Sample records for field models derived

  1. Determination of errors in derived magnetic field directions in geosynchronous orbit: results from a statistical approach

    NASA Astrophysics Data System (ADS)

    Chen, Yue; Cunningham, Gregory; Henderson, Michael

    2016-09-01

    This study aims to statistically estimate the errors in local magnetic field directions that are derived from electron directional distributions measured by Los Alamos National Laboratory geosynchronous (LANL GEO) satellites. First, by comparing derived and measured magnetic field directions along the GEO orbit to those calculated from three selected empirical global magnetic field models (including a static Olson and Pfitzer 1977 quiet magnetic field model, a simple dynamic Tsyganenko 1989 model, and a sophisticated dynamic Tsyganenko 2001 storm model), it is shown that the errors in both derived and modeled directions are at least comparable. Second, using a newly developed proxy method as well as comparing results from empirical models, we are able to provide for the first time circumstantial evidence showing that derived magnetic field directions should statistically match the real magnetic directions better, with averaged errors < ˜ 2°, than those from the three empirical models with averaged errors > ˜ 5°. In addition, our results suggest that the errors in derived magnetic field directions do not depend much on magnetospheric activity, in contrast to the empirical field models. Finally, as applications of the above conclusions, we show examples of electron pitch angle distributions observed by LANL GEO and also take the derived magnetic field directions as the real ones so as to test the performance of empirical field models along the GEO orbits, with results suggesting dependence on solar cycles as well as satellite locations. This study demonstrates the validity and value of the method that infers local magnetic field directions from particle spin-resolved distributions.

  2. Determination of errors in derived magnetic field directions in geosynchronous orbit: results from a statistical approach

    DOE PAGES

    Chen, Yue; Cunningham, Gregory; Henderson, Michael

    2016-09-21

    Our study aims to statistically estimate the errors in local magnetic field directions that are derived from electron directional distributions measured by Los Alamos National Laboratory geosynchronous (LANL GEO) satellites. First, by comparing derived and measured magnetic field directions along the GEO orbit to those calculated from three selected empirical global magnetic field models (including a static Olson and Pfitzer 1977 quiet magnetic field model, a simple dynamic Tsyganenko 1989 model, and a sophisticated dynamic Tsyganenko 2001 storm model), it is shown that the errors in both derived and modeled directions are at least comparable. Furthermore, using a newly developedmore » proxy method as well as comparing results from empirical models, we are able to provide for the first time circumstantial evidence showing that derived magnetic field directions should statistically match the real magnetic directions better, with averaged errors < ~2°, than those from the three empirical models with averaged errors > ~5°. In addition, our results suggest that the errors in derived magnetic field directions do not depend much on magnetospheric activity, in contrast to the empirical field models. Finally, as applications of the above conclusions, we show examples of electron pitch angle distributions observed by LANL GEO and also take the derived magnetic field directions as the real ones so as to test the performance of empirical field models along the GEO orbits, with results suggesting dependence on solar cycles as well as satellite locations. Finally, this study demonstrates the validity and value of the method that infers local magnetic field directions from particle spin-resolved distributions.« less

  3. Determination of errors in derived magnetic field directions in geosynchronous orbit: results from a statistical approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Yue; Cunningham, Gregory; Henderson, Michael

    Our study aims to statistically estimate the errors in local magnetic field directions that are derived from electron directional distributions measured by Los Alamos National Laboratory geosynchronous (LANL GEO) satellites. First, by comparing derived and measured magnetic field directions along the GEO orbit to those calculated from three selected empirical global magnetic field models (including a static Olson and Pfitzer 1977 quiet magnetic field model, a simple dynamic Tsyganenko 1989 model, and a sophisticated dynamic Tsyganenko 2001 storm model), it is shown that the errors in both derived and modeled directions are at least comparable. Furthermore, using a newly developedmore » proxy method as well as comparing results from empirical models, we are able to provide for the first time circumstantial evidence showing that derived magnetic field directions should statistically match the real magnetic directions better, with averaged errors < ~2°, than those from the three empirical models with averaged errors > ~5°. In addition, our results suggest that the errors in derived magnetic field directions do not depend much on magnetospheric activity, in contrast to the empirical field models. Finally, as applications of the above conclusions, we show examples of electron pitch angle distributions observed by LANL GEO and also take the derived magnetic field directions as the real ones so as to test the performance of empirical field models along the GEO orbits, with results suggesting dependence on solar cycles as well as satellite locations. Finally, this study demonstrates the validity and value of the method that infers local magnetic field directions from particle spin-resolved distributions.« less

  4. Deriving a Core Magnetic Field Model from Swarm Satellite Data

    NASA Astrophysics Data System (ADS)

    Lesur, V.; Rother, M.; Wardinski, I.

    2014-12-01

    A model of the Earth's core magnetic field has been built using Swarm satellite mission data and observatory quasi-definitive data. The satellite data processing scheme, which was used to derive previous satellite field models (i.e. GRIMM series), has been modified to handle discrepancies between the satellite total intensity data derived from the vector fluxgate magnetometer and the absolute scalar instrument. Further, the Euler angles, i.e. the angles between the vector magnetometer and the satellite reference frame, have been recalculated on a series of 30-day windows to obtain an accurate model of the core field for 2014. Preliminary derivations of core magnetic field and SV models for 2014 present the same characteristics as during the CHAMP era. The acceleration (i.e. the field second time derivative) has shown a rapid evolution over the last few years, and is present in the current model, which confirms previous observations.

  5. An assessment of the near-surface accuracy of the international geomagnetic reference field 1980 model of the main geomagnetic field

    USGS Publications Warehouse

    Peddie, N.W.; Zunde, A.K.

    1985-01-01

    The new International Geomagnetic Reference Field (IGRF) model of the main geomagnetic field for 1980 is based heavily on measurements from the MAGSAT satellite survey. Assessment of the accuracy of the new model, as a description of the main field near the Earth's surface, is important because the accuracy of models derived from satellite data can be adversely affected by the magnetic field of electric currents in the ionosphere and the auroral zones. Until now, statements about its accuracy have been based on the 6 published assessments of the 2 proposed models from which it was derived. However, those assessments were either regional in scope or were based mainly on preliminary or extrapolated data. Here we assess the near-surface accuracy of the new model by comparing it with values for 1980 derived from annual means from 69 magnetic observatories, and by comparing it with WC80, a model derived from near-surface data. The comparison with observatory-derived data shows that the new model describes the field at the 69 observatories about as accurately as would a model derived solely from near-surface data. The comparison with WC80 shows that the 2 models agree closely in their description of D and I near the surface. These comparisons support the proposition that the new IGRF 1980 main-field model is a generally accurate description of the main field near the Earth's surface in 1980. ?? 1985.

  6. A proposed International Geomagnetic Reference Field for 1965- 1985.

    USGS Publications Warehouse

    Peddie, N.W.; Fabiano, E.B.

    1982-01-01

    A set of spherical harmonic models describing the Earth's main magnetic field from 1965 to 1985 has been developed and is proposed as the next revision of the International Geomagnetic Reference Field (IGRF). A tenth degree and order spherical harmonic model of the main field was derived from Magsat data. A series of eighth degree and order spherical harmonic models of the secular variation of the main field was derived from magnetic observatory annual mean values. Models of the main field at 1965, 1970, 1975, and 1980 were obtained by extrapolating the main-field model using the secular variation models.-Authors spherical harmonic models Earth main magnetic field Magsat data

  7. Some new methods in geomagnetic field modeling applied to the 1960 - 1980 epoch

    NASA Technical Reports Server (NTRS)

    Langel, R. A.; Estes, R. H.; Mead, G. H.

    1981-01-01

    The utilization of satellite and surface data together permitted the incorporation of a solution for the anomaly field at each observatory. The residuals of the observatory measurements to such models is commensurate with the actual measurment accuracy. Incorporation of the anomaly estimation enabled the inclusion of stable time derivatives of the spherical harmonic coefficients up to the third derivative. A spherical harmonic model is derived with degree and order 13 in its constant and first time derivative terms, six in its second derivative terms and four in its third derivative terms.

  8. Non-singular spherical harmonic expressions of geomagnetic vector and gradient tensor fields in the local north-oriented reference frame

    NASA Astrophysics Data System (ADS)

    Du, J.; Chen, C.; Lesur, V.; Wang, L.

    2014-12-01

    General expressions of magnetic vector (MV) and magnetic gradient tensor (MGT) in terms of the first- and second-order derivatives of spherical harmonics at different degrees and orders, are relatively complicated and singular at the poles. In this paper, we derived alternative non-singular expressions for the MV, the MGT and also the higher-order partial derivatives of the magnetic field in local north-oriented reference frame. Using our newly derived formulae, the magnetic potential, vector and gradient tensor fields at an altitude of 300 km are calculated based on a global lithospheric magnetic field model GRIMM_L120 (version 0.0) and the main magnetic field model of IGRF11. The corresponding results at the poles are discussed and the validity of the derived formulas is verified using the Laplace equation of the potential field.

  9. Non-singular spherical harmonic expressions of geomagnetic vector and gradient tensor fields in the local north-oriented reference frame

    NASA Astrophysics Data System (ADS)

    Du, J.; Chen, C.; Lesur, V.; Wang, L.

    2015-07-01

    General expressions of magnetic vector (MV) and magnetic gradient tensor (MGT) in terms of the first- and second-order derivatives of spherical harmonics at different degrees/orders are relatively complicated and singular at the poles. In this paper, we derived alternative non-singular expressions for the MV, the MGT and also the third-order partial derivatives of the magnetic potential field in the local north-oriented reference frame. Using our newly derived formulae, the magnetic potential, vector and gradient tensor fields and also the third-order partial derivatives of the magnetic potential field at an altitude of 300 km are calculated based on a global lithospheric magnetic field model GRIMM_L120 (GFZ Reference Internal Magnetic Model, version 0.0) with spherical harmonic degrees 16-90. The corresponding results at the poles are discussed and the validity of the derived formulas is verified using the Laplace equation of the magnetic potential field.

  10. Comment on ''Equivalence between the Thirring model and a derivative-coupling model''

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Banerjee, R.

    1988-06-15

    An operator equivalence between the Thirring model and the fermionic sector of a Dirac field interacting via derivative coupling with two scalar fields is established in the path-integral framework. Relations between the coupling parameters of the two models, as found by Gomes and da Silva, can be reproduced.

  11. Primordial perturbations in multi-scalar inflation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abedi, Habib; Abbassi, Amir M., E-mail: h.abedi@ut.ac.ir, E-mail: amabasi@khayam.ut.ac.ir

    2017-07-01

    Multiple field models of inflation exhibit new features than single field models. In this work, we study the hierarchy of parameters based on Hubble expansion rate in curved field space and derive the system of flow equations that describe their evolutions. Then we focus on obtaining derivatives of number of e-folds with respect to scalar fields during inflation and at hypersurface of the end of inflation.

  12. Estimating thermal performance curves from repeated field observations

    USGS Publications Warehouse

    Childress, Evan; Letcher, Benjamin H.

    2017-01-01

    Estimating thermal performance of organisms is critical for understanding population distributions and dynamics and predicting responses to climate change. Typically, performance curves are estimated using laboratory studies to isolate temperature effects, but other abiotic and biotic factors influence temperature-performance relationships in nature reducing these models' predictive ability. We present a model for estimating thermal performance curves from repeated field observations that includes environmental and individual variation. We fit the model in a Bayesian framework using MCMC sampling, which allowed for estimation of unobserved latent growth while propagating uncertainty. Fitting the model to simulated data varying in sampling design and parameter values demonstrated that the parameter estimates were accurate, precise, and unbiased. Fitting the model to individual growth data from wild trout revealed high out-of-sample predictive ability relative to laboratory-derived models, which produced more biased predictions for field performance. The field-based estimates of thermal maxima were lower than those based on laboratory studies. Under warming temperature scenarios, field-derived performance models predicted stronger declines in body size than laboratory-derived models, suggesting that laboratory-based models may underestimate climate change effects. The presented model estimates true, realized field performance, avoiding assumptions required for applying laboratory-based models to field performance, which should improve estimates of performance under climate change and advance thermal ecology.

  13. A southern Africa harmonic spline core field model derived from CHAMP satellite data

    NASA Astrophysics Data System (ADS)

    Nahayo, E.; Kotzé, P. B.; McCreadie, H.

    2015-02-01

    The monitoring of the Earth's magnetic field time variation requires a continuous recording of geomagnetic data with a good spatial coverage over the area of study. In southern Africa, ground recording stations are limited and the use of satellite data is needed for the studies where high spatial resolution data is required. We show the fast time variation of the geomagnetic field in the southern Africa region by deriving an harmonic spline model from CHAMP satellite measurements recorded between 2001 and 2010. The derived core field model, the Southern Africa Regional Model (SARM), is compared with the global model GRIMM-2 and the ground based data recorded at Hermanus magnetic observatory (HER) in South Africa and Tsumeb magnetic observatory (TSU) in Namibia where the focus is mainly on the long term variation of the geomagnetic field. The results of this study suggest that the regional model derived from the satellite data alone can be used to study the small scale features of the time variation of the geomagnetic field where ground data is not available. In addition, these results also support the earlier findings of the occurrence of a 2007 magnetic jerk and rapid secular variation fluctuations of 2003 and 2004 in the region.

  14. Graphic comparison of reserve-growth models for conventional oil and accumulation

    USGS Publications Warehouse

    Klett, T.R.

    2003-01-01

    The U.S. Geological Survey (USGS) periodically assesses crude oil, natural gas, and natural gas liquids resources of the world. The assessment procedure requires estimated recover-able oil and natural gas volumes (field size, cumulative production plus remaining reserves) in discovered fields. Because initial reserves are typically conservative, subsequent estimates increase through time as these fields are developed and produced. The USGS assessment of petroleum resources makes estimates, or forecasts, of the potential additions to reserves in discovered oil and gas fields resulting from field development, and it also estimates the potential fully developed sizes of undiscovered fields. The term ?reserve growth? refers to the commonly observed upward adjustment of reserve estimates. Because such additions are related to increases in the total size of a field, the USGS uses field sizes to model reserve growth. Future reserve growth in existing fields is a major component of remaining U.S. oil and natural gas resources and has therefore become a necessary element of U.S. petroleum resource assessments. Past and currently proposed reserve-growth models compared herein aid in the selection of a suitable set of forecast functions to provide an estimate of potential additions to reserves from reserve growth in the ongoing National Oil and Gas Assessment Project (NOGA). Reserve growth is modeled by construction of a curve that represents annual fractional changes of recoverable oil and natural gas volumes (for fields and reservoirs), which provides growth factors. Growth factors are used to calculate forecast functions, which are sets of field- or reservoir-size multipliers. Comparisons of forecast functions were made based on datasets used to construct the models, field type, modeling method, and length of forecast span. Comparisons were also made between forecast functions based on field-level and reservoir- level growth, and between forecast functions based on older and newer data. The reserve-growth model used in the 1995 USGS National Assessment and the model currently used in the NOGA project provide forecast functions that yield similar estimates of potential additions to reserves. Both models are based on the Oil and Gas Integrated Field File from the Energy Information Administration (EIA), but different vintages of data (from 1977 through 1991 and 1977 through 1996, respectively). The model based on newer data can be used in place of the previous model, providing similar estimates of potential additions to reserves. Fore-cast functions for oil fields vary little from those for gas fields in these models; therefore, a single function may be used for both oil and gas fields, like that used in the USGS World Petroleum Assessment 2000. Forecast functions based on the field-level reserve growth model derived from the NRG Associates databases (from 1982 through 1998) differ from those derived from EIA databases (from 1977 through 1996). However, the difference may not be enough to preclude the use of the forecast functions derived from NRG data in place of the forecast functions derived from EIA data. Should the model derived from NRG data be used, separate forecast functions for oil fields and gas fields must be employed. The forecast function for oil fields from the model derived from NRG data varies significantly from that for gas fields, and a single function for both oil and gas fields may not be appropriate.

  15. An algorithm for deriving core magnetic field models from the Swarm data set

    NASA Astrophysics Data System (ADS)

    Rother, Martin; Lesur, Vincent; Schachtschneider, Reyko

    2013-11-01

    In view of an optimal exploitation of the Swarm data set, we have prepared and tested software dedicated to the determination of accurate core magnetic field models and of the Euler angles between the magnetic sensors and the satellite reference frame. The dedicated core field model estimation is derived directly from the GFZ Reference Internal Magnetic Model (GRIMM) inversion and modeling family. The data selection techniques and the model parameterizations are similar to what were used for the derivation of the second (Lesur et al., 2010) and third versions of GRIMM, although the usage of observatory data is not planned in the framework of the application to Swarm. The regularization technique applied during the inversion process smoothes the magnetic field model in time. The algorithm to estimate the Euler angles is also derived from the CHAMP studies. The inversion scheme includes Euler angle determination with a quaternion representation for describing the rotations. It has been built to handle possible weak time variations of these angles. The modeling approach and software have been initially validated on a simple, noise-free, synthetic data set and on CHAMP vector magnetic field measurements. We present results of test runs applied to the synthetic Swarm test data set.

  16. Magnetic models for the United States for 1985

    USGS Publications Warehouse

    Peddie, Norman W.; Zunde, Audronis K.

    1990-01-01

    New models describing the magnetic field in the United States at the beginning of 1985 and the rate of change expected during the next few years have been developed. The models--which will serve as the basis for a new set of magnetic charts--were derived from several tens of thousands of original field measurements from land, marine, and aerial surveys; from values derived from the MAGSAT-based International Geomagnetic Reference Field; and from recent data from magnetic observatories and repeat stations. , They are in the form of spherical harmonic series that represent the scalar magnetic potential from which all the field components can be derived. The models for the conterminous States and Alaska are of maximum degree and order 4 (24 coefficients each) and the models for Hawaii are of maximum degree and order 2 (8 coefficients each).

  17. On (in)stabilities of perturbations in mimetic models with higher derivatives

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng, Yunlong; Shen, Liuyuan; Mou, Yicen

    2017-08-01

    Usually when applying the mimetic model to the early universe, higher derivative terms are needed to promote the mimetic field to be dynamical. However such models suffer from the ghost and/or the gradient instabilities and simple extensions cannot cure this pathology. We point out in this paper that it is possible to overcome this difficulty by considering the direct couplings of the higher derivatives of the mimetic field to the curvature of the spacetime.

  18. Linear velocity fields in non-Gaussian models for large-scale structure

    NASA Technical Reports Server (NTRS)

    Scherrer, Robert J.

    1992-01-01

    Linear velocity fields in two types of physically motivated non-Gaussian models are examined for large-scale structure: seed models, in which the density field is a convolution of a density profile with a distribution of points, and local non-Gaussian fields, derived from a local nonlinear transformation on a Gaussian field. The distribution of a single component of the velocity is derived for seed models with randomly distributed seeds, and these results are applied to the seeded hot dark matter model and the global texture model with cold dark matter. An expression for the distribution of a single component of the velocity in arbitrary local non-Gaussian models is given, and these results are applied to such fields with chi-squared and lognormal distributions. It is shown that all seed models with randomly distributed seeds and all local non-Guassian models have single-component velocity distributions with positive kurtosis.

  19. Kinks in higher derivative scalar field theory

    NASA Astrophysics Data System (ADS)

    Zhong, Yuan; Guo, Rong-Zhen; Fu, Chun-E.; Liu, Yu-Xiao

    2018-07-01

    We study static kink configurations in a type of two-dimensional higher derivative scalar field theory whose Lagrangian contains second-order derivative terms of the field. The linear fluctuation around arbitrary static kink solutions is analyzed. We find that, the linear spectrum can be described by a supersymmetric quantum mechanics problem, and the criteria for stable static solutions can be given analytically. We also construct a superpotential formalism for finding analytical static kink solutions. Using this formalism we first reproduce some existed solutions and then offer a new solution. The properties of our solution is studied and compared with those preexisted. We also show the possibility in constructing twinlike model in the higher derivative theory, and give the consistency conditions for twinlike models corresponding to the canonical scalar field theory.

  20. Density perturbations in general modified gravitational theories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    De Felice, Antonio; Tsujikawa, Shinji; Mukohyama, Shinji

    2010-07-15

    We derive the equations of linear cosmological perturbations for the general Lagrangian density f(R,{phi},X)/2+L{sub c}, where R is a Ricci scalar, {phi} is a scalar field, and X=-{partial_derivative}{sup {mu}{phi}{partial_derivative}}{sub {mu}{phi}/}2 is a field kinetic energy. We take into account a nonlinear self-interaction term L{sub c}={xi}({phi}) {open_square}{phi}({partial_derivative}{sup {mu}{phi}{partial_derivative}}{sub {mu}{phi}}) recently studied in the context of ''Galileon'' cosmology, which keeps the field equations at second order. Taking into account a scalar-field mass explicitly, the equations of matter density perturbations and gravitational potentials are obtained under a quasistatic approximation on subhorizon scales. We also derive conditions for the avoidance of ghosts and Laplacianmore » instabilities associated with propagation speeds. Our analysis includes most of modified gravity models of dark energy proposed in literature; and thus it is convenient to test the viability of such models from both theoretical and observational points of view.« less

  1. The CHAOS-4 geomagnetic field model

    NASA Astrophysics Data System (ADS)

    Olsen, Nils; Lühr, Hermann; Finlay, Christopher C.; Sabaka, Terence J.; Michaelis, Ingo; Rauberg, Jan; Tøffner-Clausen, Lars

    2014-05-01

    We present CHAOS-4, a new version in the CHAOS model series, which aims to describe the Earth's magnetic field with high spatial and temporal resolution. Terms up to spherical degree of at least n = 85 for the lithospheric field, and up to n = 16 for the time-varying core field are robustly determined. More than 14 yr of data from the satellites Ørsted, CHAMP and SAC-C, augmented with magnetic observatory monthly mean values have been used for this model. Maximum spherical harmonic degree of the static (lithospheric) field is n = 100. The core field is expressed by spherical harmonic expansion coefficients up to n = 20; its time-evolution is described by order six splines, with 6-month knot spacing, spanning the time interval 1997.0-2013.5. The third time derivative of the squared radial magnetic field component is regularized at the core-mantle boundary. No spatial regularization is applied to the core field, but the high-degree lithospheric field is regularized for n > 85. CHAOS-4 model is derived by merging two submodels: its low-degree part has been derived using similar model parametrization and data sets as used for previous CHAOS models (but of course including more recent data), while its high-degree lithospheric field part is solely determined from low-altitude CHAMP satellite observations taken during the last 2 yr (2008 September-2010 September) of the mission. We obtain a good agreement with other recent lithospheric field models like MF7 for degrees up to n = 85, confirming that lithospheric field structures down to a horizontal wavelength of 500 km are currently robustly determined.

  2. Stable static structures in models with higher-order derivatives

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bazeia, D., E-mail: bazeia@fisica.ufpb.br; Departamento de Física, Universidade Federal de Campina Grande, 58109-970 Campina Grande, PB; Lobão, A.S.

    2015-09-15

    We investigate the presence of static solutions in generalized models described by a real scalar field in four-dimensional space–time. We study models in which the scalar field engenders higher-order derivatives and spontaneous symmetry breaking, inducing the presence of domain walls. Despite the presence of higher-order derivatives, the models keep to equations of motion second-order differential equations, so we focus on the presence of first-order equations that help us to obtain analytical solutions and investigate linear stability on general grounds. We then illustrate the general results with some specific examples, showing that the domain wall may become compact and that themore » zero mode may split. Moreover, if the model is further generalized to include k-field behavior, it may contribute to split the static structure itself.« less

  3. Lagrangian derivation of the two coupled field equations in the Janus cosmological model

    NASA Astrophysics Data System (ADS)

    Petit, Jean-Pierre; D'Agostini, G.

    2015-05-01

    After a review citing the results obtained in previous articles introducing the Janus Cosmological Model, consisting of a set of two coupled field equations, where one metrics refers to the positive masses and the other to the negative masses, which explains the observed cosmic acceleration and the nature of dark energy, we present the Lagrangian derivation of the model.

  4. Enhancement of Directional Ambiguity Removal Skill in Scatterometer Data Processing Using Planetary Boundary Layer Models

    NASA Technical Reports Server (NTRS)

    Kim, Young-Joon; Pak, Kyung S.; Dunbar, R. Scott; Hsiao, S. Vincent; Callahan, Philip S.

    2000-01-01

    Planetary boundary layer (PBL) models are utilized to enhance directional ambiguity removal skill in scatterometer data processing. The ambiguity in wind direction retrieved from scatterometer measurements is removed with the aid of physical directional information obtained from PBL models. This technique is based on the observation that sea level pressure is scalar and its field is more coherent than the corresponding wind. An initial wind field obtained from the scatterometer measurements is used to derive a pressure field with a PBL model. After filtering small-scale noise in the derived pressure field, a wind field is generated with an inverted PBL model. This derived wind information is then used to remove wind vector ambiguities in the scatterometer data. It is found that the ambiguity removal skill can be improved when the new technique is used properly in conjunction with the median filter being used for scatterometer wind dealiasing at JPL. The new technique is applied to regions of cyclone systems which are important for accurate weather prediction but where the errors of ambiguity removal are often large.

  5. The Swarm Initial Field Model for the 2014 Geomagnetic Field

    NASA Technical Reports Server (NTRS)

    Olsen, Nils; Hulot, Gauthier; Lesur, Vincent; Finlay, Christopher C.; Beggan, Ciaran; Chulliat, Arnaud; Sabaka, Terence J.; Floberghagen, Rune; Friis-Christensen, Eigil; Haagmans, Roger

    2015-01-01

    Data from the first year of ESA's Swarm constellation mission are used to derive the Swarm Initial Field Model (SIFM), a new model of the Earth's magnetic field and its time variation. In addition to the conventional magnetic field observations provided by each of the three Swarm satellites, explicit advantage is taken of the constellation aspect by including east-west magnetic intensity gradient information from the lower satellite pair. Along-track differences in magnetic intensity provide further information concerning the north-south gradient. The SIFM static field shows excellent agreement (up to at least degree 60) with recent field models derived from CHAMP data, providing an initial validation of the quality of the Swarm magnetic measurements. Use of gradient data improves the determination of both the static field and its secular variation, with the mean misfit for east-west intensity differences between the lower satellite pair being only 0.12 nT.

  6. A Navier-Stokes phase-field crystal model for colloidal suspensions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Praetorius, Simon, E-mail: simon.praetorius@tu-dresden.de; Voigt, Axel, E-mail: axel.voigt@tu-dresden.de

    2015-04-21

    We develop a fully continuous model for colloidal suspensions with hydrodynamic interactions. The Navier-Stokes Phase-Field Crystal model combines ideas of dynamic density functional theory with particulate flow approaches and is derived in detail and related to other dynamic density functional theory approaches with hydrodynamic interactions. The derived system is numerically solved using adaptive finite elements and is used to analyze colloidal crystallization in flowing environments demonstrating a strong coupling in both directions between the crystal shape and the flow field. We further validate the model against other computational approaches for particulate flow systems for various colloidal sedimentation problems.

  7. A Navier-Stokes phase-field crystal model for colloidal suspensions.

    PubMed

    Praetorius, Simon; Voigt, Axel

    2015-04-21

    We develop a fully continuous model for colloidal suspensions with hydrodynamic interactions. The Navier-Stokes Phase-Field Crystal model combines ideas of dynamic density functional theory with particulate flow approaches and is derived in detail and related to other dynamic density functional theory approaches with hydrodynamic interactions. The derived system is numerically solved using adaptive finite elements and is used to analyze colloidal crystallization in flowing environments demonstrating a strong coupling in both directions between the crystal shape and the flow field. We further validate the model against other computational approaches for particulate flow systems for various colloidal sedimentation problems.

  8. Bayesian model for matching the radiometric measurements of aerospace and field ocean color sensors.

    PubMed

    Salama, Mhd Suhyb; Su, Zhongbo

    2010-01-01

    A Bayesian model is developed to match aerospace ocean color observation to field measurements and derive the spatial variability of match-up sites. The performance of the model is tested against populations of synthesized spectra and full and reduced resolutions of MERIS data. The model derived the scale difference between synthesized satellite pixel and point measurements with R(2) > 0.88 and relative error < 21% in the spectral range from 400 nm to 695 nm. The sub-pixel variabilities of reduced resolution MERIS image are derived with less than 12% of relative errors in heterogeneous region. The method is generic and applicable to different sensors.

  9. No Lee-Wick fields out of gravity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rodigast, Andreas; Schuster, Theodor

    2009-06-15

    We investigate the gravitational one-loop divergences of the standard model in large extra dimensions, with gravitons propagating in the (4+{delta})-dimensional bulk and gauge fields as well as scalar and fermionic multiplets confined to a three-brane. To determine the divergences we establish a cutoff regularization which allows us to extract gauge-invariant counterterms. In contrast to the claim of a recent paper [F. Wu and M. Zhong, Phys. Rev. D 78, 085010 (2008).], we show that the fermionic and scalar higher derivative counterterms do not coincide with the higher derivative terms in the Lee-Wick standard model. We argue that even if themore » exact Lee-Wick higher derivative terms were found, as in the case of the pure gauge sector, this would not allow to conclude the existence of the massive ghost fields corresponding to these higher derivative terms in the Lee-Wick standard model.« less

  10. A Field-Effect Transistor (FET) model for ASAP

    NASA Technical Reports Server (NTRS)

    Ming, L.

    1965-01-01

    The derivation of the circuitry of a field effect transistor (FET) model, the procedure for adapting the model to automated statistical analysis program (ASAP), and the results of applying ASAP on this model are described.

  11. Error enhancement in geomagnetic models derived from scalar data

    NASA Technical Reports Server (NTRS)

    Stern, D. P.; Bredekamp, J. H.

    1975-01-01

    An investigation conducted by Backus (1970) regarding the possible existence of two harmonic functions of certain characteristics in three-dimensional space is considered. The derivation of a model of the main geomagnetic field from scalar data is discussed along with a numerical simulation study. It is found that experimental discrepancies between vector field observations and the predictions of the model may have a mathematical origin, related to the work of Backus.

  12. Attitude Estimation for Large Field-of-View Sensors

    NASA Technical Reports Server (NTRS)

    Cheng, Yang; Crassidis, John L.; Markley, F. Landis

    2005-01-01

    The QUEST measurement noise model for unit vector observations has been widely used in spacecraft attitude estimation for more than twenty years. It was derived under the approximation that the noise lies in the tangent plane of the respective unit vector and is axially symmetrically distributed about the vector. For large field-of-view sensors, however, this approximation may be poor, especially when the measurement falls near the edge of the field of view. In this paper a new measurement noise model is derived based on a realistic noise distribution in the focal-plane of a large field-of-view sensor, which shows significant differences from the QUEST model for unit vector observations far away from the sensor boresight. An extended Kalman filter for attitude estimation is then designed with the new measurement noise model. Simulation results show that with the new measurement model the extended Kalman filter achieves better estimation performance using large field-of-view sensor observations.

  13. Bayesian Model for Matching the Radiometric Measurements of Aerospace and Field Ocean Color Sensors

    PubMed Central

    Salama, Mhd. Suhyb; Su, Zhongbo

    2010-01-01

    A Bayesian model is developed to match aerospace ocean color observation to field measurements and derive the spatial variability of match-up sites. The performance of the model is tested against populations of synthesized spectra and full and reduced resolutions of MERIS data. The model derived the scale difference between synthesized satellite pixel and point measurements with R2 > 0.88 and relative error < 21% in the spectral range from 400 nm to 695 nm. The sub-pixel variabilities of reduced resolution MERIS image are derived with less than 12% of relative errors in heterogeneous region. The method is generic and applicable to different sensors. PMID:22163615

  14. Quantum Finance

    NASA Astrophysics Data System (ADS)

    Baaquie, Belal E.

    2007-09-01

    Foreword; Preface; Acknowledgements; 1. Synopsis; Part I. Fundamental Concepts of Finance: 2. Introduction to finance; 3. Derivative securities; Part II. Systems with Finite Number of Degrees of Freedom: 4. Hamiltonians and stock options; 5. Path integrals and stock options; 6. Stochastic interest rates' Hamiltonians and path integrals; Part III. Quantum Field Theory of Interest Rates Models: 7. Quantum field theory of forward interest rates; 8. Empirical forward interest rates and field theory models; 9. Field theory of Treasury Bonds' derivatives and hedging; 10. Field theory Hamiltonian of forward interest rates; 11. Conclusions; Appendix A: mathematical background; Brief glossary of financial terms; Brief glossary of physics terms; List of main symbols; References; Index.

  15. Anisotropic inflation with derivative couplings

    NASA Astrophysics Data System (ADS)

    Holland, Jonathan; Kanno, Sugumi; Zavala, Ivonne

    2018-05-01

    We study anisotropic power-law inflationary solutions when the inflaton and its derivative couple to a vector field. This type of coupling is motivated by D-brane inflationary models, in which the inflaton, and a vector field living on the D-brane, couple disformally (derivatively). We start by studying a phenomenological model where we show the existence of anisotropic solutions and demonstrate their stability via a dynamical system analysis. Compared to the case without a derivative coupling, the anisotropy is reduced and thus can be made consistent with current limits, while the value of the slow-roll parameter remains almost unchanged. We also discuss solutions for more general cases, including D-brane-like couplings.

  16. VO-ESD: a virtual observatory approach to describe the geomagnetic field temporal variations with application to Swarm data

    NASA Astrophysics Data System (ADS)

    Saturnino, Diana; Langlais, Benoit; Amit, Hagay; Mandea, Mioara; Civet, François; Beucler, Éric

    2017-04-01

    A complete description of the main geomagnetic field temporal variation is crucial to understand dynamics in the core. This variation, termed secular variation (SV), is known with high accuracy at ground magnetic observatory locations. However the description of its spatial variability is hampered by the globally uneven distribution of the observatories. For the past two decades a global coverage of the field changes has been allowed by satellites. Their surveys of the geomagnetic field have been used to derive and improve global spherical harmonic (SH) models through some strict data selection schemes to minimise external field contributions. But discrepancies remain between ground measurements and field predictions by these models. Indeed, the global models do not reproduce small spatial scales of the field temporal variations. To overcome this problem we propose a modified Virtual Observatory (VO) approach by defining a globally homogeneous mesh of VOs at satellite altitude. With this approach we directly extract time series of the field and its temporal variation from satellite measurements as it is done at observatory locations. As satellite measurements are acquired at different altitudes a correction for the altitude is needed. Therefore, we apply an Equivalent Source Dipole (ESD) technique for each VO and each given time interval to reduce all measurements to a unique location, leading to time series similar to those available at ground magnetic observatories. Synthetic data is first used to validate the new VO-ESD approach. Then, we apply our scheme to measurements from the Swarm mission. For the first time, a 2.5 degrees resolution global mesh of VO times series is built. The VO-ESD derived time series are locally compared to ground observations as well as to satellite-based model predictions. The approach is able to describe detailed temporal variations of the field at local scales. The VO-ESD time series are also used to derive global SH models. Without regularization these models describe well the secular trend of the magnetic field. The derivation of longer VO-ESD time series, as more data will be made available, will allow the study of field temporal variations features such as geomagnetic jerks.

  17. Geodetic Strain Analysis Tool

    NASA Technical Reports Server (NTRS)

    Kedar, Sharon; Baxter, Sean C.; Parker, Jay W.; Webb, Frank H.; Owen, Susan E.; Sibthorpe, Anthony J.; Dong, Danan

    2011-01-01

    A geodetic software analysis tool enables the user to analyze 2D crustal strain from geodetic ground motion, and create models of crustal deformation using a graphical interface. Users can use any geodetic measurements of ground motion and derive the 2D crustal strain interactively. This software also provides a forward-modeling tool that calculates a geodetic velocity and strain field for a given fault model, and lets the user compare the modeled strain field with the strain field obtained from the user s data. Users may change parameters on-the-fly and obtain a real-time recalculation of the resulting strain field. Four data products are computed: maximum shear, dilatation, shear angle, and principal components. The current view and data dependencies are processed first. The remaining data products and views are then computed in a round-robin fashion to anticipate view changes. When an analysis or display parameter is changed, the affected data products and views are invalidated and progressively re-displayed as available. This software is designed to facilitate the derivation of the strain fields from the GPS and strain meter data that sample it to facilitate the understanding of the strengths and weaknesses of the strain field derivation from continuous GPS (CGPS) and other geodetic data from a variety of tectonic settings, to converge on the "best practices" strain derivation strategy for the Solid Earth Science ESDR System (SESES) project given the CGPS station distribution in the western U.S., and to provide SESES users with a scientific and educational tool to explore the strain field on their own with user-defined parameters.

  18. Application of lab derived kinetic biodegradation parameters at the field scale

    NASA Astrophysics Data System (ADS)

    Schirmer, M.; Barker, J. F.; Butler, B. J.; Frind, E. O.

    2003-04-01

    Estimating the intrinsic remediation potential of an aquifer typically requires the accurate assessment of the biodegradation kinetics, the level of available electron acceptors and the flow field. Zero- and first-order degradation rates derived at the laboratory scale generally overpredict the rate of biodegradation when applied to the field scale, because limited electron acceptor availability and microbial growth are typically not considered. On the other hand, field estimated zero- and first-order rates are often not suitable to forecast plume development because they may be an oversimplification of the processes at the field scale and ignore several key processes, phenomena and characteristics of the aquifer. This study uses the numerical model BIO3D to link the laboratory and field scale by applying laboratory derived Monod kinetic degradation parameters to simulate a dissolved gasoline field experiment at Canadian Forces Base (CFB) Borden. All additional input parameters were derived from laboratory and field measurements or taken from the literature. The simulated results match the experimental results reasonably well without having to calibrate the model. An extensive sensitivity analysis was performed to estimate the influence of the most uncertain input parameters and to define the key controlling factors at the field scale. It is shown that the most uncertain input parameters have only a minor influence on the simulation results. Furthermore it is shown that the flow field, the amount of electron acceptor (oxygen) available and the Monod kinetic parameters have a significant influence on the simulated results. Under the field conditions modelled and the assumptions made for the simulations, it can be concluded that laboratory derived Monod kinetic parameters can adequately describe field scale degradation processes, if all controlling factors are incorporated in the field scale modelling that are not necessarily observed at the lab scale. In this way, there are no scale relationships to be found that link the laboratory and the field scale, accurately incorporating the additional processes, phenomena and characteristics, such as a) advective and dispersive transport of one or more contaminants, b) advective and dispersive transport and availability of electron acceptors, c) mass transfer limitations and d) spatial heterogeneities, at the larger scale and applying well defined lab scale parameters should accurately describe field scale processes.

  19. A biophysical observation model for field potentials of networks of leaky integrate-and-fire neurons.

    PubMed

    Beim Graben, Peter; Rodrigues, Serafim

    2012-01-01

    We present a biophysical approach for the coupling of neural network activity as resulting from proper dipole currents of cortical pyramidal neurons to the electric field in extracellular fluid. Starting from a reduced three-compartment model of a single pyramidal neuron, we derive an observation model for dendritic dipole currents in extracellular space and thereby for the dendritic field potential (DFP) that contributes to the local field potential (LFP) of a neural population. This work aligns and satisfies the widespread dipole assumption that is motivated by the "open-field" configuration of the DFP around cortical pyramidal cells. Our reduced three-compartment scheme allows to derive networks of leaky integrate-and-fire (LIF) models, which facilitates comparison with existing neural network and observation models. In particular, by means of numerical simulations we compare our approach with an ad hoc model by Mazzoni et al. (2008), and conclude that our biophysically motivated approach yields substantial improvement.

  20. Mesoscale atmospheric modeling for emergency response

    NASA Astrophysics Data System (ADS)

    Osteen, B. L.; Fast, J. D.

    Atmospheric transport models for emergency response have traditionally utilized meteorological fields interpolated from sparse data to predict contaminant transport. Often these fields are adjusted to satisfy constraints derived from the governing equations of geophysical fluid dynamics, e.g. mass continuity. Gaussian concentration distributions or stochastic models are then used to represent turbulent diffusion of a contaminant in the diagnosed meteorological fields. The popularity of these models derives from their relative simplicity, ability to make reasonable short-term predictions, and, most important, execution speed. The ability to generate a transport prediction for an accidental release from the Savannah River Site in a time frame which will allow protective action to be taken is essential in an emergency response operation.

  1. Tropospheric Ozone Determined from Aura OMI and MLS: Evaluation of Measurements and Comparison with the Global Modeling Initiative's Chemical Transport Model

    NASA Technical Reports Server (NTRS)

    Ziemke, J. R.; Chandra, S.; Duncan, B. N.; Froidevaux, L.; Bhartia, P. K.; Levelt, P. F.; Waters, J. W.

    2006-01-01

    Ozone measurements from the OMI and MLS instruments on board the Aura satellite are used for deriving global distributions of tropospheric column ozone (TCO). TCO is determined using the tropospheric ozone residual method which involves subtracting measurements of MLS stratospheric column ozone (SCO) from OMI total column ozone after adjusting for intercalibration differences of the two instruments using the convective-cloud differential method. The derived TCO field, which covers one complete year of mostly continuous daily measurements from late August 2004 through August 2005, is used for studying the regional and global pollution on a timescale of a few days to months. The seasonal and zonal characteristics of the observed TCO fields are also compared with TCO fields derived from the Global Modeling Initiative's Chemical Transport Model. The model and observations show interesting similarities with respect to zonal and seasonal variations. However, there are notable differences, particularly over the vast region of the Saharan desert.

  2. Scaling Limit for a Generalization of the Nelson Model and its Application to Nuclear Physics

    NASA Astrophysics Data System (ADS)

    Suzuki, Akito

    We study a mathematically rigorous derivation of a quantum mechanical Hamiltonian in a general framework. We derive such a Hamiltonian by taking a scaling limit for a generalization of the Nelson model, which is an abstract interaction model between particles and a Bose field with some internal degrees of freedom. Applying it to a model for the field of the nuclear force with isospins, we obtain a Schrödinger Hamiltonian with a matrix-valued potential, the one pion exchange potential, describing an effective interaction between nucleons.

  3. Higher-derivative operators and effective field theory for general scalar-tensor theories

    NASA Astrophysics Data System (ADS)

    Solomon, Adam R.; Trodden, Mark

    2018-02-01

    We discuss the extent to which it is necessary to include higher-derivative operators in the effective field theory of general scalar-tensor theories. We explore the circumstances under which it is correct to restrict to second-order operators only, and demonstrate this using several different techniques, such as reduction of order and explicit field redefinitions. These methods are applied, in particular, to the much-studied Horndeski theories. The goal is to clarify the application of effective field theory techniques in the context of popular cosmological models, and to explicitly demonstrate how and when higher-derivative operators can be cast into lower-derivative forms suitable for numerical solution techniques.

  4. Invariant models in the inversion of gravity and magnetic fields and their derivatives

    NASA Astrophysics Data System (ADS)

    Ialongo, Simone; Fedi, Maurizio; Florio, Giovanni

    2014-11-01

    In potential field inversion problems we usually solve underdetermined systems and realistic solutions may be obtained by introducing a depth-weighting function in the objective function. The choice of the exponent of such power-law is crucial. It was suggested to determine it from the field-decay due to a single source-block; alternatively it has been defined as the structural index of the investigated source distribution. In both cases, when k-order derivatives of the potential field are considered, the depth-weighting exponent has to be increased by k with respect that of the potential field itself, in order to obtain consistent source model distributions. We show instead that invariant and realistic source-distribution models are obtained using the same depth-weighting exponent for the magnetic field and for its k-order derivatives. A similar behavior also occurs in the gravity case. In practice we found that the depth weighting-exponent is invariant for a given source-model and equal to that of the corresponding magnetic field, in the magnetic case, and of the 1st derivative of the gravity field, in the gravity case. In the case of the regularized inverse problem, with depth-weighting and general constraints, the mathematical demonstration of such invariance is difficult, because of its non-linearity, and of its variable form, due to the different constraints used. However, tests performed on a variety of synthetic cases seem to confirm the invariance of the depth-weighting exponent. A final consideration regards the role of the regularization parameter; we show that the regularization can severely affect the depth to the source because the estimated depth tends to increase proportionally with the size of the regularization parameter. Hence, some care is needed in handling the combined effect of the regularization parameter and depth weighting.

  5. Origin and structures of solar eruptions II: Magnetic modeling

    NASA Astrophysics Data System (ADS)

    Guo, Yang; Cheng, Xin; Ding, MingDe

    2017-07-01

    The topology and dynamics of the three-dimensional magnetic field in the solar atmosphere govern various solar eruptive phenomena and activities, such as flares, coronal mass ejections, and filaments/prominences. We have to observe and model the vector magnetic field to understand the structures and physical mechanisms of these solar activities. Vector magnetic fields on the photosphere are routinely observed via the polarized light, and inferred with the inversion of Stokes profiles. To analyze these vector magnetic fields, we need first to remove the 180° ambiguity of the transverse components and correct the projection effect. Then, the vector magnetic field can be served as the boundary conditions for a force-free field modeling after a proper preprocessing. The photospheric velocity field can also be derived from a time sequence of vector magnetic fields. Three-dimensional magnetic field could be derived and studied with theoretical force-free field models, numerical nonlinear force-free field models, magnetohydrostatic models, and magnetohydrodynamic models. Magnetic energy can be computed with three-dimensional magnetic field models or a time series of vector magnetic field. The magnetic topology is analyzed by pinpointing the positions of magnetic null points, bald patches, and quasi-separatrix layers. As a well conserved physical quantity, magnetic helicity can be computed with various methods, such as the finite volume method, discrete flux tube method, and helicity flux integration method. This quantity serves as a promising parameter characterizing the activity level of solar active regions.

  6. Pressure calculation in hybrid particle-field simulations

    NASA Astrophysics Data System (ADS)

    Milano, Giuseppe; Kawakatsu, Toshihiro

    2010-12-01

    In the framework of a recently developed scheme for a hybrid particle-field simulation techniques where self-consistent field (SCF) theory and particle models (molecular dynamics) are combined [J. Chem. Phys. 130, 214106 (2009)], we developed a general formulation for the calculation of instantaneous pressure and stress tensor. The expressions have been derived from statistical mechanical definition of the pressure starting from the expression for the free energy functional in the SCF theory. An implementation of the derived formulation suitable for hybrid particle-field molecular dynamics-self-consistent field simulations is described. A series of test simulations on model systems are reported comparing the calculated pressure with those obtained from standard molecular dynamics simulations based on pair potentials.

  7. Evaluation of candidate geomagnetic field models for IGRF-11

    NASA Astrophysics Data System (ADS)

    Finlay, C. C.; Maus, S.; Beggan, C. D.; Hamoudi, M.; Lowes, F. J.; Olsen, N.; Thébault, E.

    2010-10-01

    The eleventh generation of the International Geomagnetic Reference Field (IGRF) was agreed in December 2009 by a task force appointed by the International Association of Geomagnetism and Aeronomy (IAGA) Division V Working Group V-MOD. New spherical harmonic main field models for epochs 2005.0 (DGRF-2005) and 2010.0 (IGRF-2010), and predictive linear secular variation for the interval 2010.0-2015.0 (SV-2010-2015) were derived from weighted averages of candidate models submitted by teams led by DTU Space, Denmark (team A); NOAA/NGDC, U.S.A. (team B); BGS, U.K. (team C); IZMIRAN, Russia (team D); EOST, France (team E); IPGP, France (team F); GFZ, Germany (team G) and NASA-GSFC, U.S.A. (team H). Here, we report the evaluations of candidate models carried out by the IGRF-11 task force during October/November 2009 and describe the weightings used to derive the new IGRF-11 model. The evaluations include calculations of root mean square vector field differences between the candidates, comparisons of the power spectra, and degree correlations between the candidates and a mean model. Coefficient by coefficient analysis including determination of weighting factors used in a robust estimation of mean coefficients is also reported. Maps of differences in the vertical field intensity at Earth's surface between the candidates and weighted mean models are presented. Candidates with anomalous aspects are identified and efforts made to pinpoint both troublesome coefficients and geographical regions where large variations between candidates originate. A retrospective analysis of IGRF-10 main field candidates for epoch 2005.0 and predictive secular variation candidates for 2005.0-2010.0 using the new IGRF-11 models as a reference is also reported. The high quality and consistency of main field models derived using vector satellite data is demonstrated; based on internal consistency DGRF-2005 has a formal root mean square vector field error over Earth's surface of 1.0 nT. Difficulties nevertheless remain in accurately forecasting field evolution only five years into the future.

  8. Electrical conductivity of the Earth's mantle from the first Swarm magnetic field measurements

    NASA Astrophysics Data System (ADS)

    Civet, F.; Thébault, E.; Verhoeven, O.; Langlais, B.; Saturnino, D.

    2015-05-01

    We present a 1-D electrical conductivity profile of the Earth's mantle down to 2000 km derived from L1b Swarm satellite magnetic field measurements from November 2013 to September 2014. We first derive a model for the main magnetic field, correct the data for a lithospheric field model, and additionally select the data to reduce the contributions of the ionospheric field. We then model the primary and induced magnetospheric fields for periods between 2 and 256 days and perform a Bayesian inversion to obtain the probability density function for the electrical conductivity as function of depth. The conductivity increases by 3 orders of magnitude in the 400-900 km depth range. Assuming a pyrolitic mantle composition, this profile is interpreted in terms of temperature variations leading to a temperature gradient in the lower mantle that is close to adiabatic.

  9. Holistic Designs for Field Instruction in the Contemporary Social Work Curriculum.

    ERIC Educational Resources Information Center

    Skolnik, Louise; Papell, Catherine P.

    1994-01-01

    Two models for social work field instruction are presented, both introduced in a university-based laboratory setting. Both models attempt to integrate field practice with content of the holistic practice curriculum. They were derived from a holistic/multimethod assignment and a holistic/generalist orientation. Issues in field teaching are…

  10. Design of novel quinazolinone derivatives as inhibitors for 5HT7 receptor.

    PubMed

    Chitta, Aparna; Jatavath, Mohan Babu; Fatima, Sabiha; Manga, Vijjulatha

    2012-02-01

    To study the pharmacophore properties of quinazolinone derivatives as 5HT(7) inhibitors, 3D QSAR methodologies, namely Comparative Molecular Field Analysis (CoMFA) and Comparative Molecular Similarity Indices Analysis (CoMSIA) were applied, partial least square (PLS) analysis was performed and QSAR models were generated. The derived model showed good statistical reliability in terms of predicting the 5HT(7) inhibitory activity of the quinazolione derivative, based on molecular property fields like steric, electrostatic, hydrophobic, hydrogen bond donor and hydrogen bond acceptor fields. This is evident from statistical parameters like q(2) (cross validated correlation coefficient) of 0.642, 0.602 and r(2) (conventional correlation coefficient) of 0.937, 0.908 for CoMFA and CoMSIA respectively. The predictive ability of the models to determine 5HT(7) antagonistic activity is validated using a test set of 26 molecules that were not included in the training set and the predictive r(2) obtained for the test set was 0.512 & 0.541. Further, the results of the derived model are illustrated by means of contour maps, which give an insight into the interaction of the drug with the receptor. The molecular fields so obtained served as the basis for the design of twenty new ligands. In addition, ADME (Adsorption, Distribution, Metabolism and Elimination) have been calculated in order to predict the relevant pharmaceutical properties, and the results are in conformity with required drug like properties.

  11. EPIC-Simulated and MODIS-Derived Leaf Area Index (LAI) ...

    EPA Pesticide Factsheets

    Leaf Area Index (LAI) is an important parameter in assessing vegetation structure for characterizing forest canopies over large areas at broad spatial scales using satellite remote sensing data. However, satellite-derived LAI products can be limited by obstructed atmospheric conditions yielding sub-optimal values, or complete non-returns. The United States Environmental Protection Agency’s Exposure Methods and Measurements and Computational Exposure Divisions are investigating the viability of supplemental modelled LAI inputs into satellite-derived data streams to support various regional and local scale air quality models for retrospective and future climate assessments. In this present study, one-year (2002) of plot level stand characteristics at four study sites located in Virginia and North Carolina are used to calibrate species-specific plant parameters in a semi-empirical biogeochemical model. The Environmental Policy Integrated Climate (EPIC) model was designed primarily for managed agricultural field crop ecosystems, but also includes managed woody species that span both xeric and mesic sites (e.g., mesquite, pine, oak, etc.). LAI was simulated using EPIC at a 4 km2 and 12 km2 grid coincident with the regional Community Multiscale Air Quality Model (CMAQ) grid. LAI comparisons were made between model-simulated and MODIS-derived LAI. Field/satellite-upscaled LAI was also compared to the corresponding MODIS LAI value. Preliminary results show field/satel

  12. Biodegradation modelling of a dissolved gasoline plume applying independent laboratory and field parameters

    NASA Astrophysics Data System (ADS)

    Schirmer, Mario; Molson, John W.; Frind, Emil O.; Barker, James F.

    2000-12-01

    Biodegradation of organic contaminants in groundwater is a microscale process which is often observed on scales of 100s of metres or larger. Unfortunately, there are no known equivalent parameters for characterizing the biodegradation process at the macroscale as there are, for example, in the case of hydrodynamic dispersion. Zero- and first-order degradation rates estimated at the laboratory scale by model fitting generally overpredict the rate of biodegradation when applied to the field scale because limited electron acceptor availability and microbial growth are not considered. On the other hand, field-estimated zero- and first-order rates are often not suitable for predicting plume development because they may oversimplify or neglect several key field scale processes, phenomena and characteristics. This study uses the numerical model BIO3D to link the laboratory and field scales by applying laboratory-derived Monod kinetic degradation parameters to simulate a dissolved gasoline field experiment at the Canadian Forces Base (CFB) Borden. All input parameters were derived from independent laboratory and field measurements or taken from the literature a priori to the simulations. The simulated results match the experimental results reasonably well without model calibration. A sensitivity analysis on the most uncertain input parameters showed only a minor influence on the simulation results. Furthermore, it is shown that the flow field, the amount of electron acceptor (oxygen) available, and the Monod kinetic parameters have a significant influence on the simulated results. It is concluded that laboratory-derived Monod kinetic parameters can adequately describe field scale degradation, provided all controlling factors are incorporated in the field scale model. These factors include advective-dispersive transport of multiple contaminants and electron acceptors and large-scale spatial heterogeneities.

  13. An empirical model of the auroral oval derived from CHAMP field-aligned current signatures - Part 2

    NASA Astrophysics Data System (ADS)

    Xiong, C.; Lühr, H.

    2014-06-01

    In this paper we introduce a new model for the location of the auroral oval. The auroral boundaries are derived from small- and medium-scale field-aligned current (FAC) based on the high-resolution CHAMP (CHAllenging Minisatellite Payload) magnetic field observations during the years 2000-2010. The basic shape of the auroral oval is controlled by the dayside merging electric field, Em, and can be fitted well by ellipses at all levels of activity. All five ellipse parameters show a dependence on Em which can be described by quadratic functions. Optimal delay times for the merging electric field at the bow shock are 30 and 15 min for the equatorward and poleward boundaries, respectively. A comparison between our model and the British Antarctic Survey (BAS) auroral model derived from IMAGE (Imager for Magnetopause-to-Aurora Global Exploration) optical observations has been performed. There is good agreement between the two models regarding both boundaries, and the differences show a Gaussian distribution with a width of ±2° in latitude. The difference of the equatorward boundary shows a local-time dependence, which is 1° in latitude poleward in the morning sector and 1° equatorward in the afternoon sector of the BAS model. We think the difference between the two models is caused by the appearance of auroral forms in connection with upward FACs. All information required for applying our auroral oval model (CH-Aurora-2014) is provided.

  14. Nonlinear field equations for aligning self-propelled rods.

    PubMed

    Peshkov, Anton; Aranson, Igor S; Bertin, Eric; Chaté, Hugues; Ginelli, Francesco

    2012-12-28

    We derive a set of minimal and well-behaved nonlinear field equations describing the collective properties of self-propelled rods from a simple microscopic starting point, the Vicsek model with nematic alignment. Analysis of their linear and nonlinear dynamics shows good agreement with the original microscopic model. In particular, we derive an explicit expression for density-segregated, banded solutions, allowing us to develop a more complete analytic picture of the problem at the nonlinear level.

  15. Constraints on geomagnetic secular variation modeling from electromagnetism and fluid dynamics of the Earth's core

    NASA Technical Reports Server (NTRS)

    Benton, E. R.

    1986-01-01

    A spherical harmonic representation of the geomagnetic field and its secular variation for epoch 1980, designated GSFC(9/84), is derived and evaluated. At three epochs (1977.5, 1980.0, 1982.5) this model incorporates conservation of magnetic flux through five selected patches of area on the core/mantle boundary bounded by the zero contours of vertical magnetic field. These fifteen nonlinear constraints are included like data in an iterative least squares parameter estimation procedure that starts with the recently derived unconstrained field model GSFC (12/83). Convergence is approached within three iterations. The constrained model is evaluated by comparing its predictive capability outside the time span of its data, in terms of residuals at magnetic observatories, with that for the unconstrained model.

  16. Combining virtual observatory and equivalent source dipole approaches to describe the geomagnetic field with Swarm measurements

    NASA Astrophysics Data System (ADS)

    Saturnino, Diana; Langlais, Benoit; Amit, Hagay; Civet, François; Mandea, Mioara; Beucler, Éric

    2018-03-01

    A detailed description of the main geomagnetic field and of its temporal variations (i.e., the secular variation or SV) is crucial to understanding the geodynamo. Although the SV is known with high accuracy at ground magnetic observatory locations, the globally uneven distribution of the observatories hampers the determination of a detailed global pattern of the SV. Over the past two decades, satellites have provided global surveys of the geomagnetic field which have been used to derive global spherical harmonic (SH) models through some strict data selection schemes to minimise external field contributions. However, discrepancies remain between ground measurements and field predictions by these models; indeed the global models do not reproduce small spatial scales of the field temporal variations. To overcome this problem we propose to directly extract time series of the field and its temporal variation from satellite measurements as it is done at observatory locations. We follow a Virtual Observatory (VO) approach and define a global mesh of VOs at satellite altitude. For each VO and each given time interval we apply an Equivalent Source Dipole (ESD) technique to reduce all measurements to a unique location. Synthetic data are first used to validate the new VO-ESD approach. Then, we apply our scheme to data from the first two years of the Swarm mission. For the first time, a 2.5° resolution global mesh of VO time series is built. The VO-ESD derived time series are locally compared to ground observations as well as to satellite-based model predictions. Our approach is able to describe detailed temporal variations of the field at local scales. The VO-ESD time series are then used to derive global spherical harmonic models. For a simple SH parametrization the model describes well the secular trend of the magnetic field both at satellite altitude and at the surface. As more data will be made available, longer VO-ESD time series can be derived and consequently used to study sharp temporal variation features, such as geomagnetic jerks.

  17. Unification of the general non-linear sigma model and the Virasoro master equation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boer, J. de; Halpern, M.B.

    1997-06-01

    The Virasoro master equation describes a large set of conformal field theories known as the affine-Virasoro constructions, in the operator algebra (affinie Lie algebra) of the WZW model, while the einstein equations of the general non-linear sigma model describe another large set of conformal field theories. This talk summarizes recent work which unifies these two sets of conformal field theories, together with a presumable large class of new conformal field theories. The basic idea is to consider spin-two operators of the form L{sub ij}{partial_derivative}x{sup i}{partial_derivative}x{sup j} in the background of a general sigma model. The requirement that these operators satisfymore » the Virasoro algebra leads to a set of equations called the unified Einstein-Virasoro master equation, in which the spin-two spacetime field L{sub ij} cuples to the usual spacetime fields of the sigma model. The one-loop form of this unified system is presented, and some of its algebraic and geometric properties are discussed.« less

  18. Verification of NWP Cloud Properties using A-Train Satellite Observations

    NASA Astrophysics Data System (ADS)

    Kucera, P. A.; Weeks, C.; Wolff, C.; Bullock, R.; Brown, B.

    2011-12-01

    Recently, the NCAR Model Evaluation Tools (MET) has been enhanced to incorporate satellite observations for the verification of Numerical Weather Prediction (NWP) cloud products. We have developed tools that match fields spatially (both in the vertical and horizontal dimensions) to compare NWP products with satellite observations. These matched fields provide diagnostic evaluation of cloud macro attributes such as vertical distribution of clouds, cloud top height, and the spatial and seasonal distribution of cloud fields. For this research study, we have focused on using CloudSat, CALIPSO, and MODIS observations to evaluate cloud fields for a variety of NWP fields and derived products. We have selected cases ranging from large, mid-latitude synoptic systems to well-organized tropical cyclones. For each case, we matched the observed cloud field with gridded model and/or derived product fields. CloudSat and CALIPSO observations and model fields were matched and compared in the vertical along the orbit track. MODIS data and model fields were matched and compared in the horizontal. We then use MET to compute the verification statistics to quantify the performance of the models in representing the cloud fields. In this presentation we will give a summary of our comparison and show verification results for both synoptic and tropical cyclone cases.

  19. Semiempirical Two-Dimensional Magnetohydrodynamic Model of the Solar Corona and Interplanetary Medium

    NASA Technical Reports Server (NTRS)

    Sittler, Edward C., Jr.; Guhathakurta, Madhulika

    1999-01-01

    We have developed a two-dimensional semiempirical MHD model of the solar corona and solar wind. The model uses empirically derived electron density profiles from white-light coronagraph data measured during the Skylub period and an empirically derived model of the magnetic field which is fitted to observed streamer topologies, which also come from the white-light coronagraph data The electron density model comes from that developed by Guhathakurta and coworkers. The electron density model is extended into interplanetary space by using electron densities derived from the Ulysses plasma instrument. The model also requires an estimate of the solar wind velocity as a function of heliographic latitude and radial component of the magnetic field at 1 AU, both of which can be provided by the Ulysses spacecraft. The model makes estimates as a function of radial distance and latitude of various fluid parameters of the plasma such as flow velocity V, effective temperature T(sub eff), and effective heat flux q(sub eff), which are derived from the equations of conservation of mass, momentum, and energy, respectively. The term effective indicates that wave contributions could be present. The model naturally provides the spiral pattern of the magnetic field far from the Sun and an estimate of the large-scale surface magnetic field at the Sun, which we estimate to be approx. 12 - 15 G. The magnetic field model shows that the large-scale surface magnetic field is dominated by an octupole term. The model is a steady state calculation which makes the assumption of azimuthal symmetry and solves the various conservation equations in the rotating frame of the Sun. The conservation equations are integrated along the magnetic field direction in the rotating frame of the Sun, thus providing a nearly self-consistent calculation of the fluid parameters. The model makes a minimum number of assumptions about the physics of the solar corona and solar wind and should provide a very accurate empirical description of the solar corona and solar wind Once estimates of mass density rho, flow velocity V, effective temperature T(sub eff), effective heat flux q(sub eff), and magnetic field B are computed from the model and waves are assumed unimportant, all other plasma parameters such as Mach number, Alfven speed, gyrofrequency, etc. can be derived as a function of radial distance and latitude from the Sun. The model can be used as a planning tool for such missions as Slar Probe and provide an empirical framework for theoretical models of the solar corona and solar wind The model will be used to construct a semiempirical MHD description of the steady state solar corona and solar wind using the SOHO Large Angle Spectrometric Coronagraph (LASCO) polarized brightness white-light coronagraph data, SOHO Extreme Ultraviolet Imaging Telescope data, and Ulysses plasma data.

  20. Qualitative analysis of a discrete thermostatted kinetic framework modeling complex adaptive systems

    NASA Astrophysics Data System (ADS)

    Bianca, Carlo; Mogno, Caterina

    2018-01-01

    This paper deals with the derivation of a new discrete thermostatted kinetic framework for the modeling of complex adaptive systems subjected to external force fields (nonequilibrium system). Specifically, in order to model nonequilibrium stationary states of the system, the external force field is coupled to a dissipative term (thermostat). The well-posedness of the related Cauchy problem is investigated thus allowing the new discrete thermostatted framework to be suitable for the derivation of specific models and the related computational analysis. Applications to crowd dynamics and future research directions are also discussed within the paper.

  1. Relevance of near-Earth magnetic field modeling in deriving SEP properties using ground-based data

    NASA Astrophysics Data System (ADS)

    Kanellakopoulos, Anastasios; Plainaki, Christina; Mavromichalaki, Helen; Laurenza, Monica; Gerontidou, Maria; Storini, Marisa; Andriopoulou, Maria

    2014-05-01

    Ground Level Enhancements (GLEs) are short-term increases observed in cosmic ray intensity records of ground-based particle detectors such as neutron monitors (NMs) or muon detectors; they are related to the arrival of solar relativistic particles in the terrestrial environment. Hence, GLE events are related to the most energetic class of solar energetic particle (SEP) events. In this work we investigate how the use of different magnetospheric field models can influence the derivation of the relativistic SEP properties when modeling GLE events. As a case study, we examine the event of 2012 May 17 (also known as GLE71), registered by ground-based NMs. We apply the Tsyganenko 89 and the Tsyganenko 96 models in order to calculate the trajectories of the arriving SEPs in the near-Earth environment. We show that the intersection of the SEP trajectories with the atmospheric layer at ~20 km from the Earth's surface (i.e., where the flux of the generated secondary particles is maximum), forms for each ground-based neutron monitor a specified viewing region that is dependent on the magnetospheric field configuration. Then, we apply the Neutron Monitor Based Anisotropic GLE Pure Power Law (NMBANGLE PPOLA) model (Plainaki et al. 2010, Solar Phys, 264, 239), in order to derive the spectral properties of the related SEP event and the spatial distributions of the SEP fluxes impacting the Earth's atmosphere. We examine the dependence of the results on the used magnetic field models and evaluate their range of validity. Finally we discuss information derived by modeling the SEP spectrum in the frame of particle acceleration scenarios.

  2. Style consistent classification of isogenous patterns.

    PubMed

    Sarkar, Prateek; Nagy, George

    2005-01-01

    In many applications of pattern recognition, patterns appear together in groups (fields) that have a common origin. For example, a printed word is usually a field of character patterns printed in the same font. A common origin induces consistency of style in features measured on patterns. The features of patterns co-occurring in a field are statistically dependent because they share the same, albeit unknown, style. Style constrained classifiers achieve higher classification accuracy by modeling such dependence among patterns in a field. Effects of style consistency on the distributions of field-features (concatenation of pattern features) can be modeled by hierarchical mixtures. Each field derives from a mixture of styles, while, within a field, a pattern derives from a class-style conditional mixture of Gaussians. Based on this model, an optimal style constrained classifier processes entire fields of patterns rendered in a consistent but unknown style. In a laboratory experiment, style constrained classification reduced errors on fields of printed digits by nearly 25 percent over singlet classifiers. Longer fields favor our classification method because they furnish more information about the underlying style.

  3. A new data-based model of the global magnetospheric B-field: Modular structure, parameterization, first results.

    NASA Astrophysics Data System (ADS)

    Tsyganenko, Nikolai

    2013-04-01

    A new advanced model of the dynamical geomagnetosphere is presented, based on a large set of data from Geotail, Cluster, Polar, and Themis missions, taken during 138 storm events with SYM-H from -40 to -487nT over the period from 1996 through 2012 in the range of geocentric distances from ~3Re to ~60Re. The model magnetic field is confined within a realistic magnetopause, based on Lin et al. [JGRA, v.115, A04207, 2010] empirical boundary, driven by the dipole tilt angle, solar wind pressure, and IMF Bz. The magnetic field is modeled as a flexible combination of several modules, representing contributions from principal magnetospheric current systems such as the symmetric and partial ring currents (SRC/PRC), Region 1 and 2 field-aligned currents (FAC), and the equatorial tail current sheet (TCS). In the inner magnetosphere the model field is dominated by contributions from the SRC and PRC, derived from realistic particle pressure models and represented by four modules, providing variable degree of dawn-dusk and noon-midnight asymmetry. The TCS field is comprised of several independent modules, ensuring sufficient flexibility of the model field and correct asymptotic values in the distant tail. The Region 2 FAC is an inherent part of the PRC, derived from the continuity of the azimuthal current. The Region 1 FAC is modulated by the diurnal and seasonal variations of the dipole tilt angle, in agreement with earlier statistical studies [Ohtani et al., JGRA, v.110, A09230, 2005]. Following the approach introduced in our earlier TS05 model [Tsyganenko and Sitnov, JGRA, v.110, A03208, 2005], contributions from all individual field sources are parameterized by the external driving functions, derived from the solar wind/IMF OMNI database as solutions of dynamic equations with source and loss terms in the right-hand side. Global magnetic configurations and their evolution during magnetospheric storms are analyzed and discussed in context of the model results.

  4. Effective field theory, electric dipole moments and electroweak baryogenesis

    NASA Astrophysics Data System (ADS)

    Balazs, Csaba; White, Graham; Yue, Jason

    2017-03-01

    Negative searches for permanent electric dipole moments (EDMs) heavily constrain models of baryogenesis utilising various higher dimensional charge and parity violating (CPV) operators. Using effective field theory, we create a model independent connection between these EDM constraints and the baryon asymmetry of the universe (BAU) produced during a strongly first order electroweak phase transition. The thermal aspects of the high scale physics driving the phase transition are paramaterised by the usual kink solution for the bubble wall profile. We find that operators involving derivatives of the Higgs field yield CPV contributions to the BAU containing derivatives of the Higgs vacuum expectation value (vev), while non-derivative operators lack such contributions. Consequently, derivative operators cannot be eliminated in terms of non-derivative operators (via the equations of motion) if one is agnostic to the new physics that leads to the phase transition. Thus, we re-classify the independent dimension six operators, restricting ourselves to third generation quarks, gauge bosons and the Higgs. Finally, we calculate the BAU (as a function of the bubble wall width and the cutoff) for a derivative and a non-derivative operator, and relate it to the EDM constraints.

  5. A non-local model of fractional heat conduction in rigid bodies

    NASA Astrophysics Data System (ADS)

    Borino, G.; di Paola, M.; Zingales, M.

    2011-03-01

    In recent years several applications of fractional differential calculus have been proposed in physics, chemistry as well as in engineering fields. Fractional order integrals and derivatives extend the well-known definitions of integer-order primitives and derivatives of the ordinary differential calculus to real-order operators. Engineering applications of fractional operators spread from viscoelastic models, stochastic dynamics as well as with thermoelasticity. In this latter field one of the main actractives of fractional operators is their capability to interpolate between the heat flux and its time-rate of change, that is related to the well-known second sound effect. In other recent studies a fractional, non-local thermoelastic model has been proposed as a particular case of the non-local, integral, thermoelasticity introduced at the mid of the seventies. In this study the autors aim to introduce a different non-local model of extended irreverible thermodynamics to account for second sound effect. Long-range heat flux is defined and it involves the integral part of the spatial Marchaud fractional derivatives of the temperature field whereas the second-sound effect is accounted for introducing time-derivative of the heat flux in the transport equation. It is shown that the proposed model does not suffer of the pathological problems of non-homogenoeus boundary conditions. Moreover the proposed model coalesces with the Povstenko fractional models in unbounded domains.

  6. A biophysical observation model for field potentials of networks of leaky integrate-and-fire neurons

    PubMed Central

    beim Graben, Peter; Rodrigues, Serafim

    2013-01-01

    We present a biophysical approach for the coupling of neural network activity as resulting from proper dipole currents of cortical pyramidal neurons to the electric field in extracellular fluid. Starting from a reduced three-compartment model of a single pyramidal neuron, we derive an observation model for dendritic dipole currents in extracellular space and thereby for the dendritic field potential (DFP) that contributes to the local field potential (LFP) of a neural population. This work aligns and satisfies the widespread dipole assumption that is motivated by the “open-field” configuration of the DFP around cortical pyramidal cells. Our reduced three-compartment scheme allows to derive networks of leaky integrate-and-fire (LIF) models, which facilitates comparison with existing neural network and observation models. In particular, by means of numerical simulations we compare our approach with an ad hoc model by Mazzoni et al. (2008), and conclude that our biophysically motivated approach yields substantial improvement. PMID:23316157

  7. Phantom behavior bounce with tachyon and non-minimal derivative coupling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Banijamali, A.; Fazlpour, B., E-mail: a.banijamali@nit.ac.ir, E-mail: b.fazlpour@umz.ac.ir

    2012-01-01

    The bouncing cosmology provides a successful solution of the cosmological singularity problem. In this paper, we study the bouncing behavior of a single scalar field model with tachyon field non-minimally coupled to itself, its derivative and to the curvature. By utilizing the numerical calculations we will show that the bouncing solution can appear in the universe dominated by such a quintom matter with equation of state crossing the phantom divide line. We also investigate the classical stability of our model using the phase velocity of the homogeneous perturbations of the tachyon scalar field.

  8. Evaluation of models proposed for the 1991 revision of the International Geomagnetic Reference Field

    USGS Publications Warehouse

    Peddie, N.W.

    1992-01-01

    The 1991 revision of the International Geomagnetic Reference Field (IGRF) comprises a definitive main-field model for 1985.0, a main-field model for 1990.0, and a forecast secular-variation model for the period 1990-1995. The five 1985.0 main-field models and five 1990.0 main-field models that were proposed have been evaluated by comparing them with one another, with magnetic observatory data, and with Project MAGNET aerial survey data. The comparisons indicate that the main-field models proposed by IZMIRAN, and the secular-variation model proposed jointly by the British Geological Survey and the US Naval Oceanographic Office, should be assigned relatively lower weight in the derivation of the new IGRF models. -Author

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sorin Zaharia; C.Z. Cheng

    In this paper, we study whether the magnetic field of the T96 empirical model can be in force balance with an isotropic plasma pressure distribution. Using the field of T96, we obtain values for the pressure P by solving a Poisson-type equation {del}{sup 2}P = {del} {center_dot} (J x B) in the equatorial plane, and 1-D profiles on the Sun-Earth axis by integrating {del}P = J x B. We work in a flux coordinate system in which the magnetic field is expressed in terms of Euler potentials. Our results lead to the conclusion that the T96 model field cannot bemore » in equilibrium with an isotropic pressure. We also analyze in detail the computation of Birkeland currents using the Vasyliunas relation and the T96 field, which yields unphysical results, again indicating the lack of force balance in the empirical model. The underlying reason for the force imbalance is likely the fact that the derivatives of the least-square fitted model B are not accurate predictions of the actual magnetospheric field derivatives. Finally, we discuss a possible solution to the problem of lack of force balance in empirical field models.« less

  10. Quantifying Power Grid Risk from Geomagnetic Storms

    NASA Astrophysics Data System (ADS)

    Homeier, N.; Wei, L. H.; Gannon, J. L.

    2012-12-01

    We are creating a statistical model of the geophysical environment that can be used to quantify the geomagnetic storm hazard to power grid infrastructure. Our model is developed using a database of surface electric fields for the continental United States during a set of historical geomagnetic storms. These electric fields are derived from the SUPERMAG compilation of worldwide magnetometer data and surface impedances from the United States Geological Survey. This electric field data can be combined with a power grid model to determine GICs per node and reactive MVARs at each minute during a storm. Using publicly available substation locations, we derive relative risk maps by location by combining magnetic latitude and ground conductivity. We also estimate the surface electric fields during the August 1972 geomagnetic storm that caused a telephone cable outage across the middle of the United States. This event produced the largest surface electric fields in the continental U.S. in at least the past 40 years.

  11. Complete Hamiltonian analysis of cosmological perturbations at all orders

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nandi, Debottam; Shankaranarayanan, S., E-mail: debottam@iisertvm.ac.in, E-mail: shanki@iisertvm.ac.in

    2016-06-01

    In this work, we present a consistent Hamiltonian analysis of cosmological perturbations at all orders. To make the procedure transparent, we consider a simple model and resolve the 'gauge-fixing' issues and extend the analysis to scalar field models and show that our approach can be applied to any order of perturbation for any first order derivative fields. In the case of Galilean scalar fields, our procedure can extract constrained relations at all orders in perturbations leading to the fact that there is no extra degrees of freedom due to the presence of higher time derivatives of the field in themore » Lagrangian. We compare and contrast our approach to the Lagrangian approach (Chen et al. [2006]) for extracting higher order correlations and show that our approach is efficient and robust and can be applied to any model of gravity and matter fields without invoking slow-roll approximation.« less

  12. Introduction to Adjoint Models

    NASA Technical Reports Server (NTRS)

    Errico, Ronald M.

    2015-01-01

    In this lecture, some fundamentals of adjoint models will be described. This includes a basic derivation of tangent linear and corresponding adjoint models from a parent nonlinear model, the interpretation of adjoint-derived sensitivity fields, a description of methods of automatic differentiation, and the use of adjoint models to solve various optimization problems, including singular vectors. Concluding remarks will attempt to correct common misconceptions about adjoint models and their utilization.

  13. Field-dependent critical state of high-Tc superconducting strip simultaneously exposed to transport current and perpendicular magnetic field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xue, Cun; He, An; Yong, Huadong

    We present an exact analytical approach for arbitrary field-dependent critical state of high-T{sub c} superconducting strip with transport current. The sheet current and flux-density profiles are derived by solving the integral equations, which agree with experiments quite well. For small transport current, the approximate explicit expressions of sheet current, flux-density and penetration depth for the Kim model are derived based on the mean value theorem for integration. We also extend the results to the field-dependent critical state of superconducting strip in the simultaneous presence of applied field and transport current. The sheet current distributions calculated by the Kim model agreemore » with experiments better than that by the Bean model. Moreover, the lines in the I{sub a}-B{sub a} plane for the Kim model are not monotonic, which is quite different from that the Bean model. The results reveal that the maximum transport current in thin superconducting strip will decrease with increasing applied field which vanishes for the Bean model. The results of this paper are useful to calculate ac susceptibility and ac loss.« less

  14. Potential of Multitemporal Tandem-X Derived Crop Surface Models for Maize Growth Monitoring

    NASA Astrophysics Data System (ADS)

    Hütt, C.; Tilly, N.; Schiedung, H.; Bareth, G.

    2016-06-01

    In this study, first results of retrieving plant heights of maize fields from multitemporal TanDEM-X images are shown. Three TanDEM-X dual polarization spotlight acquisitions were taken over a rural area in Germany in the growing season 2014. By interferometric processing, digital terrain models (DTM) were derived for each date with 5m resolution. From the data of the first acquisition (June 1st) taken before planting, a DTM of the bare ground is generated. The data of the following acquisition dates (July 15th, July 26th) are used to establish crop surface models (CSM). A CSM represents the crop surface of a whole field in a high resolution. By subtracting the DTM of the ground from each CSM, the actual plant height is calculated. Within these data sets 30 maize fields in the area of interest could be detected and verified by external land use data. Besides the spaceborne measurements, one of the maize fields was intensively investigated using terrestrial laser scanning (TLS), which was carried out at the same dates as the predicted TanDEM-X acquisitions. Visual inspection of the derived plant heights, and accordance of the individually processed polarisations over the maize fields, demonstrate the feasibility of the proposed method. Unfortunately, the infield variability of the intensively monitored field could not be successfully captured in the TanDEM-X derived plant heights and merely the general trend is visible. Nevertheless, the study shows the potential of the TanDEM-X constellation for maize height monitoring on field level.

  15. Reduced Order Podolsky Model

    NASA Astrophysics Data System (ADS)

    Thibes, Ronaldo

    2017-02-01

    We perform the canonical and path integral quantizations of a lower-order derivatives model describing Podolsky's generalized electrodynamics. The physical content of the model shows an auxiliary massive vector field coupled to the usual electromagnetic field. The equivalence with Podolsky's original model is studied at classical and quantum levels. Concerning the dynamical time evolution, we obtain a theory with two first-class and two second-class constraints in phase space. We calculate explicitly the corresponding Dirac brackets involving both vector fields. We use the Senjanovic procedure to implement the second-class constraints and the Batalin-Fradkin-Vilkovisky path integral quantization scheme to deal with the symmetries generated by the first-class constraints. The physical interpretation of the results turns out to be simpler due to the reduced derivatives order permeating the equations of motion, Dirac brackets and effective action.

  16. Steady induction effects in geomagnetism. Part 1C: Geomagnetic estimation of steady surficial core motions: Application to the definitive geomagnetic reference field models

    NASA Technical Reports Server (NTRS)

    Voorhies, Coerte V.

    1993-01-01

    In the source-free mantle/frozen-flux core magnetic earth model, the non-linear inverse steady motional induction problem was solved using the method presented in Part 1B. How that method was applied to estimate steady, broad-scale fluid velocity fields near the top of Earth's core that induce the secular change indicated by the Definitive Geomagnetic Reference Field (DGRF) models from 1945 to 1980 are described. Special attention is given to the derivation of weight matrices for the DGRF models because the weights determine the apparent significance of the residual secular change. The derived weight matrices also enable estimation of the secular change signal-to-noise ratio characterizing the DGRF models. Two types of weights were derived in 1987-88: radial field weights for fitting the evolution of the broad-scale portion of the radial geomagnetic field component at Earth's surface implied by the DGRF's, and general weights for fitting the evolution of the broad-scale portion of the scalar potential specified by these models. The difference is non-trivial because not all the geomagnetic data represented by the DGRF's constrain the radial field component. For radial field weights (or general weights), a quantitatively acceptable explication of broad-scale secular change relative to the 1980 Magsat epoch must account for 99.94271 percent (or 99.98784 percent) of the total weighted variance accumulated therein. Tolerable normalized root-mean-square weighted residuals of 2.394 percent (or 1.103 percent) are less than the 7 percent errors expected in the source-free mantle/frozen-flux core approximation.

  17. Evidence for open field lines in Jupiter's magnetosphere

    NASA Technical Reports Server (NTRS)

    Goertz, C. K.; Randall, B. A.; Thomsen, M. F.; Jones, D. E.; Smith, E. J.

    1976-01-01

    A model for the night-side Jovian magnetic field is derived partly on the basis of theoretical considerations and partly on the basis of the magnetic-field data obtained during the outbound leg of the path of Pioneer 10. This model can explain the observed sawtooth modulation of energetic particle fluxes in terms of closed and open field lines that cannot contain the particles. The model is applicable only to the Jovian magnetotail.

  18. PP/PS anisotropic stereotomography

    NASA Astrophysics Data System (ADS)

    Nag, Steinar; Alerini, Mathias; Ursin, Bjørn

    2010-04-01

    Stereotomography is a slope tomographic method which gives good results for background velocity model estimation in 2-D isotropic media. We develop here the extension of the method to 3-D general anisotropic media for PP and PS events. We do not take into account the issue of shear wave degeneracy. As in isotropic media, the sensitivity matrix of the inversion can be computed by paraxial ray tracing. We introduce a `constant Z stereotomography' approach, which can reduce the size of the sensitivity matrix. Based on ray perturbation theory, we give all the derivatives of stereotomography data parameters with respect to model parameters in a 3-D general anisotropic medium. These general formulas for the derivatives can also be used in other applications that rely on anisotropic ray perturbation theory. In particular, we obtain derivatives of the phase velocity with respect to position, phase angle and elastic medium parameters, all for general anisotropic media. The derivatives are expressed using the Voigt notation for the elastic medium parameters. We include a Jacobian that allows to change the model parametrization from Voigt to Thomsen parameters. Explicit expressions for the derivatives of the data are given for the case of 2-D tilted transversely isotropic (TTI) media. We validate the method by single-parameter estimation of each Thomsen parameter field of a 2-D TTI synthetic model, where data are modelled by ray tracing. For each Thomsen parameter, the estimated velocity field fits well with the true velocity field.

  19. A novel simulation theory and model system for multi-field coupling pipe-flow system

    NASA Astrophysics Data System (ADS)

    Chen, Yang; Jiang, Fan; Cai, Guobiao; Xu, Xu

    2017-09-01

    Due to the lack of a theoretical basis for multi-field coupling in many system-level models, a novel set of system-level basic equations for flow/heat transfer/combustion coupling is put forward. Then a finite volume model of quasi-1D transient flow field for multi-species compressible variable-cross-section pipe flow is established by discretising the basic equations on spatially staggered grids. Combining with the 2D axisymmetric model for pipe-wall temperature field and specific chemical reaction mechanisms, a finite volume model system is established; a set of specific calculation methods suitable for multi-field coupling system-level research is structured for various parameters in this model; specific modularisation simulation models can be further derived in accordance with specific structures of various typical components in a liquid propulsion system. This novel system can also be used to derive two sub-systems: a flow/heat transfer two-field coupling pipe-flow model system without chemical reaction and species diffusion; and a chemical equilibrium thermodynamic calculation-based multi-field coupling system. The applicability and accuracy of two sub-systems have been verified through a series of dynamic modelling and simulations in earlier studies. The validity of this system is verified in an air-hydrogen combustion sample system. The basic equations and the model system provide a unified universal theory and numerical system for modelling and simulation and even virtual testing of various pipeline systems.

  20. Low-derivative operators of the Standard Model effective field theory via Hilbert series methods

    NASA Astrophysics Data System (ADS)

    Lehman, Landon; Martin, Adam

    2016-02-01

    In this work, we explore an extension of Hilbert series techniques to count operators that include derivatives. For sufficiently low-derivative operators, we conjecture an algorithm that gives the number of invariant operators, properly accounting for redundancies due to the equations of motion and integration by parts. Specifically, the conjectured technique can be applied whenever there is only one Lorentz invariant for a given partitioning of derivatives among the fields. At higher numbers of derivatives, equation of motion redundancies can be removed, but the increased number of Lorentz contractions spoils the subtraction of integration by parts redundancies. While restricted, this technique is sufficient to automatically recreate the complete set of invariant operators of the Standard Model effective field theory for dimensions 6 and 7 (for arbitrary numbers of flavors). At dimension 8, the algorithm does not automatically generate the complete operator set; however, it suffices for all but five classes of operators. For these remaining classes, there is a well defined procedure to manually determine the number of invariants. Assuming our method is correct, we derive a set of 535 dimension-8 N f = 1 operators.

  1. Limiting cases in relativistic field theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Whitney, C.K.

    1988-05-01

    For nearly ninety years, electromagnetic fields caused by relativistically moving sources have been modeled according to formulas derived at the turn of the present century by Lienard and Wiechert. Recently, questions have started to surface about the Lienard-Wiechert derivation method, about all the subsequent modern rederivation methods, and about the results themselves. The present paper continues this critique. The field results in various idealized limiting cases are examined for plausibility and absurdities are revealed.

  2. Characteristics of Tropical Cyclones in High-resolution Models in the Present Climate

    NASA Technical Reports Server (NTRS)

    Shaevitz, Daniel A.; Camargo, Suzana J.; Sobel, Adam H.; Jonas, Jeffrey A.; Kim, Daehyun; Kumar, Arun; LaRow, Timothy E.; Lim, Young-Kwon; Murakami, Hiroyuki; Reed, Kevin; hide

    2014-01-01

    The global characteristics of tropical cyclones (TCs) simulated by several climate models are analyzed and compared with observations. The global climate models were forced by the same sea surface temperature (SST) fields in two types of experiments, using climatological SST and interannually varying SST. TC tracks and intensities are derived from each model's output fields by the group who ran that model, using their own preferred tracking scheme; the study considers the combination of model and tracking scheme as a single modeling system, and compares the properties derived from the different systems. Overall, the observed geographic distribution of global TC frequency was reasonably well reproduced. As expected, with the exception of one model, intensities of the simulated TC were lower than in observations, to a degree that varies considerably across models.

  3. Theoretical and observational constraints on Tachyon Inflation

    NASA Astrophysics Data System (ADS)

    Barbosa-Cendejas, Nandinii; De-Santiago, Josue; German, Gabriel; Hidalgo, Juan Carlos; Rigel Mora-Luna, Refugio

    2018-03-01

    We constrain several models in Tachyonic Inflation derived from the large-N formalism by considering theoretical aspects as well as the latest observational data. On the theoretical side, we assess the field range of our models by means of the excursion of the equivalent canonical field. On the observational side, we employ BK14+PLANCK+BAO data to perform a parameter estimation analysis as well as a Bayesian model selection to distinguish the most favoured models among all four classes here presented. We observe that the original potential V propto sech(T) is strongly disfavoured by observations with respect to a reference model with flat priors on inflationary observables. This realisation of Tachyon inflation also presents a large field range which may demand further quantum corrections. We also provide examples of potentials derived from the polynomial and the perturbative classes which are both statistically favoured and theoretically acceptable.

  4. Quantum cluster theory for the polarizable continuum model. I. The CCSD level with analytical first and second derivatives.

    PubMed

    Cammi, R

    2009-10-28

    We present a general formulation of the coupled-cluster (CC) theory for a molecular solute described within the framework of the polarizable continuum model (PCM). The PCM-CC theory is derived in its complete form, called PTDE scheme, in which the correlated electronic density is used to have a self-consistent reaction field, and in an approximate form, called PTE scheme, in which the PCM-CC equations are solved assuming the fixed Hartree-Fock solvent reaction field. Explicit forms for the PCM-CC-PTDE equations are derived at the single and double (CCSD) excitation level of the cluster operator. At the same level, explicit equations for the analytical first derivatives of the PCM basic energy functional are presented, and analytical second derivatives are also discussed. The corresponding PCM-CCSD-PTE equations are given as a special case of the full theory.

  5. The Invigoration of Deep Convective Clouds Over the Atlantic: Aerosol Effect, Meteorology or Retrieval Artifact?

    NASA Technical Reports Server (NTRS)

    Koren, Ilan; Feingold, Graham; Remer, Lorraine A.

    2010-01-01

    Associations between cloud properties and aerosol loading are frequently observed in products derived from satellite measurements. These observed trends between clouds and aerosol optical depth suggest aerosol modification of cloud dynamics, yet there are uncertainties involved in satellite retrievals that have the potential to lead to incorrect conclusions. Two of the most challenging problems are addressed here: the potential for retrieved aerosol optical depth to be cloud-contaminated, and as a result, artificially correlated with cloud parameters; and the potential for correlations between aerosol and cloud parameters to be erroneously considered to be causal. Here these issues are tackled directly by studying the effects of the aerosol on convective clouds in the tropical Atlantic Ocean using satellite remote sensing, a chemical transport model, and a reanalysis of meteorological fields. Results show that there is a robust positive correlation between cloud fraction or cloud top height and the aerosol optical depth, regardless of whether a stringent filtering of aerosol measurements in the vicinity of clouds is applied, or not. These same positive correlations emerge when replacing the observed aerosol field with that derived from a chemical transport model. Model-reanalysis data is used to address the causality question by providing meteorological context for the satellite observations. A correlation exercise between the full suite of meteorological fields derived from model reanalysis and satellite-derived cloud fields shows that observed cloud top height and cloud fraction correlate best with model pressure updraft velocity and relative humidity. Observed aerosol optical depth does correlate with meteorological parameters but usually different parameters from those that correlate with observed cloud fields. The result is a near-orthogonal influence of aerosol and meteorological fields on cloud top height and cloud fraction. The results strengthen the case that the aerosol does play a role in invigorating convective clouds.

  6. The R.E.D. tools: advances in RESP and ESP charge derivation and force field library building.

    PubMed

    Dupradeau, François-Yves; Pigache, Adrien; Zaffran, Thomas; Savineau, Corentin; Lelong, Rodolphe; Grivel, Nicolas; Lelong, Dimitri; Rosanski, Wilfried; Cieplak, Piotr

    2010-07-28

    Deriving atomic charges and building a force field library for a new molecule are key steps when developing a force field required for conducting structural and energy-based analysis using molecular mechanics. Derivation of popular RESP charges for a set of residues is a complex and error prone procedure because it depends on numerous input parameters. To overcome these problems, the R.E.D. Tools (RESP and ESP charge Derive, ) have been developed to perform charge derivation in an automatic and straightforward way. The R.E.D. program handles chemical elements up to bromine in the periodic table. It interfaces different quantum mechanical programs employed for geometry optimization and computing molecular electrostatic potential(s), and performs charge fitting using the RESP program. By defining tight optimization criteria and by controlling the molecular orientation of each optimized geometry, charge values are reproduced at any computer platform with an accuracy of 0.0001 e. The charges can be fitted using multiple conformations, making them suitable for molecular dynamics simulations. R.E.D. allows also for defining charge constraints during multiple molecule charge fitting, which are used to derive charges for molecular fragments. Finally, R.E.D. incorporates charges into a force field library, readily usable in molecular dynamics computer packages. For complex cases, such as a set of homologous molecules belonging to a common family, an entire force field topology database is generated. Currently, the atomic charges and force field libraries have been developed for more than fifty model systems and stored in the RESP ESP charge DDataBase. Selected results related to non-polarizable charge models are presented and discussed.

  7. Comparative molecular field analysis of artemisinin derivatives: Ab initio versus semiempirical optimized structures

    NASA Astrophysics Data System (ADS)

    Tonmunphean, Somsak; Kokpol, Sirirat; Parasuk, Vudhichai; Wolschann, Peter; Winger, Rudolf H.; Liedl, Klaus R.; Rode, Bernd M.

    1998-07-01

    Based on the belief that structural optimization methods, producing structures more closely to the experimental ones, should give better, i.e. more relevant, steric fields and hence more predictive CoMFA models, comparative molecular field analyses of artemisinin derivatives were performed based on semiempirical AM1 and HF/3-21G optimized geometries. Using these optimized geometries, the CoMFA results derived from the HF/3-21G method are found to be usually but not drastically better than those from AM1. Additional calculations were performed to investigate the electrostatic field difference using the Gasteiger and Marsili charges, the electrostatic potential fit charges at the AM1 level, and the natural population analysis charges at the HF/3-21G level of theory. For the HF/3-21G optimized structures no difference in predictability was observed, whereas for AM1 optimized structures such differences were found. Interestingly, if ionic compounds are omitted, differences between the various HF/3-21G optimized structure models using these electrostatic fields were found.

  8. The magnetic field and abundance distribution geometry of the peculiar A star 53 Camelopardalis

    NASA Astrophysics Data System (ADS)

    Landstreet, J. D.

    1988-03-01

    New spectra have been obtained of the magnetic Ap star 53 Cam, well spaced through its 8.03 day rotation period, covering the spectral regions λλ3900 - 3960 and 4250 - 4315. These data, and previously obtained Hβ Zeeman analyzer observations of the longitudinal field strength, have been used to derive models of the magnetic field geometry and the abundance distributions of Ca, Cr, Fe, Sr, and Ti. The models have been obtained by use of a new line synthesis program that incorporates the effects of an assumed magnetic field and abundance distribution into the calculation of line profiles. Calculated profiles are compared with observations. The model is used to derive a radius of R/R_sun; = 2.3±0.4, a luminosity of log L/L_sun; = 1.4±0.17, and a mass of M/M_sun; = 2.0±0.3 for 53 Cam.

  9. Inner Magnetospheric Electric Fields Derived from IMAGE EUV

    NASA Technical Reports Server (NTRS)

    Gallagher, D. L.; Adrian, M. L.

    2007-01-01

    The local and global patterns of plasmaspheric plasma transport reflect the influence of electric fields imposed by all sources in the inner magnetosphere. Image sequences of thermal plasma G:istribution obtained from the IMAGE Mission Extreme Ultraviolet Imager can be used to derive plasma motions and, using a magnetic field model, the corresponding electric fields. These motions and fields directly reflect the dynamic coupling of injected plasmasheet plasma and the ionosphere, in addition to solar wind and atmospheric drivers. What is being learned about the morphology of inner magnetospheric electric fields during storm and quite conditions from this new empirical tool will be presented and discussed.

  10. Solomon Islands 2007 Tsunami Near-Field Modeling and Source Earthquake Deformation

    NASA Astrophysics Data System (ADS)

    Uslu, B.; Wei, Y.; Fritz, H.; Titov, V.; Chamberlin, C.

    2008-12-01

    The earthquake of 1 April 2007 left behind momentous footages of crust rupture and tsunami impact along the coastline of Solomon Islands (Fritz and Kalligeris, 2008; Taylor et al., 2008; McAdoo et al., 2008; PARI, 2008), while the undisturbed tsunami signals were also recorded at nearby deep-ocean tsunameters and coastal tide stations. These multi-dimensional measurements provide valuable datasets to tackle the challenging aspects at the tsunami source directly by inversion from tsunameter records in real time (available in a time frame of minutes), and its relationship with the seismic source derived either from the seismometer records (available in a time frame of hours or days) or from the crust rupture measurements (available in a time frame of months or years). The tsunami measurements in the near field, including the complex vertical crust motion and tsunami runup, are particularly critical to help interpreting the tsunami source. This study develops high-resolution inundation models for the Solomon Islands to compute the near-field tsunami impact. Using these models, this research compares the tsunameter-derived tsunami source with the seismic-derived earthquake sources from comprehensive perceptions, including vertical uplift and subsidence, tsunami runup heights and their distributional pattern among the islands, deep-ocean tsunameter measurements, and near- and far-field tide gauge records. The present study stresses the significance of the tsunami magnitude, source location, bathymetry and topography in accurately modeling the generation, propagation and inundation of the tsunami waves. This study highlights the accuracy and efficiency of the tsunameter-derived tsunami source in modeling the near-field tsunami impact. As the high- resolution models developed in this study will become part of NOAA's tsunami forecast system, these results also suggest expanding the system for potential applications in tsunami hazard assessment, search and rescue operations, as well as event and post-event planning in the Solomon Islands.

  11. Magneto-elastic modeling of composites containing chain-structured magnetostrictive particles

    NASA Astrophysics Data System (ADS)

    Yin, H. M.; Sun, L. Z.; Chen, J. S.

    2006-05-01

    Magneto-elastic behavior is investigated for two-phase composites containing chain-structured magnetostrictive particles under both magnetic and mechanical loading. To derive the local magnetic and elastic fields, three modified Green's functions are derived and explicitly integrated for the infinite domain containing a spherical inclusion with a prescribed magnetization, body force, and eigenstrain. A representative volume element containing a chain of infinite particles is introduced to solve averaged magnetic and elastic fields in the particles and the matrix. Effective magnetostriction of composites is derived by considering the particle's magnetostriction and the magnetic interaction force. It is shown that there exists an optimal choice of the Young's modulus of the matrix and the volume fraction of the particles to achieve the maximum effective magnetostriction. A transversely isotropic effective elasticity is derived at the infinitesimal deformation. Disregarding the interaction term, this model provides the same effective elasticity as Mori-Tanaka's model. Comparisons of model results with the experimental data and other models show the efficacy of the model and suggest that the particle interactions have a considerable effect on the effective magneto-elastic properties of composites even for a low particle volume fraction.

  12. Derivation of Inviscid Quasi-geostrophic Equation from Rotational Compressible Magnetohydrodynamic Flows

    NASA Astrophysics Data System (ADS)

    Kwon, Young-Sam; Lin, Ying-Chieh; Su, Cheng-Fang

    2018-04-01

    In this paper, we consider the compressible models of magnetohydrodynamic flows giving rise to a variety of mathematical problems in many areas. We derive a rigorous quasi-geostrophic equation governed by magnetic field from the rotational compressible magnetohydrodynamic flows with the well-prepared initial data. It is a first derivation of quasi-geostrophic equation governed by the magnetic field, and the tool is based on the relative entropy method. This paper covers two results: the existence of the unique local strong solution of quasi-geostrophic equation with the good regularity and the derivation of a quasi-geostrophic equation.

  13. Zonal harmonic model of Saturn's magnetic field from Voyager 1 and 2 observations

    NASA Technical Reports Server (NTRS)

    Connerney, J. E. P.; Ness, N. F.; Acuna, M. H.

    1982-01-01

    An analysis of the magnetic field of Saturn is presented which takes into account both the Voyager 1 and 2 vector magnetic field observations. The analysis is based on the traditional spherical harmonic expansion of a scale potential to derive the magnetic field within 8 Saturn radii. A third-order zonal harmonic model fitted to Voyager 1 and 2 observations is found to be capable of predicting the magnetic field characteristics at one encounter based on those observed at another, unlike models including dipole and quadrupole terms only. The third-order model is noted to lead to significantly enhanced polar surface field intensities with respect to dipole models, and probably represents the axisymmetric part of a complex dynamo field.

  14. Spacecraft Thermal and Optical Modeling Impacts on Estimation of the GRAIL Lunar Gravity Field

    NASA Technical Reports Server (NTRS)

    Fahnestock, Eugene G.; Park, Ryan S.; Yuan, Dah-Ning; Konopliv, Alex S.

    2012-01-01

    We summarize work performed involving thermo-optical modeling of the two Gravity Recovery And Interior Laboratory (GRAIL) spacecraft. We derived several reconciled spacecraft thermo-optical models having varying detail. We used the simplest in calculating SRP acceleration, and used the most detailed to calculate acceleration due to thermal re-radiation. For the latter, we used both the output of pre-launch finite-element-based thermal simulations and downlinked temperature sensor telemetry. The estimation process to recover the lunar gravity field utilizes both a nominal thermal re-radiation accleration history and an apriori error model derived from that plus an off-nominal history, which bounds parameter uncertainties as informed by sensitivity studies.

  15. Characteristics of tropical cyclones in high-resolution models in the present climate

    DOE PAGES

    Shaevitz, Daniel A.; Camargo, Suzana J.; Sobel, Adam H.; ...

    2014-12-05

    The global characteristics of tropical cyclones (TCs) simulated by several climate models are analyzed and compared with observations. The global climate models were forced by the same sea surface temperature (SST) fields in two types of experiments, using climatological SST and interannually varying SST. TC tracks and intensities are derived from each model's output fields by the group who ran that model, using their own preferred tracking scheme; the study considers the combination of model and tracking scheme as a single modeling system, and compares the properties derived from the different systems. Overall, the observed geographic distribution of global TCmore » frequency was reasonably well reproduced. As expected, with the exception of one model, intensities of the simulated TC were lower than in observations, to a degree that varies considerably across models.« less

  16. The 2000 revision of the joint UK/US geomagnetic field models and an IGRF 2000 candidate model

    USGS Publications Warehouse

    Macmillan, S.; Quinn, J.M.

    2000-01-01

    The method of derivation of the joint UK/US spherical harmonic geomagnetic main-field and secular-variation models is presented. Early versions of these models, with the main field truncated at degree 10, are the UK/US candidates for the IGRF 2000 model. The main-field model describes the Earth's magnetic field at the 2000.0 epoch, while the secular-variation model predicts the evolution of this field between 2000.0 and 2005.0. A revised 1995.0 main-field model was also generated. Regional models for the continental US, Alaska and Hawaii were also produced as a by-product of the UK/US global modelling effort. Copy right?? The Society of Geomagnetism and Earth, Planetary and Space Sciences (SGEPSS); The Seismological Society of Japan; The Volcanological Society of Japan; The Geodetic Society of Japan; The Japanese Society for Planetary Sciences.

  17. Idealized Computational Models for Auditory Receptive Fields

    PubMed Central

    Lindeberg, Tony; Friberg, Anders

    2015-01-01

    We present a theory by which idealized models of auditory receptive fields can be derived in a principled axiomatic manner, from a set of structural properties to (i) enable invariance of receptive field responses under natural sound transformations and (ii) ensure internal consistency between spectro-temporal receptive fields at different temporal and spectral scales. For defining a time-frequency transformation of a purely temporal sound signal, it is shown that the framework allows for a new way of deriving the Gabor and Gammatone filters as well as a novel family of generalized Gammatone filters, with additional degrees of freedom to obtain different trade-offs between the spectral selectivity and the temporal delay of time-causal temporal window functions. When applied to the definition of a second-layer of receptive fields from a spectrogram, it is shown that the framework leads to two canonical families of spectro-temporal receptive fields, in terms of spectro-temporal derivatives of either spectro-temporal Gaussian kernels for non-causal time or a cascade of time-causal first-order integrators over the temporal domain and a Gaussian filter over the logspectral domain. For each filter family, the spectro-temporal receptive fields can be either separable over the time-frequency domain or be adapted to local glissando transformations that represent variations in logarithmic frequencies over time. Within each domain of either non-causal or time-causal time, these receptive field families are derived by uniqueness from the assumptions. It is demonstrated how the presented framework allows for computation of basic auditory features for audio processing and that it leads to predictions about auditory receptive fields with good qualitative similarity to biological receptive fields measured in the inferior colliculus (ICC) and primary auditory cortex (A1) of mammals. PMID:25822973

  18. Stability of a Plasma Column. Free-Particle Model; STABILITE D'UNE COLONNE DE PLASMA. MODELE DES PARTICULES LIBRES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Troyon, F.

    1963-12-01

    The stability of a field-free homogeneous column of plasma confined to an axial static field and the sum of an alternating and static B/sub tt/ field is considered in the freeparticle model. Conditions for the existence of a positive average restoring force are derived, and it is shown that for small deformations the column is stable for sufficientiy high frequency. (auth)

  19. Real-data tests of a single-Doppler radar assimilation system

    NASA Astrophysics Data System (ADS)

    Nehrkorn, Thomas; Hegarty, James; Hamill, Thomas M.

    1994-06-01

    Real data tests of a single-Doppler radar data assimilation and forecast system have been conducted for a Florida sea breeze case. The system consists of a hydrostatic mesoscale model used for prediction of the preconvective boundary layer, an objective analysis that combines model first guess fields with radar derived horizontal winds, a thermodynamic retrieval scheme that obtains temperature information from the three-dimensional wind field and its temporal evolution, and a Newtonian nudging scheme for forcing the model forecast to closer agreement with the analysis. As was found in earlier experiments with simulated data, assimilation using Newtonian nudging benefits from temperature data in addition to wind data. The thermodynamic retrieval technique was successful in retrieving a horizontal temperature gradient from the radar-derived wind fields that, when assimilated into the model, led to a significantly improved forecast of the seabreeze strength and position.

  20. Phenemenological vs. biophysical models of thermal stress in aquatic eggs

    NASA Astrophysics Data System (ADS)

    Martin, B.

    2016-12-01

    Predicting species responses to climate change is a central challenge in ecology, with most efforts relying on lab derived phenomenological relationships between temperature and fitness metrics. We tested one of these models using the embryonic stage of a Chinook salmon population. We parameterized the model with laboratory data, applied it to predict survival in the field, and found that it significantly underestimated field-derived estimates of thermal mortality. We used a biophysical model based on mass-transfer theory to show that the discrepancy was due to the differences in water flow velocities between the lab and the field. This mechanistic approach provides testable predictions for how the thermal tolerance of embryos depends on egg size and flow velocity of the surrounding water. We found support for these predictions across more than 180 fish species, suggesting that flow and temperature mediated oxygen limitation is a general mechanism underlying the thermal tolerance of embryos.

  1. A Preliminary Field Test of an Employee Work Passion Model

    ERIC Educational Resources Information Center

    Zigarmi, Drea; Nimon, Kim; Houson, Dobie; Witt, David; Diehl, Jim

    2011-01-01

    Four dimensions of a process model for the formulation of employee work passion, derived from Zigarmi, Nimon, Houson, Witt, and Diehl (2009), were tested in a field setting. A total of 447 employees completed questionnaires that assessed the internal elements of the model in a corporate work environment. Data from the measurements of work affect,…

  2. Topological BF Theories

    NASA Astrophysics Data System (ADS)

    Sǎraru, Silviu-Constantin

    Topological field theories originate in the papers of Schwarz and Witten. Initially, Schwarz shown that one of the topological invariants, namely the Ray-Singer torsion, can be represented as the partition function of a certain quantum field theory. Subsequently, Witten constructed a framework for understanding Morse theory in terms of supersymmetric quantum mechanics. These two constructions represent the prototypes of all topological field theories. The model used by Witten has been applied to classical index theorems and, moreover, suggested some generalizations that led to new mathematical results on holomorphic Morse inequalities. Starting with these results, further developments in the domain of topological field theories have been achieved. The Becchi-Rouet-Stora-Tyutin (BRST) symmetry allowed for a new definition of topological ...eld theories as theories whose BRST-invariant Hamiltonian is also BRST-exact. An important class of topological theories of Schwarz type is the class of BF models. This type of models describes three-dimensional quantum gravity and is useful at the study of four-dimensional quantum gravity in Ashtekar-Rovelli-Smolin formulation. Two-dimensional BF models are correlated to Poisson sigma models from various two-dimensional gravities. The analysis of Poisson sigma models, including their relationship to two-dimensional gravity and the study of classical solutions, has been intensively studied in the literature. In this thesis we approach the problem of construction of some classes of interacting BF models in the context of the BRST formalism. In view of this, we use the method of the deformation of the BRST charge and BRST-invariant Hamiltonian. Both methods rely on specific techniques of local BRST cohomology. The main hypotheses in which we construct the above mentioned interactions are: space-time locality, Poincare invariance, smoothness of deformations in the coupling constant and the preservation of the number of derivatives on each field. The first two hypotheses implies that the resulting interacting theory must be local in space-time and Poincare invariant. The smoothness of deformations means that the deformed objects that contribute to the construction of interactions must be smooth in the coupling constant and reduce to the objects corresponding to the free theory in the zero limit of the coupling constant. The preservation of the number of derivatives on each field imp! lies two aspects that must be simultaneously fulfilled: (i) the differential order of each free field equation must coincide with that of the corresponding interacting field equation; (ii) the maximum number of space-time derivatives from the interacting vertices cannot exceed the maximum number of derivatives from the free Lagrangian. The main results obtained can be synthesized into: obtaining self-interactions for certain classes of BF models; generation of couplings between some classes of BF theories and matter theories; construction of interactions between a class of BF models and a system of massless vector fields.

  3. Bifurcations of large networks of two-dimensional integrate and fire neurons.

    PubMed

    Nicola, Wilten; Campbell, Sue Ann

    2013-08-01

    Recently, a class of two-dimensional integrate and fire models has been used to faithfully model spiking neurons. This class includes the Izhikevich model, the adaptive exponential integrate and fire model, and the quartic integrate and fire model. The bifurcation types for the individual neurons have been thoroughly analyzed by Touboul (SIAM J Appl Math 68(4):1045-1079, 2008). However, when the models are coupled together to form networks, the networks can display bifurcations that an uncoupled oscillator cannot. For example, the networks can transition from firing with a constant rate to burst firing. This paper introduces a technique to reduce a full network of this class of neurons to a mean field model, in the form of a system of switching ordinary differential equations. The reduction uses population density methods and a quasi-steady state approximation to arrive at the mean field system. Reduced models are derived for networks with different topologies and different model neurons with biologically derived parameters. The mean field equations are able to qualitatively and quantitatively describe the bifurcations that the full networks display. Extensions and higher order approximations are discussed.

  4. Solutions on a brane in a bulk spacetime with Kalb–Ramond field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chakraborty, Sumanta, E-mail: sumanta@iucaa.in; SenGupta, Soumitra, E-mail: tpssg@iacs.res.in

    Effective gravitational field equations on a brane have been derived, when the bulk spacetime is endowed with the second rank antisymmetric Kalb–Ramond field. Since both the graviton and the Kalb–Ramond field are closed string excitations, they can propagate in the bulk. After deriving the effective gravitational field equations on the brane, we solve them for a static spherically symmetric solution. It turns out that the solution so obtained represents a black hole or naked singularity depending on the parameter space of the model. The stability of this model is also discussed. Cosmological solutions to the gravitational field equations have beenmore » obtained, where the Kalb–Ramond field is found to behave as normal pressure free matter. For certain specific choices of the parameters in the cosmological solution, the solution exhibits a transition in the behaviour of the scale factor and hence a transition in the expansion history of the universe. The possibility of accelerated expansion of the universe in this scenario is also discussed.« less

  5. Coronal heating by stochastic magnetic pumping

    NASA Technical Reports Server (NTRS)

    Sturrock, P. A.; Uchida, Y.

    1980-01-01

    Recent observational data cast serious doubt on the widely held view that the Sun's corona is heated by traveling waves (acoustic or magnetohydrodynamic). It is proposed that the energy responsible for heating the corona is derived from the free energy of the coronal magnetic field derived from motion of the 'feet' of magnetic field lines in the photosphere. Stochastic motion of the feet of magnetic field lines leads, on the average, to a linear increase of magnetic free energy with time. This rate of energy input is calculated for a simple model of a single thin flux tube. The model appears to agree well with observational data if the magnetic flux originates in small regions of high magnetic field strength. On combining this energy input with estimates of energy loss by radiation and of energy redistribution by thermal conduction, we obtain scaling laws for density and temperature in terms of length and coronal magnetic field strength.

  6. Meson properties in magnetized quark matter

    NASA Astrophysics Data System (ADS)

    Wang, Ziyue; Zhuang, Pengfei

    2018-02-01

    We study neutral and charged meson properties in the magnetic field. Taking the bosonization method in a two-flavor Nambu-Jona-Lasinio model, we derive effective meson Lagrangian density with minimal coupling to the magnetic field, by employing derivative expansion for both the meson fields and Schwinger phases. We extract from the effective Lagrangian density the meson curvature, pole and screening masses. As the only Goldstone mode, the neutral pion controls the thermodynamics of the system and propagates the long range quark interaction. The magnetic field breaks down the space symmetry, and the quark interaction region changes from a sphere in vacuum to a ellipsoid in magnetic field.

  7. Recent changes of the Earth's core derived from satellite observations of magnetic and gravity fields.

    PubMed

    Mandea, Mioara; Panet, Isabelle; Lesur, Vincent; de Viron, Olivier; Diament, Michel; Le Mouël, Jean-Louis

    2012-11-20

    To understand the dynamics of the Earth's fluid, iron-rich outer core, only indirect observations are available. The Earth's magnetic field, originating mainly within the core, and its temporal variations can be used to infer the fluid motion at the top of the core, on a decadal and subdecadal time-scale. Gravity variations resulting from changes in the mass distribution within the Earth may also occur on the same time-scales. Such variations include the signature of the flow inside the core, though they are largely dominated by the water cycle contributions. Our study is based on 8 y of high-resolution, high-accuracy magnetic and gravity satellite data, provided by the CHAMP and GRACE missions. From the newly derived geomagnetic models we have computed the core magnetic field, its temporal variations, and the core flow evolution. From the GRACE CNES/GRGS series of time variable geoid models, we have obtained interannual gravity models by using specifically designed postprocessing techniques. A correlation analysis between the magnetic and gravity series has demonstrated that the interannual changes in the second time derivative of the core magnetic field under a region from the Atlantic to Indian Ocean coincide in phase with changes in the gravity field. The order of magnitude of these changes and proposed correlation are plausible, compatible with a core origin; however, a complete theoretical model remains to be built. Our new results and their broad geophysical significance could be considered when planning new Earth observation space missions and devising more sophisticated Earth's interior models.

  8. Topographic Metric Predictions of Soil redistribution and Organic Carbon Distribution in Croplands

    NASA Astrophysics Data System (ADS)

    Mccarty, G.; Li, X.

    2017-12-01

    Landscape topography is a key factor controlling soil redistribution and soil organic carbon (SOC) distribution in Iowa croplands (USA). In this study, we adopted a combined approach based on carbon () and cesium (137Cs) isotope tracers, and digital terrain analysis to understand patterns of SOC redistribution and carbon sequestration dynamics as influenced by landscape topography in tilled cropland under long term corn/soybean management. The fallout radionuclide 137Cs was used to estimate soil redistribution rates and a Lidar-derived DEM was used to obtain a set of topographic metrics for digital terrain analysis. Soil redistribution rates and patterns of SOC distribution were examined across 560 sampling locations at two field sites as well as at larger scale within the watershed. We used δ13C content in SOC to partition C3 and C4 plant derived C density at 127 locations in one of the two field sites with corn being the primary source of C4 C. Topography-based models were developed to simulate SOC distribution and soil redistribution using stepwise ordinary least square regression (SOLSR) and stepwise principal component regression (SPCR). All topography-based models developed through SPCR and SOLSR demonstrated good simulation performance, explaining more than 62% variability in SOC density and soil redistribution rates across two field sites with intensive samplings. However, the SOLSR models showed lower reliability than the SPCR models in predicting SOC density at the watershed scale. Spatial patterns of C3-derived SOC density were highly related to those of SOC density. Topographic metrics exerted substantial influence on C3-derived SOC density with the SPCR model accounting for 76.5% of the spatial variance. In contrast C4 derived SOC density had poor spatial structure likely reflecting the substantial contribution of corn vegetation to recently sequestered SOC density. Results of this study highlighted the utility of topographic SPCR models for scaling field measurements of SOC density and soil redistribution rates to watershed scale which will allow watershed model to better predict fate of ecosystem C on agricultural landscapes.

  9. Calculation and Analysis of magnetic gradient tensor components of global magnetic models

    NASA Astrophysics Data System (ADS)

    Schiffler, Markus; Queitsch, Matthias; Schneider, Michael; Stolz, Ronny; Krech, Wolfram; Meyer, Hans-Georg; Kukowski, Nina

    2014-05-01

    Magnetic mapping missions like SWARM and its predecessors, e.g. the CHAMP and MAGSAT programs, offer high resolution Earth's magnetic field data. These datasets are usually combined with magnetic observatory and survey data, and subject to harmonic analysis. The derived spherical harmonic coefficients enable magnetic field modelling using a potential series expansion. Recently, new instruments like the JeSSY STAR Full Tensor Magnetic Gradiometry system equipped with very high sensitive sensors can directly measure the magnetic field gradient tensor components. The full understanding of the quality of the measured data requires the extension of magnetic field models to gradient tensor components. In this study, we focus on the extension of the derivation of the magnetic field out of the potential series magnetic field gradient tensor components and apply the new theoretical framework to the International Geomagnetic Reference Field (IGRF) and the High Definition Magnetic Model (HDGM). The gradient tensor component maps for entire Earth's surface produced for the IGRF show low values and smooth variations reflecting the core and mantle contributions whereas those for the HDGM gives a novel tool to unravel crustal structure and deep-situated ore bodies. For example, the Thor Suture and the Sorgenfrei-Thornquist Zone in Europe are delineated by a strong northward gradient. Derived from Eigenvalue decomposition of the magnetic gradient tensor, the scaled magnetic moment, normalized source strength (NSS) and the bearing of the lithospheric sources are presented. The NSS serves as a tool for estimating the lithosphere-asthenosphere boundary as well as the depth of plutons and ore bodies. Furthermore changes in magnetization direction parallel to the mid-ocean ridges can be obtained from the scaled magnetic moment and the normalized source strength discriminates the boundaries between the anomalies of major continental provinces like southern Africa or the Eastern European Craton.

  10. Modular model for Mercury's magnetospheric magnetic field confined within the average observed magnetopause.

    PubMed

    Korth, Haje; Tsyganenko, Nikolai A; Johnson, Catherine L; Philpott, Lydia C; Anderson, Brian J; Al Asad, Manar M; Solomon, Sean C; McNutt, Ralph L

    2015-06-01

    Accurate knowledge of Mercury's magnetospheric magnetic field is required to understand the sources of the planet's internal field. We present the first model of Mercury's magnetospheric magnetic field confined within a magnetopause shape derived from Magnetometer observations by the MErcury Surface, Space ENvironment, GEochemistry, and Ranging spacecraft. The field of internal origin is approximated by a dipole of magnitude 190 nT R M 3 , where R M is Mercury's radius, offset northward by 479 km along the spin axis. External field sources include currents flowing on the magnetopause boundary and in the cross-tail current sheet. The cross-tail current is described by a disk-shaped current near the planet and a sheet current at larger (≳ 5  R M ) antisunward distances. The tail currents are constrained by minimizing the root-mean-square (RMS) residual between the model and the magnetic field observed within the magnetosphere. The magnetopause current contributions are derived by shielding the field of each module external to the magnetopause by minimizing the RMS normal component of the magnetic field at the magnetopause. The new model yields improvements over the previously developed paraboloid model in regions that are close to the magnetopause and the nightside magnetic equatorial plane. Magnetic field residuals remain that are distributed systematically over large areas and vary monotonically with magnetic activity. Further advances in empirical descriptions of Mercury's magnetospheric external field will need to account for the dependence of the tail and magnetopause currents on magnetic activity and additional sources within the magnetosphere associated with Birkeland currents and plasma distributions near the dayside magnetopause.

  11. Modular model for Mercury's magnetospheric magnetic field confined within the average observed magnetopause

    PubMed Central

    Tsyganenko, Nikolai A.; Johnson, Catherine L.; Philpott, Lydia C.; Anderson, Brian J.; Al Asad, Manar M.; Solomon, Sean C.; McNutt, Ralph L.

    2015-01-01

    Abstract Accurate knowledge of Mercury's magnetospheric magnetic field is required to understand the sources of the planet's internal field. We present the first model of Mercury's magnetospheric magnetic field confined within a magnetopause shape derived from Magnetometer observations by the MErcury Surface, Space ENvironment, GEochemistry, and Ranging spacecraft. The field of internal origin is approximated by a dipole of magnitude 190 nT RM 3, where RM is Mercury's radius, offset northward by 479 km along the spin axis. External field sources include currents flowing on the magnetopause boundary and in the cross‐tail current sheet. The cross‐tail current is described by a disk‐shaped current near the planet and a sheet current at larger (≳ 5 RM) antisunward distances. The tail currents are constrained by minimizing the root‐mean‐square (RMS) residual between the model and the magnetic field observed within the magnetosphere. The magnetopause current contributions are derived by shielding the field of each module external to the magnetopause by minimizing the RMS normal component of the magnetic field at the magnetopause. The new model yields improvements over the previously developed paraboloid model in regions that are close to the magnetopause and the nightside magnetic equatorial plane. Magnetic field residuals remain that are distributed systematically over large areas and vary monotonically with magnetic activity. Further advances in empirical descriptions of Mercury's magnetospheric external field will need to account for the dependence of the tail and magnetopause currents on magnetic activity and additional sources within the magnetosphere associated with Birkeland currents and plasma distributions near the dayside magnetopause. PMID:27656335

  12. Using coronal seismology to estimate the magnetic field strength in a realistic coronal model

    NASA Astrophysics Data System (ADS)

    Chen, F.; Peter, H.

    2015-09-01

    Aims: Coronal seismology is used extensively to estimate properties of the corona, e.g. the coronal magnetic field strength is derived from oscillations observed in coronal loops. We present a three-dimensional coronal simulation, including a realistic energy balance in which we observe oscillations of a loop in synthesised coronal emission. We use these results to test the inversions based on coronal seismology. Methods: From the simulation of the corona above an active region, we synthesise extreme ultraviolet emission from the model corona. From this, we derive maps of line intensity and Doppler shift providing synthetic data in the same format as obtained from observations. We fit the (Doppler) oscillation of the loop in the same fashion as done for observations to derive the oscillation period and damping time. Results: The loop oscillation seen in our model is similar to imaging and spectroscopic observations of the Sun. The velocity disturbance of the kink oscillation shows an oscillation period of 52.5 s and a damping time of 125 s, which are both consistent with the ranges of periods and damping times found in observations. Using standard coronal seismology techniques, we find an average magnetic field strength of Bkink = 79 G for our loop in the simulation, while in the loop the field strength drops from roughly 300 G at the coronal base to 50 G at the apex. Using the data from our simulation, we can infer what the average magnetic field derived from coronal seismology actually means. It is close to the magnetic field strength in a constant cross-section flux tube, which would give the same wave travel time through the loop. Conclusions: Our model produced a realistic looking loop-dominated corona, and provides realistic information on the oscillation properties that can be used to calibrate and better understand the result from coronal seismology. A movie associated with Fig. 1 is available in electronic form at http://www.aanda.org

  13. Latent Heating Retrieval from TRMM Observations Using a Simplified Thermodynamic Model

    NASA Technical Reports Server (NTRS)

    Grecu, Mircea; Olson, William S.

    2003-01-01

    A procedure for the retrieval of hydrometeor latent heating from TRMM active and passive observations is presented. The procedure is based on current methods for estimating multiple-species hydrometeor profiles from TRMM observations. The species include: cloud water, cloud ice, rain, and graupel (or snow). A three-dimensional wind field is prescribed based on the retrieved hydrometeor profiles, and, assuming a steady-state, the sources and sinks in the hydrometeor conservation equations are determined. Then, the momentum and thermodynamic equations, in which the heating and cooling are derived from the hydrometeor sources and sinks, are integrated one step forward in time. The hydrometeor sources and sinks are reevaluated based on the new wind field, and the momentum and thermodynamic equations are integrated one more step. The reevalution-integration process is repeated until a steady state is reached. The procedure is tested using cloud model simulations. Cloud-model derived fields are used to synthesize TRMM observations, from which hydrometeor profiles are derived. The procedure is applied to the retrieved hydrometeor profiles, and the latent heating estimates are compared to the actual latent heating produced by the cloud model. Examples of procedure's applications to real TRMM data are also provided.

  14. Relativistic many-body bound systems: electromagnetic properties. Monograph report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Danos, M.; Gillet, V.

    1977-04-01

    The formulae for the calculation of the electron scattering form factors, and of the static magnetic dipole and electric quadrupole moments, of relativistic many-body bound systems are derived. The framework, given in NBS Monograph 147, is relativistic quantum field theory in the Schrodinger picture; the physical particles, i.e., the solutions of the interacting fields, are given as linear combinations of the solutions of the free fields, called the parton fields. The parton--photon interaction is taken as given by minimal coupling. In addition, the contribution of the photon--vector meson vertex of the vector dominance model is derived.

  15. Parsec-Scale Obscuring Accretion Disk with Large-Scale Magnetic Field in AGNs

    NASA Technical Reports Server (NTRS)

    Dorodnitsyn, A.; Kallman, T.

    2017-01-01

    A magnetic field dragged from the galactic disk, along with inflowing gas, can provide vertical support to the geometrically and optically thick pc (parsec) -scale torus in AGNs (Active Galactic Nuclei). Using the Soloviev solution initially developed for Tokamaks, we derive an analytical model for a rotating torus that is supported and confined by a magnetic field. We further perform three-dimensional magneto-hydrodynamic simulations of X-ray irradiated, pc-scale, magnetized tori. We follow the time evolution and compare models that adopt initial conditions derived from our analytic model with simulations in which the initial magnetic flux is entirely contained within the gas torus. Numerical simulations demonstrate that the initial conditions based on the analytic solution produce a longer-lived torus that produces obscuration that is generally consistent with observed constraints.

  16. A general radiation model for sound fields and nearfield acoustical holography in wedge propagation spaces.

    PubMed

    Hoffmann, Falk-Martin; Fazi, Filippo Maria; Williams, Earl G; Fontana, Simone

    2017-09-01

    In this work an expression for the solution of the Helmholtz equation for wedge spaces is derived. Such propagation spaces represent scenarios for many acoustical problems where a free field assumption is not eligible. The proposed sound field model is derived from the general solution of the wave equation in cylindrical coordinates, using sets of orthonormal basis functions. The latter are modified to satisfy several boundary conditions representing the reflective behaviour of wedge-shaped propagation spaces. This formulation is then used in the context of nearfield acoustical holography (NAH) and to obtain the expression of the Neumann Green function. The model and its suitability for NAH is demonstrated through both numerical simulations and measured data, where the latter was acquired for the specific case of a loudspeaker on a hemi-cylindrical rigid baffle.

  17. Parsec-scale Obscuring Accretion Disk with Large-scale Magnetic Field in AGNs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dorodnitsyn, A.; Kallman, T.

    A magnetic field dragged from the galactic disk, along with inflowing gas, can provide vertical support to the geometrically and optically thick pc-scale torus in AGNs. Using the Soloviev solution initially developed for Tokamaks, we derive an analytical model for a rotating torus that is supported and confined by a magnetic field. We further perform three-dimensional magneto-hydrodynamic simulations of X-ray irradiated, pc-scale, magnetized tori. We follow the time evolution and compare models that adopt initial conditions derived from our analytic model with simulations in which the initial magnetic flux is entirely contained within the gas torus. Numerical simulations demonstrate thatmore » the initial conditions based on the analytic solution produce a longer-lived torus that produces obscuration that is generally consistent with observed constraints.« less

  18. Evaluation of Latent Heat Flux Fields from Satellites and Models during SEMAPHORE.

    NASA Astrophysics Data System (ADS)

    Bourras, Denis; Liu, W. Timothy; Eymard, Laurence; Tang, Wenqing

    2003-02-01

    Latent heat fluxes were derived from satellite observations in the region of Structure des Echanges Mer-Atmosphère, Propriétés des Hétérogénéités Océaniques: Recherche Expérimentale (SEMAPHORE), which was conducted near the Azores islands in the North Atlantic Ocean in autumn of 1993. The satellite fluxes were compared with output fields of two atmospheric circulation models and in situ measurements. The rms error of the instantaneous satellite fluxes is between 35 and 40 W m-2 and the bias is 60-85 W m-2. The large bias is mainly attributed to a bias in satellite-derived atmospheric humidity and is related to the particular shape of the vertical humidity profiles during SEMAPHORE. The bias in humidity implies that the range of estimated fluxes is smaller than the range of ship fluxes, by 34%-38%. The rms errors for fluxes from models are 30-35 W m-2, and the biases are smaller than the biases in satellite fluxes (14-18 W m-2). Two case studies suggest that the satellites detect horizontal gradients of wind speed and specific humidity if the magnitude of the gradients exceeds a detection threshold, which is 1.27 g kg-1 (100 km)-1 for specific humidity and between 0.35 and 0.82 m s-1 (30 km)-1 for wind speed. In contrast, the accuracy of the spatial gradients of bulk variables from models always varies as a function of the location and number of assimilated observations. A comparison between monthly fluxes from satellites and models reveals that satellite-derived flux anomaly fields are consistent with reanalyzed fields, whereas operational model products lack part of the mesoscale structures present in the satellite fields.

  19. Domain-averaged snow depth over complex terrain from flat field measurements

    NASA Astrophysics Data System (ADS)

    Helbig, Nora; van Herwijnen, Alec

    2017-04-01

    Snow depth is an important parameter for a variety of coarse-scale models and applications, such as hydrological forecasting. Since high-resolution snow cover models are computational expensive, simplified snow models are often used. Ground measured snow depth at single stations provide a chance for snow depth data assimilation to improve coarse-scale model forecasts. Snow depth is however commonly recorded at so-called flat fields, often in large measurement networks. While these ground measurement networks provide a wealth of information, various studies questioned the representativity of such flat field snow depth measurements for the surrounding topography. We developed two parameterizations to compute domain-averaged snow depth for coarse model grid cells over complex topography using easy to derive topographic parameters. To derive the two parameterizations we performed a scale dependent analysis for domain sizes ranging from 50m to 3km using highly-resolved snow depth maps at the peak of winter from two distinct climatic regions in Switzerland and in the Spanish Pyrenees. The first, simpler parameterization uses a commonly applied linear lapse rate. For the second parameterization, we first removed the obvious elevation gradient in mean snow depth, which revealed an additional correlation with the subgrid sky view factor. We evaluated domain-averaged snow depth derived with both parameterizations using flat field measurements nearby with the domain-averaged highly-resolved snow depth. This revealed an overall improved performance for the parameterization combining a power law elevation trend scaled with the subgrid parameterized sky view factor. We therefore suggest the parameterization could be used to assimilate flat field snow depth into coarse-scale snow model frameworks in order to improve coarse-scale snow depth estimates over complex topography.

  20. Raft River Geothermal Area Data Models - Conceptual, Logical and Fact Models

    DOE Data Explorer

    Cuyler, David

    2012-07-19

    Conceptual and Logical Data Model for Geothermal Data Concerning Wells, Fields, Power Plants and Related Analyses at Raft River a. Logical Model for Geothermal Data Concerning Wells, Fields, Power Plants and Related Analyses, David Cuyler 2010 b. Fact Model for Geothermal Data Concerning Wells, Fields, Power Plants and Related Analyses, David Cuyler 2010 Derived from Tables, Figures and other Content in Reports from the Raft River Geothermal Project: "Technical Report on the Raft River Geothermal Resource, Cassia County, Idaho," GeothermEx, Inc., August 2002. "Results from the Short-Term Well Testing Program at the Raft River Geothermal Field, Cassia County, Idaho," GeothermEx, Inc., October 2004.

  1. Assessment of Required Accuracy of Digital Elevation Data for Hydrologic Modeling

    NASA Technical Reports Server (NTRS)

    Kenward, T.; Lettenmaier, D. P.

    1997-01-01

    The effect of vertical accuracy of Digital Elevation Models (DEMs) on hydrologic models is evaluated by comparing three DEMs and resulting hydrologic model predictions applied to a 7.2 sq km USDA - ARS watershed at Mahantango Creek, PA. The high resolution (5 m) DEM was resempled to a 30 m resolution using method that constrained the spatial structure of the elevations to be comparable with the USGS and SIR-C DEMs. This resulting 30 m DEM was used as the reference product for subsequent comparisons. Spatial fields of directly derived quantities, such as elevation differences, slope, and contributing area, were compared to the reference product, as were hydrologic model output fields derived using each of the three DEMs at the common 30 m spatial resolution.

  2. Modeling ultrashort electromagnetic pulses with a generalized Kadomtsev-Petviashvili equation

    NASA Astrophysics Data System (ADS)

    Hofstrand, A.; Moloney, J. V.

    2018-03-01

    In this paper we derive a properly scaled model for the nonlinear propagation of intense, ultrashort, mid-infrared electromagnetic pulses (10-100 femtoseconds) through an arbitrary dispersive medium. The derivation results in a generalized Kadomtsev-Petviashvili (gKP) equation. In contrast to envelope-based models such as the Nonlinear Schrödinger (NLS) equation, the gKP equation describes the dynamics of the field's actual carrier wave. It is important to resolve these dynamics when modeling ultrashort pulses. We proceed by giving an original proof of sufficient conditions on the initial pulse for a singularity to form in the field after a finite propagation distance. The model is then numerically simulated in 2D using a spectral-solver with initial data and physical parameters highlighting our theoretical results.

  3. Phenomenology of the N = 3 Lee-Wick Standard Model

    NASA Astrophysics Data System (ADS)

    TerBeek, Russell Henry

    With the discovery of the Higgs Boson in 2012, particle physics has decidedly moved beyond the Standard Model into a new epoch. Though the Standard Model particle content is now completely accounted for, there remain many theoretical issues about the structure of the theory in need of resolution. Among these is the hierarchy problem: since the renormalized Higgs mass receives quadratic corrections from a higher cutoff scale, what keeps the Higgs boson light? Many possible solutions to this problem have been advanced, such as supersymmetry, Randall-Sundrum models, or sub-millimeter corrections to gravity. One such solution has been advanced by the Lee-Wick Standard Model. In this theory, higher-derivative operators are added to the Lagrangian for each Standard Model field, which result in propagators that possess two physical poles and fall off more rapidly in the ultraviolet regime. It can be shown by an auxiliary field transformation that the higher-derivative theory is identical to positing a second, manifestly renormalizable theory in which new fields with opposite-sign kinetic and mass terms are found. These so-called Lee-Wick fields have opposite-sign propagators, and famously cancel off the quadratic divergences that plague the renormalized Higgs mass. The states in the Hilbert space corresponding to Lee-Wick particles have negative norm, and implications for causality and unitarity are examined. This dissertation explores a variant of the theory called the N = 3 Lee-Wick Standard Model. The Lagrangian of this theory features a yet-higher derivative operator, which produces a propagator with three physical poles and possesses even better high-energy behavior than the minimal Lee-Wick theory. An analogous auxiliary field transformation takes this higher-derivative theory into a renormalizable theory with states of alternating positive, negative, and positive norm. The phenomenology of this theory is examined in detail, with particular emphasis on the collider signatures of Lee-Wick particles, electroweak precision constraints on the masses that the new particles can take on, and scenarios in early-universe cosmology in which Lee-Wick particles can play a significant role.

  4. Coherent and partially coherent dark hollow beams with rectangular symmetry and paraxial propagation properties

    NASA Astrophysics Data System (ADS)

    Cai, Yangjian; Zhang, Lei

    2006-07-01

    A theoretical model is proposed to describe coherent dark hollow beams (DHBs) with rectangular symmetry. The electric field of a coherent rectangular DHB is expressed as a superposition of a series of the electric field of a finite series of fundamental Gaussian beams. Analytical propagation formulas for a coherent rectangular DHB passing through paraxial optical systems are derived in a tensor form. Furthermore, for the more general case, we propose a theoretical model to describe a partially coherent rectangular DHB. Analytical propagation formulas for a partially coherent rectangular DHB passing through paraxial optical systems are derived. The beam propagation factor (M2 factor) for both coherent and partially coherent rectangular DHBs are studied. Numerical examples are given by using the derived formulas. Our models and method provide an effective way to describe and treat the propagation of coherent and partially coherent rectangular DHBs.

  5. The problem of deriving the field-induced thermal emission in Poole-Frenkel theories

    NASA Astrophysics Data System (ADS)

    Ongaro, R.; Pillonnet, A.

    1992-10-01

    A discussion is made of the legitimity of implementing the usual model of field-assisted release of electrons, over the lowered potential barrier of donors. It is stressed that no reliable interpretation can avail for the usual modelling of wells, on which Poole-Frenkel (PF) derivations are established. This is so because there does not seem to exist reliable ways of implanting a Coulomb potential well in the gap of a material. In an attempt to bridge the gap between the classical potential-energy approaches and the total-energy approach of Mahapatra and Roy, a Bohr-type model of wells is proposed. In addition, a brief review of quantum treatments of electronic transport in materials is presented, in order to see if more reliable ways of approaching PF effect can be derived on undisputable bases. Finally, it is concluded that, presently, PF effect can be established safely neither theoretically nor experimentally.

  6. Partially composite particle physics with and without supersymmetry

    NASA Astrophysics Data System (ADS)

    Kramer, Thomas A.

    Theories in which the Standard Model fields are partially compositeness provide elegant and phenomenologically viable solutions to the Hierarchy Problem. In this thesis we will study types of models from two different perspectives. We first derive an effective field theory describing the interactions of the Standard Models fields with their lightest composite partners based on two weakly coupled sectors. Technically, via the AdS/CFT correspondence, our model is dual to a highly deconstructed theory with a single warped extra-dimension. This two sector theory provides a simplified approach to the phenomenology of this important class of theories. We then use this effective field theoretic approach to study models with weak scale accidental supersymmetry. Particularly, we will investigate the possibility that the Standard Model Higgs field is a member of a composite supersymmetric sector interacting weakly with the known Standard Model fields.

  7. Further along the Road Less Traveled: AMBER ff15ipq, an Original Protein Force Field Built on a Self-Consistent Physical Model

    PubMed Central

    2016-01-01

    We present the AMBER ff15ipq force field for proteins, the second-generation force field developed using the Implicitly Polarized Q (IPolQ) scheme for deriving implicitly polarized atomic charges in the presence of explicit solvent. The ff15ipq force field is a complete rederivation including more than 300 unique atomic charges, 900 unique torsion terms, 60 new angle parameters, and new atomic radii for polar hydrogens. The atomic charges were derived in the context of the SPC/Eb water model, which yields more-accurate rotational diffusion of proteins and enables direct calculation of nuclear magnetic resonance (NMR) relaxation parameters from molecular dynamics simulations. The atomic radii improve the accuracy of modeling salt bridge interactions relative to contemporary fixed-charge force fields, rectifying a limitation of ff14ipq that resulted from its use of pair-specific Lennard-Jones radii. In addition, ff15ipq reproduces penta-alanine J-coupling constants exceptionally well, gives reasonable agreement with NMR relaxation rates, and maintains the expected conformational propensities of structured proteins/peptides, as well as disordered peptides—all on the microsecond (μs) time scale, which is a critical regime for drug design applications. These encouraging results demonstrate the power and robustness of our automated methods for deriving new force fields. All parameters described here and the mdgx program used to fit them are included in the AmberTools16 distribution. PMID:27399642

  8. Confinement Driven by Scalar Field in 4d Non Abelian Gauge Theories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chabab, Mohamed

    2007-01-12

    We review some of the most recent work on confinement in 4d gauge theories with a massive scalar field (dilaton). Emphasis is put on the derivation of confining analytical solutions to the Coulomb problem versus dilaton effective couplings to gauge terms. It is shown that these effective theories can be relevant to model quark confinement and may shed some light on confinement mechanism. Moreover, the study of interquark potential, derived from Dick Model, in the heavy meson sector proves that phenomenological investigation of tmechanism is more than justified and deserves more efforts.

  9. Higher derivative extensions of 3 d Chern-Simons models: conservation laws and stability

    NASA Astrophysics Data System (ADS)

    Kaparulin, D. S.; Karataeva, I. Yu.; Lyakhovich, S. L.

    2015-11-01

    We consider the class of higher derivative 3 d vector field models with the field equation operator being a polynomial of the Chern-Simons operator. For the nth-order theory of this type, we provide a general recipe for constructing n-parameter family of conserved second rank tensors. The family includes the canonical energy-momentum tensor, which is unbounded, while there are bounded conserved tensors that provide classical stability of the system for certain combinations of the parameters in the Lagrangian. We also demonstrate the examples of consistent interactions which are compatible with the requirement of stability.

  10. Third harmonic ac susceptibility of superconductors with finite thickness

    NASA Astrophysics Data System (ADS)

    Qin, M. J.; Ong, C. K.

    Third harmonic ac susceptibility of superconducting strips with finite thickness in perpendicularly applied magnetic field Ha = H0 sin(ω t) have been calculated. The flux creep effect is taken into account by using a power-law electric field E( j) = Ec( j/ jc) n. Results for different thicknesses and creep exponents n have been derived and compared to the results derived from the Bean critical state model.

  11. Derivation of a hydrodynamic theory for mesoscale dynamics in microswimmer suspensions

    NASA Astrophysics Data System (ADS)

    Reinken, Henning; Klapp, Sabine H. L.; Bär, Markus; Heidenreich, Sebastian

    2018-02-01

    In this paper, we systematically derive a fourth-order continuum theory capable of reproducing mesoscale turbulence in a three-dimensional suspension of microswimmers. We start from overdamped Langevin equations for a generic microscopic model (pushers or pullers), which include hydrodynamic interactions on both small length scales (polar alignment of neighboring swimmers) and large length scales, where the solvent flow interacts with the order parameter field. The flow field is determined via the Stokes equation supplemented by an ansatz for the stress tensor. In addition to hydrodynamic interactions, we allow for nematic pair interactions stemming from excluded-volume effects. The results here substantially extend and generalize earlier findings [S. Heidenreich et al., Phys. Rev. E 94, 020601 (2016), 10.1103/PhysRevE.94.020601], in which we derived a two-dimensional hydrodynamic theory. From the corresponding mean-field Fokker-Planck equation combined with a self-consistent closure scheme, we derive nonlinear field equations for the polar and the nematic order parameter, involving gradient terms of up to fourth order. We find that the effective microswimmer dynamics depends on the coupling between solvent flow and orientational order. For very weak coupling corresponding to a high viscosity of the suspension, the dynamics of mesoscale turbulence can be described by a simplified model containing only an effective microswimmer velocity.

  12. Scattering and; Delay, Scale, and Sum Migration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lehman, S K

    How do we see? What is the mechanism? Consider standing in an open field on a clear sunny day. In the field are a yellow dog and a blue ball. From a wave-based remote sensing point of view the sun is a source of radiation. It is a broadband electromagnetic source which, for the purposes of this introduction, only the visible spectrum is considered (approximately 390 to 750 nanometers or 400 to 769 TeraHertz). The source emits an incident field into the known background environment which, for this example, is free space. The incident field propagates until it strikes anmore » object or target, either the yellow dog or the blue ball. The interaction of the incident field with an object results in a scattered field. The scattered field arises from a mis-match between the background refractive index, considered to be unity, and the scattering object refractive index ('yellow' for the case of the dog, and 'blue' for the ball). This is also known as an impedance mis-match. The scattering objects are referred to as secondary sources of radiation, that radiation being the scattered field which propagates until it is measured by the two receivers known as 'eyes'. The eyes focus the measured scattered field to form images which are processed by the 'wetware' of the brain for detection, identification, and localization. When time series representations of the measured scattered field are available, the image forming focusing process can be mathematically modeled by delayed, scaled, and summed migration. This concept of optical propagation, scattering, and focusing have one-to-one equivalents in the acoustic realm. This document is intended to present the basic concepts of scalar scattering and migration used in wide band wave-based remote sensing and imaging. The terms beamforming and (delayed, scaled, and summed) migration are used interchangeably but are to be distinguished from the narrow band (frequency domain) beamforming to determine the direction of arrival of a signal, and seismic migration in which wide band time series are shifted but not to form images per se. Section 3 presents a mostly graphically-based motivation and summary of delay, scale, and sum beamforming. The model for incident field propagation in free space is derived in Section 4 under specific assumptions. General object scattering is derived in Section 5 and simplified under the Born approximation in Section 6. The model of this section serves as the basis in the derivation of time-domain migration. The Foldy-Lax, full point scatterer scattering, method is derived in Section 7. With the previous forward models in hand, delay, scale, and sum beamforming is derived in Section 8. Finally, proof-of-principle experiments are present in Section 9.« less

  13. Initial geomagnetic field model from MAGSAT

    NASA Technical Reports Server (NTRS)

    Langel, R. A.; Estes, R. H.; Mead, G. D.; Fabiano, E. B.; Lancaster, E. R.

    1980-01-01

    Magsat data from magnetically quiet days were used to derive a thirteenth degree and order spherical harmonic geomagnetic field model, MGST(3/80). The model utilized both scalar and vector data and fit that data with standard deviations of 8, 52, 55 and 97 nT for the scalar magnitude, B sub r, B sub theta and B sub phi respectively. When compared with earlier models, the Earth's dipole moment continues to decrease at a rate of about 26 nT/year. Evaluation of earlier models with Magsat data shows that the scalar field at the Magsat epoch is best predicted by the POGO(2/72) model but that the AWC/75 and IGS/75 are better for predicting vector fields.

  14. Vector Galileon and inflationary magnetogenesis

    NASA Astrophysics Data System (ADS)

    Nandi, Debottam; Shankaranarayanan, S.

    2018-01-01

    Cosmological inflation provides the initial conditions for the structure formation. However, the origin of large-scale magnetic fields can not be addressed in this framework. The key issue for this long-standing problem is the conformal invariance of the electromagnetic (EM) field in 4-D. While many approaches have been proposed in the literature for breaking conformal invariance of the EM action, here, we provide a completely new way of looking at the modifications to the EM action and generation of primordial magnetic fields during inflation. We explicitly construct a higher derivative EM action that breaks conformal invariance by demanding three conditions—theory be described by vector potential Aμ and its derivatives, Gauge invariance be satisfied, and equations of motion be linear in second derivatives of vector potential. The unique feature of our model is that appreciable magnetic fields are generated at small wavelengths while tiny magnetic fields are generated at large wavelengths that are consistent with current observations.

  15. Bounds on quantum collapse models from matter-wave interferometry: calculational details

    NASA Astrophysics Data System (ADS)

    Toroš, Marko; Bassi, Angelo

    2018-03-01

    We present a simple derivation of the interference pattern in matter-wave interferometry predicted by a class of quantum master equations. We apply the obtained formulae to the following collapse models: the Ghirardi-Rimini-Weber (GRW) model, the continuous spontaneous localization (CSL) model together with its dissipative (dCSL) and non-Markovian generalizations (cCSL), the quantum mechanics with universal position localization (QMUPL), and the Diósi-Penrose (DP) model. We discuss the separability of the dynamics of the collapse models along the three spatial directions, the validity of the paraxial approximation, and the amplification mechanism. We obtain analytical expressions both in the far field and near field limits. These results agree with those already derived in the Wigner function formalism. We compare the theoretical predictions with the experimental data from two recent matter-wave experiments: the 2012 far-field experiment of Juffmann T et al (2012 Nat. Nanotechnol. 7 297-300) and the 2013 Kapitza-Dirac-Talbot-Lau (KDTL) near-field experiment of Eibenberger et al (2013 Phys. Chem. Chem. Phys. 15 14696-700). We show the region of the parameter space for each collapse model that is excluded by these experiments. We show that matter-wave experiments provide model-insensitive bounds that are valid for a wide family of dissipative and non-Markovian generalizations.

  16. Validation of a new plasmapause model derived from CHAMP field-aligned current signatures

    NASA Astrophysics Data System (ADS)

    Heilig, Balázs; Darrouzet, Fabien; Vellante, Massimo; Lichtenberger, János; Lühr, Hermann

    2014-05-01

    Recently a new model for the plasmapause location in the equatorial plane was introduced based on magnetic field observations made by the CHAMP satellite in the topside ionosphere (Heilig and Lühr, 2013). Related signals are medium-scale field-aligned currents (MSFAC) (some 10km scale size). An empirical model for the MSFAC boundary was developed as a function of Kp and MLT. The MSFAC model then was compared to in situ plasmapause observations of IMAGE RPI. By considering this systematic displacement resulting from this comparison and by taking into account the diurnal variation and Kp-dependence of the residuals an empirical model of the plasmapause location that is based on MSFAC measurements from CHAMP was constructed. As a first step toward validation of the new plasmapause model we used in-situ (Van Allen Probes/EMFISIS, Cluster/WHISPER) and ground based (EMMA) plasma density observations. Preliminary results show a good agreement in general between the model and observations. Some observed differences stem from the different definitions of the plasmapause. A more detailed validation of the method can take place as soon as SWARM and VAP data become available. Heilig, B., and H. Lühr (2013) New plasmapause model derived from CHAMP field-aligned current signatures, Ann. Geophys., 31, 529-539, doi:10.5194/angeo-31-529-2013

  17. Planetary Gravity Fields and Their Impact on a Spacecraft Trajectory

    NASA Technical Reports Server (NTRS)

    Weinwurm, G.; Weber, R.

    2005-01-01

    The present work touches an interdisciplinary aspect of space exploration: the improvement of spacecraft navigation by means of enhanced planetary interior model derivation. The better the bodies in our solar system are known and modelled, the more accurately (and safely) a spacecraft can be navigated. In addition, the information about the internal structure of a planet, moon or any other planetary body can be used in arguments for different theories of solar system evolution. The focus of the work lies in a new approach for modelling the gravity field of small planetary bodies: the implementation of complex ellipsoidal coordinates (figure 1, [4]) for irregularly shaped bodies that cannot be represented well by a straightforward spheroidal approach. In order to carry out the required calculations the computer programme GRASP (Gravity Field of a Planetary Body and its Influence on a Spacecraft Trajectory) has been developed [5]. The programme furthermore allows deriving the impact of the body s gravity field on a spacecraft trajectory and thus permits predictions for future space mission flybys.

  18. CORONAL MAGNETIC FIELDS DERIVED FROM SIMULTANEOUS MICROWAVE AND EUV OBSERVATIONS AND COMPARISON WITH THE POTENTIAL FIELD MODEL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miyawaki, Shun; Nozawa, Satoshi; Iwai, Kazumasa

    2016-02-10

    We estimated the accuracy of coronal magnetic fields derived from radio observations by comparing them to potential field calculations and the differential emission measure measurements using EUV observations. We derived line-of-sight components of the coronal magnetic field from polarization observations of the thermal bremsstrahlung in the NOAA active region 11150, observed around 3:00 UT on 2011 February 3 using the Nobeyama Radioheliograph at 17 GHz. Because the thermal bremsstrahlung intensity at 17 GHz includes both chromospheric and coronal components, we extracted only the coronal component by measuring the coronal emission measure in EUV observations. In addition, we derived only themore » radio polarization component of the corona by selecting the region of coronal loops and weak magnetic field strength in the chromosphere along the line of sight. The upper limits of the coronal longitudinal magnetic fields were determined as 100–210 G. We also calculated the coronal longitudinal magnetic fields from the potential field extrapolation using the photospheric magnetic field obtained from the Helioseismic and Magnetic Imager. However, the calculated potential fields were certainly smaller than the observed coronal longitudinal magnetic field. This discrepancy between the potential and the observed magnetic field strengths can be explained consistently by two reasons: (1) the underestimation of the coronal emission measure resulting from the limitation of the temperature range of the EUV observations, and (2) the underestimation of the coronal magnetic field resulting from the potential field assumption.« less

  19. The Crust of Mercury After the MESSENGER Gravity Investigation

    NASA Astrophysics Data System (ADS)

    Mazarico, E.; Genova, A.; Goossens, S.; Neumann, G. A.; Smith, D. E.; Zuber, M. T.

    2018-05-01

    We present the results of an improved analysis of the entire MESSENGER radio tracking dataset to derive key geophysical parameters of Mercury such as its gravity field. In particular, we derive and interpret a new crustal thickness model.

  20. Dynamics of atom-field entanglement for Tavis-Cummings models

    NASA Astrophysics Data System (ADS)

    Bashkirov, Eugene K.

    2018-04-01

    An exact solution of the problem of two-atom one- and two-mode Jaynes-Cummings model with intensity- dependent coupling is presented. Asymptotic solutions for system state vectors are obtained in the approximation of large initial coherent fields. The atom-field entanglement is investigated on the basis of the reduced atomic entropy dynamics. The possibility of the system being initially in a pure disentangled state to revive into this state during the evolution process for both models is shown. Conditions and times of disentanglement are derived.

  1. Gauge-independent decoherence models for solids in external fields

    NASA Astrophysics Data System (ADS)

    Wismer, Michael S.; Yakovlev, Vladislav S.

    2018-04-01

    We demonstrate gauge-invariant modeling of an open system of electrons in a periodic potential interacting with an optical field. For this purpose, we adapt the covariant derivative to the case of mixed states and put forward a decoherence model that has simple analytical forms in the length and velocity gauges. We demonstrate our methods by calculating harmonic spectra in the strong-field regime and numerically verifying the equivalence of the deterministic master equation to the stochastic Monte Carlo wave-function method.

  2. Do lab-derived distribution coefficient values of pesticides match distribution coefficient values determined from column and field-scale experiments? A critical analysis of relevant literature.

    PubMed

    Vereecken, H; Vanderborght, J; Kasteel, R; Spiteller, M; Schäffer, A; Close, M

    2011-01-01

    In this study, we analyzed sorption parameters for pesticides that were derived from batch and column or batch and field experiments. The batch experiments analyzed in this study were run with the same pesticide and soil as in the column and field experiments. We analyzed the relationship between the pore water velocity of the column and field experiments, solute residence times, and sorption parameters, such as the organic carbon normalized distribution coefficient ( ) and the mass exchange coefficient in kinetic models, as well as the predictability of sorption parameters from basic soil properties. The batch/column analysis included 38 studies with a total of 139 observations. The batch/field analysis included five studies, resulting in a dataset of 24 observations. For the batch/column data, power law relationships between pore water velocity, residence time, and sorption constants were derived. The unexplained variability in these equations was reduced, taking into account the saturation status and the packing status (disturbed-undisturbed) of the soil sample. A new regression equation was derived that allows estimating the values derived from column experiments using organic matter and bulk density with an value of 0.56. Regression analysis of the batch/column data showed that the relationship between batch- and column-derived values depends on the saturation status and packing of the soil column. Analysis of the batch/field data showed that as the batch-derived value becomes larger, field-derived values tend to be lower than the corresponding batch-derived values, and vice versa. The present dataset also showed that the variability in the ratio of batch- to column-derived value increases with increasing pore water velocity, with a maximum value approaching 3.5. American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America.

  3. Generalized group field theories and quantum gravity transition amplitudes

    NASA Astrophysics Data System (ADS)

    Oriti, Daniele

    2006-03-01

    We construct a generalized formalism for group field theories, in which the domain of the field is extended to include additional proper time variables, as well as their conjugate mass variables. This formalism allows for different types of quantum gravity transition amplitudes in perturbative expansion, and we show how both causal spin foam models and the usual a-causal ones can be derived from it, within a sum over triangulations of all topologies. We also highlight the relation of the so-derived causal transition amplitudes with simplicial gravity actions.

  4. Certification Study of a Derivative Model of a Small Jet Transport Airplane Using a Piloted Research Simulator

    DTIC Science & Technology

    1977-06-01

    RESEARCH SIMULATOR • RAYMOND 0. FORREST SYSTEMS RESEARCH AND DEVELOPMENT SERVICE FEDERAL AVIATION ADMINISTRATION AMES RESEARCH CENTER MOFFE1T FIELD ...25 M o f f e t t Field , CA 94035 13. T ype of Repor t and P.r.od Co o er ed 12 . Sponsorrng Ar en cy Na me and Add eis ___________ U . S...dynamic stability derivatives of a complete airplane . The method utilizes potential flow theory to compute the surface flow fields and pressures on any

  5. Mean-field models for heterogeneous networks of two-dimensional integrate and fire neurons.

    PubMed

    Nicola, Wilten; Campbell, Sue Ann

    2013-01-01

    We analytically derive mean-field models for all-to-all coupled networks of heterogeneous, adapting, two-dimensional integrate and fire neurons. The class of models we consider includes the Izhikevich, adaptive exponential and quartic integrate and fire models. The heterogeneity in the parameters leads to different moment closure assumptions that can be made in the derivation of the mean-field model from the population density equation for the large network. Three different moment closure assumptions lead to three different mean-field systems. These systems can be used for distinct purposes such as bifurcation analysis of the large networks, prediction of steady state firing rate distributions, parameter estimation for actual neurons and faster exploration of the parameter space. We use the mean-field systems to analyze adaptation induced bursting under realistic sources of heterogeneity in multiple parameters. Our analysis demonstrates that the presence of heterogeneity causes the Hopf bifurcation associated with the emergence of bursting to change from sub-critical to super-critical. This is confirmed with numerical simulations of the full network for biologically reasonable parameter values. This change decreases the plausibility of adaptation being the cause of bursting in hippocampal area CA3, an area with a sizable population of heavily coupled, strongly adapting neurons.

  6. Mean-field models for heterogeneous networks of two-dimensional integrate and fire neurons

    PubMed Central

    Nicola, Wilten; Campbell, Sue Ann

    2013-01-01

    We analytically derive mean-field models for all-to-all coupled networks of heterogeneous, adapting, two-dimensional integrate and fire neurons. The class of models we consider includes the Izhikevich, adaptive exponential and quartic integrate and fire models. The heterogeneity in the parameters leads to different moment closure assumptions that can be made in the derivation of the mean-field model from the population density equation for the large network. Three different moment closure assumptions lead to three different mean-field systems. These systems can be used for distinct purposes such as bifurcation analysis of the large networks, prediction of steady state firing rate distributions, parameter estimation for actual neurons and faster exploration of the parameter space. We use the mean-field systems to analyze adaptation induced bursting under realistic sources of heterogeneity in multiple parameters. Our analysis demonstrates that the presence of heterogeneity causes the Hopf bifurcation associated with the emergence of bursting to change from sub-critical to super-critical. This is confirmed with numerical simulations of the full network for biologically reasonable parameter values. This change decreases the plausibility of adaptation being the cause of bursting in hippocampal area CA3, an area with a sizable population of heavily coupled, strongly adapting neurons. PMID:24416013

  7. Modeling and Simulation of the Gonghe geothermal field (Qinghai, China) Constrained by Geophysical

    NASA Astrophysics Data System (ADS)

    Zeng, Z.; Wang, K.; Zhao, X.; Huai, N.; He, R.

    2017-12-01

    The Gonghe geothermal field in Qinghai is important because of its variety of geothermal resource types. Now, the Gonghe geothermal field has been a demonstration area of geothermal development and utilization in China. It has been the topic of numerous geophysical investigations conducted to determine the depth to and the nature of the heat source, and to image the channel of heat flow. This work focuses on the causes of geothermal fields used numerical simulation method constrained by geophysical data. At first, by analyzing and inverting an magnetotelluric (MT) measurements profile across this area we obtain the deep resistivity distribution. Using the gravity anomaly inversion constrained by the resistivity profile, the density of the basins and the underlying rocks can be calculated. Combined with the measured parameters of rock thermal conductivity, the 2D geothermal conceptual model of Gonghe area is constructed. Then, the unstructured finite element method is used to simulate the heat conduction equation and the geothermal field. Results of this model were calibrated with temperature data for the observation well. A good match was achieved between the measured values and the model's predicted values. At last, geothermal gradient and heat flow distribution of this model are calculated(fig.1.). According to the results of geophysical exploration, there is a low resistance and low density region (d5) below the geothermal field. We recognize that this anomaly is generated by tectonic motion, and this tectonic movement creates a mantle-derived heat upstream channel. So that the anomalous basement heat flow values are higher than in other regions. The model's predicted values simulated using that boundary condition has a good match with the measured values. The simulated heat flow values show that the mantle-derived heat flow migrates through the boundary of the low-resistance low-density anomaly area to the Gonghe geothermal field, with only a small fraction moving to other regions. Therefore, the mantle-derived heat flow across the tectonic channel to the cohesive continuous supply heat for Gonghe geothermal field, is the main the main causes of abundant geothermal resources.

  8. Analytical model for fast reconnection in large guide field plasma configurations

    NASA Astrophysics Data System (ADS)

    Simakov, A. N.; Chacón, L.; Grasso, D.; Borgogno, D.; Zocco, A.

    2009-11-01

    Significant progress in understanding magnetic reconnection without a guide field was made recently by deriving quantitatively accurate analytical models for reconnection in electron [1] and Hall [2] MHD. However, no such analytical model is available for reconnection with a guide field. Here, we derive such an analytical model for the large-guide-field, low-β, cold-ion fluid model [3] with electron inertia, ion viscosity μ, and resistivity η. We find that the reconnection is Sweet-Parker-like when the Sweet-Parker layer thickness δSP> (ρs^4 + de^4)^1/4, with ρs and de the sound Larmor radius and electron inertial length. However, reconnection changes character otherwise, resulting in reconnection rates Ez/Bx^2 √2 η/μ (ρs^2 + de^2)/(ρsw) with Bx the upstream magnetic field and w the diffusion region length. Unlike the zero-guide-field case, μ plays crucial role in manifesting fast reconnection rates. If it represents the perpendicular viscosity [3], √η/μ ˜&-1circ;√(me/mi)(Ti/Te) and Ez becomes dissipation independent and therefore potentially fast.[0pt] [1] L. Chac'on, A. N. Simakov, and A. Zocco, PRL 99, 235001 (2007).[0pt] [2] A. N. Simakov and L. Chac'on, PRL 101, 105003 (2008).[0pt] [3] D. Biskamp, Magnetic reconnection in plasmas, Cambridge University Press, 2000.

  9. Cosmological implications of quantum corrections and higher-derivative extension

    NASA Astrophysics Data System (ADS)

    Chialva, Diego; Mazumdar, Anupam

    2015-02-01

    We discuss the challenges for the early universe cosmology from quantum corrections, and in particular higher-derivative terms, in the gravitational and inflaton sectors of the models. The work is divided in two parts. In the first one we review the already well-known issues due to quantum corrections to the inflaton potential, in particular focusing on chaotic/slow-roll single-field models. We will point out some issues concerning the proposed mechanisms to cope with the corrections, and also argue how the presence of higher-derivative corrections could be problematic for those mechanisms. In the second part we will more directly focus on higher-derivative corrections. We will show how, in order to discuss a number of high-energy phenomena relevant to inflation (such as its actual onset) one has to deal with energy scales where the derivative expansion breaks down, presenting problems such as quantum vacuum instability and ghosts. To discuss such phenomena in the convenient framework of the effective theory, one must then abandon the derivative expansion and resort to the full nonlocal formulation of the theory, which is in fact equivalent to re-integrating back the relevant physics, but with the benefit of using a more compact single-field formalism. Finally, we will briefly discuss possible advantages offered by the presence of higher derivatives and a nonlocal theory to build better controlled UV models of inflation.

  10. Bridging gaps: On the performance of airborne LiDAR to model wood mouse-habitat structure relationships in pine forests.

    PubMed

    Jaime-González, Carlos; Acebes, Pablo; Mateos, Ana; Mezquida, Eduardo T

    2017-01-01

    LiDAR technology has firmly contributed to strengthen the knowledge of habitat structure-wildlife relationships, though there is an evident bias towards flying vertebrates. To bridge this gap, we investigated and compared the performance of LiDAR and field data to model habitat preferences of wood mouse (Apodemus sylvaticus) in a Mediterranean high mountain pine forest (Pinus sylvestris). We recorded nine field and 13 LiDAR variables that were summarized by means of Principal Component Analyses (PCA). We then analyzed wood mouse's habitat preferences using three different models based on: (i) field PCs predictors, (ii) LiDAR PCs predictors; and (iii) both set of predictors in a combined model, including a variance partitioning analysis. Elevation was also included as a predictor in the three models. Our results indicate that LiDAR derived variables were better predictors than field-based variables. The model combining both data sets slightly improved the predictive power of the model. Field derived variables indicated that wood mouse was positively influenced by the gradient of increasing shrub cover and negatively affected by elevation. Regarding LiDAR data, two LiDAR PCs, i.e. gradients in canopy openness and complexity in forest vertical structure positively influenced wood mouse, although elevation interacted negatively with the complexity in vertical structure, indicating wood mouse's preferences for plots with lower elevations but with complex forest vertical structure. The combined model was similar to the LiDAR-based model and included the gradient of shrub cover measured in the field. Variance partitioning showed that LiDAR-based variables, together with elevation, were the most important predictors and that part of the variation explained by shrub cover was shared. LiDAR derived variables were good surrogates of environmental characteristics explaining habitat preferences by the wood mouse. Our LiDAR metrics represented structural features of the forest patch, such as the presence and cover of shrubs, as well as other characteristics likely including time since perturbation, food availability and predation risk. Our results suggest that LiDAR is a promising technology for further exploring habitat preferences by small mammal communities.

  11. Reconstructing f(R) gravity from a Chaplygin scalar field in de Sitter spacetimes

    NASA Astrophysics Data System (ADS)

    Sami, Heba; Namane, Neo; Ntahompagaze, Joseph; Elmardi, Maye; Abebe, Amare

    We present a reconstruction technique for models of f(R) gravity from the Chaplygin scalar field in flat de Sitter spacetimes. Exploiting the equivalence between f(R) gravity and scalar-tensor (ST) theories, and treating the Chaplygin gas (CG) as a scalar field model in a universe without conventional matter forms, the Lagrangian densities for the f(R) action are derived. Exact f(R) models and corresponding scalar field potentials are obtained for asymptotically de Sitter spacetimes in early and late cosmological expansion histories. It is shown that the reconstructed f(R) models all have General Relativity (GR) as a limiting solution.

  12. Temporal self-splitting of optical pulses

    NASA Astrophysics Data System (ADS)

    Ding, Chaoliang; Koivurova, Matias; Turunen, Jari; Pan, Liuzhan

    2018-05-01

    We present mathematical models for temporally and spectrally partially coherent pulse trains with Laguerre-Gaussian and Hermite-Gaussian Schell-model statistics as extensions of the standard Gaussian Schell model for pulse trains. We derive propagation formulas of both classes of pulsed fields in linearly dispersive media and in temporal optical systems. It is found that, in general, both types of fields exhibit time-domain self-splitting upon propagation. The Laguerre-Gaussian model leads to multiply peaked pulses, while the Hermite-Gaussian model leads to doubly peaked pulses, in the temporal far field (in dispersive media) or at the Fourier plane of a temporal system. In both model fields the character of the self-splitting phenomenon depends both on the degree of temporal and spectral coherence and on the power spectrum of the field.

  13. Tri-critical behavior of the Blume-Emery-Griffiths model on a Kagomé lattice: Effective-field theory and Rigorous bounds

    NASA Astrophysics Data System (ADS)

    Santos, Jander P.; Sá Barreto, F. C.

    2016-01-01

    Spin correlation identities for the Blume-Emery-Griffiths model on Kagomé lattice are derived and combined with rigorous correlation inequalities lead to upper bounds on the critical temperature. From the spin correlation identities the mean field approximation and the effective field approximation results for the magnetization, the critical frontiers and the tricritical points are obtained. The rigorous upper bounds on the critical temperature improve over those effective-field type theories results.

  14. Cumulant-based expressions for the multibody terms for the correlation between local and electrostatic interactions in the united-residue force field

    NASA Astrophysics Data System (ADS)

    Liwo, Adam; Czaplewski, Cezary; Pillardy, Jarosław; Scheraga, Harold A.

    2001-08-01

    A general method to derive site-site or united-residue potentials is presented. The basic principle of the method is the separation of the degrees of freedom of a system into the primary and secondary ones. The primary degrees of freedom describe the basic features of the system, while the secondary ones are averaged over when calculating the potential of mean force, which is hereafter referred to as the restricted free energy (RFE) function. The RFE can be factored into one-, two-, and multibody terms, using the cluster-cumulant expansion of Kubo. These factors can be assigned the functional forms of the corresponding lowest-order nonzero generalized cumulants, which can, in most cases, be evaluated analytically, after making some simplifying assumptions. This procedure to derive coarse-grain force fields is very valuable when applied to multibody terms, whose functional forms are hard to deduce in another way (e.g., from structural databases). After the functional forms have been derived, they can be parametrized based on the RFE surfaces of model systems obtained from all-atom models or on the statistics derived from structural databases. The approach has been applied to our united-residue force field for proteins. Analytical expressions were derived for the multibody terms pertaining to the correlation between local and electrostatic interactions within the polypeptide backbone; these expressions correspond to up to sixth-order terms in the cumulant expansion of the RFE. These expressions were subsequently parametrized by fitting to the RFEs of selected peptide fragments, calculated with the empirical conformational energy program for peptides force field. The new multibody terms enable not only the heretofore predictable α-helical segments, but also regular β-sheets, to form as the lowest-energy structures, as assessed by test calculations on a model helical protein A, as well as a model 20-residue polypeptide (betanova); the latter was not possible without introducing these new terms.

  15. BANYAN. IV. Fundamental parameters of low-mass star candidates in nearby young stellar kinematic groups—isochronal age determination using magnetic evolutionary models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Malo, Lison; Doyon, René; Albert, Loïc

    2014-09-01

    Based on high-resolution optical spectra obtained with ESPaDOnS at Canada-France-Hawaii Telescope, we determine fundamental parameters (T {sub eff}, R, L {sub bol}, log g, and metallicity) for 59 candidate members of nearby young kinematic groups. The candidates were identified through the BANYAN Bayesian inference method of Malo et al., which takes into account the position, proper motion, magnitude, color, radial velocity, and parallax (when available) to establish a membership probability. The derived parameters are compared to Dartmouth magnetic evolutionary models and field stars with the goal of constraining the age of our candidates. We find that, in general, low-mass starsmore » in our sample are more luminous and have inflated radii compared to older stars, a trend expected for pre-main-sequence stars. The Dartmouth magnetic evolutionary models show a good fit to observations of field K and M stars, assuming a magnetic field strength of a few kG, as typically observed for cool stars. Using the low-mass members of the β Pictoris moving group, we have re-examined the age inconsistency problem between lithium depletion age and isochronal age (Hertzspring-Russell diagram). We find that the inclusion of the magnetic field in evolutionary models increases the isochronal age estimates for the K5V-M5V stars. Using these models and field strengths, we derive an average isochronal age between 15 and 28 Myr and we confirm a clear lithium depletion boundary from which an age of 26 ± 3 Myr is derived, consistent with previous age estimates based on this method.« less

  16. Topography and vegetation as predictors of snow water equivalent across the alpine treeline ecotone at Lee Ridge, Glacier National Park, Montana, U.S.A.

    USGS Publications Warehouse

    Geddes, C.A.; Brown, D.G.; Fagre, D.B.

    2005-01-01

    We derived and implemented two spatial models of May snow water equivalent (SWE) at Lee Ridge in Glacier National Park, Montana. We used the models to test the hypothesis that vegetation structure is a control on snow redistribution at the alpine treeline ecotone (ATE). The statistical models were derived using stepwise and "best" subsets regression techniques. The first model was derived from field measurements of SWE, topography, and vegetation taken at 27 sample points. The second model was derived using GIS-based measures of topography and vegetation. Both the field- (R² = 0.93) and GIS-based models (R² = 0.69) of May SWE included the following variables: site type (based on vegetation), elevation, maximum slope, and general slope aspect. Site type was identified as the most important predictor of SWE in both models, accounting for 74.0% and 29.5% of the variation, respectively. The GIS-based model was applied to create a predictive map of SWE across Lee Ridge, predicting little snow accumulation on the top of the ridge where vegetation is scarce. The GIS model failed in large depressions, including ephemeral stream channels. The models supported the hypothesis that upright vegetation has a positive effect on accumulation of SWE above and beyond the effects of topography. Vegetation, therefore, creates a positive feedback in which it modifies its, environment and could affect the ability of additional vegetation to become established.

  17. Sensitivity-based virtual fields for the non-linear virtual fields method

    NASA Astrophysics Data System (ADS)

    Marek, Aleksander; Davis, Frances M.; Pierron, Fabrice

    2017-09-01

    The virtual fields method is an approach to inversely identify material parameters using full-field deformation data. In this manuscript, a new set of automatically-defined virtual fields for non-linear constitutive models has been proposed. These new sensitivity-based virtual fields reduce the influence of noise on the parameter identification. The sensitivity-based virtual fields were applied to a numerical example involving small strain plasticity; however, the general formulation derived for these virtual fields is applicable to any non-linear constitutive model. To quantify the improvement offered by these new virtual fields, they were compared with stiffness-based and manually defined virtual fields. The proposed sensitivity-based virtual fields were consistently able to identify plastic model parameters and outperform the stiffness-based and manually defined virtual fields when the data was corrupted by noise.

  18. Study of Nonclassical Fields in Phase-Sensitive Reservoirs

    NASA Technical Reports Server (NTRS)

    Kim, Myung Shik; Imoto, Nobuyuki

    1996-01-01

    We show that the reservoir influence can be modeled by an infinite array of beam splitters. The superposition of the input fields in the beam splitter is discussed with the convolution laws for their quasiprobabilities. We derive the Fokker-Planck equation for the cavity field coupled with a phase-sensitive reservoir using the convolution law. We also analyze the amplification in the phase-sensitive reservoir with use of the modified beam splitter model. We show the similarities and differences between the dissipation and amplification models. We show that a super-Poissonian input field cannot become sub-Poissonian by the phase-sensitive amplification.

  19. Scale-model charge-transfer technique for measuring enhancement factors

    NASA Technical Reports Server (NTRS)

    Kositsky, J.; Nanevicz, J. E.

    1991-01-01

    Determination of aircraft electric field enhancement factors is crucial when using airborne field mill (ABFM) systems to accurately measure electric fields aloft. SRI used the scale model charge transfer technique to determine enhancement factors of several canonical shapes and a scale model Learjet 36A. The measured values for the canonical shapes agreed with known analytic solutions within about 6 percent. The laboratory determined enhancement factors for the aircraft were compared with those derived from in-flight data gathered by a Learjet 36A outfitted with eight field mills. The values agreed to within experimental error (approx. 15 percent).

  20. Self-gravitating static non-critical black holes in 4 D Einstein-Klein-Gordon system with nonminimal derivative coupling

    NASA Astrophysics Data System (ADS)

    Gunara, Bobby Eka; Yaqin, Ainol

    2018-06-01

    We study static non-critical hairy black holes of four dimensional gravitational model with nonminimal derivative coupling and a scalar potential turned on. By taking an ansatz, namely, the first derivative of the scalar field is proportional to square root of a metric function, we reduce the Einstein field equation and the scalar field equation of motions into a single highly nonlinear differential equation. This setup implies that the hair is secondary-like since the scalar charge-like depends on the non-constant mass-like quantity in the asymptotic limit. Then, we show that near boundaries the solution is not the critical point of the scalar potential and the effective geometries become spaces of constant scalar curvature.

  1. The Impact of Microwave-Derived Surface Soil Moisture on Watershed Hydrological Modeling

    NASA Technical Reports Server (NTRS)

    ONeill, P. E.; Hsu, A. Y.; Jackson, T. J.; Wood, E. F.; Zion, M.

    1997-01-01

    The usefulness of incorporating microwave-derived soil moisture information in a semi-distributed hydrological model was demonstrated for the Washita '92 experiment in the Little Washita River watershed in Oklahoma. Initializing the hydrological model with surface soil moisture fields from the ESTAR airborne L-band microwave radiometer on a single wet day at the start of the study period produced more accurate model predictions of soil moisture than a standard hydrological initialization with streamflow data over an eight-day soil moisture drydown.

  2. Vorticity scaling and intermittency in drift-interchange plasma turbulence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dura, P. D.; Hnat, B.; Robinson, J.

    2012-09-15

    The effects of spatially varying magnetic field strength on the scaling properties of plasma turbulence, modelled by an extended form of Hasegawa-Wakatani model, are investigated. We study changes in the intermittency of the velocity, density, and vorticity fields, as functions of the magnetic field inhomogeneity C=-{partial_derivative} ln B/{partial_derivative}x. While the velocity fluctuations are always self-similar and their scaling is unaffected by the value of C, the intermittency levels in density and vorticity change with parameter C, reflecting morphological changes in the coherent structures due to the interchange mechanism. Given the centrality of vorticity in conditioning plasma transport, this result ismore » of interest in scaling the results of transport measurements and simulations in tokamak edge plasmas, where drift-interchange turbulence in the presence of a magnetic field gradient is likely to occur.« less

  3. Reduced Order Modeling Incompressible Flows

    NASA Technical Reports Server (NTRS)

    Helenbrook, B. T.

    2010-01-01

    The details: a) Need stable numerical methods; b) Round off error can be considerable; c) Not convinced modes are correct for incompressible flow. Nonetheless, can derive compact and accurate reduced-order models. Can be used to generate actuator models or full flow-field models

  4. Group-theoretical model of developed turbulence and renormalization of the Navier-Stokes equation.

    PubMed

    Saveliev, V L; Gorokhovski, M A

    2005-07-01

    On the basis of the Euler equation and its symmetry properties, this paper proposes a model of stationary homogeneous developed turbulence. A regularized averaging formula for the product of two fields is obtained. An equation for the averaged turbulent velocity field is derived from the Navier-Stokes equation by renormalization-group transformation.

  5. Continuous Time Finite State Mean Field Games

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gomes, Diogo A., E-mail: dgomes@math.ist.utl.pt; Mohr, Joana, E-mail: joana.mohr@ufrgs.br; Souza, Rafael Rigao, E-mail: rafars@mat.ufrgs.br

    In this paper we consider symmetric games where a large number of players can be in any one of d states. We derive a limiting mean field model and characterize its main properties. This mean field limit is a system of coupled ordinary differential equations with initial-terminal data. For this mean field problem we prove a trend to equilibrium theorem, that is convergence, in an appropriate limit, to stationary solutions. Then we study an N+1-player problem, which the mean field model attempts to approximate. Our main result is the convergence as N{yields}{infinity} of the mean field model and an estimatemore » of the rate of convergence. We end the paper with some further examples for potential mean field games.« less

  6. Small field detector correction factors kQclin,Qmsr (fclin,fmsr) for silicon-diode and diamond detectors with circular 6 MV fields derived using both empirical and numerical methods.

    PubMed

    O'Brien, D J; León-Vintró, L; McClean, B

    2016-01-01

    The use of radiotherapy fields smaller than 3 cm in diameter has resulted in the need for accurate detector correction factors for small field dosimetry. However, published factors do not always agree and errors introduced by biased reference detectors, inaccurate Monte Carlo models, or experimental errors can be difficult to distinguish. The aim of this study was to provide a robust set of detector-correction factors for a range of detectors using numerical, empirical, and semiempirical techniques under the same conditions and to examine the consistency of these factors between techniques. Empirical detector correction factors were derived based on small field output factor measurements for circular field sizes from 3.1 to 0.3 cm in diameter performed with a 6 MV beam. A PTW 60019 microDiamond detector was used as the reference dosimeter. Numerical detector correction factors for the same fields were derived based on calculations from a geant4 Monte Carlo model of the detectors and the Linac treatment head. Semiempirical detector correction factors were derived from the empirical output factors and the numerical dose-to-water calculations. The PTW 60019 microDiamond was found to over-respond at small field sizes resulting in a bias in the empirical detector correction factors. The over-response was similar in magnitude to that of the unshielded diode. Good agreement was generally found between semiempirical and numerical detector correction factors except for the PTW 60016 Diode P, where the numerical values showed a greater over-response than the semiempirical values by a factor of 3.7% for a 1.1 cm diameter field and higher for smaller fields. Detector correction factors based solely on empirical measurement or numerical calculation are subject to potential bias. A semiempirical approach, combining both empirical and numerical data, provided the most reliable results.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Michael, A. T.; Opher, M.; Provornikova, E.

    In the heliosheath (HS), Voyager 2 has observed a flow with constant radial velocity and magnetic flux conservation. Voyager 1, however, has observed a decrease in the flow’s radial velocity and an order of magnitude decrease in magnetic flux. We investigate the role of the 11 yr solar cycle variation of the magnetic field strength on the magnetic flux within the HS using a global 3D magnetohydrodynamic model of the heliosphere. We use time and latitude-dependent solar wind velocity and density inferred from Solar and Heliospheric Observatory/SWAN and interplanetary scintillations data and implemented solar cycle variations of the magnetic fieldmore » derived from 27 day averages of the field magnitude average of the magnetic field at 1 AU from the OMNI database. With the inclusion of the solar cycle time-dependent magnetic field intensity, the model matches the observed intensity of the magnetic field in the HS along both Voyager 1 and 2. This is a significant improvement from the same model without magnetic field solar cycle variations, which was over a factor of two larger. The model accurately predicts the radial velocity observed by Voyager 2; however, the model predicts a flow speed ∼100 km s{sup −1} larger than that derived from LECP measurements at Voyager 1. In the model, magnetic flux is conserved along both Voyager trajectories, contrary to observations. This implies that the solar cycle variations in solar wind magnetic field observed at 1 AU does not cause the order of magnitude decrease in magnetic flux observed in the Voyager 1 data.« less

  8. Spherical-earth Gravity and Magnetic Anomaly Modeling by Gauss-legendre Quadrature Integration

    NASA Technical Reports Server (NTRS)

    Vonfrese, R. R. B.; Hinze, W. J.; Braile, L. W.; Luca, A. J. (Principal Investigator)

    1981-01-01

    The anomalous potential of gravity and magnetic fields and their spatial derivatives on a spherical Earth for an arbitrary body represented by an equivalent point source distribution of gravity poles or magnetic dipoles were calculated. The distribution of equivalent point sources was determined directly from the coordinate limits of the source volume. Variable integration limits for an arbitrarily shaped body are derived from interpolation of points which approximate the body's surface envelope. The versatility of the method is enhanced by the ability to treat physical property variations within the source volume and to consider variable magnetic fields over the source and observation surface. A number of examples verify and illustrate the capabilities of the technique, including preliminary modeling of potential field signatures for Mississippi embayment crustal structure at satellite elevations.

  9. Development of a definition, classification system, and model for cultural geology

    NASA Astrophysics Data System (ADS)

    Mitchell, Lloyd W., III

    The concept for this study is based upon a personal interest by the author, an American Indian, in promoting cultural perspectives in undergraduate college teaching and learning environments. Most academicians recognize that merged fields can enhance undergraduate curricula. However, conflict may occur when instructors attempt to merge social science fields such as history or philosophy with geoscience fields such as mining and geomorphology. For example, ideologies of Earth structures derived from scientific methodologies may conflict with historical and spiritual understandings of Earth structures held by American Indians. Specifically, this study addresses the problem of how to combine cultural studies with the geosciences into a new merged academic discipline called cultural geology. This study further attempts to develop the merged field of cultural geology using an approach consisting of three research foci: a definition, a classification system, and a model. Literature reviews were conducted for all three foci. Additionally, to better understand merged fields, a literature review was conducted specifically for academic fields that merged social and physical sciences. Methodologies concentrated on the three research foci: definition, classification system, and model. The definition was derived via a two-step process. The first step, developing keyword hierarchical ranking structures, was followed by creating and analyzing semantic word meaning lists. The classification system was developed by reviewing 102 classification systems and incorporating selected components into a system framework. The cultural geology model was created also utilizing a two-step process. A literature review of scientific models was conducted. Then, the definition and classification system were incorporated into a model felt to reflect the realm of cultural geology. A course syllabus was then developed that incorporated the resulting definition, classification system, and model. This study concludes that cultural geology can be introduced as a merged discipline by using a three-foci framework consisting of a definition, classification system, and model. Additionally, this study reveals that cultural beliefs, attitudes, and behaviors, can be incorporated into a geology course during the curriculum development process, using an approach known as 'learner-centered'. This study further concludes that cultural beliefs, derived from class members, are an important source of curriculum materials.

  10. A Methodology to Validate the InSAR Derived Displacement Field of the September 7th, 1999 Athens Earthquake Using Terrestrial Surveying. Improvement of the Assessed Deformation Field by Interferometric Stacking.

    PubMed

    Kotsis, Ioannis; Kontoes, Charalabos; Paradissis, Dimitrios; Karamitsos, Spyros; Elias, Panagiotis; Papoutsis, Ioannis

    2008-06-10

    The primary objective of this paper is the evaluation of the InSAR derived displacement field caused by the 07/09/1999 Athens earthquake, using as reference an external data source provided by terrestrial surveying along the Mornos river open aqueduct. To accomplish this, a processing chain to render comparable the leveling measurements and the interferometric derived measurements has been developed. The distinct steps proposed include a solution for reducing the orbital and atmospheric interferometric fringes and an innovative method to compute the actual InSAR estimated vertical ground subsidence, for direct comparison with the leveling data. Results indicate that the modeled deformation derived from a series of stacked interferograms, falls entirely within the confidence interval assessed for the terrestrial surveying data.

  11. A Methodology to Validate the InSAR Derived Displacement Field of the September 7th, 1999 Athens Earthquake Using Terrestrial Surveying. Improvement of the Assessed Deformation Field by Interferometric Stacking

    PubMed Central

    Kotsis, Ioannis; Kontoes, Charalabos; Paradissis, Dimitrios; Karamitsos, Spyros; Elias, Panagiotis; Papoutsis, Ioannis

    2008-01-01

    The primary objective of this paper is the evaluation of the InSAR derived displacement field caused by the 07/09/1999 Athens earthquake, using as reference an external data source provided by terrestrial surveying along the Mornos river open aqueduct. To accomplish this, a processing chain to render comparable the leveling measurements and the interferometric derived measurements has been developed. The distinct steps proposed include a solution for reducing the orbital and atmospheric interferometric fringes and an innovative method to compute the actual InSAR estimated vertical ground subsidence, for direct comparison with the leveling data. Results indicate that the modeled deformation derived from a series of stacked interferograms, falls entirely within the confidence interval assessed for the terrestrial surveying data. PMID:27879926

  12. Global height datum unification: a new approach in gravity potential space

    NASA Astrophysics Data System (ADS)

    Ardalan, A. A.; Safari, A.

    2005-12-01

    The problem of “global height datum unification” is solved in the gravity potential space based on: (1) high-resolution local gravity field modeling, (2) geocentric coordinates of the reference benchmark, and (3) a known value of the geoid’s potential. The high-resolution local gravity field model is derived based on a solution of the fixed-free two-boundary-value problem of the Earth’s gravity field using (a) potential difference values (from precise leveling), (b) modulus of the gravity vector (from gravimetry), (c) astronomical longitude and latitude (from geodetic astronomy and/or combination of (GNSS) Global Navigation Satellite System observations with total station measurements), (d) and satellite altimetry. Knowing the height of the reference benchmark in the national height system and its geocentric GNSS coordinates, and using the derived high-resolution local gravity field model, the gravity potential value of the zero point of the height system is computed. The difference between the derived gravity potential value of the zero point of the height system and the geoid’s potential value is computed. This potential difference gives the offset of the zero point of the height system from geoid in the “potential space”, which is transferred into “geometry space” using the transformation formula derived in this paper. The method was applied to the computation of the offset of the zero point of the Iranian height datum from the geoid’s potential value W 0=62636855.8 m2/s2. According to the geometry space computations, the height datum of Iran is 0.09 m below the geoid.

  13. Testing the Accuracy of Data-driven MHD Simulations of Active Region Evolution and Eruption

    NASA Astrophysics Data System (ADS)

    Leake, J. E.; Linton, M.; Schuck, P. W.

    2017-12-01

    Models for the evolution of the solar coronal magnetic field are vital for understanding solar activity, yet the best measurements of the magnetic field lie at the photosphere, necessitating the recent development of coronal models which are "data-driven" at the photosphere. Using magnetohydrodynamic simulations of active region formation and our recently created validation framework we investigate the source of errors in data-driven models that use surface measurements of the magnetic field, and derived MHD quantities, to model the coronal magnetic field. The primary sources of errors in these studies are the temporal and spatial resolution of the surface measurements. We will discuss the implications of theses studies for accurately modeling the build up and release of coronal magnetic energy based on photospheric magnetic field observations.

  14. A Comprehensive Model of the Near-Earth Magnetic Field. Phase 3

    NASA Technical Reports Server (NTRS)

    Sabaka, Terence J.; Olsen, Nils; Langel, Robert A.

    2000-01-01

    The near-Earth magnetic field is due to sources in Earth's core, ionosphere, magnetosphere, lithosphere, and from coupling currents between ionosphere and magnetosphere and between hemispheres. Traditionally, the main field (low degree internal field) and magnetospheric field have been modeled simultaneously, and fields from other sources modeled separately. Such a scheme, however, can introduce spurious features. A new model, designated CMP3 (Comprehensive Model: Phase 3), has been derived from quiet-time Magsat and POGO satellite measurements and observatory hourly and annual means measurements as part of an effort to coestimate fields from all of these sources. This model represents a significant advancement in the treatment of the aforementioned field sources over previous attempts, and includes an accounting for main field influences on the magnetosphere, main field and solar activity influences on the ionosphere, seasonal influences on the coupling currents, a priori characterization of ionospheric and magnetospheric influence on Earth-induced fields, and an explicit parameterization and estimation of the lithospheric field. The result of this effort is a model whose fits to the data are generally superior to previous models and whose parameter states for the various constituent sources are very reasonable.

  15. Modification of a successive corrections objective analysis for improved higher order calculations

    NASA Technical Reports Server (NTRS)

    Achtemeier, Gary L.

    1988-01-01

    The use of objectively analyzed fields of meteorological data for the initialization of numerical prediction models and for complex diagnostic studies places the requirements upon the objective method that derivatives of the gridded fields be accurate and free from interpolation error. A modification was proposed for an objective analysis developed by Barnes that provides improvements in analysis of both the field and its derivatives. Theoretical comparisons, comparisons between analyses of analytical monochromatic waves, and comparisons between analyses of actual weather data are used to show the potential of the new method. The new method restores more of the amplitudes of desired wavelengths while simultaneously filtering more of the amplitudes of undesired wavelengths. These results also hold for the first and second derivatives calculated from the gridded fields. Greatest improvements were for the Laplacian of the height field; the new method reduced the variance of undesirable very short wavelengths by 72 percent. Other improvements were found in the divergence of the gridded wind field and near the boundaries of the field of data.

  16. Lidar aboveground vegetation biomass estimates in shrublands: Prediction, uncertainties and application to coarser scales

    USGS Publications Warehouse

    Li, Aihua; Dhakal, Shital; Glenn, Nancy F.; Spaete, Luke P.; Shinneman, Douglas; Pilliod, David S.; Arkle, Robert; McIlroy, Susan

    2017-01-01

    Our study objectives were to model the aboveground biomass in a xeric shrub-steppe landscape with airborne light detection and ranging (Lidar) and explore the uncertainty associated with the models we created. We incorporated vegetation vertical structure information obtained from Lidar with ground-measured biomass data, allowing us to scale shrub biomass from small field sites (1 m subplots and 1 ha plots) to a larger landscape. A series of airborne Lidar-derived vegetation metrics were trained and linked with the field-measured biomass in Random Forests (RF) regression models. A Stepwise Multiple Regression (SMR) model was also explored as a comparison. Our results demonstrated that the important predictors from Lidar-derived metrics had a strong correlation with field-measured biomass in the RF regression models with a pseudo R2 of 0.76 and RMSE of 125 g/m2 for shrub biomass and a pseudo R2 of 0.74 and RMSE of 141 g/m2 for total biomass, and a weak correlation with field-measured herbaceous biomass. The SMR results were similar but slightly better than RF, explaining 77–79% of the variance, with RMSE ranging from 120 to 129 g/m2 for shrub and total biomass, respectively. We further explored the computational efficiency and relative accuracies of using point cloud and raster Lidar metrics at different resolutions (1 m to 1 ha). Metrics derived from the Lidar point cloud processing led to improved biomass estimates at nearly all resolutions in comparison to raster-derived Lidar metrics. Only at 1 m were the results from the point cloud and raster products nearly equivalent. The best Lidar prediction models of biomass at the plot-level (1 ha) were achieved when Lidar metrics were derived from an average of fine resolution (1 m) metrics to minimize boundary effects and to smooth variability. Overall, both RF and SMR methods explained more than 74% of the variance in biomass, with the most important Lidar variables being associated with vegetation structure and statistical measures of this structure (e.g., standard deviation of height was a strong predictor of biomass). Using our model results, we developed spatially-explicit Lidar estimates of total and shrub biomass across our study site in the Great Basin, U.S.A., for monitoring and planning in this imperiled ecosystem.

  17. Gravity field of Jupiter’s moon Amalthea and the implication on a spacecraft trajectory

    NASA Astrophysics Data System (ADS)

    Weinwurm, Gudrun

    2006-01-01

    Before its final plunge into Jupiter in September 2003, GALILEO made a last 'visit' to one of Jupiter's moons - Amalthea. This final flyby of the spacecraft's successful mission occurred on November 5, 2002. In order to analyse the spacecraft data with respect to Amalthea's gravity field, interior models of the moon had to be provided. The method used for this approach is based on the numerical integration of infinitesimal volume elements of a three-axial ellipsoid in elliptic coordinates. To derive the gravity field coefficients of the body, the second method of Neumann was applied. Based on the spacecraft trajectory data provided by the Jet Propulsion Laboratory, GALILEO's velocity perturbations at closest approach could be calculated. The harmonic coefficients of Amalthea's gravity field have been derived up to degree and order six, for both homogeneous and reasonable heterogeneous cases. Founded on these numbers the impact on the trajectory of GALILEO was calculated and compared to existing Doppler data. Furthermore, predictions for future spacecraft flybys were derived. No two-way Doppler-data was available during the flyby and the harmonic coefficients of the gravity field are buried in the one-way Doppler-noise. Nevertheless, the generated gravity field models reflect the most likely interior structure of the moon and can be a basis for further exploration of the Jovian system.

  18. Global fields of soil moisture and land surface evapotranspiration derived from observed precipitation and surface air temperature

    NASA Technical Reports Server (NTRS)

    Mintz, Y.; Walker, G. K.

    1993-01-01

    The global fields of normal monthly soil moisture and land surface evapotranspiration are derived with a simple water budget model that has precipitation and potential evapotranspiration as inputs. The precipitation is observed and the potential evapotranspiration is derived from the observed surface air temperature with the empirical regression equation of Thornthwaite (1954). It is shown that at locations where the net surface radiation flux has been measured, the potential evapotranspiration given by the Thornthwaite equation is in good agreement with those obtained with the radiation-based formulations of Priestley and Taylor (1972), Penman (1948), and Budyko (1956-1974), and this provides the justification for the use of the Thornthwaite equation. After deriving the global fields of soil moisture and evapotranspiration, the assumption is made that the potential evapotranspiration given by the Thornthwaite equation and by the Priestley-Taylor equation will everywhere be about the same; the inverse of the Priestley-Taylor equation is used to obtain the normal monthly global fields of net surface radiation flux minus ground heat storage. This and the derived evapotranspiration are then used in the equation for energy conservation at the surface of the earth to obtain the global fields of normal monthly sensible heat flux from the land surface to the atmosphere.

  19. Nonminimally coupled massive scalar field in a 2D black hole: Exactly solvable model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frolov, V.; Zelnikov, A.

    2001-06-15

    We study a nonminimal massive scalar field in the background of a two-dimensional black hole spacetime. We consider the black hole which is the solution of the 2D dilaton gravity derived from string-theoretical models. We find an explicit solution in a closed form for all modes and the Green function of the scalar field with an arbitrary mass and a nonminimal coupling to the curvature. Greybody factors, the Hawking radiation, and 2>{sup ren} are calculated explicitly for this exactly solvable model.

  20. K-ε Turbulence Model Parameter Estimates Using an Approximate Self-similar Jet-in-Crossflow Solution

    DOE PAGES

    DeChant, Lawrence; Ray, Jaideep; Lefantzi, Sophia; ...

    2017-06-09

    The k-ε turbulence model has been described as perhaps “the most widely used complete turbulence model.” This family of heuristic Reynolds Averaged Navier-Stokes (RANS) turbulence closures is supported by a suite of model parameters that have been estimated by demanding the satisfaction of well-established canonical flows such as homogeneous shear flow, log-law behavior, etc. While this procedure does yield a set of so-called nominal parameters, it is abundantly clear that they do not provide a universally satisfactory turbulence model that is capable of simulating complex flows. Recent work on the Bayesian calibration of the k-ε model using jet-in-crossflow wind tunnelmore » data has yielded parameter estimates that are far more predictive than nominal parameter values. In this paper, we develop a self-similar asymptotic solution for axisymmetric jet-in-crossflow interactions and derive analytical estimates of the parameters that were inferred using Bayesian calibration. The self-similar method utilizes a near field approach to estimate the turbulence model parameters while retaining the classical far-field scaling to model flow field quantities. Our parameter values are seen to be far more predictive than the nominal values, as checked using RANS simulations and experimental measurements. They are also closer to the Bayesian estimates than the nominal parameters. A traditional simplified jet trajectory model is explicitly related to the turbulence model parameters and is shown to yield good agreement with measurement when utilizing the analytical derived turbulence model coefficients. Finally, the close agreement between the turbulence model coefficients obtained via Bayesian calibration and the analytically estimated coefficients derived in this paper is consistent with the contention that the Bayesian calibration approach is firmly rooted in the underlying physical description.« less

  1. Elastic Gauge Fields in Weyl Semimetals

    NASA Astrophysics Data System (ADS)

    Cortijo, Alberto; Ferreiros, Yago; Landsteiner, Karl; Hernandez Vozmediano, Maria Angeles

    We show that, as it happens in graphene, elastic deformations couple to the electronic degrees of freedom as pseudo gauge fields in Weyl semimetals. We derive the form of the elastic gauge fields in a tight-binding model hosting Weyl nodes and see that this vector electron-phonon coupling is chiral, providing an example of axial gauge fields in three dimensions. As an example of the new response functions that arise associated to these elastic gauge fields, we derive a non-zero phonon Hall viscosity for the neutral system at zero temperature. The axial nature of the fields provides a test of the chiral anomaly in high energy with three axial vector couplings. European Union structural funds and the Comunidad de Madrid MAD2D-CM Program (S2013/MIT-3007).

  2. FUSION++: A New Data Assimilative Model for Electron Density Forecasting

    NASA Astrophysics Data System (ADS)

    Bust, G. S.; Comberiate, J.; Paxton, L. J.; Kelly, M.; Datta-Barua, S.

    2014-12-01

    There is a continuing need within the operational space weather community, both civilian and military, for accurate, robust data assimilative specifications and forecasts of the global electron density field, as well as derived RF application product specifications and forecasts obtained from the electron density field. The spatial scales of interest range from a hundred to a few thousand kilometers horizontally (synoptic large scale structuring) and meters to kilometers (small scale structuring that cause scintillations). RF space weather applications affected by electron density variability on these scales include navigation, communication and geo-location of RF frequencies ranging from 100's of Hz to GHz. For many of these applications, the necessary forecast time periods range from nowcasts to 1-3 hours. For more "mission planning" applications, necessary forecast times can range from hours to days. In this paper we present a new ionosphere-thermosphere (IT) specification and forecast model being developed at JHU/APL based upon the well-known data assimilation algorithms Ionospheric Data Assimilation Four Dimensional (IDA4D) and Estimating Model Parameters from Ionospheric Reverse Engineering (EMPIRE). This new forecast model, "Forward Update Simple IONosphere model Plus IDA4D Plus EMPIRE (FUSION++), ingests data from observations related to electron density, winds, electric fields and neutral composition and provides improved specification and forecast of electron density. In addition, the new model provides improved specification of winds, electric fields and composition. We will present a short overview and derivation of the methodology behind FUSION++, some preliminary results using real observational sources, example derived RF application products such as HF bi-static propagation, and initial comparisons with independent data sources for validation.

  3. Optimizing Global Coronal Magnetic Field Models Using Image-Based Constraints

    NASA Technical Reports Server (NTRS)

    Jones-Mecholsky, Shaela I.; Davila, Joseph M.; Uritskiy, Vadim

    2016-01-01

    The coronal magnetic field directly or indirectly affects a majority of the phenomena studied in the heliosphere. It provides energy for coronal heating, controls the release of coronal mass ejections, and drives heliospheric and magnetospheric activity, yet the coronal magnetic field itself has proven difficult to measure. This difficulty has prompted a decades-long effort to develop accurate, timely, models of the field, an effort that continues today. We have developed a method for improving global coronal magnetic field models by incorporating the type of morphological constraints that could be derived from coronal images. Here we report promising initial tests of this approach on two theoretical problems, and discuss opportunities for application.

  4. Field testing a soil site field guide for Allegheny hardwoods

    Treesearch

    S.B. Jones

    1991-01-01

    A site quality evaluation decision model, developed for Allegheny hardwoods on the non-glaciated Allegheny Plateau of Pennsylvania and New York, was field tested by International Paper (IP) foresters and the author, on sites within the region of derivation and on glaciated sites north and west of the Wisconsin drift line. Results from the field testing are presented...

  5. Inflation in a closed universe

    NASA Astrophysics Data System (ADS)

    Ratra, Bharat

    2017-11-01

    To derive a power spectrum for energy density inhomogeneities in a closed universe, we study a spatially-closed inflation-modified hot big bang model whose evolutionary history is divided into three epochs: an early slowly-rolling scalar field inflation epoch and the usual radiation and nonrelativistic matter epochs. (For our purposes it is not necessary to consider a final dark energy dominated epoch.) We derive general solutions of the relativistic linear perturbation equations in each epoch. The constants of integration in the inflation epoch solutions are determined from de Sitter invariant quantum-mechanical initial conditions in the Lorentzian section of the inflating closed de Sitter space derived from Hawking's prescription that the quantum state of the universe only include field configurations that are regular on the Euclidean (de Sitter) sphere section. The constants of integration in the radiation and matter epoch solutions are determined from joining conditions derived by requiring that the linear perturbation equations remain nonsingular at the transitions between epochs. The matter epoch power spectrum of gauge-invariant energy density inhomogeneities is not a power law, and depends on spatial wave number in the way expected for a generalization to the closed model of the standard flat-space scale-invariant power spectrum. The power spectrum we derive appears to differ from a number of other closed inflation model power spectra derived assuming different (presumably non de Sitter invariant) initial conditions.

  6. Neutron stars in a perturbative f(R) gravity model with strong magnetic fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheoun, Myung-Ki; Deliduman, Cemsinan; Güngör, Can

    2013-10-01

    In Kaluza-Klein electromagnetism it is natural to associate modified gravity with strong electromagnetic fields. Hence, in this paper we investigate the combined effects of a strong magnetic field and perturbative f(R) gravity on the structure of neutron stars. The effect of an interior strong magnetic field of about 10{sup 17−18} G on the equation of state is derived in the context of a quantum hadrodynamics (QHD) equation of state (EoS) including effects of the magnetic pressure and energy along with occupied Landau levels. Adopting a random orientation of interior field domains, we solve the modified spherically symmetric hydrostatic equilibrium equationsmore » derived for a gravity model with f(R) = R+αR{sup 2}. Effects of both the finite magnetic field and the modified gravity are detailed for various values of the magnetic field and the perturbation parameter α along with a discussion of their physical implications. We show that there exists a parameter space of the modified gravity and the magnetic field strength, in which even a soft equation of state can accommodate a large ( > 2 M{sub s}un) maximum neutron star mass.« less

  7. Observational constraints on varying neutrino-mass cosmology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Geng, Chao-Qiang; Lee, Chung-Chi; Myrzakulov, R.

    We consider generic models of quintessence and we investigate the influence of massive neutrino matter with field-dependent masses on the matter power spectrum. In case of minimally coupled neutrino matter, we examine the effect in tracker models with inverse power-law and double exponential potentials. We present detailed investigations for the scaling field with a steep exponential potential, non-minimally coupled to massive neutrino matter, and we derive constraints on field-dependent neutrino masses from the observational data.

  8. SU-F-BRD-08: A Novel Technique to Derive a Clinically-Acceptable Beam Model for Proton Pencil-Beam Scanning in a Commercial Treatment Planning System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scholey, J. E.; Lin, L.; Ainsley, C. G.

    2015-06-15

    Purpose: To evaluate the accuracy and limitations of a commercially-available treatment planning system’s (TPS’s) dose calculation algorithm for proton pencil-beam scanning (PBS) and present a novel technique to efficiently derive a clinically-acceptable beam model. Methods: In-air fluence profiles of PBS spots were modeled in the TPS alternately as single-(SG) and double-Gaussian (DG) functions, based on fits to commissioning data. Uniform-fluence, single-energy-layer square fields of various sizes and energies were calculated with both beam models and delivered to water. Dose was measured at several depths. Motivated by observed discrepancies in measured-versus-calculated dose comparisons, a third model was constructed based on double-Gaussianmore » parameters contrived through a novel technique developed to minimize these differences (DGC). Eleven cuboid-dose-distribution-shaped fields with varying range/modulation and field size were subsequently generated in the TPS, using each of the three beam models described, and delivered to water. Dose was measured at the middle of each spread-out Bragg peak. Results: For energies <160 MeV, the DG model fit square-field measurements to <2% at all depths, while the SG model could disagree by >6%. For energies >160 MeV, both SG and DG models fit square-field measurements to <1% at <4 cm depth, but could exceed 6% deeper. By comparison, disagreement with the DGC model was always <3%. For the cuboid plans, calculation-versus-measured percent dose differences exceeded 7% for the SG model, being larger for smaller fields. The DG model showed <3% disagreement for all field sizes in shorter-range beams, although >5% differences for smaller fields persisted in longer-range beams. In contrast, the DGC model predicted measurements to <2% for all beams. Conclusion: Neither the TPS’s SG nor DG models, employed as intended, are ideally suited for routine clinical use. However, via a novel technique to be presented, its DG model can be tuned judiciously to yield acceptable results.« less

  9. MAGSAT anomaly field data of the crustal properties of Australia

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Progress is reported in producing maps of Australia showing; crustal magnetic anomalies at constant elevation; bulk surface magnetization; and the geomagnetic field intensity, inclination and declination for the Australian region from global models of the geomagnetic field derived from MAGSAT data. The development of a data base management system is also considered.

  10. Non-minimal derivative coupling gravity in cosmology

    NASA Astrophysics Data System (ADS)

    Gumjudpai, Burin; Rangdee, Phongsaphat

    2015-11-01

    We give a brief review of the non-minimal derivative coupling (NMDC) scalar field theory in which there is non-minimal coupling between the scalar field derivative term and the Einstein tensor. We assume that the expansion is of power-law type or super-acceleration type for small redshift. The Lagrangian includes the NMDC term, a free kinetic term, a cosmological constant term and a barotropic matter term. For a value of the coupling constant that is compatible with inflation, we use the combined WMAP9 (WMAP9 + eCMB + BAO + H_0) dataset, the PLANCK + WP dataset, and the PLANCK TT, TE, EE + lowP + Lensing + ext datasets to find the value of the cosmological constant in the model. Modeling the expansion with power-law gives a negative cosmological constants while the phantom power-law (super-acceleration) expansion gives positive cosmological constant with large error bar. The value obtained is of the same order as in the Λ CDM model, since at late times the NMDC effect is tiny due to small curvature.

  11. Topics in Higher-Derivative Supergravity and N = 2 Yang-Mills Theories

    NASA Astrophysics Data System (ADS)

    Hindawi, Ahmed Abdel-Ati

    1997-09-01

    In Part I of the thesis we discuss higher-derivative theories of gravity. We start by discussing the field content of quadratic higher-derivative gravity, together with a new example of a massless spin-two field consistently coupled to gravity. The full quadratic gravity theory is shown to be equivalent to a canonical second-order theory of a massive scalar field, a massive spin-two symmetric tensor field and gravity. It is shown that flat-space is the only stable vacuum, and that the spin-two field around it is always ghost-like. We give a procedure for exhibiting the new propagating degrees of freedom in a generic higher-derivative gravity, at the full non-linear level. We show that around any vacuum the elementary excitations remain the massless graviton, a massive scalar field and a massive ghost-like spin-two field. In Part II of the thesis we extend our investigations to the realm of supergravity. We consider the general form of quadratic (1, 1) supergravity in two dimensions. It is demonstrated that the theory possesses stable vacua with vanishing cosmological constant which spontaneously break supersymmetry. We then consider higher-derivative N=1 supergravity in four dimensions. We construct two classes of higher-derivative supergravity theories. They are found to be equivalent to Einstein supergravity coupled to one or two chiral superfields and have a rich vacuum structure. It is demonstrated that theories of the second class can possess a stable vacuum with vanishing cosmological constant that spontaneously breaks supersymmetry. We then proceed to show how spontaneous supersymmetry breaking in the vacuum state of higher-derivative supergravity is transmitted, as explicit soft supersymmetry-breaking terms, to the effective Lagrangian of the standard electroweak model. In Part III we use central charge superspace to give a geometrical construction of the N=2 Abelian vector-tensor multiplet consisting, under N=1 supersymmetry, of one vector and one linear multiplet. We derive the component field supersymmetry and central charge transformations, and show that there is a super-Lagrangian, the higher components of which are all total derivatives, allowing us to construct superfield and component actions.

  12. Code modernization and modularization of APEX and SWAT watershed simulation models

    USDA-ARS?s Scientific Manuscript database

    SWAT (Soil and Water Assessment Tool) and APEX (Agricultural Policy / Environmental eXtender) are respectively large and small watershed simulation models derived from EPIC Environmental Policy Integrated Climate), a field-scale agroecology simulation model. All three models are coded in FORTRAN an...

  13. Wind laws for shockless initialization. [numerical forecasting model

    NASA Technical Reports Server (NTRS)

    Ghil, M.; Shkoller, B.

    1976-01-01

    A system of diagnostic equations for the velocity field, or wind laws, was derived for each of a number of models of large-scale atmospheric flow. The derivation in each case is mathematically exact and does not involve any physical assumptions not already present in the prognostic equations, such as nondivergence or vanishing of derivatives of the divergence. Therefore, initial states computed by solving these diagnostic equations should be compatible with the type of motion described by the prognostic equations of the model and should not generate initialization shocks when inserted into the model. Numerical solutions of the diagnostic system corresponding to a barotropic model are exhibited. Some problems concerning the possibility of implementing such a system in operational numerical weather prediction are discussed.

  14. Model of a fluxtube with a twisted magnetic field in the stratified solar atmosphere

    NASA Astrophysics Data System (ADS)

    Sen, S.; Mangalam, A.

    2018-01-01

    We build a single vertical straight magnetic fluxtube spanning the solar photosphere and the transition region which does not expand with height. We assume that the fluxtube containing twisted magnetic fields is in magnetohydrostatic equilibrium within a realistic stratified atmosphere subject to solar gravity. Incorporating specific forms of current density and gas pressure in the Grad-Shafranov equation, we solve the magnetic flux function, and find it to be separable with a Coulomb wave function in radial direction while the vertical part of the solution decreases exponentially. We employ improved fluxtube boundary conditions and take a realistic ambient external pressure for the photosphere to transition region, to derive a family of solutions for reasonable values of the fluxtube radius and magnetic field strength at the base of the axis that are the free parameters in our model. We find that our model estimates are consistent with the magnetic field strength and the radii of Magnetic bright points (MBPs) as estimated from observations. We also derive thermodynamic quantities inside the fluxtube.

  15. 3D-QSAR based on quantum-chemical molecular fields: toward an improved description of halogen interactions.

    PubMed

    Güssregen, Stefan; Matter, Hans; Hessler, Gerhard; Müller, Marco; Schmidt, Friedemann; Clark, Timothy

    2012-09-24

    Current 3D-QSAR methods such as CoMFA or CoMSIA make use of classical force-field approaches for calculating molecular fields. Thus, they can not adequately account for noncovalent interactions involving halogen atoms like halogen bonds or halogen-π interactions. These deficiencies in the underlying force fields result from the lack of treatment of the anisotropy of the electron density distribution of those atoms, known as the "σ-hole", although recent developments have begun to take specific interactions such as halogen bonding into account. We have now replaced classical force field derived molecular fields by local properties such as the local ionization energy, local electron affinity, or local polarizability, calculated using quantum-mechanical (QM) techniques that do not suffer from the above limitation for 3D-QSAR. We first investigate the characteristics of QM-based local property fields to show that they are suitable for statistical analyses after suitable pretreatment. We then analyze these property fields with partial least-squares (PLS) regression to predict biological affinities of two data sets comprising factor Xa and GABA-A/benzodiazepine receptor ligands. While the resulting models perform equally well or even slightly better in terms of consistency and predictivity than the classical CoMFA fields, the most important aspect of these augmented field-types is that the chemical interpretation of resulting QM-based property field models reveals unique SAR trends driven by electrostatic and polarizability effects, which cannot be extracted directly from CoMFA electrostatic maps. Within the factor Xa set, the interaction of chlorine and bromine atoms with a tyrosine side chain in the protease S1 pocket are correctly predicted. Within the GABA-A/benzodiazepine ligand data set, PLS models of high predictivity resulted for our QM-based property fields, providing novel insights into key features of the SAR for two receptor subtypes and cross-receptor selectivity of the ligands. The detailed interpretation of regression models derived using improved QM-derived property fields thus provides a significant advantage by revealing chemically meaningful correlations with biological activity and helps in understanding novel structure-activity relationship features. This will allow such knowledge to be used to design novel molecules on the basis of interactions additional to steric and hydrogen-bonding features.

  16. VFMA: Topographic Analysis of Sensitivity Data From Full-Field Static Perimetry

    PubMed Central

    Weleber, Richard G.; Smith, Travis B.; Peters, Dawn; Chegarnov, Elvira N.; Gillespie, Scott P.; Francis, Peter J.; Gardiner, Stuart K.; Paetzold, Jens; Dietzsch, Janko; Schiefer, Ulrich; Johnson, Chris A.

    2015-01-01

    Purpose: To analyze static visual field sensitivity with topographic models of the hill of vision (HOV), and to characterize several visual function indices derived from the HOV volume. Methods: A software application, Visual Field Modeling and Analysis (VFMA), was developed for static perimetry data visualization and analysis. Three-dimensional HOV models were generated for 16 healthy subjects and 82 retinitis pigmentosa patients. Volumetric visual function indices, which are measures of quantity and comparable regardless of perimeter test pattern, were investigated. Cross-validation, reliability, and cross-sectional analyses were performed to assess this methodology and compare the volumetric indices to conventional mean sensitivity and mean deviation. Floor effects were evaluated by computer simulation. Results: Cross-validation yielded an overall R2 of 0.68 and index of agreement of 0.89, which were consistent among subject groups, indicating good accuracy. Volumetric and conventional indices were comparable in terms of test–retest variability and discriminability among subject groups. Simulated floor effects did not negatively impact the repeatability of any index, but large floor changes altered the discriminability for regional volumetric indices. Conclusions: VFMA is an effective tool for clinical and research analyses of static perimetry data. Topographic models of the HOV aid the visualization of field defects, and topographically derived indices quantify the magnitude and extent of visual field sensitivity. Translational Relevance: VFMA assists with the interpretation of visual field data from any perimetric device and any test location pattern. Topographic models and volumetric indices are suitable for diagnosis, monitoring of field loss, patient counseling, and endpoints in therapeutic trials. PMID:25938002

  17. The multiscale coarse-graining method. II. Numerical implementation for coarse-grained molecular models

    PubMed Central

    Noid, W. G.; Liu, Pu; Wang, Yanting; Chu, Jhih-Wei; Ayton, Gary S.; Izvekov, Sergei; Andersen, Hans C.; Voth, Gregory A.

    2008-01-01

    The multiscale coarse-graining (MS-CG) method [S. Izvekov and G. A. Voth, J. Phys. Chem. B 109, 2469 (2005);J. Chem. Phys. 123, 134105 (2005)] employs a variational principle to determine an interaction potential for a CG model from simulations of an atomically detailed model of the same system. The companion paper proved that, if no restrictions regarding the form of the CG interaction potential are introduced and if the equilibrium distribution of the atomistic model has been adequately sampled, then the MS-CG variational principle determines the exact many-body potential of mean force (PMF) governing the equilibrium distribution of CG sites generated by the atomistic model. In practice, though, CG force fields are not completely flexible, but only include particular types of interactions between CG sites, e.g., nonbonded forces between pairs of sites. If the CG force field depends linearly on the force field parameters, then the vector valued functions that relate the CG forces to these parameters determine a set of basis vectors that span a vector subspace of CG force fields. The companion paper introduced a distance metric for the vector space of CG force fields and proved that the MS-CG variational principle determines the CG force force field that is within that vector subspace and that is closest to the force field determined by the many-body PMF. The present paper applies the MS-CG variational principle for parametrizing molecular CG force fields and derives a linear least squares problem for the parameter set determining the optimal approximation to this many-body PMF. Linear systems of equations for these CG force field parameters are derived and analyzed in terms of equilibrium structural correlation functions. Numerical calculations for a one-site CG model of methanol and a molecular CG model of the EMIM+∕NO3− ionic liquid are provided to illustrate the method. PMID:18601325

  18. Monitoring small pioneer trees in the forest-tundra ecotone: using multi-temporal airborne laser scanning data to model height growth.

    PubMed

    Hauglin, Marius; Bollandsås, Ole Martin; Gobakken, Terje; Næsset, Erik

    2017-12-08

    Monitoring of forest resources through national forest inventory programmes is carried out in many countries. The expected climate changes will affect trees and forests and might cause an expansion of trees into presently treeless areas, such as above the current alpine tree line. It is therefore a need to develop methods that enable the inclusion of also these areas into monitoring programmes. Airborne laser scanning (ALS) is an established tool in operational forest inventories, and could be a viable option for monitoring tasks. In the present study, we used multi-temporal ALS data with point density of 8-15 points per m 2 , together with field measurements from single trees in the forest-tundra ecotone along a 1500-km-long transect in Norway. The material comprised 262 small trees with an average height of 1.78 m. The field-measured height growth was derived from height measurements at two points in time. The elapsed time between the two measurements was 4 years. Regression models were then used to model the relationship between ALS-derived variables and tree heights as well as the height growth. Strong relationships between ALS-derived variables and tree heights were found, with R 2 values of 0.93 and 0.97 for the two points in time. The relationship between the ALS data and the field-derived height growth was weaker, with R 2 values of 0.36-0.42. A cross-validation gave corresponding results, with root mean square errors of 19 and 11% for the ALS height models and 60% for the model relating ALS data to single-tree height growth.

  19. Differential renormalization-group generators for static and dynamic critical phenomena

    NASA Astrophysics Data System (ADS)

    Chang, T. S.; Vvedensky, D. D.; Nicoll, J. F.

    1992-09-01

    The derivation of differential renormalization-group (DRG) equations for applications to static and dynamic critical phenomena is reviewed. The DRG approach provides a self-contained closed-form representation of the Wilson renormalization group (RG) and should be viewed as complementary to the Callan-Symanzik equations used in field-theoretic approaches to the RG. The various forms of DRG equations are derived to illustrate the general mathematical structure of each approach and to point out the advantages and disadvantages for performing practical calculations. Otherwise, the review focuses upon the one-particle-irreducible DRG equations derived by Nicoll and Chang and by Chang, Nicoll, and Young; no attempt is made to provide a general treatise of critical phenomena. A few specific examples are included to illustrate the utility of the DRG approach: the large- n limit of the classical n-vector model (the spherical model), multi- or higher-order critical phenomena, and crit ical dynamics far from equilibrium. The large- n limit of the n-vector model is used to introduce the application of DRG equations to a well-known example, with exact solution obtained for the nonlinear trajectories, generating functions for nonlinear scaling fields, and the equation of state. Trajectory integrals and nonlinear scaling fields within the framework of ɛ-expansions are then discussed for tricritical crossover, and briefly for certain aspects of multi- or higher-order critical points, including the derivation of the Helmholtz free energy and the equation of state. The discussion then turns to critical dynamics with a development of the path integral formulation for general dynamic processes. This is followed by an application to a model far-from-equilibrium system that undergoes a phase transformation analogous to a second-order critical point, the Schlögl model for a chemical instability.

  20. Hidden in Plain View: The Material Invariance of Maxwell-Hertz-Lorentz Electrodynamics

    NASA Astrophysics Data System (ADS)

    Christov, C. I.

    2006-04-01

    Maxwell accounted for the apparent elastic behavior of the electromagnetic field through augmenting Ampere's law by the so-called displacement current much in the same way that he treated the viscoelasticity of gases. Original Maxwell constitutive relations for both electrodynamics and fluid dynamics were not material invariant, while combin- ing Faraday's law and the Lorentz force makes the first of Maxwell's equation material invariant. Later on, Oldroyd showed how to make a viscoelastic constitutive law mate- rial invariant. The main assumption was that the proper description of a constitutive law must be material invariant. Assuming that the electromagnetic field is a material field, we show here that if the upper convected Oldroyd derivative (related to Lie derivative) is used, the displacement current becomes material invariant. The new formulation ensures that the equation for conser- vation of charge is also material invariant which vindicates the choice of Oldroyd derivative over the standard convec- tive derivative. A material invariant field model is by ne- cessity Galilean invariant. We call the material field (the manifestation of which are the equations of electrodynam- ics the metacontinuum), in order to distinguish it form the standard material continua.

  1. Integration of magnetic field and electron reflection data to improve Mars internal magnetic field model definition at 185 km altitude

    NASA Astrophysics Data System (ADS)

    Mozzoni, D. T.; Cain, J. C.; Lillis, R. J.

    2012-12-01

    Because no further projects are planned to better define the global magnetic field about Mars, it is important to utilize present the Mars Global Surveyor (MGS) Magnetometer/Electron Reflectometer (MAG/ER) data to its fullest. Challenges in deriving an accurate model include the fact that the mapping orbit of MGS was limited to two local times, and also had a narrow distribution of data ranging from only southern latitudes below 350 km to only northern latitudes over 400 km. The aerobraking and science phasing orbit data below 350 km down to near 100 km was nearly all on the sunlit side with its strong distortions from the solar wind and embedded ionospheric currents. The improvement reported herein is from the addition of the projected total field evaluated at 185 km above the areoid. These data are derived from extrapolation of the pitch angle distributions of ER data to the reflection altitudes and adjustment to a common data altitude. Crucial to this analysis is the angular distribution of the magnetic field itself below MGS. Thus it was an iterative process whereby the 185 km data sets were recalculated based on the last iterative solutions from the magnetic field models derived including these data. The statistical improvements at the ER mapped altitudes after 5 iterations was to reduce the initial 2.0 nT sigma differences with a Gaussian spread of 20 nT to 0.5 nT and a spread of 12 nT. Unfortunately, many areas of very high field especially provided no data as they were on closed field lines. However, the iterative solutions also improved the 185 km scalar maps significantly from the original based on linear field line estimates, up to several hundred nT. The next step planned is to utilize the concept suggested by Connerney to use along-track gradients, especially those at lowest altitudes on the dayside, to input to the model sets. Preliminary tests indicate the possibility of added improvements in the missing ER data areas once this technique is perfected.

  2. Magnetic field of longitudinal gradient bend

    NASA Astrophysics Data System (ADS)

    Aiba, Masamitsu; Böge, Michael; Ehrlichman, Michael; Streun, Andreas

    2018-06-01

    The longitudinal gradient bend is an effective method for reducing the natural emittance in light sources. It is, however, not a common element. We have analyzed its magnetic field and derived a set of formulae. Based on the derivation, we discuss how to model the longitudinal gradient bend in accelerator codes that are used for designing electron storage rings. Strengths of multipole components can also be evaluated from the formulae, and we investigate the impact of higher order multipole components in a very low emittance lattice.

  3. Solar wind driven empirical forecast models of the time derivative of the ground magnetic field

    NASA Astrophysics Data System (ADS)

    Wintoft, Peter; Wik, Magnus; Viljanen, Ari

    2015-03-01

    Empirical models are developed to provide 10-30-min forecasts of the magnitude of the time derivative of local horizontal ground geomagnetic field (|dBh/dt|) over Europe. The models are driven by ACE solar wind data. A major part of the work has been devoted to the search and selection of datasets to support the model development. To simplify the problem, but at the same time capture sudden changes, 30-min maximum values of |dBh/dt| are forecast with a cadence of 1 min. Models are tested both with and without the use of ACE SWEPAM plasma data. It is shown that the models generally capture sudden increases in |dBh/dt| that are associated with sudden impulses (SI). The SI is the dominant disturbance source for geomagnetic latitudes below 50° N and with minor contribution from substorms. However, at occasions, large disturbances can be seen associated with geomagnetic pulsations. For higher latitudes longer lasting disturbances, associated with substorms, are generally also captured. It is also shown that the models using only solar wind magnetic field as input perform in most cases equally well as models with plasma data. The models have been verified using different approaches including the extremal dependence index which is suitable for rare events.

  4. Combining archeomagnetic and volcanic data with historical geomagnetic observations to reconstruct global field evolution over the past 1000 years, including new paleomagnetic data from historical lava flows on Fogo, Cape Verde

    NASA Astrophysics Data System (ADS)

    Korte, M. C.; Senftleben, R.; Brown, M. C.; Finlay, C. C.; Feinberg, J. M.; Biggin, A. J.

    2016-12-01

    Geomagnetic field evolution of the recent past can be studied using different data sources: Jackson et al. (2000) combined historical observations with modern field measurements to derive a global geomagnetic field model (gufm1) spanning 1590 to 1990. Several published young archeo- and volcanic paleomagnetic data fall into this time interval. Here, we directly combine data from these different sources to derive a global field model covering the past 1000 years. We particularly focus on reliably recovering dipole moment evolution prior to the times of the first direct absolute intensity observations at around 1840. We first compared the different data types and their agreement with the gufm1 model to assess their compatibility and reliability. We used these results, in combination with statistical modelling tests, to obtain suitable uncertainty estimates as weighting factors for the data in the final model. In addition, we studied samples from seven lava flows from the island of Fogo, Cape Verde, erupted between 1664 and 1857. Oriented samples were available for two of them, providing declination and inclination results. Due to the complicated mineralogy of three of the flows, microwave paleointensity experiments using a modified version of the IZZI protocol were carried out on flows erupted in 1664, 1769, 1816 and 1847. The new directional results are compared with nearby historical data and the influence on, and agreement with, the new model are discussed.

  5. Analysis of nonlocal neural fields for both general and gamma-distributed connectivities

    NASA Astrophysics Data System (ADS)

    Hutt, Axel; Atay, Fatihcan M.

    2005-04-01

    This work studies the stability of equilibria in spatially extended neuronal ensembles. We first derive the model equation from statistical properties of the neuron population. The obtained integro-differential equation includes synaptic and space-dependent transmission delay for both general and gamma-distributed synaptic connectivities. The latter connectivity type reveals infinite, finite, and vanishing self-connectivities. The work derives conditions for stationary and nonstationary instabilities for both kernel types. In addition, a nonlinear analysis for general kernels yields the order parameter equation of the Turing instability. To compare the results to findings for partial differential equations (PDEs), two typical PDE-types are derived from the examined model equation, namely the general reaction-diffusion equation and the Swift-Hohenberg equation. Hence, the discussed integro-differential equation generalizes these PDEs. In the case of the gamma-distributed kernels, the stability conditions are formulated in terms of the mean excitatory and inhibitory interaction ranges. As a novel finding, we obtain Turing instabilities in fields with local inhibition-lateral excitation, while wave instabilities occur in fields with local excitation and lateral inhibition. Numerical simulations support the analytical results.

  6. Effective Interpolation of Incomplete Satellite-Derived Leaf-Area Index Time Series for the Continental United States

    NASA Technical Reports Server (NTRS)

    Jasinski, Michael F.; Borak, Jordan S.

    2008-01-01

    Many earth science modeling applications employ continuous input data fields derived from satellite data. Environmental factors, sensor limitations and algorithmic constraints lead to data products of inherently variable quality. This necessitates interpolation of one form or another in order to produce high quality input fields free of missing data. The present research tests several interpolation techniques as applied to satellite-derived leaf area index, an important quantity in many global climate and ecological models. The study evaluates and applies a variety of interpolation techniques for the Moderate Resolution Imaging Spectroradiometer (MODIS) Leaf-Area Index Product over the time period 2001-2006 for a region containing the conterminous United States. Results indicate that the accuracy of an individual interpolation technique depends upon the underlying land cover. Spatial interpolation provides better results in forested areas, while temporal interpolation performs more effectively over non-forest cover types. Combination of spatial and temporal approaches offers superior interpolative capabilities to any single method, and in fact, generation of continuous data fields requires a hybrid approach such as this.

  7. Initial geomagnetic field model from Magsat vector data

    NASA Technical Reports Server (NTRS)

    Langel, R. A.; Mead, G. D.; Lancaster, E. R.; Estes, R. H.; Fabiano, E. B.

    1980-01-01

    Magsat data from the magnetically quiet days of November 5-6, 1979, were used to derive a thirteenth degree and order spherical harmonic geomagnetic field model, MGST(6/80). The model utilized both scalar and high-accuracy vector data and fit that data with root-mean-square deviations of 8.2, 6.9, 7.6 and 7.4 nT for the scalar magnitude, B(r), B(theta), and B(phi), respectively. The model includes the three first-order coefficients of the external field. Comparison with averaged Dst indicates that zero Dst corresponds with 25 nT of horizontal field from external sources. When compared with earlier models, the earth's dipole moment continues to decrease at a rate of about 26 nT/yr. Evaluation of earlier models with Magsat data shows that the scalar field at the Magsat epoch is best predicted by the POGO(2/72) model but that the WC80, AWC/75 and IGS/75 are better for predicting vector fields.

  8. High Latitude Precipitating Energy Flux and Joule Heating During Geomagnetic Storms Determined from AMPERE Field-aligned Currents

    NASA Astrophysics Data System (ADS)

    Robinson, R. M.; Zanetti, L. J.; Anderson, B. J.; Korth, H.; Samara, M.; Michell, R.; Grubbs, G. A., II; Hampton, D. L.; Dropulic, A.

    2016-12-01

    A high latitude conductivity model based on field-aligned currents measured by the Active Magnetosphere and Planetary Electrodynamics Response Experiment (AMPERE) provides the means for complete specification of electric fields and currents at high latitudes. Based on coordinated measurements made by AMPERE and the Poker Flat Incoherent Scatter Radar, the model determines the most likely value of the ionospheric conductance from the direction, magnitude, and magnetic local time of the field-aligned current. A conductance model driven by field-aligned currents ensures spatial and temporal consistency between the calculated electrodynamic parameters. To validate the results, the Pedersen and Hall conductances were used to calculate the energy flux associated with the energetic particle precipitation. When integrated over the entire hemisphere, the total energy flux compares well with the Hemispheric Power Index derived from the OVATION-PRIME model. The conductances were also combined with the field-aligned currents to calculate the self-consistent electric field, which was then used to compute horizontal currents and Joule heating. The magnetic perturbations derived from the currents replicate most of the variations observed in ground-based magnetograms. The model was used to study high latitude particle precipitation, currents, and Joule heating for 24 magnetic storms. In most cases, the total energy input from precipitating particles and Joule heating exhibits a sharply-peaked maximum at the times of local minima in Dst, suggesting a close coupling between the ring current and the high latitude currents driven by the Region 2 field-aligned currents. The rapid increase and decrease of the high latitude energy deposition suggests an explosive transfer of energy from the magnetosphere to the ionosphere just prior to storm recovery.

  9. Irrigation water demand: A meta-analysis of price elasticities

    NASA Astrophysics Data System (ADS)

    Scheierling, Susanne M.; Loomis, John B.; Young, Robert A.

    2006-01-01

    Metaregression models are estimated to investigate sources of variation in empirical estimates of the price elasticity of irrigation water demand. Elasticity estimates are drawn from 24 studies reported in the United States since 1963, including mathematical programming, field experiments, and econometric studies. The mean price elasticity is 0.48. Long-run elasticities, those that are most useful for policy purposes, are likely larger than the mean estimate. Empirical results suggest that estimates may be more elastic if they are derived from mathematical programming or econometric studies and calculated at a higher irrigation water price. Less elastic estimates are found to be derived from models based on field experiments and in the presence of high-valued crops.

  10. Solvable multistate model of Landau-Zener transitions in cavity QED

    DOE PAGES

    Sinitsyn, Nikolai; Li, Fuxiang

    2016-06-29

    We consider the model of a single optical cavity mode interacting with two-level systems (spins) driven by a linearly time-dependent field. When this field passes through values at which spin energy level splittings become comparable to spin coupling to the optical mode, a cascade of Landau-Zener (LZ) transitions leads to co-flips of spins in exchange for photons of the cavity. We derive exact transition probabilities between different diabatic states induced by such a sweep of the field.

  11. Analytical Deriving of the Field Capacity through Soil Bundle Model

    NASA Astrophysics Data System (ADS)

    Arnone, E.; Viola, F.; Antinoro, C.; Noto, L. V.

    2015-12-01

    The concept of field capacity as soil hydraulic parameter is widely used in many hydrological applications. Althought its recurring usage, its definition is not univocal. Traditionally, field capacity has been related to the amount of water that remains in the soil after the excess water has drained away and the water downward movement experiences a significant decresase. Quantifying the drainage of excess of water may be vague and several definitions, often subjective, have been proposed. These definitions are based on fixed thresholds either of time, pressure, or flux to which the field capacity condition is associated. The flux-based definition identifies the field capacity as the soil moisture value corresponding to an arbitrary fixed threshold of free drainage flux. Recently, many works have investigated the flux-based definition by varying either the drainage threshold, the geometry setting and mainly the description of the drainage flux. Most of these methods are based on the simulation of the flux through a porous medium by using the Darcy's law or Richard's equation. Using the above-mentioned flux-based definition, in this work we propose an alternative analytical approach for deriving the field capacity based on a bundle-of-tubes model. The pore space of a porous medium is conceptualized as a bundle of capillary tubes of given length of different radii, derived from a known distribution. The drainage from a single capillary tube is given by the analytical solution of the differential equation describing the water height evolution within the capillary tube. This equation is based on the Poiseuille's law and describes the drainage flux with time as a function of tube radius. The drainage process is then integrated for any portion of soil taking into account the tube radius distribution which in turns depends on the soil type. This methodology allows to analytically derive the dynamics of drainage water flux for any soil type and consequently to define the soil field capacity as the latter reachs a given threshold value. The theoretical model also accounts for the tortuosity which characterizes the water pathways in real soils, but neglects the voids mutual interconnections.

  12. Ginzburg-Landau Theory for Flux Phase and Superconductivity in t-J Model

    NASA Astrophysics Data System (ADS)

    Kuboki, Kazuhiro

    2018-02-01

    Ginzburg-Landau (GL) equations and GL free energy for flux phase and superconductivity are derived microscopically from the t-J model on a square lattice. Order parameter (OP) for the flux phase has direct coupling to a magnetic field, in contrast to the superconducting OP which has minimal coupling to a vector potential. Therefore, when the flux phase OP has unidirectional spatial variation, staggered currents would flow in a perpendicular direction. The derived GL theory can be used for various problems in high-Tc cuprate superconductors, e.g., states near a surface or impurities, and the effect of an external magnetic field. Since the GL theory derived microscopically directly reflects the electronic structure of the system, e.g., the shape of the Fermi surface that changes with doping, it can provide more useful information than that from phenomenological GL theories.

  13. Predicting thermal history a-priori for magnetic nanoparticle hyperthermia of internal carcinoma

    NASA Astrophysics Data System (ADS)

    Dhar, Purbarun; Sirisha Maganti, Lakshmi

    2017-08-01

    This article proposes a simplistic and realistic method where a direct analytical expression can be derived for the temperature field within a tumour during magnetic nanoparticle hyperthermia. The approximated analytical expression for thermal history within the tumour is derived based on the lumped capacitance approach and considers all therapy protocols and parameters. The present method is simplistic and provides an easy framework for estimating hyperthermia protocol parameters promptly. The model has been validated with respect to several experimental reports on animal models such as mice/rabbit/hamster and human clinical trials. It has been observed that the model is able to accurately estimate the thermal history within the carcinoma during the hyperthermia therapy. The present approach may find implications in a-priori estimation of the thermal history in internal tumours for optimizing magnetic hyperthermia treatment protocols with respect to the ablation time, tumour size, magnetic drug concentration, field strength, field frequency, nanoparticle material and size, tumour location, and so on.

  14. Toward an improved determination of Earth's lithospheric magnetic field from satellite observations

    NASA Astrophysics Data System (ADS)

    Kotsiaros, S.

    2016-12-01

    An analytical and numerical analysis of the spectral properties of the gradient tensor, initially performed by Rummel and van Gelderen (1992) for the gravity potential, shows that when the tensor elements are grouped into sets of semi-tangential and pure-tangential parts, they produce almost identical signal content as the normal element. Moreover, simple eigenvalue relations can be derived between these sets and the spherical harmonic expansion of the potential. This theoretical development generally applies to any potential field. First, the analysis of Rummel and van Gelderen (1992) is adapted to the magnetic field case and then the elements of the magnetic gradient tensor are estimated by 2 years of Swarm data and grouped into Γ(1) = {[∇B]rθ,[∇B]rφ} resp. Γ(2) = {[∇B]θθ-[∇B]φφ, 2[∇B]θφ}. It is shown that the estimated combinations Γ(1) and Γ(2) produce similar signal content as the theoretical radial gradient [∇B]rr. These results demonstrate the ability of multi-satellite missions such as Swarm, which cannot directly measure the radial gradient, to retrieve similar signal content by means of the horizontal gradients. Finally, lithospheric field models are derived using the gradient combinations Γ(1) and Γ(2) and compared with models derived from traditional vector and gradient data. The model resulting from Γ(1) leads to a very similar, and in particular cases improved, model compared to models retrieved by using approximately three times more data, i.e. a full set of vector, North-South and East-West gradients. ReferencesRummel, R., and M. van Gelderen (1992), Spectral analysis of the full gravity tensor, Geophysical Journal International, 111 (1), 159-169.

  15. 2D- and 3D-quantitative structure-activity relationship studies for a series of phenazine N,N'-dioxide as antitumour agents.

    PubMed

    Cunha, Jonathan Da; Lavaggi, María Laura; Abasolo, María Inés; Cerecetto, Hugo; González, Mercedes

    2011-12-01

    Hypoxic regions of tumours are associated with increased resistance to radiation and chemotherapy. Nevertheless, hypoxia has been used as a tool for specific activation of some antitumour prodrugs, named bioreductive agents. Phenazine dioxides are an example of such bioreductive prodrugs. Our 2D-quantitative structure activity relationship studies established that phenazine dioxides electronic and lipophilic descriptors are related to survival fraction in oxia or in hypoxia. Additionally, statistically significant models, derived by partial least squares, were obtained between survival fraction in oxia and comparative molecular field analysis standard model (r² = 0.755, q² = 0.505 and F = 26.70) or comparative molecular similarity indices analysis-combined steric and electrostatic fields (r² = 0.757, q² = 0.527 and F = 14.93), and survival fraction in hypoxia and comparative molecular field analysis standard model (r² = 0.736, q² = 0.521 and F = 18.63) or comparative molecular similarity indices analysis-hydrogen bond acceptor field (r² = 0.858, q² = 0.737 and F = 27.19). Categorical classification was used for the biological parameter selective cytotoxicity emerging also good models, derived by soft independent modelling of class analogy, with both comparative molecular field analysis standard model (96% of overall classification accuracy) and comparative molecular similarity indices analysis-steric field (92% of overall classification accuracy). 2D- and 3D-quantitative structure-activity relationships models provided important insights into the chemical and structural basis involved in the molecular recognition process of these phenazines as bioreductive agents and should be useful for the design of new structurally related analogues with improved potency. © 2011 John Wiley & Sons A/S.

  16. Standard model effective field theory: Integrating out neutralinos and charginos in the MSSM

    NASA Astrophysics Data System (ADS)

    Han, Huayong; Huo, Ran; Jiang, Minyuan; Shu, Jing

    2018-05-01

    We apply the covariant derivative expansion method to integrate out the neutralinos and charginos in the minimal supersymmetric Standard Model. The results are presented as set of pure bosonic dimension-six operators in the Standard Model effective field theory. Nontrivial chirality dependence in fermionic covariant derivative expansion is discussed carefully. The results are checked by computing the h γ γ effective coupling and the electroweak oblique parameters using the Standard Model effective field theory with our effective operators and direct loop calculation. In global fitting, the proposed lepton collider constraint projections, special phenomenological emphasis is paid to the gaugino mass unification scenario (M2≃2 M1) and anomaly mediation scenario (M1≃3.3 M2). These results show that the precision measurement experiments in future lepton colliders will provide a very useful complementary job in probing the electroweakino sector, in particular, filling the gap of the soft lepton plus the missing ET channel search left by the traditional collider, where the neutralino as the lightest supersymmetric particle is very degenerated with the next-to-lightest chargino/neutralino.

  17. Einstein-aether theory with a Maxwell field: General formalism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Balakin, Alexander B., E-mail: Alexander.Balakin@kpfu.ru; Lemos, José P.S., E-mail: joselemos@ist.utl.pt

    We extend the Einstein-aether theory to include the Maxwell field in a nontrivial manner by taking into account its interaction with the time-like unit vector field characterizing the aether. We also include a generic matter term. We present a model with a Lagrangian that includes cross-terms linear and quadratic in the Maxwell tensor, linear and quadratic in the covariant derivative of the aether velocity four-vector, linear in its second covariant derivative and in the Riemann tensor. We decompose these terms with respect to the irreducible parts of the covariant derivative of the aether velocity, namely, the acceleration four-vector, the shearmore » and vorticity tensors, and the expansion scalar. Furthermore, we discuss the influence of an aether non-uniform motion on the polarization and magnetization of the matter in such an aether environment, as well as on its dielectric and magnetic properties. The total self-consistent system of equations for the electromagnetic and the gravitational fields, and the dynamic equations for the unit vector aether field are obtained. Possible applications of this system are discussed. Based on the principles of effective field theories, we display in an appendix all the terms up to fourth order in derivative operators that can be considered in a Lagrangian that includes the metric, the electromagnetic and the aether fields.« less

  18. Epoxide as a precursor to secondary organic aerosol formation from isoprene photooxidation in the presence of nitrogen oxides

    PubMed Central

    Lin, Ying-Hsuan; Zhang, Haofei; Pye, Havala O. T.; Zhang, Zhenfa; Marth, Wendy J.; Park, Sarah; Arashiro, Maiko; Cui, Tianqu; Budisulistiorini, Sri Hapsari; Sexton, Kenneth G.; Vizuete, William; Xie, Ying; Luecken, Deborah J.; Piletic, Ivan R.; Edney, Edward O.; Bartolotti, Libero J.; Gold, Avram; Surratt, Jason D.

    2013-01-01

    Isoprene is a substantial contributor to the global secondary organic aerosol (SOA) burden, with implications for public health and the climate system. The mechanism by which isoprene-derived SOA is formed and the influence of environmental conditions, however, remain unclear. We present evidence from controlled smog chamber experiments and field measurements that in the presence of high levels of nitrogen oxides (NOx = NO + NO2) typical of urban atmospheres, 2-methyloxirane-2-carboxylic acid (methacrylic acid epoxide, MAE) is a precursor to known isoprene-derived SOA tracers, and ultimately to SOA. We propose that MAE arises from decomposition of the OH adduct of methacryloylperoxynitrate (MPAN). This hypothesis is supported by the similarity of SOA constituents derived from MAE to those from photooxidation of isoprene, methacrolein, and MPAN under high-NOx conditions. Strong support is further derived from computational chemistry calculations and Community Multiscale Air Quality model simulations, yielding predictions consistent with field observations. Field measurements taken in Chapel Hill, North Carolina, considered along with the modeling results indicate the atmospheric significance and relevance of MAE chemistry across the United States, especially in urban areas heavily impacted by isoprene emissions. Identification of MAE implies a major role of atmospheric epoxides in forming SOA from isoprene photooxidation. Updating current atmospheric modeling frameworks with MAE chemistry could improve the way that SOA has been attributed to isoprene based on ambient tracer measurements, and lead to SOA parameterizations that better capture the dependency of yield on NOx. PMID:23553832

  19. Epoxide as a precursor to secondary organic aerosol formation from isoprene photooxidation in the presence of nitrogen oxides.

    PubMed

    Lin, Ying-Hsuan; Zhang, Haofei; Pye, Havala O T; Zhang, Zhenfa; Marth, Wendy J; Park, Sarah; Arashiro, Maiko; Cui, Tianqu; Budisulistiorini, Sri Hapsari; Sexton, Kenneth G; Vizuete, William; Xie, Ying; Luecken, Deborah J; Piletic, Ivan R; Edney, Edward O; Bartolotti, Libero J; Gold, Avram; Surratt, Jason D

    2013-04-23

    Isoprene is a substantial contributor to the global secondary organic aerosol (SOA) burden, with implications for public health and the climate system. The mechanism by which isoprene-derived SOA is formed and the influence of environmental conditions, however, remain unclear. We present evidence from controlled smog chamber experiments and field measurements that in the presence of high levels of nitrogen oxides (NO(x) = NO + NO2) typical of urban atmospheres, 2-methyloxirane-2-carboxylic acid (methacrylic acid epoxide, MAE) is a precursor to known isoprene-derived SOA tracers, and ultimately to SOA. We propose that MAE arises from decomposition of the OH adduct of methacryloylperoxynitrate (MPAN). This hypothesis is supported by the similarity of SOA constituents derived from MAE to those from photooxidation of isoprene, methacrolein, and MPAN under high-NOx conditions. Strong support is further derived from computational chemistry calculations and Community Multiscale Air Quality model simulations, yielding predictions consistent with field observations. Field measurements taken in Chapel Hill, North Carolina, considered along with the modeling results indicate the atmospheric significance and relevance of MAE chemistry across the United States, especially in urban areas heavily impacted by isoprene emissions. Identification of MAE implies a major role of atmospheric epoxides in forming SOA from isoprene photooxidation. Updating current atmospheric modeling frameworks with MAE chemistry could improve the way that SOA has been attributed to isoprene based on ambient tracer measurements, and lead to SOA parameterizations that better capture the dependency of yield on NO(x).

  20. Pseudo-magnetic fields of strongly-curved graphene nanobubbles

    NASA Astrophysics Data System (ADS)

    Liu, Li-Chi

    2018-04-01

    We use the π-orbital axis vector (POAV) analysis to deal with large curvature effect of graphene in the tight-binding model. To test the validities of pseudo-magnetic fields (PMFs) derived from the tight-binding model and the model with Dirac equation coupled to a curved surface, we propose two types of spatially constant-field topographies for strongly-curved graphene nanobubbles, which correspond to these two models, respectively. It is shown from the latter model that the PMF induced by any spherical graphene nanobubble is always equivalent to the magnetic field caused by one magnetic monopole charge distributed on a complete spherical surface with the same radius. Such a PMF might be attributed to the isometry breaking of a graphene layer attached conformably to a spherical substrate with adhesion.

  1. An equivalent layer magnetization model for the United States derived from MAGSAT data

    NASA Technical Reports Server (NTRS)

    Mayhew, M. A.; Galliher, S. C. (Principal Investigator)

    1982-01-01

    Long wavelength anomalies in the total magnetic field measured field measured by MAGSAT over the United States and adjacent areas are inverted to an equivalent layer crustal magnetization distribution. The model is based on an equal area dipole grid at the Earth's surface. Model resolution having physical significance, is about 220 km for MAGSAT data in the elevation range 300-500 km. The magnetization contours correlate well with large-scale tectonic provinces.

  2. Impact of microwave derived soil moisture on hydrologic simulations using a spatially distributed water balance model

    NASA Technical Reports Server (NTRS)

    Lin, D. S.; Wood, E. F.; Famiglietti, J. S.; Mancini, M.

    1994-01-01

    Spatial distributions of soil moisture over an agricultural watershed with a drainage area of 60 ha were derived from two NASA microwave remote sensors, and then used as a feedback to determine the initial condition for a distributed water balance model. Simulated hydrologic fluxes over a period of twelve days were compared with field observations and with model predictions based on a streamflow derived initial condition. The results indicated that even the low resolution remotely sensed data can improve the hydrologic model's performance in simulating the dynamics of unsaturated zone soil moisture. For the particular watershed under study, the simulated water budget was not sensitive to the resolutions of the microwave sensors.

  3. Reheating predictions in gravity theories with derivative coupling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dalianis, Ioannis; Koutsoumbas, George; Ntrekis, Konstantinos

    2017-02-01

    We investigate the inflationary predictions of a simple Horndeski theory where the inflaton scalar field has a non-minimal derivative coupling (NMDC) to the Einstein tensor. The NMDC is very motivated for the construction of successful models for inflation, nevertheless its inflationary predictions are not observationally distinct. We show that it is possible to probe the effects of the NMDC on the CMB observables by taking into account both the dynamics of the inflationary slow-roll phase and the subsequent reheating. We perform a comparative study between representative inflationary models with canonical fields minimally coupled to gravity and models with NMDC. Wemore » find that the inflation models with dominant NMDC generically predict a higher reheating temperature and a different range for the tilt of the scalar perturbation spectrum n {sub s} and scalar-to-tensor ratio r , potentially testable by current and future CMB experiments.« less

  4. Dimensional reduction of the Standard Model coupled to a new singlet scalar field

    NASA Astrophysics Data System (ADS)

    Brauner, Tomáš; Tenkanen, Tuomas V. I.; Tranberg, Anders; Vuorinen, Aleksi; Weir, David J.

    2017-03-01

    We derive an effective dimensionally reduced theory for the Standard Model augmented by a real singlet scalar. We treat the singlet as a superheavy field and integrate it out, leaving an effective theory involving only the Higgs and SU(2) L × U(1) Y gauge fields, identical to the one studied previously for the Standard Model. This opens up the possibility of efficiently computing the order and strength of the electroweak phase transition, numerically and nonperturbatively, in this extension of the Standard Model. Understanding the phase diagram is crucial for models of electroweak baryogenesis and for studying the production of gravitational waves at thermal phase transitions.

  5. Estimating aboveground biomass in interior Alaska with Landsat data and field measurements

    USGS Publications Warehouse

    Ji, Lei; Wylie, Bruce K.; Nossov, Dana R.; Peterson, Birgit E.; Waldrop, Mark P.; McFarland, Jack W.; Rover, Jennifer R.; Hollingsworth, Teresa N.

    2012-01-01

    Terrestrial plant biomass is a key biophysical parameter required for understanding ecological systems in Alaska. An accurate estimation of biomass at a regional scale provides an important data input for ecological modeling in this region. In this study, we created an aboveground biomass (AGB) map at 30-m resolution for the Yukon Flats ecoregion of interior Alaska using Landsat data and field measurements. Tree, shrub, and herbaceous AGB data in both live and dead forms were collected in summers and autumns of 2009 and 2010. Using the Landsat-derived spectral variables and the field AGB data, we generated a regression model and applied this model to map AGB for the ecoregion. A 3-fold cross-validation indicated that the AGB estimates had a mean absolute error of 21.8 Mg/ha and a mean bias error of 5.2 Mg/ha. Additionally, we validated the mapping results using an airborne lidar dataset acquired for a portion of the ecoregion. We found a significant relationship between the lidar-derived canopy height and the Landsat-derived AGB (R2 = 0.40). The AGB map showed that 90% of the ecoregion had AGB values ranging from 10 Mg/ha to 134 Mg/ha. Vegetation types and fires were the primary factors controlling the spatial AGB patterns in this ecoregion.

  6. Modeling the stress dependence of Barkhausen phenomena for stress axis linear and noncollinear with applied magnetic field (abstract)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sablik, M.J.; Augustyniak, B.; Chmielewski, M.

    1996-04-01

    The almost linear dependence of the maximum Barkhausen noise signal amplitude on stress has made it a tool for nondestructive evaluation of residual stress. Recently, a model has been developed to account for the stress dependence of the Barkhausen noise signal. The model uses the development of Alessandro {ital et} {ital al}. who use coupled Langevin equations to derive an expression for the Barkhausen noise power spectrum. The model joins this expression to the magnetomechanical hysteresis model of Sablik {ital et} {ital al}., obtaining both a hysteretic and stress-dependent result for the magnetic-field-dependent Barkhausen noise envelope and obtaining specifically themore » almost linear stress dependence of the Barkhausen noise maximum experimentally. In this paper, we extend the model to derive the angular dependence observed by Kwun of the Barkhausen noise amplitude when stress axis is taken at different angles relative to magnetic field. We also apply the model to the experimental observation that in XC10 French steel, there is an apparent almost linear correlation with stress of hysteresis loss and of the integral of the Barkhausen noise signal over applied field {ital H}. Further, the two quantities, Barkhausen noise integral and hysteresis loss, are linearly correlated with each other. The model shows how that behavior is to be expected for the measured steel because of its sharply rising hysteresis curve. {copyright} {ital 1996 American Institute of Physics.}« less

  7. On the scaling problem and micro-macro derivation of crowd models. Comment on "Human behaviours in evacuation crowd dynamics: From modelling to "big data" toward crisis management" by Nicola Bellomo et al.

    NASA Astrophysics Data System (ADS)

    Chouhad, Nadia

    2016-09-01

    A personal comment on a scientific paper is unavoidably related to the personal education and bias. This statement allows me to apologize about the fact that my comment mainly focuses on a somewhat narrow field, namely to analytic topics related to modeling behavioral crowds. The remarks in the following aim also to induce further research suggestions from the authors of paper [3]. In more detail I bring to the attention of the authors of [3] and I look forward to their reply in view of future activity in this field: The micro-macro derivation of hydrodynamic type models should lead to hyperbolic type models, where the propagation speed of perturbation is finite, see [4]. However, it would be interesting understanding how far parabolic type models [6], and their possible modifications, can be accepted as an approximation of physical reality [8].

  8. New well testing applications of the pressure derivative

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Onur, M.

    1989-01-01

    This work presents new derivative type curves based on a new derivative group which is equal to the dimensionless pressure group divided by its logarithmic derivative with respect to dimensionless time group. One major advantage of these type curves is that the type-curve match of field pressure/pressure-derivative data with the new derivative type curves is accomplished by moving the field data plot in only the horizontal direction. This type-curve match fixes time match-point values. The pressure change versus time data is then matched with the dimensionless pressure solution to determine match-point values. Well/reservoir parameters can then be estimated in themore » standard way. This two step type-curve matching procedure increases the likelihood of obtaining a unique match. Moreover, the unique correspondence between the ordinate of the field data plot and the new derivative type curves should prove useful in determining whether given field data actually represents the well/reservoir model assumed by a selected type curve solution. It is also shown that the basic idea used in construction the type curves can be used to ensure that proper semilog straight lines are chosen when analyzing pressure data by semilog methods. Analysis of both drawdown and buildup data is considered and actual field cases are analyzed using the new derivative type curves and the semilog identification method. This work also presents new methods based on the pressure derivative to analyze buildup data obtained at a well (fracture or unfractured) produced to pseudosteady-state prior to shut-in. By using a method of analysis based on the pressure derivative, it is shown that a well's drainage area at the instant of shut-in and the flow capacity can be computed directly from buildup data even in cases where conventional semilog straight lines are not well-defined.« less

  9. Determination of Quantum Chemistry Based Force Fields for Molecular Dynamics Simulations of Aromatic Polymers

    NASA Technical Reports Server (NTRS)

    Jaffe, Richard; Langhoff, Stephen R. (Technical Monitor)

    1995-01-01

    Ab initio quantum chemistry calculations for model molecules can be used to parameterize force fields for molecular dynamics simulations of polymers. Emphasis in our research group is on using quantum chemistry-based force fields for molecular dynamics simulations of organic polymers in the melt and glassy states, but the methodology is applicable to simulations of small molecules, multicomponent systems and solutions. Special attention is paid to deriving reliable descriptions of the non-bonded and electrostatic interactions. Several procedures have been developed for deriving and calibrating these parameters. Our force fields for aromatic polyimide simulations will be described. In this application, the intermolecular interactions are the critical factor in determining many properties of the polymer (including its color).

  10. Identification of molecular descriptors for design of novel Isoalloxazine derivatives as potential Acetylcholinesterase inhibitors against Alzheimer's disease.

    PubMed

    Gurung, Arun Bahadur; Aguan, Kripamoy; Mitra, Sivaprasad; Bhattacharjee, Atanu

    2017-06-01

    In Alzheimer's disease (AD), the level of Acetylcholine (ACh) neurotransmitter is reduced. Since Acetylcholinesterase (AChE) cleaves ACh, inhibitors of AChE are very much sought after for AD treatment. The side effects of current inhibitors necessitate development of newer AChE inhibitors. Isoalloxazine derivatives have proved to be promising (AChE) inhibitors. However, their structure-activity relationship studies have not been reported till date. In the present work, various quantitative structure-activity relationship (QSAR) building methods such as multiple linear regression (MLR), partial least squares ,and principal component regression were employed to derive 3D-QSAR models using steric and electrostatic field descriptors. Statistically significant model was obtained using MLR coupled with stepwise selection method having r 2  = .9405, cross validated r 2 (q 2 ) = .6683, and a high predictability (pred_r 2  = .6206 and standard error, pred_r 2 se = .2491). Steric and electrostatic contribution plot revealed three electrostatic fields E_496, E_386 and E_577 and one steric field S_60 contributing towards biological activity. A ligand-based 3D-pharmacophore model was generated consisting of eight pharmacophore features. Isoalloxazine derivatives were docked against human AChE, which revealed critical residues implicated in hydrogen bonds as well as hydrophobic interactions. The binding modes of docked complexes (AChE_IA1 and AChE_IA14) were validated by molecular dynamics simulation which showed their stable trajectories in terms of root mean square deviation and molecular mechanics/Poisson-Boltzmann surface area binding free energy analysis revealed key residues contributing significantly to overall binding energy. The present study may be useful in the design of more potent Isoalloxazine derivatives as AChE inhibitors.

  11. Symmetries, supersymmetries and cohomologies in gauge theories

    NASA Astrophysics Data System (ADS)

    Bǎbǎlîc, Elena-Mirela

    2009-12-01

    The main subjects approached in the thesis are the following: a) the derivation of the interactions in two space-time dimensions in a particular class of topological BF models; b) the construction of the couplings in D ≥ 5 dimensions between one massless tensor field with the mixed symmetry (3, 1) and one with the mixed symmetry of the Riemann tensor; c) the evaluation of the existence of interactions in D ≥ 5 dimensions between two different collections of massless tensor fields with the mixed symmetries (3, 1) and (2, 2); d) the analysis of the relation between the BRST charges obtained in the pure-spinor formalism, respectively in the κ-symmetric one for the supermembrane in eleven dimensions. Our procedure for the first three subjects is based on solving the equations that describe the deformation of the solution to the master equation by means of specific cohomological techniques, while for the fourth one we will use techniques specific to the BRST Hamiltonian approach in order to write the BRST charge. The interactions are obtained under the following hypotheses: locality, Lorentz covariance, Poincare invariance, analyticity of the deformations, and preservation of the number of derivatives on each field. The first three assumptions imply that the interacting theory is local in space-time, Lorentz covariant and Poincare invariant. The analyticity of the deformations refers to the fact that the deformed solution to the master equation is analytical in the coupling constant and reduces to the original solution in the free limit. The conservation of the number of derivatives on each field with respect to the free theory means here that the following two requirements are simultaneously satisfied: (i) the derivative order of the equations of motion on each field is the same for the free and respectively for the interacting theory; (ii) the maximum number of derivatives in the interaction vertices is equal to two, i.e. the maximum number of derivatives from the free Lagrangian. The main results of the thesis are: interactions in two space-time dimensions for a particular class of BF models; interactions between one massless tensor field with the mixed symmetry (3, 1) and one with the mixed symmetry of the Riemann tensor; interactions between collections of massless tensor fields with the mixed symmetries (3, 1) and (2, 2); relating the kappa-symmetric and pure-spinor versions of the supermembrane in eleven dimensions.

  12. OPTIMIZING GLOBAL CORONAL MAGNETIC FIELD MODELS USING IMAGE-BASED CONSTRAINTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, Shaela I.; Davila, Joseph M.; Uritsky, Vadim, E-mail: shaela.i.jonesmecholsky@nasa.gov

    The coronal magnetic field directly or indirectly affects a majority of the phenomena studied in the heliosphere. It provides energy for coronal heating, controls the release of coronal mass ejections, and drives heliospheric and magnetospheric activity, yet the coronal magnetic field itself has proven difficult to measure. This difficulty has prompted a decades-long effort to develop accurate, timely, models of the field—an effort that continues today. We have developed a method for improving global coronal magnetic field models by incorporating the type of morphological constraints that could be derived from coronal images. Here we report promising initial tests of thismore » approach on two theoretical problems, and discuss opportunities for application.« less

  13. Quasi-homogeneous partial coherent source modeling of multimode optical fiber output using the elementary source method

    NASA Astrophysics Data System (ADS)

    Fathy, Alaa; Sabry, Yasser M.; Khalil, Diaa A.

    2017-10-01

    Multimode fibers (MMF) have many applications in illumination, spectroscopy, sensing and even in optical communication systems. In this work, we present a model for the MMF output field assuming the fiber end as a quasi-homogenous source. The fiber end is modeled by a group of partially coherent elementary sources, spatially shifted and uncorrelated with each other. The elementary source distribution is derived from the far field intensity measurement, while the weighting function of the sources is derived from the fiber end intensity measurement. The model is compared with practical measurements for fibers with different core/cladding diameters at different propagation distances and for different input excitations: laser, white light and LED. The obtained results show normalized root mean square error less than 8% in the intensity profile in most cases, even when the fiber end surface is not perfectly cleaved. Also, the comparison with the Gaussian-Schell model results shows a better agreement with the measurement. In addition, the complex degree of coherence, derived from the model results, is compared with the theoretical predictions of the modified Van Zernike equation showing very good agreement, which strongly supports the assumption that the large core MMF could be considered as a quasi-homogenous source.

  14. Parametrization of Backbone Flexibility in a Coarse-Grained Force Field for Proteins (COFFDROP) Derived from All-Atom Explicit-Solvent Molecular Dynamics Simulations of All Possible Two-Residue Peptides.

    PubMed

    Frembgen-Kesner, Tamara; Andrews, Casey T; Li, Shuxiang; Ngo, Nguyet Anh; Shubert, Scott A; Jain, Aakash; Olayiwola, Oluwatoni J; Weishaar, Mitch R; Elcock, Adrian H

    2015-05-12

    Recently, we reported the parametrization of a set of coarse-grained (CG) nonbonded potential functions, derived from all-atom explicit-solvent molecular dynamics (MD) simulations of amino acid pairs and designed for use in (implicit-solvent) Brownian dynamics (BD) simulations of proteins; this force field was named COFFDROP (COarse-grained Force Field for Dynamic Representations Of Proteins). Here, we describe the extension of COFFDROP to include bonded backbone terms derived from fitting to results of explicit-solvent MD simulations of all possible two-residue peptides containing the 20 standard amino acids, with histidine modeled in both its protonated and neutral forms. The iterative Boltzmann inversion (IBI) method was used to optimize new CG potential functions for backbone-related terms by attempting to reproduce angle, dihedral, and distance probability distributions generated by the MD simulations. In a simple test of the transferability of the extended force field, the angle, dihedral, and distance probability distributions obtained from BD simulations of 56 three-residue peptides were compared to results from corresponding explicit-solvent MD simulations. In a more challenging test of the COFFDROP force field, it was used to simulate eight intrinsically disordered proteins and was shown to quite accurately reproduce the experimental hydrodynamic radii (Rhydro), provided that the favorable nonbonded interactions of the force field were uniformly scaled downward in magnitude. Overall, the results indicate that the COFFDROP force field is likely to find use in modeling the conformational behavior of intrinsically disordered proteins and multidomain proteins connected by flexible linkers.

  15. Time-dependent Modeling of Pulsar Wind Nebulae

    NASA Astrophysics Data System (ADS)

    Vorster, M. J.; Tibolla, O.; Ferreira, S. E. S.; Kaufmann, S.

    2013-08-01

    A spatially independent model that calculates the time evolution of the electron spectrum in a spherically expanding pulsar wind nebula (PWN) is presented, allowing one to make broadband predictions for the PWN's non-thermal radiation. The source spectrum of electrons injected at the termination shock of the PWN is chosen to be a broken power law. In contrast to previous PWN models of a similar nature, the source spectrum has a discontinuity in intensity at the transition between the low- and high-energy components. To test the model, it is applied to the young PWN G21.5-0.9, where it is found that a discontinuous source spectrum can model the emission at all wavelengths better than a continuous one. The model is also applied to the unidentified sources HESS J1427-608 and HESS J1507-622. Parameters are derived for these two candidate nebulae that are consistent with the values predicted for other PWNe. For HESS J1427-608, a present day magnetic field of B age = 0.4 μG is derived. As a result of the small present day magnetic field, this source has a low synchrotron luminosity, while remaining bright at GeV/TeV energies. It is therefore possible to interpret HESS J1427-608 within the ancient PWN scenario. For the second candidate PWN HESS J1507-622, a present day magnetic field of B age = 1.7 μG is derived. Furthermore, for this candidate PWN a scenario is favored in the present paper in which HESS J1507-622 has been compressed by the reverse shock of the supernova remnant.

  16. Sensitivity of the Carolina Coastal Ocean Circulation to Open Boundary and Atmospheric Forcing

    NASA Astrophysics Data System (ADS)

    Liu, X.; Xie, L.; Pietrafesa, L.

    2003-12-01

    The ocean circulation on the continental shelf off the Carolina coast is characterized by a complex flow regime and temporal variability, which is influenced by atmospheric forcing, the Gulf Stream system, complex coastline and bathymetry, river discharge and tidal forcing. In this study, a triple-nested, HYbrid Coordinate Ocean Model (HYCOM) is used to simulate the coastal ocean circulation on the continental shelf off the Carolina coast and its interactions with the offshore large-scale ocean circulation system. The horizontal mesh size in the innermost domain was set to 1 km, whereas the outermost domain coincides with the near real-time 1/12­’ Atlantic HYCOM Nowcast/Forecast System operated at the Naval Research Laboratory. The intermediate domain uses a mesh size of 3 km. Atmospheric forcing fields for the Carolina coastal region are derived from the NOAA operational ETA model, the ECMWF reanalysis fields and NCEP/NCAR reanalysis fields. These forcing fields are derived at 0.8›¦, 1.125›¦ and 1.875›¦ resolutions, and at intervals of 6 hour, daily and monthly. The sensitivity of the model results to the spatial and temporal resolution of the atmospheric forcing fields is analyzed. To study the dependence of the model sensitivity on the model grid size, single-window simulations at resolutions of 1km, 3km and 9km are carried out using the same forcing fields that were applied to the nested system. Comparisons between the nested and the single domain simulation results will be presented.

  17. Derivative chameleons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Noller, Johannes, E-mail: johannes.noller08@imperial.ac.uk

    2012-07-01

    We consider generalized chameleon models where the conformal coupling between matter and gravitational geometries is not only a function of the chameleon field φ, but also of its derivatives via higher order co-ordinate invariants (such as ∂{sub μ}φ∂{sup μ}φ,□φ,...). Specifically we consider the first such non-trivial conformal factor A(φ,∂{sub μ}φ∂{sup μ}φ). The associated phenomenology is investigated and we show that such theories have a new generic mass-altering mechanism, potentially assisting the generation of a sufficiently large chameleon mass in dense environments. The most general effective potential is derived for such derivative chameleon setups and explicit examples are given. Interestingly thismore » points us to the existence of a purely derivative chameleon protected by a shift symmetry for φ → φ+c. We also discuss potential ghost-like instabilities associated with mass-lifting mechanisms and find another, mass-lowering and instability-free, branch of solutions. This suggests that, barring fine-tuning, stable derivative models are in fact typically anti-chameleons that suppress the field's mass in dense environments. Furthermore we investigate modifications to the thin-shell regime and prove a no-go theorem for chameleon effects in non-conformal geometries of the disformal type.« less

  18. Multiscale analysis of the CMB temperature derivatives

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marcos-Caballero, A.; Martínez-González, E.; Vielva, P., E-mail: marcos@ifca.unican.es, E-mail: martinez@ifca.unican.es, E-mail: vielva@ifca.unican.es

    2017-02-01

    We study the Planck CMB temperature at different scales through its derivatives up to second order, which allows one to characterize the local shape and isotropy of the field. The problem of having an incomplete sky in the calculation and statistical characterization of the derivatives is addressed in the paper. The analysis confirms the existence of a low variance in the CMB at large scales, which is also noticeable in the derivatives. Moreover, deviations from the standard model in the gradient, curvature and the eccentricity tensor are studied in terms of extreme values on the data. As it is expected,more » the Cold Spot is detected as one of the most prominent peaks in terms of curvature, but additionally, when the information of the temperature and its Laplacian are combined, another feature with similar probability at the scale of 10{sup o} is also observed. However, the p -value of these two deviations increase above the 6% when they are referred to the variance calculated from the theoretical fiducial model, indicating that these deviations can be associated to the low variance anomaly. Finally, an estimator of the directional anisotropy for spinorial quantities is introduced, which is applied to the spinors derived from the field derivatives. An anisotropic direction whose probability is <1% is detected in the eccentricity tensor.« less

  19. Model many-body Stoner Hamiltonian for binary FeCr alloys

    NASA Astrophysics Data System (ADS)

    Nguyen-Manh, D.; Dudarev, S. L.

    2009-09-01

    We derive a model tight-binding many-body d -electron Stoner Hamiltonian for FeCr binary alloys and investigate the sensitivity of its mean-field solutions to the choice of hopping integrals and the Stoner exchange parameters. By applying the local charge-neutrality condition within a self-consistent treatment we show that the negative enthalpy-of-mixing anomaly characterizing the alloy in the low chromium concentration limit is due entirely to the presence of the on-site exchange Stoner terms and that the occurrence of this anomaly is not specifically related to the choice of hopping integrals describing conventional chemical bonding between atoms in the alloy. The Bain transformation pathway computed, using the proposed model Hamiltonian, for the Fe15Cr alloy configuration is in excellent agreement with ab initio total-energy calculations. Our investigation also shows how the parameters of a tight-binding many-body model Hamiltonian for a magnetic alloy can be derived from the comparison of its mean-field solutions with other, more accurate, mean-field approximations (e.g., density-functional calculations), hence stimulating the development of large-scale computational algorithms for modeling radiation damage effects in magnetic alloys and steels.

  20. Unmasking the masked Universe: the 2M++ catalogue through Bayesian eyes

    NASA Astrophysics Data System (ADS)

    Lavaux, Guilhem; Jasche, Jens

    2016-01-01

    This work describes a full Bayesian analysis of the Nearby Universe as traced by galaxies of the 2M++ survey. The analysis is run in two sequential steps. The first step self-consistently derives the luminosity-dependent galaxy biases, the power spectrum of matter fluctuations and matter density fields within a Gaussian statistic approximation. The second step makes a detailed analysis of the three-dimensional large-scale structures, assuming a fixed bias model and a fixed cosmology. This second step allows for the reconstruction of both the final density field and the initial conditions at z = 1000 assuming a fixed bias model. From these, we derive fields that self-consistently extrapolate the observed large-scale structures. We give two examples of these extrapolation and their utility for the detection of structures: the visibility of the Sloan Great Wall, and the detection and characterization of the Local Void using DIVA, a Lagrangian based technique to classify structures.

  1. Stochastic field-line wandering in magnetic turbulence with shear. I. Quasi-linear theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shalchi, A.; Negrea, M.; Petrisor, I.

    2016-07-15

    We investigate the random walk of magnetic field lines in magnetic turbulence with shear. In the first part of the series, we develop a quasi-linear theory in order to compute the diffusion coefficient of magnetic field lines. We derive general formulas for the diffusion coefficients in the different directions of space. We like to emphasize that we expect that quasi-linear theory is only valid if the so-called Kubo number is small. We consider two turbulence models as examples, namely, a noisy slab model as well as a Gaussian decorrelation model. For both models we compute the field line diffusion coefficientsmore » and we show how they depend on the aforementioned Kubo number as well as a shear parameter. It is demonstrated that the shear effect reduces all field line diffusion coefficients.« less

  2. A 3D QSAR CoMFA study of non-peptide angiotensin II receptor antagonists

    NASA Astrophysics Data System (ADS)

    Belvisi, Laura; Bravi, Gianpaolo; Catalano, Giovanna; Mabilia, Massimo; Salimbeni, Aldo; Scolastico, Carlo

    1996-12-01

    A series of non-peptide angiotensin II receptor antagonists was investigated with the aim of developing a 3D QSAR model using comparative molecular field analysis descriptors and approaches. The main goals of the study were dictated by an interest in methodologies and an understanding of the binding requirements to the AT1 receptor. Consistency with the previously derived activity models was always checked to contemporarily test the validity of the various hypotheses. The specific conformations chosen for the study, the procedures invoked to superimpose all structures, the conditions employed to generate steric and electrostatic field values and the various PCA/PLS runs are discussed in detail. The effect of experimental design techniques to select objects (molecules) and variables (descriptors) with respect to the predictive power of the QSAR models derived was especially analysed.

  3. Ernst potentials for vacuum Bianchi models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Breton, N.

    The authors derive Ernst potentials for vacuum Bianchi I through VII models. A scheme to find inhomogeneous generalizations of such models by using generating techniques which incorporate electromagnetic fields or gravitational wave perturbations to a [open quotes]seed[close quotes] Bianchi solution is presented. 35 refs., 2 tabs.

  4. The 1995 revision of the joint US/UK geomagnetic field models - I. Secular variation

    USGS Publications Warehouse

    Macmillan, S.; Barraclough, D.R.; Quinn, J.M.; Coleman, R.J.

    1997-01-01

    We present the methods used to derive mathematical models of global secular variation of the main geomagnetic field for the period 1985 to 2000. These secular-variation models are used in the construction of the candidate US/UK models for the Definitive Geomagnetic Reference Field at 1990, the International Geomagnetic Reference Field for 1995 to 2000, and the World Magnetic Model for 1995 to 2000 (see paper II, Quinn et al., 1997). The main sources of data for the secular-variation models are geomagnetic observatories and repeat stations. Over the areas devoid of these data secular-variation information is extracted from aeromagnetic and satellite data. We describe how secular variation is predicted up to the year 2000 at the observatories and repeat stations, how the aeromagnetic and satellite data are used, and how all the data are combined to produce the required models.

  5. New models of Saturn's magnetic field using Pioneer 11 Vector Helium Magnetometer data

    NASA Technical Reports Server (NTRS)

    Davis, L., Jr.; Smith, E. J.

    1986-01-01

    In a reanalysis of the Vector Helium Magnetometer data taken by Pioneer 11 during its Saturn encounter in 1979, using improvements in the data set and in the procedures, studies are made of a variety of models. The best is the P(11)84 model, an axisymmetric spherical harmonic model of Saturn's magnetic field within 8 Saturn radii of the planet. The appropriately weighted root mean square average of the difference between the observed and the modeled field is 1.13 percent. For the Voyager-based Z3 model of Connerney, Acuna, and Ness, this average difference from the Pioneer 11 data is 1.81 percent. The external source currents in the magnetopause, tail, bow shock, and perhaps ring currents vary with time and can only be crudely modeled. An algebraic formula is derived for calculating the L shells on which energetic charged particles drift in axisymmetric fields.

  6. Comparative molecular field analysis and molecular docking studies on novel aryl chalcone derivatives against an important drug target cysteine protease in Plasmodium falciparum.

    PubMed

    Thillainayagam, Mahalakshmi; Anbarasu, Anand; Ramaiah, Sudha

    2016-08-21

    The computational studies namely molecular docking simulations and Comparative Molecular Field Analysis (CoMFA) are executed on series of 52 novel aryl chalcones derivatives using Plasmodium falciparum cysteine proteases (falcipain - 2) as vital target. In the present study, the correlation between different molecular field effects namely steric and electrostatic interactions and chemical structures to the inhibitory activities of novel aryl chalcone derivatives is inferred to perceive the major structural prerequisites for the rational design and development of potent and novel lead anti-malarial compound. The apparent binding conformations of all the compounds at the active site of falcipain - 2 and the hydrogen-bond interactions which could be used to modify the inhibitory activities are identified by using Surflex-dock study. Statistically significant CoMFA model has been developed with the cross-validated correlation coefficient (q(2)) of 0.912 and the non-cross-validated correlation coefficient (r(2)) of 0.901. Standard error of estimation (SEE) of 0.210, with the optimum number of components is ten. The predictability of the derived model is examined with a test set consists of sixteen compounds and the predicted r(2) value is found to be 0.924. The docking and QSAR study results confer crucial suggestions for the optimization of novel 1,3-diphenyl-2-propen-1-one derivatives and synthesis of effective anti- malarial compounds. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Analysis of blood flow with nanoparticles induced by uniform magnetic field through a circular cylinder with fractional Caputo derivatives

    NASA Astrophysics Data System (ADS)

    Abdullah, M.; Butt, Asma Rashid; Raza, Nauman; Alshomrani, Ali Saleh; Alzahrani, A. K.

    2018-01-01

    The magneto hydrodynamic blood flow in the presence of magnetic particles through a circular cylinder is investigated. To calculate the impact of externally applied uniform magnetic field, the blood is electrically charged. Initially the fluid and circular cylinder is at rest but at time t =0+ , the cylinder starts to oscillate along its axis with velocity fsin (Ωt) . To obtain the mathematical model of blood flow with fractional derivatives Caputo fractional operator is employed. The solutions for the velocities of blood and magnetic particles are procured semi analytically by using Laplace transformation method. The inverse Laplace transform has been calculated numerically by using MATHCAD computer software. The obtained results of velocities are presented in Laplace domain in terms of modified Bessel function I0 (·) . The obtained results satisfied all imposed initial and boundary conditions. The hybrid technique that is employed here less computational effort and time cost as compared to other techniques used in literature. As the limiting cases of our results the solutions of the flow model with ordinary derivatives has been procured. Finally, the impact of Reynolds number Re, fractional parameter α and Hartmann number Ha is analyzed and portrayed through graphs. It is worthy to pointing out that fractional derivatives brings remarkable differences as compared to ordinary derivatives. It also has been observed that velocity of blood and magnetic particles is weaker under the effect of transverse magnetic field.

  8. Upscaling of Solute Transport in Heterogeneous Media with Non-uniform Flow and Dispersion Fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Zhijie; Meakin, Paul

    2013-10-01

    An analytical and computational model for non-reactive solute transport in periodic heterogeneous media with arbitrary non-uniform flow and dispersion fields within the unit cell of length ε is described. The model lumps the effect of non-uniform flow and dispersion into an effective advection velocity Ve and an effective dispersion coefficient De. It is shown that both Ve and De are scale-dependent (dependent on the length scale of the microscopic heterogeneity, ε), dependent on the Péclet number Pe, and on a dimensionless parameter α that represents the effects of microscopic heterogeneity. The parameter α, confined to the range of [-0.5, 0.5]more » for the numerical example presented, depends on the flow direction and non-uniform flow and dispersion fields. Effective advection velocity Ve and dispersion coefficient De can be derived for any given flow and dispersion fields, and . Homogenized solutions describing the macroscopic variations can be obtained from the effective model. Solutions with sub-unit-cell accuracy can be constructed by homogenized solutions and its spatial derivatives. A numerical implementation of the model compared with direct numerical solutions using a fine grid, demonstrated that the new method was in good agreement with direct solutions, but with significant computational savings.« less

  9. Three-dimensional quantitative structure-activity relationship (3D QSAR) and pharmacophore elucidation of tetrahydropyran derivatives as serotonin and norepinephrine transporter inhibitors

    NASA Astrophysics Data System (ADS)

    Kharkar, Prashant S.; Reith, Maarten E. A.; Dutta, Aloke K.

    2008-01-01

    Three-dimensional quantitative structure-activity relationship (3D QSAR) using comparative molecular field analysis (CoMFA) was performed on a series of substituted tetrahydropyran (THP) derivatives possessing serotonin (SERT) and norepinephrine (NET) transporter inhibitory activities. The study aimed to rationalize the potency of these inhibitors for SERT and NET as well as the observed selectivity differences for NET over SERT. The dataset consisted of 29 molecules, of which 23 molecules were used as the training set for deriving CoMFA models for SERT and NET uptake inhibitory activities. Superimpositions were performed using atom-based fitting and 3-point pharmacophore-based alignment. Two charge calculation methods, Gasteiger-Hückel and semiempirical PM3, were tried. Both alignment methods were analyzed in terms of their predictive abilities and produced comparable results with high internal and external predictivities. The models obtained using the 3-point pharmacophore-based alignment outperformed the models with atom-based fitting in terms of relevant statistics and interpretability of the generated contour maps. Steric fields dominated electrostatic fields in terms of contribution. The selectivity analysis (NET over SERT), though yielded models with good internal predictivity, showed very poor external test set predictions. The analysis was repeated with 24 molecules after systematically excluding so-called outliers (5 out of 29) from the model derivation process. The resulting CoMFA model using the atom-based fitting exhibited good statistics and was able to explain most of the selectivity (NET over SERT)-discriminating factors. The presence of -OH substituent on the THP ring was found to be one of the most important factors governing the NET selectivity over SERT. Thus, a 4-point NET-selective pharmacophore, after introducing this newly found H-bond donor/acceptor feature in addition to the initial 3-point pharmacophore, was proposed.

  10. Arctic Ocean Gravity Field Derived From ERS-1 Satellite Altimetry.

    PubMed

    Laxon, S; McAdoo, D

    1994-07-29

    The derivation of a marine gravity field from satellite altimetry over permanently ice-covered regions of the Arctic Ocean provides much new geophysical information about the structure and development of the Arctic sea floor. The Arctic Ocean, because of its remote location and perpetual ice cover, remains from a tectonic point of view the most poorly understood ocean basin on Earth. A gravity field has been derived with data from the ERS-1 radar altimeter, including permanently ice-covered regions. The gravity field described here clearly delineates sections of the Arctic Basin margin along with the tips of the Lomonosov and Arctic mid-ocean ridges. Several important tectonic features of the Amerasia Basin are clearly expressed in this gravity field. These include the Mendeleev Ridge; the Northwind Ridge; details of the Chukchi Borderland; and a north-south trending, linear feature in the middle of the Canada Basin that apparently represents an extinct spreading center that "died" in the Mesozoic. Some tectonic models of the Canada Basin have proposed such a failed spreading center, but its actual existence and location were heretofore unknown.

  11. Groundwater Source Identification Using Backward Fractional-Derivative Models

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Sun, H.; Zheng, C.

    2017-12-01

    The forward Fractional Advection Dispersion Equation (FADE) provides a useful model for non-Fickian transport in heterogeneous porous media. This presentation introduces the corresponding backward FADE model, to identify groundwater source location and release time. The backward method is developed from the theory of inverse problems, and the resultant backward FADE differs significantly from the traditional backward ADE because the fractional derivative is not self-adjoint and the probability density function for backward locations is highly skewed. Finally, the method is validated using tracer data from well-known field experiments.

  12. A path integral approach to asset-liability management

    NASA Astrophysics Data System (ADS)

    Decamps, Marc; De Schepper, Ann; Goovaerts, Marc

    2006-05-01

    Functional integrals constitute a powerful tool in the investigation of financial models. In the recent econophysics literature, this technique was successfully used for the pricing of a number of derivative securities. In the present contribution, we introduce this approach to the field of asset-liability management. We work with a representation of cash flows by means of a two-dimensional delta-function perturbation, in the case of a Brownian model and a geometric Brownian model. We derive closed-form solutions for a finite horizon ALM policy. The results are numerically and graphically illustrated.

  13. The gravity field model IGGT_R1 based on the second invariant of the GOCE gravitational gradient tensor

    NASA Astrophysics Data System (ADS)

    Lu, Biao; Luo, Zhicai; Zhong, Bo; Zhou, Hao; Flechtner, Frank; Förste, Christoph; Barthelmes, Franz; Zhou, Rui

    2017-11-01

    Based on tensor theory, three invariants of the gravitational gradient tensor (IGGT) are independent of the gradiometer reference frame (GRF). Compared to traditional methods for calculation of gravity field models based on the gravity field and steady-state ocean circulation explorer (GOCE) data, which are affected by errors in the attitude indicator, using IGGT and least squares method avoids the problem of inaccurate rotation matrices. The IGGT approach as studied in this paper is a quadratic function of the gravity field model's spherical harmonic coefficients. The linearized observation equations for the least squares method are obtained using a Taylor expansion, and the weighting equation is derived using the law of error propagation. We also investigate the linearization errors using existing gravity field models and find that this error can be ignored since the used a-priori model EIGEN-5C is sufficiently accurate. One problem when using this approach is that it needs all six independent gravitational gradients (GGs), but the components V_{xy} and V_{yz} of GOCE are worse due to the non-sensitive axes of the GOCE gradiometer. Therefore, we use synthetic GGs for both inaccurate gravitational gradient components derived from the a-priori gravity field model EIGEN-5C. Another problem is that the GOCE GGs are measured in a band-limited manner. Therefore, a forward and backward finite impulse response band-pass filter is applied to the data, which can also eliminate filter caused phase change. The spherical cap regularization approach (SCRA) and the Kaula rule are then applied to solve the polar gap problem caused by GOCE's inclination of 96.7° . With the techniques described above, a degree/order 240 gravity field model called IGGT_R1 is computed. Since the synthetic components of V_{xy} and V_{yz} are not band-pass filtered, the signals outside the measurement bandwidth are replaced by the a-priori model EIGEN-5C. Therefore, this model is practically a combined gravity field model which contains GOCE GGs signals and long wavelength signals from the a-priori model EIGEN-5C. Finally, IGGT_R1's accuracy is evaluated by comparison with other gravity field models in terms of difference degree amplitudes, the geostrophic velocity in the Agulhas current area, gravity anomaly differences as well as by comparison to GNSS/leveling data.

  14. Estimating net solar radiation using Landsat Thematic Mapper and digital elevation data

    NASA Technical Reports Server (NTRS)

    Dubayah, R.

    1992-01-01

    A radiative transfer algorithm is combined with digital elevation and satellite reflectance data to model spatial variability in net solar radiation at fine spatial resolution. The method is applied to the tall-grass prairie of the 16 x 16 sq km FIFE site (First ISLSCP Field Experiment) of the International Satellite Land Surface Climatology Project. Spectral reflectances as measured by the Landsat Thematic Mapper (TM) are corrected for atmospheric and topographic effects using field measurements and accurate 30-m digital elevation data in a detailed model of atmosphere-surface interaction. The spectral reflectances are then integrated to produce estimates of surface albedo in the range 0.3-3.0 microns. This map of albedo is used in an atmospheric and topographic radiative transfer model to produce a map of net solar radiation. A map of apparent net solar radiation is also derived using only the TM reflectance data, uncorrected for topography, and the average field-measured downwelling solar irradiance. Comparison with field measurements at 10 sites on the prairie shows that the topographically derived radiation map accurately captures the spatial variability in net solar radiation, but the apparent map does not.

  15. Inversion of sonobuoy data from shallow-water sites with simulated annealing.

    PubMed

    Lindwall, Dennis; Brozena, John

    2005-02-01

    An enhanced simulated annealing algorithm is used to invert sparsely sampled seismic data collected with sonobuoys to obtain seafloor geoacoustic properties at two littoral marine environments as well as for a synthetic data set. Inversion of field data from a 750-m water-depth site using a water-gun sound source found a good solution which included a pronounced subbottom reflector after 6483 iterations over seven variables. Field data from a 250-m water-depth site using an air-gun source required 35,421 iterations for a good inversion solution because 30 variables had to be solved for, including the shot-to-receiver offsets. The sonobuoy derived compressional wave velocity-depth (Vp-Z) models compare favorably with Vp-Z models derived from nearby, high-quality, multichannel seismic data. There are, however, substantial differences between seafloor reflection coefficients calculated from field models and seafloor reflection coefficients based on commonly used Vp regression curves (gradients). Reflection loss is higher at one field site and lower at the other than predicted from commonly used Vp gradients for terrigenous sediments. In addition, there are strong effects on reflection loss due to the subseafloor interfaces that are also not predicted by Vp gradients.

  16. Flexible Force Field Parameterization through Fitting on the Ab Initio-Derived Elastic Tensor

    PubMed Central

    2017-01-01

    Constructing functional forms and their corresponding force field parameters for the metal–linker interface of metal–organic frameworks is challenging. We propose fitting these parameters on the elastic tensor, computed from ab initio density functional theory calculations. The advantage of this top-down approach is that it becomes evident if functional forms are missing when components of the elastic tensor are off. As a proof-of-concept, a new flexible force field for MIL-47(V) is derived. Negative thermal expansion is observed and framework flexibility has a negligible effect on adsorption and transport properties for small guest molecules. We believe that this force field parametrization approach can serve as a useful tool for developing accurate flexible force field models that capture the correct mechanical behavior of the full periodic structure. PMID:28661672

  17. Efficient minimization of multipole electrostatic potentials in torsion space

    PubMed Central

    Bodmer, Nicholas K.

    2018-01-01

    The development of models of macromolecular electrostatics capable of delivering improved fidelity to quantum mechanical calculations is an active field of research in computational chemistry. Most molecular force field development takes place in the context of models with full Cartesian coordinate degrees of freedom. Nevertheless, a number of macromolecular modeling programs use a reduced set of conformational variables limited to rotatable bonds. Efficient algorithms for minimizing the energies of macromolecular systems with torsional degrees of freedom have been developed with the assumption that all atom-atom interaction potentials are isotropic. We describe novel modifications to address the anisotropy of higher order multipole terms while retaining the efficiency of these approaches. In addition, we present a treatment for obtaining derivatives of atom-centered tensors with respect to torsional degrees of freedom. We apply these results to enable minimization of the Amoeba multipole electrostatics potential in a system with torsional degrees of freedom, and validate the correctness of the gradients by comparison to finite difference approximations. In the interest of enabling a complete model of electrostatics with implicit treatment of solvent-mediated effects, we also derive expressions for the derivative of solvent accessible surface area with respect to torsional degrees of freedom. PMID:29641557

  18. Coarse-Graining Polymer Field Theory for Fast and Accurate Simulations of Directed Self-Assembly

    NASA Astrophysics Data System (ADS)

    Liu, Jimmy; Delaney, Kris; Fredrickson, Glenn

    To design effective manufacturing processes using polymer directed self-assembly (DSA), the semiconductor industry benefits greatly from having a complete picture of stable and defective polymer configurations. Field-theoretic simulations are an effective way to study these configurations and predict defect populations. Self-consistent field theory (SCFT) is a particularly successful theory for studies of DSA. Although other models exist that are faster to simulate, these models are phenomenological or derived through asymptotic approximations, often leading to a loss of accuracy relative to SCFT. In this study, we employ our recently-developed method to produce an accurate coarse-grained field theory for diblock copolymers. The method uses a force- and stress-matching strategy to map output from SCFT simulations into parameters for an optimized phase field model. This optimized phase field model is just as fast as existing phenomenological phase field models, but makes more accurate predictions of polymer self-assembly, both in bulk and in confined systems. We study the performance of this model under various conditions, including its predictions of domain spacing, morphology and defect formation energies. Samsung Electronics.

  19. Electro-magneto interaction in fractional Green-Naghdi thermoelastic solid with a cylindrical cavity

    NASA Astrophysics Data System (ADS)

    Ezzat, M. A.; El-Bary, A. A.

    2018-01-01

    A unified mathematical model of Green-Naghdi's thermoelasticty theories (GN), based on fractional time-derivative of heat transfer is constructed. The model is applied to solve a one-dimensional problem of a perfect conducting unbounded body with a cylindrical cavity subjected to sinusoidal pulse heating in the presence of an axial uniform magnetic field. Laplace transform techniques are used to get the general analytical solutions in Laplace domain, and the inverse Laplace transforms based on Fourier expansion techniques are numerically implemented to obtain the numerical solutions in time domain. Comparisons are made with the results predicted by the two theories. The effects of the fractional derivative parameter on thermoelastic fields for different theories are discussed.

  20. Fractional Stochastic Field Theory

    NASA Astrophysics Data System (ADS)

    Honkonen, Juha

    2018-02-01

    Models describing evolution of physical, chemical, biological, social and financial processes are often formulated as differential equations with the understanding that they are large-scale equations for averages of quantities describing intrinsically random processes. Explicit account of randomness may lead to significant changes in the asymptotic behaviour (anomalous scaling) in such models especially in low spatial dimensions, which in many cases may be captured with the use of the renormalization group. Anomalous scaling and memory effects may also be introduced with the use of fractional derivatives and fractional noise. Construction of renormalized stochastic field theory with fractional derivatives and fractional noise in the underlying stochastic differential equations and master equations and the interplay between fluctuation-induced and built-in anomalous scaling behaviour is reviewed and discussed.

  1. Input guide for computer programs to generate thermodynamic data for air and Freon CF4

    NASA Technical Reports Server (NTRS)

    Tevepaugh, J. A.; Penny, M. M.; Baker, L. R., Jr.

    1975-01-01

    FORTRAN computer programs were developed to calculate the thermodynamic properties of Freon 14 and air for isentropic expansion from given plenum conditions. Thermodynamic properties for air are calculated with equations derived from the Beattie-Bridgeman nonstandard equation of state and, for Freon 14, with equations derived from the Redlich-Quang nonstandard equation of state. These two gases are used in scale model testing of model rocket nozzle flow fields which requires simulation of the prototype plume shape with a cold flow test approach. Utility of the computer programs for use in analytical prediction of flow fields is enhanced by arranging card or tape output of the data in a format compatible with a method-of-characteristics computer program.

  2. A label field fusion bayesian model and its penalized maximum rand estimator for image segmentation.

    PubMed

    Mignotte, Max

    2010-06-01

    This paper presents a novel segmentation approach based on a Markov random field (MRF) fusion model which aims at combining several segmentation results associated with simpler clustering models in order to achieve a more reliable and accurate segmentation result. The proposed fusion model is derived from the recently introduced probabilistic Rand measure for comparing one segmentation result to one or more manual segmentations of the same image. This non-parametric measure allows us to easily derive an appealing fusion model of label fields, easily expressed as a Gibbs distribution, or as a nonstationary MRF model defined on a complete graph. Concretely, this Gibbs energy model encodes the set of binary constraints, in terms of pairs of pixel labels, provided by each segmentation results to be fused. Combined with a prior distribution, this energy-based Gibbs model also allows for definition of an interesting penalized maximum probabilistic rand estimator with which the fusion of simple, quickly estimated, segmentation results appears as an interesting alternative to complex segmentation models existing in the literature. This fusion framework has been successfully applied on the Berkeley image database. The experiments reported in this paper demonstrate that the proposed method is efficient in terms of visual evaluation and quantitative performance measures and performs well compared to the best existing state-of-the-art segmentation methods recently proposed in the literature.

  3. Non-minimally coupled tachyon field in teleparallel gravity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fazlpour, Behnaz; Banijamali, Ali, E-mail: b.fazlpour@umz.ac.ir, E-mail: a.banijamali@nit.ac.ir

    2015-04-01

    We perform a full investigation on dynamics of a new dark energy model in which the four-derivative of a non-canonical scalar field (tachyon) is non-minimally coupled to the vector torsion. Our analysis is done in the framework of teleparallel equivalent of general relativity which is based on torsion instead of curvature. We show that in our model there exists a late-time scaling attractor (point P{sub 4}), corresponding to an accelerating universe with the property that dark energy and dark matter densities are of the same order. Such a point can help to alleviate the cosmological coincidence problem. Existence of thismore » point is the most significant difference between our model and another model in which a canonical scalar field (quintessence) is used instead of tachyon field.« less

  4. Evaluating Force-Field London Dispersion Coefficients Using the Exchange-Hole Dipole Moment Model.

    PubMed

    Mohebifar, Mohamad; Johnson, Erin R; Rowley, Christopher N

    2017-12-12

    London dispersion interactions play an integral role in materials science and biophysics. Force fields for atomistic molecular simulations typically represent dispersion interactions by the 12-6 Lennard-Jones potential using empirically determined parameters. These parameters are generally underdetermined, and there is no straightforward way to test if they are physically realistic. Alternatively, the exchange-hole dipole moment (XDM) model from density-functional theory predicts atomic and molecular London dispersion coefficients from first principles, providing an innovative strategy to validate the dispersion terms of molecular-mechanical force fields. In this work, the XDM model was used to obtain the London dispersion coefficients of 88 organic molecules relevant to biochemistry and pharmaceutical chemistry and the values compared with those derived from the Lennard-Jones parameters of the CGenFF, GAFF, OPLS, and Drude polarizable force fields. The molecular dispersion coefficients for the CGenFF, GAFF, and OPLS models are systematically higher than the XDM-calculated values by a factor of roughly 1.5, likely due to neglect of higher order dispersion terms and premature truncation of the dispersion-energy summation. The XDM dispersion coefficients span a large range for some molecular-mechanical atom types, suggesting an unrecognized source of error in force-field models, which assume that atoms of the same type have the same dispersion interactions. Agreement with the XDM dispersion coefficients is even poorer for the Drude polarizable force field. Popular water models were also examined, and TIP3P was found to have dispersion coefficients similar to the experimental and XDM references, although other models employ anomalously high values. Finally, XDM-derived dispersion coefficients were used to parametrize molecular-mechanical force fields for five liquids-benzene, toluene, cyclohexane, n-pentane, and n-hexane-which resulted in improved accuracy in the computed enthalpies of vaporization despite only having to evaluate a much smaller section of the parameter space.

  5. Modified cable equation incorporating transverse polarization of neuronal membranes for accurate coupling of electric fields.

    PubMed

    Wang, Boshuo; Aberra, Aman S; Grill, Warren M; Peterchev, Angel V

    2018-04-01

    We present a theory and computational methods to incorporate transverse polarization of neuronal membranes into the cable equation to account for the secondary electric field generated by the membrane in response to transverse electric fields. The effect of transverse polarization on nonlinear neuronal activation thresholds is quantified and discussed in the context of previous studies using linear membrane models. The response of neuronal membranes to applied electric fields is derived under two time scales and a unified solution of transverse polarization is given for spherical and cylindrical cell geometries. The solution is incorporated into the cable equation re-derived using an asymptotic model that separates the longitudinal and transverse dimensions. Two numerical methods are proposed to implement the modified cable equation. Several common neural stimulation scenarios are tested using two nonlinear membrane models to compare thresholds of the conventional and modified cable equations. The implementations of the modified cable equation incorporating transverse polarization are validated against previous results in the literature. The test cases show that transverse polarization has limited effect on activation thresholds. The transverse field only affects thresholds of unmyelinated axons for short pulses and in low-gradient field distributions, whereas myelinated axons are mostly unaffected. The modified cable equation captures the membrane's behavior on different time scales and models more accurately the coupling between electric fields and neurons. It addresses the limitations of the conventional cable equation and allows sound theoretical interpretations. The implementation provides simple methods that are compatible with current simulation approaches to study the effect of transverse polarization on nonlinear membranes. The minimal influence by transverse polarization on axonal activation thresholds for the nonlinear membrane models indicates that predictions of stronger effects in linear membrane models with a fixed activation threshold are inaccurate. Thus, the conventional cable equation works well for most neuroengineering applications, and the presented modeling approach is well suited to address the exceptions.

  6. Characterizing CO and NOy Sources and Relative Ambient Ratios in the Baltimore Area Using Ambient Measurements and Source Attribution Modeling

    EPA Science Inventory

    Modeled source attribution information from the Community Multiscale Air Quality model was coupled with ambient data from the 2011 Deriving Information on Surface conditions from Column and Vertically Resolved Observations Relevant to Air Quality Baltimore field study. We assess ...

  7. Leading-order classical Lagrangians for the nonminimal standard-model extension

    NASA Astrophysics Data System (ADS)

    Reis, J. A. A. S.; Schreck, M.

    2018-03-01

    In this paper, we derive the general leading-order classical Lagrangian covering all fermion operators of the nonminimal standard-model extension (SME). Such a Lagrangian is considered to be the point-particle analog of the effective field theory description of Lorentz violation that is provided by the SME. At leading order in Lorentz violation, the Lagrangian obtained satisfies the set of five nonlinear equations that govern the map from the field theory to the classical description. This result can be of use for phenomenological studies of classical bodies in gravitational fields.

  8. Cosmology of a covariant Galilean field.

    PubMed

    De Felice, Antonio; Tsujikawa, Shinji

    2010-09-10

    We study the cosmology of a covariant scalar field respecting a Galilean symmetry in flat space-time. We show the existence of a tracker solution that finally approaches a de Sitter fixed point responsible for cosmic acceleration today. The viable region of model parameters is clarified by deriving conditions under which ghosts and Laplacian instabilities of scalar and tensor perturbations are absent. The field equation of state exhibits a peculiar phantomlike behavior along the tracker, which allows a possibility to observationally distinguish the Galileon gravity from the cold dark matter model with a cosmological constant.

  9. Japanese MAGSAT team

    NASA Technical Reports Server (NTRS)

    Fukushima, N.; Maeda, H.; Yukutake, T.; Tanaka, M.; Miyazaki, Y.; Oshima, S.; Ogawa, K.; Kawamura, M.; Uyeda, S.; Kobayashi, K.

    1982-01-01

    Construction of a model of the regional magnetic field and investigation of the local magnetic anomalies and their origin were approaches used in attempts to study the crustal structure near Japan and its Antarctic bases. Spatial properties of the regional magnetic field and comparison of the regional model with that derived from MAGSAT data are discussed. Possible causes of the magnetic anomalies, and results of aeromagnetic surveys incorporating gravity and seismic data are explored. Ionospheric and magnetospheric contributions to geomagnetic variations, field-aligned currents, magnetic geomagnetic pulsations, and hydromagnetic waves by analysis of MAGSAT data are also examined.

  10. Patient Derived Xenograft Models: An Emerging Platform for Translational Cancer Research

    PubMed Central

    Hidalgo, Manuel; Amant, Frederic; Biankin, Andrew V.; Budinská, Eva; Byrne, Annette T.; Caldas, Carlos; Clarke, Robert B.; de Jong, Steven; Jonkers, Jos; Mælandsmo, Gunhild Mari; Roman-Roman, Sergio; Seoane, Joan; Trusolino, Livio; Villanueva, Alberto

    2014-01-01

    Recently, there has been increasing interest in the development and characterization of patient derived tumor xenograft (PDX) models for cancer research. PDX models mostly retain the principal histological and genetic characteristics of their donor tumor and remain stable across passages. These models have been shown to be predictive of clinical outcomes and are being used for preclinical drug evaluation, biomarker identification, biological studies, and personalized medicine strategies. This paper summarizes the current state of the art in this field including methodological issues, available collections, practical applications, challenges and shortcoming, and future directions, and introduces a European consortium of PDX models. PMID:25185190

  11. Magnetohydrodynamic Models of Molecular Tornadoes

    NASA Astrophysics Data System (ADS)

    Au, Kelvin; Fiege, Jason D.

    2017-07-01

    Recent observations near the Galactic Center (GC) have found several molecular filaments displaying striking helically wound morphology that are collectively known as molecular tornadoes. We investigate the equilibrium structure of these molecular tornadoes by formulating a magnetohydrodynamic model of a rotating, helically magnetized filament. A special analytical solution is derived where centrifugal forces balance exactly with toroidal magnetic stress. From the physics of torsional Alfvén waves we derive a constraint that links the toroidal flux-to-mass ratio and the pitch angle of the helical field to the rotation laws, which we find to be an important component in describing the molecular tornado structure. The models are compared to the Ostriker solution for isothermal, nonmagnetic, nonrotating filaments. We find that neither the analytic model nor the Alfvén wave model suffer from the unphysical density inversions noted by other authors. A Monte Carlo exploration of our parameter space is constrained by observational measurements of the Pigtail Molecular Cloud, the Double Helix Nebula, and the GC Molecular Tornado. Observable properties such as the velocity dispersion, filament radius, linear mass, and surface pressure can be used to derive three dimensionless constraints for our dimensionless models of these three objects. A virial analysis of these constrained models is studied for these three molecular tornadoes. We find that self-gravity is relatively unimportant, whereas magnetic fields and external pressure play a dominant role in the confinement and equilibrium radial structure of these objects.

  12. 3D-QSAR Studies on Barbituric Acid Derivatives as Urease Inhibitors and the Effect of Charges on the Quality of a Model.

    PubMed

    Ul-Haq, Zaheer; Ashraf, Sajda; Al-Majid, Abdullah Mohammed; Barakat, Assem

    2016-04-30

    Urease enzyme (EC 3.5.1.5) has been determined as a virulence factor in pathogenic microorganisms that are accountable for the development of different diseases in humans and animals. In continuance of our earlier study on the helicobacter pylori urease inhibition by barbituric acid derivatives, 3D-QSAR (three dimensional quantitative structural activity relationship) advance studies were performed by Comparative Molecular Field Analysis (CoMFA) and Comparative Molecular Similarity Indices Analysis (CoMSIA) methods. Different partial charges were calculated to examine their consequences on the predictive ability of the developed models. The finest developed model for CoMFA and CoMSIA were achieved by using MMFF94 charges. The developed CoMFA model gives significant results with cross-validation (q²) value of 0.597 and correlation coefficients (r²) of 0.897. Moreover, five different fields i.e., steric, electrostatic, and hydrophobic, H-bond acceptor and H-bond donors were used to produce a CoMSIA model, with q² and r² of 0.602 and 0.98, respectively. The generated models were further validated by using an external test set. Both models display good predictive power with r²pred ≥ 0.8. The analysis of obtained CoMFA and CoMSIA contour maps provided detailed insight for the promising modification of the barbituric acid derivatives with an enhanced biological activity.

  13. DIRECT OBSERVATION OF SOLAR CORONAL MAGNETIC FIELDS BY VECTOR TOMOGRAPHY OF THE CORONAL EMISSION LINE POLARIZATIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kramar, M.; Lin, H.; Tomczyk, S., E-mail: kramar@cua.edu, E-mail: lin@ifa.hawaii.edu, E-mail: tomczyk@ucar.edu

    We present the first direct “observation” of the global-scale, 3D coronal magnetic fields of Carrington Rotation (CR) Cycle 2112 using vector tomographic inversion techniques. The vector tomographic inversion uses measurements of the Fe xiii 10747 Å Hanle effect polarization signals by the Coronal Multichannel Polarimeter (CoMP) and 3D coronal density and temperature derived from scalar tomographic inversion of Solar Terrestrial Relations Observatory (STEREO)/Extreme Ultraviolet Imager (EUVI) coronal emission lines (CELs) intensity images as inputs to derive a coronal magnetic field model that best reproduces the observed polarization signals. While independent verifications of the vector tomography results cannot be performed, wemore » compared the tomography inverted coronal magnetic fields with those constructed by magnetohydrodynamic (MHD) simulations based on observed photospheric magnetic fields of CR 2112 and 2113. We found that the MHD model for CR 2112 is qualitatively consistent with the tomography inverted result for most of the reconstruction domain except for several regions. Particularly, for one of the most noticeable regions, we found that the MHD simulation for CR 2113 predicted a model that more closely resembles the vector tomography inverted magnetic fields. In another case, our tomographic reconstruction predicted an open magnetic field at a region where a coronal hole can be seen directly from a STEREO-B/EUVI image. We discuss the utilities and limitations of the tomographic inversion technique, and present ideas for future developments.« less

  14. Gravitational field models for study of Earth mantle dynamics

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The tectonic forces or stresses due to the small scale mantle flow under the South American plate are detected and determined by utilizing the harmonics of the geopotential field model. The high degree harmonics are assumed to describe the small scale mantle convection patterns. The input data used in the derivation of this model is made up of 840,000 optical, electronic, and laser observations and 1,656 5 deg x 5 deg mean free air anomalies. Although there remain some statistically questionable aspects of the high degree harmonics, it seems appropriate now to explore their implications for the tectonic forces or stress field under the crust.

  15. General background conditions for K-bounce and adiabaticity

    NASA Astrophysics Data System (ADS)

    Romano, Antonio Enea

    2017-03-01

    We study the background conditions for a bounce uniquely driven by a single scalar field model with a generalized kinetic term K( X), without any additional matter field. At the background level we impose the existence of two turning points where the derivative of the Hubble parameter H changes sign and of a bounce point where the Hubble parameter vanishes. We find the conditions for K( X) and the potential which ensure the above requirements. We then give the examples of two models constructed according to these conditions. One is based on a quadratic K( X), and the other on a K( X) which is avoiding divergences of the second time derivative of the scalar field, which may otherwise occur. An appropriate choice of the initial conditions can lead to a sequence of consecutive bounces, or oscillations of H. In the region where these models have a constant potential they are adiabatic on any scale and because of this they may not conserve curvature perturbations on super-horizon scales. While at the perturbation level one class of models is free from ghosts and singularities of the classical equations of motion, in general gradient instabilities are present around the bounce time, because the sign of the squared speed of sound is opposite to the sign of the time derivative of H. We discuss how this kind of instabilities could be avoided by modifying the Lagrangian by introducing Galilean terms in order to prevent a negative squared speed of sound around the bounce.

  16. Covariant electromagnetic field lines

    NASA Astrophysics Data System (ADS)

    Hadad, Y.; Cohen, E.; Kaminer, I.; Elitzur, A. C.

    2017-08-01

    Faraday introduced electric field lines as a powerful tool for understanding the electric force, and these field lines are still used today in classrooms and textbooks teaching the basics of electromagnetism within the electrostatic limit. However, despite attempts at generalizing this concept beyond the electrostatic limit, such a fully relativistic field line theory still appears to be missing. In this work, we propose such a theory and define covariant electromagnetic field lines that naturally extend electric field lines to relativistic systems and general electromagnetic fields. We derive a closed-form formula for the field lines curvature in the vicinity of a charge, and show that it is related to the world line of the charge. This demonstrates how the kinematics of a charge can be derived from the geometry of the electromagnetic field lines. Such a theory may also provide new tools in modeling and analyzing electromagnetic phenomena, and may entail new insights regarding long-standing problems such as radiation-reaction and self-force. In particular, the electromagnetic field lines curvature has the attractive property of being non-singular everywhere, thus eliminating all self-field singularities without using renormalization techniques.

  17. The sound field of a rotating dipole in a plug flow.

    PubMed

    Wang, Zhao-Huan; Belyaev, Ivan V; Zhang, Xiao-Zheng; Bi, Chuan-Xing; Faranosov, Georgy A; Dowell, Earl H

    2018-04-01

    An analytical far field solution for a rotating point dipole source in a plug flow is derived. The shear layer of the jet is modelled as an infinitely thin cylindrical vortex sheet and the far field integral is calculated by the stationary phase method. Four numerical tests are performed to validate the derived solution as well as to assess the effects of sound refraction from the shear layer. First, the calculated results using the derived formulations are compared with the known solution for a rotating dipole in a uniform flow to validate the present model in this fundamental test case. After that, the effects of sound refraction for different rotating dipole sources in the plug flow are assessed. Then the refraction effects on different frequency components of the signal at the observer position, as well as the effects of the motion of the source and of the type of source are considered. Finally, the effect of different sound speeds and densities outside and inside the plug flow is investigated. The solution obtained may be of particular interest for propeller and rotor noise measurements in open jet anechoic wind tunnels.

  18. Absolute Lower Bound on the Bounce Action

    NASA Astrophysics Data System (ADS)

    Sato, Ryosuke; Takimoto, Masahiro

    2018-03-01

    The decay rate of a false vacuum is determined by the minimal action solution of the tunneling field: bounce. In this Letter, we focus on models with scalar fields which have a canonical kinetic term in N (>2 ) dimensional Euclidean space, and derive an absolute lower bound on the bounce action. In the case of four-dimensional space, we show the bounce action is generically larger than 24 /λcr, where λcr≡max [-4 V (ϕ )/|ϕ |4] with the false vacuum being at ϕ =0 and V (0 )=0 . We derive this bound on the bounce action without solving the equation of motion explicitly. Our bound is derived by a quite simple discussion, and it provides useful information even if it is difficult to obtain the explicit form of the bounce solution. Our bound offers a sufficient condition for the stability of a false vacuum, and it is useful as a quick check on the vacuum stability for given models. Our bound can be applied to a broad class of scalar potential with any number of scalar fields. We also discuss a necessary condition for the bounce action taking a value close to this lower bound.

  19. Single tree biomass modelling using airborne laser scanning

    NASA Astrophysics Data System (ADS)

    Kankare, Ville; Räty, Minna; Yu, Xiaowei; Holopainen, Markus; Vastaranta, Mikko; Kantola, Tuula; Hyyppä, Juha; Hyyppä, Hannu; Alho, Petteri; Viitala, Risto

    2013-11-01

    Accurate forest biomass mapping methods would provide the means for e.g. detecting bioenergy potential, biofuel and forest-bound carbon. The demand for practical biomass mapping methods at all forest levels is growing worldwide, and viable options are being developed. Airborne laser scanning (ALS) is a promising forest biomass mapping technique, due to its capability of measuring the three-dimensional forest vegetation structure. The objective of the study was to develop new methods for tree-level biomass estimation using metrics derived from ALS point clouds and to compare the results with field references collected using destructive sampling and with existing biomass models. The study area was located in Evo, southern Finland. ALS data was collected in 2009 with pulse density equalling approximately 10 pulses/m2. Linear models were developed for the following tree biomass components: total, stem wood, living branch and total canopy biomass. ALS-derived geometric and statistical point metrics were used as explanatory variables when creating the models. The total and stem biomass root mean square error per cents equalled 26.3% and 28.4% for Scots pine (Pinus sylvestris L.), and 36.8% and 27.6% for Norway spruce (Picea abies (L.) H. Karst.), respectively. The results showed that higher estimation accuracy for all biomass components can be achieved with models created in this study compared to existing allometric biomass models when ALS-derived height and diameter were used as input parameters. Best results were achieved when adding field-measured diameter and height as inputs in the existing biomass models. The only exceptions to this were the canopy and living branch biomass estimations for spruce. The achieved results are encouraging for the use of ALS-derived metrics in biomass mapping and for further development of the models.

  20. Fluctuations of the partition function in the generalized random energy model with external field

    NASA Astrophysics Data System (ADS)

    Bovier, Anton; Klimovsky, Anton

    2008-12-01

    We study Derrida's generalized random energy model (GREM) in the presence of uniform external field. We compute the fluctuations of the ground state and of the partition function in the thermodynamic limit for all admissible values of parameters. We find that the fluctuations are described by a hierarchical structure which is obtained by a certain coarse graining of the initial hierarchical structure of the GREM with external field. We provide an explicit formula for the free energy of the model. We also derive some large deviation results providing an expression for the free energy in a class of models with Gaussian Hamiltonians and external field. Finally, we prove that the coarse-grained parts of the system emerging in the thermodynamic limit tend to have a certain optimal magnetization, as prescribed by the strength of the external field and by parameters of the GREM.

  1. Force Field Development and Molecular Dynamics of [NiFe] Hydrogenase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, Dayle MA; Xiong, Yijia; Straatsma, TP

    2012-05-09

    Classical molecular force-field parameters describing the structure and motion of metal clusters in [NiFe] hydrogenase enzymes can be used to compare the dynamics and thermodynamics of [NiFe] under different oxidation, protonation, and ligation circumstances. Using density functional theory (DFT) calculations of small model clusters representative of the active site and the proximal, medial, and distal Fe/S metal centers and their attached protein side chains, we have calculated classical force-field parameters for [NiFe] in reduced and oxidized states, including internal coordinates, force constants, and atom-centered charges. Derived force constants revealed that cysteinate ligands bound to the metal ions are more flexiblemore » in the Ni-B active site, which has a bridging hydroxide ligand, than in the Ni-C active site, which has a bridging hydride. Ten nanosecond all-atom, explicit-solvent MD simulations of [NiFe] hydrogenase in oxidized and reduced catalytic states established the stability of the derived force-field parameters in terms of C{alpha} and metal cluster fluctuations. Average active site structures from the protein MD simulations are consistent with [NiFe] structures from the Protein Data Bank, suggesting that the derived force-field parameters are transferrable to other hydrogenases beyond the structure used for testing. A comparison of experimental H{sub 2}-production rates demonstrated a relationship between cysteinate side chain rotation and activity, justifying the use of a fully dynamic model of [NiFe] metal cluster motion.« less

  2. Representation of magnetic fields in space. [special attention to Geomagnetic fields and Magnetospheric models

    NASA Technical Reports Server (NTRS)

    Stern, D. P.

    1976-01-01

    Several mathematical methods which are available for the description of magnetic fields in space are reviewed. Examples of the application of such methods are given, with particular emphasis on work related to the geomagnetic field, and their individual properties and associated problems are described. The methods are grouped in five main classes: (1) methods based on the current density, (2) methods using the scalar magnetic potential, (3) toroidal and poloidal components of the field and spherical vector harmonics, (4) Euler potentials, and (5) local expansions of the field near a given reference point. Special attention is devoted to models of the magnetosphere, to the uniqueness of the scalar potential as derived from observed data, and to the L parameter.

  3. Diastereoselective reactions in glycine templates containing an ent-ardeemin fragment.

    PubMed

    Martín-Santamaría, Sonsoles; Corzo-Suárez, Raúl; Avendaño, Carmen; Espada, Modesta; Gago, Federico; García-Granda, Santiago; Rzepa, Henry S

    2002-04-05

    Self-consistent reaction field solvation models derived from SCF-MO calculations are shown to be reliable in modeling the diastereoselectivity of the reactions of the anion and cation derived from (4S)-2,4-dimethyl-2,4-dihydro-1H-pyrazino[2,1-b]quinazoline-3,6-dione (1) at C(1) with electrophiles and nucleophiles, respectively. The found anti/syn ratio of compound 8, which is a seco-ent-ardeemin analogue obtained by alkylation of 1 with gramine methiodide, confirms this computational model. A close similarity between the calculated geometry of the piperazine ring in the anti isomers of 1,2,4-trialkyl derivatives and that deduced from their (1)H NMR (solution) and X-ray data has been also established.

  4. The effect of line damping, magneto-optics and parasitic light on the derivation of sunspot vector magnetic fields

    NASA Technical Reports Server (NTRS)

    Skumanich, A.; Lites, B. W.

    1985-01-01

    The least square fitting of Stokes observations of sunspots using a Milne-Eddington-Unno model appears to lead, in many circumstances, to various inconsistencies such as anomalously large doppler widths and, hence, small magnetic fields which are significantly below those inferred solely from the Zeeman splitting in the intensity profile. It is found that the introduction of additional physics into the model such as the inclusion of damping wings and magneto-optic birefrigence significantly improves the fit to Stokes parameters. Model fits excluding the intensity profile, i.e., of both magnitude as well as spectral shape of the polarization parameters alone, suggest that parasitic light in the intensity profile may also be a source of inconsistencies. The consequences of the physical changes on the vector properties of the field derived from the Fe I lambda 6173 line for the 17 November 1975 spot as well as on the thermodynamic state are discussed. A Doppler width delta lambda (D) - 25mA is bound to be consistent with a low spot temperature and microturbulence, and a damping constant of a = 0.2.

  5. Objective estimation of tropical cyclone innercore surface wind structure using infrared satellite images

    NASA Astrophysics Data System (ADS)

    Zhang, Changjiang; Dai, Lijie; Ma, Leiming; Qian, Jinfang; Yang, Bo

    2017-10-01

    An objective technique is presented for estimating tropical cyclone (TC) innercore two-dimensional (2-D) surface wind field structure using infrared satellite imagery and machine learning. For a TC with eye, the eye contour is first segmented by a geodesic active contour model, based on which the eye circumference is obtained as the TC eye size. A mathematical model is then established between the eye size and the radius of maximum wind obtained from the past official TC report to derive the 2-D surface wind field within the TC eye. Meanwhile, the composite information about the latitude of TC center, surface maximum wind speed, TC age, and critical wind radii of 34- and 50-kt winds can be combined to build another mathematical model for deriving the innercore wind structure. After that, least squares support vector machine (LSSVM), radial basis function neural network (RBFNN), and linear regression are introduced, respectively, in the two mathematical models, which are then tested with sensitivity experiments on real TC cases. Verification shows that the innercore 2-D surface wind field structure estimated by LSSVM is better than that of RBFNN and linear regression.

  6. Superspace and global stability in general relativity

    NASA Astrophysics Data System (ADS)

    Gurzadyan, A. V.; Kocharyan, A. A.

    A framework is developed enabling the global analysis of the stability of cosmological models using the local geometric characteristics of the infinite-dimensional superspace, i.e. using the generalized Jacobi equation reformulated for pseudo-Riemannian manifolds. We give a direct formalism for dynamical analysis in the superspace, the requisite equation pertinent for stability analysis of the universe by means of generalized covariant and Fermi derivative is derived. Then, the relevant definitions and formulae are retrieved for cosmological models with a scalar field.

  7. Degree Distribution of Position-Dependent Ball-Passing Networks in Football Games

    NASA Astrophysics Data System (ADS)

    Narizuka, Takuma; Yamamoto, Ken; Yamazaki, Yoshihiro

    2015-08-01

    We propose a simple stochastic model describing the position-dependent ball-passing network in football (soccer) games. In this network, a player in a certain area in a divided field is a node, and a pass between two nodes corresponds to an edge. Our stochastic process model is characterized by the consecutive choice of a node depending on its intrinsic fitness. We derive an explicit expression for the degree distribution and find that the derived distribution reproduces that for actual data reasonably well.

  8. A drain current model for amorphous InGaZnO thin film transistors considering temperature effects

    NASA Astrophysics Data System (ADS)

    Cai, M. X.; Yao, R. H.

    2018-03-01

    Temperature dependent electrical characteristics of amorphous InGaZnO (a-IGZO) thin film transistors (TFTs) are investigated considering the percolation and multiple trapping and release (MTR) conduction mechanisms. Carrier-density and temperature dependent carrier mobility in a-IGZO is derived with the Boltzmann transport equation, which is affected by potential barriers above the conduction band edge with Gaussian-like distributions. The free and trapped charge densities in the channel are calculated with Fermi-Dirac statistics, and the field effective mobility of a-IGZO TFTs is then deduced based on the MTR theory. Temperature dependent drain current model for a-IGZO TFTs is finally derived with the obtained low field mobility and free charge density, which is applicable to both non-degenerate and degenerate conductions. This physical-based model is verified by available experiment results at various temperatures.

  9. Parameterization of backbone flexibility in a coarse-grained force field for proteins (COFFDROP) derived from all-atom explicit-solvent molecular dynamics simulations of all possible two-residue peptides

    PubMed Central

    Frembgen-Kesner, Tamara; Andrews, Casey T.; Li, Shuxiang; Ngo, Nguyet Anh; Shubert, Scott A.; Jain, Aakash; Olayiwola, Oluwatoni; Weishaar, Mitch R.; Elcock, Adrian H.

    2015-01-01

    Recently, we reported the parameterization of a set of coarse-grained (CG) nonbonded potential functions, derived from all-atom explicit-solvent molecular dynamics (MD) simulations of amino acid pairs, and designed for use in (implicit-solvent) Brownian dynamics (BD) simulations of proteins; this force field was named COFFDROP (COarse-grained Force Field for Dynamic Representations Of Proteins). Here, we describe the extension of COFFDROP to include bonded backbone terms derived from fitting to results of explicit-solvent MD simulations of all possible two-residue peptides containing the 20 standard amino acids, with histidine modeled in both its protonated and neutral forms. The iterative Boltzmann inversion (IBI) method was used to optimize new CG potential functions for backbone-related terms by attempting to reproduce angle, dihedral and distance probability distributions generated by the MD simulations. In a simple test of the transferability of the extended force field, the angle, dihedral and distance probability distributions obtained from BD simulations of 56 three-residue peptides were compared to results from corresponding explicit-solvent MD simulations. In a more challenging test of the COFFDROP force field, it was used to simulate eight intrinsically disordered proteins and was shown to quite accurately reproduce the experimental hydrodynamic radii (Rhydro), provided that the favorable nonbonded interactions of the force field were uniformly scaled downwards in magnitude. Overall, the results indicate that the COFFDROP force field is likely to find use in modeling the conformational behavior of intrinsically disordered proteins and multi-domain proteins connected by flexible linkers. PMID:26574429

  10. Embeddings of the "New Massive Gravity"

    NASA Astrophysics Data System (ADS)

    Dalmazi, D.; Mendonça, E. L.

    2016-07-01

    Here we apply different types of embeddings of the equations of motion of the linearized "New Massive Gravity" in order to generate alternative and even higher-order (in derivatives) massive gravity theories in D=2+1. In the first part of the work we use the Weyl symmetry as a guiding principle for the embeddings. First we show that a Noether gauge embedding of the Weyl symmetry leads to a sixth-order model in derivatives with either a massive or a massless ghost, according to the chosen overall sign of the theory. On the other hand, if the Weyl symmetry is implemented by means of a Stueckelberg field we obtain a new scalar-tensor model for massive gravitons. It is ghost-free and Weyl invariant at the linearized level around Minkowski space. The model can be nonlinearly completed into a scalar field coupled to the NMG theory. The elimination of the scalar field leads to a nonlocal modification of the NMG. In the second part of the work we prove to all orders in derivatives that there is no local, ghost-free embedding of the linearized NMG equations of motion around Minkowski space when written in terms of one symmetric tensor. Regarding that point, NMG differs from the Fierz-Pauli theory, since in the latter case we can replace the Einstein-Hilbert action by specific f(R,Box R) generalizations and still keep the theory ghost-free at the linearized level.

  11. Modeling magnetic field amplification in nonlinear diffusive shock acceleration

    NASA Astrophysics Data System (ADS)

    Vladimirov, Andrey

    2009-02-01

    This research was motivated by the recent observations indicating very strong magnetic fields at some supernova remnant shocks, which suggests in-situ generation of magnetic turbulence. The dissertation presents a numerical model of collisionless shocks with strong amplification of stochastic magnetic fields, self-consistently coupled to efficient shock acceleration of charged particles. Based on a Monte Carlo simulation of particle transport and acceleration in nonlinear shocks, the model describes magnetic field amplification using the state-of-the-art analytic models of instabilities in magnetized plasmas in the presence of non-thermal particle streaming. The results help one understand the complex nonlinear connections between the thermal plasma, the accelerated particles and the stochastic magnetic fields in strong collisionless shocks. Also, predictions regarding the efficiency of particle acceleration and magnetic field amplification, the impact of magnetic field amplification on the maximum energy of accelerated particles, and the compression and heating of the thermal plasma by the shocks are presented. Particle distribution functions and turbulence spectra derived with this model can be used to calculate the emission of observable nonthermal radiation.

  12. Precessional Switching of Thin Nanomagnets with Uniaxial Anisotropy

    NASA Astrophysics Data System (ADS)

    Devolder, Thibaut; Schumacher, Hans Werner; Chappert, Claude

    This review describes the evolution of the magnetization of uniaxial thin magnets when subjected to fast-rising magnetic-field pulses. We report detailed "all-electrical" experimental investigations of precessional switching on soft uniaxial micrometer-sized thin magnets, and we discuss them using a comprehensive, mostly analytical framework. General criteria are derived for the analytical assessment of the switching ability of any arbitrary set of experimental parameters. For this, we start from the Landau-Lifshitz equation and first consider the precessional switching in a much idealized macrospin, easy-plane loss-free system. We then test the main outputs of this model with time-resolved experiments on advanced Magnetic Random Access Memories (MRAM) cells. Using applied fields above the anisotropy field H k , we prove the quasiperiodic nature of the magnetization trajectory and we demonstrate experimental conditions ensuring a sub-200 ps ballistic magnetization reversal. We then upgrade our model accuracy by taking into account the uniaxial anisotropy and the behavior in hard-axis fields of the order of H k . We derive a simple though reliable estimate of the switching speed; its limiting factors highlight the experimental poor switching reproducibility when close to the minimal hard-axis reversal field H k /2. The latter field does not correspond to the minimal energy cost of the reversal, whose prospective evolution in the future generations of MRAM is predicted. Small departures from the macrospin state are discussed. The effect of damping is modeled using perturbation theory. Finite damping alters the precessional motion periodicity and puts some constraints on the field rise time. A special focus is dedicated to the relaxation-dominated precessional switching: the minimal hard-axis field triggering the switching is shown to be above H k /2 by an extra field cost linked to the damping constant times the square root of M S H k . Finally, the selective addressing and the direct-write of a magnetic cell with combined easy-axis and hard-axis fields are studied. We introduce the concept of bounce and revisit the dynamical astroid to derive the related characteristic reversal durations and their margins. We propose a field timing that is immune to the delay jitter between the combined addressing fields. We finish by investigating briefly the challenges and the promises of the "precessional" strategy for future MRAM generations.

  13. The point spread function of the human head and its implications for transcranial current stimulation

    NASA Astrophysics Data System (ADS)

    Dmochowski, Jacek P.; Bikson, Marom; Parra, Lucas C.

    2012-10-01

    Rational development of transcranial current stimulation (tCS) requires solving the ‘forward problem’: the computation of the electric field distribution in the head resulting from the application of scalp currents. Derivation of forward models has represented a major effort in brain stimulation research, with model complexity ranging from spherical shells to individualized head models based on magnetic resonance imagery. Despite such effort, an easily accessible benchmark head model is greatly needed when individualized modeling is either undesired (to observe general population trends as opposed to individual differences) or unfeasible. Here, we derive a closed-form linear system which relates the applied current to the induced electric potential. It is shown that in the spherical harmonic (Fourier) domain, a simple scalar multiplication relates the current density on the scalp to the electric potential in the brain. Equivalently, the current density in the head follows as the spherical convolution between the scalp current distribution and the point spread function of the head, which we derive. Thus, if one knows the spherical harmonic representation of the scalp current (i.e. the electrode locations and current intensity to be employed), one can easily compute the resulting electric field at any point inside the head. Conversely, one may also readily determine the scalp current distribution required to generate an arbitrary electric field in the brain (the ‘backward problem’ in tCS). We demonstrate the simplicity and utility of the model with a series of characteristic curves which sweep across a variety of stimulation parameters: electrode size, depth of stimulation, head size and anode-cathode separation. Finally, theoretically optimal montages for targeting an infinitesimal point in the brain are shown.

  14. Using wind fields from a high resolution atmospheric model for simulating snow dynamics in mountainous terrain

    NASA Astrophysics Data System (ADS)

    Bernhardt, M.; Strasser, U.; Zängl, G.; Mauser, W.; Liston, G.; Pohl, S.

    2008-12-01

    Wind-induced snow transport processes lead to a significant variability of the snow cover. Knowledge about this variability is important for e.g. determining the temporal dynamics of the snowmelt runoff. For predicting the correct amount of transported snow knowledge of the local wind-field is an essential. In high-alpine rugged relief wind fields can hardly be provided by a simple interpolation of station recordings. In this work we use a modified version of the PSU/NCAR Mesoscale Model MM5 to derive wind fields for a 450 km² area at a target resolution of 200 m, accounting for topography and related dynamic effects. We have modelled 220 wind fields representing the most characteristic wind situations within the test-area. The criteria for the extraction of the wind field for the current snowmodel (SNOWTRAND-3D) time step are mean wind speeds and directions in the 700 hPa level derived from DWD (German Weather Service) Local Model reanalysis data with a temporal resolution of one hour. These data are then compared with the corresponding mean wind speeds and directions from the appropriate MM5 nesting area indicating which one of the library files represents the best fit. Verification is conducted by comparison of historical station measurements with corresponding downscaled simulation results. For this downscaling a semi-empirical approach is utilized which accounts for topographic effects. Results for the winter seasons 2003/04 and 2004/05 showing that the presented scheme is able to improve the quality of SNOWTRAN-3D runs with respect to the snow height.

  15. Unification and mechanistic detail as drivers of model construction: models of networks in economics and sociology.

    PubMed

    Kuorikoski, Jaakko; Marchionni, Caterina

    2014-12-01

    We examine the diversity of strategies of modelling networks in (micro) economics and (analytical) sociology. Field-specific conceptions of what explaining (with) networks amounts to or systematic preference for certain kinds of explanatory factors are not sufficient to account for differences in modelling methodologies. We argue that network models in both sociology and economics are abstract models of network mechanisms and that differences in their modelling strategies derive to a large extent from field-specific conceptions of the way in which a good model should be a general one. Whereas the economics models aim at unification, the sociological models aim at a set of mechanism schemas that are extrapolatable to the extent that the underlying psychological mechanisms are general. These conceptions of generality induce specific biases in mechanistic explanation and are related to different views of when knowledge from different fields should be seen as relevant.

  16. An implicit divalent counterion force field for RNA molecular dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Henke, Paul S.; Mak, Chi H., E-mail: cmak@usc.edu; Center of Applied Mathematical Sciences, University of Southern California, Los Angeles, California 90089

    How to properly account for polyvalent counterions in a molecular dynamics simulation of polyelectrolytes such as nucleic acids remains an open question. Not only do counterions such as Mg{sup 2+} screen electrostatic interactions, they also produce attractive intrachain interactions that stabilize secondary and tertiary structures. Here, we show how a simple force field derived from a recently reported implicit counterion model can be integrated into a molecular dynamics simulation for RNAs to realistically reproduce key structural details of both single-stranded and base-paired RNA constructs. This divalent counterion model is computationally efficient. It works with existing atomistic force fields, or coarse-grainedmore » models may be tuned to work with it. We provide optimized parameters for a coarse-grained RNA model that takes advantage of this new counterion force field. Using the new model, we illustrate how the structural flexibility of RNA two-way junctions is modified under different salt conditions.« less

  17. Probing-models for interdigitated electrode systems with ferroelectric thin films

    NASA Astrophysics Data System (ADS)

    Nguyen, Cuong H.; Nigon, Robin; Raeder, Trygve M.; Hanke, Ulrik; Halvorsen, Einar; Muralt, Paul

    2018-05-01

    In this paper, a new method to characterize ferroelectric thin films with interdigitated electrodes is presented. To obtain accurate properties, all parasitic contributions should be subtracted from the measurement results and accurate models for the ferroelectric film are required. Hence, we introduce a phenomenological model for the parasitic capacitance. Moreover, two common analytical models based on conformal transformations are compared and used to calculate the capacitance and the electric field. With a thin film approximation, new simplified electric field and capacitance formulas are derived. By using these formulas, more consistent CV, PV and stress-field loops for samples with different geometries are obtained. In addition, an inhomogeneous distribution of the permittivity due to the non-uniform electric field is modelled by finite element simulation in an iterative way. We observed that this inhomogeneous distribution can be treated as a homogeneous one with an effective value of the permittivity.

  18. Rigorous derivation of porous-media phase-field equations

    NASA Astrophysics Data System (ADS)

    Schmuck, Markus; Kalliadasis, Serafim

    2017-11-01

    The evolution of interfaces in Complex heterogeneous Multiphase Systems (CheMSs) plays a fundamental role in a wide range of scientific fields such as thermodynamic modelling of phase transitions, materials science, or as a computational tool for interfacial flow studies or material design. Here, we focus on phase-field equations in CheMSs such as porous media. To the best of our knowledge, we present the first rigorous derivation of error estimates for fourth order, upscaled, and nonlinear evolution equations. For CheMs with heterogeneity ɛ, we obtain the convergence rate ɛ 1 / 4 , which governs the error between the solution of the new upscaled formulation and the solution of the microscopic phase-field problem. This error behaviour has recently been validated computationally in. Due to the wide range of application of phase-field equations, we expect this upscaled formulation to allow for new modelling, analytic, and computational perspectives for interfacial transport and phase transformations in CheMSs. This work was supported by EPSRC, UK, through Grant Nos. EP/H034587/1, EP/L027186/1, EP/L025159/1, EP/L020564/1, EP/K008595/1, and EP/P011713/1 and from ERC via Advanced Grant No. 247031.

  19. 3XMM J185246.6+003317: Another Low Magnetic Field Magnetar

    NASA Astrophysics Data System (ADS)

    Rea, N.; Viganò, D.; Israel, G. L.; Pons, J. A.; Torres, D. F.

    2014-01-01

    We study the outburst of the newly discovered X-ray transient 3XMM J185246.6+003317, re-analyzing all available XMM-Newton observations of the source to perform a phase-coherent timing analysis, and derive updated values of the period and period derivative. We find the source rotating at P = 11.55871346(6) s (90% confidence level; at epoch MJD 54728.7) but no evidence for a period derivative in the seven months of outburst decay spanned by the observations. This translates to a 3σ upper limit for the period derivative of \\dot{P}< 1.4\\times 10^{-13} s s-1, which, assuming the classical magneto-dipolar braking model, gives a limit on the dipolar magnetic field of B dip < 4.1 × 1013 G. The X-ray outburst and spectral characteristics of 3XMM J185246.6+003317 confirm its identification as a magnetar, but the magnetic field upper limit we derive defines it as the third "low-B" magnetar discovered in the past 3 yr, after SGR 0418+5729 and Swift J1822.3-1606. We have also obtained an upper limit to the quiescent luminosity (<4 × 1033 erg s-1), in line with the expectations for an old magnetar. The discovery of this new low field magnetar reaffirms the prediction of about one outburst per year from the hidden population of aged magnetars.

  20. Links between the charge model and bonded parameter force constants in biomolecular force fields

    NASA Astrophysics Data System (ADS)

    Cerutti, David S.; Debiec, Karl T.; Case, David A.; Chong, Lillian T.

    2017-10-01

    The ff15ipq protein force field is a fixed charge model built by automated tools based on the two charge sets of the implicitly polarized charge method: one set (appropriate for vacuum) for deriving bonded parameters and the other (appropriate for aqueous solution) for running simulations. The duality is intended to treat water-induced electronic polarization with an understanding that fitting data for bonded parameters will come from quantum mechanical calculations in the gas phase. In this study, we compare ff15ipq to two alternatives produced with the same fitting software and a further expanded data set but following more conventional methods for tailoring bonded parameters (harmonic angle terms and torsion potentials) to the charge model. First, ff15ipq-Qsolv derives bonded parameters in the context of the ff15ipq solution phase charge set. Second, ff15ipq-Vac takes ff15ipq's bonded parameters and runs simulations with the vacuum phase charge set used to derive those parameters. The IPolQ charge model and associated protocol for deriving bonded parameters are shown to be an incremental improvement over protocols that do not account for the material phases of each source of their fitting data. Both force fields incorporating the polarized charge set depict stable globular proteins and have varying degrees of success modeling the metastability of short (5-19 residues) peptides. In this particular case, ff15ipq-Qsolv increases stability in a number of α -helices, correctly obtaining 70% helical character in the K19 system at 275 K and showing appropriately diminishing content up to 325 K, but overestimating the helical fraction of AAQAA3 by 50% or more, forming long-lived α -helices in simulations of a β -hairpin, and increasing the likelihood that the disordered p53 N-terminal peptide will also form a helix. This may indicate a systematic bias imparted by the ff15ipq-Qsolv parameter development strategy, which has the hallmarks of strategies used to develop other popular force fields, and may explain some of the need for manual corrections in this force fields' evolution. In contrast, ff15ipq-Vac incorrectly depicts globular protein unfolding in numerous systems tested, including Trp cage, villin, lysozyme, and GB3, and does not perform any better than ff15ipq or ff15ipq-Qsolv in tests on short peptides. We analyze the free energy surfaces of individual amino acid dipeptides and the electrostatic potential energy surfaces of each charge model to explain the differences.

  1. SCM-Forcing Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xie, Shaocheng; Tang, Shuaiqi; Zhang, Yunyan

    2016-07-01

    Single-Column Model (SCM) Forcing Data are derived from the ARM facility observational data using the constrained variational analysis approach (Zhang and Lin 1997 and Zhang et al., 2001). The resulting products include both the large-scale forcing terms and the evaluation fields, which can be used for driving the SCMs and Cloud Resolving Models (CRMs) and validating model simulations.

  2. Flow discharge prediction in compound channels using linear genetic programming

    NASA Astrophysics Data System (ADS)

    Azamathulla, H. Md.; Zahiri, A.

    2012-08-01

    SummaryFlow discharge determination in rivers is one of the key elements in mathematical modelling in the design of river engineering projects. Because of the inundation of floodplains and sudden changes in river geometry, flow resistance equations are not applicable for compound channels. Therefore, many approaches have been developed for modification of flow discharge computations. Most of these methods have satisfactory results only in laboratory flumes. Due to the ability to model complex phenomena, the artificial intelligence methods have recently been employed for wide applications in various fields of water engineering. Linear genetic programming (LGP), a branch of artificial intelligence methods, is able to optimise the model structure and its components and to derive an explicit equation based on the variables of the phenomena. In this paper, a precise dimensionless equation has been derived for prediction of flood discharge using LGP. The proposed model was developed using published data compiled for stage-discharge data sets for 394 laboratories, and field of 30 compound channels. The results indicate that the LGP model has a better performance than the existing models.

  3. Uncertainty Quantification in Geomagnetic Field Modeling

    NASA Astrophysics Data System (ADS)

    Chulliat, A.; Nair, M. C.; Alken, P.; Meyer, B.; Saltus, R.; Woods, A.

    2017-12-01

    Geomagnetic field models are mathematical descriptions of the various sources of the Earth's magnetic field, and are generally obtained by solving an inverse problem. They are widely used in research to separate and characterize field sources, but also in many practical applications such as aircraft and ship navigation, smartphone orientation, satellite attitude control, and directional drilling. In recent years, more sophisticated models have been developed, thanks to the continuous availability of high quality satellite data and to progress in modeling techniques. Uncertainty quantification has become an integral part of model development, both to assess the progress made and to address specific users' needs. Here we report on recent advances made by our group in quantifying the uncertainty of geomagnetic field models. We first focus on NOAA's World Magnetic Model (WMM) and the International Geomagnetic Reference Field (IGRF), two reference models of the main (core) magnetic field produced every five years. We describe the methods used in quantifying the model commission error as well as the omission error attributed to various un-modeled sources such as magnetized rocks in the crust and electric current systems in the atmosphere and near-Earth environment. A simple error model was derived from this analysis, to facilitate usage in practical applications. We next report on improvements brought by combining a main field model with a high resolution crustal field model and a time-varying, real-time external field model, like in NOAA's High Definition Geomagnetic Model (HDGM). The obtained uncertainties are used by the directional drilling industry to mitigate health, safety and environment risks.

  4. LCS-1: a high-resolution global model of the lithospheric magnetic field derived from CHAMP and Swarm satellite observations

    NASA Astrophysics Data System (ADS)

    Olsen, Nils; Ravat, Dhananjay; Finlay, Christopher C.; Kother, Livia K.

    2017-12-01

    We derive a new model, named LCS-1, of Earth's lithospheric field based on four years (2006 September-2010 September) of magnetic observations taken by the CHAMP satellite at altitudes lower than 350 km, as well as almost three years (2014 April-2016 December) of measurements taken by the two lower Swarm satellites Alpha and Charlie. The model is determined entirely from magnetic 'gradient' data (approximated by finite differences): the north-south gradient is approximated by first differences of 15 s along-track data (for CHAMP and each of the two Swarm satellites), while the east-west gradient is approximated by the difference between observations taken by Swarm Alpha and Charlie. In total, we used 6.2 mio data points. The model is parametrized by 35 000 equivalent point sources located on an almost equal-area grid at a depth of 100 km below the surface (WGS84 ellipsoid). The amplitudes of these point sources are determined by minimizing the misfit to the magnetic satellite 'gradient' data together with the global average of |Br| at the ellipsoid surface (i.e. applying an L1 model regularization of Br). In a final step, we transform the point-source representation to a spherical harmonic expansion. The model shows very good agreement with previous satellite-derived lithospheric field models at low degree (degree correlation above 0.8 for degrees n ≤ 133). Comparison with independent near-surface aeromagnetic data from Australia yields good agreement (coherence >0.55) at horizontal wavelengths down to at least 250 km, corresponding to spherical harmonic degree n ≈ 160. The LCS-1 vertical component and field intensity anomaly maps at Earth's surface show similar features to those exhibited by the WDMAM2 and EMM2015 lithospheric field models truncated at degree 185 in regions where they include near-surface data and provide unprecedented detail where they do not. Example regions of improvement include the Bangui anomaly region in central Africa, the west African cratons, the East African Rift region, the Bay of Bengal, the southern 90°E ridge, the Cretaceous quiet zone south of the Walvis Ridge and the younger parts of the South Atlantic.

  5. A phase field approach for the fully coupled thermo-electro-mechanical dynamics of nanoscale ferroelectric actuators

    NASA Astrophysics Data System (ADS)

    Wang, Dan; Du, Haoyuan; Wang, Linxiang; Melnik, Roderick

    2018-05-01

    The fully coupled thermo-electro-mechanical properties of nanoscale ferroelectric actuators are investigated by a phase field model. Firstly, the thermal effect is incorporated into the commonly-used phase field model for ferroelectric materials in a thermodynamic consistent way and the governing equation for the temperature field is derived. Afterwards, the modified model is numerically implemented to study a selected prototype of the ferroelectric actuators, where strain associated with electric field-induced non-180° domain switching is employed. The temperature variation and energy flow in the actuation process are presented, which enhances our understanding of the working mechanism of the actuators. Furthermore, the influences of the input voltage frequency and the thermal boundary condition on the temperature variation are demonstrated and carefully discussed in the context of thermal management for real applications.

  6. Surface NO2 fields derived from joint use of OMI and GOME-2A observations with EMEP model output

    NASA Astrophysics Data System (ADS)

    Schneider, Philipp; Svendby, Tove; Stebel, Kerstin

    2016-04-01

    Nitrogen dioxide (NO2) is one of the most prominent air pollutants. Emitted primarily by transport and industry, NO2 has a major impact on health and economy. In contrast to the very sparse network of air quality monitoring stations, satellite data of NO2 is ubiquitous and allows for quantifying the NO2 levels worldwide. However, one drawback of satellite-derived NO2 products is that they provide solely an estimate of the entire tropospheric column, whereas what is generally needed for air quality applications are the concentrations of NO2 near the surface. Here we derive surface NO2 concentration fields from OMI and GOME-2A tropospheric column products using the EMEP chemical transport model as auxiliary information. The model is used for providing information of the boundary layer contribution to the total tropospheric column. For preparation of deriving the surface product, a comprehensive model-based analysis of the spatial and temporal patterns of the NO2 surface-to-column ratio in Europe was carried out for the year 2011. The results from this analysis indicate that the spatial patterns of the surface-to-column ratio vary only slightly. While the highest ratio values can be found in some shipping lanes, the spatial variability of the ratio in some of the most polluted areas of Europe is not very high. Some but not all urban agglomeration shows high ratio values. Focusing on the temporal behavior, the analysis showed that the European-wide average ratio varies throughout the year. The surface-to-column ratio increases from January all the way through April when it reaches its maximum, then decreases relatively rapidly to average levels and then stays mostly constant throughout the summer. The minimum ratio is observed in December. The knowledge gained from analyzing the spatial and temporal patterns of the surface-to-column ratio was then used to produce surface NO2 products from the daily NO2 data for OMI and GOME-2A. This was carried out using two methods, namely using 1) hourly surface-to-column ratio at the time of the satellite overpass as well as 2) using annual average ratios thus eliminating the temporal variability and focusing solely on the spatial patterns. A validation of the resulting surface NO2 fields was performed using station observations of NO2 as provided by the Airbase database maintained by the European Environment Agency. First results indicate that the methodology is capable of producing surface concentration fields that reproduce the station-observed surface NO2 levels significantly better than the model surface fields as measured by the root mean squared error. The results also show that the spatial patterns of the surface-to-column ratio are more significant than its temporal variability. In addition to deriving satellite-based surface NO2, we further present initial results of a geostatistical methodology for downscaling satellite products of NO2 to spatial scales that are more relevant for applications in urban air quality. This is being carried out by applying area-to-point kriging techniques while using high-resolution (1-2 km spatial resolution) runs of a chemical transport model as a spatial proxy. In combination, these two techniques for deriving surface NO2 and spatially downscaling satellite-based NO2 fields have significant potential for improving satellite-based monitoring and mapping of regional and local-scale air pollution.

  7. Development of a satellite SAR image spectra and altimeter wave height data assimilation system for ERS-1

    NASA Technical Reports Server (NTRS)

    Hasselmann, Klaus; Hasselmann, Susanne; Bauer, Eva; Bruening, Claus; Lehner, Susanne; Graber, Hans; Lionello, Piero

    1988-01-01

    The applicability of ERS-1 wind and wave data for wave models was studied using the WAM third generation wave model and SEASAT altimeter, scatterometer and SAR data. A series of global wave hindcasts is made for the surface stress and surface wind fields by assimilation of scatterometer data for the full 96-day SEASAT and also for two wind field analyses for shorter periods by assimilation with the higher resolution ECMWF T63 model and by subjective analysis methods. It is found that wave models respond very sensitively to inconsistencies in wind field analyses and therefore provide a valuable data validation tool. Comparisons between SEASAT SAR image spectra and theoretical SAR spectra derived from the hindcast wave spectra by Monte Carlo simulations yield good overall agreement for 32 cases representing a wide variety of wave conditions. It is concluded that SAR wave imaging is sufficiently well understood to apply SAR image spectra with confidence for wave studies if supported by realistic wave models and theoretical computations of the strongly nonlinear mapping of the wave spectrum into the SAR image spectrum. A closed nonlinear integral expression for this spectral mapping relation is derived which avoids the inherent statistical errors of Monte Carlo computations and may prove to be more efficient numerically.

  8. Current progress in patient-specific modeling

    PubMed Central

    2010-01-01

    We present a survey of recent advancements in the emerging field of patient-specific modeling (PSM). Researchers in this field are currently simulating a wide variety of tissue and organ dynamics to address challenges in various clinical domains. The majority of this research employs three-dimensional, image-based modeling techniques. Recent PSM publications mostly represent feasibility or preliminary validation studies on modeling technologies, and these systems will require further clinical validation and usability testing before they can become a standard of care. We anticipate that with further testing and research, PSM-derived technologies will eventually become valuable, versatile clinical tools. PMID:19955236

  9. Numerical treatment of free surface problems in ferrohydrodynamics

    NASA Astrophysics Data System (ADS)

    Lavrova, O.; Matthies, G.; Mitkova, T.; Polevikov, V.; Tobiska, L.

    2006-09-01

    The numerical treatment of free surface problems in ferrohydrodynamics is considered. Starting from the general model, special attention is paid to field-surface and flow-surface interactions. Since in some situations these feedback interactions can be partly or even fully neglected, simpler models can be derived. The application of such models to the numerical simulation of dissipative systems, rotary shaft seals, equilibrium shapes of ferrofluid drops, and pattern formation in the normal-field instability of ferrofluid layers is given. Our numerical strategy is able to recover solitary surface patterns which were discovered recently in experiments.

  10. Phase-field model of domain structures in ferroelectric thin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Y. L.; Hu, S. Y.; Liu, Z. K.

    A phase-field model for predicting the coherent microstructure evolution in constrained thin films is developed. It employs an analytical elastic solution derived for a constrained film with arbitrary eigenstrain distributions. The domain structure evolution during a cubic{r_arrow}tetragonal proper ferroelectric phase transition is studied. It is shown that the model is able to simultaneously predict the effects of substrate constraint and temperature on the volume fractions of domain variants, domain-wall orientations, domain shapes, and their temporal evolution. {copyright} 2001 American Institute of Physics.

  11. Simulation of nonlinear superconducting rf losses derived from characteristic topography of etched and electropolished niobium surfaces

    DOE PAGES

    Xu, Chen; Reece, Charles E.; Kelley, Michael J.

    2016-03-22

    A simplified numerical model has been developed to simulate nonlinear superconducting radiofrequency (SRF) losses on Nb surfaces. This study focuses exclusively on excessive surface resistance (R s) losses due to the microscopic topographical magnetic field enhancements. When the enhanced local surface magnetic field exceeds the superconducting critical transition magnetic field H c, small volumes of surface material may become normal conducting and increase the effective surface resistance without inducing a quench. We seek to build an improved quantitative characterization of this qualitative model. Using topographic data from typical buffered chemical polish (BCP)- and electropolish (EP)-treated fine grain niobium, we havemore » estimated the resulting field-dependent losses and extrapolated this model to the implications for cavity performance. The model predictions correspond well to the characteristic BCP versus EP high field Q 0 performance differences for fine grain niobium. Lastly, we describe the algorithm of the model, its limitations, and the effects of this nonlinear loss contribution on SRF cavity performance.« less

  12. A lithospheric magnetic field model derived from the Swarm satellite magnetic field measurements

    NASA Astrophysics Data System (ADS)

    Hulot, G.; Thebault, E.; Vigneron, P.

    2015-12-01

    The Swarm constellation of satellites was launched in November 2013 and has since then delivered high quality scalar and vector magnetic field measurements. A consortium of several research institutions was selected by the European Space Agency (ESA) to provide a number of scientific products which will be made available to the scientific community. Within this framework, specific tools were tailor-made to better extract the magnetic signal emanating from Earth's the lithospheric. These tools rely on the scalar gradient measured by the lower pair of Swarm satellites and rely on a regional modeling scheme that is more sensitive to small spatial scales and weak signals than the standard spherical harmonic modeling. In this presentation, we report on various activities related to data analysis and processing. We assess the efficiency of this dedicated chain for modeling the lithospheric magnetic field using more than one year of measurements, and finally discuss refinements that are continuously implemented in order to further improve the robustness and the spatial resolution of the lithospheric field model.

  13. Lorentz violation and gravity

    NASA Astrophysics Data System (ADS)

    Bailey, Quentin G.

    2007-08-01

    This work explores the theoretical and experimental aspects of Lorentz violation in gravity. A set of modified Einstein field equations is derived from the general Lorentz-violating Standard-Model Extension (SME). Some general theoretical implications of these results are discussed. The experimental consequences for weak-field gravitating systems are explored in the Earth- laboratory setting, the solar system, and beyond. The role of spontaneous Lorentz-symmetry breaking is discussed in the context of the pure-gravity sector of the SME. To establish the low-energy effective Einstein field equations, it is necessary to take into account the dynamics of 20 coefficients for Lorentz violation. As an example, the results are compared with bumblebee models, which are general theories of vector fields with spontaneous Lorentz violation. The field equations are evaluated in the post- newtonian limit using a perfect fluid description of matter. The post-newtonian metric of the SME is derived and compared with some standard test models of gravity. The possible signals for Lorentz violation due to gravity-sector coefficients are studied. Several new effects are identified that have experimental implications for current and future tests. Among the unconventional effects are a new type of spin precession for a gyroscope in orbit and a modification to the local gravitational acceleration on the Earth's surface. These and other tests are expected to yield interesting sensitivities to dimensionless gravity- sector coefficients.

  14. Steady induction effects in geomagnetism. Part 1A: Steady motional induction of geomagnetic chaos

    NASA Technical Reports Server (NTRS)

    Voorhies, Coerte V.

    1992-01-01

    Geomagnetic effects of magnetic induction by hypothetically steady fluid motion and steady magnetic flux diffusion near the top of Earth's core are investigated using electromagnetic theory, simple magnetic earth models, and numerical experiments with geomagnetic field models. The problem of estimating a steady fluid velocity field near the top of Earth's core which induces the secular variation indicated by broad-scale models of the observed geomagnetic field is examined and solved. In Part 1, the steady surficial core flow estimation problem is solved in the context of the source-free mantle/frozen-flux core model. In the first paper (IA), the theory underlying such estimates is reviewed and some consequences of various kinematic and dynamic flow hypotheses are derived. For a frozen-flux core, fluid downwelling is required to change the mean square normal magnetic flux density averaged over the core-mantle boundary. For surficially geostrophic flow, downwelling implies poleward flow. The solution of the forward steady motional induction problem at the surface of a frozen-flux core is derived and found to be a fine, easily visualized example of deterministic chaos. Geomagnetic effects of statistically steady core surface flow may well dominate secular variation over several decades. Indeed, effects of persistent, if not steady, surficially geostrophic core flow are described which may help explain certain features of the present broad-scale geomagnetic field and perhaps paleomagnetic secular variation.

  15. Accurate, efficient, and (iso)geometrically flexible collocation methods for phase-field models

    NASA Astrophysics Data System (ADS)

    Gomez, Hector; Reali, Alessandro; Sangalli, Giancarlo

    2014-04-01

    We propose new collocation methods for phase-field models. Our algorithms are based on isogeometric analysis, a new technology that makes use of functions from computational geometry, such as, for example, Non-Uniform Rational B-Splines (NURBS). NURBS exhibit excellent approximability and controllable global smoothness, and can represent exactly most geometries encapsulated in Computer Aided Design (CAD) models. These attributes permitted us to derive accurate, efficient, and geometrically flexible collocation methods for phase-field models. The performance of our method is demonstrated by several numerical examples of phase separation modeled by the Cahn-Hilliard equation. We feel that our method successfully combines the geometrical flexibility of finite elements with the accuracy and simplicity of pseudo-spectral collocation methods, and is a viable alternative to classical collocation methods.

  16. Model-simulated and Satellite-derived Leaf Area Index (LAI) Comparisons Across Multiple Spatial Scales

    NASA Astrophysics Data System (ADS)

    Iiames, J. S., Jr.; Cooter, E. J.

    2016-12-01

    Leaf Area Index (LAI) is an important parameter in assessing vegetation structure for characterizing forest canopies over large areas at broad spatial scales using satellite remote sensing data. However, satellite-derived LAI products can be limited by obstructed atmospheric conditions yielding sub-optimal values, or complete non-returns. The United States Environmental Protection Agency's Exposure Methods and Measurements and Computational Exposure Divisions are investigating the viability of supplemental modelled LAI inputs into satellite-derived data streams to support various regional and local scale air quality models for retrospective and future climate assessments. In this present study, one-year (2002) of plot level stand characteristics at four study sites located in Virginia and North Carolina (USA) are used to calibrate species-specific plant parameters in a semi-empirical biogeochemical model. The Environmental Policy Integrated Climate (EPIC) model was designed primarily for managed agricultural field crop ecosystems, but also includes managed woody species that span both xeric and mesic sites (e.g., mesquite, pine, oak, etc.). LAI was simulated using EPIC at a 4 km2 and 12 km2 grid coincident with the regional Community Multiscale Air Quality Model (CMAQ) grid. LAI comparisons were made between model-simulated and MODIS-derived LAI. Field/satellite-upscaled LAI was also compared to the corresponding MODIS LAI value. Preliminary results show field/satellite-upscaled LAI (1 km2) was 1.5 to 3 times smaller than that with the corresponding 1 km2 MODIS LAI for all four sites across all dates, with the largest discrepancies occurring at leaf-out and leaf senescence periods. Simulated LAI/MODIS LAI comparison results will be presented at the conference. Disclaimer: This work is done in support of EPA's Sustainable Healthy Communities Research Program. The U.S. Environmental Protection Agency funded and conducted the research described in this paper. Although this work was reviewed by the EPA and has been approved for publication, it may not necessarily reflect official Agency policy. Mention of any trade names or commercial products does not constitute endorsement or recommendation for use. * Primary author and presenter (Iiames.john@epa.gov)

  17. Divergent patterns of experimental and model derived variables of tundra ecosystem carbon exchange in response to arctic warming

    NASA Astrophysics Data System (ADS)

    Schaedel, C.; Koven, C.; Celis, G.; Hutchings, J.; Lawrence, D. M.; Mauritz, M.; Pegoraro, E.; Salmon, V. G.; Taylor, M.; Wieder, W. R.; Schuur, E.

    2017-12-01

    Warming over the Arctic in the last decades has been twice as high as for the rest of the globe and has exposed large amounts of organic carbon to microbial decomposition in permafrost ecosystems. Continued warming and associated changes in soil moisture conditions not only lead to enhanced microbial decomposition from permafrost soil but also enhanced plant carbon uptake. Both processes impact the overall contribution of permafrost carbon dynamics to the global carbon cycle, yet field and modeling studies show large uncertainties in regard to both uptake and release mechanisms. Here, we compare variables associated with ecosystem carbon exchange (GPP: gross primary production; Reco: ecosystem respiration; and NEE: net ecosystem exchange) from eight years of experimental soil warming in moist acidic tundra with the same variables derived from an experimental model (Community Land Model version 4.5: CLM4.5) that simulates the same degree of arctic warming. While soil temperatures and thaw depths exhibited comparable increases with warming between field and model variables, carbon exchange related parameters showed divergent patterns. In the field non-linear responses to experimentally induced permafrost thaw were observed in GPP, Reco, and NEE. Indirect effects of continued soil warming and thaw created changes in soil moisture conditions causing ground surface subsidence and suppressing ecosystem carbon exchange over time. In contrast, the model predicted linear increases in GPP, Reco, and NEE with every year of warming turning the ecosystem into a net annual carbon sink. The field experiment revealed the importance of hydrology in carbon flux responses to permafrost thaw, a complexity that the model may fail to predict. Further parameterization of variables that drive GPP, Reco, and NEE in the model will help to inform and refine future model development.

  18. Gravity field information from Gravity Probe-B

    NASA Technical Reports Server (NTRS)

    Smith, D. E.; Lerch, F. J.; Colombo, O. L.; Everitt, C. W. F.

    1989-01-01

    The Gravity Probe-B Mission will carry the Stanford Gyroscope relativity experiment into orbit in the mid 1990's, as well as a Global Positioning System (GPS) receiver whose tracking data will be used to study the earth gravity field. Estimates of the likely quality of a gravity field model to be derived from the GPS data are presented, and the significance of this experiment to geodesy and geophysics are discussed.

  19. Models of unit operations used for solid-waste processing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Savage, G.M.; Glaub, J.C.; Diaz, L.F.

    1984-09-01

    This report documents the unit operations models that have been developed for typical refuse-derived-fuel (RDF) processing systems. These models, which represent the mass balances, energy requirements, and economics of the unit operations, are derived, where possible, from basic principles. Empiricism has been invoked where a governing theory has yet to be developed. Field test data and manufacturers' information, where available, supplement the analytical development of the models. A literature review has also been included for the purpose of compiling and discussing in one document the available information pertaining to the modeling of front-end unit operations. Separate analytics have been donemore » for each task.« less

  20. Effects of finite electron temperature on gradient drift instabilities in partially magnetized plasmas

    NASA Astrophysics Data System (ADS)

    Lakhin, V. P.; Ilgisonis, V. I.; Smolyakov, A. I.; Sorokina, E. A.; Marusov, N. A.

    2018-01-01

    The gradient-drift instabilities of partially magnetized plasmas in plasma devices with crossed electric and magnetic fields are investigated in the framework of the two-fluid model with finite electron temperature in an inhomogeneous magnetic field. The finite electron Larmor radius (FLR) effects are also included via the gyroviscosity tensor taking into account the magnetic field gradient. This model correctly describes the electron dynamics for k⊥ρe>1 in the sense of Padé approximants (here, k⊥ and ρe are the wavenumber perpendicular to the magnetic field and the electron Larmor radius, respectively). The local dispersion relation for electrostatic plasma perturbations with the frequency in the range between the ion and electron cyclotron frequencies and propagating strictly perpendicular to the magnetic field is derived. The dispersion relation includes the effects of the equilibrium E ×B electron current, finite ion velocity, electron inertia, electron FLR, magnetic field gradients, and Debye length effects. The necessary and sufficient condition of stability is derived, and the stability boundary is found. It is shown that, in general, the electron inertia and FLR effects stabilize the short-wavelength perturbations. In some cases, such effects completely suppress the high-frequency short-wavelength modes so that only the long-wavelength low-frequency (with respect to the lower-hybrid frequency) modes remain unstable.

  1. Impact of geophysical model error for recovering temporal gravity field model

    NASA Astrophysics Data System (ADS)

    Zhou, Hao; Luo, Zhicai; Wu, Yihao; Li, Qiong; Xu, Chuang

    2016-07-01

    The impact of geophysical model error on recovered temporal gravity field models with both real and simulated GRACE observations is assessed in this paper. With real GRACE observations, we build four temporal gravity field models, i.e., HUST08a, HUST11a, HUST04 and HUST05. HUST08a and HUST11a are derived from different ocean tide models (EOT08a and EOT11a), while HUST04 and HUST05 are derived from different non-tidal models (AOD RL04 and AOD RL05). The statistical result shows that the discrepancies of the annual mass variability amplitudes in six river basins between HUST08a and HUST11a models, HUST04 and HUST05 models are all smaller than 1 cm, which demonstrates that geophysical model error slightly affects the current GRACE solutions. The impact of geophysical model error for future missions with more accurate satellite ranging is also assessed by simulation. The simulation results indicate that for current mission with range rate accuracy of 2.5 × 10- 7 m/s, observation error is the main reason for stripe error. However, when the range rate accuracy improves to 5.0 × 10- 8 m/s in the future mission, geophysical model error will be the main source for stripe error, which will limit the accuracy and spatial resolution of temporal gravity model. Therefore, observation error should be the primary error source taken into account at current range rate accuracy level, while more attention should be paid to improving the accuracy of background geophysical models for the future mission.

  2. Collisional transport across the magnetic field in drift-fluid models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Madsen, J., E-mail: jmad@fysik.dtu.dk; Naulin, V.; Nielsen, A. H.

    2016-03-15

    Drift ordered fluid models are widely applied in studies of low-frequency turbulence in the edge and scrape-off layer regions of magnetically confined plasmas. Here, we show how collisional transport across the magnetic field is self-consistently incorporated into drift-fluid models without altering the drift-fluid energy integral. We demonstrate that the inclusion of collisional transport in drift-fluid models gives rise to diffusion of particle density, momentum, and pressures in drift-fluid turbulence models and, thereby, obviates the customary use of artificial diffusion in turbulence simulations. We further derive a computationally efficient, two-dimensional model, which can be time integrated for several turbulence de-correlation timesmore » using only limited computational resources. The model describes interchange turbulence in a two-dimensional plane perpendicular to the magnetic field located at the outboard midplane of a tokamak. The model domain has two regions modeling open and closed field lines. The model employs a computational expedient model for collisional transport. Numerical simulations show good agreement between the full and the simplified model for collisional transport.« less

  3. Simulation studies of wide and medium field of view earth radiation data analysis

    NASA Technical Reports Server (NTRS)

    Green, R. N.

    1978-01-01

    A parameter estimation technique is presented to estimate the radiative flux distribution over the earth from radiometer measurements at satellite altitude. The technique analyzes measurements from a wide field of view (WFOV), horizon to horizon, nadir pointing sensor with a mathematical technique to derive the radiative flux estimates at the top of the atmosphere for resolution elements smaller than the sensor field of view. A computer simulation of the data analysis technique is presented for both earth-emitted and reflected radiation. Zonal resolutions are considered as well as the global integration of plane flux. An estimate of the equator-to-pole gradient is obtained from the zonal estimates. Sensitivity studies of the derived flux distribution to directional model errors are also presented. In addition to the WFOV results, medium field of view results are presented.

  4. Prompt particle acceleration around moving X-point magnetic field during impulsive phase of solar flares

    NASA Technical Reports Server (NTRS)

    Sakai, Jun-Ichi

    1992-01-01

    We present a model for high-energy solar flares to explain prompt proton and electron acceleration, which occurs around moving X-point magnetic field during the implosion phase of the current sheet. We derive the electromagnetic fields during the strong implosion phase of the current sheets, which is driven by the converging flow derived from the magnetohydrodynamic equations. It is shown that both protons and electrons can be promptly (within 1 second) accelerated to approximately 70 MeV and approximately 200 MeV, respectively. This acceleration mechanism can be applicable for the impulsive phase of the gradual gamma ray and proton flares (gradual GR/P flare), which have been called two-ribbon flares.

  5. Main field and secular variation candidate models for the 12th IGRF generation after 10 months of Swarm measurements

    NASA Astrophysics Data System (ADS)

    Saturnino, Diana; Langlais, Benoit; Civet, François; Thébault, Erwan; Mandea, Mioara

    2015-06-01

    We describe the main field and secular variation candidate models for the 12th generation of the International Geomagnetic Reference Field model. These two models are derived from the same parent model, in which the main field is extrapolated to epoch 2015.0 using its associated secular variation. The parent model is exclusively based on measurements acquired by the European Space Agency Swarm mission between its launch on 11/22/2013 and 09/18/2014. It is computed up to spherical harmonic degree and order 25 for the main field, 13 for the secular variation, and 2 for the external field. A selection on local time rather than on true illumination of the spacecraft was chosen in order to keep more measurements. Data selection based on geomagnetic indices was used to minimize the external field contributions. Measurements were screened and outliers were carefully removed. The model uses magnetic field intensity measurements at all latitudes and magnetic field vector measurements equatorward of 50° absolute quasi-dipole magnetic latitude. A second model using only the vertical component of the measured magnetic field and the total intensity was computed. This companion model offers a slightly better fit to the measurements. These two models are compared and discussed.We discuss in particular the quality of the model which does not use the full vector measurements and underline that this approach may be used when only partial directional information is known. The candidate models and their associated companion models are retrospectively compared to the adopted IGRF which allows us to criticize our own choices.

  6. Anomalous transport from holography: part II

    NASA Astrophysics Data System (ADS)

    Bu, Yanyan; Lublinsky, Michael; Sharon, Amir

    2017-03-01

    This is a second study of chiral anomaly-induced transport within a holographic model consisting of anomalous U(1)_V× U(1)_A Maxwell theory in Schwarzschild-AdS_5 spacetime. In the first part, chiral magnetic/separation effects (CME/CSE) are considered in the presence of a static spatially inhomogeneous external magnetic field. Gradient corrections to CME/CSE are analytically evaluated up to third order in the derivative expansion. Some of the third order gradient corrections lead to an anomaly-induced negative B^2-correction to the diffusion constant. We also find modifications to the chiral magnetic wave nonlinear in B. In the second part, we focus on the experimentally interesting case of the axial chemical potential being induced dynamically by a constant magnetic and time-dependent electric fields. Constitutive relations for the vector/axial currents are computed employing two different approximations: (a) derivative expansion (up to third order) but fully nonlinear in the external fields, and (b) weak electric field limit but resuming all orders in the derivative expansion. A non-vanishing nonlinear axial current (CSE) is found in the first case. The dependence on magnetic field and frequency of linear transport coefficient functions is explored in the second.

  7. A Review of Magnetic Anomaly Field Data for the Arctic Region: Geological Implications

    NASA Technical Reports Server (NTRS)

    Taylor, Patrick T.; vonFrese, Ralph; Roman, Daniel; Frawley, James J.

    1999-01-01

    Due to its inaccessibility and hostile physical environment remote sensing data, both airborne and satellite measurements, has been the main source of geopotential data over the entire Arctic region. Ubiquitous and significant external fields, however, hinder crustal magnetic field studies These potential field data have been used to derive tectonic models for the two major tectonic sectors of this region, the Amerasian and Eurasian Basins. The latter is dominated by the Nansen-Gakkel or Mid-Arctic Ocean Ridge and is relatively well known. The origin and nature of the Alpha and Mendeleev Ridges, Chukchi Borderland and Canada Basin of the former are less well known and a subject of controversy. The Lomonosov Ridge divides these large provinces. In this report we will present a summary of the Arctic geopotential anomaly data derived from various sources by various groups in North America and Europe and show how these data help us unravel the last remaining major puzzle of the global plate tectonic framework. While magnetic anomaly data represent the main focus of this study recently derived satellite gravity data are playing a major role in Arctic studies.

  8. Calculation of the flow field including boundary layer effects for supersonic mixed compression inlets at angles of attack

    NASA Technical Reports Server (NTRS)

    Vadyak, J.; Hoffman, J. D.

    1982-01-01

    The flow field in supersonic mixed compression aircraft inlets at angle of attack is calculated. A zonal modeling technique is employed to obtain the solution which divides the flow field into different computational regions. The computational regions consist of a supersonic core flow, boundary layer flows adjacent to both the forebody/centerbody and cowl contours, and flow in the shock wave boundary layer interaction regions. The zonal modeling analysis is described and some computational results are presented. The governing equations for the supersonic core flow form a hyperbolic system of partial differential equations. The equations for the characteristic surfaces and the compatibility equations applicable along these surfaces are derived. The characteristic surfaces are the stream surfaces, which are surfaces composed of streamlines, and the wave surfaces, which are surfaces tangent to a Mach conoid. The compatibility equations are expressed as directional derivatives along streamlines and bicharacteristics, which are the lines of tangency between a wave surface and a Mach conoid.

  9. Modeling elasto-viscoplasticity in a consistent phase field framework

    DOE PAGES

    Cheng, Tian -Le; Wen, You -Hai; Hawk, Jeffrey A.

    2017-05-19

    Existing continuum level phase field plasticity theories seek to solve plastic strain by minimizing the shear strain energy. However, rigorously speaking, for thermodynamic consistency it is required to minimize the total strain energy unless there is proof that hydrostatic strain energy is independent of plastic strain which is unfortunately absent. In this work, we extend the phase-field microelasticity theory of Khachaturyan et al. by minimizing the total elastic energy with constraint of incompressibility of plastic strain. We show that the flow rules derived from the Ginzburg-Landau type kinetic equation can be in line with Odqvist's law for viscoplasticity and Prandtl-Reussmore » theory. Free surfaces (external surfaces or internal cracks/voids) are treated in the model. Deformation caused by a misfitting spherical precipitate in an elasto-plastic matrix is studied by large-scale three-dimensional simulations in four different regimes in terms of the matrix: (a) elasto-perfectly-plastic, (b) elastoplastic with linear hardening, (c) elastoplastic with power-law hardening, and (d) elasto-perfectly-plastic with a free surface. The results are compared with analytical/numerical solutions of Lee et al. for (a-c) and analytical solution derived in this work for (d). Additionally, the J integral of a fixed crack is calculated in the phase-field model and discussed in the context of fracture mechanics.« less

  10. Modeling elasto-viscoplasticity in a consistent phase field framework

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, Tian -Le; Wen, You -Hai; Hawk, Jeffrey A.

    Existing continuum level phase field plasticity theories seek to solve plastic strain by minimizing the shear strain energy. However, rigorously speaking, for thermodynamic consistency it is required to minimize the total strain energy unless there is proof that hydrostatic strain energy is independent of plastic strain which is unfortunately absent. In this work, we extend the phase-field microelasticity theory of Khachaturyan et al. by minimizing the total elastic energy with constraint of incompressibility of plastic strain. We show that the flow rules derived from the Ginzburg-Landau type kinetic equation can be in line with Odqvist's law for viscoplasticity and Prandtl-Reussmore » theory. Free surfaces (external surfaces or internal cracks/voids) are treated in the model. Deformation caused by a misfitting spherical precipitate in an elasto-plastic matrix is studied by large-scale three-dimensional simulations in four different regimes in terms of the matrix: (a) elasto-perfectly-plastic, (b) elastoplastic with linear hardening, (c) elastoplastic with power-law hardening, and (d) elasto-perfectly-plastic with a free surface. The results are compared with analytical/numerical solutions of Lee et al. for (a-c) and analytical solution derived in this work for (d). Additionally, the J integral of a fixed crack is calculated in the phase-field model and discussed in the context of fracture mechanics.« less

  11. Mean-field velocity difference model considering the average effect of multi-vehicle interaction

    NASA Astrophysics Data System (ADS)

    Guo, Yan; Xue, Yu; Shi, Yin; Wei, Fang-ping; Lü, Liang-zhong; He, Hong-di

    2018-06-01

    In this paper, a mean-field velocity difference model(MFVD) is proposed to describe the average effect of multi-vehicle interactions on the whole road. By stability analysis, the stability condition of traffic system is obtained. Comparison with stability of full velocity-difference (FVD) model and the completeness of MFVD model are discussed. The mKdV equation is derived from MFVD model through nonlinear analysis to reveal the traffic jams in the form of the kink-antikink density wave. Then the numerical simulation is performed and the results illustrate that the average effect of multi-vehicle interactions plays an important role in effectively suppressing traffic jam. The increase strength of the mean-field velocity difference in MFVD model can rapidly reduce traffic jam and enhance the stability of traffic system.

  12. High Reynolds number turbulence model of rotating shear flows

    NASA Astrophysics Data System (ADS)

    Masuda, S.; Ariga, I.; Koyama, H. S.

    1983-09-01

    A Reynolds stress closure model for rotating turbulent shear flows is developed. Special attention is paid to keeping the model constants independent of rotation. First, general forms of the model of a Reynolds stress equation and a dissipation rate equation are derived, the only restrictions of which are high Reynolds number and incompressibility. The model equations are then applied to two-dimensional equilibrium boundary layers and the effects of Coriolis acceleration on turbulence structures are discussed. Comparisons with the experimental data and with previous results in other external force fields show that there exists a very close analogy between centrifugal, buoyancy and Coriolis force fields. Finally, the model is applied to predict the two-dimensional boundary layers on rotating plane walls. Comparisons with existing data confirmed its capability of predicting mean and turbulent quantities without employing any empirical relations in rotating fields.

  13. Characteristics of Tropical Cyclones in High-Resolution Models of the Present Climate

    NASA Technical Reports Server (NTRS)

    Shaevitz, Daniel A.; Camargo, Suzana J.; Sobel, Adam H.; Jonas, Jeffery A.; Kim, Daeyhun; Kumar, Arun; LaRow, Timothy E.; Lim, Young-Kwon; Murakami, Hiroyuki; Roberts, Malcolm J.; hide

    2014-01-01

    The global characteristics of tropical cyclones (TCs) simulated by several climate models are analyzed and compared with observations. The global climate models were forced by the same sea surface temperature (SST) in two types of experiments, using a climatological SST and interannually varying SST. TC tracks and intensities are derived from each model's output fields by the group who ran that model, using their own preferred tracking scheme; the study considers the combination of model and tracking scheme as a single modeling system, and compares the properties derived from the different systems. Overall, the observed geographic distribution of global TC frequency was reasonably well reproduced. As expected, with the exception of one model, intensities of the simulated TC were lower than in observations, to a degree that varies considerably across models.

  14. Noise model for low-frequency through-the-Earth communication

    NASA Astrophysics Data System (ADS)

    Raab, Frederick H.

    2010-12-01

    Analysis and simulation of through-the-Earth communication links and signal processing techniques require a more complete noise model than is needed for the analysis of conventional communication systems. This paper presents a multicomponent noise model that includes impulsive characteristics, direction-of-arrival characteristics, and effects of local geology. The noise model is derived from theoretical considerations and confirmed by field tests.

  15. A Toy Model of Quantum Electrodynamics in (1 + 1) Dimensions

    ERIC Educational Resources Information Center

    Boozer, A. D.

    2008-01-01

    We present a toy model of quantum electrodynamics (QED) in (1 + 1) dimensions. The QED model is much simpler than QED in (3 + 1) dimensions but exhibits many of the same physical phenomena, and serves as a pedagogical introduction to both QED and quantum field theory in general. We show how the QED model can be derived by quantizing a toy model of…

  16. The Leaky Dielectric Model as a Weak Electrolyte Limit of an Electrodiffusion Model

    NASA Astrophysics Data System (ADS)

    Mori, Yoichiro; Young, Yuan-Nan

    2017-11-01

    The Taylor-Melcher (TM) model is the standard model for the electrohydrodynamics of poorly conducting leaky dielectric fluids under an electric field. The TM model treats the fluid as an ohmic conductor, without modeling ion dynamics. On the other hand, electrodiffusion models, which have been successful in describing electokinetic phenomena, incorporates ionic concentration dynamics. Mathematical reconciliation between electrodiffusion and the TM models has been a major issue for electrohydrodynamic theory. Here, we derive the TM model from an electrodiffusion model where we explicitly model the electrochemistry of ion dissociation. We introduce salt dissociation reaction in the bulk and take the limit of weak salt dissociation (corresponding to poor conductors in the TM model.) Assuming small Debye length we derive the TM model with or without the surface charge advection term depending upon the scaling of relevant dimensionless parameters. Our analysis also gives a description of the ionic concentration distribution within the Debye layer, which hints at possible scenarios for electrohydrodynamic singularity formation. In our analysis we also allow for a jump in voltage across the liquid interface which causes a drifting velocity for a liquid drop under an electric field. YM is partially supported by NSF-DMS-1516978 and NSF-DMS-1620316. YNY is partially supported by NSF-DMS-1412789 and NSF-DMS-1614863.

  17. Development of an Improved Irrigation Subroutine in SWAT to Simulate the Hydrology of Rice Paddy Grown under Submerged Conditions

    NASA Astrophysics Data System (ADS)

    Muraleedharan, B. V.; Kathirvel, K.; Narasimhan, B.; Nallasamy, N. D.

    2014-12-01

    Soil Water Assessment Tool (SWAT) is a basin scale, distributed hydrological model commonly used to predict the effect of management decisions on the hydrologic response of watersheds. Hydrologic response is decided by the various components of water balance. In the case of watersheds located in south India as well as in several other tropical countries around the world, paddy is one of the dominant crop controlling the hydrologic response of a watershed. Hence, the suitability of SWAT in replicating the hydrology of paddy fields needs to be verified. Rice paddy fields are subjected to flooding method of irrigation, while the irrigation subroutines in SWAT are developed to simulate crops grown under non flooding conditions. Moreover irrigation is represented well in field scale models, while it is poorly represented within watershed models like SWAT. Reliable simulation of flooding method of irrigation and hydrology of the fields will assist in effective water resources management of rice paddy fields which are one of the major consumers of surface and ground water resources. The current study attempts to modify the irrigation subroutine in SWAT so as to simulate flooded irrigation condition. A field water balance study was conducted on representative fields located within Gadana, a subbasin located in Tamil Nadu (southern part of India) and dominated by rice paddy based irrigation systems. The water balance of irrigated paddy fields simulated with SWAT was compared with the water balance derived by rice paddy based crop growth model named ORYZA. The variation in water levels along with the soil moisture variation predicted by SWAT was evaluated with respect to the estimates derived from ORYZA. The water levels were further validated with field based water balance measurements taken on a daily scale. It was observed that the modified irrigation subroutine was able to simulate irrigation of rice paddy within SWAT in a realistic way compared to the existing method.

  18. SU-C-BRA-07: Variability of Patient-Specific Motion Models Derived Using Different Deformable Image Registration Algorithms for Lung Cancer Stereotactic Body Radiotherapy (SBRT) Patients

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dhou, S; Williams, C; Ionascu, D

    2016-06-15

    Purpose: To study the variability of patient-specific motion models derived from 4-dimensional CT (4DCT) images using different deformable image registration (DIR) algorithms for lung cancer stereotactic body radiotherapy (SBRT) patients. Methods: Motion models are derived by 1) applying DIR between each 4DCT image and a reference image, resulting in a set of displacement vector fields (DVFs), and 2) performing principal component analysis (PCA) on the DVFs, resulting in a motion model (a set of eigenvectors capturing the variations in the DVFs). Three DIR algorithms were used: 1) Demons, 2) Horn-Schunck, and 3) iterative optical flow. The motion models derived weremore » compared using patient 4DCT scans. Results: Motion models were derived and the variations were evaluated according to three criteria: 1) the average root mean square (RMS) difference which measures the absolute difference between the components of the eigenvectors, 2) the dot product between the eigenvectors which measures the angular difference between the eigenvectors in space, and 3) the Euclidean Model Norm (EMN), which is calculated by summing the dot products of an eigenvector with the first three eigenvectors from the reference motion model in quadrature. EMN measures how well an eigenvector can be reconstructed using another motion model derived using a different DIR algorithm. Results showed that comparing to a reference motion model (derived using the Demons algorithm), the eigenvectors of the motion model derived using the iterative optical flow algorithm has smaller RMS, larger dot product, and larger EMN values than those of the motion model derived using Horn-Schunck algorithm. Conclusion: The study showed that motion models vary depending on which DIR algorithms were used to derive them. The choice of a DIR algorithm may affect the accuracy of the resulting model, and it is important to assess the suitability of the algorithm chosen for a particular application. This project was supported, in part, through a Master Research Agreement with Varian Medical Systems, Inc, Palo Alto, CA.« less

  19. A holistic approach for large-scale derived flood frequency analysis

    NASA Astrophysics Data System (ADS)

    Dung Nguyen, Viet; Apel, Heiko; Hundecha, Yeshewatesfa; Guse, Björn; Sergiy, Vorogushyn; Merz, Bruno

    2017-04-01

    Spatial consistency, which has been usually disregarded because of the reported methodological difficulties, is increasingly demanded in regional flood hazard (and risk) assessments. This study aims at developing a holistic approach for deriving flood frequency at large scale consistently. A large scale two-component model has been established for simulating very long-term multisite synthetic meteorological fields and flood flow at many gauged and ungauged locations hence reflecting the spatially inherent heterogeneity. The model has been applied for the region of nearly a half million km2 including Germany and parts of nearby countries. The model performance has been multi-objectively examined with a focus on extreme. By this continuous simulation approach, flood quantiles for the studied region have been derived successfully and provide useful input for a comprehensive flood risk study.

  20. Magnetohydrodynamic Models of Molecular Tornadoes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Au, Kelvin; Fiege, Jason D., E-mail: fiege@physics.umanitoba.ca

    Recent observations near the Galactic Center (GC) have found several molecular filaments displaying striking helically wound morphology that are collectively known as molecular tornadoes. We investigate the equilibrium structure of these molecular tornadoes by formulating a magnetohydrodynamic model of a rotating, helically magnetized filament. A special analytical solution is derived where centrifugal forces balance exactly with toroidal magnetic stress. From the physics of torsional Alfvén waves we derive a constraint that links the toroidal flux-to-mass ratio and the pitch angle of the helical field to the rotation laws, which we find to be an important component in describing the molecularmore » tornado structure. The models are compared to the Ostriker solution for isothermal, nonmagnetic, nonrotating filaments. We find that neither the analytic model nor the Alfvén wave model suffer from the unphysical density inversions noted by other authors. A Monte Carlo exploration of our parameter space is constrained by observational measurements of the Pigtail Molecular Cloud, the Double Helix Nebula, and the GC Molecular Tornado. Observable properties such as the velocity dispersion, filament radius, linear mass, and surface pressure can be used to derive three dimensionless constraints for our dimensionless models of these three objects. A virial analysis of these constrained models is studied for these three molecular tornadoes. We find that self-gravity is relatively unimportant, whereas magnetic fields and external pressure play a dominant role in the confinement and equilibrium radial structure of these objects.« less

  1. Relation between lineal energy distribution and relative biological effectiveness for photon beams according to the microdosimetric kinetic model.

    PubMed

    Okamoto, Hiroyuki; Kanai, Tatsuaki; Kase, Yuki; Matsumoto, Yoshitaka; Furusawa, Yoshiya; Fujita, Yukio; Saitoh, Hidetoshi; Itami, Jun; Kohno, Toshiyuki

    2011-01-01

    Our cell survival data showed the obvious dependence of RBE on photon energy: The RBE value for 200 kV X-rays was approximately 10% greater than those for mega-voltage photon beams. In radiation therapy using mega-voltage photon beams, the photon energy distribution outside the field is different with that in the radiation field because of a large number of low energy scattering photons. Hence, the RBE values outside the field become greater. To evaluate the increase in RBE, the method of deriving the RBE using the Microdosimetric Kinetic model (MK model) was proposed in this study. The MK model has two kinds of the parameters, tissue-specific parameters and the dose-mean lineal energy derived from the lineal energy distributions measured with a Tissue-Equivalent Proportional Counter (TEPC). The lineal energy distributions with the same geometries of the cell irradiations for 200 kV X-rays, (60)Co γ-rays, and 6 MV X-rays were obtained with the TEPC and Monte Carlo code GEANT4. The measured lineal energy distribution for 200 kV X-rays was quite different from those for mega-voltage photon beams. The dose-mean lineal energy of 200 kV X-rays showed the greatest value, 4.51 keV/µm, comparing with 2.34 and 2.36 keV/µm for (60)Co γ-rays and 6 MV X-rays, respectively. By using the results of the TEPC and cell irradiations, the tissue-specific parameters in the MK model were determined. As a result, the RBE of the photon beams (y(D): 2~5 keV/µm) in arbitrary conditions can be derived by the measurements only or the calculations only of the dose-mean lineal energy.

  2. Predicting Ice Sheet and Climate Evolution at Extreme Scales

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heimbach, Patrick

    2016-02-06

    A main research objectives of PISCEES is the development of formal methods for quantifying uncertainties in ice sheet modeling. Uncertainties in simulating and projecting mass loss from the polar ice sheets arise primarily from initial conditions, surface and basal boundary conditions, and model parameters. In general terms, two main chains of uncertainty propagation may be identified: 1. inverse propagation of observation and/or prior onto posterior control variable uncertainties; 2. forward propagation of prior or posterior control variable uncertainties onto those of target output quantities of interest (e.g., climate indices or ice sheet mass loss). A related goal is the developmentmore » of computationally efficient methods for producing initial conditions for an ice sheet that are close to available present-day observations and essentially free of artificial model drift, which is required in order to be useful for model projections (“initialization problem”). To be of maximum value, such optimal initial states should be accompanied by “useful” uncertainty estimates that account for the different sources of uncerainties, as well as the degree to which the optimum state is constrained by available observations. The PISCEES proposal outlined two approaches for quantifying uncertainties. The first targets the full exploration of the uncertainty in model projections with sampling-based methods and a workflow managed by DAKOTA (the main delivery vehicle for software developed under QUEST). This is feasible for low-dimensional problems, e.g., those with a handful of global parameters to be inferred. This approach can benefit from derivative/adjoint information, but it is not necessary, which is why it often referred to as “non-intrusive”. The second approach makes heavy use of derivative information from model adjoints to address quantifying uncertainty in high-dimensions (e.g., basal boundary conditions in ice sheet models). The use of local gradient, or Hessian information (i.e., second derivatives of the cost function), requires additional code development and implementation, and is thus often referred to as an “intrusive” approach. Within PISCEES, MIT has been tasked to develop methods for derivative-based UQ, the ”intrusive” approach discussed above. These methods rely on the availability of first (adjoint) and second (Hessian) derivative code, developed through intrusive methods such as algorithmic differentiation (AD). While representing a significant burden in terms of code development, derivative-baesd UQ is able to cope with very high-dimensional uncertainty spaces. That is, unlike sampling methods (all variations of Monte Carlo), calculational burden is independent of the dimension of the uncertainty space. This is a significant advantage for spatially distributed uncertainty fields, such as threedimensional initial conditions, three-dimensional parameter fields, or two-dimensional surface and basal boundary conditions. Importantly, uncertainty fields for ice sheet models generally fall into this category.« less

  3. Estimating mineral abundances of clay and gypsum mixtures using radiative transfer models applied to visible-near infrared reflectance spectra

    NASA Astrophysics Data System (ADS)

    Robertson, K. M.; Milliken, R. E.; Li, S.

    2016-10-01

    Quantitative mineral abundances of lab derived clay-gypsum mixtures were estimated using a revised Hapke VIS-NIR and Shkuratov radiative transfer model. Montmorillonite-gypsum mixtures were used to test the effectiveness of the model in distinguishing between subtle differences in minor absorption features that are diagnostic of mineralogy in the presence of strong H2O absorptions that are not always diagnostic of distinct phases or mineral abundance. The optical constants (k-values) for both endmembers were determined from bi-directional reflectance spectra measured in RELAB as well as on an ASD FieldSpec3 in a controlled laboratory setting. Multiple size fractions were measured in order to derive a single k-value from optimization of the optical path length in the radiative transfer models. It is shown that with careful experimental conditions, optical constants can be accurately determined from powdered samples using a field spectrometer, consistent with previous studies. Variability in the montmorillonite hydration level increased the uncertainties in the derived k-values, but estimated modal abundances for the mixtures were still within 5% of the measured values. Results suggest that the Hapke model works well in distinguishing between hydrated phases that have overlapping H2O absorptions and it is able to detect gypsum and montmorillonite in these simple mixtures where they are present at levels of ∼10%. Care must be taken however to derive k-values from a sample with appropriate H2O content relative to the modeled spectra. These initial results are promising for the potential quantitative analysis of orbital remote sensing data of hydrated minerals, including more complex clay and sulfate assemblages such as mudstones examined by the Curiosity rover in Gale crater.

  4. A Comparison of Simulated and Field-Derived Leaf Area Index (LAI) and Canopy Height Values from Four Forest Complexes in the Southeastern USA

    EPA Science Inventory

    Vegetative leaf area is a critical input to models that simulate human and ecosystem exposure to atmospheric pollutants. Leaf area index (LAI) can be measured in the field or numerically simulated, but all contain some inherent uncertainty that is passed to the exposure assessmen...

  5. A comparative study of a theoretical neural net model with MEG data from epileptic patients and normal individuals.

    PubMed

    Kotini, A; Anninos, P; Anastasiadis, A N; Tamiolakis, D

    2005-09-07

    The aim of this study was to compare a theoretical neural net model with MEG data from epileptic patients and normal individuals. Our experimental study population included 10 epilepsy sufferers and 10 healthy subjects. The recordings were obtained with a one-channel biomagnetometer SQUID in a magnetically shielded room. Using the method of x2-fitting it was found that the MEG amplitudes in epileptic patients and normal subjects had Poisson and Gauss distributions respectively. The Poisson connectivity derived from the theoretical neural model represents the state of epilepsy, whereas the Gauss connectivity represents normal behavior. The MEG data obtained from epileptic areas had higher amplitudes than the MEG from normal regions and were comparable with the theoretical magnetic fields from Poisson and Gauss distributions. Furthermore, the magnetic field derived from the theoretical model had amplitudes in the same order as the recorded MEG from the 20 participants. The approximation of the theoretical neural net model with real MEG data provides information about the structure of the brain function in epileptic and normal states encouraging further studies to be conducted.

  6. Tracer Flux Balance at an Urban Canyon Intersection

    NASA Astrophysics Data System (ADS)

    Carpentieri, Matteo; Robins, Alan G.

    2010-05-01

    Despite their importance for pollutant dispersion in urban areas, the special features of dispersion at street intersections are rarely taken into account by operational air quality models. Several previous studies have demonstrated the complex flow patterns that occur at street intersections, even with simple geometry. This study presents results from wind-tunnel experiments on a reduced scale model of a complex but realistic urban intersection, located in central London. Tracer concentration measurements were used to derive three-dimensional maps of the concentration field within the intersection. In combination with a previous study (Carpentieri et al., Boundary-Layer Meteorol 133:277-296, 2009) where the velocity field was measured in the same model, a methodology for the calculation of the mean tracer flux balance at the intersection was developed and applied. The calculation highlighted several limitations of current state-of-the-art canyon dispersion models, arising mainly from the complex geometry of the intersection. Despite its limitations, the proposed methodology could be further developed in order to derive, assess and implement street intersection dispersion models for complex urban areas.

  7. Reciprocity relationships in vector acoustics and their application to vector field calculations.

    PubMed

    Deal, Thomas J; Smith, Kevin B

    2017-08-01

    The reciprocity equation commonly stated in underwater acoustics relates pressure fields and monopole sources. It is often used to predict the pressure measured by a hydrophone for multiple source locations by placing a source at the hydrophone location and calculating the field everywhere for that source. A similar equation that governs the orthogonal components of the particle velocity field is needed to enable this computational method to be used for acoustic vector sensors. This paper derives a general reciprocity equation that accounts for both monopole and dipole sources. This vector-scalar reciprocity equation can be used to calculate individual components of the received vector field by altering the source type used in the propagation calculation. This enables a propagation model to calculate the received vector field components for an arbitrary number of source locations with a single model run for each vector field component instead of requiring one model run for each source location. Application of the vector-scalar reciprocity principle is demonstrated with analytic solutions for a range-independent environment and with numerical solutions for a range-dependent environment using a parabolic equation model.

  8. Interest rates in quantum finance: the Wilson expansion and Hamiltonian.

    PubMed

    Baaquie, Belal E

    2009-10-01

    Interest rate instruments form a major component of the capital markets. The Libor market model (LMM) is the finance industry standard interest rate model for both Libor and Euribor, which are the most important interest rates. The quantum finance formulation of the Libor market model is given in this paper and leads to a key generalization: all the Libors, for different future times, are imperfectly correlated. A key difference between a forward interest rate model and the LMM lies in the fact that the LMM is calibrated directly from the observed market interest rates. The short distance Wilson expansion [Phys. Rev. 179, 1499 (1969)] of a Gaussian quantum field is shown to provide the generalization of Ito calculus; in particular, the Wilson expansion of the Gaussian quantum field A(t,x) driving the Libors yields a derivation of the Libor drift term that incorporates imperfect correlations of the different Libors. The logarithm of Libor phi(t,x) is defined and provides an efficient and compact representation of the quantum field theory of the Libor market model. The Lagrangian and Feynman path integrals of the Libor market model of interest rates are obtained, as well as a derivation given by its Hamiltonian. The Hamiltonian formulation of the martingale condition provides an exact solution for the nonlinear drift of the Libor market model. The quantum finance formulation of the LMM is shown to reduce to the industry standard Bruce-Gatarek-Musiela-Jamshidian model when the forward interest rates are taken to be exactly correlated.

  9. Phobos' gravity field and its influence on its orbit and physical librations

    NASA Technical Reports Server (NTRS)

    Borderies, N.; Yoder, C. F.

    1990-01-01

    A model describing the physical libration in longitude and latitude for Phobos is derived. The major effect is the well-known longitude variation with the anomalistic orbital period and amplitude. Several additional meter-sized periodic librations in longitude exist. The latitude variation is dominated by the forced precession of Phobos' figure axis with the precession of Phobos' orbital plane. The contribution of Phobos' topography to its gravity field is estimated using the control network model of Duxbury and Callahan (1989).

  10. Passive millimeter-wave imaging

    NASA Technical Reports Server (NTRS)

    Young, Stephen K.; Davidheiser, Roger A.; Hauss, Bruce; Lee, Paul S. C.; Mussetto, Michael; Shoucri, Merit M.; Yujiri, Larry

    1993-01-01

    Millimeter-wave hardware systems are being developed. Our approach begins with identifying and defining the applications. System requirements are then specified based on mission needs using our end-to-end performance model. The model was benchmarked against existing data bases and, where data is deficient, it is acquired via field measurements. The derived system requirements are then validated with the appropriate field measurements using our imaging testbeds and hardware breadboards. The result is a final system that satisfies all the requirements of the target mission.

  11. Power spectral ensity of markov texture fields

    NASA Technical Reports Server (NTRS)

    Shanmugan, K. S.; Holtzman, J. C.

    1984-01-01

    Texture is an important image characteristic. A variety of spatial domain techniques were proposed for extracting and utilizing textural features for segmenting and classifying images. for the most part, these spatial domain techniques are ad hos in nature. A markov random field model for image texture is discussed. A frequency domain description of image texture is derived in terms of the power spectral density. This model is used for designing optimum frequency domain filters for enhancing, restoring and segmenting images based on their textural properties.

  12. The BGS magnetic field candidate models for the 12th generation IGRF

    NASA Astrophysics Data System (ADS)

    Hamilton, Brian; Ridley, Victoria A.; Beggan, Ciarán D.; Macmillan, Susan

    2015-05-01

    We describe the candidate models submitted by the British Geological Survey for the 12th generation International Geomagnetic Reference Field. These models are extracted from a spherical harmonic `parent model' derived from vector and scalar magnetic field data from satellite and observatory sources. These data cover the period 2009.0 to 2014.7 and include measurements from the recently launched European Space Agency (ESA) Swarm satellite constellation. The parent model's internal field time dependence for degrees 1 to 13 is represented by order 6 B-splines with knots at yearly intervals. The parent model's degree 1 external field time dependence is described by periodic functions for the annual and semi-annual signals and by dependence on the 20-min Vector Magnetic Disturbance index. Signals induced by these external fields are also parameterized. Satellite data are weighted by spatial density and by two different noise estimators: (a) by standard deviation along segments of the satellite track and (b) a larger-scale noise estimator defined in terms of a measure of vector activity at the geographically closest magnetic observatories to the sample point. Forecasting of the magnetic field secular variation beyond the span of data is by advection of the main field using core surface flows.

  13. Phase-field-based multiple-relaxation-time lattice Boltzmann model for incompressible multiphase flows.

    PubMed

    Liang, H; Shi, B C; Guo, Z L; Chai, Z H

    2014-05-01

    In this paper, a phase-field-based multiple-relaxation-time lattice Boltzmann (LB) model is proposed for incompressible multiphase flow systems. In this model, one distribution function is used to solve the Chan-Hilliard equation and the other is adopted to solve the Navier-Stokes equations. Unlike previous phase-field-based LB models, a proper source term is incorporated in the interfacial evolution equation such that the Chan-Hilliard equation can be derived exactly and also a pressure distribution is designed to recover the correct hydrodynamic equations. Furthermore, the pressure and velocity fields can be calculated explicitly. A series of numerical tests, including Zalesak's disk rotation, a single vortex, a deformation field, and a static droplet, have been performed to test the accuracy and stability of the present model. The results show that, compared with the previous models, the present model is more stable and achieves an overall improvement in the accuracy of the capturing interface. In addition, compared to the single-relaxation-time LB model, the present model can effectively reduce the spurious velocity and fluctuation of the kinetic energy. Finally, as an application, the Rayleigh-Taylor instability at high Reynolds numbers is investigated.

  14. Magnetic helicity of the global field in solar cycles 23 and 24

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pipin, V. V.; Pevtsov, A. A.

    2014-07-01

    For the first time we reconstruct the magnetic helicity density of the global axisymmetric field of the Sun using the method proposed by Brandenburg et al. and Pipin et al. To determine the components of the vector potential, we apply a gauge which is typically employed in mean-field dynamo models. This allows for a direct comparison of the reconstructed helicity with the predictions from the mean-field dynamo models. We apply this method to two different data sets: the synoptic maps of the line-of-sight magnetic field from the Michelson Doppler Imager (MDI) on board the Solar and Heliospheric Observatory (SOHO) andmore » vector magnetic field measurements from the Vector Spectromagnetograph (VSM) on the Synoptic Optical Long-term Investigations of the Sun (SOLIS) system. Based on the analysis of the MDI/SOHO data, we find that in solar cycle 23 the global magnetic field had positive (negative) magnetic helicity in the northern (southern) hemisphere. This hemispheric sign asymmetry is opposite to the helicity of the solar active regions, but it is in agreement with the predictions of mean-field dynamo models. The data also suggest that the hemispheric helicity rule may have reversed its sign during the early and late phases of cycle 23. Furthermore, the data indicate an imbalance in magnetic helicity between the northern and southern hemispheres. This imbalance seems to correlate with the total level of activity in each hemisphere in cycle 23. The magnetic helicity for the rising phase of cycle 24 is derived from SOLIS/VSM data, and qualitatively its latitudinal pattern is similar to the pattern derived from SOHO/MDI data for cycle 23.« less

  15. Magnetic Field Configuration of Active Region NOAA 6555 at the Time of a Long Duration Flare on 23 March 1991: An Exception to Standard Flare Reconnection Model

    NASA Technical Reports Server (NTRS)

    Choudhary, Debi Prasad; Gary, Allen G.

    1998-01-01

    The high-resolution H(sub alpha) images observed during the decay phase of a long duration flare on 23 March 1991 are used to study the three-dimensional magnetic field configuration of the active region NOAA 6555. Whereas, all the large flares in NOAA 6555 occurred at the location of high magnetic shear and flux emergence, this long duration flare was observed in the region of low magnetic shear at the photosphere. The H(sub alpha) loop activity started soon after the maximum phase of the flare. There were few long loop at the initial phase of the activity. Some of these were sheared in the chromosphere at an angle of about 45 deg with the east-west axis. Gradually, increasing number of shorter loops, oriented along the east-west axis, started appearing. The chromospheric Dopplergrams show blue-shifts at the end points of the loops. By using different magnetic field models, we have extrapolated the photospheric magnetograms to the chromospheric heights. The magnetic field lines computed by using the potential field model correspond to most of the observed H(sub alpha) loops. The height of the H(sub alpha) loops were derived by comparing them with the computed field lines. From the temporal evolution of the H(sub alpha) loop activity, we derive the negative rate of appearance of H(sub alpha) features as a function of height. It is found that the field lines oriented along one of the neutral lines was sheared and low lying. The higher field lines were mostly potential. The paper also outlines a possible scenario for describing the post-flare stage of the observed long duration flare.

  16. Efficient field-theoretic simulation of polymer solutions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Villet, Michael C.; Fredrickson, Glenn H., E-mail: ghf@mrl.ucsb.edu; Department of Materials, University of California, Santa Barbara, California 93106

    2014-12-14

    We present several developments that facilitate the efficient field-theoretic simulation of polymers by complex Langevin sampling. A regularization scheme using finite Gaussian excluded volume interactions is used to derive a polymer solution model that appears free of ultraviolet divergences and hence is well-suited for lattice-discretized field theoretic simulation. We show that such models can exhibit ultraviolet sensitivity, a numerical pathology that dramatically increases sampling error in the continuum lattice limit, and further show that this pathology can be eliminated by appropriate model reformulation by variable transformation. We present an exponential time differencing algorithm for integrating complex Langevin equations for fieldmore » theoretic simulation, and show that the algorithm exhibits excellent accuracy and stability properties for our regularized polymer model. These developments collectively enable substantially more efficient field-theoretic simulation of polymers, and illustrate the importance of simultaneously addressing analytical and numerical pathologies when implementing such computations.« less

  17. Parametrization of Stillinger-Weber potential based on valence force field model: application to single-layer MoS2 and black phosphorus

    NASA Astrophysics Data System (ADS)

    Jiang, Jin-Wu

    2015-08-01

    We propose parametrizing the Stillinger-Weber potential for covalent materials starting from the valence force-field model. All geometrical parameters in the Stillinger-Weber potential are determined analytically according to the equilibrium condition for each individual potential term, while the energy parameters are derived from the valence force-field model. This parametrization approach transfers the accuracy of the valence force field model to the Stillinger-Weber potential. Furthermore, the resulting Stilliinger-Weber potential supports stable molecular dynamics simulations, as each potential term is at an energy-minimum state separately at the equilibrium configuration. We employ this procedure to parametrize Stillinger-Weber potentials for single-layer MoS2 and black phosphorous. The obtained Stillinger-Weber potentials predict an accurate phonon spectrum and mechanical behaviors. We also provide input scripts of these Stillinger-Weber potentials used by publicly available simulation packages including GULP and LAMMPS.

  18. Parametrization of Stillinger-Weber potential based on valence force field model: application to single-layer MoS2 and black phosphorus.

    PubMed

    Jiang, Jin-Wu

    2015-08-07

    We propose parametrizing the Stillinger-Weber potential for covalent materials starting from the valence force-field model. All geometrical parameters in the Stillinger-Weber potential are determined analytically according to the equilibrium condition for each individual potential term, while the energy parameters are derived from the valence force-field model. This parametrization approach transfers the accuracy of the valence force field model to the Stillinger-Weber potential. Furthermore, the resulting Stilliinger-Weber potential supports stable molecular dynamics simulations, as each potential term is at an energy-minimum state separately at the equilibrium configuration. We employ this procedure to parametrize Stillinger-Weber potentials for single-layer MoS2 and black phosphorous. The obtained Stillinger-Weber potentials predict an accurate phonon spectrum and mechanical behaviors. We also provide input scripts of these Stillinger-Weber potentials used by publicly available simulation packages including GULP and LAMMPS.

  19. Effect of Longitudinal Magnetic Field on Vibration Characteristics of Single-Walled Carbon Nanotubes in a Viscoelastic Medium

    NASA Astrophysics Data System (ADS)

    Zhang, D. P.; Lei, Y.; Shen, Z. B.

    2017-12-01

    The effect of longitudinal magnetic field on vibration response of a sing-walled carbon nanotube (SWCNT) embedded in viscoelastic medium is investigated. Based on nonlocal Euler-Bernoulli beam theory, Maxwell's relations, and Kelvin viscoelastic foundation model, the governing equations of motion for vibration analysis are established. The complex natural frequencies and corresponding mode shapes in closed form for the embedded SWCNT with arbitrary boundary conditions are obtained using transfer function method (TFM). The new analytical expressions for the complex natural frequencies are also derived for certain typical boundary conditions and Kelvin-Voigt model. Numerical results from the model are presented to show the effects of nonlocal parameter, viscoelastic parameter, boundary conditions, aspect ratio, and strength of the magnetic field on vibration characteristics for the embedded SWCNT in longitudinal magnetic field. The results demonstrate the efficiency of the proposed methods for vibration analysis of embedded SWCNTs under magnetic field.

  20. Bukhvostov-Lipatov model and quantum-classical duality

    NASA Astrophysics Data System (ADS)

    Bazhanov, Vladimir V.; Lukyanov, Sergei L.; Runov, Boris A.

    2018-02-01

    The Bukhvostov-Lipatov model is an exactly soluble model of two interacting Dirac fermions in 1 + 1 dimensions. The model describes weakly interacting instantons and anti-instantons in the O (3) non-linear sigma model. In our previous work [arxiv:arXiv:1607.04839] we have proposed an exact formula for the vacuum energy of the Bukhvostov-Lipatov model in terms of special solutions of the classical sinh-Gordon equation, which can be viewed as an example of a remarkable duality between integrable quantum field theories and integrable classical field theories in two dimensions. Here we present a complete derivation of this duality based on the classical inverse scattering transform method, traditional Bethe ansatz techniques and analytic theory of ordinary differential equations. In particular, we show that the Bethe ansatz equations defining the vacuum state of the quantum theory also define connection coefficients of an auxiliary linear problem for the classical sinh-Gordon equation. Moreover, we also present details of the derivation of the non-linear integral equations determining the vacuum energy and other spectral characteristics of the model in the case when the vacuum state is filled by 2-string solutions of the Bethe ansatz equations.

  1. Scaling for the SOL/separatrix χ ⊥ following from the heuristic drift model for the power scrape-off layer width

    NASA Astrophysics Data System (ADS)

    Huber, A.; Chankin, A. V.

    2017-06-01

    A simple two-point representation of the tokamak scrape-off layer (SOL) in the conduction limited regime, based on the parallel and perpendicular energy balance equations in combination with the heat flux width predicted by a heuristic drift-based model, was used to derive a scaling for the cross-field thermal diffusivity {χ }\\perp . For fixed plasma shape and neglecting weak power dependence indexes 1/8, the scaling {χ }\\perp \\propto {P}{{S}{{O}}{{L}}}/(n{B}θ {R}2) is derived.

  2. Exploring extra dimensions with scalar fields

    NASA Astrophysics Data System (ADS)

    Brown, Katherine; Mathur, Harsh; Verostek, Mike

    2018-05-01

    This paper provides a pedagogical introduction to the physics of extra dimensions by examining the behavior of scalar fields in three landmark models: the ADD, Randall-Sundrum, and DGP spacetimes. Results of this analysis provide qualitative insights into the corresponding behavior of gravitational fields and elementary particles in each of these models. In these "brane world" models, the familiar four dimensional spacetime of everyday experience is called the brane and is a slice through a higher dimensional spacetime called the bulk. The particles and fields of the standard model are assumed to be confined to the brane, while gravitational fields are assumed to propagate in the bulk. For all three spacetimes, we calculate the spectrum of propagating scalar wave modes and the scalar field produced by a static point source located on the brane. For the ADD and Randall-Sundrum models, at large distances, the field looks like that of a point source in four spacetime dimensions, but at short distances, it crosses over to a form appropriate to the higher dimensional spacetime. For the DGP model, the field has the higher dimensional form at long distances rather than short. The behavior of these scalar fields, derived using only undergraduate level mathematics, closely mirror the results that one would obtain by performing the far more difficult task of analyzing the behavior of gravitational fields in these spacetimes.

  3. CONTINUUM INTENSITY AND [O i] SPECTRAL LINE PROFILES IN SOLAR 3D PHOTOSPHERIC MODELS: THE EFFECT OF MAGNETIC FIELDS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fabbian, D.; Moreno-Insertis, F., E-mail: damian@iac.es, E-mail: fmi@iac.es

    2015-04-01

    The importance of magnetic fields in three-dimensional (3D) magnetoconvection models of the Sun’s photosphere is investigated in terms of their influence on the continuum intensity at different viewing inclination angles and on the intensity profile of two [O i] spectral lines. We use the RH numerical radiative transfer code to perform a posteriori spectral synthesis on the same time series of magnetoconvection models used in our publications on the effect of magnetic fields on abundance determination. We obtain a good match of the synthetic disk-center continuum intensity to the absolute continuum values from the Fourier Transform Spectrometer (FTS) observational spectrum; the matchmore » of the center-to-limb variation synthetic data to observations is also good, thanks, in part, to the 3D radiation transfer capabilities of the RH code. The different levels of magnetic flux in the numerical time series do not modify the quality of the match. Concerning the targeted [O i] spectral lines, we find, instead, that magnetic fields lead to nonnegligible changes in the synthetic spectrum, with larger average magnetic flux causing both of the lines to become noticeably weaker. The photospheric oxygen abundance that one would derive if instead using nonmagnetic numerical models would thus be lower by a few to several centidex. The inclusion of magnetic fields is confirmed to be important for improving the current modeling of the Sun, here in particular in terms of spectral line formation and of deriving consistent chemical abundances. These results may shed further light on the still controversial issue regarding the precise value of the solar oxygen abundance.« less

  4. The Evolution and Discharge of Electric Fields within a Thunderstorm

    NASA Astrophysics Data System (ADS)

    Hager, William W.; Nisbet, John S.; Kasha, John R.

    1989-05-01

    A 3-dimensional electrical model for a thunderstorm is developed and finite difference approximations to the model are analyzed. If the spatial derivatives are approximated by a method akin to the ☐ scheme and if the temporal derivative is approximated by either a backward difference or the Crank-Nicholson scheme, we show that the resulting discretization is unconditionally stable. The forward difference approximation to the time derivative is stable when the time step is sufficiently small relative to the ratio between the permittivity and the conductivity. Max-norm error estimates for the discrete approximations are established. To handle the propagation of lightning, special numerical techniques are devised based on the Inverse Matrix Modification Formula and Cholesky updates. Numerical comparisons between the model and theoretical results of Wilson and Holzer-Saxon are presented. We also apply our model to a storm observed at the Kennedy Space Center on July 11, 1978.

  5. When push comes to shove: Exclusion processes with nonlocal consequences

    NASA Astrophysics Data System (ADS)

    Almet, Axel A.; Pan, Michael; Hughes, Barry D.; Landman, Kerry A.

    2015-11-01

    Stochastic agent-based models are useful for modelling collective movement of biological cells. Lattice-based random walk models of interacting agents where each site can be occupied by at most one agent are called simple exclusion processes. An alternative motility mechanism to simple exclusion is formulated, in which agents are granted more freedom to move under the compromise that interactions are no longer necessarily local. This mechanism is termed shoving. A nonlinear diffusion equation is derived for a single population of shoving agents using mean-field continuum approximations. A continuum model is also derived for a multispecies problem with interacting subpopulations, which either obey the shoving rules or the simple exclusion rules. Numerical solutions of the derived partial differential equations compare well with averaged simulation results for both the single species and multispecies processes in two dimensions, while some issues arise in one dimension for the multispecies case.

  6. An extended model of the Barkhausen effect based on the ABBM model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clatterbuck, D. M.; Garcia, V. J.; Johnson, M. J.

    2000-05-01

    The Barkhausen model of Alessandro et al. [J. Appl. Phys. 68, 2901 (1990)] has been extended to nonstationary domain wall dynamics. The assumptions of the original model limit, its use to situations where the differential permeability, and time derivative of applied field are constant. The later model of Jiles et al. assumes that the Barkhausen activity in a given time interval is proportional to the rate of change of irreversible magnetization which can be calculated from hysteresis models. The extended model presented here incorporates ideas from both of these. It assumes that the pinning field and domain wall velocity behavemore » according to the Alessandro model, but allows the rate of change of the magnetic flux to vary around a moving average which is determined by the shape of the hysteresis curve and the applied magnetic field wave form. As a result, the new model allows for changes in permeability with applied field and can also reproduce the frequency response of experimental Barkhausen signals. (c) 2000 American Institute of Physics.« less

  7. Acoustic fluidization and the scale dependence of impact crater morphology

    NASA Technical Reports Server (NTRS)

    Melosh, H. J.; Gaffney, E. S.

    1983-01-01

    A phenomenological Bingham plastic model has previously been shown to provide an adequate description of the collapse of impact craters. This paper demonstrates that the Bingham parameters may be derived from a model in which acoustic energy generated during excavation fluidizes the rock debris surrounding the crater. Experimental support for the theoretical flow law is presented. Although the Bingham yield stress cannot be computed without detailed knowledge of the initial acoustic field, the Bingham viscosity is derived from a simple argument which shows that it increases as the 3/2 power of crater diameter, consistent with observation. Crater collapse may occur in material with internal dissipation Q as low as 100, comparable to laboratory observations of dissipation in granular materials. Crater collapse thus does not require that the acoustic field be regenerated during flow.

  8. Conformal field theory construction for non-Abelian hierarchy wave functions

    NASA Astrophysics Data System (ADS)

    Tournois, Yoran; Hermanns, Maria

    2017-12-01

    The fractional quantum Hall effect is the paradigmatic example of topologically ordered phases. One of its most fascinating aspects is the large variety of different topological orders that may be realized, in particular non-Abelian ones. Here we analyze a class of non-Abelian fractional quantum Hall model states which are generalizations of the Abelian Haldane-Halperin hierarchy. We derive their topological properties and show that the quasiparticles obey non-Abelian fusion rules of type su (q)k . For a subset of these states we are able to derive the conformal field theory description that makes the topological properties—in particular braiding—of the state manifest. The model states we study provide explicit wave functions for a large variety of interesting topological orders, which may be relevant for certain fractional quantum Hall states observed in the first excited Landau level.

  9. T- P Phase Diagram of Nitrogen at High Pressures

    NASA Astrophysics Data System (ADS)

    Algul, G.; Enginer, Y.; Yurtseven, H.

    2018-05-01

    By employing a mean field model, calculation of the T- P phase diagram of molecular nitrogen is performed at high pressures up to 200 GPa. Experimental data from the literature are used to fit a quadratic function in T and P, describing the phase line equations which have been derived using the mean field model studied here for N 2, and the fitted parameters are determined. Our model study gives that the observed T- P phase diagram can be described satisfactorily for the first-order transitions between the phases at low as well as high pressures in nitrogen. Some thermodynamic quantities can also be predicted as functions of temperature and pressure from the mean field model studied here and they can be compared with the experimental data.

  10. A Model (Formula) for Deriving A Hazard Index of Rail-Highway Grade Crossings.

    ERIC Educational Resources Information Center

    Coburn, James Minton

    The purpose of this research was to compile data for use as related information in the education of drivers, and to derive a formula for computing a hazard index for rail-highway intersections. Data for the study were compiled from: (1) all crossings on which field data were collected, (2) reports of 642 accidents, and (3) data collected from…

  11. Variational Assimilation of GOME Total-Column Ozone Satellite Data in a 2D Latitude-Longitude Tracer-Transport Model.

    NASA Astrophysics Data System (ADS)

    Eskes, H. J.; Piters, A. J. M.; Levelt, P. F.; Allaart, M. A. F.; Kelder, H. M.

    1999-10-01

    A four-dimensional data-assimilation method is described to derive synoptic ozone fields from total-column ozone satellite measurements. The ozone columns are advected by a 2D tracer-transport model, using ECMWF wind fields at a single pressure level. Special attention is paid to the modeling of the forecast error covariance and quality control. The temporal and spatial dependence of the forecast error is taken into account, resulting in a global error field at any instant in time that provides a local estimate of the accuracy of the assimilated field. The authors discuss the advantages of the 4D-variational (4D-Var) approach over sequential assimilation schemes. One of the attractive features of the 4D-Var technique is its ability to incorporate measurements at later times t > t0 in the analysis at time t0, in a way consistent with the time evolution as described by the model. This significantly improves the offline analyzed ozone fields.

  12. Constraints on primordial magnetic fields from inflation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Green, Daniel; Kobayashi, Takeshi, E-mail: drgreen@cita.utoronto.ca, E-mail: takeshi.kobayashi@sissa.it

    2016-03-01

    We present generic bounds on magnetic fields produced from cosmic inflation. By investigating field bounds on the vector potential, we constrain both the quantum mechanical production of magnetic fields and their classical growth in a model independent way. For classical growth, we show that only if the reheating temperature is as low as T{sub reh} ∼< 10{sup 2} MeV can magnetic fields of 10{sup −15} G be produced on Mpc scales in the present universe. For purely quantum mechanical scenarios, even stronger constraints are derived. Our bounds on classical and quantum mechanical scenarios apply to generic theories of inflationary magnetogenesis with a two-derivative timemore » kinetic term for the vector potential. In both cases, the magnetic field strength is limited by the gravitational back-reaction of the electric fields that are produced simultaneously. As an example of quantum mechanical scenarios, we construct vector field theories whose time diffeomorphisms are spontaneously broken, and explore magnetic field generation in theories with a variable speed of light. Transitions of quantum vector field fluctuations into classical fluctuations are also analyzed in the examples.« less

  13. A New Non-gaussian Turbulent Wind Field Generator to Estimate Design-Loads of Wind-Turbines

    NASA Astrophysics Data System (ADS)

    Schaffarczyk, A. P.; Gontier, H.; Kleinhans, D.; Friedrich, R.

    Climate change and finite fossil fuel resources make it urgent to turn into electricity generation from mostly renewable energies. One major part will play wind-energy supplied by wind-turbines of rated power up to 10 MW. For their design and development wind field models have to be used. The standard models are based on the empirical spectra, for example by von Karman or Kaimal. From investigation of measured data it is clear that gusts are underrepresented in such models. Based on some fundamental discoveries of the nature of turbulence by Friedrich [1] derived from the Navier-Stokes equation directly, we used the concept of Continuous Time Random Walks to construct three dimensional wind fields obeying non-Gaussian statistics. These wind fields were used to estimate critical fatigue loads necessary within the certification process. Calculations are carried out with an implementation of a beam-model (FLEX5) for two types of state-of-the-art wind turbines The authors considered the edgewise and flapwise blade-root bending moments as well as tilt moment at tower top due to the standard wind field models and our new non-Gaussian wind field model. Clear differences in the loads were found.

  14. Cavity master equation for the continuous time dynamics of discrete-spin models.

    PubMed

    Aurell, E; Del Ferraro, G; Domínguez, E; Mulet, R

    2017-05-01

    We present an alternate method to close the master equation representing the continuous time dynamics of interacting Ising spins. The method makes use of the theory of random point processes to derive a master equation for local conditional probabilities. We analytically test our solution studying two known cases, the dynamics of the mean-field ferromagnet and the dynamics of the one-dimensional Ising system. We present numerical results comparing our predictions with Monte Carlo simulations in three different models on random graphs with finite connectivity: the Ising ferromagnet, the random field Ising model, and the Viana-Bray spin-glass model.

  15. Cavity master equation for the continuous time dynamics of discrete-spin models

    NASA Astrophysics Data System (ADS)

    Aurell, E.; Del Ferraro, G.; Domínguez, E.; Mulet, R.

    2017-05-01

    We present an alternate method to close the master equation representing the continuous time dynamics of interacting Ising spins. The method makes use of the theory of random point processes to derive a master equation for local conditional probabilities. We analytically test our solution studying two known cases, the dynamics of the mean-field ferromagnet and the dynamics of the one-dimensional Ising system. We present numerical results comparing our predictions with Monte Carlo simulations in three different models on random graphs with finite connectivity: the Ising ferromagnet, the random field Ising model, and the Viana-Bray spin-glass model.

  16. Cohen's Kappa and classification table metrics 2.0: An ArcView 3.x extension for accuracy assessment of spatially explicit models

    Treesearch

    Jeff Jenness; J. Judson Wynne

    2005-01-01

    In the field of spatially explicit modeling, well-developed accuracy assessment methodologies are often poorly applied. Deriving model accuracy metrics have been possible for decades, but these calculations were made by hand or with the use of a spreadsheet application. Accuracy assessments may be useful for: (1) ascertaining the quality of a model; (2) improving model...

  17. Infrared dust and millimeter-wave carbon monoxide emission in the Orion region

    NASA Technical Reports Server (NTRS)

    Bally, John; Langer, William D.; Liu, Weihong

    1991-01-01

    The far-infrared dust emission seen by the IRAS satellite in the Orion region is analyzed as a function of the local radiation field intensity, and the dust temperature and opacity are compared with (C-12)O and (C-13)O emission. The infrared radiation is interpreted within the framework of a single-component large grain model and a multicomponent grain model consisting of subpopulations of grains with size-dependent temperatures. A strong dependence of the 100-micron optical depth derived is found using the large grain model on the average line-of-sight dust temperature and radiation field. In the hot environment surrounding high-luminosity sources and H II regions, all dust along the line-of-sight radiates at 100 microns, and the dust-to-gas ratio, based on the 100-micron opacity and I(/C-13/O), appears to be in agreement with the standard value, about 1 percent by mass. A relationship is found between the inferred dust-to-gas ratio and the radiation field intensity responsible for heating the dust which can be used to estimate the gas column density from the dust opacity derived from the 60- and 100-micron IRAS fluxes.

  18. Analytical and numerical solutions for heat transfer and effective thermal conductivity of cracked media

    NASA Astrophysics Data System (ADS)

    Tran, A. B.; Vu, M. N.; Nguyen, S. T.; Dong, T. Q.; Le-Nguyen, K.

    2018-02-01

    This paper presents analytical solutions to heat transfer problems around a crack and derive an adaptive model for effective thermal conductivity of cracked materials based on singular integral equation approach. Potential solution of heat diffusion through two-dimensional cracked media, where crack filled by air behaves as insulator to heat flow, is obtained in a singular integral equation form. It is demonstrated that the temperature field can be described as a function of temperature and rate of heat flow on the boundary and the temperature jump across the cracks. Numerical resolution of this boundary integral equation allows determining heat conduction and effective thermal conductivity of cracked media. Moreover, writing this boundary integral equation for an infinite medium embedding a single crack under a far-field condition allows deriving the closed-form solution of temperature discontinuity on the crack and particularly the closed-form solution of temperature field around the crack. These formulas are then used to establish analytical effective medium estimates. Finally, the comparison between the developed numerical and analytical solutions allows developing an adaptive model for effective thermal conductivity of cracked media. This model takes into account both the interaction between cracks and the percolation threshold.

  19. Analytical model of a corona discharge from a conical electrode under saturation

    NASA Astrophysics Data System (ADS)

    Boltachev, G. Sh.; Zubarev, N. M.

    2012-11-01

    Exact partial solutions are found for the electric field distribution in the outer region of a stationary unipolar corona discharge from an ideal conical needle in the space-charge-limited current mode with allowance for the electric field dependence of the ion mobility. It is assumed that only the very tip of the cone is responsible for the discharge, i.e., that the ionization zone is a point. The solutions are obtained by joining the spherically symmetric potential distribution in the drift space and the self-similar potential distribution in the space-charge-free region. Such solutions are outside the framework of the conventional Deutsch approximation, according to which the space charge insignificantly influences the shape of equipotential surfaces and electric lines of force. The dependence is derived of the corona discharge saturation current on the apex angle of the conical electrode and applied potential difference. A simple analytical model is suggested that describes drift in the point-plane electrode geometry under saturation as a superposition of two exact solutions for the field potential. In terms of this model, the angular distribution of the current density over the massive plane electrode is derived, which agrees well with Warburg's empirical law.

  20. T-duality and α'-corrections

    NASA Astrophysics Data System (ADS)

    Marqués, Diego; Nuñez, Carmen A.

    2015-10-01

    We construct an O( d, d) invariant universal formulation of the first-order α'-corrections of the string effective actions involving the dilaton, metric and two-form fields. Two free parameters interpolate between four-derivative terms that are even and odd with respect to a Z 2-parity transformation that changes the sign of the two-form field. The Z 2-symmetric model reproduces the closed bosonic string, and the heterotic string effective action is obtained through a Z 2-parity-breaking choice of parameters. The theory is an extension of the generalized frame formulation of Double Field Theory, in which the gauge transformations are deformed by a first-order generalized Green-Schwarz transformation. This deformation defines a duality covariant gauge principle that requires and fixes the four-derivative terms. We discuss the O( d, d) structure of the theory and the (non-)covariance of the required field redefinitions.

  1. The evolution and discharge of electric fields within a thunderstorm

    NASA Technical Reports Server (NTRS)

    Hager, William W.; Nisbet, John S.; Kasha, John R.

    1989-01-01

    An analysis of the present three-dimensional thunderstorm electrical model and its finite-difference approximations indicates unconditional stability for the discretization that results from the approximation of the spatial derivatives by a box-schemelike method and of the temporal derivative by either a backward-difference or Crank-Nicholson scheme. Lightning propagation is treated through numerical techniques based on the inverse-matrix modification formula and Cholesky updates. The model is applied to a storm observed at the Kennedy Space Center in 1978, and numerical comparisons are conducted between the model and the theoretical results obtained by Wilson (1920) and Holzer and Saxon (1952).

  2. 3D QSAR based design of novel oxindole derivative as 5HT7 inhibitors.

    PubMed

    Chitta, Aparna; Sivan, Sree Kanth; Manga, Vijjulatha

    2014-06-01

    To understand the structural requirements of 5-hydroxytryptamine (5HT7) receptor inhibitors and to design new ligands against 5HT7 receptor with enhanced inhibitory potency, a three-dimensional quantitative structure-activity relationship study with comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) for a data set of 56 molecules consisting of oxindole, tetrahydronaphthalene, aryl ketone substituted arylpiperazinealkylamide derivatives was performed. Derived model showed good statistical reliability in terms of predicting 5HT7 inhibitory activity of the molecules, based on molecular property fields like steric, electrostatic, hydrophobic, hydrogen bond donor and hydrogen bond acceptor fields. This is evident from statistical parameters like conventional r2 and a cross validated (q2) values of 0.985, 0.743 for CoMFA and 0.970, 0.608 for CoMSIA, respectively. Predictive ability of the models to determine 5HT7 antagonistic activity is validated using a test set of 16 molecules that were not included in the training set. Predictive r2 obtained for the test set was 0.560 and 0.619 for CoMFA and CoMSIA, respectively. Steric, electrostatic fields majorly contributed toward activity which forms the basis for design of new molecules. Absorption, distribution, metabolism and elimination (ADME) calculation using QikProp 2.5 (Schrodinger 2010, Portland, OR) reveals that the molecules confer to Lipinski's rule of five in majority of the cases.

  3. Modeling the evolution and distribution of the frequency's second derivative and the braking index of pulsar spin

    NASA Astrophysics Data System (ADS)

    Xie, Yi; Zhang, Shuang-Nan; Liao, Jin-Yuan

    2015-07-01

    We model the evolution of the spin frequency's second derivative v̈ and the braking index n of radio pulsars with simulations within the phenomenological model of their surface magnetic field evolution, which contains a long-term power-law decay modulated by short-term oscillations. For the pulsar PSR B0329+54, a model with three oscillation components can reproduce its v̈ variation. We show that the “averaged” n is different from the instantaneous n, and its oscillation magnitude decreases abruptly as the time span increases, due to the “averaging” effect. The simulated timing residuals agree with the main features of the reported data. Our model predicts that the averaged v̈ of PSR B0329+54 will start to decrease rapidly with newer data beyond those used in Hobbs et al. We further perform Monte Carlo simulations for the distribution of the reported data in |v̈| and |n| versus characteristic age τC diagrams. It is found that the magnetic field oscillation model with decay index α = 0 can reproduce the distributions quite well. Compared with magnetic field decay due to the ambipolar diffusion (α = 0.5) and the Hall cascade (α = 1.0), the model with no long term decay (α = 0) is clearly preferred for old pulsars by the p-values of the two-dimensional Kolmogorov-Smirnov test. Supported by the National Natural Science Foundation of China.

  4. Empirical investigation of a field theory formula and Black's formula for the price of an interest-rate caplet

    NASA Astrophysics Data System (ADS)

    Baaquie, Belal E.; Liang, Cui

    2007-01-01

    The industry standard for pricing an interest-rate caplet is Black's formula. Another distinct price of the same caplet can be derived using a quantum field theory model of the forward interest rates. An empirical study is carried out to compare the two caplet pricing formulae. Historical volatility and correlation of forward interest rates are used to generate the field theory caplet price; another approach is to fit a parametric formula for the effective volatility using market caplet price. The study shows that the field theory model generates the price of a caplet and cap fairly accurately. Black's formula for a caplet is compared with field theory pricing formula. It is seen that the field theory formula for caplet price has many advantages over Black's formula.

  5. Electric-field tunable spin diode FMR in patterned PMN-PT/NiFe structures

    NASA Astrophysics Data System (ADS)

    Zietek, Slawomir; Ogrodnik, Piotr; Skowroński, Witold; Stobiecki, Feliks; van Dijken, Sebastiaan; Barnaś, Józef; Stobiecki, Tomasz

    2016-08-01

    Dynamic properties of NiFe thin films on PMN-PT piezoelectric substrate are investigated using the spin-diode method. Ferromagnetic resonance (FMR) spectra of microstrips with varying width are measured as a function of magnetic field and frequency. The FMR frequency is shown to depend on the electric field applied across the substrate, which induces strain in the NiFe layer. Electric field tunability of up to 100 MHz per 1 kV/cm is achieved. An analytical model based on total energy minimization and the Landau-Lifshitz-Gilbert equation, taking into account the magnetostriction effect, is used to explain the measured dynamics. Based on this model, conditions for optimal electric-field tunable spin diode FMR in patterned NiFe/PMN-PT structures are derived.

  6. Gravity Field of Venus and Comparison with Earth

    NASA Technical Reports Server (NTRS)

    Bowin, C.

    1985-01-01

    The acceleration (gravity) anomaly estimates by spacecraft tracking, determined from Doppler residuals, are components of the gravity field directed along the spacecraft Earth line of sight (LOS). These data constitute a set of vector components of a planet's gravity field, the specific component depending upon where the Earth happened to be at the time of each measurement, and they are at varying altitudes above the planet surface. From this data set the gravity field vector components were derived using the method of harmonic splines which imposes a smoothness criterion to select a gravity model compatible with the LOS data. Given the piecewise model it is now possible to upward and downward continue the field quantities desired with a few parameters unlike some other methods which must return to the full dataset for each desired calculation.

  7. Analyzing and modeling gravity and magnetic anomalies using the SPHERE program and Magsat data

    NASA Technical Reports Server (NTRS)

    Braile, L. W.; Hinze, W. J.; Vonfrese, R. R. B. (Principal Investigator)

    1981-01-01

    Computer codes were completed, tested, and documented for analyzing magnetic anomaly vector components by equivalent point dipole inversion. The codes are intended for use in inverting the magnetic anomaly due to a spherical prism in a horizontal geomagnetic field and for recomputing the anomaly in a vertical geomagnetic field. Modeling of potential fields at satellite elevations that are derived from three dimensional sources by program SPHERE was made significantly more efficient by improving the input routines. A preliminary model of the Andean subduction zone was used to compute the anomaly at satellite elevations using both actual geomagnetic parameters and vertical polarization. Program SPHERE is also being used to calculate satellite level magnetic and gravity anomalies from the Amazon River Aulacogen.

  8. Part 1: Classical laser. Part 2: The effect of velocity changing collisions on the output of a gas laser. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Borenstein, M.

    1972-01-01

    A classical model for laser action is discussed, in which an active medium consisting of anharmonic oscillators interacts with an electromagnetic field in a resonant cavity. Comparison with the case of a medium consisting of harmonic oscillators shows the significance of nonlinearities for producing self-sustained oscillations in the radiation field. A theoretical model is presented for the pressure dependence of the intensity of a gas laser, in which only velocity-changing collisions with foreign gas atoms are included. A collision model for hard sphere, repulsive interactions was derived. Collision theory was applied to a third-order expansion of the polarization in powers of the cavity electric field (weak signal theory).

  9. Finite-Strain Fractional-Order Viscoelastic (FOV) Material Models and Numerical Methods for Solving Them

    NASA Technical Reports Server (NTRS)

    Freed, Alan D.; Diethelm, Kai; Gray, Hugh R. (Technical Monitor)

    2002-01-01

    Fraction-order viscoelastic (FOV) material models have been proposed and studied in 1D since the 1930's, and were extended into three dimensions in the 1970's under the assumption of infinitesimal straining. It was not until 1997 that Drozdov introduced the first finite-strain FOV constitutive equations. In our presentation, we shall continue in this tradition by extending the standard, FOV, fluid and solid, material models introduced in 1971 by Caputo and Mainardi into 3D constitutive formula applicable for finite-strain analyses. To achieve this, we generalize both the convected and co-rotational derivatives of tensor fields to fractional order. This is accomplished by defining them first as body tensor fields and then mapping them into space as objective Cartesian tensor fields. Constitutive equations are constructed using both variants for fractional rate, and their responses are contrasted in simple shear. After five years of research and development, we now possess a basic suite of numerical tools necessary to study finite-strain FOV constitutive equations and their iterative refinement into a mature collection of material models. Numerical methods still need to be developed for efficiently solving fraction al-order integrals, derivatives, and differential equations in a finite element setting where such constitutive formulae would need to be solved at each Gauss point in each element of a finite model, which can number into the millions in today's analysis.

  10. Estimation of Gravity Parameters Related to Simple Geometrical Structures by Developing an Approach Based on Deconvolution and Linear Optimization Techniques

    NASA Astrophysics Data System (ADS)

    Asfahani, J.; Tlas, M.

    2015-10-01

    An easy and practical method for interpreting residual gravity anomalies due to simple geometrically shaped models such as cylinders and spheres has been proposed in this paper. This proposed method is based on both the deconvolution technique and the simplex algorithm for linear optimization to most effectively estimate the model parameters, e.g., the depth from the surface to the center of a buried structure (sphere or horizontal cylinder) or the depth from the surface to the top of a buried object (vertical cylinder), and the amplitude coefficient from the residual gravity anomaly profile. The method was tested on synthetic data sets corrupted by different white Gaussian random noise levels to demonstrate the capability and reliability of the method. The results acquired show that the estimated parameter values derived by this proposed method are close to the assumed true parameter values. The validity of this method is also demonstrated using real field residual gravity anomalies from Cuba and Sweden. Comparable and acceptable agreement is shown between the results derived by this method and those derived from real field data.

  11. Kinematic validation of a quasi-geostrophic model for the fast dynamics in the Earth's outer core

    NASA Astrophysics Data System (ADS)

    Maffei, S.; Jackson, A.

    2017-09-01

    We derive a quasi-geostrophic (QG) system of equations suitable for the description of the Earth's core dynamics on interannual to decadal timescales. Over these timescales, rotation is assumed to be the dominant force and fluid motions are strongly invariant along the direction parallel to the rotation axis. The diffusion-free, QG system derived here is similar to the one derived in Canet et al. but the projection of the governing equations on the equatorial disc is handled via vertical integration and mass conservation is applied to the velocity field. Here we carefully analyse the properties of the resulting equations and we validate them neglecting the action of the Lorentz force in the momentum equation. We derive a novel analytical solution describing the evolution of the magnetic field under these assumptions in the presence of a purely azimuthal flow and an alternative formulation that allows us to numerically solve the evolution equations with a finite element method. The excellent agreement we found with the analytical solution proves that numerical integration of the QG system is possible and that it preserves important physical properties of the magnetic field. Implementation of magnetic diffusion is also briefly considered.

  12. A boundary integral approach to the scattering of nonplanar acoustic waves by rigid bodies

    NASA Technical Reports Server (NTRS)

    Gallman, Judith M.; Myers, M. K.; Farassat, F.

    1990-01-01

    The acoustic scattering of an incident wave by a rigid body can be described by a singular Fredholm integral equation of the second kind. This equation is derived by solving the wave equation using generalized function theory, Green's function for the wave equation in unbounded space, and the acoustic boundary condition for a perfectly rigid body. This paper will discuss the derivation of the wave equation, its reformulation as a boundary integral equation, and the solution of the integral equation by the Galerkin method. The accuracy of the Galerkin method can be assessed by applying the technique outlined in the paper to reproduce the known pressure fields that are due to various point sources. From the analysis of these simpler cases, the accuracy of the Galerkin solution can be inferred for the scattered pressure field caused by the incidence of a dipole field on a rigid sphere. The solution by the Galerkin technique can then be applied to such problems as a dipole model of a propeller whose pressure field is incident on a rigid cylinder. This is the groundwork for modeling the scattering of rotating blade noise by airplane fuselages.

  13. Damage identification in beams using speckle shearography and an optimal spatial sampling

    NASA Astrophysics Data System (ADS)

    Mininni, M.; Gabriele, S.; Lopes, H.; Araújo dos Santos, J. V.

    2016-10-01

    Over the years, the derivatives of modal displacement and rotation fields have been used to localize damage in beams. Usually, the derivatives are computed by applying finite differences. The finite differences propagate and amplify the errors that exist in real measurements, and thus, it is necessary to minimize this problem in order to get reliable damage localizations. A way to decrease the propagation and amplification of the errors is to select an optimal spatial sampling. This paper presents a technique where an optimal spatial sampling of modal rotation fields is computed and used to obtain the modal curvatures. Experimental measurements of modal rotation fields of a beam with single and multiple damages are obtained with shearography, which is an optical technique allowing the measurement of full-fields. These measurements are used to test the validity of the optimal sampling technique for the improvement of damage localization in real structures. An investigation on the ability of a model updating technique to quantify the damage is also reported. The model updating technique is defined by the variations of measured natural frequencies and measured modal rotations and aims at calibrating the values of the second moment of area in the damaged areas, which were previously localized.

  14. Analysis of hyperspectral field radiometric data for monitoring nitrogen concentration in rice crops

    NASA Astrophysics Data System (ADS)

    Stroppiana, D.; Boschetti, M.; Confalonieri, R.; Bocchi, S.; Brivio, P. A.

    2005-10-01

    Monitoring crop conditions and assessing nutrition requirements is fundamental for implementing sustainable agriculture. Rational nitrogen fertilization is of particular importance in rice crops in order to guarantee high production levels while minimising the impact on the environment. In fact, the typical flooded condition of rice fields can be a significant source of greenhouse gasses. Information on plant nitrogen concentration can be used, coupled with information about the phenological stage, to plan strategies for a rational and spatially differentiated fertilization schedule. A field experiment was carried out in a rice field Northern Italy, in order to evaluate the potential of field radiometric measurements for the prediction of rice nitrogen concentration. The results indicate that rice reflectance is influenced by nitrogen supply at certain wavelengths although N concentration cannot be accurately predicted based on the reflectance measured at a given wavelength. Regression analysis highlighted that the visible region of the spectrum is most sensitive to plant nitrogen concentration when reflectance measures are combined into a spectral index. An automated procedure allowed the analysis of all the possible combinations into a Normalized Difference Index (NDI) of the narrow spectral bands derived by spectral resampling of field measurements. The derived index appeared to be least influenced by plant biomass and Leaf Area Index (LAI) providing a useful approach to detect rice nutritional status. The validation of the regressive model showed that the model is able to predict rice N concentration (R2=0.55 [p<0.01] RRMSE=29.4; modelling efficiency close to the optimum value).

  15. Scattering models for some vegetation samples

    NASA Technical Reports Server (NTRS)

    Karam, M. A.; Fung, A. K.; Antar, Y. M. M.

    1987-01-01

    The Helmholtz integral equation is presently derived for a scatterer of arbitrary shape, and reduced in order to obtain the far zone-scattered field in terms of the field within the scatterer. Attention is given to the effect of different approaches to field estimation within the scatterer on the backscattering cross section, as illustrated numerically by the cases of a circular disk, a needle, and a finite-length cylinder. A comparison is made of the results obtained by modeling a leaf by means of a circular disk within the Shifrin approximation, and a tree branch by means of a finite-length cylinder, with measurements from a single leaf and a single branch.

  16. Nondestructive testing of delaminated interfaces between two materials using electromagnetic interrogation

    NASA Astrophysics Data System (ADS)

    Cakoni, Fioralba; de Teresa, Irene; Monk, Peter

    2018-06-01

    We consider the problem of detecting whether two materials that should be in contact have separated or delaminated using electromagnetic radiation. The interface damage is modeled as a thin opening between two materials of different electromagnetic properties. To derive a reconstruction algorithm that focuses on testing for the delamination at the interface between the two materials, we use the approximate asymptotic model for the forward problem derived in de Teresa (2017 PhD Thesis University of Delaware). In this model, the differential equations in the small opening are replaced by approximate transmission conditions for the electromagnetic fields across the interface. We also assume that the undamaged or background state is known and it is desired to find where the delamination has opened. We adapt the linear sampling method to this configuration in order to locate the damaged part of the interface from a knowledge of the scattered field and the undamaged configuration, but without needing to know the electromagnetic properties of the opening. Numerical examples are presented to validate our algorithm.

  17. Prediction of sweetness and amino acid content in soybean crops from hyperspectral imagery

    NASA Astrophysics Data System (ADS)

    Monteiro, Sildomar Takahashi; Minekawa, Yohei; Kosugi, Yukio; Akazawa, Tsuneya; Oda, Kunio

    Hyperspectral image data provides a powerful tool for non-destructive crop analysis. This paper investigates a hyperspectral image data-processing method to predict the sweetness and amino acid content of soybean crops. Regression models based on artificial neural networks were developed in order to calculate the level of sucrose, glucose, fructose, and nitrogen concentrations, which can be related to the sweetness and amino acid content of vegetables. A performance analysis was conducted comparing regression models obtained using different preprocessing methods, namely, raw reflectance, second derivative, and principal components analysis. This method is demonstrated using high-resolution hyperspectral data of wavelengths ranging from the visible to the near infrared acquired from an experimental field of green vegetable soybeans. The best predictions were achieved using a nonlinear regression model of the second derivative transformed dataset. Glucose could be predicted with greater accuracy, followed by sucrose, fructose and nitrogen. The proposed method provides the possibility to provide relatively accurate maps predicting the chemical content of soybean crop fields.

  18. Shape dependence of two-cylinder Rényi entropies for free bosons on a lattice

    NASA Astrophysics Data System (ADS)

    Chojnacki, Leilee; Cook, Caleb Q.; Dalidovich, Denis; Hayward Sierens, Lauren E.; Lantagne-Hurtubise, Étienne; Melko, Roger G.; Vlaar, Tiffany J.

    2016-10-01

    Universal scaling terms occurring in Rényi entanglement entropies have the potential to bring new understanding to quantum critical points in free and interacting systems. Quantitative comparisons between analytical continuum theories and numerical calculations on lattice models play a crucial role in advancing such studies. In this paper, we exactly calculate the universal two-cylinder shape dependence of entanglement entropies for free bosons on finite-size square lattices, and compare to approximate functions derived in the continuum using several different Ansätze. Although none of these Ansätze are exact in the thermodynamic limit, we find that numerical fits are in good agreement with continuum functions derived using the anti-de Sitter/conformal field theory correspondence, an extensive mutual information model, and a quantum Lifshitz model. We use fits of our lattice data to these functions to calculate universal scalars defined in the thin-cylinder limit, and compare to values previously obtained for the free boson field theory in the continuum.

  19. Ewald Summation Approach to Potential Models of Aqueous Electrolytes Involving Gaussian Charges and Induced Dipoles: Formal and Simulation Results

    DOE PAGES

    Chialvo, Ariel A.; Vlcek, Lukas

    2014-11-01

    We present a detailed derivation of the complete set of expressions required for the implementation of an Ewald summation approach to handle the long-range electrostatic interactions of polar and ionic model systems involving Gaussian charges and induced dipole moments with a particular application to the isobaricisothermal molecular dynamics simulation of our Gaussian Charge Polarizable (GCP) water model and its extension to aqueous electrolytes solutions. The set comprises the individual components of the potential energy, electrostatic potential, electrostatic field and gradient, the electrostatic force and the corresponding virial. Moreover, we show how the derived expressions converge to known point-based electrostatic counterpartsmore » when the parameters, defining the Gaussian charge and induced-dipole distributions, are extrapolated to their limiting point values. Finally, we illustrate the Ewald implementation against the current reaction field approach by isothermal-isobaric molecular dynamics of ambient GCP water for which we compared the outcomes of the thermodynamic, microstructural, and polarization behavior.« less

  20. 2D modeling based comprehensive analysis of short channel effects in DMG strained VSTB FET

    NASA Astrophysics Data System (ADS)

    Saha, Priyanka; Banerjee, Pritha; Sarkar, Subir Kumar

    2018-06-01

    The paper aims to develop two dimensional analytical model of the proposed dual material (DM) Vertical Super Thin Body (VSTB) strained Field Effect Transistor (FET) with focus on its short channel behaviour in nanometer regime. Electrostatic potential across gate/channel and dielectric wall/channel interface is derived by solving 2D Poisson's equation with parabolic approximation method by applying appropriate boundary conditions. Threshold voltage is then calculated by using the criteria of minimum surface potential considering both gate and dielectric wall side potential. Performance analysis of the present structure is demonstrated in terms of potential, electric field, threshold voltage characteristics and subthreshold behaviour by varying various device parameters and applied biases. Effect of application of strain in channel is further explored to establish the superiority of the proposed device in comparison to conventional VSTB FET counterpart. All analytical results are compared with Silvaco ATLAS device simulated data to substantiate the accuracy of our derived model.

  1. The Bean model in suprconductivity: Variational formulation and numerical solution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prigozhin, L.

    The Bean critical-state model describes the penetration of magnetic field into type-II superconductors. Mathematically, this is a free boundary problem and its solution is of interest in applied superconductivity. We derive a variational formulation for the Bean model and use it to solve two-dimensional and axially symmetric critical-state problems numerically. 25 refs., 9 figs., 1 tab.

  2. Mathematical modeling of synthetic unit hydrograph case study: Citarum watershed

    NASA Astrophysics Data System (ADS)

    Islahuddin, Muhammad; Sukrainingtyas, Adiska L. A.; Kusuma, M. Syahril B.; Soewono, Edy

    2015-09-01

    Deriving unit hydrograph is very important in analyzing watershed's hydrologic response of a rainfall event. In most cases, hourly measures of stream flow data needed in deriving unit hydrograph are not always available. Hence, one needs to develop methods for deriving unit hydrograph for ungagged watershed. Methods that have evolved are based on theoretical or empirical formulas relating hydrograph peak discharge and timing to watershed characteristics. These are usually referred to Synthetic Unit Hydrograph. In this paper, a gamma probability density function and its variant are used as mathematical approximations of a unit hydrograph for Citarum Watershed. The model is adjusted with real field condition by translation and scaling. Optimal parameters are determined by using Particle Swarm Optimization method with weighted objective function. With these models, a synthetic unit hydrograph can be developed and hydrologic parameters can be well predicted.

  3. Lifecourse Models for Ensuring Children's Health Protection

    EPA Science Inventory

    New knowledge about environmental risks to human reproduction and development directly relevant to children’s health protection derives from the fields of developmental and reproductive toxicology, exposure science, epidemiology, risk assessment, and public health. Together, thi...

  4. European extra-tropical storm damage risk from a multi-model ensemble of dynamically-downscaled global climate models

    NASA Astrophysics Data System (ADS)

    Haylock, M. R.

    2011-10-01

    Uncertainty in the return levels of insured loss from European wind storms was quantified using storms derived from twenty-two 25 km regional climate model runs driven by either the ERA40 reanalyses or one of four coupled atmosphere-ocean global climate models. Storms were identified using a model-dependent storm severity index based on daily maximum 10 m wind speed. The wind speed from each model was calibrated to a set of 7 km historical storm wind fields using the 70 storms with the highest severity index in the period 1961-2000, employing a two stage calibration methodology. First, the 25 km daily maximum wind speed was downscaled to the 7 km historical model grid using the 7 km surface roughness length and orography, also adopting an empirical gust parameterisation. Secondly, downscaled wind gusts were statistically scaled to the historical storms to match the geographically-dependent cumulative distribution function of wind gust speed. The calibrated wind fields were run through an operational catastrophe reinsurance risk model to determine the return level of loss to a European population density-derived property portfolio. The risk model produced a 50-yr return level of loss of between 0.025% and 0.056% of the total insured value of the portfolio.

  5. The effect of transverse wave vector and magnetic fields on resonant tunneling times in double-barrier structures

    NASA Astrophysics Data System (ADS)

    Wang, Hongmei; Zhang, Yafei; Xu, Huaizhe

    2007-01-01

    The effect of transverse wave vector and magnetic fields on resonant tunneling times in double-barrier structures, which is significant but has been frequently omitted in previous theoretical methods, has been reported in this paper. The analytical expressions of the longitudinal energies of quasibound levels (LEQBL) and the lifetimes of quasibound levels (LQBL) in symmetrical double-barrier (SDB) structures have been derived as a function of transverse wave vector and longitudinal magnetic fields perpendicular to interfaces. Based on our derived analytical expressions, the LEQBL and LQBL dependence upon transverse wave vector and longitudinal magnetic fields has been explored numerically for a SDB structure. Model calculations show that the LEQBL decrease monotonically and the LQBL shorten with increasing transverse wave vector, and each original LEQBL splits to a series of sub-LEQBL which shift nearly linearly toward the well bottom and the lifetimes of quasibound level series (LQBLS) shorten with increasing Landau-level indices and magnetic fields.

  6. The Z3 model of Saturns magnetic field and the Pioneer 11 vector helium magnetometer observations

    NASA Technical Reports Server (NTRS)

    Connerney, J. E. P.; Acuna, M. H.; Ness, N. F.

    1984-01-01

    Magnetic field observations obtained by the Pioneer 11 vector helium magnetometer are compared with the Z(sub 3) model magnetic field. These Pioneer 11 observations, obtained at close-in radial distances, constitute an important and independent test of the Z(sub 3) zonal harmonic model, which was derived from Voyager 1 and Voyager 2 fluxgate magnetometer observations. Differences between the Pioneer 11 magnetometer and the Z(sub 3) model field are found to be small (approximately 1%) and quantitatively consistent with the expected instrumental accuracy. A detailed examination of these differences in spacecraft payload coordinates shows that they are uniquely associated with the instrument frame of reference and operation. A much improved fit to the Pioneer 11 observations is obtained by rotation of the instrument coordinate system about the spacecraft spin axis by 1.4 degree. With this adjustment, possibly associated with an instrumental phase lag or roll attitude error, the Pioneer 11 vector helium magnetometer observations are fully consistent with the Voyager Z(sub 3) model.

  7. 2-3D nonlocal transport model in magnetized laser plasmas.

    NASA Astrophysics Data System (ADS)

    Nicolaï, Philippe; Feugeas, Jean-Luc; Schurtz, Guy

    2004-11-01

    We present a model of nonlocal transport for multidimensional radiation magneto-hydrodynamics codes. This model, based on simplified Fokker-Planck equations, aims at extending the formulae of G Schurtz,Ph.Nicolaï and M. Busquet [Phys. Plasmas,7,4238 (2000)] to magnetized plasmas.The improvements concern various points as the electric field effects on nonlocal transport or conversely the kinetic effects on E field. However the main purpose of this work is to generalize the previous model by including magnetic field effects. A complete system of nonlocal equations is derived from kinetic equations with self-consistent E and B fields. These equations are analyzed and simplified in order to be implemented into large laser fusion codes and coupled to other relevent physics. Finally, our model allows to obtain the deformation of the electron distribution function due to nonlocal effects. This deformation leads to a non-maxwellian function which could be used to compute the influence on other physical processes.

  8. Atomic density functional and diagram of structures in the phase field crystal model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ankudinov, V. E., E-mail: vladimir@ankudinov.org; Galenko, P. K.; Kropotin, N. V.

    2016-02-15

    The phase field crystal model provides a continual description of the atomic density over the diffusion time of reactions. We consider a homogeneous structure (liquid) and a perfect periodic crystal, which are constructed from the one-mode approximation of the phase field crystal model. A diagram of 2D structures is constructed from the analytic solutions of the model using atomic density functionals. The diagram predicts equilibrium atomic configurations for transitions from the metastable state and includes the domains of existence of homogeneous, triangular, and striped structures corresponding to a liquid, a body-centered cubic crystal, and a longitudinal cross section of cylindricalmore » tubes. The method developed here is employed for constructing the diagram for the homogeneous liquid phase and the body-centered iron lattice. The expression for the free energy is derived analytically from density functional theory. The specific features of approximating the phase field crystal model are compared with the approximations and conclusions of the weak crystallization and 2D melting theories.« less

  9. Fourier decomposition of segmented magnets with radial magnetization in surface-mounted PM machines

    NASA Astrophysics Data System (ADS)

    Tiang, Tow Leong; Ishak, Dahaman; Lim, Chee Peng

    2017-11-01

    This paper presents a generic field model of radial magnetization (RM) pattern produced by multiple segmented magnets per rotor pole in surface-mounted permanent magnet (PM) machines. The magnetization vectors from either odd- or even-number of magnet blocks per pole are described. Fourier decomposition is first employed to derive the field model, and later integrated with the exact 2D analytical subdomain method to predict the magnetic field distributions and other motor global quantities. For the assessment purpose, a 12-slot/8-pole surface-mounted PM motor with two segmented magnets per pole is investigated by using the proposed field model. The electromagnetic performances of the PM machines are intensively predicted by the proposed magnet field model which include the magnetic field distributions, airgap flux density, phase back-EMF, cogging torque, and output torque during either open-circuit or on-load operating conditions. The analytical results are evaluated and compared with those obtained from both 2D and 3D finite element analyses (FEA) where an excellent agreement has been achieved.

  10. Probing the Earth's core with magnetic field observations from Swarm

    NASA Astrophysics Data System (ADS)

    Finlay, Christopher; Olsen, Nils; Kotsiaros, Stavros; Gillet, Nicolas; Tøffner-Clausen, Lars

    2016-07-01

    By far the largest part of the Earth's magnetic field is generated by motions taking place within our planet's liquid metal outer core. Variations of this core-generated field thus provide a unique means of probing the dynamics taking place in the deepest reaches of the Earth. In this contribution we present a new high resolution model of the core-generated magnetic field, and its recent time changes, derived from a dataset that includes more two years of observations from the Swarm mission. Resulting inferences regarding the underlying core flow, its dynamics, and the nature of the geodynamo process will be discussed. The CHAOS-6 geomagnetic field model, covering the interval 1999-2016, is derived from magnetic data collected by the three Swarm missions, as well as the earlier CHAMP and Oersted satellites, and monthly means data collected from 160 ground observatories. Advantage is taken of the constellation aspect of the Swarm mission by ingesting both scalar and vector field differences along-track and across track between the lower pair of Swarm satellites. The internal part of the model consists of a spherical harmonic (SH) expansion, time-dependent for degrees 20 and below. The model coefficients are estimated using a regularized, iteratively reweighted, least squares scheme involving Huber weights. At Earth's surface, CHAOS-6 shows evidence for positive acceleration of the field intensity in 2015 over a broad area around longitude 90deg E that is also seen at ground observatories such as Novosibirsk. At the core surface, we are able to map the secular variation (linear trend in the magnetic field) up to SH degree 16. The radial field acceleration at the core surface in 2015 is found be largest at low latitudes under the India-South East Asia region and under the region of northern South America, as well as at high northern latitudes under Alaska and Siberia. Surprisingly, there is also evidence for some acceleration in the central Pacific region, for example near Hawaii, where radial field SA is observed either side of a jerk event in 2014. On the other hand, little activity has occurred over the past 17 years in the Southern polar region. Maps of the underlying core flow can be derived assuming that field changes result from advective processes, and taking into account the organizing influence of the Coriolis force. The dominant large-scale flow feature is found to be a planetary-scale, anti-cyclonic, gyre centered on the Atlantic hemisphere. In addition to this gyre we find evidence for time-dependent eddies at mid-latitudes and oscillating, non-axisymmetric, jets in the azimuthal direction at low latitudes.

  11. CM5, a pre-Swarm comprehensive geomagnetic field model derived from over 12 yr of CHAMP, Ørsted, SAC-C and observatory data

    NASA Astrophysics Data System (ADS)

    Sabaka, Terence J.; Olsen, Nils; Tyler, Robert H.; Kuvshinov, Alexey

    2015-03-01

    A comprehensive magnetic field model named CM5 has been derived from CHAMP, Ørsted and SAC-C satellite and observatory hourly-means data from 2000 August to 2013 January using the Swarm Level-2 Comprehensive Inversion (CI) algorithm. Swarm is a recently launched constellation of three satellites to map the Earth's magnetic field. The CI technique includes several interesting features such as the bias mitigation scheme known as Selective Infinite Variance Weighting (SIVW), a new treatment for attitude error in satellite vector measurements, and the inclusion of 3-D conductivity for ionospheric induction. SIVW has allowed for a much improved lithospheric field recovery over CM4 by exploiting CHAMP along-track difference data yielding resolution levels up to spherical harmonic degree 107, and has allowed for the successful extraction of the oceanic M2 tidal magnetic field from quiet, nightside data. The 3-D induction now captures anomalous Solar-quiet features in coastal observatory daily records. CM5 provides a satisfactory, continuous description of the major magnetic fields in the near-Earth region over this time span, and its lithospheric, ionospheric and oceanic M2 tidal constituents may be used as validation tools for future Swarm Level-2 products coming from the CI algorithm and other dedicated product algorithms.

  12. CM5, a Pre-Swarm Comprehensive Geomagnetic Field Model Derived from Over 12 Yr of CHAMP, Orsted, SAC-C and Observatory Data

    NASA Technical Reports Server (NTRS)

    Sabaka, Terence J.; Olsen, Nils; Tyler, Robert H.; Kuvshinov, Alexey

    2014-01-01

    A comprehensive magnetic field model named CM5 has been derived from CHAMP, Ørsted and SAC-C satellite and observatory hourly-means data from 2000 August to 2013 January using the Swarm Level-2 Comprehensive Inversion (CI) algorithm. Swarm is a recently launched constellation of three satellites to map the Earth's magnetic field. The CI technique includes several interesting features such as the bias mitigation scheme known as Selective Infinite Variance Weighting (SIVW), a new treatment for attitude error in satellite vector measurements, and the inclusion of 3-D conductivity for ionospheric induction. SIVW has allowed for a much improved lithospheric field recovery over CM4 by exploiting CHAMP along-track difference data yielding resolution levels up to spherical harmonic degree 107, and has allowed for the successful extraction of the oceanic M2 tidal magnetic field from quiet, nightside data. The 3-D induction now captures anomalous Solar-quiet features in coastal observatory daily records. CM5 provides a satisfactory, continuous description of the major magnetic fields in the near-Earth region over this time span, and its lithospheric, ionospheric and oceanic M2 tidal constituents may be used as validation tools for future Swarm Level-2 products coming from the CI algorithm and other dedicated product algorithms.

  13. Rigorous covariance propagation of geoid errors to geodetic MDT estimates

    NASA Astrophysics Data System (ADS)

    Pail, R.; Albertella, A.; Fecher, T.; Savcenko, R.

    2012-04-01

    The mean dynamic topography (MDT) is defined as the difference between the mean sea surface (MSS) derived from satellite altimetry, averaged over several years, and the static geoid. Assuming geostrophic conditions, from the MDT the ocean surface velocities as important component of global ocean circulation can be derived from it. Due to the availability of GOCE gravity field models, for the very first time MDT can now be derived solely from satellite observations (altimetry and gravity) down to spatial length-scales of 100 km and even below. Global gravity field models, parameterized in terms of spherical harmonic coefficients, are complemented by the full variance-covariance matrix (VCM). Therefore, for the geoid component a realistic statistical error estimate is available, while the error description of the altimetric component is still an open issue and is, if at all, attacked empirically. In this study we make the attempt to perform, based on the full gravity VCM, rigorous error propagation to derived geostrophic surface velocities, thus also considering all correlations. For the definition of the static geoid we use the third release of the time-wise GOCE model, as well as the satellite-only combination model GOCO03S. In detail, we will investigate the velocity errors resulting from the geoid component in dependence of the harmonic degree, and the impact of using/no using covariances on the MDT errors and its correlations. When deriving an MDT, it is spectrally filtered to a certain maximum degree, which is usually driven by the signal content of the geoid model, by applying isotropic or non-isotropic filters. Since this filtering is acting also on the geoid component, the consistent integration of this filter process into the covariance propagation shall be performed, and its impact shall be quantified. The study will be performed for MDT estimates in specific test areas of particular oceanographic interest.

  14. Relativistic stars in vector-tensor theories

    NASA Astrophysics Data System (ADS)

    Kase, Ryotaro; Minamitsuji, Masato; Tsujikawa, Shinji

    2018-04-01

    We study relativistic star solutions in second-order generalized Proca theories characterized by a U (1 )-breaking vector field with derivative couplings. In the models with cubic and quartic derivative coupling, the mass and radius of stars become larger than those in general relativity for negative derivative coupling constants. This phenomenon is mostly attributed to the increase of star radius induced by a slower decrease of the matter pressure compared to general relativity. There is a tendency that the relativistic star with a smaller mass is not gravitationally bound for a low central density and hence is dynamically unstable, but that with a larger mass is gravitationally bound. On the other hand, we show that the intrinsic vector-mode couplings give rise to general relativistic solutions with a trivial field profile, so the mass and radius are not modified from those in general relativity.

  15. Pesticide Environmental Fate Research for the 21st Century: Building Bridges Between Laboratory and Field Studies at Varying Scales

    USDA-ARS?s Scientific Manuscript database

    Accurate determination of predicted environmental concentrations (PECs) is a continuing and often elusive goal of pesticide risk assessment. PECs are typically derived using simulation models that depend on laboratory generated data for key input parameters (t1/2, Koc, etc.). Model flexibility in ...

  16. Pesticide Environmental Fate Research for the 21st Century: Building Bridges Between Laboratory and Field Studies at Varying Scales

    USDA-ARS?s Scientific Manuscript database

    Accurate determination of predicted environmental concentrations (PECs) is a continuing and often elusive goal of pesticide risk assessment. PECs are typically derived using simulation models that depend on laboratory generated data for key input parameters (t1/2, Koc, etc.). Model flexibility in ev...

  17. Investigation of Effects of Varying Model Inputs on Mercury Deposition Estimates in the Southwest US

    EPA Science Inventory

    The Community Multiscale Air Quality (CMAQ) model version 4.7.1 was used to simulate mercury wet and dry deposition for a domain covering the continental United States (US). The simulations used MM5-derived meteorological input fields and the US Environmental Protection Agency (E...

  18. To Teach (Literature?) Report Series 5.4.

    ERIC Educational Resources Information Center

    Petrosky, Anthony

    Teaching models, derived from theory and research, are static, and lack responsibility. Models substitute an abstracted notion for teachers. Literature can be viewed as a field of play, where meaning opens, rather than as a body of knowledge. The teacher's challenge consists of posing questions that allow students to formulate their takes on a…

  19. Cosmic structures and gravitational waves in ghost-free scalar-tensor theories of gravity

    NASA Astrophysics Data System (ADS)

    Bartolo, Nicola; Karmakar, Purnendu; Matarrese, Sabino; Scomparin, Mattia

    2018-05-01

    We study cosmic structures in the quadratic Degenerate Higher Order Scalar Tensor (qDHOST) model, which has been proposed as the most general scalar-tensor theory (up to quadratic dependence on the covariant derivatives of the scalar field), which is not plagued by the presence of ghost instabilities. We then study a static, spherically symmetric object embedded in de Sitter space-time for the qDHOST model. This model exhibits breaking of the Vainshtein mechanism inside the cosmic structure and Schwarzschild-de Sitter space-time outside, where General Relativity (GR) can be recovered within the Vainshtein radius. We constrained the parameters of the qDHOST model by requiring the validity of the Vainshtein screening mechanism inside the cosmic structures and the consistency with the recently established bounds on gravitational wave speed from GW170817/GRB170817A event. We find that these two constraints rule out the same set of parameters, corresponding to the Lagrangians that are quadratic in second-order derivatives of the scalar field, for the shift symmetric qDHOST.

  20. The processing of the Viking Orbiter range data and its contribution to Mars gravity solutions

    NASA Technical Reports Server (NTRS)

    Lemoine, Frank G.; Rosborough, George W.; Smith, David E.

    1992-01-01

    The processing of Doppler data has been the primary method for deriving models of the Mars gravity field. Since the Mariner 9 and Viking spacecraft were placed in orbit about Mars, many models from degree and order 6 to degree and order 50 have been developed. However, during the Viking mission, some 26,000 range measurements to the two Viking Orbiters were also obtained. These data have not previously been used in the derivation of Mars gravity models. A portion of these range data have been processed simultaneously with the Doppler data. Normal equations were generated for both sets of data and were used to create two solutions complete to degree and order 30: a nominal solution including both the range and the Doppler data (MGM-R100), and another solution including only the Doppler data (MGM-R101). Tests with the covariances of these solutions, as well as with orbit overlap tests indicate that the interplanetary range data can be used to improve the modeling of the Mars gravity field.

  1. An Improved Analytical Model of the Local Interstellar Magnetic Field: The Extension to Compressibility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kleimann, Jens; Fichtner, Horst; Röken, Christian, E-mail: jk@tp4.rub.de, E-mail: hf@tp4.rub.de, E-mail: christian.roeken@mathematik.uni-regensburg.de

    A previously published analytical magnetohydrodynamic model for the local interstellar magnetic field in the vicinity of the heliopause (Röken et al. 2015) is extended from incompressible to compressible, yet predominantly subsonic flow, considering both isothermal and adiabatic equations of state. Exact expressions and suitable approximations for the density and the flow velocity are derived and discussed. In addition to the stationary induction equation, these expressions also satisfy the momentum balance equation along stream lines. The practical usefulness of the corresponding, still exact, analytical magnetic field solution is assessed by comparing it quantitatively to results from a fully self-consistent magnetohydrodynamic simulationmore » of the interstellar magnetic field draping around the heliopause.« less

  2. hPSC-derived lung and intestinal organoids as models of human fetal tissue

    PubMed Central

    Aurora, Megan; Spence, Jason R.

    2016-01-01

    In vitro human pluripotent stem cell (hPSC) derived tissues are excellent models to study certain aspects of normal human development. Current research in the field of hPSC derived tissues reveals these models to be inherently fetal-like on both a morphological and gene expression level. In this review we briefly discuss current methods for differentiating lung and intestinal tissue from hPSCs into individual 3-dimensional units called organoids. We discuss how these methods mirror what is known about in vivo signaling pathways of the developing embryo. Additionally, we will review how the inherent immaturity of these models lends them to be particularly valuable in the study of immature human tissues in the clinical setting of premature birth. Human lung organoids (HLOs) and human intestinal organoids (HIOs) not only model normal development, but can also be utilized to study several important diseases of prematurity such as respiratory distress syndrome (RDS), bronchopulmonary dysplasia (BPD), and necrotizing enterocolitis (NEC). PMID:27287882

  3. Actuation of Piezoelectric Layered Beams With and Coupling.

    PubMed

    Nguyen, Cuong H; Hanke, Ulrik; Halvorsen, Einar

    2018-05-01

    In this paper, we derive and compare the linear static bending of piezoelectric actuators with transversal ( ) and longitudinal ( ) coupling. The transducers are, respectively, structures utilizing top and bottom electrodes (TBEs) and interdigitated electrodes (IDEs). While the theory is well developed for the TBE beam, governing equations for the bending of the piezoelectric beams with IDEs are far less developed. We improve on this by deriving the governing equation for the IDE beam with an arbitrary number of layers and with coupling consistently included. In addition, we introduce a phenomenological quadratic form for the nonuniform field that lets us derive a deflection formula with nontrivial effects of the field accounted for. The theory is applied to derive deflection formulas for both cantilever and clamped-clamped beams. All analytic results are validated with numerical simulations. From the analytic models, two different figures of merit (FOMs) are derived. We show that these FOMs are the same for cantilevers and doubly clamped beams. The analysis indicates the optimal transducer length for clamped-clamped beams and gives a criterion that can be used to determine which design concept ( or ) gives the largest deflection.

  4. A Kirkwood-Buff derived force field for alkaline earth halide salts

    NASA Astrophysics Data System (ADS)

    Naleem, Nawavi; Bentenitis, Nikolaos; Smith, Paul E.

    2018-06-01

    The activity and function of many macromolecules in cellular environments are coupled with the binding of divalent ions such as calcium or magnesium. In principle, computer simulations can be used to understand the molecular level aspects of how many important macromolecules interact with ions. However, most of the force fields currently available often fail to accurately reproduce the properties of divalent ions in aqueous environments. Here we develop classical non-polarizable force fields for the aqueous alkaline earth metal halides (MX2), where M = Mg2+, Ca2+, Sr2+, Ba2+ and X = Cl-, Br-, I-, which can be used in bimolecular simulations and which are compatible with the Simple Point Charge/Extended (SPC/E) water model. The force field parameters are specifically developed to reproduce the experimental Kirkwood-Buff integrals for aqueous solutions and thereby the experimental activity derivatives, partial molar volumes, and excess coordination numbers. This ensures that a reasonable balance between ion-ion, ion-water, and water-water distributions is obtained. However, this requires a scaling of the cation to water oxygen interaction strength in order to accurately reproduce the integrals. The scaling factors developed for chloride salts are successfully transferable to the bromide and iodide salts. Use of these new models leads to reasonable diffusion constants and dielectric decrements. However, the performance of the models decreases with increasing salt concentration (>4m), and simulations of the pure crystals exhibited unstable behavior.

  5. A Kirkwood-Buff derived force field for alkaline earth halide salts.

    PubMed

    Naleem, Nawavi; Bentenitis, Nikolaos; Smith, Paul E

    2018-06-14

    The activity and function of many macromolecules in cellular environments are coupled with the binding of divalent ions such as calcium or magnesium. In principle, computer simulations can be used to understand the molecular level aspects of how many important macromolecules interact with ions. However, most of the force fields currently available often fail to accurately reproduce the properties of divalent ions in aqueous environments. Here we develop classical non-polarizable force fields for the aqueous alkaline earth metal halides (MX 2 ), where M = Mg 2+ , Ca 2+ , Sr 2+ , Ba 2+ and X = Cl - , Br - , I - , which can be used in bimolecular simulations and which are compatible with the Simple Point Charge/Extended (SPC/E) water model. The force field parameters are specifically developed to reproduce the experimental Kirkwood-Buff integrals for aqueous solutions and thereby the experimental activity derivatives, partial molar volumes, and excess coordination numbers. This ensures that a reasonable balance between ion-ion, ion-water, and water-water distributions is obtained. However, this requires a scaling of the cation to water oxygen interaction strength in order to accurately reproduce the integrals. The scaling factors developed for chloride salts are successfully transferable to the bromide and iodide salts. Use of these new models leads to reasonable diffusion constants and dielectric decrements. However, the performance of the models decreases with increasing salt concentration (>4m), and simulations of the pure crystals exhibited unstable behavior.

  6. Mean energy of some interacting bosonic systems derived by virtue of the generalized Hellmann-Feynman theorem

    NASA Astrophysics Data System (ADS)

    Fan, Hong-yi; Xu, Xue-xiang

    2009-06-01

    By virtue of the generalized Hellmann-Feynman theorem [H. Y. Fan and B. Z. Chen, Phys. Lett. A 203, 95 (1995)], we derive the mean energy of some interacting bosonic systems for some Hamiltonian models without proceeding with diagonalizing the Hamiltonians. Our work extends the field of applications of the Hellmann-Feynman theorem and may enrich the theory of quantum statistics.

  7. COFFDROP: A Coarse-Grained Nonbonded Force Field for Proteins Derived from All-Atom Explicit-Solvent Molecular Dynamics Simulations of Amino Acids.

    PubMed

    Andrews, Casey T; Elcock, Adrian H

    2014-11-11

    We describe the derivation of a set of bonded and nonbonded coarse-grained (CG) potential functions for use in implicit-solvent Brownian dynamics (BD) simulations of proteins derived from all-atom explicit-solvent molecular dynamics (MD) simulations of amino acids. Bonded potential functions were derived from 1 μs MD simulations of each of the 20 canonical amino acids, with histidine modeled in both its protonated and neutral forms; nonbonded potential functions were derived from 1 μs MD simulations of every possible pairing of the amino acids (231 different systems). The angle and dihedral probability distributions and radial distribution functions sampled during MD were used to optimize a set of CG potential functions through use of the iterative Boltzmann inversion (IBI) method. The optimized set of potential functions-which we term COFFDROP (COarse-grained Force Field for Dynamic Representation Of Proteins)-quantitatively reproduced all of the "target" MD distributions. In a first test of the force field, it was used to predict the clustering behavior of concentrated amino acid solutions; the predictions were directly compared with the results of corresponding all-atom explicit-solvent MD simulations and found to be in excellent agreement. In a second test, BD simulations of the small protein villin headpiece were carried out at concentrations that have recently been studied in all-atom explicit-solvent MD simulations by Petrov and Zagrovic ( PLoS Comput. Biol. 2014 , 5 , e1003638). The anomalously strong intermolecular interactions seen in the MD study were reproduced in the COFFDROP simulations; a simple scaling of COFFDROP's nonbonded parameters, however, produced results in better accordance with experiment. Overall, our results suggest that potential functions derived from simulations of pairwise amino acid interactions might be of quite broad applicability, with COFFDROP likely to be especially useful for modeling unfolded or intrinsically disordered proteins.

  8. COFFDROP: A Coarse-Grained Nonbonded Force Field for Proteins Derived from All-Atom Explicit-Solvent Molecular Dynamics Simulations of Amino Acids

    PubMed Central

    2015-01-01

    We describe the derivation of a set of bonded and nonbonded coarse-grained (CG) potential functions for use in implicit-solvent Brownian dynamics (BD) simulations of proteins derived from all-atom explicit-solvent molecular dynamics (MD) simulations of amino acids. Bonded potential functions were derived from 1 μs MD simulations of each of the 20 canonical amino acids, with histidine modeled in both its protonated and neutral forms; nonbonded potential functions were derived from 1 μs MD simulations of every possible pairing of the amino acids (231 different systems). The angle and dihedral probability distributions and radial distribution functions sampled during MD were used to optimize a set of CG potential functions through use of the iterative Boltzmann inversion (IBI) method. The optimized set of potential functions—which we term COFFDROP (COarse-grained Force Field for Dynamic Representation Of Proteins)—quantitatively reproduced all of the “target” MD distributions. In a first test of the force field, it was used to predict the clustering behavior of concentrated amino acid solutions; the predictions were directly compared with the results of corresponding all-atom explicit-solvent MD simulations and found to be in excellent agreement. In a second test, BD simulations of the small protein villin headpiece were carried out at concentrations that have recently been studied in all-atom explicit-solvent MD simulations by Petrov and Zagrovic (PLoS Comput. Biol.2014, 5, e1003638). The anomalously strong intermolecular interactions seen in the MD study were reproduced in the COFFDROP simulations; a simple scaling of COFFDROP’s nonbonded parameters, however, produced results in better accordance with experiment. Overall, our results suggest that potential functions derived from simulations of pairwise amino acid interactions might be of quite broad applicability, with COFFDROP likely to be especially useful for modeling unfolded or intrinsically disordered proteins. PMID:25400526

  9. Adventures in Topological Field Theory

    NASA Astrophysics Data System (ADS)

    Horne, James H.

    1990-01-01

    This thesis consists of 5 parts. In part I, the topological Yang-Mills theory and the topological sigma model are presented in a superspace formulation. This greatly simplifies the field content of the theories, and makes the Q-invariance more obvious. The Feynman rules for the topological Yang -Mills theory are derived. We calculate the one-loop beta-functions of the topological sigma model in superspace. The lattice version of these theories is presented. The self-duality constraints of both models lead to spectrum doubling. In part II, we show that conformally invariant gravity in three dimensions is equivalent to the Yang-Mills gauge theory of the conformal group in three dimensions, with a Chern-Simons action. This means that conformal gravity is finite and exactly soluble. In part III, we derive the skein relations for the fundamental representations of SO(N), Sp(2n), Su(m| n), and OSp(m| 2n). These relations can be used recursively to calculate the expectation values of Wilson lines in three-dimensional Chern-Simons gauge theory with these gauge groups. A combination of braiding and tying of Wilson lines completely describes the skein relations. In part IV, we show that the k = 1 two dimensional gravity amplitudes at genus 3 agree precisely with the results from intersection theory on moduli space. Predictions for the genus 4 intersection numbers follow from the two dimensional gravity theory. In part V, we discuss the partition function in two dimensional gravity. For the one matrix model at genus 2, we use the partition function to derive a recursion relation. We show that the k = 1 amplitudes completely determine the partition function at arbitrary genus. We present a conjecture for the partition function for the arbitrary topological field theory coupled to topological gravity.

  10. Inversion of marine gravity anomalies over southeastern China seas from multi-satellite altimeter vertical deflections

    NASA Astrophysics Data System (ADS)

    Zhang, Shengjun; Sandwell, David T.; Jin, Taoyong; Li, Dawei

    2017-02-01

    The accuracy and resolution of marine gravity field derived from satellite altimetry mainly depends on the range precision and dense spatial distribution. This paper aims at modeling a regional marine gravity field with improved accuracy and higher resolution (1‧ × 1‧) over Southeastern China Seas using additional data from CryoSat-2 as well as new data from AltiKa. Three approaches are used to enhance the precision level of satellite-derived gravity anomalies. Firstly we evaluate a suite of published retracking algorithms and find the two-step retracker is optimal for open ocean waveforms. Secondly, we evaluate the filtering and resampling procedure used to reduce the full 20 or 40 Hz data to a lower rate having lower noise. We adopt a uniform low-pass filter for all altimeter missions and resample at 5 Hz and then perform a second editing based on sea surface slope estimates from previous models. Thirdly, we selected WHU12 model to update the corrections provided in geophysical data record. We finally calculated the 1‧ × 1‧ marine gravity field model by using EGM2008 model as reference field during the remove/restore procedure. The root mean squares of the discrepancies between the new result and DTU10, DTU13, V23.1, EGM2008 are within the range of 1.8- 3.9 mGal, while the verification with respect to shipboard gravity data shows that the accuracy of the new result reached a comparable level with DTU13 and was slightly superior to V23.1, DTU10 and EGM2008 models. Moreover, the new result has a 2 mGal better accuracy over open seas than coastal areas with shallow water depth.

  11. A Review of Magnetic Anomaly Field Data for the Arctic Region: Geological Implications

    NASA Technical Reports Server (NTRS)

    Taylor, Patrick T.; vonFrese, Ralph; Roman, Daniel; Frawley, James J.

    1999-01-01

    Due to its inaccessibility and hostile physical environment remote sensing data, both airborne and satellite measurements, has been the main source of geopotential data over the entire Arctic region. Ubiquitous and significant external fields, however, hinder crustal magnetic field studies. These potential field data have been used to derive tectonic models for the two major tectonic sectors of this region, the Amerasian and Eurasian Basins. The latter is dominated by the Nansen-Gakkel or Mid-Arctic Ocean Ridge and is relatively well known. The origin and nature of the Alpha and Mendeleev Ridges, Chukchi Borderland and Canada Basin of the former are less well known and a subject of controversy. The Lomonosov Ridge divides these large provinces. In this report we will present a summary of the Arctic geopotential anomaly data derived from various sources by various groups in North America and Europe and show how these data help us unravel the last remaining major puzzle of the global plate tectonic framework. While Magnetic anomaly data represent the main focus of this study recently derived satellite gravity data (Laxon and McAdoo, 1998) are playing a major role in Arctic studies.

  12. The ITSG-Grace2014 Gravity Field Model

    NASA Astrophysics Data System (ADS)

    Kvas, Andreas; Mayer-Gürr, Torsten; Zehenter, Norbert; Klinger, Beate

    2015-04-01

    The ITSG-Grace2014 GRACE-only gravity field model consists of a high resolution unconstrained static model (up to degree 200) with trend and annual signal, monthly unconstrained solutions with different spatial resolutions as well as daily snapshots derived by using a Kalman smoother. Apart from the estimated spherical harmonic coefficients, full variance-covariance matrices for the monthly solutions and the static gravity field component are provided. Compared to the previous release, multiple improvements in the processing chain are implemented: updated background models, better ionospheric modeling for GPS observations, an improved satellite attitude by combination of star camera and angular accelerations, estimation of K-band antenna center variations within the gravity field recovery process as well as error covariance function determination. Furthermore, daily gravity field variations have been modeled in the adjustment process to reduce errors caused by temporal leakage. This combined estimation of daily gravity variations field variations together with the static gravity field component represents a computational challenge due to the significantly increased parameter count. The modeling of daily variations up to a spherical harmonic degree of 40 for the whole GRACE observation period results in a system of linear equations with over 6 million unknown gravity field parameters. A least squares adjustment of this size is not solvable in a sensible time frame, therefore measures to reduce the problem size have to be taken. The ITSG-Grace2014 release is presented and selected parts of the processing chain and their effect on the estimated gravity field solutions are discussed.

  13. A downscaling scheme for atmospheric variables to drive soil-vegetation-atmosphere transfer models

    NASA Astrophysics Data System (ADS)

    Schomburg, A.; Venema, V.; Lindau, R.; Ament, F.; Simmer, C.

    2010-09-01

    For driving soil-vegetation-transfer models or hydrological models, high-resolution atmospheric forcing data is needed. For most applications the resolution of atmospheric model output is too coarse. To avoid biases due to the non-linear processes, a downscaling system should predict the unresolved variability of the atmospheric forcing. For this purpose we derived a disaggregation system consisting of three steps: (1) a bi-quadratic spline-interpolation of the low-resolution data, (2) a so-called `deterministic' part, based on statistical rules between high-resolution surface variables and the desired atmospheric near-surface variables and (3) an autoregressive noise-generation step. The disaggregation system has been developed and tested based on high-resolution model output (400m horizontal grid spacing). A novel automatic search-algorithm has been developed for deriving the deterministic downscaling rules of step 2. When applied to the atmospheric variables of the lowest layer of the atmospheric COSMO-model, the disaggregation is able to adequately reconstruct the reference fields. Applying downscaling step 1 and 2, root mean square errors are decreased. Step 3 finally leads to a close match of the subgrid variability and temporal autocorrelation with the reference fields. The scheme can be applied to the output of atmospheric models, both for stand-alone offline simulations, and a fully coupled model system.

  14. Two-dimensional Yukawa interactions from nonlocal Proca quantum electrodynamics

    NASA Astrophysics Data System (ADS)

    Alves, Van Sérgio; Macrı, Tommaso; Magalhães, Gabriel C.; Marino, E. C.; Nascimento, Leandro O.

    2018-05-01

    We derive two versions of an effective model to describe dynamical effects of the Yukawa interaction among Dirac electrons in the plane. Such short-range interaction is obtained by introducing a mass term for the intermediate particle, which may be either scalar or an abelian gauge field, both of them in (3 +1 ) dimensions. Thereafter, we consider that the fermionic matter field propagates only in (2 +1 ) dimensions, whereas the bosonic field is free to propagate out of the plane. Within these assumptions, we apply a mechanism for dimensional reduction, which yields an effective model in (2 +1 ) dimensions. In particular, for the gauge-field case, we use the Stueckelberg mechanism in order to preserve gauge invariance. We refer to this version as nonlocal-Proca quantum electrodynamics (NPQED). For both scalar and gauge cases, the effective models reproduce the usual Yukawa interaction in the static limit. By means of perturbation theory at one loop, we calculate the mass renormalization of the Dirac field. Our model is a generalization of Pseudo quantum electrodynamics (PQED), which is a gauge-field model that provides a Coulomb interaction for two-dimensional electrons. Possibilities of application to Fermi-Bose mixtures in mixed dimensions, using cold atoms, are briefly discussed.

  15. A diagnostic approach to obtaining planetary boundary layer winds using satellite-derived thermal data

    NASA Technical Reports Server (NTRS)

    Belt, Carol L.; Fuelberg, Henry E.

    1984-01-01

    The feasibility of using satellite derived thermal data to generate realistic synoptic scale winds within the planetary boundary layer (PBL) is examined. Diagnostic modified Ekman wind equations from the Air Force Global Weather Central (AFGWC) Boundary Layer Model are used to compute winds at seven levels within the PBL transition layer (50 m to 1600 m AGL). Satellite derived winds based on 62 predawn TIROS-N soundings are compared to similarly derived wind fields based on 39 AVE-SESAME II rawinsonde (RAOB) soundings taken 2 h later. Actual wind fields are also used as a basis for comparison. Qualitative and statistical comparisons show that the Ekman winds from both sources are in very close agreement, with an average vector correlation coefficient of 0.815. Best results are obtained at 300 m AGL. Satellite winds tend to be slightly weaker than their RAOB counterparts and exhibit a greater degree of cross-isobaric flow. The modified Ekman winds show a significant improvement over geostrophic values at levels nearest the surface.

  16. Optical assessment of colored dissolved organic matter and its related parameters in dynamic coastal water systems

    NASA Astrophysics Data System (ADS)

    Shanmugam, Palanisamy; Varunan, Theenathayalan; Nagendra Jaiganesh, S. N.; Sahay, Arvind; Chauhan, Prakash

    2016-06-01

    Prediction of the curve of the absorption coefficient of colored dissolved organic matter (CDOM) and differentiation between marine and terrestrially derived CDOM pools in coastal environments are hampered by a high degree of variability in the composition and concentration of CDOM, uncertainties in retrieved remote sensing reflectance and the weak signal-to-noise ratio of space-borne instruments. In the present study, a hybrid model is presented along with empirical methods to remotely determine the amount and type of CDOM in coastal and inland water environments. A large set of in-situ data collected on several oceanographic cruises and field campaigns from different regional waters was used to develop empirical methods for studying the distribution and dynamics of CDOM, dissolved organic carbon (DOC) and salinity. Our validation analyses demonstrated that the hybrid model is a better descriptor of CDOM absorption spectra compared to the existing models. Additional spectral slope parameters included in the present model to differentiate between terrestrially derived and marine CDOM pools make a substantial improvement over those existing models. Empirical algorithms to derive CDOM, DOC and salinity from remote sensing reflectance data demonstrated success in retrieval of these products with significantly low mean relative percent differences from large in-situ measurements. The performance of these algorithms was further assessed using three hyperspectral HICO images acquired simultaneously with our field measurements in productive coastal and lagoon waters on the southeast part of India. The validation match-ups of CDOM and salinity showed good agreement between HICO retrievals and field observations. Further analyses of these data showed significant temporal changes in CDOM and phytoplankton absorption coefficients with a distinct phase shift between these two products. Healthy phytoplankton cells and macrophytes were recognized to directly contribute to the autochthonous production of colored humic-like substances in variable amounts within the lagoon system, despite CDOM content being partly derived through river run-off and wetland discharges as well as from conservative mixing of different water masses. Spatial and temporal maps of CDOM, DOC and salinity products provided an interesting insight into these CDOM dynamics and conservative behavior within the lagoon and its extension in coastal and offshore waters of the Bay of Bengal. The hybrid model and empirical algorithms presented here can be useful to assess CDOM, DOC and salinity fields and their changes in response to increasing runoff of nutrient pollution, anthropogenic activities, hydrographic variations and climate oscillations.

  17. An analytical model accounting for tip shape evolution during atom probe analysis of heterogeneous materials.

    PubMed

    Rolland, N; Larson, D J; Geiser, B P; Duguay, S; Vurpillot, F; Blavette, D

    2015-12-01

    An analytical model describing the field evaporation dynamics of a tip made of a thin layer deposited on a substrate is presented in this paper. The difference in evaporation field between the materials is taken into account in this approach in which the tip shape is modeled at a mesoscopic scale. It was found that the non-existence of sharp edge on the surface is a sufficient condition to derive the morphological evolution during successive evaporation of the layers. This modeling gives an instantaneous and smooth analytical representation of the surface that shows good agreement with finite difference simulations results, and a specific regime of evaporation was highlighted when the substrate is a low evaporation field phase. In addition, the model makes it possible to calculate theoretically the tip analyzed volume, potentially opening up new horizons for atom probe tomographic reconstruction. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. A MAGNETIC RIBBON MODEL FOR STAR-FORMING FILAMENTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Auddy, Sayantan; Basu, Shantanu; Kudoh, Takahiro, E-mail: sauddy3@uwo.ca, E-mail: basu@uwo.ca, E-mail: kudoh@nagasaki-u.ac.jp

    2016-11-01

    We develop a magnetic ribbon model for molecular cloud filaments. These result from turbulent compression in a molecular cloud in which the background magnetic field sets a preferred direction. We argue that this is a natural model for filaments and is based on the interplay between turbulence, strong magnetic fields, and gravitationally driven ambipolar diffusion, rather than pure gravity and thermal pressure. An analytic model for the formation of magnetic ribbons that is based on numerical simulations is used to derive a lateral width of a magnetic ribbon. This differs from the thickness along the magnetic field direction, which ismore » essentially the Jeans scale. We use our model to calculate a synthetic observed relation between apparent width in projection versus observed column density. The relationship is relatively flat, similar to observations, and unlike the simple expectation based on a Jeans length argument.« less

  19. Comparative molecular field analysis of the binding of the stereoisomers of fenoterol and fenoterol derivatives to the beta2 adrenergic receptor.

    PubMed

    Jozwiak, Krzysztof; Khalid, Chakir; Tanga, Mary J; Berzetei-Gurske, Ilona; Jimenez, Lucita; Kozocas, Joseph A; Woo, Anthony; Zhu, Weizhong; Xiao, Rui-Ping; Abernethy, Darrell R; Wainer, Irving W

    2007-06-14

    Stereoisomers of fenoterol and six fenoterol derivatives have been synthesized and their binding affinities for the beta2 adrenergic receptor (Kibeta2-AR), the subtype selectivity relative to the beta1-AR (Kibeta1-AR/Kibeta2-AR) and their functional activities were determined. Of the 26 compounds synthesized in the study, submicromolar binding affinities were observed for (R,R)-fenoterol, the (R,R)-isomer of the p-methoxy, and (R,R)- and (R,S)-isomers of 1-naphthyl derivatives and all of these compounds were active at submicromolar concentrations in cardiomyocyte contractility tests. The Kibeta1-AR/Kibeta2-AR ratios were >40 for (R,R)-fenoterol and the (R,R)-p-methoxy and (R,S)-1-naphthyl derivatives and 14 for the (R,R)-1-napthyl derivative. The binding data was analyzed using comparative molecular field analysis (CoMFA), and the resulting model indicated that the fenoterol derivatives interacted with two separate binding sites and one steric restricted site on the pseudo-receptor and that the chirality of the second stereogenic center affected Kibeta2 and subtype selectivity.

  20. Large-scale derived flood frequency analysis based on continuous simulation

    NASA Astrophysics Data System (ADS)

    Dung Nguyen, Viet; Hundecha, Yeshewatesfa; Guse, Björn; Vorogushyn, Sergiy; Merz, Bruno

    2016-04-01

    There is an increasing need for spatially consistent flood risk assessments at the regional scale (several 100.000 km2), in particular in the insurance industry and for national risk reduction strategies. However, most large-scale flood risk assessments are composed of smaller-scale assessments and show spatial inconsistencies. To overcome this deficit, a large-scale flood model composed of a weather generator and catchments models was developed reflecting the spatially inherent heterogeneity. The weather generator is a multisite and multivariate stochastic model capable of generating synthetic meteorological fields (precipitation, temperature, etc.) at daily resolution for the regional scale. These fields respect the observed autocorrelation, spatial correlation and co-variance between the variables. They are used as input into catchment models. A long-term simulation of this combined system enables to derive very long discharge series at many catchment locations serving as a basic for spatially consistent flood risk estimates at the regional scale. This combined model was set up and validated for major river catchments in Germany. The weather generator was trained by 53-year observation data at 528 stations covering not only the complete Germany but also parts of France, Switzerland, Czech Republic and Australia with the aggregated spatial scale of 443,931 km2. 10.000 years of daily meteorological fields for the study area were generated. Likewise, rainfall-runoff simulations with SWIM were performed for the entire Elbe, Rhine, Weser, Donau and Ems catchments. The validation results illustrate a good performance of the combined system, as the simulated flood magnitudes and frequencies agree well with the observed flood data. Based on continuous simulation this model chain is then used to estimate flood quantiles for the whole Germany including upstream headwater catchments in neighbouring countries. This continuous large scale approach overcomes the several drawbacks reported in traditional approaches for the derived flood frequency analysis and therefore is recommended for large scale flood risk case studies.

  1. Old torsion Balance Observations - too old for modern Exploration?

    NASA Astrophysics Data System (ADS)

    Götze, H.-J.

    2003-04-01

    Gravity gradiometry is a new gravity measurement technology that could fundamentally change the game of subsurface modelling and enhance geological interpretations: at fully inertial stabilized platforms they provide observed components of the E&{uml;o}tv&{uml;o}s tensor for 3D interpretations in mining and oil exploration and other fields of pure and applied geophysics. Although gravity gradiometry was among the first geophysical methods used successfully in applied Geophysics (E&{uml;o}tv&{uml;o}s torsion balance), the technology fell from favour in the 1930s. From this time measurements, done by torsion balances (Drehwaagen), are presented here which were observed to detect salt domes in the Northwest German basin. The data were digitized from old copies, then reprocessed and recalculated to draw Bouguer anomaly maps. However, the second derivatives of the gravity potential provide also independent data which can be used to constrain forward modelling. 3D modelling of Vxz, Vyz and other components of the E&{uml;o}tv&{uml;o}s tensor provide better insight into the geometry of the salt dome structure than modelling of the Bouguer gravity field. In addition to this first example results from gravity data processing by applying curvature techniques and again 3D forward modelling of second derivatives of the potential of density domains in the uppermost crust in the area of the Dead Sea Transform (Jordan) is presented here. The 3D modelling is conducted by the program package IGMAS which supply possibilities to calculate potential, gravity, its components and the Eötvös tensor components. Based on results so far one can conclude that the knowledge of the "second derivatives of the potential" could fundamentally change the role of gravity field measurements in the process of underground investigations not only for resource exploration but for investigations along large faults systems.

  2. Evaluation of Bio-optical Models for Discriminating Phytoplankton Functional Types and Size Classes in Eastern U.S. Coastal Waters with Approaches to Remote Sensing Applications

    NASA Astrophysics Data System (ADS)

    Neeley, A. R.; Goes, J. I.; Jenkins, C. A.; Harris, L.

    2016-02-01

    Phytoplankton species can be separated into phytoplankton functional types (PFTs) or size classes (PSCs; Micro-, Nano-, and Picoplankton). Bio-optical models have been developed to use satellite-derived products to discriminate PSCs and PFTs, a recommended field measurement for the future NASA PACE mission. The proposed 5 nm spectral resolution of the PACE ocean color sensor will improve detection of PSCs and PFTs by discriminating finer optical features not detected at the spectral resolution of current satellite-borne instruments. In preparation for PACE, new and advanced models are under development that require accurate data for validation. Phytoplankton pigment data have long been collected from aquatic environments and are widely used to model PSC and PFT abundances using two well-known methods: Diagnostic Pigment Analysis (DPA) and Chemical Taxonomy (ChemTax), respectively. Here we present the results of an effort to evaluate five bio-optical PFT models using data from a field campaign off the coast of the Eastern U.S. in November 2014: two based on biomass (Chlorophyll a), two based on light absorption properties of phytoplankton and one based the inversion of remote sensing reflectances. PFT model performance is evaluated using phytoplankton taxonomic data from a FlowCam sensor and DPA and ChemTax analyses using pigment data collected during the field campaign in a variety of water types and optical complexities (e.g., coastal, blue water, eddies and fronts). Relative strengths of the model approaches will be presented as a model validation exercise using both in situ and satellite derived input products.

  3. Darkflation-One scalar to rule them all?

    NASA Astrophysics Data System (ADS)

    Lalak, Zygmunt; Nakonieczny, Łukasz

    2017-03-01

    The problem of explaining both inflationary and dark matter physics in the framework of a minimal extension of the Standard Model was investigated. To this end, the Standard Model completed by a real scalar singlet playing a role of the dark matter candidate has been considered. We assumed both the dark matter field and the Higgs doublet to be nonminimally coupled to gravity. Using quantum field theory in curved spacetime we derived an effective action for the inflationary period and analyzed its consequences. In this approach, after integrating out both dark matter and Standard Model sectors we obtained the effective action expressed purely in terms of the gravitational field. We paid special attention to determination, by explicit calculations, of the form of coefficients controlling the higher-order in curvature gravitational terms. Their connection to the Standard Model coupling constants has been discussed.

  4. Modelling the excitation field of an optical resonator

    NASA Astrophysics Data System (ADS)

    Romanini, Daniele

    2014-06-01

    Assuming the paraxial approximation, we derive efficient recursive expressions for the projection coefficients of a Gaussian beam over the Gauss--Hermite transverse electro-magnetic (TEM) modes of an optical cavity. While previous studies considered cavities with cylindrical symmetry, our derivation accounts for "simple" astigmatism and ellipticity, which allows to deal with more realistic optical systems. The resulting expansion of the Gaussian beam over the cavity TEM modes provides accurate simulation of the excitation field distribution inside the cavity, in transmission, and in reflection. In particular, this requires including counter-propagating TEM modes, usually neglected in textbooks. As an illustrative application to a complex case, we simulate reentrant cavity configurations where Herriott spots are obtained at cavity output. We show that the case of an astigmatic cavity is also easily modelled. To our knowledge, such relevant applications are usually treated under the simplified geometrical optics approximation, or using heavier numerical methods.

  5. A Simple, Analytical Model of Collisionless Magnetic Reconnection in a Pair Plasma

    NASA Technical Reports Server (NTRS)

    Hesse, Michael; Zenitani, Seiji; Kuznetova, Masha; Klimas, Alex

    2011-01-01

    A set of conservation equations is utilized to derive balance equations in the reconnection diffusion region of a symmetric pair plasma. The reconnection electric field is assumed to have the function to maintain the current density in the diffusion region, and to impart thermal energy to the plasma by means of quasi-viscous dissipation. Using these assumptions it is possible to derive a simple set of equations for diffusion region parameters in dependence on inflow conditions and on plasma compressibility. These equations are solved by means of a simple, iterative, procedure. The solutions show expected features such as dominance of enthalpy flux in the reconnection outflow, as well as combination of adiabatic and quasi-viscous heating. Furthermore, the model predicts a maximum reconnection electric field of E(sup *)=0.4, normalized to the parameters at the inflow edge of the diffusion region.

  6. A simple, analytical model of collisionless magnetic reconnection in a pair plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hesse, Michael; Zenitani, Seiji; Kuznetsova, Masha

    2009-10-15

    A set of conservation equations is utilized to derive balance equations in the reconnection diffusion region of a symmetric pair plasma. The reconnection electric field is assumed to have the function to maintain the current density in the diffusion region and to impart thermal energy to the plasma by means of quasiviscous dissipation. Using these assumptions it is possible to derive a simple set of equations for diffusion region parameters in dependence on inflow conditions and on plasma compressibility. These equations are solved by means of a simple, iterative procedure. The solutions show expected features such as dominance of enthalpymore » flux in the reconnection outflow, as well as combination of adiabatic and quasiviscous heating. Furthermore, the model predicts a maximum reconnection electric field of E{sup *}=0.4, normalized to the parameters at the inflow edge of the diffusion region.« less

  7. Field-aligned currents onboard the Intercosmos Bulgaria-1300 satellite in comparison with modeled FAC

    NASA Astrophysics Data System (ADS)

    Danov, Dimitar

    2008-02-01

    The statistical field-aligned current (FAC) distribution has been demonstrated by [Iijima, T., Potemra, T.A., 1976. The amplitude distribution of field-aligned currents at northern high latitudes observed by Triad. Journal of Geophysical Research 81(13), 2165-2174] and many other authors. The large-scale (LS) FACs have been described by different empirical/statistical models [Feldstein, Ya. I., Levitin, A.E., 1986. Solar wind control of electric fields and currents in the ionosphere. Journal of Geomagnetism and Geoelectricity 38, 1143; Papitashvili, V.O., Rich, F.J., Heinemann, M.A., Hairston, M.R., 1999. Parameterization of the Defense Meteorological Satellite Program ionospheric electrostatic potentials by the interplanetary magnetic field strength and direction. Journal of Geophysical Research 104, 177-184; Papitashvili, V.O., Christiansen, F., Neubert, T., 2002. A new model of field-aligned currents derived from high-precision satellite magnetic field data. Geophysical Research Letters, 29(14), 1683, doi:10.1029/2001GL014207; Tsyganenko, N.A., 2001. A model of the near magnetosphere with a dawn-dusk asymetry (I. Mathematical structure). Journal of Geophysical Research 107(A8), doi:10.1029/2001JA000219; Weimer, D.R., 1996a. A new model for prediction of ionospheric electric potentials as a function of the IMF. In: Snowmass'96 Online Poster Session; Weimer, D.R., 1996b. Substorm influence on the ionospheric convection patterns. In: Snowmass'96 Online Poster Session; Weimer, D.R., 2001. Maps of ionospheric field-aligned currents as a function of the interplanetary magnetic field derived from Dynamic Explorer 2 data. Journal of Geophysical Research 106, 12,889-12,902; Weimer, D.R., 2005. Improved ionospheric electrodynamic models and application to calculating Joule heating rates. Journal of Geophysical Research 110, A05306, doi:10.1029/2004JA010884]. In the present work, we compare two cases of LS FAC obtained from magnetic field measurements onboard the Intercosmos Bulgaria-1300 satellite with three models: two empirical [Tsyganenko, N.A., 2001. A model of the near magnetosphere with a down-dusk asymetry (I. Mathematical structure). Journal of Geophysical Research 107(A8), doi:10.1029/2001JA000219; Weimer, D.R., 2005. Improved ionospheric electrodynamic models and application to calculating Joule heating rates. Journal of Geophysical Research 110, A05306, doi:10.1029/2004JA010884] and one computer-based MHD-simulation in "The Community Coordinated Modeling Center" (CCMC) [Toth, G., et al., 2005. Space weather modeling framework: a new tool for the space science community. Journal of Geophysical Research 110, A12226, doi:10.1029/2005JA011126]. We found that the position of the measured FAC is close to the positions predicted by the models, but the measured density can be greater than the model FAC densities. We discuss the possible reasons for the observed discrepancy between the measured and modeled FACs.

  8. A multiscale modelling methodology applicable for regulatory purposes taking into account effects of complex terrain and buildings on pollutant dispersion: a case study for an inner Alpine basin.

    PubMed

    Oettl, D

    2015-11-01

    Dispersion modelling in complex terrain always has been challenging for modellers. Although a large number of publications are dedicated to that field, candidate methods and models for usage in regulatory applications are scarce. This is all the more true when the combined effect of topography and obstacles on pollutant dispersion has to be taken into account. In Austria, largely situated in Alpine regions, such complex situations are quite frequent. This work deals with an approach, which is in principle capable of considering both buildings and topography in simulations by combining state-of-the-art wind field models at the micro- (<1 km) and mesoscale γ (2-20 km) with a Lagrangian particle model. In order to make such complex numerical models applicable for regulatory purposes, meteorological input data for the models need to be readily derived from routine observations. Here, use was made of the traditional way to bin meteorological data based on wind direction, speed, and stability class, formerly mainly used in conjunction with Gaussian-type models. It is demonstrated that this approach leads to reasonable agreements (fractional bias < 0.1) between observed and modelled annual average concentrations in an Alpine basin with frequent low-wind-speed conditions, temperature inversions, and quite complex flow patterns, while keeping the simulation times within the frame of possibility with regard to applications in licencing procedures. However, due to the simplifications in the derivation of meteorological input data as well as several ad hoc assumptions regarding the boundary conditions of the mesoscale wind field model, the methodology is not suited for computing detailed time and space variations of pollutant concentrations.

  9. Reverberant shear wave fields and estimation of tissue properties

    NASA Astrophysics Data System (ADS)

    Parker, Kevin J.; Ormachea, Juvenal; Zvietcovich, Fernando; Castaneda, Benjamin

    2017-02-01

    The determination of shear wave speed is an important subject in the field of elastography, since elevated shear wave speeds can be directly linked to increased stiffness of tissues. MRI and ultrasound scanners are frequently used to detect shear waves and a variety of estimators are applied to calculate the underlying shear wave speed. The estimators can be relatively simple if plane wave behavior is assumed with a known direction of propagation. However, multiple reflections from organ boundaries and internal inhomogeneities and mode conversions can create a complicated field in time and space. Thus, we explore the mathematics of multiple component shear wave fields and derive the basic properties, from which efficient estimators can be obtained. We approach this problem from the historic perspective of reverberant fields, a conceptual framework used in architectural acoustics and related fields. The framework can be recast for the alternative case of shear waves in a bounded elastic media, and the expected value of displacement patterns in shear reverberant fields are derived, along with some practical estimators of shear wave speed. These are applied to finite element models and phantoms to illustrate the characteristics of reverberant fields and provide preliminary confirmation of the overall framework.

  10. Gummel Symmetry Test on charge based drain current expression using modified first-order hyperbolic velocity-field expression

    NASA Astrophysics Data System (ADS)

    Singh, Kirmender; Bhattacharyya, A. B.

    2017-03-01

    Gummel Symmetry Test (GST) has been a benchmark industry standard for MOSFET models and is considered as one of important tests by the modeling community. BSIM4 MOSFET model fails to pass GST as the drain current equation is not symmetrical because drain and source potentials are not referenced to bulk. BSIM6 MOSFET model overcomes this limitation by taking all terminal biases with reference to bulk and using proper velocity saturation (v -E) model. The drain current equation in BSIM6 is charge based and continuous in all regions of operation. It, however, adopts a complicated method to compute source and drain charges. In this work we propose to use conventional charge based method formulated by Enz for obtaining simpler analytical drain current expression that passes GST. For this purpose we adopt two steps: (i) In the first step we use a modified first-order hyperbolic v -E model with adjustable coefficients which is integrable, simple and accurate, and (ii) In the second we use a multiplying factor in the modified first-order hyperbolic v -E expression to obtain correct monotonic asymptotic behavior around the origin of lateral electric field. This factor is of empirical form, which is a function of drain voltage (vd) and source voltage (vs) . After considering both the above steps we obtain drain current expression whose accuracy is similar to that obtained from second-order hyperbolic v -E model. In modified first-order hyperbolic v -E expression if vd and vs is replaced by smoothing functions for the effective drain voltage (vdeff) and effective source voltage (vseff), it will as well take care of discontinuity between linear to saturation regions of operation. The condition of symmetry is shown to be satisfied by drain current and its higher order derivatives, as both of them are odd functions and their even order derivatives smoothly pass through the origin. In strong inversion region and technology node of 22 nm the GST is shown to pass till sixth-order derivative and for weak inversion it is shown till fifth-order derivative. In the expression of drain current major short channel phenomena like vertical field mobility reduction, velocity saturation and velocity overshoot have been taken into consideration.

  11. Influence of non-local thermodynamic equilibrium and Zeeman effects on magnetic equilibrium reconstruction using spectral motional Stark effect diagnostic

    NASA Astrophysics Data System (ADS)

    Reimer, R.; Marchuk, O.; Geiger, B.; Mc Carthy, P. J.; Dunne, M.; Hobirk, J.; Wolf, R.; ASDEX Upgrade Team

    2017-08-01

    The Motional Stark Effect (MSE) diagnostic is a well established technique to infer the local internal magnetic field in fusion plasmas. In this paper, the existing forward model which describes the MSE data is extended by the Zeeman effect, fine-structure, and relativistic corrections in the interpretation of the MSE spectra for different experimental conditions at the tokamak ASDEX Upgrade. The contribution of the non-Local Thermodynamic Equilibrium (non-LTE) populations among the magnetic sub-levels and the Zeeman effect on the derived plasma parameters is different. The obtained pitch angle is changed by 3 ° … 4 ° and by 0 . 5 ° … 1 ° including the non-LTE and the Zeeman effects into the standard statistical MSE model. The total correction is about 4°. Moreover, the variation of the magnetic field strength is significantly changed by 2.2% due to the Zeeman effect only. While the data on the derived pitch angle still could not be tested against the other diagnostics, the results from an equilibrium reconstruction solver confirm the obtained values for magnetic field strength.

  12. f( R, L m ) gravity

    NASA Astrophysics Data System (ADS)

    Harko, Tiberiu; Lobo, Francisco S. N.

    2010-11-01

    We generalize the f( R) type gravity models by assuming that the gravitational Lagrangian is given by an arbitrary function of the Ricci scalar R and of the matter Lagrangian L m . We obtain the gravitational field equations in the metric formalism, as well as the equations of motion for test particles, which follow from the covariant divergence of the energy-momentum tensor. The equations of motion for test particles can also be derived from a variational principle in the particular case in which the Lagrangian density of the matter is an arbitrary function of the energy density of the matter only. Generally, the motion is non-geodesic, and it takes place in the presence of an extra force orthogonal to the four-velocity. The Newtonian limit of the equation of motion is also considered, and a procedure for obtaining the energy-momentum tensor of the matter is presented. The gravitational field equations and the equations of motion for a particular model in which the action of the gravitational field has an exponential dependence on the standard general relativistic Hilbert-Einstein Lagrange density are also derived.

  13. Complete analytical solution of electromagnetic field problem of high-speed spinning ball

    NASA Astrophysics Data System (ADS)

    Reichert, T.; Nussbaumer, T.; Kolar, J. W.

    2012-11-01

    In this article, a small sphere spinning in a rotating magnetic field is analyzed in terms of the resulting magnetic flux density distribution and the current density distribution inside the ball. From these densities, the motor torque and the eddy current losses can be calculated. An analytical model is derived, and its results are compared to a 3D finite element analysis. The model gives insight into the torque and loss characteristics of a solid rotor induction machine setup, which aims at rotating the sphere beyond 25 Mrpm.

  14. Topology of large-scale structure. IV - Topology in two dimensions

    NASA Technical Reports Server (NTRS)

    Melott, Adrian L.; Cohen, Alexander P.; Hamilton, Andrew J. S.; Gott, J. Richard, III; Weinberg, David H.

    1989-01-01

    In a recent series of papers, an algorithm was developed for quantitatively measuring the topology of the large-scale structure of the universe and this algorithm was applied to numerical models and to three-dimensional observational data sets. In this paper, it is shown that topological information can be derived from a two-dimensional cross section of a density field, and analytic expressions are given for a Gaussian random field. The application of a two-dimensional numerical algorithm for measuring topology to cross sections of three-dimensional models is demonstrated.

  15. Energy density and energy flow of surface waves in a strongly magnetized graphene

    NASA Astrophysics Data System (ADS)

    Moradi, Afshin

    2018-01-01

    General expressions for the energy density and energy flow of plasmonic waves in a two-dimensional massless electron gas (as a simple model of graphene) are obtained by means of the linearized magneto-hydrodynamic model and classical electromagnetic theory when a strong external magnetic field perpendicular to the system is present. Also, analytical expressions for the energy velocity, wave polarization, wave impedance, transverse and longitudinal field strength functions, and attenuation length of surface magneto-plasmon-polariton waves are derived, and numerical results are prepared.

  16. Tunnelling in Dante's Inferno

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Furuuchi, Kazuyuki; Sperling, Marcus, E-mail: kazuyuki.furuuchi@manipal.edu, E-mail: marcus.sperling@univie.ac.at

    2017-05-01

    We study quantum tunnelling in Dante's Inferno model of large field inflation. Such a tunnelling process, which will terminate inflation, becomes problematic if the tunnelling rate is rapid compared to the Hubble time scale at the time of inflation. Consequently, we constrain the parameter space of Dante's Inferno model by demanding a suppressed tunnelling rate during inflation. The constraints are derived and explicit numerical bounds are provided for representative examples. Our considerations are at the level of an effective field theory; hence, the presented constraints have to hold regardless of any UV completion.

  17. First independent lunar gravity field solution in the framework of project GRAZIL

    NASA Astrophysics Data System (ADS)

    Wirnsberger, Harald; Krauss, Sandro; Klinger, Beate; Mayer-Gürr, Torsten

    2017-04-01

    The twin satellite mission Gravity Recovery and Interior Laboratory (GRAIL) aims to recovering the lunar gravity field by means of intersatellite Ka-band ranging (KBR) observations. In order to exploit the potential of KBR data, absolute position information of the two probes is required. Hitherto, the Graz lunar gravity field models (GrazLGM) relies on the official orbit products provided by NASA. In this contribution, we present for the first time a completely independent Graz lunar gravity field model to spherical harmonic degree and order 420. The reduced dynamic orbits of the two probes are determined using variational equations following a batch least squares differential adjustment process. These orbits are based on S-band radiometric tracking data collected by the Deep Space Network and are used for the independent GRAIL gravity field recovery. To reveal a highly accurate lunar gravity field, an integral equation approach using short orbital arcs is adopted to process the KBR data. A comparison to state-of-the-art lunar gravity models computed at NASA-GSFC, NASA-JPL and AIUB demonstrate the progress of Graz lunar gravity field models derived within the project GRAZIL.

  18. Fine-spatial scale predictions of understory species using climate- and LiDAR-derived terrain and canopy metrics

    NASA Astrophysics Data System (ADS)

    Nijland, Wiebe; Nielsen, Scott E.; Coops, Nicholas C.; Wulder, Michael A.; Stenhouse, Gordon B.

    2014-01-01

    Food and habitat resources are critical components of wildlife management and conservation efforts. The grizzly bear (Ursus arctos) has diverse diets and habitat requirements particularly for understory plant species, which are impacted by human developments and forest management activities. We use light detection and ranging (LiDAR) data to predict the occurrence of 14 understory plant species relevant to bear forage and compare our predictions with more conventional climate- and land cover-based models. We use boosted regression trees to model each of the 14 understory species across 4435 km2 using occurrence (presence-absence) data from 1941 field plots. Three sets of models were fitted: climate only, climate and basic land and forest covers from Landsat 30-m imagery, and a climate- and LiDAR-derived model describing both the terrain and forest canopy. Resulting model accuracies varied widely among species. Overall, 8 of 14 species models were improved by including the LiDAR-derived variables. For climate-only models, mean annual precipitation and frost-free periods were the most important variables. With inclusion of LiDAR-derived attributes, depth-to-water table, terrain-intercepted annual radiation, and elevation were most often selected. This suggests that fine-scale terrain conditions affect the distribution of the studied species more than canopy conditions.

  19. Detecting dark-matter waves with a network of precision-measurement tools

    NASA Astrophysics Data System (ADS)

    Derevianko, Andrei

    2018-04-01

    Virialized ultralight fields (VULFs) are viable cold dark-matter candidates and include scalar and pseudoscalar bosonic fields, such as axions and dilatons. Direct searches for VULFs rely on low-energy precision-measurement tools. While previous proposals have focused on detecting coherent oscillations of the VULF signals at the VULF Compton frequencies for individual devices, here I consider a network of such devices. Virialized ultralight fields are essentially dark-matter waves and as such they carry both temporal and spatial phase information. Thereby, the discovery reach can be improved by using networks of precision-measurement tools. To formalize this idea, I derive a spatiotemporal two-point correlation function for the ultralight dark-matter fields in the framework of the standard halo model. Due to VULFs being Gaussian random fields, the derived two-point correlation function fully determines N -point correlation functions. For a network of ND devices within the coherence length of the field, the sensitivity compared to a single device can be improved by a factor of √{ND}. Further, I derive a VULF dark-matter signal profile for an individual device. The resulting line shape is strongly asymmetric due to the parabolic dispersion relation for massive nonrelativistic bosons. I discuss the aliasing effect that extends the discovery reach to VULF frequencies higher than the experimental sampling rate. I present sensitivity estimates and develop a stochastic field signal-to-noise ratio statistic. Finally, I consider an application of the formalism developed to atomic clocks and their networks.

  20. Modeling Neuropsychiatric and Neurodegenerative Diseases With Induced Pluripotent Stem Cells.

    PubMed

    LaMarca, Elizabeth A; Powell, Samuel K; Akbarian, Schahram; Brennand, Kristen J

    2018-01-01

    Human-induced pluripotent stem cells (hiPSCs) have revolutionized our ability to model neuropsychiatric and neurodegenerative diseases, and recent progress in the field is paving the way for improved therapeutics. In this review, we discuss major advances in generating hiPSC-derived neural cells and cutting-edge techniques that are transforming hiPSC technology, such as three-dimensional "mini-brains" and clustered, regularly interspersed short palindromic repeats (CRISPR)-Cas systems. We examine specific examples of how hiPSC-derived neural cells are being used to uncover the pathophysiology of schizophrenia and Parkinson's disease, and consider the future of this groundbreaking research.

  1. Hybrid Higgs inflation: The use of disformal transformation

    NASA Astrophysics Data System (ADS)

    Sato, Seiga; Maeda, Kei-ichi

    2018-04-01

    We propose a hybrid type of the conventional Higgs inflation and new Higgs inflation models. We perform a disformal transformation into the Einstein frame and analyze the background dynamics and the cosmological perturbations in the truncated model, in which we ignore the higher-derivative terms of the Higgs field. From the observed power spectrum of the density perturbations, we obtain the constraint on the nonminimal coupling constant ξ and the mass parameter M in the derivative coupling. Although the primordial tilt ns in the hybrid model barely changes, the tensor-to-scalar ratio r moves from the value in the new Higgs inflationary model to that in the conventional Higgs inflationary model as |ξ | increases. We confirm our results by numerical analysis by ADM formalism of the full theory in the Jordan frame.

  2. Effect of electron reflection on magnetized plasma sheath in an oblique magnetic field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Ting-Ting; Ma, J. X., E-mail: jxma@ustc.edu.cn; Wei, Zi-An

    Magnetized plasma sheaths in an oblique magnetic field were extensively investigated by conventionally assuming Boltzmann relation for electron density. This article presents the study of the magnetized sheath without using the Boltzmann relation but by considering the electron reflection along the magnetic field lines caused by the negative sheath potential. A generalized Bohm criterion is analytically derived, and sheath profiles are numerically obtained, which are compared with the results of the conventional model. The results show that the ion Mach number at the sheath edge normal to the wall has a strong dependence on the wall potential, which differs significantlymore » from the conventional model in which the Mach number is independent of the wall potential. The floating wall potential is lower in the present model than that in the conventional model. Furthermore, the sheath profiles are appreciably narrower in the present model when the wall bias is low, but approach the result of the conventional model when the wall bias is high. The sheath thickness decreases with the increase of ion-to-electron temperature ratio and magnetic field strength but has a complex relationship with the angle of the magnetic field.« less

  3. Simulation study of geometric shape factor approach to estimating earth emitted flux densities from wide field-of-view radiation measurements

    NASA Technical Reports Server (NTRS)

    Weaver, W. L.; Green, R. N.

    1980-01-01

    A study was performed on the use of geometric shape factors to estimate earth-emitted flux densities from radiation measurements with wide field-of-view flat-plate radiometers on satellites. Sets of simulated irradiance measurements were computed for unrestricted and restricted field-of-view detectors. In these simulations, the earth radiation field was modeled using data from Nimbus 2 and 3. Geometric shape factors were derived and applied to these data to estimate flux densities on global and zonal scales. For measurements at a satellite altitude of 600 km, estimates of zonal flux density were in error 1.0 to 1.2%, and global flux density errors were less than 0.2%. Estimates with unrestricted field-of-view detectors were about the same for Lambertian and non-Lambertian radiation models, but were affected by satellite altitude. The opposite was found for the restricted field-of-view detectors.

  4. Virtual Institute of Microbial Stress and Survival: Deduction of Stress Response Pathways in Metal and Radionuclide Reducing Microorganisms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2004-04-17

    The projects application goals are to: (1) To understand bacterial stress-response to the unique stressors in metal/radionuclide contamination sites; (2) To turn this understanding into a quantitative, data-driven model for exploring policies for natural and biostimulatory bioremediation; (3) To implement proposed policies in the field and compare results to model predictions; and (4) Close the experimental/computation cycle by using discrepancies between models and predictions to drive new measurements and construction of new models. The projects science goals are to: (1) Compare physiological and molecular response of three target microorganisms to environmental perturbation; (2) Deduce the underlying regulatory pathways that controlmore » these responses through analysis of phenotype, functional genomic, and molecular interaction data; (3) Use differences in the cellular responses among the target organisms to understand niche specific adaptations of the stress and metal reduction pathways; (4) From this analysis derive an understanding of the mechanisms of pathway evolution in the environment; and (5) Ultimately, derive dynamical models for the control of these pathways to predict how natural stimulation can optimize growth and metal reduction efficiency at field sites.« less

  5. Ising tricriticality in the extended Hubbard model with bond dimerization

    NASA Astrophysics Data System (ADS)

    Fehske, Holger; Ejima, Satoshi; Lange, Florian; Essler, Fabian H. L.

    We explore the quantum phase transition between Peierls and charge-density-wave insulating states in the one-dimensional, half-filled, extended Hubbard model with explicit bond dimerization. We show that the critical line of the continuous Ising transition terminates at a tricritical point, belonging to the universality class of the tricritical Ising model with central charge c=7/10. Above this point, the quantum phase transition becomes first order. Employing a numerical matrix-product-state based (infinite) density-matrix renormalization group method we determine the ground-state phase diagram, the spin and two-particle charge excitations gaps, and the entanglement properties of the model with high precision. Performing a bosonization analysis we can derive a field description of the transition region in terms of a triple sine-Gordon model. This allows us to derive field theory predictions for the power-law (exponential) decay of the density-density (spin-spin) and bond-order-wave correlation functions, which are found to be in excellent agreement with our numerical results. This work was supported by Deutsche Forschungsgemeinschaft (Germany), SFB 652, project B5, and by the EPSRC under Grant No. EP/N01930X/1 (FHLE).

  6. On the Validity of Certain Approximations Used in the Modeling of Nuclear EMP

    DOE PAGES

    Farmer, William A.; Cohen, Bruce I.; Eng, Chester D.

    2016-04-01

    The legacy codes developed for the modeling of EMP, multiple scattering of Compton electrons has typically been modeled by the obliquity factor. A recent publication has examined this approximation in the context of the generated Compton current [W. A. Farmer and A. Friedman, IEEE Trans. Nucl. Sc. 62, 1695 (2015)]. Here, this previous analysis is extended to include the generation of the electromagnetic fields. Obliquity factor predictions are compared with Monte-Carlo models. In using a Monte-Carlo description of scattering, two distributions of scattering angles are considered: Gaussian and a Gaussian with a single-scattering tail. Additionally, legacy codes also neglect themore » radial derivative of the backward-traveling wave for computational efficiency. The neglect of this derivative improperly treats the backward-traveling wave. Moreover, these approximations are examined in the context of a high-altitude burst, and it is shown that in comparison to more complete models, the discrepancy between field amplitudes is roughly two to three percent and between rise-times, 10%. Finally, it is concluded that the biggest factor in determining the rise time of the signal is not the dynamics of the Compton current, but is instead the conductivity.« less

  7. Generalized two-temperature model for coupled phonon-magnon diffusion.

    PubMed

    Liao, Bolin; Zhou, Jiawei; Chen, Gang

    2014-07-11

    We generalize the two-temperature model [Sanders and Walton, Phys. Rev. B 15, 1489 (1977)] for coupled phonon-magnon diffusion to include the effect of the concurrent magnetization flow, with a particular emphasis on the thermal consequence of the magnon flow driven by a nonuniform magnetic field. Working within the framework of the Boltzmann transport equation, we derive the constitutive equations for coupled phonon-magnon transport driven by gradients of both temperature and external magnetic fields, and the corresponding conservation laws. Our equations reduce to the original Sanders-Walton two-temperature model under a uniform external field, but predict a new magnon cooling effect driven by a nonuniform magnetic field in a homogeneous single-domain ferromagnet. We estimate the magnitude of the cooling effect in an yttrium iron garnet, and show it is within current experimental reach. With properly optimized materials, the predicted cooling effect can potentially supplement the conventional magnetocaloric effect in cryogenic applications in the future.

  8. Cavity quantum electrodynamics in the nonperturbative regime

    NASA Astrophysics Data System (ADS)

    De Bernardis, Daniele; Jaako, Tuomas; Rabl, Peter

    2018-04-01

    We study a generic cavity-QED system where a set of (artificial) two-level dipoles is coupled to the electric field of a single-mode L C resonator. This setup is used to derive a minimal quantum mechanical model for cavity QED, which accounts for both dipole-field and direct dipole-dipole interactions. The model is applicable for arbitrary coupling strengths and allows us to extend the usual Dicke model into the nonperturbative regime of QED, where the dipole-field interaction can be associated with an effective fine-structure constant of order unity. In this regime, we identify three distinct classes of normal, superradiant, and subradiant vacuum states and discuss their characteristic properties and the transitions between them. Our findings reconcile many of the previous, often contradictory predictions in this field and establish a common theoretical framework to describe ultrastrong-coupling phenomena in a diverse range of cavity-QED platforms.

  9. A phenomenological model of solar flares

    NASA Technical Reports Server (NTRS)

    Colgate, S. A.

    1978-01-01

    The energy of solar flares is derived from the magnetic energy of fields convected to the sun's surface and subsequently converted to heat and energetic particles within the chromosphere. The circumstances of this conversion in most current models is magnetic flux annihilation at a neutral sheet. An analysis is conducted of the constraints of flux annihilation. It is shown that the present evidence of solar cosmic rays, X-rays, gamma-rays, and total energy suggests a choice of annihilation not at a neutral point, but by an enhanced dissipation of a field-aligned current. The field configuration is related both to its origin and to the extensive theory and laboratory experiments concerned with this configuration in magnetic fusion. The magnetic field model is applied to the August 4 flare. It is shown how the plasma heating in the annihilation region balanced by thermal conduction leads to a plasma temperature of about 20 million deg K.

  10. A model for the nonlocal transport and the associated distribution function deformation in magnetized laser-plasmas

    NASA Astrophysics Data System (ADS)

    Nicolaï, Ph.; Feugeas, J.-L.; Schurtz, G.

    2006-06-01

    We present a model of nonlocal transport for multidimensional radiation magneto hydrodynamic codes. In laser produced plasmas, it is now believed that the heat transfert can be strongly modified by the nonlocal nature of the electron conduction. Nevertheless other mechanisms as self generated magnetic fields may affect heat transport too. The model described in this work aims at extending the formula of G. Schurtz, Ph. Nicolaï and M. Busquet [1] to magnetized plasmas. A system of nonlocal equations is derived from kinetic equations with self-consistent electric and magnetic fields. These equations are analyzed and applied to a physical problem in order to demonstrate the main features of the model.

  11. Quantum Impurity Models as Reference Systems for Strongly Correlated Materials: The Road from the Kondo Impurity Model to First Principles Electronic Structure Calculations with Dynamical Mean-Field Theory

    NASA Astrophysics Data System (ADS)

    Kotliar, Gabriel

    2005-01-01

    Dynamical mean field theory (DMFT) relates extended systems (bulk solids, surfaces and interfaces) to quantum impurity models (QIM) satisfying a self-consistency condition. This mapping provides an economic description of correlated electron materials. It is currently used in practical computations of physical properties of real materials. It has also great conceptual value, providing a simple picture of correlated electron phenomena on the lattice, using concepts derived from quantum impurity models such as the Kondo effect. DMFT can also be formulated as a first principles electronic structure method and is applicable to correlated materials.

  12. Performance specifications and six sigma theory: Clinical chemistry and industry compared.

    PubMed

    Oosterhuis, W P; Severens, M J M J

    2018-04-11

    Analytical performance specifications are crucial in test development and quality control. Although consensus has been reached on the use of biological variation to derive these specifications, no consensus has been reached which model should be preferred. The Six Sigma concept is widely applied in industry for quality specifications of products and can well be compared with Six Sigma models in clinical chemistry. However, the models for measurement specifications differ considerably between both fields: where the sigma metric is used in clinical chemistry, in industry the Number of Distinct Categories is used instead. In this study the models in both fields are compared and discussed. Copyright © 2018. Published by Elsevier Inc.

  13. A statistical model for radar images of agricultural scenes

    NASA Technical Reports Server (NTRS)

    Frost, V. S.; Shanmugan, K. S.; Holtzman, J. C.; Stiles, J. A.

    1982-01-01

    The presently derived and validated statistical model for radar images containing many different homogeneous fields predicts the probability density functions of radar images of entire agricultural scenes, thereby allowing histograms of large scenes composed of a variety of crops to be described. Seasat-A SAR images of agricultural scenes are accurately predicted by the model on the basis of three assumptions: each field has the same SNR, all target classes cover approximately the same area, and the true reflectivity characterizing each individual target class is a uniformly distributed random variable. The model is expected to be useful in the design of data processing algorithms and for scene analysis using radar images.

  14. Quantizing the electromagnetic field near two-sided semitransparent mirrors

    NASA Astrophysics Data System (ADS)

    Furtak-Wells, Nicholas; Clark, Lewis A.; Purdy, Robert; Beige, Almut

    2018-04-01

    This paper models light scattering through flat surfaces with finite transmission, reflection, and absorption rates, with wave packets approaching the mirror from both sides. While using the same notion of photons as in free space, our model also accounts for the presence of mirror images and the possible exchange of energy between the electromagnetic field and the mirror surface. To test our model, we derive the spontaneous decay rate and the level shift of an atom in front of a semitransparent mirror as a function of its transmission and reflection rates. When considering limiting cases and using standard approximations, our approach reproduces well-known results but it also paves the way for the modeling of more complex scenarios.

  15. Construction of Covariance Functions with Variable Length Fields

    NASA Technical Reports Server (NTRS)

    Gaspari, Gregory; Cohn, Stephen E.; Guo, Jing; Pawson, Steven

    2005-01-01

    This article focuses on construction, directly in physical space, of three-dimensional covariance functions parametrized by a tunable length field, and on an application of this theory to reproduce the Quasi-Biennial Oscillation (QBO) in the Goddard Earth Observing System, Version 4 (GEOS-4) data assimilation system. These Covariance models are referred to as multi-level or nonseparable, to associate them with the application where a multi-level covariance with a large troposphere to stratosphere length field gradient is used to reproduce the QBO from sparse radiosonde observations in the tropical lower stratosphere. The multi-level covariance functions extend well-known single level covariance functions depending only on a length scale. Generalizations of the first- and third-order autoregressive covariances in three dimensions are given, providing multi-level covariances with zero and three derivatives at zero separation, respectively. Multi-level piecewise rational covariances with two continuous derivatives at zero separation are also provided. Multi-level powerlaw covariances are constructed with continuous derivatives of all orders. Additional multi-level covariance functions are constructed using the Schur product of single and multi-level covariance functions. A multi-level powerlaw covariance used to reproduce the QBO in GEOS-4 is described along with details of the assimilation experiments. The new covariance model is shown to represent the vertical wind shear associated with the QBO much more effectively than in the baseline GEOS-4 system.

  16. Tachyon warm-intermediate inflationary universe model in high dissipative regime

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Setare, M.R.; Kamali, V., E-mail: rezakord@ipm.ir, E-mail: vkamali1362@gmail.com

    2012-08-01

    We consider tachyonic warm-inflationary models in the context of intermediate inflation. We derive the characteristics of this model in slow-roll approximation and develop our model in two cases, 1- For a constant dissipative parameter Γ. 2- Γ as a function of tachyon field φ. We also describe scalar and tensor perturbations for this scenario. The parameters appearing in our model are constrained by recent observational data. We find that the level of non-Gaussianity for this model is comparable with non-tachyonic model.

  17. Covariant diagrams for one-loop matching

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Zhengkang

    Here, we present a diagrammatic formulation of recently-revived covariant functional approaches to one-loop matching from an ultraviolet (UV) theory to a low-energy effective field theory. Various terms following from a covariant derivative expansion (CDE) are represented by diagrams which, unlike conventional Feynman diagrams, involve gauge-covariant quantities and are thus dubbed "covariant diagrams." The use of covariant diagrams helps organize and simplify one-loop matching calculations, which we illustrate with examples. Of particular interest is the derivation of UV model-independent universal results, which reduce matching calculations of specific UV models to applications of master formulas. We also show how such derivation canmore » be done in a more concise manner than the previous literature, and discuss how additional structures that are not directly captured by existing universal results, including mixed heavy-light loops, open covariant derivatives, and mixed statistics, can be easily accounted for.« less

  18. Covariant diagrams for one-loop matching

    DOE PAGES

    Zhang, Zhengkang

    2017-05-30

    Here, we present a diagrammatic formulation of recently-revived covariant functional approaches to one-loop matching from an ultraviolet (UV) theory to a low-energy effective field theory. Various terms following from a covariant derivative expansion (CDE) are represented by diagrams which, unlike conventional Feynman diagrams, involve gauge-covariant quantities and are thus dubbed "covariant diagrams." The use of covariant diagrams helps organize and simplify one-loop matching calculations, which we illustrate with examples. Of particular interest is the derivation of UV model-independent universal results, which reduce matching calculations of specific UV models to applications of master formulas. We also show how such derivation canmore » be done in a more concise manner than the previous literature, and discuss how additional structures that are not directly captured by existing universal results, including mixed heavy-light loops, open covariant derivatives, and mixed statistics, can be easily accounted for.« less

  19. Electric-field tunable spin diode FMR in patterned PMN-PT/NiFe structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ziętek, Slawomir, E-mail: zietek@agh.edu.pl; Skowroński, Witold; Stobiecki, Tomasz

    Dynamic properties of NiFe thin films on PMN-PT piezoelectric substrate are investigated using the spin-diode method. Ferromagnetic resonance (FMR) spectra of microstrips with varying width are measured as a function of magnetic field and frequency. The FMR frequency is shown to depend on the electric field applied across the substrate, which induces strain in the NiFe layer. Electric field tunability of up to 100 MHz per 1 kV/cm is achieved. An analytical model based on total energy minimization and the Landau-Lifshitz-Gilbert equation, taking into account the magnetostriction effect, is used to explain the measured dynamics. Based on this model, conditions formore » optimal electric-field tunable spin diode FMR in patterned NiFe/PMN-PT structures are derived.« less

  20. Magnetic field induced switching of the antiferromagnetic order parameter in thin films of magnetoelectric chromia

    NASA Astrophysics Data System (ADS)

    Fallarino, Lorenzo; Berger, Andreas; Binek, Christian

    2015-02-01

    A Landau-theoretical approach is utilized to model the magnetic field induced reversal of the antiferromagnetic order parameter in thin films of magnetoelectric antiferromagnets. A key ingredient of this peculiar switching phenomenon is the presence of a robust spin polarized state at the surface of the antiferromagnetic films. Surface or boundary magnetization is symmetry allowed in magnetoelectric antiferromagnets and experimentally established for chromia thin films. It couples rigidly to the antiferromagnetic order parameter and its Zeeman energy creates a pathway to switch the antiferromagnet via magnetic field application. In the framework of a minimalist Landau free energy expansion, the temperature dependence of the switching field and the field dependence of the transition width are derived. Least-squares fits to magnetometry data of (0001 ) textured chromia thin films strongly support this model of the magnetic reversal mechanism.

  1. A magnetospheric magnetic field model with flexible current systems driven by independent physical parameters

    NASA Technical Reports Server (NTRS)

    Hilmer, Robert V.; Voigt, Gerd-Hannes

    1995-01-01

    A tilt-dependent magnetic field model of the Earth's magnetosphere with variable magnetopause standoff distance is presented. Flexible analytic representations for the ring and cross-tail currents, each composed of the elements derived from the Tsyganenko and Usmanov (1982) model, are combined with the fully shielded vacuum dipole configurations of Voigt (1981). Although the current sheet does not warp in the y-z plane, changes in the shape and position of the neutral sheet with dipole tilt are consistent with both MHD equilibrium theory and observations. In addition, there is good agreement with observed Delta B profiles and the average equatorial contours of magnetic field magnitude. While the dipole field is rigorously shielded within the defined magnetopause, the ring and cross-tails currents are not similarly confined, consequently, the model's region of validity is limited to the inner magnetosphere. The model depends on four independent external parameters. We present a simple but limited method of simulating several substorm related magnetic field changes associated with the disrupion of the near-Earth cross-tail current sheet and collapse of the midnight magnetotail field region. This feature further facilitates the generation of magnetic field configuration time sequences useful in plasma convection simulations of real magnetospheric events.

  2. Revision of empirical electric field modeling in the inner magnetosphere using Cluster data

    NASA Astrophysics Data System (ADS)

    Matsui, H.; Torbert, R. B.; Spence, H. E.; Khotyaintsev, Yu. V.; Lindqvist, P.-A.

    2013-07-01

    Using Cluster data from the Electron Drift (EDI) and the Electric Field and Wave (EFW) instruments, we revise our empirically-based, inner-magnetospheric electric field (UNH-IMEF) model at 22.662 mV/m; Kp<1, 1≤Kp<2, 2≤Kp<3, 3≤Kp<4, 4≤Kp<5, and Kp≥4+. Patterns consist of one set of data and processing for smaller activities, and another for higher activities. As activity increases, the skewed potential contour related to the partial ring current appears on the nightside. With the revised analysis, we find that the skewed potential contours get clearer and potential contours get denser on the nightside and morningside. Since the fluctuating components are not negligible, standard deviations from the modeled values are included in the model. In this study, we perform validation of the derived model more extensively. We find experimentally that the skewed contours are located close to the last closed equipotential, consistent with previous theories. This gives physical context to our model and serves as one validation effort. As another validation effort, the derived results are compared with other models/measurements. From these comparisons, we conclude that our model has some clear advantages over the others.

  3. Evaluating the Performance of the ff99SB Force Field Based on NMR Scalar Coupling Data

    PubMed Central

    Wickstrom, Lauren; Okur, Asim; Simmerling, Carlos

    2009-01-01

    Abstract Force-field validation is essential for the identification of weaknesses in current models and the development of more accurate models of biomolecules. NMR coupling and relaxation methods have been used to effectively diagnose the strengths and weaknesses of many existing force fields. Studies using the ff99SB force field have shown excellent agreement between experimental and calculated order parameters and residual dipolar calculations. However, recent studies have suggested that ff99SB demonstrates poor agreement with J-coupling constants for short polyalanines. We performed extensive replica-exchange molecular-dynamics simulations on Ala3 and Ala5 in TIP3P and TIP4P-Ew solvent models. Our results suggest that the performance of ff99SB is among the best of currently available models. In addition, scalar coupling constants derived from simulations in the TIP4P-Ew model show a slight improvement over those obtained using the TIP3P model. Despite the overall excellent agreement, the data suggest areas for possible improvement. PMID:19651043

  4. Modeling Progressive Failure of Bonded Joints Using a Single Joint Finite Element

    NASA Technical Reports Server (NTRS)

    Stapleton, Scott E.; Waas, Anthony M.; Bednarcyk, Brett A.

    2010-01-01

    Enhanced finite elements are elements with an embedded analytical solution which can capture detailed local fields, enabling more efficient, mesh-independent finite element analysis. In the present study, an enhanced finite element is applied to generate a general framework capable of modeling an array of joint types. The joint field equations are derived using the principle of minimum potential energy, and the resulting solutions for the displacement fields are used to generate shape functions and a stiffness matrix for a single joint finite element. This single finite element thus captures the detailed stress and strain fields within the bonded joint, but it can function within a broader structural finite element model. The costs associated with a fine mesh of the joint can thus be avoided while still obtaining a detailed solution for the joint. Additionally, the capability to model non-linear adhesive constitutive behavior has been included within the method, and progressive failure of the adhesive can be modeled by using a strain-based failure criteria and re-sizing the joint as the adhesive fails. Results of the model compare favorably with experimental and finite element results.

  5. Probabilistic models for reactive behaviour in heterogeneous condensed phase media

    NASA Astrophysics Data System (ADS)

    Baer, M. R.; Gartling, D. K.; DesJardin, P. E.

    2012-02-01

    This work presents statistically-based models to describe reactive behaviour in heterogeneous energetic materials. Mesoscale effects are incorporated in continuum-level reactive flow descriptions using probability density functions (pdfs) that are associated with thermodynamic and mechanical states. A generalised approach is presented that includes multimaterial behaviour by treating the volume fraction as a random kinematic variable. Model simplifications are then sought to reduce the complexity of the description without compromising the statistical approach. Reactive behaviour is first considered for non-deformable media having a random temperature field as an initial state. A pdf transport relationship is derived and an approximate moment approach is incorporated in finite element analysis to model an example application whereby a heated fragment impacts a reactive heterogeneous material which leads to a delayed cook-off event. Modelling is then extended to include deformation effects associated with shock loading of a heterogeneous medium whereby random variables of strain, strain-rate and temperature are considered. A demonstrative mesoscale simulation of a non-ideal explosive is discussed that illustrates the joint statistical nature of the strain and temperature fields during shock loading to motivate the probabilistic approach. This modelling is derived in a Lagrangian framework that can be incorporated in continuum-level shock physics analysis. Future work will consider particle-based methods for a numerical implementation of this modelling approach.

  6. Large-scale modeling of rain fields from a rain cell deterministic model

    NASA Astrophysics Data System (ADS)

    FéRal, Laurent; Sauvageot, Henri; Castanet, Laurent; Lemorton, JoëL.; Cornet, FréDéRic; Leconte, Katia

    2006-04-01

    A methodology to simulate two-dimensional rain rate fields at large scale (1000 × 1000 km2, the scale of a satellite telecommunication beam or a terrestrial fixed broadband wireless access network) is proposed. It relies on a rain rate field cellular decomposition. At small scale (˜20 × 20 km2), the rain field is split up into its macroscopic components, the rain cells, described by the Hybrid Cell (HYCELL) cellular model. At midscale (˜150 × 150 km2), the rain field results from the conglomeration of rain cells modeled by HYCELL. To account for the rain cell spatial distribution at midscale, the latter is modeled by a doubly aggregative isotropic random walk, the optimal parameterization of which is derived from radar observations at midscale. The extension of the simulation area from the midscale to the large scale (1000 × 1000 km2) requires the modeling of the weather frontal area. The latter is first modeled by a Gaussian field with anisotropic covariance function. The Gaussian field is then turned into a binary field, giving the large-scale locations over which it is raining. This transformation requires the definition of the rain occupation rate over large-scale areas. Its probability distribution is determined from observations by the French operational radar network ARAMIS. The coupling with the rain field modeling at midscale is immediate whenever the large-scale field is split up into midscale subareas. The rain field thus generated accounts for the local CDF at each point, defining a structure spatially correlated at small scale, midscale, and large scale. It is then suggested that this approach be used by system designers to evaluate diversity gain, terrestrial path attenuation, or slant path attenuation for different azimuth and elevation angle directions.

  7. Modeling electro-magneto-hydrodynamic thermo-fluidic transport of biofluids with new trend of fractional derivative without singular kernel

    NASA Astrophysics Data System (ADS)

    Abdulhameed, M.; Vieru, D.; Roslan, R.

    2017-10-01

    This paper investigates the electro-magneto-hydrodynamic flow of the non-Newtonian behavior of biofluids, with heat transfer, through a cylindrical microchannel. The fluid is acted by an arbitrary time-dependent pressure gradient, an external electric field and an external magnetic field. The governing equations are considered as fractional partial differential equations based on the Caputo-Fabrizio time-fractional derivatives without singular kernel. The usefulness of fractional calculus to study fluid flows or heat and mass transfer phenomena was proven. Several experimental measurements led to conclusion that, in such problems, the models described by fractional differential equations are more suitable. The most common time-fractional derivative used in Continuum Mechanics is Caputo derivative. However, two disadvantages appear when this derivative is used. First, the definition kernel is a singular function and, secondly, the analytical expressions of the problem solutions are expressed by generalized functions (Mittag-Leffler, Lorenzo-Hartley, Robotnov, etc.) which, generally, are not adequate to numerical calculations. The new time-fractional derivative Caputo-Fabrizio, without singular kernel, is more suitable to solve various theoretical and practical problems which involve fractional differential equations. Using the Caputo-Fabrizio derivative, calculations are simpler and, the obtained solutions are expressed by elementary functions. Analytical solutions of the biofluid velocity and thermal transport are obtained by means of the Laplace and finite Hankel transforms. The influence of the fractional parameter, Eckert number and Joule heating parameter on the biofluid velocity and thermal transport are numerically analyzed and graphic presented. This fact can be an important in Biochip technology, thus making it possible to use this analysis technique extremely effective to control bioliquid samples of nanovolumes in microfluidic devices used for biological analysis and medical diagnosis.

  8. Theory of cosmological perturbations with cuscuton

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boruah, Supranta S.; Kim, Hyung J.; Geshnizjani, Ghazal, E-mail: ssarmabo@uwaterloo.ca, E-mail: h268kim@uwaterloo.ca, E-mail: ggeshniz@uwaterloo.ca

    2017-07-01

    This paper presents the first derivation of the quadratic action for curvature perturbations, ζ, within the framework of cuscuton gravity. We study the scalar cosmological perturbations sourced by a canonical single scalar field in the presence of cuscuton field. We identify ζ as comoving curvature with respect to the source field and we show that it retains its conservation characteristic on super horizon scales. The result provides an explicit proof that cuscuton modification of gravity around Friedmann-Lemaitre-Robertson-Walker (FLRW) metric is ghost free. We also investigate the potential development of other instabilities in cuscuton models. We find that in a largemore » class of these models, there is no generic instability problem. However, depending on the details of slow-roll parameters, specific models may display gradient instabilities.« less

  9. Measured close lightning leader-step electric-field-derivative waveforms.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jordan, Doug M.; Hill, Dustin; Biagi, Christopher J.

    2010-12-01

    We characterize the measured electric field-derivative (dE/dt) waveforms of lightning stepped-leader steps from three negative lightning flashes at distances of tens to hundreds of meters. Electromagnetic signatures of leader steps at such close distances have rarely been documented in previous literature. Individual leader-step three-dimensional locations are determined by a dE/dt TOA system. The leader-step field derivative is typically a bipolar pulse with a sharp initial half-cycle of the same polarity as that of the return stroke, followed by an opposite polarity overshoot that decays relatively slowly to background level. This overshoot increases in amplitude relative to the initial peak andmore » becomes dominant as range decreases. The initial peak is often preceded by a 'slow front,' similar to the slow front that precedes the fast transition to peak in first return stroke dE/dt and E waveforms. The overall step-field waveform duration is typically less than 1 {micro}s. The mean initial peak of dE/dt, range-normalized to 100 km, is 7.4 V m{sup -1} {micro}s{sup -1} (standard deviation (S.D.), 3.7 V m{sup -1} {micro}s{sup -1}, N = 103), the mean half-peak width is 33.5 ns (S.D., 11.9 ns, N = 69), and the mean 10-to-90% risetime is 43.6 ns (S.D., 24.2 ns, N = 69). From modeling, we determine the properties of the leader step currents which produced two typical measured field derivatives, and we use one of these currents to calculate predicted leader step E and dE/dt as a function of source range and height, the results being in good agreement with our observations. The two modeled current waveforms had maximum rates of current rise-to-peak near 100 kA {micro}s{sup -1}, peak currents in the 5-7 kA range, current half-peak widths of about 300 ns, and charge transfers of {approx}3 mC. As part of the modeling, those currents were propagated upward at 1.5 x 10{sup 8} m s{sup -1}, with their amplitudes decaying exponentially with a decay height constant of 25 m.« less

  10. Modeling UV-B Effects on Primary Production Throughout the Southern Ocean Using Multi-Sensor Satellite Data

    NASA Technical Reports Server (NTRS)

    Lubin, Dan

    2001-01-01

    This study has used a combination of ocean color, backscattered ultraviolet, and passive microwave satellite data to investigate the impact of the springtime Antarctic ozone depletion on the base of the Antarctic marine food web - primary production by phytoplankton. Spectral ultraviolet (UV) radiation fields derived from the satellite data are propagated into the water column where they force physiologically-based numerical models of phytoplankton growth. This large-scale study has been divided into two components: (1) the use of Total Ozone Mapping Spectrometer (TOMS) and Special Sensor Microwave Imager (SSM/I) data in conjunction with radiative transfer theory to derive the surface spectral UV irradiance throughout the Southern Ocean; and (2) the merging of these UV irradiances with the climatology of chlorophyll derived from SeaWiFS data to specify the input data for the physiological models.

  11. Three-dimensional turbulent-mixing-length modeling for discrete-hole coolant injection into a crossflow

    NASA Technical Reports Server (NTRS)

    Wang, C. R.; Papell, S. S.

    1983-01-01

    Three dimensional mixing length models of a flow field immediately downstream of coolant injection through a discrete circular hole at a 30 deg angle into a crossflow were derived from the measurements of turbulence intensity. To verify their effectiveness, the models were used to estimate the anisotropic turbulent effects in a simplified theoretical and numerical analysis to compute the velocity and temperature fields. With small coolant injection mass flow rate and constant surface temperature, numerical results of the local crossflow streamwise velocity component and surface heat transfer rate are consistent with the velocity measurement and the surface film cooling effectiveness distributions reported in previous studies.

  12. Three-dimensional turbulent-mixing-length modeling for discrete-hole coolant injection into a crossflow

    NASA Astrophysics Data System (ADS)

    Wang, C. R.; Papell, S. S.

    1983-09-01

    Three dimensional mixing length models of a flow field immediately downstream of coolant injection through a discrete circular hole at a 30 deg angle into a crossflow were derived from the measurements of turbulence intensity. To verify their effectiveness, the models were used to estimate the anisotropic turbulent effects in a simplified theoretical and numerical analysis to compute the velocity and temperature fields. With small coolant injection mass flow rate and constant surface temperature, numerical results of the local crossflow streamwise velocity component and surface heat transfer rate are consistent with the velocity measurement and the surface film cooling effectiveness distributions reported in previous studies.

  13. Quantum gravitational corrections from the Wheeler–DeWitt equation for scalar–tensor theories

    NASA Astrophysics Data System (ADS)

    Steinwachs, Christian F.; van der Wild, Matthijs L.

    2018-07-01

    We perform the canonical quantization of a general scalar–tensor theory and derive the first quantum gravitational corrections following from a semiclassical expansion of the Wheeler–DeWitt equation. The non-minimal coupling of the scalar field to gravity induces a derivative coupling between the scalar field and the gravitational degrees of freedom, which prevents a direct application of the expansion scheme. We address this technical difficulty by transforming the theory from the Jordan frame to the Einstein frame. We find that a large non-minimal coupling can have strong effects on the quantum gravitational correction terms. We briefly discuss these effects in the context of the specific model of Higgs inflation.

  14. Semiclassical Models for Virtual Antiparticle Pairs, the Unit of Charge e, and the QCD Coupling alpha(sub s)

    NASA Technical Reports Server (NTRS)

    Batchelor, David; Zukor, Dorothy (Technical Monitor)

    2001-01-01

    New semiclassical models of virtual antiparticle pairs are used to compute the pair lifetimes, and good agreement with the Heisenberg lifetimes from quantum field theory (QFT) is found. The modeling method applies to both the electromagnetic and color forces. Evaluation of the action integral of potential field fluctuation for each interaction potential yields approximately Planck's constant/2 for both electromagnetic and color fluctuations, in agreement with QFT. Thus each model is a quantized semiclassical representation for such virtual antiparticle pairs, to good approximation. When the results of the new models and QFT are combined, formulae for e and alpha(sub s)(q) are derived in terms of only Planck's constant and c.

  15. Integrating ecosystem sampling, gradient modeling, remote sensing, and ecosystem simulation to create spatially explicit landscape inventories

    Treesearch

    Robert E. Keane; Matthew G. Rollins; Cecilia H. McNicoll; Russell A. Parsons

    2002-01-01

    Presented is a prototype of the Landscape Ecosystem Inventory System (LEIS), a system for creating maps of important landscape characteristics for natural resource planning. This system uses gradient-based field inventories coupled with gradient modeling remote sensing, ecosystem simulation, and statistical analyses to derive spatial data layers required for ecosystem...

  16. Total solar irradiance reconstruction since 1700 using a flux transport model

    NASA Astrophysics Data System (ADS)

    Dasi Espuig, Maria; Krivova, Natalie; Solanki, Sami K.; Jiang, Jie

    Reconstructions of solar irradiance into the past are crucial for studies of solar influence on climate. Models based on the assumption that irradiance changes are caused by the evolution of the photospheric magnetic fields have been most successful in reproducing the measured irradiance variations. Daily magnetograms, such as those from MDI and HMI, provide the most detailed information on the changing distribution of the photospheric magnetic fields. Since such magnetograms are only available from 1974, we used a surface flux transport model to describe the evolution of the magnetic fields on the solar surface due to the effects of differential rotation, meridional circulation, and turbulent diffusivity, before 1974. In this model, the sources of magnetic flux are the active regions, which are introduced based on sunspot group areas, positions, and tilt angles. The RGO record is, however, only available since 1874. Here we present a model of solar irradiance since 1700, which is based on a semi-synthetic sunspot record. The semi-synthetic record was obtained using statistical relationships between sunspot group properties (areas, positions, tilt angles) derived from the RGO record on one hand, and the cycle strength and phase derived from the sunspot group number (Rg) on the other. These relationships were employed to produce daily records of sunspot group positions, areas, and tilt angles before 1874. The semi-synthetic records were fed into the surface flux transport model to simulate daily magnetograms since 1700. By combining the simulated magnetograms with a SATIRE-type model, we then reconstructed total solar irradiance since 1700.

  17. A Theoretical Model of X-Ray Jets from Young Stellar Objects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takasao, Shinsuke; Suzuki, Takeru K.; Shibata, Kazunari, E-mail: takasao@kwasan.kyoto-u.ac.jp

    There is a subclass of X-ray jets from young stellar objects that are heated very close to the footpoint of the jets, particularly DG Tau jets. Previous models have attributed the strong heating to shocks in the jets. However, the mechanism that localizes the heating at the footpoint remains puzzling. We presented a different model of such X-ray jets, in which the disk atmosphere is magnetically heated. Our disk corona model is based on the so-called nanoflare model for the solar corona. We show that the magnetic heating near the disks can result in the formation of a hot coronamore » with a temperature of ≳10{sup 6} K, even if the average field strength in the disk is moderately weak, ≳1 G. We determine the density and the temperature at the jet base by considering the energy balance between the heating and cooling. We derive the scaling relations of the mass-loss rate and terminal velocity of jets. Our model is applied to the DG Tau jets. The observed temperature and estimated mass-loss rate are consistent with the prediction of our model in the case of a disk magnetic field strength of ∼20 G and a heating region of <0.1 au. The derived scaling relation of the temperature of X-ray jets could be a useful tool for estimating the magnetic field strength. We also find that the jet X-ray can have a significant impact on the ionization degree near the disk surface and the dead zone size.« less

  18. Remote Sensing based modelling of Annual Surface Mass Balances of Chhota Shigiri Glacier, Western Himalayas, India

    NASA Astrophysics Data System (ADS)

    Chandrasekharan, Anita; Ramsankaran, Raaj

    2017-04-01

    The current study aims at modelling glacier mass balances over Chhota Shigiri glacier (32.28o N; 77.58° E) in Himachal Pradesh, India using the Equilibrium Line Altitude (ELA) gradient approach proposed by Rabatel et al. (2005). The model requires yearly ELA, average mass balance and mass balance gradient to estimate annual mass balance of a glacier which can be obtained either through field measurements or remote sensing observations. However, in view of the general scenario of lack of field data for Himalayan glaciers, in this study the model has been applied only using the inputs derived through multi-temporal satellite remote sensing observations thus eliminating the need for any field measurements. Preliminary analysis show that the obtained results are comparable with the observed field mass balance. The results also demonstrate that this approach with remote sensing inputs has potential to be used for glacier mass balance estimations provided good quality multi-temporal remote sensing dataset are available.

  19. Molecular dynamics simulations for mechanical properties of borophene: parameterization of valence force field model and Stillinger-Weber potential

    PubMed Central

    Zhou, Yu-Ping; Jiang, Jin-Wu

    2017-01-01

    While most existing theoretical studies on the borophene are based on first-principles calculations, the present work presents molecular dynamics simulations for the lattice dynamical and mechanical properties in borophene. The obtained mechanical quantities are in good agreement with previous first-principles calculations. The key ingredients for these molecular dynamics simulations are the two efficient empirical potentials developed in the present work for the interaction of borophene with low-energy triangular structure. The first one is the valence force field model, which is developed with the assistance of the phonon dispersion of borophene. The valence force field model is a linear potential, so it is rather efficient for the calculation of linear quantities in borophene. The second one is the Stillinger-Weber potential, whose parameters are derived based on the valence force field model. The Stillinger-Weber potential is applicable in molecular dynamics simulations of nonlinear physical or mechanical quantities in borophene. PMID:28349983

  20. Development of fine-resolution analyses and expanded large-scale forcing properties. Part II: Scale-awareness and application to single-column model experiments

    DOE PAGES

    Feng, Sha; Vogelmann, Andrew M.; Li, Zhijin; ...

    2015-01-20

    Fine-resolution three-dimensional fields have been produced using the Community Gridpoint Statistical Interpolation (GSI) data assimilation system for the U.S. Department of Energy’s Atmospheric Radiation Measurement Program (ARM) Southern Great Plains region. The GSI system is implemented in a multi-scale data assimilation framework using the Weather Research and Forecasting model at a cloud-resolving resolution of 2 km. From the fine-resolution three-dimensional fields, large-scale forcing is derived explicitly at grid-scale resolution; a subgrid-scale dynamic component is derived separately, representing subgrid-scale horizontal dynamic processes. Analyses show that the subgrid-scale dynamic component is often a major component over the large-scale forcing for grid scalesmore » larger than 200 km. The single-column model (SCM) of the Community Atmospheric Model version 5 (CAM5) is used to examine the impact of the grid-scale and subgrid-scale dynamic components on simulated precipitation and cloud fields associated with a mesoscale convective system. It is found that grid-scale size impacts simulated precipitation, resulting in an overestimation for grid scales of about 200 km but an underestimation for smaller grids. The subgrid-scale dynamic component has an appreciable impact on the simulations, suggesting that grid-scale and subgrid-scale dynamic components should be considered in the interpretation of SCM simulations.« less

Top