADS)

    Barnard, Edward S.; Pala, Ragip A.; Brongersma, Mark L.

    2011-09-01

    An increasing number of photonics applications make use of nanoscale optical antennas that exhibit a strong, resonant interaction with photons of a specific frequency. The resonant properties of such antennas are conventionally characterized by far-field light-scattering techniques. However, many applications require quantitative knowledge of the near-field behaviour, and existing local field measurement techniques provide only relative, rather than absolute, data. Here, we demonstrate a photodetector platform that uses a silicon-on-insulator substrate to spectrally and spatially map the absolute values of enhanced fields near any type of optical antenna by transducing local electric fields into photocurrent. We are able to quantify the resonant optical and materials properties of nanoscale (~50 nm) and wavelength-scale (~1 µm) metallic antennas as well as high-refractive-index semiconductor antennas. The data agree well with light-scattering measurements, full-field simulations and intuitive resonator models.

  9. Quantitative Susceptibility Mapping: Contrast Mechanisms and Clinical Applications

    PubMed Central

    Liu, Chunlei; Wei, Hongjiang; Gong, Nan-Jie; Cronin, Matthew; Dibb, Russel; Decker, Kyle

    2016-01-01

    Quantitative susceptibility mapping (QSM) is a recently developed MRI technique for quantifying the spatial distribution of magnetic susceptibility within biological tissues. It first uses the frequency shift in the MRI signal to map the magnetic field profile within the tissue. The resulting field map is then used to determine the spatial distribution of the underlying magnetic susceptibility by solving an inverse problem. The solution is achieved by deconvolving the field map with a dipole field, under the assumption that the magnetic field is a result of the superposition of the dipole fields generated by all voxels and that each voxel has its unique magnetic susceptibility. QSM provides improved contrast to noise ratio for certain tissues and structures compared to its magnitude counterpart. More importantly, magnetic susceptibility is a direct reflection of the molecular composition and cellular architecture of the tissue. Consequently, by quantifying magnetic susceptibility, QSM is becoming a quantitative imaging approach for characterizing normal and pathological tissue properties. This article reviews the mechanism generating susceptibility contrast within tissues and some associated applications. PMID:26844301

  10. Using Concept Maps to Assess Interdisciplinary Integration of Green Engineering Knowledge

    ERIC Educational Resources Information Center

    Borrego, Maura; Newswander, Chad B.; McNair, Lisa D.; McGinnis, Sean; Paretti, Marie C.

    2009-01-01

    Engineering education, like many fields, has started to explore the benefits of concept maps as an assessment technique for knowledge integration. Because they allow students to graphically link topics and represent complex interconnections among diverse concepts, we argue that concept maps are particularly appropriate for assessing…

  11. Using the Behavior Change Technique Taxonomy v1 to conceptualize the clinical content of Breaking Free Online: a computer-assisted therapy program for substance use disorders.

    PubMed

    Dugdale, Stephanie; Ward, Jonathan; Hernen, Jan; Elison, Sarah; Davies, Glyn; Donkor, Daniel

    2016-07-22

    In recent years, research within the field of health psychology has made significant progress in terms of advancing and standardizing the science of developing, evaluating and reporting complex behavioral change interventions. A major part of this work has involved the development of an evidence-based Behavior Change Technique Taxonomy v1 (BCTTv1), as a means of describing the active components contained within such complex interventions. To date, however, this standardized approach derived from health psychology research has not been applied to the development of complex interventions for the treatment of substance use disorders (SUD). Therefore, this paper uses Breaking Free Online (BFO), a computer-assisted therapy program for SUD, as an example of how the clinical techniques contained within such an intervention might be mapped onto the BCTTv1. The developers of BFO were able to produce a full list of the clinical techniques contained within BFO. Exploratory mapping of the BCTTv1 onto the clinical content of the BFO program was conducted separately by the authors of the paper. This included the developers of the BFO program and psychology professionals working within the SUD field. These coded techniques were reviewed by the authors and any discrepancies in the coding were discussed between all authors until an agreement was reached. The BCTTv1 was mapped onto the clinical content of the BFO program. At least one behavioral change technique was found in 12 out of 16 grouping categories within the BCTTv1. A total of 26 out of 93 behavior change techniques were identified across the clinical content of the program. This exploratory mapping exercise has identified the specific behavior change techniques contained within BFO, and has provided a means of describing these techniques in a standardized way using the BCTTv1 terminology. It has also provided an opportunity for the BCTTv1 mapping process to be reported to the wider SUD treatment community, as it may have real utility in the development and evaluation of other psychosocial and behavioral change interventions within this field.

  12. Spatial and Global Sensory Suppression Mapping Encompassing the Central 10° Field in Anisometropic Amblyopia.

    PubMed

    Li, Jingjing; Li, Jinrong; Chen, Zidong; Liu, Jing; Yuan, Junpeng; Cai, Xiaoxiao; Deng, Daming; Yu, Minbin

    2017-01-01

    We investigate the efficacy of a novel dichoptic mapping paradigm in evaluating visual function of anisometropic amblyopes. Using standard clinical measures of visual function (visual acuity, stereo acuity, Bagolini lenses, and neutral density filters) and a novel quantitative mapping technique, 26 patients with anisometropic amblyopia (mean age = 19.15 ± 4.42 years) were assessed. Two additional psychophysical interocular suppression measurements were tested with dichoptic global motion coherence and binocular phase combination tasks. Luminance reduction was achieved by placing neutral density filters in front of the normal eye. Our study revealed that suppression changes across the central 10° visual field by mean luminance modulation in amblyopes as well as normal controls. Using simulation and an elimination of interocular suppression, we identified a novel method to effectively reflect the distribution of suppression in anisometropic amblyopia. Additionally, the new quantitative mapping technique was in good agreement with conventional clinical measures, such as interocular acuity difference (P < 0.001) and stereo acuity (P = 0.005). There was a good consistency between the results of interocular suppression with dichoptic mapping paradigm and the results of the other two psychophysical methods (suppression mapping versus binocular phase combination, P < 0.001; suppression mapping versus global motion coherence, P = 0.005). The dichoptic suppression mapping technique is an effective method to represent impaired visual function in patients with anisometropic amblyopia. It offers a potential in "micro-"antisuppression mapping tests and therapies for amblyopia.

  13. Application of sensitivity-analysis techniques to the calculation of topological quantities

    NASA Astrophysics Data System (ADS)

    Gilchrist, Stuart

    2017-08-01

    Magnetic reconnection in the corona occurs preferentially at sites where the magnetic connectivity is either discontinuous or has a large spatial gradient. Hence there is a general interest in computing quantities (like the squashing factor) that characterize the gradient in the field-line mapping function. Here we present an algorithm for calculating certain (quasi)topological quantities using mathematical techniques from the field of ``sensitivity-analysis''. The method is based on the calculation of a three dimensional field-line mapping Jacobian from which all the present topological quantities of interest can be derived. We will present the algorithm and the details of a publicly available set of libraries that implement the algorithm.

  14. Improved determination of vector lithospheric magnetic anomalies from MAGSAT data

    NASA Technical Reports Server (NTRS)

    Ravat, Dhananjay

    1993-01-01

    Scientific contributions made in developing new methods to isolate and map vector magnetic anomalies from measurements made by Magsat are described. In addition to the objective of the proposal, the isolation and mapping of equatorial vector lithospheric Magsat anomalies, isolation of polar ionospheric fields during the period were also studied. Significant progress was also made in isolation of polar delta(Z) component and scalar anomalies as well as integration and synthesis of various techniques of removing equatorial and polar ionospheric effects. The significant contributions of this research are: (1) development of empirical/analytical techniques in modeling ionospheric fields in Magsat data and their removal from uncorrected anomalies to obtain better estimates of lithospheric anomalies (this task was accomplished for equatorial delta(X), delta(Z), and delta(B) component and polar delta(Z) and delta(B) component measurements; (2) integration of important processing techniques developed during the last decade with the newly developed technologies of ionospheric field modeling into an optimum processing scheme; and (3) implementation of the above processing scheme to map the most robust magnetic anomalies of the lithosphere (components as well as scalar).

  15. A self-trained classification technique for producing 30 m percent-water maps from Landsat data

    USGS Publications Warehouse

    Rover, Jennifer R.; Wylie, Bruce K.; Ji, Lei

    2010-01-01

    Small bodies of water can be mapped with moderate-resolution satellite data using methods where water is mapped as subpixel fractions using field measurements or high-resolution images as training datasets. A new method, developed from a regression-tree technique, uses a 30 m Landsat image for training the regression tree that, in turn, is applied to the same image to map subpixel water. The self-trained method was evaluated by comparing the percent-water map with three other maps generated from established percent-water mapping methods: (1) a regression-tree model trained with a 5 m SPOT 5 image, (2) a regression-tree model based on endmembers and (3) a linear unmixing classification technique. The results suggest that subpixel water fractions can be accurately estimated when high-resolution satellite data or intensively interpreted training datasets are not available, which increases our ability to map small water bodies or small changes in lake size at a regional scale.

  16. Tracking lava flow emplacement on the east rift zone of Kilauea, Hawai’i with synthetic aperture radar (SAR) coherence

    USGS Publications Warehouse

    Dietterich, Hannah R.; Poland, Michael P.; Schmidt, David; Cashman, Katharine V.; Sherrod, David R.; Espinosa, Arkin Tapia

    2012-01-01

    Lava flow mapping is both an essential component of volcano monitoring and a valuable tool for investigating lava flow behavior. Although maps are traditionally created through field surveys, remote sensing allows an extraordinary view of active lava flows while avoiding the difficulties of mapping on location. Synthetic aperture radar (SAR) imagery, in particular, can detect changes in a flow field by comparing two images collected at different times with SAR coherence. New lava flows radically alter the scattering properties of the surface, making the radar signal decorrelated in SAR coherence images. We describe a new technique, SAR Coherence Mapping (SCM), to map lava flows automatically from coherence images independent of look angle or satellite path. We use this approach to map lava flow emplacement during the Pu‘u ‘Ō‘ō-Kupaianaha eruption at Kīlauea, Hawai‘i. The resulting flow maps correspond well with field mapping and better resolve the internal structure of surface flows, as well as the locations of active flow paths. However, the SCM technique is only moderately successful at mapping flows that enter vegetation, which is also often decorrelated between successive SAR images. Along with measurements of planform morphology, we are able to show that the length of time a flow stays decorrelated after initial emplacement is linearly related to the flow thickness. Finally, we use interferograms obtained after flow surfaces become correlated to show that persistent decorrelation is caused by post-emplacement flow subsidence.

  17. Tracking lava flow emplacement on the east rift zone of Kīlauea, Hawai‘i, with synthetic aperture radar coherence

    NASA Astrophysics Data System (ADS)

    Dietterich, Hannah R.; Poland, Michael P.; Schmidt, David A.; Cashman, Katharine V.; Sherrod, David R.; Espinosa, Arkin Tapia

    2012-05-01

    Lava flow mapping is both an essential component of volcano monitoring and a valuable tool for investigating lava flow behavior. Although maps are traditionally created through field surveys, remote sensing allows an extraordinary view of active lava flows while avoiding the difficulties of mapping on location. Synthetic aperture radar (SAR) imagery, in particular, can detect changes in a flow field by comparing two images collected at different times with SAR coherence. New lava flows radically alter the scattering properties of the surface, making the radar signal decorrelated in SAR coherence images. We describe a new technique, SAR Coherence Mapping (SCM), to map lava flows automatically from coherence images independent of look angle or satellite path. We use this approach to map lava flow emplacement during the Pu`u `Ō`ō-Kupaianaha eruption at Kīlauea, Hawai`i. The resulting flow maps correspond well with field mapping and better resolve the internal structure of surface flows, as well as the locations of active flow paths. However, the SCM technique is only moderately successful at mapping flows that enter vegetation, which is also often decorrelated between successive SAR images. Along with measurements of planform morphology, we are able to show that the length of time a flow stays decorrelated after initial emplacement is linearly related to the flow thickness. Finally, we use interferograms obtained after flow surfaces become correlated to show that persistent decorrelation is caused by post-emplacement flow subsidence.

  18. Digital Mapping Techniques '08—Workshop Proceedings, Moscow, Idaho, May 18–21, 2008

    USGS Publications Warehouse

    Soller, David R.

    2009-01-01

    The Digital Mapping Techniques '08 (DMT'08) workshop was attended by more than 100 technical experts from 40 agencies, universities, and private companies, including representatives from 24 State geological surveys. This year's meeting, the twelfth in the annual series, was hosted by the Idaho Geological Survey, from May 18-21, 2008, on the University of Idaho campus in Moscow, Idaho. Each DMT workshop has been coordinated by the U.S. Geological Survey's National Geologic Map Database Project and the Association of American State Geologists (AASG). As in previous years' meetings, the objective was to foster informal discussion and exchange of technical information, principally in order to develop more efficient methods for digital mapping, cartography, GIS analysis, and information management. At this meeting, oral and poster presentations and special discussion sessions emphasized (1) methods for creating and publishing map products (here, "publishing" includes Web-based release); (2) field data capture software and techniques, including the use of LiDAR; (3) digital cartographic techniques; (4) migration of digital maps into ArcGIS Geodatabase format; (5) analytical GIS techniques; and (6) continued development of the National Geologic Map Database.

  19. Gravity anomaly map of Mars and Moon and analysis of Venus gravity field: New analysis procedures

    NASA Technical Reports Server (NTRS)

    1984-01-01

    The technique of harmonic splines allows direct estimation of a complete planetary gravity field (geoid, gravity, and gravity gradients) everywhere over the planet's surface. Harmonic spline results of Venus are presented as a series of maps at spacecraft and constant altitudes. Global (except for polar regions) and local relations of gravity to topography are described.

  20. Real-Space Mapping of the Chiral Near-Field Distributions in Spiral Antennas and Planar Metasurfaces.

    PubMed

    Schnell, M; Sarriugarte, P; Neuman, T; Khanikaev, A B; Shvets, G; Aizpurua, J; Hillenbrand, R

    2016-01-13

    Chiral antennas and metasurfaces can be designed to react differently to left- and right-handed circularly polarized light, which enables novel optical properties such as giant optical activity and negative refraction. Here, we demonstrate that the underlying chiral near-field distributions can be directly mapped with scattering-type scanning near-field optical microscopy employing circularly polarized illumination. We apply our technique to visualize, for the first time, the circular-polarization selective nanofocusing of infrared light in Archimedean spiral antennas, and explain this chiral optical effect by directional launching of traveling waves in analogy to antenna theory. Moreover, we near-field image single-layer rosette and asymmetric dipole-monopole metasurfaces and find negligible and strong chiral optical near-field contrast, respectively. Our technique paves the way for near-field characterization of optical chirality in metal nanostructures, which will be essential for the future development of chiral antennas and metasurfaces and their applications.

  1. Surface mapping of spike potential fields: experienced EEGers vs. computerized analysis.

    PubMed

    Koszer, S; Moshé, S L; Legatt, A D; Shinnar, S; Goldensohn, E S

    1996-03-01

    An EEG epileptiform spike focus recorded with scalp electrodes is clinically localized by visual estimation of the point of maximal voltage and the distribution of its surrounding voltages. We compared such estimated voltage maps, drawn by experienced electroencephalographers (EEGers), with a computerized spline interpolation technique employed in the commercially available software package FOCUS. Twenty-two spikes were recorded from 15 patients during long-term continuous EEG monitoring. Maps of voltage distribution from the 28 electrodes surrounding the points of maximum change in slope (the spike maximum) were constructed by the EEGer. The same points of maximum spike and voltage distributions at the 29 electrodes were mapped by computerized spline interpolation and a comparison between the two methods was made. The findings indicate that the computerized spline mapping techniques employed in FOCUS construct voltage maps with similar maxima and distributions as the maps created by experienced EEGers. The dynamics of spike activity, including correlations, are better visualized using the computerized technique than by manual interpretation alone. Its use as a technique for spike localization is accurate and adds information of potential clinical value.

  2. Simultaneous Concentration and Velocity Maps in Particle Suspensions under Shear from Rheo-Ultrasonic Imaging

    NASA Astrophysics Data System (ADS)

    Saint-Michel, Brice; Bodiguel, Hugues; Meeker, Steven; Manneville, Sébastien

    2017-07-01

    We extend a previously developed ultrafast ultrasonic technique [T. Gallot et al., Rev. Sci. Instrum. 84, 045107 (2013), 10.1063/1.4801462] to concentration-field measurements in non-Brownian particle suspensions under shear. The technique provides access to time-resolved concentration maps within the gap of a Taylor-Couette cell simultaneously to local velocity measurements and standard rheological characterization. Benchmark experiments in homogeneous particle suspensions are used to calibrate the system. We then image heterogeneous concentration fields that result from centrifugation effects, from the classical Taylor-Couette instability, and from sedimentation or shear-induced resuspension.

  3. Highly sensitive mode mapping of whispering-gallery modes by scanning thermocouple-probe microscopy.

    PubMed

    Klein, Angela E; Schmidt, Carsten; Liebsch, Mattes; Janunts, Norik; Dobynde, Mikhail; Tünnermann, Andreas; Pertsch, Thomas

    2014-03-01

    We propose a method for mapping optical near-fields with the help of a thermocouple scanning-probe microscope tip. As the tip scans the sample surface, its apex is heated by light absorption, generating a thermovoltage. The thermovoltage map represents the intensity distribution of light at the sample surface. The measurement technique has been employed to map optical whispering-gallery modes in fused silica microdisk resonators operating at near-infrared wavelengths. The method could potentially be employed for near-field imaging of a variety of systems in the near-infrared and visible spectral range.

  4. Current trends in geomorphological mapping

    NASA Astrophysics Data System (ADS)

    Seijmonsbergen, A. C.

    2012-04-01

    Geomorphological mapping is a world currently in motion, driven by technological advances and the availability of new high resolution data. As a consequence, classic (paper) geomorphological maps which were the standard for more than 50 years are rapidly being replaced by digital geomorphological information layers. This is witnessed by the following developments: 1. the conversion of classic paper maps into digital information layers, mainly performed in a digital mapping environment such as a Geographical Information System, 2. updating the location precision and the content of the converted maps, by adding more geomorphological details, taken from high resolution elevation data and/or high resolution image data, 3. (semi) automated extraction and classification of geomorphological features from digital elevation models, broadly separated into unsupervised and supervised classification techniques and 4. New digital visualization / cartographic techniques and reading interfaces. Newly digital geomorphological information layers can be based on manual digitization of polygons using DEMs and/or aerial photographs, or prepared through (semi) automated extraction and delineation of geomorphological features. DEMs are often used as basis to derive Land Surface Parameter information which is used as input for (un) supervised classification techniques. Especially when using high-res data, object-based classification is used as an alternative to traditional pixel-based classifications, to cluster grid cells into homogeneous objects, which can be classified as geomorphological features. Classic map content can also be used as training material for the supervised classification of geomorphological features. In the classification process, rule-based protocols, including expert-knowledge input, are used to map specific geomorphological features or entire landscapes. Current (semi) automated classification techniques are increasingly able to extract morphometric, hydrological, and in the near future also morphogenetic information. As a result, these new opportunities have changed the workflows for geomorphological mapmaking, and their focus have shifted from field-based techniques to using more computer-based techniques: for example, traditional pre-field air-photo based maps are now replaced by maps prepared in a digital mapping environment, and designated field visits using mobile GIS / digital mapping devices now focus on gathering location information and attribute inventories and are strongly time efficient. The resulting 'modern geomorphological maps' are digital collections of geomorphological information layers consisting of georeferenced vector, raster and tabular data which are stored in a digital environment such as a GIS geodatabase, and are easily visualized as e.g. 'birds' eye' views, as animated 3D displays, on virtual globes, or stored as GeoPDF maps in which georeferenced attribute information can be easily exchanged over the internet. Digital geomorphological information layers are increasingly accessed via web-based services distributed through remote servers. Information can be consulted - or even build using remote geoprocessing servers - by the end user. Therefore, it will not only be the geomorphologist anymore, but also the professional end user that dictates the applied use of digital geomorphological information layers.

  5. Alteration mineral mapping for iron prospecting using ETM+ data, Tonkolili iron field, northern Sierra Leone

    NASA Astrophysics Data System (ADS)

    Mansaray, Lamin R.; Liu, Lei; Zhou, Jun; Ma, Zhimin

    2013-10-01

    The Tonkolili iron field in northern Sierra Leone has the largest known iron ore deposit in Africa. It occurs in a greenstone belt in an Achaean granitic basement. This study focused mainly on mapping areas with iron-oxide and hydroxyl bearing minerals, and identifying potential areas for haematite mineralization and banded iron formations (BIFs) in Tonkolili. The predominant mineral assemblage at the surface (laterite duricrust) of this iron field is haematitegoethite- limonite ±magnetite. The mineralization occurs in quartzitic banded ironstones, layered amphibolites, granites, schists and hornblendites. In this study, Crosta techniques were applied on Enhanced Thematic Mapper (ETM+) data to enhance areas with alteration minerals and target potential areas of haematite and BIF units in the Tonkolili iron field. Synthetic analysis shows that alteration zones mapped herein are consistent with the already discovered magnetite BIFs in Tonkolili. Based on the overlaps of the simplified geological map and the remote sensing-based alteration mineral maps obtained in this study, three new haematite prospects were inferred within, and one new haematite prospect was inferred outside the tenement boundary of the Tonkolili exploration license. As the primary iron mineral in Tonkolili is magnetite, the study concludes that, these haematite prospects could also be underlain by magnetite BIFs. This study also concludes that, the application of Crosta techniques on ETM+ data is effective not only in mapping iron-oxide and hydroxyl alterations but can also provide a basis for inferring areas of potential iron resources in Algoma-type banded iron formations (BIFs), such as those in the Tonkolili field.

  6. Using Concept Maps in Political Science

    ERIC Educational Resources Information Center

    Chamberlain, Robert P.

    2015-01-01

    Concept mapping is a pedagogical technique that was developed in the 1970s and is being used in K-12 and postsecondary education. Although it has shown excellent results in other fields, it is still rare in political science. In this research note, I discuss the implementation and testing of concept mapping in my Advanced Introduction to…

  7. High-resolution measurements of the spatial and temporal evolution of megagauss magnetic fields created in intense short-pulse laser-plasma interactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chatterjee, Gourab, E-mail: gourab@tifr.res.in; Singh, Prashant Kumar; Adak, Amitava

    A pump-probe polarimetric technique is demonstrated, which provides a complete, temporally and spatially resolved mapping of the megagauss magnetic fields generated in intense short-pulse laser-plasma interactions. A normally incident time-delayed probe pulse reflected from its critical surface undergoes a change in its ellipticity according to the magneto-optic Cotton-Mouton effect due to the azimuthal nature of the ambient self-generated megagauss magnetic fields. The temporal resolution of the magnetic field mapping is typically of the order of the pulsewidth, limited by the laser intensity contrast, whereas a spatial resolution of a few μm is achieved by this optical technique. High-harmonics of themore » probe can be employed to penetrate deeper into the plasma to even near-solid densities. The spatial and temporal evolution of the megagauss magnetic fields at the target front as well as at the target rear are presented. The μm-scale resolution of the magnetic field mapping provides valuable information on the filamentary instabilities at the target front, whereas probing the target rear mirrors the highly complex fast electron transport in intense laser-plasma interactions.« less

  8. High energy near- and far-field ptychographic tomography at the ESRF

    NASA Astrophysics Data System (ADS)

    da Silva, Julio C.; Haubrich, Jan; Requena, Guillermo; Hubert, Maxime; Pacureanu, Alexandra; Bloch, Leonid; Yang, Yang; Cloetens, Peter

    2017-09-01

    In high-resolution tomography, one needs high-resolved projections in order to reconstruct a high-quality 3D map of a sample. X-ray ptychography is a robust technique which can provide such high-resolution 2D projections taking advantage of coherent X-rays. This technique was used in the far-field regime for a fair amount of time, but it can now also be implemented in the near-field regime. In both regimes, the technique enables not only high-resolution imaging, but also high sensitivity to the electron density of the sample. The combination with tomography makes 3D imaging possible via ptychographic X-ray computed tomography (PXCT), which can provide a 3D map of the complex-valued refractive index of the sample. The extension of PXCT to X-ray energies above 15 keV is challenging, but it can allow the imaging of object opaque to lower energy. We present here the implementation and developments of high-energy near- and far-field PXCT at the ESRF.

  9. Magnetometric mapping of superconducting RF cavities

    NASA Astrophysics Data System (ADS)

    Schmitz, B.; Köszegi, J.; Alomari, K.; Kugeler, O.; Knobloch, J.

    2018-05-01

    A scalable mapping system for superconducting RF (SRF) cavities is presented. Currently, it combines local temperature measurement with 3D magnetic field mapping along the outer surface of the resonator. This allows for the observation of dynamic effects that have an impact on the superconducting properties of a cavity, such as the normal to superconducting phase transition or a quench. The system was developed for a single cell 1.3 GHz TESLA-type cavity, but can be easily adopted to arbitrary other cavity types. A data acquisition rate of 500 Hz for all channels simultaneously (i.e., 2 ms acquisition time for a complete map) and a magnetic field resolution of currently up to 14 mA/m/μ0 = 17 nT have been implemented. While temperature mapping is a well known technique in SRF research, the integration of magnetic field mapping opens the possibility of detailed studies of trapped magnetic flux and its impact on the surface resistance. It is shown that magnetic field sensors based on the anisotropic magnetoresistance effect can be used in the cryogenic environment with improved sensitivity compared to room temperature. Furthermore, examples of first successful combined temperature and magnetic-field maps are presented.

  10. Damage Evaluation Based on a Wave Energy Flow Map Using Multiple PZT Sensors

    PubMed Central

    Liu, Yaolu; Hu, Ning; Xu, Hong; Yuan, Weifeng; Yan, Cheng; Li, Yuan; Goda, Riu; Alamusi; Qiu, Jinhao; Ning, Huiming; Wu, Liangke

    2014-01-01

    A new wave energy flow (WEF) map concept was proposed in this work. Based on it, an improved technique incorporating the laser scanning method and Betti's reciprocal theorem was developed to evaluate the shape and size of damage as well as to realize visualization of wave propagation. In this technique, a simple signal processing algorithm was proposed to construct the WEF map when waves propagate through an inspection region, and multiple lead zirconate titanate (PZT) sensors were employed to improve inspection reliability. Various damages in aluminum and carbon fiber reinforced plastic laminated plates were experimentally and numerically evaluated to validate this technique. The results show that it can effectively evaluate the shape and size of damage from wave field variations around the damage in the WEF map. PMID:24463430

  11. Folding Digital Mapping into a Traditional Field Camp Program

    NASA Astrophysics Data System (ADS)

    Kelley, D. F.

    2011-12-01

    Louisiana State University runs a field camp with a permanent fixed-base which has continually operated since 1928 in the Front Range just to the south of Colorado Springs, CO. The field camp program which offers a 6-credit hour course in Field Geology follows a very traditional structure. The first week is spent collecting data for the construction of a detailed stratigraphic column of the local geology. The second week is spent learning the skills of geologic mapping, while the third applies these skills to a more geologically complicated mapping area. The final three weeks of the field camp program are spent studying and mapping igneous and metamorphic rocks as well as conducting a regional stratigraphic correlation exercise. Historically there has been a lack of technology involved in this program. All mapping has been done in the field without the use of any digital equipment and all products have been made in the office without the use of computers. In the summer of 2011 the use of GPS units, and GIS software were introduced to the program. The exercise that was chosen for this incorporation of technology was one in which metamorphic rocks are mapped within Golden Gate Canyon State Park in Colorado. This same mapping exercise was carried out during the 2010 field camp session with no GPS or GIS use. The students in both groups had the similar geologic backgrounds, similar grade point averages, and similar overall performances at field camp. However, the group that used digital mapping techniques mapped the field area more quickly and reportedly with greater ease. Additionally, the students who used GPS and GIS included more detailed rock descriptions with their final maps indicating that they spent less time in the field focusing on mapping contacts between units. The outcome was a better overall product. The use of GPS units also indirectly caused the students to produce better field maps. In addition to greater ease in mapping, the use of GIS software to create maps was rewarding to the students and gave them mapping experience that is in line with industry standards.

  12. Digital Mapping Techniques '10-Workshop Proceedings, Sacramento, California, May 16-19, 2010

    USGS Publications Warehouse

    Soller, David R.; Soller, David R.

    2012-01-01

    The Digital Mapping Techniques '10 (DMT'10) workshop was attended by 110 technical experts from 40 agencies, universities, and private companies, including representatives from 19 State geological surveys (see Appendix A). This workshop, hosted by the California Geological Survey, May 16-19, 2010, in Sacramento, California, was similar in nature to the previous 13 meetings (see Appendix B). The meeting was coordinated by the U.S. Geological Survey's (USGS) National Geologic Map Database project. As in the previous meetings, the objective was to foster informal discussion and exchange of technical information. It is with great pleasure that I note that the objective was again successfully met, as attendees continued to share and exchange knowledge and information, and renew friendships and collegial work begun at past DMT workshops. At this meeting, oral and poster presentations and special discussion sessions emphasized (1) methods for creating and publishing map products ("publishing" includes Web-based release); (2) field data capture software and techniques, including the use of LiDAR; (3) digital cartographic techniques; (4) migration of digital maps into ArcGIS Geodatabase format; (5) analytical GIS techniques; and (6) continued development of the National Geologic Map Database.

  13. Evaluating DEM conditioning techniques, elevation source data, and grid resolution for field-scale hydrological parameter extraction

    NASA Astrophysics Data System (ADS)

    Woodrow, Kathryn; Lindsay, John B.; Berg, Aaron A.

    2016-09-01

    Although digital elevation models (DEMs) prove useful for a number of hydrological applications, they are often the end result of numerous processing steps that each contains uncertainty. These uncertainties have the potential to greatly influence DEM quality and to further propagate to DEM-derived attributes including derived surface and near-surface drainage patterns. This research examines the impacts of DEM grid resolution, elevation source data, and conditioning techniques on the spatial and statistical distribution of field-scale hydrological attributes for a 12,000 ha watershed of an agricultural area within southwestern Ontario, Canada. Three conditioning techniques, including depression filling (DF), depression breaching (DB), and stream burning (SB), were examined. The catchments draining to each boundary of 7933 agricultural fields were delineated using the surface drainage patterns modeled from LiDAR data, interpolated to a 1 m, 5 m, and 10 m resolution DEMs, and from a 10 m resolution photogrammetric DEM. The results showed that variation in DEM grid resolution resulted in significant differences in the spatial and statistical distributions of contributing areas and the distributions of downslope flowpath length. Degrading the grid resolution of the LiDAR data from 1 m to 10 m resulted in a disagreement in mapped contributing areas of between 29.4% and 37.3% of the study area, depending on the DEM conditioning technique. The disagreements among the field-scale contributing areas mapped from the 10 m LiDAR DEM and photogrammetric DEM were large, with nearly half of the study area draining to alternate field boundaries. Differences in derived contributing areas and flowpaths among various conditioning techniques increased substantially at finer grid resolutions, with the largest disagreement among mapped contributing areas occurring between the 1 m resolution DB DEM and the SB DEM (37% disagreement) and the DB-DF comparison (36.5% disagreement in mapped areas). These results demonstrate that the decision to use one DEM conditioning technique over another, and the constraints of available DEM data resolution and source, can greatly impact the modeled surface drainage patterns at the scale of individual fields. This work has significance for applications that attempt to optimize best-management practices (BMPs) for reducing soil erosion and runoff contamination within agricultural watersheds.

  14. Vibrational near-field mapping of planar and buried three-dimensional plasmonic nanostructures

    PubMed Central

    Dregely, Daniel; Neubrech, Frank; Duan, Huigao; Vogelgesang, Ralf; Giessen, Harald

    2013-01-01

    Nanoantennas confine electromagnetic fields at visible and infrared wavelengths to volumes of only a few cubic nanometres. Assessing their near-field distribution offers fundamental insight into light–matter coupling and is of special interest for applications such as radiation engineering, attomolar sensing and nonlinear optics. Most experimental approaches to measure near-fields employ either diffraction-limited far-field methods or intricate near-field scanning techniques. Here, using diffraction-unlimited far-field spectroscopy in the infrared, we directly map the intensity of the electric field close to plasmonic nanoantennas. We place a patch of probe molecules with 10 nm accuracy at different locations in the near-field of a resonant antenna and extract the molecular vibrational excitation. We map the field intensity along a dipole antenna and gap-type antennas. Moreover, this method is able to assess the near-field intensity of complex buried plasmonic structures. We demonstrate this by measuring for the first time the near-field intensity of a three-dimensional plasmonic electromagnetically induced transparency structure. PMID:23892519

  15. Measuring supermassive black holes via reverberation mapping in the UV

    NASA Astrophysics Data System (ADS)

    Kaspi, Shai

    2018-04-01

    Over the past three decades the reverberation mapping technique was used to measure the central regions of Active Galactic Nuclei (AGN), their size, velocity field, and the mass of the black hole in the center. This technique was used mainly in the optical with several studies in the UV. Reverberation mapping in the UV adds essential information to the AGN studies. This paper reviews these recent studies done in the UV, presents results from the recent HST campaign toward NGC 5548, and discuss two projects of reverberation mapping of UV emission lines in high-luminosity quasars. The advantages of reverberation mapping in the UV will be discussed as well as the needs from new UV missions in order to be able to advance UV reverberation mapping campaigns.

  16. Digital soil mapping as a basis for climatically oriented agriculture a thematic on the territory of the national crop testing fields of the Republic of Tatarstan, Russia

    NASA Astrophysics Data System (ADS)

    Sahabiev, I. A.; Giniyatullin, K. G.; Ryazanov, S. S.

    2018-01-01

    The concept of climate-optimized agriculture (COA) of the UN FAO implies the transformation of agriculture techniques in conditions of changing climate. It is important to implement a timely transition to the concept of COA and sustainable development of soil resources, accurate digital maps of spatial distribution of soils and soil properties are needed. Digital mapping of soil humus content was carried out on the territory of the national crop testing fields (NCTF) of the Republic of Tatarstan (Russian Federation) and the accuracy of the maps obtained was estimated.

  17. Spatial Field Variability Mapping of Rice Crop using Clustering Technique from Space Borne Hyperspectral Data

    NASA Astrophysics Data System (ADS)

    Moharana, S.; Dutta, S.

    2015-12-01

    Precision farming refers to field-specific management of an agricultural crop at a spatial scale with an aim to get the highest achievable yield and to achieve this spatial information on field variability is essential. The difficulty in mapping of spatial variability occurring within an agriculture field can be revealed by employing spectral techniques in hyperspectral imagery rather than multispectral imagery. However an advanced algorithm needs to be developed to fully make use of the rich information content in hyperspectral data. In the present study, potential of hyperspectral data acquired from space platform was examined to map the field variation of paddy crop and its species discrimination. This high dimensional data comprising 242 spectral narrow bands with 30m ground resolution Hyperion L1R product acquired for Assam, India (30th Sept and 3rd Oct, 2014) were allowed for necessary pre-processing steps followed by geometric correction using Hyperion L1GST product. Finally an atmospherically corrected and spatially deduced image consisting of 112 band was obtained. By employing an advanced clustering algorithm, 12 different clusters of spectral waveforms of the crop were generated from six paddy fields for each images. The findings showed that, some clusters were well discriminated representing specific rice genotypes and some clusters were mixed treating as a single rice genotype. As vegetation index (VI) is the best indicator of vegetation mapping, three ratio based VI maps were also generated and unsupervised classification was performed for it. The so obtained 12 clusters of paddy crop were mapped spatially to the derived VI maps. From these findings, the existence of heterogeneity was clearly captured in one of the 6 rice plots (rice plot no. 1) while heterogeneity was observed in rest of the 5 rice plots. The degree of heterogeneous was found more in rice plot no.6 as compared to other plots. Subsequently, spatial variability of paddy field was observed in different plot levels in the paddy fields from the two images. However, no such significant variation in rice genotypes at growth level was observed. Hence, the spectral information acquired from space platform can be linearly scaled to map the variation in field levels of rice crop which will be act as an informative system for rice agriculture practice.

  18. Low Altitude AVIRIS Data for Mapping Land Cover in Yellowstone National Park: Use of Isodata Clustering Techniques

    NASA Technical Reports Server (NTRS)

    Spruce, Joe

    2001-01-01

    Yellowstone National Park (YNP) contains a diversity of land cover. YNP managers need site-specific land cover maps, which may be produced more effectively using high-resolution hyperspectral imagery. ISODATA clustering techniques have aided operational multispectral image classification and may benefit certain hyperspectral data applications if optimally applied. In response, a study was performed for an area in northeast YNP using 11 select bands of low-altitude AVIRIS data calibrated to ground reflectance. These data were subjected to ISODATA clustering and Maximum Likelihood Classification techniques to produce a moderately detailed land cover map. The latter has good apparent overall agreement with field surveys and aerial photo interpretation.

  19. Myocardial T2* Mapping at Ultrahigh Field: Physics and Frontier Applications

    NASA Astrophysics Data System (ADS)

    Huelnhagen, Till; Paul, Katharina; Ku, Min-Chi; Serradas Duarte, Teresa; Niendorf, Thoralf

    2017-06-01

    Cardiovascular magnetic resonance imaging (CMR) has become an indispensable clinical tool for the assessment of morphology, function and structure of the heart muscle. By exploiting quantification of the effective transverse relaxation time (T2*) CMR also affords myocardial tissue characterization and probing of cardiac physiology, both being in the focus of ongoing research. These developments are fueled by the move to ultrahigh magnetic field strengths, which permits enhanced sensitivity and spatial resolution that help to overcome limitations of current clinical MR systems with the goal to contribute to a better understanding of myocardial (patho)physiology in vivo. In this context, the aim of this report is to introduce myocardial T2* mapping at ultrahigh magnetic fields as a promising technique to non-invasively assess myocardial (patho)physiology. For this purpose the basic principles of T2* assessment, the biophysical mechanisms determining T2* and (pre)clinical applications of myocardial T2* mapping are presented. Technological challenges and solutions for T2* sensitized CMR at ultrahigh magnetic field strengths are discussed followed by a review of acquisition techniques and post processing approaches. Preliminary results derived from myocardial T2* mapping in healthy subjects and cardiac patients at 7.0 Tesla are presented. A concluding section discusses remaining questions and challenges and provides an outlook on future developments and potential clinical applications.

  20. Satellite SAR applied in offhore wind resource mapping: possibilities and limitations

    NASA Astrophysics Data System (ADS)

    Hasager, C. B.

    Satellite remote sensing of ocean wind fields from Synthetic Aperture Radar (SAR) observations is presented. The study is based on a series of more than 60 ERS-2 SAR satellite scenes from the Horns Rev in the North Sea. The wind climate from the coastline and 80 km offshore is mapped in detail with a resolution of 400 m by 400 m grid cells. Spatial variations in wind speed as a function of wind direction and fetch are observed and discussed. The satellite wind fields are compared to in-situ observations from a tall offshore meteorological mast at which wind speed at 4 levels are analysed. The mast is located 14 km offshore and the wind climate is observed continously since May 1999. For offshore wind resource mapping the SAR-based wind field maps can constitute an alternative to in-situ observations and a practical method is developed for applied use in WAsP (Wind Atlas Analysis and Application Program). The software is the de facto world standard tool used for prediction of wind climate and power production from wind turbines and wind farms. The possibilities and limitations on achieving offshore wind resource estimates using SAR-based wind fields in lieu of in-situ data are discussed. It includes a presentation of the footprint area-averaging techniques tailored for SAR-based wind field maps. Averaging techniques are relevant for the reduction of noise apparent in SAR wind speed maps. Acknowledgments: Danish Research Agency (SAT-WIND Sagsnr. 2058-03-0006) for funding, ESA (EO-1356, AO-153) for ERS-2 SAR scenes, and Elsam Engineering A/S for in-situ met-data.

  1. The role of photogeologic mapping in traverse planning: Lessons from DRATS 2010 activities

    USGS Publications Warehouse

    Skinner, James A.; Fortezzo, Corey M.

    2013-01-01

    We produced a 1:24,000 scale photogeologic map of the Desert Research and Technology Studies (DRATS) 2010 simulated lunar mission traverse area and surrounding environments located within the northeastern part of the San Francisco Volcanic Field (SFVF), north-central Arizona. To mimic an exploratory mission, we approached the region “blindly” by rejecting prior knowledge or preconceived notions of the regional geologic setting and focused instead only on image and topographic base maps that were intended to be equivalent to pre-cursor mission “orbital returns”. We used photogeologic mapping techniques equivalent to those employed during the construction of modern planetary geologic maps. Based on image and topographic base maps, we identified 4 surficial units (talus, channel, dissected, and plains units), 5 volcanic units (older cone, younger cone, older flow, younger flow, and block field units), and 5 basement units (grey-toned mottled, red-toned platy, red-toned layered, light-toned slabby, and light-toned layered units). Comparison of our remote-based map units with published field-based map units indicates that the two techniques yield pervasively similar results of contrasting detail, with higher accuracies linked to remote-based units that have high topographic relief and tonal contrast relative to adjacent units. We list key scientific questions that remained after photogeologic mapping and prior to DRATS activities and identify 13 specific observations that the crew and science team would need to make in order to address those questions and refine the interpreted geologic context. We translated potential observations into 62 recommended sites for visitation and observation during the mission traverse. The production and use of a mission-specific photogeologic map for DRATS 2010 activities resulted in strategic and tactical recommendations regarding observational context and hypothesis tracking over the course of an exploratory mission.

  2. Constructing Synoptic Maps of Stratospheric Column Ozone from HALOE, SAGE and Balloonsonde Data Using Potential Vorticity Isentropic Coordinate Transformations

    NASA Technical Reports Server (NTRS)

    Hollandsworth, Stacey M.; Schoeberl, Mark R.; Morris, Gary A.; Long, Craig; Zhou, Shuntai; Miller, Alvin J.

    1999-01-01

    In this study we utilize potential vorticity - isentropic (PVI) coordinate transformations as a means of combining ozone data from different sources to construct daily, synthetic three-dimensional ozone fields. This methodology has been used successfully to reconstruct ozone maps in particular regions from aircraft data over the period of the aircraft campaign. We expand this method to create high-resolution daily global maps of profile ozone data, particularly in the lower stratosphere, where high-resolution ozone data are sparse. Ozone climatologies in PVI-space are constructed from satellite-based SAGE II and UARS/HALOE data, both of which-use solar occultation techniques to make high vertical resolution ozone profile measurements, but with low spatial resolution. A climatology from ground-based balloonsonde data is also created. The climatologies are used to establish the relationship between ozone and dynamical variability, which is defined by the potential vorticity (in the form of equivalent latitude) and potential temperature fields. Once a PVI climatology has been created from data taken by one or more instruments, high-resolution daily profile ozone field estimates are constructed based solely on the PVI fields, which are available on a daily basis from NCEP analysis. These profile ozone maps could be used for a variety of applications, including use in conjunction with total ozone maps to create a daily tropospheric ozone product, as input to forecast models, or as a tool for validating independent ozone measurements when correlative data are not available. This technique is limited to regions where the ozone is a long-term tracer and the flow is adiabatic. We evaluate the internal consistency of the technique by transforming the ozone back to physical space and comparing to the original profiles. Biases in the long-term average of the differences are used to identify regions where the technique is consistently introducing errors. Initial results show the technique is useful in the lower stratosphere at most latitudes throughout the year,and in the winter hemisphere in the middle stratosphere. The results are problematic in the summer hemisphere middle stratosphere due to increased ozone photochemistry and weak PV gradients. Alternate techniques in these regions will be discussed. An additional limitation is the quality and resolution of the meteorological data.

  3. Data selection techniques in the interpretation of MAGSAT data over Australia

    NASA Technical Reports Server (NTRS)

    Johnson, B. D.; Dampney, C. N. G.

    1983-01-01

    The MAGSAT data require critical selection in order to produce a self-consistent data set suitable for map construction and subsequent interpretation. Interactive data selection techniques are described which involve the use of a special-purpose profile-oriented data base and a colour graphics display. The careful application of these data selection techniques permits validation every data value and ensures that the best possible self-consistent data set is being used to construct the maps of the magnetic field measured at satellite altitudes over Australia.

  4. Direct shear mapping - a new weak lensing tool

    NASA Astrophysics Data System (ADS)

    de Burgh-Day, C. O.; Taylor, E. N.; Webster, R. L.; Hopkins, A. M.

    2015-08-01

    We have developed a new technique called direct shear mapping (DSM) to measure gravitational lensing shear directly from observations of a single background source. The technique assumes the velocity map of an unlensed, stably rotating galaxy will be rotationally symmetric. Lensing distorts the velocity map making it asymmetric. The degree of lensing can be inferred by determining the transformation required to restore axisymmetry. This technique is in contrast to traditional weak lensing methods, which require averaging an ensemble of background galaxy ellipticity measurements, to obtain a single shear measurement. We have tested the efficacy of our fitting algorithm with a suite of systematic tests on simulated data. We demonstrate that we are in principle able to measure shears as small as 0.01. In practice, we have fitted for the shear in very low redshift (and hence unlensed) velocity maps, and have obtained null result with an error of ±0.01. This high-sensitivity results from analysing spatially resolved spectroscopic images (i.e. 3D data cubes), including not just shape information (as in traditional weak lensing measurements) but velocity information as well. Spirals and rotating ellipticals are ideal targets for this new technique. Data from any large Integral Field Unit (IFU) or radio telescope is suitable, or indeed any instrument with spatially resolved spectroscopy such as the Sydney-Australian-Astronomical Observatory Multi-Object Integral Field Spectrograph (SAMI), the Atacama Large Millimeter/submillimeter Array (ALMA), the Hobby-Eberly Telescope Dark Energy Experiment (HETDEX) and the Square Kilometer Array (SKA).

  5. Physics Laboratory Investigation of Vocational High School Field Stone and Concrete Construction Techniques in the Central Java Province (Indonesia)

    ERIC Educational Resources Information Center

    Purwandari, Ristiana Dyah

    2015-01-01

    The investigation aims in this study were to uncover the observations of infrastructures and physics laboratory in vocational high school for Stone and Concrete Construction Techniques Expertise Field or Teknik Konstruksi Batu dan Beton (TKBB)'s in Purwokerto Central Java Province, mapping the Vocational High School or Sekolah Menengah Kejuruan…

  6. Invasive species management and research using GIS

    USGS Publications Warehouse

    Holcombe, Tracy R.; Stohlgren, Thomas J.; Jarnevich, Catherine S.

    2007-01-01

    Geographical Information Systems (GIS) are powerful tools in the field of invasive species management. GIS can be used to create potential distribution maps for all manner of taxa, including plants, animals, and diseases. GIS also performs well in the early detection and rapid assessment of invasive species. Here, we used GIS applications to investigate species richness and invasion patterns in fish in the United States (US) at the 6-digit Hydrologic Unit Code (HUC) level. We also created maps of potential spread of the cane toad (Bufo marinus) in the southeastern US at the 8-digit HUC level using regression and environmental envelope techniques. Equipped with this potential map, resource managers can target their field surveys to areas most vulnerable to invasion. Advances in GIS technology, maps, data, and many of these techniques can be found on websites such as the National Institute of Invasive Species Science (www.NIISS.org). Such websites provide a forum for data sharing and analysis that is an invaluable service to the invasive species community.

  7. The Art of Teaching Map and Compass: Instructional Techniques, Curricular Formats and Practical Field Exercises.

    ERIC Educational Resources Information Center

    Watters, Ron

    This paper discusses the value of teaching map and compass skills in the classroom or an outdoor situation. Navigation is the most basic of all outdoor skills. A map and compass curriculum can be taught to anyone, is inexpensive, and is easily incorporated in a variety of educational situations. General teaching principles are outlined: (1) start…

  8. Field methods and data processing techniques associated with mapped inventory plots

    Treesearch

    William A. Bechtold; Stanley J. Zarnoch

    1999-01-01

    The U.S. Forest Inventory and Analysis (FIA) and Forest Health Monitoring (FHM) programs utilize a fixed-area mapped-plot design as the national standard for extensive forest inventories. The mapped-plot design is explained, as well as the rationale for its selection as the national standard. Ratio-of-means estimators am presented as a method to process data from...

  9. Rapid Topographic Mapping Using TLS and UAV in a Beach-dune-wetland Environment: Case Study in Freeport, Texas, USA

    NASA Astrophysics Data System (ADS)

    Ding, J.; Wang, G.; Xiong, L.; Zhou, X.; England, E.

    2017-12-01

    Coastal regions are naturally vulnerable to impact from long-term coastal erosion and episodic coastal hazards caused by extreme weather events. Major geomorphic changes can occur within a few hours during storms. Prediction of storm impact, costal planning and resilience observation after natural events all require accurate and up-to-date topographic maps of coastal morphology. Thus, the ability to conduct rapid and high-resolution-high-accuracy topographic mapping is of critical importance for long-term coastal management and rapid response after natural hazard events. Terrestrial laser scanning (TLS) techniques have been frequently applied to beach and dune erosion studies and post hazard responses. However, TLS surveying is relatively slow and costly for rapid surveying. Furthermore, TLS surveying unavoidably retains gray areas that cannot be reached by laser pulses, particularly in wetland areas where lack of direct access in most cases. Aerial mapping using photogrammetry from images taken by unmanned aerial vehicles (UAV) has become a new technique for rapid topographic mapping. UAV photogrammetry mapping techniques provide the ability to map coastal features quickly, safely, inexpensively, on short notice and with minimal impact. The primary products from photogrammetry are point clouds similar to the LiDAR point clouds. However, a large number of ground control points (ground truth) are essential for obtaining high-accuracy UAV maps. The ground control points are often obtained by GPS survey simultaneously with the TLS survey in the field. The GPS survey could be a slow and arduous process in the field. This study aims to develop methods for acquiring a huge number of ground control points from TLS survey and validating point clouds obtained from photogrammetry with the TLS point clouds. A Rigel VZ-2000 TLS scanner was used for developing laser point clouds and a DJI Phantom 4 Pro UAV was used for acquiring images. The aerial images were processed with the Photogrammetry mapping software Agisoft PhotoScan. A workflow for conducting rapid TLS and UAV survey in the field and integrating point clouds obtained from TLS and UAV surveying will be introduced. Key words: UAV photogrammetry, ground control points, TLS, coastal morphology, topographic mapping

  10. Canopy Density Mapping on Ultracam-D Aerial Imagery in Zagros Woodlands, Iran

    NASA Astrophysics Data System (ADS)

    Erfanifard, Y.; Khodaee, Z.

    2013-09-01

    Canopy density maps express different characteristics of forest stands, especially in woodlands. Obtaining such maps by field measurements is so expensive and time-consuming. It seems necessary to find suitable techniques to produce these maps to be used in sustainable management of woodland ecosystems. In this research, a robust procedure was suggested to obtain these maps by very high spatial resolution aerial imagery. It was aimed to produce canopy density maps by UltraCam-D aerial imagery, newly taken in Zagros woodlands by Iran National Geographic Organization (NGO), in this study. A 30 ha plot of Persian oak (Quercus persica) coppice trees was selected in Zagros woodlands, Iran. The very high spatial resolution aerial imagery of the plot purchased from NGO, was classified by kNN technique and the tree crowns were extracted precisely. The canopy density was determined in each cell of different meshes with different sizes overlaid on the study area map. The accuracy of the final maps was investigated by the ground truth obtained by complete field measurements. The results showed that the proposed method of obtaining canopy density maps was efficient enough in the study area. The final canopy density map obtained by a mesh with 30 Ar (3000 m2) cell size had 80% overall accuracy and 0.61 KHAT coefficient of agreement which shows a great agreement with the observed samples. This method can also be tested in other case studies to reveal its capability in canopy density map production in woodlands.

  11. Remote sensing analysis of vegetation at the San Carlos Apache Reservation, Arizona and surrounding area

    USGS Publications Warehouse

    Norman, Laura M.; Middleton, Barry R.; Wilson, Natalie R.

    2018-01-01

    Mapping of vegetation types is of great importance to the San Carlos Apache Tribe and their management of forestry and fire fuels. Various remote sensing techniques were applied to classify multitemporal Landsat 8 satellite data, vegetation index, and digital elevation model data. A multitiered unsupervised classification generated over 900 classes that were then recoded to one of the 16 generalized vegetation/land cover classes using the Southwest Regional Gap Analysis Project (SWReGAP) map as a guide. A supervised classification was also run using field data collected in the SWReGAP project and our field campaign. Field data were gathered and accuracy assessments were generated to compare outputs. Our hypothesis was that a resulting map would update and potentially improve upon the vegetation/land cover class distributions of the older SWReGAP map over the 24,000  km2 study area. The estimated overall accuracies ranged between 43% and 75%, depending on which method and field dataset were used. The findings demonstrate the complexity of vegetation mapping, the importance of recent, high-quality-field data, and the potential for misleading results when insufficient field data are collected.

  12. Application of phyto-indication and radiocesium indicative methods for microrelief mapping

    NASA Astrophysics Data System (ADS)

    Panidi, E.; Trofimetz, L.; Sokolova, J.

    2016-04-01

    Remote sensing technologies are widely used for production of Digital Elevation Models (DEMs), and geomorphometry techniques are valuable tools for DEM analysis. One of the broadly used applications of these technologies and techniques is relief mapping. In the simplest case, we can identify relief structures using DEM analysis, and produce a map or map series to show the relief condition. However, traditional techniques might fail when used for mapping microrelief structures (structures below ten meters in size). In this case high microrelief dynamics lead to technological and conceptual difficulties. Moreover, erosion of microrelief structures cannot be detected at the initial evolution stage using DEM modelling and analysis only. In our study, we investigate the possibilities and specific techniques for allocation of erosion microrelief structures, and mapping techniques for the microrelief derivatives (e.g. quantitative parameters of microrelief). Our toolset includes the analysis of spatial redistribution of the soil pollutants and phyto-indication analysis, which complement the common DEM modelling and geomorphometric analysis. We use field surveys produced at the test area, which is arable territory with high erosion risks. Our main conclusion at the current stage is that the indicative methods (i.e. radiocesium and phyto-indication methods) are effective for allocation of the erosion microrelief structures. Also, these methods need to be formalized for convenient use.

  13. Mapping and DOWNFLOW simulation of recent lava flow fields at Mount Etna

    NASA Astrophysics Data System (ADS)

    Tarquini, Simone; Favalli, Massimiliano

    2011-07-01

    In recent years, progress in geographic information systems (GIS) and remote sensing techniques have allowed the mapping and studying of lava flows in unprecedented detail. A composite GIS technique is introduced to obtain high resolution boundaries of lava flow fields. This technique is mainly based on the processing of LIDAR-derived maps and digital elevation models (DEMs). The probabilistic code DOWNFLOW is then used to simulate eight large flow fields formed at Mount Etna in the last 25 years. Thanks to the collection of 6 DEMs representing Mount Etna at different times from 1986 to 2007, simulated outputs are obtained by running the DOWNFLOW code over pre-emplacement topographies. Simulation outputs are compared with the boundaries of the actual flow fields obtained here or derived from the existing literature. Although the selected fields formed in accordance with different emplacement mechanisms, flowed on different zones of the volcano over different topographies and were fed by different lava supplies of different durations, DOWNFLOW yields results close to the actual flow fields in all the cases considered. This outcome is noteworthy because DOWNFLOW has been applied by adopting a default calibration, without any specific tuning for the new cases considered here. This extensive testing proves that, if the pre-emplacement topography is available, DOWNFLOW yields a realistic simulation of a future lava flow based solely on a knowledge of the vent position. In comparison with deterministic codes, which require accurate knowledge of a large number of input parameters, DOWNFLOW turns out to be simple, fast and undemanding, proving to be ideal for systematic hazard and risk analyses.

  14. Rapid, automated mosaicking of the human corneal subbasal nerve plexus.

    PubMed

    Vaishnav, Yash J; Rucker, Stuart A; Saharia, Keshav; McNamara, Nancy A

    2017-11-27

    Corneal confocal microscopy (CCM) is an in vivo technique used to study corneal nerve morphology. The largest proportion of nerves innervating the cornea lie within the subbasal nerve plexus, where their morphology is altered by refractive surgery, diabetes and dry eye. The main limitations to clinical use of CCM as a diagnostic tool are the small field of view of CCM images and the lengthy time needed to quantify nerves in collected images. Here, we present a novel, rapid, fully automated technique to mosaic individual CCM images into wide-field maps of corneal nerves. We implemented an OpenCV image stitcher that accounts for corneal deformation and uses feature detection to stitch CCM images into a montage. The method takes 3-5 min to process and stitch 40-100 frames on an Amazon EC2 Micro instance. The speed, automation and ease of use conferred by this technique is the first step toward point of care evaluation of wide-field subbasal plexus (SBP) maps in a clinical setting.

  15. Marine geodetic control for geoidal profile mapping across the Puerto Rican Trench

    NASA Technical Reports Server (NTRS)

    Fubara, D. M.; Mourad, A. G.

    1975-01-01

    A marine geodetic control was established for the northern end of the geoidal profile mapping experiment across the Puerto Rican Trench by determining the three-dimensional geodetic coordinates of the four ocean-bottom mounted acoustic transponders. The data reduction techniques employed and analytical processes involved are described. Before applying the analytical techniques to the field data, they were tested with simulated data and proven to be effective in theory as well as in practice.

  16. Vector Doppler: spatial sampling analysis and presentation techniques for real-time systems

    NASA Astrophysics Data System (ADS)

    Capineri, Lorenzo; Scabia, Marco; Masotti, Leonardo F.

    2001-05-01

    The aim of the vector Doppler (VD) technique is the quantitative reconstruction of a velocity field independently of the ultrasonic probe axis to flow angle. In particular vector Doppler is interesting for studying vascular pathologies related to complex blood flow conditions. Clinical applications require a real-time operating mode and the capability to perform Doppler measurements over a defined volume. The combination of these two characteristics produces a real-time vector velocity map. In previous works the authors investigated the theory of pulsed wave (PW) vector Doppler and developed an experimental system capable of producing off-line 3D vector velocity maps. Afterwards, for producing dynamic velocity vector maps, we realized a new 2D vector Doppler system based on a modified commercial echograph. The measurement and presentation of a vector velocity field requires a correct spatial sampling that must satisfy the Shannon criterion. In this work we tackled this problem, establishing a relationship between sampling steps and scanning system characteristics. Another problem posed by the vector Doppler technique is the data representation in real-time that should be easy to interpret for the physician. With this in mine we attempted a multimedia solution that uses both interpolated images and sound to represent the information of the measured vector velocity map. These presentation techniques were experimented for real-time scanning on flow phantoms and preliminary measurements in vivo on a human carotid artery.

  17. Geophysical exploration with audio frequency magnetic fields

    NASA Astrophysics Data System (ADS)

    Labson, V. F.

    1985-12-01

    Experience with the Audio Frequency Magnetic (AFMAG) method has demonstrated that an electromagnetic exploration system using the Earth's natural audiofrequency magnetic fields as an energy source, is capable of mapping subsurface electrical structure in the upper kilometer of the Earth's crust. The limitations are resolved by adapting the tensor analysis and remote reference noise bias removal techniques from the geomagnetic induction and magnetotelluric methods to the computation of the tippers. After a through spectral study of the natural magnetic fields, lightweight magnetic field sensors, capable of measuring the magnetic field throughout the year were designed. A digital acquisition and processing sytem, with the ability to provide audiofrequency tipper results in the field, was then built to complete the apparatus. The new instrumetnation was used in a study of the Mariposa, California site previously mapped with AFMAG. The usefulness of natural magnetic field data in mapping an electrical conductive body was again demonstrated. Several field examples are used to demonstrate that the proposed procedure yields reasonable results.

  18. Mapping forest vegetation with ERTS-1 MSS data and automatic data processing techniques

    NASA Technical Reports Server (NTRS)

    Messmore, J.; Copeland, G. E.; Levy, G. F.

    1975-01-01

    This study was undertaken with the intent of elucidating the forest mapping capabilities of ERTS-1 MSS data when analyzed with the aid of LARS' automatic data processing techniques. The site for this investigation was the Great Dismal Swamp, a 210,000 acre wilderness area located on the Middle Atlantic coastal plain. Due to inadequate ground truth information on the distribution of vegetation within the swamp, an unsupervised classification scheme was utilized. Initially pictureprints, resembling low resolution photographs, were generated in each of the four ERTS-1 channels. Data found within rectangular training fields was then clustered into 13 spectral groups and defined statistically. Using a maximum likelihood classification scheme, the unknown data points were subsequently classified into one of the designated training classes. Training field data was classified with a high degree of accuracy (greater than 95%), and progress is being made towards identifying the mapped spectral classes.

  19. Mapping forest vegetation with ERTS-1 MSS data and automatic data processing techniques

    NASA Technical Reports Server (NTRS)

    Messmore, J.; Copeland, G. E.; Levy, G. F.

    1975-01-01

    This study was undertaken with the intent of elucidating the forest mapping capabilities of ERTS-1 MSS data when analyzed with the aid of LARS' automatic data processing techniques. The site for this investigation was the Great Dismal Swamp, a 210,000 acre wilderness area located on the Middle Atlantic coastal plain. Due to inadequate ground truth information on the distribution of vegetation within the swamp, an unsupervised classification scheme was utilized. Initially pictureprints, resembling low resolution photographs, were generated in each of the four ERTS-1 channels. Data found within rectangular training fields was then clustered into 13 spectral groups and defined statistically. Using a maximum likelihood classification scheme, the unknown data points were subsequently classified into one of the designated training classes. Training field data was classified with a high degree of accuracy (greater than 95 percent), and progress is being made towards identifying the mapped spectral classes.

  20. Investigation of methods and approaches for collecting and recording highway inventory data.

    DOT National Transportation Integrated Search

    2013-06-01

    Many techniques for collecting highway inventory data have been used by state and local agencies in the U.S. These : techniques include field inventory, photo/video log, integrated GPS/GIS mapping systems, aerial photography, satellite : imagery, vir...

  1. Discourse-Centric Learning Analytics: Mapping the Terrain

    ERIC Educational Resources Information Center

    Knight, Simon; Littleton, Karen

    2015-01-01

    There is an increasing interest in developing learning analytic techniques for the analysis, and support of, high-quality learning discourse. This paper maps the terrain of discourse-centric learning analytics (DCLA), outlining the distinctive contribution of DCLA and outlining a definition for the field moving forwards. It is our claim that DCLA…

  2. Intraoperative Subcortical Electrical Mapping of the Optic Tract in Awake Surgery Using a Virtual Reality Headset.

    PubMed

    Mazerand, Edouard; Le Renard, Marc; Hue, Sophie; Lemée, Jean-Michel; Klinger, Evelyne; Menei, Philippe

    2017-01-01

    Brain mapping during awake craniotomy is a well-known technique to preserve neurological functions, especially the language. It is still challenging to map the optic radiations due to the difficulty to test the visual field intraoperatively. To assess the visual field during awake craniotomy, we developed the Functions' Explorer based on a virtual reality headset (FEX-VRH). The impaired visual field of 10 patients was tested with automated perimetry (the gold standard examination) and the FEX-VRH. The proof-of-concept test was done during the surgery performed on a patient who was blind in his right eye and presenting with a left parietotemporal glioblastoma. The FEX-VRH was used intraoperatively, simultaneously with direct subcortical electrostimulation, allowing identification and preservation of the optic radiations. The FEX-VRH detected 9 of the 10 visual field defects found by automated perimetry. The patient who underwent an awake craniotomy with intraoperative mapping of the optic tract using the FEX-VRH had no permanent postoperative visual field defect. Intraoperative visual field assessment with the FEX-VRH during direct subcortical electrostimulation is a promising approach to mapping the optical radiations and preventing a permanent visual field defect during awake surgery for epilepsy or tumor. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Spherical Harmonic Analyses of Intensity Mapping Power Spectra

    NASA Astrophysics Data System (ADS)

    Liu, Adrian; Zhang, Yunfan; Parsons, Aaron R.

    2016-12-01

    Intensity mapping is a promising technique for surveying the large-scale structure of our universe from z = 0 to z ˜ 150, using the brightness temperature field of spectral lines to directly observe previously unexplored portions of our cosmic timeline. Examples of targeted lines include the 21 cm hyperfine transition of neutral hydrogen, rotational lines of carbon monoxide, and fine-structure lines of singly ionized carbon. Recent efforts have focused on detections of the power spectrum of spatial fluctuations, but have been hindered by systematics such as foreground contamination. This has motivated the decomposition of data into Fourier modes perpendicular and parallel to the line of sight, which has been shown to be a particularly powerful way to diagnose systematics. However, such a method is well-defined only in the limit of a narrow-field, flat-sky approximation. This limits the sensitivity of intensity mapping experiments, as it means that wide surveys must be separately analyzed as a patchwork of smaller fields. In this paper, we develop a framework for analyzing intensity mapping data in a spherical Fourier-Bessel basis, which incorporates curved sky effects without difficulty. We use our framework to generalize a number of techniques in intensity mapping data analysis from the flat sky to the curved sky. These include visibility-based estimators for the power spectrum, treatments of interloper lines, and the “foreground wedge” signature of spectrally smooth foregrounds.

  4. Accelerating parallel transmit array B1 mapping in high field MRI with slice undersampling and interpolation by kriging.

    PubMed

    Ferrand, Guillaume; Luong, Michel; Cloos, Martijn A; Amadon, Alexis; Wackernagel, Hans

    2014-08-01

    Transmit arrays have been developed to mitigate the RF field inhomogeneity commonly observed in high field magnetic resonance imaging (MRI), typically above 3T. To this end, the knowledge of the RF complex-valued B1 transmit-sensitivities of each independent radiating element has become essential. This paper details a method to speed up a currently available B1-calibration method. The principle relies on slice undersampling, slice and channel interleaving and kriging, an interpolation method developed in geostatistics and applicable in many domains. It has been demonstrated that, under certain conditions, kriging gives the best estimator of a field in a region of interest. The resulting accelerated sequence allows mapping a complete set of eight volumetric field maps of the human head in about 1 min. For validation, the accuracy of kriging is first evaluated against a well-known interpolation technique based on Fourier transform as well as to a B1-maps interpolation method presented in the literature. This analysis is carried out on simulated and decimated experimental B1 maps. Finally, the accelerated sequence is compared to the standard sequence on a phantom and a volunteer. The new sequence provides B1 maps three times faster with a loss of accuracy limited potentially to about 5%.

  5. Invariants for correcting field polarisation effect in MT-VLF resistivity mapping

    NASA Astrophysics Data System (ADS)

    Guérin, Roger; Tabbagh, Alain; Benderitter, Yves; Andrieux, Pierre

    1994-12-01

    MT-VLF resistivity mapping is well suited to perform hydrology and environment studies. However, the apparent anistropy generated by the polarisation of the primary field requires the use of two transmitters at a right angle to each other in order to prevent errors in interpretation. We propose a processing technique that uses approximate invariants derived from classical developments in tensor magnetotellurics. They consist of the calculation at each station of ?. Both synthetic and field cases show that they give identical results and correct perfectly for the apparent anisotropy generated by the polarisation of the transmitted field. They should be preferred to verticalization of the electric field which remains of interest when only transmitter data are available.

  6. Mapping Diffuse Seismicity Using Empirical Matched Field Processing Techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, J; Templeton, D C; Harris, D B

    The objective of this project is to detect and locate more microearthquakes using the empirical matched field processing (MFP) method than can be detected using only conventional earthquake detection techniques. We propose that empirical MFP can complement existing catalogs and techniques. We test our method on continuous seismic data collected at the Salton Sea Geothermal Field during November 2009 and January 2010. In the Southern California Earthquake Data Center (SCEDC) earthquake catalog, 619 events were identified in our study area during this time frame and our MFP technique identified 1094 events. Therefore, we believe that the empirical MFP method combinedmore » with conventional methods significantly improves the network detection ability in an efficient matter.« less

  7. Activities report of PTT Research

    NASA Astrophysics Data System (ADS)

    In the field of postal infrastructure research, activities were performed on postcode readers, radiolabels, and techniques of operations research and artificial intelligence. In the field of telecommunication, transportation, and information, research was made on multipurpose coding schemes, speech recognition, hypertext, a multimedia information server, security of electronic data interchange, document retrieval, improvement of the quality of user interfaces, domotics living support (techniques), and standardization of telecommunication prototcols. In the field of telecommunication infrastructure and provisions research, activities were performed on universal personal telecommunications, advanced broadband network technologies, coherent techniques, measurement of audio quality, near field facilities, local beam communication, local area networks, network security, coupling of broadband and narrowband integrated services digital networks, digital mapping, and standardization of protocols.

  8. Wide-field optical mapping of neural activity and brain haemodynamics: considerations and novel approaches

    PubMed Central

    Ma, Ying; Shaik, Mohammed A.; Kozberg, Mariel G.; Thibodeaux, David N.; Zhao, Hanzhi T.; Yu, Hang

    2016-01-01

    Although modern techniques such as two-photon microscopy can now provide cellular-level three-dimensional imaging of the intact living brain, the speed and fields of view of these techniques remain limited. Conversely, two-dimensional wide-field optical mapping (WFOM), a simpler technique that uses a camera to observe large areas of the exposed cortex under visible light, can detect changes in both neural activity and haemodynamics at very high speeds. Although WFOM may not provide single-neuron or capillary-level resolution, it is an attractive and accessible approach to imaging large areas of the brain in awake, behaving mammals at speeds fast enough to observe widespread neural firing events, as well as their dynamic coupling to haemodynamics. Although such wide-field optical imaging techniques have a long history, the advent of genetically encoded fluorophores that can report neural activity with high sensitivity, as well as modern technologies such as light emitting diodes and sensitive and high-speed digital cameras have driven renewed interest in WFOM. To facilitate the wider adoption and standardization of WFOM approaches for neuroscience and neurovascular coupling research, we provide here an overview of the basic principles of WFOM, considerations for implementation of wide-field fluorescence imaging of neural activity, spectroscopic analysis and interpretation of results. This article is part of the themed issue ‘Interpreting BOLD: a dialogue between cognitive and cellular neuroscience’. PMID:27574312

  9. Heat source reconstruction from noisy temperature fields using a gradient anisotropic diffusion filter

    NASA Astrophysics Data System (ADS)

    Beitone, C.; Balandraud, X.; Delpueyo, D.; Grédiac, M.

    2017-01-01

    This paper presents a post-processing technique for noisy temperature maps based on a gradient anisotropic diffusion (GAD) filter in the context of heat source reconstruction. The aim is to reconstruct heat source maps from temperature maps measured using infrared (IR) thermography. Synthetic temperature fields corrupted by added noise are first considered. The GAD filter, which relies on a diffusion process, is optimized to retrieve as well as possible a heat source concentration in a two-dimensional plate. The influence of the dimensions and the intensity of the heat source concentration are discussed. The results obtained are also compared with two other types of filters: averaging filter and Gaussian derivative filter. The second part of this study presents an application for experimental temperature maps measured with an IR camera. The results demonstrate the relevancy of the GAD filter in extracting heat sources from noisy temperature fields.

  10. Cross-disciplinary Undergraduate Research: A Case Study in Digital Mapping, western Ireland

    NASA Astrophysics Data System (ADS)

    Whitmeyer, S. J.; de Paor, D. G.; Nicoletti, J.; Rivera, M.; Santangelo, B.; Daniels, J.

    2008-12-01

    As digital mapping technology becomes ever more advanced, field geologists spend a greater proportion of time learning digital methods relative to analyzing rocks and structures. To explore potential solutions to the time commitment implicit in learning digital field methods, we paired James Madison University (JMU) geology majors (experienced in traditional field techniques) with Worcester Polytechnic Institute (WPI) engineering students (experienced in computer applications) during a four week summer mapping project in Connemara, western Ireland. The project consisted of approximately equal parts digital field mapping (directed by the geology students), and lab-based map assembly, evaluation and formatting for virtual 3D terrains (directed by the engineering students). Students collected geologic data in the field using ruggedized handheld computers (Trimble GeoExplorer® series) with ArcPAD® software. Lab work initially focused on building geologic maps in ArcGIS® from the digital field data and then progressed to developing Google Earth-based visualizations of field data and maps. Challenges included exporting GIS data, such as locations and attributes, to KML tags for viewing in Google Earth, which we accomplished using a Linux bash script written by one of our engineers - a task outside the comfort zone of the average geology major. We also attempted to expand the scope of Google Earth by using DEMs of present-day geologically-induced landforms as representative models for paleo-geographic reconstructions of the western Ireland field area. As our integrated approach to digital field work progressed, we found that our digital field mapping produced data at a faster rate than could be effectively managed during our allotted time for lab work. This likely reflected the more developed methodology for digital field data collection, as compared with our lab-based attempts to develop new methods for 3D visualization of geologic maps. However, this experiment in cross-disciplinary undergraduate research was a big success, with an enthusiastic interchange of expertise between undergraduate geology and engineering students that produced new, cutting-edge methods for visualizing geologic data and maps.

  11. A low-frequency near-field interferometric-TOA 3-D Lightning Mapping Array

    NASA Astrophysics Data System (ADS)

    Lyu, Fanchao; Cummer, Steven A.; Solanki, Rahulkumar; Weinert, Joel; McTague, Lindsay; Katko, Alex; Barrett, John; Zigoneanu, Lucian; Xie, Yangbo; Wang, Wenqi

    2014-11-01

    We report on the development of an easily deployable LF near-field interferometric-time of arrival (TOA) 3-D Lightning Mapping Array applied to imaging of entire lightning flashes. An interferometric cross-correlation technique is applied in our system to compute windowed two-sensor time differences with submicrosecond time resolution before TOA is used for source location. Compared to previously reported LF lightning location systems, our system captures many more LF sources. This is due mainly to the improved mapping of continuous lightning processes by using this type of hybrid interferometry/TOA processing method. We show with five station measurements that the array detects and maps different lightning processes, such as stepped and dart leaders, during both in-cloud and cloud-to-ground flashes. Lightning images mapped by our LF system are remarkably similar to those created by VHF mapping systems, which may suggest some special links between LF and VHF emission during lightning processes.

  12. High-resolution carbon mapping on the million-hectare Island of Hawaii

    Treesearch

    Gregory P. Asner; R. Flint Hughes; Joseph Mascaro; Amanda L. Uowolo; David E. Knapp; James Jacobson; Ty Kennedy-Bowdoin; John K . Clark

    2011-01-01

    Current markets and international agreements for reducing emissions from deforestation and forest degradation (REDD) rely on carbon (C) monitoring techniques. Combining field measurements, airborne light detection and ranging (LiDAR)-based observations, and satellite-based imagery, we developed a 30-meter-resolution map of aboveground C density spanning 40 vegetation...

  13. Etalon (standard) for surface potential distribution produced by electric activity of the heart.

    PubMed

    Szathmáry, V; Ruttkay-Nedecký, I

    1981-01-01

    The authors submit etalon (standard) equipotential maps as an aid in the evaluation of maps of surface potential distributions in living subjects. They were obtained by measuring potentials on the surface of an electrolytic tank shaped like the thorax. The individual etalon maps were determined in such a way that the parameters of the physical dipole forming the source of the electric field in the tank corresponded to the mean vectorcardiographic parameters measured in a healthy population sample. The technique also allows a quantitative estimate of the degree of non-dipolarity of the heart as the source of the electric field.

  14. Magnetometry of single ferromagnetic nanoparticles using magneto-optical indicator films with spatial amplification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Balk, Andrew L., E-mail: andrew.balk@nist.gov; Maryland NanoCenter, University of Maryland, College Park, Maryland 20742; Hangarter, Carlos

    2015-03-16

    We present a magneto-optical technique to spatially amplify and image fringe fields from single ferromagnetic nanorods. The fringe fields nucleate magnetic domains in a low-coercivity, perpendicularly magnetized indicator film, which are expanded by an applied out-of-plane field from the nanoscale to the microscale for measurement with polar Kerr microscopy. The nucleation location and therefore magnetic orientation of the sample nanorod are detected as spatially dependent field biases in locally measured hysteresis loops of the indicator film. We first discuss our method to fabricate the high-sensitivity indicator film with low energy argon ion irradiation. We then present a map of themore » amplified signal produced from a single nanorod as measured by the indicator film and compare it with a simultaneously obtained, unamplified fringe field map. The comparison demonstrates the advantage of the amplification mechanism and the capability of the technique to be performed with single-spot magneto-optical Kerr effect magnetometers. Our signal-to-noise ratio determines a minimum measureable particle diameter of tens of nanometers for typical transition metals. We finally use our method to obtain hysteresis loops from multiple nanorods in parallel. Our technique is unperturbed by applied in-plane fields for magnetic manipulation of nanoparticles, is robust against many common noise sources, and is applicable in a variety of test environments. We conclude with a discussion of the future optimization and application of our indicator film technique.« less

  15. NOTE: The feasibility of an infrared system for real-time visualization and mapping of ultrasound fields

    NASA Astrophysics Data System (ADS)

    Shaw, Adam; Nunn, John

    2010-06-01

    In treatment planning for ultrasound therapy, it is desirable to know the 3D structure of the ultrasound field. However, mapping an ultrasound field in 3D is very slow, with even a single planar raster scan taking typically several hours. Additionally, hydrophones that are used for field mapping are expensive and can be damaged in some therapy fields. So there is value in rapid methods which enable visualization and mapping of the ultrasound field in about 1 min. In this note we explore the feasibility of mapping the intensity distribution by measuring the temperature distribution produced in a thin sheet of absorbing material. A 0.2 mm thick acetate sheet forms a window in the wall of a water tank containing the transducer. The window is oriented at 45° to the beam axis, and the distance from the transducer to the window can be varied. The temperature distribution is measured with an infrared camera; thermal images of the inclined plane could be viewed in real time or images could be captured for later analysis and 3D field reconstruction. We conclude that infrared thermography can be used to gain qualitative information about ultrasound fields. Thermal images are easily visualized with good spatial and thermal resolutions (0.044 mm and 0.05 °C in our system). The focus and field structure such as side lobes can be identified in real time from the direct video output. 3D maps and image planes at arbitrary orientations to the beam axis can be obtained and reconstructed within a few minutes. In this note we are primarily interested in the technique for characterization of high intensity focused ultrasound (HIFU) fields, but other applications such as physiotherapy fields are also possible.

  16. The feasibility of an infrared system for real-time visualization and mapping of ultrasound fields.

    PubMed

    Shaw, Adam; Nunn, John

    2010-06-07

    In treatment planning for ultrasound therapy, it is desirable to know the 3D structure of the ultrasound field. However, mapping an ultrasound field in 3D is very slow, with even a single planar raster scan taking typically several hours. Additionally, hydrophones that are used for field mapping are expensive and can be damaged in some therapy fields. So there is value in rapid methods which enable visualization and mapping of the ultrasound field in about 1 min. In this note we explore the feasibility of mapping the intensity distribution by measuring the temperature distribution produced in a thin sheet of absorbing material. A 0.2 mm thick acetate sheet forms a window in the wall of a water tank containing the transducer. The window is oriented at 45 degrees to the beam axis, and the distance from the transducer to the window can be varied. The temperature distribution is measured with an infrared camera; thermal images of the inclined plane could be viewed in real time or images could be captured for later analysis and 3D field reconstruction. We conclude that infrared thermography can be used to gain qualitative information about ultrasound fields. Thermal images are easily visualized with good spatial and thermal resolutions (0.044 mm and 0.05 degrees C in our system). The focus and field structure such as side lobes can be identified in real time from the direct video output. 3D maps and image planes at arbitrary orientations to the beam axis can be obtained and reconstructed within a few minutes. In this note we are primarily interested in the technique for characterization of high intensity focused ultrasound (HIFU) fields, but other applications such as physiotherapy fields are also possible.

  17. MRI technique for the snapshot imaging of quantitative velocity maps using RARE

    NASA Astrophysics Data System (ADS)

    Shiko, G.; Sederman, A. J.; Gladden, L. F.

    2012-03-01

    A quantitative PGSE-RARE pulse sequence was developed and successfully applied to the in situ dissolution of two pharmaceutical formulations dissolving over a range of timescales. The new technique was chosen over other existing fast velocity imaging techniques because it is T2 weighted, not T2∗ weighted, and is, therefore, robust for imaging time-varying interfaces and flow in magnetically heterogeneous systems. The complex signal was preserved intact by separating odd and even echoes to obtain two phase maps which are then averaged in post-processing. Initially, the validity of the technique was shown when imaging laminar flow in a pipe. Subsequently, the dissolution of two drugs was followed in situ, where the technique enables the imaging and quantification of changes in the form of the tablet and the flow field surrounding it at high spatial and temporal resolution. First, the complete 3D velocity field around an eroding salicylic acid tablet was acquired at a resolution of 98 × 49 μm2, within 20 min, and monitored over ˜13 h. The tablet was observed to experience a heterogeneous flow field and, hence a heterogeneous shear field, which resulted in the non-symmetric erosion of the tablet. Second, the dissolution of a fast dissolving immediate release tablet was followed using one-shot 2D velocity images acquired every 5.2 s at a resolution of 390 × 390 μm2. The quantitative nature of the technique and fast acquisition times provided invaluable information on the dissolution behaviour of this tablet, which had not been attainable previously with conventional quantitative MRI techniques.

  18. High Spatial Resolution and Temporally Resolved T2 * Mapping of Normal Human Myocardium at 7.0 Tesla: An Ultrahigh Field Magnetic Resonance Feasibility Study

    PubMed Central

    Hezel, Fabian; Thalhammer, Christof; Waiczies, Sonia; Schulz-Menger, Jeanette; Niendorf, Thoralf

    2012-01-01

    Myocardial tissue characterization using T2 * relaxation mapping techniques is an emerging application of (pre)clinical cardiovascular magnetic resonance imaging. The increase in microscopic susceptibility at higher magnetic field strengths renders myocardial T2 * mapping at ultrahigh magnetic fields conceptually appealing. This work demonstrates the feasibility of myocardial T2 * imaging at 7.0 T and examines the applicability of temporally-resolved and high spatial resolution myocardial T2 * mapping. In phantom experiments single cardiac phase and dynamic (CINE) gradient echo imaging techniques provided similar T2 * maps. In vivo studies showed that the peak-to-peak B0 difference following volume selective shimming was reduced to approximately 80 Hz for the four chamber view and mid-ventricular short axis view of the heart and to 65 Hz for the left ventricle. No severe susceptibility artifacts were detected in the septum and in the lateral wall for T2 * weighting ranging from TE = 2.04 ms to TE = 10.2 ms. For TE >7 ms, a susceptibility weighting induced signal void was observed within the anterior and inferior myocardial segments. The longest T2 * values were found for anterior (T2 * = 14.0 ms), anteroseptal (T2 * = 17.2 ms) and inferoseptal (T2 * = 16.5 ms) myocardial segments. Shorter T2 * values were observed for inferior (T2 * = 10.6 ms) and inferolateral (T2 * = 11.4 ms) segments. A significant difference (p = 0.002) in T2 * values was observed between end-diastole and end-systole with T2 * changes of up to approximately 27% over the cardiac cycle which were pronounced in the septum. To conclude, these results underscore the challenges of myocardial T2 * mapping at 7.0 T but demonstrate that these issues can be offset by using tailored shimming techniques and dedicated acquisition schemes. PMID:23251708

  19. Feedback mechanism for smart nozzles and nebulizers

    DOEpatents

    Montaser, Akbar [Potomac, MD; Jorabchi, Kaveh [Arlington, VA; Kahen, Kaveh [Kleinburg, CA

    2009-01-27

    Nozzles and nebulizers able to produce aerosol with optimum and reproducible quality based on feedback information obtained using laser imaging techniques. Two laser-based imaging techniques based on particle image velocimetry (PTV) and optical patternation map and contrast size and velocity distributions for indirect and direct pneumatic nebulizations in plasma spectrometry. Two pulses from thin laser sheet with known time difference illuminate droplets flow field. Charge coupled device (CCL)) captures scattering of laser light from droplets, providing two instantaneous particle images. Pointwise cross-correlation of corresponding images yields two-dimensional velocity map of aerosol velocity field. For droplet size distribution studies, solution is doped with fluorescent dye and both laser induced florescence (LIF) and Mie scattering images are captured simultaneously by two CCDs with the same field of view. Ratio of LIF/Mie images provides relative droplet size information, then scaled by point calibration method via phase Doppler particle analyzer.

  20. Facilitating the exploitation of ERTS-1 imagery using snow enhancement techniques. [geological fault maps of Massachusetts and Connecticut

    NASA Technical Reports Server (NTRS)

    Wobber, F. J. (Principal Investigator); Martin, K. R.; Amato, R. V.; Leshendok, T.

    1973-01-01

    The author has identified the following significant results. The applications of ERTS-1 imagery for geological fracture mapping regardless of season has been repeatedly confirmed. The enhancement provided by a differential cover of snow increases the number and length of fracture-lineaments which can be detected with ERTS-1 data and accelerates the fracture mapping process for a variety of practical applications. The geological mapping benefits of the program will be realized in geographic areas where data are most needed - complex glaciated terrain and areas of deep residual soils. ERTS-1 derived fracture-lineament maps which provide detail well in excess of existing geological maps are not available in the Massachusetts-Connecticut area. The large quantity of new data provided by ERTS-1 may accelerate and improve field mapping now in progress in the area. Numerous other user groups have requested data on the techniques. This represents a major change in operating philosophy for groups who to data judged that snow obscured geological detail.

  1. Surface pressure field mapping using luminescent coatings

    NASA Technical Reports Server (NTRS)

    Mclachlan, B. G.; Kavandi, J. L.; Callis, J. B.; Gouterman, M.; Green, E.; Khalil, G.; Burns, D.

    1993-01-01

    In recent experiments we demonstrated the feasibility of using the oxygen dependence of luminescent molecules for surface pressure measurement in aerodynamic testing. This technique is based on the observation that for many luminescent molecules the light emitted increases as the oxygen partial pressure, and thus the air pressure, the molecules see decreases. In practice the surface to be observed is coated with an oxygen permeable polymer containing a luminescent molecule and illuminated with ultraviolet radiation. The airflow induced surface pressure field is seen as a luminescence intensity distribution which can be measured using quantitative video techniques. Computer processing converts the video data into a map of the surface pressure field. The experiments consisted of evaluating a trial luminescent coating in measuring the static surface pressure field over a two-dimensional NACA-0012 section model airfoil for Mach numbers ranging from 0.3 and 0.66. Comparison of the luminescent coating derived pressures were made to those obtained from conventional pressure taps. The method along with the experiment and its results will be described.

  2. Characterizing the performance of eddy current probes using photoinductive field-mapping

    NASA Astrophysics Data System (ADS)

    Moulder, John C.; Nakagawa, Norio

    1992-12-01

    We present a new method for characterizing the performance of eddy current probes by mapping their electromagnetic fields. The technique is based on the photoinductive effect, the change in the impedance of an eddy current probe induced by laser heating of the material under the probe. The instrument we developed maps a probe's electric field distribution by scanning an infrared laser beam over a thin film of gold lying underneath the probe. Measurements of both photoinductive signals and flaw signals for a series of similar probes demonstrates that the impedance change caused by an electrical-discharge-machined notch or a fatigue crack is proportional to the strength of the photoinductive signal. Thus, photoinductive measurements can supplant the use of artifact standards to calibrate eddy current probes.

  3. Simulating and mapping spatial complexity using multi-scale techniques

    USGS Publications Warehouse

    De Cola, L.

    1994-01-01

    A central problem in spatial analysis is the mapping of data for complex spatial fields using relatively simple data structures, such as those of a conventional GIS. This complexity can be measured using such indices as multi-scale variance, which reflects spatial autocorrelation, and multi-fractal dimension, which characterizes the values of fields. These indices are computed for three spatial processes: Gaussian noise, a simple mathematical function, and data for a random walk. Fractal analysis is then used to produce a vegetation map of the central region of California based on a satellite image. This analysis suggests that real world data lie on a continuum between the simple and the random, and that a major GIS challenge is the scientific representation and understanding of rapidly changing multi-scale fields. -Author

  4. Accuracy assessment of vegetation community maps generated by aerial photography interpretation: perspective from the tropical savanna, Australia

    NASA Astrophysics Data System (ADS)

    Lewis, Donna L.; Phinn, Stuart

    2011-01-01

    Aerial photography interpretation is the most common mapping technique in the world. However, unlike an algorithm-based classification of satellite imagery, accuracy of aerial photography interpretation generated maps is rarely assessed. Vegetation communities covering an area of 530 km2 on Bullo River Station, Northern Territory, Australia, were mapped using an interpretation of 1:50,000 color aerial photography. Manual stereoscopic line-work was delineated at 1:10,000 and thematic maps generated at 1:25,000 and 1:100,000. Multivariate and intuitive analysis techniques were employed to identify 22 vegetation communities within the study area. The accuracy assessment was based on 50% of a field dataset collected over a 4 year period (2006 to 2009) and the remaining 50% of sites were used for map attribution. The overall accuracy and Kappa coefficient for both thematic maps was 66.67% and 0.63, respectively, calculated from standard error matrices. Our findings highlight the need for appropriate scales of mapping and accuracy assessment of aerial photography interpretation generated vegetation community maps.

  5. Nanoscale Probing of Thermal, Stress, and Optical Fields under Near-Field Laser Heating

    PubMed Central

    Tang, Xiaoduan; Xu, Shen; Wang, Xinwei

    2013-01-01

    Micro/nanoparticle induced near-field laser ultra-focusing and heating has been widely used in laser-assisted nanopatterning and nanolithography to pattern nanoscale features on a large-area substrate. Knowledge of the temperature and stress in the nanoscale near-field heating region is critical for process control and optimization. At present, probing of the nanoscale temperature, stress, and optical fields remains a great challenge since the heating area is very small (∼100 nm or less) and not immediately accessible for sensing. In this work, we report the first experimental study on nanoscale mapping of particle-induced thermal, stress, and optical fields by using a single laser for both near-field excitation and Raman probing. The mapping results based on Raman intensity variation, wavenumber shift, and linewidth broadening all give consistent conjugated thermal, stress, and near-field focusing effects at a 20 nm resolution (<λ/26, λ = 32 nm). Nanoscale mapping of near-field effects of particles from 1210 down to 160 nm demonstrates the strong capacity of such a technique. By developing a new strategy for physical analysis, we have de-conjugated the effects of temperature, stress, and near-field focusing from the Raman mapping. The temperature rise and stress in the nanoscale heating region is evaluated at different energy levels. High-fidelity electromagnetic and temperature field simulation is conducted to accurately interpret the experimental results. PMID:23555566

  6. Photogrammetric application of viking orbital photography

    USGS Publications Warehouse

    Wu, S.S.C.; Elassal, A.A.; Jordan, R.; Schafer, F.J.

    1982-01-01

    Special techniques are described for the photogrammetric compilation of topographic maps and profiles from stereoscopic photographs taken by the two Viking Orbiter spacecraft. These techniques were developed because the extremely narrow field of view of the Viking cameras precludes compilation by conventional photogrammetric methods. The techniques adjust for internal consistency the Supplementary Experiment Data Record (SEDR-the record of spacecraft orientation when photographs were taken) and the computation of geometric orientation parameters of the stereo models. A series of contour maps of Mars is being compiled by these new methods using a wide variety of Viking Orbiter photographs, to provide the planetary research community with topographic information. ?? 1982.

  7. Digital holographic microscopy as a technique to monitor macrophages infected by leishmania

    NASA Astrophysics Data System (ADS)

    Mendoza-Rodríguez, E.; Organista-Castelblanco, C.; Camacho, M.; Monroy-Ramírez, F.

    2017-06-01

    The Digital Holographic Microscopy in Transmission technique (DHM) is considered a useful tool in the noninvasive quantifying of transparent biological objects like living cells. In this work, we propose this technique to study and to monitor control macrophages infected by Leishmania (mouse lineJ774.A1). When the promastigotes enter in contact with healthy macrophages, they got phagocytosed and latterly confined in the formed parasitophorous vacuole. These processes change the morphology and density of the host macrophage. Both parameters can be measured in a label-free analysis of cells with the aid of the DHM technique. Our technique begins with the optical record of the holograms using a modified Mach-Zehnder interferometer and the reconstruction of the complex optical field transmitted by macrophages. In the latter point, we employ the angular spectrum algorithm. With the complex optical field reconstruction, we compute the field amplitude and the phase difference maps, which leads to describe one morphological characterization for the samples. Using phase difference maps is possible to measure internal variations for the integral refractive index, estimating the infection level of macrophages. Through the changes in the integral refractive index, it is also possible to describe and quantify in two different states the evolution of the infection. With these results some parameters of cells have been quantified, making the DHM technique a viable tool for diagnosis of biological samples under the presence of some pathogen.

  8. Orientation and phase mapping in the transmission electron microscope using precession-assisted diffraction spot recognition: state-of-the-art results.

    PubMed

    Viladot, D; Véron, M; Gemmi, M; Peiró, F; Portillo, J; Estradé, S; Mendoza, J; Llorca-Isern, N; Nicolopoulos, S

    2013-10-01

    A recently developed technique based on the transmission electron microscope, which makes use of electron beam precession together with spot diffraction pattern recognition now offers the possibility to acquire reliable orientation/phase maps with a spatial resolution down to 2 nm on a field emission gun transmission electron microscope. The technique may be described as precession-assisted crystal orientation mapping in the transmission electron microscope, precession-assisted crystal orientation mapping technique-transmission electron microscope, also known by its product name, ASTAR, and consists in scanning the precessed electron beam in nanoprobe mode over the specimen area, thus producing a collection of precession electron diffraction spot patterns, to be thereafter indexed automatically through template matching. We present a review on several application examples relative to the characterization of microstructure/microtexture of nanocrystalline metals, ceramics, nanoparticles, minerals and organics. The strengths and limitations of the technique are also discussed using several application examples. ©2013 The Authors. Journal of Microscopy published by John Wiley & Sons Ltd on behalf of Royal Microscopical Society.

  9. Imaging of conductivity distributions using audio-frequency electromagnetic data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Ki Ha; Morrison, H.F.

    1990-10-01

    The objective of this study has been to develop mathematical methods for mapping conductivity distributions between boreholes using low frequency electromagnetic (em) data. In relation to this objective this paper presents two recent developments in high-resolution crosshole em imaging techniques. These are (1) audio-frequency diffusion tomography, and (2) a transform method in which low frequency data is first transformed into a wave-like field. The idea in the second approach is that we can then treat the transformed field using conventional techniques designed for wave field analysis.

  10. Chaotic attractors of relaxation oscillators

    NASA Astrophysics Data System (ADS)

    Guckenheimer, John; Wechselberger, Martin; Young, Lai-Sang

    2006-03-01

    We develop a general technique for proving the existence of chaotic attractors for three-dimensional vector fields with two time scales. Our results connect two important areas of dynamical systems: the theory of chaotic attractors for discrete two-dimensional Henon-like maps and geometric singular perturbation theory. Two-dimensional Henon-like maps are diffeomorphisms that limit on non-invertible one-dimensional maps. Wang and Young formulated hypotheses that suffice to prove the existence of chaotic attractors in these families. Three-dimensional singularly perturbed vector fields have return maps that are also two-dimensional diffeomorphisms limiting on one-dimensional maps. We describe a generic mechanism that produces folds in these return maps and demonstrate that the Wang-Young hypotheses are satisfied. Our analysis requires a careful study of the convergence of the return maps to their singular limits in the Ck topology for k >= 3. The theoretical results are illustrated with a numerical study of a variant of the forced van der Pol oscillator.

  11. Phased Array Ultrasound System for Planar Flow Mapping in Liquid Metals.

    PubMed

    Mader, Kevin; Nauber, Richard; Galindo, Vladimir; Beyer, Hannes; Buttner, Lars; Eckert, Sven; Czarske, Jurgen

    2017-09-01

    Controllable magnetic fields can be used to optimize flows in technical and industrial processes involving liquid metals in order to improve quality and yield. However, experimental studies in magnetohydrodynamics often involve complex, turbulent flows and require planar, two-component (2c) velocity measurements through only one acoustical access. We present the phased array ultrasound Doppler velocimeter as a modular research platform for flow mapping in liquid metals. It combines the pulse wave Doppler method with the phased array technique to adaptively focus the ultrasound beam. This makes it possible to resolve smaller flow structures in planar measurements compared with fixed-beam sensors and enables 2c flow mapping with only one acoustical access via the cross beam technique. From simultaneously measured 2-D velocity fields, quantities for turbulence characterization can be derived. The capabilities of this measurement system are demonstrated through measurements in the alloy gallium-indium-tin at room temperature. The 2-D, 2c velocity measurements of a flow in a cubic vessel driven by a rotating magnetic field (RMF) with a spatial resolution of up to 2.2 mm are presented. The measurement results are in good agreement with a semianalytical simulation. As a highlight, two-point correlation functions of the velocity field for different magnitudes of the RMF are presented.

  12. Simultaneous orientation and thickness mapping in transmission electron microscopy

    DOE PAGES

    Tyutyunnikov, Dmitry; Özdöl, V. Burak; Koch, Christoph T.

    2014-12-04

    In this paper we introduce an approach for simultaneous thickness and orientation mapping of crystalline samples by means of transmission electron microscopy. We show that local thickness and orientation values can be extracted from experimental dark-field (DF) image data acquired at different specimen tilts. The method has been implemented to automatically acquire the necessary data and then map thickness and crystal orientation for a given region of interest. We have applied this technique to a specimen prepared from a commercial semiconductor device, containing multiple 22 nm technology transistor structures. The performance and limitations of our method are discussed and comparedmore » to those of other techniques available.« less

  13. Cosmography and Data Visualization

    NASA Astrophysics Data System (ADS)

    Pomarède, Daniel; Courtois, Hélène M.; Hoffman, Yehuda; Tully, R. Brent

    2017-05-01

    Cosmography, the study and making of maps of the universe or cosmos, is a field where visual representation benefits from modern three-dimensional visualization techniques and media. At the extragalactic distance scales, visualization is contributing to our understanding of the complex structure of the local universe in terms of spatial distribution and flows of galaxies and dark matter. In this paper, we report advances in the field of extragalactic cosmography obtained using the SDvision visualization software in the context of the Cosmicflows Project. Here, multiple visualization techniques are applied to a variety of data products: catalogs of galaxy positions and galaxy peculiar velocities, reconstructed velocity field, density field, gravitational potential field, velocity shear tensor viewed in terms of its eigenvalues and eigenvectors, envelope surfaces enclosing basins of attraction. These visualizations, implemented as high-resolution images, videos, and interactive viewers, have contributed to a number of studies: the cosmography of the local part of the universe, the nature of the Great Attractor, the discovery of the boundaries of our home supercluster of galaxies Laniakea, the mapping of the cosmic web, and the study of attractors and repellers.

  14. [Environmental Education Units.] Photography for Kids. Vacant Lot Studies. Contour Mapping.

    ERIC Educational Resources Information Center

    Minneapolis Independent School District 275, Minn.

    Techniques suitable for use with elementary school students when studying field environment are described in these four booklets. Techniques for photography (construction of simple cameras, printing on blueprint and photographic paper, use of simple commercial cameras, development of exposed film); for measuring microclimatic factors (temperature,…

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morgan, C.D.; Allison, M.L.

    The Bluebell field is productive from the Tertiary lower Green River and Wasatch Formations of the Uinta Basin, Utah. The productive interval consists of thousands of feet of interbedded fractured clastic and carbonate beds deposited in a fluvial-dominated lacustrine environment. Wells in the Bluebell field are typically completed by perforating 40 or more beds over 1,000 to 3,000 vertical feet (300-900 m), then stimulating the entire interval. This completion technique is believed to leave many potentially productive beds damaged and/or untreated, while allowing water-bearing and low-pressure (thief) zones to communicate with the wellbore. Geologic and engineering characterization has been usedmore » to define improved completion techniques. A two-year characterization study involved detailed examination of outcrop, core, well logs, surface and subsurface fractures, produced oil-field waters, engineering parameters of the two demonstration wells, and analysis of past completion techniques and effectiveness. The characterization study resulted in recommendations for improved completion techniques and a field-demonstration program to test those techniques. The results of the characterization study and the proposed demonstration program are discussed in the second annual technical progress report. The operator of the wells was unable to begin the field demonstration this project year (October 1, 1995 to September 20, 1996). Correlation and thickness mapping of individual beds in the Wasatch Formation was completed and resulted in a. series of maps of each of the individual beds. These data were used in constructing the reservoir models. Non-fractured and fractured geostatistical models and reservoir simulations were generated for a 20-square-mile (51.8-km{sup 2}) portion of the Bluebell field. The modeling provides insights into the effects of fracture porosity and permeability in the Green River and Wasatch reservoirs.« less

  16. Spatiotemporal mapping of scalp potentials.

    PubMed

    Fender, D H; Santoro, T P

    1977-11-01

    Computerized analysis and display techniques are applied to the problem of identifying the origins of visually evoked scalped potentials (VESP's). A new stimulus for VESP work, white noise, is being incorporated in the solution of this problem. VESP's for white-noise stimulation exhibit time domain behavior similar to the classical response for flash stimuli but with certain significant differences. Contour mapping algorithms are used to display the time behavior of equipotential surfaces on the scalp during the VESP. The electrical and geometrical parameters of the head are modeled. Electrical fields closely matching those obtained experimentally are generated on the surface of the model head by optimally selecting the location and strength parameters of one or two dipole current sources contained within the model. Computer graphics are used to display as a movie the actual and model scalp potential field and the parameters of the dipole generators whithin the model head during the time course of the VESP. These techniques are currently used to study retinotopic mapping, fusion, and texture perception in the human.

  17. Mapping informal small-scale mining features in a data-sparse tropical environment with a small UAS

    USGS Publications Warehouse

    Chirico, Peter G.; Dewitt, Jessica D.

    2017-01-01

    This study evaluates the use of a small unmanned aerial system (UAS) to collect imagery over artisanal mining sites in West Africa. The purpose of this study is to consider how very high-resolution imagery and digital surface models (DSMs) derived from structure-from-motion (SfM) photogrammetric techniques from a small UAS can fill the gap in geospatial data collection between satellite imagery and data gathered during field work to map and monitor informal mining sites in tropical environments. The study compares both wide-angle and narrow field of view camera systems in the collection and analysis of high-resolution orthoimages and DSMs of artisanal mining pits. The results of the study indicate that UAS imagery and SfM photogrammetric techniques permit DSMs to be produced with a high degree of precision and relative accuracy, but highlight the challenges of mapping small artisanal mining pits in remote and data sparse terrain.

  18. Middle Atmosphere Program. Handbook for MAP, volume 19

    NASA Technical Reports Server (NTRS)

    Goldberg, R. A. (Editor)

    1986-01-01

    This MAP handbook is concerned with rocket techniques and instrumentation as they are currently employed in the middle atmosphere. It is composed of nine chapters, written by experts on rocket experiments. The emphasis is on measurement techniques rather than results, although results are incorporated wherever they provide examples which illustrate the measurement features. The chapters first cover techniques relating to measurements of neutral dynamics and chemistry, then measurements of the various intermittent and excessive radiation sources which effect the middle atmospheric environment, and finally measurements of the plasma environment including electric fields. The weighting toward plasma related parameters is not accidental, but reflects both the historical headstart given by early development of radio wave and probe techniques to measure electron density, and by the relatively limited number of techniques available for neutral atmospheric measurements.

  19. Lithologic, age group, magnetopolarity, and geochemical maps of the Springerville Volcanic Field, east-central Arizona

    USGS Publications Warehouse

    Condit, Christopher D.; Crumpler, Larry S.; Aubele, Jayne C.

    1999-01-01

    The Springerville volcanic field is one of the many late Pliocene to Holocene, mostly basaltic, volcanic fields present near the Colorado Plateau margin (fig. 1, in pamphlet). The field overlies the lithospheric transition zone between the Colorado Plateau and the Basin and Range Province (Condit and others, 1989b). Establishing relations in time, space, and composition of the rocks of these plateau-margin fields offers the possibility to integrate more fully into a regional synthesis the detailed geochemistry of these fields now being examined (for example, Perry and others, 1987; Fitton and others, 1988; Menzies and others, 1991). The work also provides baseline information for understanding mantle properties and processes at different depths and locations. Because the Springerville field is the southernmost of the plateau-margin fields, and because it contains both tholeiitic and alkalic rocks (tables 1 and 2, in pamphlet), it is a particularly important location for establishing these patterns in time, space, and composition. Our four thematic maps of the Springerville field were compiled by using digital mapping techniques so that associated petrologic and chemical data could be conveniently included in a geographic information system for one of the plateau-margin fields. Parts of these maps have been included in Condit (1995), a stand-alone Macintosh2 computer program that takes advantage of their digital format.

  20. The Development of Chromosome Microdissection and Microcloning Technique and its Applications in Genomic Research

    PubMed Central

    Zhou, Ruo-Nan; Hu, Zan-Min

    2007-01-01

    The technique of chromosome microdissection and microcloning has been developed for more than 20 years. As a bridge between cytogenetics and molecular genetics, it leads to a number of applications: chromosome painting probe isolation, genetic linkage map and physical map construction, and expressed sequence tags generation. During those 20 years, this technique has not only been benefited from other technological advances but also cross-fertilized with other techniques. Today, it becomes a practicality with extensive uses. The purpose of this article is to review the development of this technique and its application in the field of genomic research. Moreover, a new method of generating ESTs of specific chromosomes developed by our lab is introduced. By using this method, the technique of chromosome microdissection and microcloning would be more valuable in the advancement of genomic research. PMID:18645627

  1. Vectorial nanoscale mapping of optical antenna fields by single molecule dipoles.

    PubMed

    Singh, Anshuman; Calbris, Gaëtan; van Hulst, Niek F

    2014-08-13

    Optical nanoantennas confine light on the nanoscale, enabling strong light-matter interactions and ultracompact optical devices. Such confined nanovolumes of light have nonzero field components in all directions (x, y, and z). Unfortunately mapping of the actual nanoscale field vectors has so far remained elusive, though antenna hotspots have been explored by several techniques. In this paper, we present a novel method to probe all three components of the local antenna field. To this end a resonant nanoantenna is fabricated at the vertex of a scanning tip. Next, the nanoantenna is deterministically scanned in close proximity to single fluorescent molecules, whose fixed excitation dipole moment reads out the local field vector. With nanometer molecular resolution, we distinctly map x-, y-, and z-field components of the dipole antenna, i.e. a full vectorial mode map, and show good agreement with full 3D FDTD simulations. Moreover, the fluorescence polarization maps the localized coupling, with emission through the longitudinal antenna mode. Finally, the resonant antenna probe is used for single molecule imaging with 40 nm fwhm response function. The total fluorescence enhancement is 7.6 times, while out-of-plane molecules, almost undetectable in far-field, are made visible by the strong antenna z-field with a fluorescence enhancement up to 100 times. Interestingly, the apparent position of molecules shifts up to 20 nm depending on their orientation. The capability to resolve orientational information on the single molecule level makes the scanning resonant antenna an ideal tool for extreme resolution bioimaging.

  2. Electromagnetic Measurements in an Active Oilfield Environment

    NASA Astrophysics Data System (ADS)

    Weiss, C. J.; Aur, K. A.; Schramm, K. A.; Aldridge, D. F.; O'rourke, W. T.

    2016-12-01

    An important issue in oilfield development is mapping fracture distributions (either natural or man-made) controlling subsurface fluid flow. Although microseismic monitoring has been successful in constraining fracture system geometry and dynamics, accurate interpretation of microseismic data can be confounded by factors such as complex or poorly-understood velocity distributions, reactivation of previously unknown faults and fractures, and the problem of relating flow patterns to the cloud of hypocenter locations. For the particular problem of hydrocarbon production, the question of which fractures remain sufficiently "open" to allow economical fluid extraction is critical. As a supplement to microseismic analysis, we are investigating a novel electromagnetic (EM) technique for detecting and mapping hydraulic fractures in a hydrocarbon or geothermal reservoir by introducing an electrically conductive contrast agent into the fracturing fluid. In the field experiment presented here, a proppant-filled fracture zone is illuminated by a large engineered antenna consisting of an insulated current-carrying cable, grounded to `Earth' near the wellhead, and grounded at the other end to the steel-cased borehole near the target. Time-lapse measurements of horizontal electric field are subsequently made on Earth's surface to map the change in subsurface conductivity due to proppant emplacement. As predicted by 3D numerical modelling, observed differences in electric field values are very small. While these numbers are above the noise floor of electric field sensors, pervasive anthropogenic EM noise and regional-scale magnetotelluric signals make extraction of the differences from the observed time series especially difficult. We present field-acquired data on ambient EM noise in an active oilfield environment and demonstrate techniques for extracting the difference signal due to proppant emplacement. These techniques include classical spectral methods along with estimation of time-domain Green's function by regularized, linear least squares methods.

  3. Visualizing Transcranial Direct Current Stimulation (tDCS) in vivo using Magnetic Resonance Imaging

    NASA Astrophysics Data System (ADS)

    Jog, Mayank Anant

    Transcranial Direct Current Stimulation (tDCS) is a low-cost, non-invasive neuromodulation technique that has been shown to treat clinical symptoms as well as improve cognition. However, no techniques exist at the time of research to visualize tDCS currents in vivo. This dissertation presents the theoretical framework and experimental implementations of a novel MRI technique that enables non-invasive visualization of the tDCS electric current using magnetic field mapping. The first chapter establishes the feasibility of measuring magnetic fields induced by tDCS currents. The following chapter discusses the state of the art implementation that can measure magnetic field changes in individual subjects undergoing concurrent tDCS/MRI. The final chapter discusses how the developed technique was integrated with BOLD fMRI-an established MRI technique for measuring brain function. By enabling a concurrent measurement of the tDCS current induced magnetic field as well as the brain's hemodynamic response to tDCS, our technique opens a new avenue to investigate tDCS mechanisms and improve targeting.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Adrian; Zhang, Yunfan; Parsons, Aaron R., E-mail: acliu@berkeley.edu

    Intensity mapping is a promising technique for surveying the large-scale structure of our universe from z  = 0 to z  ∼ 150, using the brightness temperature field of spectral lines to directly observe previously unexplored portions of our cosmic timeline. Examples of targeted lines include the 21 cm hyperfine transition of neutral hydrogen, rotational lines of carbon monoxide, and fine-structure lines of singly ionized carbon. Recent efforts have focused on detections of the power spectrum of spatial fluctuations, but have been hindered by systematics such as foreground contamination. This has motivated the decomposition of data into Fourier modes perpendicular and parallel tomore » the line of sight, which has been shown to be a particularly powerful way to diagnose systematics. However, such a method is well-defined only in the limit of a narrow-field, flat-sky approximation. This limits the sensitivity of intensity mapping experiments, as it means that wide surveys must be separately analyzed as a patchwork of smaller fields. In this paper, we develop a framework for analyzing intensity mapping data in a spherical Fourier–Bessel basis, which incorporates curved sky effects without difficulty. We use our framework to generalize a number of techniques in intensity mapping data analysis from the flat sky to the curved sky. These include visibility-based estimators for the power spectrum, treatments of interloper lines, and the “foreground wedge” signature of spectrally smooth foregrounds.« less

  5. Lidar Investigation of Aerosol Pollution Distribution near a Coal Power Plant

    NASA Technical Reports Server (NTRS)

    Mitsev, TS.; Kolarov, G.

    1992-01-01

    Using aerosol lidars with high spatial and temporal resolution with the possibility of real-time data interpretation can solve a large number of ecological problems related to the aerosol-field distribution and variation and the structure of convective flows. Significantly less expensive specialized lidars are used in studying anthropogenic aerosols in the planetary boundary layer. Here, we present results of lidar measurements of the mass-concentration field around a coal-fired power plant with intensive local aerosol sources. We studied the pollution evolution as a function of the emission dynamics and the presence of retaining layers. The technique used incorporates complex analysis of three types of lidar mapping: horizontal map of the aerosol field, vertical cross-section map, and a series of profiles along a selected path. The lidar-sounding cycle was performed for the time of atmosphere's quasi-stationarity.

  6. Remote Sensing in Agriculture: An Introductory Review.

    ERIC Educational Resources Information Center

    Curran, Paul J.

    1987-01-01

    Discusses the use of remote sensing techniques to obtain locational, estimated, and mapped information at the scales varying from individual fields and farms, to entire continents and the world. (AEM)

  7. Mapping wide row crops with video sequences acquired from a tractor moving at treatment speed.

    PubMed

    Sainz-Costa, Nadir; Ribeiro, Angela; Burgos-Artizzu, Xavier P; Guijarro, María; Pajares, Gonzalo

    2011-01-01

    This paper presents a mapping method for wide row crop fields. The resulting map shows the crop rows and weeds present in the inter-row spacing. Because field videos are acquired with a camera mounted on top of an agricultural vehicle, a method for image sequence stabilization was needed and consequently designed and developed. The proposed stabilization method uses the centers of some crop rows in the image sequence as features to be tracked, which compensates for the lateral movement (sway) of the camera and leaves the pitch unchanged. A region of interest is selected using the tracked features, and an inverse perspective technique transforms the selected region into a bird's-eye view that is centered on the image and that enables map generation. The algorithm developed has been tested on several video sequences of different fields recorded at different times and under different lighting conditions, with good initial results. Indeed, lateral displacements of up to 66% of the inter-row spacing were suppressed through the stabilization process, and crop rows in the resulting maps appear straight.

  8. Simulating Electron Cyclotron Maser Emission for Low Mass Stars

    NASA Astrophysics Data System (ADS)

    Llama, Joe; Jardine, Moira

    2018-01-01

    Zeeman-Doppler Imaging (ZDI) is a powerful technique that enables us to map the large-scale magnetic fields of stars spanning the pre- and main-sequence. Coupling these magnetic maps with field extrapolation methods allow us to investigate the topology of the closed, X-ray bright corona, and the cooler, open stellar wind.Using ZDI maps of young M dwarfs with simultaneous radio light curves obtained from the VLA, we present the results of modeling the Electron-Cyclotron Maser (ECM) emission from these systems. We determine the X-ray luminosity and ECM emission that is produced using the ZDI maps and our field extrapolation model. We compare these findings with the observed radio light curves of these stars. This allows us to predict the relative phasing and amplitude of the stellar X-ray and radio light curves.This benchmarking of our model using these systems allows us to predict the ECM emission for all stars that have a ZDI map and an observed X-ray luminosity. Our model allows us to understand the origin of transient radio emission observations and is crucial for disentangling stellar and exoplanetary radio signals.

  9. MRI technique for the snapshot imaging of quantitative velocity maps using RARE.

    PubMed

    Shiko, G; Sederman, A J; Gladden, L F

    2012-03-01

    A quantitative PGSE-RARE pulse sequence was developed and successfully applied to the in situ dissolution of two pharmaceutical formulations dissolving over a range of timescales. The new technique was chosen over other existing fast velocity imaging techniques because it is T(2) weighted, not T(2)(∗) weighted, and is, therefore, robust for imaging time-varying interfaces and flow in magnetically heterogeneous systems. The complex signal was preserved intact by separating odd and even echoes to obtain two phase maps which are then averaged in post-processing. Initially, the validity of the technique was shown when imaging laminar flow in a pipe. Subsequently, the dissolution of two drugs was followed in situ, where the technique enables the imaging and quantification of changes in the form of the tablet and the flow field surrounding it at high spatial and temporal resolution. First, the complete 3D velocity field around an eroding salicylic acid tablet was acquired at a resolution of 98×49 μm(2), within 20 min, and monitored over ∼13 h. The tablet was observed to experience a heterogeneous flow field and, hence a heterogeneous shear field, which resulted in the non-symmetric erosion of the tablet. Second, the dissolution of a fast dissolving immediate release tablet was followed using one-shot 2D velocity images acquired every 5.2 s at a resolution of 390×390 μm(2). The quantitative nature of the technique and fast acquisition times provided invaluable information on the dissolution behaviour of this tablet, which had not been attainable previously with conventional quantitative MRI techniques. Copyright © 2012 Elsevier Inc. All rights reserved.

  10. Forest type mapping with satellite data

    NASA Technical Reports Server (NTRS)

    Dodge, A. G., Jr.; Bryant, E. S.

    1976-01-01

    Computer classification of data from Landsat, an earth-orbiting satellite, has resulted in measurements and maps of forest types for two New Hampshire counties. The acreages of hardwood and softwood types and total forested areas compare favorably with Forest Service figures for the same areas. These techniques have advantages for field application, particularly in states having forest taxation laws based on general productivity.

  11. Recent Development of an Earth Science App - FieldMove Clino

    NASA Astrophysics Data System (ADS)

    Vaughan, Alan; Collins, Nathan; Krus, Mike; Rourke, Peter

    2014-05-01

    As geological modelling and analysis move into 3D digital space, it becomes increasingly important to be able to rapidly integrate new data with existing databases, without the potential degradation caused by repeated manual transcription of numeric, graphical and meta-data. Digital field mapping offers significant benefits when compared with traditional paper mapping techniques, in that it can directly and interactively feed and be guided by downstream geological modelling and analysis. One of the most important pieces of equipment used by the field geologists is the compass clinometer. Midland Valley's development team have recently release their highly anticipated FieldMove Clino App. FieldMove Clino is a digital compass-clinometer for data capture on a smartphone. The app allows the user to use their phone as a traditional hand-held bearing compass, as well as a digital compass-clinometer for rapidly measuring and capturing the georeferenced location and orientation of planar and linear features in the field. The user can also capture and store digital photographs and text notes. FieldMove Clino supports online Google Maps as well as offline maps, so that the user can import their own georeferenced basemaps. Data can be exported as comma-separated values (.csv) or Move™ (.mve) files and then imported directly into FieldMove™, Move™ or other applications. Midland Valley is currently pioneering tablet-based mapping and, along with its industrial and academic partners, will be using the application in field based projects throughout this year and will be integrating feedback in further developments of this technology.

  12. Direct optical mapping of transcription factor binding sites on field-stretched λ-DNA in nanofluidic devices

    PubMed Central

    Sriram, K. K.; Yeh, Jia-Wei; Lin, Yii-Lih; Chang, Yi-Ren; Chou, Chia-Fu

    2014-01-01

    Mapping transcription factor (TF) binding sites along a DNA backbone is crucial in understanding the regulatory circuits that control cellular processes. Here, we deployed a method adopting bioconjugation, nanofluidic confinement and fluorescence single molecule imaging for direct mapping of TF (RNA polymerase) binding sites on field-stretched single DNA molecules. Using this method, we have mapped out five of the TF binding sites of E. coli RNA polymerase to bacteriophage λ-DNA, where two promoter sites and three pseudo-promoter sites are identified with the corresponding binding frequency of 45% and 30%, respectively. Our method is quick, robust and capable of resolving protein-binding locations with high accuracy (∼ 300 bp), making our system a complementary platform to the methods currently practiced. It is advantageous in parallel analysis and less prone to false positive results over other single molecule mapping techniques such as optical tweezers, atomic force microscopy and molecular combing, and could potentially be extended to general mapping of protein–DNA interaction sites. PMID:24753422

  13. Analysis of recurrent patterns in toroidal magnetic fields.

    PubMed

    Sanderson, Allen R; Chen, Guoning; Tricoche, Xavier; Pugmire, David; Kruger, Scott; Breslau, Joshua

    2010-01-01

    In the development of magnetic confinement fusion which will potentially be a future source for low cost power, physicists must be able to analyze the magnetic field that confines the burning plasma. While the magnetic field can be described as a vector field, traditional techniques for analyzing the field's topology cannot be used because of its Hamiltonian nature. In this paper we describe a technique developed as a collaboration between physicists and computer scientists that determines the topology of a toroidal magnetic field using fieldlines with near minimal lengths. More specifically, we analyze the Poincaré map of the sampled fieldlines in a Poincaré section including identifying critical points and other topological features of interest to physicists. The technique has been deployed into an interactive parallel visualization tool which physicists are using to gain new insight into simulations of magnetically confined burning plasmas.

  14. High resolution spectroscopic mapping imaging applied in situ to multilayer structures for stratigraphic identification of painted art objects

    NASA Astrophysics Data System (ADS)

    Karagiannis, Georgios Th.

    2016-04-01

    The development of non-destructive techniques is a reality in the field of conservation science. These techniques are usually not so accurate, as the analytical micro-sampling techniques, however, the proper development of soft-computing techniques can improve their accuracy. In this work, we propose a real-time fast acquisition spectroscopic mapping imaging system that operates from the ultraviolet to mid infrared (UV/Vis/nIR/mIR) area of the electromagnetic spectrum and it is supported by a set of soft-computing methods to identify the materials that exist in a stratigraphic structure of paint layers. Particularly, the system acquires spectra in diffuse-reflectance mode, scanning in a Region-Of-Interest (ROI), and having wavelength range from 200 up to 5000 nm. Also, a fuzzy c-means clustering algorithm, i.e., the particular soft-computing algorithm, produces the mapping images. The evaluation of the method was tested on a byzantine painted icon.

  15. Characterization of a subwavelength-scale 3D void structure using the FDTD-based confocal laser scanning microscopic image mapping technique.

    PubMed

    Choi, Kyongsik; Chon, James W; Gu, Min; Lee, Byoungho

    2007-08-20

    In this paper, a simple confocal laser scanning microscopic (CLSM) image mapping technique based on the finite-difference time domain (FDTD) calculation has been proposed and evaluated for characterization of a subwavelength-scale three-dimensional (3D) void structure fabricated inside polymer matrix. The FDTD simulation method adopts a focused Gaussian beam incident wave, Berenger's perfectly matched layer absorbing boundary condition, and the angular spectrum analysis method. Through the well matched simulation and experimental results of the xz-scanned 3D void structure, we first characterize the exact position and the topological shape factor of the subwavelength-scale void structure, which was fabricated by a tightly focused ultrashort pulse laser. The proposed CLSM image mapping technique based on the FDTD can be widely applied from the 3D near-field microscopic imaging, optical trapping, and evanescent wave phenomenon to the state-of-the-art bio- and nanophotonics.

  16. Beta Testing StraboSpot: Perspectives on mobile field mapping and data collection

    NASA Astrophysics Data System (ADS)

    Bunse, E.; Graham, K. A.; Rufledt, C.; Walker, J. D.; Müller, A.; Tikoff, B.

    2017-12-01

    Geologic field mapping has recently transitioned away from traditional techniques (e.g. field notebooks, paper mapping, Brunton compasses) and towards mobile `app' mapping technology. The StraboSpot system (Strabo) is an open-source solution for collection and storage for geologic field, microstructural, and lab-based data. Strabo's mission is to "enable recording and sharing data within the geoscience community, encourage interdisciplinary research, and facilitate the investigation of scientific questions that cannot currently be addressed" (Walker et al., 2015). Several mobile application beta tests of the system, on both Android and Apple iOS platforms using smartphones and tablets, began in Summer 2016. Students at the 2016 and 2017 University of Kansas Field Camps used Strabo in place of ArcGIS for Desktop on Panasonic Toughbooks, to field map two study areas. Strabo was also field tested by students of graduate and undergraduate level for both geo/thermochronologic sample collection and reconnaissance mapping associated with regional tectonic analysis in California. Throughout this period of testing, the app was geared toward structural and tectonic geologic data collection, but is versatile enough for other communities to currently use and is expanding to accommodate the sedimentology and petrology communities. Overall, users in each of the beta tests acclimated quickly to using Strabo for field data collection. Some key advantages to using Strabo over traditional mapping methods are: (1) Strabo allows for consolidation of materials in the field; (2) helps students track their position in the field with integrated GPS; and (3) Strabo data is in a uniform format making it simple for geologists to collaborate. While traditional field methods are not likely to go out of style in the near future, Strabo acts as a bridge between professional and novice geologists by providing a tool that is intuitive on all levels of geological and technological experience and allows for more effective collaboration in the field. Walker, J. Douglas, et al. (2015), Development of Structural Geology and Tectonics Data System with Field and Lab Interface, Abstract IN21E-04 presented at 2015 Fall Meeting, AGU, San Francisco, Calif., 14-18 Dec.

  17. Leakage radiation interference microscopy.

    PubMed

    Descrovi, Emiliano; Barakat, Elsie; Angelini, Angelo; Munzert, Peter; De Leo, Natascia; Boarino, Luca; Giorgis, Fabrizio; Herzig, Hans Peter

    2013-09-01

    We present a proof of principle for a new imaging technique combining leakage radiation microscopy with high-resolution interference microscopy. By using oil immersion optics it is demonstrated that amplitude and phase can be retrieved from optical fields, which are evanescent in air. This technique is illustratively applied for mapping a surface mode propagating onto a planar dielectric multilayer on a thin glass substrate. The surface mode propagation constant estimated after Fourier transformation of the measured complex field is well matched with an independent measurement based on back focal plane imaging.

  18. Spectrally based bathymetric mapping of a dynamic, sand‐bedded channel: Niobrara River, Nebraska, USA

    USGS Publications Warehouse

    Dilbone, Elizabeth; Legleiter, Carl; Alexander, Jason S.; McElroy, Brandon

    2018-01-01

    Methods for spectrally based mapping of river bathymetry have been developed and tested in clear‐flowing, gravel‐bed channels, with limited application to turbid, sand‐bed rivers. This study used hyperspectral images and field surveys from the dynamic, sandy Niobrara River to evaluate three depth retrieval methods. The first regression‐based approach, optimal band ratio analysis (OBRA), paired in situ depth measurements with image pixel values to estimate depth. The second approach used ground‐based field spectra to calibrate an OBRA relationship. The third technique, image‐to‐depth quantile transformation (IDQT), estimated depth by linking the cumulative distribution function (CDF) of depth to the CDF of an image‐derived variable. OBRA yielded the lowest depth retrieval mean error (0.005 m) and highest observed versus predicted R2 (0.817). Although misalignment between field and image data did not compromise the performance of OBRA in this study, poor georeferencing could limit regression‐based approaches such as OBRA in dynamic, sand‐bedded rivers. Field spectroscopy‐based depth maps exhibited a mean error with a slight shallow bias (0.068 m) but provided reliable estimates for most of the study reach. IDQT had a strong deep bias but provided informative relative depth maps. Overprediction of depth by IDQT highlights the need for an unbiased sampling strategy to define the depth CDF. Although each of the techniques we tested demonstrated potential to provide accurate depth estimates in sand‐bed rivers, each method also was subject to certain constraints and limitations.

  19. Electron-beam-induced-current and active secondary-electron voltage-contrast with aberration-corrected electron probes

    DOE PAGES

    Han, Myung-Geun; Garlow, Joseph A.; Marshall, Matthew S. J.; ...

    2017-03-23

    The ability to map out electrostatic potentials in materials is critical for the development and the design of nanoscale electronic and spintronic devices in modern industry. Electron holography has been an important tool for revealing electric and magnetic field distributions in microelectronics and magnetic-based memory devices, however, its utility is hindered by several practical constraints, such as charging artifacts and limitations in sensitivity and in field of view. In this article, we report electron-beam-induced-current (EBIC) and secondary-electron voltage-contrast (SE-VC) with an aberration-corrected electron probe in a transmission electron microscope (TEM), as complementary techniques to electron holography, to measure electric fieldsmore » and surface potentials, respectively. These two techniques were applied to ferroelectric thin films, multiferroic nanowires, and single crystals. Electrostatic potential maps obtained by off-axis electron holography were compared with EBIC and SE-VC to show that these techniques can be used as a complementary approach to validate quantitative results obtained from electron holography analysis.« less

  20. Comb-push Ultrasound Shear Elastography (CUSE): A Novel Method for Two-dimensional Shear Elasticity Imaging of Soft Tissues

    PubMed Central

    Song, Pengfei; Zhao, Heng; Manduca, Armando; Urban, Matthew W.; Greenleaf, James F.; Chen, Shigao

    2012-01-01

    Fast and accurate tissue elasticity imaging is essential in studying dynamic tissue mechanical properties. Various ultrasound shear elasticity imaging techniques have been developed in the last two decades. However, to reconstruct a full field-of-view 2D shear elasticity map, multiple data acquisitions are typically required. In this paper, a novel shear elasticity imaging technique, comb-push ultrasound shear elastography (CUSE), is introduced in which only one rapid data acquisition (less than 35 ms) is needed to reconstruct a full field-of-view 2D shear wave speed map (40 mm × 38 mm). Multiple unfocused ultrasound beams arranged in a comb pattern (comb-push) are used to generate shear waves. A directional filter is then applied upon the shear wave field to extract the left-to-right (LR) and right-to-left (RL) propagating shear waves. Local shear wave speed is recovered using a time-of-flight method based on both LR and RL waves. Finally a 2D shear wave speed map is reconstructed by combining the LR and RL speed maps. Smooth and accurate shear wave speed maps are reconstructed using the proposed CUSE method in two calibrated homogeneous phantoms with different moduli. Inclusion phantom experiments demonstrate that CUSE is capable of providing good contrast (contrast-to-noise-ratio ≥ 25 dB) between the inclusion and background without artifacts and is insensitive to inclusion positions. Safety measurements demonstrate that all regulated parameters of the ultrasound output level used in CUSE sequence are well below the FDA limits for diagnostic ultrasound. PMID:22736690

  1. Habitat mapping using hyperspectral images in the vicinity of Hekla volcano in Iceland

    NASA Astrophysics Data System (ADS)

    Vilmundardóttir, Olga K.; Sigurmundsson, Friðþór S.; Pedersen, Gro B. M.; Falco, Nicola; Rustowicz, Rose; Gísladóttir, Guðrún; Benediktsson, Jón A.

    2016-04-01

    Hekla, one of the most active volcanoes in Iceland, has created a diverse volcanic landscape with lava flows, hyaloclastite and tephra fields. The variety of geological formations and different times of formation create diverse vegetation within Hekla's vicinity. The region is subjected to extensive loss of vegetation cover and soil erosion due to human utilization of woodlands and ongoing sheep grazing. The eolian activity and frequent tephra deposition has created vast areas of sparse vegetation cover. Over the 20th century, many activities have centered on preventing further loss of vegetated land and restoring ecosystems. The benefit of these activities is now noticeable in the increased vegetation and woodland cover although erosion is still active within the area. For mapping and monitoring this highly dynamic environment remote sensing techniques are extremely useful. One of the principal goals of the project 'Environmental Mapping and Monitoring of Iceland with Remote Sensing' (EMMIRS) is to use hyperspectral images and LiDAR data to classify and map the vegetation within the Hekla area. The data was collected in an aerial survey in summer 2015 by the Natural Environment Research Council (NERC), UK. The habitat type classification, currently being developed at the Icelandic Institute of Natural History and follows the structure of the EUNIS classification system, will be used for classifying the vegetation. The habitat map created by this new technique's outcome will be compared to the existent vegetation maps made by the conventional vegetation mapping method and the multispectral image classification techniques. In the field, vegetation cover, soil properties and spectral reflectance were measured within different habitat types. Special emphasis was on collecting data on vegetation and soil in the historical lavas from Hekla for assessing habitats forming over the millennia. A lava-chronosequence was established by measuring vegetation and soil in lavas formed in 2000, 1991, 1980-81, 1970, 1947, 1913, 1878, 1845, 1766-68, 1693, 1554, 1389-90, 1300, and 1206, representing surfaces of age 15-809 years. Results showed that vegetation cover established rather quickly on the lavas where mosses and lichens already created a full cover after 24 years. The cover remained stable and mosses were the dominant plant group for centuries, unless where tephra fall had occurred or where eolian deposition prevailed. The colonization of vascular plants on the lava was slow except at sites of eolian deposition and tephra fall. Dwarf shrubs and shrubs were rare or even absent on the lavas formed during the last century but their cover increased with increasing age of the lava fields. The older lava fields featured a variety of vegetation classes, indicating different rates and pathways of succession depending on altitude, proximity to eolian sources, land use and other factors. The many similarities yet big contrasts in the habitats featured within the Hekla region pose a challenge for creating a habitat map of the area, testing the potency of the hyperspectral data and classification techniques to the fullest.

  2. Analysis of magnetic field levels at KSC

    NASA Technical Reports Server (NTRS)

    Christodoulou, Christos G.

    1994-01-01

    The scope of this work is to evaluate the magnetic field levels of distribution systems and other equipment at Kennedy Space Center (KSC). Magnetic fields levels in several operational areas and various facilities are investigated. Three dimensional mappings and contour are provided along with the measured data. Furthermore, the portion of magnetic fields generated by the 60 Hz fundamental frequency and the portion generated by harmonics are examined. Finally, possible mitigation techniques for attenuating fields from electric panels are discussed.

  3. Application of DPIV to Enhanced Mixing Heated Nozzle Flows

    NASA Technical Reports Server (NTRS)

    Wernet, Mark P.; Bridges, James

    2002-01-01

    Digital Particle Imaging Velocimetry (DPIV) is a planar velocity measurement technique that continues to be applied to new and challenging engineering research facilities while significantly reducing facility test time. DPIV was used in the GRC Nozzle Acoustic Test Rig (NATR) to characterize the high temperature (560 C), high speed (is greater than 500 m/s) flow field properties of mixing enhanced jet engine nozzles. The instantaneous velocity maps obtained using DPIV were used to determine mean velocity, rms velocity and two-point correlation statistics to verify the true turbulence characteristics of the flow. These measurements will ultimately be used to properly validate aeroacoustic model predictions by verifying CFD input to these models. These turbulence measurements have previously not been possible in hot supersonic jets. Mapping the nozzle velocity field using point based techniques requires over 60 hours of test time, compared to less than 45 minutes using DPIV, yielding a significant reduction in testing time. A dual camera DPIV configuration was used to maximize the field of view and further minimize the testing time required to map the nozzle flow. The DPIV system field of view covered 127 by 267 mm. Data were acquired at 19 axial stations providing coverage of the flow from the nozzle exit to 2.37 in downstream. At each measurement station, 400 image frame pairs were acquired from each camera. The DPIV measurements of the mixing enhanced nozzle designs illustrate the changes in the flow field resulting in the reduced noise signature.

  4. A median filter approach for correcting errors in a vector field

    NASA Technical Reports Server (NTRS)

    Schultz, H.

    1985-01-01

    Techniques are presented for detecting and correcting errors in a vector field. These methods employ median filters which are frequently used in image processing to enhance edges and remove noise. A detailed example is given for wind field maps produced by a spaceborne scatterometer. The error detection and replacement algorithm was tested with simulation data from the NASA Scatterometer (NSCAT) project.

  5. Terahertz near-field imaging of surface plasmon waves in graphene structures

    DOE PAGES

    Mitrofanov, O.; Yu, W.; Thompson, R. J.; ...

    2015-09-08

    In this study, we introduce a near-field scanning probe terahertz (THz) microscopy technique for probing surface plasmon waves on graphene. Based on THz time-domain spectroscopy method, this near-field imaging approach is well suited for studying the excitation and evolution of THz plasmon waves on graphene as well as for mapping of graphene properties at THz frequencies on the sub-wavelength scale.

  6. SfiI genomic cleavage map of Escherichia coli K-12 strain MG1655.

    PubMed Central

    Perkins, J D; Heath, J D; Sharma, B R; Weinstock, G M

    1992-01-01

    An SfiI restriction map of Escherichia coli K-12 strain MG1655 is presented. The map contains thirty-one cleavage sites separating fragments ranging in size from 407 kb to 3.7 kb. Several techniques were used in the construction of this map, including CHEF pulsed field gel electrophoresis; physical analysis of a set of twenty-six auxotrophic transposon insertions; correlation with the restriction map of Kohara and coworkers using the commercially available E. coli Gene Mapping Membranes; analysis of publicly available sequence information; and correlation of the above data with the combined genetic and physical map developed by Rudd, et al. The combination of these techniques has yielded a map in which all but one site can be localized within a range of +/- 2 kb, and over half the sites can be localized precisely by sequence data. Two sites present in the EcoSeq5 sequence database are not cleaved in MG1655 and four sites are noted to be sensitive to methylation by the dcm methylase. This map, combined with the NotI physical map of MG1655, can aid in the rapid, precise mapping of several different types of genetic alterations, including transposon mediated mutations and other insertions, inversions, deletions and duplications. Images PMID:1312707

  7. Rapid water and lipid imaging with T2 mapping using a radial IDEAL-GRASE technique.

    PubMed

    Li, Zhiqiang; Graff, Christian; Gmitro, Arthur F; Squire, Scott W; Bilgin, Ali; Outwater, Eric K; Altbach, Maria I

    2009-06-01

    Three-point Dixon methods have been investigated as a means to generate water and fat images without the effects of field inhomogeneities. Recently, an iterative algorithm (IDEAL, iterative decomposition of water and fat with echo asymmetry and least squares estimation) was combined with a gradient and spin-echo acquisition strategy (IDEAL-GRASE) to provide a time-efficient method for lipid-water imaging with correction for the effects of field inhomogeneities. The method presented in this work combines IDEAL-GRASE with radial data acquisition. Radial data sampling offers robustness to motion over Cartesian trajectories as well as the possibility of generating high-resolution T(2) maps in addition to the water and fat images. The radial IDEAL-GRASE technique is demonstrated in phantoms and in vivo for various applications including abdominal, pelvic, and cardiac imaging.

  8. Semantic Data And Visualization Techniques Applied To Geologic Field Mapping

    NASA Astrophysics Data System (ADS)

    Houser, P. I. Q.; Royo-Leon, M.; Munoz, R.; Estrada, E.; Villanueva-Rosales, N.; Pennington, D. D.

    2015-12-01

    Geologic field mapping involves the use of technology before, during, and after visiting a site. Geologists utilize hardware such as Global Positioning Systems (GPS) connected to mobile computing platforms such as tablets that include software such as ESRI's ArcPad and other software to produce maps and figures for a final analysis and report. Hand written field notes contain important information and drawings or sketches of specific areas within the field study. Our goal is to collect and geo-tag final and raw field data into a cyber-infrastructure environment with an ontology that allows for large data processing, visualization, sharing, and searching, aiding in connecting field research with prior research in the same area and/or aid with experiment replication. Online searches of a specific field area return results such as weather data from NOAA and QuakeML seismic data from USGS. These results that can then be saved to a field mobile device and searched while in the field where there is no Internet connection. To accomplish this we created the GeoField ontology service using the Web Ontology Language (OWL) and Protégé software. Advanced queries on the dataset can be made using reasoning capabilities can be supported that go beyond a standard database service. These improvements include the automated discovery of data relevant to a specific field site and visualization techniques aimed at enhancing analysis and collaboration while in the field by draping data over mobile views of the site using augmented reality. A case study is being performed at University of Texas at El Paso's Indio Mountains Research Station located near Van Horn, Texas, an active multi-disciplinary field study site. The user can interactively move the camera around the study site and view their data digitally. Geologist's can check their data against the site in real-time and improve collaboration with another person as both parties have the same interactive view of the data.

  9. High and ultra-high resolution metabolite mapping of the human brain using 1H FID MRSI at 9.4T.

    PubMed

    Nassirpour, Sahar; Chang, Paul; Henning, Anke

    2018-03-01

    Magnetic resonance spectroscopic imaging (MRSI) is a promising technique for mapping the spatial distribution of multiple metabolites in the human brain. These metabolite maps can be used as a diagnostic tool to gain insight into several biochemical processes and diseases in the brain. In comparison to lower field strengths, MRSI at ultra-high field strengths benefits from a higher signal to noise ratio (SNR) as well as higher chemical shift dispersion, and hence spectral resolution. This study combines the benefits of an ultra-high field magnet with the advantages of an ultra-short TE and TR single-slice FID-MRSI sequence (such as negligible J-evolution and loss of SNR due to T 2 relaxation effects) and presents the first metabolite maps acquired at 9.4T in the healthy human brain at both high (voxel size of 97.6µL) and ultra-high (voxel size of 24.4µL) spatial resolutions in a scan time of 11 and 46min respectively. In comparison to lower field strengths, more anatomically-detailed maps with higher SNR from a larger number of metabolites are shown. A total of 12 metabolites including glutamate (Glu), glutamine (Gln), N-acetyl-aspartyl-glutamate (NAAG), Gamma-aminobutyric acid (GABA) and glutathione (GSH) are reliably mapped. Comprehensive description of the methodology behind these maps is provided. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Local conductance: A means to extract polarization and depolarizing fields near domain walls in ferroelectrics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Douglas, A. M.; Kumar, A.; Gregg, J. M.

    Conducting atomic force microscopy images of bulk semiconducting BaTiO{sub 3} surfaces show clear stripe domain contrast. High local conductance correlates with strong out-of-plane polarization (mapped independently using piezoresponse force microscopy), and current-voltage characteristics are consistent with dipole-induced alterations in Schottky barriers at the metallic tip-ferroelectric interface. Indeed, analyzing current-voltage data in terms of established Schottky barrier models allows relative variations in the surface polarization, and hence the local domain structure, to be determined. Fitting also reveals the signature of surface-related depolarizing fields concentrated near domain walls. Domain information obtained from mapping local conductance appears to be more surface-sensitive than thatmore » from piezoresponse force microscopy. In the right materials systems, local current mapping could therefore represent a useful complementary technique for evaluating polarization and local electric fields with nanoscale resolution.« less

  11. Detection, mapping, and quantification of single walled carbon nanotubes in histological specimens with photoacoustic microscopy.

    PubMed

    Avti, Pramod K; Hu, Song; Favazza, Christopher; Mikos, Antonios G; Jansen, John A; Shroyer, Kenneth R; Wang, Lihong V; Sitharaman, Balaji

    2012-01-01

    In the present study, the efficacy of multi-scale photoacoustic microscopy (PAM) was investigated to detect, map, and quantify trace amounts [nanograms (ng) to micrograms (µg)] of SWCNTs in a variety of histological tissue specimens consisting of cancer and benign tissue biopsies (histological specimens from implanted tissue engineering scaffolds). Optical-resolution (OR) and acoustic-resolution (AR)--Photoacoustic microscopy (PAM) was employed to detect, map and quantify the SWCNTs in a variety of tissue histological specimens and compared with other optical techniques (bright-field optical microscopy, Raman microscopy, near infrared (NIR) fluorescence microscopy). Both optical-resolution and acoustic-resolution PAM, allow the detection and quantification of SWCNTs in histological specimens with scalable spatial resolution and depth penetration. The noise-equivalent detection sensitivity to SWCNTs in the specimens was calculated to be as low as ∼7 pg. Image processing analysis further allowed the mapping, distribution, and quantification of the SWCNTs in the histological sections. The results demonstrate the potential of PAM as a promising imaging technique to detect, map, and quantify SWCNTs in histological specimens, and could complement the capabilities of current optical and electron microscopy techniques in the analysis of histological specimens containing SWCNTs.

  12. The integrated analyses of digital field mapping techniques and traditional field methods: implications from the Burdur-Fethiye Shear Zone, SW Turkey as a case-study

    NASA Astrophysics Data System (ADS)

    Elitez, İrem; Yaltırak, Cenk; Zabcı, Cengiz; Şahin, Murat

    2015-04-01

    The precise geological mapping is one of the most important issues in geological studies. Documenting the spatial distribution of geological bodies and their contacts play a crucial role on interpreting the tectonic evolution of any region. Although the traditional field techniques are still accepted to be the most fundamental tools in construction of geological maps, we suggest that the integration of digital technologies to the classical methods significantly increases the resolution and the quality of such products. We simply follow the following steps in integration of the digital data with the traditional field observations. First, we create the digital elevation model (DEM) of the region of interest by interpolating the digital contours of 1:25000 scale topographic maps to 10 m of ground pixel resolution. The non-commercial Google Earth satellite imagery and geological maps of previous studies are draped over the interpolated DEMs in the second stage. The integration of all spatial data is done by using the market leading GIS software, ESRI ArcGIS. We make the preliminary interpretation of major structures as tectonic lineaments and stratigraphic contacts. These preliminary maps are controlled and precisely coordinated during the field studies by using mobile tablets and/or phablets with GPS receivers. The same devices are also used in measuring and recording the geologic structures of the study region. Finally, all digitally collected measurements and observations are added to the GIS database and we finalise our geological map with all available information. We applied this integrated method to map the Burdur-Fethiye Shear Zone (BFSZ) in the southwest Turkey. The BFSZ is an active sinistral 60-to-90 km-wide shear zone, which prolongs about 300 km-long between Suhut-Cay in the northeast and Köyceğiz Lake-Kalkan in the southwest on land. The numerous studies suggest contradictory models not only about the evolution but also about the fault geometry of this wide deformation zone. In our study, we have mapped this complicated region since 2008 by using the data and the steps, which are described briefly above. After our joint-analyses, we show that there is no continuous single and narrow fault, the Burdur-Fethiye Fault, as it was previously suggested by many researches. Instead, the whole region is deformed under the oblique-sinistral shearing with considerable amount of extension, which causes a counterclockwise rotation within the zone.

  13. Microearthquake Studies at the Salton Sea Geothermal Field

    DOE Data Explorer

    Templeton, Dennise

    2013-10-01

    The objective of this project is to detect and locate microearthquakes to aid in the characterization of reservoir fracture networks. Accurate identification and mapping of the large numbers of microearthquakes induced in EGS is one technique that provides diagnostic information when determining the location, orientation and length of underground crack systems for use in reservoir development and management applications. Conventional earthquake location techniques often are employed to locate microearthquakes. However, these techniques require labor-intensive picking of individual seismic phase onsets across a network of sensors. For this project we adapt the Matched Field Processing (MFP) technique to the elastic propagation problem in geothermal reservoirs to identify more and smaller events than traditional methods alone.

  14. Comparison of regression and geostatistical methods for mapping Leaf Area Index (LAI) with Landsat ETM+ data over a boreal forest.

    Treesearch

    Mercedes Berterretche; Andrew T. Hudak; Warren B. Cohen; Thomas K. Maiersperger; Stith T. Gower; Jennifer Dungan

    2005-01-01

    This study compared aspatial and spatial methods of using remote sensing and field data to predict maximum growing season leaf area index (LAI) maps in a boreal forest in Manitoba, Canada. The methods tested were orthogonal regression analysis (reduced major axis, RMA) and two geostatistical techniques: kriging with an external drift (KED) and sequential Gaussian...

  15. Time-to-space mapping of femtosecond pulses.

    PubMed

    Nuss, M C; Li, M; Chiu, T H; Weiner, A M; Partovi, A

    1994-05-01

    We report time-to-space mapping of femtosecond light pulses in a temporal holography setup. By reading out a temporal hologram of a short optical pulse with a continuous-wave diode laser, we accurately convert temporal pulse-shape information into a spatial pattern that can be viewed with a camera. We demonstrate real-time acquisition of electric-field autocorrelation and cross correlation of femtosecond pulses with this technique.

  16. Preliminary work of mangrove ecosystem carbon stock mapping in small island using remote sensing: above and below ground carbon stock mapping on medium resolution satellite image

    NASA Astrophysics Data System (ADS)

    Wicaksono, Pramaditya; Danoedoro, Projo; Hartono, Hartono; Nehren, Udo; Ribbe, Lars

    2011-11-01

    Mangrove forest is an important ecosystem located in coastal area that provides various important ecological and economical services. One of the services provided by mangrove forest is the ability to act as carbon sink by sequestering CO2 from atmosphere through photosynthesis and carbon burial on the sediment. The carbon buried on mangrove sediment may persist for millennia before return to the atmosphere, and thus act as an effective long-term carbon sink. Therefore, it is important to understand the distribution of carbon stored within mangrove forest in a spatial and temporal context. In this paper, an effort to map carbon stocks in mangrove forest is presented using remote sensing technology to overcome the handicap encountered by field survey. In mangrove carbon stock mapping, the use of medium spatial resolution Landsat 7 ETM+ is emphasized. Landsat 7 ETM+ images are relatively cheap, widely available and have large area coverage, and thus provide a cost and time effective way of mapping mangrove carbon stocks. Using field data, two image processing techniques namely Vegetation Index and Linear Spectral Unmixing (LSU) were evaluated to find the best method to explain the variation in mangrove carbon stocks using remote sensing data. In addition, we also tried to estimate mangrove carbon sequestration rate via multitemporal analysis. Finally, the technique which produces significantly better result was used to produce a map of mangrove forest carbon stocks, which is spatially extensive and temporally repetitive.

  17. The effects of AVIRIS atmospheric calibration methodology on identification and quantitative mapping of surface mineralogy, Drum Mountains, Utah

    NASA Technical Reports Server (NTRS)

    Kruse, Fred A.; Dwyer, John L.

    1993-01-01

    The Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) measures reflected light in 224 contiguous spectra bands in the 0.4 to 2.45 micron region of the electromagnetic spectrum. Numerous studies have used these data for mineralogic identification and mapping based on the presence of diagnostic spectral features. Quantitative mapping requires conversion of the AVIRIS data to physical units (usually reflectance) so that analysis results can be compared and validated with field and laboratory measurements. This study evaluated two different AVIRIS calibration techniques to ground reflectance: an empirically-based method and an atmospheric model based method to determine their effects on quantitative scientific analyses. Expert system analysis and linear spectral unmixing were applied to both calibrated data sets to determine the effect of the calibration on the mineral identification and quantitative mapping results. Comparison of the image-map results and image reflectance spectra indicate that the model-based calibrated data can be used with automated mapping techniques to produce accurate maps showing the spatial distribution and abundance of surface mineralogy. This has positive implications for future operational mapping using AVIRIS or similar imaging spectrometer data sets without requiring a priori knowledge.

  18. Individual analysis of inter and intragrain defects in electrically characterized polycrystalline silicon nanowire TFTs by multicomponent dark-field imaging based on nanobeam electron diffraction two-dimensional mapping

    NASA Astrophysics Data System (ADS)

    Asano, Takanori; Takaishi, Riichiro; Oda, Minoru; Sakuma, Kiwamu; Saitoh, Masumi; Tanaka, Hiroki

    2018-04-01

    We visualize the grain structures for individual nanosized thin film transistors (TFTs), which are electrically characterized, with an improved data processing technique for the dark-field image reconstruction of nanobeam electron diffraction maps. Our individual crystal analysis gives the one-to-one correspondence of TFTs with different grain boundary structures, such as random and coherent boundaries, to the characteristic degradations of ON-current and threshold voltage. Furthermore, the local crystalline uniformity inside a single grain is detected as the difference in diffraction intensity distribution.

  19. A multispectral study of an extratropical cyclone with Nimbus 3 medium resolution infrared radiometer data

    NASA Technical Reports Server (NTRS)

    Holub, R.; Shenk, W. E.

    1973-01-01

    Four registered channels (0.2 to 4, 6.5 to 7, 10 to 11, and 20 to 23 microns) of the Nimbus 3 Medium Resolution Infrared Radiometer (MRIR) were used to study 24-hr changes in the structure of an extratropical cyclone during a 6-day period in May 1969. Use of a stereographic-horizon map projection insured that the storm was mapped with a single perspective throughout the series and allowed the convenient preparation of 24-hr difference maps of the infrared radiation fields. Single-channel and multispectral analysis techniques were employed to establish the positions and vertical slopes of jetstreams, large cloud systems, and major features of middle and upper tropospheric circulation. Use of these techniques plus the difference maps and continuity of observation allowed the early detection of secondary cyclones developing within the circulation of the primary cyclone. An automated, multispectral cloud-type identification technique was developed, and comparisons that were made with conventional ship reports and with high-resolution visual data from the image dissector camera system showed good agreement.

  20. Mapping soil deformation around plant roots using in vivo 4D X-ray Computed Tomography and Digital Volume Correlation.

    PubMed

    Keyes, S D; Gillard, F; Soper, N; Mavrogordato, M N; Sinclair, I; Roose, T

    2016-06-14

    The mechanical impedance of soils inhibits the growth of plant roots, often being the most significant physical limitation to root system development. Non-invasive imaging techniques have recently been used to investigate the development of root system architecture over time, but the relationship with soil deformation is usually neglected. Correlative mapping approaches parameterised using 2D and 3D image data have recently gained prominence for quantifying physical deformation in composite materials including fibre-reinforced polymers and trabecular bone. Digital Image Correlation (DIC) and Digital Volume Correlation (DVC) are computational techniques which use the inherent material texture of surfaces and volumes, captured using imaging techniques, to map full-field deformation components in samples during physical loading. Here we develop an experimental assay and methodology for four-dimensional, in vivo X-ray Computed Tomography (XCT) and apply a Digital Volume Correlation (DVC) approach to the data to quantify deformation. The method is validated for a field-derived soil under conditions of uniaxial compression, and a calibration study is used to quantify thresholds of displacement and strain measurement. The validated and calibrated approach is then demonstrated for an in vivo test case in which an extending maize root in field-derived soil was imaged hourly using XCT over a growth period of 19h. This allowed full-field soil deformation data and 3D root tip dynamics to be quantified in parallel for the first time. This fusion of methods paves the way for comparative studies of contrasting soils and plant genotypes, improving our understanding of the fundamental mechanical processes which influence root system development. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Evaluation of LiDAR Imagery as a Tool for Mapping the Northern San Andreas Fault in Heavily Forested Areas of Mendocino and Sonoma Counties, California

    NASA Astrophysics Data System (ADS)

    Prentice, C. S.; Koehler, R. D.; Baldwin, J. N.; Harding, D. J.

    2004-12-01

    We are mapping in detail active traces of the San Andreas Fault in Mendocino and Sonoma Counties in northern California, using recently acquired airborne LiDAR (also known as ALSM) data. The LiDAR data set provides a powerful new tool for mapping geomorphic features related to the San Andreas Fault because it can be used to produce high-resolution images of the ground surfaces beneath the forest canopy along the 70-km-long section of the fault zone encompassed by the data. Our effort represents the first use of LiDAR data to map active fault traces in a densely vegetated region along the San Andreas Fault. We are using shaded relief images generated from bare-earth DEMs to conduct detailed mapping of fault-related geomorphic features (e.g. scarps, offset streams, linear valleys, shutter ridges, and sag ponds) between Fort Ross and Point Arena. Initially, we map fault traces digitally, on-screen, based only on the geomorphology interpreted from LiDAR images. We then conduct field reconnaissance using the initial computer-based maps in order to verify and further refine our mapping. We found that field reconnaissance is of utmost importance in producing an accurate and detailed map of fault traces. Many lineaments identified as faults from the on-screen images were determined in the field to be old logging roads or other features unrelated to faulting. Also, in areas where the resolution of LiDAR data is poor, field reconnaissance, coupled with topographic maps and aerial photographs, permits a more accurate location of fault-related geomorphic features. LiDAR images are extremely valuable as a base for field mapping in this heavily forested area, and the use of LiDAR is far superior to traditional mapping techniques relying only on aerial photography and 7.5 minute USGS quadrangle topographic maps. Comparison with earlier mapping of the northern San Andreas fault (Brown and Wolfe, 1972) shows that in some areas the LiDAR data allow a correction of the fault trace location of up to several hundred meters. To date we have field checked approximately 24 km of the 70-km-long section of the fault for which LiDAR data is available. The remaining 46 km will be field checked in 2005. The result will be a much more accurate map of the active traces of the northern San Andreas Fault, which will be of great use for future fault studies.

  2. Diffusion Tensor Magnetic Resonance Imaging Strategies for Color Mapping of Human Brain Anatomy

    PubMed Central

    Boujraf, Saïd

    2018-01-01

    Background: A color mapping of fiber tract orientation using diffusion tensor imaging (DTI) can be prominent in clinical practice. The goal of this paper is to perform a comparative study of visualized diffusion anisotropy in the human brain anatomical entities using three different color-mapping techniques based on diffusion-weighted imaging (DWI) and DTI. Methods: The first technique is based on calculating a color map from DWIs measured in three perpendicular directions. The second technique is based on eigenvalues derived from the diffusion tensor. The last technique is based on three eigenvectors corresponding to sorted eigenvalues derived from the diffusion tensor. All magnetic resonance imaging measurements were achieved using a 1.5 Tesla Siemens Vision whole body imaging system. A single-shot DW echoplanar imaging sequence used a Stejskal–Tanner approach. Trapezoidal diffusion gradients are used. The slice orientation was transverse. The basic measurement yielded a set of 13 images. Each series consists of a single image without diffusion weighting, besides two DWIs for each of the next six noncollinear magnetic field gradient directions. Results: The three types of color maps were calculated consequently using the DWI obtained and the DTI. Indeed, we established an excellent similarity between the image data in the color maps and the fiber directions of known anatomical structures (e.g., corpus callosum and gray matter). Conclusions: In the meantime, rotationally invariant quantities such as the eigenvectors of the diffusion tensor reflected better, the real orientation found in the studied tissue. PMID:29928631

  3. Developing a mapping tool for tablets

    NASA Astrophysics Data System (ADS)

    Vaughan, Alan; Collins, Nathan; Krus, Mike

    2014-05-01

    Digital field mapping offers significant benefits when compared with traditional paper mapping techniques in that it provides closer integration with downstream geological modelling and analysis. It also provides the mapper with the ability to rapidly integrate new data with existing databases without the potential degradation caused by repeated manual transcription of numeric, graphical and meta-data. In order to achieve these benefits, a number of PC-based digital mapping tools are available which have been developed for specific communities, eg the BGS•SIGMA project, Midland Valley's FieldMove®, and a range of solutions based on ArcGIS® software, which can be combined with either traditional or digital orientation and data collection tools. However, with the now widespread availability of inexpensive tablets and smart phones, a user led demand for a fully integrated tablet mapping tool has arisen. This poster describes the development of a tablet-based mapping environment specifically designed for geologists. The challenge was to deliver a system that would feel sufficiently close to the flexibility of paper-based geological mapping while being implemented on a consumer communication and entertainment device. The first release of a tablet-based geological mapping system from this project is illustrated and will be shown as implemented on an iPad during the poster session. Midland Valley is pioneering tablet-based mapping and, along with its industrial and academic partners, will be using the application in field based projects throughout this year and will be integrating feedback in further developments of this technology.

  4. Geomatics for Mapping of Groundwater Potential Zones in Northern Part of the United Arab Emiratis - Sharjah City

    NASA Astrophysics Data System (ADS)

    Al-Ruzouq, R.; Shanableh, A.; Merabtene, T.

    2015-04-01

    In United Arab Emirates (UAE) domestic water consumption has increased rapidly over the last decade. The increased demand for high-quality water, create an urgent need to evaluate the groundwater production of aquifers. The development of a reasonable model for groundwater potential is therefore crucial for future systematic developments, efficient management, and sustainable use of groundwater resources. The objective of this study is to map the groundwater potential zones in northern part of UAE and assess the contributing factors for exploration of potential groundwater resources. Remote sensing data and geographic information system will be used to locate potential zones for groundwater. Various maps (i.e., base, soil, geological, Hydro-geological, Geomorphologic Map, structural, drainage, slope, land use/land cover and average annual rainfall map) will be prepared based on geospatial techniques. The groundwater availability of the basin will qualitatively classified into different classes based on its hydro-geo-morphological conditions. The land use/land cover map will be also prepared for the different seasons using a digital classification technique with a ground truth based on field investigation.

  5. Modeling Photo-Bleaching Kinetics to Create High Resolution Maps of Rod Rhodopsin in the Human Retina

    PubMed Central

    Ehler, Martin; Dobrosotskaya, Julia; Cunningham, Denise; Wong, Wai T.; Chew, Emily Y.; Czaja, Wojtek; Bonner, Robert F.

    2015-01-01

    We introduce and describe a novel non-invasive in-vivo method for mapping local rod rhodopsin distribution in the human retina over a 30-degree field. Our approach is based on analyzing the brightening of detected lipofuscin autofluorescence within small pixel clusters in registered imaging sequences taken with a commercial 488nm confocal scanning laser ophthalmoscope (cSLO) over a 1 minute period. We modeled the kinetics of rhodopsin bleaching by applying variational optimization techniques from applied mathematics. The physical model and the numerical analysis with its implementation are outlined in detail. This new technique enables the creation of spatial maps of the retinal rhodopsin and retinal pigment epithelium (RPE) bisretinoid distribution with an ≈ 50μm resolution. PMID:26196397

  6. Using deconvolution to improve the metrological performance of the grid method

    NASA Astrophysics Data System (ADS)

    Grédiac, Michel; Sur, Frédéric; Badulescu, Claudiu; Mathias, Jean-Denis

    2013-06-01

    The use of various deconvolution techniques to enhance strain maps obtained with the grid method is addressed in this study. Since phase derivative maps obtained with the grid method can be approximated by their actual counterparts convolved by the envelope of the kernel used to extract phases and phase derivatives, non-blind restoration techniques can be used to perform deconvolution. Six deconvolution techniques are presented and employed to restore a synthetic phase derivative map, namely direct deconvolution, regularized deconvolution, the Richardson-Lucy algorithm and Wiener filtering, the last two with two variants concerning their practical implementations. Obtained results show that the noise that corrupts the grid images must be thoroughly taken into account to limit its effect on the deconvolved strain maps. The difficulty here is that the noise on the grid image yields a spatially correlated noise on the strain maps. In particular, numerical experiments on synthetic data show that direct and regularized deconvolutions are unstable when noisy data are processed. The same remark holds when Wiener filtering is employed without taking into account noise autocorrelation. On the other hand, the Richardson-Lucy algorithm and Wiener filtering with noise autocorrelation provide deconvolved maps where the impact of noise remains controlled within a certain limit. It is also observed that the last technique outperforms the Richardson-Lucy algorithm. Two short examples of actual strain fields restoration are finally shown. They deal with asphalt and shape memory alloy specimens. The benefits and limitations of deconvolution are presented and discussed in these two cases. The main conclusion is that strain maps are correctly deconvolved when the signal-to-noise ratio is high and that actual noise in the actual strain maps must be more specifically characterized than in the current study to address higher noise levels with Wiener filtering.

  7. GEOBIA For Land Use Mapping Using Worldview2 Image In Bengkak Village Coastal, Banyuwangi Regency, East Java

    NASA Astrophysics Data System (ADS)

    Alrassi, Fitzastri; Salim, Emil; Nina, Anastasia; Alwi, Luthfi; Danoedoro, Projo; Kamal, Muhammad

    2016-11-01

    The east coast of Banyuwangi regency has a diverse variety of land use such as ponds, mangroves, agricultural fields and settlements. WorldView-2 is a multispectral image with high spatial resolution that can display detailed information of land use. Geographic Object Based Image Analysis (GEOBIA) classification technique uses object segments as the smallest unit of analysis. The segmentation and classification process is not only based on spectral value of the image but also considering other elements of the image interpretation. This gives GEOBIA an opportunities and challenges in the mapping and monitoring of land use. This research aims to assess the GEOBIA classification method for generating the classification of land use in coastal areas of Banyuwangi. The result of this study is land use classification map produced by GEOBIA classification. We verified the accuracy of the resulted land use map by comparing the map with result from visual interpretation of the image that have been validated through field surveys. Variation of land use in most of the east coast of Banyuwangi regency is dominated by mangrove, agricultural fields, mixed farms, settlements and ponds.

  8. Isotropic Backward Waves Supported by a Spiral Array Metasurface.

    PubMed

    Tremain, Ben; Hooper, Ian R; Sambles, J Roy; Hibbins, Alastair P

    2018-05-08

    A planar metallic metasurface formed of spiral elements is shown to support an isotropic backward wave over a narrow band of microwave frequencies. The magnetic field of this left-handed mode is mapped experimentally using a near-field scanning technique, allowing the anti-parallel group and phase velocities to be directly visualised. The corresponding dispersion relation and isofrequency contours are obtained through Fourier transformation of the field images.

  9. Toward standardized mapping for left atrial analysis and cardiac ablation guidance

    NASA Astrophysics Data System (ADS)

    Rettmann, M. E.; Holmes, D. R.; Linte, C. A.; Packer, D. L.; Robb, R. A.

    2014-03-01

    In catheter-based cardiac ablation, the pulmonary vein ostia are important landmarks for guiding the ablation procedure, and for this reason, have been the focus of many studies quantifying their size, structure, and variability. Analysis of pulmonary vein structure, however, has been limited by the lack of a standardized reference space for population based studies. Standardized maps are important tools for characterizing anatomic variability across subjects with the goal of separating normal inter-subject variability from abnormal variability associated with disease. In this work, we describe a novel technique for computing flat maps of left atrial anatomy in a standardized space. A flat map of left atrial anatomy is created by casting a single ray through the volume and systematically rotating the camera viewpoint to obtain the entire field of view. The technique is validated by assessing preservation of relative surface areas and distances between the original 3D geometry and the flat map geometry. The proposed methodology is demonstrated on 10 subjects which are subsequently combined to form a probabilistic map of anatomic location for each of the pulmonary vein ostia and the boundary of the left atrial appendage. The probabilistic map demonstrates that the location of the inferior ostia have higher variability than the superior ostia and the variability of the left atrial appendage is similar to the superior pulmonary veins. This technique could also have potential application in mapping electrophysiology data, radio-frequency ablation burns, or treatment planning in cardiac ablation therapy.

  10. Learning to Map the Earth and Planets using a Google Earth - based Multi-student Game

    NASA Astrophysics Data System (ADS)

    De Paor, D. G.; Wild, S. C.; Dordevic, M.

    2011-12-01

    We report on progress in developing an interactive geological and geophysical mapping game employing the Google Earth, Google Moon, and Goole Mars virtual globes. Working in groups of four, students represent themselves on the Google Earth surface by selecting an avatar. One of the group drives to each field stop in a model vehicle using game-like controls. When they arrive at a field stop and get out of their field vehicle, students can control their own avatars' movements independently and can communicate with one another by text message. They are geo-fenced and receive automatic messages if they wander off target. Individual movements are logged and stored in a MySQL database for later analysis. Students collaborate on mapping decisions and submit a report to their instructor through a Javascript interface to the Google Earth API. Unlike real mapping, students are not restricted by geographic access and can engage in comparative mapping on different planets. Using newly developed techniques, they can also explore and map the sub-surface down to the core-mantle boundary. Virtual specimens created with a 3D scanner, Gigapan images of outcrops, and COLLADA models of mantle structures such as subducted lithospheric slabs all contribute to an engaging learning experience.

  11. Robust reconstruction of B1 (+) maps by projection into a spherical functions space.

    PubMed

    Sbrizzi, Alessandro; Hoogduin, Hans; Lagendijk, Jan J; Luijten, Peter; van den Berg, Cornelis A T

    2014-01-01

    Several parallel transmit MRI techniques require knowledge of the transmit radiofrequency field profiles (B1 (+) ). During the past years, various methods have been developed to acquire this information. Often, these methods suffer from long measurement times and produce maps exhibiting regions with poor signal-to-noise ratio and artifacts. In this article, a model-based reconstruction procedure is introduced that improves the robustness of B1 (+) mapping. The missing information from undersampled B1 (+) maps and the regions of poor signal to noise ratio are reconstructed through projection into the space of spherical functions that arise naturally from the solution of the Helmholtz equations in the spherical coordinate system. As a result, B1 (+) data over a limited range of the field of view/volume is sufficient to reconstruct the B1 (+) over the full spatial domain in a fast and robust way. The same model is exploited to filter the noise of the measured maps. Results from simulations and in vivo measurements confirm the validity of the proposed method. A spherical functions model can well approximate the magnetic fields inside the body with few basis terms. Exploiting this compression capability, B1 (+) maps are reconstructed in regions of unknown or corrupted values. Copyright © 2013 Wiley Periodicals, Inc.

  12. Improving fieldwork by using GIS for quantitative exploration, data management and digital mapping

    NASA Astrophysics Data System (ADS)

    Marra, Wouter; Alberti, Koko; van de Grint, Liesbeth; Karssenberg, Derek

    2016-04-01

    Fieldwork is an essential part of teaching geosciences. The essence of a fieldwork is to study natural phenomena in its proper context. Fieldworks dominantly utilize a learning-by-experiencing learning style and are often light on abstract thinking skills. We introduce more of the latter skills to a first-year fieldwork of several weeks by using Geographical Information Systems (GIS). We use simple techniques as the involved students had no prior experience with GIS. In our project, we introduced new tutorials prior to the fieldwork where students explored their research area using aerial photos, satellite images, an elevation model and slope-map using Google Earth and QGIS. The goal of these tutorials was to get acquainted with the area, plan the first steps of the fieldwork, and formulate hypotheses in form of a preliminary map based on quantitative data. During the actual fieldwork, half of the students processed and managed their field data using GIS, used elevation data as additional data source, and made digital geomorphological maps. This was in contrast to the other half of the students that used classic techniques with paper maps. We evaluated the learning benefits by two questionnaires (one before and one after the fieldwork), and a group interview with students that used GIS in the field. Students liked the use of Google Earth and GIS, and many indicate the added value of using quantitative maps. The hypotheses and fieldwork plans of the students were quickly superseded by insights during the fieldwork itself, but making these plans and hypotheses in advance improved the student's ability to perform empirical research. Students were very positive towards the use of GIS for their fieldwork, mainly because they experienced it as a modern and relevant technique for research and the labour market. Tech-savvy students were extra motivated and explored additional methods. There were some minor technical difficulties with using GIS during the fieldwork, but these can be solved by focussing the preparatory tutorials on what to expect during the fieldwork. We did not observe a significant difference in the quality of the products created by students between both groups since both digital and classic maps show a large range of aesthetic and scientific quality. To conclude, we had a positive experience with our first attempt to add GIS components to a classic fieldwork. The main benefit is that students use quantitative data which provides a different view on the fieldwork area and triggers abstract thinking. Future plans include using the student's field data in a web-gis app to allow easy remote supervision and using digital maps in the field.

  13. Digital mapping in extreme and remote environments

    NASA Astrophysics Data System (ADS)

    Andersson, Joel; Bauer, Tobias; Sarlus, Zimer; Zainy, Maher; Brethes, Anais

    2017-04-01

    During the last few years, Luleå University of Technology has performed a series of research projects in remote areas with extreme climatic conditions using digital mapping technologies. The majority of past and ongoing research projects focus on the arctic regions of the Fennoscandian Shield and Greenland but also on the Zagros fold-and-thrust belt in northern Iraq. Currently, we use the Midland Valley application FieldMove on iPad mini devices with ruggedized casings. As all projects have a strong focus on geological field work, harsh climatic conditions are a challenge not only for the geologists but also for the digital mapping hardware. In the arctic regions especially cold temperatures affect battery lifetime and performance of the screens. But also high temperatures are restricting digital mapping. From experience, a typical temperature range where digital mapping, using iPad tablets, is possible lies between -20 and +40 degrees. Furthermore, the remote character of field areas complicates access but also availability of electricity. By a combination of robust solar chargers and ruggedized batteries we are able to work entirely autarkical. Additionally, we are currently installing a drone system that allows us to map outcrops normally inaccessible because of safety reasons or time deficiency. The produced data will subsequently be taken into our Virtual Reality studio for interpretation and processing. There we will be able to work also with high resolution DEM data from Lidar scanning allowing us to interpret structural features such as post-glacial faults in areas that are otherwise only accessible by helicopter. By combining digital field mapping with drone technique and a Virtual Reality studio we are able to work in hardly accessible areas, improve safety during field work and increase efficiency substantially.

  14. Application of full field optical studies for pulsatile flow in a carotid artery phantom

    PubMed Central

    Nemati, M.; Loozen, G. B.; van der Wekken, N.; van de Belt, G.; Urbach, H. P.; Bhattacharya, N.; Kenjeres, S.

    2015-01-01

    A preliminary comparative measurement between particle imaging velocimetry (PIV) and laser speckle contrast analysis (LASCA) to study pulsatile flow using ventricular assist device in a patient-specific carotid artery phantom is reported. These full-field optical techniques have both been used to study flow and extract complementary parameters. We use the high spatial resolution of PIV to generate a full velocity map of the flow field and the high temporal resolution of LASCA to extract the detailed frequency spectrum of the fluid pulses. Using this combination of techniques a complete study of complex pulsatile flow in an intricate flow network can be studied. PMID:26504652

  15. Normal and Differential SAR Interferometry

    DTIC Science & Technology

    2005-02-01

    incorporating the use of a rough DEM. [ Adragna 1995]. The same technique is also used for flat Earth removal, and for differential interferometry (Cap.5...and F. Adragna , 1994. Radar Interferometric Mapping of Deformation in the Year After the Landers Earthquake, Nature, Vol. 369, pp. 227-230 Massonnet...D., M. Rossi, C. Carmona, F. Adragna , G. Peltzer, K. Feigi, and T. Rabaute, 1993. The Displacement Field of the Landers Earthquake Mapped by Radar

  16. A site-specific slurry application technique on grassland and on arable crops.

    PubMed

    Schellberg, Jürgen; Lock, Reiner

    2009-01-01

    There is evidence that unequal slurry application on agricultural land contributes to N losses to the environment. Heterogeneity within fields demands adequate response by means of variable rate application. A technique is presented which allows site-specific application of slurry on grassland and arable land based on pre-defined application maps. The system contains a valve controlling flow rate by an on-board PC. During operation, flow rate is measured and scaled against set point values given in the application map together with the geographic position of the site. The systems worked sufficiently precise at a flow rate between 0 and 25 l s(-1) and an offset of actual slurry flow from set point values between 0.33 and 0.67 l s(-1). Long-term experimentation is required to test if site-specific application de facto reduces N surplus within fields and so significantly contributes to the unloading of N in agricultural areas.

  17. Tomographic phase microscopy and its biological applications

    NASA Astrophysics Data System (ADS)

    Choi, Wonshik

    2012-12-01

    Conventional interferometric microscopy techniques such as digital holographic microscopy and quantitative phase microscopy are often classified as 3D imaging techniques because a recorded complex field image can be numerically propagated to a different depth. In a strict sense, however, a single complex field image contains only 2D information on a specimen. The measured 2D image is only a subset of the 3D structure. For the 3D mapping of an object, multiple independent 2D images are to be taken, for example at multiple incident angles or wavelengths, and then combined by the so-called optical diffraction tomography (ODT). In this Letter, tomographic phase microscopy (TPM) is reviewed that experimentally realizes the concept of the ODT for the 3D mapping of biological cells in their native state, and some of its interesting biological and biomedical applications are introduced. [Figure not available: see fulltext.

  18. Mapping of the corals around Hendorabi Island (Persian Gulf), using WorldView-2 standard imagery coupled with field observations.

    PubMed

    Kabiri, Keivan; Rezai, Hamid; Moradi, Masoud

    2018-04-01

    High spatial resolution WorldView-2 (WV2) satellite imagery coupled with field observations have been utilized for mapping the coral reefs around Hendorabi Island in the northern Persian Gulf. In doing so, three standard multispectral bands (red, green, and blue) were selected to produce a classified map for benthic habitats. The in-situ observations were included photo-transects taken by snorkeling in water surface and manta tow technique. The satellite image has been classified using support vector machine (SVM) classifier by considering the information obtained from field measurements as both training and control points data. The results obtained from manta tow demonstrated that the mean total live hard coral coverage was 29.04% ± 2.44% around the island. Massive corals poritiids (20.70%) and branching corals acroporiids (20.33%) showed higher live coral coverage compared to other corals. Moreover, the map produced from satellite image illustrated the distribution of habitats with 78.1% of overall accuracy. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. BoreholeAR: A mobile tablet application for effective borehole database visualization using an augmented reality technology

    NASA Astrophysics Data System (ADS)

    Lee, Sangho; Suh, Jangwon; Park, Hyeong-Dong

    2015-03-01

    Boring logs are widely used in geological field studies since the data describes various attributes of underground and surface environments. However, it is difficult to manage multiple boring logs in the field as the conventional management and visualization methods are not suitable for integrating and combining large data sets. We developed an iPad application to enable its user to search the boring log rapidly and visualize them using the augmented reality (AR) technique. For the development of the application, a standard borehole database appropriate for a mobile-based borehole database management system was designed. The application consists of three modules: an AR module, a map module, and a database module. The AR module superimposes borehole data on camera imagery as viewed by the user and provides intuitive visualization of borehole locations. The map module shows the locations of corresponding borehole data on a 2D map with additional map layers. The database module provides data management functions for large borehole databases for other modules. Field survey was also carried out using more than 100,000 borehole data.

  20. Mapping the Landscape of Domain-Wall Pinning in Ferromagnetic Films Using Differential Magneto-Optical Microscopy

    NASA Astrophysics Data System (ADS)

    Badea, Robert; Berezovsky, Jesse

    2016-06-01

    The propagation of domain walls in a ferromagnetic film is largely determined by domain-wall pinning at defects in the material. In this article, we map the effective potential landscape for domain-wall pinning in permalloy films by raster scanning a single ferromagnetic vortex and monitoring the hysteretic vortex displacement vs applied magnetic field. The measurement is carried out using a differential magneto-optical microscopy technique which yields spatial sensitivity of approximately 10 nm. We present a simple algorithm for extracting an effective pinning potential from the measurement of vortex displacement vs applied field. The resulting maps of the pinning potential reveal distinct types of pinning sites, which we attribute to quasi-zero-, one-, and two-dimensional defects in the permalloy film.

  1. Digital mapping techniques '06 - Workshop proceedings

    USGS Publications Warehouse

    Soller, David R.

    2007-01-01

    The Digital Mapping Techniques `06 (DMT`06) workshop was attended by more than 110 technical experts from 51 agencies, universities, and private companies, including representatives from 27 state geological surveys (see Appendix A of these Proceedings). This workshop was similar in nature to the previous nine meetings, which were held in Lawrence, Kansas (Soller, 1997), Champaign, Illinois (Soller, 1998), Madison, Wisconsin (Soller, 1999), Lexington, Kentucky (Soller, 2000), Tuscaloosa, Alabama (Soller, 2001), Salt Lake City, Utah (Soller, 2002), Millersville, Pennsylvania (Soller, 2003), Portland, Oregon (Soller, 2004), and Baton Rouge, Louisiana (Soller, 2005). This year?s meeting was hosted by the Ohio Geological Survey, from June 11-14, 2006, on the Ohio State University campus in Columbus, Ohio. As in the previous meetings, the objective was to foster informal discussion and exchange of technical information. It is with great pleasure that I note that the objective was successfully met, as attendees continued to share and exchange knowledge and information, and renew friendships and collegial work begun at past DMT workshops.Each DMT workshop has been coordinated by the Association of American State Geologists (AASG) and U.S. Geological Survey (USGS) Data Capture Working Group, the latter of which was formed in August 1996 to support the AASG and the USGS in their effort to build a National Geologic Map Database (see Soller, this volume, and http://ngmdb.usgs.gov/info/standards/datacapt/). The Working Group was formed because increased production efficiencies, standardization, and quality of digital map products were needed for the database - and for the State and Federal geological surveys - to provide more high-quality digital maps to the public.At the 2006 meeting, oral and poster presentations and special discussion sessions emphasized: 1) methods for creating and publishing map products (here, "publishing" includes Web-based release); 2) field data capture software and techniques, including the use of LIDAR; 3) digital cartographic techniques; 4) migration of digital maps into ArcGIS Geodatabase format; 5) analytical GIS techniques; and 6) continued development of the National Geologic Map Database.

  2. Easy monitoring of velocity fields in microfluidic devices using spatiotemporal image correlation spectroscopy.

    PubMed

    Travagliati, Marco; Girardo, Salvatore; Pisignano, Dario; Beltram, Fabio; Cecchini, Marco

    2013-09-03

    Spatiotemporal image correlation spectroscopy (STICS) is a simple and powerful technique, well established as a tool to probe protein dynamics in cells. Recently, its potential as a tool to map velocity fields in lab-on-a-chip systems was discussed. However, the lack of studies on its performance has prevented its use for microfluidics applications. Here, we systematically and quantitatively explore STICS microvelocimetry in microfluidic devices. We exploit a simple experimental setup, based on a standard bright-field inverted microscope (no fluorescence required) and a high-fps camera, and apply STICS to map liquid flow in polydimethylsiloxane (PDMS) microchannels. Our data demonstrates optimal 2D velocimetry up to 10 mm/s flow and spatial resolution down to 5 μm.

  3. Landsat for practical forest type mapping - A test case

    NASA Technical Reports Server (NTRS)

    Bryant, E.; Dodge, A. G., Jr.; Warren, S. D.

    1980-01-01

    Computer classified Landsat maps are compared with a recent conventional inventory of forest lands in northern Maine. Over the 196,000 hectare area mapped, estimates of the areas of softwood, mixed wood and hardwood forest obtained by a supervised classification of the Landsat data and a standard inventory based on aerial photointerpretation, probability proportional to prediction, field sampling and a standard forest measurement program are found to agree to within 5%. The cost of the Landsat maps is estimated to be $0.065/hectare. It is concluded that satellite techniques are worth developing for forest inventories, although they are not yet refined enough to be incorporated into current practical inventories.

  4. Integrating remote sensing and terrain data in forest fire modeling

    NASA Astrophysics Data System (ADS)

    Medler, Michael Johns

    Forest fire policies are changing. Managers now face conflicting imperatives to re-establish pre-suppression fire regimes, while simultaneously preventing resource destruction. They must, therefore, understand the spatial patterns of fires. Geographers can facilitate this understanding by developing new techniques for mapping fire behavior. This dissertation develops such techniques for mapping recent fires and using these maps to calibrate models of potential fire hazards. In so doing, it features techniques that strive to address the inherent complexity of modeling the combinations of variables found in most ecological systems. Image processing techniques were used to stratify the elements of terrain, slope, elevation, and aspect. These stratification images were used to assure sample placement considered the role of terrain in fire behavior. Examination of multiple stratification images indicated samples were placed representatively across a controlled range of scales. The incorporation of terrain data also improved preliminary fire hazard classification accuracy by 40%, compared with remotely sensed data alone. A Kauth-Thomas transformation (KT) of pre-fire and post-fire Thematic Mapper (TM) remotely sensed data produced brightness, greenness, and wetness images. Image subtraction indicated fire induced change in brightness, greenness, and wetness. Field data guided a fuzzy classification of these change images. Because fuzzy classification can characterize a continuum of a phenomena where discrete classification may produce artificial borders, fuzzy classification was found to offer a range of fire severity information unavailable with discrete classification. These mapped fire patterns were used to calibrate a model of fire hazards for the entire mountain range. Pre-fire TM, and a digital elevation model produced a set of co-registered images. Training statistics were developed from 30 polygons associated with the previously mapped fire severity. Fuzzy classifications of potential burn patterns were produced from these images. Observed field data values were displayed over the hazard imagery to indicate the effectiveness of the model. Areas that burned without suppression during maximum fire severity are predicted best. Areas with widely spaced trees and grassy understory appear to be misrepresented, perhaps as a consequence of inaccuracies in the initial fire mapping.

  5. Topsoil moisture mapping using geostatistical techniques under different Mediterranean climatic conditions.

    PubMed

    Martínez-Murillo, J F; Hueso-González, P; Ruiz-Sinoga, J D

    2017-10-01

    Soil mapping has been considered as an important factor in the widening of Soil Science and giving response to many different environmental questions. Geostatistical techniques, through kriging and co-kriging techniques, have made possible to improve the understanding of eco-geomorphologic variables, e.g., soil moisture. This study is focused on mapping of topsoil moisture using geostatistical techniques under different Mediterranean climatic conditions (humid, dry and semiarid) in three small watersheds and considering topography and soil properties as key factors. A Digital Elevation Model (DEM) with a resolution of 1×1m was derived from a topographical survey as well as soils were sampled to analyzed soil properties controlling topsoil moisture, which was measured during 4-years. Afterwards, some topography attributes were derived from the DEM, the soil properties analyzed in laboratory, and the topsoil moisture was modeled for the entire watersheds applying three geostatistical techniques: i) ordinary kriging; ii) co-kriging considering as co-variate topography attributes; and iii) co-kriging ta considering as co-variates topography attributes and gravel content. The results indicated topsoil moisture was more accurately mapped in the dry and semiarid watersheds when co-kriging procedure was performed. The study is a contribution to improve the efficiency and accuracy of studies about the Mediterranean eco-geomorphologic system and soil hydrology in field conditions. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Monitoring land cover changes by remote sensing in north west Egypt

    NASA Astrophysics Data System (ADS)

    Richards, Timothy Steven

    The Mediterratiean coastal strip of Egypt is a semi-arid environment which supports a variety of agricultural practices ranging from irrigated sedentary agriculture to semi-nomadic pastoralism. The sedentarisation of the nomadic Bedouin coupled with an increase in population of both people and livestock and a decrease in the extent of the rangelands, has resulted in severe pressure being exerted upon the environment. Satellite remote sensing of vegetation offers the potential to aid regional management by complementing conventional techniques of vegetation mapping and monitoring. This thesis examines the different techniques available for vegetation mapping using visible and near infrared spectral wave bands. The different techniques available for vegetation mapping using remotely sensed data are reviewed and discussed with reference to semi-arid environments. The underlying similarity of many of the techniques is emphasised and their individual merits discussed. The spectral feature-space of Landsat data of two representative study areas in northern Egypt is explored and examined using graphical techniques and principal components analysis. Hand held radiometric field data are also presented for individual soil types within the region. It is proposed that by using reference data for individual soil types, improved estimates of vegetation cover can be ascertained. A number of radiometric corrections are applied to the digital Landsat data in order to convert the arbitrary digital values of the different spectral bands into physical values of reflectance. The effect of this standardization on the principal components is examined. The stratified approach to vegetation mapping which was explored using the field data is applied in turn to the digital Landsat images. Whilst the stratified approach was not found to offer significant advantages over the non-stratified approach in this case, the analysis does serve to provide an accurate datum against which to measure vegetation. In conclusion a satellite based system for operational vegetation monitoring is proposed.

  7. Markedly divergent estimates of Amazon forest carbon density from ground plots and satellites.

    PubMed

    Mitchard, Edward T A; Feldpausch, Ted R; Brienen, Roel J W; Lopez-Gonzalez, Gabriela; Monteagudo, Abel; Baker, Timothy R; Lewis, Simon L; Lloyd, Jon; Quesada, Carlos A; Gloor, Manuel; Ter Steege, Hans; Meir, Patrick; Alvarez, Esteban; Araujo-Murakami, Alejandro; Aragão, Luiz E O C; Arroyo, Luzmila; Aymard, Gerardo; Banki, Olaf; Bonal, Damien; Brown, Sandra; Brown, Foster I; Cerón, Carlos E; Chama Moscoso, Victor; Chave, Jerome; Comiskey, James A; Cornejo, Fernando; Corrales Medina, Massiel; Da Costa, Lola; Costa, Flavia R C; Di Fiore, Anthony; Domingues, Tomas F; Erwin, Terry L; Frederickson, Todd; Higuchi, Niro; Honorio Coronado, Euridice N; Killeen, Tim J; Laurance, William F; Levis, Carolina; Magnusson, William E; Marimon, Beatriz S; Marimon Junior, Ben Hur; Mendoza Polo, Irina; Mishra, Piyush; Nascimento, Marcelo T; Neill, David; Núñez Vargas, Mario P; Palacios, Walter A; Parada, Alexander; Pardo Molina, Guido; Peña-Claros, Marielos; Pitman, Nigel; Peres, Carlos A; Poorter, Lourens; Prieto, Adriana; Ramirez-Angulo, Hirma; Restrepo Correa, Zorayda; Roopsind, Anand; Roucoux, Katherine H; Rudas, Agustin; Salomão, Rafael P; Schietti, Juliana; Silveira, Marcos; de Souza, Priscila F; Steininger, Marc K; Stropp, Juliana; Terborgh, John; Thomas, Raquel; Toledo, Marisol; Torres-Lezama, Armando; van Andel, Tinde R; van der Heijden, Geertje M F; Vieira, Ima C G; Vieira, Simone; Vilanova-Torre, Emilio; Vos, Vincent A; Wang, Ophelia; Zartman, Charles E; Malhi, Yadvinder; Phillips, Oliver L

    2014-08-01

    The accurate mapping of forest carbon stocks is essential for understanding the global carbon cycle, for assessing emissions from deforestation, and for rational land-use planning. Remote sensing (RS) is currently the key tool for this purpose, but RS does not estimate vegetation biomass directly, and thus may miss significant spatial variations in forest structure. We test the stated accuracy of pantropical carbon maps using a large independent field dataset. Tropical forests of the Amazon basin. The permanent archive of the field plot data can be accessed at: http://dx.doi.org/10.5521/FORESTPLOTS.NET/2014_1. Two recent pantropical RS maps of vegetation carbon are compared to a unique ground-plot dataset, involving tree measurements in 413 large inventory plots located in nine countries. The RS maps were compared directly to field plots, and kriging of the field data was used to allow area-based comparisons. The two RS carbon maps fail to capture the main gradient in Amazon forest carbon detected using 413 ground plots, from the densely wooded tall forests of the north-east, to the light-wooded, shorter forests of the south-west. The differences between plots and RS maps far exceed the uncertainties given in these studies, with whole regions over- or under-estimated by > 25%, whereas regional uncertainties for the maps were reported to be < 5%. Pantropical biomass maps are widely used by governments and by projects aiming to reduce deforestation using carbon offsets, but may have significant regional biases. Carbon-mapping techniques must be revised to account for the known ecological variation in tree wood density and allometry to create maps suitable for carbon accounting. The use of single relationships between tree canopy height and above-ground biomass inevitably yields large, spatially correlated errors. This presents a significant challenge to both the forest conservation and remote sensing communities, because neither wood density nor species assemblages can be reliably mapped from space.

  8. Markedly divergent estimates of Amazon forest carbon density from ground plots and satellites

    PubMed Central

    Mitchard, Edward T A; Feldpausch, Ted R; Brienen, Roel J W; Lopez-Gonzalez, Gabriela; Monteagudo, Abel; Baker, Timothy R; Lewis, Simon L; Lloyd, Jon; Quesada, Carlos A; Gloor, Manuel; ter Steege, Hans; Meir, Patrick; Alvarez, Esteban; Araujo-Murakami, Alejandro; Aragão, Luiz E O C; Arroyo, Luzmila; Aymard, Gerardo; Banki, Olaf; Bonal, Damien; Brown, Sandra; Brown, Foster I; Cerón, Carlos E; Chama Moscoso, Victor; Chave, Jerome; Comiskey, James A; Cornejo, Fernando; Corrales Medina, Massiel; Da Costa, Lola; Costa, Flavia R C; Di Fiore, Anthony; Domingues, Tomas F; Erwin, Terry L; Frederickson, Todd; Higuchi, Niro; Honorio Coronado, Euridice N; Killeen, Tim J; Laurance, William F; Levis, Carolina; Magnusson, William E; Marimon, Beatriz S; Marimon Junior, Ben Hur; Mendoza Polo, Irina; Mishra, Piyush; Nascimento, Marcelo T; Neill, David; Núñez Vargas, Mario P; Palacios, Walter A; Parada, Alexander; Pardo Molina, Guido; Peña-Claros, Marielos; Pitman, Nigel; Peres, Carlos A; Poorter, Lourens; Prieto, Adriana; Ramirez-Angulo, Hirma; Restrepo Correa, Zorayda; Roopsind, Anand; Roucoux, Katherine H; Rudas, Agustin; Salomão, Rafael P; Schietti, Juliana; Silveira, Marcos; de Souza, Priscila F; Steininger, Marc K; Stropp, Juliana; Terborgh, John; Thomas, Raquel; Toledo, Marisol; Torres-Lezama, Armando; van Andel, Tinde R; van der Heijden, Geertje M F; Vieira, Ima C G; Vieira, Simone; Vilanova-Torre, Emilio; Vos, Vincent A; Wang, Ophelia; Zartman, Charles E; Malhi, Yadvinder; Phillips, Oliver L

    2014-01-01

    Aim The accurate mapping of forest carbon stocks is essential for understanding the global carbon cycle, for assessing emissions from deforestation, and for rational land-use planning. Remote sensing (RS) is currently the key tool for this purpose, but RS does not estimate vegetation biomass directly, and thus may miss significant spatial variations in forest structure. We test the stated accuracy of pantropical carbon maps using a large independent field dataset. Location Tropical forests of the Amazon basin. The permanent archive of the field plot data can be accessed at: http://dx.doi.org/10.5521/FORESTPLOTS.NET/2014_1 Methods Two recent pantropical RS maps of vegetation carbon are compared to a unique ground-plot dataset, involving tree measurements in 413 large inventory plots located in nine countries. The RS maps were compared directly to field plots, and kriging of the field data was used to allow area-based comparisons. Results The two RS carbon maps fail to capture the main gradient in Amazon forest carbon detected using 413 ground plots, from the densely wooded tall forests of the north-east, to the light-wooded, shorter forests of the south-west. The differences between plots and RS maps far exceed the uncertainties given in these studies, with whole regions over- or under-estimated by > 25%, whereas regional uncertainties for the maps were reported to be < 5%. Main conclusions Pantropical biomass maps are widely used by governments and by projects aiming to reduce deforestation using carbon offsets, but may have significant regional biases. Carbon-mapping techniques must be revised to account for the known ecological variation in tree wood density and allometry to create maps suitable for carbon accounting. The use of single relationships between tree canopy height and above-ground biomass inevitably yields large, spatially correlated errors. This presents a significant challenge to both the forest conservation and remote sensing communities, because neither wood density nor species assemblages can be reliably mapped from space. PMID:26430387

  9. Monitoring Corals and Submerged Aquatic Vegetation in Western Pacific Using Satellite Remote Sensing Integrated with Field Data

    NASA Astrophysics Data System (ADS)

    Roelfsema, C. M.; Phinn, S. R.; Lyons, M. B.; Kovacs, E.; Saunders, M. I.; Leon, J. X.

    2013-12-01

    Corals and Submerged Aquatic Vegetation (SAV) are typically found in highly dynamic environments where the magnitude and types of physical and biological processes controlling their distribution, diversity and function changes dramatically. Recent advances in the types of satellite image data and the length of their archives that are available globally, coupled with new techniques for extracting environmental information from these data sets has enabled significant advances to be made in our ability to map and monitor coral and SAV environments. Object Based Image Analysis techniques are one of the most significant advances in information extraction techniques for processing images to deliver environmental information at multiple spatial scales. This poster demonstrates OBIA applied to high spatial resolution satellite image data to map and monitor coral and SAV communities across a variety of environments in the Western Pacific that vary in their extent, biological composition, forcing physical factors and location. High spatial resolution satellite imagery (Quickbird, Ikonos and Worldview2) were acquired coincident with field surveys on each reef to collect georeferenced benthic photo transects, over various areas in the Western Pacific. Base line maps were created, from Roviana Lagoon Solomon island (600 km2), Bikini Atoll Marshall Island (800 Km2), Lizard Island, Australia (30 km2) and time series maps for geomorphic and benthic communities were collected for Heron Reef, Australia (24 km2) and Eastern Banks area of Moreton Bay, Australia (200 km2). The satellite image data were corrected for radiometric and atmospheric distortions to at-surface reflectance. Georeferenced benthic photos were acquired by divers or Autonomous Underwater Vehicles, analysed for benthic cover composition, and used for calibration and validation purposes. Hierarchical mapping from: reef/non-reef (1000's - 10000's m); reef type (100's - 1000's m); 'geomorphic zone' (10's - 100's m); to dominant components of benthic cover compositions (1 - 10's m); and individual benthic cover type scale (0.5-5.0's m), was completed using object based segmentation and semi-automated labelling through membership rules. Accuracy assessment of the satellite image based maps and field data sets scales maps produced with 90% maximum accuracy larger scales and less complex maps, versus 40 % at smaller scale and complex maps. The study showed that current data sets and object based analysis are able to reliable map at various scales and level of complexity covering a variety of extent and environments at various times; as a result science and management can use these tools to assess and understand the ecological processes taking place in coral and SAV environments.

  10. Low Altitude AVIRIS Data for Mapping Landform Types on West Ship Island, Mississippi

    NASA Technical Reports Server (NTRS)

    Spruce, Joseph; Otvos, Ervin; Giardino, Marco

    2002-01-01

    A chain of barrier islands provides protection against hurricanes and severe storms along the south and southeastern shores of the United States. Barrier island landform types can be spectrally similar and as small as a few meters across, making highly detailed maps difficult to produce. To determine whether high-resolution airborne hyperspectral imagery could provide detailed maps of barrier island landform types, we used low-altitude hyperspectral and multispectral imagery to map surface environments of West Ship Island, Mississippi. We employed 3.4-meter AVIRIS hyperspectral imagery acquired in July 1999 and 0.5-meter ADAR multispectral data acquired in November 1997. The data were co-registered to digital ortho aerial imagery, and the AVIRIS data was scaled to ground reflectance using ATREM software. Unsupervised classification of AVIRIS and ADAR data proceeded using ISODATA clustering techniques. The resulting landform maps were field-checked and compared to aerial photography and digital elevation maps. Preliminary analyses indicated that the AVIRIS classification mapped more landform types, while the ADAR-based map enabled smaller patches to be identified. Used together, these maps provided a means to assess landform distributions of West Ship Island before and after Hurricane Gorges. Classification accuracy is being addressed through photo-interpretation and field surveys of sample areas selected with stratified random sampling.

  11. Low Altitude AVIRIS Data for Mapping Landform Types on West Ship Island, Mississippi

    NASA Technical Reports Server (NTRS)

    Spruce, Joseph; Otvos, Ervin; Giardino, Marco

    2003-01-01

    A chain of barrier islands provides protection against hurricanes and severe storms along the southern and southeastern shores of the Unites States. Barrier island landform types can be spectrally similar and as small as a few meters across, making highly detailed maps difficult to produce. To determine whether high-resolution airborne hyperspectral imagery could provide detailed maps of barrier island landform types, we used low-altitude hyperspectral and multispectral imagery to map surface environments of West Ship Island, Mississippi. We employed 3.4 meter AVIRIS hyperspectral imagery acquired in July 1999 and 0.5 meter ADAR multispectral data acquired in November 1997. The data were co-registered to digital ortho aerial imagery, and the AVIRIS data was scaled to ground reflectance using ATREM software. Unsupervised classification of AVIRIS and ADAR data proceeded using ISODATA clustering techniques. The resulting landform maps were field-checked and compared to aerial photography and digital elevation maps. Preliminary analyses indicated that the AVIRIS classification mapped more landform types, while the ADAR-based map enabled smaller patches to be identified. Used together, these maps provided a means to assess landform distributions of West Ship Island before and after Hurricane Georges. Classification accuracy is being assessed through photo-interpretation and field surveys of sample areas selected with stratified random sampling.

  12. Lessons in modern digital field geology: Open source software, 3D techniques, and the new world of digital mapping

    NASA Astrophysics Data System (ADS)

    Pavlis, Terry; Hurtado, Jose; Langford, Richard; Serpa, Laura

    2014-05-01

    Although many geologists refuse to admit it, it is time to put paper-based geologic mapping into the historical archives and move to the full potential of digital mapping techniques. For our group, flat map digital geologic mapping is now a routine operation in both research and instruction. Several software options are available, and basic proficiency with the software can be learned in a few hours of instruction and practice. The first practical field GIS software, ArcPad, remains a viable, stable option on Windows-based systems. However, the vendor seems to be moving away from ArcPad in favor of mobile software solutions that are difficult to implement without GIS specialists. Thus, we have pursued a second software option based on the open source program QGIS. Our QGIS system uses the same shapefile-centric data structure as our ArcPad system, including similar pop-up data entry forms and generic graphics for easy data management in the field. The advantage of QGIS is that the same software runs on virtually all common platforms except iOS, although the Android version remains unstable as of this writing. A third software option we are experimenting with for flat map-based field work is Fieldmove, a derivative of the 3D-capable program Move developed by Midland Valley. Our initial experiments with Fieldmove are positive, particularly with the new, inexpensive (<300Euros) Windows tablets. However, the lack of flexibility in data structure makes for cumbersome workflows when trying to interface our existing shapefile-centric data structures to Move. Nonetheless, in spring 2014 we will experiment with full-3D immersion in the field using the full Move software package in combination with ground based LiDAR and photogrammetry. One new workflow suggested by our initial experiments is that field geologists should consider using photogrammetry software to capture 3D visualizations of key outcrops. This process is now straightforward in several software packages, and it affords a previously unheard of potential for communicating the complexity of key exposures. For example, in studies of metamorphic structures we often search for days to find "Rosetta Stone" outcrops that display key geometric relationships. While conventional photographs rarely can capture the essence of the field exposure, capturing a true 3D representation of the exposure with multiple photos from many orientations can solve this communication problem. As spatial databases evolve these 3D models should be readily importable into the database.

  13. [CT pulmonary density mapping: surgical utility].

    PubMed

    Gavezzoli, D; Caputo, P; Manelli, A; Zuccon, W; Faccini, M; Bonandrini, L

    2002-04-01

    The present paper considers the technique of CT scan maps of pulmonary isodensity, examining lung density differences as a function of the type of disease and considering their significance for the purposes of refined, useful diagnosis in a surgical context. METHODS. The method is used to examine 3 groups of subjects selected on a clinical/anamnestic basis and a further group already admitted for surgery. For each patient we obtained 2 thoracic density scans during the phase of maximum inspiration and expiration. On each scan we constructed 50 isodensity maps, the equivalent of more than 2500 measurements: the preliminary standard was represented by 100 wide windows to produce total "illumination" of the pulmonary fields. The isodensity windows were then codified differently. Subsequently, the density scans were analysed with the technique of scalar decomposition. The CT scan maps of lung isodensity proved useful for certain lung diseases in which early diagnosis, topographic extent of the pathology and the refined definition of the pathological picture provide important solutions as regards the indication and planning of surgical treatment and for the evaluation of the operative risk and prognosis. We consider that the technique is rapidly performed, not complex and inexpensive and is able to supply detailed information on the lung parenchyma such as to be used not only as a routine technique but also in emergencies.

  14. Assessing Methods for Mapping 2D Field Concentrations of CO2 Over Large Spatial Areas for Monitoring Time Varying Fluctuations

    NASA Astrophysics Data System (ADS)

    Zaccheo, T. S.; Pernini, T.; Botos, C.; Dobler, J. T.; Blume, N.; Braun, M.; Levine, Z. H.; Pintar, A. L.

    2014-12-01

    This work presents a methodology for constructing 2D estimates of CO2 field concentrations from integrated open path measurements of CO2 concentrations. It provides a description of the methodology, an assessment based on simulated data and results from preliminary field trials. The Greenhouse gas Laser Imaging Tomography Experiment (GreenLITE) system, currently under development by Exelis and AER, consists of a set of laser-based transceivers and a number of retro-reflectors coupled with a cloud-based compute environment to enable real-time monitoring of integrated CO2 path concentrations, and provides 2D maps of estimated concentrations over an extended area of interest. The GreenLITE transceiver-reflector pairs provide laser absorption spectroscopy (LAS) measurements of differential absorption due to CO2 along intersecting chords within the field of interest. These differential absorption values for the intersecting chords of horizontal path are not only used to construct estimated values of integrated concentration, but also employed in an optimal estimation technique to derive 2D maps of underlying concentration fields. This optimal estimation technique combines these sparse data with in situ measurements of wind speed/direction and an analytic plume model to provide tomographic-like reconstruction of the field of interest. This work provides an assessment of this reconstruction method and preliminary results from the Fall 2014 testing at the Zero Emissions Research and Technology (ZERT) site in Bozeman, Montana. This work is funded in part under the GreenLITE program developed under a cooperative agreement between Exelis and the National Energy and Technology Laboratory (NETL) under the Department of Energy (DOE), contract # DE-FE0012574. Atmospheric and Environmental Research, Inc. is a major partner in this development.

  15. Environmental information acquisition and maintenance techniques: reference guide. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Riggins, R.E.; Young, V.T.; Goran, W.D.

    1980-08-01

    This report provides a guide to techniques for collecting, using and maintaining data about each of the 13 environmental technical specialties in the Environmental Impact Computer System (EICS). The technical specialties are: (1) ecology, (2) environmental health, (3) air, (4) surface water, (5) ground water, (6) sociology, (7) economics, (8) earth science, (9) land use, (10) noise, (11) transportation, (12) aesthetics, and (13) energy and resource conservation. Acquisition techniques are classified by the following general categories: (1) secondary data, (2) remote sensing, (3) mathematical modeling, (4) field work, (5) mapping/maps and (6) expert opinion. A matrix identifies the most appropriatemore » techniques for collecting information on the EICS technical specialties. After selecting a method, the user may read an abstract of the report explaining that technique, and may also wish to obtain the original document for detailed information about applying the technique. Finally, this report offers guidelines on storing environmental information for future use, and on presenting that information effectively in environmental documents.« less

  16. Integrated terrain mapping with digital Landsat images in Queensland, Australia

    USGS Publications Warehouse

    Robinove, Charles Joseph

    1979-01-01

    Mapping with Landsat images usually is done by selecting single types of features, such as soils, vegetation, or rocks, and creating visually interpreted or digitally classified maps of each feature. Individual maps can then be overlaid on or combined with other maps to characterize the terrain. Integrated terrain mapping combines several terrain features into each map unit which, in many cases, is more directly related to uses of the land and to methods of land management than the single features alone. Terrain brightness, as measured by the multispectral scanners in Landsat 1 and 2, represents an integration of reflectance from the terrain features within the scanner's instantaneous field of view and is therefore more correlatable with integrated terrain units than with differentiated ones, such as rocks, soils, and vegetation. A test of the feasibilty of the technique of mapping integrated terrain units was conducted in a part of southwestern Queensland, Australia, in cooperation with scientists of the Queensland Department of Primary Industries. The primary purpose was to test the use of digital classification techniques to create a 'land systems map' usable for grazing land management. A recently published map of 'land systems' in the area (made by aerial photograph interpretation and ground surveys), which are integrated terrain units composed of vegetation, soil, topography, and geomorphic features, was used as a basis for comparison with digitally classified Landsat multispectral images. The land systems, in turn, each have a specific grazing capacity for cattle (expressed in beasts per km 2 ) which is estimated following analysis of both research results and property carrying capacities. Landsat images, in computer-compatible tape form, were first contrast-stretched to increase their visual interpretability, and digitally classified by the parallelepiped method into distinct spectral classes to determine their correspondence to the land systems classes and to areally smaller, but readily recognizable, 'land units.' Many land systems appeared as distinct spectral classes or as acceptably homogeneous combinations of several spectral classes. The digitally classified map corresponded to the general geographic patterns of many of the land systems. Statistical correlation of the digitally classified map and the published map was not possible because the published map showed only land systems whereas the digitally classified map showed some land units as well as systems. The general correspondence of spectral classes to the integrated terrain units means that the digital mapping of the units may precede fieldwork and act as a guide to field sampling and detailed terrain unit description as well as measuring of the location, area, and extent of each unit. Extension of the Landsat mapping and classification technique to other arid and semi-arid regions of the world may be feasible.

  17. The Pre-Major in Astronomy Program at the University of Washington: Increasing Diversity Through Research Experiences and Mentoring Since 2005

    NASA Astrophysics Data System (ADS)

    Rosenfield, Philip

    2013-01-01

    Graduate students in the astronomy department at the University of Washington began the Pre-Major in Astronomy Program (Pre-MAP) after recognizing that underrepresented students in STEM fields are not well retained after their transition from high school. Pre-MAP is a research and mentoring program that begins with a keystone seminar. First year students enroll in the Pre-MAP seminar to learn astronomical research techniques that they apply to research projects conducted in small groups. Students also receive one-on-one mentoring and peer support for the duration of the academic year and beyond. They are incorporated early into the department by attending Astronomy Department events and Pre-MAP field trips. Successful Pre-MAP students have declared astronomy and physics majors, expanded their research projects beyond the fall quarter, presented posters at the UW Undergraduate Research Symposium, and received research fellowships and summer internships. In this talk, we will discuss how we identified the issues that Pre-MAP was designed to address, what we've learned after six years of Pre-MAP, and share statistical results from a long-term quantitative comparison evaluation.

  18. New approach to estimating variability in visual field data using an image processing technique.

    PubMed Central

    Crabb, D P; Edgar, D F; Fitzke, F W; McNaught, A I; Wynn, H P

    1995-01-01

    AIMS--A new framework for evaluating pointwise sensitivity variation in computerised visual field data is demonstrated. METHODS--A measure of local spatial variability (LSV) is generated using an image processing technique. Fifty five eyes from a sample of normal and glaucomatous subjects, examined on the Humphrey field analyser (HFA), were used to illustrate the method. RESULTS--Significant correlation between LSV and conventional estimates--namely, HFA pattern standard deviation and short term fluctuation, were found. CONCLUSION--LSV is not dependent on normals' reference data or repeated threshold determinations, thus potentially reducing test time. Also, the illustrated pointwise maps of LSV could provide a method for identifying areas of fluctuation commonly found in early glaucomatous field loss. PMID:7703196

  19. Simultaneous topography and tomography of latent fingerprints using full-field swept-source optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Dubey, Satish Kumar; Singh Mehta, Dalip; Anand, Arun; Shakher, Chandra

    2008-01-01

    We demonstrate simultaneous topography and tomography of latent fingerprints using full-field swept-source optical coherence tomography (OCT). The swept-source OCT system comprises a superluminescent diode (SLD) as broad-band light source, an acousto-optic tunable filter (AOTF) as frequency tuning device, and a compact, nearly common-path interferometer. Both the amplitude and the phase map of the interference fringe signal are reconstructed. Optical sectioning of the latent fingerprint sample is obtained by selective Fourier filtering and the topography is retrieved from the phase map. Interferometry, selective filtering, low coherence and hence better resolution are some of the advantages of the proposed system over the conventional fingerprint detection techniques. The present technique is non-invasive in nature and does not require any physical or chemical processing. Therefore, the quality of the sample does not alter and hence the same fingerprint can be used for other types of forensic test. Exploitation of low-coherence interferometry for fingerprint detection itself provides an edge over other existing techniques as fingerprints can even be lifted from low-reflecting surfaces. The proposed system is very economical and compact.

  20. Detection, Mapping, and Quantification of Single Walled Carbon Nanotubes in Histological Specimens with Photoacoustic Microscopy

    PubMed Central

    Mikos, Antonios G.; Jansen, John A.; Shroyer, Kenneth R.; Wang, Lihong V.; Sitharaman, Balaji

    2012-01-01

    Aims In the present study, the efficacy of multi-scale photoacoustic microscopy (PAM) was investigated to detect, map, and quantify trace amounts [nanograms (ng) to micrograms (µg)] of SWCNTs in a variety of histological tissue specimens consisting of cancer and benign tissue biopsies (histological specimens from implanted tissue engineering scaffolds). Materials and Methods Optical-resolution (OR) and acoustic-resolution (AR) - Photoacoustic microscopy (PAM) was employed to detect, map and quantify the SWCNTs in a variety of tissue histological specimens and compared with other optical techniques (bright-field optical microscopy, Raman microscopy, near infrared (NIR) fluorescence microscopy). Results Both optical-resolution and acoustic-resolution PAM, allow the detection and quantification of SWCNTs in histological specimens with scalable spatial resolution and depth penetration. The noise-equivalent detection sensitivity to SWCNTs in the specimens was calculated to be as low as ∼7 pg. Image processing analysis further allowed the mapping, distribution, and quantification of the SWCNTs in the histological sections. Conclusions The results demonstrate the potential of PAM as a promising imaging technique to detect, map, and quantify SWCNTs in histological specimens, and could complement the capabilities of current optical and electron microscopy techniques in the analysis of histological specimens containing SWCNTs. PMID:22496892

  1. An investigation of MAGSAT and complementary data emphasizing precambrian shields and adjacent areas of West Africa and South America

    NASA Technical Reports Server (NTRS)

    Hastings, D. A. (Principal Investigator)

    1981-01-01

    Several possible causes for the east-west striping of the MAGSAT anomaly maps are listed and discussed including: (1) the inadequacy of the field model used for core-crustal separation of geomagnetic anomalies; (2) external field noise remaining in the available maps; (3) east-west trends of crustal uplift and depression; (4) east-west trends to convection patterns in the mantle; (5) bands of crustal materials of similar metamorphic grade; (6) variations in the depth of the Curie isotherm; and (7) the data processing techniques used to overcome the absence of tie lines and orbital path of MAGSAT.

  2. Mapping the electromagnetic field confinement in the gap of germanium nanoantennas with plasma wavelength of 4.5 micrometers

    NASA Astrophysics Data System (ADS)

    Calandrini, Eugenio; Venanzi, Tommaso; Appugliese, Felice; Badioli, Michela; Giliberti, Valeria; Baldassarre, Leonetta; Biagioni, Paolo; De Angelis, Francesco; Klesse, Wolfgang M.; Scappucci, Giordano; Ortolani, Michele

    2016-09-01

    We study plasmonic nanoantennas for molecular sensing in the mid-infrared made of heavily doped germanium, epitaxially grown with a bottom-up doping process and featuring free carrier density in excess of 1020 cm-3. The dielectric function of the 250 nm thick germanium film is determined, and bow-tie antennas are designed, fabricated, and embedded in a polymer. By using a near-field photoexpansion mapping technique at λ = 5.8 μm, we demonstrate the existence in the antenna gap of an electromagnetic energy density hotspot of diameter below 100 nm and confinement volume 105 times smaller than λ3.

  3. Assessment of myocardial fibrosis with T1 mapping MRI.

    PubMed

    Everett, R J; Stirrat, C G; Semple, S I R; Newby, D E; Dweck, M R; Mirsadraee, S

    2016-08-01

    Myocardial fibrosis can arise from a range of pathological processes and its presence correlates with adverse clinical outcomes. Cardiac magnetic resonance (CMR) can provide a non-invasive assessment of cardiac structure, function, and tissue characteristics, which includes late gadolinium enhancement (LGE) techniques to identify focal irreversible replacement fibrosis with a high degree of accuracy and reproducibility. Importantly the presence of LGE is consistently associated with adverse outcomes in a range of common cardiac conditions; however, LGE techniques are qualitative and unable to detect diffuse myocardial fibrosis, which is an earlier form of fibrosis preceding replacement fibrosis that may be reversible. Novel T1 mapping techniques allow quantitative CMR assessment of diffuse myocardial fibrosis with the two most common measures being native T1 and extracellular volume (ECV) fraction. Native T1 differentiates normal from infarcted myocardium, is abnormal in hypertrophic cardiomyopathy, and may be particularly useful in the diagnosis of Anderson-Fabry disease and amyloidosis. ECV is a surrogate measure of the extracellular space and is equivalent to the myocardial volume of distribution of the gadolinium-based contrast medium. It is reproducible and correlates well with fibrosis on histology. ECV is abnormal in patients with cardiac failure and aortic stenosis, and is associated with functional impairment in these groups. T1 mapping techniques promise to allow earlier detection of disease, monitor disease progression, and inform prognosis; however, limitations remain. In particular, reference ranges are lacking for T1 mapping values as these are influenced by specific CMR techniques and magnetic field strength. In addition, there is significant overlap between T1 mapping values in healthy controls and most disease states, particularly using native T1, limiting the clinical application of these techniques at present. Copyright © 2016 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.

  4. Citizen-Scientist Digitization of a Complex Geologic Map of the McDowell Mountains (Scottsdale, Arizona).

    NASA Astrophysics Data System (ADS)

    Gruber, D.; Skotnicki, S.; Gootee, B.

    2016-12-01

    The work of citizen scientists has become very important to researchers doing field work and internet-based projects but has not been widely utilized in digital mapping. The McDowell Mountains - located in Scottsdale, Arizona, at the edge of the basin-and-range province and protected as part of the McDowell Sonoran Preserve - are geologically complex. Until recently, no comprehensive geologic survey of the entire range had been done. Over the last 9 years geologist Steven Skotnicki spent 2000 hours mapping the complex geology of the range. His work, born of personal interest and partially supported by the McDowell Sonoran Conservancy, resulted in highly detailed hand-drawn survey maps. Dr. Skotnicki's work provides important new information and raises interesting research questions about the geology of this range. Citizen scientists of the McDowell Sonoran Conservancy Field Institute digitized Dr. Skotnicki's maps. A team of 10 volunteers, trained in ArcMap digitization techniques and led by volunteer project leader Daniel Gruber, performed the digitization work. Technical oversight of mapping using ArcMap, including provision of USGS-based mapping toolbars, was provided by Arizona Geological Survey (AZGS) research geologist Brian Gootee. The map digitization process identified and helped resolve a number of mapping questions. The citizen-scientist team spent 900 hours on training, digitization, quality checking, and project coordination with support and review by Skotnicki and Gootee. The resulting digital map has approximately 3000 polygons, 3000 points, and 86 map units with complete metadata and unit descriptions. The finished map is available online through AZGS and can be accessed in the field on mobile devices. User location is shown on the map and metadata can be viewed with a tap. The citizen scientist map digitization team has made this important geologic information available to the public and accessible to other researchers quickly and efficiently.

  5. Efficient, adaptive estimation of two-dimensional firing rate surfaces via Gaussian process methods.

    PubMed

    Rad, Kamiar Rahnama; Paninski, Liam

    2010-01-01

    Estimating two-dimensional firing rate maps is a common problem, arising in a number of contexts: the estimation of place fields in hippocampus, the analysis of temporally nonstationary tuning curves in sensory and motor areas, the estimation of firing rates following spike-triggered covariance analyses, etc. Here we introduce methods based on Gaussian process nonparametric Bayesian techniques for estimating these two-dimensional rate maps. These techniques offer a number of advantages: the estimates may be computed efficiently, come equipped with natural errorbars, adapt their smoothness automatically to the local density and informativeness of the observed data, and permit direct fitting of the model hyperparameters (e.g., the prior smoothness of the rate map) via maximum marginal likelihood. We illustrate the method's flexibility and performance on a variety of simulated and real data.

  6. The monophasic action potential upstroke: a means of characterizing local conduction.

    PubMed

    Levine, J H; Moore, E N; Kadish, A H; Guarnieri, T; Spear, J F

    1986-11-01

    The upstrokes of monophasic action potentials (MAPs) recorded with an extracellular pressure electrode were characterized in isolated canine tissue preparations in vitro. The characteristics of the MAP upstroke were compared with those of the local action potential foot as well as with the characteristics of approaching electrical activation during uniform and asynchronous conduction. The upstroke of the MAP was exponential during uniform conduction. The time constant of rise of the MAP upstroke (TMAP) correlated with that of the action potential foot (Tfoot): TMAP + 1.01 Tfoot + 0.50; r2 = .80. Furthermore, changes in Tfoot with alterations in cycle length were associated with similar changes in TMAP: Tfoot = 1.06 TMAP - 0.11; r2 = .78. In addition, TMAP and Tfoot both deviated from exponential during asynchronous activation; the inflections that developed in the MAP upstroke correlated in time with intracellular action potential upstrokes that were asynchronous in onset in these tissues. Finally, the field of view of the MAP was determined and was found to be dependent in part on tissue architecture and the space constant. Specifically, the field of view of the MAP was found to be greater parallel compared with transverse to fiber orientation (6.02 +/- 1.74 vs 3.03 +/- 1.10 mm; p less than .01). These data suggest that the MAP upstroke may be used to define and characterize local electrical activation. The relatively large field of view of the MAP suggests that this technique may be a sensitive means to record focal membrane phenomena in vivo.

  7. Random field assessment of nanoscopic inhomogeneity of bone

    PubMed Central

    Dong, X. Neil; Luo, Qing; Sparkman, Daniel M.; Millwater, Harry R.; Wang, Xiaodu

    2010-01-01

    Bone quality is significantly correlated with the inhomogeneous distribution of material and ultrastructural properties (e.g., modulus and mineralization) of the tissue. Current techniques for quantifying inhomogeneity consist of descriptive statistics such as mean, standard deviation and coefficient of variation. However, these parameters do not describe the spatial variations of bone properties. The objective of this study was to develop a novel statistical method to characterize and quantitatively describe the spatial variation of bone properties at ultrastructural levels. To do so, a random field defined by an exponential covariance function was used to present the spatial uncertainty of elastic modulus by delineating the correlation of the modulus at different locations in bone lamellae. The correlation length, a characteristic parameter of the covariance function, was employed to estimate the fluctuation of the elastic modulus in the random field. Using this approach, two distribution maps of the elastic modulus within bone lamellae were generated using simulation and compared with those obtained experimentally by a combination of atomic force microscopy and nanoindentation techniques. The simulation-generated maps of elastic modulus were in close agreement with the experimental ones, thus validating the random field approach in defining the inhomogeneity of elastic modulus in lamellae of bone. Indeed, generation of such random fields will facilitate multi-scale modeling of bone in more pragmatic details. PMID:20817128

  8. Estimation of 3-D conduction velocity vector fields from cardiac mapping data.

    PubMed

    Barnette, A R; Bayly, P V; Zhang, S; Walcott, G P; Ideker, R E; Smith, W M

    2000-08-01

    A method to estimate three-dimensional (3-D) conduction velocity vector fields in cardiac tissue is presented. The speed and direction of propagation are found from polynomial "surfaces" fitted to space-time (x, y, z, t) coordinates of cardiac activity. The technique is applied to sinus rhythm and paced rhythm mapped with plunge needles at 396-466 sites in the canine myocardium. The method was validated on simulated 3-D plane and spherical waves. For simulated data, conduction velocities were estimated with an accuracy of 1%-2%. In experimental data, estimates of conduction speeds during paced rhythm were slower than those found during normal sinus rhythm. Vector directions were also found to differ between different types of beats. The technique was able to distinguish between premature ventricular contractions and sinus beats and between sinus and paced beats. The proposed approach to computing velocity vector fields provides an automated, physiological, and quantitative description of local electrical activity in 3-D tissue. This method may provide insight into abnormal conduction associated with fatal ventricular arrhythmias.

  9. Paleomagnetic Analysis Using SQUID Microscopy

    NASA Technical Reports Server (NTRS)

    Weiss, Benjamin P.; Lima, Eduardo A.; Fong, Luis E.; Baudenbacher, Franz J.

    2007-01-01

    Superconducting quantum interference device (SQUID) microscopes are a new generation of instruments that map magnetic fields with unprecedented spatial resolution and moment sensitivity. Unlike standard rock magnetometers, SQUID microscopes map magnetic fields rather than measuring magnetic moments such that the sample magnetization pattern must be retrieved from source model fits to the measured field data. In this paper, we presented the first direct comparison between paleomagnetic analyses on natural samples using joint measurements from SQUID microscopy and moment magnetometry. We demonstrated that in combination with apriori geologic and petrographic data, SQUID microscopy can accurately characterize the magnetization of lunar glass spherules and Hawaiian basalt. The bulk moment magnitude and direction of these samples inferred from inversions of SQUID microscopy data match direct measurements on the same samples using moment magnetometry. In addition, these inversions provide unique constraints on the magnetization distribution within the sample. These measurements are among the most sensitive and highest resolution quantitative paleomagnetic studies of natural remanent magnetization to date. We expect that this technique will be able to extend many other standard paleomagnetic techniques to previously inaccessible microscale samples.

  10. The magnetic fields of Ap stars from high resolution Stokes IQUV spectropolarimetry

    NASA Astrophysics Data System (ADS)

    Silvester, James

    In this thesis we describe the acquisition of high resolution time resolved spectropolarimetric observations of 7 (bright and well understood) Ap stars in Stokes IQUV using the ESPaDOnS and Narval spectropolarimeters at the Canada-France-Hawaii Telescope and the 2m Telescope Bernard Lyot at Pic du Midi Observatory. We compare these observations with those obtained a decade earlier using the MuSiCoS spectropolarimeter to confirm consistency with the older data and provide evidence that both ESPaDOnS and Narval perform as expected in all Stokes parameters. We demonstrate that our refined longitudinal magnetic field and linear polarisation measurements for these 7 stars are of much greater quality than was previously obtained with MuSiCoS and that the global magnetic properties of these stars are stable over a long timescale. The ultimate aim of these new data is to provide a basis from which mapping of both the magnetic field and abundance structures can be performed on our target stars. We then describe magnetic field mapping of the Ap star alpha 2 CVn using these data. This mapping is achieved with the use of tomographic inversion of Doppler-broadened Stokes IQUV profiles of a large variety of spectral lines using the INVERS10 Magnetic Doppler imaging code. We show that not only are the new magnetic field maps of alpha 2 CVn consistent with a previous generation of maps of alpha 2 CVn, but that the same magnetic field topology can be derived from a variety of atomic line sets. This indicates that the magnetic field we derive for alpha2 CVn is a realistic representation of the star's true magnetic topology. Finally we investigate surface abundance structures for alpha 2 CVn for various chemical elements. We investigate the correlation between the location of these abundance features and the magnetic field of alpha 2 CVn. We will demonstrate that whilst the magnetic field plays a role in the formation of abundance structures, the current theoretical framework does not fully explain what we find from our maps. Ultimately this work motivates future mapping of Ap stars by confirming the reliability of both the instrument and associated data and the mapping technique itself.

  11. Assessment of planetary geologic mapping techniques for Mars using terrestrial analogs: The SP Mountain area of the San Francisco Volcanic Field, Arizona

    USGS Publications Warehouse

    Tanaka, K.L.; Skinner, J.A.; Crumpler, L.S.; Dohm, J.M.

    2009-01-01

    We photogeologically mapped the SP Mountain region of the San Francisco Volcanic Field in northern Arizona, USA to evaluate and improve the fidelity of approaches used in geologic mapping of Mars. This test site, which was previously mapped in the field, is chiefly composed of Late Cenozoic cinder cones, lava flows, and alluvium perched on Permian limestone of the Kaibab Formation. Faulting and folding has deformed the older rocks and some of the volcanic materials, and fluvial erosion has carved drainage systems and deposited alluvium. These geologic materials and their formational and modificational histories are similar to those for regions of the Martian surface. We independently prepared four geologic maps using topographic and image data at resolutions that mimic those that are commonly used to map the geology of Mars (where consideration was included for the fact that Martian features such as lava flows are commonly much larger than their terrestrial counterparts). We primarily based our map units and stratigraphic relations on geomorphology, color contrasts, and cross-cutting relationships. Afterward, we compared our results with previously published field-based mapping results, including detailed analyses of the stratigraphy and of the spatial overlap and proximity of the field-based vs. remote-based (photogeologic) map units, contacts, and structures. Results of these analyses provide insights into how to optimize the photogeologic mapping of Mars (and, by extension, other remotely observed planetary surfaces). We recommend the following: (1) photogeologic mapping as an excellent approach to recovering the general geology of a region, along with examination of local, high-resolution datasets to gain insights into the complexity of the geology at outcrop scales; (2) delineating volcanic vents and lava-flow sequences conservatively and understanding that flow abutment and flow overlap are difficult to distinguish in remote data sets; (3) taking care to understand that surficial materials (such as alluvium and volcanic ash deposits) are likely to be under-mapped yet are important because they obscure underlying units and contacts; (4) where possible, mapping multiple contact and structure types based on their varying certainty and exposure that reflect the perceived accuracy of the linework; (5) reviewing the regional context and searching for evidence of geologic activity that may have affected the map area yet for which evidence within the map area may be absent; and (6) for multi-authored maps, collectively analyzing the mapping relations, approaches, and methods throughout the duration of the mapping project with the objective of achieving a solid, harmonious product.

  12. SWIMRT: A graphical user interface using the sliding window algorithm to construct a fluence map machine file

    PubMed Central

    Chow, James C.L.; Grigorov, Grigor N.; Yazdani, Nuri

    2006-01-01

    A custom‐made computer program, SWIMRT, to construct “multileaf collimator (MLC) machine” file for intensity‐modulated radiotherapy (IMRT) fluence maps was developed using MATLAB® and the sliding window algorithm. The user can either import a fluence map with a graphical file format created by an external treatment‐planning system such as Pinnacle3 or create his or her own fluence map using the matrix editor in the program. Through comprehensive calibrations of the dose and the dimension of the imported fluence field, the user can use associated image‐processing tools such as field resizing and edge trimming to modify the imported map. When the processed fluence map is suitable, a “MLC machine” file is generated for our Varian 21 EX linear accelerator with a 120‐leaf Millennium MLC. This machine file is transferred to the MLC console of the LINAC to control the continuous motions of the leaves during beam irradiation. An IMRT field is then irradiated with the 2D intensity profiles, and the irradiated profiles are compared to the imported or modified fluence map. This program was verified and tested using film dosimetry to address the following uncertainties: (1) the mechanical limitation due to the leaf width and maximum traveling speed, and (2) the dosimetric limitation due to the leaf leakage/transmission and penumbra effect. Because the fluence map can be edited, resized, and processed according to the requirement of a study, SWIMRT is essential in studying and investigating the IMRT technique using the sliding window algorithm. Using this program, future work on the algorithm may include redistributing the time space between segmental fields to enhance the fluence resolution, and readjusting the timing of each leaf during delivery to avoid small fields. Possible clinical utilities and examples for SWIMRT are given in this paper. PACS numbers: 87.53.Kn, 87.53.St, 87.53.Uv PMID:17533330

  13. Intensity mapping the Universe

    NASA Astrophysics Data System (ADS)

    Croft, Rupert

    Intensity mapping (IM) is the use of one or more emission lines to trace out the structure of the Universe without needing to resolve individual objects (such as galaxies or gas clouds). It is one of the most promising ways to radically extend the sky survey revolution in cosmology. By making spectra of the entire sky, rather than the one part in one million captured by current fiber spectrographs, one would be sensitive to all structure. There are potentially huge discoveries to be made in the vast majority of the sky that is currently spectrally unmapped, and also great gains in signal to noise of cosmological clustering measurements. Intensity mapping with the 21cm radio line has been explored theoretically by many and instruments are being built, particularly targeting the epoch of reionization. In the UV, visible and infrared, however other lines have enormous promise, and will be exploited by a range of future NASA missions including WFIRST, Euclid, and the proposed SPHEREx instrument, a dedicated intensity mapping satellite. The first measurement of large-scale structure outside the radio (using Lyman-alpha emission) was recently made by the PI and collaborators. The Ly-a absorption line also traces a continuous cosmological field, the Lyman-alpha forest, and the enormous recent increase in the number of observed quasar spectra have made it possible to interpolate between quasar sightlines to create three-dimensional maps. Being able to trace the same cosmic structure in emission and absorption offers huge advantages when we seek to understand the processes involved. It will help us make comprehensive maps of the Universe's contents and offer us the opportunity to create new powerful cosmological tests. In our proposed work we will explore the possibilities afforded by taking grism and integral field spectra of large volumes of the Universe, using state-of-the-art cosmological hydrodynamic simulations. We will make use of analysis techniques developed for the Lyman-alpha forest, as well as forest data itself to test them. Our aim is to develop intensity mapping as a cosmological tool and show how it can be used to answer questions about the contents of the Universe and the formation of structure that are not accessible to traditional techniques. The project will involve both direct sampling of cosmic structure and cross-correlations of line intensity and objects (including galaxies, quasars and absorption lines). Emission (e.g., H-alpha emission) and absorption (Ly alpha forest) will be viewed as continuous fields. Using large volume cosmological simulations combined with population synthesis techniques we will make simulated spectral data sets. The techniques to analyse these cosmological data cubes will be developed. The expected outcomes are the following: (a) Predictions for the large-scale structure of strong emission lines (including Ha, Hb, Lya, OII, OIII) in the Universe using hydrodynamic simulations including the contribution from all components, from quasars to diffuse emssion. (b) Simulations of realistic examples of the use of IM as a cosmological probe, including Baryon Oscillations and weak gravitational lensing. (c) Tests of techniques to detection and quantify the low surface brightness Universe, leading to a complete census of the cosmic intensity in specific lines such as OII and Ha. (d) Development of techniques to extract redshifts for individual galaxies from low angular resolution IM spectroscopy. (e) Mock catalogs for SPHEREx, Euclid and WFIRST spectroscopy of diffuse emission, as well as for the Galex grism survey and tests of analysis techniques on data from the latter.

  14. Development of techniques for producing static strata maps and development of photointerpretation methods based on multitemporal LANDSAT data

    NASA Technical Reports Server (NTRS)

    Colwell, R. N. (Principal Investigator); Hay, C. M.; Thomas, R. W.; Benson, A. S.

    1976-01-01

    The progress of research conducted in support of the Large Area Crop Inventory Experiment (LACIE) is documented. Specific tasks include (1) evaluation of the static stratification procedure and modification of that procedure if warranted, and (2) the development of alternative photointerpretative techniques to the present LACIE procedures for the identification and selection of training fields (areas).

  15. Development of techniques for producing static strata maps and development of photointerpretive methods based on multitemporal LANDSAT data

    NASA Technical Reports Server (NTRS)

    Colwell, R. N. (Principal Investigator); Hay, C. M.; Thomas, R. W.; Benson, A. S.

    1977-01-01

    Progress in the evaluation of the static stratification procedure and the development of alternative photointerpretive techniques to the present LACIE procedure for the identification of training fields is reported. Statistically significant signature controlling variables were defined for use in refining the stratification procedure. A subset of the 1973-74 Kansas LACIE segments for wheat was analyzed.

  16. A method to improve the B0 homogeneity of the heart in vivo.

    PubMed

    Jaffer, F A; Wen, H; Balaban, R S; Wolff, S D

    1996-09-01

    A homogeneous static (B0) magnetic field is required for many NMR experiments such as echo planar imaging, localized spectroscopy, and spiral scan imaging. Although semi-automated techniques have been described to improve the B0 field homogeneity, none has been applied to the in vivo heart. The acquisition of cardiac field maps is complicated by motion, blood flow, and chemical shift artifact from epicardial fat. To overcome these problems, an ungated three-dimensional (3D) chemical shift image (CSI) was collected to generate a time and motion-averaged B0 field map. B0 heterogeneity in the heart was minimized by using a previous algorithm that solves for the optimal shim coil currents for an input field map, using up to third-order current-bounded shims (1). The method improved the B0 homogenelty of the heart in all 11 normal volunteers studied. After application of the algorithm to the unshimmed cardiac field maps, the standard deviation of proton frequency decreased by 43%, the magnitude 1H spectral linewidth decreased by 24%, and the peak-peak gradient decreased by 35%. Simulations of the high-order (second- and third-order) shims in B0 field correction of the heart show that high order shims are important, resulting for nearly half of the improvement in homogeneity for several subjects. The T2* of the left ventricular anterior wall before and after field correction was determined at 4.0 Tesis. Finally, results show that cardiac shimming is of benefit in cardiac 31P NMR spectroscopy and cardiac echo planar imaging.

  17. Digital Mapping Techniques '05--Workshop Proceedings, Baton Rouge, Louisiana, April 24-27, 2005

    USGS Publications Warehouse

    Soller, David R.

    2005-01-01

    Intorduction: The Digital Mapping Techniques '05 (DMT'05) workshop was attended by more than 100 technical experts from 47 agencies, universities, and private companies, including representatives from 25 state geological surveys (see Appendix A). This workshop was similar in nature to the previous eight meetings, held in Lawrence, Kansas (Soller, 1997), in Champaign, Illinois (Soller, 1998), in Madison, Wisconsin (Soller, 1999), in Lexington, Kentucky (Soller, 2000), in Tuscaloosa, Alabama (Soller, 2001), in Salt Lake City, Utah (Soller, 2002), in Millersville, Pennsylvania (Soller, 2003), and in Portland, Oregon (Soller, 2004). This year's meeting was hosted by the Louisiana Geological Survey, from April 24-27, 2005, on the Louisiana State University campus in Baton Rouge, Louisiana. As in the previous meetings, the objective was to foster informal discussion and exchange of technical information. It is with great pleasure I note that the objective was successfully met, as attendees continued to share and exchange knowledge and information, and to renew friendships and collegial work begun at past DMT workshops. Each DMT workshop has been coordinated by the Association of American State Geologists (AASG) and U.S. Geological Survey (USGS) Data Capture Working Group, which was formed in August 1996, to support the AASG and the USGS in their effort to build a National Geologic Map Database (see Soller and Berg, this volume, and http://ngmdb.usgs.gov/info/standards/datacapt/). The Working Group was formed because increased production efficiencies, standardization, and quality of digital map products were needed for the database?and for the State and Federal geological surveys?to provide more high-quality digital maps to the public. At the 2005 meeting, oral and poster presentations and special discussion sessions emphasized: 1) methods for creating and publishing map products (here, 'publishing' includes Web-based release); 2) field data capture software and techniques, including the use of LIDAR; 3) digital cartographic techniques; 4) migration of digital maps into ArcGIS Geodatabase format; 5) analytical GIS techniques; 6) continued development of the National Geologic Map Database; and 7) progress toward building and implementing a standard geologic map data model and standard science language for the U.S. and for North America.

  18. Session Overview and AzTEC Instrument Performance

    NASA Astrophysics Data System (ADS)

    Wilson, Grant; Ade, P. A.; Aretxaga, I.; Austermann, J.; Bock, J. J.; Hughes, D.; Kang, Y.; Kim, S.; Lowenthal, J.; Mauskopf, P.; Scott, K.; Yun, M.

    2006-12-01

    AzTEC is a new 144 element bolometer receiver destined as a first-generation instrument for the Large Millimeter Telescope. >From November 2005 and through January 2006, AzTEC made science observations at the 15m James Clerk Maxwell Telescope (JCMT). Approximately 1/2 of the available time was spent mapping the submillimeter galaxy population in blank and biased fields. Overall, over 1 square degree of sky was mapped with uniform coverage in each of five primary fields making this the largest set of surveys of the submillimeter galaxy population ever performed. Hundreds of new submillimeter galaxies have been detected. Here we discuss the instrument, our mapping technique, and a brief summary of the data reduction process. We conclude with a brief summary of the overall impact of these surveys on our understanding of the submillimeter galaxy population.

  19. Preliminary aeromagnetic anomaly map of California

    USGS Publications Warehouse

    Roberts, Carter W.; Jachens, Rober C.

    1999-01-01

    The magnetization in crustal rocks is the vector sum of induced in minerals by the Earth’s present main field and the remanent magnetization of minerals susceptible to magnetization (chiefly magnetite) (Blakely, 1995). The direction of remanent magnetization acquired during the rock’s history can be highly variable. Crystalline rocks generally contain sufficient magnetic minerals to cause variations in the Earth’s magnetic field that can be mapped by aeromagnetic surveys. Sedimentary rocks are generally weakly magnetized and consequently have a small effect on the magnetic field: thus a magnetic anomaly map can be used to “see through” the sedimentary rock cover and can convey information on lithologic contrasts and structural trends related to the underlying crystalline basement (see Nettleton,1971; Blakely, 1995). The magnetic anomaly map (fig. 2) provides a synoptic view of major anomalies and contributes to our understanding of the tectonic development of California. Reference fields, that approximate the Earth’s main (core) field, have been subtracted from the recorded magnetic data. The resulting map of the total magnetic anomalies exhibits anomaly patterns related to the distribution of magnetized crustal rocks at depths shallower than the Curie point isotherm (the surface within the Earth beneath which temperatures are so high that rocks lose their magnetic properties). The magnetic anomaly map has been compiled from existing digital data. Data obtained from aeromagnetic surveys that were made at different times, spacings and elevations, were merged by analytical continuation of each set onto a common surface 305 m (1000 ft) above terrain. Digital data in this compatible form allows application of analytical techniques (Blakley, 1995) that can be used to enhance anomaly characteristics (e.g., wavelength and trends) and provide new interpretive information.

  20. Performance analysis of mineral mapping method to delineate mineralization zones under tropical region

    NASA Astrophysics Data System (ADS)

    Wakila, M. H.; Saepuloh, A.; Heriawan, M. N.; Susanto, A.

    2016-09-01

    Geothermal explorations and productions are currently being intensively conducted at certain areas in Indonesia such as Wayang Windu Geothermal Field (WWGF) in West Java, Indonesia. The WWGF is located at wide area covering about 40 km2. An accurate method to map the distribution of heterogeneity minerals is necessary for wide areas such as WWGF. Mineral mapping is an important method in geothermal explorations to determine the distribution of minerals which indicate the surface manifestations of geothermal system. This study is aimed to determine the most precise and accurate methods for minerals mapping at geothermal field. Field measurements were performed to assess the accuracy of three proposed methods: 1) Minimum Noise Fraction (MNF), utilizing the linear transformation method to eliminate the correlation among the spectra bands and to reduce the noise in the data, 2) Pixel Purity Index (PPI), a designed method to find the most extreme spectrum pixels and their characteristics due to end-members mixing, 3) Spectral Angle Mapper (SAM), an image classification technique by measuring the spectral similarity between an unknown object with spectral reference in n- dimension. The output of those methods were mineral distribution occurrence. The performance of each mapping method was analyzed based on the ground truth data. Among the three proposed method, the SAM classification method is the most appropriate and accurate for mineral mapping related to spatial distribution of alteration minerals.

  1. Using ArcMap, Google Earth, and Global Positioning Systems to select and locate random households in rural Haiti.

    PubMed

    Wampler, Peter J; Rediske, Richard R; Molla, Azizur R

    2013-01-18

    A remote sensing technique was developed which combines a Geographic Information System (GIS); Google Earth, and Microsoft Excel to identify home locations for a random sample of households in rural Haiti. The method was used to select homes for ethnographic and water quality research in a region of rural Haiti located within 9 km of a local hospital and source of health education in Deschapelles, Haiti. The technique does not require access to governmental records or ground based surveys to collect household location data and can be performed in a rapid, cost-effective manner. The random selection of households and the location of these households during field surveys were accomplished using GIS, Google Earth, Microsoft Excel, and handheld Garmin GPSmap 76CSx GPS units. Homes were identified and mapped in Google Earth, exported to ArcMap 10.0, and a random list of homes was generated using Microsoft Excel which was then loaded onto handheld GPS units for field location. The development and use of a remote sensing method was essential to the selection and location of random households. A total of 537 homes initially were mapped and a randomized subset of 96 was identified as potential survey locations. Over 96% of the homes mapped using Google Earth imagery were correctly identified as occupied dwellings. Only 3.6% of the occupants of mapped homes visited declined to be interviewed. 16.4% of the homes visited were not occupied at the time of the visit due to work away from the home or market days. A total of 55 households were located using this method during the 10 days of fieldwork in May and June of 2012. The method used to generate and field locate random homes for surveys and water sampling was an effective means of selecting random households in a rural environment lacking geolocation infrastructure. The success rate for locating households using a handheld GPS was excellent and only rarely was local knowledge required to identify and locate households. This method provides an important technique that can be applied to other developing countries where a randomized study design is needed but infrastructure is lacking to implement more traditional participant selection methods.

  2. Infrared spectroscopic near-field mapping of single nanotransistors.

    PubMed

    Huber, A J; Wittborn, J; Hillenbrand, R

    2010-06-11

    We demonstrate the application of scattering-type scanning near-field optical microscopy (s-SNOM) for infrared (IR) spectroscopic material recognition in state-of-the-art semiconductor devices. In particular, we employ s-SNOM for imaging of industrial CMOS transistors with a resolution better than 20 nm, which allows for the first time IR spectroscopic recognition of amorphous SiO(2) and Si(3)N(4) components in a single transistor device. The experimentally recorded near-field spectral signature of amorphous SiO(2) shows excellent agreement with model calculations based on literature dielectric values, verifying that the characteristic near-field contrasts of SiO(2) stem from a phonon-polariton resonant near-field interaction between the probing tip and the SiO(2) nanostructures. Local material recognition by s-SNOM in combination with its capabilities of contact-free and non-invasive conductivity- and strain-mapping makes IR near-field microscopy a versatile metrology technique for nanoscale material characterization and semiconductor device analysis with application potential in research and development, failure analysis and reverse engineering.

  3. Progress in ETA-II magnetic field alignment using stretched wire and low energy electron beam techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deadrick, F.J.; Griffith, L.V.

    1990-08-17

    Flux line alignment of the solenoidal focus magnets used on the ETA-II linear induction accelerator is a key element leading to a reduction of beam corkscrew motion. Two techniques have been used on the ETA-II accelerator to measure and establish magnet alignment. A low energy electron beam has been used to directly map magnetic field lines, and recent work has utilized a pulsed stretched wire technique to measure magnet tilts and offsets with respect to a reference axis. This paper reports on the techniques used in the ETA-II accelerator alignment, and presents results from those measurements which show that acceleratormore » is magnetically aligned to within {approximately}{plus minus}200 microns. 3 refs., 8 figs.« less

  4. Force-field functor theory: classical force-fields which reproduce equilibrium quantum distributions

    PubMed Central

    Babbush, Ryan; Parkhill, John; Aspuru-Guzik, Alán

    2013-01-01

    Feynman and Hibbs were the first to variationally determine an effective potential whose associated classical canonical ensemble approximates the exact quantum partition function. We examine the existence of a map between the local potential and an effective classical potential which matches the exact quantum equilibrium density and partition function. The usefulness of such a mapping rests in its ability to readily improve Born-Oppenheimer potentials for use with classical sampling. We show that such a map is unique and must exist. To explore the feasibility of using this result to improve classical molecular mechanics, we numerically produce a map from a library of randomly generated one-dimensional potential/effective potential pairs then evaluate its performance on independent test problems. We also apply the map to simulate liquid para-hydrogen, finding that the resulting radial pair distribution functions agree well with path integral Monte Carlo simulations. The surprising accessibility and transferability of the technique suggest a quantitative route to adapting Born-Oppenheimer potentials, with a motivation similar in spirit to the powerful ideas and approximations of density functional theory. PMID:24790954

  5. Techniques for delineation and portrayal of land cover types using ERTS-1 data. [Pennsylvania, Montana, and Texas

    NASA Technical Reports Server (NTRS)

    Mcmurtry, G. J.; Petersen, G. W. (Principal Investigator); Wilson, A. D.

    1974-01-01

    The author has identified the following significant results. ERTS data was used to map land cover in agricultural areas, although in some parts of Pennsylvania, with small irregular fields, many of the pixels overlap field boundaries and cause difficulties in classification. Various techniques and devices were used to display the results of these land cover analyses. The most promising approach would be a user-interactive color monitor interfaced with a large computer so that classification results could be displayed on the CRT and these results output by a hard complete copier.

  6. [Measurement of the electric field of the heart in a homogeneous volume conductor].

    PubMed

    Tsukerman, B M; Titomir, L I

    1975-01-01

    The paper describes a technique and some results of experimental measurements of electrical potentials generated by an isolated dog heart in homogeneous conductor, drawing equipotential maps of the field, and calculating the characteristics of the dipole equivalent generator of the heart. The form of potential distribution on a spherical surface around the heart and its ideal orthogonal vectorcardiograms are discussed.

  7. The Role of Emotions in Fieldwork: A Self-Study of Family Research in a Corrections Setting

    ERIC Educational Resources Information Center

    Arditti, Joyce A.; Joest, Karen S.; Lambert-Shute, Jennifer; Walker, Latanya

    2010-01-01

    In this study, we document a reflexive process via bracketing techniques and the development of a conceptual map in order to better understand how emotions that arise in the field can inform research design, implementation, and results. We conducted a content analysis of field notes written by a team of researchers who administered an interview to…

  8. Accuracy of vertical radial plume mapping technique in measuring lagoon gas emissions.

    PubMed

    Viguria, Maialen; Ro, Kyoung S; Stone, Kenneth C; Johnson, Melvin H

    2015-04-01

    Recently, the U.S. Environmental Protection Agency (EPA) posted a ground-based optical remote sensing method on its Web site called Other Test Method (OTM) 10 for measuring fugitive gas emission flux from area sources such as closed landfills. The OTM 10 utilizes the vertical radial plume mapping (VRPM) technique to calculate fugitive gas emission mass rates based on measured wind speed profiles and path-integrated gas concentrations (PICs). This study evaluates the accuracy of the VRPM technique in measuring gas emission from animal waste treatment lagoons. A field trial was designed to evaluate the accuracy of the VRPM technique. Control releases of methane (CH4) were made from a 45 m×45 m floating perforated pipe network located on an irrigation pond that resembled typical treatment lagoon environments. The accuracy of the VRPM technique was expressed by the ratio of the calculated emission rates (QVRPM) to actual emission rates (Q). Under an ideal condition of having mean wind directions mostly normal to a downwind vertical plane, the average VRPM accuracy was 0.77±0.32. However, when mean wind direction was mostly not normal to the downwind vertical plane, the emission plume was not adequately captured resulting in lower accuracies. The accuracies of these nonideal wind conditions could be significantly improved if we relaxed the VRPM wind direction criteria and combined the emission rates determined from two adjacent downwind vertical planes surrounding the lagoon. With this modification, the VRPM accuracy improved to 0.97±0.44, whereas the number of valid data sets also increased from 113 to 186. The need for developing accurate and feasible measuring techniques for fugitive gas emission from animal waste lagoons is vital for livestock gas inventories and implementation of mitigation strategies. This field lagoon gas emission study demonstrated that the EPA's vertical radial plume mapping (VRPM) technique can be used to accurately measure lagoon gas emission with two downwind vertical concentration planes surrounding the lagoon.

  9. Investigation of methods to search for the boundaries on the image and their use on lung hardware of methods finding saliency map

    NASA Astrophysics Data System (ADS)

    Semenishchev, E. A.; Marchuk, V. I.; Fedosov, V. P.; Stradanchenko, S. G.; Ruslyakov, D. V.

    2015-05-01

    This work aimed to study computationally simple method of saliency map calculation. Research in this field received increasing interest for the use of complex techniques in portable devices. A saliency map allows increasing the speed of many subsequent algorithms and reducing the computational complexity. The proposed method of saliency map detection based on both image and frequency space analysis. Several examples of test image from the Kodak dataset with different detalisation considered in this paper demonstrate the effectiveness of the proposed approach. We present experiments which show that the proposed method providing better results than the framework Salience Toolbox in terms of accuracy and speed.

  10. Modeling and comparative study of fluid velocities in heterogeneous rocks

    NASA Astrophysics Data System (ADS)

    Hingerl, Ferdinand F.; Romanenko, Konstantin; Pini, Ronny; Balcom, Bruce; Benson, Sally

    2013-04-01

    Detailed knowledge of the distribution of effective porosity and fluid velocities in heterogeneous rock samples is crucial for understanding and predicting spatially resolved fluid residence times and kinetic reaction rates of fluid-rock interactions. The applicability of conventional MRI techniques to sedimentary rocks is limited by internal magnetic field gradients and short spin relaxation times. The approach developed at the UNB MRI Centre combines the 13-interval Alternating-Pulsed-Gradient Stimulated-Echo (APGSTE) scheme and three-dimensional Single Point Ramped Imaging with T1 Enhancement (SPRITE). These methods were designed to reduce the errors due to effects of background gradients and fast transverse relaxation. SPRITE is largely immune to time-evolution effects resulting from background gradients, paramagnetic impurities and chemical shift. Using these techniques quantitative 3D porosity maps as well as single-phase fluid velocity fields in sandstone core samples were measured. Using a new Magnetic Resonance Imaging technique developed at the MRI Centre at UNB, we created 3D maps of porosity distributions as well as single-phase fluid velocity distributions of sandstone rock samples. Then, we evaluated the applicability of the Kozeny-Carman relationship for modeling measured fluid velocity distributions in sandstones samples showing meso-scale heterogeneities using two different modeling approaches. The MRI maps were used as reference points for the modeling approaches. For the first modeling approach, we applied the Kozeny-Carman relationship to the porosity distributions and computed respective permeability maps, which in turn provided input for a CFD simulation - using the Stanford CFD code GPRS - to compute averaged velocity maps. The latter were then compared to the measured velocity maps. For the second approach, the measured velocity distributions were used as input for inversely computing permeabilities using the GPRS CFD code. The computed permeabilities were then correlated with the ones based on the porosity maps and the Kozeny-Carman relationship. The findings of the comparative modeling study are discussed and its potential impact on the modeling of fluid residence times and kinetic reaction rates of fluid-rock interactions in rocks containing meso-scale heterogeneities are reviewed.

  11. Beyond data collection in digital mapping: interpretation, sketching and thought process elements in geological map making

    NASA Astrophysics Data System (ADS)

    Watkins, Hannah; Bond, Clare; Butler, Rob

    2016-04-01

    Geological mapping techniques have advanced significantly in recent years from paper fieldslips to Toughbook, smartphone and tablet mapping; but how do the methods used to create a geological map affect the thought processes that result in the final map interpretation? Geological maps have many key roles in the field of geosciences including understanding geological processes and geometries in 3D, interpreting geological histories and understanding stratigraphic relationships in 2D and 3D. Here we consider the impact of the methods used to create a map on the thought processes that result in the final geological map interpretation. As mapping technology has advanced in recent years, the way in which we produce geological maps has also changed. Traditional geological mapping is undertaken using paper fieldslips, pencils and compass clinometers. The map interpretation evolves through time as data is collected. This interpretive process that results in the final geological map is often supported by recording in a field notebook, observations, ideas and alternative geological models explored with the use of sketches and evolutionary diagrams. In combination the field map and notebook can be used to challenge the map interpretation and consider its uncertainties. These uncertainties and the balance of data to interpretation are often lost in the creation of published 'fair' copy geological maps. The advent of Toughbooks, smartphones and tablets in the production of geological maps has changed the process of map creation. Digital data collection, particularly through the use of inbuilt gyrometers in phones and tablets, has changed smartphones into geological mapping tools that can be used to collect lots of geological data quickly. With GPS functionality this data is also geospatially located, assuming good GPS connectivity, and can be linked to georeferenced infield photography. In contrast line drawing, for example for lithological boundary interpretation and sketching, is yet to find the digital flow that is achieved with pencil on notebook page or map. Free-form integrated sketching and notebook functionality in geological mapping software packages is in its nascence. Hence, the result is a tendency for digital geological mapping to focus on the ease of data collection rather than on the thoughts and careful observations that come from notebook sketching and interpreting boundaries on a map in the field. The final digital geological map can be assessed for when and where data was recorded, but the thought processes of the mapper are less easily assessed, and the use of observations and sketching to generate ideas and interpretations maybe inhibited by reliance on digital mapping methods. All mapping methods used have their own distinct advantages and disadvantages and with more recent technologies both hardware and software issues have arisen. We present field examples of using conventional fieldslip mapping, and compare these with more advanced technologies to highlight some of the main advantages and disadvantages of each method and discuss where geological mapping may be going in the future.

  12. Identification of cardiac rhythm features by mathematical analysis of vector fields.

    PubMed

    Fitzgerald, Tamara N; Brooks, Dana H; Triedman, John K

    2005-01-01

    Automated techniques for locating cardiac arrhythmia features are limited, and cardiologists generally rely on isochronal maps to infer patterns in the cardiac activation sequence during an ablation procedure. Velocity vector mapping has been proposed as an alternative method to study cardiac activation in both clinical and research environments. In addition to the visual cues that vector maps can provide, vector fields can be analyzed using mathematical operators such as the divergence and curl. In the current study, conduction features were extracted from velocity vector fields computed from cardiac mapping data. The divergence was used to locate ectopic foci and wavefront collisions, and the curl to identify central obstacles in reentrant circuits. Both operators were applied to simulated rhythms created from a two-dimensional cellular automaton model, to measured data from an in situ experimental canine model, and to complex three-dimensional human cardiac mapping data sets. Analysis of simulated vector fields indicated that the divergence is useful in identifying ectopic foci, with a relatively small number of vectors and with errors of up to 30 degrees in the angle measurements. The curl was useful for identifying central obstacles in reentrant circuits, and the number of velocity vectors needed increased as the rhythm became more complex. The divergence was able to accurately identify canine in situ pacing sites, areas of breakthrough activation, and wavefront collisions. In data from human arrhythmias, the divergence reliably estimated origins of electrical activity and wavefront collisions, but the curl was less reliable at locating central obstacles in reentrant circuits, possibly due to the retrospective nature of data collection. The results indicate that the curl and divergence operators applied to velocity vector maps have the potential to add valuable information in cardiac mapping and can be used to supplement human pattern recognition.

  13. Acoustic methods for cavitation mapping in biomedical applications

    NASA Astrophysics Data System (ADS)

    Wan, M.; Xu, S.; Ding, T.; Hu, H.; Liu, R.; Bai, C.; Lu, S.

    2015-12-01

    In recent years, cavitation is increasingly utilized in a wide range of applications in biomedical field. Monitoring the spatial-temporal evolution of cavitation bubbles is of great significance for efficiency and safety in biomedical applications. In this paper, several acoustic methods for cavitation mapping proposed or modified on the basis of existing work will be presented. The proposed novel ultrasound line-by-line/plane-by-plane method can depict cavitation bubbles distribution with high spatial and temporal resolution and may be developed as a potential standard 2D/3D cavitation field mapping method. The modified ultrafast active cavitation mapping based upon plane wave transmission and reception as well as bubble wavelet and pulse inversion technique can apparently enhance the cavitation to tissue ratio in tissue and further assist in monitoring the cavitation mediated therapy with good spatial and temporal resolution. The methods presented in this paper will be a foundation to promote the research and development of cavitation imaging in non-transparent medium.

  14. Road Extraction from AVIRIS Using Spectral Mixture and Q-Tree Filter Techniques

    NASA Technical Reports Server (NTRS)

    Gardner, Margaret E.; Roberts, Dar A.; Funk, Chris; Noronha, Val

    2001-01-01

    Accurate road location and condition information are of primary importance in road infrastructure management. Additionally, spatially accurate and up-to-date road networks are essential in ambulance and rescue dispatch in emergency situations. However, accurate road infrastructure databases do not exist for vast areas, particularly in areas with rapid expansion. Currently, the US Department of Transportation (USDOT) extends great effort in field Global Positioning System (GPS) mapping and condition assessment to meet these informational needs. This methodology, though effective, is both time-consuming and costly, because every road within a DOT's jurisdiction must be field-visited to obtain accurate information. Therefore, the USDOT is interested in identifying new technologies that could help meet road infrastructure informational needs more effectively. Remote sensing provides one means by which large areas may be mapped with a high standard of accuracy and is a technology with great potential in infrastructure mapping. The goal of our research is to develop accurate road extraction techniques using high spatial resolution, fine spectral resolution imagery. Additionally, our research will explore the use of hyperspectral data in assessing road quality. Finally, this research aims to define the spatial and spectral requirements for remote sensing data to be used successfully for road feature extraction and road quality mapping. Our findings will facilitate the USDOT in assessing remote sensing as a new resource in infrastructure studies.

  15. Evaluation of High Dynamic Range Photography as a Luminance Mapping Technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Inanici, Mehlika; Galvin, Jim

    2004-12-30

    The potential, limitations, and applicability of the High Dynamic Range (HDR) photography technique is evaluated as a luminance mapping tool. Multiple exposure photographs of static scenes are taken with a Nikon 5400 digital camera to capture the wide luminance variation within the scenes. The camera response function is computationally derived using the Photosphere software, and is used to fuse the multiple photographs into HDR images. The vignetting effect and point spread function of the camera and lens system is determined. Laboratory and field studies have shown that the pixel values in the HDR photographs can correspond to the physical quantitymore » of luminance with reasonable precision and repeatability.« less

  16. Advances in Heavy Ion Beam Probe Technology and Operation on MST

    NASA Astrophysics Data System (ADS)

    Demers, D. R.; Connor, K. A.; Schoch, P. M.; Radke, R. J.; Anderson, J. K.; Craig, D.; den Hartog, D. J.

    2003-10-01

    A technique to map the magnetic field of a plasma via spectral imaging is being developed with the Heavy Ion Beam Probe on the Madison Symmetric Torus. The technique will utilize two-dimensional images of the ion beam in the plasma, acquired by two CCD cameras, to generate a three-dimensional reconstruction of the beam trajectory. This trajectory, and the known beam ion mass, energy and charge-state, will be used to determine the magnetic field of the plasma. A suitable emission line has not yet been observed since radiation from the MST plasma is both broadband and intense. An effort to raise the emission intensity from the ion beam by increasing beam focus and current has been undertaken. Simulations of the accelerator ion optics and beam characteristics led to a technique, confirmed by experiment, that achieves a narrower beam and marked increase in ion current near the plasma surface. The improvements arising from these simulations will be discussed. Realization of the magnetic field mapping technique is contingent upon accurate reconstruction of the beam trajectory from the camera images. Simulations of two camera CCD images, including the interior of MST, its various landmarks and beam trajectories have been developed. These simulations accept user input such as camera locations, resolution via pixellization and noise. The quality of the images simulated with these and other variables will help guide the selection of viewing port pairs, image size and camera specifications. The results of these simulations will be presented.

  17. Exploring the Geological Structure of the Continental Crust.

    ERIC Educational Resources Information Center

    Oliver, Jack

    1983-01-01

    Discusses exploration and mapping of the continental basement using the seismic reflection profiling technique as well as drilling methods. Also discusses computer analysis of gravity and magnetic fields. Points out the need for data that can be correlated to surface information. (JM)

  18. Monitoring of wildfires in boreal forests using large area AVHRR NDVI composite image data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kasischke, E.S.; French, N.H.F.; Harrell, P.

    1993-06-01

    Normalized difference vegetation index (NDVI) composite image data, produced from AVHRR data collected in 1990, were evaluated for locating and mapping the areal extent of wildfires in the boreal forests of Alaska during that year. A technique was developed to map forest fire boundaries by subtracting a late-summer AVHRR NDVI image from an early summer scene. The locations and boundaries of wildfires within the interior region of Alaska were obtained from the Alaska Fire Service, and compared to the AVHRR-derived fire-boundary map. It was found that AVHRR detected 89.5% of all fires with sizes greater than 2,000ha with no falsemore » alarms and that, for most cases, the general shape of the fire boundary detected by AVHRR matched those mapped by field observers. However, the total area contained within the fire boundaries mapped by AVHRR were only 61% of those mapped by the field observers. However, the AVHRR data used in this study did not span the entire time period during which fires occurred, and it is believed the areal estimates could be improved significantly if an expanded AVHRR data set were used.« less

  19. Monitoring of wildfires in boreal forests using large area AVHRR NDVI composite image data

    NASA Technical Reports Server (NTRS)

    Kasischke, Eric S.; French, Nancy H. F.; Harrell, Peter; Christensen, Norman L., Jr.; Ustin, Susan L.; Barry, Donald

    1993-01-01

    Normalized difference vegetation index (NDVI) composite image data, produced from AVHRR data collected in 1990, were evaluated for locating and mapping the areal extent of wildfires in the boreal forests of Alaska during that year. A technique was developed to map forest fire boundaries by subtracting a late-summer AVHRR NDVI image from an early summer scene. The locations and boundaries of wildfires within the interior region of Alaska were obtained from the Alaska Fire Service, and compared to the AVHRR-derived fire-boundary map. It was found that AVHRR detected 89.5 percent of all fires with sizes greater than 2000 ha with no false alarms and that, for most cases, the general shape of the fire boundary detected by AVHRR matched those mapped by field observers. However, the total area contained within the fire boundaries mapped by AVHRR were only 61 percent of those mapped by the field observers. However, the AVHRR data used in this study did not span the entire time period during which fires occurred, and it is believed the areal estimates could be improved significantly if an expanded AVHRR data set were used.

  20. Mapping the evolution of entrepreneurship as a field of research (1990-2013): A scientometric analysis.

    PubMed

    Chandra, Yanto

    2018-01-01

    This article applies scientometric techniques to study the evolution of the field of entrepreneurship between 1990 and 2013. Using a combination of topic mapping, author and journal co-citation analyses, and overlay visualization of new and hot topics in the field, this article makes important contribution to the entrepreneurship research by identifying 46 topics in the 24-year history of entrepreneurship research and demonstrates how they appear, disappear, reappear and stabilize over time. It also identifies five topics that are persistent across the 24-year study period--institutions and institutional entrepreneurship, innovation and technology management, policy and development, entrepreneurial process and opportunity, and new ventures--which I labeled as The Pentagon of Entrepreneurship. Overall, the analyses revealed patterns of convergence and divergence and the diversity of topics, specialization, and interdisciplinary engagement in entrepreneurship research, thus offering the latest insights on the state of the art of the field.

  1. Land subsidence susceptibility and hazard mapping: the case of Amyntaio Basin, Greece

    NASA Astrophysics Data System (ADS)

    Tzampoglou, P.; Loupasakis, C.

    2017-09-01

    Landslide susceptibility and hazard mapping has been applying for more than 20 years succeeding the assessment of the landslide risk and the mitigation the phenomena. On the contrary, equivalent maps aiming to study and mitigate land subsidence phenomena caused by the overexploitation of the aquifers are absent from the international literature. The current study focuses at the Amyntaio basin, located in West Macedonia at Florina prefecture. As proved by numerous studies the wider area has been severely affected by the overexploitation of the aquifers, caused by the mining and the agricultural activities. The intensive ground water level drop has triggered extensive land subsidence phenomena, especially at the perimeter of the open pit coal mine operating at the site, causing damages to settlements and infrastructure. The land subsidence susceptibility and risk maps were produced by applying the semi-quantitative WLC (Weighted Linear Combination) method, especially calibrated for this particular catastrophic event. The results were evaluated by using detailed field mapping data referring to the spatial distribution of the surface ruptures caused by the subsidence. The high correlation between the produced maps and the field mapping data, have proved the great value of the maps and of the applied technique on the management and the mitigation of the phenomena. Obviously, these maps can be safely used by decision-making authorities for the future urban safety development.

  2. Recognition of a porphyry system using ASTER data in Bideghan - Qom province (central of Iran)

    NASA Astrophysics Data System (ADS)

    Feizi, F.; Mansouri, E.

    2014-07-01

    The Bideghan area is located south of the Qom province (central of Iran). The most impressive geological features in the studied area are the Eocene sequences which are intruded by volcanic rocks with basic compositions. Advanced Space borne Thermal Emission and Reflection Radiometer (ASTER) image processing have been used for hydrothermal alteration mapping and lineaments identification in the investigated area. In this research false color composite, band ratio, Principal Component Analysis (PCA), Least Square Fit (LS-Fit) and Spectral Angel Mapping (SAM) techniques were applied on ASTER data and argillic, phyllic, Iron oxide and propylitic alteration zones were separated. Lineaments were identified by aid of false color composite, high pass filters and hill-shade DEM techniques. The results of this study demonstrate the usefulness of remote sensing method and ASTER multi-spectral data for alteration and lineament mapping. Finally, the results were confirmed by field investigation.

  3. Synchrotron Intensity Gradients as Tracers of Interstellar Magnetic Fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lazarian, A.; Yuen, Ka Ho; Lee, Hyeseung

    On the basis of the modern understanding of MHD turbulence, we propose a new way of using synchrotron radiation: using synchrotron intensity gradients (SIGs) for tracing astrophysical magnetic fields. We successfully test the new technique using synthetic data obtained with 3D MHD simulations and provide the demonstration of the practical utility of the technique by comparing the directions of magnetic fields that are obtained with PLANCK synchrotron intensity data to the directions obtained with PLANCK synchrotron polarization data. We demonstrate that the SIGs can reliably trace magnetic fields in the presence of noise and can provide detailed maps of magneticmore » field directions. We also show that the SIGs are relatively robust for tracing magnetic fields while the low spatial frequencies of the synchrotron image are removed. This makes the SIGs applicable to the tracing of magnetic fields using interferometric data with single-dish measurement absent. We discuss the synergy of using the SIGs together with synchrotron polarization in order to find the actual direction of the magnetic fields and quantify the effects of Faraday rotation as well as with other ways of studying astrophysical magnetic fields. We test our method in the presence of noise and the resolution effects. We stress the complementary nature of the studies using the SIG technique and those employing the recently introduced velocity gradient techniques that trace magnetic fields using spectroscopic data.« less

  4. Synchrotron Intensity Gradients as Tracers of Interstellar Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Lazarian, A.; Yuen, Ka Ho; Lee, Hyeseung; Cho, J.

    2017-06-01

    On the basis of the modern understanding of MHD turbulence, we propose a new way of using synchrotron radiation: using synchrotron intensity gradients (SIGs) for tracing astrophysical magnetic fields. We successfully test the new technique using synthetic data obtained with 3D MHD simulations and provide the demonstration of the practical utility of the technique by comparing the directions of magnetic fields that are obtained with PLANCK synchrotron intensity data to the directions obtained with PLANCK synchrotron polarization data. We demonstrate that the SIGs can reliably trace magnetic fields in the presence of noise and can provide detailed maps of magnetic field directions. We also show that the SIGs are relatively robust for tracing magnetic fields while the low spatial frequencies of the synchrotron image are removed. This makes the SIGs applicable to the tracing of magnetic fields using interferometric data with single-dish measurement absent. We discuss the synergy of using the SIGs together with synchrotron polarization in order to find the actual direction of the magnetic fields and quantify the effects of Faraday rotation as well as with other ways of studying astrophysical magnetic fields. We test our method in the presence of noise and the resolution effects. We stress the complementary nature of the studies using the SIG technique and those employing the recently introduced velocity gradient techniques that trace magnetic fields using spectroscopic data.

  5. Correlative fractography: combining scanning electron microscopy and light microscopes for qualitative and quantitative analysis of fracture surfaces.

    PubMed

    Hein, Luis Rogerio de Oliveira; de Oliveira, José Alberto; de Campos, Kamila Amato

    2013-04-01

    Correlative fractography is a new expression proposed here to describe a new method for the association between scanning electron microscopy (SEM) and light microscopy (LM) for the qualitative and quantitative analysis of fracture surfaces. This article presents a new method involving the fusion of one elevation map obtained by extended depth from focus reconstruction from LM with exactly the same area by SEM and associated techniques, as X-ray mapping. The true topographic information is perfectly associated to local fracture mechanisms with this new technique, presented here as an alternative to stereo-pair reconstruction for the investigation of fractured components. The great advantage of this technique resides in the possibility of combining any imaging methods associated with LM and SEM for the same observed field from fracture surface.

  6. SU-E-J-246: A Deformation-Field Map Based Liver 4D CBCT Reconstruction Method Using Gold Nanoparticles as Constraints

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harris, W; Zhang, Y; Ren, L

    2014-06-01

    Purpose: To investigate the feasibility of using nanoparticle markers to validate liver tumor motion together with a deformation field map-based four dimensional (4D) cone-beam computed tomography (CBCT) reconstruction method. Methods: A technique for lung 4D-CBCT reconstruction has been previously developed using a deformation field map (DFM)-based strategy. In this method, each phase of the 4D-CBCT is considered as a deformation of a prior CT volume. The DFM is solved by a motion modeling and free-form deformation (MM-FD) technique, using a data fidelity constraint and the deformation energy minimization. For liver imaging, there is low contrast of a liver tumor inmore » on-board projections. A validation of liver tumor motion using implanted gold nanoparticles, along with the MM-FD deformation technique is implemented to reconstruct onboard 4D CBCT liver radiotherapy images. These nanoparticles were placed around the liver tumor to reflect the tumor positions in both CT simulation and on-board image acquisition. When reconstructing each phase of the 4D-CBCT, the migrations of the gold nanoparticles act as a constraint to regularize the deformation field, along with the data fidelity and the energy minimization constraints. In this study, multiple tumor diameters and positions were simulated within the liver for on-board 4D-CBCT imaging. The on-board 4D-CBCT reconstructed by the proposed method was compared with the “ground truth” image. Results: The preliminary data, which uses reconstruction for lung radiotherapy suggests that the advanced reconstruction algorithm including the gold nanoparticle constraint will Resultin volume percentage differences (VPD) between lesions in reconstructed images by MM-FD and “ground truth” on-board images of 11.5% (± 9.4%) and a center of mass shift of 1.3 mm (± 1.3 mm) for liver radiotherapy. Conclusion: The advanced MM-FD technique enforcing the additional constraints from gold nanoparticles, results in improved accuracy for reconstructing on-board 4D-CBCT of liver tumor. Varian medical systems research grant.« less

  7. Satellite SAR interferometric techniques applied to emergency mapping

    NASA Astrophysics Data System (ADS)

    Stefanova Vassileva, Magdalena; Riccardi, Paolo; Lecci, Daniele; Giulio Tonolo, Fabio; Boccardo Boccardo, Piero; Chiesa, Giuliana; Angeluccetti, Irene

    2017-04-01

    This paper aim to investigate the capabilities of the currently available SAR interferometric algorithms in the field of emergency mapping. Several tests have been performed exploiting the Copernicus Sentinel-1 data using the COTS software ENVI/SARscape 5.3. Emergency Mapping can be defined as "creation of maps, geo-information products and spatial analyses dedicated to providing situational awareness emergency management and immediate crisis information for response by means of extraction of reference (pre-event) and crisis (post-event) geographic information/data from satellite or aerial imagery". The conventional differential SAR interferometric technique (DInSAR) and the two currently available multi-temporal SAR interferometric approaches, i.e. Permanent Scatterer Interferometry (PSI) and Small BAseline Subset (SBAS), have been applied to provide crisis information useful for the emergency management activities. Depending on the considered Emergency Management phase, it may be distinguished between rapid mapping, i.e. fast provision of geospatial data regarding the area affected for the immediate emergency response, and monitoring mapping, i.e. detection of phenomena for risk prevention and mitigation activities. In order to evaluate the potential and limitations of the aforementioned SAR interferometric approaches for the specific rapid and monitoring mapping application, five main factors have been taken into account: crisis information extracted, input data required, processing time and expected accuracy. The results highlight that DInSAR has the capacity to delineate areas affected by large and sudden deformations and fulfills most of the immediate response requirements. The main limiting factor of interferometry is the availability of suitable SAR acquisition immediately after the event (e.g. Sentinel-1 mission characterized by 6-day revisiting time may not always satisfy the immediate emergency request). PSI and SBAS techniques are suitable to produce monitoring maps for risk prevention and mitigation purposes. Nevertheless, multi-temporal techniques require large SAR temporal datasets, i.e. 20 and more images. Being the Sentinel-1 missions operational only since April 2014, multi-mission SAR datasets should be therefore exploited to carry out historical analysis.

  8. Tomographic diffractive microscopy with a wavefront sensor.

    PubMed

    Ruan, Y; Bon, P; Mudry, E; Maire, G; Chaumet, P C; Giovannini, H; Belkebir, K; Talneau, A; Wattellier, B; Monneret, S; Sentenac, A

    2012-05-15

    Tomographic diffractive microscopy is a recent imaging technique that reconstructs quantitatively the three-dimensional permittivity map of a sample with a resolution better than that of conventional wide-field microscopy. Its main drawbacks lie in the complexity of the setup and in the slowness of the image recording as both the amplitude and the phase of the field scattered by the sample need to be measured for hundreds of successive illumination angles. In this Letter, we show that, using a wavefront sensor, tomographic diffractive microscopy can be implemented easily on a conventional microscope. Moreover, the number of illuminations can be dramatically decreased if a constrained reconstruction algorithm is used to recover the sample map of permittivity.

  9. Quantitative water content mapping at clinically relevant field strengths: a comparative study at 1.5 T and 3 T.

    PubMed

    Abbas, Zaheer; Gras, Vincent; Möllenhoff, Klaus; Oros-Peusquens, Ana-Maria; Shah, Nadim Joni

    2015-02-01

    Quantitative water content mapping in vivo using MRI is a very valuable technique to detect, monitor and understand diseases of the brain. At 1.5 T, this technology has already been successfully used, but it has only recently been applied at 3T because of significantly increased RF field inhomogeneity at the higher field strength. To validate the technology at 3T, we estimate and compare in vivo quantitative water content maps at 1.5 T and 3T obtained with a protocol proposed recently for 3T MRI. The proposed MRI protocol was applied on twenty healthy subjects at 1.5 T and 3T; the same post-processing algorithms were used to estimate the water content maps. The 1.5 T and 3T maps were subsequently aligned and compared on a voxel-by-voxel basis. Statistical analysis was performed to detect possible differences between the estimated 1.5 T and 3T water maps. Our analysis indicates that the water content values obtained at 1.5 T and 3T did not show significant systematic differences. On average the difference did not exceed the standard deviation of the water content at 1.5 T. Furthermore, the contrast-to-noise ratio (CNR) of the estimated water content map was increased at 3T by a factor of at least 1.5. Vulnerability to RF inhomogeneity increases dramatically with the increasing static magnetic field strength. However, using advanced corrections for the sensitivity profile of the MR coils, it is possible to preserve quantitative accuracy while benefiting from the increased CNR at the higher field strength. Indeed, there was no significant difference in the water content values obtained in the brain at 1.5 T and 3T. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. Terrestrial Ecology Guide.

    ERIC Educational Resources Information Center

    Morrison, James W., Ed.; Hall, James A., Ed.

    This collection of study units focuses on the study of the ecology of land habitats. Considered are such topics as map reading, field techniques, forest ecosystem, birds, insects, small mammals, soils, plant ecology, preparation of terrariums, air pollution, photography, and essentials of an environmental studies program. Each unit contains…

  11. Uncertainty in georeferencing current and historic plant locations

    USGS Publications Warehouse

    McEachern, K.; Niessen, K.

    2009-01-01

    With shrinking habitats, weed invasions, and climate change, repeated surveys are becoming increasingly important for rare plant conservation and ecological restoration. We often need to relocate historical sites or provide locations for newly restored sites. Georeferencing is the technique of giving geographic coordinates to the location of a site. Georeferencing has been done historically using verbal descriptions or field maps that accompany voucher collections. New digital technology gives us more exact techniques for mapping and storing location information. Error still exists, however, and even georeferenced locations can be uncertain, especially if error information is not included with the observation. We review the concept of uncertainty in georeferencing and compare several institutional database systems for cataloging error and uncertainty with georeferenced locations. These concepts are widely discussed among geographers, but ecologists and restorationists need to become more aware of issues related to uncertainty to improve our use of spatial information in field studies. ?? 2009 by the Board of Regents of the University of Wisconsin System.

  12. Mapping the seabed and habitats in National Marine Sanctuaries - Examples from the East, Gulf and West Coasts

    USGS Publications Warehouse

    Valentine, Page C.; Cochrane, Guy R.; Scanlon, Kathryn M.

    2003-01-01

    The National Marine Sanctuary System requires seabed and habitat maps to serve as a basis for managing sanctuary resources and for conducting research. NOAA, the agency that manages the sanctuaries, and the USGS have conducted mapping projects in three sanctuaries (Stellwagen Bank NMS, Flower Garden Banks NMS, and Channel Islands NMS) with an emphasis on collaboration of geologists and biologists from the two agencies and from academic institutions. Mapping of seabed habitats is a developing field that requires the integration of geologic and biologic studies and the use of swath imaging techniques such as multibeam and sidescan sonar. Major products of swath mapping are shaded-relief topographic imagery which shows seabed features in great detail, and backscatter imagery which provides an indication of the types of materials that constitute the seabed. Sea floor images provide an excellent basis for conducting the groundtruthing studies (using video, photo, and sampling techniques) that are required to collect the data necessary for making meaningful interpretative maps of the seabed. The compilation of interpretive maps showing seabed environments and habitats also requires the development of a sea floor classification system that will be a basis for comparing, managing, and researching characteristic areas of the seabed. Seabed maps of the sanctuaries are proving useful for management and research decisions that address commercial and recreational fishing, habitat disturbance, engineering projects, tourism, and cultural resources.

  13. Direct Electric Field Visualization in Semiconductor Planar Structures

    DTIC Science & Technology

    2006-12-01

    electrical signal . The spectral response is determined by the detector characteristics and the operating temperature. The sensitivity of the material used ...to the Office of Management and Budget, Paperwork Reduction Project (0704-0188) Washington DC 20503. 1. AGENCY USE ONLY (Leave blank) 2. REPORT...words) A new technique for imaging the 2D transport of free charge in semiconductor structures is used to directly map electric field distributions

  14. Decoding the cortical transformations for visually guided reaching in 3D space.

    PubMed

    Blohm, Gunnar; Keith, Gerald P; Crawford, J Douglas

    2009-06-01

    To explore the possible cortical mechanisms underlying the 3-dimensional (3D) visuomotor transformation for reaching, we trained a 4-layer feed-forward artificial neural network to compute a reach vector (output) from the visual positions of both the hand and target viewed from different eye and head orientations (inputs). The emergent properties of the intermediate layers reflected several known neurophysiological findings, for example, gain field-like modulations and position-dependent shifting of receptive fields (RFs). We performed a reference frame analysis for each individual network unit, simulating standard electrophysiological experiments, that is, RF mapping (unit input), motor field mapping, and microstimulation effects (unit outputs). At the level of individual units (in both intermediate layers), the 3 different electrophysiological approaches identified different reference frames, demonstrating that these techniques reveal different neuronal properties and suggesting that a comparison across these techniques is required to understand the neural code of physiological networks. This analysis showed fixed input-output relationships within each layer and, more importantly, within each unit. These local reference frame transformation modules provide the basic elements for the global transformation; their parallel contributions are combined in a gain field-like fashion at the population level to implement both the linear and nonlinear elements of the 3D visuomotor transformation.

  15. Characteristics of Forests in Western Sayani Mountains, Siberia from SAR Data

    NASA Technical Reports Server (NTRS)

    Ranson, K. Jon; Sun, Guoqing; Kharuk, V. I.; Kovacs, Katalin

    1998-01-01

    This paper investigated the possibility of using spaceborne radar data to map forest types and logging in the mountainous Western Sayani area in Siberia. L and C band HH, HV, and VV polarized images from the Shuttle Imaging Radar-C instrument were used in the study. Techniques to reduce topographic effects in the radar images were investigated. These included radiometric correction using illumination angle inferred from a digital elevation model, and reducing apparent effects of topography through band ratios. Forest classification was performed after terrain correction utilizing typical supervised techniques and principal component analyses. An ancillary data set of local elevations was also used to improve the forest classification. Map accuracy for each technique was estimated for training sites based on Russian forestry maps, satellite imagery and field measurements. The results indicate that it is necessary to correct for topography when attempting to classify forests in mountainous terrain. Radiometric correction based on a DEM (Digital Elevation Model) improved classification results but required reducing the SAR (Synthetic Aperture Radar) resolution to match the DEM. Using ratios of SAR channels that include cross-polarization improved classification and

  16. Resting-state functional magnetic resonance imaging for surgical planning in pediatric patients: a preliminary experience.

    PubMed

    Roland, Jarod L; Griffin, Natalie; Hacker, Carl D; Vellimana, Ananth K; Akbari, S Hassan; Shimony, Joshua S; Smyth, Matthew D; Leuthardt, Eric C; Limbrick, David D

    2017-12-01

    OBJECTIVE Cerebral mapping for surgical planning and operative guidance is a challenging task in neurosurgery. Pediatric patients are often poor candidates for many modern mapping techniques because of inability to cooperate due to their immature age, cognitive deficits, or other factors. Resting-state functional MRI (rs-fMRI) is uniquely suited to benefit pediatric patients because it is inherently noninvasive and does not require task performance or significant cooperation. Recent advances in the field have made mapping cerebral networks possible on an individual basis for use in clinical decision making. The authors present their initial experience translating rs-fMRI into clinical practice for surgical planning in pediatric patients. METHODS The authors retrospectively reviewed cases in which the rs-fMRI analysis technique was used prior to craniotomy in pediatric patients undergoing surgery in their institution. Resting-state analysis was performed using a previously trained machine-learning algorithm for identification of resting-state networks on an individual basis. Network maps were uploaded to the clinical imaging and surgical navigation systems. Patient demographic and clinical characteristics, including need for sedation during imaging and use of task-based fMRI, were also recorded. RESULTS Twenty patients underwent rs-fMRI prior to craniotomy between December 2013 and June 2016. Their ages ranged from 1.9 to 18.4 years, and 12 were male. Five of the 20 patients also underwent task-based fMRI and one underwent awake craniotomy. Six patients required sedation to tolerate MRI acquisition, including resting-state sequences. Exemplar cases are presented including anatomical and resting-state functional imaging. CONCLUSIONS Resting-state fMRI is a rapidly advancing field of study allowing for whole brain analysis by a noninvasive modality. It is applicable to a wide range of patients and effective even under general anesthesia. The nature of resting-state analysis precludes any need for task cooperation. These features make rs-fMRI an ideal technology for cerebral mapping in pediatric neurosurgical patients. This review of the use of rs-fMRI mapping in an initial pediatric case series demonstrates the feasibility of utilizing this technique in pediatric neurosurgical patients. The preliminary experience presented here is a first step in translating this technique to a broader clinical practice.

  17. Mapping scientific frontiers : the quest for knowledge visualization.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boyack, Kevin W.

    Visualization of scientific frontiers is a relatively new field, yet it has a long history and many predecessors. The application of science to science itself has been undertaken for decades with notable early contributions by Derek Price, Thomas Kuhn, Diana Crane, Eugene Garfield, and many others. What is new is the field of information visualization and application of its techniques to help us understand the process of science in the making. In his new book, Chaomei Chen takes us on a journey through this history, touching on predecessors, and then leading us firmly into the new world of Mapping Scientificmore » Frontiers. Building on the foundation of his earlier book, Information Visualization and Virtual Environments, Chen's new offering is much less a tutorial in how to do information visualization, and much more a conceptual exploration of why and how the visualization of science can change the way we do science, amplified by real examples. Chen's stated intents for the book are: (1) to focus on principles of visual thinking that enable the identification of scientific frontiers; (2) to introduce a way to systematize the identification of scientific frontiers (or paradigms) through visualization techniques; and (3) to stimulate interdisciplinary research between information visualization and information science researchers. On all these counts, he succeeds. Chen's book can be broken into two parts which focus on the first two purposes stated above. The first, consisting of the initial four chapters, covers history and predecessors. Kuhn's theory of normal science punctuated by periods of revolution, now commonly known as paradigm shifts, motivates the work. Relevant predecessors outside the traditional field of information science such as cartography (both terrestrial and celestial), mapping the mind, and principles of visual association and communication, are given ample coverage. Chen also describes enabling techniques known to information scientists, such as multi-dimensional scaling, advanced dimensional reduction, social network analysis, Pathfinder network scaling, and landscape visualizations. No algorithms are given here; rather, these techniques are described from the point of view of enabling 'visual thinking'. The Generalized Similarity Analysis (GSA) technique used by Chen in his recent published papers is also introduced here. Information and computer science professionals would be wise not to skip through these early chapters. Although principles of gestalt psychology, cartography, thematic maps, and association techniques may be outside their technology comfort zone, or interest, these predecessors lay a groundwork for the 'visual thinking' that is required to create effective visualizations. Indeed, the great challenge in information visualization is to transform the abstract and intangible into something visible, concrete, and meaningful to the user. The second part of the book, covering the final three chapters, extends the mapping metaphor into the realm of scientific discovery through the structuring of literatures in a way that enables us to see scientific frontiers or paradigms. Case studies are used extensively to show the logical progression that has been made in recent years to get us to this point. Homage is paid to giants of the last 20 years including Michel Callon for co-word mapping, Henry Small for document co-citation analysis and specialty narratives (charting a path linking the different sciences), and Kate McCain for author co-citation analysis, whose work has led to the current state-of-the-art. The last two chapters finally answer the question - 'What does a scientific paradigm look like?' The visual answer given is specific to the GSA technique used by Chen, but does satisfy the intent of the book - to introduce a way to visually identify scientific frontiers. A variety of case studies, mostly from Chen's previously published work - supermassive black holes, cross-domain applications of Pathfinder networks, mass extinction debates, impact of Don Swanson's work, and mad cow disease and vCJD in humans - succeed in explaining how visualization can be used to show the development of, competition between, and eventual acceptance (or replacement) of scientific paradigms. Although not addressed specifically, Chen's work nonetheless makes the persuasive argument that visual maps alone are not sufficient to explain 'the making of science' to a non-expert in a particular field. Rather, expert knowledge is still required to interpret these maps and to explain the paradigms. This combination of visual maps and expert knowledge, used jointly to good effect in the book, becomes a potent means for explaining progress in science to the expert and non-expert alike. Work to extend the GSA technique to explore latent domain knowledge (important work that falls below the citation thresholds typically used in GSA) is also explored here.« less

  18. Random field assessment of nanoscopic inhomogeneity of bone.

    PubMed

    Dong, X Neil; Luo, Qing; Sparkman, Daniel M; Millwater, Harry R; Wang, Xiaodu

    2010-12-01

    Bone quality is significantly correlated with the inhomogeneous distribution of material and ultrastructural properties (e.g., modulus and mineralization) of the tissue. Current techniques for quantifying inhomogeneity consist of descriptive statistics such as mean, standard deviation and coefficient of variation. However, these parameters do not describe the spatial variations of bone properties. The objective of this study was to develop a novel statistical method to characterize and quantitatively describe the spatial variation of bone properties at ultrastructural levels. To do so, a random field defined by an exponential covariance function was used to represent the spatial uncertainty of elastic modulus by delineating the correlation of the modulus at different locations in bone lamellae. The correlation length, a characteristic parameter of the covariance function, was employed to estimate the fluctuation of the elastic modulus in the random field. Using this approach, two distribution maps of the elastic modulus within bone lamellae were generated using simulation and compared with those obtained experimentally by a combination of atomic force microscopy and nanoindentation techniques. The simulation-generated maps of elastic modulus were in close agreement with the experimental ones, thus validating the random field approach in defining the inhomogeneity of elastic modulus in lamellae of bone. Indeed, generation of such random fields will facilitate multi-scale modeling of bone in more pragmatic details. Copyright © 2010 Elsevier Inc. All rights reserved.

  19. Moisture analysis from radiosonde and microwave spectrometer data

    NASA Technical Reports Server (NTRS)

    Haydu, K. J.; Krishnamurti, T. N.

    1981-01-01

    A method for analysis of the horizontal and vertical distributions of the moisture field utilizing satellite, upper air and surface data is proposed in this paper. A brief overview of the microwave sensors on board Nimbus 5 and 6 is also presented. A technique is provided utilizing the radiosonde data sets to calibrate the satellite field of total precipitable water. Next, the calibrated satellite-derived field is utilized along with ship and coastal reports of moisture, and a vertical structure function to generate vertical distribution of moisture and thus provide a mapping of specific humidity at several levels in the troposphere. Utilizing these procedures, analyses for several case studies were performed. The resultant maps show detailed distribution of specific humidity along with some interesting climatological features. A reasonable acceptance of the available aerological data sets by the analysis scheme is demonstrated.

  20. Field camp: Using traditional methods to train the next generation of petroleum geologists

    USGS Publications Warehouse

    Puckette, J.O.; Suneson, N.H.

    2009-01-01

    The summer field camp experience provides many students with their best opportunity to learn the scientific process by making observations and collecting, recording, evaluating, and interpreting geologic data. Field school projects enhance student professional development by requiring cooperation and interpersonal interaction, report writing to communicate interpretations, and the development of project management skills to achieve a common goal. The field school setting provides students with the opportunity to observe geologic features and their spatial distribution, size, and shape that will impact the student's future careers as geoscientists. The Les Huston Geology Field Camp (a.k.a. Oklahoma Geology Camp) near Ca??on City, Colorado, focuses on time-tested traditional methods of geological mapping and fieldwork to accomplish these goals. The curriculum consists of an introduction to field techniques (pacing, orienteering, measuring strike and dip, and using a Jacob's staff), sketching outcrops, section measuring (one illustrating facies changes), three mapping exercises (of increasing complexity), and a field geophysics project. Accurate rock and contact descriptions are emphasized, and attitudes and contacts are mapped in the field. Mapping is done on topographic maps at 1:12,000 and 1:6000 scales; air photos are provided. Global positioning system (GPS)-assisted mapping is allowed, but we insist that locations be recorded in the field and confirmed using visual observations. The course includes field trips to the Cripple Creek and Leadville mining districts, Floris-sant/Guffey volcano area, Pikes Peak batholith, and the Denver Basin. Each field trip is designed to emphasize aspects of geology that are not stressed in the field exercises. Students are strongly encouraged to accurately describe geologic features and gather evidence to support their interpretations of the geologic history. Concise reports are a part of each major exercise. Students are grouped into teams to (1) introduce the team concept and develop interpersonal skills that are fundamental components of many professions, (2) ensure safety, and (3) mix students with varying academic backgrounds and physical strengths. This approach has advantages and disadvantages. Students with academic strengths in specific areas assist those with less experience, thereby becoming engaged in the teaching process. However, some students contribute less to fi nal map projects than others, and assigning grades to individual team members can be diffi cult. The greatest challenges we face involve group dynamics and student personalities. We continue to believe that traditional fi eld methods, aided by (but not relying upon) new technologies, are the key to constructing and/or interpreting geologic maps. The requirement that students document fi eld evidence using careful observations teaches skills that will be benefi cial throughout their professional careers. ??2009 The Geological Society of America. All rights reserved.

  1. Temporal reliability of ultra-high field resting-state MRI for single-subject sensorimotor and language mapping.

    PubMed

    Branco, Paulo; Seixas, Daniela; Castro, São Luís

    2018-03-01

    Resting-state fMRI is a well-suited technique to map functional networks in the brain because unlike task-based approaches it requires little collaboration from subjects. This is especially relevant in clinical settings where a number of subjects cannot comply with task demands. Previous studies using conventional scanner fields have shown that resting-state fMRI is able to map functional networks in single subjects, albeit with moderate temporal reliability. Ultra-high resolution (7T) imaging provides higher signal-to-noise ratio and better spatial resolution and is thus well suited to assess the temporal reliability of mapping results, and to determine if resting-state fMRI can be applied in clinical decision making including preoperative planning. We used resting-state fMRI at ultra-high resolution to examine whether the sensorimotor and language networks are reliable over time - same session and one week after. Resting-state networks were identified for all subjects and sessions with good accuracy. Both networks were well delimited within classical regions of interest. Mapping was temporally reliable at short and medium time-scales as demonstrated by high values of overlap in the same session and one week after for both networks. Results were stable independently of data quality metrics and physiological variables. Taken together, these findings provide strong support for the suitability of ultra-high field resting-state fMRI mapping at the single-subject level. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  2. Dynamics of paramagnetic agents by off-resonance rotating frame technique

    NASA Astrophysics Data System (ADS)

    Zhang, Huiming; Xie, Yang

    2006-12-01

    Off-resonance rotating frame technique offers a novel tool to explore the dynamics of paramagnetic agents at high magnetic fields ( B0 > 3 T). Based on the effect of paramagnetic relaxation enhancement in the off-resonance rotating frame, a new method is described here for determining the dynamics of paramagnetic ion chelates from the residual z-magnetizations of water protons. In this method, the dynamics of the chelates are identified by the difference magnetization profiles, which are the subtraction of the residual z-magnetization as a function of frequency offset obtained at two sets of RF amplitude ω1 and pulse duration τ. The choices of ω1 and τ are guided by a 2-D magnetization map that is created numerically by plotting the residual z-magnetization as a function of effective field angle θ and off-resonance pulse duration τ. From the region of magnetization map that is the most sensitive to the alteration of the paramagnetic relaxation enhancement efficiency R1 ρ/ R1, the ratio of the off-resonance rotating frame relaxation rate constant R1 ρ verse the laboratory frame relaxation rate constant R1, three types of difference magnetization profiles can be generated. The magnetization map and the difference magnetization profiles are correlated with the rotational correlation time τR of Gd-DTPA through numerical simulations, and further validated by the experimental data for a series of macromolecule conjugated Gd-DTPA in aqueous solutions. Effects of hydration water number q, diffusion coefficient D, magnetic field strength B0 and multiple rotational correlation times are explored with the simulations of the magnetization map. This method not only provides a simple and reliable approach to determine the dynamics of paramagnetic labeling of molecular/cellular events at high magnetic fields, but also a new strategy for spectral editing in NMR/MRI based on the dynamics of paramagnetic labeling in vivo.

  3. First experimental demonstration of an isotropic electromagnetic cloak with strict conformal mapping

    PubMed Central

    Ma, Yungui; Liu, Yichao; Lan, Lu; Wu, Tiantian; Jiang, Wei; Ong, C. K.; He, Sailing

    2013-01-01

    In the past years quasi-conformal mapping has been generally used to design broadband electromagnetic cloaks. However, this technique has some inherit practical limitations such as the lateral beam shift, rendering the device visible or difficult to hide a large object. In this work we circumvent these issues by using strict conformal mapping to build the first isotropic cloak. Microwave near-field measurement shows that our device (with dielectric constant larger than unity everywhere) has a very good cloaking performance and a broad frequency response. The present dielectric approach could be technically extended to the fabrication of other conformal devices at higher frequencies. PMID:23851589

  4. A technique for the determination of Louisiana marsh salinity zone from vegetation mapped by multispectral scanner data: A comparison of satellite and aircraft data

    NASA Technical Reports Server (NTRS)

    Butera, M. K.

    1977-01-01

    Vegetation in selected study areas on the Louisiana coast was mapped using low altitude aircraft and satellite (LANDSAT) multispectral scanner data. Fresh, brackish, and saline marshes were then determined from the remotely sensed presence of dominant indicator plant associations. Such vegetational classifications were achieved from data processed through a standard pattern recognition computer program. The marsh salinity zone maps from the aircraft and satellite data compared favorably within the broad salinity regimes. The salinity zone boundaries determined by remote sensing compared favorably with those interpolated from line-transect field observations from an earlier year.

  5. Development of spectral indices for roofing material condition status detection using field spectroscopy and WorldView-3 data

    NASA Astrophysics Data System (ADS)

    Samsudin, Sarah Hanim; Shafri, Helmi Z. M.; Hamedianfar, Alireza

    2016-04-01

    Status observations of roofing material degradation are constantly evolving due to urban feature heterogeneities. Although advanced classification techniques have been introduced to improve within-class impervious surface classifications, these techniques involve complex processing and high computation times. This study integrates field spectroscopy and satellite multispectral remote sensing data to generate degradation status maps of concrete and metal roofing materials. Field spectroscopy data were used as bases for selecting suitable bands for spectral index development because of the limited number of multispectral bands. Mapping methods for roof degradation status were established for metal and concrete roofing materials by developing the normalized difference concrete condition index (NDCCI) and the normalized difference metal condition index (NDMCI). Results indicate that the accuracies achieved using the spectral indices are higher than those obtained using supervised pixel-based classification. The NDCCI generated an accuracy of 84.44%, whereas the support vector machine (SVM) approach yielded an accuracy of 73.06%. The NDMCI obtained an accuracy of 94.17% compared with 62.5% for the SVM approach. These findings support the suitability of the developed spectral index methods for determining roof degradation statuses from satellite observations in heterogeneous urban environments.

  6. Performance analysis of the Microsoft Kinect sensor for 2D Simultaneous Localization and Mapping (SLAM) techniques.

    PubMed

    Kamarudin, Kamarulzaman; Mamduh, Syed Muhammad; Shakaff, Ali Yeon Md; Zakaria, Ammar

    2014-12-05

    This paper presents a performance analysis of two open-source, laser scanner-based Simultaneous Localization and Mapping (SLAM) techniques (i.e., Gmapping and Hector SLAM) using a Microsoft Kinect to replace the laser sensor. Furthermore, the paper proposes a new system integration approach whereby a Linux virtual machine is used to run the open source SLAM algorithms. The experiments were conducted in two different environments; a small room with no features and a typical office corridor with desks and chairs. Using the data logged from real-time experiments, each SLAM technique was simulated and tested with different parameter settings. The results show that the system is able to achieve real time SLAM operation. The system implementation offers a simple and reliable way to compare the performance of Windows-based SLAM algorithm with the algorithms typically implemented in a Robot Operating System (ROS). The results also indicate that certain modifications to the default laser scanner-based parameters are able to improve the map accuracy. However, the limited field of view and range of Kinect's depth sensor often causes the map to be inaccurate, especially in featureless areas, therefore the Kinect sensor is not a direct replacement for a laser scanner, but rather offers a feasible alternative for 2D SLAM tasks.

  7. Performance Analysis of the Microsoft Kinect Sensor for 2D Simultaneous Localization and Mapping (SLAM) Techniques

    PubMed Central

    Kamarudin, Kamarulzaman; Mamduh, Syed Muhammad; Shakaff, Ali Yeon Md; Zakaria, Ammar

    2014-01-01

    This paper presents a performance analysis of two open-source, laser scanner-based Simultaneous Localization and Mapping (SLAM) techniques (i.e., Gmapping and Hector SLAM) using a Microsoft Kinect to replace the laser sensor. Furthermore, the paper proposes a new system integration approach whereby a Linux virtual machine is used to run the open source SLAM algorithms. The experiments were conducted in two different environments; a small room with no features and a typical office corridor with desks and chairs. Using the data logged from real-time experiments, each SLAM technique was simulated and tested with different parameter settings. The results show that the system is able to achieve real time SLAM operation. The system implementation offers a simple and reliable way to compare the performance of Windows-based SLAM algorithm with the algorithms typically implemented in a Robot Operating System (ROS). The results also indicate that certain modifications to the default laser scanner-based parameters are able to improve the map accuracy. However, the limited field of view and range of Kinect's depth sensor often causes the map to be inaccurate, especially in featureless areas, therefore the Kinect sensor is not a direct replacement for a laser scanner, but rather offers a feasible alternative for 2D SLAM tasks. PMID:25490595

  8. An analysis of stream channel cross section technique as a means to determine anthropogenic change in second order streams at the Tenderfoot Creek Experimental Forest, Meagher County, Montana

    Treesearch

    Jeff Boice

    1999-01-01

    Five second order tributaries to Tenderfoot Creek were investigated: Upper Tenderfoot Creek, Sun Creek, Spring Park Creek, Bubbling Creek, and Stringer Creek. Second order reaches were initially located on 7.5 minute topographic maps using techniques first applied by Strahler (1952). Reach breaks were determined in the field through visual inspection. Vegetation type (...

  9. New characterization techniques for LSST sensors

    DOE PAGES

    Nomerotski, A.

    2015-06-18

    Fully depleted, thick CCDs with extended infra-red response have become the sensor of choice for modern sky surveys. The charge transport effects in the silicon and associated astrometric distortions could make mapping between the sky coordinates and sensor coordinates non-trivial, and limit the ultimate precision achievable with these sensors. Two new characterization techniques for the CCDs, which both could probe these issues, are discussed: x-ray flat fielding and imaging of pinhole arrays.

  10. Extended surface parallel coating inspection method

    DOEpatents

    Naulleau, Patrick P.

    2006-03-21

    Techniques for rapidly characterizing reflective surfaces and especially multi-layer EUV reflective surfaces of optical components involve illuminating the entire reflective surface instantaneously and detecting the image far field. The technique provides a mapping of points on the reflective surface to corresponding points on a detector, e.g., CCD. This obviates the need to scan a probe over the entire surface of the optical component. The reflective surface can be flat, convex, or concave.

  11. Radiofrequency field inhomogeneity compensation in high spatial resolution magnetic resonance spectroscopic imaging

    NASA Astrophysics Data System (ADS)

    Passeri, Alessandro; Mazzuca, Stefano; Del Bene, Veronica

    2014-06-01

    Clinical magnetic resonance spectroscopy imaging (MRSI) is a non-invasive functional technique, whose mathematical framework falls into the category of linear inverse problems. However, its use in medical diagnostics is hampered by two main problems, both linked to the Fourier-based technique usually implemented for spectra reconstruction: poor spatial resolution and severe blurring in the spatial localization of the reconstructed spectra. Moreover, the intrinsic ill-posedness of the MRSI problem might be worsened by (i) spatially dependent distortions of the static magnetic field (B0) distribution, as well as by (ii) inhomogeneity in the power deposition distribution of the radiofrequency magnetic field (B1). Among several alternative methods, slim (Spectral Localization by IMaging) and bslim (B0 compensated slim) are reconstruction algorithms in which a priori information concerning the spectroscopic target is introduced into the reconstruction kernel. Nonetheless, the influence of the B1 field, particularly when its operating wavelength is close to the size of the human organs being studied, continues to be disregarded. starslim (STAtic and Radiofrequency-compensated slim), an evolution of the slim and bslim methods, is therefore proposed, in which the transformation kernel also includes the B1 field inhomogeneity map, thus allowing almost complete 3D modelling of the MRSI problem. Moreover, an original method for the experimental determination of the B1 field inhomogeneity map specific to the target under evaluation is also included. The compensation capabilities of the proposed method have been tested and illustrated using synthetic raw data reproducing the human brain.

  12. Testing of stack-unit/aquifer sensitivity analysis using contaminant plume distribution in the subsurface of Savannah River Site, South Carolina, USA

    USGS Publications Warehouse

    Rine, J.M.; Shafer, J.M.; Covington, E.; Berg, R.C.

    2006-01-01

    Published information on the correlation and field-testing of the technique of stack-unit/aquifer sensitivity mapping with documented subsurface contaminant plumes is rare. The inherent characteristic of stack-unit mapping, which makes it a superior technique to other analyses that amalgamate data, is the ability to deconstruct the sensitivity analysis on a unit-by-unit basis. An aquifer sensitivity map, delineating the relative sensitivity of the Crouch Branch aquifer of the Administrative/Manufacturing Area (A/M) at the Savannah River Site (SRS) in South Carolina, USA, incorporates six hydrostratigraphic units, surface soil units, and relevant hydrologic data. When this sensitivity map is compared with the distribution of the contaminant tetrachloroethylene (PCE), PCE is present within the Crouch Branch aquifer within an area classified as highly sensitive, even though the PCE was primarily released on the ground surface within areas classified with low aquifer sensitivity. This phenomenon is explained through analysis of the aquifer sensitivity map, the groundwater potentiometric surface maps, and the plume distributions within the area on a unit-by- unit basis. The results of this correlation show how the paths of the PCE plume are influenced by both the geology and the groundwater flow. ?? Springer-Verlag 2006.

  13. Expading fluvial remote sensing to the riverscape: Mapping depth and grain size on the Merced River, California

    NASA Astrophysics Data System (ADS)

    Richardson, Ryan T.

    This study builds upon recent research in the field of fluvial remote sensing by applying techniques for mapping physical attributes of rivers. Depth, velocity, and grain size are primary controls on the types of habitat present in fluvial ecosystems. This thesis focuses on expanding fluvial remote sensing to larger spatial extents and sub-meter resolutions, which will increase our ability to capture the spatial heterogeneity of habitat at a resolution relevant to individual salmonids and an extent relevant to species. This thesis consists of two chapters, one focusing on expanding the spatial extent over which depth can be mapped using Optimal Band Ratio Analysis (OBRA) and the other developing general relations for mapping grain size from three-dimensional topographic point clouds. The two chapters are independent but connected by the overarching goal of providing scientists and managers more useful tools for quantifying the amount and quality of salmonid habitat via remote sensing. The OBRA chapter highlights the true power of remote sensing to map depths from hyperspectral images as a central component of watershed scale analysis, while also acknowledging the great challenges involved with increasing spatial extent. The grain size mapping chapter establishes the first general relations for mapping grain size from roughness using point clouds. These relations will significantly reduce the time needed in the field by eliminating the need for independent measurements of grain size for calibrating the roughness-grain size relationship and thus making grain size mapping with SFM more cost effective for river restoration and monitoring. More data from future studies are needed to refine these relations and establish their validity and generality. In conclusion, this study adds to the rapidly growing field of fluvial remote sensing and could facilitate river research and restoration.

  14. Threshold and variability properties of matrix frequency-doubling technology and standard automated perimetry in glaucoma.

    PubMed

    Artes, Paul H; Hutchison, Donna M; Nicolela, Marcelo T; LeBlanc, Raymond P; Chauhan, Balwantray C

    2005-07-01

    To compare test results from second-generation Frequency-Doubling Technology perimetry (FDT2, Humphrey Matrix; Carl-Zeiss Meditec, Dublin, CA) and standard automated perimetry (SAP) in patients with glaucoma. Specifically, to examine the relationship between visual field sensitivity and test-retest variability and to compare total and pattern deviation probability maps between both techniques. Fifteen patients with glaucoma who had early to moderately advanced visual field loss with SAP (mean MD, -4.0 dB; range, +0.2 to -16.1) were enrolled in the study. Patients attended three sessions. During each session, one eye was examined twice with FDT2 (24-2 threshold test) and twice with SAP (Swedish Interactive Threshold Algorithm [SITA] Standard 24-2 test), in random order. We compared threshold values between FDT2 and SAP at test locations with similar visual field coordinates. Test-retest variability, established in terms of test-retest intervals and standard deviations (SDs), was investigated as a function of visual field sensitivity (estimated by baseline threshold and mean threshold, respectively). The magnitude of visual field defects apparent in total and pattern deviation probability maps were compared between both techniques by ordinal scoring. The global visual field indices mean deviation (MD) and pattern standard deviation (PSD) of FDT2 and SAP correlated highly (r > 0.8; P < 0.001). At test locations with high sensitivity (>25 dB with SAP), threshold estimates from FDT2 and SAP exhibited a close, linear relationship, with a slope of approximately 2.0. However, at test locations with lower sensitivity, the relationship was much weaker and ceased to be linear. In comparison with FDT2, SAP showed a slightly larger proportion of test locations with absolute defects (3.0% vs. 2.2% with SAP and FDT2, respectively, P < 0.001). Whereas SAP showed a significant increase in test-retest variability at test locations with lower sensitivity (P < 0.001), there was no relationship between variability and sensitivity with FDT2 (P = 0.46). In comparison with SAP, FDT2 exhibited narrower test-retest intervals at test locations with lower sensitivity (SAP thresholds <25 dB). A comparison of the total and pattern deviation maps between both techniques showed that the total deviation analyses of FDT2 may slightly underestimate the visual field loss apparent with SAP. However, the pattern-deviation maps of both instruments agreed well with each other. The test-retest variability of FDT2 is uniform over the measurement range of the instrument. These properties may provide advantages for the monitoring of patients with glaucoma that should be investigated in longitudinal studies.

  15. Carbohydrate Microarray Technology Applied to High-Throughput Mapping of Plant Cell Wall Glycans Using Comprehensive Microarray Polymer Profiling (CoMPP).

    PubMed

    Kračun, Stjepan Krešimir; Fangel, Jonatan Ulrik; Rydahl, Maja Gro; Pedersen, Henriette Lodberg; Vidal-Melgosa, Silvia; Willats, William George Tycho

    2017-01-01

    Cell walls are an important feature of plant cells and a major component of the plant glycome. They have both structural and physiological functions and are critical for plant growth and development. The diversity and complexity of these structures demand advanced high-throughput techniques to answer questions about their structure, functions and roles in both fundamental and applied scientific fields. Microarray technology provides both the high-throughput and the feasibility aspects required to meet that demand. In this chapter, some of the most recent microarray-based techniques relating to plant cell walls are described together with an overview of related contemporary techniques applied to carbohydrate microarrays and their general potential in glycoscience. A detailed experimental procedure for high-throughput mapping of plant cell wall glycans using the comprehensive microarray polymer profiling (CoMPP) technique is included in the chapter and provides a good example of both the robust and high-throughput nature of microarrays as well as their applicability to plant glycomics.

  16. Bayesian component separation: The Planck experience

    NASA Astrophysics Data System (ADS)

    Wehus, Ingunn Kathrine; Eriksen, Hans Kristian

    2018-05-01

    Bayesian component separation techniques have played a central role in the data reduction process of Planck. The most important strength of this approach is its global nature, in which a parametric and physical model is fitted to the data. Such physical modeling allows the user to constrain very general data models, and jointly probe cosmological, astrophysical and instrumental parameters. This approach also supports statistically robust goodness-of-fit tests in terms of data-minus-model residual maps, which are essential for identifying residual systematic effects in the data. The main challenges are high code complexity and computational cost. Whether or not these costs are justified for a given experiment depends on its final uncertainty budget. We therefore predict that the importance of Bayesian component separation techniques is likely to increase with time for intensity mapping experiments, similar to what has happened in the CMB field, as observational techniques mature, and their overall sensitivity improves.

  17. Implementation of laser speckle contrast analysis as connection kit for mobile phone for assessment of skin blood flow

    NASA Astrophysics Data System (ADS)

    Jakovels, Dainis; Saknite, Inga; Spigulis, Janis

    2014-05-01

    Laser speckle contrast analysis (LASCA) offers a non-contact, full-field, and real-time mapping of capillary blood flow and can be considered as an alternative method to Laser Doppler perfusion imaging. LASCA technique has been implemented in several commercial instruments. However, these systems are still too expensive and bulky to be widely available. Several optical techniques have found new implementations as connection kits for mobile phones thus offering low cost screening devices. In this work we demonstrate simple implementation of LASCA imaging technique as connection kit for mobile phone for primary low-cost assessment of skin blood flow. Stabilized 650 nm and 532 nm laser diode modules were used for LASCA illumination. Dual wavelength illumination could provide additional information about skin hemoglobin and oxygenation level. The proposed approach was tested for arterial occlusion and heat test. Besides, blood flow maps of injured and provoked skin were demonstrated.

  18. Awake craniotomy, electrophysiologic mapping, and tumor resection with high-field intraoperative MRI.

    PubMed

    Parney, Ian F; Goerss, Stephan J; McGee, Kiaran; Huston, John; Perkins, William J; Meyer, Frederic B

    2010-05-01

    Awake craniotomy and electrophysiologic mapping (EPM) is an established technique to facilitate the resection of near eloquent cortex. Intraoperative magnetic resonance imaging (iMRI) is increasingly used to aid in the resection of intracranial lesions. Standard draping protocols in high-field iMRI units make awake craniotomies challenging, and only two groups have previously reported combined EPM and high-field iMRI. We present an illustrative case describing a simple technique for combining awake craniotomy and EPM with high-field iMRI. A movable platter is used to transfer the patient from the operating table to a transport trolley and into the adjacent MRI and still maintaining the patient's surgical position. This system allows excess drapes to be removed, facilitating awake craniotomy. A 57-year-old right-handed man presented with new onset seizures. Magnetic resonance imaging demonstrated a large left temporal mass. The patient underwent an awake, left frontotemporal craniotomy. The EPM demonstrated a single critical area for speech in his inferior frontal gyrus. After an initial tumor debulking, the scalp flap was loosely approximated, the wound was covered with additional drapes, and the excess surrounding drapes were trimmed. An iMRI was obtained. The image-guidance system was re-registered and the patient was redraped. Additional resection was performed, allowing extensive removal of what proved to be an anaplastic astrocytoma. The patient tolerated this well without any new neurological deficits. Standard protocols for positioning and draping in high-field iMRI units make awake craniotomies problematic. This straightforward technique for combined awake EPM and iMRI may facilitate safe removal of large lesions in eloquent cortex. Copyright © 2010 Elsevier Inc. All rights reserved.

  19. Speckle techniques for determining stresses in moving objects

    NASA Technical Reports Server (NTRS)

    Murphree, E. A.; Wilson, T. F.; Ranson, W. F.; Swinson, W. F.

    1978-01-01

    Laser speckle interferometry is a relatively new experimental technique which shows promise of alleviating many difficult problems in experimental mechanics. The method utilizes simple high-resolution photographs of the surface which is illuminated by coherent light. The result is a real-time or permanently stored whole-field record of interference fringes which yields a map of displacements in the object. In this thesis, the time-average theory using the Fourier transform is developed to present the application of this technique to measurement of in-plane displacement induced by the vibration of an object.

  20. Construction of Improved Maps of Mercury's Crustal Magnetic Field at Northern Midlatitudes

    NASA Astrophysics Data System (ADS)

    Hood, L. L.; Oliveira, J. S.

    2017-12-01

    We report progress toward the construction of a refined version of the northern midlatitude crustal magnetic field map of Hood [GRL, 2016], extended to cover latitudes from 35N to 80N and all longitudes. The main improvements include: (1) Combining MESSENGER magnetometer data from August and September of 2014 with that from February, March, and April of 2015 to provide the best overall input data set for mapping and the largest possible area of coverage; (2) improving the elimination of external and core field contamination by using a model for Mercury's core field and a more conservative high-pass filter length; and (3) improving the equivalent source dipole (ESD) mapping technique using an equidistant equivalent source dipole array and varying the depth, orientation, and resolution of the array to minimize the overall root mean square misfit. Combining data from the two time intervals allows the total latitude range of the final map to be increased by at least 5 degrees to 35N - 80N. Also, previous mapping has concentrated on the hemisphere from 90E to 270E; inclusion of all available data will allow the final maps to be extended to all longitudes, more than doubling the coverage reported by Hood [2016]. Previous work has demonstrated a concentration of relatively strong magnetic anomalies near and within the Caloris impact basin. A secondary concentration near Sobkou Planitia, which contains an older impact basin, was also found. The existence of anomalies within the Caloris rim implies that a steady magnetizing field, i.e., a core dynamo, was present when this basin formed. A major application of the improved map will be to investigate whether anomalies are concentrated near and within other impact basins. If some basins are found not to have concentrations of magnetic anomalies, this could imply a role of impactor composition (e.g., iron content) in producing the crustal materials that are most strongly magnetized, as has previously been proposed to be the case on the Moon [Wieczorek et al., Science, 2012].

  1. Image processing for IMRT QA dosimetry.

    PubMed

    Zaini, Mehran R; Forest, Gary J; Loshek, David D

    2005-01-01

    We have automated the determination of the placement location of the dosimetry ion chamber within intensity-modulated radiotherapy (IMRT) fields, as part of streamlining the entire IMRT quality assurance process. This paper describes the mathematical image-processing techniques to arrive at the appropriate measurement locations within the planar dose maps of the IMRT fields. A specific spot within the found region is identified based on its flatness, radiation magnitude, location, area, and the avoidance of the interleaf spaces. The techniques used include applying a Laplacian, dilation, erosion, region identification, and measurement point selection based on three parameters: the size of the erosion operator, the gradient, and the importance of the area of a region versus its magnitude. These three parameters are adjustable by the user. However, the first one requires tweaking in extremely rare occasions, the gradient requires rare adjustments, and the last parameter needs occasional fine-tuning. This algorithm has been tested in over 50 cases. In about 5% of cases, the algorithm does not find a measurement point due to the extremely steep and narrow regions within the fluence maps. In such cases, manual selection of a point is allowed by our code, which is also difficult to ascertain, since the fluence map does not yield itself to an appropriate measurement point selection.

  2. Morphometric analysis and neuroanatomical mapping of the zebrafish brain.

    PubMed

    Gupta, Tripti; Marquart, Gregory D; Horstick, Eric J; Tabor, Kathryn M; Pajevic, Sinisa; Burgess, Harold A

    2018-06-21

    Large-scale genomic studies have recently identified genetic variants causative for major neurodevelopmental disorders, such as intellectual disability and autism. However, determining how underlying developmental processes are affected by these mutations remains a significant challenge in the field. Zebrafish is an established model system in developmental neurogenetics that may be useful in uncovering the mechanisms of these mutations. Here we describe the use of voxel-intensity, deformation field, and volume-based morphometric techniques for the systematic and unbiased analysis of gene knock-down and environmental exposure-induced phenotypes in zebrafish. We first present a computational method for brain segmentation based on transgene expression patterns to create a comprehensive neuroanatomical map. This map allowed us to disclose statistically significant changes in brain microstructure and composition in neurodevelopmental models. We demonstrate the effectiveness of morphometric techniques in measuring changes in the relative size of neuroanatomical subdivisions in atoh7 morphant larvae and in identifying phenotypes in larvae treated with valproic acid, a chemical demonstrated to increase the risk of autism in humans. These tools enable rigorous evaluation of the effects of gene mutations and environmental exposures on neural development, providing an entry point for cellular and molecular analysis of basic developmental processes as well as neurodevelopmental and neurodegenerative disorders. Published by Elsevier Inc.

  3. X-ray elemental mapping techniques for elucidating the ecophysiology of hyperaccumulator plants.

    PubMed

    van der Ent, Antony; Przybyłowicz, Wojciech J; de Jonge, Martin D; Harris, Hugh H; Ryan, Chris G; Tylko, Grzegorz; Paterson, David J; Barnabas, Alban D; Kopittke, Peter M; Mesjasz-Przybyłowicz, Jolanta

    2018-04-01

    Contents Summary 432 I. Introduction 433 II. Preparation of plant samples for X-ray micro-analysis 433 III. X-ray elemental mapping techniques 438 IV. X-ray data analysis 442 V. Case studies 443 VI. Conclusions 446 Acknowledgements 449 Author contributions 449 References 449 SUMMARY: Hyperaccumulators are attractive models for studying metal(loid) homeostasis, and probing the spatial distribution and coordination chemistry of metal(loid)s in their tissues is important for advancing our understanding of their ecophysiology. X-ray elemental mapping techniques are unique in providing in situ information, and with appropriate sample preparation offer results true to biological conditions of the living plant. The common platform of these techniques is a reliance on characteristic X-rays of elements present in a sample, excited either by electrons (scanning/transmission electron microscopy), protons (proton-induced X-ray emission) or X-rays (X-ray fluorescence microscopy). Elucidating the cellular and tissue-level distribution of metal(loid)s is inherently challenging and accurate X-ray analysis places strict demands on sample collection, preparation and analytical conditions, to avoid elemental redistribution, chemical modification or ultrastructural alterations. We compare the merits and limitations of the individual techniques, and focus on the optimal field of applications for inferring ecophysiological processes in hyperaccumulator plants. X-ray elemental mapping techniques can play a key role in answering questions at every level of metal(loid) homeostasis in plants, from the rhizosphere interface, to uptake pathways in the roots and shoots. Further improvements in technological capabilities offer exciting perspectives for the study of hyperaccumulator plants into the future. © 2017 University of Queensland. New Phytologist © 2017 New Phytologist Trust.

  4. Mapping experiment with space station

    NASA Technical Reports Server (NTRS)

    Wu, S. S. C.

    1986-01-01

    Mapping of the Earth from space stations can be approached in two areas. One is to collect gravity data for defining topographic datum using Earth's gravity field in terms of spherical harmonics. The other is to search and explore techniques of mapping topography using either optical or radar images with or without reference to ground central points. Without ground control points, an integrated camera system can be designed. With ground control points, the position of the space station (camera station) can be precisely determined at any instant. Therefore, terrestrial topography can be precisely mapped either by conventional photogrammetric methods or by current digital technology of image correlation. For the mapping experiment, it is proposed to establish four ground points either in North America or Africa (including the Sahara desert). If this experiment should be successfully accomplished, it may also be applied to the defense charting systems.

  5. Bridging scale gaps between regional maps of forest aboveground biomass and field sampling plots using TanDEM-X data

    NASA Astrophysics Data System (ADS)

    Ni, W.; Zhang, Z.; Sun, G.

    2017-12-01

    Several large-scale maps of forest AGB have been released [1] [2] [3]. However, these existing global or regional datasets were only approximations based on combining land cover type and representative values instead of measurements of actual forest aboveground biomass or forest heights [4]. Rodríguez-Veiga et al[5] reported obvious discrepancies of existing forest biomass stock maps with in-situ observations in Mexico. One of the biggest challenges to the credibility of these maps comes from the scale gaps between the size of field sampling plots used to develop(or validate) estimation models and the pixel size of these maps and the availability of field sampling plots with sufficient size for the verification of these products [6]. It is time-consuming and labor-intensive to collect sufficient number of field sampling data over the plot size of the same as resolutions of regional maps. The smaller field sampling plots cannot fully represent the spatial heterogeneity of forest stands as shown in Figure 1. Forest AGB is directly determined by forest heights, diameter at breast height (DBH) of each tree, forest density and tree species. What measured in the field sampling are the geometrical characteristics of forest stands including the DBH, tree heights and forest densities. The LiDAR data is considered as the best dataset for the estimation of forest AGB. The main reason is that LiDAR can directly capture geometrical features of forest stands by its range detection capabilities.The remotely sensed dataset, which is capable of direct measurements of forest spatial structures, may serve as a ladder to bridge the scale gaps between the pixel size of regional maps of forest AGB and field sampling plots. Several researches report that TanDEM-X data can be used to characterize the forest spatial structures [7, 8]. In this study, the forest AGB map of northeast China were produced using ALOS/PALSAR data taking TanDEM-X data as a bridges. The TanDEM-X InSAR data used in this study and forest AGB map was shown in Figure 2. The technique details and further analysis will be given in the final report. AcknowledgmentThis work was supported in part by the National Basic Research Program of China (Grant No. 2013CB733401, 2013CB733404), and in part by the National Natural Science Foundation of China (Grant Nos. 41471311, 41371357, 41301395).

  6. Landslide Inventory Mapping from Bitemporal 10 m SENTINEL-2 Images Using Change Detection Based Markov Random Field

    NASA Astrophysics Data System (ADS)

    Qin, Y.; Lu, P.; Li, Z.

    2018-04-01

    Landslide inventory mapping is essential for hazard assessment and mitigation. In most previous studies, landslide mapping was achieved by visual interpretation of aerial photos and remote sensing images. However, such method is labor-intensive and time-consuming, especially over large areas. Although a number of semi-automatic landslide mapping methods have been proposed over the past few years, limitations remain in terms of their applicability over different study areas and data, and there is large room for improvement in terms of the accuracy and automation degree. For these reasons, we developed a change detection-based Markov Random Field (CDMRF) method for landslide inventory mapping. The proposed method mainly includes two steps: 1) change detection-based multi-threshold for training samples generation and 2) MRF for landslide inventory mapping. Compared with the previous methods, the proposed method in this study has three advantages: 1) it combines multiple image difference techniques with multi-threshold method to generate reliable training samples; 2) it takes the spectral characteristics of landslides into account; and 3) it is highly automatic with little parameter tuning. The proposed method was applied for regional landslides mapping from 10 m Sentinel-2 images in Western China. Results corroborated the effectiveness and applicability of the proposed method especially the capability of rapid landslide mapping. Some directions for future research are offered. This study to our knowledge is the first attempt to map landslides from free and medium resolution satellite (i.e., Sentinel-2) images in China.

  7. SUMMARY OF TECHNIQUES AND UNIQUE USES FOR DIRECT PUSH METHODS IN SITE CHARACTERIZATION ON CONTAMINATED FIELD SITES

    EPA Science Inventory

    Site characterization of subsurface contaminant transport is often hampered by a lack of knowledge of site heterogeneity and temporal variations in hydrogeochemistry. Two case studies are reviewed to illustrate the utility of macro-scale mapping information along with spatially-...

  8. Fuzzy Logic Particle Tracking

    NASA Technical Reports Server (NTRS)

    2005-01-01

    A new all-electronic Particle Image Velocimetry technique that can efficiently map high speed gas flows has been developed in-house at the NASA Lewis Research Center. Particle Image Velocimetry is an optical technique for measuring the instantaneous two component velocity field across a planar region of a seeded flow field. A pulsed laser light sheet is used to illuminate the seed particles entrained in the flow field at two instances in time. One or more charged coupled device (CCD) cameras can be used to record the instantaneous positions of particles. Using the time between light sheet pulses and determining either the individual particle displacements or the average displacement of particles over a small subregion of the recorded image enables the calculation of the fluid velocity. Fuzzy logic minimizes the required operator intervention in identifying particles and computing velocity. Using two cameras that have the same view of the illumination plane yields two single exposure image frames. Two competing techniques that yield unambiguous velocity vector direction information have been widely used for reducing the single-exposure, multiple image frame data: (1) cross-correlation and (2) particle tracking. Correlation techniques yield averaged velocity estimates over subregions of the flow, whereas particle tracking techniques give individual particle velocity estimates. For the correlation technique, the correlation peak corresponding to the average displacement of particles across the subregion must be identified. Noise on the images and particle dropout result in misidentification of the true correlation peak. The subsequent velocity vector maps contain spurious vectors where the displacement peaks have been improperly identified. Typically these spurious vectors are replaced by a weighted average of the neighboring vectors, thereby decreasing the independence of the measurements. In this work, fuzzy logic techniques are used to determine the true correlation displacement peak even when it is not the maximum peak, hence maximizing the information recovery from the correlation operation, maintaining the number of independent measurements, and minimizing the number of spurious velocity vectors. Correlation peaks are correctly identified in both high and low seed density cases. The correlation velocity vector map can then be used as a guide for the particle-tracking operation. Again fuzzy logic techniques are used, this time to identify the correct particle image pairings between exposures to determine particle displacements, and thus the velocity. Combining these two techniques makes use of the higher spatial resolution available from the particle tracking. Particle tracking alone may not be possible in the high seed density images typically required for achieving good results from the correlation technique. This two-staged velocimetric technique can measure particle velocities with high spatial resolution over a broad range of seeding densities.

  9. The search for crustal resources - MAGSAT and beyond

    NASA Technical Reports Server (NTRS)

    Taylor, P. T.; Hinze, W. J.; Ravat, D. N.

    1992-01-01

    In the decade since global satellite magnetic field data have been available from MAGSAT, notable progress has been made in processing these data for purposes of mapping crustal anomalies. Several regional magnetic anomaly maps compiled using these new techniques (e.g. Kursk region, U.S.S.R.; central Africa; Kiruna, Sweden; and the U.S.A. midcontinent) provide insight into the nature and tectonic evolution of the crust that contribute to conceptual crustal models useful in regional resource exploration. A recent mail survey of geopotential-field specialists involved in resource exploration indicates interest in MAGSAT data and future satellite missions with improved resolution. It is apparent that magnetic anomalies derived from satellite observations can aid in the search for crustal resources.

  10. High Fidelity Raman Chemical Imaging of Materials

    NASA Astrophysics Data System (ADS)

    Bobba, Venkata Nagamalli Koteswara Rao

    The development of high fidelity Raman imaging systems is important for a number of application areas including material science, bio-imaging, bioscience and healthcare, pharmaceutical analysis, and semiconductor characterization. The use of Raman imaging as a characterization tool for detecting the amorphous and crystalline regions in the biopolymer poly-L-lactic acid (PLLA) is the precis of my thesis. In the first chapter, a brief insight about the basics of Raman spectroscopy, Raman chemical imaging, Raman mapping, and Raman imaging techniques has been provided. The second chapter contains details about the successful development of tailored sample of PLLA. Biodegradable polymers are used in areas of tissue engineering, agriculture, packaging, and in medical field for drug delivery, implant devices, and surgical sutures. Detailed information about the sample preparation and characterization of these cold-drawn PLLA polymer substrates has been provided. Wide-field Raman hyperspectral imaging using an acousto-optic tunable filter (AOTF) was demonstrated in the early 1990s. The AOTF contributed challenges such as image walk, distortion, and image blur. A wide-field AOTF Raman imaging system has been developed as part of my research and methods to overcome some of the challenges in performing AOTF wide-field Raman imaging are discussed in the third chapter. This imaging system has been used for studying the crystalline and amorphous regions on the cold-drawn sample of PLLA. Of all the different modalities that are available for performing Raman imaging, Raman point-mapping is the most extensively used method. The ease of obtaining the Raman hyperspectral cube dataset with a high spectral and spatial resolution is the main motive of performing this technique. As a part of my research, I have constructed a Raman point-mapping system and used it for obtaining Raman hyperspectral image data of various minerals, pharmaceuticals, and polymers. Chapter four offers information about the techniques used for characterization of pharmaceutical drugs and mapping of the crystalline domains in polymers. In addition, image processing algorithms that yield chemical-based image contrast have been designed to better enable quantitative estimates of chemical heterogeneity. Some of the problems that are needed to be solved for image processing and the need for developing a volumetric imaging system is discussed in chapter five.

  11. Integrationof Remote Sensing and Geographic information system in Ground Water Quality Assessment and Management

    NASA Astrophysics Data System (ADS)

    Shakak, N.

    2015-04-01

    Spatial variations in ground water quality in the Khartoum state, Sudan, have been studied using geographic information system (GIS) and remote sensing technique. Gegraphical informtion system a tool which is used for storing, analyzing and displaying spatial data is also used for investigating ground water quality information. Khartoum landsat mosac image aquired in 2013was used, Arc/Gis software applied to extract the boundary of the study area, the image was classified to create land use/land cover map. The land use map,geological and soil map are used for correlation between land use , geological formations, and soil types to understand the source of natural pollution that can lower the ground water quality. For this study, the global positioning system (GPS), used in the field to identify the borehole location in a three dimentional coordinate (Latitude, longitude, and altitude), water samples were collected from 156 borehole wells, and analyzed for physico-chemical parameters like electrical conductivity, Total dissolved solid,Chloride, Nitrate, Sodium, Magnisium, Calcium,and Flouride, using standard techniques in the laboratory and compared with the standards.The ground water quality maps of the entire study area have been prepared using spatial interpolation technique for all the above parameters.then the created maps used to visualize, analyze, and understand the relationship among the measured points. Mapping was coded for potable zones, non-potable zones in the study area, in terms of water quality sutability for drinking water and sutability for irrigation. In general satellite remote sensing in conjunction with geographical information system (GIS) offers great potential for water resource development and management.

  12. Visualizing Vector Fields Using Line Integral Convolution and Dye Advection

    NASA Technical Reports Server (NTRS)

    Shen, Han-Wei; Johnson, Christopher R.; Ma, Kwan-Liu

    1996-01-01

    We present local and global techniques to visualize three-dimensional vector field data. Using the Line Integral Convolution (LIC) method to image the global vector field, our new algorithm allows the user to introduce colored 'dye' into the vector field to highlight local flow features. A fast algorithm is proposed that quickly recomputes the dyed LIC images. In addition, we introduce volume rendering methods that can map the LIC texture on any contour surface and/or translucent region defined by additional scalar quantities, and can follow the advection of colored dye throughout the volume.

  13. (Full field) optical coherence tomography and applications

    NASA Astrophysics Data System (ADS)

    Buchroithner, Boris; Hannesschläger, Günther; Leiss-Holzinger, Elisabeth; Prylepa, Andrii; Heise, Bettina

    2018-03-01

    This paper illustrates specific features and use of optical coherence tomography (OCT) in the raster-scanning and in comparison in the full field version of this imaging technique. Cases for nondestructive testing are discussed alongside other application schemes. In particular monitoring time-dependent processes and probing of birefringent specimens are considered here. In the context of polymer testing birefringence mapping may often provide information about internal strain and stress states. Recent results obtained with conventional raster-scanning OCT systems, with (dual and single-shot) full field OCT configurations, and with polarization-sensitive versions of (full field) OCT are presented here.

  14. Field determination of optimal dates for the discrimination of invasive wetland plant species using derivative spectral analysis

    USGS Publications Warehouse

    Laba, M.; Tsai, F.; Ogurcak, D.; Smith, S.; Richmond, M.E.

    2005-01-01

    Mapping invasive plant species in aquatic and terrestrial ecosystems helps to understand the causes of their progression, manage some of their negative consequences, and control them. In recent years, a variety of new remote-sensing techniques, like Derivative Spectral Analysis (DSA) of hyperspectral data, have been developed to facilitate this mapping. A number of questions related to these techniques remain to be addressed. This article attempts to answer one of these questions: Is the application of DSA optimal at certain times of the year? Field radiometric data gathered weekly during the summer of 1999 at selected field sites in upstate New York, populated with purple loosestrife (Lythrum salicaria L.), common reed (Phragmites australis (Cav.)) and cattail (Typha L.) are analyzed using DSA to differentiate among plant community types. First, second and higher-order derivatives of the reflectance spectra of nine field plots, varying in plant composition, are calculated and analyzed in detail to identify spectral ranges in which one or more community types have distinguishing features. On the basis of the occurrence and extent of these spectral ranges, experimental observations suggest that a satisfactory differentiation among community types was feasible on 30 August, when plants experienced characteristic phenological changes (transition from flowers to seed heads). Generally, dates in August appear optimal from the point of view of species differentiability and could be selected for image acquisitions. This observation, as well as the methodology adopted in this article, should provide a firm basis for the acquisition of hyperspectral imagery and for mapping the targeted species over a broad range of spatial scales. ?? 2005 American Society for Photogrammetry and Remote Sensing.

  15. Optimization of radio telemetry receiving systems: Chapter 5.2

    USGS Publications Warehouse

    Evans, Scott D.; Stevenson, John R.; Adams, Noah S.; Beeman, John W.; Eiler, John H.

    2012-01-01

    Telemetry provides a powerful and flexible tool for studying fish and other aquatic animals, and its use has become increasingly commonplace. However, telemetry is gear intensive and typically requires more specialized knowledge and training than many other field techniques. As with other scientific methods, collecting good data is dependent on an understanding of the underlying principles behind the approach, knowing how to use the equipment and techniques properly, and recognizing what to do with the data collected. This book provides a road map for using telemetry to study aquatic animals, and provides the basic information needed to plan, implement, and conduct a telemetry study under field conditions. Topics include acoustic or radio telemetry study design, tag implantation techniques, radio and acoustic telemetry principles and case studies, and data management and analysis.

  16. A history of telemetry in fishery research: Chapter 2

    USGS Publications Warehouse

    Hockersmith, Eric; Beeman, John W.; Adams, Noah S.; Beeman, John W.; Eiler, John H.

    2012-01-01

    Telemetry provides a powerful and flexible tool for studying fish and other aquatic animals, and its use has become increasingly commonplace. However, telemetry is gear intensive and typically requires more specialized knowledge and training than many other field techniques. As with other scientific methods, collecting good data is dependent on an understanding of the underlying principles behind the approach, knowing how to use the equipment and techniques properly, and recognizing what to do with the data collected. This book provides a road map for using telemetry to study aquatic animals, and provides the basic information needed to plan, implement, and conduct a telemetry study under field conditions. Topics include acoustic or radio telemetry study design, tag implantation techniques, radio and acoustic telemetry principles and case studies, and data management and analysis.

  17. Investigation of remote sensing to detect near-surface groundwater on irrigated lands

    NASA Technical Reports Server (NTRS)

    Ryland, D. W.; Schmer, F. A.; Moore, D. G.

    1975-01-01

    The application of remote sensing techniques was studied for detecting areas with high water tables in irrigated agricultural lands. Aerial data were collected by the LANDSAT-1 satellite and aircraft over the Kansas/Bostwick Irrigation District in Republic and Jewell Counties, Kansas. LANDSAT-1 data for May 12 and August 10, 1973, and aircraft flights (midday and predawn) on August 10 and 11, 1973, and June 25 and 26, 1974, were obtained. Surface and water table contour maps and active observation well hydrographs were obtained from the Bureau of Reclamation for use in the analysis. Results of the study reveal that LANDSAT-1 data (May MSS band 6 and August MSS band 7) correlate significantly (0.01 level) with water table depth for 144 active observation wells located throughout the Kansas/Bostwick Irrigation District. However, a map of water table depths of less than 1.83 meters prepared from the LANDSAT-1 data did not compare favorably with a map of seeped lands of less than 1.22 m (4 feet) to the water table. Field evaluation of the map is necessary for a complete analysis. Analysis of three fields on a within or single-field basis for the 1973 LANDSAT-1 data also showed significant correlation results.

  18. Constrained H1-regularization schemes for diffeomorphic image registration

    PubMed Central

    Mang, Andreas; Biros, George

    2017-01-01

    We propose regularization schemes for deformable registration and efficient algorithms for their numerical approximation. We treat image registration as a variational optimal control problem. The deformation map is parametrized by its velocity. Tikhonov regularization ensures well-posedness. Our scheme augments standard smoothness regularization operators based on H1- and H2-seminorms with a constraint on the divergence of the velocity field, which resembles variational formulations for Stokes incompressible flows. In our formulation, we invert for a stationary velocity field and a mass source map. This allows us to explicitly control the compressibility of the deformation map and by that the determinant of the deformation gradient. We also introduce a new regularization scheme that allows us to control shear. We use a globalized, preconditioned, matrix-free, reduced space (Gauss–)Newton–Krylov scheme for numerical optimization. We exploit variable elimination techniques to reduce the number of unknowns of our system; we only iterate on the reduced space of the velocity field. Our current implementation is limited to the two-dimensional case. The numerical experiments demonstrate that we can control the determinant of the deformation gradient without compromising registration quality. This additional control allows us to avoid oversmoothing of the deformation map. We also demonstrate that we can promote or penalize shear whilst controlling the determinant of the deformation gradient. PMID:29075361

  19. Physical mapping withing the tuberous sclerosis linkage group in region 9q32-q34

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harris, R.M.; Carter, N.P.; Griffiths, B.

    1993-02-01

    Pulsed-field gel electrophoresis and flow dot-blot analysis have been used to construct a physical map of the q32-q34 region of chromosome 9, where one of the loci responsible for tuberous sclerosis (TSC1) has been mapped by genetic linkage. Five linked groups of markers have been defined by pulsed-field gel electrophoresis. The orientation of these groups and the order of markers within them were determined by hybridization to flow-sorted dot blots derived from a panel of cell lines of chromosome 9 translocations to place probes proximal or distal to each breakpoint. The local map order 9q32-q34 derived by application of thismore » combination of techniques is as follows: centromere - ALAD-1.3 Mb-ORM/20 kb/D9S16-GSN-250 kb-C5-HXB-1.9 Mb-D9S21-AK1-1.4 Mb-SPTAN1-ASS-800-kb-ABL-2 Mb-D0S10/350 Kb/DBH-telomere. 48 refs., 6 figs., 4 figs.« less

  20. Novel method for measuring a dense 3D strain map of robotic flapping wings

    NASA Astrophysics Data System (ADS)

    Li, Beiwen; Zhang, Song

    2018-04-01

    Measuring dense 3D strain maps of the inextensible membranous flapping wings of robots is of vital importance to the field of bio-inspired engineering. Conventional high-speed 3D videography methods typically reconstruct the wing geometries through measuring sparse points with fiducial markers, and thus cannot obtain the full-field mechanics of the wings in detail. In this research, we propose a novel system to measure a dense strain map of inextensible membranous flapping wings by developing a superfast 3D imaging system and a computational framework for strain analysis. Specifically, first we developed a 5000 Hz 3D imaging system based on the digital fringe projection technique using the defocused binary patterns to precisely measure the dynamic 3D geometries of rapidly flapping wings. Then, we developed a geometry-based algorithm to perform point tracking on the precisely measured 3D surface data. Finally, we developed a dense strain computational method using the Kirchhoff-Love shell theory. Experiments demonstrate that our method can effectively perform point tracking and measure a highly dense strain map of the wings without many fiducial markers.

  1. Advanced imaging technologies for mapping cadaveric lymphatic anatomy: magnetic resonance and computed tomography lymphangiography.

    PubMed

    Pan, W R; Rozen, W M; Stretch, J; Thierry, B; Ashton, M W; Corlett, R J

    2008-09-01

    Lymphatic anatomy has become increasingly clinically important as surgical techniques evolve for investigating and treating cancer metastases. However, due to limited anatomical techniques available, research in this field has been insufficient. The techniques of computed tomography (CT) and magnetic resonance (MR) lymphangiography have not been described previously in the imaging of cadaveric lymphatic anatomy. This preliminary work describes the feasibility of these advanced imaging technologies for imaging lymphatic anatomy. A single, fresh cadaveric lower limb underwent lymphatic dissection and cannulation utilizing microsurgical techniques. Contrast materials for both CT and MR studies were chosen based on their suitability for subsequent clinical use, and imaging was undertaken with a view to mapping lymphatic anatomy. Microdissection studies were compared with imaging findings in each case. Both MR-based and CT-based contrast media in current clinical use were found to be suitable for demonstrating cadaveric lymphatic anatomy upon direct intralymphatic injection. MR lymphangiography and CT lymphangiography are feasible modalities for cadaveric anatomical research for lymphatic anatomy. Future studies including refinements in scanning techniques may offer these technologies to the clinical setting.

  2. Very high spatial resolution two-dimensional solar spectroscopy with video CCDs

    NASA Technical Reports Server (NTRS)

    Johanneson, A.; Bida, T.; Lites, B.; Scharmer, G. B.

    1992-01-01

    We have developed techniques for recording and reducing spectra of solar fine structure with complete coverage of two-dimensional areas at very high spatial resolution and with a minimum of seeing-induced distortions. These new techniques permit one, for the first time, to place the quantitative measures of atmospheric structure that are afforded only by detailed spectral measurements into their proper context. The techniques comprise the simultaneous acquisition of digital spectra and slit-jaw images at video rates as the solar scene sweeps rapidly by the spectrograph slit. During data processing the slit-jaw images are used to monitor rigid and differential image motion during the scan, allowing measured spectrum properties to be remapped spatially. The resulting quality of maps of measured properties from the spectra is close to that of the best filtergrams. We present the techniques and show maps from scans over pores and small sunspots obtained at a resolution approaching 1/3 arcsec in the spectral region of the magnetically sensitive Fe I lines at 630.15 and 630.25 nm. The maps shown are of continuum intensity and calibrated Doppler velocity. More extensive spectral inversion of these spectra to yield the strength of the magnetic field and other parameters is now underway, and the results of that analysis will be presented in a following paper.

  3. Anosognosia for obvious visual field defects in stroke patients.

    PubMed

    Baier, Bernhard; Geber, Christian; Müller-Forell, Wiebke; Müller, Notger; Dieterich, Marianne; Karnath, Hans-Otto

    2015-01-01

    Patients with anosognosia for visual field defect (AVFD) fail to recognize consciously their visual field defect. There is still unclarity whether specific neural correlates are associated with AVFD. We studied AVFD in 54 patients with acute stroke and a visual field defect. Nineteen percent of this unselected sample showed AVFD. By using modern voxelwise lesion-behaviour mapping techniques we found an association between AVFD and parts of the lingual gyrus, the cuneus as well as the posterior cingulate and corpus callosum. Damage to these regions appears to induce unawareness of visual field defects and thus may play a significant role for conscious visual perception.

  4. Remote sensing of strippable coal reserves and mine inventory in part of the Warrior Coal Field in Alabama

    NASA Technical Reports Server (NTRS)

    Joiner, T. J.; Copeland, C. W., Jr.; Russell, D. D.; Evans, F. E., Jr.; Sapp, C. D.; Boone, P. A.

    1978-01-01

    Methods by which estimates of the remaining reserves of strippable coal in Alabama could be made were developed. Information acquired from NASA's Earth Resources Office was used to analyze and map existing surface mines in a four-quadrangle area in west central Alabama. Using this information and traditional methods for mapping coal reserves, an estimate of remaining strippable reserves was derived. Techniques for the computer analysis of remotely sensed data and other types of available coal data were developed to produce an estimate of strippable coal reserves for a second four-quadrangle area. Both areas lie in the Warrior coal field, the most prolific and active of Alabama's coal fields. They were chosen because of the amount and type of coal mining in the area, their location relative to urban areas, and the amount and availability of base data necessary for this type of study.

  5. Erasing the Milky Way: new cleaning technique applied to GBT intensity mapping data

    NASA Astrophysics Data System (ADS)

    Wolz, L.; Blake, C.; Abdalla, F. B.; Anderson, C. J.; Chang, T.-C.; Li, Y.-C.; Masui, K. W.; Switzer, E.; Pen, U.-L.; Voytek, T. C.; Yadav, J.

    2017-02-01

    We present the first application of a new foreground removal pipeline to the current leading H I intensity mapping data set, obtained by the Green Bank Telescope (GBT). We study the 15- and 1-h-field data of the GBT observations previously presented in Mausui et al. and Switzer et al., covering about 41 deg2 at 0.6 < z < 1.0, for which cross-correlations may be measured with the galaxy distribution of the WiggleZ Dark Energy Survey. In the presented pipeline, we subtract the Galactic foreground continuum and the point-source contamination using an independent component analysis technique (FASTICA), and develop a Fourier-based optimal estimator to compute the temperature power spectrum of the intensity maps and cross-correlation with the galaxy survey data. We show that FASTICA is a reliable tool to subtract diffuse and point-source emission through the non-Gaussian nature of their probability distributions. The temperature power spectra of the intensity maps are dominated by instrumental noise on small scales which FASTICA, as a conservative subtraction technique of non-Gaussian signals, cannot mitigate. However, we determine similar GBT-WiggleZ cross-correlation measurements to those obtained by the singular value decomposition (SVD) method, and confirm that foreground subtraction with FASTICA is robust against 21 cm signal loss, as seen by the converged amplitude of these cross-correlation measurements. We conclude that SVD and FASTICA are complementary methods to investigate the foregrounds and noise systematics present in intensity mapping data sets.

  6. Secondary electron emission from a dielectric film subjected to an electric field. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Quoc-Nguyen, N.

    1977-01-01

    An electric field in the range of 0.3,3.3 kV/mm is created normal to a thin film FEP teflon sample which accumulates potential of up to 8.8, 13.7 or 18.3 kV when exposed to an electron beam having energy of 10.0, 15.0 or 20.0 kV, respectively. It is found that the secondary electron emission from the charged sample varies with field. The threshold voltage, at which the secondary electron emission coefficient sigma is unity, drops down from a low field value of 13.73 kV to a high field value of 13.11 kV for a 15.0 kV beam. A computational technique was developed that generates equipotential lines or contours and field vectors above a plane where potential is known. The utilization of conformal transformations allows the extension of the technique to configurations which map into a plane.

  7. Strain field mapping of dislocations in a Ge/Si heterostructure.

    PubMed

    Liu, Quanlong; Zhao, Chunwang; Su, Shaojian; Li, Jijun; Xing, Yongming; Cheng, Buwen

    2013-01-01

    Ge/Si heterostructure with fully strain-relaxed Ge film was grown on a Si (001) substrate by using a two-step process by ultra-high vacuum chemical vapor deposition. The dislocations in the Ge/Si heterostructure were experimentally investigated by high-resolution transmission electron microscopy (HRTEM). The dislocations at the Ge/Si interface were identified to be 90° full-edge dislocations, which are the most efficient way for obtaining a fully relaxed Ge film. The only defect found in the Ge epitaxial film was a 60° dislocation. The nanoscale strain field of the dislocations was mapped by geometric phase analysis technique from the HRTEM image. The strain field around the edge component of the 60° dislocation core was compared with those of the Peierls-Nabarro and Foreman dislocation models. Comparison results show that the Foreman model with a = 1.5 can describe appropriately the strain field around the edge component of a 60° dislocation core in a relaxed Ge film on a Si substrate.

  8. Mapping the evolution of entrepreneurship as a field of research (1990–2013): A scientometric analysis

    PubMed Central

    2018-01-01

    This article applies scientometric techniques to study the evolution of the field of entrepreneurship between 1990 and 2013. Using a combination of topic mapping, author and journal co-citation analyses, and overlay visualization of new and hot topics in the field, this article makes important contribution to the entrepreneurship research by identifying 46 topics in the 24-year history of entrepreneurship research and demonstrates how they appear, disappear, reappear and stabilize over time. It also identifies five topics that are persistent across the 24-year study period––institutions and institutional entrepreneurship, innovation and technology management, policy and development, entrepreneurial process and opportunity, and new ventures––which I labeled as The Pentagon of Entrepreneurship. Overall, the analyses revealed patterns of convergence and divergence and the diversity of topics, specialization, and interdisciplinary engagement in entrepreneurship research, thus offering the latest insights on the state of the art of the field. PMID:29300735

  9. Building Exposure Maps Of Urban Infrastructure And Crop Fields In The Mekong River Basin

    NASA Astrophysics Data System (ADS)

    Haas, E.; Weichselbaum, J.; Gangkofner, U.; Miltzer, J.; Wali, A.

    2013-12-01

    In the frame of the Integrated Water Resources Management (IWRM) initiative for the Mekong river basin World Bank is collaborating with the Mekong River Commission and governmental organizations in Cambodia, Lao PDR, Thailand and Vietnam to build national and regional capacities for managing the risks associated with natural disasters, such as floods, flash floods and droughts. Within ‘eoworld', a joint initiative set up by ESA and World Bank to foster the use of Earth Observation (EO) for sustainable development work, a comprehensive database of elements at risk in the Lower Mekong river basin has been established by GeoVille, including urban infrastructure and crops (primarily rice paddies). In the long term, this exposure information shall be fed into an open-source multi- hazard modeling tool for risk assessment along the Mekong River, which then shall be used by national stakeholders as well as insurance and financial institutions for planning, disaster preparedness and emergency management. Earth Observation techniques can provide objective, synoptic and repetitive observations of elements at risk including buildings, infrastructure and crops. Through the fusion of satellite-based with in-situ data from field surveys and local knowledge (e.g. on building materials) features at risk can be characterised and mapped with high accuracy. Earth Observation data utilised comprise bi-weekly Envisat ASAR imagery programmed for a period of 9 months in 2011 to map the development of the rice cultivation area, identify predominant cropping systems (wet-season vs. dry season cultivation), crop cycles (single /double / triple crop per year), date of emergence/harvest and the distinction between rice planted under intensive (SRI) vs. regular rice cultivation techniques. Very High Resolution (VHR) optical data from SPOT, KOMPSAT and QuickBird were used for mapping of buildings and infrastructure, such as building footprints, residential / commercial areas, industrial buildings, main infrastructure, and other public assets. A key input to this work was data collected by the project team in the field with the purpose of scoping information about buildings including material, height (number of stories), construction technique, and floor area. A high resolution satellite-based Digital Elevation Model was additionally generated to provide surface elevations of vegetation and man-made objects with a vertical accuracy of 10 m. By using this methodology thousands of buildings and infrastructure features were mapped, clearly indicating the location and characteristics of the assets. Exposure maps were complemented with the analysis of historical flood and drought events using ERS and Envisat ASAR radar data for historical flood mapping alongside with vegetation index data from SPOT-VEGETATION and NOAA-AVHRR, concerning drought events.

  10. Potential mapping with charged-particle beams

    NASA Technical Reports Server (NTRS)

    Robinson, J. W.; Tillery, D. G.

    1979-01-01

    Experimental methods of mapping the equipotential surfaces near some structure of interest rely on the detection of charged particles which have traversed the regions of interest and are detected remotely. One method is the measurement of ion energies for ions created at a point of interest and expelled from the region by the fields. The ion energy at the detector in eV corresponds to the potential where the ion was created. An ionizing beam forms the ions from background neutrals. The other method is to inject charged particles into the region of interest and to locate their exit points. A set of several trajectories becomes a data base for a systematic mapping technique. An iterative solution of a boundary value problem establishes concepts and limitations pertaining to the mapping problem.

  11. Mapping experiment with space station

    NASA Technical Reports Server (NTRS)

    Wu, Sherman S. C.

    1987-01-01

    Mapping the earth from space stations can be approached in two areas. One is to collect gravity data for defining a new topographic datum using the earth's gravitational field in terms of spherical harmonics. The other, which should be considered as a very significant contribution of the Space Station, is to search and explore techniques of mapping the earth's topography using either optical or radar images with or without references to ground control points. Geodetic position of ground control points can be predetermined by the Global Positioning System (GPS) for the mapping experiment with the Space Station. It is proposed to establish four ground control points in North America or Africa (including the Sahara Desert). If this experiment should be successfully accomplished, it may also be applied to the defense charting service.

  12. Awake surgery between art and science. Part II: language and cognitive mapping

    PubMed Central

    Talacchi, Andrea; Santini, Barbara; Casartelli, Marilena; Monti, Alessia; Capasso, Rita; Miceli, Gabriele

    Summary Direct cortical and subcortical stimulation has been claimed to be the gold standard for exploring brain function. In this field, efforts are now being made to move from intraoperative naming-assisted surgical resection towards the use of other language and cognitive tasks. However, before relying on new protocols and new techniques, we need a multi-staged system of evidence (low and high) relating to each step of functional mapping and its clinical validity. In this article we examine the possibilities and limits of brain mapping with the aid of a visual object naming task and various other tasks used to date. The methodological aspects of intraoperative brain mapping, as well as the clinical and operative settings, were discussed in Part I of this review. PMID:24139658

  13. Magnetic field topology of τ Scorpii. The uniqueness problem of Stokes V ZDI inversions

    NASA Astrophysics Data System (ADS)

    Kochukhov, O.; Wade, G. A.

    2016-02-01

    Context. The early B-type star τ Sco exhibits an unusually complex, relatively weak surface magnetic field. Its topology was previously studied with the Zeeman Doppler imaging (ZDI) modelling of high-resolution circular polarisation (Stokes V) observations. Aims: Here we assess the robustness of the Stokes V ZDI reconstruction of the magnetic field geometry of τ Sco and explore the consequences of using different parameterisations of the surface magnetic maps. Methods: This analysis is based on the archival ESPaDOnS high-resolution Stokes V observations and employs an independent ZDI magnetic inversion code. Results: We succeeded in reproducing previously published magnetic field maps of τ Sco using both general harmonic expansion and a direct, pixel-based representation of the magnetic field. These maps suggest that the field topology of τ Sco is comprised of comparable contributions of the poloidal and toroidal magnetic components. At the same time, we also found that available Stokes V observations can be successfully fitted with restricted harmonic expansions, by either neglecting the toroidal field altogether, or linking the radial and horizontal components of the poloidal field as required by the widely used potential field extrapolation technique. These alternative modelling approaches lead to a stronger and topologically more complex surface field structure. The field distributions, which were recovered with different ZDI options, differ significantly and yield indistinguishable Stokes V profiles but different linear polarisation (Stokes Q and U) signatures. Conclusions: Our investigation underscores the well-known problem of non-uniqueness of the Stokes V ZDI inversions. For the magnetic stars with properties similar to τ Sco (relatively complex field, slow rotation) the outcome of magnetic reconstruction strongly depends on the adopted field parameterisation, rendering photospheric magnetic mapping and determination of the extended magnetospheric field topology ambiguous. Stokes Q and U spectropolarimetric observations represent the only way of breaking the degeneracy of surface magnetic field models. Based on observations obtained at the Canada-France-Hawaii Telescope (CFHT) which is operated by the National Research Council of Canada, the Institut National des Sciences de l'Univers of the Centre National de la Recherche Scientifique of France, and the University of Hawaii.

  14. Using digital soil maps to infer edaphic affinities of plant species in Amazonia: Problems and prospects.

    PubMed

    Moulatlet, Gabriel Massaine; Zuquim, Gabriela; Figueiredo, Fernando Oliveira Gouvêa; Lehtonen, Samuli; Emilio, Thaise; Ruokolainen, Kalle; Tuomisto, Hanna

    2017-10-01

    Amazonia combines semi-continental size with difficult access, so both current ranges of species and their ability to cope with environmental change have to be inferred from sparse field data. Although efficient techniques for modeling species distributions on the basis of a small number of species occurrences exist, their success depends on the availability of relevant environmental data layers. Soil data are important in this context, because soil properties have been found to determine plant occurrence patterns in Amazonian lowlands at all spatial scales. Here we evaluate the potential for this purpose of three digital soil maps that are freely available online: SOTERLAC, HWSD, and SoilGrids. We first tested how well they reflect local soil cation concentration as documented with 1,500 widely distributed soil samples. We found that measured soil cation concentration differed by up to two orders of magnitude between sites mapped into the same soil class. The best map-based predictor of local soil cation concentration was obtained with a regression model combining soil classes from HWSD with cation exchange capacity (CEC) from SoilGrids. Next, we evaluated to what degree the known edaphic affinities of thirteen plant species (as documented with field data from 1,200 of the soil sample sites) can be inferred from the soil maps. The species segregated clearly along the soil cation concentration gradient in the field, but only partially along the model-estimated cation concentration gradient, and hardly at all along the mapped CEC gradient. The main problems reducing the predictive ability of the soil maps were insufficient spatial resolution and/or georeferencing errors combined with thematic inaccuracy and absence of the most relevant edaphic variables. Addressing these problems would provide better models of the edaphic environment for ecological studies in Amazonia.

  15. Vegetation burn severity mapping using Landsat-8 and WorldView-2

    USGS Publications Warehouse

    Wu, Zhuoting; Middleton, Barry R.; Hetzler, Robert; Vogel, John M.; Dye, Dennis G.

    2015-01-01

    We used remotely sensed data from the Landsat-8 and WorldView-2 satellites to estimate vegetation burn severity of the Creek Fire on the San Carlos Apache Reservation, where wildfire occurrences affect the Tribe's crucial livestock and logging industries. Accurate pre- and post-fire canopy maps at high (0.5-meter) resolution were created from World- View-2 data to generate canopy loss maps, and multiple indices from pre- and post-fire Landsat-8 images were used to evaluate vegetation burn severity. Normalized difference vegetation index based vegetation burn severity map had the highest correlation coefficients with canopy loss map from WorldView-2. Two distinct approaches - canopy loss mapping from WorldView-2 and spectral index differencing from Landsat-8 - agreed well with the field-based burn severity estimates and are both effective for vegetation burn severity mapping. Canopy loss maps created with WorldView-2 imagery add to a short list of accurate vegetation burn severity mapping techniques that can help guide effective management of forest resources on the San Carlos Apache Reservation, and the broader fire-prone regions of the Southwest.

  16. Note: Electron energy spectroscopy mapping of surface with scanning tunneling microscope.

    PubMed

    Li, Meng; Xu, Chunkai; Zhang, Panke; Li, Zhean; Chen, Xiangjun

    2016-08-01

    We report a novel scanning probe electron energy spectrometer (SPEES) which combines a double toroidal analyzer with a scanning tunneling microscope to achieve both topography imaging and electron energy spectroscopy mapping of surface in situ. The spatial resolution of spectroscopy mapping is determined to be better than 0.7 ± 0.2 μm at a tip sample distance of 7 μm. Meanwhile, the size of the field emission electron beam spot on the surface is also measured, and is about 3.6 ± 0.8 μm in diameter. This unambiguously demonstrates that the spatial resolution of SPEES technique can be much better than the size of the incident electron beam.

  17. Lithologic mapping of mafic intrusions in East Greenland using Landsat Thematic Mapper data

    NASA Technical Reports Server (NTRS)

    Naslund, H. Richard; Birnie, R. W.; Parr, J. T.

    1989-01-01

    The East Greenland Tertiary Igneous Province contains a variety of intrusive and extrusive rock types. The Skaergaard complex is the most well known of the intrusive centers. Landsat thematic mapping (TM) was used in conjunction with field spectrometer data to map these mafic intrusions. These intrusions are of interest as possible precious metal ore deposits. They are spectrally distinct from the surrounding Precambrian gneisses. However, subpixel contamination by snow, oxide surface coatings, lichen cover and severe topography limit the discrimination of lithologic units within the gabbro. Imagery of the Skaergaard and surrounding vicinity, and image processing and enhancement techniques are presented. Student theses and other publications resulting from this work are also listed.

  18. Imaging Electric Properties of Biological Tissues by RF Field Mapping in MRI

    PubMed Central

    Zhang, Xiaotong; Zhu, Shanan; He, Bin

    2010-01-01

    The electric properties (EPs) of biological tissue, i.e., the electric conductivity and permittivity, can provide important information in the diagnosis of various diseases. The EPs also play an important role in specific absorption rate (SAR) calculation, a major concern in high-field Magnetic Resonance Imaging (MRI), as well as in non-medical areas such as wireless-telecommunications. The high-field MRI system is accompanied by significant wave propagation effects, and the radio frequency (RF) radiation is dependent on the EPs of biological tissue. Based on the measurement of the active transverse magnetic component of the applied RF field (known as B1-mapping technique), we propose a dual-excitation algorithm, which uses two sets of measured B1 data to noninvasively reconstruct the electric properties of biological tissues. The Finite Element Method (FEM) was utilized in three-dimensional (3D) modeling and B1 field calculation. A series of computer simulations were conducted to evaluate the feasibility and performance of the proposed method on a 3D head model within a transverse electromagnetic (TEM) coil and a birdcage (BC) coil. Using a TEM coil, when noise free, the reconstructed EP distribution of tissues in the brain has relative errors of 12% ∼ 28% and correlated coefficients of greater than 0.91. Compared with other B1-mapping based reconstruction algorithms, our approach provides superior performance without the need for iterative computations. The present simulation results suggest that good reconstruction of electric properties from B1 mapping can be achieved. PMID:20129847

  19. Phase-sensitive two-dimensional neutron shearing interferometer and Hartmann sensor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baker, Kevin

    2015-12-08

    A neutron imaging system detects both the phase shift and absorption of neutrons passing through an object. The neutron imaging system is based on either of two different neutron wavefront sensor techniques: 2-D shearing interferometry and Hartmann wavefront sensing. Both approaches measure an entire two-dimensional neutron complex field, including its amplitude and phase. Each measures the full-field, two-dimensional phase gradients and, concomitantly, the two-dimensional amplitude mapping, requiring only a single measurement.

  20. Near-field transport imaging applied to photovoltaic materials

    DOE PAGES

    Xiao, Chuanxiao; Jiang, Chun -Sheng; Moseley, John; ...

    2017-05-26

    We developed and applied a new analytical technique - near-field transport imaging (NF-TI or simply TI) - to photovoltaic materials. Charge-carrier transport is an important factor in solar cell performance, and TI is an innovative approach that integrates a scanning electron microscope with a near-field scanning optical microscope, providing the possibility to study luminescence associated with recombination and transport with high spatial resolution. In this paper, we describe in detail the technical barriers we had to overcome to develop the technique for routine application and the data-fitting procedure used to calculate minority-carrier diffusion length values. The diffusion length measured bymore » TI agrees well with the results calculated by time-resolved photoluminescence on well-controlled gallium arsenide (GaAs) thin-film samples. We report for the first time on measurements on thin-film cadmium telluride using this technique, including the determination of effective carrier diffusion length, as well as the first near-field imaging of the effect of a single localized defect on carrier transport and recombination in a GaAs heterostructure. Furthermore, by changing the scanning setup, we were able to demonstrate near-field cathodoluminescence (CL), and correlated the results with standard CL measurements. In conclusion, the TI technique shows great potential for mapping transport properties in solar cell materials with high spatial resolution.« less

  1. Compositional Mapping of the Transantarctic Mountains Using Orbital Reflectance Data

    NASA Astrophysics Data System (ADS)

    Salvatore, M. R.; Niebuhr, S.; Morin, P. J.; Cox, S.

    2014-12-01

    We report on our progress of remotely mapping compositional variations throughout the Transantarctic Mountains (TAM) using orbital spectroscopic data. These techniques were originally proven effective in Antarctica using moderate spatial resolution (30 m/pixel) Advanced Land Imager (ALI) data, and showed great successes in identifying even minor variations in composition throughout the McMurdo Dry Valleys (MDV) [Salvatore et al., 2013]. However, due to the orbital inclination of the Earth Observing-1 spacecraft, ALI is unable to image the central and southern TAM, making comparable studies at comparable resolutions impossible on a continental scale. Fortunately, the WorldView-2 satellite (DigitalGlobe, Inc.) boasts high-resolution (2 m/pixel) multispectral capabilities, with 8 spectral bands located between 427 nm and 908 nm, and is able to image the entirety of the TAM through off-nadir pointing capabilities. This provides the ability to continue our remote spectral mapping campaign throughout the TAM to identify compositional variations in support of past and future field operations. We present an updated map of relative spectral variability (RSV) in the vicinity of Shackleton Glacier. This mapping product consists of 91 individual WorldView-2 images, each corrected to top-of-atmosphere radiance and parameterized to highlight known compositional properties. The mapped area covers approximately 17,850 square kilometers of ice-covered and exposed terrain. Compositional variations are easily mapped, and small-scale variations in iron-bearing mineralogy are particularly well resolved. We also describe our updated atmospheric correction algorithm for the WorldView-2 dataset, which utilizes in-scene techniques to derive surface reflectance and does not necessitate the use of radiative transfer modeling. Our technique is validated using laboratory reflectance measurements. In conjunction with the Polar Rock Repository at the Ohio State University, we have measured hundreds of individual samples in an effort to verify and "ground-truth" this atmospheric removal algorithm. Using these methodologies and revised techniques, our objective is to make a fully calibrated and atmospherically corrected spectral map of the central TAM available to the scientific community.

  2. Magellan Orbit Artist Concept

    NASA Image and Video Library

    1990-08-10

    An artist's concept of the Magellan spacecraft making a radar map of Venus. Magellan mapped 98 percent of Venus' surface at a resolution of 100 to 150 meters (about the length of a football or soccer field), using synthetic aperture radar, a technique that simulates the use of a much larger radar antenna. It found that 85 percent of the surface is covered with volcanic flows and showed evidence of tectonic movement, turbulent surface winds, lava channels and pancake-shaped domes. Magellan also produced high-resolution gravity data for 95 percent of the planet and tested a new maneuvering technique called aerobraking, using atmospheric drag to adjust its orbit. The spacecraft was commanded to plunge into Venus' atmosphere in 1994 as part of a final experiment to gather atmospheric data. http://photojournal.jpl.nasa.gov/catalog/PIA18175

  3. Microscale and nanoscale strain mapping techniques applied to creep of rocks

    NASA Astrophysics Data System (ADS)

    Quintanilla-Terminel, Alejandra; Zimmerman, Mark E.; Evans, Brian; Kohlstedt, David L.

    2017-07-01

    Usually several deformation mechanisms interact to accommodate plastic deformation. Quantifying the contribution of each to the total strain is necessary to bridge the gaps from observations of microstructures, to geomechanical descriptions, to extrapolating from laboratory data to field observations. Here, we describe the experimental and computational techniques involved in microscale strain mapping (MSSM), which allows strain produced during high-pressure, high-temperature deformation experiments to be tracked with high resolution. MSSM relies on the analysis of the relative displacement of initially regularly spaced markers after deformation. We present two lithography techniques used to pattern rock substrates at different scales: photolithography and electron-beam lithography. Further, we discuss the challenges of applying the MSSM technique to samples used in high-temperature and high-pressure experiments. We applied the MSSM technique to a study of strain partitioning during creep of Carrara marble and grain boundary sliding in San Carlos olivine, synthetic forsterite, and Solnhofen limestone at a confining pressure, Pc, of 300 MPa and homologous temperatures, T/Tm, of 0.3 to 0.6. The MSSM technique works very well up to temperatures of 700 °C. The experimental developments described here show promising results for higher-temperature applications.

  4. Development of a Transportable Gravity Gradiometer Based on Atom Interferometry

    NASA Astrophysics Data System (ADS)

    Yu, N.; Kohel, J. M.; Aveline, D. C.; Kellogg, J. R.; Thompson, R. J.; Maleki, L.

    2007-12-01

    JPL is developing a transportable gravity gradiometer based on light-pulse atom interferometers for NASA's Earth Science Technology Office's Instrument Incubator Program. The inertial sensors in this instrument employ a quantum interference measurement technique, analogous to the precise phase measurements in atomic clocks, which offers increased sensitivity and improved long-term stability over traditional mechanical devices. We report on the implementation of this technique in JPL's gravity gradiometer, and on the current performance of the mobile instrument. We also discuss the prospects for satellite-based gravity field mapping, including high-resolution monitoring of time-varying fields from a single satellite platform and multi-component measurements of the gravitational gradient tensor, using atom interferometer-based instruments.

  5. Rapid, all-optical crystal orientation imaging of two-dimensional transition metal dichalcogenide monolayers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    David, Sabrina N.; Zhai, Yao; van der Zande, Arend M.

    Two-dimensional (2D) atomic materials such as graphene and transition metal dichalcogenides (TMDCs) have attracted significant research and industrial interest for their electronic, optical, mechanical, and thermal properties. While large-area crystal growth techniques such as chemical vapor deposition have been demonstrated, the presence of grain boundaries and orientation of grains arising in such growths substantially affect the physical properties of the materials. There is currently no scalable characterization method for determining these boundaries and orientations over a large sample area. We here present a second-harmonic generation based microscopy technique for rapidly mapping grain orientations and boundaries of 2D TMDCs. We experimentallymore » demonstrate the capability to map large samples to an angular resolution of ±1° with minimal sample preparation and without involved analysis. A direct comparison of the all-optical grain orientation maps against results obtained by diffraction-filtered dark-field transmission electron microscopy plus selected-area electron diffraction on identical TMDC samples is provided. This rapid and accurate tool should enable large-area characterization of TMDC samples for expedited studies of grain boundary effects and the efficient characterization of industrial-scale production techniques.« less

  6. Mapping geomorphic process domains to predict hillslope sediment size distribution using remotely-sensed data and field sampling, Inyo Creek, California

    NASA Astrophysics Data System (ADS)

    Leclere, S.; Sklar, L. S.; Genetti, J. R.

    2014-12-01

    The size distribution of sediments produced on hillslopes and supplied to channels depends on the geomorphic processes that weather, detach and transport rock fragments down slopes. Little in the way of theory or data is available to predict patterns in hillslope size distributions at the catchment scale from topographic and geologic maps. Here we use aerial imagery and a variety of remote sensing techniques to map and categorize geomorphic landscape units (GLUs) by inferred sediment production process regime, across the steep mountain catchment of Inyo Creek, eastern Sierra Nevada, California. We also use field measurements of particle size and local geomorphic attributes to test and refine GLU determinations. Across the 2 km of relief in this catchment, landcover varies from bare bedrock cliffs at higher elevations to vegetated, regolith-covered convex slopes at lower elevations. Hillslope gradient could provide a simple index of sediment production process, from rock spallation and landsliding at highest slopes, to tree-throw and other disturbance-driven soil production processes at lowest slopes. However, many other attributes are needed for a more robust predictive model, including elevation, curvature, aspect, drainage area, and color. We combine tools from ArcGIS, ERDAS Imagine and Envi with groundtruthing field work to find an optimal combination of attributes for defining sediment production GLUs. Key challenges include distinguishing: weathered from freshly eroded bedrock, boulders from intact bedrock, and landslide deposits from talus slopes. We take advantage of emerging technologies that provide new ways of conducting fieldwork and comparing field data to mapping solutions. In particular, cellphone GPS is approaching the accuracy of dedicated GPS systems and the ability to geo-reference photos simplifies field notes and increases accuracy of later map creation. However, the predictive power of the GLU mapping approach is limited by inherent uncertainty in remotely sensed data and aerial imagery. This work is a contribution toward the long-term goal of reliable and automated mapping of hillslope sediment size distributions for use in sediment budgets and hazard delineation, and for understanding the feedbacks between climate, erosion and topography that drive sediment production.

  7. Electric field variations measured continuously in free air over a conductive thin zone in the tilted Lias-epsilon black shales near Osnabrück, Northwest Germany

    NASA Astrophysics Data System (ADS)

    Gurk, M.; Bosch, F. P.; Tougiannidis, N.

    2013-04-01

    Common studies on the static electric field distribution over a conductivity anomaly use the self-potential method. However, this method is time consuming and requires nonpolarizable electrodes to be placed in the ground. Moreover, the information gained by this method is restricted to the horizontal variations of the electric field. To overcome the limitation in the self-potential technique, we conducted a field experiment using a non conventional technique to assess the static electric field over a conductivity anomaly. We use two metallic potential probes arranged on an insulated boom with a separation of 126 cm. When placed into the electric field of the free air, a surface charge will be induced on each probe trying to equalize with the potential of the surrounding atmosphere. The use of a plasma source at both probes facilitated continuous and quicker measurement of the electric field in the air. The present study shows first experimental measurements with a modified potential probe technique (MPP) along a 600-meter-long transect to demonstrate the general feasibility of this method for studying the static electric field distribution over shallow conductivity anomalies. Field measurements were carried out on a test site on top of the Bramsche Massif near Osnabrück (Northwest Germany) to benefit from a variety of available near surface data over an almost vertical conductivity anomaly. High resolution self-potential data served in a numerical analysis to estimate the expected individual components of the electric field vector. During the experiment we found more anomalies in the vertical and horizontal components of the electric field than self-potential anomalies. These contrasting findings are successfully cross-validated with conventional near surface geophysical methods. Among these methods, we used self-potential, radiomagnetotelluric, electric resistivity tomography and induced polarization data to derive 2D conductivity models of the subsurface in order to infer the geometrical properties and the origin of the conductivity anomaly in the survey area. The presented study demonstrates the feasibility of electric field measurements in free air to detect and study near surface conductivity anomalies. Variations in Ez correlate well with the conductivity distribution obtained from resistivity methods. Compared to the self-potential technique, continuously free air measurements of the electric field are more rapid and of better lateral resolution combined with the unique ability to analyze vertical components of the electric field which are of particular importance to detect lateral conductivity contrasts. Mapping Ez in free air is a good tool to precisely map lateral changes of the electric field distribution in areas where SP generation fails. MPP offers interesting application in other geophysical techniques e.g. in time domain electromagnetics, DC and IP. With this method we were able to reveal a ca. 150 m broad zone of enhanced electric field strength.

  8. Automatic detection and decoding of honey bee waggle dances.

    PubMed

    Wario, Fernando; Wild, Benjamin; Rojas, Raúl; Landgraf, Tim

    2017-01-01

    The waggle dance is one of the most popular examples of animal communication. Forager bees direct their nestmates to profitable resources via a complex motor display. Essentially, the dance encodes the polar coordinates to the resource in the field. Unemployed foragers follow the dancer's movements and then search for the advertised spots in the field. Throughout the last decades, biologists have employed different techniques to measure key characteristics of the waggle dance and decode the information it conveys. Early techniques involved the use of protractors and stopwatches to measure the dance orientation and duration directly from the observation hive. Recent approaches employ digital video recordings and manual measurements on screen. However, manual approaches are very time-consuming. Most studies, therefore, regard only small numbers of animals in short periods of time. We have developed a system capable of automatically detecting, decoding and mapping communication dances in real-time. In this paper, we describe our recording setup, the image processing steps performed for dance detection and decoding and an algorithm to map dances to the field. The proposed system performs with a detection accuracy of 90.07%. The decoded waggle orientation has an average error of -2.92° (± 7.37°), well within the range of human error. To evaluate and exemplify the system's performance, a group of bees was trained to an artificial feeder, and all dances in the colony were automatically detected, decoded and mapped. The system presented here is the first of this kind made publicly available, including source code and hardware specifications. We hope this will foster quantitative analyses of the honey bee waggle dance.

  9. Vegetation Water Content Mapping in a Diverse Agricultural Landscape: National Airborne Field Experiment 2006

    NASA Technical Reports Server (NTRS)

    Cosh, Michael H.; Jing Tao; Jackson, Thomas J.; McKee, Lynn; O'Neill, Peggy

    2011-01-01

    Mapping land cover and vegetation characteristics on a regional scale is critical to soil moisture retrieval using microwave remote sensing. In aircraft-based experiments such as the National Airborne Field Experiment 2006 (NAFE 06), it is challenging to provide accurate high resolution vegetation information, especially on a daily basis. A technique proposed in previous studies was adapted here to the heterogenous conditions encountered in NAFE 06, which included a hydrologically complex landscape consisting of both irrigated and dryland agriculture. Using field vegetation sampling and ground-based reflectance measurements, the knowledge base for relating the Normalized Difference Water Index (NDWI) and the vegetation water content was extended to a greater diversity of agricultural crops, which included dryland and irrigated wheat, alfalfa, and canola. Critical to the generation of vegetation water content maps, the land cover for this region was determined from satellite visible/infrared imagery and ground surveys with an accuracy of 95.5% and a kappa coefficient of 0.95. The vegetation water content was estimated with a root mean square error of 0.33 kg/sq m. The results of this investigation contribute to a more robust database of global vegetation water content observations and demonstrate that the approach can be applied with high accuracy. Keywords: Vegetation, field experimentation, thematic mapper, NDWI, agriculture.

  10. Dynamic and Inherent B0 Correction for DTI Using Stimulated Echo Spiral Imaging

    PubMed Central

    Avram, Alexandru V.; Guidon, Arnaud; Truong, Trong-Kha; Liu, Chunlei; Song, Allen W.

    2013-01-01

    Purpose To present a novel technique for high-resolution stimulated echo (STE) diffusion tensor imaging (DTI) with self-navigated interleaved spirals (SNAILS) readout trajectories that can inherently and dynamically correct for image artifacts due to spatial and temporal variations in the static magnetic field (B0) resulting from eddy currents, tissue susceptibilities, subject/physiological motion, and hardware instabilities. Methods The Hahn spin echo formed by the first two 90° radio-frequency pulses is balanced to consecutively acquire two additional images with different echo times (TE) and generate an inherent field map, while the diffusion-prepared STE signal remains unaffected. For every diffusion-encoding direction, an intrinsically registered field map is estimated dynamically and used to effectively and inherently correct for off-resonance artifacts in the reconstruction of the corresponding diffusion-weighted image (DWI). Results After correction with the dynamically acquired field maps, local blurring artifacts are specifically removed from individual STE DWIs and the estimated diffusion tensors have significantly improved spatial accuracy and larger fractional anisotropy. Conclusion Combined with the SNAILS acquisition scheme, our new method provides an integrated high-resolution short-TE DTI solution with inherent and dynamic correction for both motion-induced phase errors and off-resonance effects. PMID:23630029

  11. Improving depth estimation from a plenoptic camera by patterned illumination

    NASA Astrophysics Data System (ADS)

    Marshall, Richard J.; Meah, Chris J.; Turola, Massimo; Claridge, Ela; Robinson, Alex; Bongs, Kai; Gruppetta, Steve; Styles, Iain B.

    2015-05-01

    Plenoptic (light-field) imaging is a technique that allows a simple CCD-based imaging device to acquire both spatially and angularly resolved information about the "light-field" from a scene. It requires a microlens array to be placed between the objective lens and the sensor of the imaging device1 and the images under each microlens (which typically span many pixels) can be computationally post-processed to shift perspective, digital refocus, extend the depth of field, manipulate the aperture synthetically and generate a depth map from a single image. Some of these capabilities are rigid functions that do not depend upon the scene and work by manipulating and combining a well-defined set of pixels in the raw image. However, depth mapping requires specific features in the scene to be identified and registered between consecutive microimages. This process requires that the image has sufficient features for the registration, and in the absence of such features the algorithms become less reliable and incorrect depths are generated. The aim of this study is to investigate the generation of depth-maps from light-field images of scenes with insufficient features for accurate registration, using projected patterns to impose a texture on the scene that provides sufficient landmarks for the registration methods.

  12. Infrared mapping of ultrasound fields generated by medical transducers: Feasibility of determining absolute intensity levels

    PubMed Central

    Khokhlova, Vera A.; Shmeleva, Svetlana M.; Gavrilov, Leonid R.; Martin, Eleanor; Sadhoo, Neelaksh; Shaw, Adam

    2013-01-01

    Considerable progress has been achieved in the use of infrared (IR) techniques for qualitative mapping of acoustic fields of high intensity focused ultrasound (HIFU) transducers. The authors have previously developed and demonstrated a method based on IR camera measurement of the temperature rise induced in an absorber less than 2 mm thick by ultrasonic bursts of less than 1 s duration. The goal of this paper was to make the method more quantitative and estimate the absolute intensity distributions by determining an overall calibration factor for the absorber and camera system. The implemented approach involved correlating the temperature rise measured in an absorber using an IR camera with the pressure distribution measured in water using a hydrophone. The measurements were conducted for two HIFU transducers and a flat physiotherapy transducer of 1 MHz frequency. Corresponding correction factors between the free field intensity and temperature were obtained and allowed the conversion of temperature images to intensity distributions. The system described here was able to map in good detail focused and unfocused ultrasound fields with sub-millimeter structure and with local time average intensity from below 0.1 W/cm2 to at least 50 W/cm2. Significantly higher intensities could be measured simply by reducing the duty cycle. PMID:23927199

  13. Infrared mapping of ultrasound fields generated by medical transducers: feasibility of determining absolute intensity levels.

    PubMed

    Khokhlova, Vera A; Shmeleva, Svetlana M; Gavrilov, Leonid R; Martin, Eleanor; Sadhoo, Neelaksh; Shaw, Adam

    2013-08-01

    Considerable progress has been achieved in the use of infrared (IR) techniques for qualitative mapping of acoustic fields of high intensity focused ultrasound (HIFU) transducers. The authors have previously developed and demonstrated a method based on IR camera measurement of the temperature rise induced in an absorber less than 2 mm thick by ultrasonic bursts of less than 1 s duration. The goal of this paper was to make the method more quantitative and estimate the absolute intensity distributions by determining an overall calibration factor for the absorber and camera system. The implemented approach involved correlating the temperature rise measured in an absorber using an IR camera with the pressure distribution measured in water using a hydrophone. The measurements were conducted for two HIFU transducers and a flat physiotherapy transducer of 1 MHz frequency. Corresponding correction factors between the free field intensity and temperature were obtained and allowed the conversion of temperature images to intensity distributions. The system described here was able to map in good detail focused and unfocused ultrasound fields with sub-millimeter structure and with local time average intensity from below 0.1 W/cm(2) to at least 50 W/cm(2). Significantly higher intensities could be measured simply by reducing the duty cycle.

  14. Comparison of RS/GIS analysis with classic mapping approaches for siting low-yield boreholes for hand pumps in crystalline terrains. An application to rural communities of the Caimbambo province, Angola

    NASA Astrophysics Data System (ADS)

    Martín-Loeches, Miguel; Reyes-López, Jaime; Ramírez-Hernández, Jorge; Temiño-Vela, Javier; Martínez-Santos, Pedro

    2018-02-01

    In poverty-stricken regions of Sub-Saharan Africa, groundwater for supply is often obtained by means of hand pumps, which means that low-yield boreholes are acceptable. However, boreholes are often sited without sufficient hydrogeological information due to budget constraints, which leads to high failure rates. Cost-effective techniques for borehole siting need to be developed in order to maximize the success rate. In regions underlain by granite, weathered formations are usually targeted for drilling, as these are generally presented as a better cost-benefit ratio than the fractured basement. Within this context, this research focuses on a granite region of Angola. A comparison of two mapping techniques for borehole siting-groundwater prospect is presented. A classic hydrogeomorphological map was developed first based on aerial photographs, field mapping and a geophysical survey. This map represents a considerable time investment and was developed by qualified technicians. The second map (RS/GIS) is considerably simpler and more cost-effective. It was developed by the integration in a GIS platform of six maps of equal importance-slope, drainage density, vegetation vigor, presence of clay in the soil, lineaments and rock outcrops-prepared from Landsat 8 imagery and a Digital Elevation Model (DEM). Similar results were obtained in both cases. By means of a supervised classification of Landsat images, RS/GIS analysis allows for the identification of granitic outcrops, house clusters and sandy alluvial valleys. This in turn allows for the delineation of low-interest or contamination-prone areas, thus contributing additional qualitative information. The position of a well that is going to be powered by a handpump is chosen also upon social and local matters as the distance to the stakeholders, information that are not difficult to integrate in the GIS. Although the second map needs some field inputs (i.e. surveys to determine the thickness of the weathered pack), results show that RS/GIS analyses such as this one provide a valuable and cost-effective alternative for siting low-yield boreholes in remote regions.

  15. Mapping the layer count of few-layer hexagonal boron nitride at high lateral spatial resolutions

    NASA Astrophysics Data System (ADS)

    Mohsin, Ali; Cross, Nicholas G.; Liu, Lei; Watanabe, Kenji; Taniguchi, Takashi; Duscher, Gerd; Gu, Gong

    2018-01-01

    Layer count control and uniformity of two dimensional (2D) layered materials are critical to the investigation of their properties and to their electronic device applications, but methods to map 2D material layer count at nanometer-level lateral spatial resolutions have been lacking. Here, we demonstrate a method based on two complementary techniques widely available in transmission electron microscopes (TEMs) to map the layer count of multilayer hexagonal boron nitride (h-BN) films. The mass-thickness contrast in high-angle annular dark-field (HAADF) imaging in the scanning transmission electron microscope (STEM) mode allows for thickness determination in atomically clean regions with high spatial resolution (sub-nanometer), but is limited by surface contamination. To complement, another technique based on the boron K ionization edge in the electron energy loss spectroscopy spectrum (EELS) of h-BN is developed to quantify the layer count so that surface contamination does not cause an overestimate, albeit at a lower spatial resolution (nanometers). The two techniques agree remarkably well in atomically clean regions with discrepancies within  ±1 layer. For the first time, the layer count uniformity on the scale of nanometers is quantified for a 2D material. The methodology is applicable to layer count mapping of other 2D layered materials, paving the way toward the synthesis of multilayer 2D materials with homogeneous layer count.

  16. Page layout analysis and classification for complex scanned documents

    NASA Astrophysics Data System (ADS)

    Erkilinc, M. Sezer; Jaber, Mustafa; Saber, Eli; Bauer, Peter; Depalov, Dejan

    2011-09-01

    A framework for region/zone classification in color and gray-scale scanned documents is proposed in this paper. The algorithm includes modules for extracting text, photo, and strong edge/line regions. Firstly, a text detection module which is based on wavelet analysis and Run Length Encoding (RLE) technique is employed. Local and global energy maps in high frequency bands of the wavelet domain are generated and used as initial text maps. Further analysis using RLE yields a final text map. The second module is developed to detect image/photo and pictorial regions in the input document. A block-based classifier using basis vector projections is employed to identify photo candidate regions. Then, a final photo map is obtained by applying probabilistic model based on Markov random field (MRF) based maximum a posteriori (MAP) optimization with iterated conditional mode (ICM). The final module detects lines and strong edges using Hough transform and edge-linkages analysis, respectively. The text, photo, and strong edge/line maps are combined to generate a page layout classification of the scanned target document. Experimental results and objective evaluation show that the proposed technique has a very effective performance on variety of simple and complex scanned document types obtained from MediaTeam Oulu document database. The proposed page layout classifier can be used in systems for efficient document storage, content based document retrieval, optical character recognition, mobile phone imagery, and augmented reality.

  17. Analysis of building deformation in landslide area using multisensor PSInSAR™ technique.

    PubMed

    Ciampalini, Andrea; Bardi, Federica; Bianchini, Silvia; Frodella, William; Del Ventisette, Chiara; Moretti, Sandro; Casagli, Nicola

    2014-12-01

    Buildings are sensitive to movements caused by ground deformation. The mapping both of spatial and temporal distribution, and of the degree of building damages represents a useful tool in order to understand the landslide evolution, magnitude and stress distribution. The high spatial resolution of space-borne SAR interferometry can be used to monitor displacements related to building deformations. In particular, PSInSAR technique is used to map and monitor ground deformation with millimeter accuracy. The usefulness of the above mentioned methods was evaluated in San Fratello municipality (Sicily, Italy), which was historically affected by landslides: the most recent one occurred on 14th February 2010. PSInSAR data collected by ERS 1/2, ENVISAT, RADARSAT-1 were used to study the building deformation velocities before the 2010 landslide. The X-band sensors COSMO-SkyMed and TerraSAR-X were used in order to monitor the building deformation after this event. During 2013, after accurate field inspection on buildings and structures, damage assessment map of San Fratello were created and then compared to the building deformation velocity maps. The most interesting results were obtained by the comparison between the building deformation velocity map obtained through COSMO-SkyMed and the damage assessment map. This approach can be profitably used by local and Civil Protection Authorities to manage the post-event phase and evaluate the residual risks.

  18. Mapping coastal morphodynamics with geospatial techniques, Cape Henry, Virginia, USA

    NASA Astrophysics Data System (ADS)

    Allen, Thomas R.; Oertel, George F.; Gares, Paul A.

    2012-01-01

    The advent and proliferation of digital terrain technologies have spawned concomitant advances in coastal geomorphology. Airborne topographic Light Detection and Ranging (LiDAR) has stimulated a renaissance in coastal mapping, and field-based mapping techniques have benefitted from improvements in real-time kinematic (RTK) Global Positioning System (GPS). Varied methodologies for mapping suggest a need to match geospatial products to geomorphic forms and processes, a task that should consider product and process ontologies from each perspective. Towards such synthesis, coastal morphodynamics on a cuspate foreland are reconstructed using spatial analysis. Sequential beach ridge and swale topography are mapped using photogrammetric spot heights and airborne LiDAR data and integrated with digital bathymetry and large-scale vector shoreline data. Isobaths from bathymetric charts were digitized to determine slope and toe depth of the modern shoreface and a reconstructed three-dimensional antecedent shoreface. Triangulated irregular networks were created for the subaerial cape and subaqueous shoreface models of the cape beach ridges and sets for volumetric analyses. Results provide estimates of relative age and progradation rate and corroborate other paleogeologic sea-level rise data from the region. Swale height elevations and other measurements quantifiable in these data provide several parameters suitable for studying coastal geomorphic evolution. Mapped paleoshorelines and volumes suggest the Virginia Beach coastal compartment is related to embryonic spit development from a late Holocene shoreline located some 5 km east of the current beach.

  19. [application of the analytical transmission electron microscopy techniques for detection, identification and visualization of localization of nanoparticles of titanium and cerium oxides in mammalian cells].

    PubMed

    Shebanova, A S; Bogdanov, A G; Ismagulova, T T; Feofanov, A V; Semenyuk, P I; Muronets, V I; Erokhina, M V; Onishchenko, G E; Kirpichnikov, M P; Shaitan, K V

    2014-01-01

    This work represents the results of the study on applicability of the modern methods of analytical transmission electron microscopy for detection, identification and visualization of localization of nanoparticles of titanium and cerium oxides in A549 cell, human lung adenocarcinoma cell line. A comparative analysis of images of the nanoparticles in the cells obtained in the bright field mode of transmission electron microscopy, under dark-field scanning transmission electron microscopy and high-angle annular dark field scanning transmission electron was performed. For identification of nanoparticles in the cells the analytical techniques, energy-dispersive X-ray spectroscopy and electron energy loss spectroscopy, were compared when used in the mode of obtaining energy spectrum from different particles and element mapping. It was shown that the method for electron tomography is applicable to confirm that nanoparticles are localized in the sample but not coated by contamination. The possibilities and fields of utilizing different techniques for analytical transmission electron microscopy for detection, visualization and identification of nanoparticles in the biological samples are discussed.

  20. Cooperative Autonomous Observation of Coherent Atmospheric Structures using Small Unmanned Aircraft Systems

    NASA Astrophysics Data System (ADS)

    Ravela, S.

    2014-12-01

    Mapping the structure of localized atmospheric phenomena, from sea breeze and shallow cumuli to thunderstorms and hurricanes, is of scientific interest. Low-cost small unmanned aircraft systems (sUAS) open the possibility for autonomous "instruments" to map important small-scale phenomena (kilometers, hours) and serve as a testbed for for much larger scales. Localized phenomena viewed as coherent structures interacting with their large-scale environment are difficult to map. As simple simulations show, naive Eulerian or Lagrangian strategies can fail in mapping localized phenomena. Model-based techniques are needed. Meteorological targeting, where supplementary UAS measurements additionally constrain numerical models is promising, but may require many primary measurements to be successful. We propose a new, data-driven, field-operable, cooperative autonomous observing system (CAOS) framework. A remote observer (on a UAS) tracks tracers to identify an apparent motion model over short timescales. Motion-based predictions seed MCMC flight plans for other UAS to gather in-situ data, which is fused with the remote measurements to produce maps. The tracking and mapping cycles repeat, and maps can be assimilated into numerical models for longer term forecasting. CAOS has been applied to study small scale emissions. At Popocatepetl, in collaboration with CENAPRED and IPN, it is being applied map the plume using remote IR/UV UAS and in-situ SO2 sensing, with additional plans for water vapor, the electric field and ash. The combination of sUAS with autonomy appears to be highly promising methodology for environmental mapping. For more information, please visit http://caos.mit.edu

  1. SoundCompass: A Distributed MEMS Microphone Array-Based Sensor for Sound Source Localization

    PubMed Central

    Tiete, Jelmer; Domínguez, Federico; da Silva, Bruno; Segers, Laurent; Steenhaut, Kris; Touhafi, Abdellah

    2014-01-01

    Sound source localization is a well-researched subject with applications ranging from localizing sniper fire in urban battlefields to cataloging wildlife in rural areas. One critical application is the localization of noise pollution sources in urban environments, due to an increasing body of evidence linking noise pollution to adverse effects on human health. Current noise mapping techniques often fail to accurately identify noise pollution sources, because they rely on the interpolation of a limited number of scattered sound sensors. Aiming to produce accurate noise pollution maps, we developed the SoundCompass, a low-cost sound sensor capable of measuring local noise levels and sound field directionality. Our first prototype is composed of a sensor array of 52 Microelectromechanical systems (MEMS) microphones, an inertial measuring unit and a low-power field-programmable gate array (FPGA). This article presents the SoundCompass’s hardware and firmware design together with a data fusion technique that exploits the sensing capabilities of the SoundCompass in a wireless sensor network to localize noise pollution sources. Live tests produced a sound source localization accuracy of a few centimeters in a 25-m2 anechoic chamber, while simulation results accurately located up to five broadband sound sources in a 10,000-m2 open field. PMID:24463431

  2. Monitoring Geothermal Features in Yellowstone National Park with ATLAS Multispectral Imagery

    NASA Technical Reports Server (NTRS)

    Spruce, Joseph; Berglund, Judith

    2000-01-01

    The National Park Service (NPS) must produce an Environmental Impact Statement for each proposed development in the vicinity of known geothermal resource areas (KGRAs) in Yellowstone National Park. In addition, the NPS monitors indicator KGRAs for environmental quality and is still in the process of mapping many geothermal areas. The NPS currently maps geothermal features with field survey techniques. High resolution aerial multispectral remote sensing in the visible, NIR, SWIR, and thermal spectral regions could enable YNP geothermal features to be mapped more quickly and in greater detail In response, Yellowstone Ecosystems Studies, in partnership with NASA's Commercial Remote Sensing Program, is conducting a study on the use of Airborne Terrestrial Applications Sensor (ATLAS) multispectral data for monitoring geothermal features in the Upper Geyser Basin. ATLAS data were acquired at 2.5 meter resolution on August 17, 2000. These data were processed into land cover classifications and relative temperature maps. For sufficiently large features, the ATLAS data can map geothermal areas in terms of geyser pools and hot springs, plus multiple categories of geothermal runoff that are apparently indicative of temperature gradients and microbial matting communities. In addition, the ATLAS maps clearly identify geyserite areas. The thermal bands contributed to classification success and to the computation of relative temperature. With masking techniques, one can assess the influence of geothermal features on the Firehole River. Preliminary results appear to confirm ATLAS data utility for mapping and monitoring geothermal features. Future work will include classification refinement and additional validation.

  3. Evaluating methods for controlling depth perception in stereoscopic cinematography

    NASA Astrophysics Data System (ADS)

    Sun, Geng; Holliman, Nick

    2009-02-01

    Existing stereoscopic imaging algorithms can create static stereoscopic images with perceived depth control function to ensure a compelling 3D viewing experience without visual discomfort. However, current algorithms do not normally support standard Cinematic Storytelling techniques. These techniques, such as object movement, camera motion, and zooming, can result in dynamic scene depth change within and between a series of frames (shots) in stereoscopic cinematography. In this study, we empirically evaluate the following three types of stereoscopic imaging approaches that aim to address this problem. (1) Real-Eye Configuration: set camera separation equal to the nominal human eye interpupillary distance. The perceived depth on the display is identical to the scene depth without any distortion. (2) Mapping Algorithm: map the scene depth to a predefined range on the display to avoid excessive perceived depth. A new method that dynamically adjusts the depth mapping from scene space to display space is presented in addition to an existing fixed depth mapping method. (3) Depth of Field Simulation: apply Depth of Field (DOF) blur effect to stereoscopic images. Only objects that are inside the DOF are viewed in full sharpness. Objects that are far away from the focus plane are blurred. We performed a human-based trial using the ITU-R BT.500-11 Recommendation to compare the depth quality of stereoscopic video sequences generated by the above-mentioned imaging methods. Our results indicate that viewers' practical 3D viewing volumes are different for individual stereoscopic displays and viewers can cope with much larger perceived depth range in viewing stereoscopic cinematography in comparison to static stereoscopic images. Our new dynamic depth mapping method does have an advantage over the fixed depth mapping method in controlling stereo depth perception. The DOF blur effect does not provide the expected improvement for perceived depth quality control in 3D cinematography. We anticipate the results will be of particular interest to 3D filmmaking and real time computer games.

  4. Multi- and hyperspectral geologic remote sensing: A review

    NASA Astrophysics Data System (ADS)

    van der Meer, Freek D.; van der Werff, Harald M. A.; van Ruitenbeek, Frank J. A.; Hecker, Chris A.; Bakker, Wim H.; Noomen, Marleen F.; van der Meijde, Mark; Carranza, E. John M.; Smeth, J. Boudewijn de; Woldai, Tsehaie

    2012-02-01

    Geologists have used remote sensing data since the advent of the technology for regional mapping, structural interpretation and to aid in prospecting for ores and hydrocarbons. This paper provides a review of multispectral and hyperspectral remote sensing data, products and applications in geology. During the early days of Landsat Multispectral scanner and Thematic Mapper, geologists developed band ratio techniques and selective principal component analysis to produce iron oxide and hydroxyl images that could be related to hydrothermal alteration. The advent of the Advanced Spaceborne Thermal Emission and Reflectance Radiometer (ASTER) with six channels in the shortwave infrared and five channels in the thermal region allowed to produce qualitative surface mineral maps of clay minerals (kaolinite, illite), sulfate minerals (alunite), carbonate minerals (calcite, dolomite), iron oxides (hematite, goethite), and silica (quartz) which allowed to map alteration facies (propylitic, argillic etc.). The step toward quantitative and validated (subpixel) surface mineralogic mapping was made with the advent of high spectral resolution hyperspectral remote sensing. This led to a wealth of techniques to match image pixel spectra to library and field spectra and to unravel mixed pixel spectra to pure endmember spectra to derive subpixel surface compositional information. These products have found their way to the mining industry and are to a lesser extent taken up by the oil and gas sector. The main threat for geologic remote sensing lies in the lack of (satellite) data continuity. There is however a unique opportunity to develop standardized protocols leading to validated and reproducible products from satellite remote sensing for the geology community. By focusing on geologic mapping products such as mineral and lithologic maps, geochemistry, P-T paths, fluid pathways etc. the geologic remote sensing community can bridge the gap with the geosciences community. Increasingly workflows should be multidisciplinary and remote sensing data should be integrated with field observations and subsurface geophysical data to monitor and understand geologic processes.

  5. Mapping Tamarix: New techniques for field measurements, spatial modeling and remote sensing

    NASA Astrophysics Data System (ADS)

    Evangelista, Paul H.

    Native riparian ecosystems throughout the southwestern United States are being altered by the rapid invasion of Tamarix species, commonly known as tamarisk. The effects that tamarisk has on ecosystem processes have been poorly quantified largely due to inadequate survey methods. I tested new approaches for field measurements, spatial models and remote sensing to improve our ability measure and to map tamarisk occurrence, and provide new methods that will assist in management and control efforts. Examining allometric relationships between basal cover and height measurements collected in the field, I was able to produce several models to accurately estimate aboveground biomass. The best two models were explained 97% of the variance (R 2 = 0.97). Next, I tested five commonly used predictive spatial models to identify which methods performed best for tamarisk using different types of data collected in the field. Most spatial models performed well for tamarisk, with logistic regression performing best with an Area Under the receiver-operating characteristic Curve (AUC) of 0.89 and overall accuracy of 85%. The results of this study also suggested that models may not perform equally with different invasive species, and that results may be influenced by species traits and their interaction with environmental factors. Lastly, I tested several approaches to improve the ability to remotely sense tamarisk occurrence. Using Landsat7 ETM+ satellite scenes and derived vegetation indices for six different months of the growing season, I examined their ability to detect tamarisk individually (single-scene analyses) and collectively (time-series). My results showed that time-series analyses were best suited to distinguish tamarisk from other vegetation and landscape features (AUC = 0.96, overall accuracy = 90%). June, August and September were the best months to detect unique phenological attributes that are likely related to the species' extended growing season and green-up during peak growing months. These studies demonstrate that new techniques can further our understanding of tamarisk's impacts on ecosystem processes, predict potential distribution and new invasions, and improve our ability to detect occurrence using remote sensing techniques. Collectively, the results of my studies may increase our ability to map tamarisk distributions and better quantify its impacts over multiple spatial and temporal scales.

  6. Crosscutting Airborne Remote Sensing Technologies for Oil and Gas and Earth Science Applications

    NASA Technical Reports Server (NTRS)

    Aubrey, A. D.; Frankenberg, C.; Green, R. O.; Eastwood, M. L.; Thompson, D. R.; Thorpe, A. K.

    2015-01-01

    Airborne imaging spectroscopy has evolved dramatically since the 1980s as a robust remote sensing technique used to generate 2-dimensional maps of surface properties over large spatial areas. Traditional applications for passive airborne imaging spectroscopy include interrogation of surface composition, such as mapping of vegetation diversity and surface geological composition. Two recent applications are particularly relevant to the needs of both the oil and gas as well as government sectors: quantification of surficial hydrocarbon thickness in aquatic environments and mapping atmospheric greenhouse gas components. These techniques provide valuable capabilities for petroleum seepage in addition to detection and quantification of fugitive emissions. New empirical data that provides insight into the source strength of anthropogenic methane will be reviewed, with particular emphasis on the evolving constraints enabled by new methane remote sensing techniques. Contemporary studies attribute high-strength point sources as significantly contributing to the national methane inventory and underscore the need for high performance remote sensing technologies that provide quantitative leak detection. Imaging sensors that map spatial distributions of methane anomalies provide effective techniques to detect, localize, and quantify fugitive leaks. Airborne remote sensing instruments provide the unique combination of high spatial resolution (<1 m) and large coverage required to directly attribute methane emissions to individual emission sources. This capability cannot currently be achieved using spaceborne sensors. In this study, results from recent NASA remote sensing field experiments focused on point-source leak detection, will be highlighted. This includes existing quantitative capabilities for oil and methane using state-of-the-art airborne remote sensing instruments. While these capabilities are of interest to NASA for assessment of environmental impact and global climate change, industry similarly seeks to detect and localize leaks of both oil and methane across operating fields. In some cases, higher sensitivities desired for upstream and downstream applications can only be provided by new airborne remote sensing instruments tailored specifically for a given application. There exists a unique opportunity for alignment of efforts between commercial and government sectors to advance the next generation of instruments to provide more sensitive leak detection capabilities, including those for quantitative source strength determination.

  7. Rapid Mapping for Built Heritage at Risk Using Low-Cost and Cots Sensors. a Test in the Duomo Vecchio of San Severino Marche

    NASA Astrophysics Data System (ADS)

    Calantropio, A.; Colucci, E.; Teppati Losè, L.

    2017-11-01

    In the last years, the researchers in the field of Geomatics have focused their attention in the experimentation and validation of new methodologies and techniques, stressing especially the potential of low-cost and COTS (Commercial Off The Shelf) solutions and sensors. In particular, these tools have been used with purposes of rapid mapping in different contexts (ranging from the construction industry, environmental monitoring, mining activities, etc.). The Built Heritage, due to its intrinsic nature of endangered artefact, can largely benefit from the technological and methodological innovations in this research field. The contribute presented in this paper will highlight these main topics: the rapid mapping of the Built Heritage (in particular the one subjected to different types of risk) using low-cost and COTS solutions. Different sensors and techniques were chosen to be evaluated on a specific test site: the Duomo Vecchio of San Severino Marche (MC - Italy), that was partially affected by the earthquake swarm that hit the area of Central Italy starting from the 24th of August 2016. One of the main aims of this work is to demonstrate how low-cost and COTS sensors can contribute to the documentation of the Built Heritage for its safeguard, for damage assessment in case of disastrous events and operations of restoration and preservation.

  8. Emerging optical nanoscopy techniques

    PubMed Central

    Montgomery, Paul C; Leong-Hoi, Audrey

    2015-01-01

    To face the challenges of modern health care, new imaging techniques with subcellular resolution or detection over wide fields are required. Far field optical nanoscopy presents many new solutions, providing high resolution or detection at high speed. We present a new classification scheme to help appreciate the growing number of optical nanoscopy techniques. We underline an important distinction between superresolution techniques that provide improved resolving power and nanodetection techniques for characterizing unresolved nanostructures. Some of the emerging techniques within these two categories are highlighted with applications in biophysics and medicine. Recent techniques employing wider angle imaging by digital holography and scattering lens microscopy allow superresolution to be achieved for subcellular and even in vivo, imaging without labeling. Nanodetection techniques are divided into four subcategories using contrast, phase, deconvolution, and nanomarkers. Contrast enhancement is illustrated by means of a polarized light-based technique and with strobed phase-contrast microscopy to reveal nanostructures. Very high sensitivity phase measurement using interference microscopy is shown to provide nanometric surface roughness measurement or to reveal internal nanometric structures. Finally, the use of nanomarkers is illustrated with stochastic fluorescence microscopy for mapping intracellular structures. We also present some of the future perspectives of optical nanoscopy. PMID:26491270

  9. Systems genetics: a paradigm to improve discovery of candidate genes and mechanisms underlying complex traits.

    PubMed

    Feltus, F Alex

    2014-06-01

    Understanding the control of any trait optimally requires the detection of causal genes, gene interaction, and mechanism of action to discover and model the biochemical pathways underlying the expressed phenotype. Functional genomics techniques, including RNA expression profiling via microarray and high-throughput DNA sequencing, allow for the precise genome localization of biological information. Powerful genetic approaches, including quantitative trait locus (QTL) and genome-wide association study mapping, link phenotype with genome positions, yet genetics is less precise in localizing the relevant mechanistic information encoded in DNA. The coupling of salient functional genomic signals with genetically mapped positions is an appealing approach to discover meaningful gene-phenotype relationships. Techniques used to define this genetic-genomic convergence comprise the field of systems genetics. This short review will address an application of systems genetics where RNA profiles are associated with genetically mapped genome positions of individual genes (eQTL mapping) or as gene sets (co-expression network modules). Both approaches can be applied for knowledge independent selection of candidate genes (and possible control mechanisms) underlying complex traits where multiple, likely unlinked, genomic regions might control specific complex traits. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  10. Mapping fetal brain development in utero using magnetic resonance imaging: the Big Bang of brain mapping.

    PubMed

    Studholme, Colin

    2011-08-15

    The development of tools to construct and investigate probabilistic maps of the adult human brain from magnetic resonance imaging (MRI) has led to advances in both basic neuroscience and clinical diagnosis. These tools are increasingly being applied to brain development in adolescence and childhood, and even to neonatal and premature neonatal imaging. Even earlier in development, parallel advances in clinical fetal MRI have led to its growing use as a tool in challenging medical conditions. This has motivated new engineering developments encompassing optimal fast MRI scans and techniques derived from computer vision, the combination of which allows full 3D imaging of the moving fetal brain in utero without sedation. These promise to provide a new and unprecedented window into early human brain growth. This article reviews the developments that have led us to this point, examines the current state of the art in the fields of fast fetal imaging and motion correction, and describes the tools to analyze dynamically changing fetal brain structure. New methods to deal with developmental tissue segmentation and the construction of spatiotemporal atlases are examined, together with techniques to map fetal brain growth patterns.

  11. Relaxation-based viscosity mapping for magnetic particle imaging.

    PubMed

    Utkur, M; Muslu, Y; Saritas, E U

    2017-05-07

    Magnetic particle imaging (MPI) has been shown to provide remarkable contrast for imaging applications such as angiography, stem cell tracking, and cancer imaging. Recently, there is growing interest in the functional imaging capabilities of MPI, where 'color MPI' techniques have explored separating different nanoparticles, which could potentially be used to distinguish nanoparticles in different states or environments. Viscosity mapping is a promising functional imaging application for MPI, as increased viscosity levels in vivo have been associated with numerous diseases such as hypertension, atherosclerosis, and cancer. In this work, we propose a viscosity mapping technique for MPI through the estimation of the relaxation time constant of the nanoparticles. Importantly, the proposed time constant estimation scheme does not require any prior information regarding the nanoparticles. We validate this method with extensive experiments in an in-house magnetic particle spectroscopy (MPS) setup at four different frequencies (between 250 Hz and 10.8 kHz) and at three different field strengths (between 5 mT and 15 mT) for viscosities ranging between 0.89 mPa · s-15.33 mPa · s. Our results demonstrate the viscosity mapping ability of MPI in the biologically relevant viscosity range.

  12. Relaxation-based viscosity mapping for magnetic particle imaging

    NASA Astrophysics Data System (ADS)

    Utkur, M.; Muslu, Y.; Saritas, E. U.

    2017-05-01

    Magnetic particle imaging (MPI) has been shown to provide remarkable contrast for imaging applications such as angiography, stem cell tracking, and cancer imaging. Recently, there is growing interest in the functional imaging capabilities of MPI, where ‘color MPI’ techniques have explored separating different nanoparticles, which could potentially be used to distinguish nanoparticles in different states or environments. Viscosity mapping is a promising functional imaging application for MPI, as increased viscosity levels in vivo have been associated with numerous diseases such as hypertension, atherosclerosis, and cancer. In this work, we propose a viscosity mapping technique for MPI through the estimation of the relaxation time constant of the nanoparticles. Importantly, the proposed time constant estimation scheme does not require any prior information regarding the nanoparticles. We validate this method with extensive experiments in an in-house magnetic particle spectroscopy (MPS) setup at four different frequencies (between 250 Hz and 10.8 kHz) and at three different field strengths (between 5 mT and 15 mT) for viscosities ranging between 0.89 mPa · s-15.33 mPa · s. Our results demonstrate the viscosity mapping ability of MPI in the biologically relevant viscosity range.

  13. Characterization of a bent Laue double-crystal beam-expanding monochromator

    DOE PAGES

    Martinson, Mercedes; Samadi, Nazanin; Shi, Xianbo; ...

    2017-10-19

    A bent Laue double-crystal monochromator system has been designed for vertically expanding the X-ray beam at the Canadian Light Source's BioMedical Imaging and Therapy beamlines. Expansion by a factor of 12 has been achieved without deteriorating the transverse coherence of the beam, allowing phase-based imaging techniques to be performed with high flux and a large field of view. However, preliminary studies revealed a lack of uniformity in the beam, presumed to be caused by imperfect bending of the silicon crystal wafers used in the system. Results from finite-element analysis of the system predicted that the second crystal would be mostmore » severely affected and has been shown experimentally. It has been determined that the majority of the distortion occurs in the second crystal and is likely caused by an imperfection in the surface of the bending frame. Here, measurements were then taken to characterize the bending of the crystal using both mechanical and diffraction techniques. In particular, two techniques commonly used to map dislocations in crystal structures have been adapted to map local curvature of the bent crystals. One of these, a variation of Berg–Berrett topography, has been used to quantify the diffraction effects caused by the distortion of the crystal wafer. This technique produces a global mapping of the deviation of the diffraction angle relative to a perfect cylinder. Finally, this information is critical for improving bending and measuring tolerances of imperfections by correlating this mapping to areas of missing intensity in the beam.« less

  14. Characterization of a bent Laue double-crystal beam-expanding monochromator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martinson, Mercedes; Samadi, Nazanin; Shi, Xianbo

    A bent Laue double-crystal monochromator system has been designed for vertically expanding the X-ray beam at the Canadian Light Source's BioMedical Imaging and Therapy beamlines. Expansion by a factor of 12 has been achieved without deteriorating the transverse coherence of the beam, allowing phase-based imaging techniques to be performed with high flux and a large field of view. However, preliminary studies revealed a lack of uniformity in the beam, presumed to be caused by imperfect bending of the silicon crystal wafers used in the system. Results from finite-element analysis of the system predicted that the second crystal would be mostmore » severely affected and has been shown experimentally. It has been determined that the majority of the distortion occurs in the second crystal and is likely caused by an imperfection in the surface of the bending frame. Here, measurements were then taken to characterize the bending of the crystal using both mechanical and diffraction techniques. In particular, two techniques commonly used to map dislocations in crystal structures have been adapted to map local curvature of the bent crystals. One of these, a variation of Berg–Berrett topography, has been used to quantify the diffraction effects caused by the distortion of the crystal wafer. This technique produces a global mapping of the deviation of the diffraction angle relative to a perfect cylinder. Finally, this information is critical for improving bending and measuring tolerances of imperfections by correlating this mapping to areas of missing intensity in the beam.« less

  15. Optical remote sensing and correlation of office equipment functional state and stress levels via power quality disturbances inefficiencies

    NASA Astrophysics Data System (ADS)

    Sternberg, Oren; Bednarski, Valerie R.; Perez, Israel; Wheeland, Sara; Rockway, John D.

    2016-09-01

    Non-invasive optical techniques pertaining to the remote sensing of power quality disturbances (PQD) are part of an emerging technology field typically dominated by radio frequency (RF) and invasive-based techniques. Algorithms and methods to analyze and address PQD such as probabilistic neural networks and fully informed particle swarms have been explored in industry and academia. Such methods are tuned to work with RF equipment and electronics in existing power grids. As both commercial and defense assets are heavily power-dependent, understanding electrical transients and failure events using non-invasive detection techniques is crucial. In this paper we correlate power quality empirical models to the observed optical response. We also empirically demonstrate a first-order approach to map household, office and commercial equipment PQD to user functions and stress levels. We employ a physics-based image and signal processing approach, which demonstrates measured non-invasive (remote sensing) techniques to detect and map the base frequency associated with the power source to the various PQD on a calibrated source.

  16. Digital mapping techniques '00, workshop proceedings - May 17-20, 2000, Lexington, Kentucky

    USGS Publications Warehouse

    Soller, David R.

    2000-01-01

    Introduction: The Digital Mapping Techniques '00 (DMT'00) workshop was attended by 99 technical experts from 42 agencies, universities, and private companies, including representatives from 28 state geological surveys (see Appendix A). This workshop was similar in nature to the first three meetings, held in June, 1997, in Lawrence, Kansas (Soller, 1997), in May, 1998, in Champaign, Illinois (Soller, 1998a), and in May, 1999, in Madison, Wisconsin (Soller, 1999). This year's meeting was hosted by the Kentucky Geological Survey, from May 17 to 20, 2000, on the University of Kentucky campus in Lexington. As in the previous meetings, the objective was to foster informal discussion and exchange of technical information. When, based on discussions at the workshop, an attendee adopts or modifies a newly learned technique, the workshop clearly has met that objective. Evidence of learning and cooperation among participating agencies continued to be a highlight of the DMT workshops (see example in Soller, 1998b, and various papers in this volume). The meeting's general goal was to help move the state geological surveys and the USGS toward development of more cost-effective, flexible, and useful systems for digital mapping and geographic information systems (GIS) analysis. Through oral and poster presentations and special discussion sessions, emphasis was given to: 1) methods for creating and publishing map products (here, 'publishing' includes Web-based release); 2) continued development of the National Geologic Map Database; 3) progress toward building a standard geologic map data model; 4) field data-collection systems; and 5) map citation and authorship guidelines. Four representatives of the GIS hardware and software vendor community were invited to participate. The four annual DMT workshops were coordinated by the AASG/USGS Data Capture Working Group, which was formed in August, 1996, to support the Association of American State Geologists and the USGS in their effort to build a National Geologic Map Database (see Soller and Berg, this volume, and http://ncgmp.usgs.gov/ngmdbproject/standards/datacapt/). The Working Group was formed because increased production efficiencies, standardization, and quality of digital map products were needed to help the Database, and the State and Federal geological surveys, provide more high-quality digital maps to the public.

  17. Development of predictive mapping techniques for soil survey and salinity mapping

    NASA Astrophysics Data System (ADS)

    Elnaggar, Abdelhamid A.

    Conventional soil maps represent a valuable source of information about soil characteristics, however they are subjective, very expensive, and time-consuming to prepare. Also, they do not include explicit information about the conceptual mental model used in developing them nor information about their accuracy, in addition to the error associated with them. Decision tree analysis (DTA) was successfully used in retrieving the expert knowledge embedded in old soil survey data. This knowledge was efficiently used in developing predictive soil maps for the study areas in Benton and Malheur Counties, Oregon and accessing their consistency. A retrieved soil-landscape model from a reference area in Harney County was extrapolated to develop a preliminary soil map for the neighboring unmapped part of Malheur County. The developed map had a low prediction accuracy and only a few soil map units (SMUs) were predicted with significant accuracy, mostly those shallow SMUs that have either a lithic contact with the bedrock or developed on a duripan. On the other hand, the developed soil map based on field data was predicted with very high accuracy (overall was about 97%). Salt-affected areas of the Malheur County study area are indicated by their high spectral reflectance and they are easily discriminated from the remote sensing data. However, remote sensing data fails to distinguish between the different classes of soil salinity. Using the DTA method, five classes of soil salinity were successfully predicted with an overall accuracy of about 99%. Moreover, the calculated area of salt-affected soil was overestimated when mapped using remote sensing data compared to that predicted by using DTA. Hence, DTA could be a very helpful approach in developing soil survey and soil salinity maps in more objective, effective, less-expensive and quicker ways based on field data.

  18. Erasing the Milky Way: New Cleaning Technique Applied to GBT Intensity Mapping Data

    NASA Technical Reports Server (NTRS)

    Wolz, L.; Blake, C.; Abdalla, F. B.; Anderson, C. J.; Chang, T.-C.; Li, Y.-C.; Masi, K.W.; Switzer, E.; Pen, U.-L.; Voytek, T. C.; hide

    2016-01-01

    We present the first application of a new foreground removal pipeline to the current leading HI intensity mapping dataset, obtained by the Green Bank Telescope (GBT). We study the 15- and 1-h field data of the GBT observations previously presented in Masui et al. (2013) and Switzer et al. (2013), covering about 41 square degrees at 0.6 less than z is less than 1.0, for which cross-correlations may be measured with the galaxy distribution of the WiggleZ Dark Energy Survey. In the presented pipeline, we subtract the Galactic foreground continuum and the point source contamination using an independent component analysis technique (fastica), and develop a Fourier-based optimal estimator to compute the temperature power spectrum of the intensity maps and cross-correlation with the galaxy survey data. We show that fastica is a reliable tool to subtract diffuse and point-source emission through the non-Gaussian nature of their probability distributions. The temperature power spectra of the intensity maps is dominated by instrumental noise on small scales which fastica, as a conservative sub-traction technique of non-Gaussian signals, can not mitigate. However, we determine similar GBT-WiggleZ cross-correlation measurements to those obtained by the Singular Value Decomposition (SVD) method, and confirm that foreground subtraction with fastica is robust against 21cm signal loss, as seen by the converged amplitude of these cross-correlation measurements. We conclude that SVD and fastica are complementary methods to investigate the foregrounds and noise systematics present in intensity mapping datasets.

  19. Exploration of solar photospheric magnetic field data sets using the UCSD tomography

    NASA Astrophysics Data System (ADS)

    Jackson, B. V.; Yu, H.-S.; Buffington, A.; Hick, P. P.; Nishimura, N.; Nozaki, N.; Tokumaru, M.; Fujiki, K.; Hayashi, K.

    2016-12-01

    This article investigates the use of two different types of National Solar Observatory magnetograms and two different coronal field modeling techniques over 10 years. Both the "open-field" Current Sheet Source Surface (CSSS) and a "closed-field" technique using CSSS modeling are compared. The University of California, San Diego, tomographic modeling, using interplanetary scintillation data from Japan, provides the global velocities to extrapolate these fields outward, which are then compared with fields measured in situ near Earth. Although the open-field technique generally gives a better result for radial and tangential fields, we find that a portion of the closed extrapolated fields measured in situ near Earth comes from the direct outward mapping of these fields in the low solar corona. All three closed-field components are nonzero at 1 AU and are compared with the appropriate magnetometer values. A significant positive correlation exists between these closed-field components and the in situ measurements over the last 10 years. We determine that a small fraction of the static low-coronal component flux, which includes the Bn (north-south) component, regularly escapes from closed-field regions. The closed-field flux fraction varies by about a factor of 3 from a mean value during this period, relative to the magnitude of the field components measured in situ near Earth, and maximizes in 2014. This implies that a relatively more efficient process for closed-flux escape occurs near solar maximum. We also compare and find that the popular Potential Field Source Surface and CSSS model closed fields are nearly identical in sign and strength.

  20. Spectrally-Based Bathymetric Mapping of a Dynamic, Sand-Bedded Channel: Niobrara River, Nebraska, USA

    NASA Astrophysics Data System (ADS)

    Dilbone, Elizabeth K.

    Methods for spectrally-based bathymetric mapping of rivers mainly have been developed and tested on clear-flowing, gravel bedded channels, with limited application to turbid, sand-bedded rivers. Using hyperspectral images of the Niobrara River, Nebraska, and field-surveyed depth data, this study evaluated three methods of retrieving depth from remotely sensed data in a dynamic, sand-bedded channel. The first regression-based approach paired in situ depth measurements and image pixel values to predict depth via Optimal Band Ratio Analysis (OBRA). The second approach used ground-based reflectance measurements to calibrate an OBRA relationship. For this approach, CASI images were atmospherically corrected to units of apparent surface reflectance using an empirical line calibration. For the final technique, we used Image-to-Depth Quantile Transformation (IDQT) to predict depth by linking the cumulative distribution function (CDF) of depth to the CDF of an image derived variable. OBRA yielded the lowest overall depth retrieval error (0.0047 m) and highest observed versus predicted R2 (0.81). Although misalignment between field and image data were not problematic to OBRA's performance in this study, such issues present potential limitations to standard regression-based approaches like OBRA in dynamic, sand-bedded rivers. Field spectroscopy-based maps exhibited a slight shallow bias (0.0652 m) but provided reliable depth estimates for most of the study reach. IDQT had a strong deep bias, but still provided informative relative depth maps that portrayed general patterns of shallow and deep areas of the channel. The over-prediction of depth by IDQT highlights the need for an unbiased sampling strategy to define the CDF of depth. While each of the techniques tested in this study demonstrated the potential to provide accurate depth estimates in sand-bedded rivers, each method also was subject to certain constraints and limitations.

  1. The efficacy of the 'mind map' study technique.

    PubMed

    Farrand, Paul; Hussain, Fearzana; Hennessy, Enid

    2002-05-01

    To examine the effectiveness of using the 'mind map' study technique to improve factual recall from written information. To obtain baseline data, subjects completed a short test based on a 600-word passage of text prior to being randomly allocated to form two groups: 'self-selected study technique' and 'mind map'. After a 30-minute interval the self-selected study technique group were exposed to the same passage of text previously seen and told to apply existing study techniques. Subjects in the mind map group were trained in the mind map technique and told to apply it to the passage of text. Recall was measured after an interfering task and a week later. Measures of motivation were taken. Barts and the London School of Medicine and Dentistry, University of London. 50 second- and third-year medical students. Recall of factual material improved for both the mind map and self-selected study technique groups at immediate test compared with baseline. However this improvement was only robust after a week for those in the mind map group. At 1 week, the factual knowledge in the mind map group was greater by 10% (adjusting for baseline) (95% CI -1% to 22%). However motivation for the technique used was lower in the mind map group; if motivation could have been made equal in the groups, the improvement with mind mapping would have been 15% (95% CI 3% to 27%). Mind maps provide an effective study technique when applied to written material. However before mind maps are generally adopted as a study technique, consideration has to be given towards ways of improving motivation amongst users.

  2. Ultrafast imaging of cell elasticity with optical microelastography

    PubMed Central

    Grasland-Mongrain, Pol; Zorgani, Ali; Nakagawa, Shoma; Bernard, Simon; Paim, Lia Gomes; Fitzharris, Greg; Catheline, Stefan

    2018-01-01

    Elasticity is a fundamental cellular property that is related to the anatomy, functionality, and pathological state of cells and tissues. However, current techniques based on cell deformation, atomic force microscopy, or Brillouin scattering are rather slow and do not always accurately represent cell elasticity. Here, we have developed an alternative technique by applying shear wave elastography to the micrometer scale. Elastic waves were mechanically induced in live mammalian oocytes using a vibrating micropipette. These audible frequency waves were observed optically at 200,000 frames per second and tracked with an optical flow algorithm. Whole-cell elasticity was then mapped using an elastography method inspired by the seismology field. Using this approach we show that the elasticity of mouse oocytes is decreased when the oocyte cytoskeleton is disrupted with cytochalasin B. The technique is fast (less than 1 ms for data acquisition), precise (spatial resolution of a few micrometers), able to map internal cell structures, and robust and thus represents a tractable option for interrogating biomechanical properties of diverse cell types. PMID:29339488

  3. Response Surface Methods for Spatially-Resolved Optical Measurement Techniques

    NASA Technical Reports Server (NTRS)

    Danehy, P. M.; Dorrington, A. A.; Cutler, A. D.; DeLoach, R.

    2003-01-01

    Response surface methods (or methodology), RSM, have been applied to improve data quality for two vastly different spatial ly-re solved optical measurement techniques. In the first application, modern design of experiments (MDOE) methods, including RSM, are employed to map the temperature field in a direct-connect supersonic combustion test facility at NASA Langley Research Center. The laser-based measurement technique known as coherent anti-Stokes Raman spectroscopy (CARS) is used to measure temperature at various locations in the combustor. RSM is then used to develop temperature maps of the flow. Even though the temperature fluctuations at a single point in the flowfield have a standard deviation on the order of 300 K, RSM provides analytic fits to the data having 95% confidence interval half width uncertainties in the fit as low as +/-30 K. Methods of optimizing future CARS experiments are explored. The second application of RSM is to quantify the shape of a 5-meter diameter, ultra-light, inflatable space antenna at NASA Langley Research Center.

  4. Cardiac T1 Imaging

    PubMed Central

    Jerosch-Herold, Michael; Kwong, Raymond Y.

    2014-01-01

    T1 mapping of the heart has evolved into a valuable tool to evaluate myocardial tissue properties, with or without contrast injection, including assessment of myocardial edema and free water content, extra-cellular volume (expansion), and most recently cardiomyocyte hypertrophy. The MRI pulse sequence techniques developed for these applications have had to address at least two important considerations for cardiac applications: measure magnetization inversion recoveries during cardiac motion with sufficient temporal resolution for the shortest expected T1 values, and, secondly, obtain these measurements within a time during which a patient can comfortably suspend breathing. So-called Look-Locker techniques, and variants thereof, which all sample multiple points of a magnetization recovery after each magnetization preparation have therefore become a mainstay in this field. The rapid pace of advances and new findings based on cardiac T1 mapping for assessment of diffuse fibrosis, or myocardial edema show that these techniques enrich the capabilities of MRI for myocardial tissue profiling, which is arguably unmatched by other cardiac imaging modalities. PMID:24509619

  5. Use of remote sensing for land use policy formulation

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Multispectral scanning, infrared imagery, thematic mapping, and spectroradiometry from LANDSAT, GOES, and ground based instruments are being used to determine conifer distribution, maximum and minimum temperatures, topography, and crop diseases in Michigan's lower Peninsula. Image interpretation and automatic digital processing information from LANDSAT data are employed to classify and map the coniferous forests. Radiant temperature data from GOES were compared to temperature readings from the climatological station network. Digital data from LANDSAT is being used to develop techniques for detecting, monitoring, and modeling land surface change. Improved reflectance signatures through spectroradiometry aided in the detection of viral diseases in blueberry fields and vineyards. Soil survey maps from aerial reconnaissance are included as well as information on education, conferences, and awards.

  6. ResearchMaps.org for integrating and planning research.

    PubMed

    Matiasz, Nicholas J; Wood, Justin; Doshi, Pranay; Speier, William; Beckemeyer, Barry; Wang, Wei; Hsu, William; Silva, Alcino J

    2018-01-01

    To plan experiments, a biologist needs to evaluate a growing set of empirical findings and hypothetical assertions from diverse fields that use increasingly complex techniques. To address this problem, we operationalized principles (e.g., convergence and consistency) that biologists use to test causal relations and evaluate experimental evidence. With the framework we derived, we then created a free, open-source web application that allows biologists to create research maps, graph-based representations of empirical evidence and hypothetical assertions found in research articles, reviews, and other sources. With our ResearchMaps web application, biologists can systematically reason through the research that is most important to them, as well as evaluate and plan experiments with a breadth and precision that are unlikely without such a tool.

  7. Space mapping method for the design of passive shields

    NASA Astrophysics Data System (ADS)

    Sergeant, Peter; Dupré, Luc; Melkebeek, Jan

    2006-04-01

    The aim of the paper is to find the optimal geometry of a passive shield for the reduction of the magnetic stray field of an axisymmetric induction heater. For the optimization, a space mapping algorithm is used that requires two models. The first is an accurate model with a high computational effort as it contains finite element models. The second is less accurate, but it has a low computational effort as it uses an analytical model: the shield is replaced by a number of mutually coupled coils. The currents in the shield are found by solving an electrical circuit. Space mapping combines both models to obtain the optimal passive shield fast and accurately. The presented optimization technique is compared with gradient, simplex, and genetic algorithms.

  8. Note: Electron energy spectroscopy mapping of surface with scanning tunneling microscope

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Meng; Xu, Chunkai, E-mail: xuck@ustc.edu.cn, E-mail: xjun@ustc.edu.cn; Zhang, Panke

    We report a novel scanning probe electron energy spectrometer (SPEES) which combines a double toroidal analyzer with a scanning tunneling microscope to achieve both topography imaging and electron energy spectroscopy mapping of surface in situ. The spatial resolution of spectroscopy mapping is determined to be better than 0.7 ± 0.2 μm at a tip sample distance of 7 μm. Meanwhile, the size of the field emission electron beam spot on the surface is also measured, and is about 3.6 ± 0.8 μm in diameter. This unambiguously demonstrates that the spatial resolution of SPEES technique can be much better than themore » size of the incident electron beam.« less

  9. ResearchMaps.org for integrating and planning research

    PubMed Central

    Speier, William; Beckemeyer, Barry; Wang, Wei; Hsu, William; Silva, Alcino J.

    2018-01-01

    To plan experiments, a biologist needs to evaluate a growing set of empirical findings and hypothetical assertions from diverse fields that use increasingly complex techniques. To address this problem, we operationalized principles (e.g., convergence and consistency) that biologists use to test causal relations and evaluate experimental evidence. With the framework we derived, we then created a free, open-source web application that allows biologists to create research maps, graph-based representations of empirical evidence and hypothetical assertions found in research articles, reviews, and other sources. With our ResearchMaps web application, biologists can systematically reason through the research that is most important to them, as well as evaluate and plan experiments with a breadth and precision that are unlikely without such a tool. PMID:29723213

  10. Crop species recognition and mensuration in the Sacramento Valley

    NASA Technical Reports Server (NTRS)

    Thomson, F. J.

    1973-01-01

    The goal of the second recognition map was to delineate various crop species in a portion of the Sacramento Valley, and at the same time to determine how accurately each could be classified and measured from ERTS-1 data. The new recognition map, a new and concise display of the old map, and classification and mensuration accuracy data are presented and discussed. The mensuration accuracy, in particular, is affected by the presence of an edge effect one resolution wide surrounding nearly all fields. Points on the edge are misclassified because they contain a mixture of, crop and bare soil. Using a processing technique to estimate the proportions of unresolved objects in this edge region, a much improved mensuration capability will be demonstrated.

  11. Using AVIRIS data and multiple-masking techniques to map urban forest trees species

    Treesearch

    Q. Xiao; S.L. Ustin; E.G. McPherson

    2004-01-01

    Tree type and species information are critical parameters for urban forest management, benefit cost analysis and urban planning. However, traditionally, these parameters have been derived based on limited field samples in urban forest management practice. In this study we used high-resolution Airborne Visible Infrared Imaging Spectrometer (AVIRIS) data and multiple-...

  12. Surface characterization based on optical phase shifting interferometry

    DOEpatents

    Mello, Michael , Rosakis; Ares, J [Altadena, CA

    2011-08-02

    Apparatus, techniques and systems for implementing an optical interferometer to measure surfaces, including mapping of instantaneous curvature or in-plane and out-of-plane displacement field gradients of a sample surface based on obtaining and processing four optical interferograms from a common optical reflected beam from the sample surface that are relatively separated in phase by .pi./2.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    McNesby, Kevin L.; Homan, Barrie E.; Benjamin, Richard A.

    Here, the techniques presented in this paper allow for mapping of temperature, pressure, chemical species, and energy deposition during and following detonations of explosives, using high speed cameras as the main diagnostic tool. Additionally, this work provides measurement in the explosive near to far-field (0-500 charge diameters) of surface temperatures, peak air-shock pressures, some chemical species signatures, shock energy deposition, and air shock formation.

  14. Chaos in Magnetic Flux Ropes

    NASA Astrophysics Data System (ADS)

    Gekelman, W. N.; DeHaas, T.; Van Compernolle, B.

    2013-12-01

    Magnetic Flux Ropes Immersed in a uniform magnetoplasma are observed to twist about themselves, writhe about each other and rotate about a central axis. They are kink unstable and smash into one another as they move. Full three dimensional magnetic field and flows are measured at thousands of time steps. Each collision results in magnetic field line generation and the generation of a quasi-seperatrix layer and induced electric fields. Three dimensional magnetic field lines are computed by conditionally averaging the data using correlation techniques. The permutation entropy1 ,which is related to the Lyapunov exponent, can be calculated from the the time series of the magnetic field data (this is also done with flows) and used to calculate the positions of the data on a Jensen Shannon complexity map2. The location of data on this map indicates if the magnetic fields are stochastic, or fall into regions of minimal or maximal complexity. The complexity is a function of space and time. The complexity map, and analysis will be explained in the course of the talk. Other types of chaotic dynamical models such as the Lorentz, Gissinger and Henon process also fall on the map and can give a clue to the nature of the flux rope turbulence. The ropes fall in the region of the C-H plane where chaotic systems lie. The entropy and complexity change in space and time which reflects the change and possibly type of chaos associated with the ropes. The maps give insight as to the type of chaos (deterministic chaos, fractional diffusion , Levi flights..) and underlying dynamical process. The power spectra of much of the magnetic and flow data is exponential and Lorentzian structures in the time domain are embedded in them. Other quantities such as the Hurst exponent are evaluated for both magnetic fields and plasma flow. Work Supported by a UC-LANL Lab fund and the Basic Plasma Science Facility which is funded by DOE and NSF. 1) C. Bandt, B. Pompe, Phys. Rev. Lett., 88,174102 (2007) 2) O. Russo et al., Phys. Rev. Lett., 99, 154102 (2007), J. Maggs, G.Morales, 55, 085015 (2013)

  15. Accuracy of MRI-based Magnetic Susceptibility Measurements

    NASA Astrophysics Data System (ADS)

    Russek, Stephen; Erdevig, Hannah; Keenan, Kathryn; Stupic, Karl

    Magnetic Resonance Imaging (MRI) is increasingly used to map tissue susceptibility to identify microbleeds associated with brain injury and pathologic iron deposits associated with neurologic diseases such as Parkinson's and Alzheimer's disease. Field distortions with a resolution of a few parts per billion can be measured using MRI phase maps. The field distortion map can be inverted to obtain a quantitative susceptibility map. To determine the accuracy of MRI-based susceptibility measurements, a set of phantoms with paramagnetic salts and nano-iron gels were fabricated. The shapes and orientations of features were varied. Measured susceptibility of 1.0 mM GdCl3 solution in water as a function of temperature agreed well with the theoretical predictions, assuming Gd+3 is spin 7/2. The MRI susceptibility measurements were compared with SQUID magnetometry. The paramagnetic susceptibility sits on top of the much larger diamagnetic susceptibility of water (-9.04 x 10-6), which leads to errors in the SQUID measurements. To extract out the paramagnetic contribution using standard magnetometry, measurements must be made down to low temperature (2K). MRI-based susceptometry is shown to be as or more accurate than standard magnetometry and susceptometry techniques.

  16. A Digital Tectonic Activity Map of the Earth

    NASA Technical Reports Server (NTRS)

    Lowman, Paul; Masuoka, Penny; Montgomery, Brian; OLeary, Jay; Salisbury, Demetra; Yates, Jacob

    1999-01-01

    The subject of neotectonics, covering the structures and structural activity of the last 5 million years (i.e., post-Miocene) is a well-recognized field, including "active tectonics," focussed on the last 500,000 years in a 1986 National Research Council report of that title. However, there is a cartographic gap between tectonic maps, generally showing all features regardless of age, and maps of current seismic or volcanic activity. We have compiled a map intended to bridge this gap, using modern data bases and computer-aided cartographic techniques. The maps presented here are conceptually descended from an earlier map showing tectonic and volcanic activity of the last one million years. Drawn by hand with the National Geographic Society's 1975 "The Physical World" map as a base, the 1981 map in various revisions has been widely reproduced in textbooks and various technical publications. However, two decades of progress call for a completely new map that can take advantage of new knowledge and cartographic techniques. The digital tectonic activity map (DTM), presented in shaded relief (Fig. 1) and schematic (Fig. 2) versions, is the result. The DTM is intended to show tectonism and volcanism of the last one million years, a period long enough to be representative of global activity, but short enough that features such as fault scarps and volcanos are still geomorphically recognizable. Data Sources and Cartographic Methods The DTM is based on a wide range of sources, summarized in Table 1. The most important is the digital elevation model, used to construct a shaded relief map. The bathymetry is largely from satellite altimetry, specifically the marine gravity compilations by Smith and Sandwell (1996). The shaded relief map was designed to match the new National Geographic Society world physical map (1992), although drawn independently, from the digital elevation model. The Robinson Projection is used instead of the earlier Van der Grinten one. Although neither conformal nor equal-area, the Robinson Projection provides a reasonable compromise and retains useful detail at high latitudes.

  17. Method for tracking the location of mobile agents using stand-off detection technique

    DOEpatents

    Schmitt, Randal L [Tijeras, NM; Bender, Susan Fae Ann [Tijeras, NM; Rodacy, Philip J [Albuquerque, NM; Hargis, Jr., Philip J.; Johnson, Mark S [Albuquerque, NM

    2006-12-26

    A method for tracking the movement and position of mobile agents using light detection and ranging (LIDAR) as a stand-off optical detection technique. The positions of the agents are tracked by analyzing the time-history of a series of optical measurements made over the field of view of the optical system. This provides a (time+3-D) or (time+2-D) mapping of the location of the mobile agents. Repeated pulses of a laser beam impinge on a mobile agent, such as a bee, and are backscattered from the agent into a LIDAR detection system. Alternatively, the incident laser pulses excite fluorescence or phosphorescence from the agent, which is detected using a LIDAR system. Analysis of the spatial location of signals from the agents produced by repeated pulses generates a multidimensional map of agent location.

  18. Indoor Positioning System Using Magnetic Field Map Navigation and an Encoder System

    PubMed Central

    Kim, Han-Sol; Seo, Woojin; Baek, Kwang-Ryul

    2017-01-01

    In the indoor environment, variation of the magnetic field is caused by building structures, and magnetic field map navigation is based on this feature. In order to estimate position using this navigation, a three-axis magnetic field must be measured at every point to build a magnetic field map. After the magnetic field map is obtained, the position of the mobile robot can be estimated with a likelihood function whereby the measured magnetic field data and the magnetic field map are used. However, if only magnetic field map navigation is used, the estimated position can have large errors. In order to improve performance, we propose a particle filter system that integrates magnetic field map navigation and an encoder system. In this paper, multiple magnetic sensors and three magnetic field maps (a horizontal intensity map, a vertical intensity map, and a direction information map) are used to update the weights of particles. As a result, the proposed system estimates the position and orientation of a mobile robot more accurately than previous systems. Also, when the number of magnetic sensors increases, this paper shows that system performance improves. Finally, experiment results are shown from the proposed system that was implemented and evaluated. PMID:28327513

  19. Indoor Positioning System Using Magnetic Field Map Navigation and an Encoder System.

    PubMed

    Kim, Han-Sol; Seo, Woojin; Baek, Kwang-Ryul

    2017-03-22

    In the indoor environment, variation of the magnetic field is caused by building structures, and magnetic field map navigation is based on this feature. In order to estimate position using this navigation, a three-axis magnetic field must be measured at every point to build a magnetic field map. After the magnetic field map is obtained, the position of the mobile robot can be estimated with a likelihood function whereby the measured magnetic field data and the magnetic field map are used. However, if only magnetic field map navigation is used, the estimated position can have large errors. In order to improve performance, we propose a particle filter system that integrates magnetic field map navigation and an encoder system. In this paper, multiple magnetic sensors and three magnetic field maps (a horizontal intensity map, a vertical intensity map, and a direction information map) are used to update the weights of particles. As a result, the proposed system estimates the position and orientation of a mobile robot more accurately than previous systems. Also, when the number of magnetic sensors increases, this paper shows that system performance improves. Finally, experiment results are shown from the proposed system that was implemented and evaluated.

  20. THE PANCHROMATIC HUBBLE ANDROMEDA TREASURY. VIII. A WIDE-AREA, HIGH-RESOLUTION MAP OF DUST EXTINCTION IN M31

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dalcanton, Julianne J.; Fouesneau, Morgan; Weisz, Daniel R.

    We map the distribution of dust in M31 at 25 pc resolution using stellar photometry from the Panchromatic Hubble Andromeda Treasury survey. The map is derived with a new technique that models the near-infrared color–magnitude diagram (CMD) of red giant branch (RGB) stars. The model CMDs combine an unreddened foreground of RGB stars with a reddened background population viewed through a log-normal column density distribution of dust. Fits to the model constrain the median extinction, the width of the extinction distribution, and the fraction of reddened stars in each 25 pc cell. The resulting extinction map has a factor ofmore » ≳4 times better resolution than maps of dust emission, while providing a more direct measurement of the dust column. There is superb morphological agreement between the new map and maps of the extinction inferred from dust emission by Draine et al. However, the widely used Draine and Li dust models overpredict the observed extinction by a factor of ∼2.5, suggesting that M31's true dust mass is lower and that dust grains are significantly more emissive than assumed in Draine et al. The observed factor of ∼2.5 discrepancy is consistent with similar findings in the Milky Way by the Plank Collaboration et al., but we find a more complex dependence on parameters from the Draine and Li dust models. We also show that the the discrepancy with the Draine et al. map is lowest where the current interstellar radiation field has a harder spectrum than average. We discuss possible improvements to the CMD dust mapping technique, and explore further applications in both M31 and other galaxies.« less

  1. Ningaloo Reef: Shallow Marine Habitats Mapped Using a Hyperspectral Sensor

    PubMed Central

    Kobryn, Halina T.; Wouters, Kristin; Beckley, Lynnath E.; Heege, Thomas

    2013-01-01

    Research, monitoring and management of large marine protected areas require detailed and up-to-date habitat maps. Ningaloo Marine Park (including the Muiron Islands) in north-western Australia (stretching across three degrees of latitude) was mapped to 20 m depth using HyMap airborne hyperspectral imagery (125 bands) at 3.5 m resolution across the 762 km2 of reef environment between the shoreline and reef slope. The imagery was corrected for atmospheric, air-water interface and water column influences to retrieve bottom reflectance and bathymetry using the physics-based Modular Inversion and Processing System. Using field-validated, image-derived spectra from a representative range of cover types, the classification combined a semi-automated, pixel-based approach with fuzzy logic and derivative techniques. Five thematic classification levels for benthic cover (with probability maps) were generated with varying degrees of detail, ranging from a basic one with three classes (biotic, abiotic and mixed) to the most detailed with 46 classes. The latter consisted of all abiotic and biotic seabed components and hard coral growth forms in dominant or mixed states. The overall accuracy of mapping for the most detailed maps was 70% for the highest classification level. Macro-algal communities formed most of the benthic cover, while hard and soft corals represented only about 7% of the mapped area (58.6 km2). Dense tabulate coral was the largest coral mosaic type (37% of all corals) and the rest of the corals were a mix of tabulate, digitate, massive and soft corals. Our results show that for this shallow, fringing reef environment situated in the arid tropics, hyperspectral remote sensing techniques can offer an efficient and cost-effective approach to mapping and monitoring reef habitats over large, remote and inaccessible areas. PMID:23922921

  2. Application of a neuro-fuzzy model to landslide-susceptibility mapping for shallow landslides in a tropical hilly area

    NASA Astrophysics Data System (ADS)

    Oh, Hyun-Joo; Pradhan, Biswajeet

    2011-09-01

    This paper presents landslide-susceptibility mapping using an adaptive neuro-fuzzy inference system (ANFIS) using a geographic information system (GIS) environment. In the first stage, landslide locations from the study area were identified by interpreting aerial photographs and supported by an extensive field survey. In the second stage, landslide-related conditioning factors such as altitude, slope angle, plan curvature, distance to drainage, distance to road, soil texture and stream power index (SPI) were extracted from the topographic and soil maps. Then, landslide-susceptible areas were analyzed by the ANFIS approach and mapped using landslide-conditioning factors. In particular, various membership functions (MFs) were applied for the landslide-susceptibility mapping and their results were compared with the field-verified landslide locations. Additionally, the receiver operating characteristics (ROC) curve for all landslide susceptibility maps were drawn and the areas under curve values were calculated. The ROC curve technique is based on the plotting of model sensitivity — true positive fraction values calculated for different threshold values, versus model specificity — true negative fraction values, on a graph. Landslide test locations that were not used during the ANFIS modeling purpose were used to validate the landslide susceptibility maps. The validation results revealed that the susceptibility maps constructed by the ANFIS predictive models using triangular, trapezoidal, generalized bell and polynomial MFs produced reasonable results (84.39%), which can be used for preliminary land-use planning. Finally, the authors concluded that ANFIS is a very useful and an effective tool in regional landslide susceptibility assessment.

  3. Integrating proximal soil sensing techniques and terrain indexes to generate 3D maps of soil restrictive layers in the Palouse region, Washington, USA

    NASA Astrophysics Data System (ADS)

    Poggio, Matteo; Brown, David J.; Gasch, Caley K.; Brooks, Erin S.; Yourek, Matt A.

    2015-04-01

    In the Palouse region of eastern Washington and northern Idaho (USA), spatially discontinuous restrictive layers impede rooting growth and water infiltration. Consequently, accurate maps showing the depth and spatial extent of these restrictive layers are essential for watershed hydrologic modeling appropriate for precision agriculture. In this presentation, we report on the use of a Visible and Near-Infrared (VisNIR) penetrometer fore optic to construct detailed maps of three wheat fields in the Palouse region. The VisNIR penetrometer was used to deliver in situ soil reflectance to an Analytical Spectral Devices (ASD, Boulder, CO, USA) spectrometer and simultaneously acquire insertion force. With a hydraulic push-type soil coring systems for insertion (e.g. Giddings), we collected soil spectra and insertion force data along 41m x 41m grid points (2 fields) and 50m x 50m grid points (1 field) to ≈80cm depth, in addition to interrogation points at 36 representative instrumented locations per field. At each of the 36 instrumented locations, two soil cores were extracted for laboratory determination of clay content and bulk density. We developed calibration models of soil clay content and bulk density with spectra and insertion force collected in situ, using partial least squares regression 2 (PLSR2). Applying spline functions, we delineated clay and bulk density profiles at each points (grid and 24 locations). The soil profiles were then used as inputs in a regression-kriging model with terrain indexes and ECa data (derived from an EM38 field survey, Geonics, Mississauga, Ontario, Canada) as covariates to generate 3D soil maps. Preliminary results show that the VisNIR penetrometer can capture the spatial patterns of restrictive layers. Work is ongoing to evaluate the prediction accuracy of penetrometer-derived 3D clay content and restriction layer maps.

  4. D Architectural Videomapping

    NASA Astrophysics Data System (ADS)

    Catanese, R.

    2013-07-01

    3D architectural mapping is a video projection technique that can be done with a survey of a chosen building in order to realize a perfect correspondence between its shapes and the images in projection. As a performative kind of audiovisual artifact, the real event of the 3D mapping is a combination of a registered video animation file with a real architecture. This new kind of visual art is becoming very popular and its big audience success testifies new expressive chances in the field of urban design. My case study has been experienced in Pisa for the Luminara feast in 2012.

  5. Present status of marine gravity

    NASA Technical Reports Server (NTRS)

    Watts, A. B.

    1978-01-01

    The technique of measuring gravity at sea was greatly improved by the development of spring-type surface-ship gravimeters which can be operated in a wide variety of sea conditions. A brief review of the most recent developments in marine gravity is presented. The extent of marine gravity data coverage is illustrated in a compilation map of the world's free-air gravity anomaly maps of the world's oceans. A brief discussion of some of the main results in the interpretation of marine gravity is given. Some comments made on recent determinations of the gravity field in oceanic regions using satellite radar altimeters are also presented.

  6. Use of digital Munsell color space to assist interretation of imaging spectrometer data: Geologic examples from the northern Grapevine Mountains, California and Nevada

    NASA Technical Reports Server (NTRS)

    Kruse, F. A.; Knepper, D. H., Jr.; Clark, R. N.

    1986-01-01

    Techniques using Munsell color transformations were developed for reducing 128 channels (or less) of Airborne Imaging Spectrometer (AIS) data to a single color-composite-image suitable for both visual interpretation and digital analysis. Using AIS data acquired in 1984 and 1985, limestone and dolomite roof pendants and sericite-illite and other clay minerals related to alteration were mapped in a quartz monzonite stock in the northern Grapevine Mountains of California and Nevada. Field studies and laboratory spectral measurements verify the mineralogical distributions mapped from the AIS data.

  7. Visual saliency in MPEG-4 AVC video stream

    NASA Astrophysics Data System (ADS)

    Ammar, M.; Mitrea, M.; Hasnaoui, M.; Le Callet, P.

    2015-03-01

    Visual saliency maps already proved their efficiency in a large variety of image/video communication application fields, covering from selective compression and channel coding to watermarking. Such saliency maps are generally based on different visual characteristics (like color, intensity, orientation, motion,…) computed from the pixel representation of the visual content. This paper resumes and extends our previous work devoted to the definition of a saliency map solely extracted from the MPEG-4 AVC stream syntax elements. The MPEG-4 AVC saliency map thus defined is a fusion of static and dynamic map. The static saliency map is in its turn a combination of intensity, color and orientation features maps. Despite the particular way in which all these elementary maps are computed, the fusion techniques allowing their combination plays a critical role in the final result and makes the object of the proposed study. A total of 48 fusion formulas (6 for combining static features and, for each of them, 8 to combine static to dynamic features) are investigated. The performances of the obtained maps are evaluated on a public database organized at IRCCyN, by computing two objective metrics: the Kullback-Leibler divergence and the area under curve.

  8. Spatial-temporal three-dimensional ultrasound plane-by-plane active cavitation mapping for high-intensity focused ultrasound in free field and pulsatile flow.

    PubMed

    Ding, Ting; Hu, Hong; Bai, Chen; Guo, Shifang; Yang, Miao; Wang, Supin; Wan, Mingxi

    2016-07-01

    Cavitation plays important roles in almost all high-intensity focused ultrasound (HIFU) applications. However, current two-dimensional (2D) cavitation mapping could only provide cavitation activity in one plane. This study proposed a three-dimensional (3D) ultrasound plane-by-plane active cavitation mapping (3D-UPACM) for HIFU in free field and pulsatile flow. The acquisition of channel-domain raw radio-frequency (RF) data in 3D space was performed by sequential plane-by-plane 2D ultrafast active cavitation mapping. Between two adjacent unit locations, there was a waiting time to make cavitation nuclei distribution of the liquid back to the original state. The 3D cavitation map equivalent to the one detected at one time and over the entire volume could be reconstructed by Marching Cube algorithm. Minimum variance (MV) adaptive beamforming was combined with coherence factor (CF) weighting (MVCF) or compressive sensing (CS) method (MVCS) to process the raw RF data for improved beamforming or more rapid data processing. The feasibility of 3D-UPACM was demonstrated in tap-water and a phantom vessel with pulsatile flow. The time interval between temporal evolutions of cavitation bubble cloud could be several microseconds. MVCF beamformer had a signal-to-noise ratio (SNR) at 14.17dB higher, lateral and axial resolution at 2.88times and 1.88times, respectively, which were compared with those of B-mode active cavitation mapping. MVCS beamformer had only 14.94% time penalty of that of MVCF beamformer. This 3D-UPACM technique employs the linear array of a current ultrasound diagnosis system rather than a 2D array transducer to decrease the cost of the instrument. Moreover, although the application is limited by the requirement for a gassy fluid medium or a constant supply of new cavitation nuclei that allows replenishment of nuclei between HIFU exposures, this technique may exhibit a useful tool in 3D cavitation mapping for HIFU with high speed, precision and resolution, especially in a laboratory environment where more careful analysis may be required under controlled conditions. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Phase processing for quantitative susceptibility mapping of regions with large susceptibility and lack of signal.

    PubMed

    Fortier, Véronique; Levesque, Ives R

    2018-06-01

    Phase processing impacts the accuracy of quantitative susceptibility mapping (QSM). Techniques for phase unwrapping and background removal have been proposed and demonstrated mostly in brain. In this work, phase processing was evaluated in the context of large susceptibility variations (Δχ) and negligible signal, in particular for susceptibility estimation using the iterative phase replacement (IPR) algorithm. Continuous Laplacian, region-growing, and quality-guided unwrapping were evaluated. For background removal, Laplacian boundary value (LBV), projection onto dipole fields (PDF), sophisticated harmonic artifact reduction for phase data (SHARP), variable-kernel sophisticated harmonic artifact reduction for phase data (V-SHARP), regularization enabled sophisticated harmonic artifact reduction for phase data (RESHARP), and 3D quadratic polynomial field removal were studied. Each algorithm was quantitatively evaluated in simulation and qualitatively in vivo. Additionally, IPR-QSM maps were produced to evaluate the impact of phase processing on the susceptibility in the context of large Δχ with negligible signal. Quality-guided unwrapping was the most accurate technique, whereas continuous Laplacian performed poorly in this context. All background removal algorithms tested resulted in important phase inaccuracies, suggesting that techniques used for brain do not translate well to situations where large Δχ and no or low signal are expected. LBV produced the smallest errors, followed closely by PDF. Results suggest that quality-guided unwrapping should be preferred, with PDF or LBV for background removal, for QSM in regions with large Δχ and negligible signal. This reduces the susceptibility inaccuracy introduced by phase processing. Accurate background removal remains an open question. Magn Reson Med 79:3103-3113, 2017. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  10. Magnetic Doppler imaging considering atmospheric structure modifications due to local abundances: a luxury or a necessity?

    NASA Astrophysics Data System (ADS)

    Kochukhov, O.; Wade, G. A.; Shulyak, D.

    2012-04-01

    Magnetic Doppler imaging is currently the most powerful method of interpreting high-resolution spectropolarimetric observations of stars. This technique has provided the very first maps of stellar magnetic field topologies reconstructed from time series of full Stokes vector spectra, revealing the presence of small-scale magnetic fields on the surfaces of Ap stars. These studies were recently criticised by Stift et al., who claimed that magnetic inversions are not robust and are seriously undermined by neglecting a feedback on the Stokes line profiles from the local atmospheric structure in the regions of enhanced metal abundance. We show that Stift et al. misinterpreted published magnetic Doppler imaging results and consistently neglected some of the most fundamental principles behind magnetic mapping. Using state-of-the-art opacity sampling model atmosphere and polarized radiative transfer codes, we demonstrate that the variation of atmospheric structure across the surface of a star with chemical spots affects the local continuum intensity but is negligible for the normalized local Stokes profiles except for the rare situation of a very strong line in an extremely Fe-rich atmosphere. For the disc-integrated spectra of an Ap star with extreme abundance variations, we find that the assumption of a mean model atmosphere leads to moderate errors in Stokes I but is negligible for the circular and linear polarization spectra. Employing a new magnetic inversion code, which incorporates the horizontal variation of atmospheric structure induced by chemical spots, we reconstructed new maps of magnetic field and Fe abundance for the bright Ap star α2 CVn. The resulting distribution of chemical spots changes insignificantly compared to the previous modelling based on a single model atmosphere, while the magnetic field geometry does not change at all. This shows that the assertions by Stift et al. are exaggerated as a consequence of unreasonable assumptions and extrapolations, as well as methodological flaws and inconsistencies of their analysis. Our discussion proves that published magnetic inversions based on a mean stellar atmosphere are highly robust and reliable, and that the presence of small-scale magnetic field structures on the surfaces of Ap stars is indeed real. Incorporating horizontal variations of atmospheric structure in Doppler imaging can marginally improve reconstruction of abundance distributions for stars showing very large iron overabundances. But this costly technique is unnecessary for magnetic mapping with high-resolution polarization spectra.

  11. High-field fMRI unveils orientation columns in humans.

    PubMed

    Yacoub, Essa; Harel, Noam; Ugurbil, Kâmil

    2008-07-29

    Functional (f)MRI has revolutionized the field of human brain research. fMRI can noninvasively map the spatial architecture of brain function via localized increases in blood flow after sensory or cognitive stimulation. Recent advances in fMRI have led to enhanced sensitivity and spatial accuracy of the measured signals, indicating the possibility of detecting small neuronal ensembles that constitute fundamental computational units in the brain, such as cortical columns. Orientation columns in visual cortex are perhaps the best known example of such a functional organization in the brain. They cannot be discerned via anatomical characteristics, as with ocular dominance columns. Instead, the elucidation of their organization requires functional imaging methods. However, because of insufficient sensitivity, spatial accuracy, and image resolution of the available mapping techniques, thus far, they have not been detected in humans. Here, we demonstrate, by using high-field (7-T) fMRI, the existence and spatial features of orientation- selective columns in humans. Striking similarities were found with the known spatial features of these columns in monkeys. In addition, we found that a larger number of orientation columns are devoted to processing orientations around 90 degrees (vertical stimuli with horizontal motion), whereas relatively similar fMRI signal changes were observed across any given active column. With the current proliferation of high-field MRI systems and constant evolution of fMRI techniques, this study heralds the exciting prospect of exploring unmapped and/or unknown columnar level functional organizations in the human brain.

  12. Teachers doing science: An authentic geology research experience for teachers

    USGS Publications Warehouse

    Hemler, D.; Repine, T.

    2006-01-01

    Fairmont State University (FSU) and the West Virginia Geological and Economic Survey (WVGES) provided a small pilot group of West Virginia science teachers with a professional development session designed to mimic experiences obtained by geology majors during a typical summer field camp. Called GEOTECH, the program served as a research capstone event complimenting the participants' multi-year association with the RockCamp professional development program. GEOTECH was funded through a Improving Teacher Quality Grant administered by West Virginia Higher Education Policy Commission. Over the course of three weeks, eight GEOTEACH participants learned field measurement and field data collection techniques which they then applied to the construction of a surficial geologic map. The program exposed participants to authentic scientific processes by emphasizing the authentic scientific application of content knowledge. As a secondary product, it also enhanced their appreciation of the true nature of science in general and geology particular. After the session, a new appreciation of the effort involved in making a geologic map emerged as tacit knowledge ready to be transferred to their students. The program was assessed using pre/post instruments, cup interviews, journals, artifacts (including geologic maps, field books, and described sections), performance assessments, and constructed response items. Evaluation of the accumulated data revealed an increase in participants demonstrated use of science content knowledge, an enhanced awareness and understanding of the processes and nature of geologic mapping, positive dispositions toward geologic research and a high satisfaction rating for the program. These findings support the efficacy of the experience and document future programmatic enhancements.

  13. Are Polar Field Magnetic Flux Concentrations Responsible for Missing Interplanetary Flux?

    NASA Astrophysics Data System (ADS)

    Linker, Jon A.; Downs, C.; Mikic, Z.; Riley, P.; Henney, C. J.; Arge, C. N.

    2012-05-01

    Magnetohydrodynamic (MHD) simulations are now routinely used to produce models of the solar corona and inner heliosphere for specific time periods. These models typically use magnetic maps of the photospheric magnetic field built up over a solar rotation, available from a number of ground-based and space-based solar observatories. The line-of-sight field at the Sun's poles is poorly observed, and the polar fields in these maps are filled with a variety of interpolation/extrapolation techniques. These models have been found to frequently underestimate the interplanetary magnetic flux (Riley et al., 2012, in press, Stevens et al., 2012, in press) near the minimum part of the cycle unless mitigating correction factors are applied. Hinode SOT observations indicate that strong concentrations of magnetic flux may be present at the poles (Tsuneta et al. 2008). The ADAPT flux evolution model (Arge et al. 2010) also predicts the appearance of such concentrations. In this paper, we explore the possibility that these flux concentrations may account for a significant amount of magnetic flux and alleviate discrepancies in interplanetary magnetic flux predictions. Research supported by AFOSR, NASA, and NSF.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burrell, J.; Luheshi, M.; Mackenzie, A.

    Gyda field (operated by BP) is located in Block 2/1 of the Norwegian outer continental shelf. The reservoir comprises a thin, wedge-shaped Upper Jurassic sand, overlain by Lower Cretaceous mudstones. For field development, it is necessary to accurately map a laterally discontinuous high-porosity zone and thus to help site well locations. To this end, it was decided to invert the 3-D seismic data set over the field to the seismic attribute of absolute acoustic impedance (AAI). This was based on the observation that there is a good correlation between porosity and AII derived from well logs. Comparisons of core porosity,more » log-derived porosity, and seismic-derived porosity at several well locations showed this technique to be generally satisfactory. An additional problem in Gyda is the detection of the truncation edge of the reservoir along the southeastern part of the field. Deterministic methods based on AAI and on forward seismic modeling were not able to unambiguously define the edge of the reservoir. The truncation of th reservoir is not clear on normal seismic amplitude displays. In order to investigate the zone where the reservoir interval changes form sand to shale, certain special seismic attributes were computer over a gate of seismic data covering the top reservoir reflection. These attributes represented the energy, phase, and frequency content of the gate of seismic data. The area investigated was between wells where the reservoir sand was known to pinch out. These attributes were clustered using the statistical technique of projection pursuit. The cluster map correlates with the observations from the wells in this area of the field and appears to show the edge of the effective reservoir in the field.« less

  15. Nanoscale mapping of the three-dimensional deformation field within commercial nanodiamonds

    DOE PAGES

    Maqbool, Muhammad Salman; Hoxley, David; Phillips, Nicholas W.; ...

    2017-02-21

    Here, the unique properties of nanodiamonds make them suitable for use in a wide range of applications, including as biomarkers for cellular tracking in vivo at the molecular level. The sustained fluorescence of nanodiamonds containing nitrogen-vacancy (N-V) centres is related to their internal structure and strain state. Theoretical studies predict that the location of the N-V centre and the nanodiamonds' residual elastic strain state have a major influence on their photoluminescence properties. However, to date there have been no direct measurements made of their spatially resolved deformation fields owing to the challenges that such measurements present. Here we apply themore » recently developed technique of Bragg coherent diffractive imaging (BCDI) to map the three-dimensional deformation field within a single nanodiamond of approximately 0.5 µm diameter. The results indicate that there are high levels of residual elastic strain present in the nanodiamond which could have a critical influence on its optical and electronic properties.« less

  16. Nanoscale mapping of the three-dimensional deformation field within commercial nanodiamonds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maqbool, Muhammad Salman; Hoxley, David; Phillips, Nicholas W.

    2017-01-01

    The unique properties of nanodiamonds make them suitable for use in a wide range of applications, including as biomarkers for cellular tracking in vivo at the molecular level. The sustained fluorescence of nanodiamonds containing nitrogen-vacancy (N-V) centres is related to their internal structure and strain state. Theoretical studies predict that the location of the N-V centre and the nanodiamonds' residual elastic strain state have a major influence on their photoluminescence properties. However, to date there have been no direct measurements made of their spatially resolved deformation fields owing to the challenges that such measurements present. Here we apply the recentlymore » developed technique of Bragg coherent diffractive imaging (BCDI) to map the three-dimensional deformation field within a single nanodiamond of approximately 0.5 µm diameter. The results indicate that there are high levels of residual elastic strain present in the nanodiamond which could have a critical influence on its optical and electronic properties.« less

  17. Automatic detection and decoding of honey bee waggle dances

    PubMed Central

    Wild, Benjamin; Rojas, Raúl; Landgraf, Tim

    2017-01-01

    The waggle dance is one of the most popular examples of animal communication. Forager bees direct their nestmates to profitable resources via a complex motor display. Essentially, the dance encodes the polar coordinates to the resource in the field. Unemployed foragers follow the dancer’s movements and then search for the advertised spots in the field. Throughout the last decades, biologists have employed different techniques to measure key characteristics of the waggle dance and decode the information it conveys. Early techniques involved the use of protractors and stopwatches to measure the dance orientation and duration directly from the observation hive. Recent approaches employ digital video recordings and manual measurements on screen. However, manual approaches are very time-consuming. Most studies, therefore, regard only small numbers of animals in short periods of time. We have developed a system capable of automatically detecting, decoding and mapping communication dances in real-time. In this paper, we describe our recording setup, the image processing steps performed for dance detection and decoding and an algorithm to map dances to the field. The proposed system performs with a detection accuracy of 90.07%. The decoded waggle orientation has an average error of -2.92° (± 7.37°), well within the range of human error. To evaluate and exemplify the system’s performance, a group of bees was trained to an artificial feeder, and all dances in the colony were automatically detected, decoded and mapped. The system presented here is the first of this kind made publicly available, including source code and hardware specifications. We hope this will foster quantitative analyses of the honey bee waggle dance. PMID:29236712

  18. Stochastic layer scaling in the two-wire model for divertor tokamaks

    NASA Astrophysics Data System (ADS)

    Ali, Halima; Punjabi, Alkesh; Boozer, Allen

    2009-06-01

    The question of magnetic field structure in the vicinity of the separatrix in divertor tokamaks is studied. The authors have investigated this problem earlier in a series of papers, using various mathematical techniques. In the present paper, the two-wire model (TWM) [Reiman, A. 1996 Phys. Plasmas 3, 906] is considered. It is noted that, in the TWM, it is useful to consider an extra equation expressing magnetic flux conservation. This equation does not add any more information to the TWM, since the equation is derived from the TWM. This equation is useful for controlling the step size in the numerical integration of the TWM equations. The TWM with the extra equation is called the flux-preserving TWM. Nevertheless, the technique is apparently still plagued by numerical inaccuracies when the perturbation level is low, resulting in an incorrect scaling of the stochastic layer width. The stochastic broadening of the separatrix in the flux-preserving TWM is compared with that in the low mn (poloidal mode number m and toroidal mode number n) map (LMN) [Ali, H., Punjabi, A., Boozer, A. and Evans, T. 2004 Phys. Plasmas 11, 1908]. The flux-preserving TWM and LMN both give Boozer-Rechester 0.5 power scaling of the stochastic layer width with the amplitude of magnetic perturbation when the perturbation is sufficiently large [Boozer, A. and Rechester, A. 1978, Phys. Fluids 21, 682]. The flux-preserving TWM gives a larger stochastic layer width when the perturbation is low, while the LMN gives correct scaling in the low perturbation region. Area-preserving maps such as the LMN respect the Hamiltonian structure of field line trajectories, and have the added advantage of computational efficiency. Also, for a $1\\frac12$ degree of freedom Hamiltonian system such as field lines, maps do not give Arnold diffusion.

  19. Mapping the integrated Sachs-Wolfe effect

    NASA Astrophysics Data System (ADS)

    Manzotti, A.; Dodelson, S.

    2014-12-01

    On large scales, the anisotropies in the cosmic microwave background (CMB) reflect not only the primordial density field but also the energy gain when photons traverse decaying gravitational potentials of large scale structure, what is called the integrated Sachs-Wolfe (ISW) effect. Decomposing the anisotropy signal into a primordial piece and an ISW component, the main secondary effect on large scales, is more urgent than ever as cosmologists strive to understand the Universe on those scales. We present a likelihood technique for extracting the ISW signal combining measurements of the CMB, the distribution of galaxies, and maps of gravitational lensing. We test this technique with simulated data showing that we can successfully reconstruct the ISW map using all the data sets together. Then we present the ISW map obtained from a combination of real data: the NRAO VLA sky survey (NVSS) galaxy survey, temperature anisotropies, and lensing maps made by the Planck satellite. This map shows that, with the data sets used and assuming linear physics, there is no evidence, from the reconstructed ISW signal in the Cold Spot region, for an entirely ISW origin of this large scale anomaly in the CMB. However a large scale structure origin from low redshift voids outside the NVSS redshift range is still possible. Finally we show that future surveys, thanks to a better large scale lensing reconstruction will be able to improve the reconstruction signal to noise which is now mainly coming from galaxy surveys.

  20. Dark-field X-ray microscopy for multiscale structural characterization

    NASA Astrophysics Data System (ADS)

    Simons, H.; King, A.; Ludwig, W.; Detlefs, C.; Pantleon, W.; Schmidt, S.; Snigireva, I.; Snigirev, A.; Poulsen, H. F.

    2015-01-01

    Many physical and mechanical properties of crystalline materials depend strongly on their internal structure, which is typically organized into grains and domains on several length scales. Here we present dark-field X-ray microscopy; a non-destructive microscopy technique for the three-dimensional mapping of orientations and stresses on lengths scales from 100 nm to 1 mm within embedded sampling volumes. The technique, which allows ‘zooming’ in and out in both direct and angular space, is demonstrated by an annealing study of plastically deformed aluminium. Facilitating the direct study of the interactions between crystalline elements is a key step towards the formulation and validation of multiscale models that account for the entire heterogeneity of a material. Furthermore, dark-field X-ray microscopy is well suited to applied topics, where the structural evolution of internal nanoscale elements (for example, positioned at interfaces) is crucial to the performance and lifetime of macro-scale devices and components thereof.

  1. High-quality animation of 2D steady vector fields.

    PubMed

    Lefer, Wilfrid; Jobard, Bruno; Leduc, Claire

    2004-01-01

    Simulators for dynamic systems are now widely used in various application areas and raise the need for effective and accurate flow visualization techniques. Animation allows us to depict direction, orientation, and velocity of a vector field accurately. This paper extends a former proposal for a new approach to produce perfectly cyclic and variable-speed animations for 2D steady vector fields (see [1] and [2]). A complete animation of an arbitrary number of frames is encoded in a single image. The animation can be played using the color table animation technique, which is very effective even on low-end workstations. A cyclic set of textures can be produced as well and then encoded in a common animation format or used for texture mapping on 3D objects. As compared to other approaches, the method presented in this paper produces smoother animations and is more effective, both in memory requirements to store the animation, and in computation time.

  2. Relaxometry imaging of superparamagnetic magnetite nanoparticles at ambient conditions

    NASA Astrophysics Data System (ADS)

    Finkler, Amit; Schmid-Lorch, Dominik; Häberle, Thomas; Reinhard, Friedemann; Zappe, Andrea; Slota, Michael; Bogani, Lapo; Wrachtrup, Jörg

    We present a novel technique to image superparamagnetic iron oxide nanoparticles via their fluctuating magnetic fields. The detection is based on the nitrogen-vacancy (NV) color center in diamond, which allows optically detected magnetic resonance (ODMR) measurements on its electron spin structure. In combination with an atomic-force-microscope, this atomic-sized color center maps ambient magnetic fields in a wide frequency range from DC up to several GHz, while retaining a high spatial resolution in the sub-nanometer range. We demonstrate imaging of single 10 nm sized magnetite nanoparticles using this spin noise detection technique. By fitting simulations (Ornstein-Uhlenbeck process) to the data, we are able to infer additional information on such a particle and its dynamics, like the attempt frequency and the anisotropy constant. This is of high interest to the proposed application of magnetite nanoparticles as an alternative MRI contrast agent or to the field of particle-aided tumor hyperthermia.

  3. External vibration multi-directional ultrasound shearwave elastography (EVMUSE): application in liver fibrosis staging.

    PubMed

    Zhao, Heng; Song, Pengfei; Meixner, Duane D; Kinnick, Randall R; Callstrom, Matthew R; Sanchez, William; Urban, Matthew W; Manduca, Armando; Greenleaf, James F; Chen, Shigao

    2014-11-01

    Shear wave speed can be used to assess tissue elasticity, which is associated with tissue health. Ultrasound shear wave elastography techniques based on measuring the propagation speed of the shear waves induced by acoustic radiation force are becoming promising alternatives to biopsy in liver fibrosis staging. However, shear waves generated by such methods are typically very weak. Therefore, the penetration may become problematic, especially for overweight or obese patients. In this study, we developed a new method called external vibration multi-directional ultrasound shearwave elastography (EVMUSE), in which external vibration from a loudspeaker was used to generate a multi-directional shear wave field. A directional filter was then applied to separate the complex shear wave field into several shear wave fields propagating in different directions. A 2-D shear wave speed map was reconstructed from each individual shear wave field, and a final 2-D shear wave speed map was constructed by compounding these individual wave speed maps. The method was validated using two homogeneous phantoms and one multi-purpose tissue-mimicking phantom. Ten patients undergoing liver magnetic resonance elastography (MRE) were also studied with EVMUSE to compare results between the two methods. Phantom results showed EVMUSE was able to quantify tissue elasticity accurately with good penetration. In vivo EVMUSE results were well correlated with MRE results, indicating the promise of using EVMUSE for liver fibrosis staging.

  4. External Vibration Multi-directional Ultrasound Shearwave Elastography (EVMUSE): Application in Liver Fibrosis Staging

    PubMed Central

    Zhao, Heng; Song, Pengfei; Meixner, Duane D.; Kinnick, Randall R.; Callstrom, Matthew R.; Sanchez, William; Urban, Matthew W.; Manduca, Armando; Greenleaf, James F.

    2014-01-01

    Shear wave speed can be used to assess tissue elasticity, which is associated with tissue health. Ultrasound shear wave elastography techniques based on measuring the propagation speed of the shear waves induced by acoustic radiation force are becoming promising alternatives to biopsy in liver fibrosis staging. However, shear waves generated by such methods are typically very weak. Therefore, the penetration may become problematic, especially for overweight or obese patients. In this study, we developed a new method called External Vibration Multi-directional Ultrasound Shearwave Elastography (EVMUSE), in which external vibration from a loudspeaker was used to generate a multi-directional shear wave field. A directional filter was then applied to separate the complex shear wave field into several shear wave fields propagating in different directions. A two-dimensional (2D) shear wave speed map was reconstructed from each individual shear wave field, and a final 2D shear wave speed map was constructed by compounding these individual wave speed maps. The method was validated using two homogeneous phantoms and one multi-purpose tissue-mimicking phantom. Ten patients undergoing liver Magnetic Resonance Elastography (MRE) were also studied with EVMUSE to compare results between the two methods. Phantom results showed EVMUSE was able to quantify tissue elasticity accurately with good penetration. In vivo EVMUSE results were well correlated with MRE results, indicating the promise of using EVMUSE for liver fibrosis staging. PMID:25020066

  5. High Resolution Stratigraphic Mapping in Complex Terrain: A Comparison of Traditional Remote Sensing Techniques with Unmanned Aerial Vehicle - Structure from Motion Photogrammetry

    NASA Astrophysics Data System (ADS)

    Nesbit, P. R.; Hugenholtz, C.; Durkin, P.; Hubbard, S. M.; Kucharczyk, M.; Barchyn, T.

    2016-12-01

    Remote sensing and digital mapping have started to revolutionize geologic mapping in recent years as a result of their realized potential to provide high resolution 3D models of outcrops to assist with interpretation, visualization, and obtaining accurate measurements of inaccessible areas. However, in stratigraphic mapping applications in complex terrain, it is difficult to acquire information with sufficient detail at a wide spatial coverage with conventional techniques. We demonstrate the potential of a UAV and Structure from Motion (SfM) photogrammetric approach for improving 3D stratigraphic mapping applications within a complex badland topography. Our case study is performed in Dinosaur Provincial Park (Alberta, Canada), mapping late Cretaceous fluvial meander belt deposits of the Dinosaur Park formation amidst a succession of steeply sloping hills and abundant drainages - creating a challenge for stratigraphic mapping. The UAV-SfM dataset (2 cm spatial resolution) is compared directly with a combined satellite and aerial LiDAR dataset (30 cm spatial resolution) to reveal advantages and limitations of each dataset before presenting a unique workflow that utilizes the dense point cloud from the UAV-SfM dataset for analysis. The UAV-SfM dense point cloud minimizes distortion, preserves 3D structure, and records an RGB attribute - adding potential value in future studies. The proposed UAV-SfM workflow allows for high spatial resolution remote sensing of stratigraphy in complex topographic environments. This extended capability can add value to field observations and has the potential to be integrated with subsurface petroleum models.

  6. Use of an Annular Silicon Drift Detector (SDD) Versus a Conventional SDD Makes Phase Mapping a Practical Solution for Rare Earth Mineral Characterization.

    PubMed

    Teng, Chaoyi; Demers, Hendrix; Brodusch, Nicolas; Waters, Kristian; Gauvin, Raynald

    2018-06-04

    A number of techniques for the characterization of rare earth minerals (REM) have been developed and are widely applied in the mining industry. However, most of them are limited to a global analysis due to their low spatial resolution. In this work, phase map analyses were performed on REM with an annular silicon drift detector (aSDD) attached to a field emission scanning electron microscope. The optimal conditions for the aSDD were explored, and the high-resolution phase maps generated at a low accelerating voltage identify phases at the micron scale. In comparisons between an annular and a conventional SDD, the aSDD performed at optimized conditions, making the phase map a practical solution for choosing an appropriate grinding size, judging the efficiency of different separation processes, and optimizing a REM beneficiation flowsheet.

  7. Depth-resolved incoherent and coherent wide-field high-content imaging (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    So, Peter T.

    2016-03-01

    Recent advances in depth-resolved wide-field imaging technique has enabled many high throughput applications in biology and medicine. Depth resolved imaging of incoherent signals can be readily accomplished with structured light illumination or nonlinear temporal focusing. The integration of these high throughput systems with novel spectroscopic resolving elements further enable high-content information extraction. We will introduce a novel near common-path interferometer and demonstrate its uses in toxicology and cancer biology applications. The extension of incoherent depth-resolved wide-field imaging to coherent modality is non-trivial. Here, we will cover recent advances in wide-field 3D resolved mapping of refractive index, absorbance, and vibronic components in biological specimens.

  8. Focal plane optics in far-infrared and submillimeter astronomy

    NASA Astrophysics Data System (ADS)

    Hildebrand, R. H.

    1985-10-01

    The construction of airborne observatories, high mountain-top observatories, and space observatories designed especially for infrared and submillimeter astronomy has opened fields of research requiring new optical techniques. A typical far-IR photometric study involves measurement of a continuum spectrum in several passbands between approx 30 microns and 1000 microns and diffraction-limited mapping of the source. At these wavelengths, diffraction effects strongly influence the design of the field optics systems which couple the incoming flux to the radiation sensors (cold bolometers). The Airy diffraction disk for a typical telescope at submillimeter wavelengths approx 100 microns-1000 microns is many millimeters in diameter; the size of the field stop must be comparable. The dilute radiation at the stop is fed through a Winston nonimaging concentrator to a small cavity containing the bolometer. The purpose of this paper is to review the principles and techniques of infrared field optics systems, including spectral filters, concentrators, cavities, and bolometers (as optical elements), with emphasis on photometric systems for wavelengths longer than 60 microns.

  9. Focal plane optics in far-infrared and submillimeter astronomy

    NASA Technical Reports Server (NTRS)

    Hildebrand, R. H.

    1986-01-01

    The construction of airborne observatories, high mountain-top observatories, and space observatories designed especially for infrared and submillimeter astronomy has opened fields of research requiring new optical techniques. A typical far-IR photometric study involves measurement of a continuum spectrum in several passbands between approx 30 microns and 1000 microns and diffraction-limited mapping of the source. At these wavelengths, diffraction effects strongly influence the design of the field optics systems which couple the incoming flux to the radiation sensors (cold bolometers). The Airy diffraction disk for a typical telescope at submillimeter wavelengths approx 100 microns-1000 microns is many millimeters in diameter; the size of the field stop must be comparable. The dilute radiation at the stop is fed through a Winston nonimaging concentrator to a small cavity containing the bolometer. The purpose of this paper is to review the principles and techniques of infrared field optics systems, including spectral filters, concentrators, cavities, and bolometers (as optical elements), with emphasis on photometric systems for wavelengths longer than 60 microns.

  10. Focal plane optics in far-infrared and submillimeter astronomy

    NASA Astrophysics Data System (ADS)

    Hildebrand, R. H.

    1986-02-01

    The construction of airborne observatories, high mountain-top observatories, and space observatories designed especially for infrared and submillimeter astronomy has opened fields of research requiring new optical techniques. A typical far-IR photometric study involves measurement of a continuum spectrum in several passbands between approx 30 microns and 1000 microns and diffraction-limited mapping of the source. At these wavelengths, diffraction effects strongly influence the design of the field optics systems which couple the incoming flux to the radiation sensors (cold bolometers). The Airy diffraction disk for a typical telescope at submillimeter wavelengths approx 100 microns-1000 microns is many millimeters in diameter; the size of the field stop must be comparable. The dilute radiation at the stop is fed through a Winston nonimaging concentrator to a small cavity containing the bolometer. The purpose of this paper is to review the principles and techniques of infrared field optics systems, including spectral filters, concentrators, cavities, and bolometers (as optical elements), with emphasis on photometric systems for wavelengths longer than 60 microns.

  11. Focal plane optics in far-infrared and submillimeter astronomy

    NASA Technical Reports Server (NTRS)

    Hildebrand, R. H.

    1985-01-01

    The construction of airborne observatories, high mountain-top observatories, and space observatories designed especially for infrared and submillimeter astronomy has opened fields of research requiring new optical techniques. A typical far-IR photometric study involves measurement of a continuum spectrum in several passbands between approx 30 microns and 1000 microns and diffraction-limited mapping of the source. At these wavelengths, diffraction effects strongly influence the design of the field optics systems which couple the incoming flux to the radiation sensors (cold bolometers). The Airy diffraction disk for a typical telescope at submillimeter wavelengths approx 100 microns-1000 microns is many millimeters in diameter; the size of the field stop must be comparable. The dilute radiation at the stop is fed through a Winston nonimaging concentrator to a small cavity containing the bolometer. The purpose of this paper is to review the principles and techniques of infrared field optics systems, including spectral filters, concentrators, cavities, and bolometers (as optical elements), with emphasis on photometric systems for wavelengths longer than 60 microns.

  12. Study of high field side/low field side asymmetry in the electron temperature profile with electron cyclotron emission

    NASA Astrophysics Data System (ADS)

    Gugliada, V. R.; Austin, M. E.; Brookman, M. W.

    2017-10-01

    Electron cyclotron emission (ECE) provides high resolution measurements of electron temperature profiles (Te(R , t)) in tokamaks. Calibration accuracy of this data can be improved using a sawtooth averaging technique. This improved calibration will then be utilized to determine the symmetry of Te profiles by comparing low field side (LFS) and high field side (HFS) measurements. Although Te is considered constant on flux surfaces, cases have been observed in which there are pronounced asymmetries about the magnetic axis, particularly with increased pressure. Trends in LFS/HFS overlap are examined as functions of plasma pressure, MHD mode presence, heating techniques, and other discharge conditions. This research will provide information on the accuracy of the current two-dimensional mapping of flux surfaces in the tokamak. Findings can be used to generate higher quality EFITs and inform ECE calibration. Work supported in part by US DoE under the Science Undergraduate Laboratory Internship (SULI) program and under DE-FC02-04ER549698.

  13. Human molecular cytogenetics: From cells to nucleotides

    PubMed Central

    Riegel, Mariluce

    2014-01-01

    The field of cytogenetics has focused on studying the number, structure, function and origin of chromosomal abnormalities and the evolution of chromosomes. The development of fluorescent molecules that either directly or via an intermediate molecule bind to DNA has led to the development of fluorescent in situ hybridization (FISH), a technology linking cytogenetics to molecular genetics. This technique has a wide range of applications that increased the dimension of chromosome analysis. The field of cytogenetics is particularly important for medical diagnostics and research as well as for gene ordering and mapping. Furthermore, the increased application of molecular biology techniques, such as array-based technologies, has led to improved resolution, extending the recognized range of microdeletion/microduplication syndromes and genomic disorders. In adopting these newly expanded methods, cytogeneticists have used a range of technologies to study the association between visible chromosome rearrangements and defects at the single nucleotide level. Overall, molecular cytogenetic techniques offer a remarkable number of potential applications, ranging from physical mapping to clinical and evolutionary studies, making a powerful and informative complement to other molecular and genomic approaches. This manuscript does not present a detailed history of the development of molecular cytogenetics; however, references to historical reviews and experiments have been provided whenever possible. Herein, the basic principles of molecular cytogenetics, the technologies used to identify chromosomal rearrangements and copy number changes, and the applications for cytogenetics in biomedical diagnosis and research are presented and discussed. PMID:24764754

  14. Integration Of Digital Methodologies (Field, Processing, and Presentation) In A Combined Sedimentology/Stratigraphy and Structure Course

    NASA Astrophysics Data System (ADS)

    Malinconico, L. L., Jr.; Sunderlin, D.; Liew, C. W.

    2015-12-01

    Over the course of the last three years we have designed, developed and refined two Apps for the iPad. GeoFieldBook and StratLogger allow for the real-time display of spatial (structural) and temporal (stratigraphic) field data as well as very easy in-field navigation. Field techniques and methods for data acquisition and mapping in the field have dramatically advanced and simplified how we collect and analyze data while in the field. The Apps are not geologic mapping programs, but rather a way of bypassing the analog field book step to acquire digital data directly that can then be used in various analysis programs (GIS, Google Earth, Stereonet, spreadsheet and drawing programs). We now complete all of our fieldwork digitally. GeoFieldBook can be used to collect structural and other field observations. Each record includes location/date/time information, orientation measurements, formation names, text observations and photos taken with the tablet camera. Records are customizable, so users can add fields of their own choosing. Data are displayed on an image base in real time with oriented structural symbols. The image base is also used for in-field navigation. In StratLogger, the user records bed thickness, lithofacies, biofacies, and contact data in preset and modifiable fields. Each bed/unit record may also be photographed and geo-referenced. As each record is collected, a column diagram of the stratigraphic sequence is built in real time, complete with lithology color, lithology texture, and fossil symbols. The recorded data from any measured stratigraphic sequence can be exported as both the live-drawn column image and as a .csv formatted file for use in spreadsheet or other applications. Common to both Apps is the ability to export the data (via .csv files), photographs and maps or stratigraphic columns (images). Since the data are digital they are easily imported into various processing programs (for example for stereoplot analysis). Requiring that all maps, stratigraphic columns and cross-sections be produced digitally continues our integration on the use of digital technologies throughout the curriculum. Initial evaluation suggests that students using the Apps more quickly progress towards synthesis and interpretation of the data as well as a deeper understanding of complex 4D field relationships.

  15. Investigations of turbulent scalar fields using probability density function approach

    NASA Technical Reports Server (NTRS)

    Gao, Feng

    1991-01-01

    Scalar fields undergoing random advection have attracted much attention from researchers in both the theoretical and practical sectors. Research interest spans from the study of the small scale structures of turbulent scalar fields to the modeling and simulations of turbulent reacting flows. The probability density function (PDF) method is an effective tool in the study of turbulent scalar fields, especially for those which involve chemical reactions. It has been argued that a one-point, joint PDF approach is the one to choose from among many simulation and closure methods for turbulent combustion and chemically reacting flows based on its practical feasibility in the foreseeable future for multiple reactants. Instead of the multi-point PDF, the joint PDF of a scalar and its gradient which represents the roles of both scalar and scalar diffusion is introduced. A proper closure model for the molecular diffusion term in the PDF equation is investigated. Another direction in this research is to study the mapping closure method that has been recently proposed to deal with the PDF's in turbulent fields. This method seems to have captured the physics correctly when applied to diffusion problems. However, if the turbulent stretching is included, the amplitude mapping has to be supplemented by either adjusting the parameters representing turbulent stretching at each time step or by introducing the coordinate mapping. This technique is still under development and seems to be quite promising. The final objective of this project is to understand some fundamental properties of the turbulent scalar fields and to develop practical numerical schemes that are capable of handling turbulent reacting flows.

  16. Data-driven mapping of the potential mountain permafrost distribution.

    PubMed

    Deluigi, Nicola; Lambiel, Christophe; Kanevski, Mikhail

    2017-07-15

    Existing mountain permafrost distribution models generally offer a good overview of the potential extent of this phenomenon at a regional scale. They are however not always able to reproduce the high spatial discontinuity of permafrost at the micro-scale (scale of a specific landform; ten to several hundreds of meters). To overcome this lack, we tested an alternative modelling approach using three classification algorithms belonging to statistics and machine learning: Logistic regression, Support Vector Machines and Random forests. These supervised learning techniques infer a classification function from labelled training data (pixels of permafrost absence and presence) with the aim of predicting the permafrost occurrence where it is unknown. The research was carried out in a 588km 2 area of the Western Swiss Alps. Permafrost evidences were mapped from ortho-image interpretation (rock glacier inventorying) and field data (mainly geoelectrical and thermal data). The relationship between selected permafrost evidences and permafrost controlling factors was computed with the mentioned techniques. Classification performances, assessed with AUROC, range between 0.81 for Logistic regression, 0.85 with Support Vector Machines and 0.88 with Random forests. The adopted machine learning algorithms have demonstrated to be efficient for permafrost distribution modelling thanks to consistent results compared to the field reality. The high resolution of the input dataset (10m) allows elaborating maps at the micro-scale with a modelled permafrost spatial distribution less optimistic than classic spatial models. Moreover, the probability output of adopted algorithms offers a more precise overview of the potential distribution of mountain permafrost than proposing simple indexes of the permafrost favorability. These encouraging results also open the way to new possibilities of permafrost data analysis and mapping. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Object-Based Image Analysis Beyond Remote Sensing - the Human Perspective

    NASA Astrophysics Data System (ADS)

    Blaschke, T.; Lang, S.; Tiede, D.; Papadakis, M.; Györi, A.

    2016-06-01

    We introduce a prototypical methodological framework for a place-based GIS-RS system for the spatial delineation of place while incorporating spatial analysis and mapping techniques using methods from different fields such as environmental psychology, geography, and computer science. The methodological lynchpin for this to happen - when aiming to delineate place in terms of objects - is object-based image analysis (OBIA).

  18. Tree health mapping with multispectral remote sensing data at UC Davis, California

    Treesearch

    Q. Xiao; E.G. McPherson

    2005-01-01

    Tree health is a critical parameter for evaluating urban ecosystem health and sustainability. Tradi­tionally, this parameter has been derived from field surveys. We used multispectral remote sensing data and GIS techniques to determine tree health at the University of California, Davis. The study area (363 ha) contained 8,962 trees of 215 species. Tree health...

  19. Stream channel reference sites: An illustrated guide to field technique

    Treesearch

    Cheryl C Harrelson; C. L. Rawlins; John P. Potyondy

    1994-01-01

    This document is a guide to establishing permanent reference sites for gathering data about the physical characteristics of streams and rivers. The minimum procedure consists of the following: (1) select a site, (2) map the site and location, (3) measure the channel cross-section, (4) survey a longitudinal profile of the channel, (5) measure stream flow, (6) measure...

  20. Stream channel erosion in a rapidly urbanizing region of the US-Mexico border: documenting importance of channel hardpoints with structure-from-motion

    USDA-ARS?s Scientific Manuscript database

    A combination of field surveys and Structure-from-Motion (SfM) techniques were used to document spatial patterns in stream channel geometry in a rapidly urbanizing watershed, Los Laureles Canyon (LLCW), in Tijuana, Mexico. Ground-based SfM was used to map channel dimensions with 10 cm vertical accur...

  1. Course-Taking Patterns of Community College Students Beginning in STEM: Using Data Mining Techniques to Reveal Viable STEM Transfer Pathways

    ERIC Educational Resources Information Center

    Wang, Xueli

    2016-01-01

    This research focuses on course-taking patterns of beginning community college students enrolled in one or more non-remedial science, technology, engineering, and mathematics (STEM) courses during their first year of college, and how these patterns are mapped against upward transfer in STEM fields of study. Drawing upon postsecondary transcript…

  2. Mobile lidar system for monitoring of gaseous pollutants in atmosphere over industrial and urban area

    NASA Astrophysics Data System (ADS)

    Moskalenko, Irina V.; Shecheglov, Djolinard A.; Rogachev, Aleksei P.; Avdonin, Aleksandr A.; Molodtsov, Nikolai A.

    1999-01-01

    The lidar remote sensing techniques are powerful for monitoring of gaseous toxic species in atmosphere over wide areas. The paper presented describes design, development and field testing of Mobile Lidar System (MLS) based on utilization of Differential Absorption Lidar (DIAL) technique. The activity is performed by Russian Research Center 'Kurchatov Institute' and Research Institute of Pulse Technique within the project 'Mobile Remote SEnsing System Based on Tunable Laser Transmitter for Environmental Monitoring' under funding of International Scientific and Technology Center Moscow. A brief description of MLS is presented including narrowband transmitter, receiver, system steering, data acquisition subsystem and software. MLS is housed in a mobile truck and is able to provide 3D mapping of gaseous species. Sulfur dioxide and elemental mercury were chosen as basic atmospheric pollutants for field test of MLS. The problem of anthropogenic ozone detection attracts attention due to increase traffic in Moscow. The experimental sites for field testing are located in Moscow Region. Examples of field DIAL measurements will be presented. Application of remote sensing to toxic species near-real time measurements is now under consideration. The objective is comparison of pollution level in working zone with maximum permissible concentration of hazardous pollutant.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thomas, J.M.; Callahan, C.A.; Cline, J.F.

    Bioassays were used in a three-phase research project to assess the comparative sensitivity of test organisms to known chemicals, determine if the chemical components in field soil and water samples containing unknown contaminants could be inferred from our laboratory studies using known chemicals, and to investigate kriging (a relatively new statistical mapping technique) and bioassays as methods to define the areal extent of chemical contamination. The algal assay generally was most sensitive to samples of pure chemicals, soil elutriates and water from eight sites with known chemical contamination. Bioassays of nine samples of unknown chemical composition from the Rocky Mountainmore » Arsenal (RMA) site showed that a lettuce seed soil contact phytoassay was most sensitive. In general, our bioassays can be used to broadly identify toxic components of contaminated soil. Nearly pure compounds of insecticides and herbicides were less toxic in the sensitive bioassays than were the counterpart commercial formulations. This finding indicates that chemical analysis alone may fail to correctly rate the severity of environmental toxicity. Finally, we used the lettuce seed phytoassay and kriging techniques in a field study at RMA to demonstrate the feasibility of mapping contamination to aid in cleanup decisions. 25 references, 9 figures, 9 tables.« less

  4. Examples of Information Technology in Field-based Educational Settings

    NASA Astrophysics Data System (ADS)

    Knoop, P.; van der Pluijm, B.; Dey, E.; Burn, H.

    2007-12-01

    Over the last five years we have utilized ruggedized Tablet PCs and Pocket PCs in a variety of summer field courses at our Camp Davis Rocky Mountain Field Station, near Jackson, WY, as well as during departmental field trips. The courses involved range from upper-level field geology to lower-level introductory geology, as well as a mid-level environmental science course. During this period we gained a lot of experience with how to integrate information technology in field courses and field trips, as we experimented with a range of hardware and software combinations as well as different teaching approaches, some more successful than others. During much of this time we have also collaborated with external educational researchers to help us assess and understand the impact of this evolving approach to field-based instruction. Presented here are some example cases of how information technology can be used in the field for educational purposes, such as mapping projects in field courses, as a digital field notebook and reference library on field trips, and to support a mobile classroom while students are dispersed among vehicles or across a field area. We also present results from the educational evaluation of this work, which indicate that students see information technology as an important tool for their work, rather than as a novelty, and that it provides them with important visualization capabilities to enhance their understand that are not available with traditional paper mapping techniques.

  5. High-resolution maps of real and illusory tactile activation in primary somatosensory cortex in individual monkeys with functional magnetic resonance imaging and optical imaging.

    PubMed

    Chen, Li M; Turner, Gregory H; Friedman, Robert M; Zhang, Na; Gore, John C; Roe, Anna W; Avison, Malcolm J

    2007-08-22

    Although blood oxygenation level-dependent (BOLD) functional magnetic resonance imaging (fMRI) has been widely used to explore human brain function, questions remain regarding the ultimate spatial resolution of positive BOLD fMRI, and indeed the extent to which functional maps revealed by positive BOLD correlate spatially with maps obtained with other high-spatial-resolution mapping techniques commonly used in animals, such as optical imaging of intrinsic signal (OIS) and single-unit electrophysiology. Here, we demonstrate that the positive BOLD signal at 9.4T can reveal the fine topography of individual fingerpads in single-condition activation maps in nonhuman primates. These digit maps are similar to maps obtained from the same animal using intrinsic optical imaging. Furthermore, BOLD fMRI reliably resolved submillimeter spatial shifts in activation in area 3b previously identified with OIS (Chen et al., 2003) as neural correlates of the "funneling illusion." These data demonstrate that at high field, high-spatial-resolution topographic maps can be achieved using the positive BOLD signal, weakening previous notions regarding the spatial specificity of the positive BOLD signal.

  6. Magnetic field topology of the unique chemically peculiar star CU Virginis

    NASA Astrophysics Data System (ADS)

    Kochukhov, O.; Lüftinger, T.; Neiner, C.; Alecian, E.; MiMeS Collaboration

    2014-05-01

    Context. The late-B, magnetic, chemically peculiar star CU Vir is one of the fastest rotators among the intermediate-mass stars with strong fossil magnetic fields. It shows a prominent rotational modulation of the spectral energy distribution and absorption line profiles due to chemical spots and exhibits a unique, strongly beamed variable radio emission. Aims: Little is known about the magnetic field topology of CU Vir. In this study, we aim to derive detailed maps of the magnetic field distribution over the surface of this star for the first time. Methods: We use high-resolution spectropolarimetric observations covering the entire rotational period. These data are interpreted using a multi-line technique of least-squares deconvolution (LSD) and a new Zeeman Doppler imaging code, which is based on detailed polarised radiative transfer modelling of the Stokes I and V LSD profiles. This new magnetic inversion approach relies on the spectrum synthesis calculations over the full wavelength range that is covered by observations and does not assume that the LSD profiles behave as a single spectral line with mean parameters. Results: We present magnetic and chemical abundance maps derived from the Si and Fe lines. Mean polarisation profiles of both elements reveal a significant departure of CU Vir's magnetic field topology from the commonly assumed axisymmetric dipolar configuration. The field of CU Vir is dipolar-like but clearly non-axisymmetric, showing a large difference in the field strength between the regions of opposite polarity. The main relative abundance depletion features in both Si and Fe maps coincide with the weak-field region in the magnetic map. Conclusions: The detailed information on the distorted dipolar magnetic field topology of CU Vir provided by our study is essential for understanding chemical spot formation, radio emission, and rotational period variation of this star. Based on observations obtained at the Bernard Lyot Telescope (USR5026) operated by the Observatoire Midi-Pyrénées, Université de Toulouse (Paul Sabatier), Centre National de la Recherche Scientifique of France.

  7. Mapping the total electron content over Malaysia using Spherical Cap Harmonic Analysis

    NASA Astrophysics Data System (ADS)

    Bahari, S.; Abdullah, M.; Bouya, Z.; Musa, T. A.

    2017-12-01

    The ionosphere over Malaysia is unique because of her location which is in close proximity to the geomagnetic equator and is in the equatorial regions. In this region, the magnetic field is horizontally oriented from south to north and field aligned direction is in the meridional plane (ExB) which becomes the source of equatorial ionospheric anomaly occurrence such as plasma bubble, fountain effects and others. Until today, there is no model that has been developed over Malaysia to study the ionosphere. Due to that, the main objective of this paper is to develop a new technique for mapping the total electron content (TEC) from GPS measurements. Data by myRTKnet network of GPS receiver over Malaysia were used in this study. A new methodology, based on modified spherical cap harmonic analysis (SCHA), was developed to estimate diurnal vertical TEC over the region using GPS observations. The SCHA model is based on longitudinal expansion in Fourier series and fractional Legendre co-latitudinal functions over a spherical cap-like region. The TEC map with spatial resolution of 0.15 ° x 0.15 ° in latitude and longitude with the time resolution of 30 seconds are derived. TEC maps from the SCHA model were compared with the global ionospheric map and other regional models. Result shows that during low solar activity, SCHA model had a better mapping with the accuracy of less than 1 TECU compared to other regional models.

  8. Evaluation of a College Freshman Diversity Research Program in Astronomy

    NASA Astrophysics Data System (ADS)

    Tremmel, Michael J.; Garner, S. M.; Schmidt, S. J.; Wisniewski, J. P.; Agol, E.

    2014-01-01

    Graduate students in the astronomy department at the University of Washington began the Pre-Major in Astronomy Program (Pre-MAP) after recognizing that underrepresented students in STEM fields are not well retained after their transition from high school. Pre-MAP is a research and mentoring program that begins with a keystone seminar where they learn astronomical research techniques that they apply to research projects conducted in small groups. Students also receive one-on-one mentoring and peer support for the duration of the academic year and beyond. Successful Pre-MAP students have declared astronomy and physics majors, expanded their research projects beyond the fall quarter, presented posters at the UW Undergraduate Research Symposium, and received research fellowships and summer internships. Here we examine the success of the program in attracting underrepresented minorities and in facilitating better STEM retention and academic performance among incoming UW students. We use the University of Washington Student Database to study both the performance of Pre-MAP students and the overall UW student body over the past 8 years. We show that Pre-MAP students are generally more diverse than the overall UW population and also come in with a variety of different math backgrounds, which we show to be an important factor on STEM performance for the overall UW population. We find that that Pre-MAP students are both more academically successful and more likely to graduate in STEM fields than their UW peers, regardless of initial math placement.

  9. Space charge inhibition effect of nano-Fe{sub 3}O{sub 4} on improvement of impulse breakdown voltage of transformer oil based on improved Kerr optic measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Qing, E-mail: yangqing@cqu.edu.cn; Yu, Fei; Sima, Wenxia

    Transformer oil-based nanofluids (NFs) with 0.03 g/L Fe{sub 3}O{sub 4} nanoparticle content exhibit 11.2% higher positive impulse breakdown voltage levels than pure transformer oils. To study the effects of the Fe{sub 3}O{sub 4} nanoparticles on the space charge in transformer oil and to explain why the nano-modified transformer oil exhibits improved impulse breakdown voltage characteristics, the traditional Kerr electro-optic field mapping technique is improved by increasing the length of the parallel-plate electrodes and by using a photodetector array as a high light sensitivity device. The space charge distributions of pure transformer oil and of NFs containing Fe{sub 3}O{sub 4} nanoparticlesmore » can be measured using the improved Kerr electro-optic field mapping technique. Test results indicate a significant reduction in space charge density in the transformer oil-based NFs with the Fe{sub 3}O{sub 4} nanoparticles. The fast electrons are captured by the nanoparticles and are converted into slow-charged particles in the NFs, which then reduce the space charge density and result in a more uniform electric field distribution. Streamer propagation in the NFs is also obstructed, and the breakdown strengths of the NFs under impulse voltage conditions are also improved.« less

  10. Environmental mapping and monitoring of Iceland by remote sensing (EMMIRS)

    NASA Astrophysics Data System (ADS)

    Pedersen, Gro B. M.; Vilmundardóttir, Olga K.; Falco, Nicola; Sigurmundsson, Friðþór S.; Rustowicz, Rose; Belart, Joaquin M.-C.; Gísladóttir, Gudrun; Benediktsson, Jón A.

    2016-04-01

    Iceland is exposed to rapid and dynamic landscape changes caused by natural processes and man-made activities, which impact and challenge the country. Fast and reliable mapping and monitoring techniques are needed on a big spatial scale. However, currently there is lack of operational advanced information processing techniques, which are needed for end-users to incorporate remote sensing (RS) data from multiple data sources. Hence, the full potential of the recent RS data explosion is not being fully exploited. The project Environmental Mapping and Monitoring of Iceland by Remote Sensing (EMMIRS) bridges the gap between advanced information processing capabilities and end-user mapping of the Icelandic environment. This is done by a multidisciplinary assessment of two selected remote sensing super sites, Hekla and Öræfajökull, which encompass many of the rapid natural and man-made landscape changes that Iceland is exposed to. An open-access benchmark repository of the two remote sensing supersites is under construction, providing high-resolution LIDAR topography and hyperspectral data for land-cover and landform classification. Furthermore, a multi-temporal and multi-source archive stretching back to 1945 allows a decadal evaluation of landscape and ecological changes for the two remote sensing super sites by the development of automated change detection techniques. The development of innovative pattern recognition and machine learning-based approaches to image classification and change detection is one of the main tasks of the EMMIRS project, aiming to extract and compute earth observation variables as automatically as possible. Ground reference data collected through a field campaign will be used to validate the implemented methods, which outputs are then inferred with geological and vegetation models. Here, preliminary results of an automatic land-cover classification based on hyperspectral image analysis are reported. Furthermore, the EMMIRS project investigates the complex landscape dynamics between geological and ecological processes. This is done through cross-correlation of mapping results and implementation of modelling techniques that simulate geological and ecological processes in order to extrapolate the landscape evolution

  11. Magnetic Doppler imaging of the chemically peculiar star HD 125248

    NASA Astrophysics Data System (ADS)

    Rusomarov, N.; Kochukhov, O.; Ryabchikova, T.; Ilyin, I.

    2016-04-01

    Context. Intermediate-mass, chemically peculiar stars with strong magnetic fields provide an excellent opportunity to study the topology of their surface magnetic fields and the interplay between magnetic geometries and abundance inhomogeneities in the atmospheres of these stars. Aims: We reconstruct detailed maps of the surface magnetic field and abundance distributions for the magnetic Ap star HD 125248. Methods: We performed the analysis based on phase-resolved, four Stokes parameter spectropolarimetric observations obtained with the HARPSpol instrument. These data were interpreted with the help of magnetic Doppler imaging techniques and model atmospheres taking the effects of strong magnetic fields and nonsolar chemical composition into account. Results: We improved the atmospheric parameters of the star, Teff = 9850 ± 250 K and log g = 4.05 ± 0.10. We performed detailed abundance analysis, which confirmed that HD 125248 has abundances typical of other Ap stars, and discovered significant vertical stratification effects for the Fe II and Cr II ions. We computed LSD Stokes profiles using several line masks corresponding to Fe-peak and rare earth elements, and studied their behavior with rotational phase. Combining previous longitudinal field measurements with our own observations, we improved the rotational period of the star Prot = 9.29558 ± 0.00006 d. Magnetic Doppler imaging of HD 125248 showed that its magnetic field is mostly poloidal and quasi-dipolar with two large spots of different polarity and field strength. The chemical maps of Fe, Cr, Ce, Nd, Gd, and Ti show abundance contrasts of 0.9-3.5 dex. Among these elements, the Fe abundance map does not show high-contrast features. Cr is overabundant around the negative magnetic pole and has 3.5 dex abundance range. The rare earth elements and Ti are overabundant near the positive magnetic pole. Conclusions: The magnetic field of HD 125248 has strong deviations from the classical oblique dipole field geometry. A comparison of the magnetic field topology of HD 125248 with the results derived for other stars using four Stokes magnetic Doppler imaging suggests evidence that the field topology becomes simpler with increasing age. The abundance maps show weak correlation with magnetic field geometry, but they do not agree with the theoretical atomic diffusion calculations, which predict element accumulation in the horizontal field regions. Based on observations collected at the European Southern Observatory, Chile (ESO programs 088.D-0066, 090.D-0256).

  12. Markov-random-field-based super-resolution mapping for identification of urban trees in VHR images

    NASA Astrophysics Data System (ADS)

    Ardila, Juan P.; Tolpekin, Valentyn A.; Bijker, Wietske; Stein, Alfred

    2011-11-01

    Identification of tree crowns from remote sensing requires detailed spectral information and submeter spatial resolution imagery. Traditional pixel-based classification techniques do not fully exploit the spatial and spectral characteristics of remote sensing datasets. We propose a contextual and probabilistic method for detection of tree crowns in urban areas using a Markov random field based super resolution mapping (SRM) approach in very high resolution images. Our method defines an objective energy function in terms of the conditional probabilities of panchromatic and multispectral images and it locally optimizes the labeling of tree crown pixels. Energy and model parameter values are estimated from multiple implementations of SRM in tuning areas and the method is applied in QuickBird images to produce a 0.6 m tree crown map in a city of The Netherlands. The SRM output shows an identification rate of 66% and commission and omission errors in small trees and shrub areas. The method outperforms tree crown identification results obtained with maximum likelihood, support vector machines and SRM at nominal resolution (2.4 m) approaches.

  13. Scanning SQUID microscopy of a ferromanganese crust from the northwestern Pacific: Submillimeter scale magnetostratigraphy as a new tool for age determination and mapping of environmental magnetic parameters

    NASA Astrophysics Data System (ADS)

    Noguchi, A.; Oda, H.; Yamamoto, Y.; Usui, A.; Sato, M.; Kawai, J.

    2017-06-01

    Ferromanganese crusts record long-term deep-sea environmental changes. Thus, providing their reliable high-resolution age models is important. We applied a magnetostratigraphic technique to estimate the growth rate of a ferromanganese crust using scanning SQUID (superconducting quantum interference device) microscope (SSM). SSM is designed to map the magnetic field across thin sections with submillimeter resolution. The crust sample was taken from the Takuyo-Daigo Seamount, northwestern Pacific, and recorded a limited supply of dust and sediment from continents. After drift correction and removal of spike noises, the magnetic field values were stacked within the areas of high signal-to-noise ratios. By correlating the obtained profiles with a standard geomagnetic polarity timescale, we obtained an average growth rate of 3.37 ± 0.06 mm/Ma, which is consistent with that obtained by 10Be/9Be geochronology (2.93 ± 0.15 mm/Ma). S ratio mapping shows low values after 3 Ma, associated with voids between columnar structures.

  14. Optimal and fast E/B separation with a dual messenger field

    NASA Astrophysics Data System (ADS)

    Kodi Ramanah, Doogesh; Lavaux, Guilhem; Wandelt, Benjamin D.

    2018-05-01

    We adapt our recently proposed dual messenger algorithm for spin field reconstruction and showcase its efficiency and effectiveness in Wiener filtering polarized cosmic microwave background (CMB) maps. Unlike conventional preconditioned conjugate gradient (PCG) solvers, our preconditioner-free technique can deal with high-resolution joint temperature and polarization maps with inhomogeneous noise distributions and arbitrary mask geometries with relative ease. Various convergence diagnostics illustrate the high quality of the dual messenger reconstruction. In contrast, the PCG implementation fails to converge to a reasonable solution for the specific problem considered. The implementation of the dual messenger method is straightforward and guarantees numerical stability and convergence. We show how the algorithm can be modified to generate fluctuation maps, which, combined with the Wiener filter solution, yield unbiased constrained signal realizations, consistent with observed data. This algorithm presents a pathway to exact global analyses of high-resolution and high-sensitivity CMB data for a statistically optimal separation of E and B modes. It is therefore relevant for current and next-generation CMB experiments, in the quest for the elusive primordial B-mode signal.

  15. Gravity field of Venus at constant altitude and comparison with earth

    NASA Technical Reports Server (NTRS)

    Bowin, C.; Abers, G.; Shure, L.

    1985-01-01

    The gravity field of Venus is characterized in gravity-anomaly and geoid-undulation maps produced by applying the harmonic-spline technique (Shure et al., 1982 and 1983; Parker and Shure, 1982) to Pioneer Venus Orbiter line-of-sight data. A positive correlation between Venusian topographic features and gravity anomalies is observed, in contrast to the noncorrelation seen on earth, and attributed to the thicker crust of Venus (70-80 vs 5-40 km for earth), crustal loading by recent volcanism, and possible regional elevation due to deep heating and thermal expansion.

  16. Coherent Doppler lidar for measurements of wind fields

    NASA Technical Reports Server (NTRS)

    Menzies, Robert T.; Hardesty, R. Michael

    1989-01-01

    The signal-processing techniques for obtaining the velocity estimates and the fundamental factors that influence coherent lidar performance are considered. The similarities and distinctions between Doppler lidar and Doppler radars are discussed. The capability of coherent Doppler lidars for mapping wind fields over selected regions in the lower atmosphere and greatly enhancing the capability to visualize flow patterns in real time is discussed, and examples are given. Salient features of a concept for an earth-orbiting Doppler lidar to be launched in the late 1990s are examined.

  17. Deformation of the free surface of a conducting fluid in the magnetic field of current-carrying linear conductors

    NASA Astrophysics Data System (ADS)

    Zubarev, N. M.; Zubareva, O. V.

    2017-06-01

    The magnetic shaping problem is studied for the situation where a cylindrical column of a perfectly conducting fluid is deformed by the magnetic field of a system of linear current-carrying conductors. Equilibrium is achieved due to the balance of capillary and magnetic pressures. Two two-parametric families of exact solutions of the problem are obtained with the help of conformal mapping technique. In accordance with them, the column essentially deforms in the cross section up to its disintegration.

  18. Tropical land use land cover mapping in Pará (Brazil) using discriminative Markov random fields and multi-temporal TerraSAR-X data

    NASA Astrophysics Data System (ADS)

    Hagensieker, Ron; Roscher, Ribana; Rosentreter, Johannes; Jakimow, Benjamin; Waske, Björn

    2017-12-01

    Remote sensing satellite data offer the unique possibility to map land use land cover transformations by providing spatially explicit information. However, detection of short-term processes and land use patterns of high spatial-temporal variability is a challenging task. We present a novel framework using multi-temporal TerraSAR-X data and machine learning techniques, namely discriminative Markov random fields with spatio-temporal priors, and import vector machines, in order to advance the mapping of land cover characterized by short-term changes. Our study region covers a current deforestation frontier in the Brazilian state Pará with land cover dominated by primary forests, different types of pasture land and secondary vegetation, and land use dominated by short-term processes such as slash-and-burn activities. The data set comprises multi-temporal TerraSAR-X imagery acquired over the course of the 2014 dry season, as well as optical data (RapidEye, Landsat) for reference. Results show that land use land cover is reliably mapped, resulting in spatially adjusted overall accuracies of up to 79% in a five class setting, yet limitations for the differentiation of different pasture types remain. The proposed method is applicable on multi-temporal data sets, and constitutes a feasible approach to map land use land cover in regions that are affected by high-frequent temporal changes.

  19. An assessment of AVIRIS data for hydrothermal alteration mapping in the Goldfield Mining District, Nevada

    NASA Technical Reports Server (NTRS)

    Carrere, Veronique; Abrams, Michael J.

    1988-01-01

    Airborne Visible and Infrared Imaging Spectrometer (AVIRIS) data were acquired over the Goldfield Mining District, Nevada, in September 1987. Goldfield is one of the group of large epithermal precious metal deposits in Tertiary volcanic rocks, associated with silicic volcanism and caldera formation. Hydrothermal alteration consists of silicification along fractures, advanced agrillic and argillic zones further away from veins and more widespread propylitic zones. An evaluation of AVIRIS data quality was performed. Faults in the data, related to engineering problems and a different behavior of the instrument while on-board the U2, were encountered. Consequently, a decision was made to use raw data and correct them only for dark current variations and detector read-out-delays. New software was written to that effect. Atmospheric correction was performed using the flat field correction technique. Analysis of the data was then performed to extract spectral information, mainly concentrating on the 2 to 2.45 micron window, as the alteration minerals of interest have their distinctive spectral reflectance features in this region. Principally kaolinite and alunite spectra were clearly obtained. Mapping of the different minerals and alteration zones was attempted using ratios and clustering techniques. Poor signal-to-noise performance of the instrument and the lack of appropriate software prevented the production of an alteration map of the area. Spectra extracted locally from the AVIRIS data were checked in the field by collecting representative samples of the outcrops.

  20. Petrochronology in constraining early Archean Earth processes and environments: Barberton greenstone belt, South Africa

    NASA Astrophysics Data System (ADS)

    Grosch, Eugene

    2017-04-01

    Analytical and petrological software developments over the past decade have seen rapid innovation in high-spatial resolution petrological techniques, for example, laser-ablation ICP-MS, secondary ion microprobe (SIMS, nano-SIMS), thermodynamic modelling and electron microprobe microscale mapping techniques (e.g. XMapTools). This presentation will focus on the application of petrochronology to ca. 3.55 to 3.33 billion-year-old metavolcanic and sedimentary rocks of the Onverwacht Group, shedding light on the earliest geologic evolution of the Paleoarchean Barberton greenstone belt (BGB) of South Africa. The field, scientific drilling and petrological research conducted over the past 8 years, aims to illustrate how: (a) LA-ICP-MS and SIMS U-Pb detrital zircon geochronology has helped identify the earliest tectono-sedimentary basin and sediment sources in the BGB, as well as reconstructing geodynamic processes as early as ca. 3.432 billion-years ago; (b) in-situ SIMS multiple sulphur isotope analysis of sulphides across various early Archean rock units help to reconstruct atmospheric, surface and subsurface environments on early Archean Earth and (c) the earliest candidate textural traces for subsurface microbial life can be investigated by in-situ LA-ICP-MS U-Pb dating of titanite, micro-XANES Fe-speciation analysis and metamorphic microscale mapping. Collectively, petrochronology combined with high-resolution field mapping studies, is a powerful multi-disciplinary approach towards deciphering petrogenetic and geodynamic processes preserved in the Paleoarchean Barberton greenstone belt of South Africa, with implications for early Archean Earth evolution.

  1. Application of remote sensing to estimating soil erosion potential

    NASA Technical Reports Server (NTRS)

    Morris-Jones, D. R.; Kiefer, R. W.

    1980-01-01

    A variety of remote sensing data sources and interpretation techniques has been tested in a 6136 hectare watershed with agricultural, forest and urban land cover to determine the relative utility of alternative aerial photographic data sources for gathering the desired land use/land cover data. The principal photographic data sources are high altitude 9 x 9 inch color infrared photos at 1:120,000 and 1:60,000 and multi-date medium altitude color and color infrared photos at 1:60,000. Principal data for estimating soil erosion potential include precipitation, soil, slope, crop, crop practice, and land use/land cover data derived from topographic maps, soil maps, and remote sensing. A computer-based geographic information system organized on a one-hectare grid cell basis is used to store and quantify the information collected using different data sources and interpretation techniques. Research results are compared with traditional Universal Soil Loss Equation field survey methods.

  2. Visualization of system dynamics using phasegrams

    PubMed Central

    Herbst, Christian T.; Herzel, Hanspeter; Švec, Jan G.; Wyman, Megan T.; Fitch, W. Tecumseh

    2013-01-01

    A new tool for visualization and analysis of system dynamics is introduced: the phasegram. Its application is illustrated with both classical nonlinear systems (logistic map and Lorenz system) and with biological voice signals. Phasegrams combine the advantages of sliding-window analysis (such as the spectrogram) with well-established visualization techniques from the domain of nonlinear dynamics. In a phasegram, time is mapped onto the x-axis, and various vibratory regimes, such as periodic oscillation, subharmonics or chaos, are identified within the generated graph by the number and stability of horizontal lines. A phasegram can be interpreted as a bifurcation diagram in time. In contrast to other analysis techniques, it can be automatically constructed from time-series data alone: no additional system parameter needs to be known. Phasegrams show great potential for signal classification and can act as the quantitative basis for further analysis of oscillating systems in many scientific fields, such as physics (particularly acoustics), biology or medicine. PMID:23697715

  3. An evaluation of EREP (Skylab) and ERTS imagery for integrated natural resources survey

    NASA Technical Reports Server (NTRS)

    Vangenderen, J. L. (Principal Investigator)

    1973-01-01

    The author has identified the following significant results. An experimental procedure has been devised and is being tested for natural resource surveys to cope with the problems of interpreting and processing the large quantities of data provided by Skylab and ERTS. Some basic aspects of orbital imagery such as scale, the role of repetitive coverage, and types of sensors are being examined in relation to integrated surveys of natural resources and regional development planning. Extrapolation away from known ground conditions, a fundamental technique for mapping resources, becomes very effective when used on orbital imagery supported by field mapping. Meaningful boundary delimitations can be made on orbital images using various image enhancement techniques. To meet the needs of many developing countries, this investigation into the use of satellite imagery for integrated resource surveys involves the analysis of the images by means of standard visual photointerpretation methods.

  4. Earth Survey Applications Division. [a bibliography

    NASA Technical Reports Server (NTRS)

    Carpenter, L. (Editor)

    1981-01-01

    Accomplishments of research and data analysis conducted to study physical parameters and processes inside the Earth and on the Earth's surface, to define techniques and systems for remotely sensing the processes and measuring the parameters of scientific and applications interest, and the transfer of promising operational applications techniques to the user community of Earth resources monitors, managers, and decision makers are described. Research areas covered include: geobotany, magnetic field modeling, crustal studies, crustal dynamics, sea surface topography, land resources, remote sensing of vegetation and soils, and hydrological sciences. Major accomplishments include: production of global maps of magnetic anomalies using Magsat data; computation of the global mean sea surface using GEOS-3 and Seasat altimetry data; delineation of the effects of topography on the interpretation of remotely-sensed data; application of snowmelt runoff models to water resources management; and mapping of snow depth over wheat growing areas using Nimbus microwave data.

  5. Topographic gravity modeling for global Bouguer maps to degree 2160: Validation of spectral and spatial domain forward modeling techniques at the 10 microGal level

    NASA Astrophysics Data System (ADS)

    Hirt, Christian; Reußner, Elisabeth; Rexer, Moritz; Kuhn, Michael

    2016-09-01

    Over the past years, spectral techniques have become a standard to model Earth's global gravity field to 10 km scales, with the EGM2008 geopotential model being a prominent example. For some geophysical applications of EGM2008, particularly Bouguer gravity computation with spectral techniques, a topographic potential model of adequate resolution is required. However, current topographic potential models have not yet been successfully validated to degree 2160, and notable discrepancies between spectral modeling and Newtonian (numerical) integration well beyond the 10 mGal level have been reported. Here we accurately compute and validate gravity implied by a degree 2160 model of Earth's topographic masses. Our experiments are based on two key strategies, both of which require advanced computational resources. First, we construct a spectrally complete model of the gravity field which is generated by the degree 2160 Earth topography model. This involves expansion of the topographic potential to the 15th integer power of the topography and modeling of short-scale gravity signals to ultrahigh degree of 21,600, translating into unprecedented fine scales of 1 km. Second, we apply Newtonian integration in the space domain with high spatial resolution to reduce discretization errors. Our numerical study demonstrates excellent agreement (8 μGgal RMS) between gravity from both forward modeling techniques and provides insight into the convergence process associated with spectral modeling of gravity signals at very short scales (few km). As key conclusion, our work successfully validates the spectral domain forward modeling technique for degree 2160 topography and increases the confidence in new high-resolution global Bouguer gravity maps.

  6. A method for mapping topsoil field-saturated hydraulic conductivity in the Cévennes-Vivarais region using infiltration tests conducted with different techniques

    NASA Astrophysics Data System (ADS)

    Braud, Isabelle; Desprats, Jean-François; Ayral, Pierre-Alain; Bouvier, Christophe; Vandervaere, Jean-Pierre

    2017-04-01

    Topsoil field-saturated hydraulic conductivity, Kfs, is a parameter that controls the partition of rainfall between infiltration and runoff. It is a key parameter in most distributed hydrological models. However, there is a mismatch between the scale of local in situ measurements and the scale at which the parameter is required in models. Therefore it is necessary to design methods to regionally map this parameter at the model scale. The paper propose a method for mapping Kfs in the Cévennes-Vivarais region, south-east France, using more easily available GIS data: geology and land cover. The mapping is based on a data set gathering infiltration tests performed in the area or close to it for more than ten years. The data set is composed of infiltration tests performed using various techniques: Guelph permeameter, double ring and single ring infiltration tests, infiltrometers with multiple suctions. The different methods lead to different orders of magnitude for Kfs rendering the pooling of all the data challenging. Therefore, a method is first proposed to pool the data from the different infiltration methods, leading to a homogenized set of Kfs, based on an equivalent double ring/tension disk infiltration value. Statistical tests showed significant differences in distributions among different geologies and land covers. Thus those variables were retained as proxy for mapping Kfs at the regional scale. This map was compared to a map based on the Rawls and Brakensiek (RB) pedo-transfer function (Manus et al., 2009, Vannier et al., 2016), showing very different patterns between both maps. In addition, RB values did not fit observed values at the plot scale, highlighting that soil texture only is not a good predictor of Kfs. References Manus, C., Anquetin, S., Braud, I., Vandervaere, J.P., Viallet, P., Creutin, J.D., Gaume, E., 2009. A modelling approach to assess the hydrological response of small Mediterranean catchments to the variability of soil characteristics in a context of extreme events. Hydrology and Earth System Sciences, 13: 79-87. Vannier, O., Anquetin, S., Braud, I., 2016. Investigating the role of geology in the hydrological response of Mediterranean catchments prone to flash-floods: regional modelling study and process understanding. Journal of Hydrology, 541 Part A, 158-172.

  7. Utilization of Envisat/ers SAR Data Over the Jharia Coalfield, India for Subsidence Monitoring

    NASA Astrophysics Data System (ADS)

    Srivastava, Vinay Kumar

    2012-07-01

    Extended abstract Jharia coalfield the prime coking coal-producing belt in India, started commercial production in 1894. Mining in Jharia coalfield (JCF) is in form of both opencast and underground mining. The area is affected by various environmental hazards such as, coal fire, subsidence, land degradation and toxic gas emissions. Currently, coal fire and subsidence are the major problems in the coalfield and causes continuous changes in topography. Monitoring of such dynamic topographic changes in a hazard-prone mining belt is a critical input for land environmental management. Such temporal topographic changes over span of the time and even short term mining activity within a year could be done from Digital Elevation Model (DEM) generated using various space-borne techniques.. Among all techniques available for generating DEM, SAR Interferometry technique has been successful and effective which offers high resolution spatial detail to a level of few cm. DEM obtained from processing of SAR Interferometry (InSAR) technique using ERS SAR data of April 12 and 13, 1995 provides high spatial resolution images which is useful for monitoring and measuring dynamic changes in land topography. Several workers have successfully InSAR this technique for mapping and monitoring of changes in land surface due to various causes. Using ERS tandem data sets of 16 and 17 May 1996 passes, DInSAR map over the Jharia coal field has been obtained from the interferogram generated by integrating information from ground control points and precise high coherence orbital parameters. Further, using ENVISAT/ ASAR data of June 5 and 6, 2007 and integrating GPS measurements at 4 ground points where corner reflectors were preinstalled for getting bright spots on images and using orbital parameters, a slant range corrected image over the study area has been obtained. shows the plot of differential phases along a particular profile l over a subsidence region in Jharia coal field and the corresponding correlation coefficients. . Further an attempt has been made to delineate subsidence area in Jharia coal field using SAR Interoferometry technique..

  8. Three-dimensional full-field X-ray orientation microscopy

    PubMed Central

    Viganò, Nicola; Tanguy, Alexandre; Hallais, Simon; Dimanov, Alexandre; Bornert, Michel; Batenburg, Kees Joost; Ludwig, Wolfgang

    2016-01-01

    A previously introduced mathematical framework for full-field X-ray orientation microscopy is for the first time applied to experimental near-field diffraction data acquired from a polycrystalline sample. Grain by grain tomographic reconstructions using convex optimization and prior knowledge are carried out in a six-dimensional representation of position-orientation space, used for modelling the inverse problem of X-ray orientation imaging. From the 6D reconstruction output we derive 3D orientation maps, which are then assembled into a common sample volume. The obtained 3D orientation map is compared to an EBSD surface map and local misorientations, as well as remaining discrepancies in grain boundary positions are quantified. The new approach replaces the single orientation reconstruction scheme behind X-ray diffraction contrast tomography and extends the applicability of this diffraction imaging technique to material micro-structures exhibiting sub-grains and/or intra-granular orientation spreads of up to a few degrees. As demonstrated on textured sub-regions of the sample, the new framework can be extended to operate on experimental raw data, thereby bypassing the concept of orientation indexation based on diffraction spot peak positions. This new method enables fast, three-dimensional characterization with isotropic spatial resolution, suitable for time-lapse observations of grain microstructures evolving as a function of applied strain or temperature. PMID:26868303

  9. Rotor mapping and ablation to treat atrial fibrillation

    PubMed Central

    Zaman, Junaid A.B.; Peters, Nicholas S.; Narayan, Sanjiv M.

    2015-01-01

    Purpose of review Rotors have long been postulated to drive atrial fibrillation, but evidence has been limited to animal models. This changed recently with the demonstration using focal impulse and rotor modulation (FIRM) mapping that rotors act as human atrial fibrillation sources. This mechanistic approach to diagnosing the causes of atrial fibrillation in individual patients has been supported by substantially improved outcomes from FIRM-guided ablation, resulting in increased attention to rotors as therapeutic targets. Recent findings In this review, we outline the pathophysiology of rotors in animal and in-silico studies of fibrillation, and how this motivated FIRM mapping in humans. We highlight the characteristics of rotors in human atrial fibrillation, now validated by several techniques, with discussion on similar and discrepant findings between techniques. The interventional approaches to eliminate atrial fibrillation rotors are explained and the ablation results in latest studies using FIRM are discussed. Summary We propose that mapping localized sources for human atrial fibrillation, specifically rotors, is moving the field towards a unifying hypothesis that explains several otherwise contradictory observations in atrial fibrillation management. We conclude by suggesting areas of potential research that may reveal more about these critical sites and how these may lead to better and novel treatments for atrial fibrillation. PMID:25389649

  10. Improving national-scale invasion maps: Tamarisk in the western United States

    USGS Publications Warehouse

    Jarnevich, C.S.; Evangelista, P.; Stohlgren, T.J.; Morisette, J.

    2011-01-01

    New invasions, better field data, and novel spatial-modeling techniques often drive the need to revisit previous maps and models of invasive species. Such is the case with the at least 10 species of Tamarix, which are invading riparian systems in the western United States and expanding their range throughout North America. In 2006, we developed a National Tamarisk Map by using a compilation of presence and absence locations with remotely sensed data and statistical modeling techniques. Since the publication of that work, our database of Tamarix distributions has grown significantly. Using the updated database of species occurrence, new predictor variables, and the maximum entropy (Maxent) model, we have revised our potential Tamarix distribution map for the western United States. Distance-to-water was the strongest predictor in the model (58.1%), while mean temperature of the warmest quarter was the second best predictor (18.4%). Model validation, averaged from 25 model iterations, indicated that our analysis had strong predictive performance (AUC = 0.93) and that the extent of Tamarix distributions is much greater than previously thought. The southwestern United States had the greatest suitable habitat, and this result differed from the 2006 model. Our work highlights the utility of iterative modeling for invasive species habitat modeling as new information becomes available. ?? 2011.

  11. Wiener filtering of the COBE Differential Microwave Radiometer data

    NASA Technical Reports Server (NTRS)

    Bunn, Emory F.; Fisher, Karl B.; Hoffman, Yehuda; Lahav, Ofer; Silk, Joseph; Zaroubi, Saleem

    1994-01-01

    We derive an optimal linear filter to suppress the noise from the cosmic background explorer satellite (COBE) Differential Microwave Radiometer (DMR) sky maps for a given power spectrum. We then apply the filter to the first-year DMR data, after removing pixels within 20 deg of the Galactic plane from the data. We are able to identify particular hot and cold spots in the filtered maps at a level 2 to 3 times the noise level. We use the formalism of constrained realizations of Gaussian random fields to assess the uncertainty in the filtered sky maps. In addition to improving the signal-to-noise ratio of the map as a whole, these techniques allow us to recover some information about the cosmic microwave background anisotropy in the missing Galactic plane region. From these maps we are able to determine which hot and cold spots in the data are statistically significant, and which may have been produced by noise. In addition, the filtered maps can be used for comparison with other experiments on similar angular scales.

  12. Quantitative imaging of volcanic plumes — Results, needs, and future trends

    USGS Publications Warehouse

    Platt, Ulrich; Lübcke, Peter; Kuhn, Jonas; Bobrowski, Nicole; Prata, Fred; Burton, Mike; Kern, Christoph

    2015-01-01

    Recent technology allows two-dimensional “imaging” of trace gas distributions in plumes. In contrast to older, one-dimensional remote sensing techniques, that are only capable of measuring total column densities, the new imaging methods give insight into details of transport and mixing processes as well as chemical transformation within plumes. We give an overview of gas imaging techniques already being applied at volcanoes (SO2cameras, imaging DOAS, FT-IR imaging), present techniques where first field experiments were conducted (LED-LIDAR, tomographic mapping), and describe some techniques where only theoretical studies with application to volcanology exist (e.g. Fabry–Pérot Imaging, Gas Correlation Spectroscopy, bi-static LIDAR). Finally, we discuss current needs and future trends in imaging technology.

  13. Improving chemical shift encoding‐based water–fat separation based on a detailed consideration of magnetic field contributions

    PubMed Central

    Ruschke, Stefan; Eggers, Holger; Meineke, Jakob; Rummeny, Ernst J.; Karampinos, Dimitrios C.

    2018-01-01

    Purpose To improve the robustness of existing chemical shift encoding‐based water–fat separation methods by incorporating a priori information of the magnetic field distortions in complex‐based water–fat separation. Methods Four major field contributions are considered: inhomogeneities of the scanner magnet, the shim field, an object‐based field map estimate, and a residual field. The former two are completely determined by spherical harmonic expansion coefficients directly available from the magnetic resonance (MR) scanner. The object‐based field map is forward simulated from air–tissue interfaces inside the field of view (FOV). The missing residual field originates from the object outside the FOV and is investigated by magnetic field simulations on a numerical whole body phantom. In vivo the spatially linear first‐order component of the residual field is estimated by measuring echo misalignments after demodulation of other field contributions resulting in a linear residual field. Gradient echo datasets of the cervical and the ankle region without and with shimming were acquired, where all four contributions were incorporated in the water–fat separation with two algorithms from the ISMRM water–fat toolbox and compared to water–fat separation with less incorporated field contributions. Results Incorporating all four field contributions as demodulation steps resulted in reduced temporal and spatial phase wraps leading to almost swap‐free water–fat separation results in all datasets. Conclusion Demodulating estimates of major field contributions reduces the phase evolution to be driven by only small differences in local tissue susceptibility, which supports the field smoothness assumption of existing water–fat separation techniques. PMID:29424458

  14. Landslide inventory maps: New tools for an old problem

    NASA Astrophysics Data System (ADS)

    Guzzetti, Fausto; Mondini, Alessandro Cesare; Cardinali, Mauro; Fiorucci, Federica; Santangelo, Michele; Chang, Kang-Tsung

    2012-04-01

    Landslides are present in all continents, and play an important role in the evolution of landscapes. They also represent a serious hazard in many areas of the world. Despite their importance, we estimate that landslide maps cover less than 1% of the slopes in the landmasses, and systematic information on the type, abundance, and distribution of landslides is lacking. Preparing landslide maps is important to document the extent of landslide phenomena in a region, to investigate the distribution, types, pattern, recurrence and statistics of slope failures, to determine landslide susceptibility, hazard, vulnerability and risk, and to study the evolution of landscapes dominated by mass-wasting processes. Conventional methods for the production of landslide maps rely chiefly on the visual interpretation of stereoscopic aerial photography, aided by field surveys. These methods are time consuming and resource intensive. New and emerging techniques based on satellite, airborne, and terrestrial remote sensing technologies, promise to facilitate the production of landslide maps, reducing the time and resources required for their compilation and systematic update. In this work, we first outline the principles for landslide mapping, and we review the conventional methods for the preparation of landslide maps, including geomorphological, event, seasonal, and multi-temporal inventories. Next, we examine recent and new technologies for landslide mapping, considering (i) the exploitation of very-high resolution digital elevation models to analyze surface morphology, (ii) the visual interpretation and semi-automatic analysis of different types of satellite images, including panchromatic, multispectral, and synthetic aperture radar images, and (iii) tools that facilitate landslide field mapping. Next, we discuss the advantages and the limitations of the new remote sensing data and technology for the production of geomorphological, event, seasonal, and multi-temporal inventory maps. We conclude by arguing that the new tools will help to improve the quality of landslide maps, with positive effects on all derivative products and analyses, including erosion studies and landscape modeling, susceptibility and hazard assessments, and risk evaluations.

  15. Synthetic aperture tomographic phase microscopy for 3D imaging of live cells in translational motion

    PubMed Central

    Lue, Niyom; Choi, Wonshik; Popescu, Gabriel; Badizadegan, Kamran; Dasari, Ramachandra R.; Feld, Michael S.

    2009-01-01

    We present a technique for 3D imaging of live cells in translational motion without need of axial scanning of objective lens. A set of transmitted electric field images of cells at successive points of transverse translation is taken with a focused beam illumination. Based on Hyugens’ principle, angular plane waves are synthesized from E-field images of a focused beam. For a set of synthesized angular plane waves, we apply a filtered back-projection algorithm and obtain 3D maps of refractive index of live cells. This technique, which we refer to as synthetic aperture tomographic phase microscopy, can potentially be combined with flow cytometry or microfluidic devices, and will enable high throughput acquisition of quantitative refractive index data from large numbers of cells. PMID:18825263

  16. The Frontier Fields lens modelling comparison project

    NASA Astrophysics Data System (ADS)

    Meneghetti, M.; Natarajan, P.; Coe, D.; Contini, E.; De Lucia, G.; Giocoli, C.; Acebron, A.; Borgani, S.; Bradac, M.; Diego, J. M.; Hoag, A.; Ishigaki, M.; Johnson, T. L.; Jullo, E.; Kawamata, R.; Lam, D.; Limousin, M.; Liesenborgs, J.; Oguri, M.; Sebesta, K.; Sharon, K.; Williams, L. L. R.; Zitrin, A.

    2017-12-01

    Gravitational lensing by clusters of galaxies offers a powerful probe of their structure and mass distribution. Several research groups have developed techniques independently to achieve this goal. While these methods have all provided remarkably high-precision mass maps, particularly with exquisite imaging data from the Hubble Space Telescope (HST), the reconstructions themselves have never been directly compared. In this paper, we present for the first time a detailed comparison of methodologies for fidelity, accuracy and precision. For this collaborative exercise, the lens modelling community was provided simulated cluster images that mimic the depth and resolution of the ongoing HST Frontier Fields. The results of the submitted reconstructions with the un-blinded true mass profile of these two clusters are presented here. Parametric, free-form and hybrid techniques have been deployed by the participating groups and we detail the strengths and trade-offs in accuracy and systematics that arise for each methodology. We note in conclusion that several properties of the lensing clusters are recovered equally well by most of the lensing techniques compared in this study. For example, the reconstruction of azimuthally averaged density and mass profiles by both parametric and free-form methods matches the input models at the level of ∼10 per cent. Parametric techniques are generally better at recovering the 2D maps of the convergence and of the magnification. For the best-performing algorithms, the accuracy in the magnification estimate is ∼10 per cent at μtrue = 3 and it degrades to ∼30 per cent at μtrue ∼ 10.

  17. Active tectonics on Deception Island (West-Antarctica): A new approach by using the fractal anisotropy of lineaments, fault slip measurements and the caldera collapse shape

    USGS Publications Warehouse

    Pérez-López, R.; Giner-Robles, J.L.; Martínez-Díaz, J.J.; Rodríguez-Pascua, M.A.; Bejar, M.; Paredes, C.; González-Casado, J.M.

    2007-01-01

    The tectonic field on Deception Island (South Shetlands, West Antarctica) is determined from structural and fractal analyses. Three different analyses are applied to the study of the strain and stress fields in the area: (1) field measurements of faults (strain analysis), (2) fractal geometry of the spatial distribution of lineaments and (3) the caldera shape (stress analyses). In this work, the identified strain field is extensional with the maximum horizontal shortening trending NE-SW and NW-SE. The fractal technique applied to the spatial distribution of lineaments indicates a stress field with SHMAX oriented NE-SW. The elliptical caldera of Deception Island, determined from field mapping, satellite imagery, vents and fissure eruptions, has an elongate shape and a stress field with SHMAX trending NE-SW.

  18. Static and dynamic light scattering of healthy and malaria-parasite invaded red blood cells

    NASA Astrophysics Data System (ADS)

    Park, Yongkeun; Diez-Silva, Monica; Fu, Dan; Popescu, Gabriel; Choi, Wonshik; Barman, Ishan; Suresh, Subra; Feld, Michael S.

    2010-03-01

    We present the light scattering of individual Plasmodium falciparum-parasitized human red blood cells (Pf-RBCs), and demonstrate progressive alterations to the scattering signal arising from the development of malaria-inducing parasites. By selectively imaging the electric fields using quantitative phase microscopy and a Fourier transform light scattering technique, we calculate the light scattering maps of individual Pf-RBCs. We show that the onset and progression of pathological states of the Pf-RBCs can be clearly identified by the static scattering maps. Progressive changes to the biophysical properties of the Pf-RBC membrane are captured from dynamic light scattering.

  19. Mapping and quantifying electric and magnetic dipole luminescence at the nanoscale.

    PubMed

    Aigouy, L; Cazé, A; Gredin, P; Mortier, M; Carminati, R

    2014-08-15

    We report on an experimental technique to quantify the relative importance of electric and magnetic dipole luminescence from a single nanosource in structured environments. By attaching a Eu^{3+}-doped nanocrystal to a near-field scanning optical microscope tip, we map the branching ratios associated with two electric dipole and one magnetic dipole transitions in three dimensions on a gold stripe. The relative weights of the electric and magnetic radiative local density of states can be recovered quantitatively, based on a multilevel model. This paves the way towards the full electric and magnetic characterization of nanostructures for the control of single emitter luminescence.

  20. The Use of AIS Data for Identifying and Mapping Calcareous Soils in Western Nebraska

    NASA Technical Reports Server (NTRS)

    Samson, S. A.

    1985-01-01

    The identification of calcareous soils, through unique spectral responses of the vegetation to the chemical nature of calcareous soils, can improve the accuracy of delineating the boundaries of soil mapping units over conventional field techniques. The objective of this experiment is to evaluate the use of the Airborne Imaging Spectrometer (AIS) in the identification and delineation of calcareous soils in the western Sandhills of Nebraska. Based upon statistical differences found in separating the spectral curves below 1.3 microns, calcareous and non-calcareous soils may be identified by differences in species of vegetation. Additional work is needed to identify biogeochemical differences between the two soils.

  1. High-resolution spatiotemporal strain mapping reveals non-uniform deformation in micropatterned elastomers

    NASA Astrophysics Data System (ADS)

    Aksoy, B.; Rehman, A.; Bayraktar, H.; Alaca, B. E.

    2017-04-01

    Micropatterns are generated on a vast selection of polymeric substrates for various applications ranging from stretchable electronics to cellular mechanobiological systems. When these patterned substrates are exposed to external loading, strain field is primarily affected by the presence of microfabricated structures and similarly by fabrication-related defects. The capturing of such nonhomogeneous strain fields is of utmost importance in cases where study of the mechanical behavior with a high spatial resolution is necessary. Image-based non-contact strain measurement techniques are favorable and have recently been extended to scanning tunneling microscope and scanning electron microscope images for the characterization of mechanical properties of metallic materials, e.g. steel and aluminum, at the microscale. A similar real-time analysis of strain heterogeneity in elastomers is yet to be achieved during the entire loading sequence. The available measurement methods for polymeric materials mostly depend on cross-head displacement or precalibrated strain values. Thus, they suffer either from the lack of any real-time analysis, spatiotemporal distribution or high resolution in addition to a combination of these factors. In this work, these challenges are addressed by integrating a tensile stretcher with an inverted optical microscope and developing a subpixel particle tracking algorithm. As a proof of concept, the patterns with a critical dimension of 200 µm are generated on polydimethylsiloxane substrates and strain distribution in the vicinity of the patterns is captured with a high spatiotemporal resolution. In the field of strain measurement, there is always a tradeoff between minimum measurable strain value and spatial resolution. Current noncontact techniques on elastomers can deliver a strain resolution of 0.001% over a minimum length of 5 cm. More importantly, inhomogeneities within this quite large region cannot be captured. The proposed technique can overcome this challenge and provides a displacement measurement resolution of 116 nm and a strain resolution of 0.04% over a gage length of 300 µm. Similarly, the ability to capture inhomogeneities is demonstrated by mapping strain around a thru-hole. The robustness of the technique is also evaluated, where no appreciable change in strain measurement is observed despite the significant variations imposed on the measurement mesh. The proposed approach introduces critical improvements for the determination of displacement and strain gradients in elastomers regarding the real-time nature of strain mapping with a microscale spatial resolution.

  2. THz near-field imaging of biological tissues employing synchrotron radiation (Invited Paper)

    NASA Astrophysics Data System (ADS)

    Schade, Ulrich; Holldack, Karsten; Martin, Michael C.; Fried, Daniel

    2005-04-01

    Terahertz scanning near-field infrared microscopy (SNIM) below 1 THz is demonstrated. The near-field technique benefits from the broadband and highly brilliant coherent synchrotron radiation (CSR) from an electron storage ring and from a detection method based on locking on to the intrinsic time structure of the synchrotron radiation. The scanning microscope utilizes conical waveguides as near-field probes with apertures smaller than the wavelength. Different cone approaches have been investigated to obtain maximum transmittance. Together with a Martin-Puplett spectrometer the set-up enables spectroscopic mapping of the transmittance of samples well below the diffraction limit. Spatial resolution down to about λ/40 at 2 wavenumbers (0.06 THz) is derived from the transmittance spectra of the near-field probes. The potential of the technique is exemplified by imaging biological samples. Strongly absorbing living leaves have been imaged in transmittance with a spatial resolution of 130 μm at about 12 wavenumbers (0.36 THz). The THz near-field images reveal distinct structural differences of leaves from different plants investigated. The technique presented also allows spectral imaging of bulky organic tissues. Human teeth samples of various thicknesses have been imaged between 2 and 20 wavenumbers (between 0.06 and 0.6 THz). Regions of enamel and dentin within tooth samples are spatially and spectrally resolved, and buried caries lesions are imaged through both the outer enamel and into the underlying dentin.

  3. Parameterization of hyperpolarized (13)C-bicarbonate-dissolution dynamic nuclear polarization.

    PubMed

    Scholz, David Johannes; Otto, Angela M; Hintermair, Josef; Schilling, Franz; Frank, Annette; Köllisch, Ulrich; Janich, Martin A; Schulte, Rolf F; Schwaiger, Markus; Haase, Axel; Menzel, Marion I

    2015-12-01

    (13)C metabolic MRI using hyperpolarized (13)C-bicarbonate enables preclinical detection of pH. To improve signal-to-noise ratio, experimental procedures were refined, and the influence of pH, buffer capacity, temperature, and field strength were investigated. Bicarbonate preparation was investigated. Bicarbonate was prepared and applied in spectroscopy at 1, 3, 14 T using pure dissolution, culture medium, and MCF-7 cell spheroids. Healthy rats were imaged by spectral-spatial spiral acquisition for spatial and temporal bicarbonate distribution, pH mapping, and signal decay analysis. An optimized preparation technique for maximum solubility of 6 mol/L and polarization levels of 19-21% is presented; T1 and SNR dependency on field strength, buffer capacity, and pH was investigated. pH mapping in vivo is demonstrated. An optimized bicarbonate preparation and experimental procedure provided improved T1 and SNR values, allowing in vitro and in vivo applications.

  4. Adapting line integral convolution for fabricating artistic virtual environment

    NASA Astrophysics Data System (ADS)

    Lee, Jiunn-Shyan; Wang, Chung-Ming

    2003-04-01

    Vector field occurs not only extensively in scientific applications but also in treasured art such as sculptures and paintings. Artist depicts our natural environment stressing valued directional feature besides color and shape information. Line integral convolution (LIC), developed for imaging vector field in scientific visualization, has potential of producing directional image. In this paper we present several techniques of exploring LIC techniques to generate impressionistic images forming artistic virtual environment. We take advantage of directional information given by a photograph, and incorporate many investigations to the work including non-photorealistic shading technique and statistical detail control. In particular, the non-photorealistic shading technique blends cool and warm colors into the photograph to imitate artists painting convention. Besides, we adopt statistical technique controlling integral length according to image variance to preserve details. Furthermore, we also propose method for generating a series of mip-maps, which revealing constant strokes under multi-resolution viewing and achieving frame coherence in an interactive walkthrough system. The experimental results show merits of emulating satisfyingly and computing efficiently, as a consequence, relying on the proposed technique successfully fabricates a wide category of non-photorealistic rendering (NPR) application such as interactive virtual environment with artistic perception.

  5. Active fault mapping in Karonga-Malawi after the December 19, 2009 Ms 6.2 seismic event

    NASA Astrophysics Data System (ADS)

    Macheyeki, A. S.; Mdala, H.; Chapola, L. S.; Manhiça, V. J.; Chisambi, J.; Feitio, P.; Ayele, A.; Barongo, J.; Ferdinand, R. W.; Ogubazghi, G.; Goitom, B.; Hlatywayo, J. D.; Kianji, G. K.; Marobhe, I.; Mulowezi, A.; Mutamina, D.; Mwano, J. M.; Shumba, B.; Tumwikirize, I.

    2015-02-01

    The East African Rift System (EARS) has natural hazards - earthquakes, volcanic eruptions, and landslides along the faulted margins, and in response to ground shaking. Strong damaging earthquakes have been occurring in the region along the EARS throughout historical time, example being the 7.4 (Ms) of December 1910. The most recent damaging earthquake is the Karonga earthquake in Malawi, which occurred on 19th December, 2009 with a magnitude of 6.2 (Ms). The earthquake claimed four lives and destroyed over 5000 houses. In its effort to improve seismic hazard assessment in the region, Eastern and Southern Africa Seismological Working Group (ESARSWG) under the sponsorship of the International Program on Physical Sciences (IPPS) carried out a study on active fault mapping in the region. The fieldwork employed geological and geophysical techniques. The geophysical techniques employed are ground magnetic, seismic refraction and resistivity surveys but are reported elsewhere. This article gives findings from geological techniques. The geological techniques aimed primarily at mapping of active faults in the area in order to delineate presence or absence of fault segments. Results show that the Karonga fault (the Karonga fault here referred to as the fault that ruptured to the surface following the 6th-19th December 2009 earthquake events in the Karonga area) is about 9 km long and dominated by dip slip faulting with dextral and insignificant sinistral components and it is made up of 3-4 segments of length 2-3 km. The segments are characterized by both left and right steps. Although field mapping show only 9 km of surface rupture, maximum vertical offset of about 43 cm imply that the surface rupture was in little excess of 14 km that corresponds with Mw = 6.4. We recommend the use or integration of multidisciplinary techniques in order to better understand the fault history, mechanism and other behavior of the fault/s for better urban planning in the area.

  6. White matter tractography by means of Turboprop diffusion tensor imaging.

    PubMed

    Arfanakis, Konstantinos; Gui, Minzhi; Lazar, Mariana

    2005-12-01

    White matter fiber-tractography by means of diffusion tensor imaging (DTI) is a noninvasive technique that provides estimates of the structural connectivity of the brain. However, conventional fiber-tracking methods using DTI are based on echo-planar image acquisitions (EPI), which suffer from image distortions and artifacts due to magnetic susceptibility variations and eddy currents. Thus, a large percentage of white matter fiber bundles that are mapped using EPI-based DTI data are distorted, and/or terminated early, while others are completely undetected. This severely limits the potential of fiber-tracking techniques. In contrast, Turboprop imaging is a multiple-shot gradient and spin-echo (GRASE) technique that provides images with significantly fewer susceptibility and eddy current-related artifacts than EPI. The purpose of this work was to evaluate the performance of fiber-tractography techniques when using data obtained with Turboprop-DTI. All fiber pathways that were mapped were found to be in agreement with the anatomy. There were no visible distortions in any of the traced fiber bundles, even when these were located in the vicinity of significant magnetic field inhomogeneities. Additionally, the Turboprop-DTI data used in this research were acquired in less than 19 min of scan time. Thus, Turboprop appears to be a promising DTI data acquisition technique for tracing white matter fibers.

  7. Data Flow Analysis and Visualization for Spatiotemporal Statistical Data without Trajectory Information.

    PubMed

    Kim, Seokyeon; Jeong, Seongmin; Woo, Insoo; Jang, Yun; Maciejewski, Ross; Ebert, David S

    2018-03-01

    Geographic visualization research has focused on a variety of techniques to represent and explore spatiotemporal data. The goal of those techniques is to enable users to explore events and interactions over space and time in order to facilitate the discovery of patterns, anomalies and relationships within the data. However, it is difficult to extract and visualize data flow patterns over time for non-directional statistical data without trajectory information. In this work, we develop a novel flow analysis technique to extract, represent, and analyze flow maps of non-directional spatiotemporal data unaccompanied by trajectory information. We estimate a continuous distribution of these events over space and time, and extract flow fields for spatial and temporal changes utilizing a gravity model. Then, we visualize the spatiotemporal patterns in the data by employing flow visualization techniques. The user is presented with temporal trends of geo-referenced discrete events on a map. As such, overall spatiotemporal data flow patterns help users analyze geo-referenced temporal events, such as disease outbreaks, crime patterns, etc. To validate our model, we discard the trajectory information in an origin-destination dataset and apply our technique to the data and compare the derived trajectories and the original. Finally, we present spatiotemporal trend analysis for statistical datasets including twitter data, maritime search and rescue events, and syndromic surveillance.

  8. Preliminary study on multi-element profile mapping of crustal and mantle zircons by using Synchrotron Radiation X-ray Fluorescence (SR-XRF)

    NASA Astrophysics Data System (ADS)

    Hasözbek, Altug; Shyam, Badri; Siebel, Wolfgang; Schmitt, Axel; Akay, Erhan; Skinner, Lawrie

    2013-04-01

    Zircon (ZrSiO4) is a mineral of singular importance in the geosciences. Zircon microanalysis has greatly contributed to our understanding of key events in earth's history as certain radioactive heavy elements and their daughter products are well-preserved within the exceptionally stable inorganic matrix of the mineral. A prevailing notion in this field is that zircon, as a mineral, is predominantly a crustal mineral; this has been contested in the last few years with more reports of mantle-derived zircons (Siebel et al., 2009). Zircons enriched from different parts of the upper mantle to lower crust from Turkey (Hasozbek et al. 2010) and Germany (Siebel et al., 2009) will be presented in this study using SR-XRF mapping carried out at beamline 2-IDE at the Advanced Photon Source synchrotron facility (Argonne National Laboratory, USA). The high-resolution (5-10 µm) elemental maps were obtained with collimated and linearly polarized synchrotron radiation (10 to 17 keV) and possess the advantage of being a completely non-destructive technique. Elemental maps of various trace and rare-earth elements along the cross-section of the zircons reveal a zonation-related distribution, which may be used to reveal factors affecting the growth history and dynamics of the crystal formation. Further, abrupt changes in elemental distribution or concentration were found to correspond to faults or inclusions within the zircon crystal. If such observations are found to be applicable for a wide range of samples, elemental mapping with this technique may serve as an important qualitative diagnostic to locating µ-meter inclusions that may be challenging to identify using other techniques (ICP-MS LA, SHRIMP,…) Through these preliminary elemental profile mapping studies of crustal and mantle zircons using SR-XRF methods, we aim to highlight a relatively quick and promising analytical method that may be used to study various geological problems.

  9. A review of fuzzy cognitive maps in medicine: Taxonomy, methods, and applications.

    PubMed

    Amirkhani, Abdollah; Papageorgiou, Elpiniki I; Mohseni, Akram; Mosavi, Mohammad R

    2017-04-01

    A high percentage of medical errors, committed because of physician's lack of experience, huge volume of data to be analyzed, and inaccessibility to medical records of previous patients, can be reduced using computer-aided techniques. Therefore, designing more efficient medical decision-support systems (MDSSs) to assist physicians in decision-making is crucially important. Through combining the properties of fuzzy logic and neural networks, fuzzy cognitive maps (FCMs) are among the latest, most efficient, and strongest artificial intelligence techniques for modeling complex systems. This review study is conducted to identify different FCM structures used in MDSS designs. The best structure for each medical application can be introduced by studying the properties of FCM structures. This paper surveys the most important decision- making methods and applications of FCMs in the medical field in recent years. To investigate the efficiency and capability of different FCM models in designing MDSSs, medical applications are categorized into four key areas: decision-making, diagnosis, prediction, and classification. Also, various diagnosis and decision support problems addressed by FCMs in recent years are reviewed with the goal of introducing different types of FCMs and determining their contribution to the improvements made in the fields of medical diagnosis and treatment. In this survey, a general trend for future studies in this field is provided by analyzing various FCM structures used for medical purposes, and the results from each category. Due to the unique specifications of FCMs in integrating human knowledge and experience with computer-aided techniques, they are among practical instruments for MDSS design. In the not too distant future, they will have a significant role in medical sciences. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Northeast Parallel Architectures Center (NPAC)

    DTIC Science & Technology

    1992-07-01

    Computational Techniques: Mapping receptor units to processors , using NEWS communication to model interaction in the inhibitory field Goal of the Research...algorithms for classical problems to take advantage of multiple processors . Experiments in probability that have been too time consuming on serial...machine and achieved speedups of 4 to 5 times with 11 processors . It is believed that a slightly better speedup is achievable. In the case of stuck

  11. Joint Services Electronics Program.

    DTIC Science & Technology

    1988-02-29

    REPORT DOCUMENTATION PAG6E I a lb. RESTRICTIVE MARKINGS ~CI~LAI U4ll- iL --- ’ ,, J,,-.,, , 3 DISTRIBUTION / AVAILABILITY OF REPORT Approved for public...Proximity Gettering with Mega-Electron-Volt-Carbon Implantation 4 GaAs Probing: Surface Properties to 3 -D Field Mapping 8 Miniaturized of Josephson Logic...Materials Studies 21 HFD. 3 . Basic Techniques for Electromagnetic Scattering and Radiation 23 Transmission Line Systems for Millimeter/Submillimeter

  12. Analyzing the Effects of Various Concept Mapping Techniques on Learning Achievement under Different Learning Styles

    ERIC Educational Resources Information Center

    Chiou, Chei-Chang; Lee, Li-Tze; Tien, Li-Chu; Wang, Yu-Min

    2017-01-01

    This study explored the effectiveness of different concept mapping techniques on the learning achievement of senior accounting students and whether achievements attained using various techniques are affected by different learning styles. The techniques are computer-assisted construct-by-self-concept mapping (CACSB), computer-assisted…

  13. Geophysical Modelling and Multi-Scale Studies in the Arctic Seiland Igneous Province: Millimeter to Micrometer Scale Mapping of the Magnetic Sources by High Resolution Magnetic Microscopy

    NASA Astrophysics Data System (ADS)

    Pastore, Z.; Church, N. S.; McEnroe, S. A.; Oda, H.; ter Maat, G. W.

    2017-12-01

    Rocks samples can have wide range of magnetic properties depending on composition, amount of ferromagnetic minerals, grain sizes and microstructures. These influence the magnetic anomalies from the micro to the global scale making the study of the magnetic properties of interest for multiple applications. Later geological processes such as serpentinization can significantly influence these properties and change the nature of the magnetic anomalies. Particularly, magnetic properties such as remanent magnetization and magnetic susceptibility are directly linked to the magnetic mineralogy composition and grain size and can provide useful information about the geological history of the source. Scanning magnetic microscopy is a highly sensitive and high-resolution magnetometric technique for mapping the magnetic field over a planar surface of a rock sample. The device measures the vertical component of the field above the thin sections and the technique offers a spatial resolution down to tens of micrometers and thus can be used to investigate discrete magnetic mineral grains or magnetic textures and structures, and the magnetic history of the sample. This technique allows a direct correlation between the mineral chemistry (through both electron and optical microscopy) and the magnetic properties. We present as case-study three thin section magnetic scans of two dunite samples from the Reinfjord Ultramafic complex, in northern Norway. The selected thin sections show different magnetic properties which reflect the magnetic petrology. One of the thin sections is from a pristine dunite sample; the other two are highly serpentinized with newly formed magnetite found in multiple, few micrometer thick, veins. We present the preliminary results obtained applying a forward modelling approach on the magnetic anomaly maps acquired over the thin sections. Modelling consists of uniformly-magnetized polygonal bodies whose geometry is constrained by the thickness of the thin section and by the shape of the magnetic grains. The NRM direction in each polygon is modelled to fit the NRM magnetic field. Modelling helps in determining the NRM directions and intensities of discrete magnetic sources inside the thin sections and thus contributes to the study of the link between the magnetic petrology and the magnetic anomalies.

  14. Application of CPL with Interference Mapping Lithography to generate random contact reticle designs for the 65-nm node

    NASA Astrophysics Data System (ADS)

    Van Den Broeke, Douglas J.; Laidig, Thomas L.; Chen, J. Fung; Wampler, Kurt E.; Hsu, Stephen D.; Shi, Xuelong; Socha, Robert J.; Dusa, Mircea V.; Corcoran, Noel P.

    2004-08-01

    Imaging contact and via layers continues to be one of the major challenges to be overcome for 65nm node lithography. Initial results of using ASML MaskTools' CPL Technology to print contact arrays through pitch have demonstrated the potential to further extend contact imaging to a k1 near 0.30. While there are advantages and disadvantages for any potential RET, the benefits of not having to solve the phase assignment problem (which can lead to unresolvable phase conflicts), of it being a single reticle - single exposure technique, and its application to multiple layers within a device (clear field and dark field) make CPL an attractive, cost effective solution to low k1 imaging. However, real semiconductor circuit designs consist of much more than regular arrays of contact holes and a method to define the CPL reticle design for a full chip circuit pattern is required in order for this technique to be feasible in volume manufacturing. Interference Mapping Lithography (IML) is a novel approach for defining optimum reticle patterns based on the imaging conditions that will be used when the wafer is exposed. Figure 1 shows an interference map for an isolated contact simulated using ASML /1150 settings of 0.75NA and 0.92/0.72/30deg Quasar illumination. This technique provides a model-based approach for placing all types features (scattering bars, anti-scattering bars, non-printing assist features, phase shifted and non-phase shifted) for the purpose of enhancing the resolution of the target pattern and it can be applied to any reticle type including binary (COG), attenuated phase shifting mask (attPSM), alternating aperture phase shifting mask (altPSM), and CPL. In this work, we investigate the application of IML to generate CPL reticle designs for random contact patterns that are typical for 65nm node logic devices. We examine the critical issues related to using CPL with Interference Mapping Lithography including controlling side lobe printing, contact patterns with odd symmetry, forbidden pitch regions, and reticle manufacturing constraints. Multiple methods for deriving the interference map used to define reticle patterns for various RET's will be discussed. CPL reticle designs that were created from implementing automated algorithms for contact pattern decomposition using MaskWeaver will also be presented.

  15. Mapping and monitoring changes in vegetation communities of Jasper Ridge, CA, using spectral fractions derived from AVIRIS images

    NASA Technical Reports Server (NTRS)

    Sabol, Donald E., Jr.; Roberts, Dar A.; Adams, John B.; Smith, Milton O.

    1993-01-01

    An important application of remote sensing is to map and monitor changes over large areas of the land surface. This is particularly significant with the current interest in monitoring vegetation communities. Most of traditional methods for mapping different types of plant communities are based upon statistical classification techniques (i.e., parallel piped, nearest-neighbor, etc.) applied to uncalibrated multispectral data. Classes from these techniques are typically difficult to interpret (particularly to a field ecologist/botanist). Also, classes derived for one image can be very different from those derived from another image of the same area, making interpretation of observed temporal changes nearly impossible. More recently, neural networks have been applied to classification. Neural network classification, based upon spectral matching, is weak in dealing with spectral mixtures (a condition prevalent in images of natural surfaces). Another approach to mapping vegetation communities is based on spectral mixture analysis, which can provide a consistent framework for image interpretation. Roberts et al. (1990) mapped vegetation using the band residuals from a simple mixing model (the same spectral endmembers applied to all image pixels). Sabol et al. (1992b) and Roberts et al. (1992) used different methods to apply the most appropriate spectral endmembers to each image pixel, thereby allowing mapping of vegetation based upon the the different endmember spectra. In this paper, we describe a new approach to classification of vegetation communities based upon the spectra fractions derived from spectral mixture analysis. This approach was applied to three 1992 AVIRIS images of Jasper Ridge, California to observe seasonal changes in surface composition.

  16. High-spatial resolution multispectral and panchromatic satellite imagery for mapping perennial desert plants

    NASA Astrophysics Data System (ADS)

    Alsharrah, Saad A.; Bruce, David A.; Bouabid, Rachid; Somenahalli, Sekhar; Corcoran, Paul A.

    2015-10-01

    The use of remote sensing techniques to extract vegetation cover information for the assessment and monitoring of land degradation in arid environments has gained increased interest in recent years. However, such a task can be challenging, especially for medium-spatial resolution satellite sensors, due to soil background effects and the distribution and structure of perennial desert vegetation. In this study, we utilised Pleiades high-spatial resolution, multispectral (2m) and panchromatic (0.5m) imagery and focused on mapping small shrubs and low-lying trees using three classification techniques: 1) vegetation indices (VI) threshold analysis, 2) pre-built object-oriented image analysis (OBIA), and 3) a developed vegetation shadow model (VSM). We evaluated the success of each approach using a root of the sum of the squares (RSS) metric, which incorporated field data as control and three error metrics relating to commission, omission, and percent cover. Results showed that optimum VI performers returned good vegetation cover estimates at certain thresholds, but failed to accurately map the distribution of the desert plants. Using the pre-built IMAGINE Objective OBIA approach, we improved the vegetation distribution mapping accuracy, but this came at the cost of over classification, similar to results of lowering VI thresholds. We further introduced the VSM which takes into account shadow for further refining vegetation cover classification derived from VI. The results showed significant improvements in vegetation cover and distribution accuracy compared to the other techniques. We argue that the VSM approach using high-spatial resolution imagery provides a more accurate representation of desert landscape vegetation and should be considered in assessments of desertification.

  17. A predictive penetrative fracture mapping method from regional potential field and geologic datasets, southwest Colorado Plateau, U.S.A

    USGS Publications Warehouse

    Gettings, M.E.; Bultman, M.W.

    2005-01-01

    Some aquifers of the southwest Colorado Plateau, U.S.A., are deeply buried and overlain by several impermeable units, and thus recharge to the aquifer is probably mainly by seepage down penetrative fracture systems. This purpose of this study was to develop a method to map the location of candidate deep penetrative fractures over a 120,000 km2 area using gravity and aeromagnetic anomaly data together with surficial fracture data. The resulting database constitutes a spatially registered estimate of recharge location. Candidate deep fractures were obtained by spatial correlation of horizontal gradient and analytic signal maxima of gravity and magnetic anomalies vertically with major surficial lineaments obtained from geologic, topographic, side-looking airborne radar, and satellite imagery. The maps define a sub-set of possible penetrative fractures because of limitations of data coverage and the analysis technique. The data and techniques employed do not yield any indication as to whether fractures are open or closed. Correlations were carried out using image processing software in such a way that every pixel on the resulting grids was coded to uniquely identify which datasets correlated. The technique correctly identified known deep fracture systems and many new ones. Maps of the correlations also define in detail the tectonic fabrics of the Southwestern Colorado Plateau. Copyright ?? The Society of Geomagnetism and Earth, Planetary and Space Sciences (SGEPSS); The Seismological Society of Japan; The Volcanological Society of Japan; The Geodetic Society of Japan; The Japanese Society for Planetary Sciences; TERRAPUB.

  18. Saliency Detection on Light Field.

    PubMed

    Li, Nianyi; Ye, Jinwei; Ji, Yu; Ling, Haibin; Yu, Jingyi

    2017-08-01

    Existing saliency detection approaches use images as inputs and are sensitive to foreground/background similarities, complex background textures, and occlusions. We explore the problem of using light fields as input for saliency detection. Our technique is enabled by the availability of commercial plenoptic cameras that capture the light field of a scene in a single shot. We show that the unique refocusing capability of light fields provides useful focusness, depths, and objectness cues. We further develop a new saliency detection algorithm tailored for light fields. To validate our approach, we acquire a light field database of a range of indoor and outdoor scenes and generate the ground truth saliency map. Experiments show that our saliency detection scheme can robustly handle challenging scenarios such as similar foreground and background, cluttered background, complex occlusions, etc., and achieve high accuracy and robustness.

  19. Situational Awareness Applied to Geology Field Mapping using Integration of Semantic Data and Visualization Techniques

    NASA Astrophysics Data System (ADS)

    Houser, P. I. Q.

    2017-12-01

    21st century earth science is data-intensive, characterized by heterogeneous, sometimes voluminous collections representing phenomena at different scales collected for different purposes and managed in disparate ways. However, much of the earth's surface still requires boots-on-the-ground, in-person fieldwork in order to detect the subtle variations from which humans can infer complex structures and patterns. Nevertheless, field experiences can and should be enabled and enhanced by a variety of emerging technologies. The goal of the proposed research project is to pilot test emerging data integration, semantic and visualization technologies for evaluation of their potential usefulness in the field sciences, particularly in the context of field geology. The proposed project will investigate new techniques for data management and integration enabled by semantic web technologies, along with new techniques for augmented reality that can operate on such integrated data to enable in situ visualization in the field. The research objectives include: Develop new technical infrastructure that applies target technologies to field geology; Test, evaluate, and assess the technical infrastructure in a pilot field site; Evaluate the capabilities of the systems for supporting and augmenting field science; and Assess the generality of the system for implementation in new and different types of field sites. Our hypothesis is that these technologies will enable what we call "field science situational awareness" - a cognitive state formerly attained only through long experience in the field - that is highly desirable but difficult to achieve in time- and resource-limited settings. Expected outcomes include elucidation of how, and in what ways, these technologies are beneficial in the field; enumeration of the steps and requirements to implement these systems; and cost/benefit analyses that evaluate under what conditions the investments of time and resources are advisable to construct such system.

  20. In situ electrical and thermal monitoring of printed electronics by two-photon mapping.

    PubMed

    Pastorelli, Francesco; Accanto, Nicolò; Jørgensen, Mikkel; van Hulst, Niek F; Krebs, Frederik C

    2017-06-19

    Printed electronics is emerging as a new, large scale and cost effective technology that will be disruptive in fields such as energy harvesting, consumer electronics and medical sensors. The performance of printed electronic devices relies principally on the carrier mobility and molecular packing of the polymer semiconductor material. Unfortunately, the analysis of such materials is generally performed with destructive techniques, which are hard to make compatible with in situ measurements, and pose a great obstacle for the mass production of printed electronics devices. A rapid, in situ, non-destructive and low-cost testing method is needed. In this study, we demonstrate that nonlinear optical microscopy is a promising technique to achieve this goal. Using ultrashort laser pulses we stimulate two-photon absorption in a roll coated polymer semiconductor and map the resulting two-photon induced photoluminescence and second harmonic response. We show that, in our experimental conditions, it is possible to relate the total amount of photoluminescence detected to important material properties such as the charge carrier density and the molecular packing of the printed polymer material, all with a spatial resolution of 400 nm. Importantly, this technique can be extended to the real time mapping of the polymer semiconductor film, even during the printing process, in which the high printing speed poses the need for equally high acquisition rates.

Top