Calculating binding free energies of host-guest systems using the AMOEBA polarizable force field.
Bell, David R; Qi, Rui; Jing, Zhifeng; Xiang, Jin Yu; Mejias, Christopher; Schnieders, Michael J; Ponder, Jay W; Ren, Pengyu
2016-11-09
Molecular recognition is of paramount interest in many applications. Here we investigate a series of host-guest systems previously used in the SAMPL4 blind challenge by using molecular simulations and the AMOEBA polarizable force field. The free energy results computed by Bennett's acceptance ratio (BAR) method using the AMOEBA polarizable force field ranked favorably among the entries submitted to the SAMPL4 host-guest competition [Muddana, et al., J. Comput.-Aided Mol. Des., 2014, 28, 305-317]. In this work we conduct an in-depth analysis of the AMOEBA force field host-guest binding thermodynamics by using both BAR and the orthogonal space random walk (OSRW) methods. The binding entropy-enthalpy contributions are analyzed for each host-guest system. For systems of inordinate binding entropy-enthalpy values, we further examine the hydrogen bonding patterns and configurational entropy contribution. The binding mechanism of this series of host-guest systems varies from ligand to ligand, driven by enthalpy and/or entropy changes. Convergence of BAR and OSRW binding free energy methods is discussed. Ultimately, this work illustrates the value of molecular modelling and advanced force fields for the exploration and interpretation of binding thermodynamics.
van der Vaart, Arjan
2015-05-01
Protein-DNA binding often involves dramatic conformational changes such as protein folding and DNA bending. While thermodynamic aspects of this behavior are understood, and its biological function is often known, the mechanism by which the conformational changes occur is generally unclear. By providing detailed structural and energetic data, molecular dynamics simulations have been helpful in elucidating and rationalizing protein-DNA binding. This review will summarize recent atomistic molecular dynamics simulations of the conformational dynamics of DNA and protein-DNA binding. A brief overview of recent developments in DNA force fields is given as well. Simulations have been crucial in rationalizing the intrinsic flexibility of DNA, and have been instrumental in identifying the sequence of binding events, the triggers for the conformational motion, and the mechanism of binding for a number of important DNA-binding proteins. Molecular dynamics simulations are an important tool for understanding the complex binding behavior of DNA-binding proteins. With recent advances in force fields and rapid increases in simulation time scales, simulations will become even more important for future studies. This article is part of a Special Issue entitled Recent developments of molecular dynamics. Copyright © 2014. Published by Elsevier B.V.
Ensign, Daniel L; Webb, Lauren J
2011-12-01
Using molecular dynamics simulations, we explore geometric and physical factors contributing to calculated electrostatic fields at the binding surface of the GTPase Ras with a spectroscopically labeled variant of a downstream effector, the Ras-binding domain of Ral guanine nucleotide dissociation stimulator (RalGDS). A related system (differing by mutation of one amino acid) has been studied in our group using vibrational Stark effect spectroscopy, a technique sensitive to electrostatic fields. Electrostatic fields were computed using the AMBER 2003 force field and averaged over snapshots from molecular dynamics simulation. We investigate geometric factors by exploring how the orientation of the spectroscopic probe changes on Ras-effector binding. In addition, we explore the physical origin of electrostatic fields at our spectroscopic probe by comparing contributions to the field from discrete components of the system, such as explicit solvent, residues on the Ras surface, and residues on the RalGDS surface. These models support our experimental hypothesis that vibrational Stark shifts are caused by Ras binding to its effector and not the structural rearrangements of the effector surface or probe reorientation on Ras-effector binding, for at least some of our experimental probes. These calculations provide physical insight into the origin, magnitude, and importance of electrostatic fields in protein-protein interactions and suggest new experiments to probe the field's role in protein docking. Copyright © 2011 Wiley-Liss, Inc.
Stein, Matthias; Pilli, Manohar; Bernauer, Sabine; Habermann, Bianca H.; Zerial, Marino; Wade, Rebecca C.
2012-01-01
Background Rab GTPases constitute the largest subfamily of the Ras protein superfamily. Rab proteins regulate organelle biogenesis and transport, and display distinct binding preferences for effector and activator proteins, many of which have not been elucidated yet. The underlying molecular recognition motifs, binding partner preferences and selectivities are not well understood. Methodology/Principal Findings Comparative analysis of the amino acid sequences and the three-dimensional electrostatic and hydrophobic molecular interaction fields of 62 human Rab proteins revealed a wide range of binding properties with large differences between some Rab proteins. This analysis assists the functional annotation of Rab proteins 12, 14, 26, 37 and 41 and provided an explanation for the shared function of Rab3 and 27. Rab7a and 7b have very different electrostatic potentials, indicating that they may bind to different effector proteins and thus, exert different functions. The subfamily V Rab GTPases which are associated with endosome differ subtly in the interaction properties of their switch regions, and this may explain exchange factor specificity and exchange kinetics. Conclusions/Significance We have analysed conservation of sequence and of molecular interaction fields to cluster and annotate the human Rab proteins. The analysis of three dimensional molecular interaction fields provides detailed insight that is not available from a sequence-based approach alone. Based on our results, we predict novel functions for some Rab proteins and provide insights into their divergent functions and the determinants of their binding partner selectivity. PMID:22523562
Paula, Stefan; Tabet, Michael R; Keenan, Susan M; Welsh, William J; Ball, W James
2003-01-17
Successful immunotherapy of cocaine addiction and overdoses requires cocaine-binding antibodies with specific properties, such as high affinity and selectivity for cocaine. We have determined the affinities of two cocaine-binding murine monoclonal antibodies (mAb: clones 3P1A6 and MM0240PA) for cocaine and its metabolites by [3H]-radioligand binding assays. mAb 3P1A6 (K(d) = 0.22 nM) displayed a 50-fold higher affinity for cocaine than mAb MM0240PA (K(d) = 11 nM) and also had a greater specificity for cocaine. For the systematic exploration of both antibodies' binding specificities, we used a set of approximately 35 cocaine analogues as structural probes by determining their relative binding affinities (RBAs) using an enzyme-linked immunosorbent competition assay. Three-dimensional quantitative structure-activity relationship (3D-QSAR) models on the basis of comparative molecular field analysis (CoMFA) techniques correlated the binding data with structural features of the ligands. The analysis indicated that despite the mAbs' differing specificities for cocaine, the relative contributions of the steric (approximately 80%) and electrostatic (approximately 20%) field interactions to ligand-binding were similar. Generated three-dimensional CoMFA contour plots then located the specific regions about cocaine where the ligand/receptor interactions occurred. While the overall binding patterns of the two mAbs had many features in common, distinct differences were observed about the phenyl ring and the methylester group of cocaine. Furthermore, using previously published data, a 3D-QSAR model was developed for cocaine binding to the dopamine reuptake transporter (DAT) that was compared to the mAb models. Although the relative steric and electrostatic field contributions were similar to those of the mAbs, the DAT cocaine-binding site showed a preference for negatively charged ligands. Besides establishing molecular level insight into the interactions that govern cocaine binding specificity by biopolymers, the three-dimensional images obtained reflect the properties of the mAbs binding pockets and provide the initial information needed for the possible design of novel antibodies with properties optimized for immunotherapy. Copyright 2003 Elsevier Science Ltd.
Exploring Protein-Peptide Recognition Pathways Using a Supervised Molecular Dynamics Approach.
Salmaso, Veronica; Sturlese, Mattia; Cuzzolin, Alberto; Moro, Stefano
2017-04-04
Peptides have gained increased interest as therapeutic agents during recent years. The high specificity and relatively low toxicity of peptide drugs derive from their extremely tight binding to their targets. Indeed, understanding the molecular mechanism of protein-peptide recognition has important implications in the fields of biology, medicine, and pharmaceutical sciences. Even if crystallography and nuclear magnetic resonance are offering valuable atomic insights into the assembling of the protein-peptide complexes, the mechanism of their recognition and binding events remains largely unclear. In this work we report, for the first time, the use of a supervised molecular dynamics approach to explore the possible protein-peptide binding pathways within a timescale reduced up to three orders of magnitude compared with classical molecular dynamics. The better and faster understating of the protein-peptide recognition pathways could be very beneficial in enlarging the applicability of peptide-based drug design approaches in several biotechnological and pharmaceutical fields. Copyright © 2017 Elsevier Ltd. All rights reserved.
Tu, Jing; Li, Jiao Jiao; Shan, Zhi Jie; Zhai, Hong Lin
2017-01-01
The non-nucleoside drugs have been developed to treat HBV infection owing to their increased efficacy and lesser side effects, in which heteroaryldihydropyrimidines (HAPs) have been identified as effective inhibitors of HBV capsid. In this paper, the binding mechanism of HAPs targeting on HBV capsid protein was explored through three-dimensional quantitative structure-activity relationship, molecular dynamics and binding free energy decompositions. The obtained models of comparative molecular field analysis and comparative molecular similarity indices analysis enable the sufficient interpretation of structure-activity relationship of HAPs-HBV. The binding free energy analysis correlates with the experimental data. The computational results disclose that the non-polar contribution is the major driving force and Y132A mutation enhances the binding affinity for inhibitor 2 bound to HBV. The hydrogen bond interactions between the inhibitors and Trp102 help to stabilize the conformation of HAPs-HBV. The study provides insight into the binding mechanism of HAPs-HBV and would be useful for the rational design and modification of new lead compounds of HAP drugs. Copyright © 2016 Elsevier B.V. All rights reserved.
Mangiatordi, Giuseppe Felice; Alberga, Domenico; Siragusa, Lydia; Goracci, Laura; Lattanzi, Gianluca; Nicolotti, Orazio
2015-07-01
Neuromyelitis optica (NMO) is a multiple sclerosis-like immunopathology disease affecting optic nerves and the spinal cord. Its pathological hallmark is the deposition of a typical immunoglobulin, called NMO-IgG, against the water channel Aquaporin-4 (AQP4). Preventing NMO-IgG binding would represent a valuable molecular strategy for a focused NMO therapy. The recent observation that aspartate in position 69 (D69) is determinant for the formation of NMO-IgG epitopes prompted us to carry out intensive Molecular Dynamics (MD) studies on a number of single-point AQP4 mutants. Here, we report a domino effect originating from the point mutation at position 69: we find that the side chain of T62 is reoriented far from its expected position leaning on the lumen of the pore. More importantly, the strength of the H-bond interaction between L53 and T56, at the basis of the loop A, is substantially weakened. These events represent important pieces of a clear-cut mechanistic rationale behind the failure of the NMO-IgG binding, while the water channel function as well as the propensity to aggregate into OAPs remains unaltered. The molecular interaction fields (MIF)-based analysis of cavities complemented MD findings indicating a putative binding site comprising the same residues determining epitope reorganization. In this respect, docking studies unveiled an intriguing perspective to address the future design of small drug-like compounds against NMO. In agreement with recent experimental observations, the present study is the first computational attempt to elucidate NMO-IgG binding at the molecular level, as well as a first effort toward a less elusive AQP4 druggability. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Yang, Zaixing; Wang, Zhigang; Tian, Xingling; Xiu, Peng; Zhou, Ruhong
2012-01-01
Understanding the interaction between carbon nanotubes (CNTs) and biomolecules is essential to the CNT-based nanotechnology and biotechnology. Some recent experiments have suggested that the π-π stacking interactions between protein's aromatic residues and CNTs might play a key role in their binding, which raises interest in large scale modeling of protein-CNT complexes and associated π-π interactions at atomic detail. However, there is concern on the accuracy of classical fixed-charge molecular force fields due to their classical treatments and lack of polarizability. Here, we study the binding of three aromatic residue analogues (mimicking phenylalanine, tyrosine, and tryptophan) and benzene to a single-walled CNT, and compare the molecular mechanical (MM) calculations using three popular fixed-charge force fields (OPLSAA, AMBER, and CHARMM), with quantum mechanical (QM) calculations using the density-functional tight-binding method with the inclusion of dispersion correction (DFTB-D). Two typical configurations commonly found in π-π interactions are used, one with the aromatic rings parallel to the CNT surface (flat), and the other perpendicular (edge). Our calculations reveal that compared to the QM results the MM approaches can appropriately reproduce the strength of π-π interactions for both configurations, and more importantly, the energy difference between them, indicating that the various contributions to π-π interactions have been implicitly included in the van der Waals parameters of the standard MM force fields. Meanwhile, these MM models are less accurate in predicting the exact structural binding patterns (matching surface), meaning there are still rooms to be improved. In addition, we have provided a comprehensive and reliable QM picture for the π-π interactions of aromatic molecules with CNTs in gas phase, which might be used as a benchmark for future force field developments.
Yang, Zaixing; Wang, Zhigang; Tian, Xingling; Xiu, Peng; Zhou, Ruhong
2012-01-14
Understanding the interaction between carbon nanotubes (CNTs) and biomolecules is essential to the CNT-based nanotechnology and biotechnology. Some recent experiments have suggested that the π-π stacking interactions between protein's aromatic residues and CNTs might play a key role in their binding, which raises interest in large scale modeling of protein-CNT complexes and associated π-π interactions at atomic detail. However, there is concern on the accuracy of classical fixed-charge molecular force fields due to their classical treatments and lack of polarizability. Here, we study the binding of three aromatic residue analogues (mimicking phenylalanine, tyrosine, and tryptophan) and benzene to a single-walled CNT, and compare the molecular mechanical (MM) calculations using three popular fixed-charge force fields (OPLSAA, AMBER, and CHARMM), with quantum mechanical (QM) calculations using the density-functional tight-binding method with the inclusion of dispersion correction (DFTB-D). Two typical configurations commonly found in π-π interactions are used, one with the aromatic rings parallel to the CNT surface (flat), and the other perpendicular (edge). Our calculations reveal that compared to the QM results the MM approaches can appropriately reproduce the strength of π-π interactions for both configurations, and more importantly, the energy difference between them, indicating that the various contributions to π-π interactions have been implicitly included in the van der Waals parameters of the standard MM force fields. Meanwhile, these MM models are less accurate in predicting the exact structural binding patterns (matching surface), meaning there are still rooms to be improved. In addition, we have provided a comprehensive and reliable QM picture for the π-π interactions of aromatic molecules with CNTs in gas phase, which might be used as a benchmark for future force field developments.
Borodin, Oleg; Smith, Grant D
2006-03-30
Classical many-body polarizable force fields were developed for n-alkanes, perflouroalkanes, polyethers, ketones, and linear and cyclic carbonates on the basis of quantum chemistry dimer energies of model compounds and empirical thermodynamic liquid-state properties. The dependence of the electron correlation contribution to the dimer binding energy on basis-set size and level of theory was investigated as a function of molecular separation for a number of alkane, ether, and ketone dimers. Molecular dynamics (MD) simulations of the force fields accurately predicted structural, dynamic, and transport properties of liquids and unentangled polymer melts. On average, gas-phase dimer binding energies predicted with the force field were between those from MP2/aug-cc-pvDz and MP2/aug-cc-pvTz quantum chemistry calculations.
Extended Lagrangian formulation of charge-constrained tight-binding molecular dynamics.
Cawkwell, M J; Coe, J D; Yadav, S K; Liu, X-Y; Niklasson, A M N
2015-06-09
The extended Lagrangian Born-Oppenheimer molecular dynamics formalism [Niklasson, Phys. Rev. Lett., 2008, 100, 123004] has been applied to a tight-binding model under the constraint of local charge neutrality to yield microcanonical trajectories with both precise, long-term energy conservation and a reduced number of self-consistent field optimizations at each time step. The extended Lagrangian molecular dynamics formalism restores time reversal symmetry in the propagation of the electronic degrees of freedom, and it enables the efficient and accurate self-consistent optimization of the chemical potential and atomwise potential energy shifts in the on-site elements of the tight-binding Hamiltonian that are required when enforcing local charge neutrality. These capabilities are illustrated with microcanonical molecular dynamics simulations of a small metallic cluster using an sd-valent tight-binding model for titanium. The effects of weak dissipation on the propagation of the auxiliary degrees of freedom for the chemical potential and on-site Hamiltonian matrix elements that is used to counteract the accumulation of numerical noise during trajectories was also investigated.
Löytynoja, T; Niskanen, J; Jänkälä, K; Vahtras, O; Rinkevicius, Z; Ågren, H
2014-11-20
Using ethanol-water solutions as illustration, we demonstrate the capability of the hybrid quantum mechanics/molecular mechanics (QM/MM) paradigm to simulate core photoelectron spectroscopy: the binding energies and the chemical shifts. An integrated approach with QM/MM binding energy calculations coupled to preceding molecular dynamics sampling is adopted to generate binding energies averaged over the solute-solvent configurations available at a particular temperature and pressure and thus allowing for a statistical assessment with confidence levels for the final binding energies. The results are analyzed in terms of the contributions in the molecular mechanics model-electrostatic, polarization, and van der Waals-with atom or bond granulation of the corresponding MM charge and polarizability force-fields. The role of extramolecular charge transfer screening of the core-hole and explicit hydrogen bonding is studied by extending the QM core to cover the first solvation shell. The results are compared to those obtained from pure electrostatic and polarizable continuum models. Particularly, the dependence of the carbon 1s binding energies with respect to the ethanol concentration is studied. Our results indicate that QM/MM can be used as an all-encompassing model to study photoelectron binding energies and chemical shifts in solvent environments.
Force-field and quantum-mechanical binding study of selected SAMPL3 host-guest complexes
NASA Astrophysics Data System (ADS)
Hamaguchi, Nobuko; Fusti-Molnar, Laszlo; Wlodek, Stanislaw
2012-05-01
A Merck molecular force field classical potential combined with Poisson-Boltzmann electrostatics (MMFF/PB) has been used to estimate the binding free energy of seven guest molecules (six tertiary amines and one primary amine) into a synthetic receptor (acyclic cucurbit[4]uril congener) and two benzimidazoles into cyclic cucurbit[7]uril (CB[7]) and cucurbit[8]uril (CB[8]) hosts. In addition, binding enthalpies for the benzimidazoles were calculated with density functional theory (DFT) using the B3LYP functional and a polarizable continuum model (PCM). Although in most cases the MMFF/PB approach returned reasonable agreements with the experiment (±2 kcal/mol), significant, much larger deviations were reported in the case of three host-guest pairs. All four binding enthalpy predictions with the DFT/PCM method suffered 70% or larger deviations from the calorimetry data. Results are discussed in terms of the molecular models used for guest-host complexation and the quality of the intermolecular potentials.
Force fields for describing the solution-phase synthesis of shape-selective metal nanoparticles
NASA Astrophysics Data System (ADS)
Zhou, Ya; Al-Saidi, Wissam; Fichthorn, Kristen
2013-03-01
Polyvinylpyrrolidone (PVP) and polyethylene oxide (PEO) are structure-directing agents that exhibit different performance in the polyol synthesis of Ag nanostructures. The success of these structure-directing agents in selective nanostructure synthesis is often attributed to their selective binding to Ag(100) facets. We use first-principles, density-functional theory (DFT) calculations in a vacuum environment to show that PVP has a stronger preference to bind to Ag(100) than to Ag(111), whereas PEO exhibits much weaker selectivity. To understand the role of solvent in the surface-sensitive binding, we develop classical force fields to describe the interactions of the structure-directing (PVP and PEO) and solvent (ethylene glycol) molecules with various Ag substrates. We parameterize the force fields through force-and-energy matching to DFT results using simulated annealing. We validate the force fields by comparisons to DFT and experimental binding energies. Our force fields reproduce the surface-sensitive binding predicted by DFT calculations. Molecular dynamics simulations based on these force fields can be used to reveal the role of solvent, polymer chain length, and polymer concentration in the selective synthesis of Ag nanostructures.
Abriata, Luciano A.; Dal Peraro, Matteo
2015-01-01
Protein-protein recognition and binding are governed by diffusion, noncovalent forces and conformational flexibility, entangled in a way that only molecular dynamics simulations can dissect at high resolution. Here we exploited ubiquitin’s noncovalent dimerization equilibrium to assess the potential of atomistic simulations to reproduce reversible protein-protein binding, by running submicrosecond simulations of systems with multiple copies of the protein at millimolar concentrations. The simulations essentially fail because they lead to aggregates, yet they reproduce some specificity in the binding interfaces as observed in known covalent and noncovalent ubiquitin dimers. Following similar observations in literature we hint at electrostatics and water descriptions as the main liable force field elements, and propose that their optimization should consider observables relevant to multi-protein systems and unfolded proteins. Within limitations, analysis of binding events suggests salient features of protein-protein recognition and binding, to be retested with improved force fields. Among them, that specific configurations of relative direction and orientation seem to trigger fast binding of two molecules, even over 50 Å distances; that conformational selection can take place within surface-to-surface distances of 10 to 40 Å i.e. well before actual intermolecular contact; and that establishment of contacts between molecules further locks their conformations and relative orientations. PMID:26023027
Huang, Zhenxing; Huang, Ming; Mi, Chenyu; Wang, Tao; Chen, Dong; Teng, Yue
2016-01-01
2-mercaptothiazoline (2-MT) is widely used in many industrial fields, but its residue is potentially harmful to the environment. In this study, to evaluate the biological toxicity of 2-MT at protein level, the interaction between 2-MT and the pivotal antioxidant enzyme—catalase (CAT) was investigated using multiple spectroscopic techniques and molecular modeling. The results indicated that the CAT fluorescence quenching caused by 2-MT should be dominated by a static quenching mechanism through formation of a 2-MT/CAT complex. Furthermore, the identifications of the binding constant, binding forces, and the number of binding sites demonstrated that 2-MT could spontaneously interact with CAT at one binding site mainly via Van der Waals’ forces and hydrogen bonding. Based on the molecular docking simulation and conformation dynamic characterization, it was found that 2-MT could bind into the junctional region of CAT subdomains and that the binding site was close to enzyme active sites, which induced secondary structural and micro-environmental changes in CAT. The experiments on 2-MT toxicity verified that 2-MT significantly inhibited CAT activity via its molecular interaction, where 2-MT concentration and exposure time both affected the inhibitory action. Therefore, the present investigation provides useful information for understanding the toxicological mechanism of 2-MT at the molecular level. PMID:27537873
DOE Office of Scientific and Technical Information (OSTI.GOV)
Villarreal, Oscar D.; Yu, Lili; Department of Laboratory Medicine, Yancheng Vocational Institute of Health Sciences, Yancheng, Jiangsu 224006
Computing the ligand-protein binding affinity (or the Gibbs free energy) with chemical accuracy has long been a challenge for which many methods/approaches have been developed and refined with various successful applications. False positives and, even more harmful, false negatives have been and still are a common occurrence in practical applications. Inevitable in all approaches are the errors in the force field parameters we obtain from quantum mechanical computation and/or empirical fittings for the intra- and inter-molecular interactions. These errors propagate to the final results of the computed binding affinities even if we were able to perfectly implement the statistical mechanicsmore » of all the processes relevant to a given problem. And they are actually amplified to various degrees even in the mature, sophisticated computational approaches. In particular, the free energy perturbation (alchemical) approaches amplify the errors in the force field parameters because they rely on extracting the small differences between similarly large numbers. In this paper, we develop a hybrid steered molecular dynamics (hSMD) approach to the difficult binding problems of a ligand buried deep inside a protein. Sampling the transition along a physical (not alchemical) dissociation path of opening up the binding cavity- -pulling out the ligand- -closing back the cavity, we can avoid the problem of error amplifications by not relying on small differences between similar numbers. We tested this new form of hSMD on retinol inside cellular retinol-binding protein 1 and three cases of a ligand (a benzylacetate, a 2-nitrothiophene, and a benzene) inside a T4 lysozyme L99A/M102Q(H) double mutant. In all cases, we obtained binding free energies in close agreement with the experimentally measured values. This indicates that the force field parameters we employed are accurate and that hSMD (a brute force, unsophisticated approach) is free from the problem of error amplification suffered by many sophisticated approaches in the literature.« less
NASA Astrophysics Data System (ADS)
Ishioka, T.; Yamada, H.; Miyakawa, T.; Morikawa, R.; Akanuma, S.; Yamagishi, A.; Takasu, M.
2016-12-01
Proteins, which incorporate charged and hydrophobic amino acid residues, are useful as a material of nanotechnology. Among these proteins, IPMDH (3-isopropylmalate dehydrogenase), which has thermal stability, has potential as a material of nanofiber. In this study, we performed coarse-grained molecular dynamics simulation of IPMDH using MARTINI force fields, and we investigated the orientation for the binding of IPMDH. In simulation, we analyzed wild type of IPMDH and the mutated IPMDH proteins, where 13, 20, 27, 332, 335 and 338th amino acid residues are replaced by lysine residues which have positive charge and by glutamic acid residues which have negative charge. Since the binding of mutated IPMDH is advantageous compared with the binding of wild type for one orientation, we suggest that the Coulomb interaction for the binding of IPMDH is important.
Field-induced structural control of COx molecules adsorbed on graphene
NASA Astrophysics Data System (ADS)
Matsubara, Manaho; Okada, Susumu
2018-05-01
Using the density functional theory combined with both the van der Waals correction and the effective screening medium method, we investigate the energetics and electronic structures of CO and CO2 molecules adsorbed on graphene surfaces in the field-effect-transistor structure with respect to the external electric field by the excess electrons/holes. The binding energies of CO and CO2 molecules to graphene monotonically increase with increasing hole and electron concentrations. The increase occurs regardless of the molecular conformations to graphene and the counter electrode, indicating that the carrier injection substantially enhances the molecular adsorption on graphene. Injected carriers also modulate the stable molecular conformation, which is metastable in the absence of an electric field.
Let's get honest about sampling.
Mobley, David L
2012-01-01
Molecular simulations see widespread and increasing use in computation and molecular design, especially within the area of molecular simulations applied to biomolecular binding and interactions, our focus here. However, force field accuracy remains a concern for many practitioners, and it is often not clear what level of accuracy is really needed for payoffs in a discovery setting. Here, I argue that despite limitations of today's force fields, current simulation tools and force fields now provide the potential for real benefits in a variety of applications. However, these same tools also provide irreproducible results which are often poorly interpreted. Continued progress in the field requires more honesty in assessment and care in evaluation of simulation results, especially with respect to convergence.
Jozwiak, Krzysztof; Khalid, Chakir; Tanga, Mary J; Berzetei-Gurske, Ilona; Jimenez, Lucita; Kozocas, Joseph A; Woo, Anthony; Zhu, Weizhong; Xiao, Rui-Ping; Abernethy, Darrell R; Wainer, Irving W
2007-06-14
Stereoisomers of fenoterol and six fenoterol derivatives have been synthesized and their binding affinities for the beta2 adrenergic receptor (Kibeta2-AR), the subtype selectivity relative to the beta1-AR (Kibeta1-AR/Kibeta2-AR) and their functional activities were determined. Of the 26 compounds synthesized in the study, submicromolar binding affinities were observed for (R,R)-fenoterol, the (R,R)-isomer of the p-methoxy, and (R,R)- and (R,S)-isomers of 1-naphthyl derivatives and all of these compounds were active at submicromolar concentrations in cardiomyocyte contractility tests. The Kibeta1-AR/Kibeta2-AR ratios were >40 for (R,R)-fenoterol and the (R,R)-p-methoxy and (R,S)-1-naphthyl derivatives and 14 for the (R,R)-1-napthyl derivative. The binding data was analyzed using comparative molecular field analysis (CoMFA), and the resulting model indicated that the fenoterol derivatives interacted with two separate binding sites and one steric restricted site on the pseudo-receptor and that the chirality of the second stereogenic center affected Kibeta2 and subtype selectivity.
Koide, Shohei; Sidhu, Sachdev S.
2010-01-01
Summary Combinatorial libraries built with severely restricted chemical diversity have yielded highly functional synthetic binding proteins. Structural analyses of these minimalist binding sites have revealed the dominant role of large tyrosine residues for mediating molecular contacts and of small serine/glycine residues for providing space and flexibility. The concept of using limited residue types to construct optimized binding proteins mirrors findings in the field of small molecule drug development, where it has been proposed that most drugs are built from a limited set of side chains presented by diverse frameworks. The physicochemical properties of tyrosine make it the amino acid that is most effective for mediating molecular recognition, and protein engineers have taken advantage of these characteristics to build tyrosine-rich protein binding sites that outperform natural proteins in terms of affinity and specificity. Knowledge from preceding studies can be used to improve current designs, and thus, synthetic protein libraries will continue to evolve and improve. In the near future, it seems likely that synthetic binding proteins will supersede natural antibodies for most purposes, and moreover, synthetic proteins will enable many new applications beyond the scope of natural proteins. PMID:19298050
The complex nature of calcium cation interactions with phospholipid bilayers
Melcrová, Adéla; Pokorna, Sarka; Pullanchery, Saranya; Kohagen, Miriam; Jurkiewicz, Piotr; Hof, Martin; Jungwirth, Pavel; Cremer, Paul S.; Cwiklik, Lukasz
2016-01-01
Understanding interactions of calcium with lipid membranes at the molecular level is of great importance in light of their involvement in calcium signaling, association of proteins with cellular membranes, and membrane fusion. We quantify these interactions in detail by employing a combination of spectroscopic methods with atomistic molecular dynamics simulations. Namely, time-resolved fluorescent spectroscopy of lipid vesicles and vibrational sum frequency spectroscopy of lipid monolayers are used to characterize local binding sites of calcium in zwitterionic and anionic model lipid assemblies, while dynamic light scattering and zeta potential measurements are employed for macroscopic characterization of lipid vesicles in calcium-containing environments. To gain additional atomic-level information, the experiments are complemented by molecular simulations that utilize an accurate force field for calcium ions with scaled charges effectively accounting for electronic polarization effects. We demonstrate that lipid membranes have substantial calcium-binding capacity, with several types of binding sites present. Significantly, the binding mode depends on calcium concentration with important implications for calcium buffering, synaptic plasticity, and protein-membrane association. PMID:27905555
The complex nature of calcium cation interactions with phospholipid bilayers
NASA Astrophysics Data System (ADS)
Melcrová, Adéla; Pokorna, Sarka; Pullanchery, Saranya; Kohagen, Miriam; Jurkiewicz, Piotr; Hof, Martin; Jungwirth, Pavel; Cremer, Paul S.; Cwiklik, Lukasz
2016-12-01
Understanding interactions of calcium with lipid membranes at the molecular level is of great importance in light of their involvement in calcium signaling, association of proteins with cellular membranes, and membrane fusion. We quantify these interactions in detail by employing a combination of spectroscopic methods with atomistic molecular dynamics simulations. Namely, time-resolved fluorescent spectroscopy of lipid vesicles and vibrational sum frequency spectroscopy of lipid monolayers are used to characterize local binding sites of calcium in zwitterionic and anionic model lipid assemblies, while dynamic light scattering and zeta potential measurements are employed for macroscopic characterization of lipid vesicles in calcium-containing environments. To gain additional atomic-level information, the experiments are complemented by molecular simulations that utilize an accurate force field for calcium ions with scaled charges effectively accounting for electronic polarization effects. We demonstrate that lipid membranes have substantial calcium-binding capacity, with several types of binding sites present. Significantly, the binding mode depends on calcium concentration with important implications for calcium buffering, synaptic plasticity, and protein-membrane association.
NASA Astrophysics Data System (ADS)
Gilbert, Kathleen M.; Skawinski, William J.; Misra, Milind; Paris, Kristina A.; Naik, Neelam H.; Buono, Ronald A.; Deutsch, Howard M.; Venanzi, Carol A.
2004-11-01
Methylphenidate (MP) binds to the cocaine binding site on the dopamine transporter and inhibits reuptake of dopamine, but does not appear to have the same abuse potential as cocaine. This study, part of a comprehensive effort to identify a drug treatment for cocaine abuse, investigates the effect of choice of calculation technique and of solvent model on the conformational potential energy surface (PES) of MP and a rigid methylphenidate (RMP) analogue which exhibits the same dopamine transporter binding affinity as MP. Conformational analysis was carried out by the AM1 and AM1/SM5.4 semiempirical molecular orbital methods, a molecular mechanics method (Tripos force field with the dielectric set equal to that of vacuum or water) and the HF/6-31G* molecular orbital method in vacuum phase. Although all three methods differ somewhat in the local details of the PES, the general trends are the same for neutral and protonated MP. In vacuum phase, protonation has a distinctive effect in decreasing the regions of space available to the local conformational minima. Solvent has little effect on the PES of the neutral molecule and tends to stabilize the protonated species. The random search (RS) conformational analysis technique using the Tripos force field was found to be capable of locating the minima found by the molecular orbital methods using systematic grid search. This suggests that the RS/Tripos force field/vacuum phase protocol is a reasonable choice for locating the local minima of MP. However, the Tripos force field gave significantly larger phenyl ring rotational barriers than the molecular orbital methods for MP and RMP. For both the neutral and protonated cases, all three methods found the phenyl ring rotational barriers for the RMP conformers/invertamers (denoted as cte, tte, and cta) to be: cte, tte> MP > cta. Solvation has negligible effect on the phenyl ring rotational barrier of RMP. The B3LYP/6-31G* density functional method was used to calculate the phenyl ring rotational barrier for neutral MP and gave results very similar to those of the HF/6-31G* method.
Vanommeslaeghe, Kenno; Guvench, Olgun; MacKerell, Alexander D.
2014-01-01
Molecular Mechanics (MM) force fields are the methods of choice for protein simulations, which are essential in the study of conformational flexibility. Given the importance of protein flexibility in drug binding, MM is involved in most if not all Computational Structure-Based Drug Discovery (CSBDD) projects. This section introduces the reader to the fundamentals of MM, with a special emphasis on how the target data used in the parametrization of force fields determine their strengths and weaknesses. Variations and recent developments such as polarizable force fields are discussed. The section ends with a brief overview of common force fields in CSBDD. PMID:23947650
Shi, Biyun; Zuo, Guanghong; Xiu, Peng; Zhou, Ruhong
2013-04-04
With the widespread applications of nanomaterials such as carbon nanotubes, there is a growing concern on the biosafety of these engineered nanoparticles, in particular their interactions with proteins. In molecular simulations of nanoparticle-protein interactions, the choice of empirical parameters (force fields) plays a decisive role, and thus is of great importance and should be examined carefully before wider applications. Here we compare three commonly used force fields, CHARMM, OPLSAA, and AMBER in study of the competitive binding of a single wall carbon nanotube (SWCNT) with a native proline-rich motif (PRM) ligand on its target protein SH3 domain, a ubiquitous protein-protein interaction mediator involved in signaling and regulatory pathways. We find that the SWCNT displays a general preference over the PRM in binding with SH3 domain in all the three force fields examined, although the degree of preference can be somewhat different, with the AMBER force field showing the highest preference. The SWCNT prevents the ligand from reaching its native binding pocket by (i) occupying the binding pocket directly, and (ii) binding with the ligand itself and then being trapped together onto some off-sites. The π-π stacking interactions between the SWCNT and aromatic residues are found to play a significant role in its binding to the SH3 domain in all the three force fields. Further analyses show that even the SWCNT-ligand binding can also be relatively more stable than the native ligand-protein binding, indicating a serious potential disruption to the protein SH3 function.
Molecular dynamics simulations of AP/HMX composite with a modified force field.
Zhu, Wei; Wang, Xijun; Xiao, Jijun; Zhu, Weihua; Sun, Huai; Xiao, Heming
2009-08-15
An all-atom force field for ammonium perchlorate (AP) is developed with the framework of pcff force field. The structural parameters of AP obtained with the modified force field are in good agreement with experimental values. Molecular dynamics (MD) simulations have been performed to investigate AP/HMX (1,3,5,7-tetranitro-1,3,5,7-tetrazocane) composite at different temperatures. The binding energies, thermal expansion coefficient, and the trigger bond lengths of HMX in the AP/HMX composite have been obtained. The binding energies of the system increase slightly with temperature increasing, peak at 245K, and then gradually decrease. The volume thermal expansion coefficient of the AP/HMX composite has been derived from the volume variation with temperature. As the temperature rises, the maximal lengths of the trigger bond N-NO(2) of HMX increase gradually. The simulated results indicate that the maximal length of trigger bond can be used as a criterion for judging the sensitivity of energetic composite.
Zhang, Tao; Wei, Dong-Qing; Chou, Kuo-Chen
2012-03-01
Comparative molecular field analysis (CoMFA) is a widely used 3D-QSAR method by which we can investigate the potential relation between biological activity of compounds and their structural features. In this study, a new application of this approach is presented by combining the molecular modeling with a new developed pharmacophore model specific to CYP1A2 active site. During constructing the model, we used the molecular dynamics simulation and molecular docking method to select the sensible binding conformations for 17 CYP1A2 substrates based on the experimental data. Subsequently, the results obtained via the alignment of binding conformations of substrates were projected onto the active- site residues, upon which a simple blueprint of active site was produced. It was validated by the experimental and computational results that the model did exhibit the high degree of rationality and provide useful insights into the substrate binding. It is anticipated that our approach can be extended to investigate the protein-ligand interactions for many other enzyme-catalyzed systems as well.
Phage display and molecular imaging: expanding fields of vision in living subjects.
Cochran, R; Cochran, Frank
2010-01-01
In vivo molecular imaging enables non-invasive visualization of biological processes within living subjects, and holds great promise for diagnosis and monitoring of disease. The ability to create new agents that bind to molecular targets and deliver imaging probes to desired locations in the body is critically important to further advance this field. To address this need, phage display, an established technology for the discovery and development of novel binding agents, is increasingly becoming a key component of many molecular imaging research programs. This review discusses the expanding role played by phage display in the field of molecular imaging with a focus on in vivo applications. Furthermore, new methodological advances in phage display that can be directly applied to the discovery and development of molecular imaging agents are described. Various phage library selection strategies are summarized and compared, including selections against purified target, intact cells, and ex vivo tissue, plus in vivo homing strategies. An outline of the process for converting polypeptides obtained from phage display library selections into successful in vivo imaging agents is provided, including strategies to optimize in vivo performance. Additionally, the use of phage particles as imaging agents is also described. In the latter part of the review, a survey of phage-derived in vivo imaging agents is presented, and important recent examples are highlighted. Other imaging applications are also discussed, such as the development of peptide tags for site-specific protein labeling and the use of phage as delivery agents for reporter genes. The review concludes with a discussion of how phage display technology will continue to impact both basic science and clinical applications in the field of molecular imaging.
Ahamed, T K Shameera; Muraleedharan, K
2017-12-01
In this study, ligand based comparative molecular field analysis (CoMFA) with five principal components was performed on class of 3', 4'-dihydroxyflavone derivatives for potent rat 5-LOX inhibitors. The percentage contributions in building of CoMFA model were 91.36% for steric field and 8.6% for electrostatic field. R 2 values for training and test sets were found to be 0.9320 and 0.8259, respectively. In case of LOO, LTO and LMO cross validation test, q 2 values were 0.6587, 0.6479 and 0.5547, respectively. These results indicate that the model has high statistical reliability and good predictive power. The extracted contour maps were used to identify the important regions where the modification was necessary to design a new molecule with improved activity. The study has developed a homology model for rat 5-LOX and recognized the key residues at the binding site. Docking of most active molecule to the binding site of 5-LOX confirmed the stability and rationality of CoMFA model. Based on molecular docking results and CoMFA contour plots, new inhibitors with higher activity with respect to the most active compound in data set were designed. Copyright © 2017 Elsevier Ltd. All rights reserved.
Xu, Huacheng; Guan, Dong-Xing; Zou, Li; Lin, Hui; Guo, Laodong
2018-08-01
Effects of photochemical and microbial degradation on variations in composition and molecular-size of dissolved organic matter (DOM) from different sources (algal and soil) and the subsequent influence on Cu(II) binding were investigated using UV-Vis, fluorescence excitation-emission matrices coupled with parallel factor analysis, flow field-flow fractionation (FlFFF), and metal titration. The degradation processes resulted in an initial rapid decline in the bulk dissolved organic carbon and chromophoric and fluorescent DOM components, followed by a small or little decrease. Specifically, photochemical reaction decreased the aromaticity, humification and apparent molecular weights of all DOM samples, whereas a reverse trend was observed during microbial degradation. The FlFFF fractograms revealed that coagulation of both protein- and humic-like DOM induced an increase in molecular weights for algal-DOM, while the molecular weight enhancement for allochthonous soil samples was mainly attributed to the self-assembly of humic-like components. The Cu(II) binding capacity of algal-derived humic-like and fulvic-like DOM consistently increased during photo- and bio-degradation, while the soil-derived DOM exhibited a slight decline in Cu(II) binding capacity during photo-degradation but a substantial increase during microbial degradation, indicating source- and degradation-dependent metal binding heterogeneities. Pearson correlation analysis demonstrated that the Cu(II) binding potential was mostly related with aromaticity and molecular size for allochthonous soil-derived DOM, but was regulated by both DOM properties and specific degradation processes for autochthonous algal-derived DOM. This study highlighted the coupling role of inherent DOM properties and external environmental processes in regulating metal binding, and provided new insights into metal-DOM interactions and the behavior and fate of DOM-bound metals in aquatic environments. Copyright © 2018 Elsevier Ltd. All rights reserved.
USDA-ARS?s Scientific Manuscript database
A three-dimensional quantitative structure-activity relationship (3D-QSAR) model of sulfonamide analogs binding a monoclonal antibody (MAbSMR) produced against sulfamerazine was carried out by Distance Comparison (DISCOtech), comparative molecular field analysis (CoMFA), and comparative molecular si...
Molecular Imprinting Technology in Quartz Crystal Microbalance (QCM) Sensors.
Emir Diltemiz, Sibel; Keçili, Rüstem; Ersöz, Arzu; Say, Rıdvan
2017-02-24
Molecularly imprinted polymers (MIPs) as artificial antibodies have received considerable scientific attention in the past years in the field of (bio)sensors since they have unique features that distinguish them from natural antibodies such as robustness, multiple binding sites, low cost, facile preparation and high stability under extreme operation conditions (higher pH and temperature values, etc.). On the other hand, the Quartz Crystal Microbalance (QCM) is an analytical tool based on the measurement of small mass changes on the sensor surface. QCM sensors are practical and convenient monitoring tools because of their specificity, sensitivity, high accuracy, stability and reproducibility. QCM devices are highly suitable for converting the recognition process achieved using MIP-based memories into a sensor signal. Therefore, the combination of a QCM and MIPs as synthetic receptors enhances the sensitivity through MIP process-based multiplexed binding sites using size, 3D-shape and chemical function having molecular memories of the prepared sensor system toward the target compound to be detected. This review aims to highlight and summarize the recent progress and studies in the field of (bio)sensor systems based on QCMs combined with molecular imprinting technology.
Natural and artificial binders of polyriboadenylic acid and their effect on RNA structure.
Roviello, Giovanni N; Musumeci, Domenica; Roviello, Valentina; Pirtskhalava, Marina; Egoyan, Alexander; Mirtskhulava, Merab
2015-01-01
The employment of molecular tools with nucleic acid binding ability to specifically control crucial cellular functions represents an important scientific area at the border between biochemistry and pharmaceutical chemistry. In this review we describe several molecular systems of natural or artificial origin, which are able to bind polyriboadenylic acid (poly(rA)) both in its single-stranded or structured forms. Due to the fundamental role played by the poly(rA) tail in the maturation and stability of mRNA, as well as in the initiation of the translation process, compounds able to bind this RNA tract, influencing the mRNA fate, are of special interest for developing innovative biomedical strategies mainly in the field of anticancer therapy.
NASA Astrophysics Data System (ADS)
Zhao, Ming; Wang, Xuefeng; Nolte, David
2009-02-01
In solid-support immunoassays, the transport of target analyte in sample solution to capture molecules on the sensor surface controls the detected binding signal. Depletion of the target analyte in the sample solution adjacent to the sensor surface leads to deviations from ideal association, and causes inhomogeneity of surface binding as analyte concentration varies spatially across the sensor surface. In the field of label-free optical biosensing, studies of mass-transport-limited reaction kinetics have focused on the average response on the sensor surface, but have not addressed binding inhomogeneities caused by mass-transport limitations. In this paper, we employ Molecular Interferometric Imaging (MI2) to study mass-transport-induced inhomogeneity of analyte binding within a single protein spot. Rabbit IgG binding to immobilized protein A/G was imaged at various concentrations and under different flow rates. In the mass-transport-limited regime, enhanced binding at the edges of the protein spots was caused by depletion of analyte towards the center of the protein spots. The magnitude of the inhomogeneous response was a function of analyte reaction rate and sample flow rate.
NASA Astrophysics Data System (ADS)
Jójárt, Balázs; Martinek, Tamás A.; Márki, Árpád
2005-05-01
Molecular docking and 3D-QSAR studies were performed to determine the binding mode for a series of benzoxazine oxytocin antagonists taken from the literature. Structural hypotheses were generated by docking the most active molecule to the rigid receptor by means of AutoDock 3.05. The cluster analysis yielded seven possible binding conformations. These structures were refined by using constrained simulated annealing, and the further ligands were aligned in the refined receptor by molecular docking. A good correlation was found between the estimated Δ G bind and the p K i values for complex F. The Connolly-surface analysis, CoMFA and CoMSIA models q CoMFA 2 = 0.653, q CoMSA 2 = 0.630 and r pred,CoMFA 2 = 0.852 , r pred,CoMSIA 2 = 0.815) confirmed the scoring function results. The structural features of the receptor-ligand complex and the CoMFA and CoMSIA fields are in closely connected. These results suggest that receptor-ligand complex F is the most likely binding hypothesis for the studied benzoxazine analogs.
NASA Astrophysics Data System (ADS)
Menezes, Irwin R. A.; Lopes, Julio C. D.; Montanari, Carlos A.; Oliva, Glaucius; Pavão, Fernando; Castilho, Marcelo S.; Vieira, Paulo C.; Pupo, M.^onica T.
2003-05-01
Drug design strategies based on Comparative Molecular Field Analysis (CoMFA) have been used to predict the activity of new compounds. The major advantage of this approach is that it permits the analysis of a large number of quantitative descriptors and uses chemometric methods such as partial least squares (PLS) to correlate changes in bioactivity with changes in chemical structure. Because it is often difficult to rationalize all variables affecting the binding affinity of compounds using CoMFA solely, the program GRID was used to describe ligands in terms of their molecular interaction fields, MIFs. The program VolSurf that is able to compress the relevant information present in 3D maps into a few descriptors can treat these GRID fields. The binding affinities of a new set of compounds consisting of 13 coumarins, for one of which the three-dimensional ligand-enzyme bound structure is known, were studied. A final model based on the mentioned programs was independently validated by synthesizing and testing new coumarin derivatives. By relying on our knowledge of the real physical data (i.e., combining crystallographic and binding affinity results), it is also shown that ligand-based design agrees with structure-based design. The compound with the highest binding affinity was the coumarin chalepin, isolated from Rutaceae species, with an IC50 value of 55.5 μM towards the enzyme glyceraldehyde-3-phosphate dehydrogenase (gGAPDH) from glycosomes of the parasite Trypanosoma cruzi, the causative agent of Chagas' disease. The proposed models from GRID MIFs have revealed the importance of lipophilic interactions in modulating the inhibition, but without excluding the dependence on stereo-electronic properties as found from CoMFA fields.
Borodin, Oleg
2009-09-10
A number of correlations between heat of vaporization (H(vap)), cation-anion binding energy (E(+/-)), molar volume (V(m)), self-diffusion coefficient (D), and ionic conductivity for 29 ionic liquids have been investigated using molecular dynamics (MD) simulations that employed accurate and validated many-body polarizable force fields. A significant correlation between D and H(vap) has been found, while the best correlation was found for -log(DV(m)) vs H(vap) + 0.28E(+/-). A combination of enthalpy of vaporization and a fraction of the cation-anion binding energy was suggested as a measure of the effective cohesive energy for ionic liquids. A deviation of some ILs from the reported master curve is explained based upon ion packing and proposed diffusion pathways. No general correlations were found between the ion diffusion coefficient and molecular volume or the diffusion coefficient and cation/anion binding energy.
McCormack, Patrick; Han, Fei; Yan, Zijie
2018-02-01
Light-driven self-organization of metal nanoparticles (NPs) can lead to unique optical matter systems, yet simulation of such self-organization (i.e., optical binding) is a complex computational problem that increases nonlinearly with system size. Here we show that a combined electrodynamics-molecular dynamics simulation technique can simulate the trajectories and predict stable configurations of silver NPs in optical fields. The simulated dynamic equilibrium of a two-NP system matches the probability density of oscillations for two optically bound NPs obtained experimentally. The predicted stable configurations for up to eight NPs are further compared to experimental observations of silver NP clusters formed by optical binding in a Bessel beam. All configurations are confirmed to form in real systems, including pentagonal clusters with five-fold symmetry. Our combined simulations and experiments have revealed a diverse optical matter system formed by anisotropic optical binding interactions, providing a new strategy to discover artificial materials.
Prospects of nanoparticle-DNA binding and its implications in medical biotechnology.
An, Hongjie; Jin, Bo
2012-01-01
Bio-nanotechnology is a new interdisciplinary R&D area that integrates engineering and physical science with biology through the development of multifunctional devices and systems, focusing biology inspired processes or their applications, in particular in medical biotechnology. DNA based nanotechnology, in many ways, has been one of the most intensively studied fields in recent years that involves the use and the creation of bio-inspired materials and their technologies for highly selective biosensing, nanoarchitecture engineering and nanoelectronics. Increasing researches have been offered to a fundamental understanding how the interactions between the nanoparticles and DNA molecules could alter DNA molecular structure and its biochemical activities. This minor review describes the mechanisms of the nanoparticle-DNA binding and molecular interactions. We present recent discoveries and research progresses how the nanoparticle-DNA binding could vary DNA molecular structure, DNA detection, and gene therapy. We report a few case studies associated with the application of the nanoparticle-DNA binding devices in medical detection and biotechnology. The potential impacts of the nanoparticles via DNA binding on toxicity of the microorganisms are briefly discussed. The nanoparticle-DNA interactions and their impact on molecular and microbial functionalities have only drown attention in recent a few years. The information presented in this review can provide useful references for further studies on biomedical science and technology. Copyright © 2012 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Khandelwal, Akash; Balaz, Stefan
2007-01-01
Structure-based predictions of binding affinities of ligands binding to proteins by coordination bonds with transition metals, covalent bonds, and bonds involving charge re-distributions are hindered by the absence of proper force fields. This shortcoming affects all methods which use force-field-based molecular simulation data on complex formation for affinity predictions. One of the most frequently used methods in this category is the Linear Response (LR) approach of Åquist, correlating binding affinities with van der Waals and electrostatic energies, as extended by Jorgensen's inclusion of solvent-accessible surface areas. All these terms represent the differences, upon binding, in the ensemble averages of pertinent quantities, obtained from molecular dynamics (MD) or Monte Carlo simulations of the complex and of single components. Here we report a modification of the LR approach by: (1) the replacement of the two energy terms through the single-point QM/MM energy of the time-averaged complex structure from an MD simulation; and (2) a rigorous consideration of multiple modes (mm) of binding. The first extension alleviates the force-field related problems, while the second extension deals with the ligands exhibiting large-scale motions in the course of an MD simulation. The second modification results in the correlation equation that is nonlinear in optimized coefficients, but does not lead to an increase in the number of optimized coefficients. The application of the resulting mm QM/MM LR approach to the inhibition of zinc-dependent gelatinase B (matrix metalloproteinase 9) by 28 hydroxamate ligands indicates a significant improvement of descriptive and predictive abilities.
Sriram, K. K.; Yeh, Jia-Wei; Lin, Yii-Lih; Chang, Yi-Ren; Chou, Chia-Fu
2014-01-01
Mapping transcription factor (TF) binding sites along a DNA backbone is crucial in understanding the regulatory circuits that control cellular processes. Here, we deployed a method adopting bioconjugation, nanofluidic confinement and fluorescence single molecule imaging for direct mapping of TF (RNA polymerase) binding sites on field-stretched single DNA molecules. Using this method, we have mapped out five of the TF binding sites of E. coli RNA polymerase to bacteriophage λ-DNA, where two promoter sites and three pseudo-promoter sites are identified with the corresponding binding frequency of 45% and 30%, respectively. Our method is quick, robust and capable of resolving protein-binding locations with high accuracy (∼ 300 bp), making our system a complementary platform to the methods currently practiced. It is advantageous in parallel analysis and less prone to false positive results over other single molecule mapping techniques such as optical tweezers, atomic force microscopy and molecular combing, and could potentially be extended to general mapping of protein–DNA interaction sites. PMID:24753422
Advancements of molecularly imprinted polymers in the food safety field.
Wang, Peilong; Sun, Xiaohua; Su, Xiaoou; Wang, Tie
2016-06-07
Molecularly imprinted technology (MIT) has been widely employed to produce stable, robust and cheap molecularly imprinted polymer (MIP) materials that possess selective binding sites for recognition of target analytes in food, such as pesticides, veterinary drugs, mycotoxins, illegal drugs and so on. Because of high selectivity and specificity, MIPs have drawn great attention in the food safety field. In this review, the recent developments of MIPs in various applications for food safety, including sample preparation, chromatographic separation, sensing, immunoassay etc., have been summarized. We particularly discuss the advancements and limitations in these applications, as well as attempts carried out for their improvement.
Molecular Docking and Drug Discovery in β-Adrenergic Receptors.
Vilar, Santiago; Sobarzo-Sanchez, Eduardo; Santana, Lourdes; Uriarte, Eugenio
2017-01-01
Evolution in computer engineering, availability of increasing amounts of data and the development of new and fast docking algorithms and software have led to improved molecular simulations with crucial applications in virtual high-throughput screening and drug discovery. Moreover, analysis of protein-ligand recognition through molecular docking has become a valuable tool in drug design. In this review, we focus on the applicability of molecular docking on a particular class of G protein-coupled receptors: the β-adrenergic receptors, which are relevant targets in clinic for the treatment of asthma and cardiovascular diseases. We describe the binding site in β-adrenergic receptors to understand key factors in ligand recognition along with the proteins activation process. Moreover, we focus on the discovery of new lead compounds that bind the receptors, on the evaluation of virtual screening using the active/ inactive binding site states, and on the structural optimization of known families of binders to improve β-adrenergic affinity. We also discussed strengths and challenges related to the applicability of molecular docking in β-adrenergic receptors. Molecular docking is a valuable technique in computational chemistry to deeply analyze ligand recognition and has led to important breakthroughs in drug discovery and design in the field of β-adrenergic receptors. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Fox, Stephen J; Pittock, Chris; Tautermann, Christofer S; Fox, Thomas; Christ, Clara; Malcolm, N O J; Essex, Jonathan W; Skylaris, Chris-Kriton
2013-08-15
Schemes of increasing sophistication for obtaining free energies of binding have been developed over the years, where configurational sampling is used to include the all-important entropic contributions to the free energies. However, the quality of the results will also depend on the accuracy with which the intermolecular interactions are computed at each molecular configuration. In this context, the energy change associated with the rearrangement of electrons (electronic polarization and charge transfer) upon binding is a very important effect. Classical molecular mechanics force fields do not take this effect into account explicitly, and polarizable force fields and semiempirical quantum or hybrid quantum-classical (QM/MM) calculations are increasingly employed (at higher computational cost) to compute intermolecular interactions in free-energy schemes. In this work, we investigate the use of large-scale quantum mechanical calculations from first-principles as a way of fully taking into account electronic effects in free-energy calculations. We employ a one-step free-energy perturbation (FEP) scheme from a molecular mechanical (MM) potential to a quantum mechanical (QM) potential as a correction to thermodynamic integration calculations within the MM potential. We use this approach to calculate relative free energies of hydration of small aromatic molecules. Our quantum calculations are performed on multiple configurations from classical molecular dynamics simulations. The quantum energy of each configuration is obtained from density functional theory calculations with a near-complete psinc basis set on over 600 atoms using the ONETEP program.
Molecular Imprinting Technology in Quartz Crystal Microbalance (QCM) Sensors
Emir Diltemiz, Sibel; Keçili, Rüstem; Ersöz, Arzu; Say, Rıdvan
2017-01-01
Molecularly imprinted polymers (MIPs) as artificial antibodies have received considerable scientific attention in the past years in the field of (bio)sensors since they have unique features that distinguish them from natural antibodies such as robustness, multiple binding sites, low cost, facile preparation and high stability under extreme operation conditions (higher pH and temperature values, etc.). On the other hand, the Quartz Crystal Microbalance (QCM) is an analytical tool based on the measurement of small mass changes on the sensor surface. QCM sensors are practical and convenient monitoring tools because of their specificity, sensitivity, high accuracy, stability and reproducibility. QCM devices are highly suitable for converting the recognition process achieved using MIP-based memories into a sensor signal. Therefore, the combination of a QCM and MIPs as synthetic receptors enhances the sensitivity through MIP process-based multiplexed binding sites using size, 3D-shape and chemical function having molecular memories of the prepared sensor system toward the target compound to be detected. This review aims to highlight and summarize the recent progress and studies in the field of (bio)sensor systems based on QCMs combined with molecular imprinting technology. PMID:28245588
Arooj, Mahreen; Thangapandian, Sundarapandian; John, Shalini; Hwang, Swan; Park, Jong K; Lee, Keun W
2012-12-01
To provide a new idea for drug design, a computational investigation is performed on chymase and its novel 1,4-diazepane-2,5-diones inhibitors that explores the crucial molecular features contributing to binding specificity. Molecular docking studies of inhibitors within the active site of chymase were carried out to rationalize the inhibitory properties of these compounds and understand their inhibition mechanism. The density functional theory method was used to optimize molecular structures with the subsequent analysis of highest occupied molecular orbital, lowest unoccupied molecular orbital, and molecular electrostatic potential maps, which revealed that negative potentials near 1,4-diazepane-2,5-diones ring are essential for effective binding of inhibitors at active site of enzyme. The Bayesian model with receiver operating curve statistic of 0.82 also identified arylsulfonyl and aminocarbonyl as the molecular features favoring and not favoring inhibition of chymase, respectively. Moreover, genetic function approximation was applied to construct 3D quantitative structure-activity relationships models. Two models (genetic function approximation model 1 r(2) = 0.812 and genetic function approximation model 2 r(2) = 0.783) performed better in terms of correlation coefficients and cross-validation analysis. In general, this study is used as example to illustrate how combinational use of 2D/3D quantitative structure-activity relationships modeling techniques, molecular docking, frontier molecular orbital density fields (highest occupied molecular orbital and lowest unoccupied molecular orbital), and molecular electrostatic potential analysis may be useful to gain an insight into the binding mechanism between enzyme and its inhibitors. © 2012 John Wiley & Sons A/S.
McKay, Dennis B; Chang, Cheng; González-Cestari, Tatiana F; McKay, Susan B; El-Hajj, Raed A; Bryant, Darrell L; Zhu, Michael X; Swaan, Peter W; Arason, Kristjan M; Pulipaka, Aravinda B; Orac, Crina M; Bergmeier, Stephen C
2007-05-01
As a novel approach to drug discovery involving neuronal nicotinic acetylcholine receptors (nAChRs), our laboratory targeted nonagonist binding sites (i.e., noncompetitive binding sites, negative allosteric binding sites) located on nAChRs. Cultured bovine adrenal cells were used as neuronal models to investigate interactions of 67 analogs of methyllycaconitine (MLA) on native alpha3beta4* nAChRs. The availability of large numbers of structurally related molecules presents a unique opportunity for the development of pharmacophore models for noncompetitive binding sites. Our MLA analogs inhibited nicotine-mediated functional activation of both native and recombinant alpha3beta4* nAChRs with a wide range of IC(50) values (0.9-115 microM). These analogs had little or no inhibitory effects on agonist binding to native or recombinant nAChRs, supporting noncompetitive inhibitory activity. Based on these data, two highly predictive 3D quantitative structure-activity relationship (comparative molecular field analysis and comparative molecular similarity index analysis) models were generated. These computational models were successfully validated and provided insights into the molecular interactions of MLA analogs with nAChRs. In addition, a pharmacophore model was constructed to analyze and visualize the binding requirements to the analog binding site. The pharmacophore model was subsequently applied to search structurally diverse molecular databases to prospectively identify novel inhibitors. The rapid identification of eight molecules from database mining and our successful demonstration of in vitro inhibitory activity support the utility of these computational models as novel tools for the efficient retrieval of inhibitors. These results demonstrate the effectiveness of computational modeling and pharmacophore development, which may lead to the identification of new therapeutic drugs that target novel sites on nAChRs.
Molecular dynamics studies on the DNA-binding process of ERG.
Beuerle, Matthias G; Dufton, Neil P; Randi, Anna M; Gould, Ian R
2016-11-15
The ETS family of transcription factors regulate gene targets by binding to a core GGAA DNA-sequence. The ETS factor ERG is required for homeostasis and lineage-specific functions in endothelial cells, some subset of haemopoietic cells and chondrocytes; its ectopic expression is linked to oncogenesis in multiple tissues. To date details of the DNA-binding process of ERG including DNA-sequence recognition outside the core GGAA-sequence are largely unknown. We combined available structural and experimental data to perform molecular dynamics simulations to study the DNA-binding process of ERG. In particular we were able to reproduce the ERG DNA-complex with a DNA-binding simulation starting in an unbound configuration with a final root-mean-square-deviation (RMSD) of 2.1 Å to the core ETS domain DNA-complex crystal structure. This allowed us to elucidate the relevance of amino acids involved in the formation of the ERG DNA-complex and to identify Arg385 as a novel key residue in the DNA-binding process. Moreover we were able to show that water-mediated hydrogen bonds are present between ERG and DNA in our simulations and that those interactions have the potential to achieve sequence recognition outside the GGAA core DNA-sequence. The methodology employed in this study shows the promising capabilities of modern molecular dynamics simulations in the field of protein DNA-interactions.
PDZ binding to the BAR domain of PICK1 is elucidated by coarse-grained molecular dynamics.
He, Yi; Liwo, Adam; Weinstein, Harel; Scheraga, Harold A
2011-01-07
A key regulator of α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) receptor traffic, PICK1 is known to interact with over 40 other proteins, including receptors, transporters and ionic channels, and to be active mostly as a homodimer. The current lack of a complete PICK1 structure determined at atomic resolution hinders the elucidation of its functional mechanisms. Here, we identify interactions between the component PDZ and BAR domains of PICK1 by calculating possible binding sites for the PDZ domain of PICK1 (PICK1-PDZ) to the homology-modeled, crescent-shaped dimer of the PICK1-BAR domain using multiplexed replica-exchange molecular dynamics (MREMD) and canonical molecular dynamics simulations with the coarse-grained UNRES force field. The MREMD results show that the preferred binding site for the single PDZ domain is the concave cavity of the BAR dimer. A second possible binding site is near the N-terminus of the BAR domain that is linked directly to the PDZ domain. Subsequent short canonical molecular dynamics simulations used to determine how the PICK1-PDZ domain moves to the preferred binding site on the BAR domain of PICK1 revealed that initial hydrophobic interactions drive the progress of the simulated binding. Thus, the concave face of the BAR dimer accommodates the PDZ domain first by weak hydrophobic interactions and then the PDZ domain slides to the center of the concave face, where more favorable hydrophobic interactions take over. Copyright © 2010 Elsevier Ltd. All rights reserved.
Control of Ion Selectivity in LeuT: Two Na+ Binding Sites with two different mechanisms
Noskov, Sergei Y.; Roux, Benoît
2016-01-01
The x-ray structure of LeuT, a bacterial homologue of Na+/Cl−-dependent neurotransmitter transporter, provides a great opportunity to better understand the molecular basis of monovalent cation selectivity in ion-coupled transporters. LeuT possesses two ion-binding sites, NA1 and NA2, which are highly selective for Na+. Extensive all-atom free energy molecular dynamics simulations of LeuT embedded in an explicit membrane are performed at different temperatures and various occupancy states of the binding sites to dissect the molecular mechanism of ion selectivity. The results show that the two binding sites display robust selectivity for Na+ over K+ or Li+, the competing ions of most similar radii. Of particular interest, the mechanism primarily responsible for selectivity for each of the two binding sites appears to be different. In site NA1, selectivity for Na+ over K+ arises predominantly from the strong electrostatic field arising from the negatively charged carboxylate group of the leucine substrate coordinating the ion directly. In site NA2, which comprises only neutral ligands, selectivity for Na+ is enforced by the local structural restraints arising from the hydrogen-bonding network and the covalent connectivity of the poly-peptide chain surrounding the ion according to a snug-fit mechanism. PMID:18280500
Nucleotide Interdependency in Transcription Factor Binding Sites in the Drosophila Genome.
Dresch, Jacqueline M; Zellers, Rowan G; Bork, Daniel K; Drewell, Robert A
2016-01-01
A long-standing objective in modern biology is to characterize the molecular components that drive the development of an organism. At the heart of eukaryotic development lies gene regulation. On the molecular level, much of the research in this field has focused on the binding of transcription factors (TFs) to regulatory regions in the genome known as cis-regulatory modules (CRMs). However, relatively little is known about the sequence-specific binding preferences of many TFs, especially with respect to the possible interdependencies between the nucleotides that make up binding sites. A particular limitation of many existing algorithms that aim to predict binding site sequences is that they do not allow for dependencies between nonadjacent nucleotides. In this study, we use a recently developed computational algorithm, MARZ, to compare binding site sequences using 32 distinct models in a systematic and unbiased approach to explore nucleotide dependencies within binding sites for 15 distinct TFs known to be critical to Drosophila development. Our results indicate that many of these proteins have varying levels of nucleotide interdependencies within their DNA recognition sequences, and that, in some cases, models that account for these dependencies greatly outperform traditional models that are used to predict binding sites. We also directly compare the ability of different models to identify the known KRUPPEL TF binding sites in CRMs and demonstrate that a more complex model that accounts for nucleotide interdependencies performs better when compared with simple models. This ability to identify TFs with critical nucleotide interdependencies in their binding sites will lead to a deeper understanding of how these molecular characteristics contribute to the architecture of CRMs and the precise regulation of transcription during organismal development.
Nucleotide Interdependency in Transcription Factor Binding Sites in the Drosophila Genome
Dresch, Jacqueline M.; Zellers, Rowan G.; Bork, Daniel K.; Drewell, Robert A.
2016-01-01
A long-standing objective in modern biology is to characterize the molecular components that drive the development of an organism. At the heart of eukaryotic development lies gene regulation. On the molecular level, much of the research in this field has focused on the binding of transcription factors (TFs) to regulatory regions in the genome known as cis-regulatory modules (CRMs). However, relatively little is known about the sequence-specific binding preferences of many TFs, especially with respect to the possible interdependencies between the nucleotides that make up binding sites. A particular limitation of many existing algorithms that aim to predict binding site sequences is that they do not allow for dependencies between nonadjacent nucleotides. In this study, we use a recently developed computational algorithm, MARZ, to compare binding site sequences using 32 distinct models in a systematic and unbiased approach to explore nucleotide dependencies within binding sites for 15 distinct TFs known to be critical to Drosophila development. Our results indicate that many of these proteins have varying levels of nucleotide interdependencies within their DNA recognition sequences, and that, in some cases, models that account for these dependencies greatly outperform traditional models that are used to predict binding sites. We also directly compare the ability of different models to identify the known KRUPPEL TF binding sites in CRMs and demonstrate that a more complex model that accounts for nucleotide interdependencies performs better when compared with simple models. This ability to identify TFs with critical nucleotide interdependencies in their binding sites will lead to a deeper understanding of how these molecular characteristics contribute to the architecture of CRMs and the precise regulation of transcription during organismal development. PMID:27330274
NASA Astrophysics Data System (ADS)
Bush, Derek B.
Antibody microarrays constitute a next-generation sensing platform that has the potential to revolutionize the way that molecular detection is conducted in many scientific fields. Unfortunately, current technologies have not found mainstream use because of reliability problems that undermine trust in their results. Although several factors are involved, it is believed that undesirable protein interactions with the array surface are a fundamental source of problems where little detail about the molecular-level biophysics are known. A better understanding of antibody stability and antibody-antigen binding on the array surface is needed to improve microarray technology. Despite the availability of many laboratory methods for studying protein stability and binding, these methods either do not work when the protein is attached to a surface or they do not provide the atomistic structural information that is needed to better understand protein behavior on the surface. As a result, molecular simulation has emerged as the primary method for studying proteins on surfaces because it can provide metrics and views of atomistic structures and molecular motion. Using an advanced, coarse-grain, protein-surface model this study investigated how antibodies react to and function on different types of surfaces. Three topics were addressed: (1) the stability of individual antibodies on surfaces, (2) antibody binding to small antigens while on a surface, and (3) antibody binding to large antigens while on a surface. The results indicate that immobilizing antibodies or antibody fragments in an upright orientation on a hydrophilic surface can provide the molecules with thermal stability similar to their native aqueous stability, enhance antigen binding strength, and minimize the entropic cost of binding. Furthermore, the results indicate that it is more difficult for large antigens to approach the surface than small antigens, that multiple binding sites can aid antigen binding, and that antigen flexiblity simultaneously helps and hinders the binding process as it approaches the surface. The results provide hope that next-generation microarrays and other devices decorated with proteins can be improved through rational design.
Towards accurate free energy calculations in ligand protein-binding studies.
Steinbrecher, Thomas; Labahn, Andreas
2010-01-01
Cells contain a multitude of different chemical reaction paths running simultaneously and quite independently next to each other. This amazing feat is enabled by molecular recognition, the ability of biomolecules to form stable and specific complexes with each other and with their substrates. A better understanding of this process, i.e. of the kinetics, structures and thermodynamic properties of biomolecule binding, would be invaluable in the study of biological systems. In addition, as the mode of action of many pharmaceuticals is based upon their inhibition or activation of biomolecule targets, predictive models of small molecule receptor binding are very helpful tools in rational drug design. Since the goal here is normally to design a new compound with a high inhibition strength, one of the most important thermodynamic properties is the binding free energy DeltaG(0). The prediction of binding constants has always been one of the major goals in the field of computational chemistry, because the ability to reliably assess a hypothetical compound's binding properties without having to synthesize it first would save a tremendous amount of work. The different approaches to this question range from fast and simple empirical descriptor methods to elaborate simulation protocols aimed at putting the computation of free energies onto a solid foundation of statistical thermodynamics. While the later methods are still not suited for the screenings of thousands of compounds that are routinely performed in computational drug design studies, they are increasingly put to use for the detailed study of protein ligand interactions. This review will focus on molecular mechanics force field based free energy calculations and their application to the study of protein ligand interactions. After a brief overview of other popular methods for the calculation of free energies, we will describe recent advances in methodology and a variety of exemplary studies of molecular dynamics simulation based free energy calculations.
Meher, Biswa Ranjan; Kumar, Mattaparthi Venkata Satish; Bandyopadhyay, Pradipta
2014-01-01
The dynamics of HIV-1 protease (HIV-pr), a drug target for HIV infection, has been studied extensively by both computational and experimental methods. The flap dynamics of HIV-pr is considered to be more important for better ligand binding and enzymatic actions. Moreover, it has been demonstrated that the drug-induced mutations can change the flap dynamics of HIV-pr affecting the binding affinity of the ligands. Therefore, detailed understanding of flap dynamics is essential for designing better inhibitors. Previous computational investigations observed significant variation in the flap opening in nanosecond time scale indicating that the dynamics is highly sensitive to the simulation protocols. To understand the sensitivity of the flap dynamics on the force field and simulation protocol, molecular dynamics simulations of HIV-pr have been performed with two different AMBER force fields, ff99 and ff02. Two different trajectories (20 ns each) were obtained using the ff99 and ff02 force field. The results showed polarizable force field (ff02) make the flap tighter than the nonpolarizable force field (ff99). Some polar interactions and hydrogen bonds involving flap residues were found to be stronger with ff02 force field. The formation of interchain hydrophobic cluster (between flap tip of one chain and active site wall of another chain) was found to be dominant in the semi-open structures obtained from the simulations irrespective of the force field. It is proposed that an inhibitor, which will promote this interchain hydrophobic clustering, may make the flaps more rigid, and presumably the effect of mutation would be small on ligand binding.
The Role of Histone Tails in the Nucleosome: A Computational Study
Erler, Jochen; Zhang, Ruihan; Petridis, Loukas; Cheng, Xiaolin; Smith, Jeremy C.; Langowski, Jörg
2014-01-01
Histone tails play an important role in gene transcription and expression. We present here a systematic computational study of the role of histone tails in the nucleosome, using replica exchange molecular dynamics simulations with an implicit solvent model and different well-established force fields. We performed simulations for all four histone tails, H4, H3, H2A, and H2B, isolated and with inclusion of the nucleosome. The results confirm predictions of previous theoretical studies for the secondary structure of the isolated tails but show a strong dependence on the force field used. In the presence of the entire nucleosome for all force fields, the secondary structure of the histone tails is destabilized. Specific contacts are found between charged lysine and arginine residues and DNA phosphate groups and other binding sites in the minor and major DNA grooves. Using cluster analysis, we found a single dominant configuration of binding to DNA for the H4 and H2A histone tails, whereas H3 and H2B show multiple binding configurations with an equal probability. The leading stabilizing contribution for those binding configurations is the attractive interaction between the positively charged lysine and arginine residues and the negatively charged phosphate groups, and thus the resulting charge neutralization. Finally, we present results of molecular dynamics simulations in explicit solvent to confirm our conclusions. Results from both implicit and explicit solvent models show that large portions of the histone tails are not bound to DNA, supporting the complex role of these tails in gene transcription and expression and making them possible candidates for binding sites of transcription factors, enzymes, and other proteins. PMID:25517156
Bertaccini, Edward J
2010-07-08
For over 160 years, general anesthetics have been given for the relief of pain and suffering. While many theories of anesthetic action have been purported, it has become increasingly apparent that a significant molecular focus of anesthetic action lies within the family of ligand-gated ion channels (LGIC's). These protein channels have a transmembrane region that is composed of a pentamer of four helix bundles, symmetrically arranged around a central pore for ion passage. While initial and some current models suggest a possible cavity for binding within this four helix bundle, newer calculations postulate that the actual cavity for anesthetic binding may exist between four helix bundles. In either scenario, these cavities have a transmembrane mode of access and may be partially bordered by lipid moieties. Their physicochemical nature is amphiphilic. Anesthetic binding may alter the overall motion of a ligand-gated ion channel by a "foot-in-door" motif, resulting in the higher likelihood of and greater time spent in a specific channel state. The overall gating motion of these channels is consistent with that shown in normal mode analyses carried out both in vacuo as well as in explicitly hydrated lipid bilayer models. Molecular docking and large scale molecular dynamics calculations may now begin to show a more exact mode by which anesthetic molecules actually localize themselves and bind to specific protein sites within LGIC's, making the design of future improvements to anesthetic ligands a more realizable possibility.
Kucharski, Amir N; Scott, Caitlin E; Davis, Jonathan P; Kekenes-Huskey, Peter M
2016-08-25
Parvalbumin (PV) is a globular calcium (Ca(2+))-selective protein expressed in a variety of biological tissues. Our computational studies of the rat β-parvalbumin (β-PV) isoform seek to elucidate the molecular thermodynamics of Ca(2+) versus magnesium (Mg(2+)) binding at the protein's two EF-hand motifs. Specifically, we have utilized molecular dynamics (MD) simulations and a mean-field electrolyte model (mean spherical approximation (MSA) theory) to delineate how the EF-hand scaffold controls the "local" thermodynamics of Ca(2+) binding selectivity over Mg(2+). Our MD simulations provide the probability density of metal-chelating oxygens within the EF-hand scaffolds for both Ca(2+) and Mg(2+), as well the conformational strain induced by Mg(2+) relative to Ca(2+) binding. MSA theory utilizes the binding domain oxygen and charge distributions to predict the chemical potential of ion binding, as well as their corresponding concentrations within the binding domain. We find that the electrostatic and steric contributions toward ion binding were similar for Mg(2+) and Ca(2+), yet the latter was 5.5 kcal/mol lower in enthalpy when internal strain within the EF hand was considered. We therefore speculate that beyond differences in dehydration energies for the Ca(2+) versus Mg(2+), strain induced in the β-PV EF hand by cation binding significantly contributes to the nearly 10,000-fold difference in binding affinity reported in the literature. We further complemented our analyses of local factors governing cation binding selectivity with whole-protein (global) contributions, such as interhelical residue-residue contacts and solvent exposure of hydrophobic surface. These contributions were found to be comparable for both Ca(2+)- and Mg(2+)-bound β-PV, which may implicate local factors, EF-hand strain, and dehydration, in providing the primary means of selectivity. We anticipate these methods could be used to estimate metal binding thermodynamics across a broad range of PV sequence homologues and EF-hand-containing, Ca(2+) binding proteins.
Update of the ATTRACT force field for the prediction of protein-protein binding affinity.
Chéron, Jean-Baptiste; Zacharias, Martin; Antonczak, Serge; Fiorucci, Sébastien
2017-06-05
Determining the protein-protein interactions is still a major challenge for molecular biology. Docking protocols has come of age in predicting the structure of macromolecular complexes. However, they still lack accuracy to estimate the binding affinities, the thermodynamic quantity that drives the formation of a complex. Here, an updated version of the protein-protein ATTRACT force field aiming at predicting experimental binding affinities is reported. It has been designed on a dataset of 218 protein-protein complexes. The correlation between the experimental and predicted affinities reaches 0.6, outperforming most of the available protocols. Focusing on a subset of rigid and flexible complexes, the performance raises to 0.76 and 0.69, respectively. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Aouidate, Adnane; Ghaleb, Adib; Ghamali, Mounir; Chtita, Samir; Choukrad, M'barek; Sbai, Abdelouahid; Bouachrine, Mohammed; Lakhlifi, Tahar
2017-07-01
A series of nineteen DHFR inhibitors was studied based on the combination of two computational techniques namely, three-dimensional quantitative structure activity relationship (3D-QSAR) and molecular docking. The comparative molecular field analysis (CoMFA) and comparative molecular similarity index analysis (CoMSIA) were developed using 19 molecules having pIC50 ranging from 9.244 to 5.839. The best CoMFA and CoMSIA models show conventional determination coefficients R2 of 0.96 and 0.93 as well as the Leave One Out cross-validation determination coefficients Q2 of 0.64 and 0.72, respectively. The predictive ability of those models was evaluated by the external validation using a test set of five compounds with predicted determination coefficients R2test of 0.92 and 0.94, respectively. The binding mode between this kind of compounds and the DHFR enzyme in addition to the key amino acid residues were explored by molecular docking simulation. Contour maps and molecular docking identified that the R1 and R2 natures at the pyrazole moiety are the important features for the optimization of the binding affinity to the DHFR receptor. According to the good concordance between the CoMFA/CoMSIA contour maps and docking results, the obtained information was explored to design novel molecules.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gross-Isseroff, R.; Israeli, M.; Biegon, A.
In vitro quantitative autoradiography of high-affinity tritiated imipramine binding sites was performed on brains of 12 suicide victims and 12 matched controls. Region-specific differences in imipramine binding were found between the two groups. Thus, the pyramidal and molecular layers of the cornu ammoni hippocampal fields and the hilus of the dentate gyrus exhibited 80%, 60%, and 90% increases in binding in the suicide group, respectively. The postcentral cortical gyrus, insular cortex, and claustrum had 45%, 28%, and 75% decreases in binding in the suicide group, respectively. No difference in imipramine binding was observed in prefrontal cortical regions, in the basalmore » ganglia, and in mesencephalic nuclei. No sex and postmortem delay effects on imipramine binding were found. Imipramine binding was positively correlated with age, the effect of age being most pronounced in portions of the basal ganglia and temporal cortex.« less
Pernomian, Larissa; Gomes, Mayara Santos; Moreira, Josimar Dornelas; da Silva, Carlos Henrique Tomich de Paula; Rosa, Joaquin Maria Campos; Cardoso, Cristina Ribeiro de Barros
2017-01-01
One of the cornerstones of rational drug development is the measurement of molecular parameters derived from ligand-receptor interaction, which guides therapeutic windows definition. Over the last decades, radioligand binding has provided valuable contributions in this field as key method for such purposes. However, its limitations spurred the development of more exquisite techniques for determining such parameters. For instance, safety risks related to radioactivity waste, expensive and controlled disposal of radioisotopes, radiotracer separation-dependence for affinity analysis, and one-site mathematical models-based fitting of data make radioligand binding a suboptimal approach in providing measures of actual affinity conformations from ligands and G proteincoupled receptors (GPCR). Current advances on high-throughput screening (HTS) assays have markedly extended the options of sparing sensitive ways for monitoring ligand affinity. The advent of the novel bioluminescent donor NanoLuc luciferase (Nluc), engineered from Oplophorus gracilirostris luciferase, allowed fitting bioluminescence resonance energy transfer (BRET) for monitoring ligand binding. Such novel approach named Nluc-based BRET (NanoBRET) binding assay consists of a real-time homogeneous proximity assay that overcomes radioligand binding limitations but ensures the quality in affinity measurements. Here, we cover the main advantages of NanoBRET protocol and the undesirable drawbacks of radioligand binding as molecular methods that span pharmacological toolbox applied to Drug Discovery. Also, we provide a novel perspective for the application of NanoBRET technology in affinity assays for multiple-state binding mechanisms involving oligomerization and/or functional biased selectivity. This new angle was proposed based on specific biophysical criteria required for the real-time homogeneity assigned to the proximity NanoBRET protocol. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
NASA Astrophysics Data System (ADS)
Monroe, Jacob I.; Shirts, Michael R.
2014-04-01
Molecular containers such as cucurbit[7]uril (CB7) and the octa-acid (OA) host are ideal simplified model test systems for optimizing and analyzing methods for computing free energies of binding intended for use with biologically relevant protein-ligand complexes. To this end, we have performed initially blind free energy calculations to determine the free energies of binding for ligands of both the CB7 and OA hosts. A subset of the selected guest molecules were those included in the SAMPL4 prediction challenge. Using expanded ensemble simulations in the dimension of coupling host-guest intermolecular interactions, we are able to show that our estimates in most cases can be demonstrated to fully converge and that the errors in our estimates are due almost entirely to the assigned force field parameters and the choice of environmental conditions used to model experiment. We confirm the convergence through the use of alternative simulation methodologies and thermodynamic pathways, analyzing sampled conformations, and directly observing changes of the free energy with respect to simulation time. Our results demonstrate the benefits of enhanced sampling of multiple local free energy minima made possible by the use of expanded ensemble molecular dynamics and may indicate the presence of significant problems with current transferable force fields for organic molecules when used for calculating binding affinities, especially in non-protein chemistries.
Monroe, Jacob I; Shirts, Michael R
2014-04-01
Molecular containers such as cucurbit[7]uril (CB7) and the octa-acid (OA) host are ideal simplified model test systems for optimizing and analyzing methods for computing free energies of binding intended for use with biologically relevant protein-ligand complexes. To this end, we have performed initially blind free energy calculations to determine the free energies of binding for ligands of both the CB7 and OA hosts. A subset of the selected guest molecules were those included in the SAMPL4 prediction challenge. Using expanded ensemble simulations in the dimension of coupling host-guest intermolecular interactions, we are able to show that our estimates in most cases can be demonstrated to fully converge and that the errors in our estimates are due almost entirely to the assigned force field parameters and the choice of environmental conditions used to model experiment. We confirm the convergence through the use of alternative simulation methodologies and thermodynamic pathways, analyzing sampled conformations, and directly observing changes of the free energy with respect to simulation time. Our results demonstrate the benefits of enhanced sampling of multiple local free energy minima made possible by the use of expanded ensemble molecular dynamics and may indicate the presence of significant problems with current transferable force fields for organic molecules when used for calculating binding affinities, especially in non-protein chemistries.
2017-01-01
Among opioids, morphinans are of major importance as the most effective analgesic drugs acting primarily via μ-opioid receptor (μ-OR) activation. Our long-standing efforts in the field of opioid analgesics from the class of morphinans led to N-methylmorphinan-6-ones differently substituted at positions 5 and 14 as μ-OR agonists inducing potent analgesia and fewer undesirable effects. Herein we present the first thorough molecular modeling study and structure–activity relationship (SAR) explorations aided by docking and molecular dynamics (MD) simulations of 14-oxygenated N-methylmorphinan-6-ones to gain insights into their mode of binding to the μ-OR and interaction mechanisms. The structure of activated μ-OR provides an essential model for how ligand/μ-OR binding is encoded within small chemical differences in otherwise structurally similar morphinans. We reveal important molecular interactions that these μ-agonists share and distinguish them. The molecular docking outcomes indicate the crucial role of the relative orientation of the ligand in the μ-OR binding site, influencing the propensity of critical non-covalent interactions that are required to facilitate ligand/μ-OR interactions and receptor activation. The MD simulations point out minor differences in the tendency to form hydrogen bonds by the 4,5α-epoxy group, along with the tendency to affect the 3–7 lock switch. The emerged SARs reveal the subtle interplay between the substituents at positions 5 and 14 in the morphinan scaffold by enabling the identification of key structural elements that determine the distinct pharmacological profiles. This study provides a significant structural basis for understanding ligand binding and μ-OR activation by the 14-oxygenated N-methylmorphinan-6-ones, which should be useful for guiding drug design. PMID:28125215
Noha, Stefan M; Schmidhammer, Helmut; Spetea, Mariana
2017-06-21
Among opioids, morphinans are of major importance as the most effective analgesic drugs acting primarily via μ-opioid receptor (μ-OR) activation. Our long-standing efforts in the field of opioid analgesics from the class of morphinans led to N-methylmorphinan-6-ones differently substituted at positions 5 and 14 as μ-OR agonists inducing potent analgesia and fewer undesirable effects. Herein we present the first thorough molecular modeling study and structure-activity relationship (SAR) explorations aided by docking and molecular dynamics (MD) simulations of 14-oxygenated N-methylmorphinan-6-ones to gain insights into their mode of binding to the μ-OR and interaction mechanisms. The structure of activated μ-OR provides an essential model for how ligand/μ-OR binding is encoded within small chemical differences in otherwise structurally similar morphinans. We reveal important molecular interactions that these μ-agonists share and distinguish them. The molecular docking outcomes indicate the crucial role of the relative orientation of the ligand in the μ-OR binding site, influencing the propensity of critical non-covalent interactions that are required to facilitate ligand/μ-OR interactions and receptor activation. The MD simulations point out minor differences in the tendency to form hydrogen bonds by the 4,5α-epoxy group, along with the tendency to affect the 3-7 lock switch. The emerged SARs reveal the subtle interplay between the substituents at positions 5 and 14 in the morphinan scaffold by enabling the identification of key structural elements that determine the distinct pharmacological profiles. This study provides a significant structural basis for understanding ligand binding and μ-OR activation by the 14-oxygenated N-methylmorphinan-6-ones, which should be useful for guiding drug design.
Computational Calorimetry: High-Precision Calculation of Host–Guest Binding Thermodynamics
2015-01-01
We present a strategy for carrying out high-precision calculations of binding free energy and binding enthalpy values from molecular dynamics simulations with explicit solvent. The approach is used to calculate the thermodynamic profiles for binding of nine small molecule guests to either the cucurbit[7]uril (CB7) or β-cyclodextrin (βCD) host. For these systems, calculations using commodity hardware can yield binding free energy and binding enthalpy values with a precision of ∼0.5 kcal/mol (95% CI) in a matter of days. Crucially, the self-consistency of the approach is established by calculating the binding enthalpy directly, via end point potential energy calculations, and indirectly, via the temperature dependence of the binding free energy, i.e., by the van’t Hoff equation. Excellent agreement between the direct and van’t Hoff methods is demonstrated for both host–guest systems and an ion-pair model system for which particularly well-converged results are attainable. Additionally, we find that hydrogen mass repartitioning allows marked acceleration of the calculations with no discernible cost in precision or accuracy. Finally, we provide guidance for accurately assessing numerical uncertainty of the results in settings where complex correlations in the time series can pose challenges to statistical analysis. The routine nature and high precision of these binding calculations opens the possibility of including measured binding thermodynamics as target data in force field optimization so that simulations may be used to reliably interpret experimental data and guide molecular design. PMID:26523125
Gurung, Arun Bahadur; Aguan, Kripamoy; Mitra, Sivaprasad; Bhattacharjee, Atanu
2017-06-01
In Alzheimer's disease (AD), the level of Acetylcholine (ACh) neurotransmitter is reduced. Since Acetylcholinesterase (AChE) cleaves ACh, inhibitors of AChE are very much sought after for AD treatment. The side effects of current inhibitors necessitate development of newer AChE inhibitors. Isoalloxazine derivatives have proved to be promising (AChE) inhibitors. However, their structure-activity relationship studies have not been reported till date. In the present work, various quantitative structure-activity relationship (QSAR) building methods such as multiple linear regression (MLR), partial least squares ,and principal component regression were employed to derive 3D-QSAR models using steric and electrostatic field descriptors. Statistically significant model was obtained using MLR coupled with stepwise selection method having r 2 = .9405, cross validated r 2 (q 2 ) = .6683, and a high predictability (pred_r 2 = .6206 and standard error, pred_r 2 se = .2491). Steric and electrostatic contribution plot revealed three electrostatic fields E_496, E_386 and E_577 and one steric field S_60 contributing towards biological activity. A ligand-based 3D-pharmacophore model was generated consisting of eight pharmacophore features. Isoalloxazine derivatives were docked against human AChE, which revealed critical residues implicated in hydrogen bonds as well as hydrophobic interactions. The binding modes of docked complexes (AChE_IA1 and AChE_IA14) were validated by molecular dynamics simulation which showed their stable trajectories in terms of root mean square deviation and molecular mechanics/Poisson-Boltzmann surface area binding free energy analysis revealed key residues contributing significantly to overall binding energy. The present study may be useful in the design of more potent Isoalloxazine derivatives as AChE inhibitors.
Toyama, Yuki; Kano, Hanaho; Mase, Yoko; Yokogawa, Mariko; Osawa, Masanori; Shimada, Ichio
2017-01-01
Heterotrimeric guanine-nucleotide-binding proteins (G proteins) serve as molecular switches in signalling pathways, by coupling the activation of cell surface receptors to intracellular responses. Mutations in the G protein α-subunit (Gα) that accelerate guanosine diphosphate (GDP) dissociation cause hyperactivation of the downstream effector proteins, leading to oncogenesis. However, the structural mechanism of the accelerated GDP dissociation has remained unclear. Here, we use magnetic field-dependent nuclear magnetic resonance relaxation analyses to investigate the structural and dynamic properties of GDP bound Gα on a microsecond timescale. We show that Gα rapidly exchanges between a ground-state conformation, which tightly binds to GDP and an excited conformation with reduced GDP affinity. The oncogenic D150N mutation accelerates GDP dissociation by shifting the equilibrium towards the excited conformation. PMID:28223697
Toyama, Yuki; Kano, Hanaho; Mase, Yoko; Yokogawa, Mariko; Osawa, Masanori; Shimada, Ichio
2017-02-22
Heterotrimeric guanine-nucleotide-binding proteins (G proteins) serve as molecular switches in signalling pathways, by coupling the activation of cell surface receptors to intracellular responses. Mutations in the G protein α-subunit (Gα) that accelerate guanosine diphosphate (GDP) dissociation cause hyperactivation of the downstream effector proteins, leading to oncogenesis. However, the structural mechanism of the accelerated GDP dissociation has remained unclear. Here, we use magnetic field-dependent nuclear magnetic resonance relaxation analyses to investigate the structural and dynamic properties of GDP bound Gα on a microsecond timescale. We show that Gα rapidly exchanges between a ground-state conformation, which tightly binds to GDP and an excited conformation with reduced GDP affinity. The oncogenic D150N mutation accelerates GDP dissociation by shifting the equilibrium towards the excited conformation.
Parametrization of an Orbital-Based Linear-Scaling Quantum Force Field for Noncovalent Interactions
2015-01-01
We parametrize a linear-scaling quantum mechanical force field called mDC for the accurate reproduction of nonbonded interactions. We provide a new benchmark database of accurate ab initio interactions between sulfur-containing molecules. A variety of nonbond databases are used to compare the new mDC method with other semiempirical, molecular mechanical, ab initio, and combined semiempirical quantum mechanical/molecular mechanical methods. It is shown that the molecular mechanical force field significantly and consistently reproduces the benchmark results with greater accuracy than the semiempirical models and our mDC model produces errors twice as small as the molecular mechanical force field. The comparisons between the methods are extended to the docking of drug candidates to the Cyclin-Dependent Kinase 2 protein receptor. We correlate the protein–ligand binding energies to their experimental inhibition constants and find that the mDC produces the best correlation. Condensed phase simulation of mDC water is performed and shown to produce O–O radial distribution functions similar to TIP4P-EW. PMID:24803856
Parameterization of Ca+2-protein interactions for molecular dynamics simulations.
Project, Elad; Nachliel, Esther; Gutman, Menachem
2008-05-01
Molecular dynamics simulations of Ca+2 ions near protein were performed with three force fields: GROMOS96, OPLS-AA, and CHARMM22. The simulations reveal major, force-field dependent, inconsistencies in the interaction between the Ca+2 ions with the protein. The variations are attributed to the nonbonded parameterizations of the Ca+2-carboxylates interactions. The simulations results were compared to experimental data, using the Ca+2-HCOO- equilibrium as a model. The OPLS-AA force field grossly overestimates the binding affinity of the Ca+2 ions to the carboxylate whereas the GROMOS96 and CHARMM22 force fields underestimate the stability of the complex. Optimization of the Lennard-Jones parameters for the Ca+2-carboxylate interactions were carried out, yielding new parameters which reproduce experimental data. Copyright 2007 Wiley Periodicals, Inc.
Indanedione based binary chromophore supramolecular systems as a NLO active polymer composites
NASA Astrophysics Data System (ADS)
Rutkis, M.; Tokmakovs, A.; Jecs, E.; Kreicberga, J.; Kampars, V.; Kokars, V.
2010-06-01
Novel route to obtain EO material is proposed by supramolecular assembly of neutral-ground-state (NGS) and zwitterionic (ZWI) NLO chromophores in binary chromophore organic glass (BCOG) host-guest system. On a basis of our Langeven Dynamics (LD) molecular modeling combined with quantum chemical calculations, we have shown that anticipated enhancement NLO efficiency of BCOG material is possible via electrostatic supramolecular assembly of NGS with ZWI chromophore in antiparallel manner. Binding energy of such complex could be more dependent on molecular compatibility of components and local (atomic) charge distribution, then overall molecular dipole moments. According to our LD simulations these supramolecular bind structures of NGS and ZWI chromophores can sustain thermally assisted electrical field poling. For the one of experimentally investigated systems, build from dimethylaminobenzylidene 1,3-indanedione containing host and zwitterionic indanedione-1,3 pyridinium betaine as a guest, almost twofold enhancement of NLO efficiency was observed.
Transcriptional and post-transcriptional regulation of NK cell development and function
Leong, Jeffrey W.; Wagner, Julia A.; Ireland, Aaron R.; Fehniger, Todd A.
2016-01-01
Natural killer (NK) cells are specialized innate lymphoid cells that survey against viral infections and malignancy. Numerous advances have improved our understanding of the molecular mechanisms that control NK cell development and function over the past decade. These include both studies on the regulatory effects of transcription factors and translational repression via microRNAs. In this review, we summarize our current knowledge of DNA-binding transcription factors that regulate gene expression and thereby orchestrate NK cell development and activation, with an emphasis on recent discoveries. Additionally, we highlight our understanding of how RNA-bindings microRNAs fine tune the NK cell molecular program. We also underscore the large number of open questions in field that are now being addressed using new technological approaches and genetically engineered model organisms. Ultimately, a deeper understanding of the basic molecular biology of NK cells will facilitate new strategies to manipulate NK cells for the treatment of human disease. PMID:26948928
Tuppurainen, Kari; Viisas, Marja; Laatikainen, Reino; Peräkylä, Mikael
2002-01-01
A novel electronic eigenvalue (EEVA) descriptor of molecular structure for use in the derivation of predictive QSAR/QSPR models is described. Like other spectroscopic QSAR/QSPR descriptors, EEVA is also invariant as to the alignment of the structures concerned. Its performance was tested with respect to the CBG (corticosteroid binding globulin) affinity of 31 benchmark steroids. It appeared that the electronic structure of the steroids, i.e., the "spectra" derived from molecular orbital energies, is directly related to the CBG binding affinities. The predictive ability of EEVA is compared to other QSAR approaches, and its performance is discussed in the context of the Hammett equation. The good performance of EEVA is an indication of the essential quantum mechanical nature of QSAR. The EEVA method is a supplement to conventional 3D QSAR methods, which employ fields or surface properties derived from Coulombic and van der Waals interactions.
Calixarenes in analytical and separation chemistry.
Ludwig, R
2000-05-01
Discovered in the 1940's, [1n]metacyclophanes with the common name calix[n]arenes which is derived from for the molecule's shape enjoyed a remarkable interest in almost all fields of chemistry since the 1980's, which is highlighted by several books [1-8]. Over 50 reviews concerning their synthesis, properties and applicabilities were published, many of those with emphasis on organic synthesis and structural properties are cited in [P. 5-6 in 2]. Of interest for analytical chemists are reviews on calixarenes and the structurally related resorcin[n]arenes (or calix[n]resorcarenes) and calixpyrroles concerning potentiometric sensors [9-12], chromo- and fluorophores [13, 14], molecular switches [15], metal ion binding in solution [16-19], redox properties [20] and anion binding [21-24]. Other recent reviews deal with thermodynamic aspects [25], organometallic compounds [26], P-containing calixarenes [27-29], as well as molecular dynamics modeling [30-33]. It is a vital field with over 200 publications per year. Therefore, this article presents only selected results on complexation, solvent extraction and membrane transport with the emphasis on ion and molecular recognition which can be used for analytical purposes, without attempting to cover all available references.
Plazinska, Anita; Pajak, Karolina; Rutkowska, Ewelina; Jimenez, Lucita; Kozocas, Joseph; Koolpe, Gary; Tanga, Mary; Toll, Lawrence; Wainer, Irving W; Jozwiak, Krzysztof
2014-01-01
The β₂-adrenergic receptor (β₂-AR) agonist [(3)H]-(R,R')-methoxyfenoterol was employed as the marker ligand in displacement studies measuring the binding affinities (Ki values) of the stereoisomers of a series of 4'-methoxyfenoterol analogs in which the length of the alkyl substituent at α' position was varied from 0 to 3 carbon atoms. The binding affinities of the compounds were additionally determined using the inverse agonist [(3)H]-CGP-12177 as the marker ligand and the ability of the compounds to stimulate cAMP accumulation, measured as EC₅₀ values, were determined in HEK293 cells expressing the β₂-AR. The data indicate that the highest binding affinities and functional activities were produced by methyl and ethyl substituents at the α' position. The results also indicate that the Ki values obtained using [(3)H]-(R,R')-methoxyfenoterol as the marker ligand modeled the EC₅₀ values obtained from cAMP stimulation better than the data obtained using [(3)H]-CGP-12177 as the marker ligand. The data from this study was combined with data from previous studies and processed using the Comparative Molecular Field Analysis approach to produce a CoMFA model reflecting the binding to the β₂-AR conformation probed by [(3)H]-(R,R')-4'-methoxyfenoterol. The CoMFA model of the agonist-stabilized β₂-AR suggests that the binding of the fenoterol analogs to an agonist-stabilized conformation of the β₂-AR is governed to a greater extend by steric effects than binding to the [(3)H]-CGP-12177-stabilized conformation(s) in which electrostatic interactions play a more predominate role. Copyright © 2013 Elsevier Ltd. All rights reserved.
Plazinska, Anita; Pajak, Karolina; Rutkowska, Ewelina; Jimenez, Lucita; Kozocas, Joseph; Koolpe, Gary; Tanga, Mary; Toll, Lawrence; Wainer, Irving W.; Jozwiak, Krzysztof
2014-01-01
The β2-adrenergic receptor (β2-AR) agonist [3H]-(R,R′)-methoxyfenoterol was employed as the marker ligand in displacement studies measuring the binding affinities (Ki values) of the stereoisomers of a series of 4′-methoxyfenoterol analogs in which the length of the alkyl substituent at α′ position was varied from 0 to 3 carbon atoms. The binding affinities of the compounds were additionally determined using the inverse agonist [3H]-CGP-12177 as the marker ligand and the ability of the compounds to stimulate cAMP accumulation, measured as EC50 values, were determined in HEK293 cells expressing the β2-AR. The data indicate that the highest binding affinities and functional activities were produced by methyl and ethyl substituents at the α′ position. The results also indicate that the Ki values obtained using [3H]-(R,R′)-methoxyfenoterol as the marker ligand modeled the EC50 values obtained from cAMP stimulation better than the data obtained using [3H]-CGP-12177 as the marker ligand. The data from this study was combined with data from previous studies and processed using the Comparative Molecular Field Analysis approach to produce a CoMFA model reflecting the binding to the β2-AR conformation probed by [3H]-(R,R′)-4′-methoxyfenoterol. The CoMFA model of the agonist-stabilized β2-AR suggests that the binding of the fenoterol analogs to an agonist-stabilized conformation of the β2-AR is governed to a greater extend by steric effects than binding to the [3H]-CGP-12177-stabilized conformation(s) in which electrostatic interactions play a more predominate role. PMID:24326276
Wang, Xue -Bin
2017-01-06
Ion specificity, a widely observed macroscopic phenomenon in condensed phases and at interfaces, is essentially a fundamental chemical physical issue. We have been investigating such effects using cluster models in an “atom-by-atom” and “molecule-by-molecule” fashion not possible with condensed-phase methods. We use electrospray ionization (ESI) to generate molecular and ionic clusters to simulate key molecular entities involved in local binding regions, and characterize them employing negative ion photoelectron spectroscopy (NIPES). Inter- and intramolecular interactions and binding configurations are directly obtained as functions of cluster size and composition, providing insightful molecular-level description and characterization over the local active sites that playmore » crucial roles in determining solution chemistry and condensed phase phenomena. Finally, the topics covered in this article are relevant to a wide scope of research fields ranging from ion specific effects in electrolyte solutions, ion selectivity/recognition in normal functioning of life, to molecular specificity in aerosol particle formation, as well as in rational material design and synthesis.« less
NASA Astrophysics Data System (ADS)
Cazade, Pierre-André; Tran, Halina; Bereau, Tristan; Das, Akshaya K.; Kläsi, Felix; Hamm, Peter; Meuwly, Markus
2015-06-01
The solvent dynamics around fluorinated acetonitrile is characterized by 2-dimensional infrared spectroscopy and atomistic simulations. The lineshape of the linear infrared spectrum is better captured by semiempirical (density functional tight binding) mixed quantum mechanical/molecular mechanics simulations, whereas force field simulations with multipolar interactions yield lineshapes that are significantly too narrow. For the solvent dynamics, a relatively slow time scale of 2 ps is found from the experiments and supported by the mixed quantum mechanical/molecular mechanics simulations. With multipolar force fields fitted to the available thermodynamical data, the time scale is considerably faster—on the 0.5 ps time scale. The simulations provide evidence for a well established CF-HOH hydrogen bond (population of 25%) which is found from the radial distribution function g(r) from both, force field and quantum mechanics/molecular mechanics simulations.
Development of molecularly imprinted polymer-based field effect transistor for sugar chain sensing
NASA Astrophysics Data System (ADS)
Nishitani, Shoichi; Kajisa, Taira; Sakata, Toshiya
2017-04-01
In this study, we developed a molecularly imprinted polymer-based field-effect transistor (MIP-gate FET) for selectively detecting sugar chains in aqueous media, focusing on 3‧-sialyllactose (3SLac) and 6‧-sialyllactose (6SLac). The FET biosensor enables the detection of small molecules as long as they have intrinsic charges. Additionally, the MIP gels include the template for the target molecule, which is selectively trapped without requiring enzyme-target molecule reaction. The MIP gels were synthesized on the gate surface of the FET device, including phenylboronic acid (PBA), which enables binding to sugar chains. Firstly, the 3SLac-MIP-gate FET quantitatively detected 3SLac at µM levels. This is because the FET device recognized the change in molecular charges on the basis of PBA-3SLac binding in the MIP gel. Moreover, 3SLac was selectively detected using the 3SLac- and 6SLac-MIP-gate FETs to some extent, where the detecting signal from the competent was suppressed by 40% at maximum. Therefore, a platform based on the MIP-coupled FET biosensor is suitable for a selective biosensing system in an enzyme-free manner, which can be applied widely in medical fields. However, we need to further improve the selectivity of MIP-gate FETs to discriminate more clearly between similar structures of sugar chains such as 3SLac and 6SLac.
Pagadala, Nataraj S; Perez-Pineiro, Rolando; Wishart, David S; Tuszynski, Jack A
2015-02-16
To understand the pharmacophore properties of 2-aminothiazoles and design novel inhibitors against the prion protein, a highly predictive 3D quantitative structure-activity relationship (QSAR) has been developed by performing comparative molecular field analysis (CoMFA) and comparative similarity analysis (CoMSIA). Both CoMFA and CoMSIA maps reveal the presence of the oxymethyl groups in meta and para positions on the phenyl ring of compound 17 (N-[4-(3,4-dimethoxyphenyl)-1,3-thiazol-2-yl]quinolin-2-amine), is necessary for activity while electro-negative nitrogen of quinoline is highly favorable to enhance activity. The blind docking results for these compounds show that the compound with quinoline binds with higher affinity than isoquinoline and naphthalene groups. Out of 150 novel compounds retrieved using finger print analysis by pharmacophoric model predicted based on five test sets of compounds, five compounds with diverse scaffolds were selected for biological evaluation as possible PrP inhibitors. Molecular docking combined with fluorescence quenching studies show that these compounds bind to pocket-D of SHaPrP near Trp145. The new antiprion compounds 3 and 6, which bind with the interaction energies of -12.1 and -13.2 kcal/mol, respectively, show fluorescence quenching with binding constant (Kd) values of 15.5 and 44.14 μM, respectively. Further fluorescence binding assays with compound 5, which is similar to 2-aminothiazole as a positive control, also show that the molecule binds to the pocket-D with the binding constant (Kd) value of 84.7 μM. Finally, both molecular docking and a fluorescence binding assay of noscapine as a negative control reveals the same binding site on the surface of pocket-A near a rigid loop between β2 and α2 interacting with Arg164. This high level of correlation between molecular docking and fluorescence quenching studies confirm that these five compounds are likely to act as inhibitors for prion propagation while noscapine might act as a prion accelerator from PrP(C) to PrP(Sc). Copyright © 2014 Elsevier Masson SAS. All rights reserved.
NASA Astrophysics Data System (ADS)
Tam, Nguyen Minh; Vu, Khanh B.; Vu, Van V.; Ngo, Son Tung
2018-06-01
Acetylcholinesterase (AChE) is considered as one of the most favored drug targets for Alzheimer's disease. The effects of different force fields (FFs) on ranking affinity of acetylcholinesterase inhibitors were obtained using the fast pulling of ligand (FPL) method in steered-molecular dynamics (SMD) simulations. GROMOS, AMBER, CHARMM, and OPLS-AA FFs were investigated in this work. The pulling work derived with GROMOS FF has the strongest correlation and smallest error compared with experimental binding affinity. Moreover, the CPU consumption in the calculations using GROMOS FF is the lowest, which could allow us to rank affinity of a large number of AChE ligands.
NASA Astrophysics Data System (ADS)
Steiner, Rachel
The purpose of this project is to investigate intermolecular interactions of organic molecular assemblies. By understanding the structure and physical interactions in these assemblies, we gain insights into practical applications for nanoscale systems built upon these surface structures. It is possible for organic chemists to create many forms of modified organic molecules, functionalizing them with specific reactive end groups. Through surface functionalization, enabling covalent or highly associative binding, it is possible to create ordered molecular assemblies of these molecules. Scientists can study the nature of this structure and the intermolecular interactions through spectroscopic, optical, and scattering experiments. To understand the self-assembly process in molecular systems, we preliminarily created monolayer films on silica substrates with a variety of organic molecules. In particular, we functionalized silica substrates with hydroxyl groups and covalently bound acid chloride functionalized aromatic compounds, with and without an underlying adhesion layer of 3-aminopropyltriethoxysilane. We characterized the monolayer assemblies with ellipsometry, UV-vis absorption spectroscopy, FTIR spectroscopy, and fluorescence/photoemission spectroscopy, obtaining a quantitative measure of the molecular surface coverage. In order to understand the nature of these molecular assemblies, we also pursued an in-depth kinetic study to control and optimize the monolayer formation process. Through use of UV-vis spectroscopy, we determined that the monolayer formation can best be modeled with diffusion-limited Langmuir kinetics. Specifically, we concluded that for anthracene acid chloride in dichloromethane the average diffusion coefficient was 1.6x10-7 cm2/sec. Additionally, we find we are able to achieve surface coverages of approximately 2x1014 molecules/cm2. Having established the ability to create ordered molecular assemblies, through surface functionalization, enabling covalent or highly associative binding, we continued to explore the field of molecular assemblies by studying the binding and structure of molecules to carbon nanostructures. Previous studies have shown that alkyl side chains and aromatic compounds, such as pyrene, will bind non-covalently to the sidewalls of carbon nanotubes through pi-pi interactions. We explored functionalization of carbon nanotubes and graphene by using microscopy to examine the adsorption of biomolecules onto nanotube sidewalls and graphene.
Analytical applications of MIPs in diagnostic assays: future perspectives.
Bedwell, Thomas S; Whitcombe, Michael J
2016-03-01
Many efforts have been made to produce artificial materials with biomimetic properties for applications in binding assays. Among these efforts, the technique of molecular imprinting has received much attention because of the high selectivity obtainable for molecules of interest, robustness of the produced polymers, simple and short synthesis, and excellent cost efficiency. In this review, progress in the field of molecularly imprinted sorbent assays is discussed-with a focus on work conducted from 2005 to date.
Güssregen, Stefan; Matter, Hans; Hessler, Gerhard; Lionta, Evanthia; Heil, Jochen; Kast, Stefan M
2017-07-24
Water molecules play an essential role for mediating interactions between ligands and protein binding sites. Displacement of specific water molecules can favorably modulate the free energy of binding of protein-ligand complexes. Here, the nature of water interactions in protein binding sites is investigated by 3D RISM (three-dimensional reference interaction site model) integral equation theory to understand and exploit local thermodynamic features of water molecules by ranking their possible displacement in structure-based design. Unlike molecular dynamics-based approaches, 3D RISM theory allows for fast and noise-free calculations using the same detailed level of solute-solvent interaction description. Here we correlate molecular water entities instead of mere site density maxima with local contributions to the solvation free energy using novel algorithms. Distinct water molecules and hydration sites are investigated in multiple protein-ligand X-ray structures, namely streptavidin, factor Xa, and factor VIIa, based on 3D RISM-derived free energy density fields. Our approach allows the semiquantitative assessment of whether a given structural water molecule can potentially be targeted for replacement in structure-based design. Finally, PLS-based regression models from free energy density fields used within a 3D-QSAR approach (CARMa - comparative analysis of 3D RISM Maps) are shown to be able to extract relevant information for the interpretation of structure-activity relationship (SAR) trends, as demonstrated for a series of serine protease inhibitors.
Waszkowycz, B; Clark, D E; Frenkel, D; Li, J; Murray, C W; Robson, B; Westhead, D R
1994-11-11
A computational approach for molecular design, PRO_LIGAND, has been developed within the PROMETHEUS molecular design and simulation system in order to provide a unified framework for the de novo generation of diverse molecules which are either similar or complementary to a specified target. In this instance, the target is a pharmacophore derived from a series of active structures either by a novel interpretation of molecular field analysis data or by a pharmacophore-mapping procedure based on clique detection. After a brief introduction to PRO_LIGAND, a detailed description is given of the two pharmacophore generation procedures and their abilities are demonstrated by the elucidation of pharmacophores for steroid binding and ACE inhibition, respectively. As a further indication of its efficacy in aiding the rational drug design process, PRO_LIGAND is then employed to build novel organic molecules to satisfy the physicochemical constraints implied by the pharmacophores.
Nagata, Takeshi; Iwata, Suehiro
2004-02-22
The locally projected self-consistent field molecular orbital method for molecular interaction (LP SCF MI) is reformulated for multifragment systems. For the perturbation expansion, two types of the local excited orbitals are defined; one is fully local in the basis set on a fragment, and the other has to be partially delocalized to the basis sets on the other fragments. The perturbation expansion calculations only within single excitations (LP SE MP2) are tested for water dimer, hydrogen fluoride dimer, and colinear symmetric ArM+ Ar (M = Na and K). The calculated binding energies of LP SE MP2 are all close to the corresponding counterpoise corrected SCF binding energy. By adding the single excitations, the deficiency in LP SCF MI is thus removed. The results suggest that the exclusion of the charge-transfer effects in LP SCF MI might indeed be the cause of the underestimation for the binding energy. (c) 2004 American Institute of Physics.
Update on Recent Molecular and Genetic Advances in Frontotemporal Lobar Degeneration
Bigio, Eileen H.
2009-01-01
Great strides have been made in the last 2 years in the field of frontotemporal lobar degeneration (FTLD), particularly with respect to the genetics and molecular biology of FTLD with ubiquitinated inclusions. It is now clear that most cases of familial FTLD with ubiquitinated inclusions have mutations in the progranulin gene, located on chromosome 17. It is also clear that most ubiquitinated inclusions in FTLD with ubiquitinated inclusions are composed primarily of TAR DNA-binding protein-43. Thus, FTLDs can be separated into 2 major groups (i.e. tauopathies and ubiquitinopathies), and most of the ubiquitinopathies can now be defined as TAR DNA-binding protein-43 proteinopathies. Many of the familial FTLDs are linked to chromosome 17, including both the familial tauopathies and the familial TAR DNA-binding protein-43 proteinopathies with progranulin mutations. This review highlights the neuropathologic features and the most important discoveries of the last 2 years and places these findings into the historical context of FTLD. PMID:18596549
Magnetic Resonance Relaxometry at Low and Ultra low Fields.
Volegov, P; Flynn, M; Kraus, R; Magnelind, P; Matlashov, A; Nath, P; Owens, T; Sandin, H; Savukov, I; Schultz, L; Urbaitis, A; Zotev, V; Espy, M
2010-01-01
Nuclear magnetic resonance (NMR) and magnetic resonance imaging (MRI) are ubiquitous tools in science and medicine. NMR provides powerful probes of local and macromolecular chemical structure and dynamics. Recently it has become possible and practical to perform MR at very low fields (from 1 μT to 1 mT), the so-called ultra-low field (ULF) regime. Pulsed pre-polarizing fields greatly enhance the signal strength and allow flexibility in signal acquisition sequences. Improvements in SQUID sensor technology allow ultra-sensitive detection in a pulsed field environment.In this regime the proton Larmor frequencies (1 Hz - 100 kHz) of ULF MR overlap (on a time scale of 10 μs to 100 ms) with "slow" molecular dynamic processes such as diffusion, intra-molecular motion, chemical reactions, and biological processes such as protein folding, catalysis and ligand binding. The frequency dependence of relaxation at ultra-low fields may provide a probe for biomolecular dynamics on the millisecond timescale (protein folding and aggregation, conformational motions of enzymes, binding and structural fluctuations of coupled domains in allosteric mechanisms) relevant to host-pathogen interactions, biofuels, and biomediation. Also this resonance-enhanced coupling at ULF can greatly enhance contrast in medical applications of ULF-MRI resulting in better diagnostic techniques.We have developed a number of instruments and techniques to study relaxation vs. frequency at the ULF regime. Details of the techniques and results are presented.Ultra-low field methods are already being applied at LANL in brain imaging, and detection of liquid explosives at airports. However, the potential power of ultra-low field MR remains to be fully exploited.
Blessy, J Jino; Sharmila, D Jeya Sundara
2015-02-01
Molecular modeling of synthetic methyl-α-Neu5Ac analogues modified in C-9 position was investigated by molecular docking and molecular dynamics (MD) simulation methods. Methyl-α-Neu5Ac analogues were docked against cholera toxin (CT) B subunit protein and MD simulations were carried out for three Methyl-α-Neu5Ac analogue-CT complexes (30, 10 and 10 ns) to estimate the binding activity of cholera toxin-Methyl-α-Neu5Ac analogues using OPLS_2005 force field. In this study, direct and water mediated hydrogen bonds play a vital role that exist between the methyl-α-9-N-benzoyl-amino-9-deoxy-Neu5Ac (BENZ)-cholera toxin active site residues. The Energy plot, RMSD and RMSF explain that the simulation was stable throughout the simulation run. Transition of phi, psi and omega angle for the complex was calculated. Molecular docking studies could be able to identify the binding mode of methyl-α-Neu5Ac analogues in the binding site of cholera toxin B subunit protein. MD simulation for Methyl-α-9-N-benzoyl-amino-9-deoxy-Neu5Ac (BENZ), Methyl-α-9-N-acetyl-9-deoxy-9-amino-Neu5Ac and Methyl-α-9-N-biphenyl-4-acetyl-deoxy-amino-Neu5Ac complex with CT B subunit protein was carried out, which explains the stable nature of interaction. These methyl-α-Neu5Ac analogues that have computationally acceptable pharmacological properties may be used as novel candidates for drug design for cholera disease.
Spontaneous adsorption of coiled-coil model peptides K and E to a mixed lipid bilayer.
Pluhackova, Kristyna; Wassenaar, Tsjerk A; Kirsch, Sonja; Böckmann, Rainer A
2015-03-26
A molecular description of the lipid-protein interactions underlying the adsorption of proteins to membranes is crucial for understanding, for example, the specificity of adsorption or the binding strength of a protein to a bilayer, or for characterizing protein-induced changes of membrane properties. In this paper, we extend an automated in silico assay (DAFT) for binding studies and apply it to characterize the adsorption of the model fusion peptides E and K to a mixed phospholipid/cholesterol membrane using coarse-grained molecular dynamics simulations. In addition, we couple the coarse-grained protocol to reverse transformation to atomistic resolution, thereby allowing to study molecular interactions with high detail. The experimentally observed differential binding of the peptides E and K to membranes, as well as the increased binding affinity of helical over unstructered peptides, could be well reproduced using the polarizable Martini coarse-grained (CG) force field. Binding to neutral membranes is shown to be dominated by initial binding of the positively charged N-terminus to the phospholipid headgroup region, followed by membrane surface-aligned insertion of the peptide at the interface between the hydrophobic core of the membrane and its polar headgroup region. Both coarse-grained and atomistic simulations confirm a before hypothesized snorkeling of lysine side chains for the membrane-bound state of the peptide K. Cholesterol was found to be enriched in peptide vicinity, which is probably of importance for the mechanism of membrane fusion. The applied sequential multiscale method, using coarse-grained simulations for the slow adsorption process of peptides to membranes followed by backward transformation to atomistic detail and subsequent atomistic simulations of the preformed peptide-lipid complexes, is shown to be a versatile approach to study the interactions of peptides or proteins with biomembranes.
The binding domain of the HMGB1 inhibitor carbenoxolone: Theory and experiment
NASA Astrophysics Data System (ADS)
Mollica, Luca; Curioni, Alessandro; Andreoni, Wanda; Bianchi, Marco E.; Musco, Giovanna
2008-05-01
We present a combined computational and experimental study of the interaction of the Box A of the HMGB1 protein and carbenoxolone, an inhibitor of its pro-inflammatory activity. The computational approach consists of classical molecular dynamics (MD) simulations based on the GROMOS force field with quantum-refined (QRFF) atomic charges for the ligand. Experimental data consist of fluorescence intensities, chemical shift displacements, saturation transfer differences and intermolecular Nuclear Overhauser Enhancement signals. Good agreement is found between observations and the conformation of the ligand-protein complex resulting from QRFF-MD. In contrast, simple docking procedures and MD based on the unrefined force field provide models inconsistent with experiment. The ligand-protein binding is dominated by non-directional interactions.
Kanchi, Subbarao; Gosika, Mounika; Ayappa, K G; Maiti, Prabal K
2018-06-13
The understanding of dendrimer interactions with cell membranes has great importance in drug/gene delivery based therapeutics. Although molecular simulations have been used to understand the nature of dendrimer interactions with lipid membranes, its dependency on available force field parameters is poorly understood. In this study, we have carried out fully atomistic molecular dynamics (MD) simulations of a protonated G3 poly(amido amine) (PAMAM) dendrimer-dimyristoylphosphatidylcholine (DMPC) lipid bilayer complex using three different force fields (FFs) namely, CHARMM, GAFF, and GROMOS in the presence of explicit water to understand the structure of the lipid-dendrimer complex and nature of their interaction. CHARMM and GAFF dendrimers initially in contact with the lipid head groups were found to move away from the lipid bilayer during the course of simulation; however, the dendrimer remained strongly bound to the lipid head groups with the GROMOS FF. Potential of the mean force (PMF) computations of the dendrimer along the bilayer normal showed a repulsive barrier (∼20 kcal/mol) between dendrimer and lipid bilayer in the case of CHARMM and GAFF force fields. In contrast, an attractive interaction (∼40 kcal/mol) is obtained with the GROMOS force field, consistent with experimental observations of membrane binding observed with lower generation G3 PAMAM dendrimers. This difference with the GROMOS dendrimer is attributed to the strong dendrimer-lipid interaction and lowered surface hydration of the dendrimer. Assessing the role of solvent, we find that the CHARMM and GAFF dendrimers strongly bind to the lipid bilayer with an implicit solvent (Generalized Born) model, whereas binding is not observed with explicit water (TIP3P). The opposing nature of dendrimer-membrane interactions in the presence of explicit and implicit solvents demonstrates that hydration effects play an important role in modulating the dendrimer-lipid interaction warranting a case for refinement of the existing dendrimer/lipid force fields.
OLIFE: Tight Binding Code for Transmission Coefficient Calculation
NASA Astrophysics Data System (ADS)
Mijbil, Zainelabideen Yousif
2018-05-01
A new and human friendly transport calculation code has been developed. It requires a simple tight binding Hamiltonian as the only input file and uses a convenient graphical user interface to control calculations. The effect of magnetic field on junction has also been included. Furthermore the transmission coefficient can be calculated between any two points on the scatterer which ensures high flexibility to check the system. Therefore Olife can highly be recommended as an essential tool for pretesting studying and teaching electron transport in molecular devices that saves a lot of time and effort.
Villareal, Oscar D; Rodriguez, Roberto A; Yu, Lili; Wambo, Thierry O
2016-08-20
Molecular dynamics simulations employing all-atom force fields have become a reliable way to study binding interactions quantitatively for a wide range of systems. In this work, we employ two recently developed methods for the calculation of dissociation constants K D between gold nanoparticles (AuNPs) of different sizes in a near-physiological environment through the potential of mean force (PMF) formalism: the method of geometrical restraints developed by Woo et al. and formalized by Gumbart et al. and the method of hybrid Steered Molecular Dynamics (hSMD). Obtaining identical results (within the margin of error) from both approaches on the negatively charged Au 18 (SR) 14 NP, functionalized by the negatively charged 4-mercapto-benzoate (pMBA) ligand, we draw parallels between their energetic and entropic interactions. By applying the hSMD method on Au 102 (SR) 44 and Au 144 (SR) 60 , both of them near-spherical in shape and functionalized by pMBA, we study the effects of size and shape on the binding interactions. Au 18 binds weakly with K D = 13 mM as a result of two opposing effects: its large surface curvature hindering the formation of salt bridges, and its large ligand density on preferential orientations favoring their formation. On the other hand, Au 102 binds more strongly with K D = 30 μM and Au 144 binds the strongest with K D = 3.2 nM .
Free Energy Perturbation Calculations of the Thermodynamics of Protein Side-Chain Mutations.
Steinbrecher, Thomas; Abel, Robert; Clark, Anthony; Friesner, Richard
2017-04-07
Protein side-chain mutation is fundamental both to natural evolutionary processes and to the engineering of protein therapeutics, which constitute an increasing fraction of important medications. Molecular simulation enables the prediction of the effects of mutation on properties such as binding affinity, secondary and tertiary structure, conformational dynamics, and thermal stability. A number of widely differing approaches have been applied to these predictions, including sequence-based algorithms, knowledge-based potential functions, and all-atom molecular mechanics calculations. Free energy perturbation theory, employing all-atom and explicit-solvent molecular dynamics simulations, is a rigorous physics-based approach for calculating thermodynamic effects of, for example, protein side-chain mutations. Over the past several years, we have initiated an investigation of the ability of our most recent free energy perturbation methodology to model the thermodynamics of protein mutation for two specific problems: protein-protein binding affinities and protein thermal stability. We highlight recent advances in the field and outline current and future challenges. Copyright © 2017 Elsevier Ltd. All rights reserved.
QSAR and molecular modelling studies on B-DNA recognition of minor groove binders.
de Oliveira, André Mauricio; Custódio, Flávia Beatriz; Donnici, Cláudio Luis; Montanari, Carlos Alberto
2003-02-01
Aromatic bisamidines have been proved to be efficient compounds against Leishmania spp. and Pneumocystis carinii. Although the mode of action is still not known, these molecules are supposed to be DNA minor groove binders (MGBs). This paper describes a molecular modelling study for a set of MGBs in order to rank them through their complementarity to the Dickerson Drew Dodecamer (DDD) according to their interaction energies with B-DNA. A comparative molecular field analysis (CoMFA) has shown the importance of relatively bulky positively charged groups attached to the MGB aromatic rings, and small and negatively charged substituents into the middle chain. Models were obtained for DNA denaturation related to H-bonding processes of binding modes. Validation of the model demonstrated the robustness of CoMFA in terms of independent test set of similar MGBs. GRID results allotted bioisosteric substitution of z.sbnd;Oz.sbnd; by z.sbnd;NHz.sbnd; in furan ring of furamidine and related compounds as being capable to enhance the binding to DDD.
Pucheta-Martinez, Encarna; D'Amelio, Nicola; Lelli, Moreno; Martinez-Torrecuadrada, Jorge L; Sudol, Marius; Saladino, Giorgio; Gervasio, Francesco Luigi
2016-07-26
WW domains are small domains present in many human proteins with a wide array of functions and acting through the recognition of proline-rich sequences. The WW domain belonging to polyglutamine tract-binding protein 1 (PQBP1) is of particular interest due to its direct involvement in several X chromosome-linked intellectual disabilities, including Golabi-Ito-Hall (GIH) syndrome, where a single point mutation (Y65C) correlates with the development of the disease. The mutant cannot bind to its natural ligand WBP11, which regulates mRNA processing. In this work we use high-field high-resolution NMR and enhanced sampling molecular dynamics simulations to gain insight into the molecular causes the disease. We find that the wild type protein is partially unfolded exchanging among multiple beta-strand-like conformations in solution. The Y65C mutation further destabilizes the residual fold and primes the protein for the formation of a disulphide bridge, which could be at the origin of the loss of function.
NASA Astrophysics Data System (ADS)
Pucheta-Martinez, Encarna; D'Amelio, Nicola; Lelli, Moreno; Martinez-Torrecuadrada, Jorge L.; Sudol, Marius; Saladino, Giorgio; Gervasio, Francesco Luigi
2016-07-01
WW domains are small domains present in many human proteins with a wide array of functions and acting through the recognition of proline-rich sequences. The WW domain belonging to polyglutamine tract-binding protein 1 (PQBP1) is of particular interest due to its direct involvement in several X chromosome-linked intellectual disabilities, including Golabi-Ito-Hall (GIH) syndrome, where a single point mutation (Y65C) correlates with the development of the disease. The mutant cannot bind to its natural ligand WBP11, which regulates mRNA processing. In this work we use high-field high-resolution NMR and enhanced sampling molecular dynamics simulations to gain insight into the molecular causes the disease. We find that the wild type protein is partially unfolded exchanging among multiple beta-strand-like conformations in solution. The Y65C mutation further destabilizes the residual fold and primes the protein for the formation of a disulphide bridge, which could be at the origin of the loss of function.
Deeth, Robert J
2008-08-04
A general molecular mechanics method is presented for modeling the symmetric bidentate, asymmetric bidentate, and bridging modes of metal-carboxylates with a single parameter set by using a double-minimum M-O-C angle-bending potential. The method is implemented within the Molecular Operating Environment (MOE) with parameters based on the Merck molecular force field although, with suitable modifications, other MM packages and force fields could easily be used. Parameters for high-spin d (5) manganese(II) bound to carboxylate and water plus amine, pyridyl, imidazolyl, and pyrazolyl donors are developed based on 26 mononuclear and 29 dinuclear crystallographically characterized complexes. The average rmsd for Mn-L distances is 0.08 A, which is comparable to the experimental uncertainty required to cover multiple binding modes, and the average rmsd in heavy atom positions is around 0.5 A. In all cases, whatever binding mode is reported is also computed to be a stable local minimum. In addition, the structure-based parametrization implicitly captures the energetics and gives the same relative energies of symmetric and asymmetric coordination modes as density functional theory calculations in model and "real" complexes. Molecular dynamics simulations show that carboxylate rotation is favored over "flipping" while a stochastic search algorithm is described for randomly searching conformational space. The model reproduces Mn-Mn distances in dinuclear systems especially accurately, and this feature is employed to illustrate how MM calculations on models for the dimanganese active site of methionine aminopeptidase can help determine some of the details which may be missing from the experimental structure.
Wang, Zhiguo; Chen, Ruping; Hou, Ling; Li, Jianfeng; Liu, Jun-Ping
2015-06-01
Telomere assumes intra-molecular G-quadruplex that is a significant drug target for inhibiting telomerase maintenance of telomeres in cancer. Metal cations have been recognized as playing important roles in stabilizing G-quadruplex, but their binding processes to human telomeric G-quadruplex remain uncharacterized. To investigate the detailed binding procedures, molecular dynamics simulations were conducted on the hybrid [3 + 1] form-one human telomeric intra-molecular G-quadruplex. We show here that the binding of a potassium ion to a G-tetrad core is mediated by two alternative pathways. Principal component analysis illustrated the dominant concerted motions of G-quadruplex occurred at the loop domains. MM-PBSA calculations revealed that binding was energetically favorable and driven by the electrostatic interactions. The lower binding site was found more constructive favorable for binding. Our data provide useful information on a potassium-mediated stable structure of human telomeric intra-molecular G-quadruplex, implicating in ion disorder associated conformational changes and targeted drug design.
Panda, Dulal; Kunwar, Ambarish
2016-01-01
Tubulin isotypes are found to play an important role in regulating microtubule dynamics. The isotype composition is also thought to contribute in the development of drug resistance as tubulin isotypes show differential binding affinities for various anti-cancer agents. Tubulin isotypes αβII, αβIII and αβIV show differential binding affinity for colchicine. However, the origin of differential binding affinity is not well understood at the molecular level. Here, we investigate the origin of differential binding affinity of a colchicine analogue N-deacetyl-N-(2-mercaptoacetyl)-colchicine (DAMA-colchicine) for human αβII, αβIII and αβIV isotypes, employing sequence analysis, homology modeling, molecular docking, molecular dynamics simulation and MM-GBSA binding free energy calculations. The sequence analysis study shows that the residue compositions are different in the colchicine binding pocket of αβII and αβIII, whereas no such difference is present in αβIV tubulin isotypes. Further, the molecular docking and molecular dynamics simulations results show that residue differences present at the colchicine binding pocket weaken the bonding interactions and the correct binding of DAMA-colchicine at the interface of αβII and αβIII tubulin isotypes. Post molecular dynamics simulation analysis suggests that these residue variations affect the structure and dynamics of αβII and αβIII tubulin isotypes, which in turn affect the binding of DAMA-colchicine. Further, the binding free-energy calculation shows that αβIV tubulin isotype has the highest binding free-energy and αβIII has the lowest binding free-energy for DAMA-colchicine. The order of binding free-energy for DAMA-colchicine is αβIV ≃ αβII >> αβIII. Thus, our computational approaches provide an insight into the effect of residue variations on differential binding of αβII, αβIII and αβIV tubulin isotypes with DAMA-colchicine and may help to design new analogues with higher binding affinities for tubulin isotypes. PMID:27227832
Khalil, Samar; Bardawil, Tara; Stephan, Carla; Darwiche, Nadine; Abbas, Ossama; Kibbi, Abdul Ghani; Nemer, Georges; Kurban, Mazen
2017-12-01
Retinoids are a class of compounds derived from vitamin A or having structural and/or functional similarities with vitamin A. They are classified into three generations based on their molecular structures. Inside the body, retinoids bind to several classes of proteins including retinoid-binding proteins and retinoid nuclear receptors. This eventually leads to the activation of specific regulatory regions of DNA - called the retinoic acid response elements - involved in regulating cell growth, differentiation and apoptosis. Several clinical trials have studied the role of topical and systemic retinoids in disease, and research is still ongoing. Currently, retinoids are used in several fields of medicine. This paper aims to review the structure, mechanisms of action, and adverse effects of retinoids, as well as some of their current uses in Dermatology.
Driving spin transition at interface: Role of adsorption configurations
NASA Astrophysics Data System (ADS)
Zhang, Yachao
2018-01-01
A clear insight into the electrical manipulation of molecular spins at interface is crucial to the design of molecule-based spintronic devices. Here we report on the electrically driven spin transition in manganocene physisorbed on a metallic surface in two different adsorption configurations predicted by ab initio techniques, including a Hubbard-U correction at the manganese site and accounting for the long-range van der Waals interactions. We show that the application of an electric field at the interface induces a high-spin to low-spin transition in the flat-lying manganocene, while it could hardly alter the high-spin ground state of the standing-up molecule. This phenomenon cannot be explained by either the molecule-metal charge transfer or the local electron correlation effects. We demonstrate a linear dependence of the intra-molecular spin-state splitting on the energy difference between crystal-field splitting and on-site Coulomb repulsion. After considering the molecule-surface binding energy shifts upon spin transition, we reproduce the obtained spin-state energetics. We find that the configuration-dependent responses of the spin-transition originate from the binding energy shifts instead of the variation of the local ligand field. Through these analyses, we obtain an intuitive understanding of the effects of molecule-surface contact on spin-crossover under electrical bias.
Zuo, Zhili; Gandhi, Neha S; Mancera, Ricardo L
2010-12-27
The leucine zipper region of activator protein-1 (AP-1) comprises the c-Jun and c-Fos proteins and constitutes a well-known coiled coil protein-protein interaction motif. We have used molecular dynamics (MD) simulations in conjunction with the molecular mechanics/Poisson-Boltzmann generalized-Born surface area [MM/PB(GB)SA] methods to predict the free energy of interaction of these proteins. In particular, the influence of the choice of solvation model, protein force field, and water potential on the stability and dynamic properties of the c-Fos-c-Jun complex were investigated. Use of the AMBER polarizable force field ff02 in combination with the polarizable POL3 water potential was found to result in increased stability of the c-Fos-c-Jun complex. MM/PB(GB)SA calculations revealed that MD simulations using the POL3 water potential give the lowest predicted free energies of interaction compared to other nonpolarizable water potentials. In addition, the calculated absolute free energy of binding was predicted to be closest to the experimental value using the MM/GBSA method with independent MD simulation trajectories using the POL3 water potential and the polarizable ff02 force field, while all other binding affinities were overestimated.
VASP-E: Specificity Annotation with a Volumetric Analysis of Electrostatic Isopotentials
Chen, Brian Y.
2014-01-01
Algorithms for comparing protein structure are frequently used for function annotation. By searching for subtle similarities among very different proteins, these algorithms can identify remote homologs with similar biological functions. In contrast, few comparison algorithms focus on specificity annotation, where the identification of subtle differences among very similar proteins can assist in finding small structural variations that create differences in binding specificity. Few specificity annotation methods consider electrostatic fields, which play a critical role in molecular recognition. To fill this gap, this paper describes VASP-E (Volumetric Analysis of Surface Properties with Electrostatics), a novel volumetric comparison tool based on the electrostatic comparison of protein-ligand and protein-protein binding sites. VASP-E exploits the central observation that three dimensional solids can be used to fully represent and compare both electrostatic isopotentials and molecular surfaces. With this integrated representation, VASP-E is able to dissect the electrostatic environments of protein-ligand and protein-protein binding interfaces, identifying individual amino acids that have an electrostatic influence on binding specificity. VASP-E was used to examine a nonredundant subset of the serine and cysteine proteases as well as the barnase-barstar and Rap1a-raf complexes. Based on amino acids established by various experimental studies to have an electrostatic influence on binding specificity, VASP-E identified electrostatically influential amino acids with 100% precision and 83.3% recall. We also show that VASP-E can accurately classify closely related ligand binding cavities into groups with different binding preferences. These results suggest that VASP-E should prove a useful tool for the characterization of specific binding and the engineering of binding preferences in proteins. PMID:25166865
A novel integrated framework and improved methodology of computer-aided drug design.
Chen, Calvin Yu-Chian
2013-01-01
Computer-aided drug design (CADD) is a critical initiating step of drug development, but a single model capable of covering all designing aspects remains to be elucidated. Hence, we developed a drug design modeling framework that integrates multiple approaches, including machine learning based quantitative structure-activity relationship (QSAR) analysis, 3D-QSAR, Bayesian network, pharmacophore modeling, and structure-based docking algorithm. Restrictions for each model were defined for improved individual and overall accuracy. An integration method was applied to join the results from each model to minimize bias and errors. In addition, the integrated model adopts both static and dynamic analysis to validate the intermolecular stabilities of the receptor-ligand conformation. The proposed protocol was applied to identifying HER2 inhibitors from traditional Chinese medicine (TCM) as an example for validating our new protocol. Eight potent leads were identified from six TCM sources. A joint validation system comprised of comparative molecular field analysis, comparative molecular similarity indices analysis, and molecular dynamics simulation further characterized the candidates into three potential binding conformations and validated the binding stability of each protein-ligand complex. The ligand pathway was also performed to predict the ligand "in" and "exit" from the binding site. In summary, we propose a novel systematic CADD methodology for the identification, analysis, and characterization of drug-like candidates.
Computer-aided identification of potential TYK2 inhibitors from drug database
NASA Astrophysics Data System (ADS)
Zhang, Wei; Li, Jianzong; Huang, Zhixin; Wang, Haiyang; Luo, Hao; Wang, Xin; Zhou, Nan; Wu, Chuanfang; Bao, Jinku
2016-10-01
TYK2 is a member of JAKs family protein tyrosine kinase activated in response to various cytokines. It plays a crucial role in transducing signals downstream of various cytokine receptors, which are involved in proinflammatory responses associated with immunological diseases. Thus, the study of selective TYK2 inhibitors is one of the most popular fields in anti-inflammation drug development. Herein, we adopted molecular docking, molecular dynamics simulation and MM-PBSA binding free energy calculation to screen potential TYK2-selective inhibitors from ZINC Drug Database. Finally, three small molecule drugs ZINC12503271 (Gemifloxacin), ZINC05844792 (Nebivolol) and ZINC00537805 (Glyburide) were selected as potential TYK2-selective inhibitors. Compared to known inhibitor 2,6-dichloro-N-{2-[(cyclopropylcarbonyl)amino]pyridin-4-yl}benzamide, these three candidates had better Grid score and Amber score from molecular docking and preferable results from binding free energy calculation as well. What's more, the ATP-binding site and A-loop motif had been identified to play key roles in TYK2-targeted inhibitor discovery. It is expected that our study will pave the way for the design of potent TYK2 inhibitors of new drugs to treat a wide variety of immunological diseases such as inflammatory diseases, multiple sclerosis, psoriasis inflammatory bowel disease (IBD) and so on.
Meng, Zhenyu; Kubar, Tomas; Mu, Yuguang; Shao, Fangwei
2018-05-08
Charge transport (CT) through biomolecules is of high significance in the research fields of biology, nanotechnology, and molecular devices. Inspired by our previous work that showed the binding of ionic liquid (IL) facilitated charge transport in duplex DNA, in silico simulation is a useful means to understand the microscopic mechanism of the facilitation phenomenon. Here molecular dynamics simulations (MD) of duplex DNA in water and hydrated ionic liquids were employed to explore the helical parameters. Principal component analysis was further applied to capture the subtle conformational changes of helical DNA upon different environmental impacts. Sequentially, CT rates were calculated by a QM/MM simulation of the flickering resonance model based upon MD trajectories. Herein, MD simulation illustrated that the binding of ionic liquids can restrain dynamic conformation and lower the on-site energy of the DNA base. Confined movement among the adjacent base pairs was highly related to the increase of electronic coupling among base pairs, which may lead DNA to a CT facilitated state. Sequentially combining MD and QM/MM analysis, the rational correlations among the binding modes, the conformational changes, and CT rates illustrated the facilitation effects from hydrated IL on DNA CT and supported a conformational-gating mechanism.
Silva, José Rogério A; Bishai, William R; Govender, Thavendran; Lamichhane, Gyanu; Maguire, Glenn E M; Kruger, Hendrik G; Lameira, Jeronimo; Alves, Cláudio N
2016-01-01
The single crystal X-ray structure of the extracellular portion of the L,D-transpeptidase (ex-LdtMt2 - residues 120-408) enzyme was recently reported. It was observed that imipenem and meropenem inhibit activity of this enzyme, responsible for generating L,D-transpeptide linkages in the peptidoglycan layer of Mycobacterium tuberculosis. Imipenem is more active and isothermal titration calorimetry experiments revealed that meropenem is subjected to an entropy penalty upon binding to the enzyme. Herein, we report a molecular modeling approach to obtain a molecular view of the inhibitor/enzyme interactions. The average binding free energies for nine commercially available inhibitors were calculated using MM/GBSA and Solvation Interaction Energy (SIE) approaches and the calculated energies corresponded well with the available experimentally observed results. The method reproduces the same order of binding energies as experimentally observed for imipenem and meropenem. We have also demonstrated that SIE is a reasonably accurate and cost-effective free energy method, which can be used to predict carbapenem affinities for this enzyme. A theoretical explanation was offered for the experimental entropy penalty observed for meropenem, creating optimism that this computational model can serve as a potential computational model for other researchers in the field.
Balupuri, Anand; Balasubramanian, Pavithra K; Cho, Seung J
2016-01-01
Checkpoint kinase 1 (Chk1) has emerged as a potential therapeutic target for design and development of novel anticancer drugs. Herein, we have performed three-dimensional quantitative structure-activity relationship (3D-QSAR) and molecular docking analyses on a series of diazacarbazoles to design potent Chk1 inhibitors. 3D-QSAR models were developed using comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) techniques. Docking studies were performed using AutoDock. The best CoMFA and CoMSIA models exhibited cross-validated correlation coefficient (q2) values of 0.631 and 0.585, and non-cross-validated correlation coefficient (r2) values of 0.933 and 0.900, respectively. CoMFA and CoMSIA models showed reasonable external predictabilities (r2 pred) of 0.672 and 0.513, respectively. A satisfactory performance in the various internal and external validation techniques indicated the reliability and robustness of the best model. Docking studies were performed to explore the binding mode of inhibitors inside the active site of Chk1. Molecular docking revealed that hydrogen bond interactions with Lys38, Glu85 and Cys87 are essential for Chk1 inhibitory activity. The binding interaction patterns observed during docking studies were complementary to 3D-QSAR results. Information obtained from the contour map analysis was utilized to design novel potent Chk1 inhibitors. Their activities and binding affinities were predicted using the derived model and docking studies. Designed inhibitors were proposed as potential candidates for experimental synthesis.
Gas Sensors Based on Molecular Imprinting Technology.
Zhang, Yumin; Zhang, Jin; Liu, Qingju
2017-07-04
Molecular imprinting technology (MIT); often described as a method of designing a material to remember a target molecular structure (template); is a technique for the creation of molecularly imprinted polymers (MIPs) with custom-made binding sites complementary to the target molecules in shape; size and functional groups. MIT has been successfully applied to analyze; separate and detect macromolecular organic compounds. Furthermore; it has been increasingly applied in assays of biological macromolecules. Owing to its unique features of structure specificity; predictability; recognition and universal application; there has been exploration of the possible application of MIPs in the field of highly selective gas sensors. In this present study; we outline the recent advances in gas sensors based on MIT; classify and introduce the existing molecularly imprinted gas sensors; summarize their advantages and disadvantages; and analyze further research directions.
NASA Astrophysics Data System (ADS)
Morris, Kevin F.; Billiot, Eugene J.; Billiot, Fereshteh H.; Hoffman, Charlene B.; Gladis, Ashley A.; Lipkowitz, Kenny B.; Southerland, William M.; Fang, Yayin
2015-08-01
Molecular dynamics simulations and NMR spectroscopy were used to compare the binding of two β-blocker drugs to the chiral molecular micelle poly-(sodium undecyl-(L)-leucine-valine). The molecular micelle is used as a chiral selector in capillary electrophoresis. This study is part of a larger effort to understand the mechanism of chiral recognition in capillary electrophoresis by characterizing the molecular micelle binding of chiral compounds with different geometries and charges. Propranolol and atenolol were chosen because their structures are similar, but their chiral interactions with the molecular micelle are different. Molecular dynamics simulations showed both propranolol enantiomers inserted their aromatic rings into the molecular micelle core and that (S)-propranolol associated more strongly with the molecular micelle than (R)-propranolol. This difference was attributed to stronger molecular micelle hydrogen bonding interactions experienced by (S)-propranolol. Atenolol enantiomers were found to bind near the molecular micelle surface and to have similar molecular micelle binding free energies.
Ding, Lina; Wang, Zhi-Zheng; Sun, Xu-Dong; Yang, Jing; Ma, Chao-Ya; Li, Wen; Liu, Hong-Min
2017-08-01
Recently, Histone Lysine Specific Demethylase 1 (LSD1) was regarded as a promising anticancer target for the novel drug discovery. And several small molecules as LSD1 inhibitors in different structures have been reported. In this work, we carried out a molecular modeling study on the 6-aryl-5-cyano-pyrimidine fragment LSD1 inhibitors using three-dimensional quantitative structure-activity relationship (3D-QSAR), molecular docking and molecular dynamics simulations. Comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) were used to generate 3D-QSAR models. The results show that the best CoMFA model has q 2 =0.802, r 2 ncv =0.979, and the best CoMSIA model has q 2 =0.799, r 2 ncv =0.982. The electrostatic, hydrophobic and H-bond donor fields play important roles in the models. Molecular docking studies predict the binding mode and the interactions between the ligand and the receptor protein. Molecular dynamics simulations results reveal that the complex of the ligand and the receptor protein are stable at 300K. All the results can provide us more useful information for our further drug design. Copyright © 2017. Published by Elsevier Ltd.
Sprenger, K G; Plaks, J G; Kaar, J L; Pfaendtner, J
2017-07-05
For many different frameworks, the structure, function, and dynamics of an enzyme is largely determined by the nature of its interactions with the surrounding host environment, thus a molecular level understanding of enzyme/host interactions is essential to the design of new processes and applications. Ionic liquid (IL) solvents are a popular class of solvents in which to study enzyme behavior, yet it is still not possible to predict how a given enzyme will behave in a given IL solvent. Furthermore, a dearth of experimental data with which to evaluate simulation force fields has prevented the full integration of experimental and computational techniques to gain a complete picture of enzyme/IL interactions. Utilizing recently published crystallographic data of an enzyme in complex with an IL, this study aims to validate the use of current molecular force fields for studying enzyme/IL interactions, and to provide new mechanistic insight into enzyme stabilization in IL solvents. Classical molecular dynamics (MD) simulations have been performed on both the folded and unfolded state of Bacillus subtilis lipase A and a quadruple-mutant version of lipase A, in solutions of aqueous 1-butyl-3-methylimidazolium chloride. Results show classical MD simulations can predict the preferred surface binding locations of IL cations as well as reductions in IL anion binding to mutated surface residues with high accuracy. The results also point to a mechanistic difference between IL binding to the folded and unfolded state of an enzyme, which we call the "counter-ion effect". These findings could have important implications for future rational design efforts to stabilize enzymes in non-conventional media.
Modeling the interactions of the nucleotide excision repair UvrA(2) dimer with DNA.
Gantchev, Tsvetan G; Hunting, Darel J
2010-12-28
The UvrA protein initiates the DNA damage recognition process by the bacterial nucleotide excision repair (NER) system. Recently, crystallographic structures of holo-UvrA(2) dimers from two different microorganisms have been released (Protein Data Bank entries 2r6f , 2vf7 , and 2vf8 ). However, the details of the DNA binding by UvrA(2) and other peculiarities involved in the damage recognition process remain unknown. We have undertaken a molecular modeling approach to appraise the possible modes of DNA-UvrA(2) interaction using molecular docking and short-scale guided molecular dynamics [continuum field, constrained, and/or unrestricted simulated annealing (SA)], taking into account the three-dimensional location of a series of mutation-identified UvrA residues implicated in DNA binding. The molecular docking was based on the assumptions that the UvrA(2) dimer is preformed prior to DNA binding and that no major protein conformational rearrangements, except moderate domain reorientations, are required for binding of undamaged DNA. As a first approximation, DNA was treated as a rigid ligand. From the electrostatic relief of the ventral surface of UvrA(2), we initially identified three, noncollinear DNA binding paths. Each of the three resulting nucleoprotein complexes (C1, C2, and C3) was analyzed separately, including calculation of binding energies, the number and type of interaction residues (including mutated ones), and the predominant mode of translational and rotational motion of specific protein domains after SA to ensure improved DNA binding. The UvrA(2) dimer can accommodate DNA in all three orientations, albeit with different binding strengths. One of the UvrA(2)-DNA complexes (C1) fulfilled most of the requirements (high interaction energy, proximity of DNA to mutated residues, etc.) expected for a natural, high-affinity DNA binding site. This nucleoprotein presents a structural organization that is designed to clamp and bend double-stranded DNA. We examined the binding site in more detail by docking DNAs of significantly different (AT- vs CG-enriched) sequences and by submitting the complexes to DNA-unrestricted SA. It was found that in a manner independent of the DNA sequence and applied MD protocols, UvrA(2) favors binding of a bent and unwound undamaged DNA, with a kink positioned in the proximity of the Zn3 hairpins, anticollinearly aligned at the bottom of the ventral protein surface. It is further hypothesized that the Zn3 modules play an essential role in the damage recognition process and that the apparent existence of a family of DNA binding sites might be biologically relevant. Our data should prove to be useful in rational (structure-based) mutation studies.
2011-01-01
Background The reliable and robust estimation of ligand binding affinity continues to be a challenge in drug design. Many current methods rely on molecular mechanics (MM) calculations which do not fully explain complex molecular interactions. Full quantum mechanical (QM) computation of the electronic state of protein-ligand complexes has recently become possible by the latest advances in the development of linear-scaling QM methods such as the ab initio fragment molecular orbital (FMO) method. This approximate molecular orbital method is sufficiently fast that it can be incorporated into the development cycle during structure-based drug design for the reliable estimation of ligand binding affinity. Additionally, the FMO method can be combined with approximations for entropy and solvation to make it applicable for binding affinity prediction for a broad range of target and chemotypes. Results We applied this method to examine the binding affinity for a series of published cyclin-dependent kinase 2 (CDK2) inhibitors. We calculated the binding affinity for 28 CDK2 inhibitors using the ab initio FMO method based on a number of X-ray crystal structures. The sum of the pair interaction energies (PIE) was calculated and used to explain the gas-phase enthalpic contribution to binding. The correlation of the ligand potencies to the protein-ligand interaction energies gained from FMO was examined and was seen to give a good correlation which outperformed three MM force field based scoring functions used to appoximate the free energy of binding. Although the FMO calculation allows for the enthalpic component of binding interactions to be understood at the quantum level, as it is an in vacuo single point calculation, the entropic component and solvation terms are neglected. For this reason a more accurate and predictive estimate for binding free energy was desired. Therefore, additional terms used to describe the protein-ligand interactions were then calculated to improve the correlation of the FMO derived values to experimental free energies of binding. These terms were used to account for the polar and non-polar solvation of the molecule estimated by the Poisson-Boltzmann equation and the solvent accessible surface area (SASA), respectively, as well as a correction term for ligand entropy. A quantitative structure-activity relationship (QSAR) model obtained by Partial Least Squares projection to latent structures (PLS) analysis of the ligand potencies and the calculated terms showed a strong correlation (r2 = 0.939, q2 = 0.896) for the 14 molecule test set which had a Pearson rank order correlation of 0.97. A training set of a further 14 molecules was well predicted (r2 = 0.842), and could be used to obtain meaningful estimations of the binding free energy. Conclusions Our results show that binding energies calculated with the FMO method correlate well with published data. Analysis of the terms used to derive the FMO energies adds greater understanding to the binding interactions than can be gained by MM methods. Combining this information with additional terms and creating a scaled model to describe the data results in more accurate predictions of ligand potencies than the absolute values obtained by FMO alone. PMID:21219630
CaFE: a tool for binding affinity prediction using end-point free energy methods.
Liu, Hui; Hou, Tingjun
2016-07-15
Accurate prediction of binding free energy is of particular importance to computational biology and structure-based drug design. Among those methods for binding affinity predictions, the end-point approaches, such as MM/PBSA and LIE, have been widely used because they can achieve a good balance between prediction accuracy and computational cost. Here we present an easy-to-use pipeline tool named Calculation of Free Energy (CaFE) to conduct MM/PBSA and LIE calculations. Powered by the VMD and NAMD programs, CaFE is able to handle numerous static coordinate and molecular dynamics trajectory file formats generated by different molecular simulation packages and supports various force field parameters. CaFE source code and documentation are freely available under the GNU General Public License via GitHub at https://github.com/huiliucode/cafe_plugin It is a VMD plugin written in Tcl and the usage is platform-independent. tingjunhou@zju.edu.cn. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
NASA Astrophysics Data System (ADS)
Rupp, Bernd; Raub, Stephan; Marian, Christel; Höltje, Hans-Dieter
2005-03-01
Sterol 14α-demethylase (CYP51) is one of the known major targets for azole antifungals. Therapeutic side effects of these antifungals are based on interactions of the azoles with the human analogue enzyme. This study describes for the first time a comparison of a human CYP51 (HU-CYP51) homology model with a homology model of the fungal CYP51 of Candida albicans (CA-CYP51). Both models are constructed by using the crystal structure of Mycobacterium tuberculosis MT-CYP51 (PDB code: 1EA1). The binding mode of the azole ketoconazole is investigated in molecular dynamics simulations with the GROMACS force field. The usage of special parameters for the iron azole complex binding is necessary to obtain the correct complex geometry in the active site of the enzyme models. Based on the dynamics simulations it is possible to explain the enantioselectivity of the human enzyme and also to predict the binding mode of the isomers of ketoconazole in the active site of the fungal model.
Effect of altering local protein fluctuations using artificial intelligence
NASA Astrophysics Data System (ADS)
Nishiyama, Katsuhiko
2017-03-01
The fluctuations in Arg111, a significantly fluctuating residue in cathepsin K, were locally regulated by modifying Arg111 to Gly111. The binding properties of 15 dipeptides in the modified protein were analyzed by molecular simulations, and modeled as decision trees using artificial intelligence. The decision tree of the modified protein significantly differed from that of unmodified cathepsin K, and the Arg-to-Gly modification exerted a remarkable effect on the peptide binding properties. By locally regulating the fluctuations of a protein, we may greatly alter the original functions of the protein, enabling novel applications in several fields.
Tsuji, Motonori; Shudo, Koichi; Kagechika, Hiroyuki
2017-03-01
Understanding and identifying the receptor subtype selectivity of a ligand is an important issue in the field of drug discovery. Using a combination of classical molecular mechanics and quantum mechanical calculations, this report assesses the receptor subtype selectivity for the human retinoid X receptor (hRXR) and retinoic acid receptor (hRAR) ligand-binding domains (LBDs) complexed with retinoid ligands. The calculated energies show good correlation with the experimentally reported binding affinities. The technique proposed here is a promising method as it reveals the origin of the receptor subtype selectivity of selective ligands.
The chemistry side of AOP: implications for toxicity ...
An adverse outcome pathway (AOP) is a structured representation of the biological events that lead to adverse impacts following a molecular initiating event caused by chemical interaction with a macromolecule. AOPs have been proposed to facilitate toxicity extrapolation across species through understanding of species similarity in the sequence of molecular, cellular, organ and organismal level responses. However, AOPs are non-specific regarding the identity of the chemical initiators, and the range of structures for which an AOP is considered applicable has generally been poorly defined. Applicability domain has been widely understood in the field of QSAR as the response and chemical structure space in which the model makes predictions with a given reliability, and has been traditionally applied to define the similarity of query molecules within the training set. Three dimensional (3D) receptor modeling offers an approach to better define the applicability domain for selected AOPs through determination of the chemical space of the molecular initiating event. Universal 3D-QSAR models were developed for acetylcholinesterase inhibitors and estrogen receptor agonists and antagonists using a combination of fingerprint, molecular docking and structure-based pharmacophore approaches. The models were based on the critical molecular interactions within each receptor ligand binding domain, and included the key amino acid residues responsible for high binding affinity. T
Kanti Si, Mrinal; Sen, Anik; Ganguly, Bishwajit
2017-05-10
G-quadruplexes are formed by the association of four guanine bases through Hoogsteen hydrogen bonding in guanine-rich sequences of DNA and exist in the telomere as well as in promoter regions of certain oncogenes. The sequences of G-quadruplex-DNA are targets for the design of molecules that can bind and can be developed as anti-cancer drugs. The linear and cyclic protonated diamines have been explored to bind to G-quadruplex-DNA through hydrogen bonding interactions. The quadruplex-DNA binders exploit π-stacking and hydrogen bonding interactions with the phosphate backbone of loops and grooves. In this study, linear and cyclic protonated diamines showed remarkable binding affinity for G-tetrads using hydrogen bonding interactions. The DFT M06-2X/6-31G(d)//B3LYP/6-31+G(d) level of theory showed that the cyclic ee-1,2-CHDA (equatorial-equatorial form of 1,2-disubstituted cyclohexadiamine di-cation) binds to the G-tetrads very strongly (∼70.0 kcal mol -1 ), with a much higher binding energy than the linear protonated diamines. The binding affinity of ligands for G-tetrads with counterions has also been examined. The binding preference of these small ligands for G-tetrads is higher than for DNA-duplex. The binding affinity of an intercalated acridine-based ligand (BRACO-19) for G-quadruplexes has been examined and the binding energy is relatively lower than that for the 1,2 disubstituted cyclohexadiamine di-cation with G-tetrads. The atoms-in-molecules (AIM) analysis reveals that the hydrogen bonding interactions between the organic systems with G-tetrads are primarily electrostatic in nature. The molecular dynamics simulations performed using a classical force field (GROMACS) also supported the phosphate backbone sites of G-quadruplex-DNA to bind to these diamines. To mimic the structural pattern of BRACO-19, the designed inhibitor N,2-bis-2(3,4-aminocyclohexyl) acetamide (9) examined possesses two 1,2-CHDA moieties linked through an acetamide group. The molecular dynamics results showed that the designed molecule 9 can efficiently bind to the base-pairs and the phosphate backbone of G quadruplex-DNA using H-bonding interactions. The binding affinity calculated for the intercalated acridine-based drug (BRACO-19) with G-quadruplexes is weaker compared to ee-1,2-CHDA. These ligands deliver a different binding motif (hydrogen bonding) compared to the reported G-quadruplex binders of π-delocalized systems and will kindle interest in examining such scaffolds to stabilize DNA.
Strategies of molecular imprinting-based fluorescence sensors for chemical and biological analysis.
Yang, Qian; Li, Jinhua; Wang, Xiaoyan; Peng, Hailong; Xiong, Hua; Chen, Lingxin
2018-07-30
One pressing concern today is to construct sensors that can withstand various disturbances for highly selective and sensitive detecting trace analytes in complicated samples. Molecularly imprinted polymers (MIPs) with tailor-made binding sites are preferred to be recognition elements in sensors for effective targets detection, and fluorescence measurement assists in highly sensitive detection and user-friendly control. Accordingly, molecular imprinting-based fluorescence sensors (MI-FL sensors) have attracted great research interest in many fields such as chemical and biological analysis. Herein, we comprehensively review the recent advances in MI-FL sensors construction and applications, giving insights on sensing principles and signal transduction mechanisms, focusing on general construction strategies for intrinsically fluorescent or nonfluorescent analytes and improvement strategies in sensing performance, particularly in sensitivity. Construction strategies are well overviewed, mainly including the traditional indirect methods of competitive binding against pre-bound fluorescent indicators, employment of fluorescent functional monomers and embedding of fluorescence substances, and novel rational designs of hierarchical architecture (core-shell/hollow and mesoporous structures), post-imprinting modification, and ratiometric fluorescence detection. Furthermore, MI-FL sensor based microdevices are discussed, involving micromotors, test strips and microfluidics, which are more portable for rapid point-of-care detection and in-field diagnosing. Finally, the current challenges and future perspectives of MI-FL sensors are proposed. Copyright © 2018 Elsevier B.V. All rights reserved.
Electrostatically Biased Binding of Kinesin to Microtubules
Zheng, Wenjun; Alonso, Maria; Huber, Gary; Dlugosz, Maciej; McCammon, J. Andrew; Cross, Robert A.
2011-01-01
The minimum motor domain of kinesin-1 is a single head. Recent evidence suggests that such minimal motor domains generate force by a biased binding mechanism, in which they preferentially select binding sites on the microtubule that lie ahead in the progress direction of the motor. A specific molecular mechanism for biased binding has, however, so far been lacking. Here we use atomistic Brownian dynamics simulations combined with experimental mutagenesis to show that incoming kinesin heads undergo electrostatically guided diffusion-to-capture by microtubules, and that this produces directionally biased binding. Kinesin-1 heads are initially rotated by the electrostatic field so that their tubulin-binding sites face inwards, and then steered towards a plus-endwards binding site. In tethered kinesin dimers, this bias is amplified. A 3-residue sequence (RAK) in kinesin helix alpha-6 is predicted to be important for electrostatic guidance. Real-world mutagenesis of this sequence powerfully influences kinesin-driven microtubule sliding, with one mutant producing a 5-fold acceleration over wild type. We conclude that electrostatic interactions play an important role in the kinesin stepping mechanism, by biasing the diffusional association of kinesin with microtubules. PMID:22140358
Molecular modeling and SPRi investigations of interleukin 6 (IL6) protein and DNA aptamers.
Rhinehardt, Kristen L; Vance, Stephen A; Mohan, Ram V; Sandros, Marinella; Srinivas, Goundla
2018-06-01
Interleukin 6 (IL6), an inflammatory response protein has major implications in immune-related inflammatory diseases. Identification of aptamers for the IL6 protein aids in diagnostic, therapeutic, and theranostic applications. Three different DNA aptamers and their interactions with IL6 protein were extensively investigated in a phosphate buffed saline (PBS) solution. Molecular-level modeling through molecular dynamics provided insights of structural, conformational changes and specific binding domains of these protein-aptamer complexes. Multiple simulations reveal consistent binding region for all protein-aptamer complexes. Conformational changes coupled with quantitative analysis of center of mass (COM) distance, radius of gyration (R g ), and number of intermolecular hydrogen bonds in each IL6 protein-aptamer complex was used to determine their binding performance strength and obtain molecular configurations with strong binding. A similarity comparison of the molecular configurations with strong binding from molecular-level modeling concurred with Surface Plasmon Resonance imaging (SPRi) for these three aptamer complexes, thus corroborating molecular modeling analysis findings. Insights from the natural progression of IL6 protein-aptamer binding modeled in this work has identified key features such as the orientation and location of the aptamer in the binding event. These key features are not readily feasible from wet lab experiments and impact the efficacy of the aptamers in diagnostic and theranostic applications.
NASA Astrophysics Data System (ADS)
Li, Xiaowei; Minamimoto, Hiro; Murakoshi, Kei
2018-05-01
The vibrational characteristics of ligand-capped lead sulfide (PbS) quantum dots (QDs) were clarified via electrochemical surface-enhanced Raman spectroscopy (EC-SERS) using a hybridized system of gold (Au) nanodimers and PbS QDs under electrochemical potential control. Enhanced electromagnetic field caused by the coupling of QDs with plasmonic Au nanodimers allowed the characteristic behavior of the ligand oleic acid (OA) on the PbS QD surface to be detected under electrochemical potential control. Binding modes between the QDs and OA molecules were characterized using synchronous two-dimensional correlation spectra at distinct electrochemical potentials, confirming that the bidentate bridging mode was probably the most stable mode even under relatively negative potential polarization. Changes in binding modes and molecular orientations resulted in fluctuations in EC-SERS spectra. The present observations strongly recommend the validity of the QD-plasmonic nanostructure coupled system for sensitive molecular detection via EC-SERS.
NASA Astrophysics Data System (ADS)
Santos-Filho, Osvaldo A.; Mishra, Rama K.; Hopfinger, A. J.
2001-09-01
Free energy force field (FEFF) 3D-QSAR analysis was used to construct ligand-receptor binding models for a set of 18 structurally diverse antifolates including pyrimethamine, cycloguanil, methotrexate, aminopterin and trimethoprim, and 13 pyrrolo[2,3-d]pyrimidines. The molecular target (`receptor') used was a 3D-homology model of a specific mutant type of Plasmodium falciparum (Pf) dihydrofolate reductase (DHFR). The dependent variable of the 3D-QSAR models is the IC50 inhibition constant for the specific mutant type of PfDHFR. The independent variables of the 3D-QSAR models (the descriptors) are scaled energy terms of a modified first-generation AMBER force field combined with a hydration shell aqueous solvation model and a collection of 2D-QSAR descriptors often used in QSAR studies. Multiple temperature molecular dynamics simulation (MDS) and the genetic function approximation (GFA) were employed using partial least square (PLS) and multidimensional linear regressions as the fitting functions to develop FEFF 3D-QSAR models for the binding process. The significant FEFF energy terms in the best 3D-QSAR models include energy contributions of the direct ligand-receptor interaction. Some changes in conformational energy terms of the ligand due to binding to the enzyme are also found to be important descriptors. The FEFF 3D-QSAR models indicate some structural features perhaps relevant to the mechanism of resistance of the PfDHFR to current antimalarials. The FEFF 3D-QSAR models are also compared to receptor-independent (RI) 4D-QSAR models developed in an earlier study and subsequently refined using recently developed generalized alignment rules.
The feasibility of an efficient drug design method with high-performance computers.
Yamashita, Takefumi; Ueda, Akihiko; Mitsui, Takashi; Tomonaga, Atsushi; Matsumoto, Shunji; Kodama, Tatsuhiko; Fujitani, Hideaki
2015-01-01
In this study, we propose a supercomputer-assisted drug design approach involving all-atom molecular dynamics (MD)-based binding free energy prediction after the traditional design/selection step. Because this prediction is more accurate than the empirical binding affinity scoring of the traditional approach, the compounds selected by the MD-based prediction should be better drug candidates. In this study, we discuss the applicability of the new approach using two examples. Although the MD-based binding free energy prediction has a huge computational cost, it is feasible with the latest 10 petaflop-scale computer. The supercomputer-assisted drug design approach also involves two important feedback procedures: The first feedback is generated from the MD-based binding free energy prediction step to the drug design step. While the experimental feedback usually provides binding affinities of tens of compounds at one time, the supercomputer allows us to simultaneously obtain the binding free energies of hundreds of compounds. Because the number of calculated binding free energies is sufficiently large, the compounds can be classified into different categories whose properties will aid in the design of the next generation of drug candidates. The second feedback, which occurs from the experiments to the MD simulations, is important to validate the simulation parameters. To demonstrate this, we compare the binding free energies calculated with various force fields to the experimental ones. The results indicate that the prediction will not be very successful, if we use an inaccurate force field. By improving/validating such simulation parameters, the next prediction can be made more accurate.
An Angular Overlap Model for Cu(II) Ion in the AMOEBA Polarizable Force Field
Xiang, Jin Yu; Ponder, Jay W.
2014-01-01
An extensible polarizable force field for transition metal ion was developed based on AMOEBA and the angular overlap model (AOM) with consistent treatment of electrostatics for all atoms. Parameters were obtained by fitting molecular mechanics (MM) energies to various ab initio gas-phase calculations. The results of parameterization were presented for copper (II) ion ligated to water and model fragments of amino acid residues involved in the copper binding sites of type 1 copper proteins. Molecular dynamics (MD) simulations were performed on aqueous copper (II) ion at various temperatures, as well as plastocyanin (1AG6) and azurin (1DYZ). Results demonstrated that the AMOEBA-AOM significantly improves the accuracy of classical MM in a number of test cases when compared to ab initio calculations. The Jahn-Teller distortion for hexa-aqua copper (II) complex was handled automatically without specifically designating axial and in-plane ligands. Analyses of MD trajectories resulted in a 6-coordination first solvation shell for aqueous copper (II) ion and a 1.8ns average residence time of water molecules. The ensemble average geometries of 1AG6 and 1DYZ copper binding sites were in general agreement with X-ray and previous computational studies. PMID:25045338
DNA-binding study of anticancer drug cytarabine by spectroscopic and molecular docking techniques.
Shahabadi, Nahid; Falsafi, Monireh; Maghsudi, Maryam
2017-01-02
The interaction of anticancer drug cytarabine with calf thymus DNA (CT-DNA) was investigated in vitro under simulated physiological conditions by multispectroscopic techniques and molecular modeling study. The fluorescence spectroscopy and UV absorption spectroscopy indicated drug interacted with CT-DNA in a groove-binding mode, while the binding constant of UV-vis and the number of binding sites were 4.0 ± 0.2 × 10 4 L mol -1 and 1.39, respectively. The fluorimetric studies showed that the reaction between the drugs with CT-DNA is exothermic. Circular dichroism spectroscopy was employed to measure the conformational change of DNA in the presence of cytarabine. Furthermore, the drug induces detectable changes in its viscosity for DNA interaction. The molecular modeling results illustrated that cytarabine strongly binds to groove of DNA by relative binding energy of docked structure -20.61 KJ mol -1 . This combination of multiple spectroscopic techniques and molecular modeling methods can be widely used in the investigation on the interaction of small molecular pollutants and drugs with biomacromolecules for clarifying the molecular mechanism of toxicity or side effect in vivo.
Pucheta-Martinez, Encarna; D’Amelio, Nicola; Lelli, Moreno; Martinez-Torrecuadrada, Jorge L.; Sudol, Marius; Saladino, Giorgio; Gervasio, Francesco Luigi
2016-01-01
WW domains are small domains present in many human proteins with a wide array of functions and acting through the recognition of proline-rich sequences. The WW domain belonging to polyglutamine tract-binding protein 1 (PQBP1) is of particular interest due to its direct involvement in several X chromosome-linked intellectual disabilities, including Golabi-Ito-Hall (GIH) syndrome, where a single point mutation (Y65C) correlates with the development of the disease. The mutant cannot bind to its natural ligand WBP11, which regulates mRNA processing. In this work we use high-field high-resolution NMR and enhanced sampling molecular dynamics simulations to gain insight into the molecular causes the disease. We find that the wild type protein is partially unfolded exchanging among multiple beta-strand-like conformations in solution. The Y65C mutation further destabilizes the residual fold and primes the protein for the formation of a disulphide bridge, which could be at the origin of the loss of function. PMID:27456546
Aguilar-Díaz, Hugo; Nava-Castro, Karen E; Escobedo, Galileo; Domínguez-Ramírez, Lenin; García-Varela, Martín; Del Río-Araiza, Víctor H; Palacios-Arreola, Margarita I; Morales-Montor, Jorge
2018-03-09
We have previously reported that progesterone (P 4 ) has a direct in vitro effect on the scolex evagination and growth of Taenia solium cysticerci. Here, we explored the hypothesis that the P 4 direct effect on T. solium might be mediated by a novel steroid-binding parasite protein. By way of using immunofluorescent confocal microscopy, flow cytometry analysis, double-dimension electrophoresis analysis, and sequencing the corresponding protein spot, we detected a novel PGRMC in T. solium. Molecular modeling studies accompanied by computer docking using the sequenced protein, together with phylogenetic analysis and sequence alignment clearly demonstrated that T. solium PGRMC is from parasite origin. Our results show that P 4 in vitro increases parasite evagination and scolex size. Using immunofluorescent confocal microscopy, we detected that parasite cells showed expression of a P 4 -binding like protein exclusively located at the cysticercus subtegumental tissue. Presence of the P 4 -binding protein in cyst cells was also confirmed by flow cytometry. Double-dimension electrophoresis analysis, followed by sequencing the corresponding protein spot, revealed a protein that was previously reported in the T. solium genome belonging to a membrane-associated progesterone receptor component (PGRMC). Molecular modeling studies accompanied by computer docking using the sequenced protein showed that PGRMC is potentially able to bind steroid hormones such as progesterone, estradiol, testosterone and dihydrodrotestosterone with different affinities. Phylogenetic analysis and sequence alignment clearly demonstrated that T. solium PGRMC is related to a steroid-binding protein of Echinoccocus granulosus, both of them being nested within a cluster including similar proteins present in platyhelminths such as Schistocephalus solidus and Schistosoma haematobium. Progesterone may directly act upon T. solium cysticerci probably by binding to PGRMC. This research has implications in the field of host-parasite co-evolution as well as the sex-associated susceptibility to this infection. In a more practical matter, present results may contribute to the molecular design of new drugs with anti-parasite actions.
Guo, Zuojun; Li, Bo; Cheng, Li-Tien; Zhou, Shenggao; McCammon, J Andrew; Che, Jianwei
2015-02-10
Protein–ligand binding is a key biological process at the molecular level. The identification and characterization of small-molecule binding sites on therapeutically relevant proteins have tremendous implications for target evaluation and rational drug design. In this work, we used the recently developed level-set variational implicit-solvent model (VISM) with the Coulomb field approximation (CFA) to locate and characterize potential protein–small-molecule binding sites. We applied our method to a data set of 515 protein–ligand complexes and found that 96.9% of the cocrystallized ligands bind to the VISM-CFA-identified pockets and that 71.8% of the identified pockets are occupied by cocrystallized ligands. For 228 tight-binding protein–ligand complexes (i.e, complexes with experimental pKd values larger than 6), 99.1% of the cocrystallized ligands are in the VISM-CFA-identified pockets. In addition, it was found that the ligand binding orientations are consistent with the hydrophilic and hydrophobic descriptions provided by VISM. Quantitative characterization of binding pockets with topological and physicochemical parameters was used to assess the “ligandability” of the pockets. The results illustrate the key interactions between ligands and receptors and can be very informative for rational drug design.
Cs 62 DJ Rydberg-atom macrodimers formed by long-range multipole interaction
NASA Astrophysics Data System (ADS)
Han, Xiaoxuan; Bai, Suying; Jiao, Yuechun; Hao, Liping; Xue, Yongmei; Zhao, Jianming; Jia, Suotang; Raithel, Georg
2018-03-01
Long-range macrodimers formed by D -state cesium Rydberg atoms are studied in experiments and calculations. Cesium [62DJ]2 Rydberg-atom macrodimers, bonded via long-range multipole interaction, are prepared by two-color photoassociation in a cesium atom trap. The first color (pulse A) resonantly excites seed Rydberg atoms, while the second (pulse B, detuned by the molecular binding energy) resonantly excites the Rydberg-atom macrodimers below the [62DJ]2 asymptotes. The molecules are measured by extraction of autoionization products and Rydberg-atom electric-field ionization, and ion detection. Molecular spectra are compared with calculations of adiabatic molecular potentials. From the dependence of the molecular signal on the detection delay time, the lifetime of the molecules is estimated to be 3 -6 μ s .
Khezri, Azam; Karimi, Arsalan; Yazdian, Fatemeh; Jokar, Mahmoud; Mofradnia, Soheil Rezazadeh; Rashedi, Hamid; Tavakoli, Zahra
2018-07-15
Nanotechnology-based drug delivery systems have been used to enhance bioavailability and biological activities. Chitosan incorporating curcumin can serve as a biocompatible substitute for metallic nanoparticles in preventing biofilm formation of Streptococcus mutans and plaque on teeth. The interactions between chitosan nanoparticle as a carrier and curcumin, a natural antibacterial agent, were simulated. The binding conformation between curcumin-chitosan was obtained using the Lamarckian Genetic Algorithm in Autodock™ software in chitosan nanoparticle. The interaction stability was examined in the molecular dynamic stages, with isothermal-isobaric ensemble in the CHARMM Force Field. The results showed the root mean square deviation (RMSD) and the root mean square fluctuations (RMSF) for all complex's atoms were relaxed after 4ns (RMSD for the all-atoms was 26.81±0.1 (Å); RMSF 1.13±0.02Å). For each section, the estimation of RMSD, RMSF, radius of gyration, inter-H bond and other analysis confirmed that, during the first interval;10ns, there was a stable binding between the two sections. Although all bindings disappeared from 10 to 20ns, the curcumin was trapped inside the chitosan nanoparticles, and no release took place until 20ns, after which the curcumin began to release. This trend suggests that chitosan nanoparticle has ability to carry the curcumin. Copyright © 2018 Elsevier B.V. All rights reserved.
Exhaustively sampling peptide adsorption with metadynamics.
Deighan, Michael; Pfaendtner, Jim
2013-06-25
Simulating the adsorption of a peptide or protein and obtaining quantitative estimates of thermodynamic observables remains challenging for many reasons. One reason is the dearth of molecular scale experimental data available for validating such computational models. We also lack simulation methodologies that effectively address the dual challenges of simulating protein adsorption: overcoming strong surface binding and sampling conformational changes. Unbiased classical simulations do not address either of these challenges. Previous attempts that apply enhanced sampling generally focus on only one of the two issues, leaving the other to chance or brute force computing. To improve our ability to accurately resolve adsorbed protein orientation and conformational states, we have applied the Parallel Tempering Metadynamics in the Well-Tempered Ensemble (PTMetaD-WTE) method to several explicitly solvated protein/surface systems. We simulated the adsorption behavior of two peptides, LKα14 and LKβ15, onto two self-assembled monolayer (SAM) surfaces with carboxyl and methyl terminal functionalities. PTMetaD-WTE proved effective at achieving rapid convergence of the simulations, whose results elucidated different aspects of peptide adsorption including: binding free energies, side chain orientations, and preferred conformations. We investigated how specific molecular features of the surface/protein interface change the shape of the multidimensional peptide binding free energy landscape. Additionally, we compared our enhanced sampling technique with umbrella sampling and also evaluated three commonly used molecular dynamics force fields.
NASA Astrophysics Data System (ADS)
Shahabadi, Nahid; Falsafi, Monireh
The toxic interaction of adefovir dipivoxil with calf thymus DNA (CT-DNA) was investigated in vitro under simulated physiological conditions by multi-spectroscopic techniques and molecular modeling study. The fluorescence spectroscopy and UV absorption spectroscopy indicated drug interacted with CT-DNA in a groove binding mode. The binding constant of UV-visible and the number of binding sites were 3.33 ± 0.2 × 104 L mol-1and 0.99, respectively. The fluorimetric studies showed that the reaction between the drug and CT-DNA is exothermic (ΔH = 34.4 kJ mol-1; ΔS = 184.32 J mol-1 K-1). Circular dichroism spectroscopy (CD) was employed to measure the conformational change of CT-DNA in the presence of adefovir dipivoxil, which verified the groove binding mode. Furthermore, the drug induces detectable changes in its viscosity. The molecular modeling results illustrated that adefovir strongly binds to groove of DNA by relative binding energy of docked structure -16.83 kJ mol-1. This combination of multiple spectroscopic techniques and molecular modeling methods can be widely used in the investigation on the toxic interaction of small molecular pollutants and drugs with bio macromolecules, which contributes to clarify the molecular mechanism of toxicity or side effect in vivo.
NASA Astrophysics Data System (ADS)
Wambo, Thierry; Rodriguez, Roberto
Human carbonic anhydrase II (hCAII) is a metalloenzyme with a Zinc cation at its binding site. The presence of the Zinc turns the protein into an efficient enzyme which catalyzes the reversible hydration of carbon dioxide into bicarbonate anion. Available X-ray structures of the apo-hCAII and holo-hCAII show no significant differences in the overall structure of these proteins. What difference, if any, is there between the structures of the hydrated apo-hCAII and holo? How can we use computer simulation to efficiently compute the binding affinity of Zinc to hCAII? We will present a scheme developed to compute the binding affinity of Zinc cation to hCAII on the basis of all-atom molecular dynamics simulation where Zinc is represented as a point charge and the CHARMM36 force field is used for running the dynamics of the system. Our computed binding affinity of the cation to hCAII is in good agreement with experiment, within the margin of error, while a look at the dynamics of the binding site suggests that in the absence of the Zinc, there is a re-organization of the nearby histidine residues which adopt a new distinct configuration. The authors are thankful for the NIH support through Grants GM084834 and GM060655. They also acknowledge the Texas Advanced Computing Center at the University of Texas at Austin for the supercomputing time. They thank Dr Liao Chen for his comments.
Recent Developments and Applications of the MMPBSA Method
Wang, Changhao; Greene, D'Artagnan; Xiao, Li; Qi, Ruxi; Luo, Ray
2018-01-01
The Molecular Mechanics Poisson-Boltzmann Surface Area (MMPBSA) approach has been widely applied as an efficient and reliable free energy simulation method to model molecular recognition, such as for protein-ligand binding interactions. In this review, we focus on recent developments and applications of the MMPBSA method. The methodology review covers solvation terms, the entropy term, extensions to membrane proteins and high-speed screening, and new automation toolkits. Recent applications in various important biomedical and chemical fields are also reviewed. We conclude with a few future directions aimed at making MMPBSA a more robust and efficient method. PMID:29367919
Structural and electronic properties of carbon nanotube-reinforced epoxy resins.
Suggs, Kelvin; Wang, Xiao-Qian
2010-03-01
Nanocomposites of cured epoxy resin reinforced by single-walled carbon nanotubes exhibit a plethora of interesting behaviors at the molecular level. We have employed a combination of force-field-based molecular mechanics and first-principles calculations to study the corresponding binding and charge-transfer behavior. The simulation study of various nanotube species and curing agent configurations provides insight into the optimal structures in lieu of interfacial stability. An analysis of charge distributions of the epoxy functionalized semiconducting and metallic tubes reveals distinct level hybridizations. The implications of these results for understanding dispersion mechanism and future nano reinforced composite developments are discussed.
Rodrigo, Ana C; Laurini, Erik; Vieira, Vânia M P; Pricl, Sabrina; Smith, David K
2017-10-19
We investigate the impact of an over-looked component on molecular recognition in water-buffer. The binding of a cationic dye to biological polyanion heparin is shown by isothermal calorimetry to depend on buffer (Tris-HCl > HEPES > PBS). The heparin binding of self-assembled multivalent (SAMul) cationic micelles is even more buffer dependent. Multivalent electrostatic molecular recognition is buffer dependent as a result of competitive interactions between the cationic binding interface and anions present in the buffer.
Theoretical Studies for Dendrimer-Based Drug Delivery.
Bello, Martiniano; Fragoso-Vázquez, Jonathan; Correa-Basurto, José
2017-01-01
Numerous theoretical studies have been performed to iteratively optimize the physicochemical properties such as dendrimer size and surface constituents in solution, as well as their molecular recognition properties for drugs, lipid membranes, nucleic acids and proteins, etc. Molecular modeling approaches such as docking and molecular dynamic (MD) simulations have supported experimental efforts by providing important insights into the structural properties of dendrimers in solution and possible binding properties of drugs at the atomic level. We review the utilization of molecular modelling tools to obtain insight into the study and design of dendrimers, with particular importance placed on the improvement of binding properties of dendrimers for their use as drug nanocarriers and to increase the water solubility properties and drug delivery. The modeling studies discussed in this review have provided substantial insight into the physicochemical properties of dendrimers in solution, including solvent pH and counterion distribution, at the atomic level, as well as the elucidation of some of the key interactions in solution of unmodified and modified dendrimers with some drugs of pharmaceutics interest and biological systems such as nucleic acids, proteins and lipid membranes. the described studies illustrate that whether simulations will be run at the all-atom or coarse-grained level, physicochemical conditions such as the type of force field, the treatment of electrostatics effects, counterion distribution, protonation state of dendrimers, and dendrimer concentrations which have been probed to play a crucial role in the structural behavior and binding properties must be prudently incorporated in the simulations. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Deep analysis of N-cadherin/ADH-1 interaction: a computational survey.
Eslami, Mahboobeh; Nezafat, Navid; Khajeh, Sahar; Mostafavi-Pour, Zohreh; Bagheri Novir, Samaneh; Negahdaripour, Manica; Ghasemi, Younes; Razban, Vahid
2018-01-19
Due to the considerable role of N-cadherin in cancer metastasis, tumor growth, and progression, inhibition of this protein has been highly regarded in recent years. Although ADH-1 has been known as an appropriate inhibitor of N-cadherin in clinical trials, its chemical nature and binding mode with N-cadherin have not been precisely specified yet. Accordingly, in this study, quantum mechanics calculations were used to investigate the chemical nature of ADH-1. These calculations clarify the molecular properties of ADH-1 and determine its reactive sites. Based on the results, the oxygen atoms are suitable for electrophilic reactivity, while the hydrogen atoms that are connected to nitrogen atoms are the favorite sites for nucleophilic reactivity. The higher electronegativity of the oxygen atoms makes them the most reactive portions in this molecule. Molecular docking and molecular dynamics (MD) simulation have also been applied to specify the binding mode of ADH-1 with N-cadherin and determine the important residues of N-cadherin involving in the interaction with ADH-1. Moreover, the verified model by MD simulation has been studied to extract the free energy value and find driving forces. These calculations and molecular electrostatic potential map of ADH-1 indicated that hydrophobic and electrostatic interactions are almost equally involved in the implantation of ADH-1 in the N-cadherin binding site. The presented results not only enable a closer examination of N-cadherin in complex with ADH-1 molecule, but also are very beneficial in designing new inhibitors for N-cadherin and can help to save time and cost in this field.
Lauw, Y; Leermakers, F A M; Cohen Stuart, M A; Pinheiro, J P; Custers, J P A; van den Broeke, L J P; Keurentjes, J T F
2006-12-19
We perform differential potentiometric titration measurements for the binding of Ca2+ ions to micelles composed of the carboxylic acid end-standing Pluronic P85 block copolymer (i.e., CAE-85 (COOH-(EO)26-(PO)39-(EO)26-COOH)). Two different ion-selective electrodes (ISEs) are used to detect the free calcium concentration; the first ISE is an indicator electrode, and the second is a reference electrode. The titration is done by adding the block copolymers to a known solution of Ca2+ at neutral pH and high enough temperature (above the critical micellization temperature CMT) and various amount of added monovalent salt. By measuring the difference in the electromotive force between the two ISEs, the amount of Ca2+ that is bound by the micelles is calculated. This is then used to determine the binding constant of Ca2+ with the micelles, which is a missing parameter needed to perform molecular realistic self-consistent-field (SCF) calculations. It turns out that the micelles from block copolymer CAE-85 bind Ca2+ ions both electrostatically and specifically. The specific binding between Ca2+ and carboxylic groups in the corona of the micelles is modeled through the reaction equilibrium -COOCa+ <==> -COO- + Ca2+ with pKCa = 1.7 +/- 0.06.
Ajmal, Mohammad Rehan; Almutairi, Fahad; Zaidi, Nida; Alam, Parvez; Siddiqi, Mohammad Khursheed; Khan, Mohsin Vahid; Zaman, Masihuz; Ishtikhar, Mohd; Khan, Rizwan Hasan
2018-04-25
Alpha1-acid glycoprotein (AAG) is a major acute phase protein of human plasma. Binding of clofazimine to AAG is investigated using optical spectroscopy and molecular docking tools. We found significant quenching of intrinsic fluorescence of AAG upon the binding of clofazimine, binding mode is static with binding constant of 3.52 × 10 4 at 298 K. The Gibbs free energy change is found to be negative for the interaction of clofazimine with AAG indicating spontaneity of the binding process. Binding of clofazimine induced ordered structure in protein and lead to molecular compaction. Molecular docking results indicate the binding site is located in the central beta barrel, hydrogen bonding and hydrophobic interactions are main bonding forces between AAG-clofazimine.
MutaBind estimates and interprets the effects of sequence variants on protein-protein interactions.
Li, Minghui; Simonetti, Franco L; Goncearenco, Alexander; Panchenko, Anna R
2016-07-08
Proteins engage in highly selective interactions with their macromolecular partners. Sequence variants that alter protein binding affinity may cause significant perturbations or complete abolishment of function, potentially leading to diseases. There exists a persistent need to develop a mechanistic understanding of impacts of variants on proteins. To address this need we introduce a new computational method MutaBind to evaluate the effects of sequence variants and disease mutations on protein interactions and calculate the quantitative changes in binding affinity. The MutaBind method uses molecular mechanics force fields, statistical potentials and fast side-chain optimization algorithms. The MutaBind server maps mutations on a structural protein complex, calculates the associated changes in binding affinity, determines the deleterious effect of a mutation, estimates the confidence of this prediction and produces a mutant structural model for download. MutaBind can be applied to a large number of problems, including determination of potential driver mutations in cancer and other diseases, elucidation of the effects of sequence variants on protein fitness in evolution and protein design. MutaBind is available at http://www.ncbi.nlm.nih.gov/projects/mutabind/. Published by Oxford University Press on behalf of Nucleic Acids Research 2016. This work is written by (a) US Government employee(s) and is in the public domain in the US.
Structure-based Understanding of Binding Affinity and Mode ...
The flexible hydrophobic ligand binding pocket (LBP) of estrogen receptor α (ERα) allows the binding of a wide variety of endocrine disruptors. Upon ligand binding, the LBP reshapes around the contours of the ligand and stabilizes the complex by complementary hydrophobic interactions and specific hydrogen bonds with the ligand. Here we present a framework for quantitative analysis of the steric and electronic features of the human ERα-ligand complex using three dimensional (3D) protein-ligand interaction description combined with 3D-QSAR approach. An empirical hydrophobicity density field is applied to account for hydrophobic contacts of ligand within the LBP. The obtained 3D-QSAR model revealed that hydrophobic contacts primarily determine binding affinity and govern binding mode with hydrogen bonds. Several residues of the LBP appear to be quite flexible and adopt a spectrum of conformations in various ERα-ligand complexes, in particular His524. The 3D-QSAR was combined with molecular docking based on three receptor conformations to accommodate receptor flexibility. The model indicates that the dynamic character of the LBP allows accommodation and stable binding of structurally diverse ligands, and proper representation of the protein flexibility is critical for reasonable description of binding of the ligands. Our results provide a quantitative and mechanistic understanding of binding affinity and mode of ERα agonists and antagonists that may be applicab
Ge, Yushu; van der Kamp, Marc; Malaisree, Maturos; Liu, Dan; Liu, Yi; Mulholland, Adrian J
2017-11-01
Cdc25 phosphatase B, a potential target for cancer therapy, is inhibited by a series of quinones. The binding site and mode of quinone inhibitors to Cdc25B remains unclear, whereas this information is important for structure-based drug design. We investigated the potential binding site of NSC663284 [DA3003-1 or 6-chloro-7-(2-morpholin-4-yl-ethylamino)-quinoline-5, 8-dione] through docking and molecular dynamics simulations. Of the two main binding sites suggested by docking, the molecular dynamics simulations only support one site for stable binding of the inhibitor. Binding sites in and near the Cdc25B catalytic site that have been suggested previously do not lead to stable binding in 50 ns molecular dynamics (MD) simulations. In contrast, a shallow pocket between the C-terminal helix and the catalytic site provides a favourable binding site that shows high stability. Two similar binding modes featuring protein-inhibitor interactions involving Tyr428, Arg482, Thr547 and Ser549 are identified by clustering analysis of all stable MD trajectories. The relatively flexible C-terminal region of Cdc25B contributes to inhibitor binding. The binding mode of NSC663284, identified through MD simulation, likely prevents the binding of protein substrates to Cdc25B. The present results provide useful information for the design of quinone inhibitors and their mechanism of inhibition.
NASA Astrophysics Data System (ADS)
Ge, Yushu; van der Kamp, Marc; Malaisree, Maturos; Liu, Dan; Liu, Yi; Mulholland, Adrian J.
2017-11-01
Cdc25 phosphatase B, a potential target for cancer therapy, is inhibited by a series of quinones. The binding site and mode of quinone inhibitors to Cdc25B remains unclear, whereas this information is important for structure-based drug design. We investigated the potential binding site of NSC663284 [DA3003-1 or 6-chloro-7-(2-morpholin-4-yl-ethylamino)-quinoline-5, 8-dione] through docking and molecular dynamics simulations. Of the two main binding sites suggested by docking, the molecular dynamics simulations only support one site for stable binding of the inhibitor. Binding sites in and near the Cdc25B catalytic site that have been suggested previously do not lead to stable binding in 50 ns molecular dynamics (MD) simulations. In contrast, a shallow pocket between the C-terminal helix and the catalytic site provides a favourable binding site that shows high stability. Two similar binding modes featuring protein-inhibitor interactions involving Tyr428, Arg482, Thr547 and Ser549 are identified by clustering analysis of all stable MD trajectories. The relatively flexible C-terminal region of Cdc25B contributes to inhibitor binding. The binding mode of NSC663284, identified through MD simulation, likely prevents the binding of protein substrates to Cdc25B. The present results provide useful information for the design of quinone inhibitors and their mechanism of inhibition.
NASA Astrophysics Data System (ADS)
Sattar, Zohreh; Iranfar, Hediye; Asoodeh, Ahmad; Saberi, Mohammad Reza; Mazhari, Mahboobeh; Chamani, Jamshidkhan
2012-11-01
Human serum albumin (HSA) and holo transferrin (TF) are two serum carrier proteins that are able to interact with each other, thereby altering their binding behavior toward their ligands. During the course of this study, the interaction between HSA-PPIX and TF, in the presence and absence of lomefloxacin (LMF), was for the first time investigated using different spectroscopic and molecular modeling techniques. Fluorescence spectroscopy experiments were performed in order to study conformational changes of proteins. The RLS technique was utilized to investigate the effect of LMF on J-aggregation of PPIX, which is the first report of its kind. Our findings present clear-cut evidence for the alteration of interactions between HSA and TF in the presence of PPIX and changes in drug-binding to HSA and HSA-PPIX complex upon interaction with TF. Moreover, molecular modeling studies suggested that the binding site for LMF became switched in the presence of PPIX, and that LMF bound to the site IIA of HSA. The obtained results should give new insight into research in this field and may cast some light on the dynamics of drugs in biological systems.
NASA Astrophysics Data System (ADS)
Thai, Nguyen Quoc; Tseng, Ning-Hsuan; Vu, Mui Thi; Nguyen, Tin Trung; Linh, Huynh Quang; Hu, Chin-Kun; Chen, Yun-Ru; Li, Mai Suan
2016-08-01
Combining Lipinski's rule with the docking and steered molecular dynamics simulations and using the PubChem data base of about 1.4 million compounds, we have obtained DNA dyes Hoechst 34580 and Hoechst 33342 as top-leads for the Alzheimer's disease. The binding properties of these ligands to amyloid beta (Aβ) fibril were thoroughly studied by in silico and in vitro experiments. Hoechst 34580 and Hoechst 33342 prefer to locate near hydrophobic regions with binding affinity mainly governed by the van der Waals interaction. By the Thioflavin T assay, it was found that the inhibition constant IC50 ≈ 0.86 and 0.68 μM for Hoechst 34580 and Hoechst 33342, respectively. This result qualitatively agrees with the binding free energy estimated using the molecular mechanic-Poisson Boltzmann surface area method and all-atom simulations with the AMBER-f99SB-ILDN force field and water model TIP3P. In addition, DNA dyes have the high capability to cross the blood brain barrier. Thus, both in silico and in vitro experiments have shown that Hoechst 34580 and 33342 are good candidates for treating the Alzheimer's disease by inhibiting Aβ formation.
Cappel, Daniel; Wahlström, Rickard; Brenk, Ruth; Sotriffer, Christoph A
2011-10-24
The model binding site of the cytochrome c peroxidase (CCP) W191G mutant is used to investigate the structural and dynamic properties of the water network at the buried cavity using computational methods supported by crystallographic analysis. In particular, the differences of the hydration pattern between the uncomplexed state and various complexed forms are analyzed as well as the differences between five complexes of CCP W191G with structurally closely related ligands. The ability of docking programs to correctly handle the water molecules in these systems is studied in detail. It is found that fully automated prediction of water replacement or retention upon docking works well if some additional preselection is carried out but not necessarily if the entire water network in the cavity is used as input. On the other hand, molecular interaction fields for water calculated from static crystal structures and hydration density maps obtained from molecular dynamics simulations agree very well with crystallographically observed water positions. For one complex, the docking and MD results sensitively depend on the quality of the starting structure, and agreement is obtained only after redetermination of the crystal structure and refinement at higher resolution.
Lowe, B M; Skylaris, C-K; Green, N G; Shibuta, Y; Sakata, T
2018-05-10
The silica-water interface is critical to many modern technologies in chemical engineering and biosensing. One technology used commonly in biosensors, the potentiometric sensor, operates by measuring the changes in electric potential due to changes in the interfacial electric field. Predictive modelling of this response caused by surface binding of biomolecules remains highly challenging. In this work, through the most extensive molecular dynamics simulation of the silica-water interfacial potential and electric field to date, we report a novel prediction and explanation of the effects of nano-morphology on sensor response. Amorphous silica demonstrated a larger potentiometric response than an equivalent crystalline silica model due to increased sodium adsorption, in agreement with experiments showing improved sensor response with nano-texturing. We provide proof-of-concept that molecular dynamics can be used as a complementary tool for potentiometric biosensor response prediction. Effects that are conventionally neglected, such as surface morphology, water polarisation, biomolecule dynamics and finite-size effects, are explicitly modelled.
Liu, Ming; He, Lin; Hu, Xiaopeng; Liu, Peiqing; Luo, Hai-Bin
2010-12-01
The nociceptin/orphanin FQ receptor (NOP) has been implicated in a wide range of biological functions, including pain, anxiety, depression and drug abuse. Especially, its agonists have a great potential to be developed into anxiolytics. However, the crystal structure of NOP is still not available. In the present work, both structure-based and ligand-based modeling methods have been used to achieve a comprehensive understanding on 67N-substituted spiropiperidine analogues as NOP agonists. The comparative molecular-field analysis method was performed to formulate a reasonable 3D-QSAR model (cross-validated coefficient q(2)=0.819 and conventional r(2)=0.950), whose robustness and predictability were further verified by leave-eight-out, Y-randomization, and external test-set validations. The excellent performance of CoMFA to the affinity differences among these compounds was attributed to the contributions of electrostatic/hydrogen-bonding and steric/hydrophobic interactions, which was supported by the Surflex-Dock and CDOCKER molecular-docking simulations based on the 3D model of NOP built by the homology modeling method. The CoMFA contour maps and the molecular docking simulations were integrated to propose a binding mode for the spiropiperidine analogues at the binding site of NOP. Copyright © 2010 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Cao, Shandong
2012-08-01
The purpose of the present study was to develop in silico models allowing for a reliable prediction of polo-like kinase inhibitors based on a large diverse dataset of 136 compounds. As an effective method, quantitative structure activity relationship (QSAR) was applied using the comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA). The proposed QSAR models showed reasonable predictivity of thiophene analogs (Rcv2=0.533, Rpred2=0.845) and included four molecular descriptors, namely IC3, RDF075m, Mor02m and R4e+. The optimal model for imidazopyridine derivatives (Rcv2=0.776, Rpred2=0.876) was shown to perform good in prediction accuracy, using GATS2m and BEHe1 descriptors. Analysis of the contour maps helped to identify structural requirements for the inhibitors and served as a basis for the design of the next generation of the inhibitor analogues. Docking studies were also employed to position the inhibitors into the polo-like kinase active site to determine the most probable binding mode. These studies may help to understand the factors influencing the binding affinity of chemicals and to develop alternative methods for prescreening and designing of polo-like kinase inhibitors.
Shahabadi, Nahid; Falsafi, Monireh
2014-05-05
The toxic interaction of adefovir dipivoxil with calf thymus DNA (CT-DNA) was investigated in vitro under simulated physiological conditions by multi-spectroscopic techniques and molecular modeling study. The fluorescence spectroscopy and UV absorption spectroscopy indicated drug interacted with CT-DNA in a groove binding mode. The binding constant of UV-visible and the number of binding sites were 3.33±0.2×10(4) L mol(-1)and 0.99, respectively. The fluorimetric studies showed that the reaction between the drug and CT-DNA is exothermic (ΔH=34.4 kJ mol(-1); ΔS=184.32 J mol(-1) K(-1)). Circular dichroism spectroscopy (CD) was employed to measure the conformational change of CT-DNA in the presence of adefovir dipivoxil, which verified the groove binding mode. Furthermore, the drug induces detectable changes in its viscosity. The molecular modeling results illustrated that adefovir strongly binds to groove of DNA by relative binding energy of docked structure -16.83 kJ mol(-1). This combination of multiple spectroscopic techniques and molecular modeling methods can be widely used in the investigation on the toxic interaction of small molecular pollutants and drugs with bio macromolecules, which contributes to clarify the molecular mechanism of toxicity or side effect in vivo. Copyright © 2014 Elsevier B.V. All rights reserved.
Rybolt, Thomas R; Bivona, Kevin T; Thomas, Howard E; O'Dell, Casey M
2009-10-01
Gas-solid chromatography was used to determine B(2s) (gas-solid virial coefficient) values for eight molecular adsorbates interacting with a carbon powder (Carbopack B, Supelco). B(2s) values were determined by multiple size variant injections within the temperature range of 313-553 K. The molecular adsorbates included: carbon dioxide (CO(2)); tetrafluoromethane (CF(4)); hexafluoroethane (C(2)F(6)); 1,1-difluoroethane (C(2)H(4)F(2)); 1-chloro-1,1-difluoroethane (C(2)H(3)ClF(2)); dichlorodifluoromethane (CCl(2)F(2)); trichlorofluoromethane (CCl(3)F); and 1,1,1-trichloroethane (C(2)H(3)Cl(3)). Two of these molecules are of special interest because they are "super greenhouse gases". The global warming potential, GWP, for CF(4) is 6500 and for C(2)F(6) is 9200 relative to the reference value of 1 for CO(2). The GWP index considers both radiative blocking and molecular lifetime. For these and other industrial greenhouse gases, adsorptive trapping on a carbonaceous solid, which depends on molecule-surface binding energy, could avoid atmospheric release. The temperature variations of the gas-solid virial coefficients in conjunction with van't Hoff plots were used to find the experimental adsorption energy or binding energy values (E(*)) for each adsorbate. A molecular mechanics based, rough-surface model was used to calculate the molecule-surface binding energy (Ecal(*)) using augmented MM2 parameters. The surface model consisted of parallel graphene layers with two separated nanostructures each containing 17 benzene rings arranged in linear strips. The separation of the parallel nanostructures had been optimized in a prior study to appropriately represent molecule-surface interactions for Carbopack B. Linear regressions of E(*) versus Ecal(*) for the current data set of eight molecules and the same surface model gave E(*)=0.926 Ecal(*) and r(2)=0.956. A combined set of the current and prior Carbopack B adsorbates studied (linear alkanes, branched alkanes, cyclic alkanes, ethers, and halogenated hydrocarbons) gave a data set with 33 molecules and a regression of E(*)=0.991 Ecal(*) and r(2)=0.968. These results indicated a good correlation between the experimental and the MM2 computed molecule-surface binding energies.
NASA Astrophysics Data System (ADS)
Turco, Simona; Tardy, Isabelle; Frinking, Peter; Wijkstra, Hessel; Mischi, Massimo
2017-03-01
Ultrasound molecular imaging (USMI) is an emerging technique to monitor diseases at the molecular level by the use of novel targeted ultrasound contrast agents (tUCA). These consist of microbubbles functionalized with targeting ligands with high-affinity for molecular markers of specific disease processes, such as cancer-related angiogenesis. Among the molecular markers of angiogenesis, the vascular endothelial growth factor receptor 2 (VEGFR2) is recognized to play a major role. In response, the clinical-grade tUCA BR55 was recently developed, consisting of VEGFR2-targeting microbubbles which can flow through the entire circulation and accumulate where VEGFR2 is over-expressed, thus causing selective enhancement in areas of active angiogenesis. Discrimination between bound and free microbubbles is crucial to assess cancer angiogenesis. Currently, this is done non-quantitatively by looking at the late enhancement, about 10 min after injection, or by calculation of the differential targeted enhancement, requiring the application of a high-pressure ultrasound (US) burst to destroy all the microbubbles in the acoustic field and isolate the signal coming only from bound microbubbles. In this work, we propose a novel method based on mathematical modeling of the binding kinetics during the tUCA first pass, thus reducing the acquisition time and with no need for a destructive US burst. Fitting time-intensity curves measured with USMI by the proposed model enables the assessment of cancer angiogenesis at both the vascular and molecular levels. This is achieved by estimation of quantitative parameters related to the microvascular architecture and microbubble binding. The proposed method was tested in 11 prostate-tumor bearing rats by performing USMI after injection of BR55, and showed good agreement with current USMI methods. The novel information provided by the proposed method, possibly combined with the current non-quantitative methods, may bring deeper insight into cancer angiogenesis, and thus potentially improve cancer diagnosis and management.
Torres, Edmanuel; DiLabio, Gino A
2013-08-13
Large clusters of noncovalently bonded molecules can only be efficiently modeled by classical mechanics simulations. One prominent challenge associated with this approach is obtaining force-field parameters that accurately describe noncovalent interactions. High-level correlated wave function methods, such as CCSD(T), are capable of correctly predicting noncovalent interactions, and are widely used to produce reference data. However, high-level correlated methods are generally too computationally costly to generate the critical reference data required for good force-field parameter development. In this work we present an approach to generate Lennard-Jones force-field parameters to accurately account for noncovalent interactions. We propose the use of a computational step that is intermediate to CCSD(T) and classical molecular mechanics, that can bridge the accuracy and computational efficiency gap between them, and demonstrate the efficacy of our approach with methane clusters. On the basis of CCSD(T)-level binding energy data for a small set of methane clusters, we develop methane-specific, atom-centered, dispersion-correcting potentials (DCPs) for use with the PBE0 density-functional and 6-31+G(d,p) basis sets. We then use the PBE0-DCP approach to compute a detailed map of the interaction forces associated with the removal of a single methane molecule from a cluster of eight methane molecules and use this map to optimize the Lennard-Jones parameters for methane. The quality of the binding energies obtained by the Lennard-Jones parameters we obtained is assessed on a set of methane clusters containing from 2 to 40 molecules. Our Lennard-Jones parameters, used in combination with the intramolecular parameters of the CHARMM force field, are found to closely reproduce the results of our dispersion-corrected density-functional calculations. The approach outlined can be used to develop Lennard-Jones parameters for any kind of molecular system.
Impact of calcium on N1 influenza neuraminidase dynamics and binding free energy.
Lawrenz, Morgan; Wereszczynski, Jeff; Amaro, Rommie; Walker, Ross; Roitberg, Adrian; McCammon, J Andrew
2010-08-15
The highly pathogenic influenza strains H5N1 and H1N1 are currently treated with inhibitors of the viral surface protein neuraminidase (N1). Crystal structures of N1 indicate a conserved, high affinity calcium binding site located near the active site. The specific role of this calcium in the enzyme mechanism is unknown, though it has been shown to be important for enzymatic activity and thermostability. We report molecular dynamics (MD) simulations of calcium-bound and calcium-free N1 complexes with the inhibitor oseltamivir (marketed as the drug Tamiflu), independently using both the AMBER FF99SB and GROMOS96 force fields, to give structural insight into calcium stabilization of key framework residues. Y347, which demonstrates similar sampling patterns in the simulations of both force fields, is implicated as an important N1 residue that can "clamp" the ligand into a favorable binding pose. Free energy perturbation and thermodynamic integration calculations, using two different force fields, support the importance of Y347 and indicate a +3 to +5 kcal/mol change in the binding free energy of oseltamivir in the absence of calcium. With the important role of structure-based drug design for neuraminidase inhibitors and the growing literature on emerging strains and subtypes, inclusion of this calcium for active site stability is particularly crucial for computational efforts such as homology modeling, virtual screening, and free energy methods. 2010 Wiley-Liss, Inc.
A two-step strategy to visually identify molecularly imprinted polymers for tagged proteins.
Brandis, Alexander; Partouche, Eran; Yechezkel, Tamar; Salitra, Yoseph; Shkoulev, Vladimir; Scherz, Avigdor; Grynszpan, Flavio
2017-08-01
A practical and relatively simple method to identify molecularly imprinted polymers capable of binding proteins via the molecular tagging (epitope-like) approach has been developed. In our two-step method, we first challenge a previously obtained anti-tag molecularly imprinted polymer with a small molecule including the said tag of choice (a biotin derivative as shown here or other) connected to a linker bound to a second biotin moiety. An avidin molecule partially decorated with fluorescent labels is then allowed to bind the available biotin derivative associated with the polymer matrix. At the end of this simple process, and after washing off all the low-affinity binding molecules from the polymer matrix, only suitable molecularly imprinted polymers binding avidin through its previously acquired small molecule tag (or epitope-like probe, in a general case) will remain fluorescent. For confirmation, we tested the selective performance of the anti-biotin molecularly imprinted polymer binding it to biotinylated alkaline phosphatase. Residual chemical activity of the enzyme on the molecularly imprinted polymer solid support was observed. In all cases, the corresponding nonimprinted polymer controls were inactive. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
A molecular-field-based similarity study of non-nucleoside HIV-1 reverse transcriptase inhibitors
NASA Astrophysics Data System (ADS)
Mestres, Jordi; Rohrer, Douglas C.; Maggiora, Gerald M.
1999-01-01
This article describes a molecular-field-based similarity method for aligning molecules by matching their steric and electrostatic fields and an application of the method to the alignment of three structurally diverse non-nucleoside HIV-1 reverse transcriptase inhibitors. A brief description of the method, as implemented in the program MIMIC, is presented, including a discussion of pairwise and multi-molecule similarity-based matching. The application provides an example that illustrates how relative binding orientations of molecules can be determined in the absence of detailed structural information on their target protein. In the particular system studied here, availability of the X-ray crystal structures of the respective ligand-protein complexes provides a means for constructing an 'experimental model' of the relative binding orientations of the three inhibitors. The experimental model is derived by using MIMIC to align the steric fields of the three protein P66 subunit main chains, producing an overlay with a 1.41 Å average rms distance between the corresponding Cα's in the three chains. The inter-chain residue similarities for the backbone structures show that the main-chain conformations are conserved in the region of the inhibitor-binding site, with the major deviations located primarily in the 'finger' and RNase H regions. The resulting inhibitor structure overlay provides an experimental-based model that can be used to evaluate the quality of the direct a priori inhibitor alignment obtained using MIMIC. It is found that the 'best' pairwise alignments do not always correspond to the experimental model alignments. Therefore, simply combining the best pairwise alignments will not necessarily produce the optimal multi-molecule alignment. However, the best simultaneous three-molecule alignment was found to reproduce the experimental inhibitor alignment model. A pairwise consistency index has been derived which gauges the quality of combining the pairwise alignments and aids in efficiently forming the optimal multi-molecule alignment analysis. Two post-alignment procedures are described that provide information on feature-based and field-based pharmacophoric patterns. The former corresponds to traditional pharmacophore models and is derived from the contribution of individual atoms to the total similarity. The latter is based on molecular regions rather than atoms and is constructed by computing the percent contribution to the similarity of individual points in a regular lattice surrounding the molecules, which when contoured and colored visually depict regions of highly conserved similarity. A discussion of how the information provided by each of the procedures is useful in drug design is also presented.
Sikorska, Emilia; Dawgul, Małgorzata; Greber, Katarzyna; Iłowska, Emilia; Pogorzelska, Aneta; Kamysz, Wojciech
2014-10-01
In this work, the self-organization and the behavior of the surfactant-like peptides in the presence of biological membrane models were studied. The studies were focused on synthetic palmitic acid-containing lipopeptides, C16-KK-NH2 (I), C16-KGK-NH2 (II) and C16-KKKK-NH2 (III). The self-assembly was explored by molecular dynamics simulations using a coarse-grained force field. The critical micellar concentration was estimated by the surface tension measurements. The thermodynamics of the peptides binding to the anionic and zwitterionic lipids were established using isothermal titration calorimetry (ITC). The influence of the peptides on the lipid acyl chain ordering was determined using FTIR spectroscopy. The compounds studied show surface-active properties with a distinct CMC over the millimolar range. An increase in the steric and electrostatic repulsion between polar head groups shifts the CMC toward higher values and reduces the aggregation number. An analysis of the peptide-membrane binding revealed a unique interplay between the initial electrostatic and the subsequent hydrophobic interactions enabling the lipopeptides to interact with the lipid bilayer. In the case of C16-KKKK-NH2 (III), compensation of the electrostatic and hydrophobic interactions upon binding to the anionic membrane has been suggested and consequently no overall binding effects were noticed in ITC thermograms and FTIR spectra. Copyright © 2014 Elsevier B.V. All rights reserved.
Structural biology of intrinsically disordered proteins: Revisiting unsolved mysteries.
Sigalov, Alexander B
2016-06-01
The emergence of intrinsically disordered proteins (IDPs) has challenged the classical protein structure-function paradigm by introducing a new paradigm of "coupled binding and folding". This paradigm suggests that IDPs fold upon binding to their partners. Further studies, however, revealed a novel and previously unrecognized phenomenon of "uncoupled binding and folding" suggesting that IDPs do not necessarily fold upon interaction with their lipid and protein partners. The complex and often unusual biophysics of IDPs makes structural characterization of these proteins and their complexes not only challenging but often resulting in opposite conclusions. For this reason, some crucial questions in this field remain unsolved for well over a decade. Considering an important role of IDPs in cellular regulation, signaling and control in health and disease, more efforts are needed to solve these mysteries. Here, I focus on two long-standing contradictions in the literature concerning dimerization and membrane-binding activities of IDPs. Molecular explanation of these discrepancies is provided. I also demonstrate how resolution of these critical issues in the field of IDPs results in our expanded understanding of cell function and has multiple applications in biology and medicine. Copyright © 2016 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.
Molecular biomimetics: nanotechnology through biology.
Sarikaya, Mehmet; Tamerler, Candan; Jen, Alex K-Y; Schulten, Klaus; Baneyx, François
2003-09-01
Proteins, through their unique and specific interactions with other macromolecules and inorganics, control structures and functions of all biological hard and soft tissues in organisms. Molecular biomimetics is an emerging field in which hybrid technologies are developed by using the tools of molecular biology and nanotechnology. Taking lessons from biology, polypeptides can now be genetically engineered to specifically bind to selected inorganic compounds for applications in nano- and biotechnology. This review discusses combinatorial biological protocols, that is, bacterial cell surface and phage-display technologies, in the selection of short sequences that have affinity to (noble) metals, semiconducting oxides and other technological compounds. These genetically engineered proteins for inorganics (GEPIs) can be used in the assembly of functional nanostructures. Based on the three fundamental principles of molecular recognition, self-assembly and DNA manipulation, we highlight successful uses of GEPI in nanotechnology.
Magnetic molecularly imprinted polymer for aspirin recognition and controlled release
NASA Astrophysics Data System (ADS)
Kan, Xianwen; Geng, Zhirong; Zhao, Yao; Wang, Zhilin; Zhu, Jun-Jie
2009-04-01
Core-shell structural magnetic molecularly imprinted polymers (magnetic MIPs) with combined properties of molecular recognition and controlled release were prepared and characterized. Magnetic MIPs were synthesized by the co-polymerization of methacrylic acid (MAA) and trimethylolpropane trimethacrylate (TRIM) around aspirin (ASP) at the surface of double-bond-functionalized Fe3O4 nanoparticles in chloroform. The obtained spherical magnetic MIPs with diameters of about 500 nm had obvious superparamagnetism and could be separated quickly by an external magnetic field. Binding experiments were carried out to evaluate the properties of magnetic MIPs and magnetic non-molecularly imprinted polymers (magnetic NIPs). The results demonstrated that the magnetic MIPs had high adsorption capacity and selectivity to ASP. Moreover, release profiles and release rate of ASP from the ASP-loaded magnetic MIPs indicated that the magnetic MIPs also had potential applications in drug controlled release.
NASA Astrophysics Data System (ADS)
Islam, Md. Maidul; Pandya, Prateek; Chowdhury, Sebanti Roy; Kumar, Surat; Kumar, Gopinatha Suresh
2008-11-01
The interaction of two natural protoberberine plant alkaloids berberine and palmatine with tRNA phe was studied using various biophysical techniques and molecular modeling and the data were compared with the binding of the classical DNA intercalator, ethidium. Circular dichroic studies revealed that the tRNA conformation was moderately perturbed on binding of the alkaloids. The cooperative binding of both the alkaloids and ethidium to tRNA was revealed from absorbance and fluorescence studies. Fluorescence quenching studies advanced a conclusion that while berberine and palmatine are partially intercalated, ethidium is fully intercalated on the tRNA molecule. The binding of the alkaloids as well as ethidium stabilized the tRNA melting, and the binding constant evaluated from the averaged optical melting temperature data was in agreement with fluorescence spectral-binding data. Differential scanning calorimetry revealed that the tRNA melting showed three close transitions that were affected on binding of these small molecules. Molecular docking calculations performed showed the preferred regions of binding of these small molecules on the tRNA. Taken together, the results suggest that the binding of the alkaloids berberine and palmatine on the tRNA structure appears to be mostly by partial intercalation while ethidium intercalates fully on the tRNA. These results further advance our knowledge on the molecular aspects on the interaction of these alkaloids to tRNA.
Al Qaraghuli, Mohammed M; Ferro, Valerie A
2017-04-01
Monoclonal antibodies have revolutionized the biomedical field through their ubiquitous utilization in different diagnostics and therapeutic applications. Despite this widespread use, their large size and structural complexity have limited their versatility in specific applications. The antibody variable region that is responsible for binding antigen is embodied within domains that can be rescued individually as single-domain antibody (sdAb) fragments. Because of the unique characteristics of sdAbs, such as low molecular weight, high physicochemical stability, and the ability to bind antigens inaccessible to conventional antibodies, they represent a viable alternative to full-length antibodies. Consequently, 149 crystal structures of sdAbs, originating from human (VH), camelids (VHH), or sharks (VNAR), were retrieved from the Protein Data Bank, and their structures were compared. The 3 types of sdAbs displayed complementarity determining regions (CDRs) with different lengths and configurations. CDR3 of the VHH and VNAR domains were dominated by pleated and extended orientations, respectively. Although VNAR showed the smallest average molecular weight and molecular surface area compared with VHH and VH antibodies. However, the solvent accessible surface area measurements of the 3 tested sdAbs types were very similar. All the antihapten VHH antibodies showed pleated CDR3, which were sufficient to create a binding pocket to accommodate haptens (methotrexate and azo dyes) in terms of shape and electrostatic potential. The sdAbs that recognized lysozyme showed more diversity in their CDR3 orientation to enable them to recognize various topographies of lysozyme. Subsequently, the three sdAb classes were different in size and surface area and have shown distinguishable ability to optimize their CDR length and orientation to recognize different antigen classes. Copyright © 2016 John Wiley & Sons, Ltd.
Rangl, Martina; Leitner, Michael; Riihimäki, Tiina; Lehtonen, Soili; Hytönen, Vesa P; Gruber, Hermann J; Kulomaa, Markku; Hinterdorfer, Peter; Ebner, Andreas
2014-02-01
Molecular recognition force spectroscopy, a biosensing atomic force microscopy technique allows to characterise the dissociation of ligand-receptor complexes at the molecular level. Here, we used molecular recognition force spectroscopy to study the binding capability of recently developed testosterone binders. The two avidin-based proteins called sbAvd-1 and sbAvd-2 are expected to bind both testosterone and biotin but differ in their binding behaviour towards these ligands. To explore the ligand binding and dissociation energy landscape of these proteins, we tethered biotin or testosterone to the atomic force microscopy probe while the testosterone-binding protein was immobilized on the surface. Repeated formation and rupture of the ligand-receptor complex at different pulling velocities allowed determination of the loading rate dependence of the complex-rupturing force. In this way, we obtained the molecular dissociation rate (k(off)) and energy landscape distances (x(β)) of the four possible complexes: sbAvd-1-biotin, sbAvd-1-testosterone, sbAvd-2-biotin and sbAvd-2-testosterone. It was found that the kinetic off-rates for both proteins and both ligands are similar. In contrast, the x(β) values, as well as the probability of complex formations, varied considerably. In addition, competitive binding experiments with biotin and testosterone in solution differ significantly for the two testosterone-binding proteins, implying a decreased cross-reactivity of sbAvd-2. Unravelling the binding behaviour of the investigated testosterone-binding proteins is expected to improve their usability for possible sensing applications. Copyright © 2014 John Wiley & Sons, Ltd.
Srivastava, Gaurava; Tripathi, Shubhandra; Kumar, Akhil; Sharma, Ashok
2017-07-01
Multi drug resistant tuberculosis is a major threat for mankind. Resistance against Isoniazid (INH), targeting MtKatG protein, is one of the most commonly occurring resistances in MDR TB strains. S315T-MtKatG mutation is widely reported for INH resistance. Despite having knowledge about the mechanism of INH, exact binding site of INH to MtKatG is still uncertain and proposed to have three presumable binding sites (site-1, site-2, and site-3). In the current study docking, molecular dynamics simulation, binding free energy estimation, principal component analysis and free energy landscape analysis were performed to get molecular level details of INH binding site on MtKatG, and to probe the effect of S315T mutation on INH binding. Molecular docking and MD analysis suggested site-1 as active binding site of INH, where the effects of S315T mutation were observed on both access tunnel as well as molecular interaction between INH and its neighboring residues. MMPBSA also supported site-1 as potential binding site with lowest binding energy of -44.201 kJ/mol. Moreover, PCA and FEL revealed that S315T mutation not only reduces the dimension of heme access tunnel but also showed that extra methyl group at 315 position altered heme cavity, enforcing heme group distantly from INH, and thus preventing INH activation. The present study not only investigated the active binding site of INH but also provides a new insight about the conformational changes in the binding site of S315T-MtKatG. Copyright © 2017 Elsevier Ltd. All rights reserved.
Alchemical free energy simulations for biological complexes: powerful but temperamental....
Aleksandrov, Alexey; Thompson, Damien; Simonson, Thomas
2010-01-01
Free energy simulations compare multiple ligand:receptor complexes by "alchemically" transforming one into another, yielding binding free energy differences. Since their introduction in the 1980s, many technical and theoretical obstacles were surmounted, and the method ("MDFE," since molecular dynamics are often used) has matured into a powerful tool. We describe its current status, its effectiveness, and the challenges it faces. MDFE has provided chemical accuracy for many systems but remains expensive, with significant human overhead costs. The bottlenecks have shifted, partly due to increased computer power. To study diverse sets of ligands, force field availability and accuracy can be a major difficulty. Another difficulty is the frequent need to consider multiple states, related to sidechain protonation or buried waters, for example. Sophisticated, automated methods to sample these states are maturing, such as constant pH simulations. Meanwhile, combinations of MDFE and simpler approaches, like continuum dielectric models, can be very effective. As illustrations, we show how, with careful force field parameterization, MDFE accurately predicts binding specificities between complex tetracycline ligands and their targets. We describe substrate binding to the aspartyl-tRNA synthetase enzyme, where many distinct electrostatic states play a role, and a histidine and a Mg(2+) ion act as coupled switches that help enforce a strict preference for the aspartate substrate, relative to several analogs. Overall, MDFE has achieved a predictive status, where novel ligands can be studied and molecular recognition elucidated in depth. It should play an increasing role in the analysis of complex cellular processes and biomolecular engineering. 2009 John Wiley & Sons, Ltd.
Molecular dynamics study of some non-hydrogen-bonding base pair DNA strands
NASA Astrophysics Data System (ADS)
Tiwari, Rakesh K.; Ojha, Rajendra P.; Tiwari, Gargi; Pandey, Vishnudatt; Mall, Vijaysree
2018-05-01
In order to elucidate the structural activity of hydrophobic modified DNA, the DMMO2-D5SICS, base pair is introduced as a constituent in different set of 12-mer and 14-mer DNA sequences for the molecular dynamics (MD) simulation in explicit water solvent. AMBER 14 force field was employed for each set of duplex during the 200ns production-dynamics simulation in orthogonal-box-water solvent by the Particle-Mesh-Ewald (PME) method in infinite periodic boundary conditions (PBC) to determine conformational parameters of the complex. The force-field parameters of modified base-pair were calculated by Gaussian-code using Hartree-Fock /ab-initio methodology. RMSD Results reveal that the conformation of the duplex is sequence dependent and the binding energy of the complex depends on the position of the modified base-pair in the nucleic acid strand. We found that non-bonding energy had a significant contribution to stabilising such type of duplex in comparison to electrostatic energy. The distortion produced within strands by such type of base-pair was local and destabilised the duplex integrity near to substitution, moreover the binding energy of duplex depends on the position of substitution of hydrophobic base-pair and the DNA sequence and strongly supports the corresponding experimental study.
Towards molecular modeling of the impact of heparin-derived oligosaccharides on hIFN-γ binding
NASA Astrophysics Data System (ADS)
Lilkova, E.; Petkov, P.; Ilieva, N.; Litov, L.
2015-10-01
Human interferon gamma (hIFN-γ) is an important signalling molecule, which plays a key role in the formation and modulation of immune response. The role of the cytokine C-termini in the formation of a complex with the extracellular receptor is still controversial due to the lack of structural information about this domain. Moreover, the C-termini are also responsible for the high affinity interaction of hIFN-γ with the glycosaminoglicans heparan sulfate and heparin. This interaction can drastically change the properties and behaviour of the protein. We performed molecular dynamics simulations in order to model the structure of the hIFN-γ C-terminal part and the interaction of the cytokine with heparin-derived oligosaccharides. For this purpose we reconstructed the missing C-terminal amino acid residues and performed folding simulations to determine their conformation. In order to simulate the interaction with heparin-like fragments, we developed CHARMM 36 compatible force field for the sulfamate anion group that is present in the glucosamine sugar to complete the heparin and heparan sulfate force field. The new topology and parameters reproduce the available experimental structural properties of heparin-like fragments. The simulations show that the oligosaccharides quickly bind the IFN-γ C-termini and reduce their solvent accessible surface area.
Ince, Gozde Ozaydin; Armagan, Efe; Erdogan, Hakan; Buyukserin, Fatih; Uzun, Lokman; Demirel, Gokhan
2013-07-24
Molecular imprinting is a powerful, generic, and cost-effective technique; however, challenges still remain related to the fabrication and development of these systems involving nonhomogeneous binding sites, insufficient template removing, incompatibility with aqueous media, low rebinding capacity, and slow mass transfer. The vapor-phase deposition of polymers is a unique technique because of the conformal nature of coating and offers new possibilities in a number of applications including sensors, microfluidics, coating, and bioaffinity platforms. Herein, we demonstrated a simple but versatile concept to generate one-dimensional surface-imprinted polymeric nanotubes within anodic aluminum oxide (AAO) membranes based on initiated chemical vapor deposition (iCVD) technique for biorecognition of immunoglobulin G (IgG). It is reported that the fabricated surface-imprinted nanotubes showed high binding capacity and significant specific recognition ability toward target molecules compared with the nonimprinted forms. Given its simplicity and universality, the iCVD method can offer new possibilities in the field of molecular imprinting.
Daneial, Betty; Joseph, Jacob Paul Vazhappilly; Ramakrishna, Guruprasad
2017-01-01
Focal adhesion kinase (FAK) plays a primary role in regulating the activity of many signaling molecules. Increased FAK expression has been associated in a series of cellular processes like cell migration and survival. FAK inhibition by an anti cancer agent is critical. Therefore, it is of interest to identify, modify, design, improve and develop molecules to inhibit FAK. Solanesol is known to have inhibitory activity towards FAK. However, the molecular principles of its binding with FAK is unknown. Solanesol is a highly flexible ligand (25 rotatable bonds). Hence, ligand-protein docking was completed using AutoDock with a modified contact based scoring function. The FAK-solanesol complex model was further energy minimized and simulated in GROMOS96 (53a6) force field followed by post simulation analysis such as Root mean square deviation (RMSD), root mean square fluctuations (RMSF) and solvent accessible surface area (SASA) calculations to explain solanesol-FAK binding. PMID:29081606
Zhou, Yuxin; Chen, Lei; Hu, Jian; Duan, Hongxia; Lin, Dong; Liu, Pengfei; Meng, Qingxiao; Li, Bin; Si, Naiguo; Liu, Changling; Liu, Xili
2015-01-01
Peronophythora litchii is the causal agent of litchi downy blight. Enestroburin, SYP-1620, SYP-2815 and ZJ0712 are four novel QoI fungicides developed by China. Eight mutants of P. litchii resistant to these QoI fungicides and azoxystrobin (as a known QoI fungicide) were obtained in our preliminary work. In this study, the full length of the cytochrome b gene in P. litchii, which has a full length of 382 amino acids, was cloned from both sensitive isolates and resistant mutants, and single-site mutations G142A, G142S, Y131C, or F128S were found in resistant mutants. Molecular docking was used to predict how the mutations alter the binding of the five QoI fungicides to the Qo-binding pockets. The results have increased our understanding of QoI fungicide-resistance mechanisms and may help in the development of more potent inhibitors against plant diseases in the fields. PMID:26657349
Daneial, Betty; Joseph, Jacob Paul Vazhappilly; Ramakrishna, Guruprasad
2017-01-01
Focal adhesion kinase (FAK) plays a primary role in regulating the activity of many signaling molecules. Increased FAK expression has been associated in a series of cellular processes like cell migration and survival. FAK inhibition by an anti cancer agent is critical. Therefore, it is of interest to identify, modify, design, improve and develop molecules to inhibit FAK. Solanesol is known to have inhibitory activity towards FAK. However, the molecular principles of its binding with FAK is unknown. Solanesol is a highly flexible ligand (25 rotatable bonds). Hence, ligand-protein docking was completed using AutoDock with a modified contact based scoring function. The FAK-solanesol complex model was further energy minimized and simulated in GROMOS96 (53a6) force field followed by post simulation analysis such as Root mean square deviation (RMSD), root mean square fluctuations (RMSF) and solvent accessible surface area (SASA) calculations to explain solanesol-FAK binding.
Human molecular cytogenetics: From cells to nucleotides
Riegel, Mariluce
2014-01-01
The field of cytogenetics has focused on studying the number, structure, function and origin of chromosomal abnormalities and the evolution of chromosomes. The development of fluorescent molecules that either directly or via an intermediate molecule bind to DNA has led to the development of fluorescent in situ hybridization (FISH), a technology linking cytogenetics to molecular genetics. This technique has a wide range of applications that increased the dimension of chromosome analysis. The field of cytogenetics is particularly important for medical diagnostics and research as well as for gene ordering and mapping. Furthermore, the increased application of molecular biology techniques, such as array-based technologies, has led to improved resolution, extending the recognized range of microdeletion/microduplication syndromes and genomic disorders. In adopting these newly expanded methods, cytogeneticists have used a range of technologies to study the association between visible chromosome rearrangements and defects at the single nucleotide level. Overall, molecular cytogenetic techniques offer a remarkable number of potential applications, ranging from physical mapping to clinical and evolutionary studies, making a powerful and informative complement to other molecular and genomic approaches. This manuscript does not present a detailed history of the development of molecular cytogenetics; however, references to historical reviews and experiments have been provided whenever possible. Herein, the basic principles of molecular cytogenetics, the technologies used to identify chromosomal rearrangements and copy number changes, and the applications for cytogenetics in biomedical diagnosis and research are presented and discussed. PMID:24764754
Walker, David M; Wang, Ruifei; Webb, Lauren J
2014-10-07
Vibrational Stark effect (VSE) spectroscopy was used to measure the electrostatic fields present at the interface of the human guanosine triphosphatase (GTPase) Ras docked with the Ras binding domain (RBD) of the protein kinase Raf. Nine amino acids located on the surface of Raf were selected for labeling with a nitrile vibrational probe. Eight of the probe locations were situated along the interface of Ras and Raf, and one probe was 2 nm away on the opposite side of Raf. Vibrational frequencies of the nine Raf nitrile probes were compared both in the monomeric, solvated protein and when docked with wild-type (WT) Ras to construct a comprehensive VSE map of the Ras-Raf interface. Molecular dynamics (MD) simulations employing an umbrella sampling strategy were used to generate a Boltzmann-weighted ensemble of nitrile positions in both the monomeric and docked complexes to determine the effect that docking has on probe location and orientation and to aid in the interpretation of VSE results. These results were compared to an identical study that was previously conducted on nine nitrile probes on the RBD of Ral guanidine dissociation stimulator (RalGDS) to make comparisons between the docked complexes formed when either of the two effectors bind to WT Ras. This comparison finds that there are three regions of conserved electrostatic fields that are formed upon docking of WT Ras with both downstream effectors. Conservation of this pattern in the docked complex then results in different binding orientations observed in otherwise structurally similar proteins. This work supports an electrostatic cause of the known binding tilt angle between the Ras-Raf and Ras-RalGDS complexes.
Moghadam, Neda Hosseinpour; Salehzadeh, Sadegh; Shahabadi, Nahid
2017-09-02
The interaction of calf thymus DNA with nevirapine at physiological pH was studied by using absorption, circular dichroism, viscosity, differential pulse voltammetry, fluorescence techniques, salt effect studies and computational methods. The drug binds to ct-DNA in a groove binding mode, as shown by slight variation in the viscosity of ct-DNA. Furthermore, competitive fluorimetric studies with Hoechst 33258 indicate that nevirapine binds to DNA via groove binding. Moreover, the structure of nevirapine was optimized by DFT calculations and was used for the molecular docking calculations. The molecular docking results suggested that nevirapine prefers to bind on the minor groove of ct-DNA.
Wang, Fang; Li, Xiaoyan; Li, Junjie; Zhu, Chen; Liu, Min; Wu, Zongyuan; Liu, Li; Tan, Xuecai; Lei, Fuhou
2018-05-14
A novel composite material for prednisone molecular capture (PS-MC) was prepared by surface imprinting technique in combination with a polyethylene filter plate coated with multi-walled carbon nanotubes for the first time. PS-MC was achieved by using prednisone as the template molecule, 3-aminopropyltriethoxysilane as the monomer, and tetraethoxysilane as the cross-linker. The structure, morphology, and thermal stability of the prepared PS-MC were studied by fourier-transform infrared spectrometry, field emission scanning electron microscopy, energy-dispersive X-ray spectroscopy, and thermogravimetric analysis. PS-MC was assessed by re-binding experiments such as adsorption kinetics, adsorption isotherms, molecular identification, and applied to the separation and enrichment of prednisone in cosmetics. The results indicated that PS-MC has rapid binding kinetic, high adsorption capacity, and favorable reusability. The imprinted materials were coupled with HPLC to selectively separation, purification, and detection of prednisone from spiked cosmetic samples. The recoveries of spiked cosmetic samples were in the range of 83.0-106.0%, with relative standard deviations of less than 2.10%, and the limit of detection of 5 ng/mL (S/N = 3). Copyright © 2018. Published by Elsevier Inc.
A general intermolecular force field based on tight-binding quantum chemical calculations
NASA Astrophysics Data System (ADS)
Grimme, Stefan; Bannwarth, Christoph; Caldeweyher, Eike; Pisarek, Jana; Hansen, Andreas
2017-10-01
A black-box type procedure is presented for the generation of a molecule-specific, intermolecular potential energy function. The method uses quantum chemical (QC) information from our recently published extended tight-binding semi-empirical scheme (GFN-xTB) and can treat non-covalently bound complexes and aggregates with almost arbitrary chemical structure. The necessary QC information consists of the equilibrium structure, Mulliken atomic charges, charge centers of localized molecular orbitals, and also of frontier orbitals and orbital energies. The molecular pair potential includes model density dependent Pauli repulsion, penetration, as well as point charge electrostatics, the newly developed D4 dispersion energy model, Drude oscillators for polarization, and a charge-transfer term. Only one element-specific and about 20 global empirical parameters are needed to cover systems with nuclear charges up to radon (Z = 86). The method is tested for standard small molecule interaction energy benchmark sets where it provides accurate intermolecular energies and equilibrium distances. Examples for structures with a few hundred atoms including charged systems demonstrate the versatility of the approach. The method is implemented in a stand-alone computer code which enables rigid-body, global minimum energy searches for molecular aggregation or alignment.
Multiscale computational models in physical systems biology of intracellular trafficking.
Tourdot, Richard W; Bradley, Ryan P; Ramakrishnan, Natesan; Radhakrishnan, Ravi
2014-10-01
In intracellular trafficking, a definitive understanding of the interplay between protein binding and membrane morphology remains incomplete. The authors describe a computational approach by integrating coarse-grained molecular dynamics (CGMD) simulations with continuum Monte Carlo (CM) simulations of the membrane to study protein-membrane interactions and the ensuing membrane curvature. They relate the curvature field strength discerned from the molecular level to its effect at the cellular length-scale. They perform thermodynamic integration on the CM model to describe the free energy landscape of vesiculation in clathrin-mediated endocytosis. The method presented here delineates membrane morphologies and maps out the free energy changes associated with membrane remodeling due to varying coat sizes, coat curvature strengths, membrane bending rigidities, and tensions; furthermore several constraints on mechanisms underlying clathrin-mediated endocytosis have also been identified, Their CGMD simulations have revealed the importance of PIP2 for stable binding of proteins essential for curvature induction in the bilayer and have provided a molecular basis for the positive curvature induction by the epsin N-terminal homology (EIMTH) domain. Calculation of the free energy landscape for vesicle budding has identified the critical size and curvature strength of a clathrin coat required for nucleation and stabilisation of a mature vesicle.
Biomolecular Force Field Parameterization via Atoms-in-Molecule Electron Density Partitioning.
Cole, Daniel J; Vilseck, Jonah Z; Tirado-Rives, Julian; Payne, Mike C; Jorgensen, William L
2016-05-10
Molecular mechanics force fields, which are commonly used in biomolecular modeling and computer-aided drug design, typically treat nonbonded interactions using a limited library of empirical parameters that are developed for small molecules. This approach does not account for polarization in larger molecules or proteins, and the parametrization process is labor-intensive. Using linear-scaling density functional theory and atoms-in-molecule electron density partitioning, environment-specific charges and Lennard-Jones parameters are derived directly from quantum mechanical calculations for use in biomolecular modeling of organic and biomolecular systems. The proposed methods significantly reduce the number of empirical parameters needed to construct molecular mechanics force fields, naturally include polarization effects in charge and Lennard-Jones parameters, and scale well to systems comprised of thousands of atoms, including proteins. The feasibility and benefits of this approach are demonstrated by computing free energies of hydration, properties of pure liquids, and the relative binding free energies of indole and benzofuran to the L99A mutant of T4 lysozyme.
König, Alexander; Glebe, Dieter
2017-01-01
To obtain basic knowledge about specific molecular mechanisms involved in the entry of pathogens into cells is the basis for establishing pharmacologic substances blocking initial viral binding, infection, and subsequent viral spread. Lack of information about key cellular factors involved in the initial steps of HBV infection has hampered the characterization of HBV binding and entry for decades. However, recently, the liver-specific sodium-dependent taurocholate cotransporting polypeptide (NTCP) has been discovered as a functional receptor for HBV and HDV, thus opening the field for new concepts of basic binding and entry of HBV and HDV. Here, we describe practical issues of a basic in vitro assay system to examine kinetics and mechanisms of receptor-dependent HBV binding, uptake, and intracellular trafficking by live-cell imaging confocal microscopy. The assay system is comprised of HepG2 cells expressing a NTCP-GFP fusion-protein and chemically synthesized, fluorophore-labeled part of HBV surface protein, spanning the first N-terminal 48 amino acids of preS1 of the large hepatitis B virus surface protein.
Wischhusen, Jennifer; Padilla, Frederic
2017-07-01
Targeted microbubbles (MBs) are ultrasound contrast agents that are functionalized with a ligand for ultrasound molecular imaging of endothelial markers. Novel targeted MBs are characterized in vitro by incubation in protein-coated wells, followed by binding quantification by microscopy or ultrasound imaging. Both methods provide operator-dependent results: Between 3 and 20 fields of view from a heterogeneous sample are typically selected for analysis by microscopy, and in ultrasound imaging, different acoustic settings affect signal intensities. This study proposes a new method to reproducibly quantify MB binding based on enzyme-linked immunosorbent assay (ELISA), in which bound MBs are revealed with an enzyme-linked antibody. MB-ELISA was adapted to in vitro static binding assays, incubating the MBs in inverted position or by agitation, and compared with microscopy. The specificity and sensitivity of MB-ELISA enable the reliable quantification of MB binding in a rapid, high-throughput and whole-well analysis, facilitating the characterization of new targeted contrast agents. Copyright © 2017 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.
Switchable DNA interfaces for the highly sensitive detection of label-free DNA targets.
Rant, Ulrich; Arinaga, Kenji; Scherer, Simon; Pringsheim, Erika; Fujita, Shozo; Yokoyama, Naoki; Tornow, Marc; Abstreiter, Gerhard
2007-10-30
We report a method to detect label-free oligonucleotide targets. The conformation of surface-tethered probe nucleic acids is modulated by alternating electric fields, which cause the molecules to extend away from or fold onto the biased surface. Binding (hybridization) of targets to the single-stranded probes results in a pronounced enhancement of the layer-height modulation amplitude, monitored optically in real time. The method features an exceptional detection limit of <3 x 10(8) bound targets per cm(2) sensor area. Single base-pair mismatches in the sequences of DNA complements may readily be identified; moreover, binding kinetics and binding affinities can be determined with high accuracy. When driving the DNA to oscillate at frequencies in the kHz regime, distinct switching kinetics are revealed for single- and double-stranded DNA. Molecular dynamics are used to identify the binding state of molecules according to their characteristic kinetic fingerprints by using a chip-compatible detection format.
Switchable DNA interfaces for the highly sensitive detection of label-free DNA targets
Rant, Ulrich; Arinaga, Kenji; Scherer, Simon; Pringsheim, Erika; Fujita, Shozo; Yokoyama, Naoki; Tornow, Marc; Abstreiter, Gerhard
2007-01-01
We report a method to detect label-free oligonucleotide targets. The conformation of surface-tethered probe nucleic acids is modulated by alternating electric fields, which cause the molecules to extend away from or fold onto the biased surface. Binding (hybridization) of targets to the single-stranded probes results in a pronounced enhancement of the layer-height modulation amplitude, monitored optically in real time. The method features an exceptional detection limit of <3 × 108 bound targets per cm2 sensor area. Single base-pair mismatches in the sequences of DNA complements may readily be identified; moreover, binding kinetics and binding affinities can be determined with high accuracy. When driving the DNA to oscillate at frequencies in the kHz regime, distinct switching kinetics are revealed for single- and double-stranded DNA. Molecular dynamics are used to identify the binding state of molecules according to their characteristic kinetic fingerprints by using a chip-compatible detection format. PMID:17951434
Exploring Hydrophobic Binding Surfaces Using Comfa and Flexible Hydrophobic Ligands
NASA Astrophysics Data System (ADS)
Thakkar, Shraddha; Sanchez, Rosa. I.; Bhuveneswaran, Chidambaram; Compadre, Cesar M.
2011-06-01
Cysteine proteinases are a very important group of enzymes involved in a variety of physiological and pathological processes including cancer metastasis and rheumatoid arthritis. In this investigation we used 3D-Quantitative Structure Activity Relationships (3D-QSAR) techniques to model the binding of a variety of substrates to two cysteine proteinases, papain, and cathepsin B. The analysis was performed using Comparative Molecular Field Analysis (CoMFA). The molecules were constructed using standard bond angles and lengths, minimized and aligned. Charges were calculated using the PM3 method in MOPAC. The CoMFA models derived for the binding of the studied substrates to the two proteinases were compared with the expected results from the experimental X-ray crystal structures of the same proteinases. The results showed the value of CoMFA modeling of flexible hydrophobic ligands to analyze ligand binding to protein receptors, and could also serve as the basis to design specific inhibitors of cysteine proteinases with potential therapeutic value.
Molecular design of new aggrecanases-2 inhibitors.
Shan, Zhi Jie; Zhai, Hong Lin; Huang, Xiao Yan; Li, Li Na; Zhang, Xiao Yun
2013-10-01
Aggrecanases-2 is a very important potential drug target for the treatment of osteoarthritis. In this study, a series of known aggrecanases-2 inhibitors was analyzed by the technologies of three-dimensional quantitative structure-activity relationships (3D-QSAR) and molecular docking. Two 3D-QSAR models, which based on comparative molecular field analysis (CoMFA) and comparative molecular similarity analysis (CoMSIA) methods, were established. Molecular docking was employed to explore the details of the interaction between inhibitors and aggrecanases-2 protein. According to the analyses for these models, several new potential inhibitors with higher activity predicted were designed, and were supported by the simulation of molecular docking. This work propose the fast and effective approach to design and prediction for new potential inhibitors, and the study of the interaction mechanism provide a better understanding for the inhibitors binding into the target protein, which will be useful for the structure-based drug design and modifications. Copyright © 2013 Elsevier Ltd. All rights reserved.
Oh, Gyungseok; Yoo, Su Woong; Jung, Yebin; Ryu, Yeon-Mi; Park, Youngrong; Kim, Sang-Yeob; Kim, Ki Hean; Kim, Sungjee; Myung, Seung-Jae; Chung, Euiheon
2014-05-01
Intravital imaging has provided molecular, cellular and anatomical insight into the study of tumor. Early detection and treatment of gastrointestinal (GI) diseases can be enhanced with specific molecular markers and endoscopic imaging modalities. We present a wide-field multi-channel fluorescence endoscope to screen GI tract for colon cancer using multiple molecular probes targeting matrix metalloproteinases (MMP) conjugated with quantum dots (QD) in AOM/DSS mouse model. MMP9 and MMP14 antibody (Ab)-QD conjugates demonstrate specific binding to colonic adenoma. The average target-to-background (T/B) ratios are 2.10 ± 0.28 and 1.78 ± 0.18 for MMP14 Ab-QD and MMP9 Ab-QD, respectively. The overlap between the two molecular probes is 67.7 ± 8.4%. The presence of false negative indicates that even more number of targeting could increase the sensitivity of overall detection given heterogeneous molecular expression in tumors. Our approach indicates potential for the screening of small or flat lesions that are precancerous.
Effects of Hofmeister Anions on the LCST of PNIPAM as a Function of Molecular Weight
Zhang, Yanjie; Furyk, Steven; Sagle, Laura B.; Cho, Younhee; Bergbreiter, David E.; Cremer, Paul S.
2008-01-01
The effect of a series of sodium salts on the lower critical solution temperature (LCST) of poly(N-isopropylacrylamide), PNIPAM, was investigated as a function of molecular weight and polymer concentration with a temperature gradient microfluidic device under a dark-field microscope. In solutions containing sufficient concentrations of kosmotropic anions, the phase transition of PNIPAM was resolved into two separate steps for higher molecular weight samples. The first step of this two step transition was found to be sensitive to the polymer’s molecular weight and solution concentration, while the second step was not. Moreover, the binding of chaotropic anions to the polymer was also influenced by molecular weight. Both sets of results could be explained by the formation of intramolecular and intermolecular hydrogen-bonding between polymer chains. By contrast, the hydrophobic hydration of the isopropyl moieties and polymer backbone was found to be unaffected by either the polymer’s molecular weight or solution concentration. PMID:18820735
Nakashima, Kazuo; Yamaguchi-Shinozaki, Kazuko; Shinozaki, Kazuo
2014-01-01
Drought negatively impacts plant growth and the productivity of crops around the world. Understanding the molecular mechanisms in the drought response is important for improvement of drought tolerance using molecular techniques. In plants, abscisic acid (ABA) is accumulated under osmotic stress conditions caused by drought, and has a key role in stress responses and tolerance. Comprehensive molecular analyses have shown that ABA regulates the expression of many genes under osmotic stress conditions, and the ABA-responsive element (ABRE) is the major cis-element for ABA-responsive gene expression. Transcription factors (TFs) are master regulators of gene expression. ABRE-binding protein and ABRE-binding factor TFs control gene expression in an ABA-dependent manner. SNF1-related protein kinases 2, group A 2C-type protein phosphatases, and ABA receptors were shown to control the ABA signaling pathway. ABA-independent signaling pathways such as dehydration-responsive element-binding protein TFs and NAC TFs are also involved in stress responses including drought, heat, and cold. Recent studies have suggested that there are interactions between the major ABA signaling pathway and other signaling factors in stress responses. The important roles of these TFs in crosstalk among abiotic stress responses will be discussed. Control of ABA or stress signaling factor expression can improve tolerance to environmental stresses. Recent studies using crops have shown that stress-specific overexpression of TFs improves drought tolerance and grain yield compared with controls in the field.
Cheng, Li-Yang; Fang, Min; Bai, Ai-Min; Ouyang, Yu; Hu, Yan-Jun
2017-08-01
In this study, fluorescence spectroscopy and molecular modeling approaches were employed to investigate the binding of methotrexate to human serum albumin (HSA) under physiological conditions. From the mechanism, it was demonstrated that fluorescence quenching of HSA by methotrexate results from the formation of a methotrexate/HSA complex. Binding parameters calculated using the Stern-Volmer method and the Scatchard method showed that methotrexate binds to HSA with binding affinities in the order 10 4 L·mol -1 . Thermodynamic parameter studies revealed that the binding reaction is spontaneous, and that hydrogen bonds and van der Waals interactions play a major role in the reaction. Site marker competitive displacement experiments and a molecular modeling approach demonstrated that methotrexate binds with appropriate affinity to site I (subdomain IIA) of HSA. Furthermore, we discuss some factors that influence methotrexate binding to HSA. Copyright © 2017 John Wiley & Sons, Ltd.
Maurya, Neha; Maurya, Jitendra Kumar; Kumari, Meena; Khan, Abbul Bashar; Dohare, Ravins; Patel, Rajan
2017-05-01
Herein, we have explored the interaction between amitriptyline hydrochloride (AMT) and hemoglobin (Hb), using steady-state and time-resolved fluorescence spectroscopy, UV-visible spectroscopy, and circular dichroism spectroscopy, in combination with molecular docking and molecular dynamic (MD) simulation methods. The steady-state fluorescence reveals the static quenching mechanism in the interaction system, which was further confirmed by UV-visible and time-resolved fluorescence spectroscopy. The binding constant, number of binding sites, and thermodynamic parameters viz. ΔG, ΔH, ΔS are also considered; result confirms that the binding of the AMT with Hb is a spontaneous process, involving hydrogen bonding and van der Waals interactions with a single binding site, as also confirmed by molecular docking study. Synchronous fluorescence, CD data, and MD simulation results contribute toward understanding the effect of AMT on Hb to interpret the conformational change in Hb upon binding in aqueous solution.
The Biomolecular Interaction Network Database and related tools 2005 update
Alfarano, C.; Andrade, C. E.; Anthony, K.; Bahroos, N.; Bajec, M.; Bantoft, K.; Betel, D.; Bobechko, B.; Boutilier, K.; Burgess, E.; Buzadzija, K.; Cavero, R.; D'Abreo, C.; Donaldson, I.; Dorairajoo, D.; Dumontier, M. J.; Dumontier, M. R.; Earles, V.; Farrall, R.; Feldman, H.; Garderman, E.; Gong, Y.; Gonzaga, R.; Grytsan, V.; Gryz, E.; Gu, V.; Haldorsen, E.; Halupa, A.; Haw, R.; Hrvojic, A.; Hurrell, L.; Isserlin, R.; Jack, F.; Juma, F.; Khan, A.; Kon, T.; Konopinsky, S.; Le, V.; Lee, E.; Ling, S.; Magidin, M.; Moniakis, J.; Montojo, J.; Moore, S.; Muskat, B.; Ng, I.; Paraiso, J. P.; Parker, B.; Pintilie, G.; Pirone, R.; Salama, J. J.; Sgro, S.; Shan, T.; Shu, Y.; Siew, J.; Skinner, D.; Snyder, K.; Stasiuk, R.; Strumpf, D.; Tuekam, B.; Tao, S.; Wang, Z.; White, M.; Willis, R.; Wolting, C.; Wong, S.; Wrong, A.; Xin, C.; Yao, R.; Yates, B.; Zhang, S.; Zheng, K.; Pawson, T.; Ouellette, B. F. F.; Hogue, C. W. V.
2005-01-01
The Biomolecular Interaction Network Database (BIND) (http://bind.ca) archives biomolecular interaction, reaction, complex and pathway information. Our aim is to curate the details about molecular interactions that arise from published experimental research and to provide this information, as well as tools to enable data analysis, freely to researchers worldwide. BIND data are curated into a comprehensive machine-readable archive of computable information and provides users with methods to discover interactions and molecular mechanisms. BIND has worked to develop new methods for visualization that amplify the underlying annotation of genes and proteins to facilitate the study of molecular interaction networks. BIND has maintained an open database policy since its inception in 1999. Data growth has proceeded at a tremendous rate, approaching over 100 000 records. New services provided include a new BIND Query and Submission interface, a Standard Object Access Protocol service and the Small Molecule Interaction Database (http://smid.blueprint.org) that allows users to determine probable small molecule binding sites of new sequences and examine conserved binding residues. PMID:15608229
Comparative Analysis of the Molecular Adjuvants and Their Binding Efficiency with CR1.
Saranya, B; Saxena, Shweta; Saravanan, K M; Shakila, H
2016-03-01
There are so many obstacles in developing a vaccine or vaccine technology for diseases like cancer and human immunodeficiency virus infection. While developing vaccines that target specific infection, molecular adjuvants are indispensable. These molecular adjuvants act as a vaccine delivery vehicle to the immune system to increase the effectiveness of the specific antigens. In the present work, a computational study has been done on molecular adjuvants like IgGFc, GMCSF and C3d to find out how efficiently they are binding to CR1. Sequence, structure and mutational analysis are performed on the molecular adjuvants to understand the features important for their binding with the receptor. Results obtained from our study indicate that the adjuvant IgGFc complexed with the receptor CR1 has the best binding efficiency, which can be used further to develop better vaccine technologies.
Thillainayagam, Mahalakshmi; Anbarasu, Anand; Ramaiah, Sudha
2016-08-21
The computational studies namely molecular docking simulations and Comparative Molecular Field Analysis (CoMFA) are executed on series of 52 novel aryl chalcones derivatives using Plasmodium falciparum cysteine proteases (falcipain - 2) as vital target. In the present study, the correlation between different molecular field effects namely steric and electrostatic interactions and chemical structures to the inhibitory activities of novel aryl chalcone derivatives is inferred to perceive the major structural prerequisites for the rational design and development of potent and novel lead anti-malarial compound. The apparent binding conformations of all the compounds at the active site of falcipain - 2 and the hydrogen-bond interactions which could be used to modify the inhibitory activities are identified by using Surflex-dock study. Statistically significant CoMFA model has been developed with the cross-validated correlation coefficient (q(2)) of 0.912 and the non-cross-validated correlation coefficient (r(2)) of 0.901. Standard error of estimation (SEE) of 0.210, with the optimum number of components is ten. The predictability of the derived model is examined with a test set consists of sixteen compounds and the predicted r(2) value is found to be 0.924. The docking and QSAR study results confer crucial suggestions for the optimization of novel 1,3-diphenyl-2-propen-1-one derivatives and synthesis of effective anti- malarial compounds. Copyright © 2016 Elsevier Ltd. All rights reserved.
Scaling laws for nanoFET sensors
NASA Astrophysics Data System (ADS)
Zhou, Fu-Shan; Wei, Qi-Huo
2008-01-01
The sensitive conductance change of semiconductor nanowires and carbon nanotubes in response to the binding of charged molecules provides a novel sensing modality which is generally denoted as nanoFET sensors. In this paper, we study the scaling laws of nanoplate FET sensors by simplifying nanoplates as random resistor networks with molecular receptors sitting on lattice sites. Nanowire/tube FETs are included as the limiting cases where the device width goes small. Computer simulations show that the field effect strength exerted by the binding molecules has significant impact on the scaling behaviors. When the field effect strength is small, nanoFETs have little size and shape dependence. In contrast, when the field effect strength becomes stronger, there exists a lower detection threshold for charge accumulation FETs and an upper detection threshold for charge depletion FET sensors. At these thresholds, the nanoFET devices undergo a transition between low and large sensitivities. These thresholds may set the detection limits of nanoFET sensors, while they could be eliminated by designing devices with very short source-drain distance and large width.
Characterization studies on cadmium-mycophosphatin from the mushroom Agaricus macrosporus.
Meisch, H U; Schmitt, J A
1986-01-01
A low molecular weight Cd-binding phosphoglycoprotein, cadmium-mycophosphatin, has been isolated from the mushroom Agaricus macrosporus. This protein has a molecular weight of 12,000 dalton and contains no sulfur but a high amount of acid amino acids (Glu, Asp), and carbohydrates (glucose, galactose). Cadmium-mycophosphatin has an isoelectric point less than pH 2, binds cadmium with a dissociation constant of KD = 1.59 X 10 M (pKD = 6.8) and is saturated with 13.5 mole Cd/mole, all Cd-binding sites being equivalent. It is suggested that Cd is bound by phosphoserine groups, similar relations being known from calcium-binding proteins in animals. From A. macrosporus four other low-molecular weight glycoproteins have been isolated which contain sulfur and bind cadmium and copper. The biological significance of these Cd-binding proteins is discussed. PMID:3709455
Extended Lagrangian Density Functional Tight-Binding Molecular Dynamics for Molecules and Solids.
Aradi, Bálint; Niklasson, Anders M N; Frauenheim, Thomas
2015-07-14
A computationally fast quantum mechanical molecular dynamics scheme using an extended Lagrangian density functional tight-binding formulation has been developed and implemented in the DFTB+ electronic structure program package for simulations of solids and molecular systems. The scheme combines the computational speed of self-consistent density functional tight-binding theory with the efficiency and long-term accuracy of extended Lagrangian Born-Oppenheimer molecular dynamics. For systems without self-consistent charge instabilities, only a single diagonalization or construction of the single-particle density matrix is required in each time step. The molecular dynamics simulation scheme can be applied to a broad range of problems in materials science, chemistry, and biology.
Molecular engineering of antibodies for therapeutic and diagnostic purposes
Ducancel, Frédéric; Muller, Bruno H.
2012-01-01
During the past ten years, monoclonal antibodies (mAbs) have taken center stage in the field of targeted therapy and diagnosis. This increased interest in mAbs is due to their binding accuracy (affinity and specificity) together with the original molecular and structural rules that govern interactions with their cognate antigen. In addition, the effector properties of antibodies constitute a second major advantage associated with their clinical use. The development of molecular and structural engineering and more recently of in vitro evolution of antibodies has opened up new perspectives in the de novo design of antibodies more adapted to clinical and diagnostic use. Thus, efforts are regularly made by researchers to improve or modulate antibody recognition properties, to adapt their pharmacokinetics, engineer their stability, and control their immunogenicity. This review presents the latest molecular engineering results on mAbs with therapeutic and diagnostic applications. PMID:22684311
An Electrostatic Funnel in the GABA-Binding Pathway
Lightstone, Felice C.
2016-01-01
The γ-aminobutyric acid type A receptor (GABAA-R) is a major inhibitory neuroreceptor that is activated by the binding of GABA. The structure of the GABAA-R is well characterized, and many of the binding site residues have been identified. However, most of these residues are obscured behind the C-loop that acts as a cover to the binding site. Thus, the mechanism by which the GABA molecule recognizes the binding site, and the pathway it takes to enter the binding site are both unclear. Through the completion and detailed analysis of 100 short, unbiased, independent molecular dynamics simulations, we have investigated this phenomenon of GABA entering the binding site. In each system, GABA was placed quasi-randomly near the binding site of a GABAA-R homology model, and atomistic simulations were carried out to observe the behavior of the GABA molecules. GABA fully entered the binding site in 19 of the 100 simulations. The pathway taken by these molecules was consistent and non-random; the GABA molecules approach the binding site from below, before passing up behind the C-loop and into the binding site. This binding pathway is driven by long-range electrostatic interactions, whereby the electrostatic field acts as a ‘funnel’ that sweeps the GABA molecules towards the binding site, at which point more specific atomic interactions take over. These findings define a nuanced mechanism whereby the GABAA-R uses the general zwitterionic features of the GABA molecule to identify a potential ligand some 2 nm away from the binding site. PMID:27119953
Chatterjee, Sabyasachi; Kumar, Gopinatha Suresh
2016-06-01
The molecular interaction between hemoglobin (HHb), the major human heme protein, and the acridine dyes acridine orange (AO) and 9-aminoacridine (9AA) was studied by various spectroscopic, calorimetric and molecular modeling techniques. The dyes formed stable ground state complex with HHb as revealed from spectroscopic data. Temperature dependent fluorescence data showed the strength of the dye-protein complexation to be inversely proportional to temperature and the fluorescence quenching was static in nature. The binding-induced conformational change in the protein was investigated using circular dichroism, synchronous fluorescence, 3D fluorescence and FTIR spectroscopy results. Circular dichroism data also quantified the α-helicity change in hemoglobin due to the binding of acridine dyes. Calorimetric studies revealed the binding to be endothermic in nature for both AO and 9AA, though the latter had higher affinity, and this was also observed from spectroscopic data. The binding of both dyes was entropy driven. pH dependent fluorescence studies revealed the existence of electrostatic interaction between the protein and dye molecules. Molecular modeling studies specified the binding site and the non-covalent interactions involved in the association. Overall, the results revealed that a small change in the acridine chromophore leads to remarkable alteration in the structural and thermodynamic aspects of binding to HHb. Copyright © 2016 Elsevier B.V. All rights reserved.
Mechanism of potassium ion uptake by the Na+/K+-ATPase
Castillo, Juan P.; Rui, Huan; Basilio, Daniel; Das, Avisek; Roux, Benoît; Latorre, Ramon; Bezanilla, Francisco; Holmgren, Miguel
2015-01-01
The Na+/K+-ATPase restores sodium (Na+) and potassium (K+) electrochemical gradients dissipated by action potentials and ion-coupled transport processes. As ions are transported, they become transiently trapped between intracellular and extracellular gates. Once the external gate opens, three Na+ ions are released, followed by the binding and occlusion of two K+ ions. While the mechanisms of Na+ release have been well characterized by the study of transient Na+ currents, smaller and faster transient currents mediated by external K+ have been more difficult to study. Here we show that external K+ ions travelling to their binding sites sense only a small fraction of the electric field as they rapidly and simultaneously become occluded. Consistent with these results, molecular dynamics simulations of a pump model show a wide water-filled access channel connecting the binding site to the external solution. These results suggest a mechanism of K+ gating different from that of Na+ occlusion. PMID:26205423
Dong, Lili; Feng, Ruirui; Bi, Jiawei; Shen, Shengqiang; Lu, Huizhe; Zhang, Jianjun
2018-03-06
Human sodium-dependent glucose co-transporter 2 (hSGLT2) is a crucial therapeutic target in the treatment of type 2 diabetes. In this study, both comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) were applied to generate three-dimensional quantitative structure-activity relationship (3D-QSAR) models. In the most accurate CoMFA-based and CoMSIA-based QSAR models, the cross-validated coefficients (r 2 cv ) were 0.646 and 0.577, respectively, while the non-cross-validated coefficients (r 2 ) were 0.997 and 0.991, respectively, indicating that both models were reliable. In addition, we constructed a homology model of hSGLT2 in the absence of a crystal structure. Molecular docking was performed to explore the bonding mode of inhibitors to the active site of hSGLT2. Molecular dynamics (MD) simulations and binding free energy calculations using MM-PBSA and MM-GBSA were carried out to further elucidate the interaction mechanism. With regards to binding affinity, we found that hydrogen-bond interactions of Asn51 and Glu75, located in the active site of hSGLT2, with compound 40 were critical. Hydrophobic and electrostatic interactions were shown to enhance activity, in agreement with the results obtained from docking and 3D-QSAR analysis. Our study results shed light on the interaction mode between inhibitors and hSGLT2 and may aid in the development of C-aryl glucoside SGLT2 inhibitors.
Mi, Ran; Hu, Yan-Jun; Fan, Xiao-Yang; Ouyang, Yu; Bai, Ai-Min
2014-01-03
This paper exploring the site-selective binding of jatrorrhizine to human serum albumin (HSA) under physiological conditions (pH=7.4). The investigation was carried out using fluorescence spectroscopy, UV-vis spectroscopy, and molecular modeling. The results of fluorescence quenching and UV-vis absorption spectra experiments indicated the formation of the complex of HSA-jatrorrhizine. Binding parameters calculating from Stern-Volmer method and Scatchard method were calculated at 298, 304 and 310 K, with the corresponding thermodynamic parameters ΔG, ΔH and ΔS as well. Binding parameters calculating from Stern-Volmer method and Scatchard method showed that jatrorrhizine bind to HSA with the binding affinities of the order 10(4) L mol(-1). The thermodynamic parameters studies revealed that the binding was characterized by negative enthalpy and positive entropy changes and the electrostatic interactions play a major role for jatrorrhizine-HSA association. Site marker competitive displacement experiments and molecular modeling calculation demonstrating that jatrorrhizine is mainly located within the hydrophobic pocket of the subdomain IIIA of HSA. Furthermore, the synchronous fluorescence spectra suggested that the association between jatrorrhizine and HSA changed molecular conformation of HSA. Copyright © 2013. Published by Elsevier B.V.
Goh, Boon Chong; Wu, Huixing; Rynkiewicz, Michael J; Schulten, Klaus; Seaton, Barbara A; McCormack, Francis X
2016-07-05
Surfactant protein A (SP-A) is a collagenous C-type lectin (collectin) that is critical for pulmonary defense against inhaled microorganisms. Bifunctional avidity of SP-A for pathogen-associated molecular patterns (PAMPs) such as lipid A and for dipalmitoylphosphatidylcholine (DPPC), the major component of surfactant membranes lining the air-liquid interface of the lung, ensures that the protein is poised for first-line interactions with inhaled pathogens. To improve our understanding of the motifs that are required for interactions with microbes and surfactant structures, we explored the role of the tyrosine-rich binding surface on the carbohydrate recognition domain of SP-A in the interaction with DPPC and lipid A using crystallography, site-directed mutagenesis, and molecular dynamics simulations. Critical binding features for DPPC binding include a three-walled tyrosine cage that binds the choline headgroup through cation-π interactions and a positively charged cluster that binds the phosphoryl group. This basic cluster is also critical for binding of lipid A, a bacterial PAMP and target for SP-A. Molecular dynamics simulations further predict that SP-A binds lipid A more tightly than DPPC. These results suggest that the differential binding properties of SP-A favor transfer of the protein from surfactant DPPC to pathogen membranes containing appropriate lipid PAMPs to effect key host defense functions.
Starovoytov, Oleg N; Borodin, Oleg; Bedrov, Dmitry; Smith, Grant D
2011-06-14
We have developed a quantum chemistry-based polarizable potential for poly(ethylene oxide) (PEO) in aqueous solution based on the APPLE&P polarizable ether and the SWM4-DP polarizable water models. Ether-water interactions were parametrized to reproduce the binding energy of water with 1,2-dimethoxyethane (DME) determined from high-level quantum chemistry calculations. Simulations of DME-water and PEO-water solutions at room temperature using the new polarizable potentials yielded thermodynamic properties in good agreement with experimental results. The predicted miscibility of PEO and water as a function of the temperature was found to be strongly correlated with the predicted free energy of solvation of DME. The developed nonbonded force field parameters were found to be transferrable to poly(propylene oxide) (PPO), as confirmed by capturing, at least qualitatively, the miscibility of PPO in water as a function of the molecular weight.
Shi, Jie-Hua; Pan, Dong-Qi; Jiang, Min; Liu, Ting-Ting; Wang, Qi
2017-08-01
The binding interaction between quinapril (QNPL) and bovine serum albumin (BSA) in vitro has been investigated using UV absorption spectroscopy, steady-state fluorescence spectroscopic, synchronous fluorescence spectroscopy, 3D fluorescence spectroscopy, Fourier transform infrared spectroscopy, circular dichroism, and molecular docking methods for obtaining the binding information of QNPL with BSA. The experimental results confirm that the quenching mechanism of the intrinsic fluorescence of BSA induced by QNPL is static quenching based on the decrease in the quenching constants of BSA in the presence of QNPL with the increase in temperature and the quenching rates of BSA larger than 10 10 L mol -1 s -1 , indicating forming QNPL-BSA complex through the intermolecular binding interaction. The binding constant for the QNPL-BSA complex is in the order of 10 5 M -1 , indicating there is stronger binding interaction of QNPL with BSA. The analysis of thermodynamic parameters together with molecular docking study reveal that the main binding forces in the binding process of QNPL with BSA are van der Waal's forces and hydrogen bonding interaction. And, the binding interaction of BSA with QNPL is an enthalpy-driven process. Based on Förster resonance energy transfer, the binding distance between QNPL and BSA is calculated to be 2.76 nm. The results of the competitive binding experiments and molecular docking confirm that QNPL binds to sub-domain IIA (site I) of BSA. It is confirmed there is a slight change in the conformation of BSA after binding QNPL, but BSA still retains its secondary structure α-helicity.
NASA Astrophysics Data System (ADS)
Morris, Kevin F.; Billiot, Eugene J.; Billiot, Fereshteh H.; Gladis, Ashley A.; Lipkowitz, Kenny B.; Southerland, William M.; Fang, Yayin
2014-08-01
Molecular dynamics (MD) simulations were used to investigate the binding of 1,1";-binaphthyl-2,2";-diyl hydrogenphosphate (BNP) enantiomers to the molecular micelle poly-(sodium undecyl-(L,L)-leucine-valine) (poly(SULV)). Poly(SULV) is used as a chiral selector in capillary electrophoresis separations. Four poly(SULV) binding pockets were identified and either (R)-BNP or (S)-BNP were docked into each pocket. MD simulations were then used to identify the preferred BNP binding site. Within the preferred site, both enantiomers formed hydrogen bonds with poly(SULV) and penetrated into the poly(SULV) core. Comparisons of BNP enantiomer binding to the preferred poly(SULV) pocket showed that (S)-BNP formed stronger hydrogen bonds, moved deeper into the binding site, and had a lower poly(SULV) binding free energy than the (R) enantiomer. Finally, MD simulation results were in agreement with capillary electrophoresis and NMR experiments. Each technique showed (S)-BNP interacted more strongly with poly(SULV) than (R)-BNP and that the site of chiral recognition was near the poly(SULV) leucine chiral center.
NASA Astrophysics Data System (ADS)
Liu, Shih-Hsien
Density-functional theory (DFT) and molecular dynamics (MD) were used to resolve the origins of shape-selective syntheses of {111}-faceted Au nanostructures mediated by polyvinylpyrrolidone (PVP) as well as {100}-faceted Cu nanostructures mediated by hex- adecylamine(HDA) seen in experiment. For the work in PVP on Au surfaces, the hexagonal reconstruction of Au(100) was considered. DFT results indicate that the Au(111) surface covered by the PVP segment, 2-pyrrolidone (2P), has a lower surface energy than the 2P- covered (5 x 1) Au(100)-hex surface, and that PVP may exhibit a binding affinity for Au(111) comparable to or greater than (5 x 1) Au(100)-hex. With MD, it is shown that the PVP-covered Au(111) surface has a lower surface energy than the PVP-covered (5 x 1) Au(100)-hex surface, and that the atactic PVP isosamer chains have a binding affinity for Au(111) comparable to (5 x 1) Au(100)-hex. Also, the (5 x 1) Au(100)-hex surface may have a higher flux of Au atoms than the Au(111) surface. Therefore, the Au(111) surface would be thermodynamically and kinetically favored in PVP-mediated syntheses, leading to {111}-faceted Au nanostructures. For the work in HDA on Cu surfaces, DFT results show that the HDA-covered Cu(100) surface has a slightly higher surface energy than the HDA- covered Cu(111) surface. However, HDA has a significant binding preference on Cu(100) over Cu(111). Therefore, the Cu(100) surface would be kinetically favored in HDA-mediated syn- theses, leading to {100}-faceted Cu nanostructures. Further, a metal-organic many-body (MOMB) force field for HDA-Cu interactions was developed based on the DFT work, and the force field was used to resolve the HDA binding patterns on Cu(100) at molecular level. With MD, it is found that decylamine (DA) may be used as an effective capping agent in the synthesis of {100}-faceted Cu nanostructures since DA as well as HDA are organized on Cu surfaces and have the same binding preference on Cu(100) over Cu(111). It is also found that the HDA structures on Cu surfaces remain intact in aqueous solution due to hydrophobicity of alkyl tails and long alkyl chains in the HDA molecules, which could prevent Cu oxidation during the synthesis.
Karo, Jaanus; Peterson, Pearu; Vendelin, Marko
2012-01-01
Interaction between mitochondrial creatine kinase (MtCK) and adenine nucleotide translocase (ANT) can play an important role in determining energy transfer pathways in the cell. Although the functional coupling between MtCK and ANT has been demonstrated, the precise mechanism of the coupling is not clear. To study the details of the coupling, we turned to molecular dynamics simulations. We introduce a new coarse-grained molecular dynamics model of a patch of the mitochondrial inner membrane containing a transmembrane ANT and an MtCK above the membrane. The membrane model consists of three major types of lipids (phosphatidylcholine, phosphatidylethanolamine, and cardiolipin) in a roughly 2:1:1 molar ratio. A thermodynamics-based coarse-grained force field, termed MARTINI, has been used together with the GROMACS molecular dynamics package for all simulated systems in this work. Several physical properties of the system are reproduced by the model and are in agreement with known data. This includes membrane thickness, dimension of the proteins, and diffusion constants. We have studied the binding of MtCK to the membrane and demonstrated the effect of cardiolipin on the stabilization of the binding. In addition, our simulations predict which part of the MtCK protein sequence interacts with the membrane. Taken together, the model has been verified by dynamical and structural data and can be used as the basis for further studies. PMID:22241474
Li, Huiyi; Dou, Huanjing; Zhang, Yuhai; Li, Zhigang; Wang, Ruiyong; Chang, Junbiao
2015-02-05
FNC (2'-deoxy-2'-bfluoro-4'-azidocytidine) is a novel nucleoside analogue with pharmacologic effects on several human diseases. In this work, the binding of FNC to human hemoglobin (HHb) have been investigated by absorption spectroscopy, fluorescence quenching technique, synchronous fluorescence, three-dimensional fluorescence and molecular modeling methods. Analysis of fluorescence data showed that the binding of FNC to HHb occurred via a static quenching mechanism. Thermodynamic analysis and molecular modeling suggest that hydrogen bond and van der Waals force are the mainly binding force in the binding of FNC to HHb. Copyright © 2014 Elsevier B.V. All rights reserved.
Yu, Haijing; Fang, Yu; Lu, Xia; Liu, Yongjuan; Zhang, Huabei
2014-01-01
The NS5B RNA-dependent RNA polymerase (RdRP) is a promising therapeutic target for developing novel anti-hepatitis C virus (HCV) drugs. In this work, a combined molecular modeling study was performed on a series of 193 5-hydroxy-2H-pyridazin-3-one derivatives as inhibitors of HCV NS5B Polymerase. The best 3D-QSAR models, including CoMFA and CoMSIA, are based on receptor (or docking). Furthermore, a 40-ns molecular dynamics (MD) simulation and binding free energy calculations using docked structures of NS5B with ten compounds, which have diverse structures and pIC50 values, were employed to determine the detailed binding process and to compare the binding modes of the inhibitors with different activities. On one side, the stability and rationality of molecular docking and 3D-QSAR results were validated by MD simulation. The binding free energies calculated by the MM-PBSA method gave a good correlation with the experimental biological activity. On the other side, by analyzing some differences between the molecular docking and the MD simulation results, we can find that the MD simulation could also remedy the defects of molecular docking. The analyses of the combined molecular modeling results have identified that Tyr448, Ser556, and Asp318 are the key amino acid residues in the NS5B binding pocket. The results from this study can provide some insights into the development of novel potent NS5B inhibitors. © 2013 John Wiley & Sons A/S.
Hu, Qin; Si, Xiuhua April
2018-01-01
Existing in vivo experiments show significantly decreased acrolein uptake in rats with increasing inhaled acrolein concentrations. Considering that high-polarity chemicals are prone to bond with each other, it is hypothesized that molecular binding between acrolein and water will contribute to the experimentally observed deposition decrease by decreasing the effective diffusivity. The objective of this study is to quantify the probability of molecular binding for acrolein, as well as its effects on acrolein deposition, using multiscale simulations. An image-based rat airway geometry was used to predict the transport and deposition of acrolein using the chemical species model. The low Reynolds number turbulence model was used to simulate the airflows. Molecular dynamic (MD) simulations were used to study the molecular binding of acrolein in different media and at different acrolein concentrations. MD results show that significant molecular binding can happen between acrolein and water molecules in human and rat airways. With 72 acrolein embedded in 800 water molecules, about 48% of acrolein compounds contain one hydrogen bond and 10% contain two hydrogen bonds, which agreed favorably with previous MD results. The percentage of hydrogen-bonded acrolein compounds is higher at higher acrolein concentrations or in a medium with higher polarity. Computational dosimetry results show that the size increase caused by the molecular binding reduces the effective diffusivity of acrolein and lowers the chemical deposition onto the airway surfaces. This result is consistent with the experimentally observed deposition decrease at higher concentrations. However, this size increase can only explain part of the concentration-dependent variation of the acrolein uptake and acts as a concurrent mechanism with the uptake-limiting tissue ration rate. Intermolecular interactions and associated variation in diffusivity should be considered in future dosimetry modeling of high-polarity chemicals such as acrolein. PMID:29584651
Structural models of antibody variable fragments: A method for investigating binding mechanisms
NASA Astrophysics Data System (ADS)
Petit, Samuel; Brard, Frédéric; Coquerel, Gérard; Perez, Guy; Tron, François
1998-03-01
The value of comparative molecular modeling for elucidating structure-function relationships was demonstrated by analyzing six anti-nucleosome autoantibody variable fragments. Structural models were built using the automated procedure developed in the COMPOSER software, subsequently minimized with the AMBER force field, and validated according to several standard geometric and chemical criteria. Canonical class assignment from Chothia and Lesk's [Chottin and Lesk, J. Mol. Biol., 196 (1987) 901; Chothia et al., Nature, 342 (1989) 877] work was used as a supplementary validation tool for five of the six hypervariable loops. The analysis, based on the hypothesis that antigen binding could occur through electrostatic interactions, reveals a diversity of possible binding mechanisms of anti-nucleosome or anti-histone antibodies to their cognate antigen. These results lead us to postulate that anti-nucleosome autoantibodies could have different origins. Since both anti-DNA and anti-nculeosome autoantibodies are produced during the course of systemic lupus erythematosus, a non-organ specific autoimmune disease, a comparative structural and electrostatic analysis of the two populations of autoantibodies may constitute a way to elucidate their origin and the role of the antigen in tolerance breakdown. The present study illustrates some interests, advantages and limits of a methodology based on the use of comparative modeling and analysis of molecular surface properties.
Isoquinoline alkaloids and their binding with DNA: calorimetry and thermal analysis applications.
Bhadra, Kakali; Kumar, Gopinatha Suresh
2010-11-01
Alkaloids are a group of natural products with unmatched chemical diversity and biological relevance forming potential quality pools in drug screening. The molecular aspects of their interaction with many cellular macromolecules like DNA, RNA and proteins are being currently investigated in order to evolve the structure activity relationship. Isoquinolines constitute an important group of alkaloids. They have extensive utility in cancer therapy and a large volume of data is now emerging in the literature on their mode, mechanism and specificity of binding to DNA. Thermodynamic characterization of the binding of these alkaloids to DNA may offer key insights into the molecular aspects that drive complex formation and these data can provide valuable information about the balance of driving forces. Various thermal techniques have been conveniently used for this purpose and modern calorimetric instrumentation provides direct and quick estimation of thermodynamic parameters. Thermal melting studies and calorimetric techniques like isothermal titration calorimetry and differential scanning calorimetry have further advanced the field by providing authentic, reliable and sensitive data on various aspects of temperature dependent structural analysis of the interaction. In this review we present the application of various thermal techniques, viz. isothermal titration calorimetry, differential scanning calorimetry and optical melting studies in the characterization of drug-DNA interactions with particular emphasis on isoquinoline alkaloid-DNA interaction.
Stafford, Amy J; Ensign, Daniel L; Webb, Lauren J
2010-11-25
Electrostatic fields at the interface of the Ras binding domain of the protein Ral guanine nucleotide dissociation stimulator (RalGDS) with the structurally analogous GTPases Ras and Rap1A were measured with vibrational Stark effect (VSE) spectroscopy. Eleven residues on the surface of RalGDS that participate in this protein-protein interaction were systematically mutated to cysteine and subsequently converted to cyanocysteine in order to introduce a nitrile VSE probe in the form of the thiocyanate (SCN) functional group. The measured SCN absorption energy on the monomeric protein was compared with solvent-accessible surface area (SASA) calculations and solutions to the Poisson-Boltzmann equation using Boltzmann-weighted structural snapshots from molecular dynamics simulations. We found a weak negative correlation between SASA and measured absorption energy, indicating that water exposure of protein surface amino acids can be estimated from experimental measurement of the magnitude of the thiocyanate absorption energy. We found no correlation between calculated field and measured absorption energy. These results highlight the complex structural and electrostatic nature of the protein-water interface. The SCN-labeled RalGDS was incubated with either wild-type Ras or wild-type Rap1A, and the formation of the docked complex was confirmed by measurement of the dissociation constant of the interaction. The change in absorption energy of the thiocyanate functional group due to complex formation was related to the change in electrostatic field experienced by the nitrile functional group when the protein-protein interface forms. At some locations, the nitrile experiences the same shift in field when bound to Ras and Rap1A, but at others, the change in field is dramatically different. These differences identify residues on the surface of RalGDS that direct the specificity of RalGDS binding to its in vivo binding partner, Rap1A, through an electrostatic mechanism.
Estimating Atomic Contributions to Hydration and Binding Using Free Energy Perturbation.
Irwin, Benedict W J; Huggins, David J
2018-06-12
We present a general method called atom-wise free energy perturbation (AFEP), which extends a conventional molecular dynamics free energy perturbation (FEP) simulation to give the contribution to a free energy change from each atom. AFEP is derived from an expansion of the Zwanzig equation used in the exponential averaging method by defining that the system total energy can be partitioned into contributions from each atom. A partitioning method is assumed and used to group terms in the expansion to correspond to individual atoms. AFEP is applied to six example free energy changes to demonstrate the method. Firstly, the hydration free energies of methane, methanol, methylamine, methanethiol, and caffeine in water. AFEP highlights the atoms in the molecules that interact favorably or unfavorably with water. Finally AFEP is applied to the binding free energy of human immunodeficiency virus type 1 protease to lopinavir, and AFEP reveals the contribution of each atom to the binding free energy, indicating candidate areas of the molecule to improve to produce a more strongly binding inhibitor. FEP gives a single value for the free energy change and is already a very useful method. AFEP gives a free energy change for each "part" of the system being simulated, where part can mean individual atoms, chemical groups, amino acids, or larger partitions depending on what the user is trying to measure. This method should have various applications in molecular dynamics studies of physical, chemical, or biochemical phenomena, specifically in the field of computational drug discovery.
Nano-scale characterization of the dynamics of the chloroplast Toc translocon.
Reddick, L Evan; Chotewutmontri, Prakitchai; Crenshaw, Will; Dave, Ashita; Vaughn, Michael; Bruce, Barry D
2008-01-01
Translocons are macromolecular nano-scale machines that facilitate the selective translocation of proteins across membranes. Although common in function, different translocons have evolved diverse molecular mechanisms for protein translocation. Subcellular organelles of endosymbiotic origin such as the chloroplast and mitochondria had to evolve/acquire translocons capable of importing proteins whose genes were transferred to the host genome. These gene products are expressed on cytosolic ribosomes as precursor proteins and targeted back to the organelle by an N-terminal extension called the transit peptide or presequence. In chloroplasts the transit peptide is specifically recognized by the Translocon of the Outer Chloroplast membrane (Toc) which is composed of receptor GTPases that potentially function as gate-like switches, where GTP binding and hydrolysis somehow facilitate preprotein binding and translocation. Compared to other translocons, the dynamics of the Toc translocon are probably more complex and certainly less understood. We have developed biochemical/biophysical, imaging, and computational techniques to probe the dynamics of the Toc translocon at the nanoscale. In this chapter we provide detailed protocols for kinetic and binding analysis of precursor interactions in organeller, measurement of the activity and nucleotide binding of the Toc GTPases, native electrophoretic analysis of the assembly/organization of the Toc complex, visualization of the distribution and mobility of Toc apparatus on the surface of chloroplasts, and conclude with the identification and molecular modeling Toc75 POTRA domains. With these new methodologies we discuss future directions of the field.
Interaction of Human Serum Albumin with Metal Protoporphyrins
NASA Astrophysics Data System (ADS)
Hu, Jie; Brancaleon, Lorenzo
2015-03-01
Fluorescence spectroscopy is widely used in biotechnology, nanotechnology, and molecular biophysics, since it can provide information on a wide range of molecular processes, e.g. the interactions of solvent molecules with fluorophores, conformational changes, and binding interactions etc. In this study, we present the photophysical properties of the interaction of human serum albumin (HSA) with a series of metal compound of Protoporphyrin IX (PPIX), including ZnPPIX, FePPIX, MgPPIX, MnPPIX and SnPPIX respectively, as well as the free base PPIX. Binding constants were retrieved independently using the Benesi-Hildebrand analysis of the porphyrin emission or absorption spectra and the fluorescence quenching (i.e. Stern-Volmer analysis) and reveal that the two methods yield a difference of approximately one order or magnitude between the two. Fluorescence lifetimes was used to probe whether binding of the porphyrin changes the conformation of the protein or if the interaction places the porphyrin at a location that can prompt resonance energy transfer with the lone Tryptophan residue. In recent years it has been discovered that HSA provides a specific binding site for metal-chelated protoporphyrins in subdomain IA. This has opened a novel field of study over the importance of this site for biomedical applications but it has also created the potential for a series of biotechnological applications of the HSA/protoporphyrin complexes. Our study provides a preliminary investigation of the interaction with metal-chelated protoporphyrins that had not been previously investigated.
Characterization studies on cadmium-mycophosphatin from the mushroom Agaricus macrosporus
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meisch, H.U.; Schmitt, J.A.
A low molecular weight Cd-binding phosphoglycoprotein, cadmium-mycophosphatin, has been isolated from the mushroom Agaricus macrosporus. This protein has a molecular weight of 12,000 dalton and contains no sulfur but a high amount of acid amino acids (Glu, Asp), and carbohydrates (glucose, galactose). Cadmium-mycophosphatin has an isoelectric point less than pH 2, binds cadmium with a dissociation constant of K/sub D/ = 1.59 x 10 M (pK/sub D/ = 6.8) and is saturated with 13.5 mole Cd/mole, all Cd-binding sites being equivalent. It is suggested that Cd is bound by phosphoserine groups, similar relations being known from calcium-binding proteins in animals.more » From A. macrosporus four other low-molecular weight glycoproteins have been isolated which contain sulfur and bind cadmium and copper. The biological significance of these Cd-binding proteins is discussed.« less
Programming A Molecular Relay for Ultrasensitive Biodetection through 129 Xe NMR
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Yanfei; Roose, Benjamin W.; Philbin, John P.
2015-12-21
We reported a supramolecular strategy for detecting specific proteins in complex media by using hyperpolarized 129Xe NMR. A cucurbit[6]uril (CB[6])-based molecular relay was programmed for three sequential equilibrium conditions by designing a two-faced guest (TFG) that initially binds CB[6] and blocks the CB[6]–Xe interaction. Moreover, the protein analyte recruits the TFG and frees CB[6] for Xe binding. TFGs containing CB[6]- and carbonic anhydrase II (CAII)-binding domains were synthesized in one or two steps. X-ray crystallography confirmed TFG binding to Zn 2+ in the deep CAII active-site cleft, which precludes simultaneous CB[6] binding. The molecular relay was reprogrammed to detect avidinmore » by using a different TFG. Finally, Xe binding by CB[6] was detected in buffer and in E. coli cultures expressing CAII through ultrasensitive 129Xe NMR spectroscopy.« less
NASA Astrophysics Data System (ADS)
Lyon, Jonathan T.; Gruene, Philipp; Fielicke, André; Meijer, Gerard; Rayner, David M.
2009-11-01
The binding of carbon monoxide to iron, ruthenium, rhenium, and tungsten clusters is studied by means of infrared multiple photon dissociation spectroscopy. The CO stretching mode is used to probe the interaction of the CO molecule with the metal clusters and thereby the activation of the C-O bond. CO is found to adsorb molecularly to atop positions on iron clusters. On ruthenium and rhenium clusters it also binds molecularly. In the case of ruthenium, binding is predominantly to atop sites, however higher coordinated CO binding is also observed for both metals and becomes prevalent for rhenium clusters containing more than nine atoms. Tungsten clusters exhibit a clear size dependence for molecular versus dissociative CO binding. This behavior denotes the crossover to the purely dissociative CO binding on the earlier transition metals such as tantalum.
Molecular modeling studies of substrate binding by penicillin acylase.
Chilov, G G; Stroganov, O V; Svedas, V K
2008-01-01
Molecular modeling has revealed intimate details of the mechanism of binding of natural substrate, penicillin G (PG), in the penicillin acylase active center and solved questions raised by analysis of available X-ray structures, mimicking Michaelis complex, which substantially differ in the binding pattern of the PG leaving group. Three MD trajectories were launched, starting from PDB complexes of the inactive mutant enzyme with PG (1FXV) and native penicillin acylase with sluggishly hydrolyzed substrate analog penicillin G sulfoxide (1GM9), or from the complex obtained by PG docking. All trajectories converged to a similar PG binding mode, which represented the near-to-attack conformation, consistent with chemical criteria of how reactive Michaelis complex should look. Simulated dynamic structure of the enzyme-substrate complex differed significantly from 1FXV, resembling rather 1GM9; however, additional contacts with residues bG385, bS386, and bN388 have been found, which were missing in X-ray structures. Combination of molecular docking and molecular dynamics also clarified the nature of extremely effective phenol binding in the hydrophobic pocket of penicillin acylase, which lacked proper explanation from crystallographic experiments. Alternative binding modes of phenol were probed, and corresponding trajectories converged to a single binding pattern characterized by a hydrogen bond between the phenol hydroxyl and the main chain oxygen of bS67, which was not evident from the crystal structure. Observation of the trajectory, in which phenol moved from its steady bound to pre-dissociation state, mapped the consequence of molecular events governing the conformational transitions in a coil region a143-a146 coupled to substrate binding and release of the reaction products. The current investigation provided information on dynamics of the conformational transitions accompanying substrate binding and significance of poorly structured and flexible regions in maintaining catalytic framework.
Sakkiah, Sugunadevi; Kusko, Rebecca; Pan, Bohu; Guo, Wenjing; Ge, Weigong; Tong, Weida; Hong, Huixiao
2018-01-01
When a small molecule binds to the androgen receptor (AR), a conformational change can occur which impacts subsequent binding of co-regulator proteins and DNA. In order to accurately study this mechanism, the scientific community needs a crystal structure of the Wild type AR (WT-AR) ligand binding domain, bound with antagonist. To address this open need, we leveraged molecular docking and molecular dynamics (MD) simulations to construct a structure of the WT-AR ligand binding domain bound with antagonist bicalutamide. The structure of mutant AR (Mut-AR) bound with this same antagonist informed this study. After molecular docking analysis pinpointed the suitable binding orientation of a ligand in AR, the model was further optimized through 1 μs of MD simulations. Using this approach, three molecular systems were studied: (1) WT-AR bound with agonist R1881, (2) WT-AR bound with antagonist bicalutamide, and (3) Mut-AR bound with bicalutamide. Our structures were very similar to the experimentally determined structures of both WT-AR with R1881 and Mut-AR with bicalutamide, demonstrating the trustworthiness of this approach. In our model, when WT-AR is bound with bicalutamide, Val716/Lys720/Gln733, or Met734/Gln738/Glu897 move and thus disturb the positive and negative charge clumps of the AF2 site. This disruption of the AF2 site is key for understanding the impact of antagonist binding on subsequent co-regulator binding. In conclusion, the antagonist induced structural changes in WT-AR detailed in this study will enable further AR research and will facilitate AR targeting drug discovery.
NASA Astrophysics Data System (ADS)
Miller, Sharon J.; Lee, Cameron M.; Joshi, Bishnu P.; Gaustad, Adam; Seibel, Eric J.; Wang, Thomas D.
2012-02-01
Gastrointestinal cancers are heterogeneous and can overexpress several protein targets that can be imaged simultaneously on endoscopy using multiple molecular probes. We aim to demonstrate a multispectral scanning fiber endoscope for wide-field fluorescence detection of colonic dysplasia. Excitation at 440, 532, and 635 nm is delivered into a single spiral scanning fiber, and fluorescence is collected by a ring of light-collecting optical fibers placed around the instrument periphery. Specific-binding peptides are selected with phage display technology using the CPC;Apc mouse model of spontaneous colonic dysplasia. Validation of peptide specificity is performed on flow cytometry and in vivo endoscopy. The peptides KCCFPAQ, AKPGYLS, and LTTHYKL are selected and labeled with 7-diethylaminocoumarin-3-carboxylic acid (DEAC), 5-carboxytetramethylrhodamine (TAMRA), and CF633, respectively. Separate droplets of KCCFPAQ-DEAC, AKPGYLS-TAMRA, and LTTHYKL-CF633 are distinguished at concentrations of 100 and 1 μM. Separate application of the fluorescent-labeled peptides demonstrate specific binding to colonic adenomas. The average target/background ratios are 1.71+/-0.19 and 1.67+/-0.12 for KCCFPAQ-DEAC and AKPGYLS-TAMRA, respectively. Administration of these two peptides together results in distinct binding patterns in the blue and green channels. Specific binding of two or more peptides can be distinguished in vivo using a novel multispectral endoscope to localize colonic dysplasia on real-time wide-field imaging.
Solution NMR structure of a designed metalloprotein and complementary molecular dynamics refinement.
Calhoun, Jennifer R; Liu, Weixia; Spiegel, Katrin; Dal Peraro, Matteo; Klein, Michael L; Valentine, Kathleen G; Wand, A Joshua; DeGrado, William F
2008-02-01
We report the solution NMR structure of a designed dimetal-binding protein, di-Zn(II) DFsc, along with a secondary refinement step employing molecular dynamics techniques. Calculation of the initial NMR structural ensemble by standard methods led to distortions in the metal-ligand geometries at the active site. Unrestrained molecular dynamics using a nonbonded force field for the metal shell, followed by quantum mechanical/molecular mechanical dynamics of DFsc, were used to relax local frustrations at the dimetal site that were apparent in the initial NMR structure and provide a more realistic description of the structure. The MD model is consistent with NMR restraints, and in good agreement with the structural and functional properties expected for DF proteins. This work demonstrates that NMR structures of metalloproteins can be further refined using classical and first-principles molecular dynamics methods in the presence of explicit solvent to provide otherwise unavailable insight into the geometry of the metal center.
Roy, Kunal; Leonard, J Thomas
2005-01-01
CCR5 receptor binding affinity of a series of 3-(4-benzylpiperidin-1-yl)propylamine congeners was subjected to QSAR study using the linear free energy related (LFER) model of Hansch. Appropriate indicator variables encoding different group contributions and different physicochemical variables such as hydrophobicity (pi), electronic (Hammett sigma), and steric (molar refractivity, STERIMOL values) parameters of phenyl ring substituents of the compounds were used as predictor variables. The Hansch analysis explores the importance of the lipophilicity and electron-donating substituents for the binding affinity. However, this method could not give more insight into the structure-activity relationships because of the diverse molecular features in the data set. 3D-QSAR analyses of the same data set using Molecular Shape Analysis (MSA), Receptor Surface Analysis (RSA), and Molecular Field Analysis (MFA) techniques were also performed. The best model with acceptable statistical quality was derived from the MSA, which showed the importance of the relative negative charge (RNCG): substituents with a high RNCG value have more binding affinity than the unsubstituted piperidine and phenyl (R1 position) congeners. The relative negative charge surface area (RNCS) is detrimental (e.g. R2 = 3,4-Cl2) for the activity. An increase in the length of the molecule in the Z dimension (Lz) is conducive (e.g. R3 = sulfonylmorpholino), while an increase in the area of the molecular shadow in the XZ plane (Sxz) is detrimental (e.g. R1 = N-c-hexylmethyl-5-oxopyrrolidin-3-yl) for the binding affinity. The presence of a chiral center makes the molecule less active (e.g. R1 = N-methyl-5-oxopyrrolidin-3-yl). An increase in the van der Waals area, the molecular volume, and the difference between the volume of the individual molecule and the shape reference compound are conducive (e.g. R3 = (CH3)2NSO2-) for the binding affinity. Substituents with higher JursFPSA_2 values (fractional charged partial surface area) like the N-methylsulfonylpiperidin-4-yl (R1 position) group have better binding affinity than the substituents such as 4-chlorophenylamino (R1 position). Unsubstituted piperidines (R1 position) with less JursFNSA_1 values have lower binding affinity than the 4-chlorophenyl substituted compounds. The MFA derived equation shows interaction energies at different grid points, while the RSA model shows the importance of hydrophobicity and charge at different regions of the molecules. The models were validated through the leave-one-out, leave-15%-out, and leave-25%-out cross-validation techniques. The developed models were also subjected to a randomization test (99% confidence level). Although the MSA derived models had excellent statistical qualities both for the training as well as test sets, RSA and MFA results for the test sets are not comparable statistically with the MSA derived models.
Mao, Aping; Zhou, Jing; Bin Mao; Zheng, Ya; Wang, Yufeng; Li, Daiqin; Wang, Pan; Liu, Kaiyu; Wang, Xiaoping; Ai, Hui
2016-01-01
Pheromone-binding proteins (PBPs) are essential for the filtering, binding and transporting of sex pheromones across sensillum lymph to membrane-associated pheromone receptors of moths. In this study, three novel PBP genes were expressed in Escherichia coli to examine their involvement in the sex pheromone perception of Maruca vitrata. Fluorescence binding experiments indicated that MvitPBP1-3 had strong binding affinities with four sex pheromones. Moreover, molecular docking results demonstrated that six amino acid residues of three MvitPBPs were involved in the binding of the sex pheromones. These results suggested that MvitPBP1-3 might play critical roles in the perception of female sex pheromones. Additionally, the binding capacity of MvitPBP3 with the host-plant floral volatiles was high and was similar to that of MvitGOBP2. Furthermore, sequence alignment and docking analysis showed that both MvitGOBP2 and MvitPBP3 possessed an identical key binding site (arginine, R130/R140) and a similar protein pocket structure around the binding cavity. Therefore, we hypothesized that MvitPBP3 and MvitGOBP2 might have synergistic roles in binding different volatile ligands. In combination, the use of synthetic sex pheromones and floral volatiles from host-plant may be used in the exploration for more efficient monitoring and integrated management strategies for the legume pod borer in the field. PMID:27698435
Xie, Huiding; Li, Yupeng; Yu, Fang; Xie, Xiaoguang; Qiu, Kaixiong; Fu, Jijun
2015-11-16
In the recent cancer treatment, B-Raf kinase is one of key targets. Nowadays, a group of imidazopyridines as B-Raf kinase inhibitors have been reported. In order to investigate the interaction between this group of inhibitors and B-Raf kinase, molecular docking, molecular dynamic (MD) simulation and binding free energy (ΔGbind) calculation were performed in this work. Molecular docking was carried out to identify the key residues in the binding site, and MD simulations were performed to determine the detail binding mode. The results obtained from MD simulation reveal that the binding site is stable during the MD simulations, and some hydrogen bonds (H-bonds) in MD simulations are different from H-bonds in the docking mode. Based on the obtained MD trajectories, ΔGbind was computed by using Molecular Mechanics Generalized Born Surface Area (MM-GBSA), and the obtained energies are consistent with the activities. An energetic analysis reveals that both electrostatic and van der Waals contributions are important to ΔGbind, and the unfavorable polar solvation contribution results in the instability of the inhibitor with the lowest activity. These results are expected to understand the binding between B-Raf and imidazopyridines and provide some useful information to design potential B-Raf inhibitors.
Extended Lagrangian Density Functional Tight-Binding Molecular Dynamics for Molecules and Solids
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aradi, Bálint; Niklasson, Anders M. N.; Frauenheim, Thomas
A computationally fast quantum mechanical molecular dynamics scheme using an extended Lagrangian density functional tight-binding formulation has been developed and implemented in the DFTB+ electronic structure program package for simulations of solids and molecular systems. The scheme combines the computational speed of self-consistent density functional tight-binding theory with the efficiency and long-term accuracy of extended Lagrangian Born–Oppenheimer molecular dynamics. Furthermore, for systems without self-consistent charge instabilities, only a single diagonalization or construction of the single-particle density matrix is required in each time step. The molecular dynamics simulation scheme can also be applied to a broad range of problems in materialsmore » science, chemistry, and biology.« less
Extended Lagrangian Density Functional Tight-Binding Molecular Dynamics for Molecules and Solids
Aradi, Bálint; Niklasson, Anders M. N.; Frauenheim, Thomas
2015-06-26
A computationally fast quantum mechanical molecular dynamics scheme using an extended Lagrangian density functional tight-binding formulation has been developed and implemented in the DFTB+ electronic structure program package for simulations of solids and molecular systems. The scheme combines the computational speed of self-consistent density functional tight-binding theory with the efficiency and long-term accuracy of extended Lagrangian Born–Oppenheimer molecular dynamics. Furthermore, for systems without self-consistent charge instabilities, only a single diagonalization or construction of the single-particle density matrix is required in each time step. The molecular dynamics simulation scheme can also be applied to a broad range of problems in materialsmore » science, chemistry, and biology.« less
Electrostatic steering and ionic tethering in enzyme-ligand binding: insights from simulations.
Wade, R C; Gabdoulline, R R; Lüdemann, S K; Lounnas, V
1998-05-26
To bind at an enzyme's active site, a ligand must diffuse or be transported to the enzyme's surface, and, if the binding site is buried, the ligand must diffuse through the protein to reach it. Although the driving force for ligand binding is often ascribed to the hydrophobic effect, electrostatic interactions also influence the binding process of both charged and nonpolar ligands. First, electrostatic steering of charged substrates into enzyme active sites is discussed. This is of particular relevance for diffusion-influenced enzymes. By comparing the results of Brownian dynamics simulations and electrostatic potential similarity analysis for triose-phosphate isomerases, superoxide dismutases, and beta-lactamases from different species, we identify the conserved features responsible for the electrostatic substrate-steering fields. The conserved potentials are localized at the active sites and are the primary determinants of the bimolecular association rates. Then we focus on a more subtle effect, which we will refer to as "ionic tethering." We explore, by means of molecular and Brownian dynamics simulations and electrostatic continuum calculations, how salt links can act as tethers between structural elements of an enzyme that undergo conformational change upon substrate binding, and thereby regulate or modulate substrate binding. This is illustrated for the lipase and cytochrome P450 enzymes. Ionic tethering can provide a control mechanism for substrate binding that is sensitive to the electrostatic properties of the enzyme's surroundings even when the substrate is nonpolar.
Sethi, Kalyan K; Verma, Saurabh M
2014-08-01
Drug design involves the design of small molecules that are complementary in shape and charge to the biomolecular target with which they interact and therefore will bind to it. Three-dimensional quantitative structure-activity relationship (3D-QSAR) studies were performed for a series of carbonic anhydrase IX inhibitors using comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) techniques with the help of SYBYL 7.1 software. The large set of 36 different aromatic/heterocyclic sulfamates carbonic anhydrase (CA, EC 4.2.1.1) inhibitors, such as hCA IX, was chosen for this study. The conventional ligand-based 3D-QSAR studies were performed based on the low energy conformations employing database alignment rule. The ligand-based model gave q(2) values 0.802 and 0.829 and r(2) values 1.000 and 0.994 for CoMFA and CoMSIA, respectively, and the predictive ability of the model was validated. The predicted r(2) values are 0.999 and 0.502 for CoMFA and CoMSIA, respectively. SEA (steric, electrostatic, hydrogen bond acceptor) of CoMSIA has the significant contribution for the model development. The docking of inhibitors into hCA IX active site using Glide XP (Schrödinger) software revealed the vital interactions and binding conformation of the inhibitors. The CoMFA and CoMSIA field contour maps are well in agreement with the structural characteristics of the binding pocket of hCA IX active site, which suggests that the information rendered by 3D-QSAR models and the docking interactions can provide guidelines for the development of improved hCA IX inhibitors as leads for various types of metastatic cancers including those of cervical, renal, breast and head and neck origin.
Yang, Hongqin; Huang, Yanmei; Liu, Jiuyang; Tang, Peixiao; Sun, Qiaomei; Xiong, Xinnuo; Tang, Bin; He, Jiawei; Li, Hui
2017-09-11
Given that bisphenols have an endocrine-disrupting effect on human bodies, thoroughly exposing their potential effects at the molecular level is important. Saturation transfer difference (STD) NMR-based binding studies were performed to investigate the binding potential of two bisphenol representatives, namely, bisphenol B (BPB) and bisphenol E (BPE), toward human serum albumin (HSA). The relative STD (%) suggested that BPB and BPE show similar binding modes and orientations, in which the phenolic rings were spatially close to HSA binding site. ITC analysis results showed that BPB and BPE were bound to HSA with moderately strong binding affinity through electrostatic interactions and hydrogen bonds. The order of binding affinity of HSA for two test bisphenols is as follows: BPE > BPB. The results of fluorescence competitive experiments using 5-dimethylaminonaphthalene-1-sulfonamide and dansylsarcosine as competitors, combined with molecular docking indicated that both bisphenols are prone to attach to the binding site II in HSA. Spectroscopic results (FT-IR, CD, synchronous and 3D fluorescence spectra) showed that BPB/BPE induces different degrees of microenvironmental and conformational changes to HSA.
Protocols Utilizing Constant pH Molecular Dynamics to Compute pH-Dependent Binding Free Energies
2015-01-01
In protein–ligand binding, the electrostatic environments of the two binding partners may vary significantly in bound and unbound states, which may lead to protonation changes upon binding. In cases where ligand binding results in a net uptake or release of protons, the free energy of binding is pH-dependent. Nevertheless, conventional free energy calculations and molecular docking protocols typically do not rigorously account for changes in protonation that may occur upon ligand binding. To address these shortcomings, we present a simple methodology based on Wyman’s binding polynomial formalism to account for the pH dependence of binding free energies and demonstrate its use on cucurbit[7]uril (CB[7]) host–guest systems. Using constant pH molecular dynamics and a reference binding free energy that is taken either from experiment or from thermodynamic integration computations, the pH-dependent binding free energy is determined. This computational protocol accurately captures the large pKa shifts observed experimentally upon CB[7]:guest association and reproduces experimental binding free energies at different levels of pH. We show that incorrect assignment of fixed protonation states in free energy computations can give errors of >2 kcal/mol in these host–guest systems. Use of the methods presented here avoids such errors, thus suggesting their utility in computing proton-linked binding free energies for protein–ligand complexes. PMID:25134690
Properties of inhibitors of methane hydrate formation via molecular dynamics simulations.
Anderson, Brian J; Tester, Jefferson W; Borghi, Gian Paolo; Trout, Bernhardt L
2005-12-21
Within the framework of a proposed two-step mechanism for hydrate inhibition, the energy of binding of four inhibitor molecules (PEO, PVP, PVCap, and VIMA) to a hydrate surface is estimated with molecular dynamic simulations. One key feature of this proposed mechanism is that the binding of an inhibitor molecule to the surface of an ensuing hydrate crystal disrupts growth and therein crystallization. It is found through the molecular dynamic simulations that inhibitor molecules that experimentally exhibit better inhibition strength also have higher free energies of binding, an indirect confirmation of our proposed mechanism. Inhibitors increasing in effectiveness, PEO < PVP < PVCap < VIMA, have increasingly negative (exothermic) binding energies of -0.2 < -20.6 < -37.5 < -45.8 kcal/mol and binding free energies of increasing favorability (+0.4 approximately = +0.5 < -9.4 < -15.1 kcal/mol). Furthermore, the effect of an inhibitor molecule on the local liquid water structure under hydrate-forming conditions was examined and correlated to the experimental effectiveness of the inhibitors. Two molecular characteristics that lead to strongly binding inhibitors were found: (1) a charge distribution on the edge of the inhibitor that mimics the charge separation in the water molecules on the surface of the hydrate and (2) the congruence of the size of the inhibitor with respect to the available space at the hydrate-surface binding site. Equipped with this molecular-level understanding of the process of hydrate inhibition via low-dosage kinetic hydrate inhibitors we can design new, more effective inhibitor molecules.
Wang, Lang-Hong; Wang, Man-Sheng; Zeng, Xin-An; Zhang, Zhi-Hong; Gong, De-Ming; Huang, Yan-Bo
2016-08-17
Carvacrol (5-isopropyl-2-methylphenol, CAR) is an antibacterial ingredient that occurs naturally in the leaves of the plant Origanum vulgare. The antimicrobial mechanism of CAR against Staphylococcus aureus ATCC 43300 was investigated in the study. Analysis of the membrane fatty acids by gas chromatography-mass spectrometry (GC-MS) showed that exposure to CAR at low concentrations induced a marked increase in the level of unbranched fatty acids (from 34.90 ± 1.77% to 62.37 ± 4.26%). Moreover, CAR at higher levels severely damaged the integrity and morphologies of the S. aureus cell membrane. The DNA-binding properties of CAR were also investigated using fluorescence, circular dichroism, molecular modeling, and atomic-force microscopy. The results showed that CAR bound to DNA via the minor-groove mode, mildly perturbed the DNA secondary structure, and induced DNA molecules to be aggregated. Furthermore, a combination of CAR with a pulsed-electric field was found to exhibit strong synergistic effects on S. aureus.
Spectroscopic and theoretical investigation of oxali-palladium interactions with β-lactoglobulin.
Ghalandari, Behafarid; Divsalar, Adeleh; Saboury, Ali Akbar; Haertlé, Thomas; Parivar, Kazem; Bazl, Roya; Eslami-Moghadam, Mahbube; Amanlou, Massoud
2014-01-24
The possibility of using a small cheap dairy protein, β-lactoglobulin (β-LG), as a carrier for oxali-palladium for drug delivery was studied. Their binding in an aqueous solution at two temperatures of 25 and 37°C was investigated using spectroscopic techniques in combination with a molecular docking study. Fluorescence intensity changes showed combined static and dynamic quenching during β-LG oxali-palladium binding, with the static mode being predominant in the quenching mechanism. The binding and thermodynamic parameters were determined by analyzing the results of quenching and those of the van't Hoff equation. According to obtained results the binding constants at two temperatures of 25 and 37°C are 3.3×10(9) M(-1) and 18.4×10(6) M(-1) respectively. Fluorescence resonance energy transfer (FRET) showed that the experimental results and the molecular docking results were coherent. An absence change of β-LG secondary structure was confirmed by the CD results. Molecular docking results agreed fully with the experimental results since the fluorescence studies also revealed the presence of two binding sites with a negative value for the Gibbs free energy of binding of oxali-palladium to β-LG. Furthermore, molecular docking and experimental results suggest that the hydrophobic effect plays a critical role in the formation of the oxali-palladium complex with β-LG. This agreement between molecular docking and experimental results implies that docking studies may be a suitable method for predicting and confirming experimental results, as shown in this study. Hence, the combination of molecular docking and spectroscopy methods is an effective innovative approach for binding studies, particularly for pharmacophores. Copyright © 2013 Elsevier B.V. All rights reserved.
Jiang, Tuo-Ying; Zhou, Kai-Li; Lou, Yan-Yue; Pan, Dong-Qi; Shi, Jie-Hua
2018-04-01
Molecular interaction of atenolol, a selective β 1 receptor antagonist with the major carrier protein, bovine serum albumin (BSA), was investigated under imitated physiological conditions (pH 7.4) by means of fluorescence spectroscopy, UV absorption spectroscopy, Fourier transform infrared spectroscopy (FT-IR), and molecular modeling studies. The steady-state fluorescence spectra manifested that static type, due to formation of the atenolol-BSA complex, was the dominant mechanism for fluorescence quenching. The characteristic information about the binding interaction of atenolol with BSA in terms of binding constant (K b ) were determined by the UV-vis absorption titration, and were found to be in the order of 10 3 M -1 at different temperatures, indicating the existence of a weak binding in this system. Thermodynamic analysis revealed that the binding process was primarily mediated by van der Waals force and hydrogen bonds due to the negative sign for enthalpy change (ΔH 0 ), entropy change (ΔS 0 ). The molecular docking results elucidated that atenolol preferred binding on the site II of BSA according to the findings observed in competitive binding experiments. Moreover, via alterations in synchronous fluorescence, three-dimensional fluorescence and FT-IR spectral properties, it was concluded that atenolol could arouse slight configurational and micro-environmental changes of BSA.
Khajeh, Jahan Ali; Ju, Jeong Ho; Atchiba, Moussoubaou; Allaire, Marc; Stanley, Christopher; Heller, William T.; Callaway, David J.E.; Bu, Zimei
2014-01-01
Summary The tumor suppressor protein Merlin inhibits cell proliferation upon establishing cell-cell contacts. Because Merlin has high sequence similarity to the Ezrin-Radixin-Moesin (ERM) family of proteins, the structural model of ERM protein autoinhibition and cycling between closed/resting and open/active conformational states is often employed to explain Merlin function. However, recent biochemical studies suggest alternative molecular models of Merlin function. Here, we have determined the low resolution molecular structure and binding activity of Merlin and a Merlin(S518D) mutant that mimics the inactivating phosphorylation at S518 using small angle neutron scattering (SANS) and binding experiments. SANS shows that in solution both Merlin and Merlin(S518D) adopt a closed conformation, but binding experiments indicate that a significant fraction of either Merlin or Merlin(S518D) is capable of binding to the target protein NHERF1. Upon binding to the phosphatidylinositol 4,5-bisphosphate lipid, the wild-type Merlin adopts a more open conformation than in solution, but Merlin(S518D) remains in a closed conformation. This study supports a rheostat model of Merlin in NHERF1 binding, and contributes to resolve a controversy about the molecular conformation and binding activity of Merlin. PMID:24882693
NASA Astrophysics Data System (ADS)
Shi, Jie-Hua; Zhou, Kai-Li; Lou, Yan-Yue; Pan, Dong-Qi
2018-03-01
Molecular interaction of darunavir (DRV), a HIV protease inhibitor with calf thymus deoxyribonucleic acid (ct-DNA) was studied in physiological buffer (pH 7.4) by multi-spectroscopic approaches hand in hand with viscosity measurements and molecular docking technique. The UV absorption and fluorescence results together revealed the formation of a DRV-ct-DNA complex having binding affinities of the order of 103 M- 1, which was more in keeping with the groove binding. The results that DRV bound to ct-DNA via groove binding mode was further evidenced by KI quenching studies, viscosity measurements, competitive binding investigations with EB and Rhodamine B and CD spectral analysis. The effect of ionic strength indicated the negligible involvement of electrostatic interaction between DRV and ct-DNA. The thermodynamic parameters regarding the binding interaction of DRV with ct-DNA in terms of enthalpy change (ΔH0) and entropy change (ΔS0) were - 63.19 kJ mol- 1 and - 141.92 J mol- 1 K- 1, indicating that hydrogen bonds and van der Waals forces played a predominant role in the binding process. Furthermore, molecular simulation studies suggested that DRV molecule was prone to bind in the A-T rich region of the minor groove of DNA.
Bello, Martiniano
2014-10-01
The bovine dairy protein β-lactoglobulin (βlg) is a promiscuous protein that has the ability to bind several hydrophobic ligands. In this study, based on known experimental data, the dynamic interaction mechanism between bovine βlg and four fatty acids was investigated by a protocol combining molecular dynamics (MD) simulations and molecular mechanics generalized Born surface area (MMGBSA) binding free energy calculations. Energetic analyses revealed binding free energy trends that corroborated known experimental findings; larger ligand size corresponded to greater binding affinity. Finally, binding free energy decomposition provided detailed information about the key residues stabilizing the complex. © 2014 Wiley Periodicals, Inc.
Exploration of nucleoprotein α-MoRE and XD interactions of Nipah and Hendra viruses.
Shang, Xu; Chu, Wenting; Chu, Xiakun; Xu, Liufang; Longhi, Sonia; Wang, Jin
2018-04-24
Henipavirus, including Hendra virus (HeV) and Nipah virus (NiV), is a newly discovered human pathogen genus. The nucleoprotein of Henipavirus contains an α-helical molecular recognition element (α-MoRE) that folds upon binding to the X domain (XD) of the phosphoprotein (P). In order to explore the conformational dynamics of free α-MoREs and the underlying binding-folding mechanism with XD, atomic force field-based and hybrid structure-based MD simulations were carried out. In our empirical force field-based simulations, characteristic structures and helicities of α-MoREs reveal the co-existence of partially structured and disordered conformations, as in the case of the well characterized cognate measles virus (MeV) α-MoRE. In spite of their overall similarity, the two α-MoREs display subtle helicity differences in their C-terminal region, but much different from that of MeV. For the α-MoRE/XD complexes, the results of our hybrid structure-based simulations provide the coupled binding-folding landscapes, and unveil a wide conformational selection mechanism at early binding stages, followed by a final induce-fit mechanism selection process. However, the HeV and NiV complexes have a lower binding barrier compared to that of MeV. Moreover, the HeV α-MoRE/XD complex shows much less coupling effects between binding and folding compared to that from both NiV and MeV. Our analysis revealed that contrary to NiV and MeV, the N- and C-terminal regions of the HeV α-MoRE maintains a low helicity also in the bound form.
NASA Astrophysics Data System (ADS)
Kabir, Md. Zahirul; Tee, Wei-Ven; Mohamad, Saharuddin B.; Alias, Zazali; Tayyab, Saad
2017-06-01
Binding studies between a multi-targeted anticancer drug, sunitinib (SU) and human serum albumin (HSA) were made using fluorescence, UV-vis absorption, circular dichroism (CD) and molecular docking analysis. Both fluorescence quenching data and UV-vis absorption results suggested formation of SU-HSA complex. Moderate binding affinity between SU and HSA was evident from the value of the binding constant (3.04 × 104 M-1), obtained at 298 K. Involvement of hydrophobic interactions and hydrogen bonds as the leading intermolecular forces in the formation of SU-HSA complex was predicted from the thermodynamic data of the binding reaction. These results were in good agreement with the molecular docking analysis. Microenvironmental perturbations around Tyr and Trp residues as well as secondary and tertiary structural changes in HSA upon SU binding were evident from the three-dimensional fluorescence and circular dichroism results. SU binding to HSA also improved the thermal stability of the protein. Competitive displacement results and molecular docking analysis revealed the binding locus of SU to HSA in subdomain IIA (Sudlow's site I). The influence of a few common ions on the binding constant of SU-HSA complex was also noticed.
Chen, Rong; Chung, Shin-Ho
2013-01-01
The discovery of new drugs that selectively block or modulate ion channels has great potential to provide new treatments for a host of conditions. One promising avenue revolves around modifying or mimicking certain naturally occurring ion channel modulator toxins. This strategy appears to offer the prospect of designing drugs that are both potent and specific. The use of computational modeling is crucial to this endeavor, as it has the potential to provide lower cost alternatives for exploring the effects of new compounds on ion channels. In addition, computational modeling can provide structural information and theoretical understanding that is not easily derivable from experimental results. In this review, we look at the theory and computational methods that are applicable to the study of ion channel modulators. The first section provides an introduction to various theoretical concepts, including force-fields and the statistical mechanics of binding. We then look at various computational techniques available to the researcher, including molecular dynamics, Brownian dynamics, and molecular docking systems. The latter section of the review explores applications of these techniques, concentrating on pore blocker and gating modifier toxins of potassium and sodium channels. After first discussing the structural features of these channels, and their modes of block, we provide an in-depth review of past computational work that has been carried out. Finally, we discuss prospects for future developments in the field. PMID:23589832
Wang, Zhanhui; Kai, Zhenpeng; Beier, Ross C.; Shen, Jianzhong; Yang, Xinling
2012-01-01
A three-dimensional quantitative structure-activity relationship (3D-QSAR) model of sulfonamide analogs binding a monoclonal antibody (MAbSMR) produced against sulfamerazine was carried out by Distance Comparison (DISCOtech), comparative molecular field analysis (CoMFA), and comparative molecular similarity indices analysis (CoMSIA). The affinities of the MAbSMR, expressed as Log10IC50, for 17 sulfonamide analogs were determined by competitive fluorescence polarization immunoassay (FPIA). The results demonstrated that the proposed pharmacophore model containing two hydrogen-bond acceptors, two hydrogen-bond donors and two hydrophobic centers characterized the structural features of the sulfonamides necessary for MAbSMR binding. Removal of two outliers from the initial set of 17 sulfonamide analogs improved the predictability of the models. The 3D-QSAR models of 15 sulfonamides based on CoMFA and CoMSIA resulted in q2 cv values of 0.600 and 0.523, and r2 values of 0.995 and 0.994, respectively, which indicates that both methods have significant predictive capability. Connolly surface analysis, which mainly focused on steric force fields, was performed to complement the results from CoMFA and CoMSIA. This novel study combining FPIA with pharmacophore modeling demonstrates that multidisciplinary research is useful for investigating antigen-antibody interactions and also may provide information required for the design of new haptens. PMID:22754368
T-Cell Receptors Binding Orientation over Peptide/MHC Class I Is Driven by Long-Range Interactions
Ferber, Mathias; Zoete, Vincent; Michielin, Olivier
2012-01-01
Crystallographic data about T-Cell Receptor – peptide – major histocompatibility complex class I (TCRpMHC) interaction have revealed extremely diverse TCR binding modes triggering antigen recognition. Understanding the molecular basis that governs TCR orientation over pMHC is still a considerable challenge. We present a simplified rigid approach applied on all non-redundant TCRpMHC crystal structures available. The CHARMM force field in combination with the FACTS implicit solvation model is used to study the role of long-distance interactions between the TCR and pMHC. We demonstrate that the sum of the coulomb interactions and the electrostatic solvation energies is sufficient to identify two orientations corresponding to energetic minima at 0° and 180° from the native orientation. Interestingly, these results are shown to be robust upon small structural variations of the TCR such as changes induced by Molecular Dynamics simulations, suggesting that shape complementarity is not required to obtain a reliable signal. Accurate energy minima are also identified by confronting unbound TCR crystal structures to pMHC. Furthermore, we decompose the electrostatic energy into residue contributions to estimate their role in the overall orientation. Results show that most of the driving force leading to the formation of the complex is defined by CDR1,2/MHC interactions. This long-distance contribution appears to be independent from the binding process itself, since it is reliably identified without considering neither short-range energy terms nor CDR induced fit upon binding. Ultimately, we present an attempt to predict the TCR/pMHC binding mode for a TCR structure obtained by homology modeling. The simplicity of the approach and the absence of any fitted parameters make it also easily applicable to other types of macromolecular protein complexes. PMID:23251658
T-cell receptors binding orientation over peptide/MHC class I is driven by long-range interactions.
Ferber, Mathias; Zoete, Vincent; Michielin, Olivier
2012-01-01
Crystallographic data about T-Cell Receptor - peptide - major histocompatibility complex class I (TCRpMHC) interaction have revealed extremely diverse TCR binding modes triggering antigen recognition. Understanding the molecular basis that governs TCR orientation over pMHC is still a considerable challenge. We present a simplified rigid approach applied on all non-redundant TCRpMHC crystal structures available. The CHARMM force field in combination with the FACTS implicit solvation model is used to study the role of long-distance interactions between the TCR and pMHC. We demonstrate that the sum of the coulomb interactions and the electrostatic solvation energies is sufficient to identify two orientations corresponding to energetic minima at 0° and 180° from the native orientation. Interestingly, these results are shown to be robust upon small structural variations of the TCR such as changes induced by Molecular Dynamics simulations, suggesting that shape complementarity is not required to obtain a reliable signal. Accurate energy minima are also identified by confronting unbound TCR crystal structures to pMHC. Furthermore, we decompose the electrostatic energy into residue contributions to estimate their role in the overall orientation. Results show that most of the driving force leading to the formation of the complex is defined by CDR1,2/MHC interactions. This long-distance contribution appears to be independent from the binding process itself, since it is reliably identified without considering neither short-range energy terms nor CDR induced fit upon binding. Ultimately, we present an attempt to predict the TCR/pMHC binding mode for a TCR structure obtained by homology modeling. The simplicity of the approach and the absence of any fitted parameters make it also easily applicable to other types of macromolecular protein complexes.
Chang, Shan; Zhang, Da-Wei; Xu, Lei; Wan, Hua; Hou, Ting-Jun; Kong, Ren
2016-11-01
RNA-binding protein with multiple splicing (RBPMS) is critical for axon guidance, smooth muscle plasticity, and regulation of cancer cell proliferation and migration. Recently, different states of the RNA-recognition motif (RRM) of RBPMS, one in its free form and another in complex with CAC-containing RNA, were determined by X-ray crystallography. In this article, the free RRM domain, its wild type complex and 2 mutant complex systems are studied by molecular dynamics (MD) simulations. Through comparison of free RRM domain and complex systems, it's found that the RNA binding facilitates stabilizing the RNA-binding interface of RRM domain, especially the C-terminal loop. Although both R38Q and T103A/K104A mutations reduce the binding affinity of RRM domain and RNA, the underlining mechanisms are different. Principal component analysis (PCA) and Molecular mechanics Poisson-Boltzmann surface area (MM/PBSA) methods were used to explore the dynamical and recognition mechanisms of RRM domain and RNA. R38Q mutation is positioned on the homodimerization interface and mainly induces the large fluctuations of RRM domains. This mutation does not directly act on the RNA-binding interface, but some interfacial hydrogen bonds are weakened. In contrast, T103A/K104A mutations are located on the RNA-binding interface of RRM domain. These mutations obviously break most of high occupancy hydrogen bonds in the RNA-binding interface. Meanwhile, the key interfacial residues lose their favorable energy contributions upon RNA binding. The ranking of calculated binding energies in 3 complex systems is well consistent with that of experimental binding affinities. These results will be helpful in understanding the RNA recognition mechanisms of RRM domain.
Chang, Shan; Zhang, Da-Wei; Xu, Lei; Wan, Hua; Hou, Ting-Jun; Kong, Ren
2016-01-01
ABSTRACT RNA-binding protein with multiple splicing (RBPMS) is critical for axon guidance, smooth muscle plasticity, and regulation of cancer cell proliferation and migration. Recently, different states of the RNA-recognition motif (RRM) of RBPMS, one in its free form and another in complex with CAC-containing RNA, were determined by X-ray crystallography. In this article, the free RRM domain, its wild type complex and 2 mutant complex systems are studied by molecular dynamics (MD) simulations. Through comparison of free RRM domain and complex systems, it's found that the RNA binding facilitates stabilizing the RNA-binding interface of RRM domain, especially the C-terminal loop. Although both R38Q and T103A/K104A mutations reduce the binding affinity of RRM domain and RNA, the underlining mechanisms are different. Principal component analysis (PCA) and Molecular mechanics Poisson-Boltzmann surface area (MM/PBSA) methods were used to explore the dynamical and recognition mechanisms of RRM domain and RNA. R38Q mutation is positioned on the homodimerization interface and mainly induces the large fluctuations of RRM domains. This mutation does not directly act on the RNA-binding interface, but some interfacial hydrogen bonds are weakened. In contrast, T103A/K104A mutations are located on the RNA-binding interface of RRM domain. These mutations obviously break most of high occupancy hydrogen bonds in the RNA-binding interface. Meanwhile, the key interfacial residues lose their favorable energy contributions upon RNA binding. The ranking of calculated binding energies in 3 complex systems is well consistent with that of experimental binding affinities. These results will be helpful in understanding the RNA recognition mechanisms of RRM domain. PMID:27592836
Zhang, Ying; Chen, Hang; Han, Ju-Guang
2015-01-01
Lassa virus (LASV), an arenavirus known to be responsible for a severe hemorrhagic fever, causes thousands of deaths annually and there is no effective vaccine for it so far. The nucleoprotein (NP) of LASV plays an essential role in the replication and transcription of the viral genome. Recent research shows that viral RNA binds in a deep crevice located within the N-terminal domain of NP and suggests a gating mechanism in which NP transforms from a "closed" position to an "open" position to bind RNA. To characterize the molecular mechanisms of how RNA binds to N-terminal domain of NP, two molecular dynamic (MD) simulations of RNA-binding structure and RNA-free structure have been performed. The simulation results show that an important helix α6 interacts with RNA in the "open" conformation, while helix α6 rotates toward the binding crevice and reduces the space of RNA-binding pocket in the "closed" conformation; it appears that helix α6 would clash with RNA while NP is in a "closed" state. In addition, to characterize the role of residues involved in the binding of RNA, the MD simulations of the double-mutant (W164A/F176A) and the single-mutant (G243P) RNA-binding NP complexes have been performed. Our MD simulations and molecular mechanics-generalized born surface area (MM-GBSA) energy calculations exhibit that the three mutant residues increase the binding affinity. Furthermore, we infer that the defect of the replication and transcription of viral genome is possibly due to the change of structural integrity rather than the reduction of RNA-binding affinity.
NASA Astrophysics Data System (ADS)
Hou, J.; Liang, Q.; Shao, S.
2017-03-01
Flavanones are the main compound of licorice, and the C'-4 position substitution is a significant structural feature for their biological activity. The ability of three selected flavanones (liquiritigenin, liquiritin, and liquiritin apioside) bearing different substituents (hydroxyl groups, glucose, and glucose-apiose sugar moiety) at the C'-4 position and a chalcone ( isoliquiritigenin, an isomer of liquiritigenin) to bind bovine serum albumin (BSA) was studied by multispectroscopic and molecular docking methods under physiological conditions. The binding mechanism of fl avonoids to BSA can be explained by the formation of a flavonoids-BSA complex, and the binding affinity is the strongest for isoliquiritigenin, followed by liquiritin apioside, liquiritin, and liquiritigenin. The thermodynamic analysis and the molecular docking indicated that the interaction between flavonoids and BSA was dominated by the hydrophobic force and hydrogen bonds. The competitive experiments as well as the molecular docking results suggested the most possible binding site of licorice flavonoids on BSA at subdomain IIA. These results revealed that the basic skeleton structure and the substituents at the C'-4 position of flavanones significantly affect the structure-affinity relationships of the licorice flavonoid binding to BSA.
Krall, Jacob; Jensen, Claus Hatt; Bavo, Francesco; Falk-Petersen, Christina Birkedahl; Haugaard, Anne Stæhr; Vogensen, Stine Byskov; Tian, Yongsong; Nittegaard-Nielsen, Mia; Sigurdardóttir, Sara Björk; Kehler, Jan; Kongstad, Kenneth Thermann; Gloriam, David E; Clausen, Rasmus Prætorius; Harpsøe, Kasper; Wellendorph, Petrine; Frølund, Bente
2017-11-09
γ-Hydroxybutyric acid (GHB) is a neuroactive substance with specific high-affinity binding sites. To facilitate target identification and ligand optimization, we herein report a comprehensive structure-affinity relationship study for novel ligands targeting these binding sites. A molecular hybridization strategy was used based on the conformationally restricted 3-hydroxycyclopent-1-enecarboxylic acid (HOCPCA) and the linear GHB analog trans-4-hydroxycrotonic acid (T-HCA). In general, all structural modifications performed on HOCPCA led to reduced affinity. In contrast, introduction of diaromatic substituents into the 4-position of T-HCA led to high-affinity analogs (medium nanomolar K i ) for the GHB high-affinity binding sites as the most high-affinity analogs reported to date. The SAR data formed the basis for a three-dimensional pharmacophore model for GHB ligands, which identified molecular features important for high-affinity binding, with high predictive validity. These findings will be valuable in the further processes of both target characterization and ligand identification for the high-affinity GHB binding sites.
Punkvang, Auradee; Kamsri, Pharit; Saparpakorn, Patchreenart; Hannongbua, Supa; Wolschann, Peter; Irle, Stephan; Pungpo, Pornpan
2015-07-01
Substituted aminopyrimidine inhibitors have recently been introduced as antituberculosis agents. These inhibitors show impressive activity against protein kinase B, a Ser/Thr protein kinase that is essential for cell growth of M. tuberculosis. However, up to now, X-ray structures of the protein kinase B enzyme complexes with the substituted aminopyrimidine inhibitors are currently unavailable. Consequently, structural details of their binding modes are questionable, prohibiting the structural-based design of more potent protein kinase B inhibitors in the future. Here, molecular dynamics simulations, in conjunction with molecular mechanics/Poisson-Boltzmann surface area binding free-energy analysis, were employed to gain insight into the complex structures of the protein kinase B inhibitors and their binding energetics. The complex structures obtained by the molecular dynamics simulations show binding free energies in good agreement with experiment. The detailed analysis of molecular dynamics results shows that Glu93, Val95, and Leu17 are key residues responsible to the binding of the protein kinase B inhibitors. The aminopyrazole group and the pyrimidine core are the crucial moieties of substituted aminopyrimidine inhibitors for interaction with the key residues. Our results provide a structural concept that can be used as a guide for the future design of protein kinase B inhibitors with highly increased antagonistic activity. © 2014 John Wiley & Sons A/S.
Sadeghian-Rizi, Sedighe; Khodarahmi, Ghadamali Ali; Sakhteman, Amirhossein; Jahanian-Najafabadi, Ali; Rostami, Mahboubeh; Mirzaei, Mahmoud; Hassanzadeh, Farshid
2017-01-01
In this study a series of diarylurea derivatives containing quinoxalindione group were biologically evaluated for their cytotoxic activities using MTT assay against MCF-7 and HepG2 cell lines. Antibacterial activities of these compounds were also evaluated by Microplate Alamar Blue Assay (MABA) against three Gram-negative (Escherichia coli, Pseudomonas aeruginosa and Salmonella typhi), three Gram-positive (Staphylococcus aureus, Bacillus subtilis and Listeria monocitogenes) and one yeast-like fungus (Candida albicans) strain. Furthermore, molecular docking was carried out to study the binding pattern of the compounds to the active site of B-RAF kinase (PDB code: 1UWH). Molecular dynamics simulation was performed on the best ligand (16e) to investigate the ligand binding dynamics in the physiological environment. Cytotoxic evaluation revealed the most prominent cytotoxicity for 6 compounds with IC50 values of 10-18 μM against two mentioned cell lines. None of the synthesized compounds showed significant antimicrobial activity. The obtained results of the molecular docking study showed that all compounds fitted in the binding site of enzyme with binding energy range of -11.22 to -12.69 kcal/mol vs sorafenib binding energy -11.74 kcal/mol as the lead compound. Molecular dynamic simulation indicated that the binding of ligand (16e) was stable in the active site of B-RAF during the simulation. PMID:29204178
2017-01-01
Virtually all biological processes depend on the interaction between proteins at some point. The correct prediction of biomolecular binding free-energies has many interesting applications in both basic and applied pharmaceutical research. While recent advances in the field of molecular dynamics (MD) simulations have proven the feasibility of the calculation of protein–protein binding free energies, the large conformational freedom of proteins and complex free energy landscapes of binding processes make such calculations a difficult task. Moreover, convergence and reversibility of resulting free-energy values remain poorly described. In this work, an easy-to-use, yet robust approach for the calculation of standard-state protein–protein binding free energies using perturbed distance restraints is described. In the binding process the conformations of the proteins were restrained, as suggested earlier. Two approaches to avoid end-state problems upon release of the conformational restraints were compared. The method was evaluated by practical application to a small model complex of ubiquitin and the very flexible ubiquitin-binding domain of human DNA polymerase ι (UBM2). All computed free energy differences were closely monitored for convergence, and the calculated binding free energies had a mean unsigned deviation of only 1.4 or 2.5 kJ·mol–1 from experimental values. Statistical error estimates were in the order of thermal noise. We conclude that the presented method has promising potential for broad applicability to quantitatively describe protein–protein and various other kinds of complex formation. PMID:28898077
Representation of Ion–Protein Interactions Using the Drude Polarizable Force-Field
2016-01-01
Small metal ions play critical roles in numerous biological processes. Of particular interest is how metalloenzymes are allosterically regulated by the binding of specific ions. Understanding how ion binding affects these biological processes requires atomic models that accurately treat the microscopic interactions with the protein ligands. Theoretical approaches at different levels of sophistication can contribute to a deeper understanding of these systems, although computational models must strike a balance between accuracy and efficiency in order to enable long molecular dynamics simulations. In this study, we present a systematic effort to optimize the parameters of a polarizable force field based on classical Drude oscillators to accurately represent the interactions between ions (K+, Na+, Ca2+, and Cl–) and coordinating amino-acid residues for a set of 30 biologically important proteins. By combining ab initio calculations and experimental thermodynamic data, we derive a polarizable force field that is consistent with a wide range of properties, including the geometries and interaction energies of gas-phase ion/protein-like model compound clusters, and the experimental solvation free-energies of the cations in liquids. The resulting models display significant improvements relative to the fixed-atomic-charge additive CHARMM C36 force field, particularly in their ability to reproduce the many-body electrostatic nonadditivity effects estimated from ab initio calculations. The analysis clarifies the fundamental limitations of the pairwise additivity assumption inherent in classical fixed-charge force fields, and shows its dramatic failures in the case of Ca2+ binding sites. These optimized polarizable models, amenable to computationally efficient large-scale MD simulations, set a firm foundation and offer a powerful avenue to study the roles of the ions in soluble and membrane transport proteins. PMID:25578354
Extending rule-based methods to model molecular geometry and 3D model resolution.
Hoard, Brittany; Jacobson, Bruna; Manavi, Kasra; Tapia, Lydia
2016-08-01
Computational modeling is an important tool for the study of complex biochemical processes associated with cell signaling networks. However, it is challenging to simulate processes that involve hundreds of large molecules due to the high computational cost of such simulations. Rule-based modeling is a method that can be used to simulate these processes with reasonably low computational cost, but traditional rule-based modeling approaches do not include details of molecular geometry. The incorporation of geometry into biochemical models can more accurately capture details of these processes, and may lead to insights into how geometry affects the products that form. Furthermore, geometric rule-based modeling can be used to complement other computational methods that explicitly represent molecular geometry in order to quantify binding site accessibility and steric effects. We propose a novel implementation of rule-based modeling that encodes details of molecular geometry into the rules and binding rates. We demonstrate how rules are constructed according to the molecular curvature. We then perform a study of antigen-antibody aggregation using our proposed method. We simulate the binding of antibody complexes to binding regions of the shrimp allergen Pen a 1 using a previously developed 3D rigid-body Monte Carlo simulation, and we analyze the aggregate sizes. Then, using our novel approach, we optimize a rule-based model according to the geometry of the Pen a 1 molecule and the data from the Monte Carlo simulation. We use the distances between the binding regions of Pen a 1 to optimize the rules and binding rates. We perform this procedure for multiple conformations of Pen a 1 and analyze the impact of conformation and resolution on the optimal rule-based model. We find that the optimized rule-based models provide information about the average steric hindrance between binding regions and the probability that antibodies will bind to these regions. These optimized models quantify the variation in aggregate size that results from differences in molecular geometry and from model resolution.
Ai, Yong; Wang, Shao-Teng; Sun, Ping-Hua; Song, Fa-Jun
2010-01-01
CDK2/cyclin A has appeared as an attractive drug targets over the years with diverse therapeutic potentials. A computational strategy based on comparative molecular fields analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) followed by molecular docking studies were performed on a series of 4,5-dihydro-1H-pyrazolo[4,3-h]quinazoline derivatives as potent CDK2/cyclin A inhibitors. The CoMFA and CoMSIA models, using 38 molecules in the training set, gave r2cv values of 0.747 and 0.518 and r2 values of 0.970 and 0.934, respectively. 3D contour maps generated by the CoMFA and CoMSIA models were used to identify the key structural requirements responsible for the biological activity. Molecular docking was applied to explore the binding mode between the ligands and the receptor. The information obtained from molecular modeling studies may be helpful to design novel inhibitors of CDK2/cyclin A with desired activity. PMID:21152296
Ai, Yong; Wang, Shao-Teng; Sun, Ping-Hua; Song, Fa-Jun
2010-09-28
CDK2/cyclin A has appeared as an attractive drug targets over the years with diverse therapeutic potentials. A computational strategy based on comparative molecular fields analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) followed by molecular docking studies were performed on a series of 4,5-dihydro-1H-pyrazolo[4,3-h]quinazoline derivatives as potent CDK2/cyclin A inhibitors. The CoMFA and CoMSIA models, using 38 molecules in the training set, gave r(2) (cv) values of 0.747 and 0.518 and r(2) values of 0.970 and 0.934, respectively. 3D contour maps generated by the CoMFA and CoMSIA models were used to identify the key structural requirements responsible for the biological activity. Molecular docking was applied to explore the binding mode between the ligands and the receptor. The information obtained from molecular modeling studies may be helpful to design novel inhibitors of CDK2/cyclin A with desired activity.
Shrivastava, Dipty; Nain, Vikrant; Sahi, Shakti; Verma, Anju; Sharma, Priyanka; Sharma, Prakash Chand; Kumar, Polumetla Ananda
2011-01-22
Resistance (R) protein recognizes molecular signature of pathogen infection and activates downstream hypersensitive response signalling in plants. R protein works as a molecular switch for pathogen defence signalling and represent one of the largest plant gene family. Hence, understanding molecular structure and function of R proteins has been of paramount importance for plant biologists. The present study is aimed at predicting structure of R proteins signalling domains (CC-NBS) by creating a homology model, refining and optimising the model by molecular dynamics simulation and comparing ADP and ATP binding. Based on sequence similarity with proteins of known structures, CC-NBS domains were initially modelled using CED- 4 (cell death abnormality protein) and APAF-1 (apoptotic protease activating factor) as multiple templates. The final CC-NBS structural model was built and optimized by molecular dynamic simulation for 5 nanoseconds (ns). Docking of ADP and ATP at active site shows that both ligand bind specifically with same residues and with minor difference (1 Kcal/mol) in binding energy. Sharing of binding site by ADP and ATP and low difference in their binding site makes CC-NBS suitable for working as molecular switch. Furthermore, structural superimposition elucidate that CC-NBS and CARD (caspase recruitment domains) domain of CED-4 have low RMSD value of 0.9 A° Availability of 3D structural model for both CC and NBS domains will . help in getting deeper insight in these pathogen defence genes.
Prediction of Nucleotide Binding Peptides Using Star Graph Topological Indices.
Liu, Yong; Munteanu, Cristian R; Fernández Blanco, Enrique; Tan, Zhiliang; Santos Del Riego, Antonino; Pazos, Alejandro
2015-11-01
The nucleotide binding proteins are involved in many important cellular processes, such as transmission of genetic information or energy transfer and storage. Therefore, the screening of new peptides for this biological function is an important research topic. The current study proposes a mixed methodology to obtain the first classification model that is able to predict new nucleotide binding peptides, using only the amino acid sequence. Thus, the methodology uses a Star graph molecular descriptor of the peptide sequences and the Machine Learning technique for the best classifier. The best model represents a Random Forest classifier based on two features of the embedded and non-embedded graphs. The performance of the model is excellent, considering similar models in the field, with an Area Under the Receiver Operating Characteristic Curve (AUROC) value of 0.938 and true positive rate (TPR) of 0.886 (test subset). The prediction of new nucleotide binding peptides with this model could be useful for drug target studies in drug development. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
PUF Proteins: Cellular Functions and Potential Applications.
Kiani, Seyed Jalal; Taheri, Tahereh; Rafati, Sima; Samimi-Rad, Katayoun
2017-01-01
RNA-binding proteins play critical roles in the regulation of gene expression. Among several families of RNA-binding proteins, PUF (Pumilio and FBF) proteins have been the subject of extensive investigations, as they can bind RNA in a sequence-specific manner and they are evolutionarily conserved among a wide range of organisms. The outstanding feature of these proteins is a highly conserved RNA-binding domain, which is known as the Pumilio-homology domain (PUM-HD) that mostly consists of eight tandem repeats. Each repeat recognizes an RNA base with a simple three-letter code that can be programmed in order to change the sequence-specificity of the protein. Using this tailored architecture, researchers have been able to change the specificity of the PUM-HD and target desired transcripts in the cell, even in subcellular compartments. The potential applications of this versatile tool in molecular cell biology seem unbounded and the use of these factors in pharmaceutics might be an interesting field of study in near future. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Protein Camouflage: Supramolecular Anion Recognition by Ubiquitin.
Mallon, Madeleine; Dutt, Som; Schrader, Thomas; Crowley, Peter B
2016-04-15
Progress in the field of bio-supramolecular chemistry, the bottom-up assembly of protein-ligand systems, relies on a detailed knowledge of molecular recognition. To address this issue, we have characterised complex formation between human ubiquitin (HUb) and four supramolecular anions. The ligands were: pyrenetetrasulfonic acid (4PSA), p-sulfonato-calix[4]arene (SCLX4), bisphosphate tweezers (CLR01) and meso-tetrakis (4-sulfonatophenyl)porphyrin (TPPS), which vary in net charge, size, shape and hydrophobicity. All four ligands induced significant changes in the HSQC spectrum of HUb. Chemical shift perturbations and line-broadening effects were used to identify binding sites and to quantify affinities. Supporting data were obtained from docking simulations. It was found that these weakly interacting ligands bind to extensive surface patches on HUb. A comparison of the data suggests some general indicators for the protein-binding specificity of supramolecular anions. Differences in binding were observed between the cavity-containing and planar ligands. The former had a preference for the arginine-rich, flexible C terminus of HUb. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Hou, Tingjun; Wang, Junmei; Li, Youyong; Wang, Wei
2011-01-24
The Molecular Mechanics/Poisson-Boltzmann Surface Area (MM/PBSA) and the Molecular Mechanics/Generalized Born Surface Area (MM/GBSA) methods calculate binding free energies for macromolecules by combining molecular mechanics calculations and continuum solvation models. To systematically evaluate the performance of these methods, we report here an extensive study of 59 ligands interacting with six different proteins. First, we explored the effects of the length of the molecular dynamics (MD) simulation, ranging from 400 to 4800 ps, and the solute dielectric constant (1, 2, or 4) on the binding free energies predicted by MM/PBSA. The following three important conclusions could be observed: (1) MD simulation length has an obvious impact on the predictions, and longer MD simulation is not always necessary to achieve better predictions. (2) The predictions are quite sensitive to the solute dielectric constant, and this parameter should be carefully determined according to the characteristics of the protein/ligand binding interface. (3) Conformational entropy often show large fluctuations in MD trajectories, and a large number of snapshots are necessary to achieve stable predictions. Next, we evaluated the accuracy of the binding free energies calculated by three Generalized Born (GB) models. We found that the GB model developed by Onufriev and Case was the most successful model in ranking the binding affinities of the studied inhibitors. Finally, we evaluated the performance of MM/GBSA and MM/PBSA in predicting binding free energies. Our results showed that MM/PBSA performed better in calculating absolute, but not necessarily relative, binding free energies than MM/GBSA. Considering its computational efficiency, MM/GBSA can serve as a powerful tool in drug design, where correct ranking of inhibitors is often emphasized.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nakata, Hiroya, E-mail: hiroya.nakata.gt@kyocera.jp; Nishimoto, Yoshio; Fedorov, Dmitri G.
2016-07-28
The analytic second derivative of the energy is developed for the fragment molecular orbital (FMO) method combined with density-functional tight-binding (DFTB), enabling simulations of infrared and Raman spectra of large molecular systems. The accuracy of the method is established in comparison to full DFTB without fragmentation for a set of representative systems. The performance of the FMO-DFTB Hessian is discussed for molecular systems containing up to 10 041 atoms. The method is applied to the study of the binding of α-cyclodextrin to polyethylene glycol, and the calculated IR spectrum of an epoxy amine oligomer reproduces experiment reasonably well.
NASA Astrophysics Data System (ADS)
Salmaso, Veronica; Sturlese, Mattia; Cuzzolin, Alberto; Moro, Stefano
2018-01-01
Molecular docking is a powerful tool in the field of computer-aided molecular design. In particular, it is the technique of choice for the prediction of a ligand pose within its target binding site. A multitude of docking methods is available nowadays, whose performance may vary depending on the data set. Therefore, some non-trivial choices should be made before starting a docking simulation. In the same framework, the selection of the target structure to use could be challenging, since the number of available experimental structures is increasing. Both issues have been explored within this work. The pose prediction of a pool of 36 compounds provided by D3R Grand Challenge 2 organizers was preceded by a pipeline to choose the best protein/docking-method couple for each blind ligand. An integrated benchmark approach including ligand shape comparison and cross-docking evaluations was implemented inside our DockBench software. The results are encouraging and show that bringing attention to the choice of the docking simulation fundamental components improves the results of the binding mode predictions.
Kim, Chang Min; Jeong, Jae-Hee; Son, Young-Jin; Choi, Jun-Hyuk; Kim, Sunghwan; Park, Hyun Ho
2017-03-01
Tumor necrosis factor receptor-associated factor 1 (TRAF1) is a multifunctional adaptor protein involved in important processes of cellular signaling, including innate immunity and apoptosis. TRAF family member-associated NF-kappaB activator (TANK) has been identified as a competitive intracellular inhibitor of TRAF2 function. Although TRAF recognition by various receptors has been studied extensively in the field of TRAF-mediated biology, molecular and functional details of TANK recognition and interaction with TRAF1 have not been studied. In this study, we report the crystal structure of the TRAF1/TANK peptide complex. Quantitative interaction experiments showed that TANK peptide interacts with both TRAF1 and TRAF2 with similar affinity in a micromolar range. Our structural study also reveals that TANK binds TRAF1 using a minor minimal consensus motif for TRAF binding, Px(Q/E)xT. Coordinate and structural factor were deposited in the Protein Data Bank under PDB ID code 5H10. © 2017 Federation of European Biochemical Societies.
NASA Astrophysics Data System (ADS)
Tsukanov, A. A.; Psakhie, S. G.
2016-01-01
The application of hybrid and hierarchical nanomaterials based on layered hydroxides and oxyhydroxides of metals is a swiftly progressing field in biomedicine. Layered double hydroxides (LDH) possess a large specific surface area, significant surface electric charge and biocompatibility. Their physical and structural properties enable them to adsorb various kinds of anionic species and to transport them into cells. However, possible side effects resulting from the interaction of LDH with anions of the intercellular and intracellular medium need to be considered, since such interaction can potentially disrupt ion transport, signaling processes, apoptosis, nutrition and proliferation of living cells. In the present paper molecular dynamics is used to determine the energies of interaction of organic anions (aspartic acid, glutamic acid and bicarbonate) with a fragment of layered double hydroxide Mg/Al-LDH. The average number of hydrogen bonds between the anions and the hydroxide surface and characteristic binding configurations are determined. Possible effects of LDH on the cell resulting from binding of protein fragments and replacement of native intracellular anions with delivered anions are considered.
Scemama, Anthony; Renon, Nicolas; Rapacioli, Mathias
2014-06-10
We present an algorithm and its parallel implementation for solving a self-consistent problem as encountered in Hartree-Fock or density functional theory. The algorithm takes advantage of the sparsity of matrices through the use of local molecular orbitals. The implementation allows one to exploit efficiently modern symmetric multiprocessing (SMP) computer architectures. As a first application, the algorithm is used within the density-functional-based tight binding method, for which most of the computational time is spent in the linear algebra routines (diagonalization of the Fock/Kohn-Sham matrix). We show that with this algorithm (i) single point calculations on very large systems (millions of atoms) can be performed on large SMP machines, (ii) calculations involving intermediate size systems (1000-100 000 atoms) are also strongly accelerated and can run efficiently on standard servers, and (iii) the error on the total energy due to the use of a cutoff in the molecular orbital coefficients can be controlled such that it remains smaller than the SCF convergence criterion.
Krüger, Manuela; Stockinger, Herbert; Krüger, Claudia; Schüssler, Arthur
2009-01-01
* At present, molecular ecological studies of arbuscular mycorrhizal fungi (AMF) are only possible above species level when targeting entire communities. To improve molecular species characterization and to allow species level community analyses in the field, a set of newly designed AMF specific PCR primers was successfully tested. * Nuclear rDNA fragments from diverse phylogenetic AMF lineages were sequenced and analysed to design four primer mixtures, each targeting one binding site in the small subunit (SSU) or large subunit (LSU) rDNA. To allow species resolution, they span a fragment covering the partial SSU, whole internal transcribed spacer (ITS) rDNA region and partial LSU. * The new primers are suitable for specifically amplifying AMF rDNA from material that may be contaminated by other organisms (e.g., samples from pot cultures or the field), characterizing the diversity of AMF species from field samples, and amplifying a SSU-ITS-LSU fragment that allows phylogenetic analyses with species level resolution. * The PCR primers can be used to monitor entire AMF field communities, based on a single rDNA marker region. Their application will improve the base for deep sequencing approaches; moreover, they can be efficiently used as DNA barcoding primers.
High-order above-threshold dissociation of molecules
NASA Astrophysics Data System (ADS)
Lu, Peifen; Wang, Junping; Li, Hui; Lin, Kang; Gong, Xiaochun; Song, Qiying; Ji, Qinying; Zhang, Wenbin; Ma, Junyang; Li, Hanxiao; Zeng, Heping; He, Feng; Wu, Jian
2018-03-01
Electrons bound to atoms or molecules can simultaneously absorb multiple photons via the above-threshold ionization featured with discrete peaks in the photoelectron spectrum on account of the quantized nature of the light energy. Analogously, the above-threshold dissociation of molecules has been proposed to address the multiple-photon energy deposition in the nuclei of molecules. In this case, nuclear energy spectra consisting of photon-energy spaced peaks exceeding the binding energy of the molecular bond are predicted. Although the observation of such phenomena is difficult, this scenario is nevertheless logical and is based on the fundamental laws. Here, we report conclusive experimental observation of high-order above-threshold dissociation of H2 in strong laser fields where the tunneling-ionized electron transfers the absorbed multiphoton energy, which is above the ionization threshold to the nuclei via the field-driven inelastic rescattering. Our results provide an unambiguous evidence that the electron and nuclei of a molecule as a whole absorb multiple photons, and thus above-threshold ionization and above-threshold dissociation must appear simultaneously, which is the cornerstone of the nowadays strong-field molecular physics.
Tan, Songwen; Wang, Donglin; Chi, Zhenxing; Li, Weiguo; Shan, Ye
2017-07-01
This work has evaluated the binding force between hHb and typcial PAEs (DMP, DEP, DPRP, DBP, DIBP, DHP and DPHP) using molecule docking technique. The DPHP with 3 aromatic rings has the strongest binding (-ΔG binding : 6.0kcalmol -1 ) than other PAEs (-ΔG binding : 2.91∼4.48kcalmol -1 ). The DMP with the lowest molecular weight has a high binding force (-ΔG binding : 4.48kcalmol -1 ), while the DHP with the highest molecular weight has the lowest binding force (-ΔG binding : 2.91kcalmol -1 ). When the length of side chain increases, the binding force trend to decrease, regarding the VDW forces and H-bonding. The lgK ow -ΔG binding plotting figure shows that a higher K ow value is accompanied by a lower binding force. The aromatic ring existed in PAEs largely increases the binding force between the hHb and the PAEs. On the other hand, the PAEs with higher number of carbon, meaning a higher hydrophobicity, can enter into the hydrophobic space of hHb centre deeper and bond to different position. The aromatic ring decreases the depth of binding position in the hydrophobic space. This work provides basic data and a theoretical method to assess the transport and accumulation of PAEs in human body, and the cytotoxicity of PAEs to hBRCs. Copyright © 2017 Elsevier B.V. All rights reserved.
Zhan, Minzhong; Guo, Ming; Jiang, Yanke; Wang, Xiaomeng
2015-01-01
The binding interaction between gallic acid (GA) and lysozyme (LYS) was investigated and compared by molecular dynamics (MD) simulation and spectral techniques. The results from spectroscopy indicate that GA binds to LYS to generate a static complex. The binding constants and thermodynamic parameters were calculated. MD simulation revealed that the main driving forces for GA binding to LYS are hydrogen bonding and hydrophobic interactions. The root-mean-square deviation verified that GA and LYS bind to form a stable complex, while the root-mean-square fluctuation results showed that the stability of the GA-LYS complex at 298 K was higher than that at 310 K. The calculated free binding energies from the molecular mechanics/Poisson-Boltzmann surface area method showed that van der Waals forces and electrostatic interactions are the predominant intermolecular forces. The MD simulation was consistent with the spectral experiments. This study provides a reference for future study of the pharmacological mechanism of GA. PMID:26140374
Zhan, Minzhong; Guo, Ming; Jiang, Yanke; Wang, Xiaomeng
2015-07-01
The binding interaction between gallic acid (GA) and lysozyme (LYS) was investigated and compared by molecular dynamics (MD) simulation and spectral techniques. The results from spectroscopy indicate that GA binds to LYS to generate a static complex. The binding constants and thermodynamic parameters were calculated. MD simulation revealed that the main driving forces for GA binding to LYS are hydrogen bonding and hydrophobic interactions. The root-mean-square deviation verified that GA and LYS bind to form a stable complex, while the root-mean-square fluctuation results showed that the stability of the GA-LYS complex at 298 K was higher than that at 310 K. The calculated free binding energies from the molecular mechanics/Poisson-Boltzmann surface area method showed that van der Waals forces and electrostatic interactions are the predominant intermolecular forces. The MD simulation was consistent with the spectral experiments. This study provides a reference for future study of the pharmacological mechanism of GA.
Assessing the binding of cholinesterase inhibitors by docking and molecular dynamics studies.
Ali, M Rejwan; Sadoqi, Mostafa; Møller, Simon G; Boutajangout, Allal; Mezei, Mihaly
2017-09-01
In this report we assessed by docking and molecular dynamics the binding mechanisms of three FDA-approved Alzheimer drugs, inhibitors of the enzyme acetylcholinesterase (AChE): donepezil, galantamine and rivastigmine. Dockings by the softwares Autodock-Vina, PatchDock and Plant reproduced the docked conformations of the inhibitor-enzyme complexes within 2Å of RMSD of the X-ray structure. Free-energy scores show strong affinity of the inhibitors for the enzyme binding pocket. Three independent Molecular Dynamics simulation runs indicated general stability of donepezil, galantamine and rivastigmine in their respective enzyme binding pocket (also referred to as gorge) as well as the tendency to form hydrogen bonds with the water molecules. The binding of rivastigmine in the Torpedo California AChE binding pocket is interesting as it eventually undergoes carbamylation and breaks apart according to the X-ray structure of the complex. Similarity search in the ZINC database and targeted docking on the gorge region of the AChE enzyme gave new putative inhibitor molecules with high predicted binding affinity, suitable for potential biophysical and biological assessments. Copyright © 2017 Elsevier Inc. All rights reserved.
Song, Wei; Guo, Jun-Tao
2015-01-01
Transcription factors regulate gene expression through binding to specific DNA sequences. How transcription factors achieve high binding specificity is still not well understood. In this paper, we investigated the role of protein flexibility in protein-DNA-binding specificity by comparative molecular dynamics (MD) simulations. Protein flexibility has been considered as a key factor in molecular recognition, which is intrinsically a dynamic process involving fine structural fitting between binding components. In this study, we performed comparative MD simulations on wild-type and F10V mutant P22 Arc repressor in both free and complex conformations. The F10V mutant has lower DNA-binding specificity though both the bound and unbound main-chain structures between the wild-type and F10V mutant Arc are highly similar. We found that the DNA-binding motif of wild-type Arc is structurally more flexible than the F10V mutant in the unbound state, especially for the six DNA base-contacting residues in each dimer. We demonstrated that the flexible side chains of wild-type Arc lead to a higher DNA-binding specificity through forming more hydrogen bonds with DNA bases upon binding. Our simulations also showed a possible conformational selection mechanism for Arc-DNA binding. These results indicate the important roles of protein flexibility and dynamic properties in protein-DNA-binding specificity.
In search of cellular control: signal transduction in context
NASA Technical Reports Server (NTRS)
Ingber, D.
1998-01-01
The field of molecular cell biology has experienced enormous advances over the last century by reducing the complexity of living cells into simpler molecular components and binding interactions that are amenable to rigorous biochemical analysis. However, as our tools become more powerful, there is a tendency to define mechanisms by what we can measure. The field is currently dominated by efforts to identify the key molecules and sequences that mediate the function of critical receptors, signal transducers, and molecular switches. Unfortunately, these conventional experimental approaches ignore the importance of supramolecular control mechanisms that play a critical role in cellular regulation. Thus, the significance of individual molecular constituents cannot be fully understood when studied in isolation because their function may vary depending on their context within the structural complexity of the living cell. These higher-order regulatory mechanisms are based on the cell's use of a form of solid-state biochemistry in which molecular components that mediate biochemical processing and signal transduction are immobilized on insoluble cytoskeletal scaffolds in the cytoplasm and nucleus. Key to the understanding of this form of cellular regulation is the realization that chemistry is structure and hence, recognition of the the importance of architecture and mechanics for signal integration and biochemical control. Recent work that has unified chemical and mechanical signaling pathways provides a glimpse of how this form of higher-order cellular control may function and where paths may lie in the future.
Accurate Binding Free Energy Predictions in Fragment Optimization.
Steinbrecher, Thomas B; Dahlgren, Markus; Cappel, Daniel; Lin, Teng; Wang, Lingle; Krilov, Goran; Abel, Robert; Friesner, Richard; Sherman, Woody
2015-11-23
Predicting protein-ligand binding free energies is a central aim of computational structure-based drug design (SBDD)--improved accuracy in binding free energy predictions could significantly reduce costs and accelerate project timelines in lead discovery and optimization. The recent development and validation of advanced free energy calculation methods represents a major step toward this goal. Accurately predicting the relative binding free energy changes of modifications to ligands is especially valuable in the field of fragment-based drug design, since fragment screens tend to deliver initial hits of low binding affinity that require multiple rounds of synthesis to gain the requisite potency for a project. In this study, we show that a free energy perturbation protocol, FEP+, which was previously validated on drug-like lead compounds, is suitable for the calculation of relative binding strengths of fragment-sized compounds as well. We study several pharmaceutically relevant targets with a total of more than 90 fragments and find that the FEP+ methodology, which uses explicit solvent molecular dynamics and physics-based scoring with no parameters adjusted, can accurately predict relative fragment binding affinities. The calculations afford R(2)-values on average greater than 0.5 compared to experimental data and RMS errors of ca. 1.1 kcal/mol overall, demonstrating significant improvements over the docking and MM-GBSA methods tested in this work and indicating that FEP+ has the requisite predictive power to impact fragment-based affinity optimization projects.
Zhang, Lin; Sun, Yan
2014-04-29
Platelet adhesion on a collagen surface through integrin α2β1 has been proven to be significant for the formation of arterial thrombus. However, the molecular determinants mediating the integrin-collagen complex remain unclear. In the present study, the dynamics of integrin-collagen binding and molecular interactions were investigated using molecular dynamics (MD) simulations and molecular mechanics-Poisson-Boltzmann surface area (MM-PBSA) analysis. Hydrophobic interaction is identified as the major driving force for the formation of the integrin-collagen complex. On the basis of the MD simulation and MM-PBSA results, an affinity binding model (ABM) of integrin for collagen is constructed; it is composed of five residues, including Y157, N154, S155, R288, and L220. The ABM has been proven to capture the major binding motif contributing 84.8% of the total binding free energy. On the basis of the ABM, we expect to establish a biomimetic design strategy of platelet adhesion inhibitors, which would be beneficial for the development of potent peptide-based drugs for thrombotic diseases.
Probing the effects of surface hydrophobicity and tether orientation on antibody-antigen binding
NASA Astrophysics Data System (ADS)
Bush, Derek B.; Knotts, Thomas A.
2017-04-01
Antibody microarrays have the potential to revolutionize molecular detection for many applications, but their current use is limited by poor reliability, and efforts to change this have not yielded fruitful results. One difficulty which limits the rational engineering of next-generation devices is that little is known, at the molecular level, about the antibody-antigen binding process near solid surfaces. Atomic-level structural information is scant because typical experimental techniques (X-ray crystallography and NMR) cannot be used to image proteins bound to surfaces. To overcome this limitation, this study uses molecular simulation and an advanced, experimentally validated, coarse-grain, protein-surface model to compare fab-lysozyme binding in bulk solution and when the fab is tethered to hydrophobic and hydrophilic surfaces. The results show that the tether site in the fab, as well as the surface hydrophobicity, significantly impacts the binding process and suggests that the optimal design involves tethering fabs upright on a hydrophilic surface. The results offer an unprecedented, molecular-level picture of the binding process and give hope that the rational design of protein-microarrays is possible.
Protein-Binding RNA Aptamers Affect Molecular Interactions Distantly from Their Binding Sites
Dupont, Daniel M.; Thuesen, Cathrine K.; Bøtkjær, Kenneth A.; Behrens, Manja A.; Dam, Karen; Sørensen, Hans P.; Pedersen, Jan S.; Ploug, Michael; Jensen, Jan K.; Andreasen, Peter A.
2015-01-01
Nucleic acid aptamer selection is a powerful strategy for the development of regulatory agents for molecular intervention. Accordingly, aptamers have proven their diligence in the intervention with serine protease activities, which play important roles in physiology and pathophysiology. Nonetheless, there are only a few studies on the molecular basis underlying aptamer-protease interactions and the associated mechanisms of inhibition. In the present study, we use site-directed mutagenesis to delineate the binding sites of two 2´-fluoropyrimidine RNA aptamers (upanap-12 and upanap-126) with therapeutic potential, both binding to the serine protease urokinase-type plasminogen activator (uPA). We determine the subsequent impact of aptamer binding on the well-established molecular interactions (plasmin, PAI-1, uPAR, and LRP-1A) controlling uPA activities. One of the aptamers (upanap-126) binds to the area around the C-terminal α-helix in pro-uPA, while the other aptamer (upanap-12) binds to both the β-hairpin of the growth factor domain and the kringle domain of uPA. Based on the mapping studies, combined with data from small-angle X-ray scattering analysis, we construct a model for the upanap-12:pro-uPA complex. The results suggest and highlight that the size and shape of an aptamer as well as the domain organization of a multi-domain protein such as uPA, may provide the basis for extensive sterical interference with protein ligand interactions considered distant from the aptamer binding site. PMID:25793507
Gu, Yunlan; Wang, Yanqing; Zhang, Hongmei
2018-05-05
Being exogenous environmental pollutants, nitroanilines (NAs) are highly toxic and have mutagenic and carcinogenic activity. Being lack of studies on interactions between NAs and lysozyme at molecular level, the binding interactions of lysozyme with o-nitroaniline (oNA), m-nitroaniline (mNA) and p-nitroaniline (pNA) were investigated by means of steady-state fluorescence, synchronous fluorescence, UV-vis absorption spectroscopy, as well as molecular modeling. The experimental results revealed that the fluorescence of lysozyme is quenched by oNA and mNA through a static quenching, while the fluorescence quenching triggered by pNA is a combined dynamic and static quenching. The number of binding sites (n) and the binding constant (K b ) corresponding thermodynamic parameters ΔH ⊖ , ΔS ⊖ , ΔG ⊖ at different temperatures were calculated. The reactions between NAs and lysozyme were spontaneous and entropy driven and the binding of NAs to lysozyme induced conformation changes of lysozyme. The difference of the position of -NO 2 group affected the binding and the binding constants K b decreased in the following pattern: K b (pNA) >K b (mNA) >K b (oNA). Molecular docking studies were performed to reveal the most favorable binding sites of NAs on lysozyme. Our recently results could offer mechanistic insights into the nature of the binding interactions between NAs and lysozyme and provide information about the toxicity risk of NAs to human health. Copyright © 2018 Elsevier B.V. All rights reserved.
Kumar, Akhil; Srivastava, Gaurava; Srivastava, Swati; Verma, Seema; Negi, Arvind S; Sharma, Ashok
2017-08-01
BACE-1 and GSK-3β are potential therapeutic drug targets for Alzheimer's disease. Recently, both the targets received attention for designing dual inhibitors for Alzheimer's disease. Until now, only two-scaffold triazinone and curcumin have been reported as BACE-1 and GSK-3β dual inhibitors. Docking, molecular dynamics, clustering, binding energy, and network analysis of triazinone derivatives with BACE-1 and GSK-3β was performed to get molecular insight into the first reported dual inhibitor. Further, we designed and evaluated a naphthofuran series for its ability to inhibit BACE-1 and GSK-3β with the computational approaches. Docking study of naphthofuran series showed a good binding affinity towards both the targets. Molecular dynamics, binding energy, and network analysis were performed to compare their binding with the targets and amino acids responsible for binding. Naphthofuran series derivatives showed good interaction within the active site residues of both of the targets. Hydrogen bond occupancy and binding energy suggested strong binding with the targets. Dual-inhibitor binding was mostly governed by the hydrophobic interactions for both of the targets. Per residue energy decomposition and network analysis identified the key residues involved in the binding and inhibiting BACE-1 and GSK-3β. The results indicated that naphthofuran series derivative 11 may be a promising first-in-class dual inhibitor against BACE-1 and GSK-3β. This naphthofuran series may be further explored to design better dual inhibitors. Graphical abstract Naphthofuran derivative as a dual inhibitor for BACE-1 and GSK-3β.
NASA Astrophysics Data System (ADS)
Wang, Fangfang; Zhou, Bo
2018-04-01
Protein tyrosine phosphatase 1B (PTP1B) is an intracellular non-receptor phosphatase that is implicated in signal transduction of insulin and leptin pathways, thus PTP1B is considered as potential target for treating type II diabetes and obesity. The present article is an attempt to formulate the three-dimensional quantitative structure-activity relationship (3D-QSAR) modeling of a series of compounds possessing PTP1B inhibitory activities using comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) techniques. The optimum template ligand-based models are statistically significant with great CoMFA (R2cv = 0.600, R2pred = 0.6760) and CoMSIA (R2cv = 0.624, R2pred = 0.8068) values. Molecular docking was employed to elucidate the inhibitory mechanisms of this series of compounds against PTP1B. In addition, the CoMFA and CoMSIA field contour maps agree well with the structural characteristics of the binding pocket of PTP1B active site. The knowledge of structure-activity relationship and ligand-receptor interactions from 3D-QSAR model and molecular docking will be useful for better understanding the mechanism of ligand-receptor interaction and facilitating development of novel compounds as potent PTP1B inhibitors.
Handa, Koichi; Nakagome, Izumi; Yamaotsu, Noriyuki; Gouda, Hiroaki; Hirono, Shuichi
2015-01-01
The pregnane X receptor [PXR (NR1I2)] induces the expression of xenobiotic metabolic genes and transporter genes. In this study, we aimed to establish a computational method for quantifying the enzyme-inducing potencies of different compounds via their ability to activate PXR, for the application in drug discovery and development. To achieve this purpose, we developed a three-dimensional quantitative structure-activity relationship (3D-QSAR) model using comparative molecular field analysis (CoMFA) for predicting enzyme-inducing potencies, based on computer-ligand docking to multiple PXR protein structures sampled from the trajectory of a molecular dynamics simulation. Molecular mechanics-generalized born/surface area scores representing the ligand-protein-binding free energies were calculated for each ligand. As a result, the predicted enzyme-inducing potencies for compounds generated by the CoMFA model were in good agreement with the experimental values. Finally, we concluded that this 3D-QSAR model has the potential to predict the enzyme-inducing potencies of novel compounds with high precision and therefore has valuable applications in the early stages of the drug discovery process. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.
Shi, Jie-Hua; Zhou, Kai-Li; Lou, Yan-Yue; Pan, Dong-Qi
2018-03-15
Molecular interaction of darunavir (DRV), a HIV protease inhibitor with calf thymus deoxyribonucleic acid (ct-DNA) was studied in physiological buffer (pH7.4) by multi-spectroscopic approaches hand in hand with viscosity measurements and molecular docking technique. The UV absorption and fluorescence results together revealed the formation of a DRV-ct-DNA complex having binding affinities of the order of 10 3 M -1 , which was more in keeping with the groove binding. The results that DRV bound to ct-DNA via groove binding mode was further evidenced by KI quenching studies, viscosity measurements, competitive binding investigations with EB and Rhodamine B and CD spectral analysis. The effect of ionic strength indicated the negligible involvement of electrostatic interaction between DRV and ct-DNA. The thermodynamic parameters regarding the binding interaction of DRV with ct-DNA in terms of enthalpy change (ΔH 0 ) and entropy change (ΔS 0 ) were -63.19kJ mol -1 and -141.92J mol -1 K -1 , indicating that hydrogen bonds and van der Waals forces played a predominant role in the binding process. Furthermore, molecular simulation studies suggested that DRV molecule was prone to bind in the A-T rich region of the minor groove of DNA. Copyright © 2017 Elsevier B.V. All rights reserved.
Atomistic models for free energy evaluation of drug binding to membrane proteins.
Durdagi, S; Zhao, C; Cuervo, J E; Noskov, S Y
2011-01-01
The binding of various molecules to integral membrane proteins with optimal affinity and specificity is central to normal function of cell. While membrane proteins represent about one third of the whole cell proteome, they are a majority of common drug targets. The quest for the development of computational models capable of accurate evaluation of binding affinities, decomposition of the binding into its principal components and thus mapping molecular mechanisms of binding remains one of the main goals of modern computational biophysics and related drug development. The primary scope of this review will be on the recent extension of computational methods for the study of drug binding to membrane proteins. Several examples of such applications will be provided ranging from secondary transporters to voltage gated channels. In this mini-review, we will provide a short summary on the breadth of different methods for binding affinity evaluation. These methods include molecular docking with docking scoring functions, molecular dynamics (MD) simulations combined with post-processing analysis using Molecular Mechanics/Poisson Boltzmann (Generalized Born) Surface Area (MM/PB(GB)SA), as well as direct evaluation of free energies from Free Energy Perturbation (FEP) with constraining schemes, and Potential of Mean Force (PMF) computations. We will compare advantages and shortcomings of popular techniques and provide discussion on the integrative strategies for drug development aimed at targeting membrane proteins.
Effect of solid surface charge on the binding behaviour of a metal-binding peptide
Donatan, Senem; Sarikaya, Mehmet; Tamerler, Candan; Urgen, Mustafa
2012-01-01
Over the last decade, solid-binding peptides have been increasingly used as molecular building blocks coupling bio- and nanotechnology. Despite considerable research being invested in this field, the effects of many surface-related parameters that define the binding of peptide to solids are still unknown. In the quest to control biological molecules at solid interfaces and, thereby, tailoring the binding characteristics of the peptides, the use of surface charge of the solid surface may probably play an important role, which then can be used as a potential tuning parameter of peptide adsorption. Here, we report quantitative investigation on the viscoelastic properties and binding kinetics of an engineered gold-binding peptide, 3RGBP1, adsorbed onto the gold surface at different surface charge densities. The experiments were performed in aqueous solutions using an electrochemical dissipative quartz crystal microbalance system. Hydrodynamic mass, hydration state and surface coverage of the adsorbed peptide films were determined as a function of surface charge density of the gold metal substrate. Under each charged condition, binding of 3rGBP1 displayed quantitative differences in terms of adsorbed peptide amount, surface coverage ratio and hydration state. Based on the intrinsically disordered structure of the peptide, we propose a possible mechanism for binding of the peptide that can be used for tuning surface adsorption in further studies. Controlled alteration of peptide binding on solid surfaces, as shown here, may provide novel methods for surface functionalization used for bioenabled processing and fabrication of future micro- and nanodevices. PMID:22491974
NASA Astrophysics Data System (ADS)
Cheong, Youngjoo; Shim, Gyuchang; Kang, Dongil; Kim, Yangmee
1999-02-01
The conformational details of Man( α1,6)Man( α)OMe are investigated through NMR spectroscopy in conjunction with molecular modeling. The lowest energy structure (M1) in the adiabatic energy map calculated with a dielectric constant of 50 has glycosidic dihedral angles of φ=-60°, ψ=180° and ω=180°. The other low energy structure (M2) has glycosidic dihedral angles of φ=-60°, ψ=180° and ω=-60°. Molecular dynamics simulations and NMR experiments prove that Man( α1,6)Man( α)OMe in the free form exists with conformational averaging of M1 and M2 conformers predominantly. Molecular dynamics simulations of the pea lectin-carbohydrate complex with explicit water molecules starting from the X-ray crystallographic structure of pea lectin show that the protein-carbohydrate interaction centers mainly on the hydrogen bonds and van der Waals interactions between protein and carbohydrate. From the molecular dynamics simulation, it is found that the M1 structure can bind to pea lectin better than the M2 structure. The origin of this selectivity is the water- mediated hydrogen bond interactions between the remote mannose and the binding site of pea lectin as well as the direct hydrogen bond interaction between the terminal mannose and pea lectin. Extensive networks of interactions in the carbohydrate binding site and the metal binding site are important in maintaining the carbohydrate binding properties of pea lectin. Especially, the predominant factors of mannose binding specificity of pea lectin are the hydrogen bond interactions between the 4th hydroxyl groups of the terminal sugar ring and the side chains of Asp-81 and Asn-125 in the carbohydrate binding site, and the additional interactions between these side chains of Asp-81 and Asn-125 and the calcium ion in the metal binding site of pea lectin.
Chinta, Gopichand; Ramya Chandar Charles, Mariasoosai; Klopčič, Ivana; Sollner Dolenc, Marija; Periyasamy, Latha; Selvaraj Coumar, Mohane
2015-07-01
Understanding the molecular mechanism of action of traditional medicines is an important step towards developing marketable drugs from them. Piperine, an active constituent present in the Piper species, is used extensively in Ayurvedic medicines (practiced on the Indian subcontinent). Among others, piperine is known to possess a male contraceptive effect; however, the molecular mechanism of action for this effect is not very clear. In this regard, detailed docking and molecular dynamics simulation studies of piperine with the androgen-binding protein and androgen receptors were carried out. Androgen receptors control male sexual behavior and fertility, while the androgen-binding protein binds testosterone and maintains its concentration at optimal levels to stimulate spermatogenesis in the testis. It was found that piperine docks to the androgen-binding protein, similar to dihydrotestosterone, and to androgen receptors, similar to cyproterone acetate (antagonist). Also, the piperine-androgen-binding protein and piperine-androgen receptors interactions were found to be stable throughout 30 ns of molecular dynamics simulation. Further, two independent simulations for 10 ns each also confirmed the stability of these interactions. Detailed analysis of the piperine-androgen-binding protein interactions shows that piperine interacts with Ser42 of the androgen-binding protein and could block the binding with its natural ligands dihydrotestosterone/testosterone. Moreover, piperine interacts with Thr577 of the androgen receptors in a manner similar to the antagonist cyproterone acetate. Based on the in silico results, piperine was tested in the MDA-kb2 cell line using the luciferase reporter gene assay and was found to antagonize the effect of dihydrotestosterone at nanomolar concentrations. Further detailed biochemical experiments could help to develop piperine as an effective male contraceptive agent in the future. Georg Thieme Verlag KG Stuttgart · New York.
Li, Xiaolin; Ye, Li; Wang, Xiaoxiang; Shi, Wei; Qian, XiangPing; Zhu, YongLiang; Yu, HongXia
2013-10-01
Endocrine-disrupting chemicals have attracted great concern. As major metabolites of polychlorinated biphenyls (PCBs), hydroxylated polychlorinated biphenyls (HO-PCBs) may disrupt estrogen hormone status because of their structural similarity to estrogen endogenous compounds. However, interactions between HO-PCBs and estrogen receptors (ERs) are not fully understood. In the present work, a molecular modeling study combining molecular docking, molecular dynamics simulations, and binding free energy calculations was performed to characterize the interactions of three HO-PCBs (4'-HO-PCB50, 2'-HO-PCB65, and 4'-HO-PCB69) having much different estrogenic activities with ERβ. Docking results showed that binding between ligands and ERβ was stabilized by hydrogen bond and hydrophobic interactions. The binding free energies of three ligands with ERβ were calculated, and further binding free energy decomposition analysis indicated that the dominating driving force of the binding between the ligands and ERβ was the van der Waals interaction. Some key residues, such as Leu298, Phe356, Gly472, His475, and Leu476, played important roles in ligand-receptor interactions by forming hydrophobic and hydrogen bond interactions with ligands. The results may be beneficial to increase understanding of the interactions between HO-PCBs and ERβ.
NASA Astrophysics Data System (ADS)
Abdelhameed, Ali S.; Alanazi, Amer M.; Bakheit, Ahmed H.; Darwish, Hany W.; Ghabbour, Hazem A.; Darwish, Ibrahim A.
2017-01-01
Binding of the recently introduced anti-cancer drug, crizotinib (CRB) with the bovine serum albumin (BSA) was comprehensively studied with the aid of fluorescence and UV-Vis spectroscopic as well as molecular docking techniques. The collective results of the study under the simulated physiological conditions proposed a static type of binding occurring between the CRB and BSA with binding constants of 104 L mol- 1. BSA conformational changes were investigated using three dimensional (3D) and synchronous fluorescence measurements. Moreover, the results of site marker competitive experiments and molecular docking, it could be deduced that CRB was inserted into the subdomain IIA (site I) of BSA yielding a more stabilized system. This was further confirmed with the molecular docking results which revealed that CRB is located in the active site residues Try149, Glu152, Ser191, Arg194, Arg198, Trp213, Arg217, Arg256, His287, Ala290, Glu291, Ser343, Asp450 within a radius of 6 Å. Combining the molecular docking studies and the computed thermodynamic parameters, it can be inferred that hydrophobic and electrostatic interactions are the major binding forces involved in formation of the CRB-BSA complex.
Kovačević, Strahinja; Karadžić, Milica; Podunavac-Kuzmanović, Sanja; Jevrić, Lidija
2018-01-01
The present study is based on the quantitative structure-activity relationship (QSAR) analysis of binding affinity toward human prion protein (huPrP C ) of quinacrine, pyridine dicarbonitrile, diphenylthiazole and diphenyloxazole analogs applying different linear and non-linear chemometric regression techniques, including univariate linear regression, multiple linear regression, partial least squares regression and artificial neural networks. The QSAR analysis distinguished molecular lipophilicity as an important factor that contributes to the binding affinity. Principal component analysis was used in order to reveal similarities or dissimilarities among the studied compounds. The analysis of in silico absorption, distribution, metabolism, excretion and toxicity (ADMET) parameters was conducted. The ranking of the studied analogs on the basis of their ADMET parameters was done applying the sum of ranking differences, as a relatively new chemometric method. The main aim of the study was to reveal the most important molecular features whose changes lead to the changes in the binding affinities of the studied compounds. Another point of view on the binding affinity of the most promising analogs was established by application of molecular docking analysis. The results of the molecular docking were proven to be in agreement with the experimental outcome. Copyright © 2017 Elsevier B.V. All rights reserved.
Computational membrane biophysics: From ion channel interactions with drugs to cellular function.
Miranda, Williams E; Ngo, Van A; Perissinotti, Laura L; Noskov, Sergei Yu
2017-11-01
The rapid development of experimental and computational techniques has changed fundamentally our understanding of cellular-membrane transport. The advent of powerful computers and refined force-fields for proteins, ions, and lipids has expanded the applicability of Molecular Dynamics (MD) simulations. A myriad of cellular responses is modulated through the binding of endogenous and exogenous ligands (e.g. neurotransmitters and drugs, respectively) to ion channels. Deciphering the thermodynamics and kinetics of the ligand binding processes to these membrane proteins is at the heart of modern drug development. The ever-increasing computational power has already provided insightful data on the thermodynamics and kinetics of drug-target interactions, free energies of solvation, and partitioning into lipid bilayers for drugs. This review aims to provide a brief summary about modeling approaches to map out crucial binding pathways with intermediate conformations and free-energy surfaces for drug-ion channel binding mechanisms that are responsible for multiple effects on cellular functions. We will discuss post-processing analysis of simulation-generated data, which are then transformed to kinetic models to better understand the molecular underpinning of the experimental observables under the influence of drugs or mutations in ion channels. This review highlights crucial mathematical frameworks and perspectives on bridging different well-established computational techniques to connect the dynamics and timescales from all-atom MD and free energy simulations of ion channels to the physiology of action potentials in cellular models. This article is part of a Special Issue entitled: Biophysics in Canada, edited by Lewis Kay, John Baenziger, Albert Berghuis and Peter Tieleman. Copyright © 2017 Elsevier B.V. All rights reserved.
[Planar molecular arrangements aid the design of MHC class II binding peptides].
Cortés, A; Coral, J; McLachlan, C; Benítez, R; Pinilla, L
2017-01-01
The coupling between peptides and MHC-II proteins in the human immune system is not well understood. This work presents an evidence-based hypothesis of a guiding intermolecular force present in every human MHC-II protein (HLA-II). Previously, we examined the spatial positions of the fully conserved residues in all HLA-II protein types. In each one, constant planar patterns were revealed. These molecular planes comprise of amino acid groups of the same chemical species (for example, Gly) distributed across the protein structure. Each amino acid plane has a unique direction and this directional element offers spatial selectivity. Constant within all planes, too, is the presence of an aromatic residue possessing electrons in movement, leading the authors to consider that the planes generate electromagnetic fields that could serve as an attractive force in a single direction. Selection and attraction between HLA-II molecules and antigen peptides would, therefore, be non-random, resulting in a coupling mechanism as effective and rapid as is clearly required in the immune response. On the basis of planar projections onto the HLA-II groove, modifications were made by substituting the key residues in the class II-associated invariant chain peptide-a peptide with a universal binding affinity-resulting in eight different modified peptides with affinities greater than that of the unmodified peptide. Accurate and reliable prediction of MHC class II-binding peptides may facilitate the design of universal vaccine-peptides with greatly enhanced binding affinities. The proposed mechanisms of selection, attraction and coupling between HLA-II and antigen peptides are explained further in the paper.
Use of molecular binding pair technology for definitive product marking and identification
NASA Astrophysics Data System (ADS)
Rittenburg, James H.
1998-04-01
Counterfeiting and diversion of brand name products is a significant worldwide problem. Loss of revenue to the manufacturers is obviously important, however erosion of consumer confidence, and liability for adverse health effects or performance caused by poor quality product can be of even greater significance. Biocode has developed a novel approach to product marking and identification that utilizes molecular binding pair technologies such as immunoassay. The sensitivity, specificity, and ease of use of immunoassay provides a powerful method for detecting trace levels of intentionally added chemical markers. Using the diversity of the immune response, Biocode has developed a library of binding molecules and highly sensitive immunoassay systems for detection and measurement of a variety of chemical markers. The markers have been selected based on their stability and compatibility within various types of products. For food, beverage, and pharmaceutical applications, common and naturally occurring food ingredients and pharmaceutical excipients provide markers which are safe, readily available, and already approved for use. For other applications such as fuel and lubricant marking. Solubility and chemical stability of the markers are a major consideration. In addition to incorporating markers directly into products, Biocode has also developed invisible inks that can be printed onto the surface of products, packaging, or labels. The trace levels of marker that is printed onto the surface of a product or package can only be revealed by using the complementary binding pair that has been developed by Biocode. This technology provides for simple field tests and very high level of security as it is virtually impossible to copy.
Song, Lei; Liu, Yingying; Zhang, Zhifang; Wang, Xi; Chen, Jinchun
2010-10-01
Inorganic-binding peptides termed as genetically engineered polypeptides for inorganics (GEPIs), are small peptide sequences selected via combinatorial biology-based protocols of phage or cell surface display technologies. Recent advances in nanotechnology and molecular biology allow the engineering of these peptides with specific affinity to inorganics, often used as molecular linkers or assemblers, to facilitate materials synthesis, which provides a new insight into the material science and engineering field. As a case study on this biomimetic application, here we report a novel biosynthetic ZnO binding protein and its application in promoting bio-inorganic materials synthesis. In brief, the gene encoding a ZnO binding peptide(ZBP) was genetically fused with His(6)-tag and GST-tag using E.coli expression vector pET-28a (+) and pGEX-4T-3. The recombinant protein GST-His-ZBP was expressed, purified with Ni-NTA system, identified by SDS-PAGE electrophoresis and Western blot analysis and confirmed by liquid chromatography-mass spectrometry/mass spectrometry (LC-MS/MS) analysis. Affinity adsorption test demonstrated that the fusion protein had a specific avidity for ZnO nanoparticles (NPs). Results from the bio-inorganic synthesis experiment indicated that the new protein played a promoting part in grain refinement and accelerated precipitation during the formation of the ultra-fine precursor powders in the Zn(OH)(2) sol. X-ray diffraction (XRD) analysis on the final products after calcining the precursor powders showed that hexagonal wurtzite ZnO crystals were obtained. Our work suggested a novel approach to the application about the organic-inorganic interactions.
Mahdi, Chanif; Nurdiana, Nurdiana; Kikuchi, Takheshi; Fatchiyah, Fatchiyah
2014-01-01
To understand the structural features that dictate the selectivity of the two isoforms of the prostaglandin H2 synthase (PGHS/COX), the three-dimensional (3D) structure of COX-1/COX-2 was assessed by means of binding energy calculation of virtual molecular dynamic with using ligand alpha-Patchouli alcohol isomers. Molecular interaction studies with COX-1 and COX-2 were done using the molecular docking tools by Hex 8.0. Interactions were further visualized by using Discovery Studio Client 3.5 software tool. The binding energy of molecular interaction was calculated by AMBER12 and Virtual Molecular Dynamic 1.9.1 software. The analysis of the alpha-Patchouli alcohol isomer compounds showed that all alpha-Patchouli alcohol isomers were suggested as inhibitor of COX-1 and COX-2. Collectively, the scoring binding energy calculation (with PBSA Model Solvent) of alpha-Patchouli alcohol isomer compounds (CID442384, CID6432585, CID3080622, CID10955174, and CID56928117) was suggested as candidate for a selective COX-1 inhibitor and CID521903 as nonselective COX-1/COX-2. PMID:25484897
Xue, Yi; Yuwen, Tairan; Zhu, Fangqiang; Skrynnikov, Nikolai R
2014-10-21
Intrinsically disordered proteins (IDPs) often rely on electrostatic interactions to bind their structured targets. To obtain insight into the mechanism of formation of the electrostatic encounter complex, we investigated the binding of the peptide Sos (PPPVPPRRRR), which serves as a minimal model for an IDP, to the c-Crk N-terminal SH3 domain. Initially, we measured ¹⁵N relaxation rates at two magnetic field strengths and determined the binding shifts for the complex of Sos with wild-type SH3. We have also recorded a 3 μs molecular dynamics (MD) trajectory of this complex using the Amber ff99SB*-ILDN force field. The comparison of the experimental and simulated data shows that MD simulation consistently overestimates the strength of salt bridge interactions at the binding interface. The series of simulations using other advanced force fields also failed to produce any satisfactory results. To address this issue, we have devised an empirical correction to the Amber ff99SB*-ILDN force field whereby the Lennard-Jones equilibrium distance for the nitrogen-oxygen pair across the Arg-to-Asp and Arg-to-Glu salt bridges has been increased by 3%. Implementing this correction resulted in a good agreement between the simulations and the experiment. Adjusting the strength of salt bridge interactions removed a certain amount of strain contained in the original MD model, thus improving the binding of the hydrophobic N-terminal portion of the peptide. The arginine-rich C-terminal portion of the peptide, freed from the effect of the overstabilized salt bridges, was found to interconvert more rapidly between its multiple conformational states. The modified MD protocol has also been successfully used to simulate the entire binding process. In doing so, the peptide was initially placed high above the protein surface. It then arrived at the correct bound pose within ∼2 Å of the crystallographic coordinates. This simulation allowed us to analyze the details of the dynamic binding intermediate, i.e., the electrostatic encounter complex. However, an experimental characterization of this transient, weakly populated state remains out of reach. To overcome this problem, we designed the double mutant of c-Crk N-SH3 in which mutations Y186L and W169F abrogate tight Sos binding and shift the equilibrium toward the intermediate state resembling the electrostatic encounter complex. The results of the combined NMR and MD study of this engineered system will be reported in the next part of this paper.
NASA Astrophysics Data System (ADS)
Jing, Zhifeng; Qi, Rui; Liu, Chengwen; Ren, Pengyu
2017-10-01
The interactions between metal ions and proteins are ubiquitous in biology. The selective binding of metal ions has a variety of regulatory functions. Therefore, there is a need to understand the mechanism of protein-ion binding. The interactions involving metal ions are complicated in nature, where short-range charge-penetration, charge transfer, polarization, and many-body effects all contribute significantly, and a quantitative description of all these interactions is lacking. In addition, it is unclear how well current polarizable force fields can capture these energy terms and whether these polarization models are good enough to describe the many-body effects. In this work, two energy decomposition methods, absolutely localized molecular orbitals and symmetry-adapted perturbation theory, were utilized to study the interactions between Mg2+/Ca2+ and model compounds for amino acids. Comparison of individual interaction components revealed that while there are significant charge-penetration and charge-transfer effects in Ca complexes, these effects can be captured by the van der Waals (vdW) term in the AMOEBA force field. The electrostatic interaction in Mg complexes is well described by AMOEBA since the charge penetration is small, but the distance-dependent polarization energy is problematic. Many-body effects were shown to be important for protein-ion binding. In the absence of many-body effects, highly charged binding pockets will be over-stabilized, and the pockets will always favor Mg and thus lose selectivity. Therefore, many-body effects must be incorporated in the force field in order to predict the structure and energetics of metalloproteins. Also, the many-body effects of charge transfer in Ca complexes were found to be non-negligible. The absorption of charge-transfer energy into the additive vdW term was a main source of error for the AMOEBA many-body interaction energies.
Molecular dynamic simulations on the structures and properties of epsilon-CL-20(0 0 1)/F 2314 PBX.
Xu, Xiaojuan; Xiao, Jijun; Huang, Hui; Li, Jinshan; Xiao, Heming
2010-03-15
Molecular dynamical (MD) simulations with the COMPASS force field were employed to investigate the influences of temperature (T), the concentration of F(2314) binder (W%), and crystal defects on the mechanical properties, binding energy (E(bind)), and detonation properties of epsilon-CL-20(001)/F(2314) PBX (polymer bonded explosives). T was found to have some influences on the mechanical properties, and the PBX at 298 K was considered with better mechanical properties. By radial distribution function g(r) analysis the three types of hydrogen bonds, H...O, H...F, and H...Cl were predicted as the main interaction formats between F(2314) and epsilon-CL-20, and the strength of these interactions changed with temperature changing. The isotropic properties of the PBX increased with W% increasing, but each modulus and E(bind) did not monotonously vary with W% increasing. The detonation properties of the PBX decreased with the increasing W%, and the PBX with 4.69% F(2314) was regarded with good detonation properties. The existence of crystal defects (vacancy or adulteration) might increase the elasticity but destabilize the system to some extent, and the mechanical properties of PBX were chiefly determined by the main body explosive. The above information was thought guidable for practical formulation design of PBX. (c) 2009 Elsevier B.V. All rights reserved.
Frazier, Taylor P.; Palmer, Nathan A.; Xie, Fuliang; ...
2016-11-08
Switchgrass ( Panicum virgatum L.) is a warm-season perennial grass that can be used as a second generation bioenergy crop. However, foliar fungal pathogens, like switchgrass rust, have the potential to significantly reduce switchgrass biomass yield. Despite its importance as a prominent bioenergy crop, a genome-wide comprehensive analysis of NB-LRR disease resistance genes has yet to be performed in switchgrass. In this study, we used a homology-based computational approach to identify 1011 potential NB-LRR resistance gene homologs (RGHs) in the switchgrass genome (v 1.1). In addition, we identified 40 RGHs that potentially contain unique domains including major sperm protein domain,more » jacalin-like binding domain, calmodulin-like binding, and thioredoxin. RNA-sequencing analysis of leaf tissue from ‘Alamo’, a rust-resistant switchgrass cultivar, and ‘Dacotah’, a rust-susceptible switchgrass cultivar, identified 2634 high quality variants in the RGHs between the two cultivars. RNA-sequencing data from field-grown cultivar ‘Summer’ plants indicated that the expression of some of these RGHs was developmentally regulated. Our results provide useful insight into the molecular structure, distribution, and expression patterns of members of the NB-LRR gene family in switchgrass. These results also provide a foundation for future work aimed at elucidating the molecular mechanisms underlying disease resistance in this important bioenergy crop.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Frazier, Taylor P.; Palmer, Nathan A.; Xie, Fuliang
Switchgrass ( Panicum virgatum L.) is a warm-season perennial grass that can be used as a second generation bioenergy crop. However, foliar fungal pathogens, like switchgrass rust, have the potential to significantly reduce switchgrass biomass yield. Despite its importance as a prominent bioenergy crop, a genome-wide comprehensive analysis of NB-LRR disease resistance genes has yet to be performed in switchgrass. In this study, we used a homology-based computational approach to identify 1011 potential NB-LRR resistance gene homologs (RGHs) in the switchgrass genome (v 1.1). In addition, we identified 40 RGHs that potentially contain unique domains including major sperm protein domain,more » jacalin-like binding domain, calmodulin-like binding, and thioredoxin. RNA-sequencing analysis of leaf tissue from ‘Alamo’, a rust-resistant switchgrass cultivar, and ‘Dacotah’, a rust-susceptible switchgrass cultivar, identified 2634 high quality variants in the RGHs between the two cultivars. RNA-sequencing data from field-grown cultivar ‘Summer’ plants indicated that the expression of some of these RGHs was developmentally regulated. Our results provide useful insight into the molecular structure, distribution, and expression patterns of members of the NB-LRR gene family in switchgrass. These results also provide a foundation for future work aimed at elucidating the molecular mechanisms underlying disease resistance in this important bioenergy crop.« less
NASA Astrophysics Data System (ADS)
Liu, Shengtang; Meng, Xuan-Yu; Perez-Aguilar, Jose Manuel; Zhou, Ruhong
2016-11-01
Titanium dioxide (TiO2) is probably one of the most widely used nanomaterials, and its extensive exposure may result in potentially adverse biological effects. Yet, the underlying mechanisms of interaction involving TiO2 NPs and macromolecules, e.g., proteins, are still not well understood. Here, we perform all-atom molecular dynamics simulations to investigate the interactions between TiO2 NPs and the twenty standard amino acids in aqueous solution exploiting a newly developed TiO2 force field. We found that charged amino acids play a dominant role during the process of binding to the TiO2 surface, with both basic and acidic residues overwhelmingly preferred over the non-charged counterparts. By calculating the Potential Mean Force, we showed that Arg is prone to direct binding onto the NP surface, while Lys needs to overcome a ~2 kT free energy barrier. On the other hand, acidic residues tend to form “water bridges” between their sidechains and TiO2 surface, thus displaying an indirect binding. Moreover, the overall preferred positions and configurations of different residues are highly dependent on properties of the first and second solvation water. These molecular insights learned from this work might help with a better understanding of the interactions between biomolecules and nanomaterials.
Electrostatic steering and ionic tethering in enzyme–ligand binding: Insights from simulations
Wade, Rebecca C.; Gabdoulline, Razif R.; Lüdemann, Susanna K.; Lounnas, Valère
1998-01-01
To bind at an enzyme’s active site, a ligand must diffuse or be transported to the enzyme’s surface, and, if the binding site is buried, the ligand must diffuse through the protein to reach it. Although the driving force for ligand binding is often ascribed to the hydrophobic effect, electrostatic interactions also influence the binding process of both charged and nonpolar ligands. First, electrostatic steering of charged substrates into enzyme active sites is discussed. This is of particular relevance for diffusion-influenced enzymes. By comparing the results of Brownian dynamics simulations and electrostatic potential similarity analysis for triose-phosphate isomerases, superoxide dismutases, and β-lactamases from different species, we identify the conserved features responsible for the electrostatic substrate-steering fields. The conserved potentials are localized at the active sites and are the primary determinants of the bimolecular association rates. Then we focus on a more subtle effect, which we will refer to as “ionic tethering.” We explore, by means of molecular and Brownian dynamics simulations and electrostatic continuum calculations, how salt links can act as tethers between structural elements of an enzyme that undergo conformational change upon substrate binding, and thereby regulate or modulate substrate binding. This is illustrated for the lipase and cytochrome P450 enzymes. Ionic tethering can provide a control mechanism for substrate binding that is sensitive to the electrostatic properties of the enzyme’s surroundings even when the substrate is nonpolar. PMID:9600896
Novel approach for extraction of quercetin using molecular imprinted membranes
NASA Astrophysics Data System (ADS)
Kamarudin, Siti Fatimah; Ahmad, Mohd Noor; Dzahir, Irfan Hatim Mohamed; Nasir, Azalina Mohamed; Ishak, Noorhidayah; Halim, Nurul Farhanah
2017-12-01
Quercetin imprinted membrane (QIM) was synthesized and applied for the extraction of quercetin. The quercetin imprinted membranes (QIM) were fabricated through a non-covalent approach via surface thermal polymerization. Polyvinylidene fluoride (PVDF) microfiltration membrane was used as a support to improve mechanical stability of the membrane. The thin imprinted layer was formed by copolymerization of acrylamide (AA) as functional monomer and ethylene glycol dimethacrylate (EGDMA) as crosslinker in the presence of quercetin as template in tetrahydrofuran (THF) solution. The Atomic Force Microscopy (AFM) and Field Emission Scanning Electron Microscope (FESEM) were used to visualize the surface of membrane. Batch rebinding and binding kinetic experiments proved that the binding properties of the QIM are higher than non-imprinted membranes (NIM). QIM also have higher selectivity towards quercetin compared to sinensetin and rosmarinic acid.
Das, Ranjita; Neese, Frank; van Gastel, Maurice
2016-09-21
In this work, a detailed quantum chemical study of the mechanism of [Ni(bdt)(dppf)] (Ni(II)L) catalyzed hydrogen formation [A. Gan, T. L. Groy, P. Tarakeshwar, S. K. S. Mazinani, J. Shearer, V. Mujica and A. K. Jones, J. Am. Chem. Soc., 2015, 137, 1109-1115] following an electro-chemical-electro-chemical (ECEC) pathway is reported. The complex exclusively catalyzes the reduction of protons to molecular hydrogen. The calculations suggest that the first one-electron reduction of the [Ni(II)L] catalyst is the rate limiting step of the catalytic cycle and hence, the buildup of detectable reaction intermediates is not expected. The catalytic activity of the [Ni(II)L] complex is facilitated by the flexibility of the ligand system, which allows the ligand framework to adapt to changes in the Ni oxidation state over the course of the reaction. Additionally, a comparison is made with the catalytic activity of [NiFe] hydrogenase. It is argued that the directionality of the reversible hydrogen formation reaction is controlled by the ligand field of the nickel ion and the possibility for side-on (η(2)) binding of H2: if the ligand framework does not allow for η(2) binding of H2, as is the case for [Ni(II)L], the catalyst irreversibly reduces protons. If the ligand field allows η(2) binding of H2, the catalyst can in principle work reversibly. The conditions for η(2) binding are discussed.
N-glycan based ER molecular chaperone and protein quality control system: the calnexin binding cycle
Lamriben, Lydia; Graham, Jill B.; Adams, Benjamin M.; Hebert, Daniel N.
2015-01-01
Helenius and colleagues proposed over twenty-years ago a paradigm-shifting model for how chaperone binding in the endoplasmic reticulum was mediated and controlled for a new type of molecular chaperone- the carbohydrate binding chaperones, calnexin and calreticulin. While the originally established basics for this lectin chaperone binding cycle holds true today, there has been a number of important advances that have expanded our understanding of its mechanisms of action, role in protein homeostasis, and its connection to disease states that are highlighted in this review. PMID:26676362
Dehury, Budheswar; Maharana, Jitendra; Sahoo, Bikash Ranjan; Sahu, Jagajjit; Sen, Priyabrata; Modi, Mahendra Kumar; Barooah, Madhumita
2015-04-01
The avirulence gene avrxa5 of bacterial blight pathogen Xanthomonas oryzae pv. oryzae (Xoo) recognized by the resistant rice lines having corresponding resistance (xa5) gene in a gene-for-gene manner. We used a combinatorial approach involving protein-protein docking, molecular dynamics (MD) simulations and binding free energy calculations to gain novel insights into the gene-for-gene mechanism that governs the direct interaction of R-Avr protein. From the best three binding poses predicted by molecular docking, MD simulations were performed to explore the dynamic binding mechanism of xa5 and avrxa5. Molecular Mechanics/Poisson Boltzmann Surface Area (MM/PBSA) techniques were employed to calculate the binding free energy and to uncover the thriving force behind the molecular recognition of avrxa5 by eukaryotic transcription factor xa5. Binding free energy analysis revealed van der Waals term as the most constructive component that favors the xa5 and avrxa5 interaction. In addition, hydrogen bonds (H-bonds) and essential electrostatic interactions analysis highlighted amino acid residues Lys54/Asp870, Lys56/Ala868, Lys56/Ala866, Lys56/Glu871, Ile59/His862, Gly61/Phe858, His62/Arg841, His62/Leu856, Ser101/Ala872 and Ser105/Asp870 plays pivotal role for the energetically stability of the R-Avr complex. Insights gained from the present study are expected to unveil the molecular mechanisms that define the transcriptional activator mediated transcriptome modification in host plants. Copyright © 2015 Elsevier Inc. All rights reserved.
Homing peptide guiding optical molecular imaging for the diagnosis of bladder cancer
NASA Astrophysics Data System (ADS)
Yang, Xiao-feng; Pang, Jian-zhi; Liu, Jie-hao; Zhao, Yang; Jia, Xing-you; Li, Jun; Liu, Reng-xin; Wang, Wei; Fan, Zhen-wei; Zhang, Zi-qiang; Yan, San-hua; Luo, Jun-qian; Zhang, Xiao-lei
2014-11-01
Background: The limitations of primary transurethral resection of bladder tumor (TURBt) have led the residual tumors rates as high as 75%. The intraoperative fluorescence imaging offers a great potential for improving TURBt have been confirmed. So we aim to distinguish the residual tumors and normal mucosa using fluorescence molecular imaging formed by conjugated molecule of the CSNRDARRC bladder cancer homing peptide with fluorescent dye. The conjugated molecule was abbreviated FIuo-ACP. In our study, we will research the image features of FIuo-ACP probe targeted bladder cancer for fluorescence molecular imaging diagnosis for bladder cancer in vivo and ex vivo. Methods: After the FIuo-ACP probe was synthetized, the binding sites, factors affecting binding rates, the specificity and the targeting of Fluo-ACP labeled with bladder cancer cells were studied respectively by laser scanning confocal microscope (LSCM), immunofluorescence and multispectral fluorescence ex vivo optical molecular imaging system. Results: The binding sites were located in nucleus and the binding rates were correlated linearly with the dose of probe and the grade of pathology. Moreover, the probe has a binding specificity with bladder cancer in vivo and ex vivo. Tumor cells being labeled by the Fluo-ACP, bright green spots were observed under LSCM. The tissue samples and tumor cells can be labeled and identified by fluorescence microscope. Optical molecular imaging of xenograft tumor tissues was exhibited as fluorescent spots under EMCCD. Conclusion: The CSNRDARRC peptides might be a useful bladder cancer targeting vector. The FIuo-ACP molecular probe was suitable for fluorescence molecular imaging diagnosis for bladder cancer in vivo and ex vivo.
Su, Xun-Cheng; Ozawa, Kiyoshi; Yagi, Hiromasa; Lim, Siew P; Wen, Daying; Ekonomiuk, Dariusz; Huang, Danzhi; Keller, Thomas H; Sonntag, Sebastian; Caflisch, Amedeo; Vasudevan, Subhash G; Otting, Gottfried
2009-08-01
The two-component NS2B-NS3 protease of West Nile virus is essential for its replication and presents an attractive target for drug development. Here, we describe protocols for the high-yield expression of stable isotope-labelled samples in vivo and in vitro. We also describe the use of NMR spectroscopy to determine the binding mode of new low molecular mass inhibitors of the West Nile virus NS2B-NS3 protease which were discovered using high-throughput in vitro screening. Binding to the substrate-binding sites S1 and S3 is confirmed by intermolecular NOEs and comparison with the binding mode of a previously identified low molecular mass inhibitor. Our results show that all these inhibitors act by occupying the substrate-binding site of the protease rather than by an allosteric mechanism. In addition, the NS2B polypeptide chain was found to be positioned near the substrate-binding site, as observed previously in crystal structures of the protease in complex with peptide inhibitors or bovine pancreatic trypsin inhibitor. This indicates that the new low molecular mass compounds, although inhibiting the protease, also promote the proteolytically active conformation of NS2B, which is very different from the crystal structure of the protein without inhibitor.
Lead-binding capacity of calcium pectates with different molecular weight.
Khotimchenko, Maksim; Makarova, Ksenia; Khozhaenko, Elena; Kovalev, Valeri
2017-04-01
Nowadays, heavy metal contamination of environment is considered as a serious threat to public health because of toxicity of these pollutants and the lack of effective materials with metal-binding properties. Some biopolymers such as pectins were proposed for removal of metal ions from industrial water disposals. Chemical structure of pectins is quite variable and substantially affects their metal binding properties. In this work, relationship between molecular weight and Pb(II)-binding capacity of calcium pectates was investigated in a batch sorption system. The results showed that all pectate samples are able to form complexes with Pb(II) ions. The effects of contact time, pH of the media and equilibrium metal concentration on metal-binding process were tested in experiments. The equilibrium time min required for uptake of Pb(II) by pectate compounds was found to be 60min. Langmuir and Freundlich models were applied for description of interactions between pectates and metal ions. Binding capacity of low molecular pectate was highest among all the samples tested. Langmuir model was figured out to be the best fit within the whole range of pH values. These results demonstrate that calcium pectate with low molecular weight is more promising agent for elimination of Pb(II) ions from contaminated wastewaters. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Tzoupis, Haralambos; Leonis, Georgios; Durdagi, Serdar; Mouchlis, Varnavas; Mavromoustakos, Thomas; Papadopoulos, Manthos G.
2011-10-01
The objectives of this study include the design of a series of novel fullerene-based inhibitors for HIV-1 protease (HIV-1 PR), by employing two strategies that can also be applied to the design of inhibitors for any other target. Additionally, the interactions which contribute to the observed exceptionally high binding free energies were analyzed. In particular, we investigated: (1) hydrogen bonding (H-bond) interactions between specific fullerene derivatives and the protease, (2) the regions of HIV-1 PR that play a significant role in binding, (3) protease changes upon binding and (4) various contributions to the binding free energy, in order to identify the most significant of them. This study has been performed by employing a docking technique, two 3D-QSAR models, molecular dynamics (MD) simulations and the molecular mechanics Poisson-Boltzmann surface area (MM-PBSA) method. Our computed binding free energies are in satisfactory agreement with the experimental results. The suitability of specific fullerene derivatives as drug candidates was further enhanced, after ADMET (absorption, distribution, metabolism, excretion and toxicity) properties have been estimated to be promising. The outcomes of this study revealed important protein-ligand interaction patterns that may lead towards the development of novel, potent HIV-1 PR inhibitors.
Tunable molecular plasmons in polycyclic aromatic hydrocarbons.
Manjavacas, Alejandro; Marchesin, Federico; Thongrattanasiri, Sukosin; Koval, Peter; Nordlander, Peter; Sánchez-Portal, Daniel; García de Abajo, F Javier
2013-04-23
We show that chemically synthesized polycyclic aromatic hydrocarbons (PAHs) exhibit molecular plasmon resonances that are remarkably sensitive to the net charge state of the molecule and the atomic structure of the edges. These molecules can be regarded as nanometer-sized forms of graphene, from which they inherit their high electrical tunability. Specifically, the addition or removal of a single electron switches on/off these molecular plasmons. Our first-principles time-dependent density-functional theory (TDDFT) calculations are in good agreement with a simpler tight-binding approach that can be easily extended to much larger systems. These fundamental insights enable the development of novel plasmonic devices based upon chemically available molecules, which, unlike colloidal or lithographic nanostructures, are free from structural imperfections. We further show a strong interaction between plasmons in neighboring molecules, quantified in significant energy shifts and field enhancement, and enabling molecular-based plasmonic designs. Our findings suggest new paradigms for electro-optical modulation and switching, single-electron detection, and sensing using individual molecules.
Protonation of key acidic residues is critical for the K+-selectivity of the Na/K pump
Yu, Haibo; Ratheal, Ian; Artigas, Pablo; Roux, Benoît
2011-01-01
The sodium-potassium (Na/K) pump is a P-type ATPase that generates Na+ and K+ concentration gradients across the cell membrane. For each ATP molecule, the pump extrudes three Na+ and imports two K+ by alternating between outward- and inward-facing conformations that preferentially bind K+ or Na+, respectively. Remarkably, the selective K+ and Na+ binding sites share several residues, and how the pump is able to achieve the selectivity required for the functional cycle is unclear. Here, free energy perturbation molecular dynamics (FEP/MD) simulations based on the crystal structures of the Na/K pump in a K+-loaded state (E2·Pi) reveal that protonation of the high-field acidic side-chains involved in the binding sites is critical to achieve the proper K+ selectivity. This prediction is tested with electrophysiological experiments showing that the selectivity of the E2P state for K+ over Na+ is affected by extracellular pH. PMID:21909093
Cell adhesion monitoring of human induced pluripotent stem cell based on intrinsic molecular charges
NASA Astrophysics Data System (ADS)
Sugimoto, Haruyo; Sakata, Toshiya
2014-01-01
We have shown a simple way for real-time, quantitative, non-invasive, and non-label monitoring of human induced pluripotent stem (iPS) cell adhesion by use of a biologically coupled-gate field effect transistor (bio-FET), which is based on detection of molecular charges at cell membrane. The electrical behavior revealed quantitatively the electrical contacts of integrin-receptor at the cell membrane with RGDS peptide immobilized at the gate sensing surface, because that binding site was based on cationic α chain of integrin. The platform based on the bio-FET would provide substantial information to evaluate cell/material bio-interface and elucidate biding mechanism of adhesion molecules, which could not be interpreted by microscopic observation.
Thermodynamics of surface defects at the aspirin/water interface
NASA Astrophysics Data System (ADS)
Schneider, Julian; Zheng, Chen; Reuter, Karsten
2014-09-01
We present a simulation scheme to calculate defect formation free energies at a molecular crystal/water interface based on force-field molecular dynamics simulations. To this end, we adopt and modify existing approaches to calculate binding free energies of biological ligand/receptor complexes to be applicable to common surface defects, such as step edges and kink sites. We obtain statistically accurate and reliable free energy values for the aspirin/water interface, which can be applied to estimate the distribution of defects using well-established thermodynamic relations. As a show case we calculate the free energy upon dissolving molecules from kink sites at the interface. This free energy can be related to the solubility concentration and we obtain solubility values in excellent agreement with experimental results.
Chouquet, Anne; Païdassi, Helena; Ling, Wai Li; Frachet, Philippe; Houen, Gunnar; Arlaud, Gérard J.; Gaboriaud, Christine
2011-01-01
In the endoplasmic reticulum, calreticulin acts as a chaperone and a Ca2+-signalling protein. At the cell surface, it mediates numerous important biological effects. The crystal structure of the human calreticulin globular domain was solved at 1.55 Å resolution. Interactions of the flexible N-terminal extension with the edge of the lectin site are consistently observed, revealing a hitherto unidentified peptide-binding site. A calreticulin molecular zipper, observed in all crystal lattices, could further extend this site by creating a binding cavity lined by hydrophobic residues. These data thus provide a first structural insight into the lectin-independent binding properties of calreticulin and suggest new working hypotheses, including that of a multi-molecular mechanism. PMID:21423620
Modifying Poisson equation for near-solute dielectric polarization and solvation free energy
NASA Astrophysics Data System (ADS)
Yang, Pei-Kun
2016-06-01
The dielectric polarization P is important for calculating the stability of protein conformation and the binding affinity of protein-protein/ligand interactions and for exploring the nonthermal effect of an external electric field on biomolecules. P was decomposed into the product of the electric dipole moment per molecule p; bulk solvent density Nbulk; and relative solvent molecular density g. For a molecular solute, 4πr2p(r) oscillates with the distance r to the solute, and g(r) has a large peak in the near-solute region, as observed in molecular dynamics (MD) simulations. Herein, the Poisson equation was modified for computing p based on the modified Gauss's law of Maxwell's equations, and the potential of the mean force was used for computing g. For one or two charged atoms in a water cluster, the solvation free energies of the solutes obtained by these equations were similar to those obtained from MD simulations.
Ion specific correlations in bulk and at biointerfaces.
Kalcher, I; Horinek, D; Netz, R R; Dzubiella, J
2009-10-21
Ion specific effects are ubiquitous in any complex colloidal or biological fluid in bulk or at interfaces. The molecular origins of these 'Hofmeister effects' are not well understood and their theoretical description poses a formidable challenge to the modeling and simulation community. On the basis of the combination of atomistically resolved molecular dynamics (MD) computer simulations and statistical mechanics approaches, we present a few selected examples of specific electrolyte effects in bulk, at simple neutral and charged interfaces, and on a short α-helical peptide. The structural complexity in these strongly Coulomb-correlated systems is highlighted and analyzed in the light of available experimental data. While in general the comparison of MD simulations to experiments often lacks quantitative agreement, mostly because molecular force fields and coarse-graining procedures remain to be optimized, the consensus as regards trends provides important insights into microscopic hydration and binding mechanisms.
Balmith, Marissa; Soliman, Mahmoud E S
2017-03-01
The first account of the dynamic features of the loop region of VP40 of the Ebola virus was studied using accelerated molecular dynamics simulations and reported herein. Among the proteins of the Ebola virus, the matrix protein (VP40) plays a significant role in the virus lifecycle thereby making it a promising therapeutic target. Of interest is the newly elucidated N-terminal domain loop region of VP40 comprising residues K127, T129, and N130 which when mutated to alanine have demonstrated an unrecognized role for N-terminal domain-plasma membrane interaction for efficient VP40-plasma membrane localization, oligomerization, matrix assembly, and egress. The molecular understanding of the conformational features of VP40 in complex with a known inhibitor still remains elusive. Using accelerated molecular dynamics approaches, we conducted a comparative study on VP40 apo and bound systems to understand the conformational features of VP40 at the molecular level and to determine the effect of inhibitor binding with the aid of a number of post-dynamic analytical tools. Significant features were seen in the presence of an inhibitor as per molecular mechanics/generalized born surface area binding free energy calculations. Results revealed that inhibitor binding to VP40 reduces the flexibility and mobility of the protein as supported by root mean square fluctuation and root mean square deviation calculations. The study revealed a characteristic "twisting" motion and coiling of the loop region of VP40 accompanied by conformational changes in the dimer interface upon inhibitor binding. We believe that results presented in this study will ultimately provide useful insight into the binding landscape of VP40 which could assist researchers in the discovery of potent Ebola virus inhibitors for anti-Ebola therapies.
Klimochkin, Yuri N; Shiryaev, Vadim A; Petrov, Pavel V; Radchenko, Eugene V; Palyulin, Vladimir A; Zefirov, Nikolay S
2016-01-01
The influenza A virus M2 proton channel plays a critical role in its life cycle. However, known M2 inhibitors have lost their clinical efficacy due to the spread of resistant mutant channels. Thus, the search for broad-spectrum M2 channel inhibitors is of great importance. The goal of the present work was to develop a general approach supporting the design of ligands interacting with multiple labile targets and to propose on its basis the potential broad-spectrum inhibitors of the M2 proton channel. The dynamic dimer-of-dimers structures of the three primary M2 target variants, wild-type, S31N and V27A, were modeled by molecular dynamics and thoroughly analyzed in order to define the inhibitor binding sites. The potential inhibitor structures were identified by molecular docking and their binding was verified by molecular dynamics simulation. The binding sites of the M2 proton channel inhibitors were analyzed, a number of potential broad-spectrum inhibitors were identified and the binding modes and probable mechanisms of action of one promising compound were clarified. Using the molecular dynamics and molecular docking techniques, we have refined the dynamic dimer-ofdimers structures of the WT, S31N and V27A variants of the M2 proton channel of the influenza A virus, analyzed the inhibitor binding sites, identified a number of potential broad-spectrum inhibitor structures targeting them, and clarified the binding modes and probable mechanisms of action of one promising compound. The proposed approach is also suitable for the design of ligands interacting with other multiple labile targets.
Zhang, Baidong; Li, Yan; Zhang, Huixiao; Ai, Chunzhi
2010-01-01
Development of anticancer drugs targeting Aurora B, an important member of the serine/threonine kinases family, has been extensively focused on in recent years. In this work, by applying an integrated computational method, including comparative molecular field analysis (CoMFA), comparative molecular similarity indices analysis (CoMSIA), homology modeling and molecular docking, we investigated the structural determinants of Aurora B inhibitors based on three different series of derivatives of 108 molecules. The resultant optimum 3D-QSAR models exhibited (q2 = 0.605, r2pred = 0.826), (q2 = 0.52, r2pred = 0.798) and (q2 = 0.582, r2pred = 0.971) for MK-0457, GSK1070916 and SNS-314 classes, respectively, and the 3D contour maps generated from these models were analyzed individually. The contour map analysis for the MK-0457 model revealed the relative importance of steric and electrostatic effects for Aurora B inhibition, whereas, the electronegative groups with hydrogen bond donating capacity showed a great impact on the inhibitory activity for the derivatives of GSK1070916. Additionally, the predictive model of the SNS-314 class revealed the great importance of hydrophobic favorable contour, since hydrophobic favorable substituents added to this region bind to a deep and narrow hydrophobic pocket composed of residues that are hydrophobic in nature and thus enhanced the inhibitory activity. Moreover, based on the docking study, a further comparison of the binding modes was accomplished to identify a set of critical residues that play a key role in stabilizing the drug-target interactions. Overall, the high level of consistency between the 3D contour maps and the topographical features of binding sites led to our identification of several key structural requirements for more potency inhibitors. Taken together, the results will serve as a basis for future drug development of inhibitors against Aurora B kinase for various tumors. PMID:21151441
Zhang, Baidong; Li, Yan; Zhang, Huixiao; Ai, Chunzhi
2010-11-02
Development of anticancer drugs targeting Aurora B, an important member of the serine/threonine kinases family, has been extensively focused on in recent years. In this work, by applying an integrated computational method, including comparative molecular field analysis (CoMFA), comparative molecular similarity indices analysis (CoMSIA), homology modeling and molecular docking, we investigated the structural determinants of Aurora B inhibitors based on three different series of derivatives of 108 molecules. The resultant optimum 3D-QSAR models exhibited (q(2) = 0.605, r(2) (pred) = 0.826), (q(2) = 0.52, r(2) (pred) = 0.798) and (q(2) = 0.582, r(2) (pred) = 0.971) for MK-0457, GSK1070916 and SNS-314 classes, respectively, and the 3D contour maps generated from these models were analyzed individually. The contour map analysis for the MK-0457 model revealed the relative importance of steric and electrostatic effects for Aurora B inhibition, whereas, the electronegative groups with hydrogen bond donating capacity showed a great impact on the inhibitory activity for the derivatives of GSK1070916. Additionally, the predictive model of the SNS-314 class revealed the great importance of hydrophobic favorable contour, since hydrophobic favorable substituents added to this region bind to a deep and narrow hydrophobic pocket composed of residues that are hydrophobic in nature and thus enhanced the inhibitory activity. Moreover, based on the docking study, a further comparison of the binding modes was accomplished to identify a set of critical residues that play a key role in stabilizing the drug-target interactions. Overall, the high level of consistency between the 3D contour maps and the topographical features of binding sites led to our identification of several key structural requirements for more potency inhibitors. Taken together, the results will serve as a basis for future drug development of inhibitors against Aurora B kinase for various tumors.
Fani, Najmeh; Bordbar, Abdol-Khalegh; Ghayeb, Yousef; Sepehri, Saghi
2015-01-01
In this work, docking tools were utilized in order to study the binding properties of more than five hundred of proline-based 2,5-diketopiperazine in the binding site of αβ-tubulin. Results revealed that 20 compounds among them showed lower binding energies in comparison with Tryprostatin-A, a well known tubulin inhibitor and therefore could be potential inhibitors of tubulin. However, the precise evaluation of binding poses represents the similar binding modes for all of these compounds and Tryprostatin-A. Finally, the best docked complex was subjected to a 25 ns molecular dynamics simulation to further validate the proposed binding mode of this compound.
Enzymes in Commercial Cellulase Preparations Bind Differently to Dioxane Extracted Lignins
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yarbrough, John M.; Mittal, Ashutosh; Katahira, Rui
Commercial fungal cellulases used in biomass-to-biofuels processes can be grouped into three general classes: native, augmented, and engineered. To evaluate lignin binding affinities of different enzyme activities in various commercial cellulase formulations in order to determine if enzyme losses due to lignin binding can be modulated by using different enzymes of the same activity We used water:dioxane (1:9) to extract lignin from pretreated corn stover. Commercial cellulases were incubated with lignin and the unbound supernatants were evaluated for individual enzyme loss by SDS=PAGE and these were correlated with activity loss using various pNP-sugar substrates. Colorimetric assays for general glycosyl hydrolasemore » activities showed distinct differences in enzyme binding to lignin for each enzyme activity. Native systems demonstrated low binding of endo- and exo-cellulases, high binding of xylanase, and moderate ..beta..-glucosidase binding. Engineered cellulase mixtures exhibited low binding of exo-cellulases, very strong binding of endocellulases and ..beta..- glucosidase, and mixed binding of xylanase activity. The augmented cellulase had low binding of exocellulase, high binding of endocellulase and xylanase, and moderate binding of ..beta..-glucosidase activities. Bound and unbound activities were correlated with general molecular weight ranges of proteins as measured by loss of proteins bands in bound fractions on SDS-PAGE gels. Lignin-bound high molecular weight bands correlated with binding of ..beta..-glucosidase activity. While ..beta..-glucosidases demonstrated high binding in many cases, they have been shown to remain active. Bound low molecular weight bands correlated with xylanase activity binding. Contrary to other literature, exocellulase activity did not show strong lignin binding. The variation in enzyme activity binding between the three classes of cellulases preparations indicate that it is certainly possible to alter the binding of specific glycosyl hydrolase activities. It remains unclear whether loss of endocellulase activity to lignin binding is problematic for biomass conversion.« less
The effect of glycosylation on the transferrin structure: A molecular dynamic simulation analysis.
Ghanbari, Z; Housaindokht, M R; Bozorgmehr, M R; Izadyar, M
2016-09-07
Transferrins have been defined by the highly cooperative binding of iron and a carbonate anion to form a Fe-CO3-Tf ternary complex. As such, the layout of the binding site residues affects transferrin function significantly; In contrast to N-lobe, C-lobe binding site of the transferrin structure has been less characterized and little research which surveyed the interaction of carbonate with transferrin in the C-lobe binding site has been found. In the present work, molecular dynamic simulation was employed to gain access into the molecular level understanding of carbonate binding site and their interactions in each lobe. Residues responsible for carbonate binding of transferrin structure were pointed out. In addition, native human transferrin is a glycoprotein that two N-linked complex glycan chains located in the C-lobe. Usually, in the molecular dynamic simulation for simplifying, glycan is removed from the protein structure. Here, we explore the effect of glycosylation on the transferrin structure. Glycosylation appears to have an effect on the layout of the binding site residue and transferrin structure. On the other hand, sometimes the entire transferrin formed by separated lobes that it allows the results to be interpreted in a straightforward manner rather than more parameters required for full length protein. But, it should be noted that there are differences between the separated lobe and full length transferrin, hence, a comparative analysis by the molecular dynamic simulation was performed to investigate such structural variations. Results revealed that separation in C-lobe caused a significant structural variation in comparison to N-lobe. Consequently, the separated lobes and the full length one are different, showing the importance of the interlobe communication and the impact of the lobes on each other in the transferrin structure. Copyright © 2016 Elsevier Ltd. All rights reserved.
Bejagam, Karteek K; Fiorin, Giacomo; Klein, Michael L; Balasubramanian, Sundaram
2014-05-15
Supramolecular polymerization in the family of benzene-1,3,5-tricarboxamide (BTA) has been investigated using atomistic molecular dynamics (MD) simulations. Gas phase calculations using a nonpolarizable force field reproduce the cooperativity in binding energy and intermolecular structure seen in quantum chemical calculations. Both quantum chemical and force field based calculations suggest that the ground state structure of the BTA dimer contains two donor hydrogen bonds and one acceptor hydrogen bond rather than the conjectured three-donor and zero-acceptor hydrogen-bonded state. MD simulations of BTA molecules in a realistic solvent, n-nonane, demonstrate the self-assembly process. The free energy (FE) of dimerization and of solvation has been determined. The solvated dimer of BTA with hexyl tails is more stable than two monomers by about 13 kcal/mol. Furthermore, the FE of association of a BTA molecule to an oligomer exhibits a dependence on the oligomer size, which is a robust signature of cooperative self-assembly.
Vernick, Sefi; Trocchia, Scott M.; Warren, Steven B.; Young, Erik F.; Bouilly, Delphine; Gonzalez, Ruben L.; Nuckolls, Colin; Shepard, Kenneth L.
2017-01-01
The study of biomolecular interactions at the single-molecule level holds great potential for both basic science and biotechnology applications. Single-molecule studies often rely on fluorescence-based reporting, with signal levels limited by photon emission from single optical reporters. The point-functionalized carbon nanotube transistor, known as the single-molecule field-effect transistor, is a bioelectronics alternative based on intrinsic molecular charge that offers significantly higher signal levels for detection. Such devices are effective for characterizing DNA hybridization kinetics and thermodynamics and enabling emerging applications in genomic identification. In this work, we show that hybridization kinetics can be directly controlled by electrostatic bias applied between the device and the surrounding electrolyte. We perform the first single-molecule experiments demonstrating the use of electrostatics to control molecular binding. Using bias as a proxy for temperature, we demonstrate the feasibility of detecting various concentrations of 20-nt target sequences from the Ebolavirus nucleoprotein gene in a constant-temperature environment. PMID:28516911
Duan, Rui; Lazim, Raudah; Zhang, Dawei
2015-09-30
Human immunodeficiency virus (HIV)-1 protease is one of the most promising drug target commonly utilized to combat Acquired Immune Deficiency Syndrome (AIDS). However, with the emergence of drug resistance arising from mutations, the efficiency of protease inhibitors (PIs) as a viable treatment for AIDS has been greatly reduced. I50V mutation as one of the most significant mutations occurring in HIV-1 protease will be investigated in this study. Molecular dynamics (MD) simulation was utilized to examine the effect of I50V mutation on the binding of two PIs namely indinavir and amprenavir to HIV-1 protease. Prior to the simulations conducted, the electron density distributions of the PI and each residue in HIV-1 protease are derived by combining quantum fragmentation approach molecular fractionation with conjugate caps and Poisson-Boltzmann solvation model based on polarized protein-specific charge scheme. The atomic charges of the binding complex are subsequently fitted using delta restrained electrostatic potential (delta-RESP) method to overcome the poor charge determination of buried atom. This way, both intraprotease polarization and the polarization between protease and the PI are incorporated into partial atomic charges. Through this study, the mutation-induced affinity variations were calculated and significant agreement between experiments and MD simulations conducted was observed for both HIV-1 protease-drug complexes. In addition, the mechanism governing the decrease in the binding affinity of PI in the presence of I50V mutation was also explored to provide insights pertaining to the design of the next generation of anti-HIV drugs. © 2015 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Saavedra-Vélez, Margarita Virginia; Correa-Basurto, José; Matus, Myrna H.; Gasca-Pérez, Eloy; Bello, Martiniano; Cuevas-Hernández, Roberto; García-Rodríguez, Rosa Virginia; Trujillo-Ferrara, José; Ramos-Morales, Fernando Rafael
2014-12-01
The aim of this study was to identify compounds that possess anticonvulsant activity by using a pentylenetetrazol (PTZ)-induced seizure model. Theoretical studies of a set of ligands, explored the binding affinities of the ligands for the GABAA receptor (GABAAR), including some benzodiazepines. The ligands satisfy the Lipinski rules and contain a pharmacophore core that has been previously reported to be a GABAAR activator. To select the ligands with the best physicochemical properties, all of the compounds were analyzed by quantum mechanics and the energies of the highest occupied molecular orbital and lowest unoccupied molecular orbital were determined. Docking calculations between the ligands and the GABAAR were used to identify the complexes with the highest Gibbs binding energies. The identified compound D1 (dibenzo( b,f)(1,4)diazocine-6,11(5H,12H)-dione) was synthesized, experimentally tested, and the GABAAR-D1 complex was submitted to 12-ns-long molecular dynamics (MD) simulations to corroborate the binding conformation obtained by docking techniques. MD simulations were also used to analyze the decomposition of the Gibbs binding energy of the residues involved in the stabilization of the complex. To validate our theoretical results, molecular docking and MD simulations were also performed for three reference compounds that are currently in commercial use: clonazepam (CLZ), zolpidem and eszopiclone. The theoretical results show that the GABAAR-D1, and GABAAR-CLZ complexes bind to the benzodiazepine binding site, share a similar map of binding residues, and have similar Gibbs binding energies and entropic components. Experimental studies using a PTZ-induced seizure model showed that D1 possesses similar activity to CLZ, which corroborates the predicted binding free energy identified by theoretical calculations.
Understanding the length dependence of molecular junction thermopower.
Karlström, Olov; Strange, Mikkel; Solomon, Gemma C
2014-01-28
Thermopower of molecular junctions is sensitive to details in the junction and may increase, decrease, or saturate with increasing chain length, depending on the system. Using McConnell's theory for exponentially suppressed transport together with a simple and easily interpretable tight binding model, we show how these different behaviors depend on the molecular backbone and its binding to the contacts. We distinguish between resonances from binding groups or undercoordinated electrode atoms, and those from the periodic backbone. It is demonstrated that while the former gives a length-independent contribution to the thermopower, possibly changing its sign, the latter determines its length dependence. This means that the question of which orbitals from the periodic chain that dominate the transport should not be inferred from the sign of the thermopower but from its length dependence. We find that the same molecular backbone can, in principle, show four qualitatively different thermopower trends depending on the binding group: It can be positive or negative for short chains, and it can either increase or decrease with length.
Cheng, Cheng; Kamiya, Motoshi; Uchida, Yoshihiro; Hayashi, Shigehiko
2015-10-21
Color variants of human cellular retinol binding protein II (hCRBPII) created by protein engineering were recently shown to exhibit anomalously wide photoabsorption spectral shifts over ∼200 nm across the visible region. The remarkable phenomenon provides a unique opportunity to gain insight into the molecular basis of the color tuning of retinal binding proteins for understanding of color vision as well as for engineering of novel color variants of retinal binding photoreceptor proteins employed in optogenetics. Here, we report a theoretical investigation of the molecular mechanism underlying the anomalously wide spectral shifts of the color variants of hCRBPII. Computational modeling of the color variants with hybrid molecular simulations of free energy geometry optimization succeeded in reproducing the experimentally observed wide spectral shifts, and revealed that protein flexibility, through which the active site structure of the protein and bound water molecules is altered by remote mutations, plays a significant role in inducing the large spectral shifts.
Kim, Jun Young; Arooj, Mahreen; Kim, Siu; Hwang, Swan; Kim, Byeong-Woo; Park, Ki Hun; Lee, Keun Woo
2014-01-01
Stilbene urea derivatives as a novel and competitive class of non-glycosidic α-glucosidase inhibitors are effective for the treatment of type II diabetes and obesity. The main purposes of our molecular modeling study are to explore the most suitable binding poses of stilbene derivatives with analyzing the binding affinity differences and finally to develop a pharmacophore model which would represents critical features responsible for α-glucosidase inhibitory activity. Three-dimensional structure of S. cerevisiae α-glucosidase was built by homology modeling method and the structure was used for the molecular docking study to find out the initial binding mode of compound 12, which is the most highly active one. The initial structure was subjected to molecular dynamics (MD) simulations for protein structure adjustment at compound 12-bound state. Based on the adjusted conformation, the more reasonable binding modes of the stilbene urea derivatives were obtained from molecular docking and MD simulations. The binding mode of the derivatives was validated by correlation analysis between experimental Ki value and interaction energy. Our results revealed that the binding modes of the potent inhibitors were engaged with important hydrogen bond, hydrophobic, and π-interactions. With the validated compound 12-bound structure obtained from combining approach of docking and MD simulation, a proper four featured pharmacophore model was generated. It was also validated by comparison of fit values with the Ki values. Thus, these results will be helpful for understanding the relationship between binding mode and bioactivity and for designing better inhibitors from stilbene derivatives. PMID:24465730
Sengupta, Abhigyan; Sasikala, Wilbee D; Mukherjee, Arnab; Hazra, Partha
2012-06-04
Flavin adenine dinucleotide (FAD) and flavin mononucleotide (FMN) are derivatives of riboflavin (RF), a water-soluble vitamin, more commonly known as vitamin B(2). Flavins have attracted special attention in the last few years because of the recent discovery of a large number of flavoproteins. In this work, these flavins are used as extrinsic fluorescence markers for probing the microheterogeneous environment of a well-known transport protein, human serum albumin (HSA). Steady-state and time-resolved fluorescence experiments confirm that both FMN and FAD bind to the Sudlow's site-1 (SS1) binding pocket of HSA, where Trp214 resides. In the case of RF, a fraction of RF molecules binds at the SS1, whereas the major fraction of RF molecules remains unbound or surface bound to the protein. Moreover, flavin(s)-HSA interactions are monitored with the help of isothermal titration calorimetry, which provides free energy, enthalpy, and entropy changes of binding along with the binding constants. The molecular picture of binding interaction between flavins and HSA is well explored by docking and molecular dynamics studies. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Accurate Evaluation Method of Molecular Binding Affinity from Fluctuation Frequency
NASA Astrophysics Data System (ADS)
Hoshino, Tyuji; Iwamoto, Koji; Ode, Hirotaka; Ohdomari, Iwao
2008-05-01
Exact estimation of the molecular binding affinity is significantly important for drug discovery. The energy calculation is a direct method to compute the strength of the interaction between two molecules. This energetic approach is, however, not accurate enough to evaluate a slight difference in binding affinity when distinguishing a prospective substance from dozens of candidates for medicine. Hence more accurate estimation of drug efficacy in a computer is currently demanded. Previously we proposed a concept of estimating molecular binding affinity, focusing on the fluctuation at an interface between two molecules. The aim of this paper is to demonstrate the compatibility between the proposed computational technique and experimental measurements, through several examples for computer simulations of an association of human immunodeficiency virus type-1 (HIV-1) protease and its inhibitor (an example for a drug-enzyme binding), a complexation of an antigen and its antibody (an example for a protein-protein binding), and a combination of estrogen receptor and its ligand chemicals (an example for a ligand-receptor binding). The proposed affinity estimation has proven to be a promising technique in the advanced stage of the discovery and the design of drugs.
Identification of distant drug off-targets by direct superposition of binding pocket surfaces.
Schumann, Marcel; Armen, Roger S
2013-01-01
Correctly predicting off-targets for a given molecular structure, which would have the ability to bind a large range of ligands, is both particularly difficult and important if they share no significant sequence or fold similarity with the respective molecular target ("distant off-targets"). A novel approach for identification of off-targets by direct superposition of protein binding pocket surfaces is presented and applied to a set of well-studied and highly relevant drug targets, including representative kinases and nuclear hormone receptors. The entire Protein Data Bank is searched for similar binding pockets and convincing distant off-target candidates were identified that share no significant sequence or fold similarity with the respective target structure. These putative target off-target pairs are further supported by the existence of compounds that bind strongly to both with high topological similarity, and in some cases, literature examples of individual compounds that bind to both. Also, our results clearly show that it is possible for binding pockets to exhibit a striking surface similarity, while the respective off-target shares neither significant sequence nor significant fold similarity with the respective molecular target ("distant off-target").
Identification of Distant Drug Off-Targets by Direct Superposition of Binding Pocket Surfaces
Schumann, Marcel; Armen, Roger S.
2013-01-01
Correctly predicting off-targets for a given molecular structure, which would have the ability to bind a large range of ligands, is both particularly difficult and important if they share no significant sequence or fold similarity with the respective molecular target (“distant off-targets”). A novel approach for identification of off-targets by direct superposition of protein binding pocket surfaces is presented and applied to a set of well-studied and highly relevant drug targets, including representative kinases and nuclear hormone receptors. The entire Protein Data Bank is searched for similar binding pockets and convincing distant off-target candidates were identified that share no significant sequence or fold similarity with the respective target structure. These putative target off-target pairs are further supported by the existence of compounds that bind strongly to both with high topological similarity, and in some cases, literature examples of individual compounds that bind to both. Also, our results clearly show that it is possible for binding pockets to exhibit a striking surface similarity, while the respective off-target shares neither significant sequence nor significant fold similarity with the respective molecular target (“distant off-target”). PMID:24391782
Matsushita, Y; Yonezawa, S; Nakamura, T; Shimizu, S; Ozawa, M; Muramatsu, T; Sato, E
1985-08-01
Glycoproteins binding to Ulex europaeus agglutinin-I (UEA-I) lectin, which recognizes the terminal alpha-L-fucose residue, were analyzed in 18 cases of human colorectal carcinoma by sodium dodecyl sulfate-polyacrylamide gel electrophoresis followed by the Western blotting method. In the distal large bowel (descending and sigmoid colon and rectum), high-molecular-weight glycoproteins binding to UEA-I existed in carcinoma tissue but not in normal mucosa. In the proximal large bowel (ascending and transverse colon), high-molecular-weight glycoproteins binding to UEA-I were found both in normal mucosa and in carcinoma tissue, whereas those from the carcinoma tissue had an apparently lower molecular weight as compared to the weight of those from the normal mucosa. Thus there is a biochemical difference in UEA-I binding glycoproteins between the normal mucosa and the carcinoma tissue, although in our previous histochemical study no difference was observed in UEA-I binding glycoproteins of the proximal large bowel between the carcinoma tissue and the normal mucosa. Furthermore, carcinoembryonic antigen from the carcinoma tissue was found to have the same electrophoretical mobility as the UEA-I binding glycoproteins.
Yang, Ran; Yu, Lanlan; Zeng, Huajin; Liang, Ruiling; Chen, Xiaolan; Qu, Lingbo
2012-11-01
In this work, the interactions of twelve structurally different flavonoids with Lysozyme (Lys) were studied by fluorescence quenching method. The interaction mechanism and binding properties were investigated. It was found that the binding capacities of flavonoids to Lys were highly depend on the number and position of hydrogen, the kind and position of glycosyl. To explore the selectivity of the bindings of flavonoids with Lys, the structure descriptors of the flavonoids were calculated under QSAR software package of Cerius2, the quantitative relationship between the structures of flavonoids and their binding activities to Lys (QSAR) was performed through genetic function approximation (GFA) regression analysis. The QSAR regression equation was K(A) = 37850.460 + 1630.01Dipole +3038.330HD-171.795MR. (r = 0.858, r(CV)(2) = 0.444, F((11,3)) = 7.48), where K(A) is binding constants, Dipole, HD and MR was dipole moment, number of hydrogen-bond donor and molecular refractivity, respectively. The obtained results make us understand better how the molecular structures influencing their binding to protein which may open up new avenues for the design of the most suitable flavonoids derivatives with structure variants.
Investigate the Binding of Catechins to Trypsin Using Docking and Molecular Dynamics Simulation
Cui, Fengchao; Yang, Kecheng; Li, Yunqi
2015-01-01
To explore the inhibitory mechanism of catechins for digestive enzymes, we investigated the binding mode of catechins to a typical digestive enzyme-trypsin and analyzed the structure-activity relationship of catechins, using an integration of molecular docking, molecular dynamics simulation and binding free energy calculation. We found that catechins with different structures bound to a conservative pocket S1 of trypsin, which is comprised of residues 189–195, 214–220 and 225–228. In the trypsin-catechin complexes, Asp189 by forming strong hydrogen bonding, and Gln192, Trp215 and Gly216 through hydrophobic interactions, all significantly contribute to the binding of catechins. The number and the position of hydroxyl and aromatic groups, the structure of stereoisomers, and the orientation of catechins in the binding pocket S1 of trypsin all affect the binding affinity. The binding affinity is in the order of Epigallocatechin gallate (EGCG) > Epicatechin gallate (ECG) > Epicatechin (EC) > Epigallocatechin (EGC), and 2R-3R EGCG shows the strongest binding affinity out of other stereoisomers. Meanwhile, the synergic conformational changes of residues and catechins were also analyzed. These findings will be helpful in understanding the knowledge of interactions between catechins and trypsin and referable for the design of novel polyphenol based functional food and nutriceutical formulas. PMID:25938485
Sun, Na; Cui, Pengbo; Jin, Ziqi; Wu, Haitao; Wang, Yixing; Lin, Songyi
2017-09-01
This study investigated the contributions of molecular size, charge distribution and specific amino acids to the iron-binding capacity of sea cucumber (Stichopus japonicus) ovum hydrolysates (SCOHs), and further explored their iron-binding sites. It was demonstrated that enzyme type and degree of hydrolysis (DH) significantly influenced the iron-binding capacity of the SCOHs. The SCOHs produced by alcalase at a DH of 25.9% possessed the highest iron-binding capacity at 92.1%. As the hydrolysis time increased, the molecular size of the SCOHs decreased, the negative charges increased, and the hydrophilic amino acids were exposed to the surface, facilitating iron binding. Furthermore, the Fourier transform infrared spectra, combined with amino acid composition analysis, revealed that iron bound to the SCOHs primarily through interactions with carboxyl oxygen of Asp, guanidine nitrogen of Arg or nitrogen atoms in imidazole group of His. The formed SCOHs-iron complexes exhibited a fold and crystal structure with spherical particles. Copyright © 2017 Elsevier Ltd. All rights reserved.
Specific binding of large aggregates of amphiphilic molecules to the respective antibodies.
Nabok, Alexei; Tsargorodskaya, Anna; Holloway, Alan; Starodub, Nikolay F; Demchenko, Anna
2007-07-31
The Binding of nonylphenol to respective antibodies immobilized on solid substrates was studied with the methods of total internal reflection ellipsometry (TIRE) and QCM (quartz crystal microbalance) impedance spectroscopy. The binding reaction was proved to be highly specific having an association constant of KA=1.6x10(6) mol(-1) L and resulted in an increase in both the adsorbed layer thickness of 23 nm and the added mass of 18.3 microg/cm2 at saturation. The obtained responses of both TIRE and QCM methods are substantially higher than anticipated for the immune binding of single molecules of nonylphenol. The mechanism of binding of large aggregates of nonylphenol was suggested instead. Modeling of the micelle of amphiphilic nonylphenol molecules in aqueous solutions yielded a micelle size of about 38 nm. The mechanism of binding of large molecular aggregates to respective antibodies can be extended to other hydrophobic low-molecular-weight toxins such as T-2 mycotoxin. The formation of large molecular aggregates of nonylphenol and T-2 mycotoxin molecules on the surface was proved by the AFM study.
Binding of mitomycin C to blood proteins: A spectroscopic analysis and molecular docking
NASA Astrophysics Data System (ADS)
Jang, Jongchol; Liu, Hui; Chen, Wei; Zou, Guolin
2009-06-01
Mitomycin C (MMC) was the first recognized bioreductive alkylating agent, and has been widely used clinically for antitumor therapy. The binding of MMC to two human blood proteins, human serum albumin (HSA) and human hemoglobin (HHb), have been investigated by fluorescence quenching, synchronous fluorescence, circular dichroism (CD) spectroscopy and molecular docking methods. The fluorescence data showed that binding of MMC to proteins caused strong fluorescence quenching of proteins through a static quenching way, and each protein had only one binding site for the drug. The binding constants of MMC to HSA and HHb at 298 K were 2.71 × 10 4 and 2.56 × 10 4 L mol -1, respectively. Thermodynamic analysis suggested that both hydrophobic interaction and hydrogen bonding played major roles in the binding of MMC to HSA or HHb. The CD spectroscopy indicated that the secondary structures of the two proteins were not changed in the presence of MMC. The study of molecular docking showed that MMC was located in the entrance of site I of HSA, and in the central cavity of HHb.
Moeinpour, Farid; Mohseni-Shahri, Fatemeh S; Malaekeh-Nikouei, Bizhan; Nassirli, Hooriyeh
2016-09-25
The interaction between losartan and human serum albumin (HSA), as well as its glycated form (gHSA) was studied by multiple spectroscopic techniques and molecular dynamics simulation under physiological conditions. The binding information, including the binding constants, effective quenching constant and number of binding sites showed that the binding partiality of losartan to HSA was higher than to gHSA. The findings of three-dimensional fluorescence spectra demonstrated that the binding of losartan to HSA and gHSA would alter the protein conformation. The distances between Trp residue and the binding sites of the drug were evaluated on the basis of the Förster theory, and it was indicated that non-radiative energy transfer from HSA and gHSA to the losartan happened with a high possibility. According to molecular dynamics simulation, the protein secondary and tertiary structure changes were compared in HSA and gHSA for clarifying the obtained results. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Wu, Jinhong; Rong, Yuzhi; Wang, Zhengwu; Zhou, Yanfu; Wang, Shaoyun; Zhao, Bo
2015-05-01
This study aimed to isolate and characterise a novel sericin antifreeze peptide and investigate its ice-binding molecular mechanism. The thermal hysteresis activity of ice-binding sericin peptides (I-SP) was measured and their activity reached as high as 0.94 °C. A P4 fraction, with high hypothermia protective activity and inhibition activity of ice recrystallisation, was obtained from I-SP, and a purified sericin peptide, named SM-AFP, with the sequence of TTSPTNVSTT and a molecular weight of 1009.50 Da was then isolated from the P4 fraction. Treatment of Lactobacillus delbrueckii Subsp. bulgaricus LB340 LYO with 100 μg/ml synthetic SM-AFP led to 1.4-fold increased survival (p < 0.05). Finally, an SM-AFP/ice binding model was constructed and results of molecular dynamics simulation suggested that the binding of SM-AFP with ice and prevention of ice crystal growth could be attributed to hydrogen bond formation, hydrophobic interaction and non-bond interactions. Sericin peptides could be developed into beneficial cryoprotectants and used in frozen food processing. Copyright © 2014 Elsevier Ltd. All rights reserved.
Ma, Yue; Pan, Guoqing; Zhang, Ying; Guo, Xianzhi; Zhang, Huiqi
2013-05-01
Bisphenol A (BPA) and propranolol-imprinted polymers have been prepared via both reversible addition-fragmentation chain transfer "bulk" polymerization (RAFTBP) and traditional radical "bulk" polymerization (TRBP) under similar reaction conditions, and their equilibrium binding properties were compared in detail for the first time. The chemical compositions, specific surface areas, equilibrium bindings, and selectivity of the obtained molecularly imprinted polymers (MIPs) were systematically characterized. The experimental results showed that the MIPs with molecular imprinting effects and quite fast binding kinetics could be readily prepared via RAFTBP, but they did not show improved template binding properties in comparison with those prepared via TRBP, which is in sharp contrast to many previous reports. This could be attributed to the heavily interrupted equilibrium between the dormant species and active radicals in the RAFT mechanism because of the occurrence of fast gelation during RAFTBP. The findings presented here strongly demonstrates that the application of controlled radical polymerizations (CRPs) in molecular imprinting does not always benefit the binding properties of the resultant MIPs, which is of significant importance for the rational use of CRPs in generating MIPs with improved properties. Copyright © 2013 John Wiley & Sons, Ltd.
Xu, Liang; Hu, Yan-Xi; Li, Jin; Liu, Yu-Feng; Zhang, Li; Ai, Hai-Xin; Liu, Hong-Sheng
2017-08-01
Cytarabine is a kind of chemotherapy medication. In the present study, the molecular interaction between cytarabine and human serum albumin (HSA) was investigated via fluorescence, UV-vis absorption, circular dichroism (CD) spectroscopy and molecular docking method under simulative physiological conditions. It was found that cytarabine could effectively quench the intrinsic fluorescence of HSA through a static quenching process. The apparent binding constants between drug and HSA at 288, 293 and 298K were estimated to be in the order of 10 3 L·mol -1 . The thermodynamic parameters ΔH°, ΔG°and ΔS° were calculated, in which the negative ΔG°suggested that the binding of cytarabine to HSA was spontaneous, moreover the negative ΔS°and negative ΔH°revealed that van der Waals force and hydrogen bonds were the major forces to stabilize the protein-cytarabine (1:1) complex. The competitive binding experiments showed that the primary binding site of cytarabine was located in the site I (subdomain IIA) of HSA. In addition, the binding distance was calculated to be 3.4nm according to the Förster no-radiation energy transfer theory. The analysis of CD and three-dimensional (3D) fluorescence spectra demonstrated that the binding of drug to HSA induced some conformational changes in HSA. The molecular docking study also led to the same conclusion obtained from the spectral results. Copyright © 2017 Elsevier B.V. All rights reserved.
Yan, Mingquan; Han, Xuze; Zhang, Chenyang
2017-11-01
In this study, seven model compounds containing typical functional groups (phenolic and carboxylic groups) present in nature organic matter (NOM) were used to ascertain the nature of the characteristic bands in differential absorbance spectra (DAS) of NOM that are induced by metal ion binding. Some similarities were found between the DAS of the examined model compounds, caffeic acid, ferulic acid, sinapic acid, terephthalic acid, isophthalic acid, esculetin and myricetin and those of NOM. The binding of Cu(II) with carboxylic group might produce two peaks, A1 and A2, while the binding of Cu(II) with phenolic group might produce all four Gaussian peaks, from A1 to A4 displayed in the DAS of NOM. The UV-visible spectra predicted using time-dependent density functional theory (TD-DFT)-based methods met well with the experimental DAS of model compounds at different stages of Cu(II) binding. It demonstrates that the features in absorbance spectra are chiefly caused by HOMO (Highest Occupied Molecular Orbital) - LUMO (Lowest Unoccupied Molecular Orbital) transitions in the molecule and that the appearance of peaks in DAS reflects the changes of the molecular orbitals around reactive functional groups in a molecule before and after metal ion binding. The basis of the DAS features of NOM that are induced by metal ion binding could be identified primarily by the frontier molecular orbital theory. Copyright © 2017 Elsevier Ltd. All rights reserved.
Molecular Mechanotransduction: how forces trigger cytoskeletal dynamics
NASA Astrophysics Data System (ADS)
Ehrlicher, Allen
2012-02-01
Mechanical stresses elicit cellular reactions mediated by chemical signals. Defective responses to forces underlie human medical disorders, such as cardiac failure and pulmonary injury. Despite detailed knowledge of the cytoskeleton's structure, the specific molecular switches that convert mechanical stimuli into chemical signals have remained elusive. Here we identify the actin-binding protein, filamin A (FLNa) as a central mechanotransduction element of the cytoskeleton by using Fluorescence Loss After photoConversion (FLAC), a novel high-speed alternative to FRAP. We reconstituted a minimal system consisting of actin filaments, FLNa and two FLNa-binding partners: the cytoplasmic tail of ß-integrin, and FilGAP. Integrins form an essential mechanical linkage between extracellular and intracellular environments, with ß integrin tails connecting to the actin cytoskeleton by binding directly to filamin. FilGAP is a FLNa-binding GTPase-activating protein specific for Rac, which in vivo regulates cell spreading and bleb formation. We demonstrate that both externally-imposed bulk shear and myosin II driven forces differentially regulate the binding of integrin and FilGAP to FLNa. Consistent with structural predictions, strain increases ß-integrin binding to FLNa, whereas it causes FilGAP to dissociate from FLNa, providing a direct and specific molecular basis for cellular mechanotransduction. These results identify the first molecular mechanotransduction element within the actin cytoskeleton, revealing that mechanical strain of key proteins regulates the binding of signaling molecules. Moreover, GAP activity has been shown to switch cell movement from mesenchymal to amoeboid motility, suggesting that mechanical forces directly impact the invasiveness of cancer.
Fang, Lei; Zhang, Huai; Cui, Wei; Ji, Mingjun
2008-10-01
Bidentate inhibitors of protein tyrosine phosphatase 1B (PTP1B) are considered as a group of ideal inhibitors with high binding potential and high selectivity in treating type II diabetes. In this paper, the binding models of five bidentate inhibitors to PTP1B, TCPTP, and SHP-2 were investigated and compared by using molecular dynamics (MD) simulations and free energy calculations. The binding free energies were computed using the Molecular Mechanics/Poisson-Boltzmann Surface Area (MM/PBSA) methodology. The calculation results show that the predicted free energies of the complexes are well consistent with the experimental data. The Molecular Mechanics/Generalized Born Surface Area (MM/GBSA) free energy decomposition analysis indicates that the residues ARG24, ARG254, and GLN262 in the second binding site of PTP1B are essential for the high selectivity of inhibitors. Furthermore, the residue PHE182 close to the active site is also important for the selectivity and the binding affinity of the inhibitors. According to our analysis, it can be concluded that in most cases the polarity of the portion of the inhibitor that binds to the second binding site of the protein is positive to the affinity of the inhibitors while negative to the selectivity of the inhibitors. We expect that the information we obtained here can help to develop potential PTP1B inhibitors with more promising specificity.
Sulimov, Alexey V; Kutov, Danil C; Katkova, Ekaterina V; Ilin, Ivan S; Sulimov, Vladimir B
2017-11-01
Discovery of new inhibitors of the protein associated with a given disease is the initial and most important stage of the whole process of the rational development of new pharmaceutical substances. New inhibitors block the active site of the target protein and the disease is cured. Computer-aided molecular modeling can considerably increase effectiveness of new inhibitors development. Reliable predictions of the target protein inhibition by a small molecule, ligand, is defined by the accuracy of docking programs. Such programs position a ligand in the target protein and estimate the protein-ligand binding energy. Positioning accuracy of modern docking programs is satisfactory. However, the accuracy of binding energy calculations is too low to predict good inhibitors. For effective application of docking programs to new inhibitors development the accuracy of binding energy calculations should be higher than 1kcal/mol. Reasons of limited accuracy of modern docking programs are discussed. One of the most important aspects limiting this accuracy is imperfection of protein-ligand energy calculations. Results of supercomputer validation of several force fields and quantum-chemical methods for docking are presented. The validation was performed by quasi-docking as follows. First, the low energy minima spectra of 16 protein-ligand complexes were found by exhaustive minima search in the MMFF94 force field. Second, energies of the lowest 8192 minima are recalculated with CHARMM force field and PM6-D3H4X and PM7 quantum-chemical methods for each complex. The analysis of minima energies reveals the docking positioning accuracies of the PM7 and PM6-D3H4X quantum-chemical methods and the CHARMM force field are close to one another and they are better than the positioning accuracy of the MMFF94 force field. Copyright © 2017 Elsevier Inc. All rights reserved.
Exploring the utility of organo-polyoxometalate hybrids to inhibit SOX transcription factors
2014-01-01
Background SOX transcription factors constitute an attractive target class for intervention with small molecules as they play a prominent role in the field of regenerative biomedicine and cancer biology. However, rationally engineering specific inhibitors that interfere with transcription factor DNA interfaces continues to be a monumental challenge in the field of transcription factor chemical biology. Polyoxometalates (POMs) are inorganic compounds that were previously shown to target the high-mobility group (HMG) of SOX proteins at nanomolar concentrations. In continuation of this work, we carried out an assessment of the selectivity of a panel of newly synthesized organo-polyoxometalate hybrids in targeting different transcription factor families to enable the usage of polyoxometalates as specific SOX transcription factor drugs. Results The residual DNA-binding activities of 15 different transcription factors were measured after treatment with a panel of diverse polyoxometalates. Polyoxometalates belonging to the Dawson structural class were found to be more potent inhibitors than the Keggin class. Further, organically modified Dawson polyoxometalates were found to be the most potent in inhibiting transcription factor DNA binding activity. The size of the polyoxometalates and its derivitization were found to be the key determinants of their potency. Conclusion Polyoxometalates are highly potent, nanomolar range inhibitors of the DNA binding activity of the Sox-HMG family. However, binding assays involving a limited subset of structurally diverse polyoxometalates revealed a low selectivity profile against different transcription factor families. Further progress in achieving selectivity and deciphering structure-activity relationship of POMs require the identification of POM binding sites on transcription factors using elaborate approaches like X-ray crystallography and multidimensional NMR. In summary, our report reaffirms that transcription factors are challenging molecular architectures and that future polyoxometalate chemistry must consider further modification strategies, to address the substantial challenges involved in achieving target selectivity. PMID:25678957
In Silico Analyses of Substrate Interactions with Human Serum Paraoxonase 1
2008-01-01
substrate interactions of HuPON1 remains elusive. In this study, we apply homology modeling, docking, and molecular dynamic (MD) simulations to probe the...mod- eling; docking; molecular dynamics simulations ; binding free energy decomposition. 486 PROTEINS Published 2008 WILEY-LISS, INC. yThis article is a...apply homology modeling, docking, and molecular dynamic (MD) simulations to probe the binding interactions of HuPON1 with representative substrates. The
Stanic-Vucinic, Dragana; Nikolic, Milan; Milcic, Milos; Cirkovic Velickovic, Tanja
2016-01-01
Phycocyanobilin (PCB) binds with high affinity (2.2 x 106 M-1 at 25°C) to human serum albumin (HSA) at sites located in IB and IIA subdomains. The aim of this study was to examine effects of PCB binding on protein conformation and stability. Using 300 ns molecular dynamics (MD) simulations, UV-VIS spectrophotometry, CD, FT-IR, spectrofluorimetry, thermal denaturation and susceptibility to trypsin digestion, we studied the effects of PCB binding on the stability and rigidity of HSA, as well as the conformational changes in PCB itself upon binding to the protein. MD simulation results demonstrated that HSA with PCB bound at any of the two sites showed greater rigidity and lower overall and individual domain flexibility compared to free HSA. Experimental data demonstrated an increase in the α-helical content of the protein and thermal and proteolytic stability upon ligand binding. PCB bound to HSA undergoes a conformational change to a more elongated conformation in the binding pockets of HSA. PCB binding to HSA stabilizes the structure of this flexible transport protein, making it more thermostable and resistant to proteolysis. The results from this work explain at molecular level, conformational changes and stabilization of HSA structure upon ligand binding. The resultant increased thermal and proteolytic stability of HSA may provide greater longevity to HSA in plasma. PMID:27959940
Identifying the binding mode of a molecular scaffold
NASA Astrophysics Data System (ADS)
Chema, Doron; Eren, Doron; Yayon, Avner; Goldblum, Amiram; Zaliani, Andrea
2004-01-01
We describe a method for docking of a scaffold-based series and present its advantages over docking of individual ligands, for determining the binding mode of a molecular scaffold in a binding site. The method has been applied to eight different scaffolds of protein kinase inhibitors (PKI). A single analog of each of these eight scaffolds was previously crystallized with different protein kinases. We have used FlexX to dock a set of molecules that share the same scaffold, rather than docking a single molecule. The main mode of binding is determined by the mode of binding of the largest cluster among the docked molecules that share a scaffold. Clustering is based on our `nearest single neighbor' method [J. Chem. Inf. Comput. Sci., 43 (2003) 208-217]. Additional criteria are applied in those cases in which more than one significant binding mode is found. Using the proposed method, most of the crystallographic binding modes of these scaffolds were reconstructed. Alternative modes, that have not been detected yet by experiments, could also be identified. The method was applied to predict the binding mode of an additional molecular scaffold that was not yet reported and the predicted binding mode has been found to be very similar to experimental results for a closely related scaffold. We suggest that this approach be used as a virtual screening tool for scaffold-based design processes.
Peng, Youyi; Keenan, Susan M; Zhang, Qiang; Kholodovych, Vladyslav; Welsh, William J
2005-03-10
Three-dimensional quantitative structure-activity relationship (3D-QSAR) models were constructed using comparative molecular field analysis (CoMFA) on a series of opioid receptor antagonists. To obtain statistically significant and robust CoMFA models, a sizable data set of naltrindole and naltrexone analogues was assembled by pooling biological and structural data from independent studies. A process of "leave one data set out", similar to the traditional "leave one out" cross-validation procedure employed in partial least squares (PLS) analysis, was utilized to study the feasibility of pooling data in the present case. These studies indicate that our approach yields statistically significant and highly predictive CoMFA models from the pooled data set of delta, mu, and kappa opioid receptor antagonists. All models showed excellent internal predictability and self-consistency: q(2) = 0.69/r(2) = 0.91 (delta), q(2) = 0.67/r(2) = 0.92 (mu), and q(2) = 0.60/r(2) = 0.96 (kappa). The CoMFA models were further validated using two separate test sets: one test set was selected randomly from the pooled data set, while the other test set was retrieved from other published sources. The overall excellent agreement between CoMFA-predicted and experimental binding affinities for a structurally diverse array of ligands across all three opioid receptor subtypes gives testimony to the superb predictive power of these models. CoMFA field analysis demonstrated that the variations in binding affinity of opioid antagonists are dominated by steric rather than electrostatic interactions with the three opioid receptor binding sites. The CoMFA steric-electrostatic contour maps corresponding to the delta, mu, and kappa opioid receptor subtypes reflected the characteristic similarities and differences in the familiar "message-address" concept of opioid receptor ligands. Structural modifications to increase selectivity for the delta over mu and kappa opioid receptors have been predicted on the basis of the CoMFA contour maps. The structure-activity relationships (SARs) together with the CoMFA models should find utility for the rational design of subtype-selective opioid receptor antagonists.
Walker, David M; Hayes, Ellen C; Webb, Lauren J
2013-08-07
Electrostatic fields at the interface of the GTPase H-Ras (Ras) docked with the Ras binding domain of the protein Ral guanine nucleoside dissociation stimulator (Ral) were measured with vibrational Stark effect (VSE) spectroscopy. Nine residues on the surface of Ras that participate in the protein-protein interface were systematically mutated to cysteine and subsequently converted to cyanocysteine in order to introduce a nitrile VSE probe into the protein-protein interface. The absorption energy of the nitrile was measured both on the surface of Ras in its monomeric state, then after incubation with the Ras binding domain of Ral to form the docked complex. Boltzmann-weighted structural snapshots of the nitrile-labeled Ras protein were generated both in monomeric and docked configurations from molecular dynamics simulations using enhanced sampling of the cyanocysteine side chain's χ2 dihedral angle. These snapshots were used to determine that on average, most of the nitrile probes were aligned along the Ras surface, parallel to the Ras-Ral interface. The average solvent-accessible surface areas (SASA) of the cyanocysteine side chain were found to be <60 Å(2) for all measured residues, and was not significantly different whether the nitrile was on the surface of the Ras monomer or immersed in the docked complex. Changes in the absorption energy of the nitrile probe at nine positions along the Ras-Ral interface were compared to results of a previous study examining this interface with Ral-based probes, and found a pattern of low electrostatic field in the core of the interface surrounded by a ring of high electrostatic field around the perimeter of the interface. These data are used to rationalize several puzzling features of the Ras-Ral interface.
NASA Astrophysics Data System (ADS)
Ngo, Son Tung; Nguyen, Minh Tung; Nguyen, Minh Tho
2017-05-01
The absolute binding free energy of an inhibitor to HIV-1 Protease (PR) was determined throughout evaluation of the non-bonded interaction energy difference between the two bound and unbound states of the inhibitor and surrounding molecules by the fast pulling of ligand (FPL) process using non-equilibrium molecular dynamics (NEMD) simulations. The calculated free energy difference terms help clarifying the nature of the binding. Theoretical binding affinities are in good correlation with experimental data, with R = 0.89. The paradigm used is able to rank two inhibitors having the maximum difference of ∼1.5 kcal/mol in absolute binding free energies.
Kamal, J. K. Amisha; Benchaar, Sabrina A.; Takamoto, Keiji; Reisler, Emil; Chance, Mark R.
2007-01-01
The cytoskeletal protein, actin, has its structure and function regulated by cofilin. In the absence of an atomic resolution structure for the actin/cofilin complex, the mechanism of cofilin regulation is poorly understood. Theoretical studies based on the similarities of cofilin and gelsolin segment 1 proposed the cleft between subdomains 1 and 3 in actin as the cofilin binding site. We used radiolytic protein footprinting with mass spectrometry and molecular modeling to provide an atomic model of how cofilin binds to monomeric actin. Footprinting data suggest that cofilin binds to the cleft between subdomains 1 and 2 in actin and that cofilin induces further closure of the actin nucleotide cleft. Site-specific fluorescence data confirm these results. The model identifies key ionic and hydrophobic interactions at the binding interface, including hydrogen-bonding between His-87 of actin to Ser-89 of cofilin that may control the charge dependence of cofilin binding. This model and its implications fill an especially important niche in the actin field, owing to the fact that ongoing crystallization efforts of the actin/cofilin complex have so far failed. This 3D binary complex structure is derived from a combination of solution footprinting data and computational approaches and outlines a general method for determining the structure of such complexes. PMID:17470807
Nanophotonic detection of freely interacting molecules on a single influenza virus
NASA Astrophysics Data System (ADS)
Kang, Pilgyu; Schein, Perry; Serey, Xavier; O'Dell, Dakota; Erickson, David
2015-07-01
Biomolecular interactions, such as antibody-antigen binding, are fundamental to many biological processes. At present, most techniques for analyzing these interactions require immobilizing one or both of the interacting molecules on an assay plate or a sensor surface. This is convenient experimentally but can constrain the natural binding affinity and capacity of the molecules, resulting in data that can deviate from the natural free-solution behavior. Here we demonstrate a label-free method for analyzing free-solution interactions between a single influenza virus and specific antibodies at the single particle level using near-field optical trapping and light-scattering techniques. We determine the number of specific antibodies binding to an optically trapped influenza virus by analyzing the change of the Brownian fluctuations of the virus. We develop an analytical model that determines the increased size of the virus resulting from antibodies binding to the virus membrane with uncertainty of ±1-2 nm. We present stoichiometric results of 26 ± 4 (6.8 ± 1.1 attogram) anti-influenza antibodies binding to an H1N1 influenza virus. Our technique can be applied to a wide range of molecular interactions because the nanophotonic tweezer can handle molecules from tens to thousands of nanometers in diameter.
Cala, Olivier; Pinaud, Noël; Simon, Cécile; Fouquet, Eric; Laguerre, Michel; Dufourc, Erick J; Pianet, Isabelle
2010-11-01
In organoleptic science, the association of tannins to saliva proteins leads to the poorly understood phenomenon of astringency. To decipher this interaction at molecular and colloidal levels, the binding of 4 procyanidin dimers (B1-4) and 1 trimer (C2) to a human saliva proline-rich peptide, IB7(14), was studied. Interactions have been characterized by measuring dissociation constants, sizes of complexes, number, and nature of binding sites using NMR (chemical shift variations, diffusion-ordered spectroscopy, and saturation transfer diffusion). The binding sites were identified using molecular mechanics, and the hydrophilic/hydrophobic nature of the interactions was resolved by calculating the molecular lipophilicity potential within the complexes. The following comprehensive scheme can be proposed: 1) below the tannin critical micelle concentration (CMC), interaction is specific, and the procyanidin anchorage always occurs on the same three IB7(14) sites. The tannin 3-dimensional structure plays a key role in the binding force and in the tannin's ability to act as a bidentate ligand: tannins adopting an extended conformation exhibit higher affinity toward protein and initiate the formation of a network. 2) Above the CMC, after the first specific hydrophilic interaction has taken place, a random hydrophobic stacking occurs between tannins and proteins. The whole process is discussed in the general frame of wine tannins eliciting astringency.
McKinney, J D
1989-01-01
Molecular/theoretical modeling studies have revealed that thyroid hormones and toxic chlorinated aromatic hydrocarbons of environmental significance (for which dioxin or TCDD is the prototype) have similar structural properties that could be important in molecular recognition in biochemical systems. These molecular properties include a somewhat rigid, sterically accessible and polarizable aromatic ring and size-limited, hydrophobic lateral substituents, usually contained in opposite adjoining rings of a diphenyl compound. These molecular properties define the primary binding groups thought to be important in molecular recognition of both types of structures in biochemical systems. Similar molecular reactivities are supported by the demonstration of effective specific binding of thyroid hormones and chlorinated aromatic hydrocarbons with four different proteins, enzymes, or receptor preparations that are known or suspected to be involved in the expression of thyroid hormone activity. These binding interactions represent both aromatic-aromatic (stacking) and molecular cleft-type recognition processes. A multiple protein or multifunctional receptor-ligand binding mechanism model is proposed as a way of visualizing the details and possible role of both the stacking and cleft type molecular recognition factors in the expression of biological activity. The model suggests a means by which hormone-responsive effector-linked sites (possible protein-protein-DNA complexes) can maintain highly structurally specific control of hormone action. Finally, the model also provides a theoretical basis for the design and conduct of further biological experimentation on the molecular mechanism(s) of action of toxic chlorinated aromatic hydrocarbons and thyroid hormones. Images FIGURE 3. A FIGURE 3. B FIGURE 3. C FIGURE 3. D PMID:2551666
Interaction of sucralose with whey protein: Experimental and molecular modeling studies
NASA Astrophysics Data System (ADS)
Zhang, Hongmei; Sun, Shixin; Wang, Yanqing; Cao, Jian
2017-12-01
The objective of this research was to study the interactions of sucralose with whey protein isolate (WPI) by using the three-dimensional fluorescence spectroscopy, circular dichroism spectroscopy and molecular modeling. The results showed that the peptide strands structure of WPI had been changed by sucralose. Sucralose binding induced the secondary structural changes and increased content of aperiodic structure of WPI. Sucralose decreased the thermal stability of WPI and acted as a structure destabilizer during the thermal unfolding process of protein. In addition, the existence of sucralose decreased the reversibility of the unfolding of WPI. Nonetheless, sucralose-WPI complex was less stable than protein alone. The molecular modeling result showed that van der Waals and hydrogen bonding interactions contribute to the complexation free binding energy. There are more than one possible binding sites of WPI with sucralose by surface binding mode.
Newcomb, C. J.; Qafoku, N. P.; Grate, J. W.; ...
2017-08-30
Long residence times of soil organic matter have been attributed to reactive mineral surface sites that sorb organic species and cause inaccessibility due to isolation and chemical stabilization at the organic-mineral interface. Instrumentation for probing this interface is limited. As a result, much of the micron- and molecular-scale knowledge about organic-mineral interactions remains largely qualitative. We report the use of force spectroscopy to directly measure the binding between organic ligands with known chemical functionalities to soil minerals in aqueous environments. By systematically studying the role of organic functional group chemistry with model minerals, we demonstrate that the chemistry of bothmore » the organic ligand and mineral contribute to values of binding free energy and that changes in pH and ionic strength produce significant differences in binding energies. These direct measurements of molecular binding provide mechanistic insights into organo-mineral interactions, which could potentially inform land-carbon models that explicitly include mineral-bound C pools.« less
Molecular basis of splotch and Waardenburg Pax-3 mutations.
Chalepakis, G; Goulding, M; Read, A; Strachan, T; Gruss, P
1994-01-01
Pax genes control certain aspects of development, as mutations result in (semi)dominant defects apparent during embryogenesis. Pax-3 has been associated with the mouse mutant splotch (Sp) and the human Waardenburg syndrome type 1 (WS1). We have examined the molecular basis of splotch and WS1 by studying the effect of mutations on DNA binding, using a defined target sequence. Pax-3 contains two different types of functional DNA-binding domains, a paired domain and a homeodomain. Mutational analysis of Pax-3 reveals different modes of DNA binding depending on the presence of these domains. A segment of Pax-3 located between the two DNA-binding domains, including a conserved octapeptide, participates in protein homodimerization. Pax-3 mutations found in splotch alleles and WS1 individuals change DNA binding and, in the case of a protein product of the Sp allele, dimerization. These findings were taken as a basis to define the molecular nature of the mutants. Images PMID:7909605
NASA Astrophysics Data System (ADS)
Shahabadi, Nahid; Khorshidi, Aref; Moghadam, Neda Hossinpour
2013-10-01
In the present investigation, an attempt has been made to study the interaction of zonisamide (ZNS) with the transport protein, human serum albumin (HSA) employing UV-Vis, fluorometric, circular dichroism (CD) and molecular docking techniques. The results indicated that binding of ZNS to HSA caused strong fluorescence quenching of HSA through static quenching mechanism, hydrogen bonds and van der Waals contacts are the major forces in the stability of protein ZNS complex and the process of the binding of ZNS with HSA was driven by enthalpy (ΔH = -193.442 kJ mol-1). The results of CD and UV-Vis spectroscopy showed that the binding of this drug to HSA induced conformational changes in HSA. Furthermore, the study of molecular docking also indicated that zonisamide could strongly bind to the site I (subdomain IIA) of HSA mainly by hydrophobic interaction and there were hydrogen bond interactions between this drug and HSA, also known as the warfarin binding site.
NASA Astrophysics Data System (ADS)
Bhakat, Soumendranath; Åberg, Emil; Söderhjelm, Pär
2018-01-01
Advanced molecular docking methods often aim at capturing the flexibility of the protein upon binding to the ligand. In this study, we investigate whether instead a simple rigid docking method can be applied, if combined with multiple target structures to model the backbone flexibility and molecular dynamics simulations to model the sidechain and ligand flexibility. The methods are tested for the binding of 35 ligands to FXR as part of the first stage of the Drug Design Data Resource (D3R) Grand Challenge 2 blind challenge. The results show that the multiple-target docking protocol performs surprisingly well, with correct poses found for 21 of the ligands. MD simulations started on the docked structures are remarkably stable, but show almost no tendency of refining the structure closer to the experimentally found binding pose. Reconnaissance metadynamics enhances the exploration of new binding poses, but additional collective variables involving the protein are needed to exploit the full potential of the method.
Bhakat, Soumendranath; Åberg, Emil; Söderhjelm, Pär
2018-01-01
Advanced molecular docking methods often aim at capturing the flexibility of the protein upon binding to the ligand. In this study, we investigate whether instead a simple rigid docking method can be applied, if combined with multiple target structures to model the backbone flexibility and molecular dynamics simulations to model the sidechain and ligand flexibility. The methods are tested for the binding of 35 ligands to FXR as part of the first stage of the Drug Design Data Resource (D3R) Grand Challenge 2 blind challenge. The results show that the multiple-target docking protocol performs surprisingly well, with correct poses found for 21 of the ligands. MD simulations started on the docked structures are remarkably stable, but show almost no tendency of refining the structure closer to the experimentally found binding pose. Reconnaissance metadynamics enhances the exploration of new binding poses, but additional collective variables involving the protein are needed to exploit the full potential of the method.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Newcomb, C. J.; Qafoku, N. P.; Grate, J. W.
Long residence times of soil organic matter have been attributed to reactive mineral surface sites that sorb organic species and cause inaccessibility due to isolation and chemical stabilization at the organic-mineral interface. Instrumentation for probing this interface is limited. As a result, much of the micron- and molecular-scale knowledge about organic-mineral interactions remains largely qualitative. We report the use of force spectroscopy to directly measure the binding between organic ligands with known chemical functionalities to soil minerals in aqueous environments. By systematically studying the role of organic functional group chemistry with model minerals, we demonstrate that the chemistry of bothmore » the organic ligand and mineral contribute to values of binding free energy and that changes in pH and ionic strength produce significant differences in binding energies. These direct measurements of molecular binding provide mechanistic insights into organo-mineral interactions, which could potentially inform land-carbon models that explicitly include mineral-bound C pools.« less
Chin, Y.-P.; Aiken, G.R.; Danielsen, K.M.
1997-01-01
The binding of pyrene to a number of humic substances isolated from various aquatic sources and a commercial humic acid was measured using the solubility enhancement method. The humic materials used in this study were characterized by various spectroscopic and liquid chromatography methods. A strong correlation was observed between the pyrene binding coefficient, K(doc), and the molecular weights, molar absorptivities at 280 nm, and aromaticity of the aquatic humic substances. Binding of pyrene to the commercial humic acid, however, was significantly stronger and did not obey the relationships observed between K(doc) and the chemical properties of the aquatic humic substrates. These results suggest that the molecular weight and the aromatic content of the humic substrates exert influences on the binding of nonpolar and planar aromatic molecules and that the physicochemical properties of both humic materials and organic solutes are important in controlling the speciation of nonpolar organic contaminants in natural waters.
NASA Astrophysics Data System (ADS)
Fani, Najmeh; Sattarinezhad, Elham; Bordbar, Abdol-Khalegh
2017-06-01
In the first part of this paper, docking method was employed in order to study the binding mechanism of breast cancer resistance protein (BCRP) with a group of previously synthesized TPS-A derivatives which known as potent inhibitors of this protein to get insight into drug binding site of BCRP and to explore structure-activity relationship of these compounds. Molecular docking results showed that most of these compounds bind in the binding site of BCRP at the interface between the membrane and outer environment. In the second part, a group of designed TPS-A derivatives which showed good binding energies in the binding site of αβ-tubulin in the previous study were chosen to study their binding energies in the binding site of BCRP to investigate their simultaneous inhibitory effect on both αβ-tubulin and BCRP. The results showed that all of these compounds bind to the binding site of BCRP with relatively suitable binding energies and therefore could be potential inhibitors of both αβ-tubulin and BCRP proteins. Finally, virtual consensus docking method was utilized with the aim of design of new 2,5-diketopiperazine derivatives with significant inhibitory effect on both αβ-tubulin and BCRP proteins. For this purpose binding energies of a library of 2,5-diketopiperazine derivatives in the binding sites of αβ-tubulin and BCRP was investigated by using AutoDock and AutoDock vina tools. Molecular docking results revealed that a group of 36 compounds among them exhibit strong anti-tubulin and anti-BCRP activity.
2018-03-01
of environmental conditions and surface treatment on binding affinity. 15. SUBJECT TERMS bacterial adhesion, genetically engineered proteins for...mannose binding both experimentally and in molecular dynamics simulation ............................................................ 6 Fig. 3 COMSOL...Research Laboratory (ARL) strengths (e.g., molecular biology/synthetic biology, biomolecular recognition, materials characterization and polymer science
Binding of anti-apoptotic Bcl-2 with different BH3 peptides: A molecular dynamics study
NASA Astrophysics Data System (ADS)
Zhang, Dawei; Liu, Huihui; Cui, Jinglan
2018-01-01
In this work, molecular dynamics simulation and free energy calculations are utilized to study how different BH3 peptides originating from Bax, Bim, Bik and Noxa interact with Bcl-2, one of the main members of anti-apoptotic proteins. The effects of peptide length, sequence and helical content on the binding affinity are discussed, on which a novel BH3-like peptide is designed in silico with an improved binding property.
Fenik, S I; Solodushko, V G; Kaliniak, T B; Blium, Ia B
2007-01-01
Nicotiana plumbaginifolia callus lines with the equal resistance to cadmium have been produced under different selective conditions--either without inhibition of the phytochelatin synthesis (line Cd-R) or in the presence of the inhibitor butionine sulfoximine (line Cd-Ri). The level of phytochelatin synthesis in the line Cd-R five-fold exceeded the control value and in the line Cd-Ri it was twice as much as in the control. It was shown that in the control line mainly three cadmium-binding proteins are expressed of the molecular weihgts 41, 34 and 19 kD. The common feature of the both resistant lines is the expression of the cadmium-binding proteins of 40, 37 and 19 kD. The resistant lines differ with respect to the synthesis of relatively low-molecular cadmium-binding proteins. The proteins of the molecular weights 12.5, 11.5 and 9 kD are expressed in the line Cd-R, while the proteins of 13 and 10 kD are expressed in the line Cd-Ri. It was supposed that both the phytochelatins and the Cd-binding proteins contribute to the resisitance of N. plumbaginifolia callus lines to cadmium and the lack of the phytochelatins can be equilibrated by the changes in the low-molecular Cd-binding protein synthesis.
Armas, Pablo; Nasif, Sofía; Calcaterra, Nora B
2008-02-15
Cellular nucleic acid binding protein (CNBP) is a small single-stranded nucleic acid binding protein made of seven Zn knuckles and an Arg-Gly rich box. CNBP is strikingly conserved among vertebrates and was reported to play broad-spectrum functions in eukaryotic cells biology. Neither its biological function nor its mechanisms of action were elucidated yet. The main goal of this work was to gain further insights into the CNBP biochemical and molecular features. We studied Bufo arenarum CNBP (bCNBP) binding to single-stranded nucleic acid probes representing the main reported CNBP putative targets. We report that, although bCNBP is able to bind RNA and single-stranded DNA (ssDNA) probes in vitro, it binds RNA as a preformed dimer whereas both monomer and dimer are able to bind to ssDNA. A systematic analysis of variant probes shows that the preferred bCNBP targets contain unpaired guanosine-rich stretches. These data expand the knowledge about CNBP binding stoichiometry and begins to dissect the main features of CNBP nucleic acid targets. Besides, we show that bCNBP presents a highly disordered predicted structure and promotes the annealing and melting of nucleic acids in vitro. These features are typical of proteins that function as nucleic acid chaperones. Based on these data, we propose that CNBP may function as a nucleic acid chaperone through binding, remodeling, and stabilizing nucleic acids secondary structures. This novel CNBP biochemical activity broadens the field of study about its biological function and may be the basis to understand the diverse ways in which CNBP controls gene expression. Copyright 2007 Wiley-Liss, Inc.
Ballu, Srilata; Itteboina, Ramesh; Sivan, Sree Kanth; Manga, Vijjulatha
2018-04-01
Staphylococcus aureus is a gram positive bacterium. It is the leading cause of skin and respiratory infections, osteomyelitis, Ritter's disease, endocarditis, and bacteraemia in the developed world. We employed combined studies of 3D QSAR, molecular docking which are validated by molecular dynamics simulations and in silico ADME prediction have been performed on Isothiazoloquinolones inhibitors against methicillin resistance Staphylococcus aureus. Three-dimensional quantitative structure-activity relationship (3D-QSAR) study was applied using comparative molecular field analysis (CoMFA) with Q 2 of 0.578, R 2 of 0.988, and comparative molecular similarity indices analysis (CoMSIA) with Q 2 of 0.554, R 2 of 0.975. The predictive ability of these model was determined using a test set of molecules that gave acceptable predictive correlation (r 2 Pred) values 0.55 and 0.57 of CoMFA and CoMSIA respectively. Docking, simulations were employed to position the inhibitors into protein active site to find out the most probable binding mode and most reliable conformations. Developed models and Docking methods provide guidance to design molecules with enhanced activity. Copyright © 2017 Elsevier Ltd. All rights reserved.
Andrijchenko, Natalya N; Ermilov, Alexander Yu; Khriachtchev, Leonid; Räsänen, Markku; Nemukhin, Alexander V
2015-03-19
The present study illustrates the steps toward understanding molecular mechanism of xenon anesthesia by focusing on a link to the structures and spectra of intermolecular complexes of xenon with small aromatic molecules. A primary cause of xenon anesthesia is attributed to inhibition of N-methyl-D-aspartate (NMDA) receptors by an unknown mechanism. Following the results of quantum mechanics/molecular mechanics (QM/MM) and molecular dynamics (MD) calculations we report plausible xenon action sites in the ligand binding domain of the NMDA receptor, which are due to interaction of xenon atoms with aromatic amino-acid residues. We rely in these calculations on computational protocols adjusted in combined experimental and theoretical studies of intermolecular complexes of xenon with phenol. Successful reproduction of vibrational shifts in molecular species upon complexation with xenon measured in low-temperature matrices allowed us to select a proper functional form in density functional theory (DFT) approach for use in QM subsystems, as well as to calibrate force field parameters for MD simulations. The results of molecular modeling show that xenon atoms can compete with agonists for a place in the corresponding protein cavity, thus indicating their active role in anesthetic action.
Ultralong-range Rydberg Molecules: Investigation of a Novel Binding Mechanism
NASA Astrophysics Data System (ADS)
Butscher, Björn; Bendkowsky, Vera; Nipper, Johannes; Balewski, Jonathan; Shaffer, James P.; Löw, Robert; Pfau, Tilman
2010-03-01
For highly excited Rydberg atoms, the scattering of the Rydberg electron from a nearby polarizable ground state atom can generate an attractive mean-field potential which is able to bind the ground state atom to the Rydberg atom within the Rydberg electron wave function at binding energies ranging from a few MHz to hundreds of MHz[1]. We present spectroscopic data on the observation of various bound states including the vibrational ground and excited states of rubidium dimers Rb(5S)-Rb(nS) as well as those of trimer states. Furthermore, we show calculations that reproduce the observed binding energies remarkably well and reveal that some of the excited states are purely bound by quantum reflection at a shape resonance for p-wave scattering [2]. To further characterize the coherent excitation of the molecular states, we performed echo experiments. [0pt] [1] V. Bendkowsky, B. Butscher, J. Nipper, J. P. Shaffer, R. Löw, T. Pfau, Nature 458, 1005 (2009); [2] V. Bendkowsky, B. Butscher, J. Nipper, J. Balewski, J. P. Shaffer, R. Löw, T. Pfau, W. Li, J. Stanojevic, T. Pohl,and J. M. Rost, arXiv:0912.4058 (2009)
Organic bioelectronics probing conformational changes in surface confined proteins
NASA Astrophysics Data System (ADS)
Macchia, Eleonora; Alberga, Domenico; Manoli, Kyriaki; Mangiatordi, Giuseppe F.; Magliulo, Maria; Palazzo, Gerardo; Giordano, Francesco; Lattanzi, Gianluca; Torsi, Luisa
2016-06-01
The study of proteins confined on a surface has attracted a great deal of attention due to its relevance in the development of bio-systems for laboratory and clinical settings. In this respect, organic bio-electronic platforms can be used as tools to achieve a deeper understanding of the processes involving protein interfaces. In this work, biotin-binding proteins have been integrated in two different organic thin-film transistor (TFT) configurations to separately address the changes occurring in the protein-ligand complex morphology and dipole moment. This has been achieved by decoupling the output current change upon binding, taken as the transducing signal, into its component figures of merit. In particular, the threshold voltage is related to the protein dipole moment, while the field-effect mobility is associated with conformational changes occurring in the proteins of the layer when ligand binding occurs. Molecular Dynamics simulations on the whole avidin tetramer in presence and absence of ligands were carried out, to evaluate how the tight interactions with the ligand affect the protein dipole moment and the conformation of the loops surrounding the binding pocket. These simulations allow assembling a rather complete picture of the studied interaction processes and support the interpretation of the experimental results.
NASA Astrophysics Data System (ADS)
Walcott, Sam
2013-03-01
Interactions between the proteins actin and myosin drive muscle contraction. Properties of a single myosin interacting with an actin filament are largely known, but a trillion myosins work together in muscle. We are interested in how single-molecule properties relate to ensemble function. Myosin's reaction rates depend on force, so ensemble models keep track of both molecular state and force on each molecule. These models make subtle predictions, e.g. that myosin, when part of an ensemble, moves actin faster than when isolated. This acceleration arises because forces between molecules speed reaction kinetics. Experiments support this prediction and allow parameter estimates. A model based on this analysis describes experiments from single molecule to ensemble. In vivo, actin is regulated by proteins that, when present, cause the binding of one myosin to speed the binding of its neighbors; binding becomes cooperative. Although such interactions preclude the mean field approximation, a set of linear ODEs describes these ensembles under simplified experimental conditions. In these experiments cooperativity is strong, with the binding of one molecule affecting ten neighbors on either side. We progress toward a description of myosin ensembles under physiological conditions.
Organic bioelectronics probing conformational changes in surface confined proteins
Macchia, Eleonora; Alberga, Domenico; Manoli, Kyriaki; Mangiatordi, Giuseppe F.; Magliulo, Maria; Palazzo, Gerardo; Giordano, Francesco; Lattanzi, Gianluca; Torsi, Luisa
2016-01-01
The study of proteins confined on a surface has attracted a great deal of attention due to its relevance in the development of bio-systems for laboratory and clinical settings. In this respect, organic bio-electronic platforms can be used as tools to achieve a deeper understanding of the processes involving protein interfaces. In this work, biotin-binding proteins have been integrated in two different organic thin-film transistor (TFT) configurations to separately address the changes occurring in the protein-ligand complex morphology and dipole moment. This has been achieved by decoupling the output current change upon binding, taken as the transducing signal, into its component figures of merit. In particular, the threshold voltage is related to the protein dipole moment, while the field-effect mobility is associated with conformational changes occurring in the proteins of the layer when ligand binding occurs. Molecular Dynamics simulations on the whole avidin tetramer in presence and absence of ligands were carried out, to evaluate how the tight interactions with the ligand affect the protein dipole moment and the conformation of the loops surrounding the binding pocket. These simulations allow assembling a rather complete picture of the studied interaction processes and support the interpretation of the experimental results. PMID:27312768
Anesthetic Binding in a Pentameric Ligand-Gated Ion Channel: GLIC
Chen, Qiang; Cheng, Mary Hongying; Xu, Yan; Tang, Pei
2010-01-01
Cys-loop receptors are molecular targets of general anesthetics, but the knowledge of anesthetic binding to these proteins remains limited. Here we investigate anesthetic binding to the bacterial Gloeobacter violaceus pentameric ligand-gated ion channel (GLIC), a structural homolog of cys-loop receptors, using an experimental and computational hybrid approach. Tryptophan fluorescence quenching experiments showed halothane and thiopental binding at three tryptophan-associated sites in the extracellular (EC) domain, transmembrane (TM) domain, and EC-TM interface of GLIC. An additional binding site at the EC-TM interface was predicted by docking analysis and validated by quenching experiments on the N200W GLIC mutant. The binding affinities (KD) of 2.3 ± 0.1 mM and 0.10 ± 0.01 mM were derived from the fluorescence quenching data of halothane and thiopental, respectively. Docking these anesthetics to the original GLIC crystal structure and the structures relaxed by molecular dynamics simulations revealed intrasubunit sites for most halothane binding and intersubunit sites for thiopental binding. Tryptophans were within reach of both intra- and intersubunit binding sites. Multiple molecular dynamics simulations on GLIC in the presence of halothane at different sites suggested that anesthetic binding at the EC-TM interface disrupted the critical interactions for channel gating, altered motion of the TM23 linker, and destabilized the open-channel conformation that can lead to inhibition of GLIC channel current. The study has not only provided insights into anesthetic binding in GLIC, but also demonstrated a successful fusion of experiments and computations for understanding anesthetic actions in complex proteins. PMID:20858424
Lu, Haiting; Huang, Xiaoqin; AbdulHameed, Mohamed Diwan M; Zhan, Chang-Guo
2014-04-01
Molecular dynamics (MD) simulations and hybrid quantum mechanical/molecular mechanical (QM/MM) calculations have been performed to explore the dynamic behaviors of cytochrome P450 2A6 (CYP2A6) binding with nicotine analogs (that are typical inhibitors) and to calculate their binding free energies in combination with Poisson-Boltzmann surface area (PBSA) calculations. The combined MD simulations and QM/MM-PBSA calculations reveal that the most important structural parameters affecting the CYP2A6-inhibitor binding affinity are two crucial internuclear distances, that is, the distance between the heme iron atom of CYP2A6 and the coordinating atom of the inhibitor, and the hydrogen-bonding distance between the N297 side chain of CYP2A6 and the pyridine nitrogen of the inhibitor. The combined MD simulations and QM/MM-PBSA calculations have led to dynamic CYP2A6-inhibitor binding structures that are consistent with the observed dynamic behaviors and structural features of CYP2A6-inhibitor binding, and led to the binding free energies that are in good agreement with the experimentally-derived binding free energies. The agreement between the calculated binding free energies and the experimentally-derived binding free energies suggests that the combined MD and QM/MM-PBSA approach may be used as a valuable tool to accurately predict the CYP2A6-inhibitor binding affinities in future computational design of new, potent and selective CYP2A6 inhibitors. Copyright © 2014 Elsevier Ltd. All rights reserved.
Kappel, Kalli; Miao, Yinglong; McCammon, J Andrew
2015-11-01
Elucidating the detailed process of ligand binding to a receptor is pharmaceutically important for identifying druggable binding sites. With the ability to provide atomistic detail, computational methods are well poised to study these processes. Here, accelerated molecular dynamics (aMD) is proposed to simulate processes of ligand binding to a G-protein-coupled receptor (GPCR), in this case the M3 muscarinic receptor, which is a target for treating many human diseases, including cancer, diabetes and obesity. Long-timescale aMD simulations were performed to observe the binding of three chemically diverse ligand molecules: antagonist tiotropium (TTP), partial agonist arecoline (ARc) and full agonist acetylcholine (ACh). In comparison with earlier microsecond-timescale conventional MD simulations, aMD greatly accelerated the binding of ACh to the receptor orthosteric ligand-binding site and the binding of TTP to an extracellular vestibule. Further aMD simulations also captured binding of ARc to the receptor orthosteric site. Additionally, all three ligands were observed to bind in the extracellular vestibule during their binding pathways, suggesting that it is a metastable binding site. This study demonstrates the applicability of aMD to protein-ligand binding, especially the drug recognition of GPCRs.
Effect of PDGF-B aptamer on PDGFRβ/PDGF-B interaction: Molecular dynamics study.
Vu, Cong Quang; Rotkrua, Pichayanoot; Soontornworajit, Boonchoy; Tantirungrotechai, Yuthana
2018-06-01
PDGFRβ/PDGF-B interaction plays a role in angiogenesis, and is mandatory in wound healing and cancer treatment. It has been reported that the PDGF-B aptamer was able to bind to PDGF-B, thus regulating the angiogenesis. However, the binding interaction between the aptamer and the growth factor, including the binding sites, has not been well investigated. This study applied a molecular dynamics (MD) simulation to investigate the aptamer-growth factor interaction in the presence or absence of a receptor (PDGFRβ). Characterization of the structure of an aptamer-growth factor complex revealed binding sites from each section in the complex. Upon the complex formation, PDGF-B and its aptamer exhibited less flexibility in their molecular movement, as indicated by the minimum values of RMSD, RMSF, loop-to-loop distance, and the summation of PCA eigenvalues. Our study of residue pairwise interaction demonstrated that the binding interaction was mainly contributed by electrostatic interaction between the positively-charged amino acid and the negatively-charged phosphate backbone. The role of the PDGF-B aptamer in PDGFRβ/PDGF-B interaction was also investigated. We demonstrated that the stability of the Apt-PDGF-B complex could prevent the presence of a competitor, of PDGFRβ, interrupting the binding process. Because the aptamer was capable of binding with PDGF-B, and blocking the growth factor from the PDGFRβ, it could down regulate the consequent signaling pathway. We provide evidence that the PDGF-BB aptamer is a promising molecule for regulation of angiogenesis. The MD study provides a molecular understanding to modification of the aptamer binding interaction, which could be used in a number of medical applications. Copyright © 2018 Elsevier Inc. All rights reserved.
Analysis of CD44-Hyaluronan Interactions in an Artificial Membrane System
Wolny, Patricia M.; Banerji, Suneale; Gounou, Céline; Brisson, Alain R.; Day, Anthony J.; Jackson, David G.; Richter, Ralf P.
2010-01-01
CD44 is a major cell surface receptor for the large polydisperse glycosaminoglycan hyaluronan (HA). Binding of the long and flexible HA chains is thought to be stabilized by the multivalent nature of the sugar molecule. In addition, high and low molecular weight forms of HA provoke distinct proinflammatory and anti-inflammatory effects upon binding to CD44 and can deliver either proliferative or antiproliferative signals in appropriate cell types. Despite the importance of such interactions, however, neither the stoichiometry of multivalent HA binding at the cell surface nor the molecular basis for functional distinction between different HA size categories is understood. Here we report on the design of a supported lipid bilayer system that permits quantitative analysis of multivalent binding through presentation of CD44 in a stable, natively oriented manner and at controlled density. Using this system in combination with biophysical techniques, we show that the amount of HA binding to bilayers that are densely coated with CD44 increases as a function of HA size, with half-maximal saturation at ∼30 kDa. Moreover, reversible binding was confined to the smaller HA species (molecular weight of ≤10 kDa), whereas the interaction was essentially irreversible with larger polymers. The amount of bound HA decreased with decreasing receptor surface density, but the stability of binding was not affected. From a physico-chemical perspective, the binding properties of HA share many similarities with the typical behavior of a flexible polymer as it adsorbs onto a homogeneously attractive surface. These findings provide new insight into the multivalent nature of CD44-HA interactions and suggest a molecular basis for the distinct biological properties of different size fractions of hyaluronan. PMID:20663884
Chirality dependent interaction of ammonia with carbon nanotubes
NASA Astrophysics Data System (ADS)
Talukdar, Keka; Shantappa, Anil
2018-04-01
For the specific structure and extraordinary properties, carbon nanotubes (CNTs) have many applications in diversified fields. The interaction of CNTs with ammonia is a very interesting matter to study as it is related to the application of CNTs as ammonia sensor. Here the interaction of single walled zigzag, armchair and chiral carbon nanotubes is studied in respect of the change in energies before and after binding with ammonia by molecular dynamics simulation. Their deformation after simulation is modeled. The change of thermal conductivity of the CNTs is also found by simulation. The potential energy before and after absorption of ammonia gives useful information of the system. Thermal conductivities of the ammonia bound CNTs are changed considerably. It is observed that the potential energy and thermal conductivity both are changing for the interaction with ammonia and hence they are sensitive to ammonia binding.
Greathouse, J. A.; Cygan, R. T.; Fredrich, J. T.; ...
2017-09-28
Molecular simulations of the adsorption of representative organic molecules onto the basal surfaces of various clay minerals were used to assess the mechanisms of enhanced oil recovery associated with salinity changes and water flooding. Simulations at the density functional theory (DFT) and classical levels provide insights into the molecular structure, binding energy, and interfacial behavior of saturate, aromatic, and resin molecules near clay mineral surfaces. Periodic DFT calculations reveal binding geometries and ion pairing mechanisms at mineral surfaces while also providing a basis for validating the classical force field approach. Through classical molecular dynamics simulations, the influence of aqueous cationsmore » at the interface and the role of water solvation are examined to better evaluate the dynamical nature of cation-organic complexes and their co-adsorption onto the clay surfaces. The extent of adsorption is controlled by the hydrophilic nature and layer charge of the clay mineral. All organic species studied showed preferential adsorption on hydrophobic mineral surfaces. However, the anionic form of the resin (decahydro-2-naphthoic acid)—expected to be prevalent at near-neutral pH conditions in petroleum reservoirs—readily adsorbs to the hydrophilic kaolinite surface through a combination of cation pairing and hydrogen bonding with surface hydroxyl groups. Analysis of cation-organic pairing in both the adsorbed and desorbed states reveals a strong preference for organic anions to coordinate with divalent calcium ions rather than monovalent sodium ions, lending support to current theories regarding low-salinity water flooding.« less
Guan, Shanshan; Zhao, Li; Jin, Hanyong; Shan, Ning; Han, Weiwei; Wang, Song; Shan, Yaming
2017-02-01
Phosphotriesterase-like lactonases (PLLs) have received much attention because of their physical and chemical properties. They may have widespread applications in various fields. For example, they show potential for quorum-sensing signaling pathways and organophosphorus (OP) detoxification in agricultural science. However, the mechanism by which PLLs hydrolyze, which involves OP compounds and lactones and a variety of distinct catalytic efficiencies, has only rarely been explored. In the present study, molecular dynamics (MD) simulations were performed to characterize and contrast the structural dynamics of DrPLL, a member of the PLL superfamily in Deinococcus radiodurans, bound to two substrates, δ-nonanoic lactone and paraoxon. It has been observed that there is a 16-fold increase in the catalytic efficiency of the two mutant strains of DrPLL (F26G/C72I) vs. the wild-type enzyme toward the hydrolysis of paraoxon, but an explanation for this behavior is currently lacking. The analysis of the molecular trajectories of DrPLL bound to δ-nonanoic lactone indicated that lactone-induced conformational changes take place in loop 8, which is near the active site. Binding to paraoxon may lead to conformational displacement of loop 1 residues, which could lead to the deformation of the active site and so trigger the entry of the paraoxon into the active site. The efficiency of the F26G/C72I mutant was increased by decreasing the displacement of loop 1 residues and increasing the flexibility of loop 8 residues. These results provide a molecular-level explanation for the experimental behavior.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Greathouse, J. A.; Cygan, R. T.; Fredrich, J. T.
Molecular simulations of the adsorption of representative organic molecules onto the basal surfaces of various clay minerals were used to assess the mechanisms of enhanced oil recovery associated with salinity changes and water flooding. Simulations at the density functional theory (DFT) and classical levels provide insights into the molecular structure, binding energy, and interfacial behavior of saturate, aromatic, and resin molecules near clay mineral surfaces. Periodic DFT calculations reveal binding geometries and ion pairing mechanisms at mineral surfaces while also providing a basis for validating the classical force field approach. Through classical molecular dynamics simulations, the influence of aqueous cationsmore » at the interface and the role of water solvation are examined to better evaluate the dynamical nature of cation-organic complexes and their co-adsorption onto the clay surfaces. The extent of adsorption is controlled by the hydrophilic nature and layer charge of the clay mineral. All organic species studied showed preferential adsorption on hydrophobic mineral surfaces. However, the anionic form of the resin (decahydro-2-naphthoic acid)—expected to be prevalent at near-neutral pH conditions in petroleum reservoirs—readily adsorbs to the hydrophilic kaolinite surface through a combination of cation pairing and hydrogen bonding with surface hydroxyl groups. Analysis of cation-organic pairing in both the adsorbed and desorbed states reveals a strong preference for organic anions to coordinate with divalent calcium ions rather than monovalent sodium ions, lending support to current theories regarding low-salinity water flooding.« less
High-order above-threshold dissociation of molecules.
Lu, Peifen; Wang, Junping; Li, Hui; Lin, Kang; Gong, Xiaochun; Song, Qiying; Ji, Qinying; Zhang, Wenbin; Ma, Junyang; Li, Hanxiao; Zeng, Heping; He, Feng; Wu, Jian
2018-02-27
Electrons bound to atoms or molecules can simultaneously absorb multiple photons via the above-threshold ionization featured with discrete peaks in the photoelectron spectrum on account of the quantized nature of the light energy. Analogously, the above-threshold dissociation of molecules has been proposed to address the multiple-photon energy deposition in the nuclei of molecules. In this case, nuclear energy spectra consisting of photon-energy spaced peaks exceeding the binding energy of the molecular bond are predicted. Although the observation of such phenomena is difficult, this scenario is nevertheless logical and is based on the fundamental laws. Here, we report conclusive experimental observation of high-order above-threshold dissociation of H 2 in strong laser fields where the tunneling-ionized electron transfers the absorbed multiphoton energy, which is above the ionization threshold to the nuclei via the field-driven inelastic rescattering. Our results provide an unambiguous evidence that the electron and nuclei of a molecule as a whole absorb multiple photons, and thus above-threshold ionization and above-threshold dissociation must appear simultaneously, which is the cornerstone of the nowadays strong-field molecular physics. Copyright © 2018 the Author(s). Published by PNAS.
Protonation States in molecular dynamics simulations of peptide folding and binding.
Ben-Shimon, Avraham; Shalev, Deborah E; Niv, Masha Y
2013-01-01
Peptides are important signaling modules, acting both as individual hormones and as parts of larger molecules, mediating their protein-protein interactions. Many peptidic and peptidomimetic drugs have reached the marketplace and opportunities for peptide-based drug discovery are on the rise. pH-dependent behavior of peptides is well documented in the context of misfolding diseases and peptide translocation. Changes in the protonation states of peptide residues often have a crucial effect on a peptide's structure, dynamics and function, which may be exploited for biotechnological applications. The current review surveys the increasing levels of sophistication in the treatment of protonation states in computational studies involving peptides. Specifically we describe I) the common practice of assigning a single protonation state and using it throughout the dynamic simulation, II) approaches that consider multiple protonation states and compare computed observables to experimental ones, III) constant pH molecular dynamics methods that couple changes in protonation states with conformational dynamics "on the fly". Applications of conformational dynamics treatment of peptides in the context of binding, folding and interactions with the membrane are presented, illustrating the growing body of work in this field and highlighting the importance of careful handling of protonation states of peptidic residues.
Amyloid peptide Aβ40 inhibits aggregation of Aβ42: Evidence from molecular dynamics simulations
NASA Astrophysics Data System (ADS)
Viet, Man Hoang; Li, Mai Suan
2012-06-01
Effects of amyloid beta (Aβ) peptide Aβ40 on secondary structures of Aβ42 are studied by all-atom simulations using the GROMOS96 43a1 force field with explicit water. It is shown that in the presence of Aβ40 the beta-content of monomer Aβ42 is reduced. Since the fibril-prone conformation N* of full-length Aβ peptides has the shape of beta strand-loop-beta strand this result suggests that Aβ40 decreases the probability of observing N* of Aβ42 in monomer state. Based on this and the hypothesis that the higher is the population of N* the higher fibril formation rates, one can expect that, in agreement with the recent experiment, Aβ40 inhibit fibril formation of Aβ42. It is shown that the presence of Aβ40 makes the salt bridge D23-K28 and fragment 18-33 of Aβ42 more flexible providing additional support for this experimental fact. Our estimation of the binding free energy by the molecular mechanics-Poisson-Boltzmann surface area method reveals the inhibition mechanism that Aβ40 binds to Aβ42 modifying its morphology.
Smith, Lorna J; Gunsteren, Wilfred F Van; Allison, Jane R
2013-01-01
Molecular dynamics simulations have been used to characterise the binding of the fatty acid ligand palmitate in the barley lipid transfer protein 1 (LTP) internal cavity. Two different palmitate binding modes (1 and 2), with similar protein-ligand interaction energies, have been identified using a variety of simulation strategies. These strategies include applying experimental protein-ligand atom-atom distance restraints during the simulation, or protonating the palmitate ligand, or using the vacuum GROMOS 54B7 force-field parameter set for the ligand during the initial stages of the simulations. In both the binding modes identified the palmitate carboxylate head group hydrogen bonds with main chain amide groups in helix A, residues 4 to 19, of the protein. In binding mode 1 the hydrogen bonds are to Lys 11, Cys 13, and Leu 14 and in binding mode 2 to Thr 15, Tyr 16, Val 17, Ser 24 and also to the OH of Thr 15. In both cases palmitate binding exploits irregularity of the intrahelical hydrogen-bonding pattern in helix A of barley LTP due to the presence of Pro 12. Simulations of two variants of barley LTP, namely the single mutant Pro12Val and the double mutant Pro12Val Pro70Val, show that Pro 12 is required for persistent palmitate binding in the LTP cavity. Overall, the work identifies key MD simulation approaches for characterizing the details of protein-ligand interactions in complexes where NMR data provide insufficient restraints. Copyright © 2012 The Protein Society.
Bochicchio, Anna; Jordaan, Sandra; Losasso, Valeria; Chetty, Shivan; Perera, Rodrigo Casasnovas; Ippoliti, Emiliano; Barth, Stefan; Carloni, Paolo
2017-02-17
Targeted human cytolytic fusion proteins (hCFPs) are humanized immunotoxins for selective treatment of different diseases including cancer. They are composed of a ligand specifically binding to target cells genetically linked to a human apoptosis-inducing enzyme. hCFPs target cancer cells via an antibody or derivative (scFv) specifically binding to e.g., tumor associated antigens (TAAs). After internalization and translocation of the enzyme from endocytosed endosomes, the human enzymes introduced into the cytosol are efficiently inducing apoptosis. Under in vivo conditions such enzymes are subject to tight regulation by native inhibitors in order to prevent inappropriate induction of cell death in healthy cells. Tumor cells are known to upregulate these inhibitors as a survival mechanism resulting in escape of malignant cells from elimination by immune effector cells. Cytosolic inhibitors of Granzyme B and Angiogenin (Serpin P9 and RNH1, respectively), reduce the efficacy of hCFPs with these enzymes as effector domains, requiring detrimentally high doses in order to saturate inhibitor binding and rescue cytolytic activity. Variants of Granzyme B and Angiogenin might feature reduced affinity for their respective inhibitors, while retaining or even enhancing their catalytic activity. A powerful tool to design hCFPs mutants with improved potency is given by in silico methods. These include molecular dynamics (MD) simulations and enhanced sampling methods (ESM). MD and ESM allow predicting the enzyme-protein inhibitor binding stability and the associated conformational changes, provided that structural information is available. Such "high-resolution" detailed description enables the elucidation of interaction domains and the identification of sites where particular point mutations may modify those interactions. This review discusses recent advances in the use of MD and ESM for hCFP development from the viewpoints of scientists involved in both fields.
Bochicchio, Anna; Jordaan, Sandra; Losasso, Valeria; Chetty, Shivan; Casasnovas Perera, Rodrigo; Ippoliti, Emiliano; Barth, Stefan; Carloni, Paolo
2017-01-01
Targeted human cytolytic fusion proteins (hCFPs) are humanized immunotoxins for selective treatment of different diseases including cancer. They are composed of a ligand specifically binding to target cells genetically linked to a human apoptosis-inducing enzyme. hCFPs target cancer cells via an antibody or derivative (scFv) specifically binding to e.g., tumor associated antigens (TAAs). After internalization and translocation of the enzyme from endocytosed endosomes, the human enzymes introduced into the cytosol are efficiently inducing apoptosis. Under in vivo conditions such enzymes are subject to tight regulation by native inhibitors in order to prevent inappropriate induction of cell death in healthy cells. Tumor cells are known to up-regulate these inhibitors as a survival mechanism resulting in escape of malignant cells from elimination by immune effector cells. Cytosolic inhibitors of Granzyme B and Angiogenin (Serpin P9 and RNH1, respectively), reduce the efficacy of hCFPs with these enzymes as effector domains, requiring detrimentally high doses in order to saturate inhibitor binding and rescue cytolytic activity. Variants of Granzyme B and Angiogenin might feature reduced affinity for their respective inhibitors, while retaining or even enhancing their catalytic activity. A powerful tool to design hCFPs mutants with improved potency is given by in silico methods. These include molecular dynamics (MD) simulations and enhanced sampling methods (ESM). MD and ESM allow predicting the enzyme-protein inhibitor binding stability and the associated conformational changes, provided that structural information is available. Such “high-resolution” detailed description enables the elucidation of interaction domains and the identification of sites where particular point mutations may modify those interactions. This review discusses recent advances in the use of MD and ESM for hCFP development from the viewpoints of scientists involved in both fields. PMID:28536352
Buzdin, Anton; Sorokin, Maxim; Garazha, Andrew; Sekacheva, Marina; Kim, Ella; Zhukov, Nikolay; Wang, Ye; Li, Xinmin; Kar, Souvik; Hartmann, Christian; Samii, Amir; Giese, Alf; Borisov, Nicolas
2018-06-20
Anticancer target drugs (ATDs) specifically bind and inhibit molecular targets that play important roles in cancer development and progression, being deeply implicated in intracellular signaling pathways. To date, hundreds of different ATDs were approved for clinical use in the different countries. Compared to previous chemotherapy treatments, ATDs often demonstrate reduced side effects and increased efficiency, but also have higher costs. However, the efficiency of ATDs for the advanced stage tumors is still insufficient. Different ATDs have different mechanisms of action and are effective in different cohorts of patients. Personalized approaches are therefore needed to select the best ATD candidates for the individual patients. In this review, we focus on a new generation of biomarkers - molecular pathway activation - and on their applications for predicting individual tumor response to ATDs. The success in high throughput gene expression profiling and emergence of novel bioinformatic tools reinforced quick development of pathway related field of molecular biomedicine. The ability to quantitatively measure degree of a pathway activation using gene expression data has revolutionized this field and made the corresponding analysis quick, robust and inexpensive. This success was further enhanced by using machine learning algorithms for selection of the best biomarkers. We review here the current progress in translating these studies to clinical oncology and patient-oriented adjustment of cancer therapy. Copyright © 2018. Published by Elsevier Ltd.
Schneider, Markus; Rosam, Mathias; Glaser, Manuel; Patronov, Atanas; Shah, Harpreet; Back, Katrin Christiane; Daake, Marina Angelika; Buchner, Johannes; Antes, Iris
2016-10-01
Substrate binding to Hsp70 chaperones is involved in many biological processes, and the identification of potential substrates is important for a comprehensive understanding of these events. We present a multi-scale pipeline for an accurate, yet efficient prediction of peptides binding to the Hsp70 chaperone BiP by combining sequence-based prediction with molecular docking and MMPBSA calculations. First, we measured the binding of 15mer peptides from known substrate proteins of BiP by peptide array (PA) experiments and performed an accuracy assessment of the PA data by fluorescence anisotropy studies. Several sequence-based prediction models were fitted using this and other peptide binding data. A structure-based position-specific scoring matrix (SB-PSSM) derived solely from structural modeling data forms the core of all models. The matrix elements are based on a combination of binding energy estimations, molecular dynamics simulations, and analysis of the BiP binding site, which led to new insights into the peptide binding specificities of the chaperone. Using this SB-PSSM, peptide binders could be predicted with high selectivity even without training of the model on experimental data. Additional training further increased the prediction accuracies. Subsequent molecular docking (DynaDock) and MMGBSA/MMPBSA-based binding affinity estimations for predicted binders allowed the identification of the correct binding mode of the peptides as well as the calculation of nearly quantitative binding affinities. The general concept behind the developed multi-scale pipeline can readily be applied to other protein-peptide complexes with linearly bound peptides, for which sufficient experimental binding data for the training of classical sequence-based prediction models is not available. Proteins 2016; 84:1390-1407. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Gating capacitive field-effect sensors by the charge of nanoparticle/molecule hybrids.
Poghossian, Arshak; Bäcker, Matthias; Mayer, Dirk; Schöning, Michael J
2015-01-21
The semiconductor field-effect platform is a powerful tool for chemical and biological sensing with direct electrical readout. In this work, the field-effect capacitive electrolyte-insulator-semiconductor (EIS) structure - the simplest field-effect (bio-)chemical sensor - modified with citrate-capped gold nanoparticles (AuNPs) has been applied for a label-free electrostatic detection of charged molecules by their intrinsic molecular charge. The EIS sensor detects the charge changes in AuNP/molecule inorganic/organic hybrids induced by the molecular adsorption or binding events. The feasibility of the proposed detection scheme has been exemplarily demonstrated by realizing capacitive EIS sensors consisting of an Al-p-Si-SiO2-silane-AuNP structure for the label-free detection of positively charged cytochrome c and poly-d-lysine molecules as well as for monitoring the layer-by-layer formation of polyelectrolyte multilayers of poly(allylamine hydrochloride)/poly(sodium 4-styrene sulfonate), representing typical model examples of detecting small proteins and macromolecules and the consecutive adsorption of positively/negatively charged polyelectrolytes, respectively. For comparison, EIS sensors without AuNPs have been investigated, too. The adsorption of molecules on the surface of AuNPs has been verified via the X-ray photoelectron spectroscopy method. In addition, a theoretical model of the functioning of the capacitive field-effect EIS sensor functionalized with AuNP/charged-molecule hybrids has been discussed.
Ahmed, Shaimaa; Vepuri, Suresh B; Jadhav, Mahantesh; Kalhapure, Rahul S; Govender, Thirumala
2018-06-01
Nano-drug delivery systems have proven to be an efficient formulation tool to overcome the challenges with current antibiotics therapy and resistance. A series of pH-responsive lipid molecules were designed and synthesized for future liposomal formulation as a nano-drug delivery system for vancomycin at the infection site. The structures of these lipids differ from each other in respect of hydrocarbon tails: Lipid1, 2, 3 and 4 have stearic, oleic, linoleic, and linolenic acid hydrocarbon chains, respectively. The impact of variation in the hydrocarbon chain in the lipid structure on drug encapsulation and release profile, as well as mode of drug interaction, was investigated using molecular modeling analyses. A wide range of computational tools, including accelerated molecular dynamics, normal molecular dynamics, binding free energy calculations and principle component analysis, were applied to provide comprehensive insight into the interaction landscape between vancomycin and the designed lipid molecules. Interestingly, both MM-GBSA and MM-PBSA binding affinity calculations using normal molecular dynamics and accelerated molecular dynamics trajectories showed a very consistent trend, where the order of binding affinity towards vancomycin was lipid4 > lipid1 > lipid2 > lipid3. From both normal molecular dynamics and accelerated molecular dynamics, the interaction of lipid3 with vancomycin is demonstrated to be the weakest (∆G binding = -2.17 and -11.57, for normal molecular dynamics and accelerated molecular dynamics, respectively) when compared to other complexes. We believe that the degree of unsaturation of the hydrocarbon chain in the lipid molecules may impact on the overall conformational behavior, interaction mode and encapsulation (wrapping) of the lipid molecules around the vancomycin molecule. This thorough computational analysis prior to the experimental investigation is a valuable approach to guide for predicting the encapsulation ability, drug release and further development of novel liposome-based pH-responsive nano-drug delivery system with refined structural and chemical features of potential lipid molecule for formulation development.
Binding of N-methylscopolamine to the extracellular domain of muscarinic acetylcholine receptors
NASA Astrophysics Data System (ADS)
Jakubík, Jan; Randáková, Alena; Zimčík, Pavel; El-Fakahany, Esam E.; Doležal, Vladimír
2017-01-01
Interaction of orthosteric ligands with extracellular domain was described at several aminergic G protein-coupled receptors, including muscarinic acetylcholine receptors. The orthosteric antagonists quinuclidinyl benzilate (QNB) and N-methylscopolamine (NMS) bind to the binding pocket of the muscarinic acetylcholine receptor formed by transmembrane α-helices. We show that high concentrations of either QNB or NMS slow down dissociation of their radiolabeled species from all five subtypes of muscarinic acetylcholine receptors, suggesting allosteric binding. The affinity of NMS at the allosteric site is in the micromolar range for all receptor subtypes. Using molecular modelling of the M2 receptor we found that E172 and E175 in the second extracellular loop and N419 in the third extracellular loop are involved in allosteric binding of NMS. Mutation of these amino acids to alanine decreased affinity of NMS for the allosteric binding site confirming results of molecular modelling. The allosteric binding site of NMS overlaps with the binding site of some allosteric, ectopic and bitopic ligands. Understanding of interactions of NMS at the allosteric binding site is essential for correct analysis of binding and action of these ligands.
Yang, Xianhai; Lyakurwa, Felichesmi; Xie, Hongbin; Chen, Jingwen; Li, Xuehua; Qiao, Xianliang; Cai, Xiyun
2017-09-01
Chemical forms-dependent binding interactions between phenolic compounds and human transthyretin (hTTR) have been elaborated previously. However, it is not known whether the binding interactions between ionizable halogenated alphatic compounds and hTTR also have the same manner. In this study, poly-/perfluorinated chemicals (PFCs) were selected as model compounds and molecular dynamic simulation was performed to investigate the binding mechanisms between PFCs and hTTR. Results show the binding interactions between the halogenated aliphatic compounds and hTTR are related to the chemical forms. The ionized groups of PFCs can form electrostatic interactions with the -NH + 3 groups of Lys 15 residues in hTTR and form hydrogen bonds with the residues of hTTR. By analyzing the molecular orbital energies of PFCs, we also found that the anionic groups (nucleophile) in PFCs could form electron donor - acceptor interactions with the -NH + 3 groups (electrophile) in Lys 15. The aforementioned orientational interactions make the ionized groups of the PFCs point toward the entry port of the binding site. The roles of fluorine atoms in the binding interactions were also explored. The fluorine atoms can influence the binding interactions via inductive effects. Appropriate molecular descriptors were selected to characterize these interactions, and two quantitative structure-activity relationship models were developed. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Xu, Xiaochun; Kang, Soyoung; Navarro-Comes, Eric; Wang, Yu; Liu, Jonathan T. C.; Tichauer, Kenneth M.
2018-03-01
Intraoperative tumor/surgical margin assessment is required to achieve higher tumor resection rate in breast-conserving surgery. Though current histology provides incomparable accuracy in margin assessment, thin tissue sectioning and the limited field of view of microscopy makes histology too time-consuming for intraoperative applications. If thick tissue, wide-field imaging can provide an acceptable assessment of tumor cells at the surface of resected tissues, an intraoperative protocol can be developed to guide the surgery and provide immediate feedback for surgeons. Topical staining of margins with cancer-targeted molecular imaging agents has the potential to provide the sensitivity needed to see microscopic cancer on a wide-field image; however, diffusion and nonspecific retention of imaging agents in thick tissue can significantly diminish tumor contrast with conventional methods. Here, we present a mathematical model to accurately simulate nonspecific retention, binding, and diffusion of imaging agents in thick tissue topical staining to guide and optimize future thick tissue staining and imaging protocol. In order to verify the accuracy and applicability of the model, diffusion profiles of cancer targeted and untargeted (control) nanoparticles at different staining times in A431 tumor xenografts were acquired for model comparison and tuning. The initial findings suggest the existence of nonspecific retention in the tissue, especially at the tissue surface. The simulator can be used to compare the effect of nonspecific retention, receptor binding and diffusion under various conditions (tissue type, imaging agent) and provides optimal staining and imaging protocols for targeted and control imaging agent.
Ahmed, Shaimaa; Vepuri, Suresh B; Ramesh, Muthusamy; Kalhapure, Rahul; Suleman, Nadia; Govender, Thirumala
2016-04-01
We have shown that novel silver salts of poly (propyl ether) imine (PETIM) dendron and dendrimers developed in our group exhibit preferential antibacterial activity against methicillin-resistant Staphylococcus aureus (MRSA) and Staphylococcus aureus. This led us to examine whether molecular modeling methods could be used to identify the key structural design principles for a bioactive lead molecule, explore the mechanism of binding with biological targets, and explain their preferential antibacterial activity. The current article reports the conformational landscape as well as mechanism of binding of generation 1 PETIM dendron and dendrimers to penicillin-binding proteins (PBPs) in order to understand the antibacterial activity profiles of their silver salts. Molecular dynamics at different simulation protocols and conformational analysis were performed to elaborate on the conformational features of the studied dendrimers, as well as to create the initial structure for further binding studies. The results showed that for all compounds, there were no significant conformational changes due to variation in simulation conditions. Molecular docking calculations were performed to investigate the binding theme between the studied dendrimers and PBPs. Interestingly, in significant accordance with the experimental data, dendron and dendrimer with aliphatic cores were found to show higher activity against S. aureus than the dendrimer with an aromatic core. The latter showed higher activity against MRSA. The findings from this computational and molecular modeling report together with the experimental results serve as a road map toward designing more potent antibacterial dendrimers against resistant bacterial strains.
Elucidation of the binding mechanism of coumarin derivatives with human serum albumin.
Garg, Archit; Manidhar, Darla Mark; Gokara, Mahesh; Malleda, Chandramouli; Suresh Reddy, Cirandur; Subramanyam, Rajagopal
2013-01-01
Coumarin is a benzopyrone which is widely used as an anti-coagulant, anti-oxidant, anti-cancer and also to cure arthritis, herpes, asthma and inflammation. Here, we studied the binding of synthesized coumarin derivatives with human serum albumin (HSA) at physiological pH 7.2 by using fluorescence spectroscopy, circular dichroism spectroscopy, molecular docking and molecular dynamics simulation studies. By addition of coumarin derivatives to HSA the maximum fluorescence intensity was reduced due to quenching of intrinsic fluorescence upon binding of coumarin derivatives to HSA. The binding constant and free energy were found to be 1.957±0.01×10(5) M(-1), -7.175 Kcal M(-1) for coumarin derivative (CD) enamide; 0.837±0.01×10(5) M(-1), -6.685 Kcal M(-1) for coumarin derivative (CD) enoate, and 0.606±0.01×10(5) M(-1), -6.49 Kcal M(-1) for coumarin derivative methylprop (CDM) enamide. The CD spectroscopy showed that the protein secondary structure was partially unfolded upon binding of coumarin derivatives. Further, the molecular docking studies showed that coumarin derivatives were binding to HSA at sub-domain IB with the hydrophobic interactions and also with hydrogen bond interactions. Additionally, the molecular dynamics simulations studies contributed in understanding the stability of protein-drug complex system in the aqueous solution and the conformational changes in HSA upon binding of coumarin derivatives. This study will provide insights into designing of the new inspired coumarin derivatives as therapeutic agents against many life threatening diseases.
Lefkowith, J B; Di Valerio, R; Norris, J; Glick, G D; Alexander, A L; Jackson, L; Gilkeson, G S
1996-08-01
We recently produced a panel of seven glomerular-binding mAbs from a nephritic MRL-lpr mouse that bind to histones/nucleosomes (group I) or DNA (group II) adherent to glomerular basement membrane. To elucidate the molecular basis of their binding and ontogeny, we sequenced their variable (V) regions, analyzed the apparent somatic mutations, and predicted their three-dimensional structures. There were two clonally related sets (3 of 4 in group I, 3 of 3 in group II) both of the VHJ1558 family, and one mAb of the VH 7183 family. V region somatic mutations within clonally related sets had little effect on glomerular binding and did not appear to be selected for based on glomerular binding. The VH regions were most homologous with those from autoantibodies to histones, DNA, or IgG (i.e., rheumatoid factors), the Vkappa regions, with those from autoantibodies to small nuclear ribonucleoproteins (snRNP). The VH regions also exhibited an unusual VD junction (in the group I clonally related set) and an overall high content of charged amino acids (arginine, aspartic acid) in complementarity-determining regions (CDRs), particularly in CDR3. Molecular modeling studies suggested that the Fv regions of these mAbs converge to form a flat, open surface with a net positive charge. The CDR arginines in group I mAbs; appear to be located in Ag contact regions of the binding cleft. In sum, these data suggest that glomerulotropic mAbs are a highly restricted set of Abs with distinctive molecular features that may mediate their binding to glomeruli.
NASA Astrophysics Data System (ADS)
Rajamanikandan, Sundaraj; Srinivasan, Pappu
2017-03-01
Bacteria communicate with one another using extracellular signaling molecules called auto-inducers (AHLs), a process termed as quorum sensing. The quorum sensing process allows bacteria to regulate various physiological activities. In this regard, quorum sensing master regulator LuxR from Vibrio harveyi represents an attractive therapeutic target for the development of novel anti-quorum sensing agents. Eventhough the binding of AHL complex with LuxR is evidenced in earlier reports, but their mode of binding is not clearly determined. Therefore, in the present work, molecular docking, in silico mutational studies, molecular dynamics simulations and free energy calculations were performed to understand the selectivity of AHL into the binding site of LuxR. The results revealed that Asn133 and Gln137 residues play a crucial role in recognizing AHL more effectively into the binding site of LuxR with good binding free energy. In addition to that, the carbonyl group presents in the lactone ring and amide group of AHL plays a vital role in the formation of hydrogen bond interactions with the protein. Further, structure based virtual screening was performed using ChemBridge database to screen potent lead molecules against LuxR. 4-benzyl-2-pyrrolidinone and N-[2(1-cyclohexen-1-yl) enthyl]-N'(2-ethoxyphenyl) were selected based on dock score, binding affinity and mode of interactions with the receptor. Furthermore, binding free energy, density functional theory and ADME prediction were performed to rank the lead molecules. Thus, the identified lead molecules can be used for the development of anti-quorum sensing drugs.
Virtual screening using molecular simulations.
Yang, Tianyi; Wu, Johnny C; Yan, Chunli; Wang, Yuanfeng; Luo, Ray; Gonzales, Michael B; Dalby, Kevin N; Ren, Pengyu
2011-06-01
Effective virtual screening relies on our ability to make accurate prediction of protein-ligand binding, which remains a great challenge. In this work, utilizing the molecular-mechanics Poisson-Boltzmann (or Generalized Born) surface area approach, we have evaluated the binding affinity of a set of 156 ligands to seven families of proteins, trypsin β, thrombin α, cyclin-dependent kinase (CDK), cAMP-dependent kinase (PKA), urokinase-type plasminogen activator, β-glucosidase A, and coagulation factor Xa. The effect of protein dielectric constant in the implicit-solvent model on the binding free energy calculation is shown to be important. The statistical correlations between the binding energy calculated from the implicit-solvent approach and experimental free energy are in the range of 0.56-0.79 across all the families. This performance is better than that of typical docking programs especially given that the latter is directly trained using known binding data whereas the molecular mechanics is based on general physical parameters. Estimation of entropic contribution remains the barrier to accurate free energy calculation. We show that the traditional rigid rotor harmonic oscillator approximation is unable to improve the binding free energy prediction. Inclusion of conformational restriction seems to be promising but requires further investigation. On the other hand, our preliminary study suggests that implicit-solvent based alchemical perturbation, which offers explicit sampling of configuration entropy, can be a viable approach to significantly improve the prediction of binding free energy. Overall, the molecular mechanics approach has the potential for medium to high-throughput computational drug discovery. Copyright © 2011 Wiley-Liss, Inc.
Long-range coupling between ATP-binding and lever-arm regions in myosin via dielectric allostery
NASA Astrophysics Data System (ADS)
Sato, Takato; Ohnuki, Jun; Takano, Mitsunori
2017-12-01
A protein molecule is a dielectric substance, so the binding of a ligand is expected to induce dielectric response in the protein molecule, considering that ligands are charged or polar in general. We previously reported that binding of adenosine triphosphate (ATP) to molecular motor myosin actually induces such a dielectric response in myosin due to the net negative charge of ATP. By this dielectric response, referred to as "dielectric allostery," spatially separated two regions in myosin, the ATP-binding region and the actin-binding region, are allosterically coupled. In this study, from the statistically stringent analyses of the extensive molecular dynamics simulation data obtained in the ATP-free and the ATP-bound states, we show that there exists the dielectric allostery that transmits the signal of ATP binding toward the distant lever-arm region. The ATP-binding-induced electrostatic potential change observed on the surface of the main domain induced a movement of the converter subdomain from which the lever arm extends. The dielectric response was found to be caused by an underlying large-scale concerted rearrangement of the electrostatic bond network, in which highly conserved charged/polar residues are involved. Our study suggests the importance of the dielectric property for molecular machines in exerting their function.
Binding of puerarin to human serum albumin: a spectroscopic analysis and molecular docking.
He, Yang; Wang, Yiwei; Tang, Lifei; Liu, Hui; Chen, Wei; Zheng, Zhongliang; Zou, Guolin
2008-03-01
Puerarin is a widely used compound in Chinese traditional medicine and exhibits many pharmacological activities. Binding of puerarin to human serum albumin (HSA) was investigated by ultraviolet absorbance, fluorescence, circular dichroism and molecular docking. Puerarin caused a static quenching of intrinsic fluorescence of HSA, the quenching data was analyzed by Stern-Volmer equation. There was one primary puerarin binding site on HSA with a binding constant of 4.12 x 10(4) M(-1) at 298 K. Thermodynamic analysis by Van Hoff equation found enthalpy change (DeltaH(0)) and entropy change (DeltaS(0)) were -28.01 kJ/mol and -5.63 J/mol K respectively, which indicated the hydrogen bond and Van der Waas interaction were the predominant forces in the binding process. Competitive experiments showed a displacement of warfarin by puerarin, which revealed that the binding site was located at the drug site I. Puerarin was about 2.22 nm far from the tryptophan according to the observed fluorescence resonance energy transfer between HSA and puerarin. Molecular docking suggested the hydrophobic residues such as tyrosine (Tyr) 150, Tyr 148, Tyr 149 and polar residues such as lysine (Lys) 199, Lys 195, arginine 257 and histidine 242 played an important role in the binding reaction.
Aidas, Kęstutis; Olsen, Jógvan Magnus H; Kongsted, Jacob; Ågren, Hans
2013-02-21
Attempting to unravel mechanisms in optical probing of proteins, we have performed pilot calculations of two cationic chromophores-acridine yellow and proflavin-located at different binding sites within human serum albumin, including the two primary drug binding sites as well as a heme binding site. The computational scheme adopted involves classical molecular dynamics simulations of the ligands bound to the protein and subsequent linear response polarizable embedding density functional theory calculations of the excitation energies. A polarizable embedding potential consisting of point charges fitted to reproduce the electrostatic potential and isotropic atomic polarizabilities computed individually for every residue of the protein was used in the linear response calculations. Comparing the calculated aqueous solution-to-protein shifts of maximum absorption energies to available experimental data, we concluded that the cationic proflavin chromophore is likely not to bind albumin at its drug binding site 1 nor at its heme binding site. Although agreement with experimental data could only be obtained in qualitative terms, our results clearly indicate that the difference in optical response of the two probes is due to deprotonation, and not, as earlier suggested, to different binding sites. The ramifications of this finding for design of molecular probes targeting albumin or other proteins is briefly discussed.
A Prediction Method of Binding Free Energy of Protein and Ligand
NASA Astrophysics Data System (ADS)
Yang, Kun; Wang, Xicheng
2010-05-01
Predicting the binding free energy is an important problem in bimolecular simulation. Such prediction would be great benefit in understanding protein functions, and may be useful for computational prediction of ligand binding strengths, e.g., in discovering pharmaceutical drugs. Free energy perturbation (FEP)/thermodynamics integration (TI) is a classical method to explicitly predict free energy. However, this method need plenty of time to collect datum, and that attempts to deal with some simple systems and small changes of molecular structures. Another one for estimating ligand binding affinities is linear interaction energy (LIE) method. This method employs averages of interaction potential energy terms from molecular dynamics simulations or other thermal conformational sampling techniques. Incorporation of systematic deviations from electrostatic linear response, derived from free energy perturbation studies, into the absolute binding free energy expression significantly enhances the accuracy of the approach. However, it also is time-consuming work. In this paper, a new prediction method based on steered molecular dynamics (SMD) with direction optimization is developed to compute binding free energy. Jarzynski's equality is used to derive the PMF or free-energy. The results for two numerical examples are presented, showing that the method has good accuracy and efficiency. The novel method can also simulate whole binding proceeding and give some important structural information about development of new drugs.
Quest for the binding mode of tetrabromobisphenol A with Calf thymus DNA
NASA Astrophysics Data System (ADS)
Wang, Yan-Qing; Zhang, Hong-Mei; Cao, Jian
2014-10-01
The binding interaction of tetrabromobisphenol A with Calf thymus DNA was studied by multi-spectroscopic and molecular modeling methods. The UV-vis study revealed that an obvious interaction between tetrabromobisphenol A and Calf thymus DNA happened. The π-π∗ transitions and the electron cloud of tetrabromobisphenol A might be changed by entering the groove of Calf thymus DNA. From the fluorescence spectral and thermodynamics studies, it was concluded that the hydrogen bonds and hydrophobic force played a major role in the binding of tetrabromobisphenol A to Calf thymus DNA. The molecular modeling study showed that the possible sites of tetrabromobisphenol A in the groove of DNA. Circular dichroism study also depicted that tetrabromobisphenol A bond to DNA. These above results would further advance our knowledge on the molecular mechanism of the binding interactions of brominated flame-retardants with nucleic acid.
Prohibitin as the Molecular Binding Switch in the Retinal Pigment Epithelium.
Sripathi, Srinivas R; Sylvester, O'Donnell; He, Weilue; Moser, Trevor; Um, Ji-Yeon; Lamoke, Folami; Ramakrishna, Wusirika; Bernstein, Paul S; Bartoli, Manuela; Jahng, Wan Jin
2016-02-01
Previously, our molecular binding study showed that prohibitin interacts with phospholipids, including phosphatidylinositide and cardiolipin. Under stress conditions, prohibitin interacts with cardiolipin as a retrograde response to activate mitochondrial proliferation. The lipid-binding switch mechanism of prohibitin with phosphatidylinositol-3,4,5-triphosphate and cardiolipin may suggest the role of prohibitin effects on energy metabolism and age-related diseases. The current study examined the region-specific expressions of prohibitin with respect to the retina and retinal pigment epithelium (RPE) in age-related macular degeneration (AMD). A detailed understanding of prohibitin binding with lipids, nucleotides, and proteins shown in the current study may suggest how molecular interactions control apoptosis and how we can intervene against the apoptotic pathway in AMD. Our data imply that decreased prohibitin in the peripheral RPE is a significant step leading to mitochondrial dysfunction that may promote AMD progression.
Liu, Yaquan; Tian, Fang; Zhi, Dejuan; Wang, Haiqing; Zhao, Chunyan; Li, Hongyu
2017-02-01
Thrombopoietin (TPO) acts in promoting the proliferation of hematopoietic stem cells and by initiating specific maturation events in megakaryocytes. Now, TPO-mimetic peptides with amino acid sequences unrelated to TPO are of considerable pharmaceutical interest. In the present paper, four new TPO mimetic peptides that bind and activate c-Mpl receptor have been identified, synthesized and tested by Dual-Luciferase reporter gene assay for biological activities. The molecular modeling research was also approached to understand key molecular mechanisms and structural features responsible for peptide binding with c-Mpl receptor. The results presented that three of four mimetic peptides showed significant activities. In addition, the molecular modeling approaches proved hydrophobic interactions were the driven positive forces for binding behavior between peptides and c-Mpl receptor. TPO peptide residues in P7, P13 and P7' positions were identified by the analysis of hydrogen bonds and energy decompositions as the key ones for benefiting better biological activities. Our data suggested the synthesized peptides have considerable potential for the future development of stable and highly active TPO mimetic peptides. Copyright © 2016 Elsevier Ltd. All rights reserved.
Nikitkova, Anna E.; Haase, Elaine M.
2013-01-01
α-Amylase-binding streptococci (ABS) are a heterogeneous group of commensal oral bacterial species that comprise a significant proportion of dental plaque microfloras. Salivary α-amylase, one of the most abundant proteins in human saliva, binds to the surface of these bacteria via specific surface-exposed α-amylase-binding proteins. The functional significance of α-amylase-binding proteins in oral colonization by streptococci is important for understanding how salivary components influence oral biofilm formation by these important dental plaque species. This review summarizes the results of an extensive series of studies that have sought to define the molecular basis for α-amylase binding to the surface of the bacterium as well as the biological significance of this phenomenon in dental plaque biofilm formation. PMID:23144140
Li, Qian; Zhang, Tianlong; Bian, Liujiao
2016-03-01
Serum albumins are the most abundant carrier proteins in blood plasma and participate in the binding and transportation of various exogenous and endogenous compounds in the body. This work was designed to investigate the recognition and binding of three typical β-lactam antibiotics including penicillin G (Pen G), penicillin V (Pen V) and cefalexin (Cef) with bovine serum albumin (BSA) by frontal affinity chromatography in combination with UV-vis absorption spectra, fluorescence emission spectra, binding site marker competitive experiment and molecular docking under simulated physiological conditions. The results showed that a BSA only bound with one antibiotic molecule in the binding process, and the binding constants for Pen G-BSA, Pen V-BSA and Cef-BSA complexes were 4.22×10(1), 4.86×10(2) and 3.32×10(3) (L/mol), respectively. All the three β-lactam antibiotics were mainly inserted into the subdomain IIA (binding site 1) of BSA by hydrogen bonds and Van der Waals forces. The binding capacity between the antibiotics and BSA was closely related to the functional groups and flexibility of side chains in antibiotics. This study provided an important insight into the molecular recognition and binding interaction of BSA with β-lactam antibiotics, which may be a useful guideline for the innovative clinical medications and new antibiotic designs with effective pharmacological properties. Copyright © 2016 Elsevier B.V. All rights reserved.
Wickstrom, Lauren; He, Peng; Gallicchio, Emilio; Levy, Ronald M.
2013-01-01
Host-guest inclusion complexes are useful models for understanding the structural and energetic aspects of molecular recognition. Due to their small size relative to much larger protein-ligand complexes, converged results can be obtained rapidly for these systems thus offering the opportunity to more reliably study fundamental aspects of the thermodynamics of binding. In this work, we have performed a large scale binding affinity survey of 57 β-cyclodextrin (CD) host guest systems using the binding energy distribution analysis method (BEDAM) with implicit solvation (OPLS-AA/AGBNP2). Converged estimates of the standard binding free energies are obtained for these systems by employing techniques such as parallel Hamitionian replica exchange molecular dynamics, conformational reservoirs and multistate free energy estimators. Good agreement with experimental measurements is obtained in terms of both numerical accuracy and affinity rankings. Overall, average effective binding energies reproduce affinity rank ordering better than the calculated binding affinities, even though calculated binding free energies, which account for effects such as conformational strain and entropy loss upon binding, provide lower root mean square errors when compared to measurements. Interestingly, we find that binding free energies are superior rank order predictors for a large subset containing the most flexible guests. The results indicate that, while challenging, accurate modeling of reorganization effects can lead to ligand design models of superior predictive power for rank ordering relative to models based only on ligand-receptor interaction energies. PMID:25147485
Al Masum, Abdulla; Chakraborty, Maharudra; Ghosh, Soumen; Laha, Dipranjan; Karmakar, Parimal; Islam, Md Maidul; Mukhopadhyay, Subrata
2016-11-01
Interaction of CT DNA with Rhodamine 6G (R6G) has been studied using molecular docking, electrochemical, spectroscopic and thermodynamic methods. From the study, it was illustrated that Rhodamine 6G binds to the minor groove of CT DNA. The binding was cooperative in nature. Circular voltametric study showed significant change in peak current and peak potential due to complexation. All the studies showed that the binding constant was in the order of 10 6 M -1 . Circular dichroic spectra showed significant conformational change on binding and DNA unwind during binding. Thermodynamic study showed that binding was favored by negative enthalpy and positive entropy change. From thermodynamic study it was also observed that several positive and negative free energies played significant role during binding and the unfavorable conformational free energy change was overcame by highly negative hydrophobic and salt dependent free energy changes. The experimental results were further validated using molecular docking study and the effect of structure on binding has been studied theoretically. From docking study it was found that the hydrophobic interaction and hydrogen bonds played a significant role during binding. The dye was absorbed by cell and this phenomenon was studied using fluorescent microscope. Cell survivability test showed that the dye active against Human Breast Cancer cells MDA-MB 468. ROS study showed that the activity is due to the production of reactive oxygen. Copyright © 2016 Elsevier B.V. All rights reserved.
Investigation of glucose binding sites on insulin.
Zoete, Vincent; Meuwly, Markus; Karplus, Martin
2004-05-15
Possible insulin binding sites for D-glucose have been investigated theoretically by docking and molecular dynamics (MD) simulations. Two different docking programs for small molecules were used; Multiple Copy Simultaneous Search (MCSS) and Solvation Energy for Exhaustive Docking (SEED) programs. The configurations resulting from the MCSS search were evaluated with a scoring function developed to estimate the binding free energy. SEED calculations were performed using various values for the dielectric constant of the solute. It is found that scores emphasizing non-polar interactions gave a preferential binding site in agreement with that inferred from recent fluorescence and NMR NOESY experiments. The calculated binding affinity of -1.4 to -3.5 kcal/mol is within the measured range of -2.0 +/- 0.5 kcal/mol. The validity of the binding site is suggested by the dynamical stability of the bound glucose when examined with MD simulations with explicit solvent. Alternative binding sites were found in the simulations and their relative stabilities were estimated. The motions of the bound glucose during molecular dynamics simulations are correlated with the motions of the insulin side chains that are in contact with it and with larger scale insulin motions. These results raise the question of whether glucose binding to insulin could play a role in its activity. The results establish the complementarity of molecular dynamics simulations and normal mode analyses with the search for binding sites proposed with small molecule docking programs. Copyright 2004 Wiley-Liss, Inc.
Chang, Chun-Chun; Hsu, Hao-Jen; Yen, Jui-Hung; Lo, Shih-Yen
2017-01-01
Hepatitis C virus (HCV) is a species-specific pathogenic virus that infects only humans and chimpanzees. Previous studies have indicated that interactions between the HCV E2 protein and CD81 on host cells are required for HCV infection. To determine the crucial factors for species-specific interactions at the molecular level, this study employed in silico molecular docking involving molecular dynamic simulations of the binding of HCV E2 onto human and rat CD81s. In vitro experiments including surface plasmon resonance measurements and cellular binding assays were applied for simple validations of the in silico results. The in silico studies identified two binding regions on the HCV E2 loop domain, namely E2-site1 and E2-site2, as being crucial for the interactions with CD81s, with the E2-site2 as the determinant factor for human-specific binding. Free energy calculations indicated that the E2/CD81 binding process might follow a two-step model involving (i) the electrostatic interaction-driven initial binding of human-specific E2-site2, followed by (ii) changes in the E2 orientation to facilitate the hydrophobic and van der Waals interaction-driven binding of E2-site1. The sequence of the human-specific, stronger-binding E2-site2 could serve as a candidate template for the future development of HCV-inhibiting peptide drugs. PMID:28481946
Energetic basis for the molecular-scale organization of bone
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tao, Jinhui; Battle, Keith C.; Pan, Haihua
2014-12-24
The remarkable properties of bone derive from a highly organized arrangement of co-aligned nm-scale apatite platelets within a fibrillar collagen matrix. The origin of this arrangement is poorly understood and the crystal structures of hydroxyapatite (HAP) and the non-mineralized collagen fibrils alone do not provide an explanation. Moreover, little is known about collagen-apatite interaction energies, which should strongly influence both the molecular-scale organization and the resulting mechanical properties of the composite. We investigated collagen-mineral interactions by combining dynamic force spectroscopy (DFS) measurements of binding energies with molecular dynamics (MD) simulations of binding and AFM observations of collagen adsorption on singlemore » crystals of calcium phosphate for four mineral phases of potential importance in bone formation. In all cases, we observe a strong preferential orientation of collagen binding, but comparison between the observed orientations and TEM analyses native tissues shows only calcium-deficient apatite (CDAP) provides an interface with collagen that is consistent with both. MD simulations predict preferred collagen orientations that agree with observations and results from both MD and DFS reveal large values for the binding energy due to multiple binding sites. These findings reconcile apparent contradictions inherent in a hydroxyapatite or carbonated apatite (CAP) model of bone mineral and provide an energetic rationale for the molecular scale organization of bone.« less
Jiang, Hanlun; Sheong, Fu Kit; Zhu, Lizhe; Gao, Xin; Bernauer, Julie; Huang, Xuhui
2015-07-01
Argonaute (Ago) proteins and microRNAs (miRNAs) are central components in RNA interference, which is a key cellular mechanism for sequence-specific gene silencing. Despite intensive studies, molecular mechanisms of how Ago recognizes miRNA remain largely elusive. In this study, we propose a two-step mechanism for this molecular recognition: selective binding followed by structural re-arrangement. Our model is based on the results of a combination of Markov State Models (MSMs), large-scale protein-RNA docking, and molecular dynamics (MD) simulations. Using MSMs, we identify an open state of apo human Ago-2 in fast equilibrium with partially open and closed states. Conformations in this open state are distinguished by their largely exposed binding grooves that can geometrically accommodate miRNA as indicated in our protein-RNA docking studies. miRNA may then selectively bind to these open conformations. Upon the initial binding, the complex may perform further structural re-arrangement as shown in our MD simulations and eventually reach the stable binary complex structure. Our results provide novel insights in Ago-miRNA recognition mechanisms and our methodology holds great potential to be widely applied in the studies of other important molecular recognition systems.
Energetic basis for the molecular-scale organization of bone
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tao, Jinhui; Battle, Keith C.; Pan, Haihua
The remarkable properties of bone derive from a highly organized arrangement of co-aligned nm-scale apatite platelets within a fibrillar collagen matrix. The origin of this arrangement is poorly understood and the crystal structures of hydroxyapatite (HAP) and the non-mineralized collagen fibrils alone do not provide an explanation. Moreover, little is known about collagen-apatite interaction energies, which should strongly influence both the molecular-scale organization and the resulting mechanical properties of the composite. We investigated collagen-mineral interactions by combining dynamic force spectroscopy (DFS) measurements of binding energies with molecular dynamics (MD) simulations of binding and AFM observations of collagen adsorption on singlemore » crystals of calcium phosphate for four mineral phases of potential importance in bone formation. In all cases, we observe a strong preferential orientation of collagen binding, but comparison between the observed orientations and TEM analyses native tissues shows only calcium-deficient apatite (CDAP) provides an interface with collagen that is consistent with both. MD simulations predict preferred collagen orientations that agree with observations and results from both MD and DFS reveal large values for the binding energy due to multiple binding sites. These findings reconcile apparent contradictions inherent in a hydroxyapatite or carbonated apatite (CAP) model of bone mineral and provide an energetic rationale for the molecular scale organization of bone.« less
Margreitter, Christian; Mayrhofer, Patrick; Kunert, Renate; Oostenbrink, Chris
2016-06-01
Monoclonal antibodies represent the fastest growing class of biotherapeutic proteins. However, as they are often initially derived from rodent organisms, there is a severe risk of immunogenic reactions, hampering their applicability. The humanization of these antibodies remains a challenging task in the context of rational drug design. "Superhumanization" describes the direct transfer of the complementarity determining regions to a human germline framework, but this humanization approach often results in loss of binding affinity. In this study, we present a new approach for predicting promising backmutation sites using molecular dynamics simulations of the model antibody Ab2/3H6. The simulation method was developed in close conjunction with novel specificity experiments. Binding properties of mAb variants were evaluated directly from crude supernatants and confirmed using established binding affinity assays for purified antibodies. Our approach provides access to the dynamical features of the actual binding sites of an antibody, based solely on the antibody sequence. Thus we do not need structural data on the antibody-antigen complex and circumvent cumbersome methods to assess binding affinities. © 2016 The Authors Journal of Molecular Recognition Published by John Wiley & Sons Ltd. © 2016 The Authors Journal of Molecular Recognition Published by John Wiley & Sons Ltd.
Understanding Cryptic Pocket Formation in Protein Targets by Enhanced Sampling Simulations.
Oleinikovas, Vladimiras; Saladino, Giorgio; Cossins, Benjamin P; Gervasio, Francesco L
2016-11-02
Cryptic pockets, that is, sites on protein targets that only become apparent when drugs bind, provide a promising alternative to classical binding sites for drug development. Here, we investigate the nature and dynamical properties of cryptic sites in four pharmacologically relevant targets, while comparing the efficacy of various simulation-based approaches in discovering them. We find that the studied cryptic sites do not correspond to local minima in the computed conformational free energy landscape of the unliganded proteins. They thus promptly close in all of the molecular dynamics simulations performed, irrespective of the force-field used. Temperature-based enhanced sampling approaches, such as Parallel Tempering, do not improve the situation, as the entropic term does not help in the opening of the sites. The use of fragment probes helps, as in long simulations occasionally it leads to the opening and binding to the cryptic sites. Our observed mechanism of cryptic site formation is suggestive of an interplay between two classical mechanisms: induced-fit and conformational selection. Employing this insight, we developed a novel Hamiltonian Replica Exchange-based method "SWISH" (Sampling Water Interfaces through Scaled Hamiltonians), which combined with probes resulted in a promising general approach for cryptic site discovery. We also addressed the issue of "false-positives" and propose a simple approach to distinguish them from druggable cryptic pockets. Our simulations, whose cumulative sampling time was more than 200 μs, help in clarifying the molecular mechanism of pocket formation, providing a solid basis for the choice of an efficient computational method.
NASA Astrophysics Data System (ADS)
Nakajima, Nobuyuki; Higo, Junichi; Kidera, Akinori; Nakamura, Haruki
1997-10-01
A new method for flexible docking by multicanonical molecular dynamics simulation is presented. The method was applied to the binding of a short proline-rich peptide to a Src homology 3 (SH3) domain. The peptide and the side-chains at the ligand binding cleft of SH3 were completely flexible and the large number of possible conformations and dispositions of the peptide were sampled. The reweighted canonical resemble at 300 K resulted in only a few predominant binding modes, one of which was similar to the complex crystal structure. The inverted peptide orientation was also observed in the other binding modes.
ABC transporters and immunity: mechanism of self-defense.
Hinz, Andreas; Tampé, Robert
2012-06-26
The transporter associated with antigen processing (TAP) is a prototype of an asymmetric ATP-binding cassette (ABC) transporter, which uses ATP binding and hydrolysis to translocate peptides from the cytosol to the lumen of the endoplasmic reticulum (ER). Here, we review molecular details of peptide binding and ATP binding and hydrolysis as well as the resulting allosteric cross-talk between the nucleotide-binding domains and the transmembrane domains that drive translocation of the solute across the ER membrane. We also discuss the general molecular architecture of ABC transporters and demonstrate the importance of structural and functional studies for a better understanding of the role of the noncanonical site of asymmetric ABC transporters. Several aspects of peptide binding and specificity illustrate details of peptide translocation by TAP. Furthermore, this ABC transporter forms the central part of the major histocompatibility complex class I (MHC I) peptide-loading machinery. Hence, TAP is confronted with a number of viral factors, which prevent antigen translocation and MHC I loading in virally infected cells. We review how these viral factors have been used as molecular tools to decipher mechanistic aspects of solute translocation and discuss how they can help in the structural analysis of TAP.
Sulfatide-Hsp70 Interaction Promotes Hsp70 Clustering and Stabilizes Binding to Unfolded Protein
Harada, Yoichiro; Sato, Chihiro; Kitajima, Ken
2015-01-01
The 70-kDa heat shock protein (Hsp70), one of the major stress-inducible molecular chaperones, is localized not only in the cytosol, but also in extracellular milieu in mammals. Hsp70 interacts with various cell surface glycolipids including sulfatide (3'-sulfogalactosphingolipid). However, the molecular mechanism, as well as the biological relevance, underlying the glycolipid-Hsp70 interaction is unknown. Here we report that sulfatide promotes Hsp70 oligomerization through the N-terminal ATPase domain, which stabilizes the binding of Hsp70 to unfolded protein in vitro. We find that the Hsp70 oligomer has apparent molecular masses ranging from 440 kDa to greater than 669 kDa. The C-terminal peptide-binding domain is dispensable for the sulfatide-induced oligomer formation. The oligomer formation is impaired in the presence of ATP, while the Hsp70 oligomer, once formed, is unable to bind to ATP. These results suggest that sulfatide locks Hsp70 in a high-affinity state to unfolded proteins by clustering the peptide-binding domain and blocking the binding to ATP that induces the dissociation of Hsp70 from protein substrates. PMID:25989600
Absolute binding free energy calculations of CBClip host–guest systems in the SAMPL5 blind challenge
Tofoleanu, Florentina; Pickard, Frank C.; König, Gerhard; Huang, Jing; Damjanović, Ana; Baek, Minkyung; Seok, Chaok; Brooks, Bernard R.
2016-01-01
Herein, we report the absolute binding free energy calculations of CBClip complexes in the SAMPL5 blind challenge. Initial conformations of CBClip complexes were obtained using docking and molecular dynamics simulations. Free energy calculations were performed using thermodynamic integration (TI) with soft-core potentials and Bennett’s acceptance ratio (BAR) method based on a serial insertion scheme. We compared the results obtained with TI simulations with soft-core potentials and Hamiltonian replica exchange simulations with the serial insertion method combined with the BAR method. The results show that the difference between the two methods can be mainly attributed to the van der Waals free energies, suggesting that either the simulations used for TI or the simulations used for BAR, or both are not fully converged and the two sets of simulations may have sampled difference phase space regions. The penalty scores of force field parameters of the 10 guest molecules provided by CHARMM Generalized Force Field can be an indicator of the accuracy of binding free energy calculations. Among our submissions, the combination of docking and TI performed best, which yielded the root mean square deviation of 2.94 kcal/mol and an average unsigned error of 3.41 kcal/mol for the ten guest molecules. These values were best overall among all participants. However, our submissions had little correlation with experiments. PMID:27677749
A molecular dynamics investigation into the mechanisms of alectinib resistance of three ALK mutants.
He, Muyang; Li, Weikang; Zheng, Qingchuan; Zhang, Hongxing
2018-07-01
Alectinib, a highly selective next-genetation anaplastic lymphoma kinase (ALK) inhibitor, has demonstrated promising antitumor activity in patients with ALK-positive non-small cell lung carcinomas (NSCLC). However, the therapeutic benefits of alectinib is inescapably hampered by the development of acquired resistant mutations in ALK. Despite the availability of ample experimental mutagenesis data, the molecular origin and the structural motifs under alectinib binding affinity deficiencies are still ambiguous. Here, molecular dynamics (MD) simulations and molecular mechanics generalized born surface area (MM-GBSA) calculation approaches were employed to elucidate the mechanisms of alectinib resistance induced by the mutations I1171N, V1180L, and L1198F. The MD results reveal that the studied mutations could trigger the dislocation of alectinib as well as conformational changes at the inhibitor binding site, thus induce the interactional changes between alectinib and mutants. The most influenced regions are the ligand binding entrance and the hinge region, which are considered to be the dominant binding motifs accounting for the binding affinity loss in mutants. The "key and lock mechanism" between the ethyl group at position 9 of alectinib and a recognition cavity in the hinge region of ALK is presented to illustrate the major molecular origin of drug resistance. Our results provide mechanistic insight into the effect of ALK mutations resistant to alectinib, which could contribute to further rational design of inhibitors to combat the acquired resistance. © 2018 Wiley Periodicals, Inc.
Chen, Kai; Duan, Wenxiu; Han, Qianqian; Sun, Xuan; Li, Wenqian; Hu, Shuangyun; Wan, Jiajia; Wu, Jiang; Ge, Yushu; Liu, Dan
2018-03-08
Protein kinase monopolar spindle 1 plays an important role in spindle assembly checkpoint at the onset of mitosis. Over expression of MPS1 correlated with a wide range of human tumors makes it an attractive target for finding an effective and specific inhibitor. In this work, we performed molecular dynamics simulations of protein MPS1 itself as well as protein bound systems with the inhibitor and natural substrate based on crystal structures. The reported orally bioavailable 1 h-pyrrolo [3,2-c] pyridine inhibitors of MPS1 maintained stable binding in the catalytic site, while natural substrate ATP could not stay. Comparative study of stability and flexibility of three systems reveals position shifting of β-sheet region within the catalytic site, which indicates inhibition mechanism was through stabilizing the β-sheet region. Binding free energies calculated with MM-GB/PBSA method shows different binding affinity for inhibitor and ATP. Finally, interactions between protein and inhibitor during molecular dynamic simulations were measured and counted. Residue Gly605 and Leu654 were suggested as important hot spots for stable binding of inhibitor by molecular dynamic simulation. Our results reveal an important position shifting within catalytic site for non-inhibited proteins. Together with hot spots found by molecular dynamic simulation, the results provide important information of inhibition mechanism and will be referenced for designing novel inhibitors.
Mehranfar, Fahimeh; Bordbar, Abdol-Khalegh; Parastar, Hadi
2013-10-05
The interaction of quercetin with β-casein nanoparticle micelle was studied at various temperatures in order to do a complete thermodynamic and molecular analysis on the binding process. The results of fluorescence studies showed the possibility of fluorescence energy transfer between excited tryptophan and quercetin. The determined values of critical transfers distance and the mean distance of ligand from Trp-143 residues in β-casein micelle represents a non-radiative energy transfer mechanism for quenching and the existence of a significant interaction between this flavonoid and β-casein nanoparticle. The equilibrium binding of quercetin with β-casein micelle at different temperatures was studied by using UV-Vis absorption spectroscopy. The chemometric analysis (principal component analysis (PCA) and multivariate curve resolution-alternating least squares (MCR-ALS) methods) on spectrophotometric data revealed the existence of two components in solution (quercetin and β-casein-quercetin complex) and resolved their pure concentration and spectral profiles. This information let us to calculate the equilibrium binding constant at various temperatures and the relevant thermodynamic parameters of interaction (enthalpy, entropy and Gibbs free energy) with low uncertainty. The negative values of entropy and enthalpy changes represent the predominate role of hydrogen binding and van der Waals interactions in the binding process. Docking calculations showed the probable binding site of quercetin is located in the hydrophobic core of β-casein where the quercetin molecule is lined by hydrophobic residues and make five hydrogen bonds and several van der Waals contacts with them. Moreover, molecular dynamic (MD) simulation results suggested that this flavonoid can interact with β-casein, without affecting the secondary structure of β-casein. Simulations, molecular docking and experimental data reciprocally supported each other. Copyright © 2013 Elsevier B.V. All rights reserved.
Zhou, Shengfu; Fang, Danqing; Tan, Shepei; Lin, Weicong; Wu, Wenjuan; Zheng, Kangcheng
2017-10-01
P2Y 12 receptor is an attractive target for the anti-platelet therapies, treating various thrombotic diseases. In this work, a total of 107 6-aminonicotinate-based compounds as potent P2Y 12 antagonists were studies by a molecular modeling study combining three-dimensional quantitative structure-activity relationship (3D-QSAR), molecular docking and molecular dynamics (MD) simulations to explore the decisive binding conformations of these antagonists with P2Y 12 and the structural features for the activity. The optimum CoMFA and CoMSIA models identified satisfactory robustness and good predictive ability, with R 2 = .983, q 2 = .805, [Formula: see text] = .881 for CoMFA model, and R 2 = .935, q 2 = .762, [Formula: see text] = .690 for CoMSIA model, respectively. The probable binding modes of compounds and key amino acid residues were revealed by molecular docking. MD simulations and MM/GBSA free energy calculations were further performed to validate the rationality of docking results and to compare the binding modes of several compound pairs with different activities, and the key residues (Val102, Tyr105, Tyr109, His187, Val190, Asn191, Phe252, His253, Arg256, Tyr259, Thr260, Val279, and Lys280) for the higher activity were pointed out. The binding energy decomposition indicated that the hydrophobic and hydrogen bond interactions play important roles for the binding of compounds to P2Y 12 . We hope these results could be helpful in design of potent and selective P2Y 12 antagonists.
Lin, Shangchao; Zhang, Jingqing; Strano, Michael S; Blankschtein, Daniel
2014-08-28
Macromolecular scaffolds made of polymer-wrapped single-walled carbon nanotubes (SWCNTs) have been explored recently (Zhang et al., Nature Nanotechnology, 2013) as a new class of molecular-recognition motifs. However, selective analyte recognition is still challenging and lacks the underlying fundamental understanding needed for its practical implementation in biological sensors. In this report, we combine coarse-grained molecular dynamics (CGMD) simulations, physical adsorption/binding theories, and photoluminescence (PL) experiments to provide molecular insight into the selectivity of such sensors towards a large set of biologically important analytes. We find that the physical binding affinities of the analytes on a bare SWCNT partially correlate with their distribution coefficients in a bulk water/octanol system, suggesting that the analyte hydrophobicity plays a key role in determining the binding affinities of the analytes considered, along with the various specific interactions between the analytes and the polymer anchor groups. Two distinct categories of analytes are identified to demonstrate a complex picture for the correlation between optical sensor signals and the simulated binding affinities. Specifically, a good correlation was found between the sensor signals and the physical binding affinities of the three hormones (estradiol, melatonin, and thyroxine), the neurotransmitter (dopamine), and the vitamin (riboflavin) to the SWCNT-polymer scaffold. The four amino acids (aspartate, glycine, histidine, and tryptophan) and the two monosaccharides (fructose and glucose) considered were identified as blank analytes which are unable to induce sensor signals. The results indicate great success of our physical adsorption-based model in explaining the ranking in sensor selectivities. The combined framework presented here can be used to screen and select polymers that can potentially be used for creating synthetic molecular recognition motifs.
Pedò, Massimo; D'Onofrio, Mariapina; Ferranti, Pasquale; Molinari, Henriette; Assfalg, Michael
2009-11-15
Bile acid binding proteins (BABPs) are cytosolic lipid chaperones contributing to the maintenance of bile acid homeostasis and functional distribution within the cell. Liver BABPs act in parallel with ileal transporters to ensure vectorial transport of bile salts in hepatocytes and enterocytes, respectively. We describe the investigation of ligand binding to liver BABP, an essential step in the understanding of intracellular bile salt transport. Binding site occupancies were monitored in NMR titration experiments using (15)N-labelled ligand, while the relative populations of differently bound BABP forms were assessed by mass spectrometry. This site-specific information allowed the determination of intrinsic thermodynamic parameters and the identification of an extremely high cooperativity between two binding sites. Protein-observed NMR experiments revealed a global structural rearrangement which suggests an allosteric mechanism at the basis of the observed cooperativity. The view of a molecular tool capable of buffering against significant concentrations of free bile salts in a large range of solution conditions emerges from the observed pH-dependence of binding. We set to determine the molecular determinants of cooperativity by analysing the binding properties of a protein containing a mutated internal histidine. Both mass spectrometry and NMR experiments are consistent with an overall decreased binding affinity of the mutant, while the measured diffusion coefficients of ligand species reveal that the affinity loss concerns essentially one of the two binding sites. We therefore identified a mutation able to disrupt energetic communication functional to efficient binding and conclude that the buried histidine establishes contacts that stabilize the ternary complex. 2009 Wiley-Liss, Inc.
Zhou, Jing; Ma, Hong-yue; Fan, Xin-sheng; Xiao, Wei; Wang, Tuan-jie
2012-10-01
To investigate the mechanism of binding of human serum albumin (HSA) with potential sensitinogen, including chlorogenic acid and two isochlorogenic acids (3,4-di-O-caffeoylquinic acid and 3,5-di-O-caffeoylquinic acid). By using the docking algorithm of computer-aided molecular design and the Molegro Virtual Docker, the crystal structures of HSA with warfarin and diazepam (Protein Data Bank ID: 2BXD and 2BXF) were selected as molecular docking receptors of HSA sites I and II. According to docking scores, key residues and H-bond, the molecular docking mode was selected and confirmed. The molecular docking of chlorogenic acid and two isochlorogenic acids on sites I and II was compared based on the above design. The results from molecular docking indicated that chlorogenic acid, 3,4-di-O-caffeoylquinic acid and 3,5-di-O-caffeoylquinic acid could bind to HSA site I by high affinity scores of -112.3, -155.3 and -153.1, respectively. They could bind to site II on HSA by high affinity scores of -101.7, -138.5 and -133.4, respectively. In site I, two isochlorogenic acids interacted with the key apolar side-chains of Leu238 and Ala291 by higher affinity scores than chlorogenic acid. Furthermore, the H-bonds of isochlorogenic acids with polar residues inside the pocket and at the entrance of the pocket were different from chlorogenic acid. Moreover, the second coffee acyl of isochlorogenic acid occupied the right-hand apolar compartment in the pocket of HSA site I. In site I, the second coffee acyl of isochlorogenic acid formed the H-bonds with polar side-chains, which contributed isochlorogenic acid to binding with site II of HSA. The isochlorogenic acids with two coffee acyls have higher binding abilities with HSA than chlorogenic acid with one coffee acyl, suggesting that isochlorogenic acids binding with HSA may be sensitinogen.
Nguyen, T T K; Nguyen, T N; Anquetin, G; Reisberg, S; Noël, V; Mattana, G; Touzeau, J; Barbault, F; Pham, M C; Piro, B
2018-08-15
We investigated an Electrolyte-Gated Organic Field-Effect transistor based on poly(N-alkyldiketopyrrolo-pyrrole dithienylthieno[3,2-b]thiophene) as organic semiconductor whose gate electrode was functionalized by electrografting a functional diazonium salt capable to bind an antibody specific to 2,4-dichlorophenoxyacetic acid (2,4-D), an herbicide well-known to be a soil and water pollutant. Molecular docking computations were performed to design the functional diazonium salt to rationalize the antibody capture on the gate surface. Sensing of 2,4-D was performed through a displacement immunoassay. The limit of detection was estimated at around 2.5 fM. Copyright © 2018 Elsevier B.V. All rights reserved.
Kuang, Guanglin; Murugan, N Arul; Tu, Yaoquan; Nordberg, Agneta; Ågren, Hans
2015-09-03
Detecting deposits of amyloid β fibrils in the brain is of paramount importance for an early diagnosis of Alzheimer's disease. A number of PET tracers have been developed for amyloid imaging, but many suffer from poor specificity and large signal to background ratio. Design of tracers with specificity and improved binding affinity requires knowledge about various potential binding sites in the amyloid β fibril available for the tracers and the nature of the local microenvironment of these sites. In this study we investigate the local structure of fibrils using two important probes, namely, thioflavin T (a fluorescent probe) and AZD2184 (a PET tracer). The target structures for amyloid-β(1-42) fibril are based on reported NMR solution models. By explicitly considering the effect of fibril flexibility on the available binding sites for all these models, the binding affinity of these probes has been investigated. The binding profiles of AZD2184 and thioflavin T were studied by molecular docking and molecular dynamics simulation methods. The two compounds were found to bind at the same sites of the fibril: three of which are within the fibril, and one is on the two sides of the Met35 residue on the surface. The binding affinity of AZD2184 and thioflavin T is found to be higher at the core sites than on the surface due to more contact residues. The binding affinity of AZD2184 is much higher than that of thioflavin T at every site due to electrostatic interaction and spatial restriction, which is in good agreement with experimental observation. However, the structural change of thioflavin T is much more significant than that of AZD2184, which is the chemical basis for its usage as a fluorescent probe. The ramifications of these results for the design and optimization of PET radioligands and fluorescent probes are briefly discussed.
Mechanism of pathogen recognition by human dectin-2.
Feinberg, Hadar; Jégouzo, Sabine A F; Rex, Maximus J; Drickamer, Kurt; Weis, William I; Taylor, Maureen E
2017-08-11
Dectin-2, a C-type lectin on macrophages and other cells of the innate immune system, functions in response to pathogens, particularly fungi. The carbohydrate-recognition domain (CRD) in dectin-2 is linked to a transmembrane sequence that interacts with the common Fc receptor γ subunit to initiate immune signaling. The molecular mechanism by which dectin-2 selectively binds to pathogens has been investigated by characterizing the CRD expressed in a bacterial system. Competition binding studies indicated that the CRD binds to monosaccharides with modest affinity and that affinity was greatly enhanced for mannose-linked α1-2 or α1-4 to a second mannose residue. Glycan array analysis confirmed selective binding of the CRD to glycans that contain Manα1-2Man epitopes. Crystals of the CRD in complex with a mammalian-type high-mannose Man 9 GlcNAc 2 oligosaccharide exhibited interaction with Manα1-2Man on two different termini of the glycan, with the reducing-end mannose residue ligated to Ca 2+ in a primary binding site and the nonreducing terminal mannose residue occupying an adjacent secondary site. Comparison of the binding sites in DC-SIGN and langerin, two other pathogen-binding receptors of the innate immune system, revealed why these two binding sites accommodate only terminal Manα1-2Man structures, whereas dectin-2 can bind Manα1-2Man in internal positions in mannans and other polysaccharides. The specificity and geometry of the dectin-2-binding site provide the molecular mechanism for binding of dectin-2 to fungal mannans and also to bacterial lipopolysaccharides, capsular polysaccharides, and lipoarabinomannans that contain the Manα1-2Man disaccharide unit. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.
Audi, Said; Li, Zhixin; Capacete, Joseph; Liu, Yu; Fang, Wei; Shu, Laura G.; Zhao, Ming
2013-01-01
Introduction 99mTc-Duramycin is a peptide-based molecular probe that binds specifically to phosphatidylethanolamine (PE). The goal was to characterize the kinetics of molecular interactions between 99mTc-Duramycin and the target tissue. Methods High level of accessible PE is induced in cardiac tissues by myocardial ischemia (30 min) and reperfusion (120 min) in Sprague Dawley rats. Target binding and biodistribution of 99mTc-duramycin was captured using SPECT/CT. To quantify the binding kinetics, the presence of radioactivity in ischemic versus normal cardiac tissues was measured by gamma counting at 3, 10, 20, 60 and 180 min after injection. A partially inactivated form of 99mTc-Duramycin was analyzed in the same fashion. A compartment model was developed to quantify the uptake kinetics of 99mTc-Duramycin in normal and ischemic myocardial tissue. Results 99mTc-duramycin binds avidly to the damaged tissue with a high target-to-background radio. Compartment modeling shows that accessibility of binding sites in myocardial tissue to 99mTc-Duramycin is not a limiting factor and the rate constant of target binding in the target tissue is at 2.2 ml/nmol/min/g. The number of available binding sites for 99mTc-Duramycin in ischemic myocardium was estimated at 0.14 nmol/g. Covalent modification of D15 resulted in a 9 fold reduction in binding affinity. Conclusion 99mTc-Duramycin accumulates avidly in target tissues in a PE-dependent fashion. Model results reflect an efficient uptake mechanism, consistent with the low molecular weight of the radiopharmaceutical and the relatively high density of available binding sites. These data help better define the imaging utilities of 99mTc-Duramycin as a novel PE-binding agent. PMID:22534031
Computational exploration of a protein receptor binding space with student proposed peptide ligands.
King, Matthew D; Phillips, Paul; Turner, Matthew W; Katz, Michael; Lew, Sarah; Bradburn, Sarah; Andersen, Tim; McDougal, Owen M
2016-01-01
Computational molecular docking is a fast and effective in silico method for the analysis of binding between a protein receptor model and a ligand. The visualization and manipulation of protein to ligand binding in three-dimensional space represents a powerful tool in the biochemistry curriculum to enhance student learning. The DockoMatic tutorial described herein provides a framework by which instructors can guide students through a drug screening exercise. Using receptor models derived from readily available protein crystal structures, docking programs have the ability to predict ligand binding properties, such as preferential binding orientations and binding affinities. The use of computational studies can significantly enhance complimentary wet chemical experimentation by providing insight into the important molecular interactions within the system of interest, as well as guide the design of new candidate ligands based on observed binding motifs and energetics. In this laboratory tutorial, the graphical user interface, DockoMatic, facilitates docking job submissions to the docking engine, AutoDock 4.2. The purpose of this exercise is to successfully dock a 17-amino acid peptide, α-conotoxin TxIA, to the acetylcholine binding protein from Aplysia californica-AChBP to determine the most stable binding configuration. Each student will then propose two specific amino acid substitutions of α-conotoxin TxIA to enhance peptide binding affinity, create the mutant in DockoMatic, and perform docking calculations to compare their results with the class. Students will also compare intermolecular forces, binding energy, and geometric orientation of their prepared analog to their initial α-conotoxin TxIA docking results. © 2015 The International Union of Biochemistry and Molecular Biology.
NASA Astrophysics Data System (ADS)
Pang, ChunLi; Cao, TianGuang; Li, JunWei; Jia, MengWen; Zhang, SuHua; Ren, ShuXi; An, HaiLong; Zhan, Yong
2013-08-01
The family of calcium-binding proteins (CaBPs) consists of dozens of members and contributes to all aspects of the cell's function, from homeostasis to learning and memory. However, the Ca2+-binding mechanism is still unclear for most of CaBPs. To identify the Ca2+-binding sites of CaBPs, this study presented a computational approach which combined the fragment homology modeling with molecular dynamics simulation. For validation, we performed a two-step strategy as follows: first, the approach is used to identify the Ca2+-binding sites of CaBPs, which have the EF-hand Ca2+-binding site and the detailed binding mechanism. To accomplish this, eighteen crystal structures of CaBPs with 49 Ca2+-binding sites are selected to be analyzed including calmodulin. The computational method identified 43 from 49 Ca2+-binding sites. Second, we performed the approach to large-conductance Ca2+-activated K+ (BK) channels which don't have clear Ca2+-binding mechanism. The simulated results are consistent with the experimental data. The computational approach may shed some light on the identification of Ca2+-binding sites in CaBPs.
Molecular simulation assisted identification of Ca2+ binding residues in TMEM16A
NASA Astrophysics Data System (ADS)
Pang, Chun-Li; Yuan, Hong-Bo; Cao, Tian-Guang; Su, Ji-Guo; Chen, Ya-Fei; Liu, Hui; Yu, Hui; Zhang, Hai-Ling; Zhan, Yong; An, Hai-Long; Han, Yue-Bin
2015-11-01
Calcium-activated chloride channels (CaCCs) play vital roles in a variety of physiological processes. Transmembrane protein 16A (TMEM16A) has been confirmed as the molecular counterpart of CaCCs which greatly pushes the molecular insights of CaCCs forward. However, the detailed mechanism of Ca2+ binding and activating the channel is still obscure. Here, we utilized a combination of computational and electrophysiological approaches to discern the molecular mechanism by which Ca2+ regulates the gating of TMEM16A channels. The simulation results show that the first intracellular loop serves as a Ca2+ binding site including D439, E444 and E447. The experimental results indicate that a novel residue, E447, plays key role in Ca2+ binding. Compared with WT TMEM16A, E447Y produces a 30-fold increase in EC50 of Ca2+ activation and leads to a 100-fold increase in Ca2+ concentrations that is needed to fully activate the channel. The following steered molecular dynamic (SMD) simulation data suggests that the mutations at 447 reduce the Ca2+ dissociation energy. Our results indicated that both the electrical property and the size of the side-chain at residue 447 have significant effects on Ca2+ dependent gating of TMEM16A.
The RNA-Binding Site of Poliovirus 3C Protein Doubles as a Phosphoinositide-Binding Domain.
Shengjuler, Djoshkun; Chan, Yan Mei; Sun, Simou; Moustafa, Ibrahim M; Li, Zhen-Lu; Gohara, David W; Buck, Matthias; Cremer, Paul S; Boehr, David D; Cameron, Craig E
2017-12-05
Some viruses use phosphatidylinositol phosphate (PIP) to mark membranes used for genome replication or virion assembly. PIP-binding motifs of cellular proteins do not exist in viral proteins. Molecular-docking simulations revealed a putative site of PIP binding to poliovirus (PV) 3C protein that was validated using nuclear magnetic resonance spectroscopy. The PIP-binding site was located on a highly dynamic α helix, which also functions in RNA binding. Broad PIP-binding activity was observed in solution using a fluorescence polarization assay or in the context of a lipid bilayer using an on-chip, fluorescence assay. All-atom molecular dynamics simulations of the 3C protein-membrane interface revealed PIP clustering and perhaps PIP-dependent conformations. PIP clustering was mediated by interaction with residues that interact with the RNA phosphodiester backbone. We conclude that 3C binding to membranes will be determined by PIP abundance. We suggest that the duality of function observed for 3C may extend to RNA-binding proteins of other viruses. Copyright © 2017 Elsevier Ltd. All rights reserved.
Wojciechowski, Michał; Różycki, Bartosz; Huy, Pham Dinh Quoc; Li, Mai Suan; Bayer, Edward A; Cieplak, Marek
2018-03-22
The assembly of the polysaccharide degradating cellulosome machinery is mediated by tight binding between cohesin and dockerin domains. We have used an empirical model known as FoldX as well as molecular mechanics methods to determine the free energy of binding between a cohesin and a dockerin from Clostridium thermocellum in two possible modes that differ by an approximately 180° rotation. Our studies suggest that the full-length wild-type complex exhibits dual binding at room temperature, i.e., the two modes of binding have comparable probabilities at equilibrium. The ability to bind in the two modes persists at elevated temperatures. However, single-point mutations or truncations of terminal segments in the dockerin result in shifting the equilibrium towards one of the binding modes. Our molecular dynamics simulations of mechanical stretching of the full-length wild-type cohesin-dockerin complex indicate that each mode of binding leads to two kinds of stretching pathways, which may be mistakenly taken as evidence of dual binding.
Jurasekova, Zuzana; Marconi, Giancarlo; Sanchez-Cortes, Santiago; Torreggiani, Armida
2009-11-01
Luteolin (LUT) is a polyphenolic compound, found in a variety of fruits, vegetables, and seeds, which has a variety of pharmacological properties. In the present contribution, binding of LUT to human serum albumin (HSA), the most abundant carrier protein in the blood, was investigated with the aim of describing the binding mode and parameters of the interaction. The application of circular dichroism, UV-Vis absorption, fluorescence, Raman and surface-enhanced Raman scattering spectroscopy combined with molecular modeling afforded a clear picture of the association mode of LUT to HSA. Specific interactions with protein amino acids were evidenced. LUT was found to be associated in subdomain IIA where an interaction with Trp-214 is established. Hydrophobic and electrostatic interactions are the major acting forces in the binding of LUT to HSA. The HSA conformations were slightly altered by the drug complexation with reduction of alpha-helix and increase of beta-turns structures, suggesting a partial protein unfolding. Also the configuration of at least two disulfide bridges were altered. Furthermore, the study of molecular modeling afforded the binding geometry. 2009 Wiley Periodicals, Inc.
Zhang, Huijing; Yu, Hui; Zhao, Xi; Liu, Xiaoguang; Feng, Xianli; Huang, Xuri
2017-05-01
Takeout (To) proteins exist in a diverse range of insect species. They are involved in many important processes of insect physiology and behaviors. As the ligand carriers, To proteins can transport the small molecule to the target tissues. However, ligand release mechanism of To proteins is unclear so far. In this contribution, the process and pathway of the ligand binding and release are revealed by conventional molecular dynamics simulation, steered molecular dynamics simulation and umbrella sampling methods. Our results show that the α4-side of the protein is the unique gate for the ligand binding and release. The structural analysis confirms that the internal cavity of the protein has high rigidity, which is in accordance with the recent experimental results. By using the potential of mean force calculations in combination with residue cross correlation calculation, we concluded that the binding between the ligand and To proteins is a process of conformational selection. Furthermore, the conformational changes of To proteins and the hydrophobic interactions both are the key factors for ligand binding and release.
Binding energies of benzene on coinage metal surfaces: Equal stability on different metals
NASA Astrophysics Data System (ADS)
Maaß, Friedrich; Jiang, Yingda; Liu, Wei; Tkatchenko, Alexandre; Tegeder, Petra
2018-06-01
Interfaces between organic molecules and inorganic solids adapt a prominent role in fundamental science, catalysis, molecular sensors, and molecular electronics. The molecular adsorption geometry, which is dictated by the strength of lateral and vertical interactions, determines the electronic structure of the molecule/substrate system. In this study, we investigate the binding properties of benzene on the noble metal surfaces Au(111), Ag(111), and Cu(111), respectively, using temperature-programmed desorption and first-principles calculations that account for non-locality of both electronic exchange and correlation effects. In the monolayer regime, we observed for all three systems a decrease of the binding energy with increasing coverage due to repulsive adsorbate/adsorbate interactions. Although the electronic properties of the noble metal surfaces are rather different, the binding strength of benzene on these surfaces is equal within the experimental error (accuracy of 0.05 eV), in excellent agreement with our calculations. This points toward the existence of a universal trend for the binding energy of aromatic molecules resulting from a subtle balance between Pauli repulsion and many-body van der Waals attraction.
Bonati, Laura; Corrada, Dario; Tagliabue, Sara Giani; Motta, Stefano
2017-02-01
Molecular modeling has given important contributions to elucidation of the main stages in the AhR signal transduction pathway. Despite the lack of experimentally determined structures of the AhR functional domains, information derived from homologous systems has been exploited for modeling their structure and interactions. Homology models of the AhR PASB domain have provided information on the binding cavity and contributed to elucidate species-specific differences in ligand binding. Molecular Docking simulations of the ligand binding process have given insights into differences in binding of diverse agonists, antagonists, and selective AhR modulators, and their application to virtual screening of large databases of compounds have allowed identification of novel AhR ligands. Recently available structural information on protein-protein and protein-DNA complexes of other bHLH-PAS systems has opened the way for modeling the AhR:ARNT dimer structure and investigating the mechanisms of AhR transformation and DNA binding. Future research directions should include simulation of the protein dynamics to obtain a more reliable description of intermolecular interactions involved in signal transmission.
Applying Pose Clustering and MD Simulations To Eliminate False Positives in Molecular Docking.
Makeneni, Spandana; Thieker, David F; Woods, Robert J
2018-03-26
In this work, we developed a computational protocol that employs multiple molecular docking experiments, followed by pose clustering, molecular dynamic simulations (10 ns), and energy rescoring to produce reliable 3D models of antibody-carbohydrate complexes. The protocol was applied to 10 antibody-carbohydrate co-complexes and three unliganded (apo) antibodies. Pose clustering significantly reduced the number of potential poses. For each system, 15 or fewer clusters out of 100 initial poses were generated and chosen for further analysis. Molecular dynamics (MD) simulations allowed the docked poses to either converge or disperse, and rescoring increased the likelihood that the best-ranked pose was an acceptable pose. This approach is amenable to automation and can be a valuable aid in determining the structure of antibody-carbohydrate complexes provided there is no major side chain rearrangement or backbone conformational change in the H3 loop of the CDR regions. Further, the basic protocol of docking a small ligand to a known binding site, clustering the results, and performing MD with a suitable force field is applicable to any protein ligand system.
NASA Astrophysics Data System (ADS)
Fujimori, Mitsuki; Sogawa, Haruki; Ota, Shintaro; Karpov, Pavel; Shulga, Sergey; Blume, Yaroslav; Kurita, Noriyuki
2018-01-01
Filamentous temperature-sensitive Z (FtsZ) protein plays essential role in bacteria cell division, and its inhibition prevents Mycobacteria reproduction. Here we adopted curcumin derivatives as candidates of novel inhibitors and investigated their specific interactions with FtsZ, using ab initio molecular simulations based on protein-ligand docking, classical molecular mechanics and ab initio fragment molecular orbital (FMO) calculations. Based on FMO calculations, we specified the most preferable site of curcumin binding to FtsZ and highlighted the key amino acid residues for curcumin binding at an electronic level. The result will be useful for proposing novel inhibitors against FtsZ based on curcumin derivatives.
A molecular catalyst for water oxidation that binds to metal oxide surfaces
Sheehan, Stafford W.; Thomsen, Julianne M.; Hintermair, Ulrich; Crabtree, Robert H.; Brudvig, Gary W.; Schmuttenmaer, Charles A.
2015-01-01
Molecular catalysts are known for their high activity and tunability, but their solubility and limited stability often restrict their use in practical applications. Here we describe how a molecular iridium catalyst for water oxidation directly and robustly binds to oxide surfaces without the need for any external stimulus or additional linking groups. On conductive electrode surfaces, this heterogenized molecular catalyst oxidizes water with low overpotential, high turnover frequency and minimal degradation. Spectroscopic and electrochemical studies show that it does not decompose into iridium oxide, thus preserving its molecular identity, and that it is capable of sustaining high activity towards water oxidation with stability comparable to state-of-the-art bulk metal oxide catalysts. PMID:25757425
Isolation of copper-binding proteins from activated sludge culture.
Fukushi, K; Kato, S; Antsuki, T; Omura, T
2001-01-01
Six copper-binding microbial proteins were isolated from activated sludge cultures grown on media containing copper at various concentrations. Molecular weights among isolated proteins were ranged from 1.3k to 1 74k dalton. Isolated proteins were compared for their copper binding capabilities. Proteins isolated from cultures grown in the presence of copper in the growth media exhibited higher copper binding capabilities than those isolated from the culture grown in the absence of copper. The highest metal uptake of 61.23 (mol copper/mol protein) was observed by a protein isolated from a culture grown with copper at a concentration of 0.25 mM. This isolated protein (CBP2) had a molecular weight of 24k dalton. Other protein exhibited copper binding capability of 4.8-32.5 (mol copper/mol protein).
Dielectric response of molecules in empirical tight-binding theory
NASA Astrophysics Data System (ADS)
Boykin, Timothy B.; Vogl, P.
2002-01-01
In this paper we generalize our previous approach to electromagnetic interactions within empirical tight-binding theory to encompass molecular solids and isolated molecules. In order to guarantee physically meaningful results, we rederive the expressions for relevant observables using commutation relations appropriate to the finite tight-binding Hilbert space. In carrying out this generalization, we examine in detail the consequences of various prescriptions for the position and momentum operators in tight binding. We show that attempting to fit parameters of the momentum matrix directly generally results in a momentum operator which is incompatible with the underlying tight-binding model, while adding extra position parameters results in numerous difficulties, including the loss of gauge invariance. We have applied our scheme, which we term the Peierls-coupling tight-binding method, to the optical dielectric function of the molecular solid PPP, showing that this approach successfully predicts its known optical properties even in the limit of isolated molecules.
Assfalg, Michael; Gianolio, Eliana; Zanzoni, Serena; Tomaselli, Simona; Russo, Vito Lo; Cabella, Claudia; Ragona, Laura; Aime, Silvio; Molinari, Henriette
2007-11-01
The binding affinities of a selected series of Gd(III) chelates bearing bile acid residues, potential hepatospecific MRI contrast agents, to a liver cytosolic bile acid transporter, have been determined through relaxivity measurements. The Ln(III) complexes of compound 1 were selected for further NMR structural analysis aimed at assessing the molecular determinants of binding. A number of NMR experiments have been carried out on the bile acid-like adduct, using both diamagnetic Y(III) and paramagnetic Gd(III) complexes, bound to a liver bile acid binding protein. The identified protein "hot spots" defined a single binding site located at the protein portal region. The presented findings will serve in a medicinal chemistry approach for the design of hepatocytes-selective gadolinium chelates for liver malignancies detection.
Comparison and correlation of binding mode of ATP in the kinase domains of Hexokinase family
Kumar, Yellapu Nanda; Kumar, Pasupuleti Santhosh; Sowjenya, Gopal; Rao, Valasani Koteswara; Yeswanth, Sthanikam; Prasad, Uppu Venkateswara; Pradeepkiran, Jangampalli Adi; Sarma, PVGK; Bhaskar, Matcha
2012-01-01
Hexokinases (HKs) are the enzymes that catalyses the ATP dependent phosphorylation of Hexose sugars to Hexose-6-Phosphate (Hex-6-P). There exist four different forms of HKs namely HK-I, HK-II, HK-III and HK-IV and all of them share a common ATP binding site core surrounded by more variable sequence that determine substrate affinities. Although they share a common binding site but they differ in their kinetic functions, hence the present study is aimed to analyze the binding mode of ATP. The analysis revealed that the four ATP binding domains are showing 13 identical, 7 similar and 6 dissimilar residues with similar structural conformation. Molecular docking of ATP into the kinase domains using Molecular Operating Environment (MOE) soft ware tool clearly showed the variation in the binding mode of ATP with variable docking scores. This probably explains the variable phosphorylation rates among hexokinases family. PMID:22829728
NASA Astrophysics Data System (ADS)
Wang, Weinan; Zhang, Wei; Duan, Yaokai; Jiang, Yong; Zhang, Liangren; Zhao, Bing; Tu, Pengfei
2013-11-01
Fluorescence, normal Raman and surface-enhanced Raman scattering (SERS) were introduced to explore the absorptive geometry of caffeine on Human Serum Albumin (HSA) at physiological condition. The molecular docking was also employed to make a better understanding of the interaction between caffeine and HSA as well as to elucidate the detailed information of the major binding site. The results showed that caffeine could bind to HSA via the hydrophobic force of aromatic stacking and the main binding group on caffeine could be the pyrimidine ring. In addition, a consecutive set of changes in the orientation of caffeine molecule had been demonstrated during the process of caffeine binding to HSA, and the primary binding site was considered to be a hydrophobic cavity formed by Leu198, Lys199, Ser202, Phe211, Trp214, Val344, Ser454 and Leu481 in domain II.
Decherchi, Sergio; Berteotti, Anna; Bottegoni, Giovanni; Rocchia, Walter; Cavalli, Andrea
2015-01-27
The study of biomolecular interactions between a drug and its biological target is of paramount importance for the design of novel bioactive compounds. In this paper, we report on the use of molecular dynamics (MD) simulations and machine learning to study the binding mechanism of a transition state analogue (DADMe-immucillin-H) to the purine nucleoside phosphorylase (PNP) enzyme. Microsecond-long MD simulations allow us to observe several binding events, following different dynamical routes and reaching diverse binding configurations. These simulations are used to estimate kinetic and thermodynamic quantities, such as kon and binding free energy, obtaining a good agreement with available experimental data. In addition, we advance a hypothesis for the slow-onset inhibition mechanism of DADMe-immucillin-H against PNP. Combining extensive MD simulations with machine learning algorithms could therefore be a fruitful approach for capturing key aspects of drug-target recognition and binding.
Tang, Bolin; Zhang, Bo; Zhuang, Junjun; Wang, Qi; Dong, Lingqing; Cheng, Kui; Weng, Wenjian
2018-07-01
Surface potential of biomaterials can dramatically influence cellular osteogenic differentiation. In this work, a wide range of surface potential on ferroelectric polyvinylidene fluoride trifluoroethylene (P(VDF-TrFE)) films was designed to get insight into the interfacial interaction of cell-charged surface. The P(VDF-TrFE) films poled by contact electric poling at various electric fields obtained well stabilized surface potential, with wide range from -3 to 915 mV. The osteogenic differentiation level of cells cultured on the films was strongly dependent on surface potential and reached the optimum at 391 mV in this system. Binding specificity assay indicated that surface potential could effectively govern the binding state of the adsorbed fibronectin (FN) with integrin. Molecular dynamic (MD) simulation further revealed that surface potential brought a significant difference in the relative distance between RGD and synergy PHSRN sites of adsorbed FN, resulting in a distinct integrin-FN binding state. These results suggest that the full binding of integrin α5β1 with both RGD and PHSRN sites of FN possesses a strong ability to activate osteogenic signaling pathway. This work sheds light on the underlying mechanism of osteogenic differentiation behavior on charged material surfaces, and also provides a guidance for designing a reasonable charged surface to enhance osteogenic differentiation. The ferroelectric P(VDF-TrFE) films with steady and a wide range of surface potential were designed to understand underlying mechanism of cell-charged surface interaction. The results showed that the charged surface well favored upregulation of osteogenic differentiation of MC3T3-E1 cells, and more importantly, a highest level occurred on the film with a moderate surface potential. Experiments and molecular dynamics simulation demonstrated that the surface potential could govern fibronectin conformation and then the integrin-fibronectin binding. We propose that a full binding state of integrin α5β1 with fibronectin induces effective activation of integrin-mediated FAK/ERK signaling pathway to upregulate cellular osteogenic differentiation. This work provides a guidance for designing a reasonable charged surface to enhance osteogenic differentiation. Copyright © 2018 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Quantum chemical approaches in structure-based virtual screening and lead optimization
NASA Astrophysics Data System (ADS)
Cavasotto, Claudio N.; Adler, Natalia S.; Aucar, Maria G.
2018-05-01
Today computational chemistry is a consolidated tool in drug lead discovery endeavors. Due to methodological developments and to the enormous advance in computer hardware, methods based on quantum mechanics (QM) have gained great attention in the last 10 years, and calculations on biomacromolecules are becoming increasingly explored, aiming to provide better accuracy in the description of protein-ligand interactions and the prediction of binding affinities. In principle, the QM formulation includes all contributions to the energy, accounting for terms usually missing in molecular mechanics force-fields, such as electronic polarization effects, metal coordination, and covalent binding; moreover, QM methods are systematically improvable, and provide a greater degree of transferability. In this mini-review we present recent applications of explicit QM-based methods in small-molecule docking and scoring, and in the calculation of binding free-energy in protein-ligand systems. Although the routine use of QM-based approaches in an industrial drug lead discovery setting remains a formidable challenging task, it is likely they will increasingly become active players within the drug discovery pipeline.
Electrostatic Interactions in Aminoglycoside-RNA Complexes
Kulik, Marta; Goral, Anna M.; Jasiński, Maciej; Dominiak, Paulina M.; Trylska, Joanna
2015-01-01
Electrostatic interactions often play key roles in the recognition of small molecules by nucleic acids. An example is aminoglycoside antibiotics, which by binding to ribosomal RNA (rRNA) affect bacterial protein synthesis. These antibiotics remain one of the few valid treatments against hospital-acquired infections by Gram-negative bacteria. It is necessary to understand the amplitude of electrostatic interactions between aminoglycosides and their rRNA targets to introduce aminoglycoside modifications that would enhance their binding or to design new scaffolds. Here, we calculated the electrostatic energy of interactions and its per-ring contributions between aminoglycosides and their primary rRNA binding site. We applied either the methodology based on the exact potential multipole moment (EPMM) or classical molecular mechanics force field single-point partial charges with Coulomb formula. For EPMM, we first reconstructed the aspherical electron density of 12 aminoglycoside-RNA complexes from the atomic parameters deposited in the University at Buffalo Databank. The University at Buffalo Databank concept assumes transferability of electron density between atoms in chemically equivalent vicinities and allows reconstruction of the electron densities from experimental structural data. From the electron density, we then calculated the electrostatic energy of interaction using EPMM. Finally, we compared the two approaches. The calculated electrostatic interaction energies between various aminoglycosides and their binding sites correlate with experimentally obtained binding free energies. Based on the calculated energetic contributions of water molecules mediating the interactions between the antibiotic and rRNA, we suggest possible modifications that could enhance aminoglycoside binding affinity. PMID:25650932
Molecular Self-Assembly Driven by London Dispersion Forces
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Guo; Cooper, Valentino R; Cho, Jun-Hyung
2011-01-01
The nature and strength of intermolecular interactions are crucial to a variety of kinetic and dynamic processes at surfaces. Whereas strong chemisorption bonds are known to facilitate molecular binding, the importance of the weaker yet ubiquitous van der Waals (vdW) interactions remains elusive in most cases. Here we use first-principles calculations combined with kinetic Monte Carlo simulations to unambiguously demonstrate the vital role that vdW interactions play in molecular self-assembly, using styrene nanowire growth on silicon as a prototypical example. We find that, only when the London dispersion forces are included, accounting for the attractive parts of vdW interactions, canmore » the effective intermolecular interaction be reversed from being repulsive to attractive. Such attractive interactions, in turn, ensure the preferred growth of long wires under physically realistic conditions as observed experimentally. We further propose a cooperative scheme, invoking the application of an electric field and the selective creation of Si dangling bonds, to drastically improve the ordered arrangement of the molecular structures. The present study represents a significant step forward in the fundamental understanding and precise control of molecular self-assembly guided by London dispersion forces.« less
Turk, Nenad; Milas, Zoran; Mojcec, Vesna; Ruzic-Sabljic, Eva; Staresina, Vilim; Stritof, Zrinka; Habus, Josipa; Postic, Daniele
2009-11-01
A total of 17 Leptospira clinical strains isolated from humans in Croatia were serologically and genetically analysed. For serovar identification, the microscopic agglutination test (MAT) and pulsed-field gel electrophoresis (PFGE) were used. To identify isolates on genomic species level, PCR-based restriction fragment length polymorphism (RFLP) and real-time PCR were performed. MAT revealed the following serogroup affinities: Grippotyphosa (seven isolates), Icterohaemorrhagiae (eight isolates) and Javanica (two isolates). RFLP of PCR products from a 331-bp-long fragment of rrs (16S rRNA gene) digested with endonucleases MnlI and DdeI and real-time PCR revealed three Leptospira genomic species. Grippotyphosa isolates belonged to Leptospira kirschneri, Icterohaemorrhagiae isolates to Leptospira interrogans and Javanica isolates to Leptospira borgpetersenii. Genomic DNA from 17 leptospiral isolates was digested with NotI and SgrAI restriction enzymes and analysed by PFGE. Results showed that seven isolates have the same binding pattern to serovar Grippotyphosa, eight isolates to serovar Icterohaemorrhagiae and two isolates to serovar Poi. Results demonstrate the diversity of leptospires circulating in Croatia. We point out the usefulness of a combination of PFGE, RFLP and real-time PCR as appropriate molecular methods in molecular analysis of leptospires.
Atomic and molecular adsorption on Au(111)
Santiago-Rodriguez, Yohaselly; Herron, Jeffrey A.; Curet-Arana, Maria C.; ...
2014-05-02
Periodic self-consistent density functional theory (DFT-GGA) calculations were used to study the adsorption of several atomic species, molecular species and molecular fragments on the Au(111) surface with a coverage of 1/4 monolayer (ML). Binding geometries, binding energies, and diffusion barriers were calculated for 27 species. Furthermore, we calculated the surface deformation energy associated with the binding events. The binding strength for all the analyzed species can be ordered as follows: NH 3 < NO < CO < CH 3 < HCO < NH 2 < COOH < OH < HCOO < CNH 2 < H < N < NH
NASA Astrophysics Data System (ADS)
Shaked, Natan T.
2017-02-01
I review our latest advances in wide-field interferometric imaging of biological cells with molecular specificity, obtained by time-modulated photothermal excitation of gold nanoparticles. Heat emitted from the nanoparticles affects the measured phase signal via both the nanoparticle surrounding refractive-index and thickness changes. These nanoparticles can be bio-functionalized to bind certain biological cell components; thus, they can be used for biomedical imaging with molecular specificity, as new nanoscopy labels, and for photothermal therapy. Predicting the ideal nanoparticle parameters requires a model that computes the thermal and phase distributions around the particle, enabling more efficient phase imaging of plasmonic nanoparticles, and sparing trial and error experiments of using unsuitable nanoparticles. We thus developed a new model for predicting phase signatures from photothermal nanoparticles with arbitrary parameters. We also present a dual-modality technique based on wide-field photothermal interferometric phase imaging and simultaneous ablation to selectively deplete specific cell populations labelled by plasmonic nanoparticles. We experimentally demonstrated our ability to detect and specifically ablate in vitro cancer cells over-expressing epidermal growth factor receptors (EGFRs), labelled with plasmonic nanoparticles, in the presence of either EGFR under-expressing cancer cells or white blood cells. This demonstration established an initial model for depletion of circulating tumour cells in blood. The proposed system is able to image in wide field the label-free quantitative phase profile together with the photothermal phase profile of the sample, and provides the ability of both detection and ablation of chosen cells after their selective imaging.
Design and structure of stapled peptides binding to estrogen receptors.
Phillips, Chris; Roberts, Lee R; Schade, Markus; Bazin, Richard; Bent, Andrew; Davies, Nichola L; Moore, Rob; Pannifer, Andrew D; Pickford, Andrew R; Prior, Stephen H; Read, Christopher M; Scott, Andrew; Brown, David G; Xu, Bin; Irving, Stephen L
2011-06-29
Synthetic peptides that specifically bind nuclear hormone receptors offer an alternative approach to small molecules for the modulation of receptor signaling and subsequent gene expression. Here we describe the design of a series of novel stapled peptides that bind the coactivator peptide site of estrogen receptors. Using a number of biophysical techniques, including crystal structure analysis of receptor-stapled peptide complexes, we describe in detail the molecular interactions and demonstrate that all-hydrocarbon staples modulate molecular recognition events. The findings have implications for the design of stapled peptides in general.
Wang, Junmei; Hou, Tingjun
2012-01-01
It is of great interest in modern drug design to accurately calculate the free energies of protein-ligand or nucleic acid-ligand binding. MM-PBSA (Molecular Mechanics-Poisson Boltzmann Surface Area) and MM-GBSA (Molecular Mechanics-Generalized Born Surface Area) have gained popularity in this field. For both methods, the conformational entropy, which is usually calculated through normal mode analysis (NMA), is needed to calculate the absolute binding free energies. Unfortunately, NMA is computationally demanding and becomes a bottleneck of the MM-PB/GBSA-NMA methods. In this work, we have developed a fast approach to estimate the conformational entropy based upon solvent accessible surface area calculations. In our approach, the conformational entropy of a molecule, S, can be obtained by summing up the contributions of all atoms, no matter they are buried or exposed. Each atom has two types of surface areas, solvent accessible surface area (SAS) and buried SAS (BSAS). The two types of surface areas are weighted to estimate the contribution of an atom to S. Atoms having the same atom type share the same weight and a general parameter k is applied to balance the contributions of the two types of surface areas. This entropy model was parameterized using a large set of small molecules for which their conformational entropies were calculated at the B3LYP/6-31G* level taking the solvent effect into account. The weighted solvent accessible surface area (WSAS) model was extensively evaluated in three tests. For the convenience, TS, the product of temperature T and conformational entropy S, were calculated in those tests. T was always set to 298.15 K through the text. First of all, good correlations were achieved between WSAS TS and NMA TS for 44 protein or nucleic acid systems sampled with molecular dynamics simulations (10 snapshots were collected for post-entropy calculations): the mean correlation coefficient squares (R2) was 0.56. As to the 20 complexes, the TS changes upon binding, TΔS, were also calculated and the mean R2 was 0.67 between NMA and WSAS. In the second test, TS were calculated for 12 proteins decoy sets (each set has 31 conformations) generated by the Rosetta software package. Again, good correlations were achieved for all decoy sets: the mean, maximum, minimum of R2 were 0.73, 0.89 and 0.55, respectively. Finally, binding free energies were calculated for 6 protein systems (the numbers of inhibitors range from 4 to 18) using four scoring functions. Compared to the measured binding free energies, the mean R2 of the six protein systems were 0.51, 0.47, 0.40 and 0.43 for MM-GBSA-WSAS, MM-GBSA-NMA, MM-PBSA-WSAS and MM-PBSA-NMA, respectively. The mean RMS errors of prediction were 1.19, 1.24, 1.41, 1.29 kcal/mol for the four scoring functions, correspondingly. Therefore, the two scoring functions employing WSAS achieved a comparable prediction performance to that of the scoring functions using NMA. It should be emphasized that no minimization was performed prior to the WSAS calculation in the last test. Although WSAS is not as rigorous as physical models such as quasi-harmonic analysis and thermodynamic integration (TI), it is computationally very efficient as only surface area calculation is involved and no structural minimization is required. Moreover, WSAS has achieved a comparable performance to normal mode analysis. We expect that this model could find its applications in the fields like high throughput screening (HTS), molecular docking and rational protein design. In those fields, efficiency is crucial since there are a large number of compounds, docking poses or protein models to be evaluated. A list of acronyms and abbreviations used in this work is provided for quick reference. PMID:22497310
Cournia, Zoe; Allen, Bryce; Sherman, Woody
2017-12-26
Accurate in silico prediction of protein-ligand binding affinities has been a primary objective of structure-based drug design for decades due to the putative value it would bring to the drug discovery process. However, computational methods have historically failed to deliver value in real-world drug discovery applications due to a variety of scientific, technical, and practical challenges. Recently, a family of approaches commonly referred to as relative binding free energy (RBFE) calculations, which rely on physics-based molecular simulations and statistical mechanics, have shown promise in reliably generating accurate predictions in the context of drug discovery projects. This advance arises from accumulating developments in the underlying scientific methods (decades of research on force fields and sampling algorithms) coupled with vast increases in computational resources (graphics processing units and cloud infrastructures). Mounting evidence from retrospective validation studies, blind challenge predictions, and prospective applications suggests that RBFE simulations can now predict the affinity differences for congeneric ligands with sufficient accuracy and throughput to deliver considerable value in hit-to-lead and lead optimization efforts. Here, we present an overview of current RBFE implementations, highlighting recent advances and remaining challenges, along with examples that emphasize practical considerations for obtaining reliable RBFE results. We focus specifically on relative binding free energies because the calculations are less computationally intensive than absolute binding free energy (ABFE) calculations and map directly onto the hit-to-lead and lead optimization processes, where the prediction of relative binding energies between a reference molecule and new ideas (virtual molecules) can be used to prioritize molecules for synthesis. We describe the critical aspects of running RBFE calculations, from both theoretical and applied perspectives, using a combination of retrospective literature examples and prospective studies from drug discovery projects. This work is intended to provide a contemporary overview of the scientific, technical, and practical issues associated with running relative binding free energy simulations, with a focus on real-world drug discovery applications. We offer guidelines for improving the accuracy of RBFE simulations, especially for challenging cases, and emphasize unresolved issues that could be improved by further research in the field.
Multiple ligand simultaneous docking: orchestrated dancing of ligands in binding sites of protein.
Li, Huameng; Li, Chenglong
2010-07-30
Present docking methodologies simulate only one single ligand at a time during docking process. In reality, the molecular recognition process always involves multiple molecular species. Typical protein-ligand interactions are, for example, substrate and cofactor in catalytic cycle; metal ion coordination together with ligand(s); and ligand binding with water molecules. To simulate the real molecular binding processes, we propose a novel multiple ligand simultaneous docking (MLSD) strategy, which can deal with all the above processes, vastly improving docking sampling and binding free energy scoring. The work also compares two search strategies: Lamarckian genetic algorithm and particle swarm optimization, which have respective advantages depending on the specific systems. The methodology proves robust through systematic testing against several diverse model systems: E. coli purine nucleoside phosphorylase (PNP) complex with two substrates, SHP2NSH2 complex with two peptides and Bcl-xL complex with ABT-737 fragments. In all cases, the final correct docking poses and relative binding free energies were obtained. In PNP case, the simulations also capture the binding intermediates and reveal the binding dynamics during the recognition processes, which are consistent with the proposed enzymatic mechanism. In the other two cases, conventional single-ligand docking fails due to energetic and dynamic coupling among ligands, whereas MLSD results in the correct binding modes. These three cases also represent potential applications in the areas of exploring enzymatic mechanism, interpreting noisy X-ray crystallographic maps, and aiding fragment-based drug design, respectively. 2010 Wiley Periodicals, Inc.
Kandeel, Mahmoud; Kitade, Yukio
2018-02-01
RNA interference (RNAi) constitutes a major target in drug discovery. Recently, we reported that the Argonaute protein 2 (Ago2) PAZ domain selectively binds with all ribonucleotides except adenine and poorly recognizes deoxyribonucleotides. The binding properties of the PAZ domain with polynucleotides and the molecular mechanisms of substrates' selectivity remains unclear. In this study, the binding potencies of polynucleotides and the associated conformational and dynamic changes in PAZ domain are investigated. Coinciding with nucleotides' binding profile with the PAZ domain, polyuridylate (PolyU) and polycytidylate (PolyC) were potent binders. However, K dPolyU and K dPolyC were 15.8 and 9.3μM, respectively. In contrast, polyadenylate (PolyA) binding was not detectable. Molecular dynamics (MD) simulation revealed the highest change in root mean square deviation (RMSD) with ApoPAZ or PAZ domain bound with experimentally approved, low affinity substrates, whereas stronger binding substrates such as UMP or PolyU showed minimal RMSD changes. The loop between α3 and β5 in the β-hairpin subdomain showed the most responsive change in RMSD, being highly movable in the ApoPAZ and PAZ-AMP complex. Favorable substrate recognition was associate with moderate change in secondary structure content. In conclusion, the PAZ domain retains differential substrate selectivity associated with corresponding dynamic and structural changes upon binding. Copyright © 2017 Elsevier B.V. All rights reserved.
Synthesis, characterization and serum albumin binding studies of vitamin K3 derivatives.
Suganthi, Murugesan; Elango, Kuppanagounder P
2017-01-01
Synthesis, characterization and bovine serum albumin (BSA) binding properties of three derivatives of vitamin K3 have been described. Results of UV-Vis and fluorescence spectra indicate complexation between BSA and the ligands with conformational changes in protein, which is strongly supported by synchronous and three dimensional fluorescence studies. Addition of the ligands quenches the fluorescence of BSA which is accompanied by reduction in quantum yield (Ф) from 0.1010 to 0.0775-0.0986 range. Thermodynamic investigations reveal that hydrophobic interaction is the major binding force in the spontaneous binding of these ligands with BSA. The binding constants obtained depend on the substituent present in the quinone ring, which correlates linearly with the Taft's field substituent constant (σ F ). The results show that compound with strong electron withdrawing nitro-group forms relatively stronger complex with BSA than amino and thioglycolate substituted ones. Circular dichroism studies show that the α-helical content of the protein, upon complexation with the ligands, decreases in the case of amino and nitro substituted vitamin K3 while increases in thioglycolate substituted compound. Molecular docking studies indicated that the vitamin K3 derivatives are surrounded by hydrophobic residues of the BSA molecule, which is in good agreement with the results of fluorescence spectral and thermodynamic studies. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Chinnathambi, Shanmugavel; Karthikeyan, Subramani; Velmurugan, Devadasan; Hanagata, Nobutaka; Aruna, Prakasarao; Ganesan, Singaravelu
2015-04-01
In the present study, the interaction of 5-Fluorouracil with herring sperm DNA is reported using spectroscopic and molecular modeling techniques. This binding study of 5-FU with hs-DNA is of paramount importance in understanding chemico-biological interactions for drug design, pharmacy and biochemistry without altering the original structure. The challenge of the study was to find the exact binding mode of the drug 5-Fluorouracil with hs-DNA. From the absorption studies, a hyperchromic effect was observed for the herring sperm DNA in the presence of 5-Fluorouracil and a binding constant of 6.153 × 103 M-1 for 5-Fluorouracil reveals the existence of weak interaction between the 5-Fluorouracil and herring sperm DNA. Ethidium bromide loaded herring sperm DNA showed a quenching in the fluorescence intensity after the addition of 5-Fluorouracil. The binding constants for 5-Fluorouracil stranded DNA and competitive bindings of 5-FU interacting with DNA-EB systems were examined by fluorescence spectra. The Stern-Volmer plots and fluorescence lifetime results confirm the static quenching nature of the drug-DNA complex. The binding constant Kb was 2.5 × 104 L mol-1 and the number of binding sites are 1.17. The 5-FU on DNA system was calculated using double logarithmic plot. From the Forster nonradiative energy transfer study it has been found that the distance of 5-FU from DNA was 4.24 nm. In addition to the spectroscopic results, the molecular modeling studies also revealed the major groove binding as well as the partial intercalation mode of binding between the 5-Fluorouracil and herring sperm DNA. The binding energy and major groove binding as -6.04 kcal mol-1 and -6.31 kcal mol-1 were calculated from the modeling studies. All the testimonies manifested that binding modes between 5-Fluorouracil and DNA were evidenced to be groove binding and in partial intercalative mode.
Conformational selection in a protein-protein interaction revealed by dynamic pathway analysis
Chakrabarti, Kalyan S.; Agafonov, Roman V.; Pontiggia, Francesco; ...
2015-12-24
Molecular recognition plays a central role in biology, and protein dynamics has been acknowledged to be important in this process. However, it is highly debated whether conformational changes happen before ligand binding to produce a binding-competent state (conformational selection) or are caused in response to ligand binding (induced fit). Proposals for both mechanisms in protein/protein recognition have been primarily based on structural arguments. However, the distinction between them is a question of the probabilities of going via these two opposing pathways. Here we present a direct demonstration of exclusive conformational selection in protein/protein recognition by measuring the flux for rhodopsinmore » kinase binding to its regulator recoverin, an important molecular recognition in the vision system. Using NMR spectroscopy, stopped-flow kinetics and isothermal titration calorimetry we show that recoverin populates a minor conformation in solution that exposes a hydrophobic binding pocket responsible for binding rhodopsin kinase. Lastly, protein dynamics in free recoverin limits the overall rate of binding.« less
Conformational selection in a protein-protein interaction revealed by dynamic pathway analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chakrabarti, Kalyan S.; Agafonov, Roman V.; Pontiggia, Francesco
Molecular recognition plays a central role in biology, and protein dynamics has been acknowledged to be important in this process. However, it is highly debated whether conformational changes happen before ligand binding to produce a binding-competent state (conformational selection) or are caused in response to ligand binding (induced fit). Proposals for both mechanisms in protein/protein recognition have been primarily based on structural arguments. However, the distinction between them is a question of the probabilities of going via these two opposing pathways. Here we present a direct demonstration of exclusive conformational selection in protein/protein recognition by measuring the flux for rhodopsinmore » kinase binding to its regulator recoverin, an important molecular recognition in the vision system. Using NMR spectroscopy, stopped-flow kinetics and isothermal titration calorimetry we show that recoverin populates a minor conformation in solution that exposes a hydrophobic binding pocket responsible for binding rhodopsin kinase. Lastly, protein dynamics in free recoverin limits the overall rate of binding.« less
NASA Astrophysics Data System (ADS)
Xi, Lei; Wang, Yu; He, Qing; Zhang, Qingyan; Du, Linfang
2016-12-01
The binding of epigallocatechin-3-gallate (EGCG) to wild type Pin1 in solution was studied by spectroscopic methods and molecular dynamics simulations in this research to explore the binding mode and inhibition mechanism. The binding constants and number of binding sites per Pin1 for EGCG were calculated through the Stern-Volmer equation. The values of binding free energy and thermodynamic parameters were calculated and indicated that hydrogen bonds, electrostatic interaction and Van der Waals interaction played the major role in the binding process. The alterations of Pin1 secondary structure in the presence of EGCG were confirmed by far-UV circular dichroism spectra. The binding model at atomic-level revealed that EGCG was bound to the Glu12, Lys13, Arg14, Met15 and Arg17 in WW domain. Furthermore, EGCG could also interact with Arg69, Asp112, Cys113 and Ser114 in PPIase domain.
Gunasekaran, D; Sridhar, J; Suryanarayanan, V; Manimaran, N C; Singh, Sanjeev Kumar
2017-06-01
Nicotinic acetylcholine receptors (nAChRs) are neuromuscular proteins responsible for muscle contraction upon binding with chemical stimulant acetylcholine (ACh). The α-neurotoxins of snake mimic the structure of ACh and attacks nAChRs, which block the flow of ACh and leads to numbness and paralysis. The toxin-binding site of alpha subunit in the nAChRs is highly conserved throughout chordate lineages with few exceptions in resistance organisms. In this study, we have analyzed the sequence and structures of toxin-binding/resistant nAChRs and their interaction stability with toxins through molecular docking and molecular dynamics simulation (MDS). We have reported the potential glycosylation residues within the toxin-binding cleft adding sugar moieties through N-linked glycosylation in resistant organisms. Residue variations at key positions alter the secondary structure of binding cleft, which might interfere with toxin binding and it could be one of the possible explanations for the resistance to snake venoms. Analysis of nAChR-α-neurotoxin complexes has confirmed the key interacting residues. In addition, drastic variation in the binding stability of Mongoose nAChR-α-Bungarotoxin (α-BTX) and human nAChR-α-BTX complexes were found at specific phase of MDS. Our findings suggest that specific mutations in the binding site of toxin are potentially preventing the formation of stable complex of receptor-toxin, which might lead to mechanism of resistance. This in silico study on the binding cleft of nAChR and the findings of interacting residues will assist in designing potential inhibitors as therapeutic targets.
Istyastono, Enade P; Nijmeijer, Saskia; Lim, Herman D; van de Stolpe, Andrea; Roumen, Luc; Kooistra, Albert J; Vischer, Henry F; de Esch, Iwan J P; Leurs, Rob; de Graaf, Chris
2011-12-08
The histamine H(4) receptor (H(4)R) is a G protein-coupled receptor (GPCR) that plays an important role in inflammation. Similar to the homologous histamine H(3) receptor (H(3)R), two acidic residues in the H(4)R binding pocket, D(3.32) and E(5.46), act as essential hydrogen bond acceptors of positively ionizable hydrogen bond donors in H(4)R ligands. Given the symmetric distribution of these complementary pharmacophore features in H(4)R and its ligands, different alternative ligand binding mode hypotheses have been proposed. The current study focuses on the elucidation of the molecular determinants of H(4)R-ligand binding modes by combining (3D) quantitative structure-activity relationship (QSAR), protein homology modeling, molecular dynamics simulations, and site-directed mutagenesis studies. We have designed and synthesized a series of clobenpropit (N-(4-chlorobenzyl)-S-[3-(4(5)-imidazolyl)propyl]isothiourea) derivatives to investigate H(4)R-ligand interactions and ligand binding orientations. Interestingly, our studies indicate that clobenpropit (2) itself can bind to H(4)R in two distinct binding modes, while the addition of a cyclohexyl group to the clobenpropit isothiourea moiety allows VUF5228 (5) to adopt only one specific binding mode in the H(4)R binding pocket. Our ligand-steered, experimentally supported protein modeling method gives new insights into ligand recognition by H(4)R and can be used as a general approach to elucidate the structure of protein-ligand complexes.
Tan, Kemin; Chang, Changsoo; Cuff, Marianne; Osipiuk, Jerzy; Landorf, Elizabeth; Mack, Jamey C; Zerbs, Sarah; Joachimiak, Andrzej; Collart, Frank R
2013-10-01
Lignin comprises 15-25% of plant biomass and represents a major environmental carbon source for utilization by soil microorganisms. Access to this energy resource requires the action of fungal and bacterial enzymes to break down the lignin polymer into a complex assortment of aromatic compounds that can be transported into the cells. To improve our understanding of the utilization of lignin by microorganisms, we characterized the molecular properties of solute binding proteins of ATP-binding cassette transporter proteins that interact with these compounds. A combination of functional screens and structural studies characterized the binding specificity of the solute binding proteins for aromatic compounds derived from lignin such as p-coumarate, 3-phenylpropionic acid and compounds with more complex ring substitutions. A ligand screen based on thermal stabilization identified several binding protein clusters that exhibit preferences based on the size or number of aromatic ring substituents. Multiple X-ray crystal structures of protein-ligand complexes for these clusters identified the molecular basis of the binding specificity for the lignin-derived aromatic compounds. The screens and structural data provide new functional assignments for these solute-binding proteins which can be used to infer their transport specificity. This knowledge of the functional roles and molecular binding specificity of these proteins will support the identification of the specific enzymes and regulatory proteins of peripheral pathways that funnel these compounds to central metabolic pathways and will improve the predictive power of sequence-based functional annotation methods for this family of proteins. Copyright © 2013 Wiley Periodicals, Inc.
Tan, Kemin; Chang, Changsoo; Cuff, Marianne; Osipiuk, Jerzy; Landorf, Elizabeth; Mack, Jamey C.; Zerbs, Sarah; Joachimiak, Andrzej; Collart, Frank R.
2013-01-01
Lignin comprises 15.25% of plant biomass and represents a major environmental carbon source for utilization by soil microorganisms. Access to this energy resource requires the action of fungal and bacterial enzymes to break down the lignin polymer into a complex assortment of aromatic compounds that can be transported into the cells. To improve our understanding of the utilization of lignin by microorganisms, we characterized the molecular properties of solute binding proteins of ATP.binding cassette transporter proteins that interact with these compounds. A combination of functional screens and structural studies characterized the binding specificity of the solute binding proteins for aromatic compounds derived from lignin such as p-coumarate, 3-phenylpropionic acid and compounds with more complex ring substitutions. A ligand screen based on thermal stabilization identified several binding protein clusters that exhibit preferences based on the size or number of aromatic ring substituents. Multiple X-ray crystal structures of protein-ligand complexes for these clusters identified the molecular basis of the binding specificity for the lignin-derived aromatic compounds. The screens and structural data provide new functional assignments for these solute.binding proteins which can be used to infer their transport specificity. This knowledge of the functional roles and molecular binding specificity of these proteins will support the identification of the specific enzymes and regulatory proteins of peripheral pathways that funnel these compounds to central metabolic pathways and will improve the predictive power of sequence-based functional annotation methods for this family of proteins. PMID:23606130
The Bisphenol A analogue Bisphenol S binds to K-Ras4B--implications for 'BPA-free' plastics.
Schöpel, Miriam; Herrmann, Christian; Scherkenbeck, Jürgen; Stoll, Raphael
2016-02-01
K-Ras4B is a small GTPase that belongs to the Ras superfamily of guanine nucleotide-binding proteins. GTPases function as molecular switches in cells and are key players in intracellular signalling. Ras has been identified as an oncogene and is mutated in more than 20% of human cancers. Here, we report that Bisphenol S binds into a binding pocket of K-Ras4B previously identified for various low molecular weight compounds. Our results advocate for more comprehensive safety studies on the toxicity of Bisphenol S, as it is frequently used for Bisphenol A-free food containers. © 2016 Federation of European Biochemical Societies.
Sakkal, Leon A; Rajkowski, Kyle Z; Armen, Roger S
2017-06-05
Following insights from recent crystal structures of the muscarinic acetylcholine receptor, binding modes of Positive Allosteric Modulators (PAMs) were predicted under the assumption that PAMs should bind to the extracellular surface of the active state. A series of well-characterized PAMs for adenosine (A 1 R, A 2A R, A 3 R) and muscarinic acetylcholine (M 1 R, M 5 R) receptors were modeled using both rigid and flexible receptor CHARMM-based molecular docking. Studies of adenosine receptors investigated the molecular basis of the probe-dependence of PAM activity by modeling in complex with specific agonist radioligands. Consensus binding modes map common pharmacophore features of several chemical series to specific binding interactions. These models provide a rationalization of how PAM binding slows agonist radioligand dissociation kinetics. M 1 R PAMs were predicted to bind in the analogous M 2 R PAM LY2119620 binding site. The M 5 R NAM (ML-375) was predicted to bind in the PAM (ML-380) binding site with a unique induced-fit receptor conformation. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Duan, Juan; Hu, Chuncai; Guo, Jiafan; Guo, Lianxian; Sun, Jia; Zhao, Zuguo
2018-02-28
The mechanism of substrate hydrolysis of New Delhi metallo-β-lactamase 1 (NDM-1) has been reported, but the process in which NDM-1 captures and transports the substrate into its active center remains unknown. In this study, we investigated the process of the substrate entry into the NDM-1 activity center through long unguided molecular dynamics simulations using meropenem as the substrate. A total of 550 individual simulations were performed, each of which for 200 ns, and 110 of them showed enzyme-substrate binding events. The results reveal three categories of relatively persistent and noteworthy enzyme-substrate binding configurations, which we call configurations A, B, and C. We performed binding free energy calculations of the enzyme-substrate complexes of different configurations using the molecular mechanics Poisson-Boltzmann surface area method. The role of each residue of the active site in binding the substrate was investigated using energy decomposition analysis. The simulated trajectories provide a continuous atomic-level view of the entire binding process, revealing potentially valuable regions where the enzyme and the substrate interact persistently and five possible pathways of the substrate entering into the active center, which were validated using well-tempered metadynamics. These findings provide important insights into the binding mechanism of meropenem to NDM-1, which may provide new prospects for the design of novel metallo-β-lactamase inhibitors and enzyme-resistant antibiotics.
Sprenger, K G; Prakash, Arushi; Drobny, Gary; Pfaendtner, Jim
2018-01-23
Biomimetic silica formation, a process that is largely driven by proteins, has garnered considerable interest in recent years due to its role in the development of new biotechnologies. However, much remains unknown of the molecular-scale mechanisms underlying the binding of proteins to biomineral surfaces such as silica, or even of the key residue-level interactions between such proteins and surfaces. In this study, we employ molecular dynamics (MD) simulations to study the binding of R5-a 19-residue segment of a native silaffin peptide used for in vitro silica formation-to a silica surface. The metadynamics enhanced sampling method is used to converge the binding behavior of R5 on silica at both neutral (pH 7.5) and acidic (pH 5) conditions. The results show fundamental differences in the mechanism of binding between the two cases, providing unique insight into the pH-dependent ability of R5 and native silaffin to precipitate silica. We also study the effect of phosphorylation of serine residues in R5 on both the binding free energy to silica and the interfacial conformation of the peptide. Results indicate that phosphorylation drastically decreases the binding free energy and changes the structure of silica-adsorbed R5 through the introduction of charge and steric repulsion. New mechanistic insights from this work could inform rational design of new biomaterials and biotechnologies.
Providing a molecular mechanism for P-glycoprotein; why would I bother?
Callaghan, Richard
2015-01-01
It is almost 40 years since the drug efflux pump P-glycoprotein (permeability glycoprotein or P-gp) was shown to confer multi-drug resistance in cancer cells. This protein has been one of the most extensively investigated transport proteins due to its intriguing mechanism and its affect in oncology. P-gp is known to interact with over 300 compounds and the ability to achieve this has not yet been revealed. Following the binding of substrate and nucleotide, a complex series of conformational changes in the membrane and cytosolic domains translocates substrate across the membrane. Despite over 30 years of biochemical investigation, the availability of structural data and a plethora of chemical tools to modulate its function, the molecular mechanism remains a mystery. In addition, overcoming its activity in resistant cancer cells has not been achieved in the clinic, thereby garnering some degree of pessimism in the field. This review highlights the progress that has been achieved in understanding this complex protein and the value of undertaking molecular studies. PMID:26517914
NASA Astrophysics Data System (ADS)
Cocchi, Caterina; Moldt, Thomas; Gahl, Cornelius; Weinelt, Martin; Draxl, Claudia
2016-12-01
In a joint theoretical and experimental work, the optical properties of azobenzene-functionalized self-assembled monolayers (SAMs) are studied at different molecular packing densities. Our results, based on density-functional and many-body perturbation theory, as well as on differential reflectance (DR) spectroscopy, shed light on the microscopic mechanisms ruling photo-absorption in these systems. While the optical excitations are intrinsically excitonic in nature, regardless of the molecular concentration, in densely packed SAMs intermolecular coupling and local-field effects are responsible for a sizable weakening of the exciton binding strength. Through a detailed analysis of the character of the electron-hole pairs, we show that distinct excitations involved in the photo-isomerization at low molecular concentrations are dramatically broadened by intermolecular interactions. Spectral shifts in the calculated DR spectra are in good agreement with the experimental results. Our findings represent an important step forward to rationalize the excited-state properties of these complex materials.
Tuning open-circuit voltage in organic solar cells by magnesium modified Alq3
Chou, Chi-Ta; Lin, Chien-Hung; Wu, Meng-Hsiu; Cheng, Tzu-Wei; Lee, Jiun-Haw; Liu, Chin-Hsin J.; Tai, Yian; Chattopadhyay, Surojit; Wang, Juen-Kai; Chen, Kuei-Hsien; Chen, Li-Chyong
2011-01-01
The low molecular weight tris-(8-hydroxyquinoline) aluminum (Alq3) has been incorporated with magnesium (Mg) that altered the nature of its opto-electronic characteristics. The lowering of the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) in Mg:Alq3, compared to pure Alq3, creates a stronger field (exceeding the exciton binding energy) at the donor-acceptor junction to dissociate the photo-generated exciton and also provides a low barrier for electron transport across the device. In an electron-only device (described in the text), a current enhancement in excess of 103, with respect to pure Alq3, could be observed at 10 V applied bias. Optimized Mg:Alq3 layer, when introduced in the photovoltaic device, improves the power conversion efficiencies significantly to 0.15% compared to the pure Alq3 device. The improvement in the photovoltaic performance has been attributed to the superior exciton dissociation and carrier transport. PMID:22087050
Using computer-aided drug design and medicinal chemistry strategies in the fight against diabetes.
Semighini, Evandro P; Resende, Jonathan A; de Andrade, Peterson; Morais, Pedro A B; Carvalho, Ivone; Taft, Carlton A; Silva, Carlos H T P
2011-04-01
The aim of this work is to present a simple, practical and efficient protocol for drug design, in particular Diabetes, which includes selection of the illness, good choice of a target as well as a bioactive ligand and then usage of various computer aided drug design and medicinal chemistry tools to design novel potential drug candidates in different diseases. We have selected the validated target dipeptidyl peptidase IV (DPP-IV), whose inhibition contributes to reduce glucose levels in type 2 diabetes patients. The most active inhibitor with complex X-ray structure reported was initially extracted from the BindingDB database. By using molecular modification strategies widely used in medicinal chemistry, besides current state-of-the-art tools in drug design (including flexible docking, virtual screening, molecular interaction fields, molecular dynamics, ADME and toxicity predictions), we have proposed 4 novel potential DPP-IV inhibitors with drug properties for Diabetes control, which have been supported and validated by all the computational tools used herewith.
Combined 3D-QSAR modeling and molecular docking study on azacycles CCR5 antagonists
NASA Astrophysics Data System (ADS)
Ji, Yongjun; Shu, Mao; Lin, Yong; Wang, Yuanqiang; Wang, Rui; Hu, Yong; Lin, Zhihua
2013-08-01
The beta chemokine receptor 5 (CCR5) is an attractive target for pharmaceutical industry in the HIV-1, inflammation and cancer therapeutic areas. In this study, we have developed quantitative structure activity relationship (QSAR) models for a series of 41 azacycles CCR5 antagonists using comparative molecular field analysis (CoMFA), comparative molecular similarity indices analysis (CoMSIA), and Topomer CoMFA methods. The cross-validated coefficient q2 values of 3D-QASR (CoMFA, CoMSIA, and Topomer CoMFA) methods were 0.630, 0.758, and 0.852, respectively, the non-cross-validated R2 values were 0.979, 0.978, and 0.990, respectively. Docking studies were also employed to determine the most probable binding mode. 3D contour maps and docking results suggested that bulky groups and electron-withdrawing groups on the core part would decrease antiviral activity. Furthermore, docking results indicated that H-bonds and π bonds were favorable for antiviral activities. Finally, a set of novel derivatives with predicted activities were designed.
Single functional group interactions with individual carbon nanotubes
NASA Astrophysics Data System (ADS)
Friddle, Raymond W.; Lemieux, Melburne C.; Cicero, Giancarlo; Artyukhin, Alexander B.; Tsukruk, Vladimir V.; Grossman, Jeffrey C.; Galli, Giulia; Noy, Aleksandr
2007-11-01
Carbon nanotubes display a consummate blend of materials properties that affect applications ranging from nanoelectronic circuits and biosensors to field emitters and membranes. These applications use the non-covalent interactions between the nanotubes and chemical functionalities, often involving a few molecules at a time. Despite their wide use, we still lack a fundamental understanding and molecular-level control of these interactions. We have used chemical force microscopy to measure the strength of the interactions of single chemical functional groups with the sidewalls of vapour-grown individual single-walled carbon nanotubes. Surprisingly, the interaction strength does not follow conventional trends of increasing polarity or hydrophobicity, and instead reflects the complex electronic interactions between the nanotube and the functional group. Ab initio calculations confirm the observed trends and predict binding force distributions for a single molecular contact that match the experimental results. Our analysis also reveals the important role of molecular linkage dynamics in determining interaction strength at the single functional group level.