Sample records for field mrf based

  1. Structure-based Markov random field model for representing evolutionary constraints on functional sites.

    PubMed

    Jeong, Chan-Seok; Kim, Dongsup

    2016-02-24

    Elucidating the cooperative mechanism of interconnected residues is an important component toward understanding the biological function of a protein. Coevolution analysis has been developed to model the coevolutionary information reflecting structural and functional constraints. Recently, several methods have been developed based on a probabilistic graphical model called the Markov random field (MRF), which have led to significant improvements for coevolution analysis; however, thus far, the performance of these models has mainly been assessed by focusing on the aspect of protein structure. In this study, we built an MRF model whose graphical topology is determined by the residue proximity in the protein structure, and derived a novel positional coevolution estimate utilizing the node weight of the MRF model. This structure-based MRF method was evaluated for three data sets, each of which annotates catalytic site, allosteric site, and comprehensively determined functional site information. We demonstrate that the structure-based MRF architecture can encode the evolutionary information associated with biological function. Furthermore, we show that the node weight can more accurately represent positional coevolution information compared to the edge weight. Lastly, we demonstrate that the structure-based MRF model can be reliably built with only a few aligned sequences in linear time. The results show that adoption of a structure-based architecture could be an acceptable approximation for coevolution modeling with efficient computation complexity.

  2. Brain tissue segmentation in MR images based on a hybrid of MRF and social algorithms.

    PubMed

    Yousefi, Sahar; Azmi, Reza; Zahedi, Morteza

    2012-05-01

    Effective abnormality detection and diagnosis in Magnetic Resonance Images (MRIs) requires a robust segmentation strategy. Since manual segmentation is a time-consuming task which engages valuable human resources, automatic MRI segmentations received an enormous amount of attention. For this goal, various techniques have been applied. However, Markov Random Field (MRF) based algorithms have produced reasonable results in noisy images compared to other methods. MRF seeks a label field which minimizes an energy function. The traditional minimization method, simulated annealing (SA), uses Monte Carlo simulation to access the minimum solution with heavy computation burden. For this reason, MRFs are rarely used in real time processing environments. This paper proposed a novel method based on MRF and a hybrid of social algorithms that contain an ant colony optimization (ACO) and a Gossiping algorithm which can be used for segmenting single and multispectral MRIs in real time environments. Combining ACO with the Gossiping algorithm helps find the better path using neighborhood information. Therefore, this interaction causes the algorithm to converge to an optimum solution faster. Several experiments on phantom and real images were performed. Results indicate that the proposed algorithm outperforms the traditional MRF and hybrid of MRF-ACO in speed and accuracy. Copyright © 2012 Elsevier B.V. All rights reserved.

  3. Traffic Video Image Segmentation Model Based on Bayesian and Spatio-Temporal Markov Random Field

    NASA Astrophysics Data System (ADS)

    Zhou, Jun; Bao, Xu; Li, Dawei; Yin, Yongwen

    2017-10-01

    Traffic video image is a kind of dynamic image and its background and foreground is changed at any time, which results in the occlusion. In this case, using the general method is more difficult to get accurate image segmentation. A segmentation algorithm based on Bayesian and Spatio-Temporal Markov Random Field is put forward, which respectively build the energy function model of observation field and label field to motion sequence image with Markov property, then according to Bayesian' rule, use the interaction of label field and observation field, that is the relationship of label field’s prior probability and observation field’s likelihood probability, get the maximum posterior probability of label field’s estimation parameter, use the ICM model to extract the motion object, consequently the process of segmentation is finished. Finally, the segmentation methods of ST - MRF and the Bayesian combined with ST - MRF were analyzed. Experimental results: the segmentation time in Bayesian combined with ST-MRF algorithm is shorter than in ST-MRF, and the computing workload is small, especially in the heavy traffic dynamic scenes the method also can achieve better segmentation effect.

  4. Markov random field model-based edge-directed image interpolation.

    PubMed

    Li, Min; Nguyen, Truong Q

    2008-07-01

    This paper presents an edge-directed image interpolation algorithm. In the proposed algorithm, the edge directions are implicitly estimated with a statistical-based approach. In opposite to explicit edge directions, the local edge directions are indicated by length-16 weighting vectors. Implicitly, the weighting vectors are used to formulate geometric regularity (GR) constraint (smoothness along edges and sharpness across edges) and the GR constraint is imposed on the interpolated image through the Markov random field (MRF) model. Furthermore, under the maximum a posteriori-MRF framework, the desired interpolated image corresponds to the minimal energy state of a 2-D random field given the low-resolution image. Simulated annealing methods are used to search for the minimal energy state from the state space. To lower the computational complexity of MRF, a single-pass implementation is designed, which performs nearly as well as the iterative optimization. Simulation results show that the proposed MRF model-based edge-directed interpolation method produces edges with strong geometric regularity. Compared to traditional methods and other edge-directed interpolation methods, the proposed method improves the subjective quality of the interpolated edges while maintaining a high PSNR level.

  5. Automatic Mrf-Based Registration of High Resolution Satellite Video Data

    NASA Astrophysics Data System (ADS)

    Platias, C.; Vakalopoulou, M.; Karantzalos, K.

    2016-06-01

    In this paper we propose a deformable registration framework for high resolution satellite video data able to automatically and accurately co-register satellite video frames and/or register them to a reference map/image. The proposed approach performs non-rigid registration, formulates a Markov Random Fields (MRF) model, while efficient linear programming is employed for reaching the lowest potential of the cost function. The developed approach has been applied and validated on satellite video sequences from Skybox Imaging and compared with a rigid, descriptor-based registration method. Regarding the computational performance, both the MRF-based and the descriptor-based methods were quite efficient, with the first one converging in some minutes and the second in some seconds. Regarding the registration accuracy the proposed MRF-based method significantly outperformed the descriptor-based one in all the performing experiments.

  6. A modified method for MRF segmentation and bias correction of MR image with intensity inhomogeneity.

    PubMed

    Xie, Mei; Gao, Jingjing; Zhu, Chongjin; Zhou, Yan

    2015-01-01

    Markov random field (MRF) model is an effective method for brain tissue classification, which has been applied in MR image segmentation for decades. However, it falls short of the expected classification in MR images with intensity inhomogeneity for the bias field is not considered in the formulation. In this paper, we propose an interleaved method joining a modified MRF classification and bias field estimation in an energy minimization framework, whose initial estimation is based on k-means algorithm in view of prior information on MRI. The proposed method has a salient advantage of overcoming the misclassifications from the non-interleaved MRF classification for the MR image with intensity inhomogeneity. In contrast to other baseline methods, experimental results also have demonstrated the effectiveness and advantages of our algorithm via its applications in the real and the synthetic MR images.

  7. Preclinical Magnetic Resonance Fingerprinting (MRF) at 7 T: Effective Quantitative Imaging for Rodent Disease Models

    PubMed Central

    Gao, Ying; Chen, Yong; Ma, Dan; Jiang, Yun; Herrmann, Kelsey A.; Vincent, Jason A.; Dell, Katherine M.; Drumm, Mitchell L.; Brady-Kalnay, Susann M.; Griswold, Mark A.; Flask, Chris A.; Lu, Lan

    2015-01-01

    High field, preclinical magnetic resonance imaging (MRI) scanners are now commonly used to quantitatively assess disease status and efficacy of novel therapies in a wide variety of rodent models. Unfortunately, conventional MRI methods are highly susceptible to respiratory and cardiac motion artifacts resulting in potentially inaccurate and misleading data. We have developed an initial preclinical, 7.0 T MRI implementation of the highly novel Magnetic Resonance Fingerprinting (MRF) methodology that has been previously described for clinical imaging applications. The MRF technology combines a priori variation in the MRI acquisition parameters with dictionary-based matching of acquired signal evolution profiles to simultaneously generate quantitative maps of T1 and T2 relaxation times and proton density. This preclinical MRF acquisition was constructed from a Fast Imaging with Steady-state Free Precession (FISP) MRI pulse sequence to acquire 600 MRF images with both evolving T1 and T2 weighting in approximately 30 minutes. This initial high field preclinical MRF investigation demonstrated reproducible and differentiated estimates of in vitro phantoms with different relaxation times. In vivo preclinical MRF results in mouse kidneys and brain tumor models demonstrated an inherent resistance to respiratory motion artifacts as well as sensitivity to known pathology. These results suggest that MRF methodology may offer the opportunity for quantification of numerous MRI parameters for a wide variety of preclinical imaging applications. PMID:25639694

  8. Preclinical MR fingerprinting (MRF) at 7 T: effective quantitative imaging for rodent disease models.

    PubMed

    Gao, Ying; Chen, Yong; Ma, Dan; Jiang, Yun; Herrmann, Kelsey A; Vincent, Jason A; Dell, Katherine M; Drumm, Mitchell L; Brady-Kalnay, Susann M; Griswold, Mark A; Flask, Chris A; Lu, Lan

    2015-03-01

    High-field preclinical MRI scanners are now commonly used to quantitatively assess disease status and the efficacy of novel therapies in a wide variety of rodent models. Unfortunately, conventional MRI methods are highly susceptible to respiratory and cardiac motion artifacts resulting in potentially inaccurate and misleading data. We have developed an initial preclinical 7.0-T MRI implementation of the highly novel MR fingerprinting (MRF) methodology which has been described previously for clinical imaging applications. The MRF technology combines a priori variation in the MRI acquisition parameters with dictionary-based matching of acquired signal evolution profiles to simultaneously generate quantitative maps of T1 and T2 relaxation times and proton density. This preclinical MRF acquisition was constructed from a fast imaging with steady-state free precession (FISP) MRI pulse sequence to acquire 600 MRF images with both evolving T1 and T2 weighting in approximately 30 min. This initial high-field preclinical MRF investigation demonstrated reproducible and differentiated estimates of in vitro phantoms with different relaxation times. In vivo preclinical MRF results in mouse kidneys and brain tumor models demonstrated an inherent resistance to respiratory motion artifacts as well as sensitivity to known pathology. These results suggest that MRF methodology may offer the opportunity for the quantification of numerous MRI parameters for a wide variety of preclinical imaging applications. Copyright © 2015 John Wiley & Sons, Ltd.

  9. SAR Image Change Detection Based on Fuzzy Markov Random Field Model

    NASA Astrophysics Data System (ADS)

    Zhao, J.; Huang, G.; Zhao, Z.

    2018-04-01

    Most existing SAR image change detection algorithms only consider single pixel information of different images, and not consider the spatial dependencies of image pixels. So the change detection results are susceptible to image noise, and the detection effect is not ideal. Markov Random Field (MRF) can make full use of the spatial dependence of image pixels and improve detection accuracy. When segmenting the difference image, different categories of regions have a high degree of similarity at the junction of them. It is difficult to clearly distinguish the labels of the pixels near the boundaries of the judgment area. In the traditional MRF method, each pixel is given a hard label during iteration. So MRF is a hard decision in the process, and it will cause loss of information. This paper applies the combination of fuzzy theory and MRF to the change detection of SAR images. The experimental results show that the proposed method has better detection effect than the traditional MRF method.

  10. The application of mean field theory to image motion estimation.

    PubMed

    Zhang, J; Hanauer, G G

    1995-01-01

    Previously, Markov random field (MRF) model-based techniques have been proposed for image motion estimation. Since motion estimation is usually an ill-posed problem, various constraints are needed to obtain a unique and stable solution. The main advantage of the MRF approach is its capacity to incorporate such constraints, for instance, motion continuity within an object and motion discontinuity at the boundaries between objects. In the MRF approach, motion estimation is often formulated as an optimization problem, and two frequently used optimization methods are simulated annealing (SA) and iterative-conditional mode (ICM). Although the SA is theoretically optimal in the sense of finding the global optimum, it usually takes many iterations to converge. The ICM, on the other hand, converges quickly, but its results are often unsatisfactory due to its "hard decision" nature. Previously, the authors have applied the mean field theory to image segmentation and image restoration problems. It provides results nearly as good as SA but with much faster convergence. The present paper shows how the mean field theory can be applied to MRF model-based motion estimation. This approach is demonstrated on both synthetic and real-world images, where it produced good motion estimates.

  11. Frictional forces in material removal for glasses and ceramics using magnetorheological finishing

    NASA Astrophysics Data System (ADS)

    Miao, Chunlin

    Magnetorheological finishing (MRF) spotting experiments on stationary parts are conducted in this work to understand the material removal mechanism in MRF. Drag force and normal force are measured in situ, simultaneously for the first time for a variety of optical materials in MRF. We study material removal process in MRF as a function of material mechanical properties. We experimentally demonstrate that material removal in MRF is strongly related to shear stress. Shear stress is predominantly determined by material mechanical properties. A modified Preston's equation is proposed to estimate the material removal in MRF by combining shear stress and material mechanical properties. We investigate extensively the effect of various MRF process parameters, including abrasive concentration, magnetic field strength, penetration depth and wheel speed, on material removal efficiency. Material removal rate model is expanded to include these parameters. We develop a nonaqueous magnetorheological (MR) fluid for examining the mechanical contribution in MRF material removal. This fluid is based on a combination of two CI particles and a combination of two organic liquids. Material removal with this nonaqueous MR fluid is discussed. We formulate a new corrosion resistant MR fluid which is based on metal oxide coated carbonyl iron (CI) particles. The rheological behavior, stability and corrosion resistance are examined.

  12. Interferometric synthetic aperture radar phase unwrapping based on sparse Markov random fields by graph cuts

    NASA Astrophysics Data System (ADS)

    Zhou, Lifan; Chai, Dengfeng; Xia, Yu; Ma, Peifeng; Lin, Hui

    2018-01-01

    Phase unwrapping (PU) is one of the key processes in reconstructing the digital elevation model of a scene from its interferometric synthetic aperture radar (InSAR) data. It is known that two-dimensional (2-D) PU problems can be formulated as maximum a posteriori estimation of Markov random fields (MRFs). However, considering that the traditional MRF algorithm is usually defined on a rectangular grid, it fails easily if large parts of the wrapped data are dominated by noise caused by large low-coherence area or rapid-topography variation. A PU solution based on sparse MRF is presented to extend the traditional MRF algorithm to deal with sparse data, which allows the unwrapping of InSAR data dominated by high phase noise. To speed up the graph cuts algorithm for sparse MRF, we designed dual elementary graphs and merged them to obtain the Delaunay triangle graph, which is used to minimize the energy function efficiently. The experiments on simulated and real data, compared with other existing algorithms, both confirm the effectiveness of the proposed MRF approach, which suffers less from decorrelation effects caused by large low-coherence area or rapid-topography variation.

  13. A prior feature SVM – MRF based method for mouse brain segmentation

    PubMed Central

    Wu, Teresa; Bae, Min Hyeok; Zhang, Min; Pan, Rong; Badea, Alexandra

    2012-01-01

    We introduce an automated method, called prior feature Support Vector Machine- Markov Random Field (pSVMRF), to segment three-dimensional mouse brain Magnetic Resonance Microscopy (MRM) images. Our earlier work, extended MRF (eMRF) integrated Support Vector Machine (SVM) and Markov Random Field (MRF) approaches, leading to improved segmentation accuracy; however, the computation of eMRF is very expensive, which may limit its performance on segmentation and robustness. In this study pSVMRF reduces training and testing time for SVM, while boosting segmentation performance. Unlike the eMRF approach, where MR intensity information and location priors are linearly combined, pSVMRF combines this information in a nonlinear fashion, and enhances the discriminative ability of the algorithm. We validate the proposed method using MR imaging of unstained and actively stained mouse brain specimens, and compare segmentation accuracy with two existing methods: eMRF and MRF. C57BL/6 mice are used for training and testing, using cross validation. For formalin fixed C57BL/6 specimens, pSVMRF outperforms both eMRF and MRF. The segmentation accuracy for C57BL/6 brains, stained or not, was similar for larger structures like hippocampus and caudate putamen, (~87%), but increased substantially for smaller regions like susbtantia nigra (from 78.36% to 91.55%), and anterior commissure (from ~50% to ~80%). To test segmentation robustness against increased anatomical variability we add two strains, BXD29 and a transgenic mouse model of Alzheimer’s Disease. Segmentation accuracy for new strains is 80% for hippocampus, and caudate putamen, indicating that pSVMRF is a promising approach for phenotyping mouse models of human brain disorders. PMID:21988893

  14. A prior feature SVM-MRF based method for mouse brain segmentation.

    PubMed

    Wu, Teresa; Bae, Min Hyeok; Zhang, Min; Pan, Rong; Badea, Alexandra

    2012-02-01

    We introduce an automated method, called prior feature Support Vector Machine-Markov Random Field (pSVMRF), to segment three-dimensional mouse brain Magnetic Resonance Microscopy (MRM) images. Our earlier work, extended MRF (eMRF) integrated Support Vector Machine (SVM) and Markov Random Field (MRF) approaches, leading to improved segmentation accuracy; however, the computation of eMRF is very expensive, which may limit its performance on segmentation and robustness. In this study pSVMRF reduces training and testing time for SVM, while boosting segmentation performance. Unlike the eMRF approach, where MR intensity information and location priors are linearly combined, pSVMRF combines this information in a nonlinear fashion, and enhances the discriminative ability of the algorithm. We validate the proposed method using MR imaging of unstained and actively stained mouse brain specimens, and compare segmentation accuracy with two existing methods: eMRF and MRF. C57BL/6 mice are used for training and testing, using cross validation. For formalin fixed C57BL/6 specimens, pSVMRF outperforms both eMRF and MRF. The segmentation accuracy for C57BL/6 brains, stained or not, was similar for larger structures like hippocampus and caudate putamen, (~87%), but increased substantially for smaller regions like susbtantia nigra (from 78.36% to 91.55%), and anterior commissure (from ~50% to ~80%). To test segmentation robustness against increased anatomical variability we add two strains, BXD29 and a transgenic mouse model of Alzheimer's disease. Segmentation accuracy for new strains is 80% for hippocampus, and caudate putamen, indicating that pSVMRF is a promising approach for phenotyping mouse models of human brain disorders. Copyright © 2011 Elsevier Inc. All rights reserved.

  15. Six-month Longitudinal Comparison of a Portable Tablet Perimeter With the Humphrey Field Analyzer.

    PubMed

    Prea, Selwyn Marc; Kong, Yu Xiang George; Mehta, Aditi; He, Mingguang; Crowston, Jonathan G; Gupta, Vinay; Martin, Keith R; Vingrys, Algis J

    2018-06-01

    To establish the medium-term repeatability of the iPad perimetry app Melbourne Rapid Fields (MRF) compared to Humphrey Field Analyzer (HFA) 24-2 SITA-standard and SITA-fast programs. Multicenter longitudinal observational clinical study. Sixty patients (stable glaucoma/ocular hypertension/glaucoma suspects) were recruited into a 6-month longitudinal clinical study with visits planned at baseline and at 2, 4, and 6 months. At each visit patients undertook visual field assessment using the MRF perimetry application and either HFA SITA-fast (n = 21) or SITA-standard (n = 39). The primary outcome measure was the association and repeatability of mean deviation (MD) for the MRF and HFA tests. Secondary measures were the point-wise threshold and repeatability for each test, as well as test time. MRF was similar to SITA-fast in speed and significantly faster than SITA-standard (MRF 4.6 ± 0.1 minutes vs SITA-fast 4.3 ± 0.2 minutes vs SITA-standard 6.2 ± 0.1 minutes, P < .001). Intraclass correlation coefficients (ICC) between MRF and SITA-fast for MD at the 4 visits ranged from 0.71 to 0.88. ICC values between MRF and SITA-standard for MD ranged from 0.81 to 0.90. Repeatability of MRF MD outcomes was excellent, with ICC for baseline and the 6-month visit being 0.98 (95% confidence interval: 0.96-0.99). In comparison, ICC at 6-month retest for SITA-fast was 0.95 and SITA-standard 0.93. Fewer points changed with the MRF, although for those that did, the MRF gave greater point-wise variability than did the SITA tests. MRF correlated strongly with HFA across 4 visits over a 6-month period, and has good test-retest reliability. MRF is suitable for monitoring visual fields in settings where conventional perimetry is not readily accessible. Copyright © 2018 Elsevier Inc. All rights reserved.

  16. Optimizing mini-ridge filter thickness to reduce proton treatment times in a spot-scanning synchrotron system.

    PubMed

    Courneyea, Lorraine; Beltran, Chris; Tseung, Hok Seum Wan Chan; Yu, Juan; Herman, Michael G

    2014-06-01

    Study the contributors to treatment time as a function of Mini-Ridge Filter (MRF) thickness to determine the optimal choice for breath-hold treatment of lung tumors in a synchrotron-based spot-scanning proton machine. Five different spot-scanning nozzles were simulated in TOPAS: four with MRFs of varying maximal thicknesses (6.15-24.6 mm) and one with no MRF. The MRFs were designed with ridges aligned along orthogonal directions transverse to the beam, with the number of ridges (4-16) increasing with MRF thickness. The material thickness given by these ridges approximately followed a Gaussian distribution. Using these simulations, Monte Carlo data were generated for treatment planning commissioning. For each nozzle, standard and stereotactic (SR) lung phantom treatment plans were created and assessed for delivery time and plan quality. Use of a MRF resulted in a reduction of the number of energy layers needed in treatment plans, decreasing the number of synchrotron spills needed and hence the treatment time. For standard plans, the treatment time per field without a MRF was 67.0 ± 0.1 s, whereas three of the four MRF plans had treatment times of less than 20 s per field; considered sufficiently low for a single breath-hold. For SR plans, the shortest treatment time achieved was 57.7 ± 1.9 s per field, compared to 95.5 ± 0.5 s without a MRF. There were diminishing gains in time reduction as the MRF thickness increased. Dose uniformity of the PTV was comparable across all plans; however, when the plans were normalized to have the same coverage, dose conformality decreased with MRF thickness, as measured by the lung V20%. Single breath-hold treatment times for plans with standard fractionation can be achieved through the use of a MRF, making this a viable option for motion mitigation in lung tumors. For stereotactic plans, while a MRF can reduce treatment times, multiple breath-holds would still be necessary due to the limit imposed by the proton extraction time. To balance treatment time and normal tissue dose, the ideal MRF choice was shown to be the thinnest option that is able to achieve the desired breath-hold timing.

  17. Spatial-spectral blood cell classification with microscopic hyperspectral imagery

    NASA Astrophysics Data System (ADS)

    Ran, Qiong; Chang, Lan; Li, Wei; Xu, Xiaofeng

    2017-10-01

    Microscopic hyperspectral images provide a new way for blood cell examination. The hyperspectral imagery can greatly facilitate the classification of different blood cells. In this paper, the microscopic hyperspectral images are acquired by connecting the microscope and the hyperspectral imager, and then tested for blood cell classification. For combined use of the spectral and spatial information provided by hyperspectral images, a spatial-spectral classification method is improved from the classical extreme learning machine (ELM) by integrating spatial context into the image classification task with Markov random field (MRF) model. Comparisons are done among ELM, ELM-MRF, support vector machines(SVM) and SVMMRF methods. Results show the spatial-spectral classification methods(ELM-MRF, SVM-MRF) perform better than pixel-based methods(ELM, SVM), and the proposed ELM-MRF has higher precision and show more accurate location of cells.

  18. Fast magnetic resonance fingerprinting for dynamic contrast-enhanced studies in mice.

    PubMed

    Gu, Yuning; Wang, Charlie Y; Anderson, Christian E; Liu, Yuchi; Hu, He; Johansen, Mette L; Ma, Dan; Jiang, Yun; Ramos-Estebanez, Ciro; Brady-Kalnay, Susann; Griswold, Mark A; Flask, Chris A; Yu, Xin

    2018-05-09

    The goal of this study was to develop a fast MR fingerprinting (MRF) method for simultaneous T 1 and T 2 mapping in DCE-MRI studies in mice. The MRF sequences based on balanced SSFP and fast imaging with steady-state precession were implemented and evaluated on a 7T preclinical scanner. The readout used a zeroth-moment-compensated variable-density spiral trajectory that fully sampled the entire k-space and the inner 10 × 10 k-space with 48 and 4 interleaves, respectively. In vitro and in vivo studies of mouse brain were performed to evaluate the accuracy of MRF measurements with both fully sampled and undersampled data. The application of MRF to dynamic T 1 and T 2 mapping in DCE-MRI studies were demonstrated in a mouse model of heterotopic glioblastoma using gadolinium-based and dysprosium-based contrast agents. The T 1 and T 2 measurements in phantom showed strong agreement between the MRF and the conventional methods. The MRF with spiral encoding allowed up to 8-fold undersampling without loss of measurement accuracy. This enabled simultaneous T 1 and T 2 mapping with 2-minute temporal resolution in DCE-MRI studies. Magnetic resonance fingerprinting provides the opportunity for dynamic quantification of contrast agent distribution in preclinical tumor models on high-field MRI scanners. © 2018 International Society for Magnetic Resonance in Medicine.

  19. Texture-preserved penalized weighted least-squares reconstruction of low-dose CT image via image segmentation and high-order MRF modeling

    NASA Astrophysics Data System (ADS)

    Han, Hao; Zhang, Hao; Wei, Xinzhou; Moore, William; Liang, Zhengrong

    2016-03-01

    In this paper, we proposed a low-dose computed tomography (LdCT) image reconstruction method with the help of prior knowledge learning from previous high-quality or normal-dose CT (NdCT) scans. The well-established statistical penalized weighted least squares (PWLS) algorithm was adopted for image reconstruction, where the penalty term was formulated by a texture-based Gaussian Markov random field (gMRF) model. The NdCT scan was firstly segmented into different tissue types by a feature vector quantization (FVQ) approach. Then for each tissue type, a set of tissue-specific coefficients for the gMRF penalty was statistically learnt from the NdCT image via multiple-linear regression analysis. We also proposed a scheme to adaptively select the order of gMRF model for coefficients prediction. The tissue-specific gMRF patterns learnt from the NdCT image were finally used to form an adaptive MRF penalty for the PWLS reconstruction of LdCT image. The proposed texture-adaptive PWLS image reconstruction algorithm was shown to be more effective to preserve image textures than the conventional PWLS image reconstruction algorithm, and we further demonstrated the gain of high-order MRF modeling for texture-preserved LdCT PWLS image reconstruction.

  20. Optimization analysis of a new vane MRF damper

    NASA Astrophysics Data System (ADS)

    Zhang, J. Q.; Feng, Z. Z.; Jing, Q.

    2009-02-01

    The primary purpose of this study was to provide the optimization analysis certain characteristics and benefits of a vane MRF damper. Based on the structure of conventional vane hydraulic damper for heavy vehicle, a narrow arc gap between clapboard and rotary vane axle, which one rotates relative to the other, was designed for MRF valve and the mathematical model of damping was deduced. Subsequently, the finite element analysis of electromagnetic circuit was done by ANSYS to perform the optimization process. Some ways were presented to augment the damping adjustable multiple under the condition of keeping initial damping forces and to increase fluid dwell time through the magnetic field. The results show that the method is useful in the design of MR dampers and the damping adjustable range of vane MRF damper can meet the requirement of heavy vehicle semi-active suspension system.

  1. A magnetorheological fluid locking device

    NASA Astrophysics Data System (ADS)

    Kavlicoglu, Barkan; Liu, Yanming

    2011-04-01

    A magnetorheological fluid (MRF) device is designed to provide a static locking force caused by the operation of a controllable MRF valve. The intent is to introduce an MRF device which provides the locking force of a fifth wheel coupler while maintaining the "powerless" locking capability when required. A passive magnetic field supplied by a permanent magnet provides a powerless locking resistance force. The passively closed MRF valve provides sufficient reaction force to eliminate axial displacement to a pre-defined force value. Unlocking of the device is provided by means of an electromagnet which re-routes the magnetic field distribution along the MR valve, and minimizes the resistance. Three dimensional electromagnetic finite element analyses are performed to optimize the MRF lock valve performance. The MRF locking valve is fabricated and tested for installation on a truck fifth wheel application. An experimental setup, resembling actual working conditions, is designed and tests are conducted on vehicle interface schemes. The powerless-locking capacity and the unlocking process with minimal resistance are experimentally demonstrated.

  2. A comparative analysis of passive twin tube and skyhook MRF dampers for motorcycle front suspensions

    NASA Astrophysics Data System (ADS)

    Ahmadian, Mehdi; Gravatt, John

    2004-07-01

    A comparative analysis between conventional passive twin tube dampers and skyhook-controlled magneto-rheological fluid (MRF) dampers for motorcycle front suspensions is provided, based on single axis testing in a damper test rig and suspension performance testing in road trials. Performance motorcycles, while boasting extremely light suspension components and competition-ready performance, have an inherent weakness in comfort, as the suspension systems are designed primarily for racing purposes. Front suspension acceleration and shock loading transmit directly through the front suspension triple clamp into the rider's arms and shoulders, causing rapid fatigue in shoulder muscles. Magneto-rheological fluid dampers and skyhook control systems offer an alternative to conventional sport motorcycle suspensions - both performance and comfort can be combined in the same package. Prototype MRF dampers designed and manufactured specifically for this application require no more space than conventional twin tube designs while adding only 1.7 pounds total weight to the system. The MRF dampers were designed for high controllability and low power consumption, two vital considerations for a motorcycle application. The tests conducted include the dampers' force-velocity curve testing in a damper test rig and suspension performance based on damper position, velocity, and acceleration measurement. Damper test rig results show the MRF dampers have a far greater range of adjustability than the test vehicle's OEM dampers. Combined with a modified sky-hook control system, the MRF dampers can greatly decrease the acceleration and shock loading transmitted to the rider through the handlebars while contributing performance in manners such as anti-dive under braking. Triple clamp acceleration measurements from a variety of staged road conditions, such as sinusoidal wave inputs, will be compared to subjective test-rider field reports to establish a correlation between rider fatigue and the front suspension performance. This testing will be conducted on the OEM vehicle suspension, the passive MRF dampers, and the skyhook-controlled MRF damper front suspension. The results of this test will determine the viability of skyhook-controlled MRF damper systems on motorcycles for performance gain and fatigue reduction.

  3. Change Detection of Remote Sensing Images by Dt-Cwt and Mrf

    NASA Astrophysics Data System (ADS)

    Ouyang, S.; Fan, K.; Wang, H.; Wang, Z.

    2017-05-01

    Aiming at the significant loss of high frequency information during reducing noise and the pixel independence in change detection of multi-scale remote sensing image, an unsupervised algorithm is proposed based on the combination between Dual-tree Complex Wavelet Transform (DT-CWT) and Markov random Field (MRF) model. This method first performs multi-scale decomposition for the difference image by the DT-CWT and extracts the change characteristics in high-frequency regions by using a MRF-based segmentation algorithm. Then our method estimates the final maximum a posterior (MAP) according to the segmentation algorithm of iterative condition model (ICM) based on fuzzy c-means(FCM) after reconstructing the high-frequency and low-frequency sub-bands of each layer respectively. Finally, the method fuses the above segmentation results of each layer by using the fusion rule proposed to obtain the mask of the final change detection result. The results of experiment prove that the method proposed is of a higher precision and of predominant robustness properties.

  4. Adaptive Markov Random Fields for Example-Based Super-resolution of Faces

    NASA Astrophysics Data System (ADS)

    Stephenson, Todd A.; Chen, Tsuhan

    2006-12-01

    Image enhancement of low-resolution images can be done through methods such as interpolation, super-resolution using multiple video frames, and example-based super-resolution. Example-based super-resolution, in particular, is suited to images that have a strong prior (for those frameworks that work on only a single image, it is more like image restoration than traditional, multiframe super-resolution). For example, hallucination and Markov random field (MRF) methods use examples drawn from the same domain as the image being enhanced to determine what the missing high-frequency information is likely to be. We propose to use even stronger prior information by extending MRF-based super-resolution to use adaptive observation and transition functions, that is, to make these functions region-dependent. We show with face images how we can adapt the modeling for each image patch so as to improve the resolution.

  5. Robust Dehaze Algorithm for Degraded Image of CMOS Image Sensors.

    PubMed

    Qu, Chen; Bi, Du-Yan; Sui, Ping; Chao, Ai-Nong; Wang, Yun-Fei

    2017-09-22

    The CMOS (Complementary Metal-Oxide-Semiconductor) is a new type of solid image sensor device widely used in object tracking, object recognition, intelligent navigation fields, and so on. However, images captured by outdoor CMOS sensor devices are usually affected by suspended atmospheric particles (such as haze), causing a reduction in image contrast, color distortion problems, and so on. In view of this, we propose a novel dehazing approach based on a local consistent Markov random field (MRF) framework. The neighboring clique in traditional MRF is extended to the non-neighboring clique, which is defined on local consistent blocks based on two clues, where both the atmospheric light and transmission map satisfy the character of local consistency. In this framework, our model can strengthen the restriction of the whole image while incorporating more sophisticated statistical priors, resulting in more expressive power of modeling, thus, solving inadequate detail recovery effectively and alleviating color distortion. Moreover, the local consistent MRF framework can obtain details while maintaining better results for dehazing, which effectively improves the image quality captured by the CMOS image sensor. Experimental results verified that the method proposed has the combined advantages of detail recovery and color preservation.

  6. Distributed memory parallel Markov random fields using graph partitioning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heinemann, C.; Perciano, T.; Ushizima, D.

    Markov random fields (MRF) based algorithms have attracted a large amount of interest in image analysis due to their ability to exploit contextual information about data. Image data generated by experimental facilities, though, continues to grow larger and more complex, making it more difficult to analyze in a reasonable amount of time. Applying image processing algorithms to large datasets requires alternative approaches to circumvent performance problems. Aiming to provide scientists with a new tool to recover valuable information from such datasets, we developed a general purpose distributed memory parallel MRF-based image analysis framework (MPI-PMRF). MPI-PMRF overcomes performance and memory limitationsmore » by distributing data and computations across processors. The proposed approach was successfully tested with synthetic and experimental datasets. Additionally, the performance of the MPI-PMRF framework is analyzed through a detailed scalability study. We show that a performance increase is obtained while maintaining an accuracy of the segmentation results higher than 98%. The contributions of this paper are: (a) development of a distributed memory MRF framework; (b) measurement of the performance increase of the proposed approach; (c) verification of segmentation accuracy in both synthetic and experimental, real-world datasets« less

  7. Music-based magnetic resonance fingerprinting to improve patient comfort during MRI examinations.

    PubMed

    Ma, Dan; Pierre, Eric Y; Jiang, Yun; Schluchter, Mark D; Setsompop, Kawin; Gulani, Vikas; Griswold, Mark A

    2016-06-01

    Unpleasant acoustic noise is a drawback of almost every MRI scan. Instead of reducing acoustic noise to improve patient comfort, we propose a technique for mitigating the noise problem by producing musical sounds directly from the switching magnetic fields while simultaneously quantifying multiple important tissue properties. MP3 music files were converted to arbitrary encoding gradients, which were then used with varying flip angles and repetition times in a two- and three-dimensional magnetic resonance fingerprinting (MRF) examination. This new acquisition method, named MRF-Music, was used to quantify T1 , T2 , and proton density maps simultaneously while providing pleasing sounds to the patients. MRF-Music scans improved patient comfort significantly during MRI examinations. The T1 and T2 values measured from phantom are in good agreement with those from the standard spin echo measurements. T1 and T2 values from the brain scan are also close to previously reported values. MRF-Music sequence provides significant improvement in patient comfort compared with the MRF scan and other fast imaging techniques such as echo planar imaging and turbo spin echo scans. It is also a fast and accurate quantitative method that quantifies multiple relaxation parameters simultaneously. Magn Reson Med 75:2303-2314, 2016. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  8. Music-Based Magnetic Resonance Fingerprinting to Improve Patient Comfort During MRI Exams

    PubMed Central

    Ma, Dan; Pierre, Eric Y.; Jiang, Yun; Schluchter, Mark D.; Setsompop, Kawin; Gulani, Vikas; Griswold, Mark A.

    2015-01-01

    Purpose The unpleasant acoustic noise is an important drawback of almost every magnetic resonance imaging scan. Instead of reducing the acoustic noise to improve patient comfort, a method is proposed to mitigate the noise problem by producing musical sounds directly from the switching magnetic fields while simultaneously quantifying multiple important tissue properties. Theory and Methods MP3 music files were converted to arbitrary encoding gradients, which were then used with varying flip angles and TRs in both 2D and 3D MRF exam. This new acquisition method named MRF-Music was used to quantify T1, T2 and proton density maps simultaneously while providing pleasing sounds to the patients. Results The MRF-Music scans were shown to significantly improve the patients' comfort during the MRI scans. The T1 and T2 values measured from phantom are in good agreement with those from the standard spin echo measurements. T1 and T2 values from the brain scan are also close to previously reported values. Conclusions MRF-Music sequence provides significant improvement of the patient's comfort as compared to the MRF scan and other fast imaging techniques such as EPI and TSE scans. It is also a fast and accurate quantitative method that quantifies multiple relaxation parameter simultaneously. PMID:26178439

  9. The mean field theory in EM procedures for blind Markov random field image restoration.

    PubMed

    Zhang, J

    1993-01-01

    A Markov random field (MRF) model-based EM (expectation-maximization) procedure for simultaneously estimating the degradation model and restoring the image is described. The MRF is a coupled one which provides continuity (inside regions of smooth gray tones) and discontinuity (at region boundaries) constraints for the restoration problem which is, in general, ill posed. The computational difficulty associated with the EM procedure for MRFs is resolved by using the mean field theory from statistical mechanics. An orthonormal blur decomposition is used to reduce the chances of undesirable locally optimal estimates. Experimental results on synthetic and real-world images show that this approach provides good blur estimates and restored images. The restored images are comparable to those obtained by a Wiener filter in mean-square error, but are most visually pleasing.

  10. Magnetic nanofibers with core (Fe 3O 4 nanoparticle suspension)/sheath (poly ethylene terephthalate) structure fabricated by coaxial electrospinning

    NASA Astrophysics Data System (ADS)

    Sung, Yun Kyung; Ahn, Byung Wook; Kang, Tae Jin

    2012-03-01

    One-dimensional magnetic nanostructures have recently attracted much attention because of their intriguing properties that are not realized by their bulk or particle form. These nanostructures are potentially useful for the application to ultrahigh-density data storages, sensors and bulletproof vest. The magnetic particles in magnetic nanofibers of blend types cannot fully align along the external magnetic field because magnetic particles are arrested in solid polymer matrix. To improve the mobility of magnetic particles, we used magneto-rheological fluid (MRF), which has the good mobility and dispersibility. Superparamagnetic core/sheath composite nanofibers were obtained with MRF and poly (ethylene terephthalate) (PET) solution via a coaxial electrospinning technique. Coaxial electrospinning is suited for fabricating core/sheath nanofibers encapsulating MRF materials within a polymer sheath. The magnetic nanoparticles in MRF were dispersed within core part of the nanofibers. The core/sheath magnetic composite nanofibers exhibited superparamagnetic behavior at room temperature and the magnetic nanoparticles in MRF well responded to an applied magnetic field. Also, the mechanical properties of the nanofiber were improved in the magnetic field. This study aimed to fabricate core/sheath magnetic composite nanofibers using coaxial electrospinning and characterize the magnetic as well as mechanical properties of composite nanofibers.

  11. Locally adaptive MR intensity models and MRF-based segmentation of multiple sclerosis lesions

    NASA Astrophysics Data System (ADS)

    Galimzianova, Alfiia; Lesjak, Žiga; Likar, Boštjan; Pernuš, Franjo; Špiclin, Žiga

    2015-03-01

    Neuroimaging biomarkers are an important paraclinical tool used to characterize a number of neurological diseases, however, their extraction requires accurate and reliable segmentation of normal and pathological brain structures. For MR images of healthy brains the intensity models of normal-appearing brain tissue (NABT) in combination with Markov random field (MRF) models are known to give reliable and smooth NABT segmentation. However, the presence of pathology, MR intensity bias and natural tissue-dependent intensity variability altogether represent difficult challenges for a reliable estimation of NABT intensity model based on MR images. In this paper, we propose a novel method for segmentation of normal and pathological structures in brain MR images of multiple sclerosis (MS) patients that is based on locally-adaptive NABT model, a robust method for the estimation of model parameters and a MRF-based segmentation framework. Experiments on multi-sequence brain MR images of 27 MS patients show that, compared to whole-brain model and compared to the widely used Expectation-Maximization Segmentation (EMS) method, the locally-adaptive NABT model increases the accuracy of MS lesion segmentation.

  12. Regularly incremented phase encoding - MR fingerprinting (RIPE-MRF) for enhanced motion artifact suppression in preclinical cartesian MR fingerprinting.

    PubMed

    Anderson, Christian E; Wang, Charlie Y; Gu, Yuning; Darrah, Rebecca; Griswold, Mark A; Yu, Xin; Flask, Chris A

    2018-04-01

    The regularly incremented phase encoding-magnetic resonance fingerprinting (RIPE-MRF) method is introduced to limit the sensitivity of preclinical MRF assessments to pulsatile and respiratory motion artifacts. As compared to previously reported standard Cartesian-MRF methods (SC-MRF), the proposed RIPE-MRF method uses a modified Cartesian trajectory that varies the acquired phase-encoding line within each dynamic MRF dataset. Phantoms and mice were scanned without gating or triggering on a 7T preclinical MRI scanner using the RIPE-MRF and SC-MRF methods. In vitro phantom longitudinal relaxation time (T 1 ) and transverse relaxation time (T 2 ) measurements, as well as in vivo liver assessments of artifact-to-noise ratio (ANR) and MRF-based T 1 and T 2 mean and standard deviation, were compared between the two methods (n = 5). RIPE-MRF showed significant ANR reductions in regions of pulsatility (P < 0.005) and respiratory motion (P < 0.0005). RIPE-MRF also exhibited improved precision in T 1 and T 2 measurements in comparison to the SC-MRF method (P <  0.05). The RIPE-MRF and SC-MRF methods displayed similar mean T 1 and T 2 estimates (difference in mean values < 10%). These results show that the RIPE-MRF method can provide effective motion artifact suppression with minimal impact on T 1 and T 2 accuracy for in vivo small animal MRI studies. Magn Reson Med 79:2176-2182, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  13. Phase unwrapping using region-based markov random field model.

    PubMed

    Dong, Ying; Ji, Jim

    2010-01-01

    Phase unwrapping is a classical problem in Magnetic Resonance Imaging (MRI), Interferometric Synthetic Aperture Radar and Sonar (InSAR/InSAS), fringe pattern analysis, and spectroscopy. Although many methods have been proposed to address this problem, robust and effective phase unwrapping remains a challenge. This paper presents a novel phase unwrapping method using a region-based Markov Random Field (MRF) model. Specifically, the phase image is segmented into regions within which the phase is not wrapped. Then, the phase image is unwrapped between different regions using an improved Highest Confidence First (HCF) algorithm to optimize the MRF model. The proposed method has desirable theoretical properties as well as an efficient implementation. Simulations and experimental results on MRI images show that the proposed method provides similar or improved phase unwrapping than Phase Unwrapping MAx-flow/min-cut (PUMA) method and ZpM method.

  14. MR Fingerprinting Using The Quick Echo Splitting NMR Imaging Technique

    PubMed Central

    Jiang, Yun; Ma, Dan; Jerecic, Renate; Duerk, Jeffrey; Seiberlich, Nicole; Gulani, Vikas; Griswold, Mark A.

    2016-01-01

    Purpose The purpose of the study is to develop a quantitative method for the relaxation properties with a reduced radio frequency (RF) power deposition by combining Magnetic Resonance Fingerprinting (MRF) technique with Quick Echo Splitting NMR Imaging Technique (QUEST). Methods A QUEST-based MRF sequence was implemented to acquire high order echoes by increasing the gaps between RF pulses. Bloch simulations were used to calculate a dictionary containing the range of physically plausible signal evolutions using a range of T1 and T2 values based on the pulse sequence. MRF-QUEST was evaluated by comparing to the results of spin-echo methods. The SAR of QUEST-MRF was compared to the clinically available methods. Results MRF-QUEST quantifies the relaxation properties with good accuracy at the estimated head Specific Absorption Rate (SAR) of 0.03 W/kg. T1 and T2 values estimated by MRF-QUEST are in good agreement with the traditional methods. Conclusion The combination of the MRF and the QUEST provides an accurate quantification of T1 and T2 simultaneously with reduced RF power deposition. The resulting lower SAR may provide a new acquisition strategy for MRF when RF energy deposition is problematic. PMID:26924639

  15. Magnetic field effects on shear and normal stresses in magnetorheological finishing.

    PubMed

    Lambropoulos, John C; Miao, Chunlin; Jacobs, Stephen D

    2010-09-13

    We use a recent experimental technique to measure in situ shear and normal stresses during magnetorheological finishing (MRF) of a borosilicate glass over a range of magnetic fields. At low fields shear stresses increase with magnetic field, but become field-independent at higher magnetic fields. Micromechanical models of formation of magnetic particle chains suggest a complex behavior of magnetorheological (MR) fluids that combines fluid- and solid-like responses. We discuss the hypothesis that, at higher fields, slip occurs between magnetic particle chains and the immersed glass part, while the normal stress is governed by the MRF ribbon elasticity.

  16. Brain tumor segmentation in 3D MRIs using an improved Markov random field model

    NASA Astrophysics Data System (ADS)

    Yousefi, Sahar; Azmi, Reza; Zahedi, Morteza

    2011-10-01

    Markov Random Field (MRF) models have been recently suggested for MRI brain segmentation by a large number of researchers. By employing Markovianity, which represents the local property, MRF models are able to solve a global optimization problem locally. But they still have a heavy computation burden, especially when they use stochastic relaxation schemes such as Simulated Annealing (SA). In this paper, a new 3D-MRF model is put forward to raise the speed of the convergence. Although, search procedure of SA is fairly localized and prevents from exploring the same diversity of solutions, it suffers from several limitations. In comparison, Genetic Algorithm (GA) has a good capability of global researching but it is weak in hill climbing. Our proposed algorithm combines SA and an improved GA (IGA) to optimize the solution which speeds up the computation time. What is more, this proposed algorithm outperforms the traditional 2D-MRF in quality of the solution.

  17. Process parameter effects on material removal in magnetorheological finishing of borosilicate glass.

    PubMed

    Miao, Chunlin; Lambropoulos, John C; Jacobs, Stephen D

    2010-04-01

    We investigate the effects of processing parameters on material removal for borosilicate glass. Data are collected on a magnetorheological finishing (MRF) spot taking machine (STM) with a standard aqueous magnetorheological (MR) fluid. Normal and shear forces are measured simultaneously, in situ, with a dynamic dual load cell. Shear stress is found to be independent of nanodiamond concentration, penetration depth, magnetic field strength, and the relative velocity between the part and the rotating MR fluid ribbon. Shear stress, determined primarily by the material mechanical properties, dominates removal in MRF. The addition of nanodiamond abrasives greatly enhances the material removal efficiency, with the removal rate saturating at a high abrasive concentration. The volumetric removal rate (VRR) increases with penetration depth but is insensitive to magnetic field strength. The VRR is strongly correlated with the relative velocity between the ribbon and the part, as expected by the Preston equation. A modified removal rate model for MRF offers a better estimation of MRF removal capability by including nanodiamond concentration and penetration depth.

  18. MRF actuators with reduced no-load losses

    NASA Astrophysics Data System (ADS)

    Güth, Dirk; Maas, Jürgen

    2012-04-01

    Magnetorheological fluids (MRF) are smart fluids with the particular characteristics of changing their apparent viscosity significantly under the influence of a magnetic field. This property allows the design of mechanical devices for torque transmission, such as brakes and clutches, with a continuously adjustable and smooth torque generation. A challenge that is opposed to a commercial use, are durable no-load losses, because a complete torque-free separation due to the permanent liquid intervention is inherently not yet possible. In this paper, the necessity of reducing these durable no-load losses will be shown by measurements performed with a MRF brake for high rotational speeds of 6000min-1 in a first step. The detrimental high viscous torque motivates the introduction of a novel concept that allows a controlled movement of the MR fluid from an active shear gap into an inactive shear gap and thus an almost separation of the fluid engaging surfaces. Simulation and measurement results show that the viscous induced drag torque can be reduced significantly. Based on this new approach, it is possible to realize MRF actuators for an energy-efficient use in the drive technology or power train, which avoid this inherent disadvantage and extend additionally the durability of the entire component.

  19. Active classifier selection for RGB-D object categorization using a Markov random field ensemble method

    NASA Astrophysics Data System (ADS)

    Durner, Maximilian; Márton, Zoltán.; Hillenbrand, Ulrich; Ali, Haider; Kleinsteuber, Martin

    2017-03-01

    In this work, a new ensemble method for the task of category recognition in different environments is presented. The focus is on service robotic perception in an open environment, where the robot's task is to recognize previously unseen objects of predefined categories, based on training on a public dataset. We propose an ensemble learning approach to be able to flexibly combine complementary sources of information (different state-of-the-art descriptors computed on color and depth images), based on a Markov Random Field (MRF). By exploiting its specific characteristics, the MRF ensemble method can also be executed as a Dynamic Classifier Selection (DCS) system. In the experiments, the committee- and topology-dependent performance boost of our ensemble is shown. Despite reduced computational costs and using less information, our strategy performs on the same level as common ensemble approaches. Finally, the impact of large differences between datasets is analyzed.

  20. Multilayer Markov Random Field models for change detection in optical remote sensing images

    NASA Astrophysics Data System (ADS)

    Benedek, Csaba; Shadaydeh, Maha; Kato, Zoltan; Szirányi, Tamás; Zerubia, Josiane

    2015-09-01

    In this paper, we give a comparative study on three Multilayer Markov Random Field (MRF) based solutions proposed for change detection in optical remote sensing images, called Multicue MRF, Conditional Mixed Markov model, and Fusion MRF. Our purposes are twofold. On one hand, we highlight the significance of the focused model family and we set them against various state-of-the-art approaches through a thematic analysis and quantitative tests. We discuss the advantages and drawbacks of class comparison vs. direct approaches, usage of training data, various targeted application fields and different ways of Ground Truth generation, meantime informing the Reader in which roles the Multilayer MRFs can be efficiently applied. On the other hand we also emphasize the differences between the three focused models at various levels, considering the model structures, feature extraction, layer interpretation, change concept definition, parameter tuning and performance. We provide qualitative and quantitative comparison results using principally a publicly available change detection database which contains aerial image pairs and Ground Truth change masks. We conclude that the discussed models are competitive against alternative state-of-the-art solutions, if one uses them as pre-processing filters in multitemporal optical image analysis. In addition, they cover together a large range of applications, considering the different usage options of the three approaches.

  1. Hierarchical probabilistic Gabor and MRF segmentation of brain tumours in MRI volumes.

    PubMed

    Subbanna, Nagesh K; Precup, Doina; Collins, D Louis; Arbel, Tal

    2013-01-01

    In this paper, we present a fully automated hierarchical probabilistic framework for segmenting brain tumours from multispectral human brain magnetic resonance images (MRIs) using multiwindow Gabor filters and an adapted Markov Random Field (MRF) framework. In the first stage, a customised Gabor decomposition is developed, based on the combined-space characteristics of the two classes (tumour and non-tumour) in multispectral brain MRIs in order to optimally separate tumour (including edema) from healthy brain tissues. A Bayesian framework then provides a coarse probabilistic texture-based segmentation of tumours (including edema) whose boundaries are then refined at the voxel level through a modified MRF framework that carefully separates the edema from the main tumour. This customised MRF is not only built on the voxel intensities and class labels as in traditional MRFs, but also models the intensity differences between neighbouring voxels in the likelihood model, along with employing a prior based on local tissue class transition probabilities. The second inference stage is shown to resolve local inhomogeneities and impose a smoothing constraint, while also maintaining the appropriate boundaries as supported by the local intensity difference observations. The method was trained and tested on the publicly available MICCAI 2012 Brain Tumour Segmentation Challenge (BRATS) Database [1] on both synthetic and clinical volumes (low grade and high grade tumours). Our method performs well compared to state-of-the-art techniques, outperforming the results of the top methods in cases of clinical high grade and low grade tumour core segmentation by 40% and 45% respectively.

  2. MR fingerprinting using the quick echo splitting NMR imaging technique.

    PubMed

    Jiang, Yun; Ma, Dan; Jerecic, Renate; Duerk, Jeffrey; Seiberlich, Nicole; Gulani, Vikas; Griswold, Mark A

    2017-03-01

    The purpose of the study is to develop a quantitative method for the relaxation properties with a reduced radio frequency (RF) power deposition by combining magnetic resonance fingerprinting (MRF) technique with quick echo splitting NMR imaging technique (QUEST). A QUEST-based MRF sequence was implemented to acquire high-order echoes by increasing the gaps between RF pulses. Bloch simulations were used to calculate a dictionary containing the range of physically plausible signal evolutions using a range of T 1 and T 2 values based on the pulse sequence. MRF-QUEST was evaluated by comparing to the results of spin-echo methods. The specific absorption rate (SAR) of MRF-QUEST was compared with the clinically available methods. MRF-QUEST quantifies the relaxation properties with good accuracy at the estimated head SAR of 0.03 W/kg. T 1 and T 2 values estimated by MRF-QUEST are in good agreement with the traditional methods. The combination of the MRF and the QUEST provides an accurate quantification of T 1 and T 2 simultaneously with reduced RF power deposition. The resulting lower SAR may provide a new acquisition strategy for MRF when RF energy deposition is problematic. Magn Reson Med 77:979-988, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  3. Single-image super-resolution based on Markov random field and contourlet transform

    NASA Astrophysics Data System (ADS)

    Wu, Wei; Liu, Zheng; Gueaieb, Wail; He, Xiaohai

    2011-04-01

    Learning-based methods are well adopted in image super-resolution. In this paper, we propose a new learning-based approach using contourlet transform and Markov random field. The proposed algorithm employs contourlet transform rather than the conventional wavelet to represent image features and takes into account the correlation between adjacent pixels or image patches through the Markov random field (MRF) model. The input low-resolution (LR) image is decomposed with the contourlet transform and fed to the MRF model together with the contourlet transform coefficients from the low- and high-resolution image pairs in the training set. The unknown high-frequency components/coefficients for the input low-resolution image are inferred by a belief propagation algorithm. Finally, the inverse contourlet transform converts the LR input and the inferred high-frequency coefficients into the super-resolved image. The effectiveness of the proposed method is demonstrated with the experiments on facial, vehicle plate, and real scene images. A better visual quality is achieved in terms of peak signal to noise ratio and the image structural similarity measurement.

  4. Fast dictionary generation and searching for magnetic resonance fingerprinting.

    PubMed

    Jun Xie; Mengye Lyu; Jian Zhang; Hui, Edward S; Wu, Ed X; Ze Wang

    2017-07-01

    A super-fast dictionary generation and searching (DGS) algorithm was developed for MR parameter quantification using magnetic resonance fingerprinting (MRF). MRF is a new technique for simultaneously quantifying multiple MR parameters using one temporally resolved MR scan. But it has a multiplicative computation complexity, resulting in a big burden of dictionary generating, saving, and retrieving, which can easily be intractable for any state-of-art computers. Based on retrospective analysis of the dictionary matching object function, a multi-scale ZOOM like DGS algorithm, dubbed as MRF-ZOOM, was proposed. MRF ZOOM is quasi-parameter-separable so the multiplicative computation complexity is broken into additive one. Evaluations showed that MRF ZOOM was hundreds or thousands of times faster than the original MRF parameter quantification method even without counting the dictionary generation time in. Using real data, it yielded nearly the same results as produced by the original method. MRF ZOOM provides a super-fast solution for MR parameter quantification.

  5. Object-based change detection method using refined Markov random field

    NASA Astrophysics Data System (ADS)

    Peng, Daifeng; Zhang, Yongjun

    2017-01-01

    In order to fully consider the local spatial constraints between neighboring objects in object-based change detection (OBCD), an OBCD approach is presented by introducing a refined Markov random field (MRF). First, two periods of images are stacked and segmented to produce image objects. Second, object spectral and textual histogram features are extracted and G-statistic is implemented to measure the distance among different histogram distributions. Meanwhile, object heterogeneity is calculated by combining spectral and textual histogram distance using adaptive weight. Third, an expectation-maximization algorithm is applied for determining the change category of each object and the initial change map is then generated. Finally, a refined change map is produced by employing the proposed refined object-based MRF method. Three experiments were conducted and compared with some state-of-the-art unsupervised OBCD methods to evaluate the effectiveness of the proposed method. Experimental results demonstrate that the proposed method obtains the highest accuracy among the methods used in this paper, which confirms its validness and effectiveness in OBCD.

  6. Process Parameter Effects on Material Removal in Magnetorheological Finishing of Borosilicate Glass

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miao, C.; Lambroopulos, J.C.; Jacobs, S.D.

    2010-04-14

    We investigate the effects of processing parameters on material removal for borosilicate glass. Data are collected on a magnetorheological finishing (MRF) spot taking machine (STM) with a standard aqueous magnetorheological (MR) fluid. Normal and shear forces are measured simultaneously, in situ, with a dynamic dual load cell. Shear stress is found to be independent of nanodiamond concentration, penetration depth, magnetic field strength, and the relative velocity between the part and the rotating MR fluid ribbon. Shear stress, determined primarily by the material mechanical properties, dominates removal in MRF. The addition of nanodiamond abrasives greatly enhances the material removal efficiency, withmore » the removal rate saturating at a high abrasive concentration. The volumetric removal rate (VRR) increases with penetration depth but is insensitive to magnetic field strength. The VRR is strongly correlated with the relative velocity between the ribbon and the part, as expected by the Preston equation. A modified removal rate model for MRF offers a better estimation of MRF removal capability by including nanodiamond concentration and penetration depth.« less

  7. A Markov random field based approach to the identification of meat and bone meal in feed by near-infrared spectroscopic imaging.

    PubMed

    Jiang, Xunpeng; Yang, Zengling; Han, Lujia

    2014-07-01

    Contaminated meat and bone meal (MBM) in animal feedstuff has been the source of bovine spongiform encephalopathy (BSE) disease in cattle, leading to a ban in its use, so methods for its detection are essential. In this study, five pure feed and five pure MBM samples were used to prepare two sets of sample arrangements: set A for investigating the discrimination of individual feed/MBM particles and set B for larger numbers of overlapping particles. The two sets were used to test a Markov random field (MRF)-based approach. A Fourier transform infrared (FT-IR) imaging system was used for data acquisition. The spatial resolution of the near-infrared (NIR) spectroscopic image was 25 μm × 25 μm. Each spectrum was the average of 16 scans across the wavenumber range 7,000-4,000 cm(-1), at intervals of 8 cm(-1). This study introduces an innovative approach to analyzing NIR spectroscopic images: an MRF-based approach has been developed using the iterated conditional mode (ICM) algorithm, integrating initial labeling-derived results from support vector machine discriminant analysis (SVMDA) and observation data derived from the results of principal component analysis (PCA). The results showed that MBM covered by feed could be successfully recognized with an overall accuracy of 86.59% and a Kappa coefficient of 0.68. Compared with conventional methods, the MRF-based approach is capable of extracting spectral information combined with spatial information from NIR spectroscopic images. This new approach enhances the identification of MBM using NIR spectroscopic imaging.

  8. Classification of Active Microwave and Passive Optical Data Based on Bayesian Theory and Mrf

    NASA Astrophysics Data System (ADS)

    Yu, F.; Li, H. T.; Han, Y. S.; Gu, H. Y.

    2012-08-01

    A classifier based on Bayesian theory and Markov random field (MRF) is presented to classify the active microwave and passive optical remote sensing data, which have demonstrated their respective advantages in inversion of surface soil moisture content. In the method, the VV, VH polarization of ASAR and all the 7 TM bands are taken as the input of the classifier to get the class labels of each pixel of the images. And the model is validated for the necessities of integration of TM and ASAR, it shows that, the total precision of classification in this paper is 89.4%. Comparing with the classification with single TM, the accuracy increase 11.5%, illustrating that synthesis of active and passive optical remote sensing data is efficient and potential in classification.

  9. Making a Magnetorheological Fluid from Mining Tailings

    NASA Astrophysics Data System (ADS)

    Quitian, G.; Saldarriaga, W.; Rojas, N.

    2017-12-01

    We have obtained magnetite mining tailings and used it to fabricate a magnetorheological fluid (MRF). Mineralogical and morphological characteristics were determined using X-ray diffraction (XRD) and energy dispersive spectrometry (EDS), as well as size and geometry for the obtained magnetite. Finally, the fabricated MRF was rheologically characterized in a device attached to a rheometer. The application of a magnetic field of 0.12 Tesla can increase the viscosity of the MRF by more than 400 pct. A structural formation should occur within the fluid by a reordering of particles into magnetic columns, which are perpendicular to the flow direction. These structures give the fluid an increased viscosity. As the magnetic field increases, the structure formed is more resistant, resulting in an increased viscosity. One can appreciate that with a value equal to or less than 0.06 Tesla of applied magnetic field, many viscosity values associated with the work area of the oils can be achieved (0.025 and 0.34 Pa s).

  10. Functional studies of the Ciona intestinalis myogenic regulatory factor reveal conserved features of chordate myogenesis.

    PubMed

    Izzi, Stephanie A; Colantuono, Bonnie J; Sullivan, Kelly; Khare, Parul; Meedel, Thomas H

    2013-04-15

    Ci-MRF is the sole myogenic regulatory factor (MRF) of the ascidian Ciona intestinalis, an invertebrate chordate. In order to investigate its properties we developed a simple in vivo assay based on misexpressing Ci-MRF in the notochord of Ciona embryos. We used this assay to examine the roles of three structural motifs that are conserved among MRFs: an alanine-threonine (Ala-Thr) dipeptide of the basic domain that is known in vertebrates as the myogenic code, a cysteine/histidine-rich (C/H) domain found just N-terminal to the basic domain, and a carboxy-terminal amphipathic α-helix referred to as Helix III. We show that the Ala-Thr dipeptide is necessary for normal Ci-MRF function, and that while eliminating the C/H domain or Helix III individually has no demonstrable effect on Ci-MRF, simultaneous loss of both motifs significantly reduces its activity. Our studies also indicate that direct interaction between CiMRF and an essential E-box of Ciona Troponin I is required for the expression of this muscle-specific gene and that multiple classes of MRF-regulated genes exist in Ciona. These findings are consistent with substantial conservation of MRF-directed myogenesis in chordates and demonstrate for the first time that the Ala/Thr dipeptide of the basic domain of an invertebrate MRF behaves as a myogenic code. Copyright © 2013 Elsevier Inc. All rights reserved.

  11. Immunotherapy With Magentorheologic Fluids

    DTIC Science & Technology

    2011-08-01

    anti-tumor effects are weakened by removal of the tumor antigen pool (i.e. surgery) or use of cytoreductive and immunosuppressive therapies (i.e...particles were injected as magneto -rheological fluid (MRF) into an orthotopic primary breast cancer and followed by application of a magnetic field to...SUBJECT TERMS MRF: Magneto -rehological fluid iron particles, IT: immunotherapy, necrotic death, DCs: dendritic cells, cytokines, chemokines

  12. Evaluate error correction ability of magnetorheological finishing by smoothing spectral function

    NASA Astrophysics Data System (ADS)

    Wang, Jia; Fan, Bin; Wan, Yongjian; Shi, Chunyan; Zhuo, Bin

    2014-08-01

    Power Spectral Density (PSD) has been entrenched in optics design and manufacturing as a characterization of mid-high spatial frequency (MHSF) errors. Smoothing Spectral Function (SSF) is a newly proposed parameter that based on PSD to evaluate error correction ability of computer controlled optical surfacing (CCOS) technologies. As a typical deterministic and sub-aperture finishing technology based on CCOS, magnetorheological finishing (MRF) leads to MHSF errors inevitably. SSF is employed to research different spatial frequency error correction ability of MRF process. The surface figures and PSD curves of work-piece machined by MRF are presented. By calculating SSF curve, the correction ability of MRF for different spatial frequency errors will be indicated as a normalized numerical value.

  13. Impact behavior of a high viscosity magnetorheological fluid-based energy absorber with a radial flow mode

    NASA Astrophysics Data System (ADS)

    Fu, Benyuan; Liao, Changrong; Li, Zhuqiang; Xie, Lei; Zhang, Peng; Jian, Xiaochun

    2017-02-01

    High viscosity linear polysiloxane magnetorheological fluid (HVLP MRF) was demonstrated with excellent suspension stability. Such material is suitable for application in the magnetorheological energy absorbers (MREAs) under axial impact loading conditions. On this basis, a new energy absorber incorporating a radial valve with high magnetic field utilization and a corrugated tube is proposed. In energy absorption applications where the MREA is rarely if ever used, our MREA takes the ultra-stable HVLP MRF as controlled medium in order for a long-term stability. For MREA performing at very high shear rates where the minor losses are important contributing factors to damping, a nonlinear analytical model, based on the Herschel-Bulkley flow model (HB model), is developed taking into account the effects of minor losses (called HBM model). The HB model parameters are determined by rheological experiments with a commercial shear rheometer. Then, continuity equation and governing differential equation of the HVLP MRF in radial flow are established. Based on the HB model, the expressions of radial velocity distribution are deduced. The influences of minor losses on pressure drop are analyzed with mean fluid velocities. Further, mechanical behavior of the corrugated tube is investigated via drop test. In order to verify the theoretical methodology, a MREA is fabricated and tested using a high-speed drop tower facility with a 600 kg mass at different drop heights and in various magnetic fields. The experiment results show that the HBM model is capable of well predicting the impact behavior of the proposed MREA.

  14. Calibration and prediction of removal function in magnetorheological finishing.

    PubMed

    Dai, Yifan; Song, Ci; Peng, Xiaoqiang; Shi, Feng

    2010-01-20

    A calibrated and predictive model of the removal function has been established based on the analysis of a magnetorheological finishing (MRF) process. By introducing an efficiency coefficient of the removal function, the model can be used to calibrate the removal function in a MRF figuring process and to accurately predict the removal function of a workpiece to be polished whose material is different from the spot part. Its correctness and feasibility have been validated by simulations. Furthermore, applying this model to the MRF figuring experiments, the efficiency coefficient of the removal function can be identified accurately to make the MRF figuring process deterministic and controllable. Therefore, all the results indicate that the calibrated and predictive model of the removal function can improve the finishing determinacy and increase the model applicability in a MRF process.

  15. Low rank magnetic resonance fingerprinting.

    PubMed

    Mazor, Gal; Weizman, Lior; Tal, Assaf; Eldar, Yonina C

    2016-08-01

    Magnetic Resonance Fingerprinting (MRF) is a relatively new approach that provides quantitative MRI using randomized acquisition. Extraction of physical quantitative tissue values is preformed off-line, based on acquisition with varying parameters and a dictionary generated according to the Bloch equations. MRF uses hundreds of radio frequency (RF) excitation pulses for acquisition, and therefore high under-sampling ratio in the sampling domain (k-space) is required. This under-sampling causes spatial artifacts that hamper the ability to accurately estimate the quantitative tissue values. In this work, we introduce a new approach for quantitative MRI using MRF, called Low Rank MRF. We exploit the low rank property of the temporal domain, on top of the well-known sparsity of the MRF signal in the generated dictionary domain. We present an iterative scheme that consists of a gradient step followed by a low rank projection using the singular value decomposition. Experiments on real MRI data demonstrate superior results compared to conventional implementation of compressed sensing for MRF at 15% sampling ratio.

  16. Characterization of stratification for an opaque highly stable magnetorheological fluid using vertical axis inductance monitoring system

    NASA Astrophysics Data System (ADS)

    Xie, Lei; Choi, Young-Tai; Liao, Chang-Rong; Wereley, Norman M.

    2015-05-01

    A key requirement for the commercialization of various magnetorheological fluid (MRF)-based applications is sedimentation stability. In this study, a high viscosity linear polysiloxane (HVLP), which has been used for shock absorbers in heavy equipment, is proposed as a new carrier fluid in highly stable MRFs. The HVLP is known to be a thixotropic (i.e., shear thinning) fluid that shows very high viscosity at very low shear rate and low viscosity at higher shear rate. In this study, using the shear rheometer, the significant thixotropic behavior of the HVLP was experimentally confirmed. In addition, a HVLP carrier fluid-based MRF (HVLP MRF) with 26 vol. % was synthesized and its sedimentation characteristics were experimentally investigated. But, because of the opacity of the HVLP MRF, no mudline can be visually observed. Hence, a vertical axis inductance monitoring system (VAIMS) applied to a circular column of fluid was used to evaluate sedimentation behavior by correlating measured inductance with the volume fraction of dispersed particles (i.e., Fe). Using the VAIMS, Fe concentration (i.e., volume fraction) was monitored for 28 days with a measurement taken every four days, as well as one measurement after 96 days to characterize long-term sedimentation stability. Finally, the concentration of the HVLP MRF as a function of the depth in the column and time, as well as the concentration change versus the depth in the column, are presented and compared with those of a commercially available MRF (i.e., Lord MRF-126CD).

  17. Multi-frequency interpolation in spiral magnetic resonance fingerprinting for correction of off-resonance blurring.

    PubMed

    Ostenson, Jason; Robison, Ryan K; Zwart, Nicholas R; Welch, E Brian

    2017-09-01

    Magnetic resonance fingerprinting (MRF) pulse sequences often employ spiral trajectories for data readout. Spiral k-space acquisitions are vulnerable to blurring in the spatial domain in the presence of static field off-resonance. This work describes a blurring correction algorithm for use in spiral MRF and demonstrates its effectiveness in phantom and in vivo experiments. Results show that image quality of T1 and T2 parametric maps is improved by application of this correction. This MRF correction has negligible effect on the concordance correlation coefficient and improves coefficient of variation in regions of off-resonance relative to uncorrected measurements. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. A Part-Of-Speech term weighting scheme for biomedical information retrieval.

    PubMed

    Wang, Yanshan; Wu, Stephen; Li, Dingcheng; Mehrabi, Saeed; Liu, Hongfang

    2016-10-01

    In the era of digitalization, information retrieval (IR), which retrieves and ranks documents from large collections according to users' search queries, has been popularly applied in the biomedical domain. Building patient cohorts using electronic health records (EHRs) and searching literature for topics of interest are some IR use cases. Meanwhile, natural language processing (NLP), such as tokenization or Part-Of-Speech (POS) tagging, has been developed for processing clinical documents or biomedical literature. We hypothesize that NLP can be incorporated into IR to strengthen the conventional IR models. In this study, we propose two NLP-empowered IR models, POS-BoW and POS-MRF, which incorporate automatic POS-based term weighting schemes into bag-of-word (BoW) and Markov Random Field (MRF) IR models, respectively. In the proposed models, the POS-based term weights are iteratively calculated by utilizing a cyclic coordinate method where golden section line search algorithm is applied along each coordinate to optimize the objective function defined by mean average precision (MAP). In the empirical experiments, we used the data sets from the Medical Records track in Text REtrieval Conference (TREC) 2011 and 2012 and the Genomics track in TREC 2004. The evaluation on TREC 2011 and 2012 Medical Records tracks shows that, for the POS-BoW models, the mean improvement rates for IR evaluation metrics, MAP, bpref, and P@10, are 10.88%, 4.54%, and 3.82%, compared to the BoW models; and for the POS-MRF models, these rates are 13.59%, 8.20%, and 8.78%, compared to the MRF models. Additionally, we experimentally verify that the proposed weighting approach is superior to the simple heuristic and frequency based weighting approaches, and validate our POS category selection. Using the optimal weights calculated in this experiment, we tested the proposed models on the TREC 2004 Genomics track and obtained average of 8.63% and 10.04% improvement rates for POS-BoW and POS-MRF, respectively. These significant improvements verify the effectiveness of leveraging POS tagging for biomedical IR tasks. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Normal contour error measurement on-machine and compensation method for polishing complex surface by MRF

    NASA Astrophysics Data System (ADS)

    Chen, Hua; Chen, Jihong; Wang, Baorui; Zheng, Yongcheng

    2016-10-01

    The Magnetorheological finishing (MRF) process, based on the dwell time method with the constant normal spacing for flexible polishing, would bring out the normal contour error in the fine polishing complex surface such as aspheric surface. The normal contour error would change the ribbon's shape and removal characteristics of consistency for MRF. Based on continuously scanning the normal spacing between the workpiece and the finder by the laser range finder, the novel method was put forward to measure the normal contour errors while polishing complex surface on the machining track. The normal contour errors was measured dynamically, by which the workpiece's clamping precision, multi-axis machining NC program and the dynamic performance of the MRF machine were achieved for the verification and security check of the MRF process. The unit for measuring the normal contour errors of complex surface on-machine was designed. Based on the measurement unit's results as feedback to adjust the parameters of the feed forward control and the multi-axis machining, the optimized servo control method was presented to compensate the normal contour errors. The experiment for polishing 180mm × 180mm aspherical workpiece of fused silica by MRF was set up to validate the method. The results show that the normal contour error was controlled in less than 10um. And the PV value of the polished surface accuracy was improved from 0.95λ to 0.09λ under the conditions of the same process parameters. The technology in the paper has been being applied in the PKC600-Q1 MRF machine developed by the China Academe of Engineering Physics for engineering application since 2014. It is being used in the national huge optical engineering for processing the ultra-precision optical parts.

  20. Identifying novel sequence variants of RNA 3D motifs

    PubMed Central

    Zirbel, Craig L.; Roll, James; Sweeney, Blake A.; Petrov, Anton I.; Pirrung, Meg; Leontis, Neocles B.

    2015-01-01

    Predicting RNA 3D structure from sequence is a major challenge in biophysics. An important sub-goal is accurately identifying recurrent 3D motifs from RNA internal and hairpin loop sequences extracted from secondary structure (2D) diagrams. We have developed and validated new probabilistic models for 3D motif sequences based on hybrid Stochastic Context-Free Grammars and Markov Random Fields (SCFG/MRF). The SCFG/MRF models are constructed using atomic-resolution RNA 3D structures. To parameterize each model, we use all instances of each motif found in the RNA 3D Motif Atlas and annotations of pairwise nucleotide interactions generated by the FR3D software. Isostericity relations between non-Watson–Crick basepairs are used in scoring sequence variants. SCFG techniques model nested pairs and insertions, while MRF ideas handle crossing interactions and base triples. We use test sets of randomly-generated sequences to set acceptance and rejection thresholds for each motif group and thus control the false positive rate. Validation was carried out by comparing results for four motif groups to RMDetect. The software developed for sequence scoring (JAR3D) is structured to automatically incorporate new motifs as they accumulate in the RNA 3D Motif Atlas when new structures are solved and is available free for download. PMID:26130723

  1. Analyzing and improving surface texture by dual-rotation magnetorheological finishing

    NASA Astrophysics Data System (ADS)

    Wang, Yuyue; Zhang, Yun; Feng, Zhijing

    2016-01-01

    The main advantages of magnetorheological finishing (MRF) are its high convergence rate of surface error, the ability of polishing aspheric surfaces and nearly no subsurface damage. However, common MRF produces directional surface texture due to the constant flow direction of the magnetorheological (MR) polishing fluid. This paper studies the mechanism of surface texture formation by texture modeling. Dual-rotation magnetorheological finishing (DRMRF) is presented to suppress directional surface texture after analyzing the results of the texture model for common MRF. The results of the surface texture model for DRMRF and the proposed quantitative method based on mathematical statistics indicate the effective suppression of directional surface texture. An experimental setup is developed and experiments show directional surface texture and no directional surface texture in common MRF and DRMRF, respectively. As a result, the surface roughness of DRMRF is 0.578 nm (root-mean-square value) which is lower than 1.109 nm in common MRF.

  2. Magneto-rheological fluid shock absorbers for HMMWV

    NASA Astrophysics Data System (ADS)

    Gordaninejad, Faramarz; Kelso, Shawn P.

    2000-04-01

    This paper presents the development and evaluation of a controllable, semi-active magneto-rheological fluid (MRF) shock absorber for a High Mobility Multi-purpose Wheeled Vehicle (HMMWV). The University of Nevada, Reno (UNR) MRF damper is tailored for structures and ground vehicles that undergo a wide range of dynamic loading. It also has the capability for unique rebound and compression characteristics. The new MRF shock absorber emulates the original equipment manufacturer (OEM) shock absorber behavior in passive mode, and provides a wide controllable damping force range. A theoretical study is performed to evaluate the UNR MRF shock absorber. The Bingham plastic theory is employed to model the nonlinear behavior of the MR fluid. A fluid-mechanics-based theoretical model along with a three-dimensional finite element electromagnetic analysis is utilized to predict the MRF damper performance. The theoretical results are compared with experimental data and are demonstrated to be in excellent agreement.

  3. Unsupervised change detection of multispectral images based on spatial constraint chi-squared transform and Markov random field model

    NASA Astrophysics Data System (ADS)

    Shi, Aiye; Wang, Chao; Shen, Shaohong; Huang, Fengchen; Ma, Zhenli

    2016-10-01

    Chi-squared transform (CST), as a statistical method, can describe the difference degree between vectors. The CST-based methods operate directly on information stored in the difference image and are simple and effective methods for detecting changes in remotely sensed images that have been registered and aligned. However, the technique does not take spatial information into consideration, which leads to much noise in the result of change detection. An improved unsupervised change detection method is proposed based on spatial constraint CST (SCCST) in combination with a Markov random field (MRF) model. First, the mean and variance matrix of the difference image of bitemporal images are estimated by an iterative trimming method. In each iteration, spatial information is injected to reduce scattered changed points (also known as "salt and pepper" noise). To determine the key parameter confidence level in the SCCST method, a pseudotraining dataset is constructed to estimate the optimal value. Then, the result of SCCST, as an initial solution of change detection, is further improved by the MRF model. The experiments on simulated and real multitemporal and multispectral images indicate that the proposed method performs well in comprehensive indices compared with other methods.

  4. MRF energy minimization and beyond via dual decomposition.

    PubMed

    Komodakis, Nikos; Paragios, Nikos; Tziritas, Georgios

    2011-03-01

    This paper introduces a new rigorous theoretical framework to address discrete MRF-based optimization in computer vision. Such a framework exploits the powerful technique of Dual Decomposition. It is based on a projected subgradient scheme that attempts to solve an MRF optimization problem by first decomposing it into a set of appropriately chosen subproblems, and then combining their solutions in a principled way. In order to determine the limits of this method, we analyze the conditions that these subproblems have to satisfy and demonstrate the extreme generality and flexibility of such an approach. We thus show that by appropriately choosing what subproblems to use, one can design novel and very powerful MRF optimization algorithms. For instance, in this manner we are able to derive algorithms that: 1) generalize and extend state-of-the-art message-passing methods, 2) optimize very tight LP-relaxations to MRF optimization, and 3) take full advantage of the special structure that may exist in particular MRFs, allowing the use of efficient inference techniques such as, e.g., graph-cut-based methods. Theoretical analysis on the bounds related with the different algorithms derived from our framework and experimental results/comparisons using synthetic and real data for a variety of tasks in computer vision demonstrate the extreme potentials of our approach.

  5. Hydrogeophysical Assessment of Aquifer Uncertainty Using Simulated Annealing driven MRF-Based Stochastic Joint Inversion

    NASA Astrophysics Data System (ADS)

    Oware, E. K.

    2017-12-01

    Geophysical quantification of hydrogeological parameters typically involve limited noisy measurements coupled with inadequate understanding of the target phenomenon. Hence, a deterministic solution is unrealistic in light of the largely uncertain inputs. Stochastic imaging (SI), in contrast, provides multiple equiprobable realizations that enable probabilistic assessment of aquifer properties in a realistic manner. Generation of geologically realistic prior models is central to SI frameworks. Higher-order statistics for representing prior geological features in SI are, however, usually borrowed from training images (TIs), which may produce undesirable outcomes if the TIs are unpresentatitve of the target structures. The Markov random field (MRF)-based SI strategy provides a data-driven alternative to TI-based SI algorithms. In the MRF-based method, the simulation of spatial features is guided by Gibbs energy (GE) minimization. Local configurations with smaller GEs have higher likelihood of occurrence and vice versa. The parameters of the Gibbs distribution for computing the GE are estimated from the hydrogeophysical data, thereby enabling the generation of site-specific structures in the absence of reliable TIs. In Metropolis-like SI methods, the variance of the transition probability controls the jump-size. The procedure is a standard Markov chain Monte Carlo (McMC) method when a constant variance is assumed, and becomes simulated annealing (SA) when the variance (cooling temperature) is allowed to decrease gradually with time. We observe that in certain problems, the large variance typically employed at the beginning to hasten burn-in may be unideal for sampling at the equilibrium state. The powerfulness of SA stems from its flexibility to adaptively scale the variance at different stages of the sampling. Degeneration of results were reported in a previous implementation of the MRF-based SI strategy based on a constant variance. Here, we present an updated version of the algorithm based on SA that appears to resolve the degeneration problem with seemingly improved results. We illustrate the performance of the SA version with a joint inversion of time-lapse concentration and electrical resistivity measurements in a hypothetical trinary hydrofacies aquifer characterization problem.

  6. MR fingerprinting using fast imaging with steady state precession (FISP) with spiral readout.

    PubMed

    Jiang, Yun; Ma, Dan; Seiberlich, Nicole; Gulani, Vikas; Griswold, Mark A

    2015-12-01

    This study explores the possibility of using gradient echo-based sequences other than balanced steady-state free precession (bSSFP) in the magnetic resonance fingerprinting (MRF) framework to quantify the relaxation parameters . An MRF method based on a fast imaging with steady-state precession (FISP) sequence structure is presented. A dictionary containing possible signal evolutions with physiological range of T1 and T2 was created using the extended phase graph formalism according to the acquisition parameters. The proposed method was evaluated in a phantom and a human brain. T1 , T2 , and proton density were quantified directly from the undersampled data by the pattern recognition algorithm. T1 and T2 values from the phantom demonstrate that the results of MRF FISP are in good agreement with the traditional gold-standard methods. T1 and T2 values in brain are within the range of previously reported values. MRF-FISP enables a fast and accurate quantification of the relaxation parameters. It is immune to the banding artifact of bSSFP due to B0 inhomogeneities, which could improve the ability to use MRF for applications beyond brain imaging. © 2014 Wiley Periodicals, Inc.

  7. MR Fingerprinting Using Fast Imaging with Steady State Precession (FISP) with Spiral Readout

    PubMed Central

    Jiang, Yun; Ma, Dan; Seiberlich, Nicole; Gulani, Vikas; Griswold, Mark A.

    2015-01-01

    Purpose This study explores the possibility of using gradient echo based sequences other than bSSFP in the magnetic resonance fingerprinting (MRF) framework to quantify the relaxation parameters. Methods An MRF method based on a fast imaging with steady state precession (FISP) sequence structure is presented. A dictionary containing possible signal evolutions with physiological range of T1 and T2 was created using the extended phase graph (EPG) formalism according to the acquisition parameters. The proposed method was evaluated in a phantom and a human brain. T1, T2 and proton density were quantified directly from the undersampled data by the pattern recognition algorithm. Results T1 and T2 values from the phantom demonstrate that the results of MRF FISP are in good agreement with the traditional gold-standard methods. T1 and T2 values in brain are within the range of previously reported values. Conclusion MRF FISP enables a fast and accurate quantification of the relaxation parameters, while is immune to the banding artifact of bSSFP due to B0 inhomogeneities, which could improve the ability to use MRF for applications beyond brain imaging. PMID:25491018

  8. Deterministic magnetorheological finishing of optical aspheric mirrors

    NASA Astrophysics Data System (ADS)

    Song, Ci; Dai, Yifan; Peng, Xiaoqiang; Li, Shengyi; Shi, Feng

    2009-05-01

    A new method magnetorheological finishing (MRF) used for deterministical finishing of optical aspheric mirrors is applied to overcome some disadvantages including low finishing efficiency, long iterative time and unstable convergence in the process of conventional polishing. Based on the introduction of the basic principle of MRF, the key techniques to implement deterministical MRF are also discussed. To demonstrate it, a 200 mm diameter K9 class concave asphere with a vertex radius of 640mm was figured on MRF polish tool developed by ourselves. Through one process about two hours, the surface accuracy peak-to-valley (PV) is improved from initial 0.216λ to final 0.179λ and root-mean-square (RMS) is improved from 0.027λ to 0.017λ (λ = 0.6328um ). High-precision and high-efficiency convergence of optical aspheric surface error shows that MRF is an advanced optical manufacturing method that owns high convergence ratio of surface figure, high precision of optical surfacing, stabile and controllable finishing process. Therefore, utilizing MRF to finish optical aspheric mirrors determinately is credible and stabile; its advantages can be also used for finishing optical elements on varieties of types such as plane mirrors and spherical mirrors.

  9. MRF Family Genes Are Involved in Translation Control, Especially under Energy-Deficient Conditions, and Their Expression and Functions Are Modulated by the TOR Signaling Pathway[OPEN

    PubMed Central

    Lee, Du-Hwa; Park, Seung Jun; Ahn, Chang Sook

    2017-01-01

    Dynamic control of protein translation in response to the environment is essential for the survival of plant cells. Target of rapamycin (TOR) coordinates protein synthesis with cellular energy/nutrient availability through transcriptional modulation and phosphorylation of the translation machinery. However, mechanisms of TOR-mediated translation control are poorly understood in plants. Here, we report that Arabidopsis thaliana MRF (MA3 DOMAIN-CONTAINING TRANSLATION REGULATORY FACTOR) family genes encode translation regulatory factors under TOR control, and their functions are particularly important in energy-deficient conditions. Four MRF family genes (MRF1-MRF4) are transcriptionally induced by dark and starvation (DS). Silencing of multiple MRFs increases susceptibility to DS and treatment with a TOR inhibitor, while MRF1 overexpression decreases susceptibility. MRF proteins interact with eIF4A and cofractionate with ribosomes. MRF silencing decreases translation activity, while MRF1 overexpression increases it, accompanied by altered ribosome patterns, particularly in DS. Furthermore, MRF deficiency in DS causes altered distribution of mRNAs in sucrose gradient fractions and accelerates rRNA degradation. MRF1 is phosphorylated in vivo and phosphorylated by S6 kinases in vitro. MRF expression and MRF1 ribosome association and phosphorylation are modulated by cellular energy status and TOR activity. We discuss possible mechanisms of the function of MRF family proteins under normal and energy-deficient conditions and their functional link with the TOR pathway. PMID:29084871

  10. Improved magnetic resonance fingerprinting reconstruction with low-rank and subspace modeling.

    PubMed

    Zhao, Bo; Setsompop, Kawin; Adalsteinsson, Elfar; Gagoski, Borjan; Ye, Huihui; Ma, Dan; Jiang, Yun; Ellen Grant, P; Griswold, Mark A; Wald, Lawrence L

    2018-02-01

    This article introduces a constrained imaging method based on low-rank and subspace modeling to improve the accuracy and speed of MR fingerprinting (MRF). A new model-based imaging method is developed for MRF to reconstruct high-quality time-series images and accurate tissue parameter maps (e.g., T 1 , T 2 , and spin density maps). Specifically, the proposed method exploits low-rank approximations of MRF time-series images, and further enforces temporal subspace constraints to capture magnetization dynamics. This allows the time-series image reconstruction problem to be formulated as a simple linear least-squares problem, which enables efficient computation. After image reconstruction, tissue parameter maps are estimated via dictionary-based pattern matching, as in the conventional approach. The effectiveness of the proposed method was evaluated with in vivo experiments. Compared with the conventional MRF reconstruction, the proposed method reconstructs time-series images with significantly reduced aliasing artifacts and noise contamination. Although the conventional approach exhibits some robustness to these corruptions, the improved time-series image reconstruction in turn provides more accurate tissue parameter maps. The improvement is pronounced especially when the acquisition time becomes short. The proposed method significantly improves the accuracy of MRF, and also reduces data acquisition time. Magn Reson Med 79:933-942, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  11. SAR-based change detection using hypothesis testing and Markov random field modelling

    NASA Astrophysics Data System (ADS)

    Cao, W.; Martinis, S.

    2015-04-01

    The objective of this study is to automatically detect changed areas caused by natural disasters from bi-temporal co-registered and calibrated TerraSAR-X data. The technique in this paper consists of two steps: Firstly, an automatic coarse detection step is applied based on a statistical hypothesis test for initializing the classification. The original analytical formula as proposed in the constant false alarm rate (CFAR) edge detector is reviewed and rewritten in a compact form of the incomplete beta function, which is a builtin routine in commercial scientific software such as MATLAB and IDL. Secondly, a post-classification step is introduced to optimize the noisy classification result in the previous step. Generally, an optimization problem can be formulated as a Markov random field (MRF) on which the quality of a classification is measured by an energy function. The optimal classification based on the MRF is related to the lowest energy value. Previous studies provide methods for the optimization problem using MRFs, such as the iterated conditional modes (ICM) algorithm. Recently, a novel algorithm was presented based on graph-cut theory. This method transforms a MRF to an equivalent graph and solves the optimization problem by a max-flow/min-cut algorithm on the graph. In this study this graph-cut algorithm is applied iteratively to improve the coarse classification. At each iteration the parameters of the energy function for the current classification are set by the logarithmic probability density function (PDF). The relevant parameters are estimated by the method of logarithmic cumulants (MoLC). Experiments are performed using two flood events in Germany and Australia in 2011 and a forest fire on La Palma in 2009 using pre- and post-event TerraSAR-X data. The results show convincing coarse classifications and considerable improvement by the graph-cut post-classification step.

  12. Magnetic Resonance Fingerprinting with short relaxation intervals.

    PubMed

    Amthor, Thomas; Doneva, Mariya; Koken, Peter; Sommer, Karsten; Meineke, Jakob; Börnert, Peter

    2017-09-01

    The aim of this study was to investigate a technique for improving the performance of Magnetic Resonance Fingerprinting (MRF) in repetitive sampling schemes, in particular for 3D MRF acquisition, by shortening relaxation intervals between MRF pulse train repetitions. A calculation method for MRF dictionaries adapted to short relaxation intervals and non-relaxed initial spin states is presented, based on the concept of stationary fingerprints. The method is applicable to many different k-space sampling schemes in 2D and 3D. For accuracy analysis, T 1 and T 2 values of a phantom are determined by single-slice Cartesian MRF for different relaxation intervals and are compared with quantitative reference measurements. The relevance of slice profile effects is also investigated in this case. To further illustrate the capabilities of the method, an application to in-vivo spiral 3D MRF measurements is demonstrated. The proposed computation method enables accurate parameter estimation even for the shortest relaxation intervals, as investigated for different sampling patterns in 2D and 3D. In 2D Cartesian measurements, we achieved a scan acceleration of more than a factor of two, while maintaining acceptable accuracy: The largest T 1 values of a sample set deviated from their reference values by 0.3% (longest relaxation interval) and 2.4% (shortest relaxation interval). The largest T 2 values showed systematic deviations of up to 10% for all relaxation intervals, which is discussed. The influence of slice profile effects for multislice acquisition is shown to become increasingly relevant for short relaxation intervals. In 3D spiral measurements, a scan time reduction of 36% was achieved, maintaining the quality of in-vivo T1 and T2 maps. Reducing the relaxation interval between MRF sequence repetitions using stationary fingerprint dictionaries is a feasible method to improve the scan efficiency of MRF sequences. The method enables fast implementations of 3D spatially resolved MRF. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. MR fingerprinting reconstruction with Kalman filter.

    PubMed

    Zhang, Xiaodi; Zhou, Zechen; Chen, Shiyang; Chen, Shuo; Li, Rui; Hu, Xiaoping

    2017-09-01

    Magnetic resonance fingerprinting (MR fingerprinting or MRF) is a newly introduced quantitative magnetic resonance imaging technique, which enables simultaneous multi-parameter mapping in a single acquisition with improved time efficiency. The current MRF reconstruction method is based on dictionary matching, which may be limited by the discrete and finite nature of the dictionary and the computational cost associated with dictionary construction, storage and matching. In this paper, we describe a reconstruction method based on Kalman filter for MRF, which avoids the use of dictionary to obtain continuous MR parameter measurements. With this Kalman filter framework, the Bloch equation of inversion-recovery balanced steady state free-precession (IR-bSSFP) MRF sequence was derived to predict signal evolution, and acquired signal was entered to update the prediction. The algorithm can gradually estimate the accurate MR parameters during the recursive calculation. Single pixel and numeric brain phantom simulation were implemented with Kalman filter and the results were compared with those from dictionary matching reconstruction algorithm to demonstrate the feasibility and assess the performance of Kalman filter algorithm. The results demonstrated that Kalman filter algorithm is applicable for MRF reconstruction, eliminating the need for a pre-define dictionary and obtaining continuous MR parameter in contrast to the dictionary matching algorithm. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Low rank approximation methods for MR fingerprinting with large scale dictionaries.

    PubMed

    Yang, Mingrui; Ma, Dan; Jiang, Yun; Hamilton, Jesse; Seiberlich, Nicole; Griswold, Mark A; McGivney, Debra

    2018-04-01

    This work proposes new low rank approximation approaches with significant memory savings for large scale MR fingerprinting (MRF) problems. We introduce a compressed MRF with randomized singular value decomposition method to significantly reduce the memory requirement for calculating a low rank approximation of large sized MRF dictionaries. We further relax this requirement by exploiting the structures of MRF dictionaries in the randomized singular value decomposition space and fitting them to low-degree polynomials to generate high resolution MRF parameter maps. In vivo 1.5T and 3T brain scan data are used to validate the approaches. T 1 , T 2 , and off-resonance maps are in good agreement with that of the standard MRF approach. Moreover, the memory savings is up to 1000 times for the MRF-fast imaging with steady-state precession sequence and more than 15 times for the MRF-balanced, steady-state free precession sequence. The proposed compressed MRF with randomized singular value decomposition and dictionary fitting methods are memory efficient low rank approximation methods, which can benefit the usage of MRF in clinical settings. They also have great potentials in large scale MRF problems, such as problems considering multi-component MRF parameters or high resolution in the parameter space. Magn Reson Med 79:2392-2400, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  15. Magnetic resonance fingerprinting based on realistic vasculature in mice

    PubMed Central

    Pouliot, Philippe; Gagnon, Louis; Lam, Tina; Avti, Pramod K.; Bowen, Chris; Desjardins, Michèle; Kakkar, Ashok K.; Thorin, E.; Sakadzic, Sava; Boas, David A.; Lesage, Frédéric

    2017-01-01

    Magnetic resonance fingerprinting (MRF) was recently proposed as a novel strategy for MR data acquisition and analysis. A variant of MRF called vascular MRF (vMRF) followed, that extracted maps of three parameters of physiological importance: cerebral oxygen saturation (SatO2), mean vessel radius and cerebral blood volume (CBV). However, this estimation was based on idealized 2-dimensional simulations of vascular networks using random cylinders and the empirical Bloch equations convolved with a diffusion kernel. Here we focus on studying the vascular MR fingerprint using real mouse angiograms and physiological values as the substrate for the MR simulations. The MR signal is calculated ab initio with a Monte Carlo approximation, by tracking the accumulated phase from a large number of protons diffusing within the angiogram. We first study the identifiability of parameters in simulations, showing that parameters are fully estimable at realistically high signal-to-noise ratios (SNR) when the same angiogram is used for dictionary generation and parameter estimation, but that large biases in the estimates persist when the angiograms are different. Despite these biases, simulations show that differences in parameters remain estimable. We then applied this methodology to data acquired using the GESFIDE sequence with SPIONs injected into 9 young wild type and 9 old atherosclerotic mice. Both the pre injection signal and the ratio of post-to-pre injection signals were modeled, using 5-dimensional dictionaries. The vMRF methodology extracted significant differences in SatO2, mean vessel radius and CBV between the two groups, consistent across brain regions and dictionaries. Further validation work is essential before vMRF can gain wider application. PMID:28043909

  16. Precision production: enabling deterministic throughput for precision aspheres with MRF

    NASA Astrophysics Data System (ADS)

    Maloney, Chris; Entezarian, Navid; Dumas, Paul

    2017-10-01

    Aspherical lenses offer advantages over spherical optics by improving image quality or reducing the number of elements necessary in an optical system. Aspheres are no longer being used exclusively by high-end optical systems but are now replacing spherical optics in many applications. The need for a method of production-manufacturing of precision aspheres has emerged and is part of the reason that the optics industry is shifting away from artisan-based techniques towards more deterministic methods. Not only does Magnetorheological Finishing (MRF) empower deterministic figure correction for the most demanding aspheres but it also enables deterministic and efficient throughput for series production of aspheres. The Q-flex MRF platform is designed to support batch production in a simple and user friendly manner. Thorlabs routinely utilizes the advancements of this platform and has provided results from using MRF to finish a batch of aspheres as a case study. We have developed an analysis notebook to evaluate necessary specifications for implementing quality control metrics. MRF brings confidence to optical manufacturing by ensuring high throughput for batch processing of aspheres.

  17. Differential mesodermal expression of two amphioxus MyoD family members (AmphiMRF1 and AmphiMRF2)

    NASA Technical Reports Server (NTRS)

    Schubert, Michael; Meulemans, Daniel; Bronner-Fraser, Marianne; Holland, Linda Z.; Holland, Nicholas D.

    2003-01-01

    To explore the evolution of myogenic regulatory factors in chordates, we isolated two MyoD family genes (AmphiMRF1 and AmphiMRF2) from amphioxus. AmphiMRF1 is first expressed at the late gastrula in the paraxial mesoderm. As the first somites form, expression is restricted to their myotomal region. In the early larva, expression is strongest in the most anterior and most posterior somites. AmphiMRF2 transcription begins at mid/late gastrula in the paraxial mesoderm, but never spreads into its most anterior region. Through much of the neurula stage, AmphiMRF2 expression is strong in the myotomal region of all somites except the most anterior pair; by late neurula expression is downregulated except in the most posterior somites forming just rostral to the tail bud. These two MRF genes of amphioxus have partly overlapping patterns of mesodermal expression and evidently duplicated independent of the diversification of the vertebrate MRF family.

  18. Forward and Inverse Modeling of Self-potential. A Tomography of Groundwater Flow and Comparison Between Deterministic and Stochastic Inversion Methods

    NASA Astrophysics Data System (ADS)

    Quintero-Chavarria, E.; Ochoa Gutierrez, L. H.

    2016-12-01

    Applications of the Self-potential Method in the fields of Hydrogeology and Environmental Sciences have had significant developments during the last two decades with a strong use on groundwater flows identification. Although only few authors deal with the forward problem's solution -especially in geophysics literature- different inversion procedures are currently being developed but in most cases they are compared with unconventional groundwater velocity fields and restricted to structured meshes. This research solves the forward problem based on the finite element method using the St. Venant's Principle to transform a point dipole, which is the field generated by a single vector, into a distribution of electrical monopoles. Then, two simple aquifer models were generated with specific boundary conditions and head potentials, velocity fields and electric potentials in the medium were computed. With the model's surface electric potential, the inverse problem is solved to retrieve the source of electric potential (vector field associated to groundwater flow) using deterministic and stochastic approaches. The first approach was carried out by implementing a Tikhonov regularization with a stabilized operator adapted to the finite element mesh while for the second a hierarchical Bayesian model based on Markov chain Monte Carlo (McMC) and Markov Random Fields (MRF) was constructed. For all implemented methods, the result between the direct and inverse models was contrasted in two ways: 1) shape and distribution of the vector field, and 2) magnitude's histogram. Finally, it was concluded that inversion procedures are improved when the velocity field's behavior is considered, thus, the deterministic method is more suitable for unconfined aquifers than confined ones. McMC has restricted applications and requires a lot of information (particularly in potentials fields) while MRF has a remarkable response especially when dealing with confined aquifers.

  19. Generalized expectation-maximization segmentation of brain MR images

    NASA Astrophysics Data System (ADS)

    Devalkeneer, Arnaud A.; Robe, Pierre A.; Verly, Jacques G.; Phillips, Christophe L. M.

    2006-03-01

    Manual segmentation of medical images is unpractical because it is time consuming, not reproducible, and prone to human error. It is also very difficult to take into account the 3D nature of the images. Thus, semi- or fully-automatic methods are of great interest. Current segmentation algorithms based on an Expectation- Maximization (EM) procedure present some limitations. The algorithm by Ashburner et al., 2005, does not allow multichannel inputs, e.g. two MR images of different contrast, and does not use spatial constraints between adjacent voxels, e.g. Markov random field (MRF) constraints. The solution of Van Leemput et al., 1999, employs a simplified model (mixture coefficients are not estimated and only one Gaussian is used by tissue class, with three for the image background). We have thus implemented an algorithm that combines the features of these two approaches: multichannel inputs, intensity bias correction, multi-Gaussian histogram model, and Markov random field (MRF) constraints. Our proposed method classifies tissues in three iterative main stages by way of a Generalized-EM (GEM) algorithm: (1) estimation of the Gaussian parameters modeling the histogram of the images, (2) correction of image intensity non-uniformity, and (3) modification of prior classification knowledge by MRF techniques. The goal of the GEM algorithm is to maximize the log-likelihood across the classes and voxels. Our segmentation algorithm was validated on synthetic data (with the Dice metric criterion) and real data (by a neurosurgeon) and compared to the original algorithms by Ashburner et al. and Van Leemput et al. Our combined approach leads to more robust and accurate segmentation.

  20. The Magnetorheological Finishing (MRF) of Potassium Dihydrogen Phosphate (KDP) Crystal with Fe3O4 Nanoparticles

    NASA Astrophysics Data System (ADS)

    Ji, Fang; Xu, Min; Wang, Chao; Li, Xiaoyuan; Gao, Wei; Zhang, Yunfei; Wang, Baorui; Tang, Guangping; Yue, Xiaobin

    2016-02-01

    The cubic Fe3O4 nanoparticles with sharp horns that display the size distribution between 100 and 200 nm are utilized to substitute the magnetic sensitive medium (carbonyl iron powders, CIPs) and abrasives (CeO2/diamond) simultaneously which are widely employed in conventional magnetorheological finishing fluid. The removal rate of this novel fluid is extremely low compared with the value of conventional one even though the spot of the former is much bigger. This surprising phenomenon is generated due to the small size and low saturation magnetization ( M s) of Fe3O4 and corresponding weak shear stress under external magnetic field according to material removal rate model of magnetorheological finishing (MRF). Different from conventional D-shaped finishing spot, the low M s also results in a shuttle-like spot because the magnetic controllability is weak and particles in the fringe of spot are loose. The surface texture as well as figure accuracy and PSD1 (power spectrum density) of potassium dihydrogen phosphate (KDP) is greatly improved after MRF, which clearly prove the feasibility of substituting CIP and abrasive with Fe3O4 in our novel MRF design.

  1. The Magnetorheological Finishing (MRF) of Potassium Dihydrogen Phosphate (KDP) Crystal with Fe3O4 Nanoparticles.

    PubMed

    Ji, Fang; Xu, Min; Wang, Chao; Li, Xiaoyuan; Gao, Wei; Zhang, Yunfei; Wang, Baorui; Tang, Guangping; Yue, Xiaobin

    2016-12-01

    The cubic Fe3O4 nanoparticles with sharp horns that display the size distribution between 100 and 200 nm are utilized to substitute the magnetic sensitive medium (carbonyl iron powders, CIPs) and abrasives (CeO2/diamond) simultaneously which are widely employed in conventional magnetorheological finishing fluid. The removal rate of this novel fluid is extremely low compared with the value of conventional one even though the spot of the former is much bigger. This surprising phenomenon is generated due to the small size and low saturation magnetization (M s) of Fe3O4 and corresponding weak shear stress under external magnetic field according to material removal rate model of magnetorheological finishing (MRF). Different from conventional D-shaped finishing spot, the low M s also results in a shuttle-like spot because the magnetic controllability is weak and particles in the fringe of spot are loose. The surface texture as well as figure accuracy and PSD1 (power spectrum density) of potassium dihydrogen phosphate (KDP) is greatly improved after MRF, which clearly prove the feasibility of substituting CIP and abrasive with Fe3O4 in our novel MRF design.

  2. Experiments and observations regarding the mechanisms of glass removal in magnetorheological finishing.

    PubMed

    Shorey, A B; Jacobs, S D; Kordonski, W I; Gans, R F

    2001-01-01

    Recent advances in the study of the magnetorheological finishing (MRF) have allowed for the characterization of the dynamic yield stress of the magnetorheological (MR) fluid, as well as the nanohardness (H(nano)) of the carbonyl iron (CI) used in MRF. Knowledge of these properties has allowed for a more complete study of the mechanisms of material removal in MRF. Material removal experiments show that the nanohardness of CI is important in MRF with nonaqueous MR fluids with no nonmagnetic abrasives, but is relatively unimportant in aqueous MR fluids or when nonmagnetic abrasives are present. The hydrated layer created by the chemical effects of water is shown to change the way material is removed by hard CI as the MR fluid transitions from a nonaqueous MR fluid to an aqueous MR fluid. Drag force measurements and atomic force microscope scans demonstrate that, when added to a MR fluid, nonmagnetic abrasives (cerium oxide, aluminum oxide, and diamond) are driven toward the workpiece surface because of the gradient in the magnetic field and hence become responsible for material removal. Removal rates increase with the addition of these polishing abrasives. The relative increase depends on the amount and type of abrasive used.

  3. An innovative magnetorheological damper for automotive suspension: from design to experimental characterization

    NASA Astrophysics Data System (ADS)

    Sassi, Sadok; Cherif, Khaled; Mezghani, Lotfi; Thomas, Marc; Kotrane, Asma

    2005-08-01

    The development of a powerful new magnetorheological fluid (MRF), together with recent progress in the understanding of the behavior of such fluids, has convinced researchers and engineers that MRF dampers are among the most promising devices for semi-active automotive suspension vibration control, because of their large force capacity and their inherent ability to provide a simple, fast and robust interface between electronic controls and mechanical components. In this paper, theoretical and experimental studies are performed for the design, development and testing of a completely new MRF damper model that can be used for the semi-active control of automotive suspensions. The MR damper technology presented in this paper is based on a completely new approach where, in contrast to in the conventional solutions where the coil axis is usually superposed on the damper axis and where the inner cylindrical housing is part of the magnetic circuit, the coils are wound in a direction perpendicular to the damper axis. The paper investigates approaches to optimizing the dynamic response and provides experimental verification. Both experimental and theoretical results have shown that, if this particular model is filled with an 'MRF 336AG' MR fluid, it can provide large controllable damping forces that require only a small amount of energy. For a magnetizing system with four coils, the damping coefficient could be increased by up to three times for an excitation current of only 2 A. Such current could be reduced to less than 1 A if the magnetizing system used eight small cores. In this case, the magnetic field will be more powerful and more regularly distributed. In the presence of harmonic excitation, such a design will allow the optimum compromise between comfort and stability to be reached over different intervals of the excitation frequencies.

  4. Nondimensional scaling of magnetorheological rotary shear mode devices using the Mason number

    NASA Astrophysics Data System (ADS)

    Becnel, Andrew C.; Sherman, Stephen; Hu, Wei; Wereley, Norman M.

    2015-04-01

    Magnetorheological fluids (MRFs) exhibit rapidly adjustable viscosity in the presence of a magnetic field, and are increasingly used in adaptive shock absorbers for high speed impacts, corresponding to high fluid shear rates. However, the MRF properties are typically measured at very low (γ ˙<1000 s-1) shear rates due to limited commercial rheometer capabilities. A custom high shear rate (γ ˙>10,000 s-1) Searle cell magnetorheometer, along with a full scale rotary-vane magnetorheological energy absorber (γ ˙>25,000 s-1) are employed to analyze MRF property scaling across shear rates using a nondimensional Mason number to generate an MRF master curve. Incorporating a Reynolds temperature correction factor, data from both experiments is shown to collapse to a single master curve, supporting the use of Mason number to correlate low- and high-shear rate characterization data.

  5. Accelerating Magnetic Resonance Fingerprinting (MRF) using t-Blipped Simultaneous Multi-Slice (SMS) acquisition

    PubMed Central

    Ye, Huihui; Ma, Dan; Jiang, Yun; Cauley, Stephen F.; Du, Yiping; Wald, Lawrence L.; Griswold, Mark A.; Setsompop, Kawin

    2015-01-01

    Purpose We incorporate Simultaneous Multi-Slice (SMS) acquisition into MR Fingerprinting (MRF) to accelerate the MRF acquisition. Methods The t-Blipped SMS-MRF method is achieved by adding a Gz blip before each data acquisition window and balancing it with a Gz blip of opposing polarity at the end of each TR. Thus the signal from different simultaneously excited slices are encoded with different phases without disturbing the signal evolution. Further, by varying the Gz blip area and/or polarity as a function of TR, the slices’ differential phase can also be made to vary as a function of time. For reconstruction of t-Blipped SMS-MRF data, we demonstrate a combined slice-direction SENSE and modified dictionary matching method. Results In Monte Carlo simulation, the parameter mapping from Multi-band factor (MB)=2 t-Blipped SMS-MRF shows good accuracy and precision when compared to results from reference conventional MRF data with concordance correlation coefficients (CCC) of 0.96 for T1 estimates and 0.90 for T2 estimates. For in vivo experiments, T1 and T2 maps from MB=2 t-Blipped SMS-MRF have a high agreement with ones from conventional MRF. Conclusions The MB=2 t-Blipped SMS-MRF acquisition/reconstruction method has been demonstrated and validated to provide more rapid parameter mapping in the MRF framework. PMID:26059430

  6. Accelerating magnetic resonance fingerprinting (MRF) using t-blipped simultaneous multislice (SMS) acquisition.

    PubMed

    Ye, Huihui; Ma, Dan; Jiang, Yun; Cauley, Stephen F; Du, Yiping; Wald, Lawrence L; Griswold, Mark A; Setsompop, Kawin

    2016-05-01

    We incorporate simultaneous multislice (SMS) acquisition into MR fingerprinting (MRF) to accelerate the MRF acquisition. The t-Blipped SMS-MRF method is achieved by adding a Gz blip before each data acquisition window and balancing it with a Gz blip of opposing polarity at the end of each TR. Thus the signal from different simultaneously excited slices are encoded with different phases without disturbing the signal evolution. Furthermore, by varying the Gz blip area and/or polarity as a function of repetition time, the slices' differential phase can also be made to vary as a function of time. For reconstruction of t-Blipped SMS-MRF data, we demonstrate a combined slice-direction SENSE and modified dictionary matching method. In Monte Carlo simulation, the parameter mapping from multiband factor (MB) = 2 t-Blipped SMS-MRF shows good accuracy and precision when compared with results from reference conventional MRF data with concordance correlation coefficients (CCC) of 0.96 for T1 estimates and 0.90 for T2 estimates. For in vivo experiments, T1 and T2 maps from MB=2 t-Blipped SMS-MRF have a high agreement with ones from conventional MRF. The MB=2 t-Blipped SMS-MRF acquisition/reconstruction method has been demonstrated and validated to provide more rapid parameter mapping in the MRF framework. © 2015 Wiley Periodicals, Inc.

  7. A label field fusion bayesian model and its penalized maximum rand estimator for image segmentation.

    PubMed

    Mignotte, Max

    2010-06-01

    This paper presents a novel segmentation approach based on a Markov random field (MRF) fusion model which aims at combining several segmentation results associated with simpler clustering models in order to achieve a more reliable and accurate segmentation result. The proposed fusion model is derived from the recently introduced probabilistic Rand measure for comparing one segmentation result to one or more manual segmentations of the same image. This non-parametric measure allows us to easily derive an appealing fusion model of label fields, easily expressed as a Gibbs distribution, or as a nonstationary MRF model defined on a complete graph. Concretely, this Gibbs energy model encodes the set of binary constraints, in terms of pairs of pixel labels, provided by each segmentation results to be fused. Combined with a prior distribution, this energy-based Gibbs model also allows for definition of an interesting penalized maximum probabilistic rand estimator with which the fusion of simple, quickly estimated, segmentation results appears as an interesting alternative to complex segmentation models existing in the literature. This fusion framework has been successfully applied on the Berkeley image database. The experiments reported in this paper demonstrate that the proposed method is efficient in terms of visual evaluation and quantitative performance measures and performs well compared to the best existing state-of-the-art segmentation methods recently proposed in the literature.

  8. High-accuracy process based on the corrective calibration of removal function in the magnetorheological finishing

    NASA Astrophysics Data System (ADS)

    Zhong, Xianyun; Fan, Bin; Wu, Fan

    2017-08-01

    The corrective calibration of the removal function plays an important role in the magnetorheological finishing (MRF) high-accuracy process. This paper mainly investigates the asymmetrical characteristic of the MRF removal function shape and further analyzes its influence on the surface residual error by means of an iteration algorithm and simulations. By comparing the ripple errors and convergence ratios based on the ideal MRF tool function and the deflected tool function, the mathematical models for calibrating the deviation of horizontal and flowing directions are presented. Meanwhile, revised mathematical models for the coordinate transformation of an MRF machine is also established. Furthermore, a Ø140-mm fused silica plane and a Ø196 mm, f/1∶1, fused silica concave sphere samples are taken as the experiments. After two runs, the plane mirror final surface error reaches PV 17.7 nm, RMS 1.75 nm, and the polishing time is 16 min in total; after three runs, the sphere mirror final surfer error reaches RMS 2.7 nm and the polishing time is 70 min in total. The convergence ratios are 96.2% and 93.5%, respectively. The spherical simulation error and the polishing result are almost consistent, which fully validate the efficiency and feasibility of the calibration method of MRF removal function error using for the high-accuracy subaperture optical manufacturing.

  9. Super-smooth processing x-ray telescope application research based on the magnetorheological finishing (MRF) technology

    NASA Astrophysics Data System (ADS)

    Zhong, Xianyun; Hou, Xi; Yang, Jinshan

    2016-09-01

    Nickel is the unique material in the X-ray telescopes. And it has the typical soft material characteristics with low hardness high surface damage and low stability of thermal. The traditional fabrication techniques are exposed to lots of problems, including great surface scratches, high sub-surface damage and poor surface roughness and so on. The current fabrication technology for the nickel aspheric mainly adopt the single point diamond turning(SPDT), which has lots of advantages such as high efficiency, ultra-precision surface figure, low sub-surface damage and so on. But the residual surface texture of SPDT will cause great scattering losses and fall far short from the requirement in the X-ray applications. This paper mainly investigates the magnetorheological finishing (MRF) techniques for the super-smooth processing on the nickel optics. Through the study of the MRF polishing techniques, we obtained the ideal super-smooth polishing technique based on the self-controlled MRF-fluid NS-1, and finished the high-precision surface figure lower than RMS λ/80 (λ=632.8nm) and super-smooth roughness lower than Ra 0.3nm on the plane reflector and roughness lower than Ra 0.4nm on the convex cone. The studying of the MRF techniques makes a great effort to the state-of-the-art nickel material processing level for the X-ray optical systems applications.

  10. Cross-Disciplinary Collaboration to Engage Diverse Researchers

    ERIC Educational Resources Information Center

    Loveless, Douglas J.; Sturm, Debbie C.; Guo, Chengqi; Tanaka, Kimiko; Zha, Shenghua; Berkeley, Elizabeth V.

    2013-01-01

    Grounded as a self-study using arts-based inquiry to explore the experiences of six university faculty members participating in a cross-disciplinary faculty development program, the purpose of this paper is to (1) describe the Madison Research Fellows (MRF) program, and (2) explore the impact of the MRF program. Participating members included…

  11. Optimal design of high damping force engine mount featuring MR valve structure with both annular and radial flow paths

    NASA Astrophysics Data System (ADS)

    Nguyen, Q. H.; Choi, S. B.; Lee, Y. S.; Han, M. S.

    2013-11-01

    This paper focuses on the optimal design of a compact and high damping force engine mount featuring magnetorheological fluid (MRF). In the mount, a MR valve structure with both annular and radial flows is employed to generate a high damping force. First, the configuration and working principle of the proposed MR mount is introduced. The MRF flows in the mount are then analyzed and the governing equations of the MR mount are derived based on the Bingham plastic behavior of the MRF. An optimal design of the MR mount is then performed to find the optimal structure of the MR valve to generate a maximum damping force with certain design constraints. In addition, the gap size of MRF ducts is empirically chosen considering the ‘lockup’ problem of the mount at high frequency. Performance of the optimized MR mount is then evaluated based on finite element analysis and discussions on performance results of the optimized MR mount are given. The effectiveness of the proposed MR engine mount is demonstrated via computer simulation by presenting damping force and power consumption.

  12. Towards predicting the encoding capability of MR fingerprinting sequences.

    PubMed

    Sommer, K; Amthor, T; Doneva, M; Koken, P; Meineke, J; Börnert, P

    2017-09-01

    Sequence optimization and appropriate sequence selection is still an unmet need in magnetic resonance fingerprinting (MRF). The main challenge in MRF sequence design is the lack of an appropriate measure of the sequence's encoding capability. To find such a measure, three different candidates for judging the encoding capability have been investigated: local and global dot-product-based measures judging dictionary entry similarity as well as a Monte Carlo method that evaluates the noise propagation properties of an MRF sequence. Consistency of these measures for different sequence lengths as well as the capability to predict actual sequence performance in both phantom and in vivo measurements was analyzed. While the dot-product-based measures yielded inconsistent results for different sequence lengths, the Monte Carlo method was in a good agreement with phantom experiments. In particular, the Monte Carlo method could accurately predict the performance of different flip angle patterns in actual measurements. The proposed Monte Carlo method provides an appropriate measure of MRF sequence encoding capability and may be used for sequence optimization. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Magnetic resonance fingerprinting based on realistic vasculature in mice.

    PubMed

    Pouliot, Philippe; Gagnon, Louis; Lam, Tina; Avti, Pramod K; Bowen, Chris; Desjardins, Michèle; Kakkar, Ashok K; Thorin, Eric; Sakadzic, Sava; Boas, David A; Lesage, Frédéric

    2017-04-01

    Magnetic resonance fingerprinting (MRF) was recently proposed as a novel strategy for MR data acquisition and analysis. A variant of MRF called vascular MRF (vMRF) followed, that extracted maps of three parameters of physiological importance: cerebral oxygen saturation (SatO 2 ), mean vessel radius and cerebral blood volume (CBV). However, this estimation was based on idealized 2-dimensional simulations of vascular networks using random cylinders and the empirical Bloch equations convolved with a diffusion kernel. Here we focus on studying the vascular MR fingerprint using real mouse angiograms and physiological values as the substrate for the MR simulations. The MR signal is calculated ab initio with a Monte Carlo approximation, by tracking the accumulated phase from a large number of protons diffusing within the angiogram. We first study the identifiability of parameters in simulations, showing that parameters are fully estimable at realistically high signal-to-noise ratios (SNR) when the same angiogram is used for dictionary generation and parameter estimation, but that large biases in the estimates persist when the angiograms are different. Despite these biases, simulations show that differences in parameters remain estimable. We then applied this methodology to data acquired using the GESFIDE sequence with SPIONs injected into 9 young wild type and 9 old atherosclerotic mice. Both the pre injection signal and the ratio of post-to-pre injection signals were modeled, using 5-dimensional dictionaries. The vMRF methodology extracted significant differences in SatO 2 , mean vessel radius and CBV between the two groups, consistent across brain regions and dictionaries. Further validation work is essential before vMRF can gain wider application. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Energy-efficient MRF clutch avoiding no-load losses

    NASA Astrophysics Data System (ADS)

    Güth, Dirk; Schamoni, Markus; Maas, Jürgen

    2013-04-01

    A challenge opposing a commercial use of actuators like brakes and clutches based on magnetorheological fluids (MRF) are durable no-load losses. A complete torque-free separation of these actuators is inherently not yet possible due to the permanent liquid intervention for the fluid engaging parts. Especially for applications with high rotational speeds up to some thousand RPM, this drawback of MRF actuators is not acceptable. In this paper, a novel approach will be presented that allows a controlled movement of the MRF from a torque-transmitting volume of the shear gap into an inactive volume of the shear gap, enabling a complete separation of the fluid engaging surfaces. This behavior is modeled for a novel clutch design by the use of the ferrohydrodynamics and therefore simulations are performed to investigate the transitions between engaged and idle mode. Measurements performed with a realized clutch show that the viscous induced drag torque can be reduced significantly.

  15. Improved MRF spot characterization with QIS metrology

    NASA Astrophysics Data System (ADS)

    Westover, Sandi; Hall, Christopher; DeMarco, Michael

    2013-09-01

    Careful characterization of the removal function of sub-aperture polishing tools is critical for optimum polishing results. Magnetorheological finishing (MRF®) creates a polishing tool, or "spot", that is unique both for its locally high removal rate and high slope content. For a variety of reasons, which will be discussed, longer duration spots are beneficial to improving MRF performance, but longer spots yield higher slopes rendering them difficult to measure with adequate fidelity. QED's Interferometer for Stitching (QIS™) was designed to measure the high slope content inherent to non-null sub-aperture stitching interferometry of aspheres. Based on this unique capability the QIS was recently used to measure various MRF spots in an attempt to see if there was a corresponding improvement in MRF performance as a result of improved knowledge of these longer duration spots. The results of these tests will be presented and compared with those of a standard general purpose interferometer.

  16. SU-D-304-01: Development of An Applicator for Treating Shallow and Moving Tumors with Respiratory-Gated Spot-Scanning Proton Therapy Using Real-Time Image Guidance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matsuura, T; Fujii, Y; Takao, S

    Purpose: To develop a method for treating shallow and moving tumors (e.g., lung tumors) with respiratory-gated spot-scanning proton therapy using real-time image guidance (RTPT). Methods: An applicator was developed which can be installed by hand on the treatment nozzle. The mechanical design was considered such that the Bragg peaks are placed at the patient surface while a sufficient field of view (FOV) of fluoroscopic X-rays was maintained during the proton beam delivery. To reduce the treatment time maintaining the robustness of the dose distribution with respect to motion, a mini-ridge filter (MRF) was sandwiched between two energy absorbers. The measurementsmore » were performed to obtain a data for beam modeling and to verify the spot position-invariance of a pencil beam dose distribution. For three lung cancer patients, treatment plans were made with and without the MRF and the effects of the MRF were evaluated. Next, the effect of respiratory motion on the dose distribution was investigated. Results: To scan the proton beam over a 14 x 14 cm area while maintaining the φ16 cm of fluoroscopic FOV, the lower face of the applicator was set 22 cm upstream of the isocenter. With an additional range variance of 2.2 mm and peak-to-peak distance of 4 mm of the MRF, the pencil beam dose distribution was unchanged with the displacement of the spot position. The quality of the treatment plans was not worsened by the MRF. With the MRF, the number of energy layers was reduced to less than half and the treatment time by 26–37%. The simulation study showed that the interplay effect was successfully suppressed by respiratory-gating both with and without MRF. Conclusions: The spot-scanning proton beam was successfully delivered to shallow and moving tumors within a sufficiently short time by installing the developed applicator at the RTPT nozzle.« less

  17. Spot breeding method to evaluate the determinism of magnetorheological finishing

    NASA Astrophysics Data System (ADS)

    Yang, Hang; He, Jianguo; Huang, Wen; Zhang, Yunfei

    2017-03-01

    The influences of immersion depth of magnetorheological finishing (MRF) on the shape and material removal rate (MRR) of removal function are theoretically investigated to establish the spot transition mechanism. Based on this mechanism, for the first time, the spot breeding method to predict the shape and removal rate of MRF spot is proposed. The UBK7 optical parts are polished to verify the proposed method on experimental installation PKC-1000Q2 developed by ourselves. The experimental results reveal that the predictions of shape and MRR with this method are precise. The proposed method provides a basis for analyzing the determinism of MRF due to geometry of the process.

  18. Cost analysis and cost-benefit analysis of a medication review with follow-up service in aged polypharmacy patients.

    PubMed

    Malet-Larrea, Amaia; Goyenechea, Estíbaliz; Gastelurrutia, Miguel A; Calvo, Begoña; García-Cárdenas, Victoria; Cabases, Juan M; Noain, Aránzazu; Martínez-Martínez, Fernando; Sabater-Hernández, Daniel; Benrimoj, Shalom I

    2017-12-01

    Drug related problems have a significant clinical and economic burden on patients and the healthcare system. Medication review with follow-up (MRF) is a professional pharmacy service aimed at improving patient's health outcomes through an optimization of the medication. To ascertain the economic impact of the MRF service provided in community pharmacies to aged polypharmacy patients comparing MRF with usual care, by undertaking a cost analysis and a cost-benefit analysis. The economic evaluation was based on a cluster randomized controlled trial. Patients in the intervention group (IG) received the MRF service and the comparison group (CG) received usual care. The analysis was conducted from the national health system (NHS) perspective over 6 months. Direct medical costs were included and expressed in euros at 2014 prices. Health benefits were estimated by assigning a monetary value to the quality-adjusted life years. One-way deterministic sensitivity analysis was undertaken in order to analyse the uncertainty. The analysis included 1403 patients (IG: n = 688 vs CG: n = 715). The cost analysis showed that the MRF saved 97 € per patient in 6 months. Extrapolating data to 1 year and assuming a fee for service of 22 € per patient-month, the estimated savings were 273 € per patient-year. The cost-benefit ratio revealed that for every 1 € invested in MRF, a benefit of 3.3 € to 6.2 € was obtained. The MRF provided health benefits to patients and substantial cost savings to the NHS. Investment in this service would represent an efficient use of healthcare resources.

  19. Expression profiles and associations of muscle regulatory factor (MRF) genes with growth traits in Tibetan chickens.

    PubMed

    Zhang, R; Li, R; Zhi, L; Xu, Y; Lin, Y; Chen, L

    2018-02-01

    1. Muscle regulatory factors (MRFs), including Myf5, Myf6 (MRF4/herculin), MyoD and MyoG (myogenin), play pivotal roles in muscle growth and development. Therefore, they are considered as candidate genes for meat production traits in livestock and poultry. 2. The objective of this study was to investigate the expression profiles of these genes in skeletal muscles (breast muscle and thigh muscle) at 5 developmental stages (0, 81, 119, 154 and 210 d old) of Tibetan chickens. Relationships between expressions of these genes and growth and carcass traits in these chickens were also estimated. 3. The expression profiles showed that in the breast muscle of both genders the mRNA levels of MRF genes were highest on the day of hatching, then declined significantly from d 0 to d 81, and fluctuated in a certain range from d 81 to d 210. However, the expression of Myf5, Myf6 and MyoG reached peaks in the thigh muscle in 118-d-old females and for MyoD in 154-d-old females, whereas the mRNA amounts of MRF genes in the male thigh muscle were in a narrow range from d 0 to d 210. 4. Correlation analysis suggested that gender had an influence on the relationships of MRF gene expression with growth traits. The RNA levels of MyoD, Myf5 genes in male breast muscle were positively related with several growth traits of Tibetan chickens (P < 0.05). No correlation was found between expressions of MRF genes and carcass traits of the chickens. 5. These results will provide a base for functional studies of MRF genes on growth and development of Tibetan chickens, as well as selective breeding and resource exploration.

  20. Belt-MRF for large aperture mirrors.

    PubMed

    Ren, Kai; Luo, Xiao; Zheng, Ligong; Bai, Yang; Li, Longxiang; Hu, Haixiang; Zhang, Xuejun

    2014-08-11

    With high-determinacy and no subsurface damage, Magnetorheological Finishing (MRF) has become an important tool in fabricating high-precision optics. But for large mirrors, the application of MRF is restricted by its small removal function and low material removal rate. In order to improve the material removal rate, shorten the processing cycle, we proposed a new MRF concept, named Belt-MRF to expand the application of MRF to large mirrors and made a prototype with a large remove function, using a belt instead of a very large polishing wheel to expand the polishing length. A series of experimental results on Silicon carbide (SiC) and BK 7 specimens and fabrication simulation verified that the Belt-MRF has high material removal rates, stable removal function and high convergence efficiency which makes it a promising technology for processing large aperture optical elements.

  1. EMR-based medical knowledge representation and inference via Markov random fields and distributed representation learning.

    PubMed

    Zhao, Chao; Jiang, Jingchi; Guan, Yi; Guo, Xitong; He, Bin

    2018-05-01

    Electronic medical records (EMRs) contain medical knowledge that can be used for clinical decision support (CDS). Our objective is to develop a general system that can extract and represent knowledge contained in EMRs to support three CDS tasks-test recommendation, initial diagnosis, and treatment plan recommendation-given the condition of a patient. We extracted four kinds of medical entities from records and constructed an EMR-based medical knowledge network (EMKN), in which nodes are entities and edges reflect their co-occurrence in a record. Three bipartite subgraphs (bigraphs) were extracted from the EMKN, one to support each task. One part of the bigraph was the given condition (e.g., symptoms), and the other was the condition to be inferred (e.g., diseases). Each bigraph was regarded as a Markov random field (MRF) to support the inference. We proposed three graph-based energy functions and three likelihood-based energy functions. Two of these functions are based on knowledge representation learning and can provide distributed representations of medical entities. Two EMR datasets and three metrics were utilized to evaluate the performance. As a whole, the evaluation results indicate that the proposed system outperformed the baseline methods. The distributed representation of medical entities does reflect similarity relationships with respect to knowledge level. Combining EMKN and MRF is an effective approach for general medical knowledge representation and inference. Different tasks, however, require individually designed energy functions. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. A shape prior-based MRF model for 3D masseter muscle segmentation

    NASA Astrophysics Data System (ADS)

    Majeed, Tahir; Fundana, Ketut; Lüthi, Marcel; Beinemann, Jörg; Cattin, Philippe

    2012-02-01

    Medical image segmentation is generally an ill-posed problem that can only be solved by incorporating prior knowledge. The ambiguities arise due to the presence of noise, weak edges, imaging artifacts, inhomogeneous interior and adjacent anatomical structures having similar intensity profile as the target structure. In this paper we propose a novel approach to segment the masseter muscle using the graph-cut incorporating additional 3D shape priors in CT datasets, which is robust to noise; artifacts; and shape deformations. The main contribution of this paper is in translating the 3D shape knowledge into both unary and pairwise potentials of the Markov Random Field (MRF). The segmentation task is casted as a Maximum-A-Posteriori (MAP) estimation of the MRF. Graph-cut is then used to obtain the global minimum which results in the segmentation of the masseter muscle. The method is tested on 21 CT datasets of the masseter muscle, which are noisy with almost all possessing mild to severe imaging artifacts such as high-density artifacts caused by e.g. the very common dental fillings and dental implants. We show that the proposed technique produces clinically acceptable results to the challenging problem of muscle segmentation, and further provide a quantitative and qualitative comparison with other methods. We statistically show that adding additional shape prior into both unary and pairwise potentials can increase the robustness of the proposed method in noisy datasets.

  3. The Role of Nanodiamonds in the Polishing Zone During Magnetorheological Finishing (MRF)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DeGroote, J.E.; Marino, A.E.; WIlson, J.P.

    2008-01-07

    In this work we discuss the role that nanodiamond abrasives play in magnetorheological finishing. We hypothesize that, as the nanodiamond MR fluid is introduced to the magnetic field, the micron sized spherical carbonyl iron (CI) particles are pulled down towards the rotating wheel, leaving a thin layer of nanodiamonds at the surface of the stiffened MR fluid ribbon. Our experimental results shown here support this hypothesis. We also show that surface roughness values inside MRF spots show a strong correlation with the near surface mechanical properties of the glass substrates and with drag force.

  4. Use of pattern recognition for unaliasing simultaneously acquired slices in simultaneous multislice MR fingerprinting.

    PubMed

    Jiang, Yun; Ma, Dan; Bhat, Himanshu; Ye, Huihui; Cauley, Stephen F; Wald, Lawrence L; Setsompop, Kawin; Griswold, Mark A

    2017-11-01

    The purpose of this study is to accelerate an MR fingerprinting (MRF) acquisition by using a simultaneous multislice method. A multiband radiofrequency (RF) pulse was designed to excite two slices with different flip angles and phases. The signals of two slices were driven to be as orthogonal as possible. The mixed and undersampled MRF signal was matched to two dictionaries to retrieve T 1 and T 2 maps of each slice. Quantitative results from the proposed method were validated with the gold-standard spin echo methods in a phantom. T 1 and T 2 maps of in vivo human brain from two simultaneously acquired slices were also compared to the results of fast imaging with steady-state precession based MRF method (MRF-FISP) with a single-band RF excitation. The phantom results showed that the simultaneous multislice imaging MRF-FISP method quantified the relaxation properties accurately compared to the gold-standard spin echo methods. T 1 and T 2 values of in vivo brain from the proposed method also matched the results from the normal MRF-FISP acquisition. T 1 and T 2 values can be quantified at a multiband acceleration factor of two using our proposed acquisition even in a single-channel receive coil. Further acceleration could be achieved by combining this method with parallel imaging or iterative reconstruction. Magn Reson Med 78:1870-1876, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  5. Spherical primary optical telescope (SPOT) segments

    NASA Astrophysics Data System (ADS)

    Hall, Christopher; Hagopian, John; DeMarco, Michael

    2012-09-01

    The spherical primary optical telescope (SPOT) project is an internal research and development program at NASA Goddard Space Flight Center. The goals of the program are to develop a robust and cost effective way to manufacture spherical mirror segments and demonstrate a new wavefront sensing approach for continuous phasing across the segmented primary. This paper focuses on the fabrication of the mirror segments. Significant cost savings were achieved through the design, since it allowed the mirror segments to be cast rather than machined from a glass blank. Casting was followed by conventional figuring at Goddard Space Flight Center. After polishing, the mirror segments were mounted to their composite assemblies. QED Technologies used magnetorheological finishing (MRF®) for the final figuring. The MRF process polished the mirrors while they were mounted to their composite assemblies. Each assembly included several magnetic invar plugs that extended to within an inch of the face of the mirror. As part of this project, the interaction between the MRF magnetic field and invar plugs was evaluated. By properly selecting the polishing conditions, MRF was able to significantly improve the figure of the mounted segments. The final MRF figuring demonstrates that mirrors, in the mounted configuration, can be polished and tested to specification. There are significant process capability advantes due to polishing and testing the optics in their final, end-use assembled state.

  6. Multiscale Reconstruction for Magnetic Resonance Fingerprinting

    PubMed Central

    Pierre, Eric Y.; Ma, Dan; Chen, Yong; Badve, Chaitra; Griswold, Mark A.

    2015-01-01

    Purpose To reduce acquisition time needed to obtain reliable parametric maps with Magnetic Resonance Fingerprinting. Methods An iterative-denoising algorithm is initialized by reconstructing the MRF image series at low image resolution. For subsequent iterations, the method enforces pixel-wise fidelity to the best-matching dictionary template then enforces fidelity to the acquired data at slightly higher spatial resolution. After convergence, parametric maps with desirable spatial resolution are obtained through template matching of the final image series. The proposed method was evaluated on phantom and in-vivo data using the highly-undersampled, variable-density spiral trajectory and compared with the original MRF method. The benefits of additional sparsity constraints were also evaluated. When available, gold standard parameter maps were used to quantify the performance of each method. Results The proposed approach allowed convergence to accurate parametric maps with as few as 300 time points of acquisition, as compared to 1000 in the original MRF work. Simultaneous quantification of T1, T2, proton density (PD) and B0 field variations in the brain was achieved in vivo for a 256×256 matrix for a total acquisition time of 10.2s, representing a 3-fold reduction in acquisition time. Conclusions The proposed iterative multiscale reconstruction reliably increases MRF acquisition speed and accuracy. PMID:26132462

  7. Pneumafil casing blower through moving reference frame (MRF) - A CFD simulation

    NASA Astrophysics Data System (ADS)

    Manivel, R.; Vijayanandh, R.; Babin, T.; Sriram, G.

    2018-05-01

    In this analysis work, the ring frame of Pneumafil casing blower of the textile mills with a power rating of 5 kW have been simulated using Computational Fluid Dynamics (CFD) code. The CFD analysis of the blower is carried out in Ansys Workbench 16.2 with Fluent using MRF solver settings. The simulation settings and boundary conditions are based on literature study and field data acquired. The main objective of this work is to reduce the energy consumption of the blower. The flow analysis indicated that the power consumption is influenced by the deflector plate orientation and deflector plate strip situated at the outlet casing of the blower. The energy losses occurred in the blower is due to the recirculation zones formed around the deflector plate strip. The deflector plate orientation is changed and optimized to reduce the energy consumption. The proposed optimized model is based on the simulation results which had relatively lesser power consumption than the existing and other cases. The energy losses in the Pneumafil casing blower are reduced through CFD analysis.

  8. A secure semi-field system for the study of Aedes aegypti.

    PubMed

    Ritchie, Scott A; Johnson, Petrina H; Freeman, Anthony J; Odell, Robin G; Graham, Neal; Dejong, Paul A; Standfield, Graeme W; Sale, Richard W; O'Neill, Scott L

    2011-03-22

    New contained semi-field cages are being developed and used to test novel vector control strategies of dengue and malaria vectors. We herein describe a new Quarantine Insectary Level-2 (QIC-2) laboratory and field cages (James Cook University Mosquito Research Facility Semi-Field System; MRF SFS) that are being used to measure the impact of the endosymbiont Wolbachia pipientis on populations of Aedes aegypti in Cairns Australia. The MRF consists of a single QIC-2 laboratory/insectary that connects through a central corridor to two identical QIC-2 semi-field cages. The semi-field cages are constructed of two layers of 0.25 mm stainless steel wire mesh to prevent escape of mosquitoes and ingress of other insects. The cages are covered by an aluminum security mesh to prevent penetration of the cages by branches and other missiles in the advent of a tropical cyclone. Parts of the cage are protected from UV light and rainfall by 90% shade cloth and a vinyl cover. A wooden structure simulating the understory of a Queenslander-style house is also situated at one end of each cage. The remainder of the internal aspect of the cage is covered with mulch and potted plants to emulate a typical yard. An air conditioning system comprised of two external ACs that feed cooled, moistened air into the cage units. The air is released from the central ceiling beam from a long cloth tube that disperses the airflow and also prevents mosquitoes from escaping the cage via the AC system. Sensors located inside and outside the cage monitor ambient temperature and relative humidity, with AC controlled to match ambient conditions. Data loggers set in the cages and outside found a <2 °C temperature difference. Additional security features include air curtains over exit doors, sticky traps to monitor for escaping mosquitoes between layers of the mesh, a lockable vestibule leading from the connecting corridor to the cage and from inside to outside of the insectary, and screened (0.25 mm mesh) drains within the insectary and the cage. A set of standard operating procedures (SOP) has been developed to ensure that security is maintained and for enhanced surveillance for escaping mosquitoes on the JCU campus where the MRF is located. A cohort of male and female Aedes aegypti mosquitoes were released in the cage and sampled every 3-4 days to determine daily survival within the cage; log linear regression from BG-sentinel trapping collections produced an estimated daily survival of 0.93 and 0.78 for females and males, respectively. The MRF SFS allows us to test novel control strategies within a secure, contained environment. The air-conditioning system maintains conditions within the MRF cages comparable to outside ambient conditions. This cage provides a realistic transitional platform between the laboratory and the field in which to test novel control measures on quarantine level insects.

  9. A Secure Semi-Field System for the Study of Aedes aegypti

    PubMed Central

    Ritchie, Scott A.; Johnson, Petrina H.; Freeman, Anthony J.; Odell, Robin G.; Graham, Neal; DeJong, Paul A.; Standfield, Graeme W.; Sale, Richard W.; O'Neill, Scott L.

    2011-01-01

    Background New contained semi-field cages are being developed and used to test novel vector control strategies of dengue and malaria vectors. We herein describe a new Quarantine Insectary Level-2 (QIC-2) laboratory and field cages (James Cook University Mosquito Research Facility Semi-Field System; MRF SFS) that are being used to measure the impact of the endosymbiont Wolbachia pipientis on populations of Aedes aegypti in Cairns Australia. Methodology/Principal Findings The MRF consists of a single QIC-2 laboratory/insectary that connects through a central corridor to two identical QIC-2 semi-field cages. The semi-field cages are constructed of two layers of 0.25 mm stainless steel wire mesh to prevent escape of mosquitoes and ingress of other insects. The cages are covered by an aluminum security mesh to prevent penetration of the cages by branches and other missiles in the advent of a tropical cyclone. Parts of the cage are protected from UV light and rainfall by 90% shade cloth and a vinyl cover. A wooden structure simulating the understory of a Queenslander-style house is also situated at one end of each cage. The remainder of the internal aspect of the cage is covered with mulch and potted plants to emulate a typical yard. An air conditioning system comprised of two external ACs that feed cooled, moistened air into the cage units. The air is released from the central ceiling beam from a long cloth tube that disperses the airflow and also prevents mosquitoes from escaping the cage via the AC system. Sensors located inside and outside the cage monitor ambient temperature and relative humidity, with AC controlled to match ambient conditions. Data loggers set in the cages and outside found a <2°C temperature difference. Additional security features include air curtains over exit doors, sticky traps to monitor for escaping mosquitoes between layers of the mesh, a lockable vestibule leading from the connecting corridor to the cage and from inside to outside of the insectary, and screened (0.25 mm mesh) drains within the insectary and the cage. A set of standard operating procedures (SOP) has been developed to ensure that security is maintained and for enhanced surveillance for escaping mosquitoes on the JCU campus where the MRF is located. A cohort of male and female Aedes aegypti mosquitoes were released in the cage and sampled every 3–4 days to determine daily survival within the cage; log linear regression from BG-sentinel trapping collections produced an estimated daily survival of 0.93 and 0.78 for females and males, respectively. Conclusions/Significance The MRF SFS allows us to test novel control strategies within a secure, contained environment. The air-conditioning system maintains conditions within the MRF cages comparable to outside ambient conditions. This cage provides a realistic transitional platform between the laboratory and the field in which to test novel control measures on quarantine level insects. PMID:21445333

  10. Vestibular responses in the macaque pedunculopontine nucleus and central mesencephalic reticular formation

    PubMed Central

    Aravamuthan, Bhooma R.; Angelaki, Dora E.

    2012-01-01

    The pedunculopontine nucleus (PPN) and central mesencephalic reticular formation (cMRF) both send projections and receive input from areas with known vestibular responses. Noting their connections with the basal ganglia, the locomotor disturbances that occur following lesions of the PPN or cMRF, and the encouraging results of PPN deep brain stimulation in Parkinson’s disease patients, both the PPN and cMRF have been linked to motor control. In order to determine the existence of and characterize vestibular responses in the PPN and cMRF, we recorded single neurons from both structures during vertical and horizontal rotation, translation, and visual pursuit stimuli. The majority of PPN cells (72.5%) were vestibular-only cells that responded exclusively to rotation and translation stimuli but not visual pursuit. Visual pursuit responses were much more prevalent in the cMRF (57.1%) though close to half of cMRF cells were vestibular-only cells (41.1%). Directional preferences also differed between the PPN, which was preferentially modulated during nose-down pitch, and cMRF, which was preferentially modulated during ipsilateral yaw rotation. Finally, amplitude responses were similar between the PPN and cMRF during rotation and pursuit stimuli, but PPN responses to translation were of higher amplitude than cMRF responses. Taken together with their connections to the vestibular circuit, these results implicate the PPN and cMRF in the processing of vestibular stimuli and suggest important roles for both in responding to motion perturbations like falls and turns. PMID:22864184

  11. Magnetorheological finishing for removing surface and subsurface defects of fused silica optics

    NASA Astrophysics Data System (ADS)

    Catrin, Rodolphe; Neauport, Jerome; Taroux, Daniel; Cormont, Philippe; Maunier, Cedric; Lambert, Sebastien

    2014-09-01

    We investigate the capacity of magnetorheological finishing (MRF) process to remove surface and subsurface defects of fused silica optics. Polished samples with engineered surface and subsurface defects were manufactured and characterized. Uniform material removals were performed with a QED Q22-XE machine using different MRF process parameters in order to remove these defects. We provide evidence that whatever the MRF process parameters are, MRF is able to remove surface and subsurface defects. Moreover, we show that MRF induces a pollution of the glass interface similar to conventional polishing processes.

  12. Rigidity controllable polishing tool based on magnetorheological effect

    NASA Astrophysics Data System (ADS)

    Wang, Jia; Wan, Yongjian; Shi, Chunyan

    2012-10-01

    A stable and predictable material removal function (MRF) plays a crucial role in computer controlled optical surfacing (CCOS). For physical contact polishing case, the stability of MRF depends on intimate contact between polishing interface and workpiece. Rigid laps maintain this function in polishing spherical surfaces, whose curvature has no variation with the position on the surface. Such rigid laps provide smoothing effect for mid-spatial frequency errors, but can't be used in aspherical surfaces for they will destroy the surface figure. Flexible tools such as magnetorheological fluid or air bonnet conform to the surface [1]. They lack rigidity and provide little natural smoothing effect. We present a rigidity controllable polishing tool that uses a kind of magnetorheological elastomers (MRE) medium [2]. It provides the ability of both conforming to the aspheric surface and maintaining natural smoothing effect. What's more, its rigidity can be controlled by the magnetic field. This paper will present the design, analysis, and stiffness variation mechanism model of such polishing tool [3].

  13. Vestibular responses in the macaque pedunculopontine nucleus and central mesencephalic reticular formation.

    PubMed

    Aravamuthan, B R; Angelaki, D E

    2012-10-25

    The pedunculopontine nucleus (PPN) and central mesencephalic reticular formation (cMRF) both send projections and receive input from areas with known vestibular responses. Noting their connections with the basal ganglia, the locomotor disturbances that occur following lesions of the PPN or cMRF, and the encouraging results of PPN deep brain stimulation in Parkinson's disease patients, both the PPN and cMRF have been linked to motor control. In order to determine the existence of and characterize vestibular responses in the PPN and cMRF, we recorded single neurons from both structures during vertical and horizontal rotation, translation, and visual pursuit stimuli. The majority of PPN cells (72.5%) were vestibular-only (VO) cells that responded exclusively to rotation and translation stimuli but not visual pursuit. Visual pursuit responses were much more prevalent in the cMRF (57.1%) though close to half of cMRF cells were VO cells (41.1%). Directional preferences also differed between the PPN, which was preferentially modulated during nose-down pitch, and cMRF, which was preferentially modulated during ipsilateral yaw rotation. Finally, amplitude responses were similar between the PPN and cMRF during rotation and pursuit stimuli, but PPN responses to translation were of higher amplitude than cMRF responses. Taken together with their connections to the vestibular circuit, these results implicate the PPN and cMRF in the processing of vestibular stimuli and suggest important roles for both in responding to motion perturbations like falls and turns. Copyright © 2012 IBRO. Published by Elsevier Ltd. All rights reserved.

  14. Anatomical evidence that the superior colliculus controls saccades through central mesencephalic reticular formation gating of omnipause neuron activity.

    PubMed

    Wang, Niping; Perkins, Eddie; Zhou, Lan; Warren, Susan; May, Paul J

    2013-10-09

    Omnipause neurons (OPNs) within the nucleus raphe interpositus (RIP) help gate the transition between fixation and saccadic eye movements by monosynaptically suppressing activity in premotor burst neurons during fixation, and releasing them during saccades. Premotor neuron activity is initiated by excitatory input from the superior colliculus (SC), but how the tectum's saccade-related activity turns off OPNs is not known. Since the central mesencephalic reticular formation (cMRF) is a major SC target, we explored whether this nucleus has the appropriate connections to support tectal gating of OPN activity. In dual-tracer experiments undertaken in macaque monkeys (Macaca fascicularis), cMRF neurons labeled retrogradely from injections into RIP had numerous anterogradely labeled terminals closely associated with them following SC injections. This suggested the presence of an SC-cMRF-RIP pathway. Furthermore, anterograde tracers injected into the cMRF of other macaques labeled axonal terminals in RIP, confirming this cMRF projection. To determine whether the cMRF projections gate OPN activity, postembedding electron microscopic immunochemistry was performed on anterogradely labeled cMRF terminals with antibody to GABA or glycine. Of the terminals analyzed, 51.4% were GABA positive, 35.5% were GABA negative, and most contacted glycinergic cells. In summary, a trans-cMRF pathway connecting the SC to the RIP is present. This pathway contains inhibitory elements that could help gate omnipause activity and allow other tectal drives to induce the bursts of firing in premotor neurons that are necessary for saccades. The non-GABAergic cMRF terminals may derive from fixation units in the cMRF.

  15. 31 P magnetic resonance fingerprinting for rapid quantification of creatine kinase reaction rate in vivo.

    PubMed

    Wang, Charlie Y; Liu, Yuchi; Huang, Shuying; Griswold, Mark A; Seiberlich, Nicole; Yu, Xin

    2017-12-01

    The purpose of this work was to develop a 31 P spectroscopic magnetic resonance fingerprinting (MRF) method for fast quantification of the chemical exchange rate between phosphocreatine (PCr) and adenosine triphosphate (ATP) via creatine kinase (CK). A 31 P MRF sequence (CK-MRF) was developed to quantify the forward rate constant of ATP synthesis via CK ( kfCK), the T 1 relaxation time of PCr ( T1PCr), and the PCr-to-ATP concentration ratio ( MRPCr). The CK-MRF sequence used a balanced steady-state free precession (bSSFP)-type excitation with ramped flip angles and a unique saturation scheme sensitive to the exchange between PCr and γATP. Parameter estimation was accomplished by matching the acquired signals to a dictionary generated using the Bloch-McConnell equation. Simulation studies were performed to examine the susceptibility of the CK-MRF method to several potential error sources. The accuracy of nonlocalized CK-MRF measurements before and after an ischemia-reperfusion (IR) protocol was compared with the magnetization transfer (MT-MRS) method in rat hindlimb at 9.4 T (n = 14). The reproducibility of CK-MRF was also assessed by comparing CK-MRF measurements with both MT-MRS (n = 17) and four angle saturation transfer (FAST) (n = 7). Simulation results showed that CK-MRF quantification of kfCK was robust, with less than 5% error in the presence of model inaccuracies including dictionary resolution, metabolite T 2 values, inorganic phosphate metabolism, and B 1 miscalibration. Estimation of kfCK by CK-MRF (0.38 ± 0.02 s -1 at baseline and 0.42 ± 0.03 s -1 post-IR) showed strong agreement with MT-MRS (0.39 ± 0.03 s -1 at baseline and 0.44 ± 0.04 s -1 post-IR). kfCK estimation was also similar between CK-MRF and FAST (0.38 ± 0.02 s -1 for CK-MRF and 0.38 ± 0.11 s -1 for FAST). The coefficient of variation from 20 s CK-MRF quantification of kfCK was 42% of that by 150 s MT-MRS acquisition and was 12% of that by 20 s FAST acquisition. This study demonstrates the potential of a 31 P spectroscopic MRF framework for rapid, accurate and reproducible quantification of chemical exchange rate of CK in vivo. Copyright © 2017 John Wiley & Sons, Ltd.

  16. Reticular Formation Connections Underlying Horizontal Gaze: The Central Mesencephalic Reticular Formation (cMRF) as a Conduit for the Collicular Saccade Signal.

    PubMed

    Wang, Niping; Perkins, Eddie; Zhou, Lan; Warren, Susan; May, Paul J

    2017-01-01

    The central mesencephalic reticular formation (cMRF) occupies much of the core of the midbrain tegmentum. Physiological studies indicate that it is involved in controlling gaze changes, particularly horizontal saccades. Anatomically, it receives input from the ipsilateral superior colliculus (SC) and it has downstream projections to the brainstem, including the horizontal gaze center located in the paramedian pontine reticular formation (PPRF). Consequently, it has been hypothesized that the cMRF plays a role in the spatiotemporal transformation needed to convert spatially coded collicular saccade signals into the temporally coded signals utilized by the premotor neurons of the horizontal gaze center. In this study, we used neuroanatomical tracers to examine the patterns of connectivity of the cMRF in macaque monkeys in order to determine whether the circuit organization supports this hypothesis. Since stimulation of the cMRF produces contraversive horizontal saccades and stimulation of the horizontal gaze center produces ipsiversive saccades, this would require an excitatory cMRF projection to the contralateral PPRF. Injections of anterograde tracers into the cMRF did produce labeled terminals within the PPRF. However, the terminations were denser ipsilaterally. Since the PPRF located contralateral to the movement direction is generally considered to be silent during a horizontal saccade, we then tested the hypothesis that this ipsilateral reticuloreticular pathway might be inhibitory. The ultrastructure of ipsilateral terminals was heterogeneous, with some displaying more extensive postsynaptic densities than others. Postembedding immunohistochemistry for gamma-aminobutyric acid (GABA) indicated that only a portion (35%) of these cMRF terminals are GABAergic. Dual tracer experiments were undertaken to determine whether the SC provides input to cMRF reticuloreticular neurons projecting to the ipsilateral pons. Retrogradely labeled reticuloreticular neurons were predominantly distributed in the ipsilateral cMRF. Anterogradely labeled tectal terminals were observed in close association with a portion of these retrogradely labeled reticuloreticular neurons. Taken together, these results suggest that the SC does have connections with reticuloreticular neurons in the cMRF. However, the predominantly excitatory nature of the ipsilateral reticuloreticular projection argues against the hypothesis that this cMRF pathway is solely responsible for producing a spatiotemporal transformation of the collicular saccade signal.

  17. Manufacturing aspheric mirrors made of zero thermal expansion cordierite ceramics using Magnetorheological Finishing (MRF)

    NASA Astrophysics Data System (ADS)

    Sugawara, Jun; Maloney, Chris

    2016-07-01

    NEXCERATM cordierite ceramics, which have ultra-low thermal expansion properties, are perfect candidate materials to be used for light-weight satellite mirrors that are used for geostationary earth observation and for mirrors used in ground-based astronomical metrology. To manufacture the high precision aspheric shapes required, the deterministic aspherization and figure correction capabilities of Magnetorheological Finishing (MRF) are tested. First, a material compatibility test is performed to determine the best method for achieving the lowest surface roughness of RMS 0.8nm on plano surfaces made of NEXCERATM ceramics. Secondly, we will use MRF to perform high precision figure correction and to induce a hyperbolic shape into a conventionally polished 100mm diameter sphere.

  18. MR fingerprinting Deep RecOnstruction NEtwork (DRONE).

    PubMed

    Cohen, Ouri; Zhu, Bo; Rosen, Matthew S

    2018-09-01

    Demonstrate a novel fast method for reconstruction of multi-dimensional MR fingerprinting (MRF) data using deep learning methods. A neural network (NN) is defined using the TensorFlow framework and trained on simulated MRF data computed with the extended phase graph formalism. The NN reconstruction accuracy for noiseless and noisy data is compared to conventional MRF template matching as a function of training data size and is quantified in simulated numerical brain phantom data and International Society for Magnetic Resonance in Medicine/National Institute of Standards and Technology phantom data measured on 1.5T and 3T scanners with an optimized MRF EPI and MRF fast imaging with steady state precession (FISP) sequences with spiral readout. The utility of the method is demonstrated in a healthy subject in vivo at 1.5T. Network training required 10 to 74 minutes; once trained, data reconstruction required approximately 10 ms for the MRF EPI and 76 ms for the MRF FISP sequence. Reconstruction of simulated, noiseless brain data using the NN resulted in a RMS error (RMSE) of 2.6 ms for T 1 and 1.9 ms for T 2 . The reconstruction error in the presence of noise was less than 10% for both T 1 and T 2 for SNR greater than 25 dB. Phantom measurements yielded good agreement (R 2  = 0.99/0.99 for MRF EPI T 1 /T 2 and 0.94/0.98 for MRF FISP T 1 /T 2 ) between the T 1 and T 2 estimated by the NN and reference values from the International Society for Magnetic Resonance in Medicine/National Institute of Standards and Technology phantom. Reconstruction of MRF data with a NN is accurate, 300- to 5000-fold faster, and more robust to noise and dictionary undersampling than conventional MRF dictionary-matching. © 2018 International Society for Magnetic Resonance in Medicine.

  19. Cat's medullary reticulospinal and subnucleus reticularis dorsalis noxious neurons form a coupled neural circuit through collaterals of descending axons

    PubMed Central

    Leiras, Roberto; Martín-Cora, Francisco; Velo, Patricia; Liste, Tania

    2015-01-01

    Animals and human beings sense and react to real/potential dangerous stimuli. However, the supraspinal mechanisms relating noxious sensing and nocifensive behavior are mostly unknown. The collateralization and spatial organization of interrelated neurons are important determinants of coordinated network function. Here we electrophysiologically studied medial medullary reticulospinal neurons (mMRF-RSNs) antidromically identified from the cervical cord of anesthetized cats and found that 1) more than 40% (79/183) of the sampled mMRF-RSNs emitted bifurcating axons running within the dorsolateral (DLF) and ventromedial (VMF) ipsilateral fascicles; 2) more than 50% (78/151) of the tested mMRF-RSNs with axons running in the VMF collateralized to the subnucleus reticularis dorsalis (SRD) that also sent ipsilateral descending fibers bifurcating within the DLF and the VMF. This percentage of mMRF collateralization to the SRD increased to more than 81% (53/65) when considering the subpopulation of mMRF-RSNs responsive to noxiously heating the skin; 3) reciprocal monosynaptic excitatory relationships were electrophysiologically demonstrated between noxious sensitive mMRF-RSNs and SRD cells; and 4) injection of the anterograde tracer Phaseolus vulgaris leucoagglutinin evidenced mMRF to SRD and SRD to mMRF projections contacting the soma and proximal dendrites. The data demonstrated a SRD-mMRF network interconnected mainly through collaterals of descending axons running within the VMF, with the subset of noxious sensitive cells forming a reverberating circuit probably amplifying mutual outputs simultaneously regulating motor activity and spinal noxious afferent input. The results provide evidence that noxious stimulation positively engages a reticular SRD-mMRF-SRD network involved in pain-sensory-to-motor transformation and modulation. PMID:26581870

  20. Dorsal and ventral aspects of the most caudal medullary reticular formation have differential roles in modulation and formation of the respiratory motor pattern in rat.

    PubMed

    Jones, Sarah E; Stanić, Davor; Dutschmann, Mathias

    2016-12-01

    The respiratory pattern generator of mammals is anatomically organized in lateral respiratory columns (LRCs) within the brainstem. LRC compartments serve specific functions in respiratory pattern and rhythm generation. While the caudal medullary reticular formation (cMRF) has respiratory functions reportedly related to the mediation of expulsive respiratory reflexes, it remains unclear whether neurons of the cMRF functionally belong to the LRC. In the present study we specifically investigated the respiratory functions of the cMRF. Tract tracing shows that the cMRF has substantial connectivity with key compartments of the LRC, particularly the parafacial respiratory group and the Kölliker-Fuse nuclei. These neurons have a loose topography and are located in the ventral and dorsal cMRF. Systematic mapping of the cMRF with glutamate stimulation revealed potent respiratory modulation of the respiratory motor pattern from both dorsal and ventral injection sites. Pharmacological inhibition of the cMRF with the GABA-receptor agonist isoguvacine produced significant and robust changes to the baseline respiratory motor pattern (decreased laryngeal post-inspiratory and abdominal expiratory motor activity, delayed inspiratory off-switch and increased respiratory frequency) after dorsal cMRF injection, while ventral injections had no effect. The present data indicate that the ventral cMRF is not an integral part of the respiratory pattern generator and merely serves as a relay for sensory and/or higher command-related modulation of respiration. On the contrary, the dorsal aspect of the cMRF clearly has a functional role in respiratory pattern formation. These findings revive the largely abandoned concept of a dorsal respiratory group that contributes to the generation of the respiratory motor pattern.

  1. Multiscale reconstruction for MR fingerprinting.

    PubMed

    Pierre, Eric Y; Ma, Dan; Chen, Yong; Badve, Chaitra; Griswold, Mark A

    2016-06-01

    To reduce the acquisition time needed to obtain reliable parametric maps with Magnetic Resonance Fingerprinting. An iterative-denoising algorithm is initialized by reconstructing the MRF image series at low image resolution. For subsequent iterations, the method enforces pixel-wise fidelity to the best-matching dictionary template then enforces fidelity to the acquired data at slightly higher spatial resolution. After convergence, parametric maps with desirable spatial resolution are obtained through template matching of the final image series. The proposed method was evaluated on phantom and in vivo data using the highly undersampled, variable-density spiral trajectory and compared with the original MRF method. The benefits of additional sparsity constraints were also evaluated. When available, gold standard parameter maps were used to quantify the performance of each method. The proposed approach allowed convergence to accurate parametric maps with as few as 300 time points of acquisition, as compared to 1000 in the original MRF work. Simultaneous quantification of T1, T2, proton density (PD), and B0 field variations in the brain was achieved in vivo for a 256 × 256 matrix for a total acquisition time of 10.2 s, representing a three-fold reduction in acquisition time. The proposed iterative multiscale reconstruction reliably increases MRF acquisition speed and accuracy. Magn Reson Med 75:2481-2492, 2016. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  2. History of magnetorheological finishing

    NASA Astrophysics Data System (ADS)

    Harris, Daniel C.

    2011-06-01

    Magnetorheological finishing (MRF) is a deterministic method for producing complex optics with figure accuracy <50 nm and surface roughness <1 nm. MRF was invented at the Luikov Institute of Heat and Mass Transfer in Minsk, Belarus in the late 1980s by a team led by William Kordonski. When the Soviet Union opened up, New York businessman Lowell Mintz was invited to Minsk in 1990 to explore possibilities for technology transfer. Mintz was told of the potential for MRF, but did not understand whether it had value. Mintz was referred to Harvey Pollicove at the Center for Optics Manufacturing of the University of Rochester. As a result of their conversation, they sent Prof. Steve Jacobs to visit Minsk and evaluate MRF. From Jacobs' positive findings, and with support from Lowell Mintz, Kordonski and his colleagues were invited in 1993 to work at the Center for Optics Manufacturing with Jacobs and Don Golini to refine MRF technology. A "preprototype" finishing machine was operating by 1994. Prof. Greg Forbes and doctoral student Paul Dumas developed algorithms for deterministic control of MRF. In 1996, Golini recognized the commercial potential of MRF, secured investment capital from Lowell Mintz, and founded QED Technologies. The first commercial MRF machine was unveiled in 1998. It was followed by more advanced models and by groundbreaking subaperture stitching interferometers for metrology. In 2006, QED was acquired by and became a division of Cabot Microelectronics. This paper recounts the history of the development of MRF and the founding of QED Technologies.

  3. Feed-forward and feedback projections of midbrain reticular formation neurons in the cat

    PubMed Central

    Perkins, Eddie; May, Paul J.; Warren, Susan

    2014-01-01

    Gaze changes involving the eyes and head are orchestrated by brainstem gaze centers found within the superior colliculus (SC), paramedian pontine reticular formation (PPRF), and medullary reticular formation (MdRF). The mesencephalic reticular formation (MRF) also plays a role in gaze. It receives a major input from the ipsilateral SC and contains cells that fire in relation to gaze changes. Moreover, it provides a feedback projection to the SC and feed-forward projections to the PPRF and MdRF. We sought to determine whether these MRF feedback and feed-forward projections originate from the same or different neuronal populations by utilizing paired fluorescent retrograde tracers in cats. Specifically, we tested: 1. whether MRF neurons that control eye movements form a single population by injecting the SC and PPRF with different tracers, and 2. whether MRF neurons that control head movements form a single population by injecting the SC and MdRF with different tracers. In neither case were double labeled neurons observed, indicating that feedback and feed-forward projections originate from separate MRF populations. In both cases, the labeled reticulotectal and reticuloreticular neurons were distributed bilaterally in the MRF. However, neurons projecting to the MdRF were generally constrained to the medial half of the MRF, while those projecting to the PPRF, like MRF reticulotectal neurons, were spread throughout the mediolateral axis. Thus, the medial MRF may be specialized for control of head movements, with control of eye movements being more widespread in this structure. PMID:24454280

  4. Feed-forward and feedback projections of midbrain reticular formation neurons in the cat.

    PubMed

    Perkins, Eddie; May, Paul J; Warren, Susan

    2014-01-10

    Gaze changes involving the eyes and head are orchestrated by brainstem gaze centers found within the superior colliculus (SC), paramedian pontine reticular formation (PPRF), and medullary reticular formation (MdRF). The mesencephalic reticular formation (MRF) also plays a role in gaze. It receives a major input from the ipsilateral SC and contains cells that fire in relation to gaze changes. Moreover, it provides a feedback projection to the SC and feed-forward projections to the PPRF and MdRF. We sought to determine whether these MRF feedback and feed-forward projections originate from the same or different neuronal populations by utilizing paired fluorescent retrograde tracers in cats. Specifically, we tested: 1. whether MRF neurons that control eye movements form a single population by injecting the SC and PPRF with different tracers, and 2. whether MRF neurons that control head movements form a single population by injecting the SC and MdRF with different tracers. In neither case were double labeled neurons observed, indicating that feedback and feed-forward projections originate from separate MRF populations. In both cases, the labeled reticulotectal and reticuloreticular neurons were distributed bilaterally in the MRF. However, neurons projecting to the MdRF were generally constrained to the medial half of the MRF, while those projecting to the PPRF, like MRF reticulotectal neurons, were spread throughout the mediolateral axis. Thus, the medial MRF may be specialized for control of head movements, with control of eye movements being more widespread in this structure.

  5. Northeast Artificial Intelligence Consortium Annual Report for 1987. Volume 4. Research in Automated Photointerpretation

    DTIC Science & Technology

    1989-03-01

    KOWLEDGE INFERENCE IMAGE DAAAEENGINE DATABASE Automated Photointerpretation Testbed. 4.1.7 Fig. .1.1-2 An Initial Segmentation of an Image / zx...MRF) theory provide a powerful alternative texture model and have resulted in intensive research activity in MRF model- based texture analysis...interpretation process. 5. Additional, and perhaps more powerful , features have to be incorporated into the image segmentation procedure. 6. Object detection

  6. A Magnetorheological Polishing-Based Approach for Studying Precision Microground Surfaces of Tungsten Materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shafrir, S.N.; Lambropoulos, J.C.; Jacobs, S.D.

    2007-03-23

    Surface features of tungsten carbide composites processed by bound abrasive deterministic microgrinding and magnetorheological finishing (MRF) were studied for five WC-Ni composites, including one binderless material. All the materials studied were nonmagnetic with different microstructures and mechanical properties. White-light interferometry, scanning electron microscopy, and atomic force microscopy were used to characterize the surfaces after various grinding steps, surface etching, and MRF spot-taking.

  7. Novel MRF fluid for ultra-low roughness optical surfaces

    NASA Astrophysics Data System (ADS)

    Dumas, Paul; McFee, Charles

    2014-08-01

    Over the past few years there have been an increasing number of applications calling for ultra-low roughness (ULR) surfaces. A critical demand has been driven by EUV optics, EUV photomasks, X-Ray, and high energy laser applications. Achieving ULR results on complex shapes like aspheres and X-Ray mirrors is extremely challenging with conventional polishing techniques. To achieve both tight figure and roughness specifications, substrates typically undergo iterative global and local polishing processes. Typically the local polishing process corrects the figure or flatness but cannot achieve the required surface roughness, whereas the global polishing process produces the required roughness but degrades the figure. Magnetorheological Finishing (MRF) is a local polishing technique based on a magnetically-sensitive fluid that removes material through a shearing mechanism with minimal normal load, thus removing sub-surface damage. The lowest surface roughness produced by current MRF is close to 3 Å RMS. A new ULR MR fluid uses a nano-based cerium as the abrasive in a proprietary aqueous solution, the combination of which reliably produces under 1.5Å RMS roughness on Fused Silica as measured by atomic force microscopy. In addition to the highly convergent figure correction achieved with MRF, we show results of our novel MR fluid achieving <1.5Å RMS roughness on fused silica and other materials.

  8. Fine figure correction and other applications using novel MRF fluid designed for ultra-low roughness

    NASA Astrophysics Data System (ADS)

    Maloney, Chris; Oswald, Eric S.; Dumas, Paul

    2015-10-01

    An increasing number of technologies require ultra-low roughness (ULR) surfaces. Magnetorheological Finishing (MRF) is one of the options for meeting the roughness specifications for high-energy laser, EUV and X-ray applications. A novel MRF fluid, called C30, has been developed to finish surfaces to ULR. This novel MRF fluid is able to achieve <1.5Å RMS roughness on fused silica and other materials, but has a lower material removal rate with respect to other MRF fluids. As a result of these properties, C30 can also be used for applications in addition to finishing ULR surfaces. These applications include fine figure correction, figure correcting extremely soft materials and removing cosmetic defects. The effectiveness of these new applications is explored through experimental data. The low removal rate of C30 gives MRF the capability to fine figure correct low amplitude errors that are usually difficult to correct with higher removal rate fluids. The ability to figure correct extremely soft materials opens up MRF to a new realm of materials that are difficult to polish. C30 also offers the ability to remove cosmetic defects that often lead to failure during visual quality inspections. These new applications for C30 expand the niche in which MRF is typically used for.

  9. Penalized Weighted Least-Squares Approach to Sinogram Noise Reduction and Image Reconstruction for Low-Dose X-Ray Computed Tomography

    PubMed Central

    Wang, Jing; Li, Tianfang; Lu, Hongbing; Liang, Zhengrong

    2006-01-01

    Reconstructing low-dose X-ray CT (computed tomography) images is a noise problem. This work investigated a penalized weighted least-squares (PWLS) approach to address this problem in two dimensions, where the WLS considers first- and second-order noise moments and the penalty models signal spatial correlations. Three different implementations were studied for the PWLS minimization. One utilizes a MRF (Markov random field) Gibbs functional to consider spatial correlations among nearby detector bins and projection views in sinogram space and minimizes the PWLS cost function by iterative Gauss-Seidel algorithm. Another employs Karhunen-Loève (KL) transform to de-correlate data signals among nearby views and minimizes the PWLS adaptively to each KL component by analytical calculation, where the spatial correlation among nearby bins is modeled by the same Gibbs functional. The third one models the spatial correlations among image pixels in image domain also by a MRF Gibbs functional and minimizes the PWLS by iterative successive over-relaxation algorithm. In these three implementations, a quadratic functional regularization was chosen for the MRF model. Phantom experiments showed a comparable performance of these three PWLS-based methods in terms of suppressing noise-induced streak artifacts and preserving resolution in the reconstructed images. Computer simulations concurred with the phantom experiments in terms of noise-resolution tradeoff and detectability in low contrast environment. The KL-PWLS implementation may have the advantage in terms of computation for high-resolution dynamic low-dose CT imaging. PMID:17024831

  10. Model of the material removal function and an experimental study on a magnetorheological finishing process using a small ball-end permanent-magnet polishing head.

    PubMed

    Chen, Mingjun; Liu, Henan; Cheng, Jian; Yu, Bo; Fang, Zhen

    2017-07-01

    In order to achieve the deterministic finishing of optical components with concave surfaces of a curvature radius less than 10 mm, a novel magnetorheological finishing (MRF) process using a small ball-end permanent-magnet polishing head with a diameter of 4 mm is introduced. The characteristics of material removal in the proposed MRF process are studied. The model of the material removal function for the proposed MRF process is established based on the three-dimensional hydrodynamics analysis and Preston's equation. The shear stress on the workpiece surface is calculated by means of resolving the presented mathematical model using a numerical solution method. The analysis result reveals that the material removal in the proposed MRF process shows a positive dependence on shear stress. Experimental research is conducted to investigate the effect of processing parameters on the material removal rate and improve the surface accuracy of a typical rotational symmetrical optical component. The experimental results show that the surface accuracy of the finished component of K9 glass material has been improved to 0.14 μm (PV) from the initial 0.8 μm (PV), and the finished surface roughness Ra is 0.0024 μm. It indicates that the proposed MRF process can be used to achieve the deterministic removal of surface material and perform the nanofinishing of small curvature radius concave surfaces.

  11. Tablets at the bedside - iPad-based visual field test used in the diagnosis of Intrasellar Haemangiopericytoma: a case report.

    PubMed

    Nesaratnam, Nisha; Thomas, Peter B M; Kirollos, Ramez; Vingrys, Algis J; Kong, George Y X; Martin, Keith R

    2017-04-24

    In the assessment of a pituitary mass, objective visual field testing represents a valuable means of evaluating mass effect, and thus in deciding whether surgical management is warranted. In this vignette, we describe a 73 year-old lady who presented with a three-week history of frontal headache, and 'blurriness' in the left side of her vision, due to a WHO grade III anaplastic haemangiopericytoma compressing the optic chiasm. We report how timely investigations, including an iPad-based visual field test (Melbourne Rapid Field, (MRF)) conducted at the bedside aided swift and appropriate management of the patient. We envisage such a test having a role in assessing bed-bound patients in hospital where access to formal visual field testing is difficult, or indeed in rapid testing of visual fields at the bedside to screen for post-operative complications, such as haematoma.

  12. Magnetic resonance fingerprinting using echo-planar imaging: Joint quantification of T1 and T2∗ relaxation times.

    PubMed

    Rieger, Benedikt; Zimmer, Fabian; Zapp, Jascha; Weingärtner, Sebastian; Schad, Lothar R

    2017-11-01

    To develop an implementation of the magnetic resonance fingerprinting (MRF) paradigm for quantitative imaging using echo-planar imaging (EPI) for simultaneous assessment of T 1 and T2∗. The proposed MRF method (MRF-EPI) is based on the acquisition of 160 gradient-spoiled EPI images with rapid, parallel-imaging accelerated, Cartesian readout and a measurement time of 10 s per slice. Contrast variation is induced using an initial inversion pulse, and varying the flip angles, echo times, and repetition times throughout the sequence. Joint quantification of T 1 and T2∗ is performed using dictionary matching with integrated B1+ correction. The quantification accuracy of the method was validated in phantom scans and in vivo in 6 healthy subjects. Joint T 1 and T2∗ parameter maps acquired with MRF-EPI in phantoms are in good agreement with reference measurements, showing deviations under 5% and 4% for T 1 and T2∗, respectively. In vivo baseline images were visually free of artifacts. In vivo relaxation times are in good agreement with gold-standard techniques (deviation T 1 : 4 ± 2%, T2∗: 4 ± 5%). The visual quality was comparable to the in vivo gold standard, despite substantially shortened scan times. The proposed MRF-EPI method provides fast and accurate T 1 and T2∗ quantification. This approach offers a rapid supplement to the non-Cartesian MRF portfolio, with potentially increased usability and robustness. Magn Reson Med 78:1724-1733, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  13. Suppression of bulboreticular unit responses to noxious stimuli by analgesic mesencephalic stimulation.

    PubMed

    Morrow, T J; Casey, K L

    1983-01-01

    The responses of 302 neurons in the medial medullary reticular formation (MRF) to a variety of noxious and innocuous somatic stimuli were studied in anesthetized and awake rats. In addition, the effects of analgesic electrical stimulation in the mesencephalon (MES) on unit responses were examined. Tail shock was the most effective stimulus, exciting more than 80% of all units recorded. This stimulus was considered separately during data analysis, since it could not be classified as noxious or innocuous. Noxious somatic stimuli (including pinch, firm pressure, pin prick, and radiant heating of the tail above 45 degrees C were especially effective in eliciting discharge in a significant fraction of all cells in both awake (123/205) and anesthetized (45/97) animals. Nociceptive neurons could be classified as nociceptive specific (NS) or wide dynamic range (WDR) depending on their responses to all somatic stimuli tested. Nociceptive neurons showed no preferential anatomical distribution. Most neurons, including those responsive to noxious inputs, exhibited large, often bilateral receptive fields which frequently covered the tail, one or more limbs, and extensive areas of the body or head. Electrical stimulation within or adjacent to the mesencephalic periaqueductal gray matter depressed the spontaneous and evoked discharge of MRF neurons in both acute and chronic preparations. This inhibition showed a significant preference (p less than 0.001, chi-square statistic) for units that were excited by somatic and especially noxious stimuli. No units were facilitated by MES stimulation. In the awake rat, unit suppression closely followed the time course and level of MES-induced analgesia. Excitability data from the acute experiments suggest that this response inhibition may be the result of a direct action on MRF neurons. Anesthesia severely depressed the spontaneous discharge of MRF neurons as well as the activity evoked by innocuous somatic stimulation. Our data suggest that analgesia produced by MES stimulation is at least in part due to the depression of MRF unit activity, and support the hypothesis that MRF neurons play a critical role in the mediation of behavioral responses to noxious stimuli.

  14. Anatomical Evidence that the Superior Colliculus Controls Saccades through Central Mesencephalic Reticular Formation Gating of Omnipause Neuron Activity

    PubMed Central

    Wang, Niping; Perkins, Eddie; Zhou, Lan; Warren, Susan

    2013-01-01

    Omnipause neurons (OPNs) within the nucleus raphe interpositus (RIP) help gate the transition between fixation and saccadic eye movements by monosynaptically suppressing activity in premotor burst neurons during fixation, and releasing them during saccades. Premotor neuron activity is initiated by excitatory input from the superior colliculus (SC), but how the tectum's saccade-related activity turns off OPNs is not known. Since the central mesencephalic reticular formation (cMRF) is a major SC target, we explored whether this nucleus has the appropriate connections to support tectal gating of OPN activity. In dual-tracer experiments undertaken in macaque monkeys (Macaca fascicularis), cMRF neurons labeled retrogradely from injections into RIP had numerous anterogradely labeled terminals closely associated with them following SC injections. This suggested the presence of an SC–cMRF–RIP pathway. Furthermore, anterograde tracers injected into the cMRF of other macaques labeled axonal terminals in RIP, confirming this cMRF projection. To determine whether the cMRF projections gate OPN activity, postembedding electron microscopic immunochemistry was performed on anterogradely labeled cMRF terminals with antibody to GABA or glycine. Of the terminals analyzed, 51.4% were GABA positive, 35.5% were GABA negative, and most contacted glycinergic cells. In summary, a trans-cMRF pathway connecting the SC to the RIP is present. This pathway contains inhibitory elements that could help gate omnipause activity and allow other tectal drives to induce the bursts of firing in premotor neurons that are necessary for saccades. The non-GABAergic cMRF terminals may derive from fixation units in the cMRF. PMID:24107960

  15. Afferent and efferent connections of the mesencephalic reticular formation in goldfish.

    PubMed

    Luque, M A; Pérez-Pérez, M P; Herrero, L; Torres, B

    2008-03-18

    The physiology of the mesencephalic reticular formation (MRF) in goldfish suggests its contribution to eye and body movements, but the afferent and efferent connections underlying such movements have not been determined. Therefore, we injected the bidirectional tracer biotinylated dextran amine into functionally identified MRF sites. We found retrogradely labelled neurons and anterogradely labelled boutons within nuclei of the following brain regions: (1) the telencephalon: a weak and reciprocal connectivity was confined to the central zone of area dorsalis and ventral nucleus of area ventralis; (2) the diencephalon: reciprocal connections were abundant in the ventral and dorsal thalamic nuclei; the central pretectal nucleus was also reciprocally wired with the MRF, but only boutons were present in the superficial pretectal nucleus; the preoptic and suprachiasmatic nuclei showed abundant neurons and boutons; the MRF was reciprocally connected with the preglomerular complex and the anterior tuberal nucleus; (3) the mesencephalon: neurons and boutons were abundant within deep tectal layers; reciprocal connections were also present within the torus semicircularis and the contralateral MRF; neurons were abundant within the nucleus isthmi; and (4) the rhombencephalon: the superior and middle parts of the reticular formation received strong projections from the MRF, while the projection to the inferior area was weaker; sparse neurons were present throughout the reticular formation; a reciprocal connectivity was observed with the sensory trigeminal nucleus; the medial and magnocellular nuclei of the octaval column projected to the MRF. These results support the participation of the MRF in the orienting response. The MRF could also be involved in other motor tasks triggered by visual, auditory, vestibular, or somatosensory signals.

  16. Reticular Formation Connections Underlying Horizontal Gaze: The Central Mesencephalic Reticular Formation (cMRF) as a Conduit for the Collicular Saccade Signal

    PubMed Central

    Wang, Niping; Perkins, Eddie; Zhou, Lan; Warren, Susan; May, Paul J.

    2017-01-01

    The central mesencephalic reticular formation (cMRF) occupies much of the core of the midbrain tegmentum. Physiological studies indicate that it is involved in controlling gaze changes, particularly horizontal saccades. Anatomically, it receives input from the ipsilateral superior colliculus (SC) and it has downstream projections to the brainstem, including the horizontal gaze center located in the paramedian pontine reticular formation (PPRF). Consequently, it has been hypothesized that the cMRF plays a role in the spatiotemporal transformation needed to convert spatially coded collicular saccade signals into the temporally coded signals utilized by the premotor neurons of the horizontal gaze center. In this study, we used neuroanatomical tracers to examine the patterns of connectivity of the cMRF in macaque monkeys in order to determine whether the circuit organization supports this hypothesis. Since stimulation of the cMRF produces contraversive horizontal saccades and stimulation of the horizontal gaze center produces ipsiversive saccades, this would require an excitatory cMRF projection to the contralateral PPRF. Injections of anterograde tracers into the cMRF did produce labeled terminals within the PPRF. However, the terminations were denser ipsilaterally. Since the PPRF located contralateral to the movement direction is generally considered to be silent during a horizontal saccade, we then tested the hypothesis that this ipsilateral reticuloreticular pathway might be inhibitory. The ultrastructure of ipsilateral terminals was heterogeneous, with some displaying more extensive postsynaptic densities than others. Postembedding immunohistochemistry for gamma-aminobutyric acid (GABA) indicated that only a portion (35%) of these cMRF terminals are GABAergic. Dual tracer experiments were undertaken to determine whether the SC provides input to cMRF reticuloreticular neurons projecting to the ipsilateral pons. Retrogradely labeled reticuloreticular neurons were predominantly distributed in the ipsilateral cMRF. Anterogradely labeled tectal terminals were observed in close association with a portion of these retrogradely labeled reticuloreticular neurons. Taken together, these results suggest that the SC does have connections with reticuloreticular neurons in the cMRF. However, the predominantly excitatory nature of the ipsilateral reticuloreticular projection argues against the hypothesis that this cMRF pathway is solely responsible for producing a spatiotemporal transformation of the collicular saccade signal. PMID:28487639

  17. Robust sliding-window reconstruction for Accelerating the acquisition of MR fingerprinting.

    PubMed

    Cao, Xiaozhi; Liao, Congyu; Wang, Zhixing; Chen, Ying; Ye, Huihui; He, Hongjian; Zhong, Jianhui

    2017-10-01

    To develop a method for accelerated and robust MR fingerprinting (MRF) with improved image reconstruction and parameter matching processes. A sliding-window (SW) strategy was applied to MRF, in which signal and dictionary matching was conducted between fingerprints consisting of mixed-contrast image series reconstructed from consecutive data frames segmented by a sliding window, and a precalculated mixed-contrast dictionary. The effectiveness and performance of this new method, dubbed SW-MRF, was evaluated in both phantom and in vivo. Error quantifications were conducted on results obtained with various settings of SW reconstruction parameters. Compared with the original MRF strategy, the results of both phantom and in vivo experiments demonstrate that the proposed SW-MRF strategy either provided similar accuracy with reduced acquisition time, or improved accuracy with equal acquisition time. Parametric maps of T 1 , T 2 , and proton density of comparable quality could be achieved with a two-fold or more reduction in acquisition time. The effect of sliding-window width on dictionary sensitivity was also estimated. The novel SW-MRF recovers high quality image frames from highly undersampled MRF data, which enables more robust dictionary matching with reduced numbers of data frames. This time efficiency may facilitate MRF applications in time-critical clinical settings. Magn Reson Med 78:1579-1588, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  18. Service-Oriented Node Scheduling Scheme for Wireless Sensor Networks Using Markov Random Field Model

    PubMed Central

    Cheng, Hongju; Su, Zhihuang; Lloret, Jaime; Chen, Guolong

    2014-01-01

    Future wireless sensor networks are expected to provide various sensing services and energy efficiency is one of the most important criterions. The node scheduling strategy aims to increase network lifetime by selecting a set of sensor nodes to provide the required sensing services in a periodic manner. In this paper, we are concerned with the service-oriented node scheduling problem to provide multiple sensing services while maximizing the network lifetime. We firstly introduce how to model the data correlation for different services by using Markov Random Field (MRF) model. Secondly, we formulate the service-oriented node scheduling issue into three different problems, namely, the multi-service data denoising problem which aims at minimizing the noise level of sensed data, the representative node selection problem concerning with selecting a number of active nodes while determining the services they provide, and the multi-service node scheduling problem which aims at maximizing the network lifetime. Thirdly, we propose a Multi-service Data Denoising (MDD) algorithm, a novel multi-service Representative node Selection and service Determination (RSD) algorithm, and a novel MRF-based Multi-service Node Scheduling (MMNS) scheme to solve the above three problems respectively. Finally, extensive experiments demonstrate that the proposed scheme efficiently extends the network lifetime. PMID:25384005

  19. Automatic lung tumor segmentation on PET/CT images using fuzzy Markov random field model.

    PubMed

    Guo, Yu; Feng, Yuanming; Sun, Jian; Zhang, Ning; Lin, Wang; Sa, Yu; Wang, Ping

    2014-01-01

    The combination of positron emission tomography (PET) and CT images provides complementary functional and anatomical information of human tissues and it has been used for better tumor volume definition of lung cancer. This paper proposed a robust method for automatic lung tumor segmentation on PET/CT images. The new method is based on fuzzy Markov random field (MRF) model. The combination of PET and CT image information is achieved by using a proper joint posterior probability distribution of observed features in the fuzzy MRF model which performs better than the commonly used Gaussian joint distribution. In this study, the PET and CT simulation images of 7 non-small cell lung cancer (NSCLC) patients were used to evaluate the proposed method. Tumor segmentations with the proposed method and manual method by an experienced radiation oncologist on the fused images were performed, respectively. Segmentation results obtained with the two methods were similar and Dice's similarity coefficient (DSC) was 0.85 ± 0.013. It has been shown that effective and automatic segmentations can be achieved with this method for lung tumors which locate near other organs with similar intensities in PET and CT images, such as when the tumors extend into chest wall or mediastinum.

  20. Zirconia coated carbonyl iron particle-based magnetorheological fluid for polishing

    NASA Astrophysics Data System (ADS)

    Shafrir, Shai N.; Romanofsky, Henry J.; Skarlinski, Michael; Wang, Mimi; Miao, Chunlin; Salzman, Sivan; Chartier, Taylor; Mici, Joni; Lambropoulos, John C.; Shen, Rui; Yang, Hong; Jacobs, Stephen D.

    2009-08-01

    Aqueous magnetorheological (MR) polishing fluids used in magnetorheological finishing (MRF) have a high solids concentration consisting of magnetic carbonyl iron particles and nonmagnetic polishing abrasives. The properties of MR polishing fluids are affected over time by corrosion of CI particles. Here we report on MRF spotting experiments performed on optical glasses using a zirconia coated carbonyl iron (CI) particle-based MR fluid. The zirconia coated magnetic CI particles were prepared via sol-gel synthesis in kg quantities. The coating layer was ~50-100 nm thick, faceted in surface structure, and well adhered. Coated particles showed long term stability against aqueous corrosion. "Free" nano-crystalline zirconia polishing abrasives were co-generated in the coating process, resulting in an abrasivecharged powder for MRF. A viable MR fluid was prepared simply by adding water. Spot polishing tests were performed on a variety of optical glasses over a period of 3 weeks with no signs of MR fluid degradation or corrosion. Stable material removal rates and smooth surfaces inside spots were obtained.

  1. Aircraft target detection algorithm based on high resolution spaceborne SAR imagery

    NASA Astrophysics Data System (ADS)

    Zhang, Hui; Hao, Mengxi; Zhang, Cong; Su, Xiaojing

    2018-03-01

    In this paper, an image classification algorithm for airport area is proposed, which based on the statistical features of synthetic aperture radar (SAR) images and the spatial information of pixels. The algorithm combines Gamma mixture model and MRF. The algorithm using Gamma mixture model to obtain the initial classification result. Pixel space correlation based on the classification results are optimized by the MRF technique. Additionally, morphology methods are employed to extract airport (ROI) region where the suspected aircraft target samples are clarified to reduce the false alarm and increase the detection performance. Finally, this paper presents the plane target detection, which have been verified by simulation test.

  2. Time efficient whole-brain coverage with MR Fingerprinting using slice-interleaved echo-planar-imaging.

    PubMed

    Rieger, Benedikt; Akçakaya, Mehmet; Pariente, José C; Llufriu, Sara; Martinez-Heras, Eloy; Weingärtner, Sebastian; Schad, Lothar R

    2018-04-27

    Magnetic resonance fingerprinting (MRF) is a promising method for fast simultaneous quantification of multiple tissue parameters. The objective of this study is to improve the coverage of MRF based on echo-planar imaging (MRF-EPI) by using a slice-interleaved acquisition scheme. For this, the MRF-EPI is modified to acquire several slices in a randomized interleaved manner, increasing the effective repetition time of the spoiled gradient echo readout acquisition in each slice. Per-slice matching of the signal-trace to a precomputed dictionary allows the generation of T 1 and T 2 * maps with integrated B 1 + correction. Subsequent compensation for the coil sensitivity profile and normalization to the cerebrospinal fluid additionally allows for quantitative proton density (PD) mapping. Numerical simulations are performed to optimize the number of interleaved slices. Quantification accuracy is validated in phantom scans and feasibility is demonstrated in-vivo. Numerical simulations suggest the acquisition of four slices as a trade-off between quantification precision and scan-time. Phantom results indicate good agreement with reference measurements (Difference T 1 : -2.4 ± 1.1%, T 2 *: -0.5 ± 2.5%, PD: -0.5 ± 7.2%). In-vivo whole-brain coverage of T 1 , T 2 * and PD with 32 slices was acquired within 3:36 minutes, resulting in parameter maps of high visual quality and comparable performance with single-slice MRF-EPI at 4-fold scan-time reduction.

  3. Research on reducing the edge effect in magnetorheological finishing.

    PubMed

    Hu, Hao; Dai, Yifan; Peng, Xiaoqiang; Wang, Jianmin

    2011-03-20

    The edge effect could not be avoided in most optical manufacturing methods based on the theory of computer controlled optical surfacing. The difference between the removal function at the workpiece edge and that inside it is also the primary cause for edge effect in magnetorheological finishing (MRF). The change of physical dimension and removal ratio of the removal function is investigated through experiments. The results demonstrate that the situation is different when MRF "spot" is at the leading edge or at the trailing edge. Two methods for reducing the edge effect are put into practice after analysis of the processing results. One is adopting a small removal function for dealing with the workpiece edge, and the other is utilizing the removal function compensation. The actual processing results show that these two ways are both effective on reducing the edge effect in MRF.

  4. Multiratio fusion change detection with adaptive thresholding

    NASA Astrophysics Data System (ADS)

    Hytla, Patrick C.; Balster, Eric J.; Vasquez, Juan R.; Neuroth, Robert M.

    2017-04-01

    A ratio-based change detection method known as multiratio fusion (MRF) is proposed and tested. The MRF framework builds on other change detection components proposed in this work: dual ratio (DR) and multiratio (MR). The DR method involves two ratios coupled with adaptive thresholds to maximize detected changes and minimize false alarms. The use of two ratios is shown to outperform the single ratio case when the means of the image pairs are not equal. MR change detection builds on the DR method by including negative imagery to produce four total ratios with adaptive thresholds. Inclusion of negative imagery is shown to improve detection sensitivity and to boost detection performance in certain target and background cases. MRF further expands this concept by fusing together the ratio outputs using a routine in which detections must be verified by two or more ratios to be classified as a true changed pixel. The proposed method is tested with synthetically generated test imagery and real datasets with results compared to other methods found in the literature. DR is shown to significantly outperform the standard single ratio method. MRF produces excellent change detection results that exhibit up to a 22% performance improvement over other methods from the literature at low false-alarm rates.

  5. Improvement of magnetorheological finishing surface quality by nanoparticle jet polishing

    NASA Astrophysics Data System (ADS)

    Peng, Wenqiang; Li, Shengyi; Guan, Chaoliang; Shen, Xinmin; Dai, Yifan; Wang, Zhuo

    2013-04-01

    Nanoparticle jet polishing (NJP) is presented as a posttreatment to remove magnetorheological finishing (MRF) marks. In the NJP process the material is removed by chemical impact reaction, and the material removal rate of convex part is larger than that of the concave part. Smoothing thus can progress automatically in the NJP process. In the experiment, a silica glass sample polished by MRF was polished by NJP. Experiment results showed the MRF marks were removed clearly. The uniform polishing process shows that the NJP process can remove the MRF marks without destroying the original surface figure. The surface root-mean-square roughness is improved from 0.72 to 0.41 nm. power spectral density analysis indicates the surface quality is improved, and the experimental result validates effective removal of MRF marks by NJP.

  6. Cost analysis for the implementation of a medication review with follow-up service in Spain.

    PubMed

    Noain, Aranzazu; Garcia-Cardenas, Victoria; Gastelurrutia, Miguel Angel; Malet-Larrea, Amaia; Martinez-Martinez, Fernando; Sabater-Hernandez, Daniel; Benrimoj, Shalom I

    2017-08-01

    Background Medication review with follow-up (MRF) is a professional pharmacy service proven to be cost-effective. Its broader implementation is limited, mainly due to the lack of evidence-based implementation programs that include economic and financial analysis. Objective To analyse the costs and estimate the price of providing and implementing MRF. Setting Community pharmacy in Spain. Method Elderly patients using poly-pharmacy received a community pharmacist-led MRF for 6 months. The cost analysis was based on the time-driven activity based costing model and included the provider costs, initial investment costs and maintenance expenses. The service price was estimated using the labour costs, costs associated with service provision, potential number of patients receiving the service and mark-up. Main outcome measures Costs and potential price of MRF. Results A mean time of 404.4 (SD 232.2) was spent on service provision and was extrapolated to annual costs. Service provider cost per patient ranged from €196 (SD 90.5) to €310 (SD 164.4). The mean initial investment per pharmacy was €4594 and the mean annual maintenance costs €3,068. Largest items contributing to cost were initial staff training, continuing education and renting of the patient counselling area. The potential service price ranged from €237 to €628 per patient a year. Conclusion Time spent by the service provider accounted for 75-95% of the final cost, followed by initial investment costs and maintenance costs. Remuneration for professional pharmacy services provision must cover service costs and appropriate profit, allowing for their long-term sustainability.

  7. The State of Melanoma: Challenges and Opportunities

    PubMed Central

    Merlino, Glenn; Herlyn, Meenhard; Fisher, David E.; Bastian, Boris C.; Flaherty, Keith T.; Davies, Michael A.; Wargo, Jennifer A.; Curiel-Lewandrowski, Clara; Weber, Michael J.; Leachman, Sancy A.; Soengas, Maria S.; McMahon, Martin; Harbour, J. William; Swetter, Susan M.; Aplin, Andrew E.; Atkins, Michael B.; Bosenberg, Marcus W.; Dummer, Reinhard; Gershenwald, Jeff; Halpern, Allan C.; Herlyn, Dorothee; Karakousis, Giorgos C.; Kirkwood, John M.; Krauthammer, Michael; Lo, Roger S.; Long, Georgina V.; McArthur, Grant; Ribas, Antoni; Schuchter, Lynn; Sosman, Jeffrey A.; Smalley, Keiran S.; Steeg, Patricia; Thomas, Nancy E.; Tsao, Hensin; Tueting, Thomas; Weeraratna, Ashani; Xu, George; Lomax, Randy; Martin, Alison; Silverstein, Steve; Turnham, Tim; Ronai, Ze’ev A.

    2017-01-01

    The Melanoma Research Foundation (MRF) has charted a comprehensive assessment of the current state of melanoma research and care. Intensive discussions among members of the MRF Scientific Advisory Council and Breakthrough Consortium, a group that included clinicians and scientists, focused on four thematic areas—diagnosis/early detection, prevention, tumor cell dormancy (including metastasis) and therapy (response and resistance). These discussions extended over the course of 2015 and culminated at the Society of Melanoma Research 2015 International Congress in November. Each of the four groups has outlined their thoughts per the current status, challenges and opportunities in the four respective areas. The current state and immediate and long-term needs of the melanoma field, from basic research to clinical management, are presented in the following report. PMID:27087480

  8. Imprinting high-gradient topographical structures onto optical surfaces using magnetorheological finishing: manufacturing corrective optical elements for high-power laser applications.

    PubMed

    Menapace, Joseph A; Ehrmann, Paul E; Bayramian, Andrew J; Bullington, Amber; Di Nicola, Jean-Michel G; Haefner, Constantin; Jarboe, Jeffrey; Marshall, Christopher; Schaffers, Kathleen I; Smith, Cal

    2016-07-01

    Corrective optical elements form an important part of high-precision optical systems. We have developed a method to manufacture high-gradient corrective optical elements for high-power laser systems using deterministic magnetorheological finishing (MRF) imprinting technology. Several process factors need to be considered for polishing ultraprecise topographical structures onto optical surfaces using MRF. They include proper selection of MRF removal function and wheel sizes, detailed MRF tool and interferometry alignment, and optimized MRF polishing schedules. Dependable interferometry also is a key factor in high-gradient component manufacture. A wavefront attenuating cell, which enables reliable measurement of gradients beyond what is attainable using conventional interferometry, is discussed. The results of MRF imprinting a 23 μm deep structure containing gradients over 1.6 μm / mm onto a fused-silica window are presented as an example of the technique's capabilities. This high-gradient element serves as a thermal correction plate in the high-repetition-rate advanced petawatt laser system currently being built at Lawrence Livermore National Laboratory.

  9. Imprinting high-gradient topographical structures onto optical surfaces using magnetorheological finishing: Manufacturing corrective optical elements for high-power laser applications

    DOE PAGES

    Menapace, Joseph A.; Ehrmann, Paul E.; Bayramian, Andrew J.; ...

    2016-03-15

    Corrective optical elements form an important part of high-precision optical systems. We have developed a method to manufacture high-gradient corrective optical elements for high-power laser systems using deterministic magnetorheological finishing (MRF) imprinting technology. Several process factors need to be considered for polishing ultraprecise topographical structures onto optical surfaces using MRF. They include proper selection of MRF removal function and wheel sizes, detailed MRF tool and interferometry alignment, and optimized MRF polishing schedules. Dependable interferometry also is a key factor in high-gradient component manufacture. A wavefront attenuating cell, which enables reliable measurement of gradients beyond what is attainable using conventional interferometry,more » is discussed. The results of MRF imprinting a 23 μm deep structure containing gradients over 1.6 μm / mm onto a fused-silica window are presented as an example of the technique’s capabilities. As a result, this high-gradient element serves as a thermal correction plate in the high-repetition-rate advanced petawatt laser system currently being built at Lawrence Livermore National Laboratory.« less

  10. Rapid and quantitative chemical exchange saturation transfer (CEST) imaging with magnetic resonance fingerprinting (MRF).

    PubMed

    Cohen, Ouri; Huang, Shuning; McMahon, Michael T; Rosen, Matthew S; Farrar, Christian T

    2018-05-13

    To develop a fast magnetic resonance fingerprinting (MRF) method for quantitative chemical exchange saturation transfer (CEST) imaging. We implemented a CEST-MRF method to quantify the chemical exchange rate and volume fraction of the N α -amine protons of L-arginine (L-Arg) phantoms and the amide and semi-solid exchangeable protons of in vivo rat brain tissue. L-Arg phantoms were made with different concentrations (25-100 mM) and pH (pH 4-6). The MRF acquisition schedule varied the saturation power randomly for 30 iterations (phantom: 0-6 μT; in vivo: 0-4 μT) with a total acquisition time of ≤2 min. The signal trajectories were pattern-matched to a large dictionary of signal trajectories simulated using the Bloch-McConnell equations for different combinations of exchange rate, exchangeable proton volume fraction, and water T 1 and T 2 relaxation times. The chemical exchange rates of the N α -amine protons of L-Arg were significantly (P < 0.0001) correlated with the rates measured with the quantitation of exchange using saturation power method. Similarly, the L-Arg concentrations determined using MRF were significantly (P < 0.0001) correlated with the known concentrations. The pH dependence of the exchange rate was well fit (R 2  = 0.9186) by a base catalyzed exchange model. The amide proton exchange rate measured in rat brain cortex (34.8 ± 11.7 Hz) was in good agreement with that measured previously with the water exchange spectroscopy method (28.6 ± 7.4 Hz). The semi-solid proton volume fraction was elevated in white (12.2 ± 1.7%) compared to gray (8.1 ± 1.1%) matter brain regions in agreement with previous magnetization transfer studies. CEST-MRF provides a method for fast, quantitative CEST imaging. © 2018 International Society for Magnetic Resonance in Medicine.

  11. Brain stem stimulation and the acetylcholine-evoked inhibition of neurones in the feline nucleus reticularis thalami

    PubMed Central

    Dingledine, Raymond; Kelly, J. S.

    1977-01-01

    1. In cats anaesthetized with halothane and nitrous oxide, the responses to iontophoretically applied acetylcholine (ACh) and to high-frequency stimulation of the mid-brain reticular formation (MRF) were tested on spontaneously active neurones in the nucleus reticularis thalami and underlying ventrobasal complex. 2. The initial response to MRF stimulation of 90% of the ACh-inhibited neurones found in the region of the dorsolateral nucleus reticularis was an inhibition. Conversely, the initial response of 82% of the ACh-excited neurones in the ventrobasal complex was an excitation. Neurones in the rostral pole of the nucleus reticularis were inhibited by both ACh and RMF stimulation. 3. The mean latency (and s.e. of mean) for the MRF-evoked inhibition was 13·7 ± 3·2 ms (n = 42) and that for the MRF-evoked excitation, 44.1 ± 4.2 ms (n = 35). 4. The ACh-evoked inhibitions were blocked by iontophoretic atropine, in doses that did not block amino acid-evoked inhibition. In twenty-four ACh-inhibited neurones the effect of iontophoretic atropine was tested on MRF-evoked inhibition. In all twenty-four neurones atropine had no effect on the early phase of MRF-evoked inhibition but weakly antagonized the late phase of inhibition in nine of fourteen neurones. 5. Interspike-interval histograms showed that the firing pattern of neurones in the nucleus reticularis was characterized by periods of prolonged, high-frequency bursting. Both the ACh-evoked inhibitions and the late phase of MRF-evoked inhibitions were accompanied by an increased burst activity. In contrast, iontophoretic atropine tended to suppress burst activity. 6. The possibility is discussed that electrical stimulation of the MRF activates an inhibitory cholinergic projection to the nucleus reticularis. Since neurones of the nucleus reticularis have been shown to inhibit thalamic relay cells, activation of this inhibitory pathway may play a role in MRF-evoked facilitation of thalamo-cortical relay transmission and the associated electrocortical desynchronization. PMID:915830

  12. Every photon counts: improving low, mid, and high-spatial frequency errors on astronomical optics and materials with MRF

    NASA Astrophysics Data System (ADS)

    Maloney, Chris; Lormeau, Jean Pierre; Dumas, Paul

    2016-07-01

    Many astronomical sensing applications operate in low-light conditions; for these applications every photon counts. Controlling mid-spatial frequencies and surface roughness on astronomical optics are critical for mitigating scattering effects such as flare and energy loss. By improving these two frequency regimes higher contrast images can be collected with improved efficiency. Classically, Magnetorheological Finishing (MRF) has offered an optical fabrication technique to correct low order errors as well has quilting/print-through errors left over in light-weighted optics from conventional polishing techniques. MRF is a deterministic, sub-aperture polishing process that has been used to improve figure on an ever expanding assortment of optical geometries, such as planos, spheres, on and off axis aspheres, primary mirrors and freeform optics. Precision optics are routinely manufactured by this technology with sizes ranging from 5-2,000mm in diameter. MRF can be used for form corrections; turning a sphere into an asphere or free form, but more commonly for figure corrections achieving figure errors as low as 1nm RMS while using careful metrology setups. Recent advancements in MRF technology have improved the polishing performance expected for astronomical optics in low, mid and high spatial frequency regimes. Deterministic figure correction with MRF is compatible with most materials, including some recent examples on Silicon Carbide and RSA905 Aluminum. MRF also has the ability to produce `perfectly-bad' compensating surfaces, which may be used to compensate for measured or modeled optical deformation from sources such as gravity or mounting. In addition, recent advances in MRF technology allow for corrections of mid-spatial wavelengths as small as 1mm simultaneously with form error correction. Efficient midspatial frequency corrections make use of optimized process conditions including raster polishing in combination with a small tool size. Furthermore, a novel MRF fluid, called C30, has been developed to finish surfaces to ultra-low roughness (ULR) and has been used as the low removal rate fluid required for fine figure correction of mid-spatial frequency errors. This novel MRF fluid is able to achieve <4Å RMS on Nickel-plated Aluminum and even <1.5Å RMS roughness on Silicon, Fused Silica and other materials. C30 fluid is best utilized within a fine figure correction process to target mid-spatial frequency errors as well as smooth surface roughness 'for free' all in one step. In this paper we will discuss recent advancements in MRF technology and the ability to meet requirements for precision optics in low, mid and high spatial frequency regimes and how improved MRF performance addresses the need for achieving tight specifications required for astronomical optics.

  13. Effects of microgravity on myogenic factor expressions during postnatal development of rat skeletal muscle

    NASA Technical Reports Server (NTRS)

    Inobe, Manabu; Inobe, Ikuko; Adams, Gregory R.; Baldwin, Kenneth M.; Takeda, Shin'Ichi

    2002-01-01

    To clarify the role of gravity in the postnatal development of skeletal muscle, we exposed neonatal rats at 7 days of age to microgravity. After 16 days of spaceflight, tibialis anterior, plantaris, medial gastrocnemius, and soleus muscles were removed from the hindlimb musculature and examined for the expression of MyoD-family transcription factors such as MyoD, myogenin, and MRF4. For this purpose, we established a unique semiquantitative method, based on RT-PCR, using specific primers tagged with infrared fluorescence. The relative expression of MyoD in the tibialis anterior and plantaris muscles and that of myogenin in the plantaris and soleus muscles were significantly reduced (P < 0.001) in the flight animals. In contrast, MRF4 expression was not changed in any muscle. These results suggest that MyoD and myogenin, but not MRF4, are sensitive to gravity-related stimuli in some skeletal muscles during postnatal development.

  14. Preparation of methoxyl poly(ethylene glycol) (MPEG)-coated carbonyl iron particles (CIPs) and their application in potassium dihydrogen phosphate (KDP) magnetorheological finishing (MRF)

    NASA Astrophysics Data System (ADS)

    Ji, Fang; Xu, Min; Wang, Baorui; Wang, Chao; Li, Xiaoyuan; Zhang, Yunfei; Zhou, Ming; Huang, Wen; Wei, Qilong; Tang, Guangping; He, Jianguo

    2015-10-01

    KDP is a common type of optics that is extremely difficult to polish by the conventional route. MRF is a local polishing technology based on material removal via shearing with minimal normal load and sub-surface damage. In contrast to traditional emendation on an abrasive, the MPEG soft coating is designed and prepared to modify the CIP surface to achieve a hardness matched with that of KDP because CIP inevitably takes part in the material removal during finishing. Morphology and infrared spectra are explored to prove the existence of homogeneous coating, and the improvement of MPEG for the polishing quality is validated by the analysis of roughness, turning grooves, and stress. The synthesized MPEG-coated CIP (MPEG-CIP) is chemically and physically compatible with KDP, which can be removed after cleaning. Our research exhibits the promising prospects of MPEG-CIP in KDP MRF.

  15. Research on the magnetorheological finishing of large aperture off-axis aspheric optical surfaces for zinc sulfide

    NASA Astrophysics Data System (ADS)

    Zhang, Yunfei; Huang, Wen; Zheng, Yongcheng; Ji, Fang; Xu, Min; Duan, Zhixin; Luo, Qing; Liu, Qian; Xiao, Hong

    2016-03-01

    Zinc sulfide is a kind of typical infrared optical material, commonly produced using single point diamond turning (SPDT). SPDT can efficiently produce zinc sulfide aspheric surfaces with micro-roughness and acceptable figure error. However the tool marks left by the diamond turning process cause high micro-roughness that degrades the optical performance when used in the visible region of the spectrum. Magnetorheological finishing (MRF) is a deterministic, sub-aperture polishing technology that is very helpful in improving both surface micro-roughness and surface figure.This paper mainly investigates the MRF technology of large aperture off-axis aspheric optical surfaces for zinc sulfide. The topological structure and coordinate transformation of a MRF machine tool PKC1200Q2 are analyzed and its kinematics is calculated, then the post-processing algorithm model of MRF for an optical lens is established. By taking the post-processing of off-axis aspheric surfacefor example, a post-processing algorithm that can be used for a raster tool path is deduced and the errors produced by the approximate treatment are analyzed. A polishing algorithm of trajectory planning and dwell time based on matrix equation and optimization theory is presented in this paper. Adopting this algorithm an experiment is performed to machining a large-aperture off-axis aspheric surface on the MRF machine developed by ourselves. After several times' polishing, the figure accuracy PV is proved from 3.3λ to 2.0λ and RMS from 0.451λ to 0.327λ. This algorithm is used to polish the other shapes including spheres, aspheres and prisms.

  16. Theoretical and experimental evaluation of the flow behavior of a magnetorheological damper using an extremely bimodal magnetic fluid

    NASA Astrophysics Data System (ADS)

    Iglesias, G. R.; Ahualli, S.; Echávarri Otero, J.; Fernández Ruiz-Morón, L.; Durán, J. D. G.

    2014-08-01

    The flow behavior of a magnetorheological (MR) fluid, consisting of iron particles dispersed in a ferrofluid carrier (‘MRFF’) in a commercial monotube MR shock absorber is studied. The magnetorheological properties of the MRFF suspensions are compared with those of a conventional oil-based MR fluid (‘MRF’). The mechanical behavior of the MR damper, filled with the MRFF or alternatively with the MRF, is characterized by means of different oscillatory force-displacement and force-velocity tests. The MR shock absorber has an internal electromagnet that generates a controlled magnetic field in the channels through which the MR suspensions flow under operation conditions. The results obtained indicate that the damper filled with MRFF shows a reliable and reproducible behavior. In particular, the response of the shock absorber can be controlled to a large extent by adjusting the electromagnetic current, showing a response that is independent of the mechanical and magnetic history of the MRFF. The non-linear hysteresis model proposed for predicting the damping force provides good agreement with the experimental results when the MRFF is employed. The improved response of the damper loaded with ferrofluid-based MRFF (instead of the conventional MRF) is explained considering the physical properties and the internal structure of the suspension.

  17. Development of magneto-rheologial fluid (MRF) based clutch for output torque control of AC motors

    NASA Astrophysics Data System (ADS)

    Nguyen, Q. Hung; Do, H. M. Hieu; Nguyen, V. Quoc; Nguyen, N. Diep; Le, D. Thang

    2018-03-01

    In industry, the AC motor is widely used because of low price, power availability, low cost maintenance. The main disadvantages of AC motors compared to DC motors are difficulty in speed and torque control, requiring expensive controllers with complex control algorithms. This is the basic limitations in the widespread adoption of AC motor systems for industrial automation. One feasible solution for AC motor control is using MRF (magneto-rheological fluid) based clutches (shortly called MR clutches) Although there have been many studies on MR clutches, most of these clutches used traditional configuration with coils wound on the middle cylindrical part and a compotator is used to supply power to the coils. Therefore, this type of MR clutches possesses many disadvantages such as high friction and unstable applied current due to commutator, complex structure which causes difficulty in manufacture, assembly, and maintenance. In addition, the bottleneck problem of magnetic field is also a challenging issue. In this research, we will develop a new type of MR clutches that overcomes the abovementioned disadvantages of traditional MR clutches and more suitable for application in controlling of AC motor. Besides, in this study, speed and torque control system for AC motors using developed MR clutches is designed and experimental validated.

  18. On the Role of the Pedunculopontine Nucleus and Mesencephalic Reticular Formation in Locomotion in Nonhuman Primates.

    PubMed

    Goetz, Laurent; Piallat, Brigitte; Bhattacharjee, Manik; Mathieu, Hervé; David, Olivier; Chabardès, Stéphan

    2016-05-04

    The mesencephalic reticular formation (MRF) is formed by the pedunculopontine and cuneiform nuclei, two neuronal structures thought to be key elements in the supraspinal control of locomotion, muscle tone, waking, and REM sleep. The role of MRF has also been advocated in modulation of state of arousal leading to transition from wakefulness to sleep and it is further considered to be a main player in the pathophysiology of gait disorders seen in Parkinson's disease. However, the existence of a mesencephalic locomotor region and of an arousal center has not yet been demonstrated in primates. Here, we provide the first extensive electrophysiological mapping of the MRF using extracellular recordings at rest and during locomotion in a nonhuman primate (NHP) (Macaca fascicularis) model of bipedal locomotion. We found different neuronal populations that discharged according to a phasic or a tonic mode in response to locomotion, supporting the existence of a locomotor neuronal circuit within these MRF in behaving primates. Altogether, these data constitute the first electrophysiological characterization of a locomotor neuronal system present within the MRF in behaving NHPs under normal conditions, in accordance with several studies done in different experimental animal models. We provide the first extensive electrophysiological mapping of the two major components of the mesencephalic reticular formation (MRF), namely the pedunculopontine and cuneiform nuclei. We exploited a nonhuman primate (NHP) model of bipedal locomotion with extracellular recordings in behaving NHPs at rest and during locomotion. Different MRF neuronal groups were found to respond to locomotion, with phasic or tonic patterns of response. These data constitute the first electrophysiological evidences of a locomotor neuronal system within the MRF in behaving NHPs. Copyright © 2016 the authors 0270-6474/16/364917-13$15.00/0.

  19. Simultaneous multislice magnetic resonance fingerprinting (SMS-MRF) with direct-spiral slice-GRAPPA (ds-SG) reconstruction.

    PubMed

    Ye, Huihui; Cauley, Stephen F; Gagoski, Borjan; Bilgic, Berkin; Ma, Dan; Jiang, Yun; Du, Yiping P; Griswold, Mark A; Wald, Lawrence L; Setsompop, Kawin

    2017-05-01

    To develop a reconstruction method to improve SMS-MRF, in which slice acceleration is used in conjunction with highly undersampled in-plane acceleration to speed up MRF acquisition. In this work two methods are employed to efficiently perform the simultaneous multislice magnetic resonance fingerprinting (SMS-MRF) data acquisition and the direct-spiral slice-GRAPPA (ds-SG) reconstruction. First, the lengthy training data acquisition is shortened by employing the through-time/through-k-space approach, in which similar k-space locations within and across spiral interleaves are grouped and are associated with a single set of kernel. Second, inversion recovery preparation (IR prepped), variable flip angle (FA), and repetition time (TR) are used for the acquisition of the training data, to increase signal variation and to improve the conditioning of the kernel fitting. The grouping of k-space locations enables a large reduction in the number of kernels required, and the IR-prepped training data with variable FA and TR provide improved ds-SG kernels and reconstruction performance. With direct-spiral slice-GRAPPA, tissue parameter maps comparable to that of conventional MRF were obtained at multiband (MB) = 3 acceleration using t-blipped SMS-MRF acquisition with 32-channel head coil at 3 Tesla (T). The proposed reconstruction scheme allows MB = 3 accelerated SMS-MRF imaging with high-quality T 1 , T 2 , and off-resonance maps, and can be used to significantly shorten MRF acquisition and aid in its adoption in neuro-scientific and clinical settings. Magn Reson Med 77:1966-1974, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  20. SIMULTANEOUS MULTISLICE MAGNETIC RESONANCE FINGERPRINTING WITH LOW-RANK AND SUBSPACE MODELING

    PubMed Central

    Zhao, Bo; Bilgic, Berkin; Adalsteinsson, Elfar; Griswold, Mark A.; Wald, Lawrence L.; Setsompop, Kawin

    2018-01-01

    Magnetic resonance fingerprinting (MRF) is a new quantitative imaging paradigm that enables simultaneous acquisition of multiple magnetic resonance tissue parameters (e.g., T1, T2, and spin density). Recently, MRF has been integrated with simultaneous multislice (SMS) acquisitions to enable volumetric imaging with faster scan time. In this paper, we present a new image reconstruction method based on low-rank and subspace modeling for improved SMS-MRF. Here the low-rank model exploits strong spatiotemporal correlation among contrast-weighted images, while the subspace model captures the temporal evolution of magnetization dynamics. With the proposed model, the image reconstruction problem is formulated as a convex optimization problem, for which we develop an algorithm based on variable splitting and the alternating direction method of multipliers. The performance of the proposed method has been evaluated by numerical experiments, and the results demonstrate that the proposed method leads to improved accuracy over the conventional approach. Practically, the proposed method has a potential to allow for a 3x speedup with minimal reconstruction error, resulting in less than 5 sec imaging time per slice. PMID:29060594

  1. Simultaneous multislice magnetic resonance fingerprinting with low-rank and subspace modeling.

    PubMed

    Bo Zhao; Bilgic, Berkin; Adalsteinsson, Elfar; Griswold, Mark A; Wald, Lawrence L; Setsompop, Kawin

    2017-07-01

    Magnetic resonance fingerprinting (MRF) is a new quantitative imaging paradigm that enables simultaneous acquisition of multiple magnetic resonance tissue parameters (e.g., T 1 , T 2 , and spin density). Recently, MRF has been integrated with simultaneous multislice (SMS) acquisitions to enable volumetric imaging with faster scan time. In this paper, we present a new image reconstruction method based on low-rank and subspace modeling for improved SMS-MRF. Here the low-rank model exploits strong spatiotemporal correlation among contrast-weighted images, while the subspace model captures the temporal evolution of magnetization dynamics. With the proposed model, the image reconstruction problem is formulated as a convex optimization problem, for which we develop an algorithm based on variable splitting and the alternating direction method of multipliers. The performance of the proposed method has been evaluated by numerical experiments, and the results demonstrate that the proposed method leads to improved accuracy over the conventional approach. Practically, the proposed method has a potential to allow for a 3× speedup with minimal reconstruction error, resulting in less than 5 sec imaging time per slice.

  2. An open source multivariate framework for n-tissue segmentation with evaluation on public data.

    PubMed

    Avants, Brian B; Tustison, Nicholas J; Wu, Jue; Cook, Philip A; Gee, James C

    2011-12-01

    We introduce Atropos, an ITK-based multivariate n-class open source segmentation algorithm distributed with ANTs ( http://www.picsl.upenn.edu/ANTs). The Bayesian formulation of the segmentation problem is solved using the Expectation Maximization (EM) algorithm with the modeling of the class intensities based on either parametric or non-parametric finite mixtures. Atropos is capable of incorporating spatial prior probability maps (sparse), prior label maps and/or Markov Random Field (MRF) modeling. Atropos has also been efficiently implemented to handle large quantities of possible labelings (in the experimental section, we use up to 69 classes) with a minimal memory footprint. This work describes the technical and implementation aspects of Atropos and evaluates its performance on two different ground-truth datasets. First, we use the BrainWeb dataset from Montreal Neurological Institute to evaluate three-tissue segmentation performance via (1) K-means segmentation without use of template data; (2) MRF segmentation with initialization by prior probability maps derived from a group template; (3) Prior-based segmentation with use of spatial prior probability maps derived from a group template. We also evaluate Atropos performance by using spatial priors to drive a 69-class EM segmentation problem derived from the Hammers atlas from University College London. These evaluation studies, combined with illustrative examples that exercise Atropos options, demonstrate both performance and wide applicability of this new platform-independent open source segmentation tool.

  3. An Open Source Multivariate Framework for n-Tissue Segmentation with Evaluation on Public Data

    PubMed Central

    Tustison, Nicholas J.; Wu, Jue; Cook, Philip A.; Gee, James C.

    2012-01-01

    We introduce Atropos, an ITK-based multivariate n-class open source segmentation algorithm distributed with ANTs (http://www.picsl.upenn.edu/ANTs). The Bayesian formulation of the segmentation problem is solved using the Expectation Maximization (EM) algorithm with the modeling of the class intensities based on either parametric or non-parametric finite mixtures. Atropos is capable of incorporating spatial prior probability maps (sparse), prior label maps and/or Markov Random Field (MRF) modeling. Atropos has also been efficiently implemented to handle large quantities of possible labelings (in the experimental section, we use up to 69 classes) with a minimal memory footprint. This work describes the technical and implementation aspects of Atropos and evaluates its performance on two different ground-truth datasets. First, we use the BrainWeb dataset from Montreal Neurological Institute to evaluate three-tissue segmentation performance via (1) K-means segmentation without use of template data; (2) MRF segmentation with initialization by prior probability maps derived from a group template; (3) Prior-based segmentation with use of spatial prior probability maps derived from a group template. We also evaluate Atropos performance by using spatial priors to drive a 69-class EM segmentation problem derived from the Hammers atlas from University College London. These evaluation studies, combined with illustrative examples that exercise Atropos options, demonstrate both performance and wide applicability of this new platform-independent open source segmentation tool. PMID:21373993

  4. Polymorphisms of MRF4 and H-FABP genes association with growth traits in Qinchuan cattle and related hybrids.

    PubMed

    Wang, Shan; Cai, Xin; Xue, Kai; Chen, Hong

    2011-02-01

    PCR-RFLP was applied to analyse polymorphisms within the MRF4 and heart fatty acid-binding protein (H-FABP) gene for correlation studies with growth traits in three-month-old Qinchuan (QQ), Qinchuan × Limousin (LQ) and Qinchuan × Red Angus (AQ) cattle. The results showed that 874 bp PCR products of MRF4 digested with XbaI and 2,075 bp PCR products of H-FABP digested with HaeIII were polymorphic in the three populations. Moreover, the frequencies of allele A at MRF4 locus and allele B at H-FABP locus in the QQ, AQ, and LQ populations were 0.8358/0.8888/0.8273 and 0.8358/0.7500/0.8195 respectively. Allele A at MRF4 locus and allele B at H-FABP locus were dominant in the three populations. No statistically significant differences in growth traits were observed among the genotypes of the all three populations at H-FABP locus. However, the association of MRF4 polymorphism with growth traits was then determined in all three populations. The body weight, withers height, heart girth and height at hip cross of individuals with genotype AA were higher than those with genotype AB or BB (P < 0.05). Therefore, we suggest that the MRF4 gene may function in the control or expression of growth traits, particularly body weight, withers height, heart girth and height at hip cross.

  5. Magnetic Resonance Fingerprinting - a promising new approach to obtain standardized imaging biomarkers from MRI.

    PubMed

    2015-04-01

    Current routine MRI examinations rely on the acquisition of qualitative images that have a contrast "weighted" for a mixture of (magnetic) tissue properties. Recently, a novel approach was introduced, namely MR Fingerprinting (MRF) with a completely different approach to data acquisition, post-processing and visualization. Instead of using a repeated, serial acquisition of data for the characterization of individual parameters of interest, MRF uses a pseudo randomized acquisition that causes the signals from different tissues to have a unique signal evolution or 'fingerprint' that is simultaneously a function of the multiple material properties under investigation. The processing after acquisition involves a pattern recognition algorithm to match the fingerprints to a predefined dictionary of predicted signal evolutions. These can then be translated into quantitative maps of the magnetic parameters of interest. MR Fingerprinting (MRF) is a technique that could theoretically be applied to most traditional qualitative MRI methods and replaces them with acquisition of truly quantitative tissue measures. MRF is, thereby, expected to be much more accurate and reproducible than traditional MRI and should improve multi-center studies and significantly reduce reader bias when diagnostic imaging is performed. Key Points • MR fingerprinting (MRF) is a new approach to data acquisition, post-processing and visualization.• MRF provides highly accurate quantitative maps of T1, T2, proton density, diffusion.• MRF may offer multiparametric imaging with high reproducibility, and high potential for multicenter/ multivendor studies.

  6. AmeriFlux US-MRf Mary's River (Fir) site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Law, Bev

    This is the AmeriFlux version of the carbon flux data for the site US-MRf Mary's River (Fir) site. Site Description - The Marys River Fir site is part of the "Synthesis of Remote Sensing and Field Observations to Model and Understand Disturbance and Climate Effects on the Carbon Balance of Oregon and Northern California (ORCA)". Located in the western region of Oregon the Marys River site represents the western extent of the climate gradient that spans eastward into the semi-arid basin of central Oregon. The sites that make up the eastern extent of the ORCA climate gradient is the Metoliusmore » site network (US-Me1, US-ME2, US-ME4, US-Me5) all of which are part of the TERRA PNW project at Oregon State University.« less

  7. Magnetic Resonance Fingerprinting of Adult Brain Tumors: Initial Experience

    PubMed Central

    Badve, Chaitra; Yu, Alice; Dastmalchian, Sara; Rogers, Matthew; Ma, Dan; Jiang, Yun; Margevicius, Seunghee; Pahwa, Shivani; Lu, Ziang; Schluchter, Mark; Sunshine, Jeffrey; Griswold, Mark; Sloan, Andrew; Gulani, Vikas

    2016-01-01

    Background Magnetic resonance fingerprinting (MRF) allows rapid simultaneous quantification of T1 and T2 relaxation times. This study assesses the utility of MRF in differentiating between common types of adult intra-axial brain tumors. Methods MRF acquisition was performed in 31 patients with untreated intra-axial brain tumors: 17 glioblastomas, 6 WHO grade II lower-grade gliomas and 8 metastases. T1, T2 of the solid tumor (ST), immediate peritumoral white matter (PW), and contralateral white matter (CW) were summarized within each region of interest. Statistical comparisons on mean, standard deviation, skewness and kurtosis were performed using univariate Wilcoxon rank sum test across various tumor types. Bonferroni correction was used to correct for multiple comparisons testing. Multivariable logistic regression analysis was performed for discrimination between glioblastomas and metastases and area under the receiver operator curve (AUC) was calculated. Results Mean T2 values could differentiate solid tumor regions of lower-grade gliomas from metastases (mean±sd: 172±53ms and 105±27ms respectively, p =0.004, significant after Bonferroni correction). Mean T1 of PW surrounding lower-grade gliomas differed from PW around glioblastomas (mean±sd: 1066±218ms and 1578±331ms respectively, p=0.004, significant after Bonferroni correction). Logistic regression analysis revealed that mean T2 of ST offered best separation between glioblastomas and metastases with AUC of 0.86 (95% CI 0.69–1.00, p<0.0001). Conclusion MRF allows rapid simultaneous T1, T2 measurement in brain tumors and surrounding tissues. MRF based relaxometry can identify quantitative differences between solid-tumor regions of lower grade gliomas and metastases and between peritumoral regions of glioblastomas and lower grade gliomas. PMID:28034994

  8. Thermal conductivity enhancement and sedimentation reduction of magnetorheological fluids with nano-sized Cu and Al additives

    NASA Astrophysics Data System (ADS)

    Rahim, M. S. A.; Ismail, I.; Choi, S. B.; Azmi, W. H.; Aqida, S. N.

    2017-11-01

    This work presents enhanced material characteristics of smart magnetorheological (MR) fluids by utilizing nano-sized metal particles. Especially, enhancement of thermal conductivity and reduction of sedimentation rate of MR fluids those are crucial properties for applications of MR fluids are focussed. In order to achieve this goal, a series of MR fluid samples are prepared using carbonyl iron particles (CIP) and hydraulic oil, and adding nano-sized particles of copper (Cu), aluminium (Al), and fumed silica (SiO2). Subsequently, the thermal conductivity is measured by the thermal property analyser and the sedimentation of MR fluids is measured using glass tubes without any excitation for a long time. The measured thermal conductivity is then compared with theoretical models such as Maxwell model at various CIP concentrations. In addition, in order to show the effectiveness of MR fluids synthesized in this work, the thermal conductivity of MRF-132DG which is commercially available is measured and compared with those of the prepared samples. It is observed that the thermal conductivity of the samples is much better than MRF-132DG showing the 148% increment with 40 vol% of the magnetic particles. It is also observed that the sedimentation rate of the prepared MR fluid samples is less than that of MRF-132DG showing 9% reduction with 40 vol% of the magnetic particles. The mixture optimized sample with high conductivity and low sedimentation was also obtained. The magnetization of the sample recorded an enhancement of 70.5% when compared to MRF-132DG. Furthermore, the shear yield stress of the sample were also increased with and without the influence of magnetic field.

  9. MR fingerprinting for rapid quantification of myocardial T1 , T2 , and proton spin density.

    PubMed

    Hamilton, Jesse I; Jiang, Yun; Chen, Yong; Ma, Dan; Lo, Wei-Ching; Griswold, Mark; Seiberlich, Nicole

    2017-04-01

    To introduce a two-dimensional MR fingerprinting (MRF) technique for quantification of T 1 , T 2 , and M 0 in myocardium. An electrocardiograph-triggered MRF method is introduced for mapping myocardial T 1 , T 2 , and M 0 during a single breath-hold in as short as four heartbeats. The pulse sequence uses variable flip angles, repetition times, inversion recovery times, and T 2 preparation dephasing times. A dictionary of possible signal evolutions is simulated for each scan that incorporates the subject's unique variations in heart rate. Aspects of the sequence design were explored in simulations, and the accuracy and precision of cardiac MRF were assessed in a phantom study. In vivo imaging was performed at 3 Tesla in 11 volunteers to generate native parametric maps. T 1 and T 2 measurements from the proposed cardiac MRF sequence correlated well with standard spin echo measurements in the phantom study (R 2  > 0.99). A Bland-Altman analysis revealed good agreement for myocardial T 1 measurements between MRF and MOLLI (bias 1 ms, 95% limits of agreement -72 to 72 ms) and T 2 measurements between MRF and T 2 -prepared balanced steady-state free precession (bias, -2.6 ms; 95% limits of agreement, -8.5 to 3.3 ms). MRF can provide quantitative single slice T 1 , T 2 , and M 0 maps in the heart within a single breath-hold. Magn Reson Med 77:1446-1458, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  10. The mesencephalic reticular formation as a conduit for primate collicular gaze control: tectal inputs to neurons targeting the spinal cord and medulla.

    PubMed

    Perkins, Eddie; Warren, Susan; May, Paul J

    2009-08-01

    The superior colliculus (SC), which directs orienting movements of both the eyes and head, is reciprocally connected to the mesencephalic reticular formation (MRF), suggesting the latter is involved in gaze control. The MRF has been provisionally subdivided to include a rostral portion, which subserves vertical gaze, and a caudal portion, which subserves horizontal gaze. Both regions contain cells projecting downstream that may provide a conduit for tectal signals targeting the gaze control centers which direct head movements. We determined the distribution of cells targeting the cervical spinal cord and rostral medullary reticular formation (MdRF), and investigated whether these MRF neurons receive input from the SC by the use of dual tracer techniques in Macaca fascicularis monkeys. Either biotinylated dextran amine or Phaseolus vulgaris leucoagglutinin was injected into the SC. Wheat germ agglutinin conjugated horseradish peroxidase was placed into the ipsilateral cervical spinal cord or medial MdRF to retrogradely label MRF neurons. A small number of medially located cells in the rostral and caudal MRF were labeled following spinal cord injections, and greater numbers were labeled in the same region following MdRF injections. In both cases, anterogradely labeled tectoreticular terminals were observed in close association with retrogradely labeled neurons. These close associations between tectoreticular terminals and neurons with descending projections suggest the presence of a trans-MRF pathway that provides a conduit for tectal control over head orienting movements. The medial location of these reticulospinal and reticuloreticular neurons suggests this MRF region may be specialized for head movement control. (c) 2009 Wiley-Liss, Inc.

  11. Inpatient hospital admission rates for nonmalignant respiratory disease among workers exposed to metal removal fluids at a U.S. automobile manufacturer.

    PubMed

    Reeve, Gordon R; Stout, Allen W; Hands, David; Curry, Emmanuel

    2003-11-01

    This study was undertaken to determine the impact of exposure to metal removal fluids (MRFs) on the respiratory health of exposed workers. The outcome measure selected was the rate of hospital admissions for nonmalignant respiratory disease episodes as determined from healthcare insurance claims data. A cohort of MRF-exposed employees was assembled from 11 manufacturing facilities where MRFs were extensively used in the manufacture of automotive engines, transmissions, and other machined parts. The MRF-exposed cohort included 20,434 employees of such facilities who worked at any time from 1993 through 1997. A non-MRF-exposed cohort was assembled from other employees of the same company during the same time period, but working in warehouse operations and other manufacturing facilities that did not use MRFs or any known respiratory sensitizing agents. The non-exposed cohort included 8681 employees. The crude hospital admission rate for the MRF-exposed cohort was 44 percent higher than that of the non-exposed cohort over the 5-year study period (6.67 vs. 4.62 per 1000 person years at risk, p < 0.05). With age adjustment, the MRF population's rate was still 35 percent higher, and still statistically significant. A nested case-control study was also conducted to determine whether the risk of hospital admission increased with the level of MRF exposure in the population working in MRF plants. The industrial hygiene reconstruction found the levels of exposures of both cases and controls to be very low, with the vast majority of study subjects (more than 90%) having exposures of less than 0.5 mg/m(3). The case-control study did not find any association between increased levels of MRF exposure and risk of hospitalization. The study did document an elevated risk of hospitalization among a sizable population employed in manufacturing operations where MRFs are used.

  12. Computational Fluid Dynamics Simulation of Flows in an Oxidation Ditch Driven by a New Surface Aerator.

    PubMed

    Huang, Weidong; Li, Kun; Wang, Gan; Wang, Yingzhe

    2013-11-01

    In this article, we present a newly designed inverse umbrella surface aerator, and tested its performance in driving flow of an oxidation ditch. Results show that it has a better performance in driving the oxidation ditch than the original one with higher average velocity and more uniform flow field. We also present a computational fluid dynamics model for predicting the flow field in an oxidation ditch driven by a surface aerator. The improved momentum source term approach to simulate the flow field of the oxidation ditch driven by an inverse umbrella surface aerator was developed and validated through experiments. Four kinds of turbulent models were investigated with the approach, including the standard k - ɛ model, RNG k - ɛ model, realizable k - ɛ model, and Reynolds stress model, and the predicted data were compared with those calculated with the multiple rotating reference frame approach (MRF) and sliding mesh approach (SM). Results of the momentum source term approach are in good agreement with the experimental data, and its prediction accuracy is better than MRF, close to SM. It is also found that the momentum source term approach has lower computational expenses, is simpler to preprocess, and is easier to use.

  13. AIR-MRF: Accelerated iterative reconstruction for magnetic resonance fingerprinting.

    PubMed

    Cline, Christopher C; Chen, Xiao; Mailhe, Boris; Wang, Qiu; Pfeuffer, Josef; Nittka, Mathias; Griswold, Mark A; Speier, Peter; Nadar, Mariappan S

    2017-09-01

    Existing approaches for reconstruction of multiparametric maps with magnetic resonance fingerprinting (MRF) are currently limited by their estimation accuracy and reconstruction time. We aimed to address these issues with a novel combination of iterative reconstruction, fingerprint compression, additional regularization, and accelerated dictionary search methods. The pipeline described here, accelerated iterative reconstruction for magnetic resonance fingerprinting (AIR-MRF), was evaluated with simulations as well as phantom and in vivo scans. We found that the AIR-MRF pipeline provided reduced parameter estimation errors compared to non-iterative and other iterative methods, particularly at shorter sequence lengths. Accelerated dictionary search methods incorporated into the iterative pipeline reduced the reconstruction time at little cost of quality. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Military Retirement Fund Audited Financial Report. Fiscal Year 2013

    DTIC Science & Technology

    2013-12-09

    accumulates funds to finance, on an actuarial basis, the liabilities of DoD under military retirement and survivor benefit programs. Within DoD, the...for the accounting, investing, payment of benefits, and reporting of the MRF. The DoD Office of the Actuary (OACT) within OUSD(P&R) calculates the... actuarial liability of the MRF. The Office of Military Personnel Policy within OUSD(P&R) issues policy related to MRS benefits. While the MRF does

  15. Novel high-NA MRF toolpath supports production of concave hemispheres

    NASA Astrophysics Data System (ADS)

    Maloney, Chris; Supranowitz, Chris; Dumas, Paul

    2017-10-01

    Many optical system designs rely on high numerical aperture (NA) optics, including lithography and defense systems. Lithography systems require high-NA optics to image the fine patterns from a photomask, and many defense systems require the use of domes. The methods for manufacturing such optics with large half angles have often been treated as proprietary by most manufacturers due to the challenges involved. In the past, many high-NA concave surfaces could not be polished by magnetorheological finishing (MRF) due to collisions with the hardware underneath the polishing head. By leveraging concepts that were developed to enable freeform raster MRF capabilities, QED Technologies has implemented a novel toolpath to facilitate a new high-NA rotational MRF mode. This concept involves the use of the B-axis (rotational axis) in combination with a "virtual-axis" that utilizes the geometry of the polishing head. Hardware collisions that previously restricted the concave half angle limit can now be avoided and the new functionality has been seamlessly integrated into the software. This new MRF mode overcomes past limitations for polishing concave surfaces to now accommodate full concave hemispheres as well as extend the capabilities for full convex hemispheres. We discuss some of the previous limitations, and demonstrate the extended capabilities using this novel toolpath. Polishing results are used to qualify the new toolpath to ensure similar results to the "standard" rotational MRF mode.

  16. Imprinting continuously varying topographical structure onto large-aperture optical surfaces using magnetorheological finishing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Menapace, J A; Davis, P J; Dixit, S

    2007-03-07

    Over the past four years we have advanced Magnetorheological Finishing (MRF) techniques and tools to imprint complex continuously varying topographical structures onto large-aperture (430 x 430 mm) optical surfaces. These optics, known as continuous phase plates (CPPs), are important for high-power laser applications requiring precise manipulation and control of beam-shape, energy distribution, and wavefront profile. MRF's unique deterministic-sub-aperture polishing characteristics make it possible to imprint complex topographical information onto optical surfaces at spatial scale-lengths approaching 1 mm and surface peak-to-valleys as high as 22 {micro}m. During this discussion, we will present the evolution of the MRF imprinting technology and themore » MRF tools designed to manufacture large-aperture 430 x 430 mm CPPs. Our results will show how the MRF removal function impacts and limits imprint fidelity and what must be done to arrive at a high-quality surface. We also present several examples of this imprinting technology for fabrication of phase correction plates and CPPs for use in high-power laser applications.« less

  17. Shear Stress in Magnetorheological FInishing for Glasses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miao, C.; Shafrir, S.N.; Lambropoulos, J.C.

    2009-04-28

    We report in situ, simultaneous measurements of both drag and normal forces in magnetorheological finishing (MRF) for what is believed to be the first time, using a spot taking machine (STM) as a test bed to take MRF spots on stationary parts. The measurements are carried out over the entire area where material is being removed, i.e., the projected area of the MRF removal function/spot on the part surface, using a dual force sensor. This approach experimentally addresses the mechanisms governing material removal in MRF for optical glasses in terms of the hydrodynamic pressure and shear stress, applied by themore » hydrodynamic flow of magnetorheological fluid at the gap between the part surface and the STM wheel. This work demonstrates that the volumetric removal rate shows a positive linear dependence on shear stress. Shear stress exhibits a positive linear dependence on a material figure of merit that depends upon Young’s modulus, fracture toughness, and hardness. A modified Preston’s equation is proposed that better estimates MRF material removal rate for optical glasses by incorporating mechanical properties, shear stress, and velocity.« less

  18. Shear stress in magnetorheological finishing for glasses.

    PubMed

    Miao, Chunlin; Shafrir, Shai N; Lambropoulos, John C; Mici, Joni; Jacobs, Stephen D

    2009-05-01

    We report in situ, simultaneous measurements of both drag and normal forces in magnetorheological finishing (MRF) for what is believed to be the first time, using a spot taking machine (STM) as a test bed to take MRF spots on stationary parts. The measurements are carried out over the entire area where material is being removed, i.e., the projected area of the MRF removal function/spot on the part surface, using a dual force sensor. This approach experimentally addresses the mechanisms governing material removal in MRF for optical glasses in terms of the hydrodynamic pressure and shear stress, applied by the hydrodynamic flow of magnetorheological fluid at the gap between the part surface and the STM wheel. This work demonstrates that the volumetric removal rate shows a positive linear dependence on shear stress. Shear stress exhibits a positive linear dependence on a material figure of merit that depends upon Young's modulus, fracture toughness, and hardness. A modified Preston's equation is proposed that better estimates MRF material removal rate for optical glasses by incorporating mechanical properties, shear stress, and velocity.

  19. Precision machining of optical surfaces with subaperture correction technologies MRF and IBF

    NASA Astrophysics Data System (ADS)

    Schmelzer, Olaf; Feldkamp, Roman

    2015-10-01

    Precision optical elements are used in a wide range of technical instrumentations. Many optical systems e.g. semiconductor inspection modules, laser heads for laser material processing or high end movie cameras, contain precision optics even aspherical or freeform surfaces. Critical parameters for such systems are wavefront error, image field curvature or scattered light. Following these demands the lens parameters are also critical concerning power and RMSi of the surface form error and micro roughness. How can we reach these requirements? The emphasis of this discussion is set on the application of subaperture correction technologies in the fabrication of high-end aspheres and free-forms. The presentation focuses on the technology chain necessary for the production of high-precision aspherical optical components and the characterization of the applied subaperture finishing tools MRF (magneto-rheological finishing) and IBF (ion beam figuring). These technologies open up the possibility of improving the performance of optical systems.

  20. A Foot-Arch Parameter Measurement System Using a RGB-D Camera.

    PubMed

    Chun, Sungkuk; Kong, Sejin; Mun, Kyung-Ryoul; Kim, Jinwook

    2017-08-04

    The conventional method of measuring foot-arch parameters is highly dependent on the measurer's skill level, so accurate measurements are difficult to obtain. To solve this problem, we propose an autonomous geometric foot-arch analysis platform that is capable of capturing the sole of the foot and yields three foot-arch parameters: arch index (AI), arch width (AW) and arch height (AH). The proposed system captures 3D geometric and color data on the plantar surface of the foot in a static standing pose using a commercial RGB-D camera. It detects the region of the foot surface in contact with the footplate by applying the clustering and Markov random field (MRF)-based image segmentation methods. The system computes the foot-arch parameters by analyzing the 2/3D shape of the contact region. Validation experiments were carried out to assess the accuracy and repeatability of the system. The average errors for AI, AW, and AH estimation on 99 data collected from 11 subjects during 3 days were -0.17%, 0.95 mm, and 0.52 mm, respectively. Reliability and statistical analysis on the estimated foot-arch parameters, the robustness to the change of weights used in the MRF, the processing time were also performed to show the feasibility of the system.

  1. A Foot-Arch Parameter Measurement System Using a RGB-D Camera

    PubMed Central

    Kong, Sejin; Mun, Kyung-Ryoul; Kim, Jinwook

    2017-01-01

    The conventional method of measuring foot-arch parameters is highly dependent on the measurer’s skill level, so accurate measurements are difficult to obtain. To solve this problem, we propose an autonomous geometric foot-arch analysis platform that is capable of capturing the sole of the foot and yields three foot-arch parameters: arch index (AI), arch width (AW) and arch height (AH). The proposed system captures 3D geometric and color data on the plantar surface of the foot in a static standing pose using a commercial RGB-D camera. It detects the region of the foot surface in contact with the footplate by applying the clustering and Markov random field (MRF)-based image segmentation methods. The system computes the foot-arch parameters by analyzing the 2/3D shape of the contact region. Validation experiments were carried out to assess the accuracy and repeatability of the system. The average errors for AI, AW, and AH estimation on 99 data collected from 11 subjects during 3 days were −0.17%, 0.95 mm, and 0.52 mm, respectively. Reliability and statistical analysis on the estimated foot-arch parameters, the robustness to the change of weights used in the MRF, the processing time were also performed to show the feasibility of the system. PMID:28777349

  2. Research of polishing process to control the iron contamination on the magnetorheological finished KDP crystal surface.

    PubMed

    Chen, Shaoshan; Li, Shengyi; Peng, Xiaoqiang; Hu, Hao; Tie, Guipeng

    2015-02-20

    A new nonaqueous and abrasive-free magnetorheological finishing (MRF) method is adopted for processing a KDP crystal. MRF polishing is easy to result in the embedding of carbonyl iron (CI) powders; meanwhile, Fe contamination on the KDP crystal surface will affect the laser induced damage threshold seriously. This paper puts forward an appropriate MRF polishing process to avoid the embedding. Polishing results show that the embedding of CI powders can be avoided by controlling the polishing parameters. Furthermore, on the KDP crystal surface, magnetorheological fluids residua inevitably exist after polishing and in which the Fe contamination cannot be removed completely by initial ultrasonic cleaning. To solve this problem, a kind of ion beam figuring (IBF) polishing is introduced to remove the impurity layer. Then the content of Fe element contamination and the depth of impurity elements are measured by time of flight secondary ion mass spectrometry. The measurement results show that there are no CI powders embedding in the MRF polished surface and no Fe contamination after the IBF polishing process, respectively. That verifies the feasibility of MRF polishing-IBF polishing (cleaning) for processing a KDP crystal.

  3. An MRF-based device for the torque stiffness control of all movable vertical tails

    NASA Astrophysics Data System (ADS)

    Ameduri, Salvatore; Concilio, Antonio; Gianvito, Antonio; Lemme, Manuel

    2005-05-01

    Aerodynamic control surfaces efficiency is among the major parameters defining the performance of generic aircraft and is strongly affected by geometric and stiffness characteristics. A target of the '3AS' European Project is to estimate the eventual benefits coming from the adaptive control of the torque rigidity of the vertical tail of the EuRAM wind tunnel model. The specific role of CIRA inside the Project is the design of a device based on the "Smart Structures and Materials" concept, able to produce required stiffness variations. Numerical and experimental investigations pointed out that wide excursions of the tail torque rigidity may assure higher efficiency, for several flight regimes. Stiffness variations may be obtained through both classical mechanic-hydraulic and smart systems. In this case, the attainable weight and reliability level may be the significant parameters to drive the choice. For this reason, CIRA focused its efforts also on the design of devices without heavy mechanical parts. The device described in this work is schematically constituted by linear springs linked in a suitably way to the tail shaft. Required stiffness variations are achieved by selectively locking one or more springs, through a hydraulic system, MRF-based. An optimisation process was performed to find the spring features maximising the achievable stiffness range. Then, the hydraulic MRF design was dealt with. Finally, basing on numerical predictions, a prototype was manufactured and an experimental campaign was performed to estimate the device static and dynamic behaviour.

  4. Computational Fluid Dynamics Simulation of Flows in an Oxidation Ditch Driven by a New Surface Aerator

    PubMed Central

    Huang, Weidong; Li, Kun; Wang, Gan; Wang, Yingzhe

    2013-01-01

    Abstract In this article, we present a newly designed inverse umbrella surface aerator, and tested its performance in driving flow of an oxidation ditch. Results show that it has a better performance in driving the oxidation ditch than the original one with higher average velocity and more uniform flow field. We also present a computational fluid dynamics model for predicting the flow field in an oxidation ditch driven by a surface aerator. The improved momentum source term approach to simulate the flow field of the oxidation ditch driven by an inverse umbrella surface aerator was developed and validated through experiments. Four kinds of turbulent models were investigated with the approach, including the standard k−ɛ model, RNG k−ɛ model, realizable k−ɛ model, and Reynolds stress model, and the predicted data were compared with those calculated with the multiple rotating reference frame approach (MRF) and sliding mesh approach (SM). Results of the momentum source term approach are in good agreement with the experimental data, and its prediction accuracy is better than MRF, close to SM. It is also found that the momentum source term approach has lower computational expenses, is simpler to preprocess, and is easier to use. PMID:24302850

  5. Toward Magnetorheological Finishing of Magnetic Materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shafrir, S.N.; Lambropoulos, J.C.; Jacobs, S.D.

    2007-10-24

    Magnetorheological finishing (MRF) is a precision finishing process traditionally limited to processing only nonmagnetic materials, e.g., optical glasses, ceramics, polymers, and metals. Here we demonstrate that MRF can be used for material removal from magnetic material surfaces. Our approach is to place an MRF spot on machined surfaces of magnetic WC-Co materials. The resulting surface roughness is comparable to that produced on nonmagnetic materials. This spotting technique may be used to evaluate the depth of subsurface damage, or deformed layer, induced by earlier manufacturing steps, such as grinding and lapping.

  6. Neurones associated with saccade metrics in the monkey central mesencephalic reticular formation

    PubMed Central

    Cromer, Jason A; Waitzman, David M

    2006-01-01

    Neurones in the central mesencephalic reticular formation (cMRF) begin to discharge prior to saccades. These long lead burst neurones interact with major oculomotor centres including the superior colliculus (SC) and the paramedian pontine reticular formation (PPRF). Three different functions have been proposed for neurones in the cMRF: (1) to carry eye velocity signals that provide efference copy information to the SC (feedback), (2) to provide duration signals from the omnipause neurones to the SC (feedback), or (3) to participate in the transformation from the spatial encoding of a target selection signal in the SC into the temporal pattern of discharge used to drive the excitatory burst neurones in the pons (feed-forward). According to each respective proposal, specific predictions about cMRF neuronal discharge have been formulated. Individual neurones should: (1) encode instantaneous eye velocity, (2) burst specifically in relation to saccade duration but not to other saccade metrics, or (3) have a spectrum of weak to strong correlations to saccade dynamics. To determine if cMRF neurones could subserve these multiple oculomotor roles, we examined neuronal activity in relation to a variety of saccade metrics including amplitude, velocity and duration. We found separate groups of cMRF neurones that have the characteristics predicted by each of the proposed models. We also identified a number of subgroups for which no specific model prediction had previously been established. We found that we could accurately predict the neuronal firing pattern during one type of saccade behaviour (visually guided) using the activity during an alternative behaviour with different saccade metrics (memory guided saccades). We suggest that this evidence of a close relationship of cMRF neuronal discharge to individual saccade metrics supports the hypothesis that the cMRF participates in multiple saccade control pathways carrying saccade amplitude, velocity and duration information within the brainstem. PMID:16308353

  7. Effects of the gap slope on the distribution of removal rate in Belt-MRF.

    PubMed

    Wang, Dekang; Hu, Haixiang; Li, Longxiang; Bai, Yang; Luo, Xiao; Xue, Donglin; Zhang, Xuejun

    2017-10-30

    Belt magnetorheological finishing (Belt-MRF) is a promising tool for large-optics processing. However, before using a spot, its shape should be designed and controlled by the polishing gap. Previous research revealed a remarkably nonlinear relationship between the removal function and normal pressure distribution. The pressure is nonlinearly related to the gap geometry, precluding prediction of the removal function given the polishing gap. Here, we used the concepts of gap slope and virtual ribbon to develop a model of removal profiles in Belt-MRF. Between the belt and the workpiece in the main polishing area, a gap which changes linearly along the flow direction was created using a flat-bottom magnet box. The pressure distribution and removal function were calculated. Simulations were consistent with experiments. Different removal functions, consistent with theoretical calculations, were obtained by adjusting the gap slope. This approach allows to predict removal functions in Belt-MRF.

  8. Removal rate model for magnetorheological finishing of glass.

    PubMed

    Degroote, Jessica E; Marino, Anne E; Wilson, John P; Bishop, Amy L; Lambropoulos, John C; Jacobs, Stephen D

    2007-11-10

    Magnetorheological finishing (MRF) is a deterministic subaperture polishing process. The process uses a magnetorheological (MR) fluid that consists of micrometer-sized, spherical, magnetic carbonyl iron (CI) particles, nonmagnetic polishing abrasives, water, and stabilizers. Material removal occurs when the CI and nonmagnetic polishing abrasives shear material off the surface being polished. We introduce a new MRF material removal rate model for glass. This model contains terms for the near surface mechanical properties of glass, drag force, polishing abrasive size and concentration, chemical durability of the glass, MR fluid pH, and the glass composition. We introduce quantitative chemical predictors for the first time, to the best of our knowledge, into an MRF removal rate model. We validate individual terms in our model separately and then combine all of the terms to show the whole MRF material removal model compared with experimental data. All of our experimental data were obtained using nanodiamond MR fluids and a set of six optical glasses.

  9. Magnetic Resonance Fingerprinting

    PubMed Central

    Ma, Dan; Gulani, Vikas; Seiberlich, Nicole; Liu, Kecheng; Sunshine, Jeffrey L.; Duerk, Jeffrey L.; Griswold, Mark A.

    2013-01-01

    Summary Magnetic Resonance (MR) is an exceptionally powerful and versatile measurement technique. The basic structure of an MR experiment has remained nearly constant for almost 50 years. Here we introduce a novel paradigm, Magnetic Resonance Fingerprinting (MRF) that permits the non-invasive quantification of multiple important properties of a material or tissue simultaneously through a new approach to data acquisition, post-processing and visualization. MRF provides a new mechanism to quantitatively detect and analyze complex changes that can represent physical alterations of a substance or early indicators of disease. MRF can also be used to specifically identify the presence of a target material or tissue, which will increase the sensitivity, specificity, and speed of an MR study, and potentially lead to new diagnostic testing methodologies. When paired with an appropriate pattern recognition algorithm, MRF inherently suppresses measurement errors and thus can improve accuracy compared to previous approaches. PMID:23486058

  10. MR fingerprinting with simultaneous B1 estimation.

    PubMed

    Buonincontri, Guido; Sawiak, Stephen J

    2016-10-01

    MR fingerprinting (MRF) can be used for quantitative estimation of physical parameters in MRI. Here, we extend the method to incorporate B1 estimation. The acquisition is based on steady state free precession MR fingerprinting with a Cartesian trajectory. To increase the sensitivity to the B1 profile, abrupt changes in flip angle were introduced in the sequence. Slice profile and B1 effects were included in the dictionary and the results from two- and three-dimensional (3D) acquisitions were compared. Acceleration was demonstrated using retrospective undersampling in the phase encode directions of 3D data exploiting redundancy between MRF frames at the edges of k-space. Without B1 estimation, T2 and B1 were inaccurate by more than 20%. Abrupt changes in flip angle improved B1 maps. T1 and T2 values obtained with the new MRF methods agree with classical spin echo measurements and are independent of the B1 field profile. When using view sharing reconstruction, results remained accurate (error <10%) when sampling under 10% of k-space from the 3D data. The methods demonstrated here can successfully measure T1, T2, and B1. Errors due to slice profile can be substantially reduced by including its effect in the dictionary or acquiring data in 3D. Magn Reson Med 76:1127-1135, 2016. © 2015 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made. © 2015 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine.

  11. Isolation, identification, Pb(II) biosorption isotherms and kinetics of a lead adsorbing penicillium sp. MRF-1 from South Korean mine soil.

    PubMed

    Velmurugan, Natarajan; Hwang, Grim; Sathishkumar, Muthuswamy; Choi, Tae Kie; Lee, Kui-Jae; Oh, Byung-Taek; Lee, Yang-Soo

    2010-01-01

    A heavy metal contaminated soil sample collected from a mine in Chonnam Province of South Korea was found to be a source of heavy metal adsorbing biosorbents. Chemical analyses showed high contents of lead (Pb) at 357 mg/kg and cyanide (CN) at 14.6 mg/kg in the soil. The experimental results showed that Penicillium sp. MRF-1 was the best lead resistant fungus among the four individual metal tolerant fungal species isolated from the soil. Molecular characterization of Penicillium sp. MRF-1 was determined using ITS regions sequences. Effects of pH, temperature and contact time on adsorption of Pb(II) by Penicillium sp. MRF-1 were studied. Favorable conditions for maximum biosportion were found at pH 4 with 3 hr contact time. Biosorption of Pb(II) gradually increased with increasing temperature. Efficient performance of the biosorbent was described using Langmuir and Freundlich isotherms. Adsorption kinetics was studied using pseudo first-order and pseudo second-order models. Biosorbent Penicillium sp. MRF-1 showed the maximum desorption in alkali conditions. Consistent adsorption/desorption potential of the biosorbent in repetitive cycles validated the efficacy of it in large scale. SEM studies given notes on surface modification of fungal biomass under metal stress and FT-IR results showed the presence of amino groups in the surface structure of the biosorbent. In conclusion, the new biosorbent Penicillium sp. MRF-1 may potentially be used as an inexpensive, easily cultivatable material for the removal of lead from aqueous solution.

  12. Do genetic factors contribute to the relation between education and metabolic risk factors in young adults? A twin study.

    PubMed

    Vermeiren, Angelique P A; Bosma, Hans; Gielen, Marij; Lindsey, Patrick J; Derom, Catherine; Vlietinck, Robert; Loos, Ruth J F; Zeegers, Maurice P

    2013-12-01

    Lower educated people have a higher prevalence of metabolic risk factors (MRF), that is, high waist circumference (WC), high systolic blood pressure, low high-density lipoprotein cholesterol level, high triglycerides and high fasting glucose levels. Behavioural and psychosocial factors cannot fully explain this educational gradient. We aim to examine the possible role of genetic factors by estimating the extent to which education and MRF share a genetic basis and the extent to which the heritability of MRF varies across educational levels. We examined 388 twin pairs, aged 18-34 years, from the Belgian East Flanders Prospective Twin Survey. Using structural equation modelling, a Cholesky bivariate model was applied to assess the shared genetic basis between education and MRF. The heritability of MRF across education levels was estimated using a non-linear multivariate Gaussian regression. Fifteen percent (P < 0.01) of the negative relation between education and WC was because of genes shared between these two traits. Furthermore, the heritability of WC was lower in the lowest educated group (65%) compared with the highest educated group (78%, P = 0.04). The lower heritabilities among the lower educated twins for the other MRF were not significant. The heritability of glucose was higher in the lowest education (80%) group compared with the high education group (67%, P = 0.01). Our findings suggest that genetic factors partly explain educational differences in WC. Furthermore, the lower heritability estimates in WC in the lower educated young adults suggest opportunities for environmental interventions to prevent the development of full-blown metabolic syndrome in middle and older age.

  13. Research on the magnetorheological finishing (MRF) technology with dual polishing heads

    NASA Astrophysics Data System (ADS)

    Huang, Wen; Zhang, Yunfei; He, Jianguo; Zheng, Yongcheng; Luo, Qing; Hou, Jing; Yuan, Zhigang

    2014-08-01

    Magnetorheological finishing (MRF) is a key polishing technique capable of rapidly converging to the required surface figure. Due to the deficiency of general one-polishing-head MRF technology, a dual polishing heads MRF technology was studied and a dual polishing heads MRF machine with 8 axes was developed. The machine has the ability to manufacture large aperture optics with high figure accuracy. The large polishing head is suitable for polishing large aperture optics, controlling large spatial length's wave structures, correcting low-medium frequency errors with high removal rates. While the small polishing head has more advantages in manufacturing small aperture optics, controlling small spatial wavelength's wave structures, correcting mid-high frequency and removing nanoscale materials. Material removal characteristic and figure correction ability for each of large and small polishing head was studied. Each of two polishing heads respectively acquired stable and valid polishing removal function and ultra-precision flat sample. After a single polishing iteration using small polishing head, the figure error in 45mm diameter of a 50 mm diameter plano optics was significantly improved from 0.21λ to 0.08λ by PV (RMS 0.053λ to 0.015λ). After three polishing iterations using large polishing head , the figure error in 410mm×410mm of a 430mm×430mm large plano optics was significantly improved from 0.40λ to 0.10λ by PV (RMS 0.068λ to 0.013λ) .This results show that the dual polishing heads MRF machine not only have good material removal stability, but also excellent figure correction capability.

  14. Rectal cancer staging: Multidetector-row computed tomography diagnostic accuracy in assessment of mesorectal fascia invasion

    PubMed Central

    Ippolito, Davide; Drago, Silvia Girolama; Franzesi, Cammillo Talei; Fior, Davide; Sironi, Sandro

    2016-01-01

    AIM: To assess the diagnostic accuracy of multidetector-row computed tomography (MDCT) as compared with conventional magnetic resonance imaging (MRI), in identifying mesorectal fascia (MRF) invasion in rectal cancer patients. METHODS: Ninety-one patients with biopsy proven rectal adenocarcinoma referred for thoracic and abdominal CT staging were enrolled in this study. The contrast-enhanced MDCT scans were performed on a 256 row scanner (ICT, Philips) with the following acquisition parameters: tube voltage 120 KV, tube current 150-300 mAs. Imaging data were reviewed as axial and as multiplanar reconstructions (MPRs) images along the rectal tumor axis. MRI study, performed on 1.5 T with dedicated phased array multicoil, included multiplanar T2 and axial T1 sequences and diffusion weighted images (DWI). Axial and MPR CT images independently were compared to MRI and MRF involvement was determined. Diagnostic accuracy of both modalities was compared and statistically analyzed. RESULTS: According to MRI, the MRF was involved in 51 patients and not involved in 40 patients. DWI allowed to recognize the tumor as a focal mass with high signal intensity on high b-value images, compared with the signal of the normal adjacent rectal wall or with the lower tissue signal intensity background. The number of patients correctly staged by the native axial CT images was 71 out of 91 (41 with involved MRF; 30 with not involved MRF), while by using the MPR 80 patients were correctly staged (45 with involved MRF; 35 with not involved MRF). Local tumor staging suggested by MDCT agreed with those of MRI, obtaining for CT axial images sensitivity and specificity of 80.4% and 75%, positive predictive value (PPV) 80.4%, negative predictive value (NPV) 75% and accuracy 78%; while performing MPR the sensitivity and specificity increased to 88% and 87.5%, PPV was 90%, NPV 85.36% and accuracy 88%. MPR images showed higher diagnostic accuracy, in terms of MRF involvement, than native axial images, as compared to the reference magnetic resonance images. The difference in accuracy was statistically significant (P = 0.02). CONCLUSION: New generation CT scanner, using high resolution MPR images, represents a reliable diagnostic tool in assessment of loco-regional and whole body staging of advanced rectal cancer, especially in patients with MRI contraindications. PMID:27239115

  15. Improving stability and curving passing performance for railway vehicles with a variable stiffness MRF rubber joint

    NASA Astrophysics Data System (ADS)

    Harris, B. J.; Sun, S. S.; Li, W. H.

    2017-03-01

    With the growing need for effective intercity transport, the need for more advanced rail vehicle technology has never been greater. The conflicting primary longitudinal suspension requirements of high speed stability and curving performance limit the development of rail vehicle technology. This paper presents a novel magnetorheological fluid based joint with variable stiffness characteristics for the purpose of overcoming this parameter conflict. Firstly, the joint design and working principle is developed. Following this, a prototype is tested by MTS to characterize its variable stiffness properties under a range of conditions. Lastly, the performance of the proposed MRF rubber joint with regard to improving train stability and curving performance is numerically evaluated.

  16. Analysis of the convergence rules of full-range PSD surface error of magnetorheological figuring KDP crystal.

    PubMed

    Chen, Shaoshan; He, Deyu; Wu, Yi; Chen, Huangfei; Zhang, Zaijing; Chen, Yunlei

    2016-10-01

    A new non-aqueous and abrasive-free magnetorheological finishing (MRF) method is adopted for processing potassium dihydrogen phosphate (KDP) crystal due to its low hardness, high brittleness, temperature sensitivity, and water solubility. This paper researches the convergence rules of the surface error of an initial single-point diamond turning (SPDT)-finished KDP crystal after MRF polishing. Currently, the SPDT process contains spiral cutting and fly cutting. The main difference of these two processes lies in the morphology of intermediate-frequency turning marks on the surface, which affects the convergence rules. The turning marks after spiral cutting are a series of concentric circles, while the turning marks after fly cutting are a series of parallel big arcs. Polishing results indicate that MRF polishing can only improve the low-frequency errors (L>10  mm) of a spiral-cutting KDP crystal. MRF polishing can improve the full-range surface errors (L>0.01  mm) of a fly-cutting KDP crystal if the polishing process is not done more than two times for single surface. We can conclude a fly-cutting KDP crystal will meet better optical performance after MRF figuring than a spiral-cutting KDP crystal with similar initial surface performance.

  17. Moment rate scaling for earthquakes 3.3 ≤ M ≤ 5.3 with implications for stress drop

    NASA Astrophysics Data System (ADS)

    Archuleta, Ralph J.; Ji, Chen

    2016-12-01

    We have determined a scalable apparent moment rate function (aMRF) that correctly predicts the peak ground acceleration (PGA), peak ground velocity (PGV), local magnitude, and the ratio of PGA/PGV for earthquakes 3.3 ≤ M ≤ 5.3. Using the NGA-West2 database for 3.0 ≤ M ≤ 7.7, we find a break in scaling of LogPGA and LogPGV versus M around M 5.3 with nearly linear scaling for LogPGA and LogPGV for 3.3 ≤ M ≤ 5.3. Temporal parameters tp and td—related to rise time and total duration—control the aMRF. Both scale with seismic moment. The Fourier amplitude spectrum of the aMRF has two corners between which the spectrum decays f- 1. Significant attenuation along the raypath results in a Brune-like spectrum with one corner fC. Assuming that fC ≅ 1/td, the aMRF predicts non-self-similar scaling M0∝fC3.3 and weak stress drop scaling Δσ∝M00.091. This aMRF can explain why stress drop is different from the stress parameter used to predict high-frequency ground motion.

  18. Fast group matching for MR fingerprinting reconstruction.

    PubMed

    Cauley, Stephen F; Setsompop, Kawin; Ma, Dan; Jiang, Yun; Ye, Huihui; Adalsteinsson, Elfar; Griswold, Mark A; Wald, Lawrence L

    2015-08-01

    MR fingerprinting (MRF) is a technique for quantitative tissue mapping using pseudorandom measurements. To estimate tissue properties such as T1 , T2 , proton density, and B0 , the rapidly acquired data are compared against a large dictionary of Bloch simulations. This matching process can be a very computationally demanding portion of MRF reconstruction. We introduce a fast group matching algorithm (GRM) that exploits inherent correlation within MRF dictionaries to create highly clustered groupings of the elements. During matching, a group specific signature is first used to remove poor matching possibilities. Group principal component analysis (PCA) is used to evaluate all remaining tissue types. In vivo 3 Tesla brain data were used to validate the accuracy of our approach. For a trueFISP sequence with over 196,000 dictionary elements, 1000 MRF samples, and image matrix of 128 × 128, GRM was able to map MR parameters within 2s using standard vendor computational resources. This is an order of magnitude faster than global PCA and nearly two orders of magnitude faster than direct matching, with comparable accuracy (1-2% relative error). The proposed GRM method is a highly efficient model reduction technique for MRF matching and should enable clinically relevant reconstruction accuracy and time on standard vendor computational resources. © 2014 Wiley Periodicals, Inc.

  19. Select spinal lesions reveal multiple ascending pathways in the rat conveying input from the male genitalia

    PubMed Central

    Hubscher, C H; Reed, W R; Kaddumi, E G; Armstrong, J E; Johnson, R D

    2010-01-01

    The specific white matter location of all the spinal pathways conveying penile input to the rostral medulla is not known. Our previous studies using rats demonstrated the loss of low but not high threshold penile inputs to medullary reticular formation (MRF) neurons after acute and chronic dorsal column (DC) lesions of the T8 spinal cord and loss of all penile inputs after lesioning the dorsal three-fifths of the cord. In the present study, select T8 lesions were made and terminal electrophysiological recordings were performed 45–60 days later in a limited portion of the nucleus reticularis gigantocellularis (Gi) and Gi pars alpha. Lesions included subtotal dorsal hemisections that spared only the lateral half of the dorsal portion of the lateral funiculus on one side, dorsal and over-dorsal hemisections, and subtotal transections that spared predominantly just the ventromedial white matter. Electrophysiological data for 448 single unit recordings obtained from 32 urethane-anaesthetized rats, when analysed in groups based upon histological lesion reconstructions, revealed (1) ascending bilateral projections in the dorsal, dorsolateral and ventrolateral white matter of the spinal cord conveying information from the male external genitalia to MRF, and (2) ascending bilateral projections in the ventrolateral white matter conveying information from the pelvic visceral organs (bladder, descending colon, urethra) to MRF. Multiple spinal pathways from the penis to the MRF may correspond to different functions, including those processing affective/pleasure/motivational, nociception, and mating-specific (such as for erection and ejaculation) inputs. PMID:20142271

  20. Zirconia-coated carbonyl-iron-particle-based magnetorheological fluid for polishing optical glasses and ceramics.

    PubMed

    Shafrir, Shai N; Romanofsky, Henry J; Skarlinski, Michael; Wang, Mimi; Miao, Chunlin; Salzman, Sivan; Chartier, Taylor; Mici, Joni; Lambropoulos, John C; Shen, Rui; Yang, Hong; Jacobs, Stephen D

    2009-12-10

    We report on magnetorheological finishing (MRF) spotting experiments performed on glasses and ceramics using a zirconia-coated carbonyl-iron (CI)-particle-based magnetorheological (MR) fluid. The zirconia-coated magnetic CI particles were prepared via sol-gel synthesis in kilogram quantities. The coating layer was approximately 50-100 nm thick, faceted in surface structure, and well adhered. Coated particles showed long-term stability against aqueous corrosion. "Free" nanocrystalline zirconia polishing abrasives were cogenerated in the coating process, resulting in an abrasive-charged powder for MRF. A viable MR fluid was prepared simply by adding water. Spot polishing tests were performed on a variety of optical glasses and ceramics over a period of nearly three weeks with no signs of MR fluid degradation or corrosion. Stable material removal rates and smooth surfaces inside spots were obtained.

  1. A central mesencephalic reticular formation projection to medial rectus motoneurons supplying singly and multiply innervated extraocular muscle fibers.

    PubMed

    Bohlen, Martin O; Warren, Susan; May, Paul J

    2017-06-01

    We recently demonstrated a bilateral projection to the supraoculomotor area from the central mesencephalic reticular formation (cMRF), a region implicated in horizontal gaze changes. C-group motoneurons, which supply multiply innervated fibers in the medial rectus muscle, are located within the primate supraoculomotor area, but their inputs and function are poorly understood. Here, we tested whether C-group motoneurons in Macaca fascicularis monkeys receive a direct cMRF input by injecting this portion of the reticular formation with anterograde tracers in combination with injection of retrograde tracer into the medial rectus muscle. The results indicate that the cMRF provides a dense, bilateral projection to the region of the medial rectus C-group motoneurons. Numerous close associations between labeled terminals and each multiply innervated fiber motoneuron were present. Within the oculomotor nucleus, a much sparser ipsilateral projection onto some of the A- and B- group medial rectus motoneurons that supply singly innervated fibers was observed. Ultrastructural analysis demonstrated a direct synaptic linkage between anterogradely labeled reticular terminals and retrogradely labeled medial rectus motoneurons in all three groups. These findings reinforce the notion that the cMRF is a critical hub for oculomotility by proving that it contains premotor neurons supplying horizontal extraocular muscle motoneurons. The differences between the cMRF input patterns for C-group versus A- and B-group motoneurons suggest the C-group motoneurons serve a different oculomotor role than the others. The similar patterns of cMRF input to C-group motoneurons and preganglionic Edinger-Westphal motoneurons suggest that medial rectus C-group motoneurons may play a role in accommodation-related vergence. © 2017 Wiley Periodicals, Inc.

  2. Optimizing Cloud Based Image Storage, Dissemination and Processing Through Use of Mrf and Lerc

    NASA Astrophysics Data System (ADS)

    Becker, Peter; Plesea, Lucian; Maurer, Thomas

    2016-06-01

    The volume and numbers of geospatial images being collected continue to increase exponentially with the ever increasing number of airborne and satellite imaging platforms, and the increasing rate of data collection. As a result, the cost of fast storage required to provide access to the imagery is a major cost factor in enterprise image management solutions to handle, process and disseminate the imagery and information extracted from the imagery. Cloud based object storage offers to provide significantly lower cost and elastic storage for this imagery, but also adds some disadvantages in terms of greater latency for data access and lack of traditional file access. Although traditional file formats geoTIF, JPEG2000 and NITF can be downloaded from such object storage, their structure and available compression are not optimum and access performance is curtailed. This paper provides details on a solution by utilizing a new open image formats for storage and access to geospatial imagery optimized for cloud storage and processing. MRF (Meta Raster Format) is optimized for large collections of scenes such as those acquired from optical sensors. The format enables optimized data access from cloud storage, along with the use of new compression options which cannot easily be added to existing formats. The paper also provides an overview of LERC a new image compression that can be used with MRF that provides very good lossless and controlled lossy compression.

  3. Effects of temperature on the removal efficiency of KDP crystal during the process of magnetorheological water-dissolution polishing.

    PubMed

    Zhang, Yifan; Dai, Yifan; Tie, Guipeng; Hu, Hao

    2016-10-10

    As a kind of important nonlinear optical element, KDP crystal has great demand in the inertial confinement fusion system. Based on the dissolution mechanism of solid materials, the factors that affect the material removal rate of KDP crystal in magnetorheological (MR) water-dissolution polishing are investigated to improve the machining efficiency. It is found that the material removal rate is proportional to the product of the saturation concentration and diffusion coefficient, and the relationship between the removal efficiency and the temperature meets the unilateral Gaussian function. Polishing experiments are carried out on a magnetorheological finishing (MRF) machine with self-designed MRF fluid heating devices. The experimental results show that practical efficiency-temperature curve is consistent with the theoretical curve, and the maximum machining efficiency increases by about 50% with the rise of temperature from 294 to 302 K. Meanwhile, when the MR fluid temperature is lower than 308 K, the crystal surface quality and surface roughness in different processing temperatures have no remarkable difference with constant crystal temperature (294 K). This research indicates that it is feasible to drastically improve KDP crystal MRF efficiency by controlling the processing temperature.

  4. Improved Edge Performance in MRF

    NASA Technical Reports Server (NTRS)

    Shorey, Aric; Jones, Andrew; Durnas, Paul; Tricard, Marc

    2004-01-01

    The fabrication of large segmented optics requires a polishing process that can correct the figure of a surface to within a short distance from its edges-typically, a few millimeters. The work here is to develop QED's Magnetorheological Finishing (MRF) precision polishing process to minimize residual edge effects.

  5. Removal Rate Model for Magnetorheological Finishing of Glass

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DeGroote, J.E.; Marino, A.E.; WIlson, J.P.

    2007-11-14

    Magnetorheological finishing (MRF) is a deterministic subaperture polishing process. The process uses a magntorheological (MR) fluid that consists of micrometer-sized, spherical, magnetic carbonyl iron (CI) particles, nonmagnetic polishing abrasives, water, and stabilizers. Material removal occurs when the CI and nonmagnetic polishing abrasives shear material off the surface being polished. We introduce a new MRF material removal rate model for glass. This model contains terms for the near surface mechanical properties of glass, drag force, polishing abrasive size and concentration, chemical durability of the glass, MR fluid pH, and the glass composition. We introduce quantitative chemical predictors for the first time,more » to the best of our knowledge, into an MRF removal rate model. We validate individual terms in our model separately and then combine all of the terms to show the whole MRF material removal model compared with experimental data. All of our experimental data were obtained using nanodiamond MR fluids and a set of six optical glasses.« less

  6. Magnetic resonance fingerprinting.

    PubMed

    Ma, Dan; Gulani, Vikas; Seiberlich, Nicole; Liu, Kecheng; Sunshine, Jeffrey L; Duerk, Jeffrey L; Griswold, Mark A

    2013-03-14

    Magnetic resonance is an exceptionally powerful and versatile measurement technique. The basic structure of a magnetic resonance experiment has remained largely unchanged for almost 50 years, being mainly restricted to the qualitative probing of only a limited set of the properties that can in principle be accessed by this technique. Here we introduce an approach to data acquisition, post-processing and visualization--which we term 'magnetic resonance fingerprinting' (MRF)--that permits the simultaneous non-invasive quantification of multiple important properties of a material or tissue. MRF thus provides an alternative way to quantitatively detect and analyse complex changes that can represent physical alterations of a substance or early indicators of disease. MRF can also be used to identify the presence of a specific target material or tissue, which will increase the sensitivity, specificity and speed of a magnetic resonance study, and potentially lead to new diagnostic testing methodologies. When paired with an appropriate pattern-recognition algorithm, MRF inherently suppresses measurement errors and can thus improve measurement accuracy.

  7. A Markov model for blind image separation by a mean-field EM algorithm.

    PubMed

    Tonazzini, Anna; Bedini, Luigi; Salerno, Emanuele

    2006-02-01

    This paper deals with blind separation of images from noisy linear mixtures with unknown coefficients, formulated as a Bayesian estimation problem. This is a flexible framework, where any kind of prior knowledge about the source images and the mixing matrix can be accounted for. In particular, we describe local correlation within the individual images through the use of Markov random field (MRF) image models. These are naturally suited to express the joint pdf of the sources in a factorized form, so that the statistical independence requirements of most independent component analysis approaches to blind source separation are retained. Our model also includes edge variables to preserve intensity discontinuities. MRF models have been proved to be very efficient in many visual reconstruction problems, such as blind image restoration, and allow separation and edge detection to be performed simultaneously. We propose an expectation-maximization algorithm with the mean field approximation to derive a procedure for estimating the mixing matrix, the sources, and their edge maps. We tested this procedure on both synthetic and real images, in the fully blind case (i.e., no prior information on mixing is exploited) and found that a source model accounting for local autocorrelation is able to increase robustness against noise, even space variant. Furthermore, when the model closely fits the source characteristics, independence is no longer a strict requirement, and cross-correlated sources can be separated, as well.

  8. Fiscal Year 2014: Military Retirement Fund Audited Financial Report

    DTIC Science & Technology

    2014-11-07

    Reserve Retirement ................................................................................................................. 7 Survivor...benefits for military members’ retirement from active duty and the reserves , disability retirement benefits, and survivor benefits. The MRF accumulates... premium /discount amortization and accrued inflation compensation. In comparison, in FY 2013 the MRF received approximately $20.5 billion in normal cost

  9. Saliency-Guided Detection of Unknown Objects in RGB-D Indoor Scenes.

    PubMed

    Bao, Jiatong; Jia, Yunyi; Cheng, Yu; Xi, Ning

    2015-08-27

    This paper studies the problem of detecting unknown objects within indoor environments in an active and natural manner. The visual saliency scheme utilizing both color and depth cues is proposed to arouse the interests of the machine system for detecting unknown objects at salient positions in a 3D scene. The 3D points at the salient positions are selected as seed points for generating object hypotheses using the 3D shape. We perform multi-class labeling on a Markov random field (MRF) over the voxels of the 3D scene, combining cues from object hypotheses and 3D shape. The results from MRF are further refined by merging the labeled objects, which are spatially connected and have high correlation between color histograms. Quantitative and qualitative evaluations on two benchmark RGB-D datasets illustrate the advantages of the proposed method. The experiments of object detection and manipulation performed on a mobile manipulator validate its effectiveness and practicability in robotic applications.

  10. Transformation of general binary MRF minimization to the first-order case.

    PubMed

    Ishikawa, Hiroshi

    2011-06-01

    We introduce a transformation of general higher-order Markov random field with binary labels into a first-order one that has the same minima as the original. Moreover, we formalize a framework for approximately minimizing higher-order multi-label MRF energies that combines the new reduction with the fusion-move and QPBO algorithms. While many computer vision problems today are formulated as energy minimization problems, they have mostly been limited to using first-order energies, which consist of unary and pairwise clique potentials, with a few exceptions that consider triples. This is because of the lack of efficient algorithms to optimize energies with higher-order interactions. Our algorithm challenges this restriction that limits the representational power of the models so that higher-order energies can be used to capture the rich statistics of natural scenes. We also show that some minimization methods can be considered special cases of the present framework, as well as comparing the new method experimentally with other such techniques.

  11. Fast Appearance Modeling for Automatic Primary Video Object Segmentation.

    PubMed

    Yang, Jiong; Price, Brian; Shen, Xiaohui; Lin, Zhe; Yuan, Junsong

    2016-02-01

    Automatic segmentation of the primary object in a video clip is a challenging problem as there is no prior knowledge of the primary object. Most existing techniques thus adapt an iterative approach for foreground and background appearance modeling, i.e., fix the appearance model while optimizing the segmentation and fix the segmentation while optimizing the appearance model. However, these approaches may rely on good initialization and can be easily trapped in local optimal. In addition, they are usually time consuming for analyzing videos. To address these limitations, we propose a novel and efficient appearance modeling technique for automatic primary video object segmentation in the Markov random field (MRF) framework. It embeds the appearance constraint as auxiliary nodes and edges in the MRF structure, and can optimize both the segmentation and appearance model parameters simultaneously in one graph cut. The extensive experimental evaluations validate the superiority of the proposed approach over the state-of-the-art methods, in both efficiency and effectiveness.

  12. Saliency-Guided Detection of Unknown Objects in RGB-D Indoor Scenes

    PubMed Central

    Bao, Jiatong; Jia, Yunyi; Cheng, Yu; Xi, Ning

    2015-01-01

    This paper studies the problem of detecting unknown objects within indoor environments in an active and natural manner. The visual saliency scheme utilizing both color and depth cues is proposed to arouse the interests of the machine system for detecting unknown objects at salient positions in a 3D scene. The 3D points at the salient positions are selected as seed points for generating object hypotheses using the 3D shape. We perform multi-class labeling on a Markov random field (MRF) over the voxels of the 3D scene, combining cues from object hypotheses and 3D shape. The results from MRF are further refined by merging the labeled objects, which are spatially connected and have high correlation between color histograms. Quantitative and qualitative evaluations on two benchmark RGB-D datasets illustrate the advantages of the proposed method. The experiments of object detection and manipulation performed on a mobile manipulator validate its effectiveness and practicability in robotic applications. PMID:26343656

  13. Optimal Magnetorheological Fluid for Finishing of Chemical-Vapor-Deposited Zinc Sulfide

    NASA Astrophysics Data System (ADS)

    Salzman, Sivan

    Magnetorheological finishing (MRF) of polycrystalline, chemical-vapor- deposited zinc sulfide (ZnS) optics leaves visible surface artifacts known as "pebbles". These artifacts are a direct result of the material's inner structure that consists of cone-like features that grow larger (up to a few millimeters in size) as deposition takes place, and manifest on the top deposited surface as "pebbles". Polishing the pebble features from a CVD ZnS substrate to a flat, smooth surface to below 10 nm root-mean-square is challenging, especially for a non-destructive polishing process such as MRF. This work explores ways to improve the surface finish of CVD ZnS processed with MRF through modification of the magnetorheological (MR) fluid's properties. A materials science approach is presented to define the anisotropy of CVD ZnS through a combination of chemical and mechanical experiments and theoretical predictions. Magnetorheological finishing experiments with single crystal samples of ZnS, whose cuts and orientations represent most of the facets known to occur in the polycrystalline CVD ZnS, were performed to explore the influence of material anisotropy on the material removal rate during MRF. By adjusting the fluid's viscosity, abrasive type concentration, and pH to find the chemo-mechanical conditions that equalize removal rates among all single crystal facets during MRF, we established an optimized, novel MR formulation to polish CVD ZnS without degrading the surface finish of the optic.

  14. Slice profile and B1 corrections in 2D magnetic resonance fingerprinting.

    PubMed

    Ma, Dan; Coppo, Simone; Chen, Yong; McGivney, Debra F; Jiang, Yun; Pahwa, Shivani; Gulani, Vikas; Griswold, Mark A

    2017-11-01

    The goal of this study is to characterize and improve the accuracy of 2D magnetic resonance fingerprinting (MRF) scans in the presence of slice profile (SP) and B 1 imperfections, which are two main factors that affect quantitative results in MRF. The SP and B 1 imperfections are characterized and corrected separately. The SP effect is corrected by simulating the radiofrequency pulse in the dictionary, and the B 1 is corrected by acquiring a B 1 map using the Bloch-Siegert method before each scan. The accuracy, precision, and repeatability of the proposed method are evaluated in phantom studies. The effects of both SP and B 1 imperfections are also illustrated and corrected in the in vivo studies. The SP and B 1 corrections improve the accuracy of the T 1 and T 2 values, independent of the shape of the radiofrequency pulse. The T 1 and T 2 values obtained from different excitation patterns become more consistent after corrections, which leads to an improvement of the robustness of the MRF design. This study demonstrates that MRF is sensitive to both SP and B 1 effects, and that corrections can be made to improve the accuracy of MRF with only a 2-s increase in acquisition time. Magn Reson Med 78:1781-1789, 2017. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  15. The macaque midbrain reticular formation sends side-specific feedback to the superior colliculus.

    PubMed

    Wang, Niping; Warren, Susan; May, Paul J

    2010-04-01

    The central mesencephalic reticular formation (cMRF) likely plays a role in gaze control, as cMRF neurons receive tectal input and provide a bilateral projection back to the superior colliculus (SC). We examined the important question of whether this feedback is excitatory or inhibitory. Biotinylated dextran amine (BDA) was injected into the cMRF of M. fascicularis monkeys to anterogradely label reticulotectal terminals and retrogradely label tectoreticular neurons. BDA labeled profiles in the ipsi- and contralateral intermediate gray layer (SGI) were examined electron microscopically. Postembedding GABA immunochemistry was used to identify putative inhibitory profiles. Nearly all (94.7%) of the ipsilateral BDA labeled terminals were GABA positive, but profiles postsynaptic to these labeled terminals were exclusively GABA negative. In addition, BDA labeled terminals were observed to contact BDA labeled dendrites, indicating the presence of a monosynaptic feedback loop connecting the cMRF and ipsilateral SC. In contrast, within the contralateral SGI, half of the BDA labeled terminals were GABA positive, while more than a third were GABA negative. All the postsynaptic profiles were GABA negative. These results indicate the cMRF provides inhibitory feedback to the ipsilateral side of the SC, but it has more complex effects on the contralateral side. The ipsilateral projection may help tune the "winner-take-all" mechanism that produces a unified saccade signal, while the contralateral projections may contribute to the coordination of activity between the two colliculi.

  16. Face photo-sketch synthesis and recognition.

    PubMed

    Wang, Xiaogang; Tang, Xiaoou

    2009-11-01

    In this paper, we propose a novel face photo-sketch synthesis and recognition method using a multiscale Markov Random Fields (MRF) model. Our system has three components: 1) given a face photo, synthesizing a sketch drawing; 2) given a face sketch drawing, synthesizing a photo; and 3) searching for face photos in the database based on a query sketch drawn by an artist. It has useful applications for both digital entertainment and law enforcement. We assume that faces to be studied are in a frontal pose, with normal lighting and neutral expression, and have no occlusions. To synthesize sketch/photo images, the face region is divided into overlapping patches for learning. The size of the patches decides the scale of local face structures to be learned. From a training set which contains photo-sketch pairs, the joint photo-sketch model is learned at multiple scales using a multiscale MRF model. By transforming a face photo to a sketch (or transforming a sketch to a photo), the difference between photos and sketches is significantly reduced, thus allowing effective matching between the two in face sketch recognition. After the photo-sketch transformation, in principle, most of the proposed face photo recognition approaches can be applied to face sketch recognition in a straightforward way. Extensive experiments are conducted on a face sketch database including 606 faces, which can be downloaded from our Web site (http://mmlab.ie.cuhk.edu.hk/facesketch.html).

  17. Zirconia-coated carbonyl-iron-particle-based magnetorheological fluid for polishing optical glasses and ceramics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shafrir, Shai N.; Romanofsky, Henry J.; Skarlinski, Michael

    2009-12-10

    We report on magnetorheological finishing (MRF) spotting experiments performed on glasses and ceramics using a zirconia-coated carbonyl-iron (CI)-particle-based magnetorheological (MR) fluid. The zirconia-coated magnetic CI particles were prepared via sol-gel synthesis in kilogram quantities. The coating layer was {approx}50-100 nm thick, faceted in surface structure, and well adhered. Coated particles showed long-term stability against aqueous corrosion. ''Free'' nanocrystalline zirconia polishing abrasives were cogenerated in the coating process, resulting in an abrasive-charged powder for MRF. A viable MR fluid was prepared simply by adding water. Spot polishing tests were performed on a variety of optical glasses and ceramics over a periodmore » of nearly three weeks with no signs of MR fluid degradation or corrosion. Stable material removal rates and smooth surfaces inside spots were obtained.« less

  18. Magnetorheological finishing: a perfect solution to nanofinishing requirements

    NASA Astrophysics Data System (ADS)

    Sidpara, Ajay

    2014-09-01

    Finishing of optics for different applications is the most important as well as difficult step to meet the specification of optics. Conventional grinding or other polishing processes are not able to reduce surface roughness beyond a certain limit due to high forces acting on the workpiece, embedded abrasive particles, limited control over process, etc. Magnetorheological finishing (MRF) process provides a new, efficient, and innovative way to finish optical materials as well many metals to their desired level of accuracy. This paper provides an overview of MRF process for different applications, important process parameters, requirement of magnetorheological fluid with respect to workpiece material, and some areas that need to be explored for extending the application of MRF process.

  19. Study on Surface Roughness of Modified Silicon Carbide Mirrors polished by Magnetorheological Finishing

    NASA Astrophysics Data System (ADS)

    Du, Hang; Song, Ci; Li, Shengyi

    2018-01-01

    In order to obtain high precision and high surface quality silicon carbide mirrors, the silicon carbide mirror substrate is subjected to surface modification treatment. In this paper, the problem of Silicon Carbide (SiC) mirror surface roughness deterioration by MRF is studied. The reasons of surface flaws of “Comet tail” are analyzed. Influence principle of MRF polishing depth and the surface roughness of modified SiC mirrors is obtained by experiments. On this basis, the united process of modified SiC mirrors is proposed which is combined MRF with the small grinding head CCOS. The united process makes improvement in the surface accuracy and surface roughness of modified SiC mirrors.

  20. Circumventricular mesencephalic trigeminal midline ridge formation in cartilaginous fishes: species variations.

    PubMed

    MacDonnell, M F

    1984-01-01

    The midline ridge formation (MRF) of the trigeminal complex in 127 cartilaginous fish of 15 species was examined by scanning electron microscopy or light microscopy. Five distinct species variations of the MRF in sharks are described. The formation has not yet been observed to be present in skates and rays, but its presence in the subclass Holocephali, the sister group to the Elasmobranchii, indicates that this proposed circumventricular organ is an ancient brain characteristic of this line of vertebrates, perhaps predating the emergence of the class Chondrichthyii. The different types of MRF are compared to a current phyletic organization of the elasmobranchs and the possible functional significance of the formation is discussed briefly.

  1. Medium-range fire weather forecasts

    Treesearch

    J.O. Roads; K. Ueyoshi; S.C. Chen; J. Alpert; F. Fujioka

    1991-01-01

    The forecast skill of theNational Meteorological Center's medium range forecast (MRF) numerical forecasts of fire weather variables is assessed for the period June 1,1988 to May 31,1990. Near-surface virtual temperature, relative humidity, wind speed and a derived fire weather index (FWI) are forecast well by the MRF model. However, forecast relative humidity has...

  2. Effect of different hardness nanoparticles on friction properties of magnetorheological fluids

    NASA Astrophysics Data System (ADS)

    Zhao, Mingmei; Zhang, Jinqiu; Yao, Jun

    2017-10-01

    Magnetorheological fluids (MRFs) exhibit different wear performance when nanoparticles with different hardness are added. In this study, three solid particles with different hardness are considered to study the variation in MRF performance. The friction and wear properties of the MRF are measured by using a four-ball friction and wear tester, and the surface of the steel ball was observed using a three-dimensional white light interferometer. Also, the rheological properties of MRF are tested by using an Anton-Paar rheometer. The results show that the addition of graphite yields a stable friction process and does not degrade the rheological properties of MRF. Nano-diamond increases the shear yield strength and reduces the wall slip to a greater extent. However, the wear is more serious in this case. Copper particles are unstable, and their surface activity is too high to get adsorbed on the surface of iron powder aggravating the settlement rate. The above three MRFs with different kinds of nano-particles present a more regular grinding spot, and the nano-particles have a certain repair function to the surface.

  3. Filling of Cloud-Induced Gaps for Land Use and Land Cover Classifications Around Refugee Camps

    NASA Astrophysics Data System (ADS)

    Braun, Andreas; Hagensieker, Ron; Hochschild, Volker

    2016-08-01

    Clouds cover is one of the main constraints in the field of optical remote sensing. Especially the use of multispectral imagery is affected by either fully obscured data or parts of the image which remain unusable. This study compares four algorithms for the filling of cloud induced gaps in classified land cover products based on Markov Random Fields (MRF), Random Forest (RF), Closest Spectral Fit (CSF) operators. They are tested on a classified image of Sentinel-2 where artificial clouds are filled by information derived from a scene of Sentinel-1. The approaches rely on different mathematical principles and therefore produced results varying in both pattern and quality. Overall accuracies for the filled areas range from 57 to 64 %. Best results are achieved by CSF, however some classes (e.g. sands and grassland) remain critical through all approaches.

  4. Relationship Between Prebiopsy Multiparametric Magnetic Resonance Imaging (MRI), Biopsy Indication, and MRI-ultrasound Fusion-targeted Prostate Biopsy Outcomes.

    PubMed

    Meng, Xiaosong; Rosenkrantz, Andrew B; Mendhiratta, Neil; Fenstermaker, Michael; Huang, Richard; Wysock, James S; Bjurlin, Marc A; Marshall, Susan; Deng, Fang-Ming; Zhou, Ming; Melamed, Jonathan; Huang, William C; Lepor, Herbert; Taneja, Samir S

    2016-03-01

    Increasing evidence supports the use of magnetic resonance imaging (MRI)-ultrasound fusion-targeted prostate biopsy (MRF-TB) to improve the detection of clinically significant prostate cancer (PCa) while limiting detection of indolent disease compared to systematic 12-core biopsy (SB). To compare MRF-TB and SB results and investigate the relationship between biopsy outcomes and prebiopsy MRI. Retrospective analysis of a prospectively acquired cohort of men presenting for prostate biopsy over a 26-mo period. A total of 601 of 803 consecutively eligible men were included. All men were offered prebiopsy MRI and assigned a maximum MRI suspicion score (mSS). Men with an MRI abnormality underwent combined MRF-TB and SB. Detection rates for all PCa and high-grade PCa (Gleason score [GS] ≥7) were compared using the McNemar test. MRF-TB detected fewer GS 6 PCas (75 vs 121; p<0.001) and more GS ≥7 PCas (158 vs 117; p<0.001) than SB. Higher mSS was associated with higher detection of GS ≥7 PCa (p<0.001) but was not correlated with detection of GS 6 PCa. Prediction of GS ≥7 disease by mSS varied according to biopsy history. Compared to SB, MRF-TB identified more GS ≥7 PCas in men with no prior biopsy (88 vs 72; p=0.012), in men with a prior negative biopsy (28 vs 16; p=0.010), and in men with a prior cancer diagnosis (42 vs 29; p=0.043). MRF-TB detected fewer GS 6 PCas in men with no prior biopsy (32 vs 60; p<0.001) and men with prior cancer (30 vs 46; p=0.034). Limitations include the retrospective design and the potential for selection bias given a referral population. MRF-TB detects more high-grade PCas than SB while limiting detection of GS 6 PCa in men presenting for prostate biopsy. These findings suggest that prebiopsy multiparametric MRI and MRF-TB should be considered for all men undergoing prostate biopsy. In addition, mSS in conjunction with biopsy indications may ultimately help in identifying men at low risk of high-grade cancer for whom prostate biopsy may not be warranted. We examined how magnetic resonance imaging (MRI)-targeted prostate biopsy compares to traditional systematic biopsy in detecting prostate cancer among men with suspicion of prostate cancer. We found that MRI-targeted biopsy detected more high-grade cancers than systematic biopsy, and that MRI performed before biopsy can predict the risk of high-grade cancer. Copyright © 2015 European Association of Urology. Published by Elsevier B.V. All rights reserved.

  5. Contributions of nanodiamond abrasives and deionized water in magnetorheological finishing of aluminum oxynitriden

    NASA Astrophysics Data System (ADS)

    Miao, Chunlin; Lambropoulos, John C.; Romanofsky, Henry; Shafrir, Shai N.; Jacobs, Stephen D.

    2009-08-01

    Magnetorheological finishing (MRF) is a sub-aperture deterministic process for fabricating high-precision optics by removing material and smoothing the surface. The goal of this work is to study the relative contribution of nanodiamonds and water in material removal for MRF of aluminum oxynitride ceramic (ALON) based upon a nonaqueous magnetorheological (MR) fluid. Removal was enhanced by a high carbonyl iron concentration and the addition of nanodiamond abrasives. Small amounts of deionized (DI) water were introduced into the nonaqueous MR fluid to further influence the material removal process. Material removal data were collected with a spot-taking machine. Drag force (Fd) and normal force (Fn) before and after adding nanodiamonds or DI water were measured with a dual load cell. Both drag force and normal force were insensitive to the addition of nanodiamonds but increased with DI water content in the nonaqueous MR fluid. Shear stress (i.e., drag force divided by spot area) was calculated, and examined as a function of nanodiamond concentration and DI water concentration. Volumetric removal rate increased with increasing shear stress, which was shown to be a result of increasing viscosity after adding nanodiamonds and DI water. This work demonstrates that removal rate for a hard ceramic with MRF can be enhanced by adding DI water into a nonaqueous MR fluid.

  6. Deep Learning for Magnetic Resonance Fingerprinting: A New Approach for Predicting Quantitative Parameter Values from Time Series.

    PubMed

    Hoppe, Elisabeth; Körzdörfer, Gregor; Würfl, Tobias; Wetzl, Jens; Lugauer, Felix; Pfeuffer, Josef; Maier, Andreas

    2017-01-01

    The purpose of this work is to evaluate methods from deep learning for application to Magnetic Resonance Fingerprinting (MRF). MRF is a recently proposed measurement technique for generating quantitative parameter maps. In MRF a non-steady state signal is generated by a pseudo-random excitation pattern. A comparison of the measured signal in each voxel with the physical model yields quantitative parameter maps. Currently, the comparison is done by matching a dictionary of simulated signals to the acquired signals. To accelerate the computation of quantitative maps we train a Convolutional Neural Network (CNN) on simulated dictionary data. As a proof of principle we show that the neural network implicitly encodes the dictionary and can replace the matching process.

  7. MO-DE-207A-09: Low-Dose CT Image Reconstruction Via Learning From Different Patient Normal-Dose Images

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Han, H; Xing, L; Liang, Z

    Purpose: To investigate a novel low-dose CT (LdCT) image reconstruction strategy for lung CT imaging in radiation therapy. Methods: The proposed approach consists of four steps: (1) use the traditional filtered back-projection (FBP) method to reconstruct the LdCT image; (2) calculate structure similarity (SSIM) index between the FBP-reconstructed LdCT image and a set of normal-dose CT (NdCT) images, and select the NdCT image with the highest SSIM as the learning source; (3) segment the NdCT source image into lung and outside tissue regions via simple thresholding, and adopt multiple linear regression to learn high-order Markov random field (MRF) pattern formore » each tissue region in the NdCT source image; (4) segment the FBP-reconstructed LdCT image into lung and outside regions as well, and apply the learnt MRF prior in each tissue region for statistical iterative reconstruction of the LdCT image following the penalized weighted least squares (PWLS) framework. Quantitative evaluation of the reconstructed images was based on the signal-to-noise ratio (SNR), local binary pattern (LBP) and histogram of oriented gradients (HOG) metrics. Results: It was observed that lung and outside tissue regions have different MRF patterns predicted from the NdCT. Visual inspection showed that our method obviously outperformed the traditional FBP method. Comparing with the region-smoothing PWLS method, our method has, in average, 13% increase in SNR, 15% decrease in LBP difference, and 12% decrease in HOG difference from reference standard for all regions of interest, which indicated the superior performance of the proposed method in terms of image resolution and texture preservation. Conclusion: We proposed a novel LdCT image reconstruction method by learning similar image characteristics from a set of NdCT images, and the to-be-learnt NdCT image does not need to be scans from the same subject. This approach is particularly important for enhancing image quality in radiation therapy.« less

  8. Dwell time algorithm based on the optimization theory for magnetorheological finishing

    NASA Astrophysics Data System (ADS)

    Zhang, Yunfei; Wang, Yang; Wang, Yajun; He, Jianguo; Ji, Fang; Huang, Wen

    2010-10-01

    Magnetorheological finishing (MRF) is an advanced polishing technique capable of rapidly converging to the required surface figure. This process can deterministically control the amount of the material removed by varying a time to dwell at each particular position on the workpiece surface. The dwell time algorithm is one of the most important key techniques of the MRF. A dwell time algorithm based on the1 matrix equation and optimization theory was presented in this paper. The conventional mathematical model of the dwell time was transferred to a matrix equation containing initial surface error, removal function and dwell time function. The dwell time to be calculated was just the solution to the large, sparse matrix equation. A new mathematical model of the dwell time based on the optimization theory was established, which aims to minimize the 2-norm or ∞-norm of the residual surface error. The solution meets almost all the requirements of precise computer numerical control (CNC) without any need for extra data processing, because this optimization model has taken some polishing condition as the constraints. Practical approaches to finding a minimal least-squares solution and a minimal maximum solution are also discussed in this paper. Simulations have shown that the proposed algorithm is numerically robust and reliable. With this algorithm an experiment has been performed on the MRF machine developed by ourselves. After 4.7 minutes' polishing, the figure error of a flat workpiece with a 50 mm diameter is improved by PV from 0.191λ(λ = 632.8 nm) to 0.087λ and RMS 0.041λ to 0.010λ. This algorithm can be constructed to polish workpieces of all shapes including flats, spheres, aspheres, and prisms, and it is capable of improving the polishing figures dramatically.

  9. Polishing aspheric mirrors of zero-thermal expansion cordierite ceramics (NEXCERA) for space telescope

    NASA Astrophysics Data System (ADS)

    Sugawara, Jun; Kamiya, Tomohiro; Mikashima, Bumpei

    2017-09-01

    Ultra-low thermal expansion ceramics NEXCERATM is regarded as one of potential candidate materials crucial for ultralightweight and thermally-stable optical mirrors for space telescopes which are used in future optical missions satisfying extremely high observation specifications. To realize the high precision NEXCERA mirrors for space telescopes, it is important to develop a deterministic aspheric shape polishing and a precise figure correction polishing method for the NEXCERA. Magnetorheological finishing (MRF) was tested to the NEXCERA aspheric mirror from best fit sphere shape, because the MRF technology is regarded as the best suited process for a precise figure correction of the ultralightweight mirror with thin sheet due to its advantage of low normal force polishing. As using the best combination of material and MR fluid, the MRF was performed high precision figure correction and to induce a hyperbolic shape from a conventionally polished 100mm diameter sphere, and achieved the sufficient high figure accuracy and the high quality surface roughness. In order to apply the NEXCERA to a large scale space mirror, for the next step, a middle size solid mirror, 250 mm diameter concave parabola, was machined. It was roughly ground in the parabolic shape, and was lapped and polished by a computer-controlled polishing machine using sub-aperture polishing tools. It resulted in the smooth surface of 0.6 nm RMS and the figure accuracy of λ/4, being enough as pre-MRF surface. A further study of the NEXCERA space mirrors should be proceeded as a figure correction using the MRF to lightweight mirror with thin mirror sheet.

  10. Repeatability of magnetic resonance fingerprinting T1 and T2 estimates assessed using the ISMRM/NIST MRI system phantom.

    PubMed

    Jiang, Yun; Ma, Dan; Keenan, Kathryn E; Stupic, Karl F; Gulani, Vikas; Griswold, Mark A

    2017-10-01

    The purpose of this study was to evaluate accuracy and repeatability of T 1 and T 2 estimates of a MR fingerprinting (MRF) method using the ISMRM/NIST MRI system phantom. The ISMRM/NIST MRI system phantom contains multiple compartments with standardized T 1 , T 2 , and proton density values. Conventional inversion-recovery spin echo and spin echo methods were used to characterize the T 1 and T 2 values in the phantom. The phantom was scanned using the MRF-FISP method over 34 consecutive days. The mean T 1 and T 2 values were compared with the values from the spin echo methods. The repeatability was characterized as the coefficient of variation of the measurements over 34 days. T 1 and T 2 values from MRF-FISP over 34 days showed a strong linear correlation with the measurements from the spin echo methods (R 2  = 0.999 for T 1 ; R 2  = 0.996 for T 2 ). The MRF estimates over the wide ranges of T 1 and T 2 values have less than 5% variation, except for the shortest T 2 relaxation times where the method still maintains less than 8% variation. MRF measurements of T 1 and T 2 are highly repeatable over time and across wide ranges of T 1 and T 2 values. Magn Reson Med 78:1452-1457, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  11. Estimation of perfusion properties with MR Fingerprinting Arterial Spin Labeling.

    PubMed

    Wright, Katherine L; Jiang, Yun; Ma, Dan; Noll, Douglas C; Griswold, Mark A; Gulani, Vikas; Hernandez-Garcia, Luis

    2018-03-12

    In this study, the acquisition of ASL data and quantification of multiple hemodynamic parameters was explored using a Magnetic Resonance Fingerprinting (MRF) approach. A pseudo-continuous ASL labeling scheme was used with pseudo-randomized timings to acquire the MRF ASL data in a 2.5 min acquisition. A large dictionary of MRF ASL signals was generated by combining a wide range of physical and hemodynamic properties with the pseudo-random MRF ASL sequence and a two-compartment model. The acquired signals were matched to the dictionary to provide simultaneous quantification of cerebral blood flow, tissue time-to-peak, cerebral blood volume, arterial time-to-peak, B 1 , and T 1. A study in seven healthy volunteers resulted in the following values across the population in grey matter (mean ± standard deviation): cerebral blood flow of 69.1 ± 6.1 ml/min/100 g, arterial time-to-peak of 1.5 ± 0.1 s, tissue time-to-peak of 1.5 ± 0.1 s, T 1 of 1634 ms, cerebral blood volume of 0.0048 ± 0.0005. The CBF measurements were compared to standard pCASL CBF estimates using a one-compartment model, and a Bland-Altman analysis showed good agreement with a minor bias. Repeatability was tested in five volunteers in the same exam session, and no statistical difference was seen. In addition to this validation, the MRF ASL acquisition's sensitivity to the physical and physiological parameters of interest was studied numerically. Copyright © 2018 Elsevier Inc. All rights reserved.

  12. Safe electrode trajectory planning in SEEG via MIP-based vessel segmentation

    NASA Astrophysics Data System (ADS)

    Scorza, Davide; Moccia, Sara; De Luca, Giuseppe; Plaino, Lisa; Cardinale, Francesco; Mattos, Leonardo S.; Kabongo, Luis; De Momi, Elena

    2017-03-01

    Stereo-ElectroEncephaloGraphy (SEEG) is a surgical procedure that allows brain exploration of patients affected by focal epilepsy by placing intra-cerebral multi-lead electrodes. The electrode trajectory planning is challenging and time consuming. Various constraints have to be taken into account simultaneously, such as absence of vessels at the electrode Entry Point (EP), where bleeding is more likely to occur. In this paper, we propose a novel framework to help clinicians in defining a safe trajectory and focus our attention on EP. For each electrode, a Maximum Intensity Projection (MIP) image was obtained from Computer Tomography Angiography (CTA) slices of the brain first centimeter measured along the electrode trajectory. A Gaussian Mixture Model (GMM), modified to include neighborhood prior through Markov Random Fields (GMM-MRF), is used to robustly segment vessels and deal with the noisy nature of MIP images. Results are compared with simple GMM and manual global Thresholding (Th) by computing sensitivity, specificity, accuracy and Dice similarity index against manual segmentation performed under the supervision of an expert surgeon. In this work we present a novel framework which can be easily integrated into manual and automatic planner to help surgeon during the planning phase. GMM-MRF qualitatively showed better performance over GMM in reproducing the connected nature of brain vessels also in presence of noise and image intensity drops typical of MIP images. With respect Th, it is a completely automatic method and it is not influenced by inter-subject variability.

  13. Influence law of structural characteristics on the surface roughness of a magnetorheological-finished KDP crystal.

    PubMed

    Chen, Shaoshan; Li, Shengyi; Hu, Hao; Li, Qi; Tie, Guipeng

    2014-11-01

    A new nonaqueous and abrasive-free magnetorheological finishing (MRF) method is adopted for processing potassium dihydrogen phosphate (KDP) crystal due to its low hardness, high brittleness, temperature sensitivity, and water solubility. This paper researches the influence of structural characteristics on the surface roughness of MRF-finished KDP crystal. The material removal by dissolution is uniform layer by layer when the polishing parameters are stable. The angle between the direction of the polishing wheel's linear velocity and the initial turning lines will affect the surface roughness. If the direction is perpendicular to the initial turning lines, the polishing can remove the lines. If the direction is parallel to the initial turning lines, the polishing can achieve better surface roughness. The structural characteristic of KDP crystal is related to its internal chemical bonds due to its anisotropy. During the MRF finishing process, surface roughness will be improved if the structural characteristics of the KDP crystal are the same on both sides of the wheel. The processing results of (001) plane crystal show we can get the best surface roughness (RMS of 0.809 nm) if the directions of cutting and MRF polishing are along the (110) direction.

  14. Sensitivity of High-Resolution Simulations of Hurricane Bob (1991) to Planetary Boundary Layer Parameterizations

    NASA Technical Reports Server (NTRS)

    Braun, Scott A.; Tao, Wei-Kuo

    1999-01-01

    The MM5 mesoscale model is used to simulate Hurricane Bob (1991) using grids nested to high resolution (4 km). Tests are conducted to determine the sensitivity of the simulation to the available planetary boundary layer parameterizations, including the bulk-aerodynamic, Blackadar, Medium-RanGe Forecast (MRF) model, and Burk-Thompson boundary-layer schemes. Significant sensitivity is seen, with minimum central pressures varying by up to 17 mb. The Burk-Thompson and bulk-aerodynamic boundary-layer schemes produced the strongest storms while the MRF scheme produced the weakest storm. Precipitation structure of the simulated hurricanes also varied substantially with the boundary layer parameterizations. Diagnostics of boundary-layer variables indicated that the intensity of the simulated hurricanes generally increased as the ratio of the surface exchange coefficients for heat and momentum, C(sub h)/C(sub M), although the manner in which the vertical mixing takes place was also important. Findings specific to the boundary-layer schemes include: 1) the MRF scheme produces mixing that is too deep and causes drying of the lower boundary layer in the inner-core region of the hurricane; 2) the bulk-aerodynamic scheme produces mixing that is probably too shallow, but results in a strong hurricane because of a large value of C(sub h)/C(sub M) (approximately 1.3); 3) the MRF and Blackadar schemes are weak partly because of smaller surface moisture fluxes that result in a reduced value of C(sub h)/C(sub M) (approximately 0.7); 4) the Burk-Thompson scheme produces a strong storm with C(sub h)/C(sub M) approximately 1; and 5) the formulation of the wind-speed dependence of the surface roughness parameter, z(sub 0), is important for getting appropriate values of the surface exchange coefficients in hurricanes based upon current estimates of these parameters.

  15. Monocular Depth Perception and Robotic Grasping of Novel Objects

    DTIC Science & Technology

    2009-06-01

    resulting algorithm is able to learn monocular vision cues that accurately estimate the relative depths of obstacles in a scene. Reinforcement learning ... learning still make sense in these settings? Since many of the cues that are useful for estimating depth can be re-created in synthetic images, we...supervised learning approach to this problem, and use a Markov Random Field (MRF) to model the scene depth as a function of the image features. We show

  16. Contributions of Nanodiamond Abrasives and Deionized Water in Magnetorheological Finishing of Aluminum Oxynitride

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miao, C.; Lambropoulos, J.C.; Romanofsky, H.

    2010-01-13

    Magnetorheological finishing (MRF) is a sub-aperture deterministic process for fabricating high-precision optics by removing material and smoothing the surface. The goal of this work is to study the relative contribution of nanodiamonds and water in material removal for MRF of aluminum oxynitride ceramic (ALON) based upon a nonaqueous magnetorheological (MR) fluid. Removal was enhanced by a high carbonyl iron concentration and the addition of nanodiamond abrasives. Small amounts of deionized (DI) water were introduced into the nonaqueous MR fluid to further influence the material removal process. Material removal data were collected with a spot-taking machine. Drag force (Fd) and normalmore » force (Fn) before and after adding nanodiamonds or DI water were measured with a dual load cell. Both drag force and normal force were insensitive to the addition of nanodiamonds but increased with DI water content in the nonaqueous MR fluid. Shear stress (i.e., drag force divided by spot area) was calculated, and examined as a function of nanodiamond concentration and DI water concentration. Volumetric removal rate increased with increasing shear stress, which was shown to be a result of increasing viscosity after adding nanodiamonds and DI water. This work demonstrates that removal rate for a hard ceramic with MRF can be enhanced by adding DI water into a nonaqueous MR fluid.« less

  17. Force modeling for incisions into various tissues with MRF haptic master

    NASA Astrophysics Data System (ADS)

    Kim, Pyunghwa; Kim, Soomin; Park, Young-Dai; Choi, Seung-Bok

    2016-03-01

    This study proposes a new model to predict the reaction force that occurs in incisions during robot-assisted minimally invasive surgery. The reaction force is fed back to the manipulator by a magneto-rheological fluid (MRF) haptic master, which is featured by a bi-directional clutch actuator. The reaction force feedback provides similar sensations to laparotomy that cannot be provided by a conventional master for surgery. This advantage shortens the training period for robot-assisted minimally invasive surgery and can improve the accuracy of operations. The reaction force modeling of incisions can be utilized in a surgical simulator that provides a virtual reaction force. In this work, in order to model the reaction force during incisions, the energy aspect of the incision process is adopted and analyzed. Each mode of the incision process is classified by the tendency of the energy change, and modeled for realistic real-time application. The reaction force model uses actual reaction force information with three types of actual tissues: hard tissue, medium tissue, and soft tissue. This modeled force is realized by the MRF haptic master through an algorithm based on the position and velocity of a scalpel using two different control methods: an open-loop algorithm and a closed-loop algorithm. The reaction forces obtained from the proposed model are compared with a desired force in time domain.

  18. Developing magnetorheological finishing (MRF) technology for the manufacture of large-aperture optics in megajoule class laser systems

    NASA Astrophysics Data System (ADS)

    Menapace, Joseph A.

    2010-11-01

    Over the last eight years we have been developing advanced MRF tools and techniques to manufacture meter-scale optics for use in Megajoule class laser systems. These systems call for optics having unique characteristics that can complicate their fabrication using conventional polishing methods. First, exposure to the high-power nanosecond and sub-nanosecond pulsed laser environment in the infrared (>27 J/cm2 at 1053 nm), visible (>18 J/cm2 at 527 nm), and ultraviolet (>10 J/cm2 at 351 nm) demands ultra-precise control of optical figure and finish to avoid intensity modulation and scatter that can result in damage to the optics chain or system hardware. Second, the optics must be super-polished and virtually free of surface and subsurface flaws that can limit optic lifetime through laser-induced damage initiation and growth at the flaw sites, particularly at 351 nm. Lastly, ultra-precise optics for beam conditioning are required to control laser beam quality. These optics contain customized surface topographical structures that cannot be made using traditional fabrication processes. In this review, we will present the development and implementation of large-aperture MRF tools and techniques specifically designed to meet the demanding optical performance challenges required in large aperture high-power laser systems. In particular, we will discuss the advances made by using MRF technology to expose and remove surface and subsurface flaws in optics during final polishing to yield optics with improve laser damage resistance, the novel application of MRF deterministic polishing to imprint complex topographical information and wavefront correction patterns onto optical surfaces, and our efforts to advance the technology to manufacture largeaperture damage resistant optics.

  19. Developing Magnetorheological Finishing (MRF) Technology for the Manufacture of Large-Aperture Optics in Megajoule Class Laser Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Menapace, J A

    2010-10-27

    Over the last eight years we have been developing advanced MRF tools and techniques to manufacture meter-scale optics for use in Megajoule class laser systems. These systems call for optics having unique characteristics that can complicate their fabrication using conventional polishing methods. First, exposure to the high-power nanosecond and sub-nanosecond pulsed laser environment in the infrared (>27 J/cm{sup 2} at 1053 nm), visible (>18 J/cm{sup 2} at 527 nm), and ultraviolet (>10 J/cm{sup 2} at 351 nm) demands ultra-precise control of optical figure and finish to avoid intensity modulation and scatter that can result in damage to the optics chainmore » or system hardware. Second, the optics must be super-polished and virtually free of surface and subsurface flaws that can limit optic lifetime through laser-induced damage initiation and growth at the flaw sites, particularly at 351 nm. Lastly, ultra-precise optics for beam conditioning are required to control laser beam quality. These optics contain customized surface topographical structures that cannot be made using traditional fabrication processes. In this review, we will present the development and implementation of large-aperture MRF tools and techniques specifically designed to meet the demanding optical performance challenges required in large-aperture high-power laser systems. In particular, we will discuss the advances made by using MRF technology to expose and remove surface and subsurface flaws in optics during final polishing to yield optics with improve laser damage resistance, the novel application of MRF deterministic polishing to imprint complex topographical information and wavefront correction patterns onto optical surfaces, and our efforts to advance the technology to manufacture large-aperture damage resistant optics.« less

  20. Health-related quality of life measurement in patients with chronic respiratory failure.

    PubMed

    Oga, Toru; Windisch, Wolfram; Handa, Tomohiro; Hirai, Toyohiro; Chin, Kazuo

    2018-05-01

    The improvement of health-related quality of life (HRQL) is an important goal in managing patients with chronic respiratory failure (CRF) receiving long-term oxygen therapy (LTOT) and/or domiciliary noninvasive ventilation (NIV). Two condition-specific HRQL questionnaires have been developed to specifically assess these patients: the Maugeri Respiratory Failure Questionnaire (MRF) and the Severe Respiratory Insufficiency Questionnaire (SRI). The MRF is more advantageous in its ease of completion; conversely, the SRI measures diversified health impairments more multi-dimensionally and discriminatively with greater balance, especially in patients receiving NIV. The SRI is available in many different languages as a result of back-translation and validation processes, and is widely validated for various disorders such as chronic obstructive pulmonary disease, restrictive thoracic disorders, neuromuscular disorders, and obesity hypoventilation syndrome, among others. Dyspnea and psychological status were the main determinants for both questionnaires, while the MRF tended to place more emphasis on activity limitations than SRI. In comparison to existing generic questionnaires such as the Medical Outcomes Study 36-item short form (SF-36) and disease-specific questionnaires such as the St. George's Respiratory Questionnaire (SGRQ) and the Chronic Respiratory Disease Questionnaire (CRQ), both the MRF and the SRI have been shown to be valid and reliable, and have better discriminatory, evaluative, and predictive features than other questionnaires. Thus, in assessing the HRQL of patients with CRF using LTOT and/or NIV, we might consider avoiding the use of the SF-36 or even the SGRQ or CRQ alone and consider using the CRF-specific SRI and MRF in addition to existing generic and/or disease-specific questionnaires. Copyright © 2018 The Japanese Respiratory Society. Published by Elsevier B.V. All rights reserved.

  1. Magnetorheological Finishing for Imprinting Continuous Phase Plate Structure onto Optical Surfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Menapace, J A; Dixit, S N; Genin, F Y

    2004-01-05

    Magnetorheological finishing (MRF) techniques have been developed to manufacture continuous phase plates (CPP's) and custom phase corrective structures on polished fused silica surfaces. These phase structures are important for laser applications requiring precise manipulation and control of beam-shape, energy distribution, and wavefront profile. The MRF's unique deterministic-sub-aperture polishing characteristics make it possible to imprint complex topographical information onto optical surfaces at spatial scale-lengths approaching 1 mm. In this study, we present the results of experiments and model calculations that explore imprinting two-dimensional sinusoidal structures. Results show how the MRF removal function impacts and limits imprint fidelity and what must bemore » done to arrive at a high quality surface. We also present several examples of this imprinting technology for fabrication of phase correction plates and CPPs for use at high fluences.« less

  2. Study on the application of MRF and the D-S theory to image segmentation of the human brain and quantitative analysis of the brain tissue

    NASA Astrophysics Data System (ADS)

    Guan, Yihong; Luo, Yatao; Yang, Tao; Qiu, Lei; Li, Junchang

    2012-01-01

    The features of the spatial information of Markov random field image was used in image segmentation. It can effectively remove the noise, and get a more accurate segmentation results. Based on the fuzziness and clustering of pixel grayscale information, we find clustering center of the medical image different organizations and background through Fuzzy cmeans clustering method. Then we find each threshold point of multi-threshold segmentation through two dimensional histogram method, and segment it. The features of fusing multivariate information based on the Dempster-Shafer evidence theory, getting image fusion and segmentation. This paper will adopt the above three theories to propose a new human brain image segmentation method. Experimental result shows that the segmentation result is more in line with human vision, and is of vital significance to accurate analysis and application of tissues.

  3. Machine printed text and handwriting identification in noisy document images.

    PubMed

    Zheng, Yefeng; Li, Huiping; Doermann, David

    2004-03-01

    In this paper, we address the problem of the identification of text in noisy document images. We are especially focused on segmenting and identifying between handwriting and machine printed text because: 1) Handwriting in a document often indicates corrections, additions, or other supplemental information that should be treated differently from the main content and 2) the segmentation and recognition techniques requested for machine printed and handwritten text are significantly different. A novel aspect of our approach is that we treat noise as a separate class and model noise based on selected features. Trained Fisher classifiers are used to identify machine printed text and handwriting from noise and we further exploit context to refine the classification. A Markov Random Field-based (MRF) approach is used to model the geometrical structure of the printed text, handwriting, and noise to rectify misclassifications. Experimental results show that our approach is robust and can significantly improve page segmentation in noisy document collections.

  4. Report to Congress on the Activities of the DoD Office of Technology Transition

    DTIC Science & Technology

    2001-02-01

    known as Magnetorheological Finishing (MRF), that provides significant cost savings in the manufacture of precision optical surfaces. Compared to...The programs included: - The Army’s Advanced Optics Manufacturing program developed a multi- axis, computer-controlled optical finishing technology...percent. The MRF finishing machine is commercially available, and has received industry-wide acclaim, winning two of the optical industry’s most

  5. Normal force and drag force in magnetorheological finishing

    NASA Astrophysics Data System (ADS)

    Miao, Chunlin; Shafrir, Shai N.; Lambropoulos, John C.; Jacobs, Stephen D.

    2009-08-01

    The material removal in magnetorheological finishing (MRF) is known to be controlled by shear stress, λ, which equals drag force, Fd, divided by spot area, As. However, it is unclear how the normal force, Fn, affects the material removal in MRF and how the measured ratio of drag force to normal force Fd/Fn, equivalent to coefficient of friction, is related to material removal. This work studies, for the first time for MRF, the normal force and the measured ratio Fd/Fn as a function of material mechanical properties. Experimental data were obtained by taking spots on a variety of materials including optical glasses and hard ceramics with a spot-taking machine (STM). Drag force and normal force were measured with a dual load cell. Drag force decreases linearly with increasing material hardness. In contrast, normal force increases with hardness for glasses, saturating at high hardness values for ceramics. Volumetric removal rate decreases with normal force across all materials. The measured ratio Fd/Fn shows a strong negative linear correlation with material hardness. Hard materials exhibit a low "coefficient of friction". The volumetric removal rate increases with the measured ratio Fd/Fn which is also correlated with shear stress, indicating that the measured ratio Fd/Fn is a useful measure of material removal in MRF.

  6. Normal Force and Drag Force in Magnetorheological Finishing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miao, C.; Shafrir, S.N.; Lambropoulos, J.C.

    2010-01-13

    The material removal in magnetorheological finishing (MRF) is known to be controlled by shear stress, tau, which equals drag force, Fd, divided by spot area, As. However, it is unclear how the normal force, Fn, affects the material removal in MRF and how the measured ratio of drag force to normal force Fd/Fn, equivalent to coefficient of friction, is related to material removal. This work studies, for the first time for MRF, the normal force and the measured ratio Fd/Fn as a function of material mechanical properties. Experimental data were obtained by taking spots on a variety of materials includingmore » optical glasses and hard ceramics with a spot-taking machine (STM). Drag force and normal force were measured with a dual load cell. Drag force decreases linearly with increasing material hardness. In contrast, normal force increases with hardness for glasses, saturating at high hardness values for ceramics. Volumetric removal rate decreases with normal force across all materials. The measured ratio Fd/Fn shows a strong negative linear correlation with material hardness. Hard materials exhibit a low “coefficient of friction”. The volumetric removal rate increases with the measured ratio Fd/Fn which is also correlated with shear stress, indicating that the measured ratio Fd/Fn is a useful measure of material removal in MRF.« less

  7. Proceedings of Image Understanding Workshop Held in Palo Alto, California on 23-26 May 1989.

    DTIC Science & Technology

    1989-05-01

    locations should be dissimilar since dissimilar 247 motions will probably be necessary. This is the essence of the constraint in Equation 2. Third, the...In essence it attempts to generate hypotheses for the identification of objects found in the image, discard those hypotheses found to be...discontinuities. The essence of the MRF model is that they give the probability distribution of the configuration of the fields, given a set of data, as a

  8. Profit through predictability: The MRF difference at optimax

    NASA Astrophysics Data System (ADS)

    Light, Brandon

    2007-05-01

    In the manufacturing business, there is one product that matters, money. Whether making shoelaces or aircraft carriers a business that doesn't also make a profit doesn't stay around long. Being able to predict operational expenses is critical to determining a product's sale price. Priced too high a product won't sell, too low profit goes away. In the business of precision optics manufacturing, predictability has been often impossible or had large error bars. Manufacturing unpredictability made setting price a challenge. What if predictability could improve by changing the polishing process? Would a predictable, deterministic process lead to profit? Optimax Systems has experienced exactly that. Incorporating Magnetorheological Finishing (MRF) into its finishing process, Optimax saw parts categorized financially as "high risk" become a routine product of higher quality, delivered on time and within budget. Using actual production figures, this presentation will show how much incorporating MRF reduced costs, improved output and increased quality all at the same time.

  9. Theoretical and experimental analysis of MR valve

    NASA Astrophysics Data System (ADS)

    Leicht, Z.; Urreta, H.; Sanchez, A.; Agirre, A.; Kuzhir, P.; Magnac, G.

    2009-02-01

    The properties of magnetorheological (MR) fluid can be rapidly varied by the application of a magnetic field. This behaviour allows the designer to construct a machine that's quality can be changed in action, according to the variation of the surround and to the expectations. The commercial use of MR fluid is already not limited in dampers and breaks. Thanks to the advantageous quality - that requires low voltage - is on the increase. Using the MR fluid in a valve, the pressure drop can be adjusted by the intensity of the magnetic field, without moving parts. In this work a MR valve has been designed, that can supply a hydrostatic bearing lubricated with magnetic fluid. Its behaviour has been simulated with three models. The analytical model based on the Bingham law of the magnetic fluid flow, the Buckingham model (Bingham modified) and the dimensional model suggested by Lord Corporation, the manufacturer of used MR fluid, MRF 122 2EG. The results of the simulations are compared with the experimental data.

  10. Range data description based on multiple characteristics

    NASA Technical Reports Server (NTRS)

    Al-Hujazi, Ezzet; Sood, Arun

    1988-01-01

    An algorithm for describing range images based on Mean curvature (H) and Gaussian curvature (K) is presented. Range images are unique in that they directly approximate the physical surfaces of a real world 3-D scene. The curvature parameters are derived from the fundamental theorems of differential geometry and provides visible invariant pixel labels that can be used to characterize the scene. The sign of H and K can be used to classify each pixel into one of eight possible surface types. Due to the sensitivity of these parameters to noise the resulting HK-sing map does not directly identify surfaces in the range images and must be further processed. A region growing algorithm based on modeling the scene points with a Markov Random Field (MRF) of variable neighborhood size and edge models is suggested. This approach allows the integration of information from multiple characteristics in an efficient way. The performance of the proposed algorithm on a number of synthetic and real range images is discussed.

  11. Gripping characteristics of an electromagnetically activated magnetorheological fluid-based gripper

    NASA Astrophysics Data System (ADS)

    Choi, Young T.; Hartzell, Christine M.; Leps, Thomas; Wereley, Norman M.

    2018-05-01

    The design and test of a magnetorheological fluid (MRF)-based universal gripper (MR gripper) are presented in this study. The MR gripper was developed to have a simple design, but with the ability to produce reliable gripping and handling of a wide range of simple objects. The MR gripper design consists of a bladder mounted atop an electromagnet, where the bladder is filled with an MRF, which was formulated to have long-term stable sedimentation stability, that was synthesized using a high viscosity linear polysiloxane (HVLP) carrier fluid with a carbonyl iron particle (CIP) volume fraction of 35%. Two bladders were fabricated: a magnetizable bladder using a magnetorheological elastomer (MRE), and a passive (non-magnetizable) silicone rubber bladder. The holding force and applied (initial compression) force of the MR gripper for a bladder fill volume of 75% were experimentally measured, for both magnetizable and passive bladders, using a servohydraulic material testing machine for a range of objects. The gripping performance of the MR gripper using an MRE bladder was compared to that of the MR gripper using a passive bladder.

  12. Superpixel-based graph cuts for accurate stereo matching

    NASA Astrophysics Data System (ADS)

    Feng, Liting; Qin, Kaihuai

    2017-06-01

    Estimating the surface normal vector and disparity of a pixel simultaneously, also known as three-dimensional label method, has been widely used in recent continuous stereo matching problem to achieve sub-pixel accuracy. However, due to the infinite label space, it’s extremely hard to assign each pixel an appropriate label. In this paper, we present an accurate and efficient algorithm, integrating patchmatch with graph cuts, to approach this critical computational problem. Besides, to get robust and precise matching cost, we use a convolutional neural network to learn a similarity measure on small image patches. Compared with other MRF related methods, our method has several advantages: its sub-modular property ensures a sub-problem optimality which is easy to perform in parallel; graph cuts can simultaneously update multiple pixels, avoiding local minima caused by sequential optimizers like belief propagation; it uses segmentation results for better local expansion move; local propagation and randomization can easily generate the initial solution without using external methods. Middlebury experiments show that our method can get higher accuracy than other MRF-based algorithms.

  13. Multiparametric estimation of brain hemodynamics with MR fingerprinting ASL.

    PubMed

    Su, Pan; Mao, Deng; Liu, Peiying; Li, Yang; Pinho, Marco C; Welch, Babu G; Lu, Hanzhang

    2017-11-01

    Assessment of brain hemodynamics without exogenous contrast agents is of increasing importance in clinical applications. This study aims to develop an MR perfusion technique that can provide noncontrast and multiparametric estimation of hemodynamic markers. We devised an arterial spin labeling (ASL) method based on the principle of MR fingerprinting (MRF), referred to as MRF-ASL. By taking advantage of the rich information contained in MRF sequence, up to seven hemodynamic parameters can be estimated concomitantly. Feasibility demonstration, flip angle optimization, comparison with Look-Locker ASL, reproducibility test, sensitivity to hypercapnia challenge, and initial clinical application in an intracranial steno-occlusive process, Moyamoya disease, were performed to evaluate this technique. Magnetic resonance fingerprinting ASL provided estimation of up to seven parameters, including B1+, tissue T 1 , cerebral blood flow (CBF), tissue bolus arrival time (BAT), pass-through arterial BAT, pass-through blood volume, and pass-through blood travel time. Coefficients of variation of the estimated parameters ranged from 0.2 to 9.6%. Hypercapnia resulted in an increase in CBF by 57.7%, and a decrease in BAT by 13.7 and 24.8% in tissue and vessels, respectively. Patients with Moyamoya disease showed diminished CBF and lengthened BAT that could not be detected with regular ASL. Magnetic resonance fingerprinting ASL is a promising technique for noncontrast, multiparametric perfusion assessment. Magn Reson Med 78:1812-1823, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  14. Combined fabrication process for high-precision aspheric surface based on smoothing polishing and magnetorheological finishing

    NASA Astrophysics Data System (ADS)

    Nie, Xuqing; Li, Shengyi; Song, Ci; Hu, Hao

    2014-08-01

    Due to the different curvature everywhere, the aspheric surface is hard to achieve high-precision accuracy by the traditional polishing process. Controlling of the mid-spatial frequency errors (MSFR), in particular, is almost unapproachable. In this paper, the combined fabrication process based on the smoothing polishing (SP) and magnetorheological finishing (MRF) is proposed. The pressure distribution of the rigid polishing lap and semi-flexible polishing lap is calculated. The shape preserving capacity and smoothing effect are compared. The feasibility of smoothing aspheric surface with the semi-flexible polishing lap is verified, and the key technologies in the SP process are discussed. Then, A K4 parabolic surface with the diameter of 500mm is fabricated based on the combined fabrication process. A Φ150 mm semi-flexible lap is used in the SP process to control the MSFR, and the deterministic MRF process is applied to figure the surface error. The root mean square (RMS) error of the aspheric surface converges from 0.083λ (λ=632.8 nm) to 0.008λ. The power spectral density (PSD) result shows that the MSFR are well restrained while the surface error has a great convergence.

  15. Laterally Versus Medially Projecting Spinothalamic Neurons and their Axon Collaterals to the Periaqueductal Gray and Medullary Reticular Formation in the Rat

    DTIC Science & Technology

    1987-06-30

    nucleus reticularis gigantocellularis. No distinct tracts were reported in the brainstem as far rostral as the superior olivary complex. At the level...that stimulation of the PAG 12 activates neurons which project to the MRF, specifically the nucleus reticularis gigantocellularis, nucleus ... reticularis magnocellularis and the nucleus raphe magnus. Neurons in the raphe magnus receive convergent input from the PAG and other MRF regions and, via

  16. NASA's Earth Imagery Service as Open Source Software

    NASA Astrophysics Data System (ADS)

    De Cesare, C.; Alarcon, C.; Huang, T.; Roberts, J. T.; Rodriguez, J.; Cechini, M. F.; Boller, R. A.; Baynes, K.

    2016-12-01

    The NASA Global Imagery Browse Service (GIBS) is a software system that provides access to an archive of historical and near-real-time Earth imagery from NASA-supported satellite instruments. The imagery itself is open data, and is accessible via standards such as the Open Geospatial Consortium (OGC)'s Web Map Tile Service (WMTS) protocol. GIBS includes three core software projects: The Imagery Exchange (TIE), OnEarth, and the Meta Raster Format (MRF) project. These projects are developed using a variety of open source software, including: Apache HTTPD, GDAL, Mapserver, Grails, Zookeeper, Eclipse, Maven, git, and Apache Commons. TIE has recently been released for open source, and is now available on GitHub. OnEarth, MRF, and their sub-projects have been on GitHub since 2014, and the MRF project in particular receives many external contributions from the community. Our software has been successful beyond the scope of GIBS: the PO.DAAC State of the Ocean and COVERAGE visualization projects reuse components from OnEarth. The MRF source code has recently been incorporated into GDAL, which is a core library in many widely-used GIS software such as QGIS and GeoServer. This presentation will describe the challenges faced in incorporating open software and open data into GIBS, and also showcase GIBS as a platform on which scientists and the general public can build their own applications.

  17. Role of the medial medullary reticular formation in relaying vestibular signals to the diaphragm and abdominal muscles

    NASA Technical Reports Server (NTRS)

    Mori, R. L.; Bergsman, A. E.; Holmes, M. J.; Yates, B. J.

    2001-01-01

    Changes in posture can affect the resting length of respiratory muscles, requiring alterations in the activity of these muscles if ventilation is to be unaffected. Recent studies have shown that the vestibular system contributes to altering respiratory muscle activity during movement and changes in posture. Furthermore, anatomical studies have demonstrated that many bulbospinal neurons in the medial medullary reticular formation (MRF) provide inputs to phrenic and abdominal motoneurons; because this region of the reticular formation receives substantial vestibular and other movement-related input, it seems likely that medial medullary reticulospinal neurons could adjust the activity of respiratory motoneurons during postural alterations. The objective of the present study was to determine whether functional lesions of the MRF affect inspiratory and expiratory muscle responses to activation of the vestibular system. Lidocaine or muscimol injections into the MRF produced a large increase in diaphragm and abdominal muscle responses to vestibular stimulation. These vestibulo-respiratory responses were eliminated following subsequent chemical blockade of descending pathways in the lateral medulla. However, inactivation of pathways coursing through the lateral medulla eliminated excitatory, but not inhibitory, components of vestibulo-respiratory responses. The simplest explanation for these data is that MRF neurons that receive input from the vestibular nuclei make inhibitory connections with diaphragm and abdominal motoneurons, whereas a pathway that courses laterally in the caudal medulla provides excitatory vestibular inputs to these motoneurons.

  18. Design and multi-physics optimization of rotary MRF brakes

    NASA Astrophysics Data System (ADS)

    Topcu, Okan; Taşcıoğlu, Yiğit; Konukseven, Erhan İlhan

    2018-03-01

    Particle swarm optimization (PSO) is a popular method to solve the optimization problems. However, calculations for each particle will be excessive when the number of particles and complexity of the problem increases. As a result, the execution speed will be too slow to achieve the optimized solution. Thus, this paper proposes an automated design and optimization method for rotary MRF brakes and similar multi-physics problems. A modified PSO algorithm is developed for solving multi-physics engineering optimization problems. The difference between the proposed method and the conventional PSO is to split up the original single population into several subpopulations according to the division of labor. The distribution of tasks and the transfer of information to the next party have been inspired by behaviors of a hunting party. Simulation results show that the proposed modified PSO algorithm can overcome the problem of heavy computational burden of multi-physics problems while improving the accuracy. Wire type, MR fluid type, magnetic core material, and ideal current inputs have been determined by the optimization process. To the best of the authors' knowledge, this multi-physics approach is novel for optimizing rotary MRF brakes and the developed PSO algorithm is capable of solving other multi-physics engineering optimization problems. The proposed method has showed both better performance compared to the conventional PSO and also has provided small, lightweight, high impedance rotary MRF brake designs.

  19. Exploring Evidence Aggregation Methods and External Expansion Sources for Medical Record Search

    DTIC Science & Technology

    2012-11-01

    Equation 3 using Indri in the same way as our previous work [12]. We denoted this model as MRM . A Combined Model We linearly combine MRF and MRM to get...retrieving indexing visits ranking III RbM VRM baseline/MRF/ MRM models ICD, NEG MbR Figure 1: Merging results from two different...retrieval model MRM with one expansion collection at a time to explore the expansion effectiveness of each collection as show in Table 5. As we can

  20. Optimization of temperature field of tobacco heat shrink machine

    NASA Astrophysics Data System (ADS)

    Yang, Xudong; Yang, Hai; Sun, Dong; Xu, Mingyang

    2018-06-01

    A company currently shrinking machine in the course of the film shrinkage is not compact, uneven temperature, resulting in poor quality of the shrinkage of the surface film. To solve this problem, the simulation and optimization of the temperature field are performed by using the k-epsilon turbulence model and the MRF model in fluent. The simulation results show that after the mesh screen structure is installed at the suction inlet of the centrifugal fan, the suction resistance of the fan can be increased and the eddy current intensity caused by the high-speed rotation of the fan can be improved, so that the internal temperature continuity of the heat shrinkable machine is Stronger.

  1. A new polishing process for large-aperture and high-precision aspheric surface

    NASA Astrophysics Data System (ADS)

    Nie, Xuqing; Li, Shengyi; Dai, Yifan; Song, Ci

    2013-07-01

    The high-precision aspheric surface is hard to be achieved due to the mid-spatial frequency error in the finishing step. The influence of mid-spatial frequency error is studied through the simulations and experiments. In this paper, a new polishing process based on magnetorheological finishing (MRF), smooth polishing (SP) and ion beam figuring (IBF) is proposed. A 400mm aperture parabolic surface is polished with this new process. The smooth polishing (SP) is applied after rough machining to control the MSF error. In the middle finishing step, most of low-spatial frequency error is removed by MRF rapidly, then the mid-spatial frequency error is restricted by SP, finally ion beam figuring is used to finish the surface. The surface accuracy is improved from the initial 37.691nm (rms, 95% aperture) to the final 4.195nm. The results show that the new polishing process is effective to manufacture large-aperture and high-precision aspheric surface.

  2. Matrix completion-based reconstruction for undersampled magnetic resonance fingerprinting data.

    PubMed

    Doneva, Mariya; Amthor, Thomas; Koken, Peter; Sommer, Karsten; Börnert, Peter

    2017-09-01

    An iterative reconstruction method for undersampled magnetic resonance fingerprinting data is presented. The method performs the reconstruction entirely in k-space and is related to low rank matrix completion methods. A low dimensional data subspace is estimated from a small number of k-space locations fully sampled in the temporal direction and used to reconstruct the missing k-space samples before MRF dictionary matching. Performing the iterations in k-space eliminates the need for applying a forward and an inverse Fourier transform in each iteration required in previously proposed iterative reconstruction methods for undersampled MRF data. A projection onto the low dimensional data subspace is performed as a matrix multiplication instead of a singular value thresholding typically used in low rank matrix completion, further reducing the computational complexity of the reconstruction. The method is theoretically described and validated in phantom and in-vivo experiments. The quality of the parameter maps can be significantly improved compared to direct matching on undersampled data. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. High precision processing CaF2 application research based on the magnetorheological finishing (MRF) technology

    NASA Astrophysics Data System (ADS)

    Zhong, Xianyun; Fan, Bin; Wu, Fan

    2017-10-01

    Single crystal calcium fluoride (CaF2) is the excellent transparent optical substance that has extremely good permeability and refractive index from 120nm wavelength ultraviolet range to 12μm wavelength infrared range and it has widely used in the applications of various advanced optical instrument, such as infrared optical systems (IR), short wavelength optical lithography systems (DUV), as well as high power UV laser systems. Nevertheless, the characteristics of CaF2 material, including low fracture toughness, low hardness, low thermal conductivity and high thermal expansion coefficient, result in that the conventional pitch polishing techniques usually expose to lots of problems, such as subsurface damage, scratches, digs and so on. Single point diamond turning (SPDT) is a prospective technology for manufacture the brittle material, but the residual surface textures or artifacts of SPDT will cause great scattering losses. Meanwhile, the roughness also falls far short from the requirement in the short wavelength optical systems. So, the advanced processing technologies for obtaining the shape accuracy, roughness, surface flaw at the same time need to put forward. In this paper, the authors investigate the Magnetorheological Finishing (MRF) technology for the high precision processing of CaF2 material. We finish the surface accuracy RMS λ/150 and roughness Rq 0.3nm on the concave aspheric from originate shape error 0.7λ and roughness 17nm by the SPDT. The studying of the MRF techniques makes a great effort to the processing level of CaF2 material for the state-of-the-art DUV lithography systems applications.

  4. Quantitative analysis of multiple sclerosis: a feasibility study

    NASA Astrophysics Data System (ADS)

    Li, Lihong; Li, Xiang; Wei, Xinzhou; Sturm, Deborah; Lu, Hongbing; Liang, Zhengrong

    2006-03-01

    Multiple Sclerosis (MS) is an inflammatory and demyelinating disorder of the central nervous system with a presumed immune-mediated etiology. For treatment of MS, the measurements of white matter (WM), gray matter (GM), and cerebral spinal fluid (CSF) are often used in conjunction with clinical evaluation to provide a more objective measure of MS burden. In this paper, we apply a new unifying automatic mixture-based algorithm for segmentation of brain tissues to quantitatively analyze MS. The method takes into account the following effects that commonly appear in MR imaging: 1) The MR data is modeled as a stochastic process with an inherent inhomogeneity effect of smoothly varying intensity; 2) A new partial volume (PV) model is built in establishing the maximum a posterior (MAP) segmentation scheme; 3) Noise artifacts are minimized by a priori Markov random field (MRF) penalty indicating neighborhood correlation from tissue mixture. The volumes of brain tissues (WM, GM) and CSF are extracted from the mixture-based segmentation. Experimental results of feasibility studies on quantitative analysis of MS are presented.

  5. Rheological properties of magnetorheological fluid and its finishing application on large aperture BK7 glass

    NASA Astrophysics Data System (ADS)

    Wang, C.; Wei, Q. L.; Huang, W.; Luo, Q.; He, J. G.; Tang, G. P.

    2013-07-01

    The CeO2 nanoparticles with modified surface and mean sizes distribution during 107.0 nm - 127.7 nm are used as abrasive in magnetorheological finishing (MRF) fluid. The slow rotation dispersion without shearing thinning is better than fast emulsification dispersion. Steady D-shaped finishing spots and high quality precise processing surface with PV=0.1λ, GRMS=0.002λ/cm, Rq=0.83 nm are obtained on a 435 mm x 435 mm BK7 glass under self-developed MRF apparatus.

  6. Fabrication of high precision metallic freeform mirrors with magnetorheological finishing (MRF)

    NASA Astrophysics Data System (ADS)

    Beier, Matthias; Scheiding, Sebastian; Gebhardt, Andreas; Loose, Roman; Risse, Stefan; Eberhardt, Ramona; Tünnermann, Andreas

    2013-09-01

    The fabrication of complex shaped metal mirrors for optical imaging is a classical application area of diamond machining techniques. Aspherical and freeform shaped optical components up to several 100 mm in diameter can be manufactured with high precision in an acceptable amount of time. However, applications are naturally limited to the infrared spectral region due to scatter losses for shorter wavelengths as a result of the remaining periodic diamond turning structure. Achieving diffraction limited performance in the visible spectrum demands for the application of additional polishing steps. Magnetorheological Finishing (MRF) is a powerful tool to improve figure and finish of complex shaped optics at the same time in a single processing step. The application of MRF as a figuring tool for precise metal mirrors is a nontrivial task since the technology was primarily developed for figuring and finishing a variety of other optical materials, such as glasses or glass ceramics. In the presented work, MRF is used as a figuring tool for diamond turned aluminum lightweight mirrors with electroless nickel plating. It is applied as a direct follow-up process after diamond machining of the mirrors. A high precision measurement setup, composed of an interferometer and an advanced Computer Generated Hologram with additional alignment features, allows for precise metrology of the freeform shaped optics in short measuring cycles. Shape deviations less than 150 nm PV / 20 nm rms are achieved reliably for freeform mirrors with apertures of more than 300 mm. Characterization of removable and induced spatial frequencies is carried out by investigating the Power Spectral Density.

  7. Relationships among muscle fiber type composition, fiber diameter and MRF gene expression in different skeletal muscles of naturally grazing Wuzhumuqin sheep during postnatal development.

    PubMed

    Siqin, Qimuge; Nishiumi, Tadayuki; Yamada, Takahisa; Wang, Shuiqing; Liu, Wenjun; Wu, Rihan; Borjigin, Gerelt

    2017-12-01

    The aim of this study was to determine the relationships among muscle fiber-type composition, fiber diameter, and myogenic regulatory factor (MRF) gene expression in different skeletal muscles during development in naturally grazing Wuzhumuqin sheep. Three major muscles (i.e. the Longissimus dorsi (LD), Biceps femoris (BF) and Triceps brachii (TB)) were obtained from 20 Wuzhumuqin sheep and 20 castrated rams at each of the following ages: 1, 3, 6, 9, 12 and 18 months. Muscle fiber-type composition and fiber diameter were measured using histochemistry and morphological analysis, and MRF gene expression levels were determined using real-time PCR. In the LD muscle, changes in the proportion of each of different types of fiber (I, IIA and IIB) were relatively small. In the BF muscle, a higher proportion of type I and a 6.19-fold lower proportion of type IIA fibers were observed (P < 0.05). In addition, the compositions of type I and IIA fibers continuously changed in the TB muscle (P < 0.05). Moreover, muscle diameter gradually increased throughout development (P < 0.05). Almost no significant difference was found in MRF gene expression patterns, which appeared to be relatively stable. These results suggest that changes in fiber-type composition and increases in fiber size may be mutually interacting processes during muscle development. © 2017 The Authors Animal Science Journal published by John Wiley & Sons Australia, Ltd on behalf of Japanese Society of Animal Science.

  8. Simultaneous T1 and T2 Brain Relaxometry in Asymptomatic Volunteers using Magnetic Resonance Fingerprinting.

    PubMed

    Badve, Chaitra; Yu, Alice; Rogers, Matthew; Ma, Dan; Liu, Yiying; Schluchter, Mark; Sunshine, Jeffrey; Griswold, Mark; Gulani, Vikas

    2015-12-01

    Magnetic resonance fingerprinting (MRF) is a method of image acquisition that produces multiple MR parametric maps from a single scan. Here, we describe the normal range and progression of MRF-derived relaxometry values with age in healthy individuals. 56 normal volunteers (ages 11-71 years, M:F 24:32) were scanned. Regions of interest were drawn on T 1 and T 2 maps in 38 areas, including lobar and deep white matter, deep gray nuclei, thalami and posterior fossa structures. Relaxometry differences were assessed using a forward stepwise selection of a baseline model including either gender, age, or both, where variables were included if they contributed significantly (p<0.05). Additionally, differences in regional anatomy, including comparisons between hemispheres and between anatomical subcomponents, were assessed by paired t-tests. Using this protocol, MRF-derived T 1 and T 2 in frontal WM regions were found to increase in with age, while occipital and temporal regions remained relatively stable. Deep gray nuclei, including substantia nigra, were found to have age-related decreases in relaxometry. Gender differences were observed in T 1 and T 2 of temporal regions, cerebellum and pons. Males were also found to have more rapid age-related changes in frontal and parietal WM. Regional differences were identified between hemispheres, between genu and splenium of corpus callosum, and between posteromedial and anterolateral thalami. In conclusion, MRF quantification can measure relaxometry trends in healthy individuals that are in agreement with current understanding of neuroanatomy and neurobiology, and has the ability to uncover additional patterns that have not yet been explored.

  9. Simultaneous T1 and T2 Brain Relaxometry in Asymptomatic Volunteers using Magnetic Resonance Fingerprinting

    PubMed Central

    Badve, Chaitra; Yu, Alice; Rogers, Matthew; Ma, Dan; Liu, Yiying; Schluchter, Mark; Sunshine, Jeffrey; Griswold, Mark; Gulani, Vikas

    2016-01-01

    Magnetic resonance fingerprinting (MRF) is a method of image acquisition that produces multiple MR parametric maps from a single scan. Here, we describe the normal range and progression of MRF-derived relaxometry values with age in healthy individuals. 56 normal volunteers (ages 11-71 years, M:F 24:32) were scanned. Regions of interest were drawn on T1 and T2 maps in 38 areas, including lobar and deep white matter, deep gray nuclei, thalami and posterior fossa structures. Relaxometry differences were assessed using a forward stepwise selection of a baseline model including either gender, age, or both, where variables were included if they contributed significantly (p<0.05). Additionally, differences in regional anatomy, including comparisons between hemispheres and between anatomical subcomponents, were assessed by paired t-tests. Using this protocol, MRF-derived T1 and T2 in frontal WM regions were found to increase in with age, while occipital and temporal regions remained relatively stable. Deep gray nuclei, including substantia nigra, were found to have age-related decreases in relaxometry. Gender differences were observed in T1 and T2 of temporal regions, cerebellum and pons. Males were also found to have more rapid age-related changes in frontal and parietal WM. Regional differences were identified between hemispheres, between genu and splenium of corpus callosum, and between posteromedial and anterolateral thalami. In conclusion, MRF quantification can measure relaxometry trends in healthy individuals that are in agreement with current understanding of neuroanatomy and neurobiology, and has the ability to uncover additional patterns that have not yet been explored. PMID:26824078

  10. Combined fabrication technique for high-precision aspheric optical windows

    NASA Astrophysics Data System (ADS)

    Hu, Hao; Song, Ci; Xie, Xuhui

    2016-07-01

    Specifications made on optical components are becoming more and more stringent with the performance improvement of modern optical systems. These strict requirements not only involve low spatial frequency surface accuracy, mid-and-high spatial frequency surface errors, but also surface smoothness and so on. This presentation mainly focuses on the fabrication process for square aspheric window which combines accurate grinding, magnetorheological finishing (MRF) and smoothing polishing (SP). In order to remove the low spatial frequency surface errors and subsurface defects after accurate grinding, the deterministic polishing method MRF with high convergence and stable material removal rate is applied. Then the SP technology with pseudo-random path is adopted to eliminate the mid-and-high spatial frequency surface ripples and high slope errors which is the defect for MRF. Additionally, the coordinate measurement method and interferometry are combined in different phase. Acid-etched method and ion beam figuring (IBF) are also investigated on observing and reducing the subsurface defects. Actual fabrication result indicates that the combined fabrication technique can lead to high machining efficiency on manufaturing the high-precision and high-quality optical aspheric windows.

  11. Recycling of plastic: accounting of greenhouse gases and global warming contributions.

    PubMed

    Astrup, Thomas; Fruergaard, Thilde; Christensen, Thomas H

    2009-11-01

    Major greenhouse gas (GHG) emissions related to plastic waste recycling were evaluated with respect to three management alternatives: recycling of clean, single-type plastic, recycling of mixed/contaminated plastic, and use of plastic waste as fuel in industrial processes. Source-separated plastic waste was received at a material recovery facility (MRF) and processed for granulation and subsequent downstream use. In the three alternatives, plastic was assumed to be substituting virgin plastic in new products, wood in low-strength products (outdoor furniture, fences, etc.), and coal or fuel oil in the case of energy utilization. GHG accounting was organized in terms of indirect upstream emissions (e.g. provision of energy, fuels, and materials), direct emissions at the MRF (e.g. fuel combustion), and indirect downstream emissions (e.g. avoided emissions from production of virgin plastic, wood, or coal/oil). Combined, upstream and direct emissions were estimated to be roughly between 5 and 600 kg CO(2)-eq. tonne( -1) of plastic waste depending on treatment at the MRF and CO(2) emissions from electricity production. Potential downstream savings arising from substitution of virgin plastic, wood, and energy fuels were estimated to be around 60- 1600 kg CO(2)-eq. tonne( -1) of plastic waste depending on substitution ratios and CO(2) emissions from electricity production. Based on the reviewed data, it was concluded that substitution of virgin plastic should be preferred. If this is not viable due to a mixture of different plastic types and/or contamination, the plastic should be used for energy utilization. Recycling of plastic waste for substitution of other materials such as wood provided no savings with respect to global warming.

  12. A novel method for measurement of MR fluid sedimentation and its experimental verification

    NASA Astrophysics Data System (ADS)

    Roupec, J.; Berka, P.; Mazůrek, I.; Strecker, Z.; Kubík, M.; Macháček, O.; Taheri Andani, M.

    2017-10-01

    This article presents a novel sedimentation measurement technique based on quantifying the changes in magnetic flux density when the magnetorheological fluid (MRF) passes through the air gap of the magnetic circuit. The sedimented MRF appears to have as a result of increased iron content. Accordingly, the sedimented portion of the sample displays a higher magnetic conductivity than the unsedimented area that contains less iron particles. The data analysis and evaluation methodology is elaborated along with an example set of measurements, which are compared against the visual observations and available data in the literature. Experiments indicate that unlike the existing methods, the new technique is able to accurately generate the complete curves of the sedimentation profile in a long-term sedimentation. The proposed method is capable of successfully detecting the area with the tightest particle configuration near the bottom (‘cake’ layer). It also addresses the issues with the development of an unclear boundary between the carrier fluid and the sediment (mudline) during an accelerated sedimentation process; improves the sensitivity of the sedimentation detection and accurately measure the changes in particle concentration with a high resolution.

  13. Use of medium-range numerical weather prediction model output to produce forecasts of streamflow

    USGS Publications Warehouse

    Clark, M.P.; Hay, L.E.

    2004-01-01

    This paper examines an archive containing over 40 years of 8-day atmospheric forecasts over the contiguous United States from the NCEP reanalysis project to assess the possibilities for using medium-range numerical weather prediction model output for predictions of streamflow. This analysis shows the biases in the NCEP forecasts to be quite extreme. In many regions, systematic precipitation biases exceed 100% of the mean, with temperature biases exceeding 3??C. In some locations, biases are even higher. The accuracy of NCEP precipitation and 2-m maximum temperature forecasts is computed by interpolating the NCEP model output for each forecast day to the location of each station in the NWS cooperative network and computing the correlation with station observations. Results show that the accuracy of the NCEP forecasts is rather low in many areas of the country. Most apparent is the generally low skill in precipitation forecasts (particularly in July) and low skill in temperature forecasts in the western United States, the eastern seaboard, and the southern tier of states. These results outline a clear need for additional processing of the NCEP Medium-Range Forecast Model (MRF) output before it is used for hydrologic predictions. Techniques of model output statistics (MOS) are used in this paper to downscale the NCEP forecasts to station locations. Forecasted atmospheric variables (e.g., total column precipitable water, 2-m air temperature) are used as predictors in a forward screening multiple linear regression model to improve forecasts of precipitation and temperature for stations in the National Weather Service cooperative network. This procedure effectively removes all systematic biases in the raw NCEP precipitation and temperature forecasts. MOS guidance also results in substantial improvements in the accuracy of maximum and minimum temperature forecasts throughout the country. For precipitation, forecast improvements were less impressive. MOS guidance increases he accuracy of precipitation forecasts over the northeastern United States, but overall, the accuracy of MOS-based precipitation forecasts is slightly lower than the raw NCEP forecasts. Four basins in the United States were chosen as case studies to evaluate the value of MRF output for predictions of streamflow. Streamflow forecasts using MRF output were generated for one rainfall-dominated basin (Alapaha River at Statenville, Georgia) and three snowmelt-dominated basins (Animas River at Durango, Colorado: East Fork of the Carson River near Gardnerville, Nevada: and Cle Elum River near Roslyn, Washington). Hydrologic model output forced with measured-station data were used as "truth" to focus attention on the hydrologic effects of errors in the MRF forecasts. Eight-day streamflow forecasts produced using the MOS-corrected MRF output as input (MOS) were compared with those produced using the climatic Ensemble Streamflow Prediction (ESP) technique. MOS-based streamflow forecasts showed increased skill in the snowmelt-dominated river basins, where daily variations in streamflow are strongly forced by temperature. In contrast, the skill of MOS forecasts in the rainfall-dominated basin (the Alapaha River) were equivalent to the skill of the ESP forecasts. Further improvements in streamflow forecasts require more accurate local-scale forecasts of precipitation and temperature, more accurate specification of basin initial conditions, and more accurate model simulations of streamflow. ?? 2004 American Meteorological Society.

  14. MRF with adjustable pH

    NASA Astrophysics Data System (ADS)

    Jacobs, Stephen D.

    2011-10-01

    Deterministic final polishing of high precision optics using sub-aperture processing with magnetorheological finishing (MRF) is an accepted practice throughout the world. A wide variety of materials can be successfully worked with aqueous (pH 10), magnetorheological (MR) fluids, using magnetic carbonyl iron (CI) and either ceria or nanodiamond nonmagnetic abrasives. Polycrystalline materials like zinc sulfide (ZnS) and zinc selenide (ZnSe) are difficult to polish at pH 10 with MRF, due to their grain size and the relatively low stiffness of the MR fluid lap. If microns of material are removed, the grain structure of the material begins to appear. In 2005, Kozhinova et al. (Appl. Opt. 44 4671-4677) demonstrated that lowering pH could improve MRF of ZnS. However, magnetic CI particle corrosion rendered their low pH approach unstable and unsuitable for commercial implementation. In 2009, Shafrir et al. described a sol-gel coating process for manufacturing a zirconia-coated CI particle that protects the magnetic core from aqueous corrosion (Appl. Opt .48 6797-6810). The coating process produces free nanozirconia polishing abrasives during the coating procedure, thereby creating an MR polishing powder that is "self-charged" with the polishing abrasive. By simply adding water, it was possible to polish optical glasses and ceramics with good stability at pH 8 for three weeks. The development of a corrosion resistant, MR polishing powder, opens up the possibility for polishing additional materials, wherein the pH may be adjusted to optimize effectiveness. In this paper we describe the CI coating process, the characterization of the coated powder, and procedures for making stable MR fluids with adjustable pH, giving polishing results for a variety of optical glasses and crystalline ceramics.

  15. Combined technique of elastic magnetorheological finishing and HF etching for high-efficiency improving of the laser-induced damage threshold of fused silica optics.

    PubMed

    Shi, Feng; Tian, Ye; Peng, Xiaoqiang; Dai, Yifan

    2014-02-01

    The inadequate laser-induced damage threshold (LIDT) of optical elements limits the future development of high-power laser systems. With the aim of raising the LIDT, the elastic passivating treatment mechanism and parameter optimization of a combined magnetorheological finishing (MRF) and HF etching process are investigated. The relationships among the width/depth ratio of defects and parameters of the passivating treatment process (MRF and HF etching), relative intensity (RI), and LIDT of fused silica (FS) optics are revealed through a set of simulations and experiments. For high-efficiency improvement of LIDT, in an elastic passivating treatment process, scratches or other defects need not be wiped off entirely, but only passivated or enlarged to an acceptable profile. This combined process can be applied in polishing high-power-laser-irradiated components with high efficiency, low damage, and high LIDT. A 100  mm×100  mm×10  mm FS optic window is treated, and the width/depth ratio rises from 3 to 11, RI decreases from 4 to 1.2, and LIDT is improved from 7.8 to 17.8  J/cm2 after 385 min of MRF elastic polishing and 60 min of HF etching. Comparing this defect-carrying sample to the defect-free one, the MRF polishing time is shortened, obviously, from 1100 to 385 min, and the LIDT is merely decreased from 19.4 to 17.8  J/cm2. Due to the optimized technique, the fabricating time was shortened by a factor of 2.6, while the LIDT decreased merely 8.2%.

  16. Differential expression of myogenic regulatory genes and Msx-1 during dedifferentiation and redifferentiation of regenerating amphibian limbs.

    PubMed

    Simon, H G; Nelson, C; Goff, D; Laufer, E; Morgan, B A; Tabin, C

    1995-01-01

    An amputated limb of an adult urodele amphibian is capable of undergoing regeneration. The new structures form from an undifferentiated mass of cells called the regenerative blastema. The cells of the blastema are believed to derive from differentiated tissues of the adult limb. However, the exact source of these cells and the process by which they undergo dedifferentiation are poorly understood. In order to elucidate the molecular and cellular basis for dedifferentiation we isolated a number of genes which are potential regulators of the process. These include Msx-1, which is believed to support the undifferentiated and proliferative state of cells in the embryonic limb bud; and two members of the myogenic regulatory gene family, MRF-4 and Myf-5, which are expressed in differentiated muscle and regulate muscle-specific gene activity. As anticipated, we find that Msx-1 is strongly up-regulated during the initiation of regeneration. It remains expressed throughout regeneration but is not found in the fully regenerated limb. The myogenic gene MRF-4 has the reverse expression pattern. It is expressed in adult limb muscle, is rapidly shut off in early regenerative blastemas, and is only reexpressed at the completion of regeneration. These kinetics are paralleled by those of a muscle-specific Myosin gene. In contrast Myf-5, a second member of the myogenic gene family, continues to be expressed throughout the regenerative process. Thus, MRF-4 and Myf-5 are likely to play distinct roles during regeneration. MRF-4 may directly regulate muscle phenotype and as such its repression may be a key event in dedifferentiation.(ABSTRACT TRUNCATED AT 250 WORDS)

  17. Dorsomedial pontine neurons with descending projections to the medullary reticular formation express orexin-1 and adrenergic alpha2A receptor mRNA.

    PubMed

    Volgin, Denys V; Malinowska, Monika; Kubin, Leszek

    2009-08-14

    Neurons located in the dorsomedial pontine rapid eye movement (REM) sleep-triggering region send axons to the medial medullary reticular formation (mMRF). This pathway is believed to be important for the generation of REM sleep motor atonia, but other than that they are glutamatergic little is known about neurochemical signatures of these pontine neurons important for REM sleep. We used single-cell reverse transcription and polymerase chain reaction (RT-PCR) to determine whether dorsomedial pontine cells with projections to the mMRF express mRNA for selected membrane receptors that mediate modulatory influences on REM sleep. Fluorescein (FITC)-labeled latex microspheres were microinjected into the mMRF of 26-34-day-old rats under pentobarbital anesthesia. After 5-6 days, rats were sacrificed, pontine slices were obtained and neurons were dissociated from 400 to 600 microm micropunches extracted from dorsomedial pontine reticular formation. We found that 32 out of 51 FITC-labeled cells tested (63+/-7% (SE)) contained the orexin type 1 receptor (ORX1r) mRNA, 27 out of 73 (37+/-6%) contained the adrenergic alpha(2A) receptor (alpha(2A)r) RNA, and 6 out of 31 (19+/-7%) contained both mRNAs. The percentage of cells positive for the ORX1r mRNA was significantly lower (p<0.04) for the dorsomedial pontine cells that were not retrogradely labeled from the mMRF (32+/-11%), whereas alpha(2A)r mRNA was present in a similar percentage of FITC-labeled and unlabeled neurons. Our data suggest that ORX and adrenergic pathways converge on a subpopulation of cells of the pontine REM sleep-triggering region that have descending projections to the medullary region important for the motor control during REM sleep.

  18. Event-Based Stereo Depth Estimation Using Belief Propagation.

    PubMed

    Xie, Zhen; Chen, Shengyong; Orchard, Garrick

    2017-01-01

    Compared to standard frame-based cameras, biologically-inspired event-based sensors capture visual information with low latency and minimal redundancy. These event-based sensors are also far less prone to motion blur than traditional cameras, and still operate effectively in high dynamic range scenes. However, classical framed-based algorithms are not typically suitable for these event-based data and new processing algorithms are required. This paper focuses on the problem of depth estimation from a stereo pair of event-based sensors. A fully event-based stereo depth estimation algorithm which relies on message passing is proposed. The algorithm not only considers the properties of a single event but also uses a Markov Random Field (MRF) to consider the constraints between the nearby events, such as disparity uniqueness and depth continuity. The method is tested on five different scenes and compared to other state-of-art event-based stereo matching methods. The results show that the method detects more stereo matches than other methods, with each match having a higher accuracy. The method can operate in an event-driven manner where depths are reported for individual events as they are received, or the network can be queried at any time to generate a sparse depth frame which represents the current state of the network.

  19. Landcover classification in MRF context using Dempster-Shafer fusion for multisensor imagery.

    PubMed

    Sarkar, Anjan; Banerjee, Anjan; Banerjee, Nilanjan; Brahma, Siddhartha; Kartikeyan, B; Chakraborty, Manab; Majumder, K L

    2005-05-01

    This work deals with multisensor data fusion to obtain landcover classification. The role of feature-level fusion using the Dempster-Shafer rule and that of data-level fusion in the MRF context is studied in this paper to obtain an optimally segmented image. Subsequently, segments are validated and classification accuracy for the test data is evaluated. Two examples of data fusion of optical images and a synthetic aperture radar image are presented, each set having been acquired on different dates. Classification accuracies of the technique proposed are compared with those of some recent techniques in literature for the same image data.

  20. Acidic magnetorheological finishing of infrared polycrystalline materials.

    PubMed

    Salzman, S; Romanofsky, H J; West, G; Marshall, K L; Jacobs, S D; Lambropoulos, J C

    2016-10-20

    Chemical-vapor-deposited (CVD) ZnS is an example of a polycrystalline material that is difficult to polish smoothly via the magnetorheological finishing (MRF) technique. When MRF-polished, the internal infrastructure of the material tends to manifest on the surface as millimeter-sized "pebbles," and the surface roughness observed is considerably high. The fluid's parameters important to developing a magnetorheological (MR) fluid that is capable of polishing CVD ZnS smoothly were previously discussed and presented. These parameters were acidic pH (∼4.5) and low viscosity (∼47  cP). MRF with such a unique MR fluid was shown to reduce surface artifacts in the form of pebbles; however, surface microroughness was still relatively high because of the absence of a polishing abrasive in the formulation. In this study, we examine the effect of two polishing abrasives-alumina and nanodiamond-on the surface finish of several CVD ZnS substrates, and on other important IR polycrystalline materials that were finished with acidic MR fluids containing these two polishing abrasives. Surface microroughness results obtained were as low as ∼28  nm peak-to-valley and ∼6-nm root mean square.

  1. Acidic magnetorheological finishing of infrared polycrystalline materials

    DOE PAGES

    Salzman, S.; Romanofsky, H. J.; West, G.; ...

    2016-10-12

    Here, chemical-vapor–deposited (CVD) ZnS is an example of a polycrystalline material that is difficult to polish smoothly via the magnetorheological–finishing (MRF) technique. When MRF-polished, the internal infrastructure of the material tends to manifest on the surface as millimeter-sized “pebbles,” and the surface roughness observed is considerably high. The fluid’s parameters important to developing a magnetorheological (MR) fluid that is capable of polishing CVD ZnS smoothly were previously discussed and presented. These parameters were acidic pH (~4.5) and low viscosity (~47 cP). MRF with such a unique MR fluid was shown to reduce surface artifacts in the form of pebbles; however,more » surface microroughness was still relatively high because of the absence of a polishing abrasive in the formulation. In this study, we examine the effect of two polishing abrasives—alumina and nanodiamond—on the surface finish of several CVD ZnS substrates, and on other important IR polycrystalline materials that were finished with acidic MR fluids containing these two polishing abrasives. Surface microroughness results obtained were as low as ~28 nm peak-to-valley and ~6-nm root mean square.« less

  2. Stabilization of multiple rib fractures in a canine model.

    PubMed

    Huang, Ke-Nan; Xu, Zhi-Fei; Sun, Ju-Xian; Ding, Xin-Yu; Wu, Bin; Li, Wei; Qin, Xiong; Tang, Hua

    2014-12-01

    Operative stabilization is frequently used in the clinical treatment of multiple rib fractures (MRF); however, no ideal material exists for use in this fixation. This study investigates a newly developed biodegradable plate system for the stabilization of MRF. Silk fiber-reinforced polycaprolactone (SF/PCL) plates were developed for rib fracture stabilization and studied using a canine flail chest model. Adult mongrel dogs were divided into three groups: one group received the SF/PCL plates, one group received standard clinical steel plates, and the final group did not undergo operative fracture stabilization (n = 6 for each group). Radiographic, mechanical, and histologic examination was performed to evaluate the effectiveness of the biodegradable material for the stabilization of the rib fractures. No nonunion and no infections were found when using SF-PCL plates. The fracture sites collapsed in the untreated control group, leading to obvious chest wall deformity not encountered in the two groups that underwent operative stabilization. Our experimental study shows that the SF/PCL plate has the biocompatibility and mechanical strength suitable for fixation of MRF and is potentially ideal for the treatment of these injuries. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. PTBS segmentation scheme for synthetic aperture radar

    NASA Astrophysics Data System (ADS)

    Friedland, Noah S.; Rothwell, Brian J.

    1995-07-01

    The Image Understanding Group at Martin Marietta Technologies in Denver, Colorado has developed a model-based synthetic aperture radar (SAR) automatic target recognition (ATR) system using an integrated resource architecture (IRA). IRA, an adaptive Markov random field (MRF) environment, utilizes information from image, model, and neighborhood resources to create a discrete, 2D feature-based world description (FBWD). The IRA FBWD features are peak, target, background and shadow (PTBS). These features have been shown to be very useful for target discrimination. The FBWD is used to accrue evidence over a model hypothesis set. This paper presents the PTBS segmentation process utilizing two IRA resources. The image resource (IR) provides generic (the physics of image formation) and specific (the given image input) information. The neighborhood resource (NR) provides domain knowledge of localized FBWD site behaviors. A simulated annealing optimization algorithm is used to construct a `most likely' PTBS state. Results on simulated imagery illustrate the power of this technique to correctly segment PTBS features, even when vehicle signatures are immersed in heavy background clutter. These segmentations also suppress sidelobe effects and delineate shadows.

  4. Auto-biometric for M-mode echocardiography

    NASA Astrophysics Data System (ADS)

    Zhang, Wei; Park, Jinhyong; Zhou, S. Kevin

    2010-03-01

    In this paper we present a system for fast and accurate detection of anatomical structures (calipers) in M-mode images. The task is challenging because of dramatic variations in their appearances. We propose to solve the problem in a progressive manner, which ensures both robustness and efficiency. It first obtains rough caliper localization using the intensity profile image. Then run a constrained search for accurate caliper positions. Markov Random Field (MRF) and warping image detectors are used for jointly considering appearance information and the geometric relationship between calipers. Extensive experiments show that our system achieves more accurate results and uses less time in comparison with previously reported work.

  5. Multi-modal Social Networks: A MRF Learning Approach

    DTIC Science & Technology

    2016-06-20

    number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. University of Texas at Austin 101 East 27th Street Suite 5.300 Austin , TX 78712 -1532...Proceedings of ACM Sigmetrics, Austin , TX June 2014. (17% acceptance) “Topic Modeling from Network Spread,” A. Ray, S. Sanghavi and S. Shakkottai...Proceedings of ACM Sigmetrics (poster paper), Austin , TX June 2014. Conclusions: Our approach based on hypothesis testing on graphs provides a

  6. Forces acting between polishing tool and workpiece surface in magnetorheological finishing

    NASA Astrophysics Data System (ADS)

    Schinhaerl, Markus; Vogt, Christian; Geiss, Andreas; Stamp, Richard; Sperber, Peter; Smith, Lyndon; Smith, Gordon; Rascher, Rolf

    2008-08-01

    Magnetorheological finishing is a computer-controlled polishing technique that is used mainly in the field of high-quality optical lens production. The process is based on the use of a magnetorheological polishing fluid that is able, in a reversible manner, to change its viscosity from a liquid state to a solid state under the control of a magnetic field. This outstanding characteristic facilitates rapid control (in milliseconds) of the yield stress, and thus the pressure applied to the workpiece surface to be polished. A three-axis dynamometer was used to measure the forces acting between the magnetorheological fluid and the workpiece surface during determination of the material removal characteristic of the polishing tool (influence function). The results of a testing series using a QED Q22-X MRF polishing machine with a 50 mm wheel assembly show that the normal forces range from about 2 to 20 N. Knowledge of the forces is essential, especially when thin workpieces are to be polished and distortion becomes significant. This paper discusses, and gives examples of, the variation in the parameters experienced during a programme of experiments, and provides examples of the value of this work.

  7. SfM with MRFs: discrete-continuous optimization for large-scale structure from motion.

    PubMed

    Crandall, David J; Owens, Andrew; Snavely, Noah; Huttenlocher, Daniel P

    2013-12-01

    Recent work in structure from motion (SfM) has built 3D models from large collections of images downloaded from the Internet. Many approaches to this problem use incremental algorithms that solve progressively larger bundle adjustment problems. These incremental techniques scale poorly as the image collection grows, and can suffer from drift or local minima. We present an alternative framework for SfM based on finding a coarse initial solution using hybrid discrete-continuous optimization and then improving that solution using bundle adjustment. The initial optimization step uses a discrete Markov random field (MRF) formulation, coupled with a continuous Levenberg-Marquardt refinement. The formulation naturally incorporates various sources of information about both the cameras and points, including noisy geotags and vanishing point (VP) estimates. We test our method on several large-scale photo collections, including one with measured camera positions, and show that it produces models that are similar to or better than those produced by incremental bundle adjustment, but more robustly and in a fraction of the time.

  8. Combining deep learning with anatomical analysis for segmentation of the portal vein for liver SBRT planning

    NASA Astrophysics Data System (ADS)

    Ibragimov, Bulat; Toesca, Diego; Chang, Daniel; Koong, Albert; Xing, Lei

    2017-12-01

    Automated segmentation of the portal vein (PV) for liver radiotherapy planning is a challenging task due to potentially low vasculature contrast, complex PV anatomy and image artifacts originated from fiducial markers and vasculature stents. In this paper, we propose a novel framework for automated segmentation of the PV from computed tomography (CT) images. We apply convolutional neural networks (CNNs) to learn the consistent appearance patterns of the PV using a training set of CT images with reference annotations and then enhance the PV in previously unseen CT images. Markov random fields (MRFs) were further used to smooth the results of the enhancement of the CNN enhancement and remove isolated mis-segmented regions. Finally, CNN-MRF-based enhancement was augmented with PV centerline detection that relied on PV anatomical properties such as tubularity and branch composition. The framework was validated on a clinical database with 72 CT images of patients scheduled for liver stereotactic body radiation therapy. The obtained accuracy of the segmentation was DSC= 0.83 and \

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Dengwang; Wang, Jie; Kapp, Daniel S.

    Purpose: The aim of this work is to develop a robust algorithm for accurate segmentation of liver with special attention paid to the problems with fuzzy edges and tumor. Methods: 200 CT images were collected from radiotherapy treatment planning system. 150 datasets are selected as the panel data for shape dictionary and parameters estimation. The remaining 50 datasets were used as test images. In our study liver segmentation was formulated as optimization process of implicit function. The liver region was optimized via local and global optimization during iterations. Our method consists five steps: 1)The livers from the panel data weremore » segmented manually by physicians, and then We estimated the parameters of GMM (Gaussian mixture model) and MRF (Markov random field). Shape dictionary was built by utilizing the 3D liver shapes. 2)The outlines of chest and abdomen were located according to rib structure in the input images, and the liver region was initialized based on GMM. 3)The liver shape for each 2D slice was adjusted using MRF within the neighborhood of liver edge for local optimization. 4)The 3D liver shape was corrected by employing SSR (sparse shape representation) based on liver shape dictionary for global optimization. Furthermore, H-PSO(Hybrid Particle Swarm Optimization) was employed to solve the SSR equation. 5)The corrected 3D liver was divided into 2D slices as input data of the third step. The iteration was repeated within the local optimization and global optimization until it satisfied the suspension conditions (maximum iterations and changing rate). Results: The experiments indicated that our method performed well even for the CT images with fuzzy edge and tumors. Comparing with physician delineated results, the segmentation accuracy with the 50 test datasets (VOE, volume overlap percentage) was on average 91%–95%. Conclusion: The proposed automatic segmentation method provides a sensible technique for segmentation of CT images. This work is supported by NIH/NIBIB (1R01-EB016777), National Natural Science Foundation of China (No.61471226 and No.61201441), Research funding from Shandong Province (No.BS2012DX038 and No.J12LN23), and Research funding from Jinan City (No.201401221 and No.20120109)« less

  10. Rapid fabrication of a silicon modification layer on silicon carbide substrate.

    PubMed

    Bai, Yang; Li, Longxiang; Xue, Donglin; Zhang, Xuejun

    2016-08-01

    We develop a kind of magnetorheological (MR) polishing fluid for the fabrication of a silicon modification layer on a silicon carbide substrate based on chemical theory and actual polishing requirements. The effect of abrasive concentration in MR polishing fluid on material removal rate and removal function shape is investigated. We conclude that material removal rate will increase and tends to peak value as the abrasive concentration increases to 0.3 vol. %, and the removal function profile will become steep, which is a disadvantage to surface frequency error removal at the same time. The removal function stability is also studied and the results show that the prepared MR polishing fluid can satisfy actual fabrication requirements. An aspheric reflective mirror of silicon carbide modified by silicon is well polished by combining magnetorheological finishing (MRF) using two types of MR polishing fluid and computer controlled optical surfacing (CCOS) processes. The surface accuracy root mean square (RMS) is improved from 0.087λ(λ=632.8  nm) initially to 0.020λ(λ=632.8  nm) in 5.5 h total and the tool marks resulting from MRF are negligible. The PSD analysis results also shows that the final surface is uniformly polished.

  11. Research on error control and compensation in magnetorheological finishing.

    PubMed

    Dai, Yifan; Hu, Hao; Peng, Xiaoqiang; Wang, Jianmin; Shi, Feng

    2011-07-01

    Although magnetorheological finishing (MRF) is a deterministic finishing technology, the machining results always fall short of simulation precision in the actual process, and it cannot meet the precision requirements just through a single treatment but after several iterations. We investigate the reasons for this problem through simulations and experiments. Through controlling and compensating the chief errors in the manufacturing procedure, such as removal function calculation error, positioning error of the removal function, and dynamic performance limitation of the CNC machine, the residual error convergence ratio (ratio of figure error before and after processing) in a single process is obviously increased, and higher figure precision is achieved. Finally, an improved technical process is presented based on these researches, and the verification experiment is accomplished on the experimental device we developed. The part is a circular plane mirror of fused silica material, and the surface figure error is improved from the initial λ/5 [peak-to-valley (PV) λ=632.8 nm], λ/30 [root-mean-square (rms)] to the final λ/40 (PV), λ/330 (rms) just through one iteration in 4.4 min. Results show that a higher convergence ratio and processing precision can be obtained by adopting error control and compensation techniques in MRF.

  12. Surface-texture evolution of different chemical-vapor-deposited zinc sulfide flats polished with various magnetorheological fluids

    DOE PAGES

    Salzman, S.; Romanofsky, H. J.; Jacobs, S. D.; ...

    2015-08-19

    The macro-structure of chemical-vapor-deposited (CVD) zinc sulfide (ZnS) substrates is characterizedby cone-like structures that start growing at the early stages of deposition. As deposition progresses,these cones grow larger and reach centimeter size in height and millimeter size in width. It is challengingto polish out these features from the top layer, particularly for the magnetorheological finishing (MRF)process. A conventional MR fluid tends to leave submillimeter surface artifacts on the finished surface,which is a direct result of the cone-like structure. Here we describe the MRF process of polishing four CVD ZnS substrates, manufactured by four differentvendors, with conventional MR fluid at pHmore » 10 and zirconia-coated-CI (carbonyl iron) MR fluids at pH 4, 5,and 6. We report on the surface–texture evolution of the substrates as they were MRF polished with thedifferent fluids. We show that performances of the zirconia-coated-CI MR fluid at pH 4 are significantlyhigher than that of the same fluid at pH levels of 5 and 6 and moderately higher than that of a conventionalMR fluid at pH 10. An improvement in surface–texture variability from part to part was also observedwith the pH 4 MR fluid.« less

  13. Magnetorheological finishing (MRF) of potassium dihydrogen phosphate (KDP) crystals: nonaqueous fluids development, optical finish, and laser damage performance at 1064 nm and 532 nm

    NASA Astrophysics Data System (ADS)

    Menapace, J. A.; Ehrmann, P. R.; Bickel, R. C.

    2009-10-01

    Over the past year we have been working on specialized MR fluids for polishing KDP crystals. KDP is an extremely difficult material to conventionally polish due to its water solubility, low hardness, and temperature sensitivity. Today, KDP crystals are finished using single-point diamond turning (SPDT) tools and nonaqueous lubricants/coolants. KDP optics fabricated using SPDT, however, are limited to surface corrections due to tool/method characteristics with surface quality driven by microroughness from machine pitch, speed, force, and diamond tool character. MRF polishing offers a means to circumvent many of these issues since it is deterministic which makes the technique practical for surface and transmitted wavefront correction, is low force, and is temperature independent. What is lacking is a usable nonaqueous MR fluid that is chemically and physically compatible with KDP which can be used for polishing and subsequently cleaned from the optical surface. In this study, we will present the fluid parameters important in the design and development of nonaqueous MR fluid formulations capable of polishing KDP and how these parameters affect MRF polishing. We will also discuss requirements peculiar to successful KDP polishing and how they affect optical figure/finish and laser damage performance at 1064 nm and 532 nm.

  14. The Confluence of GIS, Cloud and Open Source, Enabling Big Raster Data Applications

    NASA Astrophysics Data System (ADS)

    Plesea, L.; Emmart, C. B.; Boller, R. A.; Becker, P.; Baynes, K.

    2016-12-01

    The rapid evolution of available cloud services is profoundly changing the way applications are being developed and used. Massive object stores, service scalability, continuous integration are some of the most important cloud technology advances that directly influence science applications and GIS. At the same time, more and more scientists are using GIS platforms in their day to day research. Yet with new opportunities there are always some challenges. Given the large amount of data commonly required in science applications, usually large raster datasets, connectivity is one of the biggest problems. Connectivity has two aspects, one being the limited bandwidth and latency of the communication link due to the geographical location of the resources, the other one being the interoperability and intrinsic efficiency of the interface protocol used to connect. NASA and Esri are actively helping each other and collaborating on a few open source projects, aiming to provide some of the core technology components to directly address the GIS enabled data connectivity problems. Last year Esri contributed LERC, a very fast and efficient compression algorithm to the GDAL/MRF format, which itself is a NASA/Esri collaboration project. The MRF raster format has some cloud aware features that make it possible to build high performance web services on cloud platforms, as some of the Esri projects demonstrate. Currently, another NASA open source project, the high performance OnEarth WMTS server is being refactored and enhanced to better integrate with MRF, GDAL and Esri software. Taken together, the GDAL, MRF and OnEarth form the core of an open source CloudGIS toolkit that is already showing results. Since it is well integrated with GDAL, which is the most common interoperability component of GIS applications, this approach should improve the connectivity and performance of many science and GIS applications in the cloud.

  15. JAZF1 promotes proliferation of C2C12 cells, but retards their myogenic differentiation through transcriptional repression of MEF2C and MRF4—Implications for the role of Jazf1 variants in oncogenesis and type 2 diabetes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yuasa, Katsutoshi; Aoki, Natsumi; Hijikata, Takao, E-mail: hijikata@musashino-u.ac.jp

    Single-nucleotide polymorphisms associated with type 2 diabetes (T2D) have been identified in Jazf1, which is also involved in the oncogenesis of endometrial stromal tumors. To understand how Jazf1 variants confer a risk of tumorigenesis and T2D, we explored the functional roles of JAZF1 and searched for JAZF1 target genes in myogenic C2C12 cells. Consistent with an increase of Jazf1 transcripts during myoblast proliferation and their decrease during myogenic differentiation in regenerating skeletal muscle, JAZF1 overexpression promoted cell proliferation, whereas it retarded myogenic differentiation. Examination of myogenic genes revealed that JAZF1 overexpression transcriptionally repressed MEF2C and MRF4 and their downstream genes.more » AMP deaminase1 (AMPD1) was identified as a candidate for JAZF1 target by gene array analysis. However, promoter assays of Ampd1 demonstrated that mutation of the putative binding site for the TR4/JAZF1 complex did not alleviate the repressive effects of JAZF1 on promoter activity. Instead, JAZF1-mediated repression of Ampd1 occurred through the MEF2-binding site and E-box within the Ampd1 proximal regulatory elements. Consistently, MEF2C and MRF4 expression enhanced Ampd1 promoter activity. AMPD1 overexpression and JAZF1 downregulation impaired AMPK phosphorylation, while JAZF1 overexpression also reduced it. Collectively, these results suggest that aberrant JAZF1 expression contributes to the oncogenesis and T2D pathogenesis. - Highlights: • JAZF1 promotes cell cycle progression and proliferation of myoblasts. • JAZF1 retards myogenic differentiation and hypertrophy of myotubes. • JAZF1 transcriptionally represses Mef2C and Mrf4 expression. • JAZF1 has an impact on the phosphorylation of AMPK.« less

  16. Dorsomedial pontine neurons with descending projections to the medullary reticular formation express orexin-1 and adrenergic α2A receptor mRNA

    PubMed Central

    Volgin, Denys V.; Malinowska, Monika; Kubin, Leszek

    2009-01-01

    Neurons located in the dorsomedial pontine rapid eye movement (REM) sleep-triggering region send axons to the medial medullary reticular formation (mMRF). This pathway is believed to be important for the generation of REM sleep motor atonia, but other than that they are glutamatergic little is known about neurochemical signatures of these pontine neurons important for REM sleep. We used single-cell reverse transcription and polymerase chain reaction (RT-PCR) to determine whether dorsomedial pontine cells with projections to the mMRF express mRNA for selected membrane receptors that mediate modulatory influences on REM sleep. Fluorescein (FITC)-labeled latex microspheres were microinjected into the mMRF of 26–34 day-old rats under pentobarbital anesthesia. After 5–6 days, rats were sacrificed, pontine slices were obtained and neurons were dissociated from 400–600 μm micropunches extracted from dorsomedial pontine reticular formation. We found that 32 out of 51 FITC-labeled cells tested (63%±7(SE)) contained the orexin type 1 receptor (ORX1r) mRNA, 27 out of 73 (37%±6) contained the adrenergic α2A receptor (α2Ar) RNA, and 6 out of 31 (19%±7) contained both mRNAs. The percentage of cells positive for the ORX1r mRNA was significantly lower (p<0.04) for the dorsomedial pontine cells that were not retrogradely labeled from the mMRF (32%±11), whereas α2Ar mRNA was present in a similar percentage of FITC-labeled and unlabeled neurons. Our data suggest that ORX and adrenergic pathways converge on a subpopulation of cells of the pontine REM sleep-triggering region that have descending projections to the medullary region important for the motor control during REM sleep. PMID:19427365

  17. Influence of entrainment and countergradient on the ABL diurnal development

    NASA Astrophysics Data System (ADS)

    Hernández-Ceballos, M. A.

    2009-09-01

    The representation of the diurnal evolution of the boundary layer (ABL) by NCAR-Penn State Mesoscale Model (MM5) and by the mesoscale model Weather Research Forecast (WRF) is compared. Special attention is paid to determine the role of processes that occur near and below the inversion zone: the positive correlation between the heat flux and the gradient (countergradient) and the role of entrainment of heat originating from the free troposphere. Both processes play a key role in the modelling of the diurnal variability of temperature, moisture and atmospheric compounds. A number of 13 simulations are carried out to determine the sensitivity of the model results to the formulation of the ABL height and countergradient heat flux in the Medium Range Forecast (MRF) ABL scheme. Model results are compared with experimental data obtained from the DOMINO (Diel Oxidant Mechanisms in relation to Nitrogen oxides) campaign. It was organized by Max Planck Institute for Atmospheric Chemistry (Germany) in collaboration with the National Institute for Aerospace Technology (Spain). The DOMINO campaign took place at the "Atmospheric Sounding Station - El Arenosillo", a platform dedicated to atmospheric measurements in the Southwest of Spain. All numerical experiments are grouped in four clusters, each focussing on the sensitivity of different relevant aspects. The following aspects of the formulation are analyzed: surface moisture availability (M), the countergradient term (γc) and the ABL height (h). This is done by modifying both the bulk critical Richardson number (Ric) at the inversion zone, and a coefficient of proportionality (b) that determines the excess temperature and countergradient. The importance of b is due to its direct relation in the definition of both, γc and h. The results got with MM5 model show that temperature and specific moisture temporal evolution is not very sensitive to changes in the soil moisture availability (M value from 0.6 to 0.1). Using the MRF parameterization, the ABL profile is more sensitive to changes in Ric than in b, indicating a larger dependence of h on Ric. Moreover, taking different combinations of b values (0.0 and 7.8) in the γc and h formulation a larger influence of the first term in ABL profile is found. For the same experimental period, the WRF model results with MRF will be compared with both results: MM5 with MRF and WRF results from the successor of MRF, i.e. YSU.

  18. Use of MRF residue as alternative fuel in cement production.

    PubMed

    Fyffe, John R; Breckel, Alex C; Townsend, Aaron K; Webber, Michael E

    2016-01-01

    Single-stream recycling has helped divert millions of metric tons of waste from landfills in the U.S., where recycling rates for municipal solid waste are currently over 30%. However, material recovery facilities (MRFs) that sort the municipal recycled streams do not recover 100% of the incoming material. Consequently, they landfill between 5% and 15% of total processed material as residue. This residue is primarily composed of high-energy-content non-recycled plastics and fiber. One possible end-of-life solution for these energy-dense materials is to process the residue into Solid Recovered Fuel (SRF) that can be used as an alternative energy resource capable of replacing or supplementing fuel resources such as coal, natural gas, petroleum coke, or biomass in many industrial and power production processes. This report addresses the energetic and environmental benefits and trade-offs of converting non-recycled post-consumer plastics and fiber derived from MRF residue streams into SRF for use in a cement kiln. An experimental test burn of 118 Mg of SRF in the precalciner portion of the cement kiln was conducted. The SRF was a blend of 60% MRF residue and 40% post-industrial waste products producing an estimated 60% plastic and 40% fibrous material mixture. The SRF was fed into the kiln at 0.9 Mg/h for 24h and then 1.8 Mg/h for the following 48 h. The emissions data recorded in the experimental test burn were used to perform the life-cycle analysis portion of this study. The analysis included the following steps: transportation, landfill, processing and fuel combustion at the cement kiln. The energy use and emissions at each step is tracked for the two cases: (1) The Reference Case, where MRF residue is disposed of in a landfill and the cement kiln uses coal as its fuel source, and (2) The SRF Case, in which MRF residue is processed into SRF and used to offset some portion of coal use at the cement kiln. The experimental test burn and accompanying analysis indicate that using MRF residue to produce SRF for use in cement kilns is likely an advantageous alternative to disposal of the residue in landfills. The use of SRF can offset fossil fuel use, reduce CO2 emissions, and divert energy-dense materials away from landfills. For this test-case, the use of SRF offset between 7700 and 8700 Mg of coal use, reduced CO2 emissions by at least 1.4%, and diverted over 7950 Mg of energy-dense materials away from landfills. In addition, emissions were reduced by at least 19% for SO2, while NOX emissions increased by between 16% and 24%. Changes in emissions of particulate matter, mercury, hydrogen chloride, and total-hydrocarbons were all less than plus or minus 2.2%, however these emissions were not measured at the cement kiln. Co-location of MRFs, SRF production facilities, and landfills can increase the benefits of SRF use even further by reducing transportation requirements. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Landslide Inventory Mapping from Bitemporal 10 m SENTINEL-2 Images Using Change Detection Based Markov Random Field

    NASA Astrophysics Data System (ADS)

    Qin, Y.; Lu, P.; Li, Z.

    2018-04-01

    Landslide inventory mapping is essential for hazard assessment and mitigation. In most previous studies, landslide mapping was achieved by visual interpretation of aerial photos and remote sensing images. However, such method is labor-intensive and time-consuming, especially over large areas. Although a number of semi-automatic landslide mapping methods have been proposed over the past few years, limitations remain in terms of their applicability over different study areas and data, and there is large room for improvement in terms of the accuracy and automation degree. For these reasons, we developed a change detection-based Markov Random Field (CDMRF) method for landslide inventory mapping. The proposed method mainly includes two steps: 1) change detection-based multi-threshold for training samples generation and 2) MRF for landslide inventory mapping. Compared with the previous methods, the proposed method in this study has three advantages: 1) it combines multiple image difference techniques with multi-threshold method to generate reliable training samples; 2) it takes the spectral characteristics of landslides into account; and 3) it is highly automatic with little parameter tuning. The proposed method was applied for regional landslides mapping from 10 m Sentinel-2 images in Western China. Results corroborated the effectiveness and applicability of the proposed method especially the capability of rapid landslide mapping. Some directions for future research are offered. This study to our knowledge is the first attempt to map landslides from free and medium resolution satellite (i.e., Sentinel-2) images in China.

  20. AN INTEGRATED APPROACH TO CHARACTERIZING BYPASSED OIL IN HETEROGENEOUS AND FRACTURED RESERVOIRS USING PARTITIONING TRACERS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Akhil Datta-Gupta

    2003-08-01

    We explore the use of efficient streamline-based simulation approaches for modeling partitioning interwell tracer tests in hydrocarbon reservoirs. Specifically, we utilize the unique features of streamline models to develop an efficient approach for interpretation and history matching of field tracer response. A critical aspect here is the underdetermined and highly ill-posed nature of the associated inverse problems. We have adopted an integrated approach whereby we combine data from multiple sources to minimize the uncertainty and non-uniqueness in the interpreted results. For partitioning interwell tracer tests, these are primarily the distribution of reservoir permeability and oil saturation distribution. A novel approachmore » to multiscale data integration using Markov Random Fields (MRF) has been developed to integrate static data sources from the reservoir such as core, well log and 3-D seismic data. We have also explored the use of a finite difference reservoir simulator, UTCHEM, for field-scale design and optimization of partitioning interwell tracer tests. The finite-difference model allows us to include detailed physics associated with reactive tracer transport, particularly those related with transverse and cross-streamline mechanisms. We have investigated the potential use of downhole tracer samplers and also the use of natural tracers for the design of partitioning tracer tests. Finally, the behavior of partitioning tracer tests in fractured reservoirs is investigated using a dual-porosity finite-difference model.« less

  1. Three-dimensional finite element magnetic simulation of an innovative multi-coiled magnetorheological brake

    NASA Astrophysics Data System (ADS)

    Ubaidillah; Permata, A. N. S.; Mazlan, S. A.; Tjahjana, D. D. D. P.; Widodo, P. J.

    2017-10-01

    This research delivers a finite element magnetic simulation of a novel disk type multi-coil magnetorheological brake (MR brake). The MR brake axial design had more than one coil located outside of the casing. This design could simplify the maintenance process of brakes. One pair of coils was used as the representative of the entire coil in the simulation process, and it could distribute magnetic flux in all parts of the electromagnetic. The objective of this simulation was to produce magnetic flux on the surface of the disc brake rotor. The value of the MR brake magnetic flux was higher than that of the current MR brake having one coil with a larger size. The result of the simulation would be used to identify the effect of different fluids on each variation. The Magneto-rheological fluid MRF-132DG and MRF-140CG were injected in each gap as much as 0.50, 1.00, and 1.50 mm, respectively. On the simulation process, the coils were energized at 0.25, 0.50, 0.75, 1.00, 1.50, and 2.00 A, respectively. The magnetic flux produced by MRF-140CG was 336 m Tesla on the gap of 0.5 mm. The result of the simulation shows that the smaller the gap variation was, the higher the magnetic value was.

  2. Magnetorheological finishing (MRF) of potassium dihydrogen phosphate (KDP) crystals: nonaqueous fluids development, optical finish, and laser damage performance at 1064 nm and 532 nm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Menapace, J A; Ehrmann, P R; Bickel, R C

    2009-11-05

    Over the past year we have been working on specialized MR fluids for polishing KDP crystals. KDP is an extremely difficult material to conventionally polish due to its water solubility, low hardness, and temperature sensitivity. Today, KDP crystals are finished using single-point diamond turning (SPDT) tools and nonaqueous lubricants/coolants. KDP optics fabricated using SPDT, however, are limited to surface corrections due to tool/method characteristics with surface quality driven by microroughness from machine pitch, speed, force, and diamond tool character. MRF polishing offers a means to circumvent many of these issues since it is deterministic which makes the technique practical formore » surface and transmitted wavefront correction, is low force, and is temperature independent. What is lacking is a usable nonaqueous MR fluid that is chemically and physically compatible with KDP which can be used for polishing and subsequently cleaned from the optical surface. In this study, we will present the fluid parameters important in the design and development of nonaqueous MR fluid formulations capable of polishing KDP and how these parameters affect MRF polishing. We will also discuss requirements peculiar to successful KDP polishing and how they affect optical figure/finish and laser damage performance at 1064 nm and 532 nm.« less

  3. Globally optimal tumor segmentation in PET-CT images: a graph-based co-segmentation method.

    PubMed

    Han, Dongfeng; Bayouth, John; Song, Qi; Taurani, Aakant; Sonka, Milan; Buatti, John; Wu, Xiaodong

    2011-01-01

    Tumor segmentation in PET and CT images is notoriously challenging due to the low spatial resolution in PET and low contrast in CT images. In this paper, we have proposed a general framework to use both PET and CT images simultaneously for tumor segmentation. Our method utilizes the strength of each imaging modality: the superior contrast of PET and the superior spatial resolution of CT. We formulate this problem as a Markov Random Field (MRF) based segmentation of the image pair with a regularized term that penalizes the segmentation difference between PET and CT. Our method simulates the clinical practice of delineating tumor simultaneously using both PET and CT, and is able to concurrently segment tumor from both modalities, achieving globally optimal solutions in low-order polynomial time by a single maximum flow computation. The method was evaluated on clinically relevant tumor segmentation problems. The results showed that our method can effectively make use of both PET and CT image information, yielding segmentation accuracy of 0.85 in Dice similarity coefficient and the average median hausdorff distance (HD) of 6.4 mm, which is 10% (resp., 16%) improvement compared to the graph cuts method solely using the PET (resp., CT) images.

  4. Simulation of solid-liquid flows in a stirred bead mill based on computational fluid dynamics (CFD)

    NASA Astrophysics Data System (ADS)

    Winardi, S.; Widiyastuti, W.; Septiani, E. L.; Nurtono, T.

    2018-05-01

    The selection of simulation model is an important step in computational fluid dynamics (CFD) to obtain an agreement with experimental work. In addition, computational time and processor speed also influence the performance of the simulation results. Here, we report the simulation of solid-liquid flow in a bead mill using Eulerian model. Multiple Reference Frame (MRF) was also used to model the interaction between moving (shaft and disk) and stationary (chamber exclude shaft and disk) zones. Bead mill dimension was based on the experimental work of Yamada and Sakai (2013). The effect of shaft rotation speed of 1200 and 1800 rpm on the particle distribution and the flow field was discussed. For rotation speed of 1200 rpm, the particles spread evenly throughout the bead mill chamber. On the other hand, for the rotation speed of 1800 rpm, the particles tend to be thrown to the near wall region resulting in the dead zone and found no particle in the center region. The selected model agreed well to the experimental data with average discrepancies less than 10%. Furthermore, the simulation was run without excessive computational cost.

  5. Improved image decompression for reduced transform coding artifacts

    NASA Technical Reports Server (NTRS)

    Orourke, Thomas P.; Stevenson, Robert L.

    1994-01-01

    The perceived quality of images reconstructed from low bit rate compression is severely degraded by the appearance of transform coding artifacts. This paper proposes a method for producing higher quality reconstructed images based on a stochastic model for the image data. Quantization (scalar or vector) partitions the transform coefficient space and maps all points in a partition cell to a representative reconstruction point, usually taken as the centroid of the cell. The proposed image estimation technique selects the reconstruction point within the quantization partition cell which results in a reconstructed image which best fits a non-Gaussian Markov random field (MRF) image model. This approach results in a convex constrained optimization problem which can be solved iteratively. At each iteration, the gradient projection method is used to update the estimate based on the image model. In the transform domain, the resulting coefficient reconstruction points are projected to the particular quantization partition cells defined by the compressed image. Experimental results will be shown for images compressed using scalar quantization of block DCT and using vector quantization of subband wavelet transform. The proposed image decompression provides a reconstructed image with reduced visibility of transform coding artifacts and superior perceived quality.

  6. Estimation of the behavior factor of existing RC-MRF buildings

    NASA Astrophysics Data System (ADS)

    Vona, Marco; Mastroberti, Monica

    2018-01-01

    In recent years, several research groups have studied a new generation of analysis methods for seismic response assessment of existing buildings. Nevertheless, many important developments are still needed in order to define more reliable and effective assessment procedures. Moreover, regarding existing buildings, it should be highlighted that due to the low knowledge level, the linear elastic analysis is the only analysis method allowed. The same codes (such as NTC2008, EC8) consider the linear dynamic analysis with behavior factor as the reference method for the evaluation of seismic demand. This type of analysis is based on a linear-elastic structural model subject to a design spectrum, obtained by reducing the elastic spectrum through a behavior factor. The behavior factor (reduction factor or q factor in some codes) is used to reduce the elastic spectrum ordinate or the forces obtained from a linear analysis in order to take into account the non-linear structural capacities. The behavior factors should be defined based on several parameters that influence the seismic nonlinear capacity, such as mechanical materials characteristics, structural system, irregularity and design procedures. In practical applications, there is still an evident lack of detailed rules and accurate behavior factor values adequate for existing buildings. In this work, some investigations of the seismic capacity of the main existing RC-MRF building types have been carried out. In order to make a correct evaluation of the seismic force demand, actual behavior factor values coherent with force based seismic safety assessment procedure have been proposed and compared with the values reported in the Italian seismic code, NTC08.

  7. A Moment Rate Function Deduced from Peak Ground Motions from M 3.3-5.3 Earthquakes: Implications for Scaling, Corner Frequency and Stress Drop

    NASA Astrophysics Data System (ADS)

    Archuleta, R. J.; Ji, C.

    2016-12-01

    Based on 3827 records of peak horizontal ground motions in the NGA-West2 database we computed linear regressions for Log PGA, Log PGV and the ratio PGA/2πPGV (which we call dominant frequency, DomF) versus moment magnitude for M 3.3-5.3 earthquakes. The slopes are nearly one for Log PGA and Log PGV and negative one for PGA/PGV. For magnitudes 5.3 and smaller the source can be treated as a point source. Using these regressions and an expression between the half peak-to-peak amplitude of Wood Anderson records (PWA) and moment magnitude, we have deduced an `apparent' moment rate function (aMRF) that increases quadratically in time until it reaches its maximum at time tp after which it decays linearly until a final duration td. For t*=0.054 s and with parameters tp and td scaling with seismic moment, tp(M0) = 0.03[M0/ M0(M=3.3)]1/7.0 and td(M0) = 0.31[M0/ M0(M=3.3)]1/3.3 . all the magnitude dependence within M 3.3-5.3 can be explained. The Fourier amplitude spectrum (FAS) of the aMRF has two corner frequencies connected by an intermediate slope of f-1. The smaller corner frequency fC 1/ td, i.e., a corner frequency related to the full duration. Stress drop associated with the average over the fault scales weakly with seismic moment Δσ M00.09. The larger corner frequency is proportional to 1/ tp. We also find that DomF ≈ 1/[2.2(tp(M0) + t*)], thus there is a strong tradeoff between tp and t*. The higher corner frequency and the intermediate slope in the spectrum could be completely obscured by t* for t* 0.04-0.06 s, producing a Brune-type spectrum. If so, it will be practically impossible to retrieve the true spectrum. Because the fC derived from the spectrum is controlled by td while PGA and PGV are controlled mostly by the time scale tp, this aMRF could explain the difference in uncertainty of the mean stress drop inferred from peak ground motion data and that inferred from displacement amplitude spectra. This aMRF is consistent with a rupture that initiates from a critical crack length, e.g., Campillo and Ionescu (1997), Ohnaka (2000). In such a scenario, the peak time corresponds to rupture of the critical crack length with a stress change corresponding to breakdown stress, not stress drop. This is consistent with a stress parameter for predicting ground motion larger than the stress drop generally found by spectral studies.

  8. Magnetorheological elastic super-smooth finishing for high-efficiency manufacturing of ultraviolet laser resistant optics

    NASA Astrophysics Data System (ADS)

    Shi, Feng; Shu, Yong; Dai, Yifan; Peng, Xiaoqiang; Li, Shengyi

    2013-07-01

    Based on the elastic-plastic deformation theory, status between abrasives and workpiece in magnetorheological finishing (MRF) process and the feasibility of elastic polishing are analyzed. The relationship among material removal mechanism and particle force, removal efficiency, and surface topography are revealed through a set of experiments. The chemical dominant elastic super-smooth polishing can be fulfilled by changing the components of magnetorheological (MR) fluid and optimizing polishing parameters. The MR elastic super-smooth finishing technology can be applied in polishing high-power laser-irradiated components with high efficiency, high accuracy, low damage, and high laser-induced damage threshold (LIDT). A 430×430×10 mm fused silica (FS) optic window is polished and surface error is improved from 538.241 nm [peak to valley (PV)], 96.376 nm (rms) to 76.372 nm (PV), 8.295 nm (rms) after 51.6 h rough polishing, 42.6 h fine polishing, and 54.6 h super-smooth polishing. A 50×50×10 mm sample is polished with exactly the same parameters. The roughness is improved from 1.793 nm [roughness average (Ra)] to 0.167 nm (Ra) and LIDT is improved from 9.77 to 19.2 J/cm2 after MRF elastic polishing.

  9. Influence of Averaging Preprocessing on Image Analysis with a Markov Random Field Model

    NASA Astrophysics Data System (ADS)

    Sakamoto, Hirotaka; Nakanishi-Ohno, Yoshinori; Okada, Masato

    2018-02-01

    This paper describes our investigations into the influence of averaging preprocessing on the performance of image analysis. Averaging preprocessing involves a trade-off: image averaging is often undertaken to reduce noise while the number of image data available for image analysis is decreased. We formulated a process of generating image data by using a Markov random field (MRF) model to achieve image analysis tasks such as image restoration and hyper-parameter estimation by a Bayesian approach. According to the notions of Bayesian inference, posterior distributions were analyzed to evaluate the influence of averaging. There are three main results. First, we found that the performance of image restoration with a predetermined value for hyper-parameters is invariant regardless of whether averaging is conducted. We then found that the performance of hyper-parameter estimation deteriorates due to averaging. Our analysis of the negative logarithm of the posterior probability, which is called the free energy based on an analogy with statistical mechanics, indicated that the confidence of hyper-parameter estimation remains higher without averaging. Finally, we found that when the hyper-parameters are estimated from the data, the performance of image restoration worsens as averaging is undertaken. We conclude that averaging adversely influences the performance of image analysis through hyper-parameter estimation.

  10. Multimodal brain-tumor segmentation based on Dirichlet process mixture model with anisotropic diffusion and Markov random field prior.

    PubMed

    Lu, Yisu; Jiang, Jun; Yang, Wei; Feng, Qianjin; Chen, Wufan

    2014-01-01

    Brain-tumor segmentation is an important clinical requirement for brain-tumor diagnosis and radiotherapy planning. It is well-known that the number of clusters is one of the most important parameters for automatic segmentation. However, it is difficult to define owing to the high diversity in appearance of tumor tissue among different patients and the ambiguous boundaries of lesions. In this study, a nonparametric mixture of Dirichlet process (MDP) model is applied to segment the tumor images, and the MDP segmentation can be performed without the initialization of the number of clusters. Because the classical MDP segmentation cannot be applied for real-time diagnosis, a new nonparametric segmentation algorithm combined with anisotropic diffusion and a Markov random field (MRF) smooth constraint is proposed in this study. Besides the segmentation of single modal brain-tumor images, we developed the algorithm to segment multimodal brain-tumor images by the magnetic resonance (MR) multimodal features and obtain the active tumor and edema in the same time. The proposed algorithm is evaluated using 32 multimodal MR glioma image sequences, and the segmentation results are compared with other approaches. The accuracy and computation time of our algorithm demonstrates very impressive performance and has a great potential for practical real-time clinical use.

  11. Multimodal Brain-Tumor Segmentation Based on Dirichlet Process Mixture Model with Anisotropic Diffusion and Markov Random Field Prior

    PubMed Central

    Lu, Yisu; Jiang, Jun; Chen, Wufan

    2014-01-01

    Brain-tumor segmentation is an important clinical requirement for brain-tumor diagnosis and radiotherapy planning. It is well-known that the number of clusters is one of the most important parameters for automatic segmentation. However, it is difficult to define owing to the high diversity in appearance of tumor tissue among different patients and the ambiguous boundaries of lesions. In this study, a nonparametric mixture of Dirichlet process (MDP) model is applied to segment the tumor images, and the MDP segmentation can be performed without the initialization of the number of clusters. Because the classical MDP segmentation cannot be applied for real-time diagnosis, a new nonparametric segmentation algorithm combined with anisotropic diffusion and a Markov random field (MRF) smooth constraint is proposed in this study. Besides the segmentation of single modal brain-tumor images, we developed the algorithm to segment multimodal brain-tumor images by the magnetic resonance (MR) multimodal features and obtain the active tumor and edema in the same time. The proposed algorithm is evaluated using 32 multimodal MR glioma image sequences, and the segmentation results are compared with other approaches. The accuracy and computation time of our algorithm demonstrates very impressive performance and has a great potential for practical real-time clinical use. PMID:25254064

  12. Brain tumor segmentation from multimodal magnetic resonance images via sparse representation.

    PubMed

    Li, Yuhong; Jia, Fucang; Qin, Jing

    2016-10-01

    Accurately segmenting and quantifying brain gliomas from magnetic resonance (MR) images remains a challenging task because of the large spatial and structural variability among brain tumors. To develop a fully automatic and accurate brain tumor segmentation algorithm, we present a probabilistic model of multimodal MR brain tumor segmentation. This model combines sparse representation and the Markov random field (MRF) to solve the spatial and structural variability problem. We formulate the tumor segmentation problem as a multi-classification task by labeling each voxel as the maximum posterior probability. We estimate the maximum a posteriori (MAP) probability by introducing the sparse representation into a likelihood probability and a MRF into the prior probability. Considering the MAP as an NP-hard problem, we convert the maximum posterior probability estimation into a minimum energy optimization problem and employ graph cuts to find the solution to the MAP estimation. Our method is evaluated using the Brain Tumor Segmentation Challenge 2013 database (BRATS 2013) and obtained Dice coefficient metric values of 0.85, 0.75, and 0.69 on the high-grade Challenge data set, 0.73, 0.56, and 0.54 on the high-grade Challenge LeaderBoard data set, and 0.84, 0.54, and 0.57 on the low-grade Challenge data set for the complete, core, and enhancing regions. The experimental results show that the proposed algorithm is valid and ranks 2nd compared with the state-of-the-art tumor segmentation algorithms in the MICCAI BRATS 2013 challenge. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Scaling A Moment-Rate Function For Small To Large Magnitude Events

    NASA Astrophysics Data System (ADS)

    Archuleta, Ralph; Ji, Chen

    2017-04-01

    Since the 1980's seismologists have recognized that peak ground acceleration (PGA) and peak ground velocity (PGV) scale differently with magnitude for large and moderate earthquakes. In a recent paper (Archuleta and Ji, GRL 2016) we introduced an apparent moment-rate function (aMRF) that accurately predicts the scaling with magnitude of PGA, PGV, PWA (Wood-Anderson Displacement) and the ratio PGA/2πPGV (dominant frequency) for earthquakes 3.3 ≤ M ≤ 5.3. This apparent moment-rate function is controlled by two temporal parameters, tp and td, which are related to the time for the moment-rate function to reach its peak amplitude and the total duration of the earthquake, respectively. These two temporal parameters lead to a Fourier amplitude spectrum (FAS) of displacement that has two corners in between which the spectral amplitudes decay as 1/f, f denotes frequency. At higher or lower frequencies, the FAS of the aMRF looks like a single-corner Aki-Brune omega squared spectrum. However, in the presence of attenuation the higher corner is almost certainly masked. Attempting to correct the spectrum to an Aki-Brune omega-squared spectrum will produce an "apparent" corner frequency that falls between the double corner frequency of the aMRF. We reason that the two corners of the aMRF are the reason that seismologists deduce a stress drop (e.g., Allmann and Shearer, JGR 2009) that is generally much smaller than the stress parameter used to produce ground motions from stochastic simulations (e.g., Boore, 2003 Pageoph.). The presence of two corners for the smaller magnitude earthquakes leads to several questions. Can deconvolution be successfully used to determine scaling from small to large earthquakes? Equivalently will large earthquakes have a double corner? If large earthquakes are the sum of many smaller magnitude earthquakes, what should the displacement FAS look like for a large magnitude earthquake? Can a combination of such a double-corner spectrum and random vibration theory explain the PGA, PGV scaling relationships for larger magnitude?

  14. Page layout analysis and classification for complex scanned documents

    NASA Astrophysics Data System (ADS)

    Erkilinc, M. Sezer; Jaber, Mustafa; Saber, Eli; Bauer, Peter; Depalov, Dejan

    2011-09-01

    A framework for region/zone classification in color and gray-scale scanned documents is proposed in this paper. The algorithm includes modules for extracting text, photo, and strong edge/line regions. Firstly, a text detection module which is based on wavelet analysis and Run Length Encoding (RLE) technique is employed. Local and global energy maps in high frequency bands of the wavelet domain are generated and used as initial text maps. Further analysis using RLE yields a final text map. The second module is developed to detect image/photo and pictorial regions in the input document. A block-based classifier using basis vector projections is employed to identify photo candidate regions. Then, a final photo map is obtained by applying probabilistic model based on Markov random field (MRF) based maximum a posteriori (MAP) optimization with iterated conditional mode (ICM). The final module detects lines and strong edges using Hough transform and edge-linkages analysis, respectively. The text, photo, and strong edge/line maps are combined to generate a page layout classification of the scanned target document. Experimental results and objective evaluation show that the proposed technique has a very effective performance on variety of simple and complex scanned document types obtained from MediaTeam Oulu document database. The proposed page layout classifier can be used in systems for efficient document storage, content based document retrieval, optical character recognition, mobile phone imagery, and augmented reality.

  15. A study of material removal during magnetorheological finishing. 1998 summer research program for high school juniors at the Univ. of Rochester`s Laboratory for Laser Energetics: Student research reports

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hubregsen, J.

    1999-03-01

    In the process of optical polishing, a new method has been developed called Magnetorheological Finishing, or MRF. This process utilizes both mechanical and chemical effects to remove material during polishing. To more fully understand the fundamental mechanisms of MR polishing the authors have successfully separated mechanical scratching from chemical softening in glass polishing with MRF by removing the water from the MR fluid. The addition of water initiates the chemical effects by hydrating the glass surface and changing the amplitude of the scratches. In addition, this study has found that the mechanical removal by scratching is related to the hardnessmore » of the magnetic carbonyl iron particles, and the hardness and type of the glass being polished.« less

  16. CFD study of mixing miscible liquid with high viscosity difference in a stirred tank

    NASA Astrophysics Data System (ADS)

    Madhania, S.; Cahyani, A. B.; Nurtono, T.; Muharam, Y.; Winardi, S.; Purwanto, W. W.

    2018-03-01

    The mixing process of miscible liquids with high viscosity difference is crucial role even though the solution mutually dissolved. This paper describes the mixing behaviour of the water-molasses system in a conical-bottomed cylindrical stirred tank (D = 0.28 m and H = 0.395 m) equipped with a side-entry Marine propeller (d = 0.036 m) under the turbulence regime using a three-dimensional and transient CFD-simulation. The objective of this work is to compare the solution strategies was applied in the computational analysis to capture the detail phenomena of mixing two miscible liquid with high viscosity difference. Four solution strategies that have been used are the RANS Standards k-ε (SKE) model as the turbulence model coupled with the Multiple Reference Frame (MRF) method for impeller motion, the RANS Realizable k-ε (RKE) combine with the MRF, the Large Eddy Simulation (LES) coupled with the Sliding Mesh (SM) method and the LES-MRF combination. The transient calculations were conducted with Ansys Fluent 17.1 version. The mixing behaviour and the propeller characteristic are to be compared and discussed in this work. The simulation results show the differences of flow pattern and the molasses distribution profile for every solution strategy. The variation of the flow pattern which happened in each solution strategy showing an instability of the mixing process in stirred tank. The LES-SM strategy shows the realistic direction of flow than another solution strategies.

  17. Regional SAR Image Segmentation Based on Fuzzy Clustering with Gamma Mixture Model

    NASA Astrophysics Data System (ADS)

    Li, X. L.; Zhao, Q. H.; Li, Y.

    2017-09-01

    Most of stochastic based fuzzy clustering algorithms are pixel-based, which can not effectively overcome the inherent speckle noise in SAR images. In order to deal with the problem, a regional SAR image segmentation algorithm based on fuzzy clustering with Gamma mixture model is proposed in this paper. First, initialize some generating points randomly on the image, the image domain is divided into many sub-regions using Voronoi tessellation technique. Each sub-region is regarded as a homogeneous area in which the pixels share the same cluster label. Then, assume the probability of the pixel to be a Gamma mixture model with the parameters respecting to the cluster which the pixel belongs to. The negative logarithm of the probability represents the dissimilarity measure between the pixel and the cluster. The regional dissimilarity measure of one sub-region is defined as the sum of the measures of pixels in the region. Furthermore, the Markov Random Field (MRF) model is extended from pixels level to Voronoi sub-regions, and then the regional objective function is established under the framework of fuzzy clustering. The optimal segmentation results can be obtained by the solution of model parameters and generating points. Finally, the effectiveness of the proposed algorithm can be proved by the qualitative and quantitative analysis from the segmentation results of the simulated and real SAR images.

  18. 13 CFR 120.710 - What is the Loan Loss Reserve Fund?

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... in the MRF caused by delinquencies or losses on Microloans. An Intermediary must maintain the LLRF..., purchase rate and loss rate), loan volume to the extent that it impacts performance measures, and other...

  19. Supershear rupture in the 24 May 2013 Mw 6.7 Okhotsk deep earthquake: Additional evidence from regional seismic stations

    NASA Astrophysics Data System (ADS)

    Zhan, Zhongwen; Shearer, Peter M.; Kanamori, Hiroo

    2015-10-01

    Zhan et al. (2014a) reported supershear rupture during the Mw 6.7 aftershock of the 2013 Mw 8.3 Sea of Okhotsk deep earthquake, relying heavily on the regional station PET, which played a critical role in constraining the vertical rupture dimension and rupture speed. Here we include five more regional stations and find that the durations of the source time functions derived from these stations are consistent with Zhan et al.'s supershear rupture model. Furthermore, to reduce the nonuniqueness of deconvolution and combine the bandwidths of different stations, we conduct a joint inversion of the six regional stations for a single broadband moment-rate function (MRF). The best fitting MRF, which explains all the regional waveforms well, has a smooth shape without any temporal gaps. The Mw 6.7 Okhotsk deep earthquake is more likely a continuous supershear rupture than a dynamically triggered doublet.

  20. Dual Contrast - Magnetic Resonance Fingerprinting (DC-MRF): A Platform for Simultaneous Quantification of Multiple MRI Contrast Agents.

    PubMed

    Anderson, Christian E; Donnola, Shannon B; Jiang, Yun; Batesole, Joshua; Darrah, Rebecca; Drumm, Mitchell L; Brady-Kalnay, Susann M; Steinmetz, Nicole F; Yu, Xin; Griswold, Mark A; Flask, Chris A

    2017-08-16

    Injectable Magnetic Resonance Imaging (MRI) contrast agents have been widely used to provide critical assessments of disease for both clinical and basic science imaging research studies. The scope of available MRI contrast agents has expanded over the years with the emergence of molecular imaging contrast agents specifically targeted to biological markers. Unfortunately, synergistic application of more than a single molecular contrast agent has been limited by MRI's ability to only dynamically measure a single agent at a time. In this study, a new Dual Contrast - Magnetic Resonance Fingerprinting (DC - MRF) methodology is described that can detect and independently quantify the local concentration of multiple MRI contrast agents following simultaneous administration. This "multi-color" MRI methodology provides the opportunity to monitor multiple molecular species simultaneously and provides a practical, quantitative imaging framework for the eventual clinical translation of molecular imaging contrast agents.

  1. Tumor angiogenesis assessment using multi-fluorescent scans on murine slices by Markov random field framework

    NASA Astrophysics Data System (ADS)

    Laifa, Oumeima; Le Guillou-Buffello, Delphine; Racoceanu, Daniel

    2017-11-01

    The fundamental role of vascular supply in tumor growth makes the evaluation of the angiogenesis crucial in assessing effect of anti-angiogenic therapies. Since many years, such therapies are designed to inhibit the vascular endothelial growth factor (VEGF). To contribute to the assessment of anti-angiogenic agent (Pazopanib) effect on vascular and cellular structures, we acquired data from tumors extracted from a murine tumor model using Multi- Fluorescence Scanning. In this paper, we implemented an unsupervised algorithm combining the Watershed segmentation and Markov Random Field model (MRF). This algorithm allowed us to quantify the proportion of apoptotic endothelial cells and to generate maps according to cell density. Stronger association between apoptosis and endothelial cells was revealed in the tumors receiving anti-angiogenic therapy (n = 4) as compared to those receiving placebo (n = 4). A high percentage of apoptotic cells in the tumor area are endothelial. Lower density cells were detected in tumor slices presenting higher apoptotic endothelial areas.

  2. A multiscale Markov random field model in wavelet domain for image segmentation

    NASA Astrophysics Data System (ADS)

    Dai, Peng; Cheng, Yu; Wang, Shengchun; Du, Xinyu; Wu, Dan

    2017-07-01

    The human vision system has abilities for feature detection, learning and selective attention with some properties of hierarchy and bidirectional connection in the form of neural population. In this paper, a multiscale Markov random field model in the wavelet domain is proposed by mimicking some image processing functions of vision system. For an input scene, our model provides its sparse representations using wavelet transforms and extracts its topological organization using MRF. In addition, the hierarchy property of vision system is simulated using a pyramid framework in our model. There are two information flows in our model, i.e., a bottom-up procedure to extract input features and a top-down procedure to provide feedback controls. The two procedures are controlled simply by two pyramidal parameters, and some Gestalt laws are also integrated implicitly. Equipped with such biological inspired properties, our model can be used to accomplish different image segmentation tasks, such as edge detection and region segmentation.

  3. Study of a magnetorheological fluid submitted to a uniform magnetic field

    NASA Astrophysics Data System (ADS)

    Fonseca, H. A.; Gonzalez, E.; Restrepo, J.

    2017-12-01

    In this work, the rheological and hyperfine properties of a magnetorheological fluid (MRF) under the action of a uniform external magnetic field are analysed. Powders of native mineral magnetite of micrometric particle size, after a pulverization process, form the solute of these fluids. The sizes of these samples are selected by sieving in order to obtain sizes of around 20µm and 45µm. The powders are characterized by means of Mössbauer spectroscopy to analyse their stoichiometry giving rise to a non-stoichiometric magnetite Fe2.96O4 in addition to a hematite component. Result of viscosity and shear stress in the low-speed regime were analysed using the Hershel Buckley method. In particular, the case of surface tension it decreases with the application of a uniform magnetic flux density, which is understood in terms of a phase separation due to the formation of mesoscopic structures, thus decreasing the cohesion force and increasing the adhesion force.

  4. RF slice profile effects in magnetic resonance fingerprinting.

    PubMed

    Hong, Taehwa; Han, Dongyeob; Kim, Min-Oh; Kim, Dong-Hyun

    2017-09-01

    The radio frequency (RF) slice profile effects on T1 and T2 estimation in magnetic resonance fingerprinting (MRF) are investigated with respect to time-bandwidth product (TBW), flip angle (FA) level and field inhomogeneities. Signal evolutions are generated incorporating the non-ideal slice selective excitation process using Bloch simulation and matched to the original dictionary with and without the non-ideal slice profile taken into account. For validation, phantom and in vivo experiments are performed at 3T. Both simulations and experiments results show that T1 and T2 error from non-ideal slice profile increases with increasing FA level, off-resonance, and low TBW values. Therefore, RF slice profile effects should be compensated for accurate determination of the MR parameters. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Segmental neuropathic pain does not develop in male rats with complete spinal transections.

    PubMed

    Hubscher, Charles H; Kaddumi, Ezidin G; Johnson, Richard D

    2008-10-01

    In a previous study using male rats, a correlation was found between the development of "at-level" allodynia in T6-7 dermatomes following severe T8 spinal contusion injury and the sparing of some myelinated axons within the core of the lesion epicenter. To further test our hypothesis that this sparing is important for the expression of allodynia and the supraspinal plasticity that ensues, an injury that severs all axons (i.e., a complete spinal cord transection) was made in 15 male rats. Behavioral assessments were done at level throughout the 30-day recovery period followed by terminal electrophysiological recordings (urethane anesthesia) from single medullary reticular formation (MRF) neurons receiving convergent nociceptive inputs from receptive fields above, at, and below the lesion level. None of the rats developed signs of at-level allodynia (versus 18 of 26 male rats following severe contusion). However, the terminal recording (206 MRF neurons) data resembled those obtained previously post-contusion. That is, there was evidence of neuronal hyper-excitability (relative to previous data from intact controls) to high- and low-threshold mechanical stimulation for "at-level" (dorsal trunk) and "above-level" (eyelids and face) cutaneous territories. These results, when combined with prior data on intact controls and severe/moderate contusions, indicate that (1) an anatomically incomplete injury (some lesion epicenter axonal sparing) following severe contusion is likely important for the development of allodynia and (2) the neuronal hyper-excitability at the level of the medulla is likely involved in nociceptive processes that are not directly related to the conscious expression of pain-like avoidance behaviors that are being used as evidence of allodynia.

  6. Growth of (Y1-x Ca x )Ba2Cu4O8 in ambient pressure and its tri-axial magnetic alignment

    NASA Astrophysics Data System (ADS)

    Horii, S.; Yamaki, M.; Shimoyama, J.; Kishio, K.; Doi, T.

    2015-10-01

    We report the growth of single crystals in ambient pressure and tri-axial orientation under modulated rotation magnetic fields (MRFs) for (Y1-x Ca x )Ba2Cu4O8 [(Y1-x Ca x )124] with x ≤ 0.1. Rectangular (Y1-x Ca x )124 crystals approximately 50 μm in size have been successfully grown for x ≤ 0.1 in a growth temperature region from 650 °C to 750 °C. Their critical temperatures increased with x and exhibited approximately 91 K for x = 0.1. By applying an MRF of 10 T, pulverised powders of (Y1-x Ca x )124 were tri-axially aligned in epoxy resin at room temperature in a whole x region below x = 0.1. The magnitude relationship of the magnetic susceptibilities (χ) along crystallographic directions for (Y1-x Ca x )124 was χ c > χ a > χ b at room temperature and was unchanged with a change in x. From changes in the degrees of the c-axis and the in-plane orientation (Δω) for the (Y1-x Ca x )124 powder samples aligned under three different MRF conditions, it was found that MRFs above at least 1 T were required to achieve almost complete tri-axial alignment with Δω < 5°. Irreversibility lines for H//c were successfully determined even from the powder samples by the introduction of magnetic alignment without using single crystalline samples. The present study indicates that magnetic alignment is a useful process for the fabrication of quasi-single-crystals from the perspective of solid-state physics and the production of cuprate superconducting materials.

  7. Design and characteristics of MRF-based actuators for torque transmission under influence of high shear rates up to 34,000s-1

    NASA Astrophysics Data System (ADS)

    Güth, Dirk; Erbis, Vadim; Schamoni, Markus; Maas, Jürgen

    2014-04-01

    High rotational speeds for brakes and clutches based on magnetorheological fluids represent a remaining challenge for the industrial or automotive application. Beside particle centrifugation effects and rotational speed-depending no-load losses, the torque characteristic is an important property that needs to considered in the design process of actuators. Due to missing experimental data for these operating conditions, in this paper the shear rate and flux depending yield stress behavior of magnetorheological uids is experimentally investigated for high rotational speeds or respectively high shear rates. Therefore a brake actuator with variable shear gap heights up to 4 mm is designed, realized and used for the experimental investigation, which are performed for a maximum shear rate of ƴ= 34; 000 s-1 under large magnetic elds. The measurement results point out a strong dependency between shear rate, magnetic ux density and resulting yield stress. For low shear gap heights, a significant reduction in the yield stress up to 10 % can be determined. Additionally the development of Taylor vortices is determined, which will not only occur in viscous case without an applied magnetic field. The measurement results are important for a reliable actuator design which should be used in application with high rotational speeds.

  8. Recycling of glass: accounting of greenhouse gases and global warming contributions.

    PubMed

    Larsen, Anna W; Merrild, Hanna; Christensen, Thomas H

    2009-11-01

    Greenhouse gas (GHG) emissions related to recycling of glass waste were assessed from a waste management perspective. Focus was on the material recovery facility (MRF) where the initial sorting of glass waste takes place. The MRF delivers products like cullet and whole bottles to other industries. Two possible uses of reprocessed glass waste were considered: (i) remelting of cullet added to glass production; and (ii) re-use of whole bottles. The GHG emission accounting included indirect upstream emissions (provision of energy, fuels and auxiliaries), direct activities at the MRF and bottle-wash facility (combustion of fuels) as well as indirect downstream activities in terms of using the recovered glass waste in other industries and, thereby, avoiding emissions from conventional production. The GHG accounting was presented as aggregated global warming factors (GWFs) for the direct and indirect upstream and downstream processes, respectively. The range of GWFs was estimated to 0-70 kg CO(2)eq. tonne( -1) of glass waste for the upstream activities and the direct emissions from the waste management system. The GWF for the downstream effect showed some significant variation between the two cases. It was estimated to approximately -500 kg CO(2)-eq. tonne(- 1) of glass waste for the remelting technology and -1500 to -600 kg CO(2)-eq. tonne(-1) of glass waste for bottle re-use. Including the downstream process, large savings of GHG emissions can be attributed to the waste management system. The results showed that, in GHG emission accounting, attention should be drawn to thorough analysis of energy sources, especially electricity, and the downstream savings caused by material substitution.

  9. Efficiency of magnetorheological fluid finishing on the elimination of defects in fused silica optics

    NASA Astrophysics Data System (ADS)

    Catrin, R.; Taroux, D.; Cormont, P.; Maunier, C.; Corbineau, T.; Razé, G.; Néauport, J.

    2013-09-01

    The MegaJoule laser being constructed at the CEA near Bordeaux (France) is designed to focus more than 1 MJ of energy of UV light, on a millimeter scale target in the centre of an experiment chamber. After amplification and transport at the wavelength of 1053 nm, frequency conversion at 351 nm is done with KH2PO4 crystals. The final optic assembly of this system is made up of large fused silica optics, working in transmission, that are used to convey, focus or shape the laser beam. When exposed to fluences of some joules per square centimeter at 351 nm within nanosecond pulse duration, fused silica optics can exhibit localized damage. Damage sites grow exponentially after further laser exposition and therefore dramatically limit the optic lifetime. The nature of the surface finishing process has been established to determine the lifetime of these components under high UV fluences (i.e. more than 5 J/cm2 for 3 ns pulses). Being able to reduce or eliminate the damage initiators such as subsurface cracks present in subsurface damage (SSD) layer of conventionally polished optical components aims this study. Magneto-rheological fluid finishing (MRF) is chosen as a final polishing tool to remove layers of material without inducing further damages. MRF enables to process optics with very small normal stresses applied to the surface during material removal and thus permits the elimination of the residual subsurface cracks. This study offers a better understanding of the efficiency of MRF polishing on the elimination of subsurface cracks in SSD layers.

  10. Recycling of metals: accounting of greenhouse gases and global warming contributions.

    PubMed

    Damgaard, Anders; Larsen, Anna W; Christensen, Thomas H

    2009-11-01

    Greenhouse gas (GHG) emissions related to recycling of metals in post-consumer waste are assessed from a waste management perspective; here the material recovery facility (MRF), for the sorting of the recovered metal. The GHG accounting includes indirect upstream emissions, direct activities at the MRF as well as indirect downstream activities in terms of reprocessing of the metal scrap and savings in terms of avoided production of virgin metal. The global warming factor (GWF) shows that upstream activities and the MRF causes negligible GHG emissions (12.8 to 52.6 kg CO(2)-equivalents tonne(-1) recovered metal) compared to the reprocessing of the metal itself (360-1260 kg CO(2)-equivalents tonne(-1) of recovered aluminium and 400- 1020 kg CO(2)-equivalents tonne(- 1) of recovered steel).The reprocessing is however counterbalanced by large savings of avoided virgin production of steel and aluminium. The net downstream savings were found to be 5040-19 340 kg CO(2)-equivalents tonne(-1) of treated aluminium and 560-2360 kg CO(2)-equivalents tonne(-1) of treated steel. Due to the huge differences in reported data it is hard to compare general data on the recovery of metal scrap as they are very dependent on the technology and data choices. Furthermore, the energy used in both the recovery process as well as the avoided primary production is crucial. The range of avoided impact shows that recovery of metals will always be beneficial over primary production, due to the high energy savings, and that the GHG emissions associated with the sorting of metals are negligible.

  11. Markov random field based automatic image alignment for electron tomography.

    PubMed

    Amat, Fernando; Moussavi, Farshid; Comolli, Luis R; Elidan, Gal; Downing, Kenneth H; Horowitz, Mark

    2008-03-01

    We present a method for automatic full-precision alignment of the images in a tomographic tilt series. Full-precision automatic alignment of cryo electron microscopy images has remained a difficult challenge to date, due to the limited electron dose and low image contrast. These facts lead to poor signal to noise ratio (SNR) in the images, which causes automatic feature trackers to generate errors, even with high contrast gold particles as fiducial features. To enable fully automatic alignment for full-precision reconstructions, we frame the problem probabilistically as finding the most likely particle tracks given a set of noisy images, using contextual information to make the solution more robust to the noise in each image. To solve this maximum likelihood problem, we use Markov Random Fields (MRF) to establish the correspondence of features in alignment and robust optimization for projection model estimation. The resulting algorithm, called Robust Alignment and Projection Estimation for Tomographic Reconstruction, or RAPTOR, has not needed any manual intervention for the difficult datasets we have tried, and has provided sub-pixel alignment that is as good as the manual approach by an expert user. We are able to automatically map complete and partial marker trajectories and thus obtain highly accurate image alignment. Our method has been applied to challenging cryo electron tomographic datasets with low SNR from intact bacterial cells, as well as several plastic section and X-ray datasets.

  12. Assessment of surface solar irradiance derived from real-time modelling techniques and verification with ground-based measurements

    NASA Astrophysics Data System (ADS)

    Kosmopoulos, Panagiotis G.; Kazadzis, Stelios; Taylor, Michael; Raptis, Panagiotis I.; Keramitsoglou, Iphigenia; Kiranoudis, Chris; Bais, Alkiviadis F.

    2018-02-01

    This study focuses on the assessment of surface solar radiation (SSR) based on operational neural network (NN) and multi-regression function (MRF) modelling techniques that produce instantaneous (in less than 1 min) outputs. Using real-time cloud and aerosol optical properties inputs from the Spinning Enhanced Visible and Infrared Imager (SEVIRI) on board the Meteosat Second Generation (MSG) satellite and the Copernicus Atmosphere Monitoring Service (CAMS), respectively, these models are capable of calculating SSR in high resolution (1 nm, 0.05°, 15 min) that can be used for spectrally integrated irradiance maps, databases and various applications related to energy exploitation. The real-time models are validated against ground-based measurements of the Baseline Surface Radiation Network (BSRN) in a temporal range varying from 15 min to monthly means, while a sensitivity analysis of the cloud and aerosol effects on SSR is performed to ensure reliability under different sky and climatological conditions. The simulated outputs, compared to their common training dataset created by the radiative transfer model (RTM) libRadtran, showed median error values in the range -15 to 15 % for the NN that produces spectral irradiances (NNS), 5-6 % underestimation for the integrated NN and close to zero errors for the MRF technique. The verification against BSRN revealed that the real-time calculation uncertainty ranges from -100 to 40 and -20 to 20 W m-2, for the 15 min and monthly mean global horizontal irradiance (GHI) averages, respectively, while the accuracy of the input parameters, in terms of aerosol and cloud optical thickness (AOD and COT), and their impact on GHI, was of the order of 10 % as compared to the ground-based measurements. The proposed system aims to be utilized through studies and real-time applications which are related to solar energy production planning and use.

  13. NASA's Global Imagery Browse Services - Technologies for Visualizing Earth Science Data

    NASA Astrophysics Data System (ADS)

    Cechini, M. F.; Boller, R. A.; Baynes, K.; Schmaltz, J. E.; Thompson, C. K.; Roberts, J. T.; Rodriguez, J.; Wong, M. M.; King, B. A.; King, J.; De Luca, A. P.; Pressley, N. N.

    2017-12-01

    For more than 20 years, the NASA Earth Observing System (EOS) has collected earth science data for thousands of scientific parameters now totaling nearly 15 Petabytes of data. In 2013, NASA's Global Imagery Browse Services (GIBS) formed its vision to "transform how end users interact and discover [EOS] data through visualizations." This vision included leveraging scientific and community best practices and standards to provide a scalable, compliant, and authoritative source for EOS earth science data visualizations. Since that time, GIBS has grown quickly and now services millions of daily requests for over 500 imagery layers representing hundreds of earth science parameters to a broad community of users. For many of these parameters, visualizations are available within hours of acquisition from the satellite. For others, visualizations are available for the entire mission of the satellite. The GIBS system is built upon the OnEarth and MRF open source software projects, which are provided by the GIBS team. This software facilitates standards-based access for compliance with existing GIS tools. The GIBS imagery layers are predominantly rasterized images represented in two-dimensional coordinate systems, though multiple projections are supported. The OnEarth software also supports the GIBS ingest pipeline to facilitate low latency updates to new or updated visualizations. This presentation will focus on the following topics: Overview of GIBS visualizations and user community Current benefits and limitations of the OnEarth and MRF software projects and related standards GIBS access methods and their in/compatibilities with existing GIS libraries and applications Considerations for visualization accuracy and understandability Future plans for more advanced visualization concepts including Vertical Profiles and Vector-Based Representations Future plans for Amazon Web Service support and deployments

  14. Technologies for precision manufacture of current and future windows and domes

    NASA Astrophysics Data System (ADS)

    Hallock, Bob; Shorey, Aric

    2009-05-01

    The final finish and characterization of windows and domes presents a number of challenges in achieving desired precision with acceptable cost and schedule. This becomes more difficult with advanced materials and as window and dome shapes and requirements become more complex, including acute angle corners, transmitted wavefront specifications, aspheric geometries and trending toward conformal surfaces. Magnetorheological Finishing (MRF®) and Magnetorheological Jet (MR Jet®), along with metrology provided by Sub-aperture Stitching Interferometry (SSI®) have several unique attributes that provide them advantages in enhancing fabrication of current and next generation windows and domes. The advantages that MRF brings to the precision finishing of a wide range of shapes such as flats, spheres (including hemispheres), cylinders, aspheres and even freeform optics, has been well documented. Recent advancements include the ability to finish freeform shapes up to 2-meters in size as well as progress in finishing challenging IR materials. Due to its shear-based removal mechanism in contrast to the pressure-based process of other techniques, edges are not typically rolled, in particular on parts with acute angle corners. MR Jet provides additional benefits, particularly in the finishing of the inside of steep concave domes and other irregular shapes. The ability of MR Jet to correct the figure of conformal domes deterministically and to high precision has been demonstrated. Combining these technologies with metrology techniques, such as SSI provides a solution for finishing current and future windows and domes in a reliable, deterministic and cost-effective way. The ability to use the SSI to characterize a range of shapes such as domes and aspheres, as well as progress in using MRF and MR Jet for finishing conventional and conformal windows and domes with increasing size and complexity of design will be presented.

  15. Economic analysis of electronic waste recycling: modeling the cost and revenue of a materials recovery facility in California.

    PubMed

    Kang, Hai-Yong; Schoenung, Julie M

    2006-03-01

    The objectives of this study are to identify the various techniques used for treating electronic waste (e-waste) at material recovery facilities (MRFs) in the state of California and to investigate the costs and revenue drivers for these techniques. The economics of a representative e-waste MRF are evaluated by using technical cost modeling (TCM). MRFs are a critical element in the infrastructure being developed within the e-waste recycling industry. At an MRF, collected e-waste can become marketable output products including resalable systems/components and recyclable materials such as plastics, metals, and glass. TCM has two main constituents, inputs and outputs. Inputs are process-related and economic variables, which are directly specified in each model. Inputs can be divided into two parts: inputs for cost estimation and for revenue estimation. Outputs are the results of modeling and consist of costs and revenues, distributed by unit operation, cost element, and revenue source. The results of the present analysis indicate that the largest cost driver for the operation of the defined California e-waste MRF is the materials cost (37% of total cost), which includes the cost to outsource the recycling of the cathode ray tubes (CRTs) (dollar 0.33/kg); the second largest cost driver is labor cost (28% of total cost without accounting for overhead). The other cost drivers are transportation, building, and equipment costs. The most costly unit operation is cathode ray tube glass recycling, and the next are sorting, collecting, and dismantling. The largest revenue source is the fee charged to the customer; metal recovery is the second largest revenue source.

  16. Predictors of Mortality in Patients with COPD and Chronic Respiratory Failure: The Quality-of-Life Evaluation and Survival Study (QuESS): A Three-Year Study.

    PubMed

    Carone, Mauro; Antoniu, Sabina; Baiardi, Paola; Digilio, Vincenzo S; Jones, Paul W; Bertolotti, Giorgio

    2016-01-01

    Previous studies sought to identify survival or outcome predictors in patients with COPD and chronic respiratory failure, but their findings are inconsistent. We identified mortality-associated factors in a prospective study in 21 centers in 7 countries. Follow-up data were available in 221 patients on home mechanical ventilation and/or long-term oxygen therapy. diagnosis, co-morbidities, medication, oxygen therapy, mechanical ventilation, pulmonary function, arterial blood gases, exercise performance were recorded. Health status was assessed using the COPD-specific SGRQ and the respiratory-failure-specific MRF26 questionnaires. Date and cause of death were recorded in those who died. Overall mortality was 19.5%. The commonest causes of death were related to the underlying respiratory diseases. At baseline, patients who subsequently died were older than survivors (p = 0.03), had a lower forced vital capacity (p = 0.03), a higher use of oxygen at rest (p = 0.003) and a worse health status (SGRQ and MRF26, both p = 0.02). Longitudinal analyses over a follow-up period of 3 years showed higher median survival times in patients with use of oxygen at rest less than 1.75 l/min and with a better health status. In contrast, an increase from baseline levels of 1 liter in O2 flow at rest, 1 unit in SGRQ or MRF26, or 1 year increase in age resulted in an increase of mortality of 68%, 2.4%, 1.3%, and 6%, respectively. In conclusion, the need for oxygen at rest, and health status assessment seems to be the strongest predictors of mortality in COPD patients with chronic respiratory failure.

  17. Magnetorheological finishing with chemically modified fluids for studying material removal of single-crystal ZnS

    NASA Astrophysics Data System (ADS)

    Salzman, S.; Romanofsky, H. J.; Clara, Y. I.; Giannechini, L. J.; West, Garrett J.; Lambropoulos, J. C.; Jacobs, S. D.

    2013-09-01

    Magnetorheological finishing (MRF) of polycrystalline, chemical-vapor-deposited (CVD) zinc sulfide (ZnS) and zinc selenide (ZnSe) can leave millimeter-size artifacts on the part surface. These pebble-like features come from the anisotropic mechanical and chemical properties of the ceramic material and from the CVD growth process itself. The resulting surface texture limits the use of MRF for polishing aspheric and other complex shapes using these important infrared (IR) ceramics. An investigation of the individual contributions of chemistry and mechanics to polishing of other polycrystalline ceramics has been employed in the past to overcome similar material anisotropy problems. The approach taken was to study the removal process for the different single-crystal orientations that comprise the ceramic, making adjustments to mechanics (polishing abrasive type and concentration) and polishing slurry chemistry (primarily pH) to equalize the removal rate for all crystal orientations. Polishing with the modified slurry was shown to prevent the development of surface texture. Here we present mechanical (microhardness testing) and chemical (acid etching) studies performed on the four single-crystal orientations of ZnS: 100, 110, 111, and 311. We found that the (111) plane is 35% to 55% harder and 30% to 40% more resistant to chemical etching than the other three planes. This relatively high degree of variation in these properties can help to explain the surface texture developed from MRF of the polycrystalline material. Theoretical calculations of microhardness, planar, and bond densities are presented and compared with the experimental data. Here surface characterization of these single-crystal orientations of ZnS for material removal and roughness with chemically modified MR fluids at various pH levels between pH 4 and pH 6 are presented for the first time.

  18. Tissue-specific epigenetics in gene neighborhoods: myogenic transcription factor genes

    PubMed Central

    Chandra, Sruti; Terragni, Jolyon; Zhang, Guoqiang; Pradhan, Sriharsa; Haushka, Stephen; Johnston, Douglas; Baribault, Carl; Lacey, Michelle; Ehrlich, Melanie

    2015-01-01

    Myogenic regulatory factor (MRF) genes, MYOD1, MYOG, MYF6 and MYF5, are critical for the skeletal muscle lineage. Here, we used various epigenome profiles from human myoblasts (Mb), myotubes (Mt), muscle and diverse non-muscle samples to elucidate the involvement of multigene neighborhoods in the regulation of MRF genes. We found more far-distal enhancer chromatin associated with MRF genes in Mb and Mt than previously reported from studies in mice. For the MYF5/MYF6 gene-pair, regions of Mb-associated enhancer chromatin were located throughout the adjacent 236-kb PTPRQ gene even though Mb expressed negligible amounts of PTPRQ mRNA. Some enhancer chromatin regions inside PTPRQ in Mb were also seen in PTPRQ mRNA-expressing non-myogenic cells. This suggests dual-purpose PTPRQ enhancers that upregulate expression of PTPRQ in non-myogenic cells and MYF5/MYF6 in myogenic cells. In contrast, the myogenic enhancer chromatin regions distal to MYOD1 were intergenic and up to 19 kb long. Two of them contain small, known MYOD1 enhancers, and one displayed an unusually high level of 5-hydroxymethylcytosine in a quantitative DNA hydroxymethylation assay. Unexpectedly, three regions of MYOD1-distal enhancer chromatin in Mb and Mt overlapped enhancer chromatin in umbilical vein endothelial cells, which might upregulate a distant gene (PIK3C2A). Lastly, genes surrounding MYOG were preferentially transcribed in Mt, like MYOG itself, and exhibited nearby myogenic enhancer chromatin. These neighboring chromatin regions may be enhancers acting in concert to regulate myogenic expression of multiple adjacent genes. Our findings reveal the very different and complex organization of gene neighborhoods containing closely related transcription factor genes. PMID:26041816

  19. Effects of Ureaplasma parvum lipoprotein multiple-banded antigen on pregnancy outcome in mice.

    PubMed

    Uchida, Kaoru; Nakahira, Kumiko; Mimura, Kazuya; Shimizu, Takashi; De Seta, Francesco; Wakimoto, Tetsu; Kawai, Yasuhiro; Nomiyama, Makoto; Kuwano, Koichi; Guaschino, Secondo; Yanagihara, Itaru

    2013-12-01

    Ureaplasma spp. are members of the family Mycoplasmataceae and have been considered to be associated with chorioamnionitis and preterm delivery. However, it is unclear whether Ureaplasma spp. have virulence factors related to these manifestations. The purpose of the present study was to determine whether the immunogenic protein multiple-banded antigen (MBA) from Ureaplasma parvum is a virulence factor for preterm delivery. We partially purified MBA from a type strain and clinical isolates of U. parvum, and also synthesized a diacylated lipopeptide derived from U. parvum, UPM-1. Using luciferase assays, both MBA-rich fraction MRF and UPM-1 activated the NF-κB pathway via TLR2. UPM-1 upregulated IL-1β, IL-6, IL-12p35, TNF-α, MIP2, LIX, and iNOS in mouse peritoneal macrophage. MRF or UPM-1 was injected into uteri on day 15 of gestation on pregnant C3H/HeN mice. The intrauterine MRF injection group had a significantly higher incidence of intrauterine fetal death (IUFD; 38.5%) than the control group (14.0%). Interestingly, intrauterine injection of UPM-1 caused preterm deliveries at high concentration (80.0%). In contrast, a low concentration of UPM-1 induced a significantly higher rate of fetal deaths (55.2%) than the control group (14.0%). The placentas of the UPM-1 injection group showed neutrophil infiltration and increased iNOS protein expression. Our data indicate that MBA from the clinical isolate of U. parvum is a potential virulence factor for IUFD and preterm delivery in mice and that the N-terminal diacylated lipopeptide is essential for the initiation of inflammation. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  20. Toeplitz Inverse Covariance-Based Clustering of Multivariate Time Series Data

    PubMed Central

    Hallac, David; Vare, Sagar; Boyd, Stephen; Leskovec, Jure

    2018-01-01

    Subsequence clustering of multivariate time series is a useful tool for discovering repeated patterns in temporal data. Once these patterns have been discovered, seemingly complicated datasets can be interpreted as a temporal sequence of only a small number of states, or clusters. For example, raw sensor data from a fitness-tracking application can be expressed as a timeline of a select few actions (i.e., walking, sitting, running). However, discovering these patterns is challenging because it requires simultaneous segmentation and clustering of the time series. Furthermore, interpreting the resulting clusters is difficult, especially when the data is high-dimensional. Here we propose a new method of model-based clustering, which we call Toeplitz Inverse Covariance-based Clustering (TICC). Each cluster in the TICC method is defined by a correlation network, or Markov random field (MRF), characterizing the interdependencies between different observations in a typical subsequence of that cluster. Based on this graphical representation, TICC simultaneously segments and clusters the time series data. We solve the TICC problem through alternating minimization, using a variation of the expectation maximization (EM) algorithm. We derive closed-form solutions to efficiently solve the two resulting subproblems in a scalable way, through dynamic programming and the alternating direction method of multipliers (ADMM), respectively. We validate our approach by comparing TICC to several state-of-the-art baselines in a series of synthetic experiments, and we then demonstrate on an automobile sensor dataset how TICC can be used to learn interpretable clusters in real-world scenarios. PMID:29770257

  1. Global mining risk footprint of critical metals necessary for low-carbon technologies: the case of neodymium, cobalt, and platinum in Japan.

    PubMed

    Nansai, Keisuke; Nakajima, Kenichi; Kagawa, Shigemi; Kondo, Yasushi; Shigetomi, Yosuke; Suh, Sangwon

    2015-02-17

    Meeting the 2-degree global warming target requires wide adoption of low-carbon energy technologies. Many such technologies rely on the use of precious metals, however, increasing the dependence of national economies on these resources. Among such metals, those with supply security concerns are referred to as critical metals. Using the Policy Potential Index developed by the Fraser Institute, this study developed a new footprint indicator, the mining risk footprint (MRF), to quantify the mining risk directly and indirectly affecting a national economy through its consumption of critical metals. We formulated the MRF as a product of the material footprint (MF) of the consuming country and the mining risks of the countries where the materials are mined. A case study was conducted for the 2005 Japanese economy to determine the MF and MRF for three critical metals essential for emerging energy technologies: neodymium, cobalt and platinum. The results indicate that in 2005 the MFs generated by Japanese domestic final demand, that is, the consumption-based metal output of Japan, were 1.0 × 10(3) t for neodymium, 9.4 × 10(3) t for cobalt, and 2.1 × 10 t for platinum. Export demand contributes most to the MF, accounting for 3.0 × 10(3) t, 1.3 × 10(5) t, and 3.1 × 10 t, respectively. The MRFs of Japanese total final demand (domestic plus export) were calculated to be 1.7 × 10 points for neodymium, 4.5 × 10(-2) points for cobalt, and 5.6 points for platinum, implying that the Japanese economy is incurring a high mining risk through its use of neodymium. This country's MRFs are all dominated by export demand. The paper concludes by discussing the policy implications and future research directions for measuring the MFs and MRFs of critical metals. For countries poorly endowed with mineral resources, adopting low-carbon energy technologies may imply a shifting of risk from carbon resources to other natural resources, in particular critical metals, and a trade-off between increased mining risk and deployment of such technologies. Our analysis constitutes a first step toward quantifying and managing the risks associated with natural resource mining.

  2. HANDBOOK: MATERIAL RECOVERY FACILITIES FOR MUNICIPAL SOLID WASTE.

    EPA Science Inventory

    The purpose of this document is to address the technical and economic aspects of material recovery facility (MRF) equipment and technology in such a manner that the document may be of assistance to solid waste planners and engineers at the local community level. This docum...

  3. PAX3/7 EXPRESSION COINCIDES WITH MYOD DURING CHRONIC SKELETAL MUSCLE OVERLOAD

    PubMed Central

    Hyatt, Jon-Philippe K.; McCall, Gary E.; Kander, Elizabeth M.; Zhong, Hui; Roy, Roland R.; Huey, Kimberly A.

    2009-01-01

    Paired box (Pax) proteins 3 and 7 are key determinants for embryonic skeletal muscle development by initiating myogenic regulatory factor (MRF) gene expression. We show that Pax3 and 7 participate in adult skeletal muscle plasticity during the initial responses to chronic overload (≤7 days) and appear to coordinate MyoD expression, a member of the MRF family of genes. Pax3 and 7 mRNA were higher than control within 12 h after initiation of overload, preceded the increase in MyoD mRNA on day 1, and peaked on day 2. On days 3 and 7, Pax7 mRNA remained higher than control, suggesting that satellite cell self-renewal was occurring. Pax3 and 7 and MyoD protein levels were higher than control on days 2 and 3. These data indicate that Pax3 and 7 coordinate the recapitulation of developmental-like regulatory mechanisms in response to growth-inducing stimuli in adult skeletal muscle, presumably through activation of satellite cells. PMID:18508329

  4. Material flow and sustainability analyses of biorefining of municipal solid waste.

    PubMed

    Sadhukhan, Jhuma; Martinez-Hernandez, Elias

    2017-11-01

    This paper presents material flow and sustainability analyses of novel mechanical biological chemical treatment system for complete valorization of municipal solid waste (MSW). It integrates material recovery facility (MRF); pulping, chemical conversion; effluent treatment plant (ETP), anaerobic digestion (AD); and combined heat and power (CHP) systems producing end products: recyclables (24.9% by mass of MSW), metals (2.7%), fibre (1.5%); levulinic acid (7.4%); recyclable water (14.7%), fertiliser (8.3%); and electricity (0.126MWh/t MSW), respectively. Refuse derived fuel (RDF) and non-recyclable other waste, char and biogas from MRF, chemical conversion and AD systems, respectively, are energy recovered in the CHP system. Levulinic acid gives profitability independent of subsidies; MSW priced at 50Euro/t gives a margin of 204Euro/t. Global warming potential savings are 2.4 and 1.3kg CO 2 equivalent per kg of levulinic acid and fertiliser, and 0.17kg CO 2 equivalent per MJ of grid electricity offset, respectively. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Subsurface damage and microstructure development in precision microground hard ceramics using magnetorheological finishing spots.

    PubMed

    Shafrir, Shai N; Lambropoulos, John C; Jacobs, Stephen D

    2007-08-01

    We demonstrate the use of spots taken with magnetorheological finishing (MRF) for estimating subsurface damage (SSD) depth from deterministic microgrinding for three hard ceramics: aluminum oxynitride (Al(23)O(27)N(5)/ALON), polycrystalline alumina (Al(2)O(3)/PCA), and chemical vapor deposited (CVD) silicon carbide (Si(4)C/SiC). Using various microscopy techniques to characterize the surfaces, we find that the evolution of surface microroughness with the amount of material removed shows two stages. In the first, the damaged layer and SSD induced by microgrinding are removed, and the surface microroughness reaches a low value. Peak-to-valley (p-v) surface microroughness induced from grinding gives a measure of the SSD depth in the first stage. With the removal of additional material, a second stage develops, wherein the interaction of MRF and the material's microstructure is revealed. We study the development of this texture for these hard ceramics with the use of power spectral density to characterize surface features.

  6. Subsurface Damage and Microstructure Development in Precision Microground Hard Ceramics Using Magnetorheological Finishing Spots

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shafrir, S.N.; Lambropoulos, J.C.; Jacobs, S.D.

    2007-08-01

    We demonstrate the use of spots taken with magnetorheological finishing (MRF) for estimating subsurface damage (SSD) depth from deterministic microgrinding for three hard ceramics: aluminum oxynitride (Al23O27N5/ALON), polycrystalline alumina (AL2O3/PCA), and chemical vapor deposited (CVD) silicon carbide (Si4C/SiC). Using various microscopy techniques to characterize the surfaces, we find that the evolution of surface microroughness with the amount of material removed shows two stages. In the first, the damaged layer and SSD induced by microgrinding are removed, and the surface roughness reaches a low value. Peak-to-valley (p-v) surface microroughness induced from grinding gives a measure of the SSD depth in themore » first stage. With the removal of additional material, a second stage develops, wherein the interaction of MRF and the material's microstructure is revealed. We study the development of this texture for these har ceramics with the use of power spectral density to characterize surface features.« less

  7. Probe for production and measurement of acute mitral regurgitant flow in dog.

    PubMed

    Kléber, A G; Simon, R; Rutishauser, W

    1976-02-01

    A probe for production and measurement of acute mitral regurgitation in dogs is described. It consists of a tube that is introduced into the mitral valve through the left atrial appendage. Regurgitant flow through the tube is measured by an electromagnetic device. Variation of flow and zero flow are achieved by narrowing or occluding the tube with a rubber cuff. In animals weighing 30-50 kg, the probe does not produce significant mitral stenosis and the mitral leaflets fit closely around the probe during ventricular systole. The instantaneous relationship between mitral regurgitant flow (MRF) and the gradient between left ventricular and left atrial pressure shows a marked delay of MRF at the beginning and end of regurgitation. This delay can be attributed to some extent to electrical phase lag and to the small movement of the probe relative to the mitral valve during the cardiac cycle. Measurement of regurgitant stroke volume is affected by this movement only to a small extent.

  8. Marine Corps Forces, Pacific

    Science.gov Websites

    Foreign Travel Mission Statement Marine Rotational Force - Darwin About MRF-Darwin Leadership Mailing participated in the Amphibious Leadership Symposium, or PALS, along with 22 militaries from around the Indo military leadership participated in the Pacific Amphibious Leadership Symposium, or PALS, in Honolulu

  9. Spherical Primary Optical Telescope (SPOT) Segment Fabrication

    DTIC Science & Technology

    2010-06-07

    of Pyrex. One mirror (segment) was figured at GSFC and final figured at QED using Magnetorheological Finishing . Two other segments are in process...point) have been cast • Segment 1 was figured at GSFC completed at QED using magnetorheological finishing (MRF) • New GSFC figuring facility brought on

  10. 24 CFR 242.14 - Mortgage reserve fund.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 24 Housing and Urban Development 2 2011-04-01 2011-04-01 false Mortgage reserve fund. 242.14... MORTGAGE INSURANCE FOR HOSPITALS General Eligibility Requirements § 242.14 Mortgage reserve fund. As a condition of issuing a commitment, HUD shall require establishment of a Mortgage Reserve Fund (MRF). The...

  11. Remote Sensing Image Change Detection Based on NSCT-HMT Model and Its Application.

    PubMed

    Chen, Pengyun; Zhang, Yichen; Jia, Zhenhong; Yang, Jie; Kasabov, Nikola

    2017-06-06

    Traditional image change detection based on a non-subsampled contourlet transform always ignores the neighborhood information's relationship to the non-subsampled contourlet coefficients, and the detection results are susceptible to noise interference. To address these disadvantages, we propose a denoising method based on the non-subsampled contourlet transform domain that uses the Hidden Markov Tree model (NSCT-HMT) for change detection of remote sensing images. First, the ENVI software is used to calibrate the original remote sensing images. After that, the mean-ratio operation is adopted to obtain the difference image that will be denoised by the NSCT-HMT model. Then, using the Fuzzy Local Information C-means (FLICM) algorithm, the difference image is divided into the change area and unchanged area. The proposed algorithm is applied to a real remote sensing data set. The application results show that the proposed algorithm can effectively suppress clutter noise, and retain more detailed information from the original images. The proposed algorithm has higher detection accuracy than the Markov Random Field-Fuzzy C-means (MRF-FCM), the non-subsampled contourlet transform-Fuzzy C-means clustering (NSCT-FCM), the pointwise approach and graph theory (PA-GT), and the Principal Component Analysis-Nonlocal Means (PCA-NLM) denosing algorithm. Finally, the five algorithms are used to detect the southern boundary of the Gurbantunggut Desert in Xinjiang Uygur Autonomous Region of China, and the results show that the proposed algorithm has the best effect on real remote sensing image change detection.

  12. Remote Sensing Image Change Detection Based on NSCT-HMT Model and Its Application

    PubMed Central

    Chen, Pengyun; Zhang, Yichen; Jia, Zhenhong; Yang, Jie; Kasabov, Nikola

    2017-01-01

    Traditional image change detection based on a non-subsampled contourlet transform always ignores the neighborhood information’s relationship to the non-subsampled contourlet coefficients, and the detection results are susceptible to noise interference. To address these disadvantages, we propose a denoising method based on the non-subsampled contourlet transform domain that uses the Hidden Markov Tree model (NSCT-HMT) for change detection of remote sensing images. First, the ENVI software is used to calibrate the original remote sensing images. After that, the mean-ratio operation is adopted to obtain the difference image that will be denoised by the NSCT-HMT model. Then, using the Fuzzy Local Information C-means (FLICM) algorithm, the difference image is divided into the change area and unchanged area. The proposed algorithm is applied to a real remote sensing data set. The application results show that the proposed algorithm can effectively suppress clutter noise, and retain more detailed information from the original images. The proposed algorithm has higher detection accuracy than the Markov Random Field-Fuzzy C-means (MRF-FCM), the non-subsampled contourlet transform-Fuzzy C-means clustering (NSCT-FCM), the pointwise approach and graph theory (PA-GT), and the Principal Component Analysis-Nonlocal Means (PCA-NLM) denosing algorithm. Finally, the five algorithms are used to detect the southern boundary of the Gurbantunggut Desert in Xinjiang Uygur Autonomous Region of China, and the results show that the proposed algorithm has the best effect on real remote sensing image change detection. PMID:28587299

  13. Solid oxide fuel cell anode image segmentation based on a novel quantum-inspired fuzzy clustering

    NASA Astrophysics Data System (ADS)

    Fu, Xiaowei; Xiang, Yuhan; Chen, Li; Xu, Xin; Li, Xi

    2015-12-01

    High quality microstructure modeling can optimize the design of fuel cells. For three-phase accurate identification of Solid Oxide Fuel Cell (SOFC) microstructure, this paper proposes a novel image segmentation method on YSZ/Ni anode Optical Microscopic (OM) images. According to Quantum Signal Processing (QSP), the proposed approach exploits a quantum-inspired adaptive fuzziness factor to adaptively estimate the energy function in the fuzzy system based on Markov Random Filed (MRF). Before defuzzification, a quantum-inspired probability distribution based on distance and gray correction is proposed, which can adaptively adjust the inaccurate probability estimation of uncertain points caused by noises and edge points. In this study, the proposed method improves accuracy and effectiveness of three-phase identification on the micro-investigation. It provides firm foundation to investigate the microstructural evolution and its related properties.

  14. Research of the multimodal brain-tumor segmentation algorithm

    NASA Astrophysics Data System (ADS)

    Lu, Yisu; Chen, Wufan

    2015-12-01

    It is well-known that the number of clusters is one of the most important parameters for automatic segmentation. However, it is difficult to define owing to the high diversity in appearance of tumor tissue among different patients and the ambiguous boundaries of lesions. In this study, a nonparametric mixture of Dirichlet process (MDP) model is applied to segment the tumor images, and the MDP segmentation can be performed without the initialization of the number of clusters. A new nonparametric segmentation algorithm combined with anisotropic diffusion and a Markov random field (MRF) smooth constraint is proposed in this study. Besides the segmentation of single modal brain tumor images, we developed the algorithm to segment multimodal brain tumor images by the magnetic resonance (MR) multimodal features and obtain the active tumor and edema in the same time. The proposed algorithm is evaluated and compared with other approaches. The accuracy and computation time of our algorithm demonstrates very impressive performance.

  15. OnEarth: An Open Source Solution for Efficiently Serving High-Resolution Mapped Image Products

    NASA Astrophysics Data System (ADS)

    Thompson, C. K.; Plesea, L.; Hall, J. R.; Roberts, J. T.; Cechini, M. F.; Schmaltz, J. E.; Alarcon, C.; Huang, T.; McGann, J. M.; Chang, G.; Boller, R. A.; Ilavajhala, S.; Murphy, K. J.; Bingham, A. W.

    2013-12-01

    This presentation introduces OnEarth, a server side software package originally developed at the Jet Propulsion Laboratory (JPL), that facilitates network-based, minimum-latency geolocated image access independent of image size or spatial resolution. The key component in this package is the Meta Raster Format (MRF), a specialized raster file extension to the Geospatial Data Abstraction Library (GDAL) consisting of an internal indexed pyramid of image tiles. Imagery to be served is converted to the MRF format and made accessible online via an expandable set of server modules handling requests in several common protocols, including the Open Geospatial Consortium (OGC) compliant Web Map Tile Service (WMTS) as well as Tiled WMS and Keyhole Markup Language (KML). OnEarth has recently transitioned to open source status and is maintained and actively developed as part of GIBS (Global Imagery Browse Services), a collaborative project between JPL and Goddard Space Flight Center (GSFC). The primary function of GIBS is to enhance and streamline the data discovery process and to support near real-time (NRT) applications via the expeditious ingestion and serving of full-resolution imagery representing science products from across the NASA Earth Science spectrum. Open source software solutions are leveraged where possible in order to utilize existing available technologies, reduce development time, and enlist wider community participation. We will discuss some of the factors and decision points in transitioning OnEarth to a suitable open source paradigm, including repository and licensing agreement decision points, institutional hurdles, and perceived benefits. We will also provide examples illustrating how OnEarth is integrated within GIBS and other applications.

  16. Protein Side-Chain Resonance Assignment and NOE Assignment Using RDC-Defined Backbones without TOCSY Data3

    PubMed Central

    Zeng, Jianyang; Zhou, Pei; Donald, Bruce Randall

    2011-01-01

    One bottleneck in NMR structure determination lies in the laborious and time-consuming process of side-chain resonance and NOE assignments. Compared to the well-studied backbone resonance assignment problem, automated side-chain resonance and NOE assignments are relatively less explored. Most NOE assignment algorithms require nearly complete side-chain resonance assignments from a series of through-bond experiments such as HCCH-TOCSY or HCCCONH. Unfortunately, these TOCSY experiments perform poorly on large proteins. To overcome this deficiency, we present a novel algorithm, called NASCA (NOE Assignment and Side-Chain Assignment), to automate both side-chain resonance and NOE assignments and to perform high-resolution protein structure determination in the absence of any explicit through-bond experiment to facilitate side-chain resonance assignment, such as HCCH-TOCSY. After casting the assignment problem into a Markov Random Field (MRF), NASCA extends and applies combinatorial protein design algorithms to compute optimal assignments that best interpret the NMR data. The MRF captures the contact map information of the protein derived from NOESY spectra, exploits the backbone structural information determined by RDCs, and considers all possible side-chain rotamers. The complexity of the combinatorial search is reduced by using a dead-end elimination (DEE) algorithm, which prunes side-chain resonance assignments that are provably not part of the optimal solution. Then an A* search algorithm is employed to find a set of optimal side-chain resonance assignments that best fit the NMR data. These side-chain resonance assignments are then used to resolve the NOE assignment ambiguity and compute high-resolution protein structures. Tests on five proteins show that NASCA assigns resonances for more than 90% of side-chain protons, and achieves about 80% correct assignments. The final structures computed using the NOE distance restraints assigned by NASCA have backbone RMSD 0.8 – 1.5 Å from the reference structures determined by traditional NMR approaches. PMID:21706248

  17. Manufacture of ultra high precision aerostatic bearings based on glass guide

    NASA Astrophysics Data System (ADS)

    Guo, Meng; Dai, Yifan; Peng, Xiaoqiang; Tie, Guipeng; Lai, Tao

    2017-10-01

    The aerostatic guide in the traditional three-coordinate measuring machine and profilometer generally use metal or ceramics material. Limited by the guide processing precision, the measurement accuracy of these traditional instruments is around micro-meter level. By selection of optical materials as guide material, optical processing method and laser interference measurement can be introduced to the traditional aerostatic bearings manufacturing field. By using the large aperture wave-front interference measuring equipment , the shape and position error of the glass guide can be obtained in high accuracy and then it can be processed to 0.1μm or even better with the aid of Magnetorheological Finishing(MRF) and Computer Controlled Optical Surfacing (CCOS) process and other modern optical processing method, so the accuracy of aerostatic bearings can be fundamentally improved and ultra high precision coordinate measuring can be achieved. This paper introduces the fabrication and measurement process of the glass guide by K9 with 300mm measuring range, and its working surface accuracy is up to 0.1μm PV, the verticality and parallelism error between the two guide rail face is better than 2μm, and the straightness of the aerostatic bearings by this K9 glass guide is up to 40nm after error compensation.

  18. Pulsed low-level infrared laser alters mRNA levels from muscle repair genes dependent on power output in Wistar rats

    NASA Astrophysics Data System (ADS)

    Trajano, L. A. S. N.; Trajano, E. T. L.; Thomé, A. M. C.; Sergio, L. P. S.; Mencalha, A. L.; Stumbo, A. C.; Fonseca, A. S.

    2017-10-01

    Satellite cells are present in skeletal muscle functioning in the repair and regeneration of muscle injury. Activation of these cells depends on the expression of myogenic factor 5 (Myf5), myogenic determination factor 1(MyoD), myogenic regulatory factor 4 (MRF4), myogenin (MyoG), paired box transcription factors 3 (Pax3), and 7 (Pax7). Low-level laser irradiation accelerates the repair of muscle injuries. However, data from the expression of myogenic factors have been controversial. Furthermore, the effects of different laser beam powers on the repair of muscle injuries have been not evaluated. The aim of this study was to evaluate the effects of low-level infrared laser at different powers and in pulsed emission mode on the expression of myogenic regulatory factors and on Pax3 and Pax7 in injured skeletal muscle from Wistar rats. Animals that underwent cryoinjury were divided into three groups: injury, injury laser 25 Mw, and injury laser 75 mW. Low-level infrared laser irradiation (904 nm, 3 J cm-2, 5 kHz) was carried out at 25 and 75 mW. After euthanasia, skeletal muscle samples were withdrawn and the total RNA was extracted for the evaluation of mRNA levels from the MyoD, MyoG, MRF4, Myf5, Pax3, and Pax7 gene. Pax 7 mRNA levels did not alter, but Pax3 mRNA levels increased in the injured and laser-irradiated group at 25 mW. MyoD, MyoG, and MYf5 mRNA levels increased in the injured and laser-irradiated animals at both powers, and MRF4 mRNA levels decreased in the injured and laser-irradiated group at 75 mW. In conclusion, exposure to pulsed low-level infrared laser, by power-dependent effect, could accelerate the muscle repair process altering mRNA levels from paired box transcription factors and myogenic regulatory factors.

  19. Unravelling changing interspecific interactions across environmental gradients using Markov random fields.

    PubMed

    Clark, Nicholas J; Wells, Konstans; Lindberg, Oscar

    2018-05-16

    Inferring interactions between co-occurring species is key to identify processes governing community assembly. Incorporating interspecific interactions in predictive models is common in ecology, yet most methods do not adequately account for indirect interactions (where an interaction between two species is masked by their shared interactions with a third) and assume interactions do not vary along environmental gradients. Markov random fields (MRF) overcome these limitations by estimating interspecific interactions, while controlling for indirect interactions, from multispecies occurrence data. We illustrate the utility of MRFs for ecologists interested in interspecific interactions, and demonstrate how covariates can be included (a set of models known as Conditional Random Fields, CRF) to infer how interactions vary along environmental gradients. We apply CRFs to two data sets of presence-absence data. The first illustrates how blood parasite (Haemoproteus, Plasmodium, and nematode microfilaria spp.) co-infection probabilities covary with relative abundance of their avian hosts. The second shows that co-occurrences between mosquito larvae and predatory insects vary along water temperature gradients. Other applications are discussed, including the potential to identify replacement or shifting impacts of highly connected species along climate or land-use gradients. We provide tools for building CRFs and plotting/interpreting results as an R package. © 2018 by the Ecological Society of America.

  20. Effects of mannan oligosaccharide on cytokine secretions by porcine alveolar macrophages and serum cytokine concentrations in nursery pigs.

    PubMed

    Che, T M; Johnson, R W; Kelley, K W; Dawson, K A; Moran, C A; Pettigrew, J E

    2012-02-01

    This study explored the hypothesis that mannan oligosaccharide (MOS) acts to reduce systemic inflammation in pigs by evaluating cytokine production of alveolar macrophages (AM) and serum cytokine concentrations. A total of 160 pigs were fed diets containing 0.2 or 0.4% MOS for 2 or 4 wk postweaning compared with control diets without MOS. Dietary MOS did not affect the serum concentration of tumor necrosis factor (TNF)-α and tended (P = 0.081) to increase that of IL-10. These cytokine concentrations also changed over time (P < 0.001). After 2-wk feeding of the control or MOS diets, AM were collected and stimulated ex vivo with lipopolysaccharide (LPS) or polyinosinic:polycytidylic acid (PLIC) as infection models. The LPS-stimulated AM from MOS-fed pigs (n = 12) secreted less TNF-α (P < 0.001) and more IL-10 (P = 0.026) than those from control-fed pigs (n = 6). However, dietary MOS had less effect on ex vivo TNF-α and IL-10 production by PLIC-stimulated AM (P = 0.091 and P > 0.10, respectively. Further, effects of MOS were examined in 4 in vitro experiments. In Exp. 1 (n = 4 pigs), MOS and mannan-rich fraction (MRF), when added to AM cultures, were able to increase TNF-α production. This direct effect of MOS was not due to endotoxin contamination as verified in Exp. 2 (n = 6 pigs) using polymyxin B, an inhibitor of LPS activation of toll-like receptor 4. Polymyxin B inhibited production of TNF-α by AM after treatment with LPS (P < 0.001), but not after treatment with MOS in the absence of LPS (P > 0.70). In Exp. 3 (n = 6 pigs), when MOS was directly applied in vitro, the pattern of cytokine production by LPS-activated AM was similar to that observed ex vivo, as MOS suppressed LPS-induced TNF-α (P < 0.001) and enhanced LPS-induced IL-10 (P = 0.028). In Exp. 4 (n = 6 pigs), when MRF replaced MOS, AM-produced TNF-α induced by LPS or PLIC was suppressed by MRF (P = 0.015 or P < 0.001, respectively). These data establish that MOS and MRF suppress LPS-induced TNF-α secretions by AM. Generally, the study suggests that MOS may be a potent immunomodulator because it directly activates AM to secrete TNF-α and alters the cytokine responses of bacterial endotoxin-induced AM in both ex vivo and in vitro systems. In particular, feeding MOS to pigs for 2 wk reduces TNF-α and increases IL-10 concentrations after ex vivo treatment of AM with LPS. These immunomodulatory properties of MOS may have important implications for both host defense and avoidance of harmful overstimulation of the immune system.

  1. Passive Maple-Seed Robotic Fliers for Education, Research and Entrepreneurship

    ERIC Educational Resources Information Center

    Aslam, D. M.; Abu-Ageel, A.; Alfatlawi, M.; Varney, M. W.; Thompson, C. M.; Aslam, S. K.

    2014-01-01

    As inspirations from flora and fauna have led to many advances in modern technology, the concept of drawing ideas from nature for design should be reflected in engineering education. This paper focuses on a maple-seed robotic flier (MRF) with various complexities, a robotic platform modeled after the samaras of maple or ash trees, to teach STEM…

  2. Smsynth: AN Imagery Synthesis System for Soil Moisture Retrieval

    NASA Astrophysics Data System (ADS)

    Cao, Y.; Xu, L.; Peng, J.

    2018-04-01

    Soil moisture (SM) is a important variable in various research areas, such as weather and climate forecasting, agriculture, drought and flood monitoring and prediction, and human health. An ongoing challenge in estimating SM via synthetic aperture radar (SAR) is the development of the retrieval SM methods, especially the empirical models needs as training samples a lot of measurements of SM and soil roughness parameters which are very difficult to acquire. As such, it is difficult to develop empirical models using realistic SAR imagery and it is necessary to develop methods to synthesis SAR imagery. To tackle this issue, a SAR imagery synthesis system based on the SM named SMSynth is presented, which can simulate radar signals that are realistic as far as possible to the real SAR imagery. In SMSynth, SAR backscatter coefficients for each soil type are simulated via the Oh model under the Bayesian framework, where the spatial correlation is modeled by the Markov random field (MRF) model. The backscattering coefficients simulated based on the designed soil parameters and sensor parameters are added into the Bayesian framework through the data likelihood where the soil parameters and sensor parameters are set as realistic as possible to the circumstances on the ground and in the validity range of the Oh model. In this way, a complete and coherent Bayesian probabilistic framework is established. Experimental results show that SMSynth is capable of generating realistic SAR images that suit the needs of a large amount of training samples of empirical models.

  3. Long-period building response to earthquakes in the San Francisco Bay Area

    USGS Publications Warehouse

    Olsen, A.H.; Aagaard, Brad T.; Heaton, T.H.

    2008-01-01

    This article reports a study of modeled, long-period building responses to ground-motion simulations of earthquakes in the San Francisco Bay Area. The earthquakes include the 1989 magnitude 6.9 Loma Prieta earthquake, a magnitude 7.8 simulation of the 1906 San Francisco earthquake, and two hypothetical magnitude 7.8 northern San Andreas fault earthquakes with hypocenters north and south of San Francisco. We use the simulated ground motions to excite nonlinear models of 20-story, steel, welded moment-resisting frame (MRF) buildings. We consider MRF buildings designed with two different strengths and modeled with either ductile or brittle welds. Using peak interstory drift ratio (IDR) as a performance measure, the stiffer, higher strength building models outperform the equivalent more flexible, lower strength designs. The hypothetical magnitude 7.8 earthquake with hypocenter north of San Francisco produces the most severe ground motions. In this simulation, the responses of the more flexible, lower strength building model with brittle welds exceed an IDR of 2.5% (that is, threaten life safety) on 54% of the urban area, compared to 4.6% of the urban area for the stiffer, higher strength building with ductile welds. We also use the simulated ground motions to predict the maximum isolator displacement of base-isolated buildings with linear, single-degree-of-freedom (SDOF) models. For two existing 3-sec isolator systems near San Francisco, the design maximum displacement is 0.5 m, and our simulations predict isolator displacements for this type of system in excess of 0.5 m in many urban areas. This article demonstrates that a large, 1906-like earthquake could cause significant damage to long-period buildings in the San Francisco Bay Area.

  4. Immune Response Augmentation in Metastasized Breast Cancer by Localized Therapy Utilizing Biocompatible Magnetic Fluids. Addendum

    DTIC Science & Technology

    2009-08-01

    Metastasized Breast Cancer by Localized Therapy Utilizing Biocompatible Magnetic Fluids PRINCIPAL INVESTIGATOR: Cahit A. Evrensel...AND SUBTITLE 5a. CONTRACT NUMBER Immune Response Augmentation in Metastasized Breast Cancer by Localized Therapy Utilizing Biocompatible... Magneto -rheological Fluid (MRF) iron nano-particles were synthesized using the reverse micelle technique and coated with poly(NIPAAm). The size

  5. RSEQtools: a modular framework to analyze RNA-Seq data using compact, anonymized data summaries.

    PubMed

    Habegger, Lukas; Sboner, Andrea; Gianoulis, Tara A; Rozowsky, Joel; Agarwal, Ashish; Snyder, Michael; Gerstein, Mark

    2011-01-15

    The advent of next-generation sequencing for functional genomics has given rise to quantities of sequence information that are often so large that they are difficult to handle. Moreover, sequence reads from a specific individual can contain sufficient information to potentially identify and genetically characterize that person, raising privacy concerns. In order to address these issues, we have developed the Mapped Read Format (MRF), a compact data summary format for both short and long read alignments that enables the anonymization of confidential sequence information, while allowing one to still carry out many functional genomics studies. We have developed a suite of tools (RSEQtools) that use this format for the analysis of RNA-Seq experiments. These tools consist of a set of modules that perform common tasks such as calculating gene expression values, generating signal tracks of mapped reads and segmenting that signal into actively transcribed regions. Moreover, the tools can readily be used to build customizable RNA-Seq workflows. In addition to the anonymization afforded by MRF, this format also facilitates the decoupling of the alignment of reads from downstream analyses. RSEQtools is implemented in C and the source code is available at http://rseqtools.gersteinlab.org/.

  6. Semi-automatic brain tumor segmentation by constrained MRFs using structural trajectories.

    PubMed

    Zhao, Liang; Wu, Wei; Corso, Jason J

    2013-01-01

    Quantifying volume and growth of a brain tumor is a primary prognostic measure and hence has received much attention in the medical imaging community. Most methods have sought a fully automatic segmentation, but the variability in shape and appearance of brain tumor has limited their success and further adoption in the clinic. In reaction, we present a semi-automatic brain tumor segmentation framework for multi-channel magnetic resonance (MR) images. This framework does not require prior model construction and only requires manual labels on one automatically selected slice. All other slices are labeled by an iterative multi-label Markov random field optimization with hard constraints. Structural trajectories-the medical image analog to optical flow and 3D image over-segmentation are used to capture pixel correspondences between consecutive slices for pixel labeling. We show robustness and effectiveness through an evaluation on the 2012 MICCAI BRATS Challenge Dataset; our results indicate superior performance to baselines and demonstrate the utility of the constrained MRF formulation.

  7. Investigation of the Frequency Shift of a SAD Circuit Loop and the Internal Micro-Cantilever in a Gas Sensor

    PubMed Central

    Guan, Liu; Zhao, Jiahao; Yu, Shijie; Li, Peng; You, Zheng

    2010-01-01

    Micro-cantilever sensors for mass detection using resonance frequency have attracted considerable attention over the last decade in the field of gas sensing. For such a sensing system, an oscillator circuit loop is conventionally used to actuate the micro-cantilever, and trace the frequency shifts. In this paper, gas experiments are introduced to investigate the mechanical resonance frequency shifts of the micro-cantilever within the circuit loop(mechanical resonance frequency, MRF) and resonating frequency shifts of the electric signal in the oscillator circuit (system working frequency, SWF). A silicon beam with a piezoelectric zinc oxide layer is employed in the experiment, and a Self-Actuating-Detecting (SAD) circuit loop is built to drive the micro-cantilever and to follow the frequency shifts. The differences between the two resonating frequencies and their shifts are discussed and analyzed, and a coefficient α related to the two frequency shifts is confirmed. PMID:22163588

  8. Maximum mutual information estimation of a simplified hidden MRF for offline handwritten Chinese character recognition

    NASA Astrophysics Data System (ADS)

    Xiong, Yan; Reichenbach, Stephen E.

    1999-01-01

    Understanding of hand-written Chinese characters is at such a primitive stage that models include some assumptions about hand-written Chinese characters that are simply false. So Maximum Likelihood Estimation (MLE) may not be an optimal method for hand-written Chinese characters recognition. This concern motivates the research effort to consider alternative criteria. Maximum Mutual Information Estimation (MMIE) is an alternative method for parameter estimation that does not derive its rationale from presumed model correctness, but instead examines the pattern-modeling problem in automatic recognition system from an information- theoretic point of view. The objective of MMIE is to find a set of parameters in such that the resultant model allows the system to derive from the observed data as much information as possible about the class. We consider MMIE for recognition of hand-written Chinese characters using on a simplified hidden Markov Random Field. MMIE provides improved performance improvement over MLE in this application.

  9. Optimal Co-segmentation of Tumor in PET-CT Images with Context Information

    PubMed Central

    Song, Qi; Bai, Junjie; Han, Dongfeng; Bhatia, Sudershan; Sun, Wenqing; Rockey, William; Bayouth, John E.; Buatti, John M.

    2014-01-01

    PET-CT images have been widely used in clinical practice for radiotherapy treatment planning of the radiotherapy. Many existing segmentation approaches only work for a single imaging modality, which suffer from the low spatial resolution in PET or low contrast in CT. In this work we propose a novel method for the co-segmentation of the tumor in both PET and CT images, which makes use of advantages from each modality: the functionality information from PET and the anatomical structure information from CT. The approach formulates the segmentation problem as a minimization problem of a Markov Random Field (MRF) model, which encodes the information from both modalities. The optimization is solved using a graph-cut based method. Two sub-graphs are constructed for the segmentation of the PET and the CT images, respectively. To achieve consistent results in two modalities, an adaptive context cost is enforced by adding context arcs between the two subgraphs. An optimal solution can be obtained by solving a single maximum flow problem, which leads to simultaneous segmentation of the tumor volumes in both modalities. The proposed algorithm was validated in robust delineation of lung tumors on 23 PET-CT datasets and two head-and-neck cancer subjects. Both qualitative and quantitative results show significant improvement compared to the graph cut methods solely using PET or CT. PMID:23693127

  10. Magnetic fluid control for viscous loss reduction of high-speed MRF brakes and clutches with well-defined fail-safe behavior

    NASA Astrophysics Data System (ADS)

    Güth, Dirk; Schamoni, Markus; Maas, Jürgen

    2013-09-01

    No-load losses within brakes and clutches based on magnetorheological fluids are unavoidable and represent a major barrier towards their wide-spread commercial adoption. Completely torque free rotation is not yet possible due to persistent fluid contact within the shear gap. In this paper, a novel concept is presented that facilitates the controlled movement of the magnetorheological fluid from an active, torque-transmitting region into an inactive region of the shear gap. This concept enables complete decoupling of the fluid engaging surfaces such that viscous drag torque can be eliminated. In order to achieve the desired effect, motion in the magnetorheological fluid is induced by magnetic forces acting on the fluid, which requires an appropriate magnetic circuit design. In this investigation, we propose a methodology to determine suitable magnetic circuit designs with well-defined fail-safe behavior. The magnetically induced motion of magnetorheological fluids is modeled by the use of the Kelvin body force, and a multi-physics domain simulation is performed to elucidate various transitions between an engaged and disengaged operating mode. The modeling approach is validated by captured high-speed video frames which show the induced motion of the magnetorheological fluid due to the magnetic field. Finally, measurements performed with a prototype actuator prove that the induced viscous drag torque can be reduced significantly by the proposed magnetic fluid control methodology.

  11. U.S. Navy Shipboard-Generated Plastic Waste Pilot Recycling Program

    DTIC Science & Technology

    1991-03-01

    2: Recyclable Plastic Items Collected from Lexington Waste at Escambia County MRF Shampoo containers Plastic garbage bags Tyvek suit Shower thongs...bale consisted of polystyrene foam cups, bread bags, bottles, disposable razors, latex gloves, shampoo bottles, and othermiscellaneous items listed in...recent csws telephone survey of recycling firms involved in the separation of mixed 46 plastic bottles, the cost of sorting plastic bottles is

  12. Variability and trends in area, location, cloudiness and cloud top temperature of the ITCZ in the east to central Pacific over the past 30 years

    NASA Astrophysics Data System (ADS)

    Magnusdottir, G.; Bain, C.; Smyth, P.; Stern, H.; Knapp, K.

    2010-12-01

    A team of multidisciplinary scientists at the University of California Irvine has developed a novel spatial-temporal statistical model to detect the presence/absence of the ITCZ in high-resolution instantaneous satellite data. The Markov random field (MRF) statistical model is briefly introduced and compared to other automatic methods such as thresholding. The statistical model emulates human identification of the ITCZ as an envelope of convective activity (as seen in different fields) plus produces the same results given the same data, which may not be the case for human analysis. The MRF statistical model uses satellite data at a given location as well as information from its neighboring points (in time and space) to decide whether the given point is classified as ITCZ or non-ITCZ. Two different labels of ITCZ occurrence are produced. IR-only labels result from running the model with 3-hourly infrared data available for a 30 yr period, 1980--2009. Data-all labels result from running the model with additional satellite data (visible and total precipitable water), available from 1995--2008. IR-only labels detect less area of ITCZ than Data-all labels, especially where the ITCZ is shallower. Yet, qualitatively, the results for the two sets of labels are similar. Here, we focus on results from the IR-only labels over the east Pacific for the past 30 summer half-years (May to October). The IR data are from the HURSAT Basin data of NOAA’s National Climatic Data Center, which are derived from ISCCP B1 data. The data were collected from radiometers on different geostationary satellites. The IR channel data were recalibrated to reduce inter-satellite differences. The seasonal distribution of the ITCZ through the summer half year is presented, showing typical location and extent. The ITCZ is mostly confined to the eastern Pacific in May, and becomes more zonally distributed towards September and October each year. Northward and westward shifts in the location of the ITCZ occur in line with the seasonal cycle and warm sea surface temperatures. The ITCZ is quite variable on interannual time scales and highly correlated with ENSO variability. When we removed the ENSO signal from labels, interannual variability remained high. The resulting IR-only labels, showed no evidence of a trend in location, nor evidence of a trend in area for the 30 yr period. However, a trend in cloudiness within labels is observed and will be discussed.

  13. SMURFLite: combining simplified Markov random fields with simulated evolution improves remote homology detection for beta-structural proteins into the twilight zone.

    PubMed

    Daniels, Noah M; Hosur, Raghavendra; Berger, Bonnie; Cowen, Lenore J

    2012-05-01

    One of the most successful methods to date for recognizing protein sequences that are evolutionarily related has been profile hidden Markov models (HMMs). However, these models do not capture pairwise statistical preferences of residues that are hydrogen bonded in beta sheets. These dependencies have been partially captured in the HMM setting by simulated evolution in the training phase and can be fully captured by Markov random fields (MRFs). However, the MRFs can be computationally prohibitive when beta strands are interleaved in complex topologies. We introduce SMURFLite, a method that combines both simplified MRFs and simulated evolution to substantially improve remote homology detection for beta structures. Unlike previous MRF-based methods, SMURFLite is computationally feasible on any beta-structural motif. We test SMURFLite on all propeller and barrel folds in the mainly-beta class of the SCOP hierarchy in stringent cross-validation experiments. We show a mean 26% (median 16%) improvement in area under curve (AUC) for beta-structural motif recognition as compared with HMMER (a well-known HMM method) and a mean 33% (median 19%) improvement as compared with RAPTOR (a well-known threading method) and even a mean 18% (median 10%) improvement in AUC over HHPred (a profile-profile HMM method), despite HHpred's use of extensive additional training data. We demonstrate SMURFLite's ability to scale to whole genomes by running a SMURFLite library of 207 beta-structural SCOP superfamilies against the entire genome of Thermotoga maritima, and make over a 100 new fold predictions. Availability and implementaion: A webserver that runs SMURFLite is available at: http://smurf.cs.tufts.edu/smurflite/

  14. A Markov Random Field Framework for Protein Side-Chain Resonance Assignment

    NASA Astrophysics Data System (ADS)

    Zeng, Jianyang; Zhou, Pei; Donald, Bruce Randall

    Nuclear magnetic resonance (NMR) spectroscopy plays a critical role in structural genomics, and serves as a primary tool for determining protein structures, dynamics and interactions in physiologically-relevant solution conditions. The current speed of protein structure determination via NMR is limited by the lengthy time required in resonance assignment, which maps spectral peaks to specific atoms and residues in the primary sequence. Although numerous algorithms have been developed to address the backbone resonance assignment problem [68,2,10,37,14,64,1,31,60], little work has been done to automate side-chain resonance assignment [43, 48, 5]. Most previous attempts in assigning side-chain resonances depend on a set of NMR experiments that record through-bond interactions with side-chain protons for each residue. Unfortunately, these NMR experiments have low sensitivity and limited performance on large proteins, which makes it difficult to obtain enough side-chain resonance assignments. On the other hand, it is essential to obtain almost all of the side-chain resonance assignments as a prerequisite for high-resolution structure determination. To overcome this deficiency, we present a novel side-chain resonance assignment algorithm based on alternative NMR experiments measuring through-space interactions between protons in the protein, which also provide crucial distance restraints and are normally required in high-resolution structure determination. We cast the side-chain resonance assignment problem into a Markov Random Field (MRF) framework, and extend and apply combinatorial protein design algorithms to compute the optimal solution that best interprets the NMR data. Our MRF framework captures the contact map information of the protein derived from NMR spectra, and exploits the structural information available from the backbone conformations determined by orientational restraints and a set of discretized side-chain conformations (i.e., rotamers). A Hausdorff-based computation is employed in the scoring function to evaluate the probability of side-chain resonance assignments to generate the observed NMR spectra. The complexity of the assignment problem is first reduced by using a dead-end elimination (DEE) algorithm, which prunes side-chain resonance assignments that are provably not part of the optimal solution. Then an A* search algorithm is used to find a set of optimal side-chain resonance assignments that best fit the NMR data. We have tested our algorithm on NMR data for five proteins, including the FF Domain 2 of human transcription elongation factor CA150 (FF2), the B1 domain of Protein G (GB1), human ubiquitin, the ubiquitin-binding zinc finger domain of the human Y-family DNA polymerase Eta (pol η UBZ), and the human Set2-Rpb1 interacting domain (hSRI). Our algorithm assigns resonances for more than 90% of the protons in the proteins, and achieves about 80% correct side-chain resonance assignments. The final structures computed using distance restraints resulting from the set of assigned side-chain resonances have backbone RMSD 0.5 - 1.4 Å and all-heavy-atom RMSD 1.0 - 2.2 Å from the reference structures that were determined by X-ray crystallography or traditional NMR approaches. These results demonstrate that our algorithm can be successfully applied to automate side-chain resonance assignment and high-quality protein structure determination. Since our algorithm does not require any specific NMR experiments for measuring the through-bond interactions with side-chain protons, it can save a significant amount of both experimental cost and spectrometer time, and hence accelerate the NMR structure determination process.

  15. Improving sedimentation stability of magnetorheological fluids using an organic molecular particle coating

    NASA Astrophysics Data System (ADS)

    Cheng, Haibin; Wang, Ming; Liu, Chaosheng; Wereley, Norman M.

    2018-07-01

    A key goal for implementation of magnetorheological fluids (MRFs) is to minimize sedimentation or to increase suspension stability. In this study, a series of MRF samples were synthesized by suspending carbonyl iron particles (CIPs), which had different organic molecules and auxiliaries grafted onto their surface, in silicone oil. The magnetorheology of these MRF samples was measured using a magneto-rheometer, and their sedimentation behaviors were quantitatively evaluated using a thermal conductivity sedimentation measurement method. The effect of these coatings on the stability of the MRFs was analyzed. Results show that all of the MRFs exhibit good MR effects and that the surface modification does not greatly weaken the MR effect. Suspension stability was substantially improved by grafting organic molecular structures onto the surface of the CIPs, and the sedimentation rate was influenced by the organic molecule structure. Compared to the uncoated CIPs, when the organic molecule was changed from octyl acyl ethylenediamine triacetate (C7H15COED3A) to lauryl acyl ethylenediamine triacetate (C11H23COED3A) and stearyl acyl ethylenediamine triacetate (C17H35COED3A), the sedimentation rate decreased by 53.9% to 64.2% and 75.1%, respectively. The mechanisms of how organic molecular structure affects the stability of MRFs are discussed.

  16. Peano-like paths for subaperture polishing of optical aspherical surfaces.

    PubMed

    Tam, Hon-Yuen; Cheng, Haobo; Dong, Zhichao

    2013-05-20

    Polishing can be more uniform if the polishing path provides uniform coverage of the surface. It is known that Peano paths can provide uniform coverage of planar surfaces. Peano paths also contain short path segments and turns: (1) all path segments have the same length, (2) path segments are mutually orthogonal at the turns, and (3) path segments and turns are uniformity distributed over the domain surface. These make Peano paths an attractive candidate among polishing tool paths because they enhance multidirectional approaches of the tool to each surface location. A method for constructing Peano paths for uniform coverage of aspherical surfaces is proposed in this paper. When mapped to the aspherical surface, the path also contains short path segments and turns, and the above attributes are approximately preserved. Attention is paid so that the path segments are still well distributed near the vertex of the surface. The proposed tool path was used in the polishing of a number of parabolic BK7 specimens using magnetorheological finishing (MRF) and pitch with cerium oxide. The results were rather good for optical lenses and confirm that a Peano-like path was useful for polishing, for MRF, and for pitch polishing. In the latter case, the surface roughness achieved was 0.91 nm according to WYKO measurement.

  17. Reduction of Surface Errors over a Wide Range of Spatial Frequencies Using a Combination of Electrolytic In-Process Dressing Grinding and Magnetorheological Finishing

    NASA Astrophysics Data System (ADS)

    Kunimura, Shinsuke; Ohmori, Hitoshi

    We present a rapid process for producing flat and smooth surfaces. In this technical note, a fabrication result of a carbon mirror is shown. Electrolytic in-process dressing (ELID) grinding with a metal bonded abrasive wheel, then a metal-resin bonded abrasive wheel, followed by a conductive rubber bonded abrasive wheel, and finally magnetorheological finishing (MRF) were performed as the first, second, third, and final steps, respectively in this process. Flatness over the whole surface was improved by performing the first and second steps. After the third step, peak to valley (PV) and root mean square (rms) values in an area of 0.72 x 0.54 mm2 on the surface were improved. These values were further improved after the final step, and a PV value of 10 nm and an rms value of 1 nm were obtained. Form errors and small surface irregularities such as surface waviness and micro roughness were efficiently reduced by performing ELID grinding using the above three kinds of abrasive wheels because of the high removal rate of ELID grinding, and residual small irregularities were reduced by short time MRF. This process makes it possible to produce flat and smooth surfaces in several hours.

  18. MRF, ELSM and STED: tools to study defects in fused silica optics

    NASA Astrophysics Data System (ADS)

    Catrin, R.; Taroux, D.; Cormont, P.; Maunier, C.; Neauport, J.

    2013-11-01

    The MegaJoule laser being constructed at the CEA near Bordeaux (France) is designed to focus more than 1 MJ of energy at 351 nm, on a millimetre scale target in the centre of an experiment chamber. The final optic assembly of this system operating at a wavelength of 351 nm is made up of large fused silica optics, working in transmission, that are used to convey and focus the laser beam. Under high fluences (i.e. more than 5 J/cm2 for 3 ns pulses), the limited lifetime of final optical assembly is a major concern for fusion scale laser facilities. Previous works have shown that surface finishing processes applied to manufacture these optical components can leave subsurface cracks (SSD), pollution or similar defects that act as initiators of the laser damage. In this work, we used epi-fluorescent light scanning microscopy (ELSM) and Stimulated Emission Depletion (STED) in confocal mode with fluorescent dye tagging to get a better knowledge of size and depth of these subsurface cracks. Magnetorheological fluid finishing technique (MRF) was also used as a tool to remove these cracks and thus assess depths measured by confocal microscopy. Subsurface cracks with a width of about 120 nm are observed up to ten micrometers below the surface.

  19. Optimum Image Formation for Spaceborne Microwave Radiometer Products.

    PubMed

    Long, David G; Brodzik, Mary J

    2016-05-01

    This paper considers some of the issues of radiometer brightness image formation and reconstruction for use in the NASA-sponsored Calibrated Passive Microwave Daily Equal-Area Scalable Earth Grid 2.0 Brightness Temperature Earth System Data Record project, which generates a multisensor multidecadal time series of high-resolution radiometer products designed to support climate studies. Two primary reconstruction algorithms are considered: the Backus-Gilbert approach and the radiometer form of the scatterometer image reconstruction (SIR) algorithm. These are compared with the conventional drop-in-the-bucket (DIB) gridded image formation approach. Tradeoff study results for the various algorithm options are presented to select optimum values for the grid resolution, the number of SIR iterations, and the BG gamma parameter. We find that although both approaches are effective in improving the spatial resolution of the surface brightness temperature estimates compared to DIB, SIR requires significantly less computation. The sensitivity of the reconstruction to the accuracy of the measurement spatial response function (MRF) is explored. The partial reconstruction of the methods can tolerate errors in the description of the sensor measurement response function, which simplifies the processing of historic sensor data for which the MRF is not known as well as modern sensors. Simulation tradeoff results are confirmed using actual data.

  20. Effect of the g.-723G-->T polymorphism in the bovine myogenic factor 5 (Myf5) gene promoter region on gene transcript level in the longissimus dorsi muscle and on meat traits of Polish Holstein-Friesian cattle.

    PubMed

    Robakowska-Hyzorek, Dagmara; Oprzadek, Jolanta; Zelazowska, Beata; Olbromski, Rafał; Zwierzchowski, Lech

    2010-06-01

    Myogenic factor 5 (Myf5), a product of the Myf5 gene, belongs to the MRF family of basic helix-loop-helix transcription factors that regulate myogenesis. Their roles in muscle growth and development make their genes candidates for molecular markers of meat production in livestock, but nucleotide sequence polymorphism has not been thoroughly studied in MRF genes. We detected four single nucleotide polymorphisms (SNPs) within exon 1 of the Myf5 gene, encoding the NH-terminal transactivation domain of the Myf5 protein. Three of these mutations change the amino acid sequence. The distribution of these SNPs was highly skewed in cattle populations; most of the mutations were found in only a few or even single individuals. Of the nine SNPs found in the promoter region of Myf5, one (transversion g.-723G-->T) was represented by all three genotypes distributed in the cattle populations studied. This polymorphism showed an influence on Myf5 gene expression in the longissimus dorsi muscle and was associated with sirloin weight and fat weight in sirloin in carcasses of Holstein-Friesian cattle.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Newell, J; Miller, D; Stone, M

    The Savannah River National Laboratory (SRNL) was tasked to provide an assessment of the downstream impacts to the Defense Waste Processing Facility (DWPF) of decisions regarding the implementation of Al-dissolution to support sludge mass reduction and processing. Based on future sludge batch compositional projections from the Liquid Waste Organization's (LWO) sludge batch plan, assessments have been made with respect to the ability to maintain comparable projected operating windows for sludges with and without Al-dissolution. As part of that previous assessment, candidate frits were identified to provide insight into melt rate for average sludge batches representing with and without Al-dissolution flowsheets.more » Initial melt rate studies using the melt rate furnace (MRF) were performed using five frits each for Cluster 2 and Cluster 4 compositions representing average without and with Al-dissolution. It was determined, however, that the REDOX endpoint (Fe{sup 2+}/{Sigma}Fe for the glass) for Clusters 2 and 4 resulted in an overly oxidized feed which negatively affected the initial melt rate tests. After the sludge was adjusted to a more reduced state, additional testing was performed with frits that contained both high and low concentrations of sodium and boron oxides. These frits were selected strictly based on the ability to ascertain compositional trends in melt rate and did not necessarily apply to any acceptability criteria for DWPF processing. The melt rate data are in general agreement with historical trends observed at SRNL and during processing of SB3 (Sludge Batch 3)and SB4 in DWPF. When MAR acceptability criteria were applied, Frit 510 was seen to have the highest melt rate at 0.67 in/hr for Cluster 2 (without Al-dissolution), which is compositionally similar to SB4. For Cluster 4 (with Al-dissolution), which is compositionally similar to SB3, Frit 418 had the highest melt rate at 0.63 in/hr. Based on this data, there appears to be a slight advantage of the Frit 510 based system without Al-dissolution relative to the Frit 418 based system with Al-dissolution. Though the without aluminum dissolution scenario suggests a slightly higher melt rate with frit 510, several points must be taken into consideration: (1) The MRF does not have the ability to assess liquid feeds and, thus, rheology impacts. Instead, the MRF is a 'static' test bed in which a mass of dried melter feed (SRAT product plus frit) is placed in an 'isothermal' furnace for a period of time to assess melt rate. These conditions, although historically effective in terms of identifying candidate frits for specific sludge batches and mapping out melt rate versus waste loading trends, do not allow for assessments of the potential impact of feed rheology on melt rate. That is, if the rheological properties of the slurried melter feed resulted in the mounding of the feed in the melter (i.e., the melter feed was thick and did not flow across the cold cap), melt rate and/or melter operations (i.e., surges) could be negatively impacted. This could affect one or both flowsheets. (2) Waste throughput factors were not determined for Frit 510 and Frit 418 over multiple waste loadings. In order to provide insight into the mission life versus canister count question, one needs to define the maximum waste throughput for both flowsheets. Due to funding limitations, the melt rate testing only evaluated melt rate at a fixed waste loading. (3) DWPF will be processing SB5 through their facility in mid-November 2008. Insight into the over arching questions of melt rate, waste throughput, and mission life can be obtained directly from the facility. It is recommended that processing of SB5 through the facility be monitored closely and that data be used as input into the decision making process on whether to implement Al-dissolution for future sludge batches.« less

  2. Military Retirement Fund Audited Financial Statements. Fiscal Year 2011

    DTIC Science & Technology

    2011-11-04

    reporting . Improper Payments Information Act of 2002 (Public Law No. 107-300) The MRF public accounts receivable, $49.6 million, consists mostly of improper... reports death payment contingencies that result from DoD’s responsibility to cover retiree benefits not paid by the VA during the month of death. L... Report Documentation Page Form ApprovedOMB No. 0704-0188 Public reporting burden for the collection of information is estimated to average 1 hour

  3. Point target detection utilizing super-resolution strategy for infrared scanning oversampling system

    NASA Astrophysics Data System (ADS)

    Wang, Longguang; Lin, Zaiping; Deng, Xinpu; An, Wei

    2017-11-01

    To improve the resolution of remote sensing infrared images, infrared scanning oversampling system is employed with information amount quadrupled, which contributes to the target detection. Generally the image data from double-line detector of infrared scanning oversampling system is shuffled to a whole oversampled image to be post-processed, whereas the aliasing between neighboring pixels leads to image degradation with a great impact on target detection. This paper formulates a point target detection method utilizing super-resolution (SR) strategy concerning infrared scanning oversampling system, with an accelerated SR strategy proposed to realize fast de-aliasing of the oversampled image and an adaptive MRF-based regularization designed to achieve the preserving and aggregation of target energy. Extensive experiments demonstrate the superior detection performance, robustness and efficiency of the proposed method compared with other state-of-the-art approaches.

  4. Hyperspectral Image Classification via Multitask Joint Sparse Representation and Stepwise MRF Optimization.

    PubMed

    Yuan, Yuan; Lin, Jianzhe; Wang, Qi

    2016-12-01

    Hyperspectral image (HSI) classification is a crucial issue in remote sensing. Accurate classification benefits a large number of applications such as land use analysis and marine resource utilization. But high data correlation brings difficulty to reliable classification, especially for HSI with abundant spectral information. Furthermore, the traditional methods often fail to well consider the spatial coherency of HSI that also limits the classification performance. To address these inherent obstacles, a novel spectral-spatial classification scheme is proposed in this paper. The proposed method mainly focuses on multitask joint sparse representation (MJSR) and a stepwise Markov random filed framework, which are claimed to be two main contributions in this procedure. First, the MJSR not only reduces the spectral redundancy, but also retains necessary correlation in spectral field during classification. Second, the stepwise optimization further explores the spatial correlation that significantly enhances the classification accuracy and robustness. As far as several universal quality evaluation indexes are concerned, the experimental results on Indian Pines and Pavia University demonstrate the superiority of our method compared with the state-of-the-art competitors.

  5. Dynamic graph cuts for efficient inference in Markov Random Fields.

    PubMed

    Kohli, Pushmeet; Torr, Philip H S

    2007-12-01

    Abstract-In this paper we present a fast new fully dynamic algorithm for the st-mincut/max-flow problem. We show how this algorithm can be used to efficiently compute MAP solutions for certain dynamically changing MRF models in computer vision such as image segmentation. Specifically, given the solution of the max-flow problem on a graph, the dynamic algorithm efficiently computes the maximum flow in a modified version of the graph. The time taken by it is roughly proportional to the total amount of change in the edge weights of the graph. Our experiments show that, when the number of changes in the graph is small, the dynamic algorithm is significantly faster than the best known static graph cut algorithm. We test the performance of our algorithm on one particular problem: the object-background segmentation problem for video. It should be noted that the application of our algorithm is not limited to the above problem, the algorithm is generic and can be used to yield similar improvements in many other cases that involve dynamic change.

  6. A closed-form solution to tensor voting: theory and applications.

    PubMed

    Wu, Tai-Pang; Yeung, Sai-Kit; Jia, Jiaya; Tang, Chi-Keung; Medioni, Gérard

    2012-08-01

    We prove a closed-form solution to tensor voting (CFTV): Given a point set in any dimensions, our closed-form solution provides an exact, continuous, and efficient algorithm for computing a structure-aware tensor that simultaneously achieves salient structure detection and outlier attenuation. Using CFTV, we prove the convergence of tensor voting on a Markov random field (MRF), thus termed as MRFTV, where the structure-aware tensor at each input site reaches a stationary state upon convergence in structure propagation. We then embed structure-aware tensor into expectation maximization (EM) for optimizing a single linear structure to achieve efficient and robust parameter estimation. Specifically, our EMTV algorithm optimizes both the tensor and fitting parameters and does not require random sampling consensus typically used in existing robust statistical techniques. We performed quantitative evaluation on its accuracy and robustness, showing that EMTV performs better than the original TV and other state-of-the-art techniques in fundamental matrix estimation for multiview stereo matching. The extensions of CFTV and EMTV for extracting multiple and nonlinear structures are underway.

  7. Metric Ranking of Invariant Networks with Belief Propagation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tao, Changxia; Ge, Yong; Song, Qinbao

    The management of large-scale distributed information systems relies on the effective use and modeling of monitoring data collected at various points in the distributed information systems. A promising approach is to discover invariant relationships among the monitoring data and generate invariant networks, where a node is a monitoring data source (metric) and a link indicates an invariant relationship between two monitoring data. Such an invariant network representation can help system experts to localize and diagnose the system faults by examining those broken invariant relationships and their related metrics, because system faults usually propagate among the monitoring data and eventually leadmore » to some broken invariant relationships. However, at one time, there are usually a lot of broken links (invariant relationships) within an invariant network. Without proper guidance, it is difficult for system experts to manually inspect this large number of broken links. Thus, a critical challenge is how to effectively and efficiently rank metrics (nodes) of invariant networks according to the anomaly levels of metrics. The ranked list of metrics will provide system experts with useful guidance for them to localize and diagnose the system faults. To this end, we propose to model the nodes and the broken links as a Markov Random Field (MRF), and develop an iteration algorithm to infer the anomaly of each node based on belief propagation (BP). Finally, we validate the proposed algorithm on both realworld and synthetic data sets to illustrate its effectiveness.« less

  8. The collection of images of an insulator taken outdoors in varying lighting conditions with additional laser spots.

    PubMed

    Tomaszewski, Michał; Ruszczak, Bogdan; Michalski, Paweł

    2018-06-01

    Electrical insulators are elements of power lines that require periodical diagnostics. Due to their location on the components of high-voltage power lines, their imaging can be cumbersome and time-consuming, especially under varying lighting conditions. Insulator diagnostics with the use of visual methods may require localizing insulators in the scene. Studies focused on insulator localization in the scene apply a number of methods, including: texture analysis, MRF (Markov Random Field), Gabor filters or GLCM (Gray Level Co-Occurrence Matrix) [1], [2]. Some methods, e.g. those which localize insulators based on colour analysis [3], rely on object and scene illumination, which is why the images from the dataset are taken under varying lighting conditions. The dataset may also be used to compare the effectiveness of different methods of localizing insulators in images. This article presents high-resolution images depicting a long rod electrical insulator under varying lighting conditions and against different backgrounds: crops, forest and grass. The dataset contains images with visible laser spots (generated by a device emitting light at the wavelength of 532 nm) and images without such spots, as well as complementary data concerning the illumination level and insulator position in the scene, the number of registered laser spots, and their coordinates in the image. The laser spots may be used to support object-localizing algorithms, while the images without spots may serve as a source of information for those algorithms which do not need spots to localize an insulator.

  9. Backward Registration Based Aspect Ratio Similarity (ARS) for Image Retargeting Quality Assessment.

    PubMed

    Zhang, Yabin; Fang, Yuming; Lin, Weisi; Zhang, Xinfeng; Li, Leida

    2016-06-28

    During the past few years, there have been various kinds of content-aware image retargeting operators proposed for image resizing. However, the lack of effective objective retargeting quality assessment metrics limits the further development of image retargeting techniques. Different from traditional Image Quality Assessment (IQA) metrics, the quality degradation during image retargeting is caused by artificial retargeting modifications, and the difficulty for Image Retargeting Quality Assessment (IRQA) lies in the alternation of the image resolution and content, which makes it impossible to directly evaluate the quality degradation like traditional IQA. In this paper, we interpret the image retargeting in a unified framework of resampling grid generation and forward resampling. We show that the geometric change estimation is an efficient way to clarify the relationship between the images. We formulate the geometric change estimation as a Backward Registration problem with Markov Random Field (MRF) and provide an effective solution. The geometric change aims to provide the evidence about how the original image is resized into the target image. Under the guidance of the geometric change, we develop a novel Aspect Ratio Similarity metric (ARS) to evaluate the visual quality of retargeted images by exploiting the local block changes with a visual importance pooling strategy. Experimental results on the publicly available MIT RetargetMe and CUHK datasets demonstrate that the proposed ARS can predict more accurate visual quality of retargeted images compared with state-of-the-art IRQA metrics.

  10. A discriminative model-constrained graph cuts approach to fully automated pediatric brain tumor segmentation in 3-D MRI.

    PubMed

    Wels, Michael; Carneiro, Gustavo; Aplas, Alexander; Huber, Martin; Hornegger, Joachim; Comaniciu, Dorin

    2008-01-01

    In this paper we present a fully automated approach to the segmentation of pediatric brain tumors in multi-spectral 3-D magnetic resonance images. It is a top-down segmentation approach based on a Markov random field (MRF) model that combines probabilistic boosting trees (PBT) and lower-level segmentation via graph cuts. The PBT algorithm provides a strong discriminative observation model that classifies tumor appearance while a spatial prior takes into account the pair-wise homogeneity in terms of classification labels and multi-spectral voxel intensities. The discriminative model relies not only on observed local intensities but also on surrounding context for detecting candidate regions for pathology. A mathematically sound formulation for integrating the two approaches into a unified statistical framework is given. The proposed method is applied to the challenging task of detection and delineation of pediatric brain tumors. This segmentation task is characterized by a high non-uniformity of both the pathology and the surrounding non-pathologic brain tissue. A quantitative evaluation illustrates the robustness of the proposed method. Despite dealing with more complicated cases of pediatric brain tumors the results obtained are mostly better than those reported for current state-of-the-art approaches to 3-D MR brain tumor segmentation in adult patients. The entire processing of one multi-spectral data set does not require any user interaction, and takes less time than previously proposed methods.

  11. Five-Year Plan (FY04-FY-08) for the Manufacturing Technology (ManTech) Program. Supplement to the FY03 - FY07 Plan

    DTIC Science & Technology

    2003-07-01

    magnetorheological (MRF) finishing to reduce surface roughness in half the time of previous processes . Improved image quality directly supports improved...affordably polish the inside surface of small tight free form optics to a finish on the order of 3 angstroms. • Demonstrate cycle time reduction...processes and controls for steel, titanium, and superalloys. FY2007: • Demonstrate an improved superfine finishing for optical components to

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, M. S.; Miller, D. H.; Fowley, M. D.

    The Savannah River National Laboratory (SRNL) was tasked to support validation of the Defense Waste Processing Facility (DWPF) melter offgas flammability model for the nitric-glycolic (NG) flowsheet. The work supports Deliverable 4 of the DWPF & Saltstone Facility Engineering Technical Task Request (TTR)1 and is supplemental to the Cold Cap Evaluation Furnace (CEF) testing conducted in 2014.2 The Slurry-fed Melt Rate Furnace (SMRF) was selected for the supplemental testing as it requires significantly less resources than the CEF and could provide a tool for more rapid analysis of melter feeds in the future. The SMRF platform has been used previouslymore » to evaluate melt rate behavior of DWPF glasses, but was modified to accommodate analysis of the offgas stream. Additionally, the Melt Rate Furnace (MRF) and Quartz Melt Rate Furnace (QMRF) were utilized for evaluations. MRF data was used exclusively for melt behavior observations and REDuction/OXidation (REDOX) prediction comparisons and will be briefly discussed in conjunction with its support of the SMRF testing. The QMRF was operated similarly to the SMRF for the same TTR task, but will be discussed in a separate future report. The overall objectives of the SMRF testing were to; 1) Evaluate the efficacy of the SMRF as a platform for steady state melter testing with continuous feeding and offgas analysis; and 2) Generate supplemental melter offgas flammability data to support the melter offgas flammability modelling effort for DWPF implementation of the NG flowsheet.« less

  13. Patterns of Positive Selection of the Myogenic Regulatory Factor Gene Family in Vertebrates

    PubMed Central

    Zhao, Xiao; Yu, Qi; Huang, Ling; Liu, Qing-Xin

    2014-01-01

    The functional divergence of transcriptional factors is critical in the evolution of transcriptional regulation. However, the mechanism of functional divergence among these factors remains unclear. Here, we performed an evolutionary analysis for positive selection in members of the myogenic regulatory factor (MRF) gene family of vertebrates. We selected 153 complete vertebrate MRF nucleotide sequences from our analyses, which revealed substantial evidence of positive selection. Here, we show that sites under positive selection were more frequently detected and identified from the genes encoding the myogenic differentiation factors (MyoG and Myf6) than the genes encoding myogenic determination factors (Myf5 and MyoD). Additionally, the functional divergence within the myogenic determination factors or differentiation factors was also under positive selection pressure. The positive selection sites were more frequently detected from MyoG and MyoD than Myf6 and Myf5, respectively. Amino acid residues under positive selection were identified mainly in their transcription activation domains and on the surface of protein three-dimensional structures. These data suggest that the functional gain and divergence of myogenic regulatory factors were driven by distinct positive selection of their transcription activation domains, whereas the function of the DNA binding domains was conserved in evolution. Our study evaluated the mechanism of functional divergence of the transcriptional regulation factors within a family, whereby the functions of their transcription activation domains diverged under positive selection during evolution. PMID:24651579

  14. Torque ripple reduction of brushless DC motor based on adaptive input-output feedback linearization.

    PubMed

    Shirvani Boroujeni, M; Markadeh, G R Arab; Soltani, J

    2017-09-01

    Torque ripple reduction of Brushless DC Motors (BLDCs) is an interesting subject in variable speed AC drives. In this paper at first, a mathematical expression for torque ripple harmonics is obtained. Then for a non-ideal BLDC motor with known harmonic contents of back-EMF, calculation of desired reference current amplitudes, which are required to eliminate some selected harmonics of torque ripple, are reviewed. In order to inject the reference harmonic currents to the motor windings, an Adaptive Input-Output Feedback Linearization (AIOFBL) control is proposed, which generates the reference voltages for three phases voltage source inverter in stationary reference frame. Experimental results are presented to show the capability and validity of the proposed control method and are compared with the vector control in Multi-Reference Frame (MRF) and Pseudo-Vector Control (P-VC) method results. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  15. Spatial-temporal causal modeling: a data centric approach to climate change attribution (Invited)

    NASA Astrophysics Data System (ADS)

    Lozano, A. C.

    2010-12-01

    Attribution of climate change has been predominantly based on simulations using physical climate models. These approaches rely heavily on the employed models and are thus subject to their shortcomings. Given the physical models’ limitations in describing the complex system of climate, we propose an alternative approach to climate change attribution that is data centric in the sense that it relies on actual measurements of climate variables and human and natural forcing factors. We present a novel class of methods to infer causality from spatial-temporal data, as well as a procedure to incorporate extreme value modeling into our methodology in order to address the attribution of extreme climate events. We develop a collection of causal modeling methods using spatio-temporal data that combine graphical modeling techniques with the notion of Granger causality. “Granger causality” is an operational definition of causality from econometrics, which is based on the premise that if a variable causally affects another, then the past values of the former should be helpful in predicting the future values of the latter. In its basic version, our methodology makes use of the spatial relationship between the various data points, but treats each location as being identically distributed and builds a unique causal graph that is common to all locations. A more flexible framework is then proposed that is less restrictive than having a single causal graph common to all locations, while avoiding the brittleness due to data scarcity that might arise if one were to independently learn a different graph for each location. The solution we propose can be viewed as finding a middle ground by partitioning the locations into subsets that share the same causal structures and pooling the observations from all the time series belonging to the same subset in order to learn more robust causal graphs. More precisely, we make use of relationships between locations (e.g. neighboring relationship) by defining a relational graph in which related locations are connected (note that this relational graph, which represents relationships among the different locations, is distinct from the causal graph, which represents causal relationships among the individual variables - e.g. temperature, pressure- within a multivariate time series). We then define a hidden Markov Random Field (hMRF), assigning a hidden state to each node (location), with the state assignment guided by the prior information encoded in the relational graph. Nodes that share the same state in the hMRF model will have the same causal graph. State assignment can thus shed light on unknown relations among locations (e.g. teleconnection). While the model has been described in terms of hard location partitioning to facilitate its exposition, in fact a soft partitioning is maintained throughout learning. This leads to a form of transfer learning, which makes our model applicable even in situations where partitioning the locations might not seem appropriate. We first validate the effectiveness of our methodology on synthetic datasets, and then apply it to actual climate measurement data. The experimental results show that our approach offers a useful alternative to the simulation-based approach for climate modeling and attribution, and has the capability to provide valuable scientific insights from a new perspective.

  16. LLE Review 83, Quarterly Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2000-12-01

    This volume of the LLE Review, covering April-June 2000, features an article by F. J. Marshall, T. Ohki, D. McInnis, Z. Ninkov, and J. Carbone, who detail the conversion of the OMEGA time-integrated x-ray diagnostics to electronic readout using direct-detection x-ray cameras [charge-injection devices (CID's)]. Pinhole and x-ray microscope images are shown along with inferred calibration measurements of the CID cameras. Currently, the same cameras are being used to obtain x-ray spectra in a TIM-based spectrometer, extending their use to all time-integrated imaging and spectroscopic x-ray instruments used on OMEGA. Additional highlights of the research presented in this issue are:more » (1) V. A. Smalyuk, B. Yaakobi, F. J. Marshall, and D. D. Meyerhofer investigate the spatial structure of the temperature and density of target-shell plasmas at peak compression (stagnation). This is accomplished by examining the energy dependence of the x-ray emission using narrow-band x-ray filters and the known absorption properties of the shell dopant (Ti). (2) F. Sequin, C. K. Ll, D. G. Hicks, J. A. Frenje, K. M. Green, R. D. Petrasso, J. M. Soures, V. Yu. Glebov, C. Stoeckl, P. B. Radha, D. D. Meyerhofer, S. Roberts, C. Sorce, T. C. Sangster, M. D. Cable, S. Padalino, and K. Fletcher detail the physics and instrumentation used to obtain and interpret secondary D-{sup 3}He proton spectra from current gas-filled-target and future cryogenic-target experiments. Through a novel extension of existing charged-particle detection techniques with track detectors, the authors demonstrate the ability to obtain secondary proton spectra with increased sensitivity. (3) M. Guardelben, L. Ning, N. Jain, D. Battaglia, and K. Marshall compare the utility of a novel liquid-crystal-based, point-diffraction interferometer (LCPDI) with the commercial standard phase-shifting interferometer and conclude that the LCPDI is a viable low-cost alternative. (4) A. B. Shorey, S. D. Jacobs, W. I. Kordonski, and R. F. Gans detail the mechanisms of glass polishing using the magnetorheological finishing (MRF) technique currently being studied in the Center for Optics Manufacturing (COM). Material-removal experiments show that the nanohardness of carbonyl iron (CI) is important in MRF with nonaqueous MR fluids with no nonmagnetic abrasives, but is relatively unimportant in aqueous MR fluids and/or when nonmagnetic abrasives are present.« less

  17. Effects of increasing and decreasing physiological arousal on anticipation timing performance during competition and practice.

    PubMed

    Duncan, Michael J; Smith, Mike; Bryant, Elizabeth; Eyre, Emma; Cook, Kathryn; Hankey, Joanne; Tallis, Jason; Clarke, Neil; Jones, Marc V

    2016-01-01

    The aim of this study was to investigate if the effects of changes in physiological arousal on timing performance can be accurately predicted by the catastrophe model. Eighteen young adults (8 males, 10 females) volunteered to participate in the study following ethical approval. After familiarisation, coincidence anticipation was measured using the Bassin Anticipation Timer under four incremental exercise conditions: Increasing exercise intensity and low cognitive anxiety, increasing exercise intensity and high cognitive anxiety, decreasing exercise intensity and low cognitive anxiety and decreasing exercise intensity and high cognitive anxiety. Incremental exercise was performed on a treadmill at intensities of 30%, 50%, 70% and 90% heart rate reserve (HRR) respectively. Ratings of cognitive anxiety were taken at each intensity using the Mental Readiness Form 3 (MRF3) followed by performance of coincidence anticipation trials at speeds of 3 and 8 mph. Results indicated significant condition × intensity interactions for absolute error (AE; p = .0001) and MRF cognitive anxiety intensity scores (p = .05). Post hoc analysis indicated that there were no statistically significant differences in AE across exercise intensities in low-cognitive anxiety conditions. In high-cognitive anxiety conditions, timing performance AE was significantly poorer and cognitive anxiety higher at 90% HRR, compared to the other exercise intensities. There was no difference in timing responses at 90% HRR during competitive trials, irrespective of whether exercise intensity was increasing or decreasing. This study suggests that anticipation timing performance is negatively affected when physiological arousal and cognitive anxiety are high.

  18. Non-invasive ventilation during cycle exercise training in patients with chronic respiratory failure on long-term ventilatory support: A randomized controlled trial.

    PubMed

    Vitacca, Michele; Kaymaz, Dicle; Lanini, Barbara; Vagheggini, Guido; Ergün, Pınar; Gigliotti, Francesco; Ambrosino, Nicolino; Paneroni, Mara

    2018-02-01

    The role of non-invasive ventilation (NIV) during exercise training (ET) in patients with chronic respiratory failure (CRF) is still unclear. The aim of this study was to test whether NIV during ET had an additional effect in increasing the 6-min walking distance (6MWD) and cycle endurance time compared with ET alone. All patients underwent 20 sessions of cycle training over 3 weeks and were randomly assigned to ET with NIV or ET alone. Outcome measures were 6MWD (primary outcome), incremental and endurance cycle ergometer exercise time, respiratory muscle function, quality of life by the Maugeri Respiratory Failure questionnaire (MRF-28), dyspnoea (Medical Research Council scale) and leg fatigue at rest. Forty-two patients completed the study. Following training, no significant difference in 6MWD changes were found between groups. Improvement in endurance time was significantly greater in the NIV group compared with the non-NIV training group (754 ± 973 vs 51 ± 406 s, P = 0.0271); dyspnoea improved in both groups, while respiratory muscle function and leg fatigue improved only in the NIV ET group. MRF-28 improved only in the group training without NIV. In CRF patients on long-term NIV and long-term oxygen therapy (LTOT), the addition of NIV to ET sessions resulted in an improvement in endurance time, but not in 6MWD. © 2017 Asian Pacific Society of Respirology.

  19. [Analysis of stress in periodontal ligament of the maxillary first molar on distal movement by nonlinear finite element method].

    PubMed

    Dong, Jing; Zhang, Zhe-chen; Zhou, Guo-liang

    2015-06-01

    To analyze the stress distribution in periodontal ligament of maxillary first molar during distal movement with nonlinear finite element analysis, and to compare it with the result of linear finite element analysis, consequently to provide biomechanical evidence for clinical application. The 3-D finite element model including a maxillary first molar, periodontal ligament, alveolar bone, cancellous bone, cortical bone and a buccal tube was built up by using Mimics, Geomagic, ProE and Ansys Workbench. The material of periodontal ligament was set as nonlinear material and linear elastic material, respectively. Loads of different combinations were applied to simulate the clinical situation of distalizing the maxillary first molar. There were channels of low stress in peak distribution of Von Mises equivalent stress and compressive stress of periodontal ligament in nonlinear finite element model. The peak of Von Mises equivalent stress was lower when it was satisfied that Mt/F minus Mr/F approximately equals 2. The peak of compressive stress was lower when it was satisfied that Mt/F was approximately equal to Mr/F. The relative stress of periodontal ligament was higher and violent in linear finite element model and there were no channels of low stress in peak distribution. There are channels in which stress of periodontal ligament is lower. The condition of low stress should be satisfied by applied M/F during the course of distalizing the maxillary first molar.

  20. The improvement of laser induced damage resistance of optical workpiece surface by hydrodynamic effect polishing

    NASA Astrophysics Data System (ADS)

    Peng, Wenqiang; Guan, Chaoliang; Li, Shengyi; Wang, Zhuo

    2016-10-01

    Surface and subsurface damage in optical element will greatly decrease the laser induced damage threshold (LIDT) in the intense laser optical system. Processing damage on the workpiece surface can be inevitably caused when the material is removed in brittle or plastic mode. As a non-contact polishing technology, hydrodynamic effect polishing (HEP) shows very good performance on generating an ultra-smooth surface without damage. The material is removed by chemisorption between nanoparticle and workpiece surface in the elastic mode in HEP. The subsurface damage and surface scratches can be effectively removed after the polishing process. Meanwhile ultra-smooth surface with atomic level surface roughness can be achieved. To investigate the improvement of LIDT of optical workpiece, polishing experiment was conducted on a magnetorheological finishing (MRF) silica glass sample. AFM measurement results show that all the MRF directional plastic marks have been removed clearly and the root-mean-square (rms) surface roughness has decreased from 0.673nm to 0.177nm after HEP process. Laser induced damage experiment was conducted with laser pulse of 1064nm wavelength and 10ns time width. Compared with the original state, the LEDT of the silica glass sample polished by HEP has increased from 29.78J/cm2 to 45.47J/cm2. It demonstrates that LIDT of optical element treated by HEP can be greatly improved for ultra low surface roughness and nearly defect-free surface/subsurface.

  1. Skeletal muscle hypertrophy and regeneration: interplay between the myogenic regulatory factors (MRFs) and insulin-like growth factors (IGFs) pathways.

    PubMed

    Zanou, Nadège; Gailly, Philippe

    2013-11-01

    Adult skeletal muscle can regenerate in response to muscle damage. This ability is conferred by the presence of myogenic stem cells called satellite cells. In response to stimuli such as injury or exercise, these cells become activated and express myogenic regulatory factors (MRFs), i.e., transcription factors of the myogenic lineage including Myf5, MyoD, myogenin, and Mrf4 to proliferate and differentiate into myofibers. The MRF family of proteins controls the transcription of important muscle-specific proteins such as myosin heavy chain and muscle creatine kinase. Different growth factors are secreted during muscle repair among which insulin-like growth factors (IGFs) are the only ones that promote both muscle cell proliferation and differentiation and that play a key role in muscle regeneration and hypertrophy. Different isoforms of IGFs are expressed during muscle repair: IGF-IEa, IGF-IEb, or IGF-IEc (also known as mechano growth factor, MGF) and IGF-II. MGF is expressed first and is observed in satellite cells and in proliferating myoblasts whereas IGF-Ia and IGF-II expression occurs at the state of muscle fiber formation. Interestingly, several studies report the induction of MRFs in response to IGFs stimulation. Inversely, IGFs expression may also be regulated by MRFs. Various mechanisms are proposed to support these interactions. In this review, we describe the general process of muscle hypertrophy and regeneration and decipher the interactions between the two groups of factors involved in the process.

  2. Greenhouse gas footprint and the carbon flow associated with different solid waste management strategy for urban metabolism in Bangladesh.

    PubMed

    Islam, K M Nazmul

    2017-02-15

    Greenhouse gas (GHG) emissions from municipal solid waste (MSW) and associated climate change consequences are gripping attention globally, while MSW management as a vital subsystem of urban metabolism significantly influences the urban carbon cycles. This study evaluates the GHG emissions and carbon flow of existing and proposed MSW management in Bangladesh through scenario analysis, including landfill with landfill gas (LFG) recovery, waste to energy (WtE), and material recovery facility (MRF). The analysis indicates that, scenario H 2 and H 5 emitted net GHGs -152.20kg CO 2 eq. and -140.32kg CO 2 eq., respectively, in comparison with 420.88kg CO 2 eq. of scenario H 1 for managing per ton of wastes during the reference year 2015. The annual horizontal carbon flux of the waste input was 319Gg and 158Gg during 2015 in Dhaka and Chittagong, respectively. An integrated strategy of managing the wastes in the urban areas of Bangladesh involving WtE incineration plant and LFG recovery to generate electricity as well as MRF could reverse back 209.46Gg carbon and 422.29Gg carbon to the Chittagong and Dhaka urban system, respectively. This study provides valuable insights for the MSW policy framework and revamp of existing MSW management practices with regards to reduction of GHGs emissions from the waste sector in Bangladesh. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Multimodal fusion of polynomial classifiers for automatic person recgonition

    NASA Astrophysics Data System (ADS)

    Broun, Charles C.; Zhang, Xiaozheng

    2001-03-01

    With the prevalence of the information age, privacy and personalization are forefront in today's society. As such, biometrics are viewed as essential components of current evolving technological systems. Consumers demand unobtrusive and non-invasive approaches. In our previous work, we have demonstrated a speaker verification system that meets these criteria. However, there are additional constraints for fielded systems. The required recognition transactions are often performed in adverse environments and across diverse populations, necessitating robust solutions. There are two significant problem areas in current generation speaker verification systems. The first is the difficulty in acquiring clean audio signals in all environments without encumbering the user with a head- mounted close-talking microphone. Second, unimodal biometric systems do not work with a significant percentage of the population. To combat these issues, multimodal techniques are being investigated to improve system robustness to environmental conditions, as well as improve overall accuracy across the population. We propose a multi modal approach that builds on our current state-of-the-art speaker verification technology. In order to maintain the transparent nature of the speech interface, we focus on optical sensing technology to provide the additional modality-giving us an audio-visual person recognition system. For the audio domain, we use our existing speaker verification system. For the visual domain, we focus on lip motion. This is chosen, rather than static face or iris recognition, because it provides dynamic information about the individual. In addition, the lip dynamics can aid speech recognition to provide liveness testing. The visual processing method makes use of both color and edge information, combined within Markov random field MRF framework, to localize the lips. Geometric features are extracted and input to a polynomial classifier for the person recognition process. A late integration approach, based on a probabilistic model, is employed to combine the two modalities. The system is tested on the XM2VTS database combined with AWGN in the audio domain over a range of signal-to-noise ratios.

  4. Endoluminal surface registration for CT colonography using haustral fold matching☆

    PubMed Central

    Hampshire, Thomas; Roth, Holger R.; Helbren, Emma; Plumb, Andrew; Boone, Darren; Slabaugh, Greg; Halligan, Steve; Hawkes, David J.

    2013-01-01

    Computed Tomographic (CT) colonography is a technique used for the detection of bowel cancer or potentially precancerous polyps. The procedure is performed routinely with the patient both prone and supine to differentiate fixed colonic pathology from mobile faecal residue. Matching corresponding locations is difficult and time consuming for radiologists due to colonic deformations that occur during patient repositioning. We propose a novel method to establish correspondence between the two acquisitions automatically. The problem is first simplified by detecting haustral folds using a graph cut method applied to a curvature-based metric applied to a surface mesh generated from segmentation of the colonic lumen. A virtual camera is used to create a set of images that provide a metric for matching pairs of folds between the prone and supine acquisitions. Image patches are generated at the fold positions using depth map renderings of the endoluminal surface and optimised by performing a virtual camera registration over a restricted set of degrees of freedom. The intensity difference between image pairs, along with additional neighbourhood information to enforce geometric constraints over a 2D parameterisation of the 3D space, are used as unary and pair-wise costs respectively, and included in a Markov Random Field (MRF) model to estimate the maximum a posteriori fold labelling assignment. The method achieved fold matching accuracy of 96.0% and 96.1% in patient cases with and without local colonic collapse. Moreover, it improved upon an existing surface-based registration algorithm by providing an initialisation. The set of landmark correspondences is used to non-rigidly transform a 2D source image derived from a conformal mapping process on the 3D endoluminal surface mesh. This achieves full surface correspondence between prone and supine views and can be further refined with an intensity based registration showing a statistically significant improvement (p < 0.001), and decreasing mean error from 11.9 mm to 6.0 mm measured at 1743 reference points from 17 CTC datasets. PMID:23845949

  5. Photogrammetric DSM denoising

    NASA Astrophysics Data System (ADS)

    Nex, F.; Gerke, M.

    2014-08-01

    Image matching techniques can nowadays provide very dense point clouds and they are often considered a valid alternative to LiDAR point cloud. However, photogrammetric point clouds are often characterized by a higher level of random noise compared to LiDAR data and by the presence of large outliers. These problems constitute a limitation in the practical use of photogrammetric data for many applications but an effective way to enhance the generated point cloud has still to be found. In this paper we concentrate on the restoration of Digital Surface Models (DSM), computed from dense image matching point clouds. A photogrammetric DSM, i.e. a 2.5D representation of the surface is still one of the major products derived from point clouds. Four different algorithms devoted to DSM denoising are presented: a standard median filter approach, a bilateral filter, a variational approach (TGV: Total Generalized Variation), as well as a newly developed algorithm, which is embedded into a Markov Random Field (MRF) framework and optimized through graph-cuts. The ability of each algorithm to recover the original DSM has been quantitatively evaluated. To do that, a synthetic DSM has been generated and different typologies of noise have been added to mimic the typical errors of photogrammetric DSMs. The evaluation reveals that standard filters like median and edge preserving smoothing through a bilateral filter approach cannot sufficiently remove typical errors occurring in a photogrammetric DSM. The TGV-based approach much better removes random noise, but large areas with outliers still remain. Our own method which explicitly models the degradation properties of those DSM outperforms the others in all aspects.

  6. An atomic-scale and high efficiency finishing method of zirconia ceramics by using magnetorheological finishing

    NASA Astrophysics Data System (ADS)

    Luo, Hu; Guo, Meijian; Yin, Shaohui; Chen, Fengjun; Huang, Shuai; Lu, Ange; Guo, Yuanfan

    2018-06-01

    Zirconia ceramics is a valuable crucial material for fabricating functional components applied in aerospace, biology, precision machinery, military industry and other fields. However, the properties of its high brittleness and high hardness could seriously reduce its finishing efficiency and surface quality by conventional processing technology. In this work, we present a high efficiency and high-quality finishing process by using magnetorheological finishing (MRF), which employs the permanent magnetic yoke with straight air gap as excitation unit. The sub-nanoscale surface roughness and damage free surface can be obtained after magnetorheological finishing. The XRD results and SEM morphologies confirmed that the mechanical shear removal with ductile modes are the dominant material removal mechanism for the magnetorheological finishing of zirconia ceramic. With the developed experimental apparatus, the effects of workpiece speed, trough speed and work gap on material removal rate and surface roughness were systematically investigated. Zirconia ceramics finished to ultra-smooth surface with surface roughness less than Ra 1 nm was repeatedly achieved during the parametric experiments. Additionally, the highest material removal rate exceeded 1 mg/min when using diamond as an abrasive particle. Magnetorheological finishing promises to be an adaptable and efficient method for zirconia ceramics finishing.

  7. Graph cuts for curvature based image denoising.

    PubMed

    Bae, Egil; Shi, Juan; Tai, Xue-Cheng

    2011-05-01

    Minimization of total variation (TV) is a well-known method for image denoising. Recently, the relationship between TV minimization problems and binary MRF models has been much explored. This has resulted in some very efficient combinatorial optimization algorithms for the TV minimization problem in the discrete setting via graph cuts. To overcome limitations, such as staircasing effects, of the relatively simple TV model, variational models based upon higher order derivatives have been proposed. The Euler's elastica model is one such higher order model of central importance, which minimizes the curvature of all level lines in the image. Traditional numerical methods for minimizing the energy in such higher order models are complicated and computationally complex. In this paper, we will present an efficient minimization algorithm based upon graph cuts for minimizing the energy in the Euler's elastica model, by simplifying the problem to that of solving a sequence of easy graph representable problems. This sequence has connections to the gradient flow of the energy function, and converges to a minimum point. The numerical experiments show that our new approach is more effective in maintaining smooth visual results while preserving sharp features better than TV models.

  8. Random walks based multi-image segmentation: Quasiconvexity results and GPU-based solutions

    PubMed Central

    Collins, Maxwell D.; Xu, Jia; Grady, Leo; Singh, Vikas

    2012-01-01

    We recast the Cosegmentation problem using Random Walker (RW) segmentation as the core segmentation algorithm, rather than the traditional MRF approach adopted in the literature so far. Our formulation is similar to previous approaches in the sense that it also permits Cosegmentation constraints (which impose consistency between the extracted objects from ≥ 2 images) using a nonparametric model. However, several previous nonparametric cosegmentation methods have the serious limitation that they require adding one auxiliary node (or variable) for every pair of pixels that are similar (which effectively limits such methods to describing only those objects that have high entropy appearance models). In contrast, our proposed model completely eliminates this restrictive dependence –the resulting improvements are quite significant. Our model further allows an optimization scheme exploiting quasiconvexity for model-based segmentation with no dependence on the scale of the segmented foreground. Finally, we show that the optimization can be expressed in terms of linear algebra operations on sparse matrices which are easily mapped to GPU architecture. We provide a highly specialized CUDA library for Cosegmentation exploiting this special structure, and report experimental results showing these advantages. PMID:25278742

  9. Nanoindentation hardness of particles used in magnetorheological finishing (MRF).

    PubMed

    Shorey, A B; Kwong, K M; Johnson, K M; Jacobs, S D

    2000-10-01

    Knowledge of the hardness of abrasive particles that are used in polishing is a key to the fundamental understanding of the mechanisms of material removal. The magnetorheological-finishing process uses both magnetic and nonmagnetic abrasive particles during polishing. The nanohardnesses of the micrometer-sized magnetic carbonyl iron and nonmagnetic abrasive particles have been measured successfully by use of novel, to our knowledge, sample-preparation and nanoindentation techniques. Some of the results reported compare favorably with existing microhardness data found in the literature, whereas other results are new.

  10. Removal of Lattice Imperfections that Impact the Optical Quality of Ti:Sapphire using Advanced Magnetorheological Finishing Techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Menapace, J A; Schaffers, K I; Bayramian, A J

    2008-02-26

    Advanced magnetorheological finishing (MRF) techniques have been applied to Ti:sapphire crystals to compensate for sub-millimeter lattice distortions that occur during the crystal growing process. Precise optical corrections are made by imprinting topographical structure onto the crystal surfaces to cancel out the effects of the lattice distortion in the transmitted wavefront. This novel technique significantly improves the optical quality for crystals of this type and sets the stage for increasing the availability of high-quality large-aperture sapphire and Ti:sapphire optics in critical applications.

  11. Recycling of paper: accounting of greenhouse gases and global warming contributions.

    PubMed

    Merrild, Hanna; Damgaard, Anders; Christensen, Thomas H

    2009-11-01

    Greenhouse gas (GHG) emissions have been established for recycling of paper waste with focus on a material recovery facility (MRF). The MRF upgrades the paper and cardboard waste before it is delivered to other industries where new paper or board products are produced. The accounting showed that the GHG contributions from the upstream activities and operational activities, with global warming factors (GWFs) of respectively 1 to 29 and 3 to 9 kg CO(2)-eq. tonne(- 1) paper waste, were small in comparison wih the downstream activities. The GHG contributions from the downstream reprocessing of the paper waste ranged from approximately 490 to 1460 kg CO(2)-eq. tonne( -1) of paper waste. The system may be expanded to include crediting of avoided virgin paper production which would result in GHG contributions from -1270 to 390 kg CO(2)-eq. tonne(- 1) paper waste. It may also be assumed that the wood not used for virgin paper production instead is used for production of energy that in turn is assumed to substitute for fossil fuel energy. This would result in GHG contributions from -1850 to -4400 kg CO(2)-eq. tonne(- 1) of paper waste. These system expansions reveal very large GHG savings, suggesting that the indirect upstream and operational GHG contributions are negligible in comparison with the indirect downstream emissions. However, the data for reprocessing of paper waste and the data for virgin paper production are highly variable. These differences are mainly related to different energy sources for the mills, both in regards to energy form (heat or electricity) and fuel (biomass or fossil fuels).

  12. 3D Markov Process for Traffic Flow Prediction in Real-Time.

    PubMed

    Ko, Eunjeong; Ahn, Jinyoung; Kim, Eun Yi

    2016-01-25

    Recently, the correct estimation of traffic flow has begun to be considered an essential component in intelligent transportation systems. In this paper, a new statistical method to predict traffic flows using time series analyses and geometric correlations is proposed. The novelty of the proposed method is two-fold: (1) a 3D heat map is designed to describe the traffic conditions between roads, which can effectively represent the correlations between spatially- and temporally-adjacent traffic states; and (2) the relationship between the adjacent roads on the spatiotemporal domain is represented by cliques in MRF and the clique parameters are obtained by example-based learning. In order to assess the validity of the proposed method, it is tested using data from expressway traffic that are provided by the Korean Expressway Corporation, and the performance of the proposed method is compared with existing approaches. The results demonstrate that the proposed method can predict traffic conditions with an accuracy of 85%, and this accuracy can be improved further.

  13. 3D Markov Process for Traffic Flow Prediction in Real-Time

    PubMed Central

    Ko, Eunjeong; Ahn, Jinyoung; Kim, Eun Yi

    2016-01-01

    Recently, the correct estimation of traffic flow has begun to be considered an essential component in intelligent transportation systems. In this paper, a new statistical method to predict traffic flows using time series analyses and geometric correlations is proposed. The novelty of the proposed method is two-fold: (1) a 3D heat map is designed to describe the traffic conditions between roads, which can effectively represent the correlations between spatially- and temporally-adjacent traffic states; and (2) the relationship between the adjacent roads on the spatiotemporal domain is represented by cliques in MRF and the clique parameters are obtained by example-based learning. In order to assess the validity of the proposed method, it is tested using data from expressway traffic that are provided by the Korean Expressway Corporation, and the performance of the proposed method is compared with existing approaches. The results demonstrate that the proposed method can predict traffic conditions with an accuracy of 85%, and this accuracy can be improved further. PMID:26821025

  14. Characterization of the Novel DNA-Binding Activity of p270, a hSWI/SNF Protein Frequently Downregulated in Breast Cancer

    DTIC Science & Technology

    2005-07-01

    M62324), MRF2 (M73837), RRPe (P24374), RBP1L1 (NP 057458), Jumonji (92833), SMoX (L25270), SMCY (Nok004644), RBP2 (S66431), and PLU-1 (CAB43532). Aoic...associated with specific aspects of cell cycle 2 regulation. Expression of the cell cycle inhibitor p21 CIP1/WAF1 has been repeatedly identified as 3 BRG1...Histone H1, Ascorbic acid, P-glycerol phosphate, and protease inhibitors were obtained from 6 Sigma Chemical Co. (St. Louis, MO), and G418 from Gibco

  15. Simulation of 1986 South China Sea Monsoon with a Regional Climate Model

    NASA Technical Reports Server (NTRS)

    Tao, W. -K.; Lau, W. K.-M.; Jia, Y.; Juang, H.; Wetzel, P.; Qian, J.; Chen, C.

    1999-01-01

    A Regional Land-Atmosphere Climate Simulation System (RELACS) project is being developed at NASA Goddard Space Flight Center. One of the major goals of RELACS is to use a regional scale model with improved physical processes and in particular land-related processes, to understand the role of the land surface and its interaction with convection and radiation as well as the water/energy cycles in the IndoChina/South China Sea (SCS) region. The Penn State/NCAR MM5 atmospheric modeling system, a state of the art atmospheric numerical model designed to simulate regional weather and climate, has been successfully coupled to the Parameterization for Land-Atmosphere-Cloud Exchange (PLACE) land surface model. The original MM5 model (without PLACE) includes the option for either a simple slab soil model or a five-layer soil model (MRF) in which the soil moisture availability evolves over time. However, the MM5 soil models do not include the effects of vegetation, and thus important physical processes such as evapotranspiration and interception are precluded. The PLACE model incorporates vegetation type and has been shown in international comparisons to accurately predict evapotranspiration and runoff over a wide variety of land surfaces. The coupling of MM5 and PLACE creates a numerical modeling system with the potential to more realistically simulate atmosphere and land surface processes including land-sea interaction, regional circulations such as monsoons, and flash flood events. In addition, the Penn State/NCAR MM5 atmospheric modeling system has been: (1) coupled to the Goddard Ice Microphysical scheme; (2) coupled to a turbulent kinetic energy (TKE) scheme; (3) modified to ensure cloud budget balance; and (4) incorporated initialization with the Goddard EOS data sets at NASA/Goddard Laboratory for Atmospheres. The improved MM5 with two nested domains (60 and 20 km horizontal resolution) was used to simulate convective activity over IndoChina and the South China Sea, during the monsoon season, from May 6 to May 20, 1986. The model results captured several dominant observed features, such as twin cyclones, a depression system over the Bay of Bengal, strong south-westerly winds over IndoChina before and during the on-set of convection over the SCS, and a vortex over the SCS. Two additional MM5 runs with different land process models, Blackadar and MRF, were performed, and their results are compared to the run with PLACE. The preliminary results indicate that the MM5 results using PLACE and Blackadar are in very good agreement, but the results using MRF do not contain the south-westerly wind over IndoChina prior to the on-set of convection over the SCS.

  16. Selective Intra-procedural AAA sac Embolization During EVAR Reduces the Rate of Type II Endoleak.

    PubMed

    Mascoli, C; Freyrie, A; Gargiulo, M; Gallitto, E; Pini, R; Faggioli, G; Serra, C; De Molo, C; Stella, A

    2016-05-01

    The pre-treatment presence of at least six efferent patent vessels (EPV) from the AAA sac and/or AAA thrombus volume ratio (VR%) <40% are considered to be positive predictive factors for persistent type II endoleak (ELIIp). The aim of the present study was to evaluate the effectiveness of sac embolization during EVAR in patients with pre-operative morphological risk factors (p-MRF) for ELIIp. Patients undergoing EVAR and intra-procedural AAA sac embolization (Group A, 2012-2013) were retrospectively selected and compared with a control group of patients with the same p-MRF, who underwent EVAR without intra-procedural sac embolization (Group B, 2008-2010). The presence of ELIIp was evaluated by duplex ultrasound at 0 and 6 months, and by contrast enhanced ultrasound at 12 months. The association between AAA diameter, age, COPD, smoking, anticoagulant therapy, and AAA sac embolization with ELIIp was evaluated using multiple logistic regression. The primary endpoint was the effectiveness of the intra-procedural AAA sac embolization for ELIIp prevention. Secondary endpoints were AAA sac evolution and freedom from ELIIp and embolization related re-interventions at 6-12 months. Seventy patients were analyzed: 26 Group A and 44 Group B; the groups were homogeneous for clinical/morphological characteristics. In Group A the median number of coils positioned in AAA sac was 4.1 (IQR 1). There were no complications related to the embolization procedures. A significantly lower number of ELIIp was detected in Group A than in Group B (8/26 vs. 33/44, respectively, p < .001) at discharge, and this was confirmed at 6-12 months (7/26 vs. 30/44 respectively, p = .001, and 5/25 vs. 32/44, respectively, p < .001). On multivariate analysis, intra-procedural AAA sac embolization was the only factor independently associated with freedom from ELIIp at 6 (OR 0.196, 95% CI 0.06-0.63; p = .007) and 12 months (OR 0.098, 95% CI 0.02-0.35; p < .001). No differences in median AAA sac diameter shrinkage were detected between the two groups at 6-12 months (p = .42 and p = .58, respectively). Freedom from ELIIp related and embolization related re-interventions was 100% in both groups, at 6 and 12 months. Selective intra-procedural AAA sac embolization in patients with p-MRF is safe and could be an effective method to reduce ELIIp. Further studies are mandatory to support these results at long-term follow up. Copyright © 2015 European Society for Vascular Surgery. Published by Elsevier Ltd. All rights reserved.

  17. Precision cylinder optics for higher requirements; Techical Digest

    NASA Astrophysics Data System (ADS)

    Bergner, Dieter; Falkenstorfer, Oliver; Malina, Dirk; Roder, Janett; Schreiner, Roland

    2005-05-01

    JENOPTIK Laser, Optik, Systeme GmbH (JO L.O.S.) enlarged its product range in the field of cylinder lenses and crystal optics. These components are used in optical measuring technology and in various laser applications. The new cylinder components are a result of the state of the art manufacturing technology. For applications, where the quality of standard cylinders with a surface deviation of PV Lambda/2 to Lambda/5 @632,8nm and tested with a reference glass only is not sufficient, the surface shape can be improved to PV Lambda/10 @632,8nm. The presentation deals with Jenoptik's current state to produce cylinder optics, to reduce remaining surface shape deviations of semi-finished cylinder optics and to test these elements. Based on in-house developed machinery, cylinders are manufactured by means of blocking or drum. The required surface quality in the range of PV Lambda/10 @632,8nm for cylindrical lenses can be reached by computer aided correction using mrf-polishing techniques in connection with an interferometer test set-up. Therefore, the polishing machine is equipped with an additional axis of movement. The interferometer measurement of the residual surface deviation is done by Computer Generated Holograms (CGH), which are designed and manufactured in-house. CGHs from JO L.O.S. for testing cylindrical lenses can be custom designed starting with F#1.0. They are related to the typical rectangular geometry of cylinder components. Using these measurement techniques, testing is no longer the limiting factor in achieving high quality cylindrical surfaces. JO L.O.S. has all the capabilities of effective manufacturing, testing and correcting cylindrical lenses. Latest results achieved in series production are shown.

  18. Precision cylinder optics for higher requirements; Techical Digest

    NASA Astrophysics Data System (ADS)

    Bergner, Dieter; Falkenstorfer, Oliver; Malina, Dirk; Roder, Janett; Schreiner, Roland

    2005-05-01

    JENOPTIK Laser, Optik, Systeme GmbH (JO L.O.S.) enlarged its product range in the field of cylinder lenses and crystal optics. These components are used in optical measuring technology and in various laser applications. The new cylinder components are a result of the state of the art manufacturing technology. For applications, where the quality of standard cylinders with a surface deviation of PV~Lambda/2 to ~Lambda/5 @632,8nm and tested with a reference glass only is not sufficient, the surface shape can be improved to PV Lambda/10 @632,8nm. The presentation deals with Jenoptik's current state to produce cylinder optics, to reduce remaining surface shape deviations of semi-finished cylinder optics and to test these elements. Based on in-house developed machinery, cylinders are manufactured by means of blocking or drum. The required surface quality in the range of PV~Lambda/10 @632,8nm for cylindrical lenses can be reached by computer aided correction using mrf-polishing techniques in connection with an interferometer test set-up. Therefore, the polishing machine is equipped with an additional axis of movement. The interferometer measurement of the residual surface deviation is done by Computer Generated Holograms (CGH), which are designed and manufactured in-house. CGHs from JO L.O.S. for testing cylindrical lenses can be custom designed starting with F#1.0. They are related to the typical rectangular geometry of cylinder components. Using these measurement techniques, testing is no longer the limiting factor in achieving high quality cylindrical surfaces. JO L.O.S. has all the capabilities of effective manufacturing, testing and correcting cylindrical lenses. Latest results achieved in series production are shown.

  19. Magnitude and Rupture Area Scaling Relationships of Seismicity at The Northwest Geysers EGS Demonstration Project

    NASA Astrophysics Data System (ADS)

    Dreger, D. S.; Boyd, O. S.; Taira, T.; Gritto, R.

    2017-12-01

    Enhanced Geothermal System (EGS) resource development requires knowledge of subsurface physical parameters to quantify the evolution of fracture networks. Spatio-temporal source properties, including source dimension, rupture area, slip, rupture speed, and slip velocity of induced seismicity are of interest at The Geysers geothermal field, northern California to map the coseismic facture density of the EGS swarm. In this investigation we extend our previous finite-source analysis of selected M>4 earthquakes to examine source properties of smaller magnitude seismicity located in the Northwest Geysers Enhanced Geothermal System (EGS) demonstration project. Moment rate time histories of the source are found using empirical Green's function (eGf) deconvolution using the method of Mori (1993) as implemented by Dreger et al. (2007). The moment rate functions (MRFs) from data recorded using the Lawrence Berkeley National Laboratory (LBNL) short-period geophone network are inverted for finite-source parameters including the spatial distribution of fault slip, rupture velocity, and the orientation of the causative fault plane. The results show complexity in the MRF for the studied earthquakes. Thus far the estimated rupture area and the magnitude-area trend of the smaller magnitude Geysers seismicity is found to agree with the empirical relationships of Wells and Coppersmith (1994) and Leonard (2010), which were developed for much larger M>5.5 earthquakes worldwide indicating self-similar behavior extending to M2 earthquakes. We will present finite-source inversion results of the micro-earthquakes, attempting to extend the analysis to sub Mw, and demonstrate their magnitude-area scaling. The extension of the scaling laws will then enable the mapping of coseismic fracture density of the EGS swarm in the Northwest Geysers based on catalog moment magnitude estimates.

  20. A unified EM approach to bladder wall segmentation with coupled level-set constraints

    PubMed Central

    Han, Hao; Li, Lihong; Duan, Chaijie; Zhang, Hao; Zhao, Yang; Liang, Zhengrong

    2013-01-01

    Magnetic resonance (MR) imaging-based virtual cystoscopy (VCys), as a non-invasive, safe and cost-effective technique, has shown its promising virtue for early diagnosis and recurrence management of bladder carcinoma. One primary goal of VCys is to identify bladder lesions with abnormal bladder wall thickness, and consequently a precise segmentation of the inner and outer borders of the wall is required. In this paper, we propose a unified expectation-maximization (EM) approach to the maximum-a-posteriori (MAP) solution of bladder wall segmentation, by integrating a novel adaptive Markov random field (AMRF) model and the coupled level-set (CLS) information into the prior term. The proposed approach is applied to the segmentation of T1-weighted MR images, where the wall is enhanced while the urine and surrounding soft tissues are suppressed. By introducing scale-adaptive neighborhoods as well as adaptive weights into the conventional MRF model, the AMRF model takes into account the local information more accurately. In order to mitigate the influence of image artifacts adjacent to the bladder wall and to preserve the continuity of the wall surface, we apply geometrical constraints on the wall using our previously developed CLS method. This paper not only evaluates the robustness of the presented approach against the known ground truth of simulated digital phantoms, but further compares its performance with our previous CLS approach via both volunteer and patient studies. Statistical analysis on experts’ scores of the segmented borders from both approaches demonstrates that our new scheme is more effective in extracting the bladder wall. Based on the wall thickness calibrated from the segmented single-layer borders, a three-dimensional virtual bladder model can be constructed and the wall thickness can be mapped on to the model, where the bladder lesions will be eventually detected via experts’ visualization and/or computer-aided detection. PMID:24001932

  1. Automated Detection of Synapses in Serial Section Transmission Electron Microscopy Image Stacks

    PubMed Central

    Kreshuk, Anna; Koethe, Ullrich; Pax, Elizabeth; Bock, Davi D.; Hamprecht, Fred A.

    2014-01-01

    We describe a method for fully automated detection of chemical synapses in serial electron microscopy images with highly anisotropic axial and lateral resolution, such as images taken on transmission electron microscopes. Our pipeline starts from classification of the pixels based on 3D pixel features, which is followed by segmentation with an Ising model MRF and another classification step, based on object-level features. Classifiers are learned on sparse user labels; a fully annotated data subvolume is not required for training. The algorithm was validated on a set of 238 synapses in 20 serial 7197×7351 pixel images (4.5×4.5×45 nm resolution) of mouse visual cortex, manually labeled by three independent human annotators and additionally re-verified by an expert neuroscientist. The error rate of the algorithm (12% false negative, 7% false positive detections) is better than state-of-the-art, even though, unlike the state-of-the-art method, our algorithm does not require a prior segmentation of the image volume into cells. The software is based on the ilastik learning and segmentation toolkit and the vigra image processing library and is freely available on our website, along with the test data and gold standard annotations (http://www.ilastik.org/synapse-detection/sstem). PMID:24516550

  2. Hyper-Spectral Image Analysis With Partially Latent Regression and Spatial Markov Dependencies

    NASA Astrophysics Data System (ADS)

    Deleforge, Antoine; Forbes, Florence; Ba, Sileye; Horaud, Radu

    2015-09-01

    Hyper-spectral data can be analyzed to recover physical properties at large planetary scales. This involves resolving inverse problems which can be addressed within machine learning, with the advantage that, once a relationship between physical parameters and spectra has been established in a data-driven fashion, the learned relationship can be used to estimate physical parameters for new hyper-spectral observations. Within this framework, we propose a spatially-constrained and partially-latent regression method which maps high-dimensional inputs (hyper-spectral images) onto low-dimensional responses (physical parameters such as the local chemical composition of the soil). The proposed regression model comprises two key features. Firstly, it combines a Gaussian mixture of locally-linear mappings (GLLiM) with a partially-latent response model. While the former makes high-dimensional regression tractable, the latter enables to deal with physical parameters that cannot be observed or, more generally, with data contaminated by experimental artifacts that cannot be explained with noise models. Secondly, spatial constraints are introduced in the model through a Markov random field (MRF) prior which provides a spatial structure to the Gaussian-mixture hidden variables. Experiments conducted on a database composed of remotely sensed observations collected from the Mars planet by the Mars Express orbiter demonstrate the effectiveness of the proposed model.

  3. Research on temperature field of KDP crystal under ion beam cleaning.

    PubMed

    Li, Furen; Xie, Xuhui; Tie, Guipeng; Hu, Hao; Zhou, Lin

    2016-06-20

    KH2PO4 (KDP) crystal is a kind of excellent nonlinear optical component used as a laser frequency conversion unit in a high-power laser system. However, KDP crystal has raised a huge challenge in regards to its fabrication for high precision: KDP crystal has special physical and chemical characteristics. Abrasive-free water-dissolution magnetorheological finishing is used in KDP figuring in our lab. But the iron powders of MRF fluid are easily embedded into the soft surface of KDP crystal, which will greatly decrease the laser-induced damage resistance. This paper proposes to utilize ion beam figuring (IBF) technology to figure and clean the surface of a KDP component. Although IBF has many good performances, the thermal effect control is a headachy problem for the KDP process. To solve this problem, we have established its thermal effect models, which are used to calculate a component's surface temperature and thermal gradient in the whole process. By this way, we can understand how to control a temperature map and its gradient in the IBF process. Many experiments have been done to validate and optimize this method. Finally, a KDP component with the size of 200×200×12  mm is successfully processed by this method.

  4. Study on combined polishing process of aspherical aluminum mirrors

    NASA Astrophysics Data System (ADS)

    Deng, Jinqiu; Peng, Xiaoqiang; Hu, Hao; Ge, Kunpeng

    2017-10-01

    The aluminum mirrors are widely used as important optical components in some vital fields such as astronomical instruments or military installations due to the unique advantages of aluminum alloy. In order to simplify the structure of optical system and improve the performance at the same time, it's a tendency that the optics will be designed to aspherical or other freeform shapes. However, the traditional techniques are falling to have adequate abilities to deal with the increasing demands of aluminum optics. For example, the tool marks leaved on the surface from single point diamond turning (SPDT) has obvious adverse effects to optical system. The deterministic and sub-aperture polishing process has showed the potential to fabricate complex shapes over the few years. But it's still recognized as a problem to polish bare aluminum directly because of its soft surface and active chemical characteristics. Therefore, a combination of magnetorheological finishing (MRF) and small tool polishing (STP) is applied to obtain high performance aluminum optics in this paper. A paraboloid aluminum mirror was polished with this proposed method, and the results showed that the surface texture of the sample is restrained from rms 0.409λ (λ=632.8nm) to rms 0.025λ, and the surface roughness is improved from average Ra 6 7nm to Ra 3 4nm.

  5. High strength semi-active energy absorbers using shear- and mixedmode operation at high shear rates

    NASA Astrophysics Data System (ADS)

    Becnel, Andrew C.

    This body of research expands the design space of semi-active energy absorbers for shock isolation and crash safety by investigating and characterizing magnetorheological fluids (MRFs) at high shear rates ( > 25,000 1/s) under shear and mixed-mode operation. Magnetorheological energy absorbers (MREAs) work well as adaptive isolators due to their ability to quickly and controllably adjust to changes in system mass or impact speed while providing fail-safe operation. However, typical linear stroking MREAs using pressure-driven flows have been shown to exhibit reduced controllability as impact speed (shear rate) increases. The objective of this work is to develop MREAs that improve controllability at high shear rates by using pure shear and mixed shear-squeeze modes of operation, and to present the fundamental theory and models of MR fluids under these conditions. A proof of concept instrument verified that the MR effect persists in shear mode devices at shear rates corresponding to low speed impacts. This instrument, a concentric cylinder Searle cell magnetorheometer, was then used to characterize three commercially available MRFs across a wide range of shear rates, applied magnetic fields, and temperatures. Characterization results are presented both as flow curves according to established practice, and as an alternate nondimensionalized analysis based on Mason number. The Mason number plots show that, with appropriate correction coefficients for operating temperature, the varied flow curve data can be collapsed to a single master curve. This work represents the first shear mode characterization of MRFs at shear rates over 10 times greater than available with commercial rheometers, as well as the first validation of Mason number analysis to high shear rate flows in MRFs. Using the results from the magnetorheometer, a full scale rotary vane MREA was developed as part of the Lightweight Magnetorheological Energy Absorber System (LMEAS) for an SH-60 Seahawk helicopter crew seat. Characterization tests were carried out on the LMEAS using a 40 vol% MRF used in the previous magnetorheometer tests. These were analyzed using both flow curves and apparent viscosity vs. Mason number diagrams. The nondimensionalized Mason number analysis resulted in data for all conditions of temperature, fluid composition, and shear rate, to collapse onto a single characteristic or master curve. Significantly, the temperature corrected Mason number results from both the bench top magnetorheometer and full scale rotary vane MREA collapse to the same master curve. This enhances the ability of designers of MRFs and MREAs to safely and effectively apply characterization data collected in low shear rate, controlled temperature environments to operational environments that may be completely different. Finally, the Searle cell magnetorheometer was modified with an enforced eccentricity to work in both squeeze and shear modes simultaneously to achieve so called squeeze strengthening of the working MRF, thereby increasing the apparent yield stress and the specific energy absorption. By squeezing the active MR fluid, particles undergo compression-assisted aggregation into stronger, more robust columns which resist shear better than single chains. A hybrid model describing the squeeze strengthening behavior is developed, and recommendations are made for using squeeze strengthening to improve practical MREA devices.

  6. Differential expression of FGF receptors and of myogenic regulatory factors in primary cultures of satellite cells originating from fast (EDL) and slow (Soleus) twitch rat muscles.

    PubMed

    Martelly, I; Soulet, L; Bonnavaud, S; Cebrian, J; Gautron, J; Barritault, D

    2000-11-01

    In the rat, the fast and slow twitch muscles respectively Extensor digitorum longus (EDL) and Soleus present differential characteristics during regeneration. This suggests that their satellite cells responsible for muscle growth and repair represent distinct cellular populations. We have previously shown that satellite cells dissociated from Soleus and grown in vitro proliferate more readily than those isolated from EDL muscle. Fibroblast growth factors (FGFs) are known as regulators of myoblast proliferation and several studies have revealed a relationship between the response of myoblasts to FGF and the expression of myogenic regulatory factors (MRF) of the MyoD family by myoblasts. Therefore, we presently examined the possibility that the satellite cells isolated from EDL and Soleus muscles differ in the expression of FGF receptors (FGF-R) and of MRF expression. FGF-R1 and -R4 were strongly expressed in proliferating cultures whereas FGF-R2 and R3 were not detected in these cultures. In differentiating cultures, only -R1 was present in EDL satellite cells while FGF-R4 was also still expressed in Soleus cells. Interestingly, the unconventional receptor for FGF called cystein rich FGF receptor (CFR), of yet unknown function, was mainly detected in EDL satellite cell cultures. Soleus and EDL satellite cell cultures also differed in the expression MRFs. These results are consistent with the notion that satellite cells from fast and slow twitch muscles belong to different types of myogenic cells and suggest that satellite cells might play distinct roles in the formation and diversification of fast and slow fibres.

  7. Reverse logistics network for municipal solid waste management: The inclusion of waste pickers as a Brazilian legal requirement.

    PubMed

    Ferri, Giovane Lopes; Chaves, Gisele de Lorena Diniz; Ribeiro, Glaydston Mattos

    2015-06-01

    This study proposes a reverse logistics network involved in the management of municipal solid waste (MSW) to solve the challenge of economically managing these wastes considering the recent legal requirements of the Brazilian Waste Management Policy. The feasibility of the allocation of MSW material recovery facilities (MRF) as intermediate points between the generators of these wastes and the options for reuse and disposal was evaluated, as well as the participation of associations and cooperatives of waste pickers. This network was mathematically modelled and validated through a scenario analysis of the municipality of São Mateus, which makes the location model more complete and applicable in practice. The mathematical model allows the determination of the number of facilities required for the reverse logistics network, their location, capacities, and product flows between these facilities. The fixed costs of installation and operation of the proposed MRF were balanced with the reduction of transport costs, allowing the inclusion of waste pickers to the reverse logistics network. The main contribution of this study lies in the proposition of a reverse logistics network for MSW simultaneously involving legal, environmental, economic and social criteria, which is a very complex goal. This study can guide practices in other countries that have realities similar to those in Brazil of accelerated urbanisation without adequate planning for solid waste management, added to the strong presence of waste pickers that, through the characteristic of social vulnerability, must be included in the system. In addition to the theoretical contribution to the reverse logistics network problem, this study aids in decision-making for public managers who have limited technical and administrative capacities for the management of solid wastes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Long-term changes in tree-ring – climate relationships at Mt. Patscherkofel (Tyrol, Austria) since the mid 1980s

    PubMed Central

    Oberhuber, Walter; Kofler, Werner; Pfeifer, Klaus; Seeber, Andrea; Gruber, Andreas; Wieser, Gerhard

    2011-01-01

    Although growth limitation of trees at Alpine and high-latitude timberlines by prevailing summer temperature is well established, loss of thermal response of radial tree growth during last decades has repeatedly been addressed. We examined long-term variability of climate-growth relationships in ring width chronologies of Stone pine (Pinus cembra L.) by means of moving response functions (MRF). The study area is situated in the timberline ecotone (c. 2000 – 2200 m a.s.l.) on Mt. Patscherkofel (Tyrol, Austria). Five site chronologies were developed within the ecotone with constant sample depth (≥ 19 trees) throughout most of the time period analysed. MRF calculated for the period 1866-1999 and 1901-1999 for c. 200 and c. 100 yr old stands, respectively, revealed that mean July temperature is the major and long-term stable driving force of Pinus cembra radial growth within the timberline ecotone. However, since the mid 1980s, radial growth in timberline and tree line chronologies strikingly diverges from the July temperature trend. This is probably a result of extreme climate events (e.g. low winter precipitation, late frost) and/or increasing drought stress on cambial activity. The latter assumption is supported by a < 10 % increase in annual increments of c. 50 yr old trees at the timberline and at the tree line in 2003 compared to 2002, when extraordinary hot and dry conditions prevailed during summer. Furthermore, especially during the second half of the 20th century, influence of climate variables on radial growth show abrupt fluctuations, which might also be a consequence of climate warming on tree physiology. PMID:21532976

  9. Differential muscle regulatory factor gene expression between larval and adult myogenesis in the frog Xenopus laevis: adult myogenic cell-specific myf5 upregulation and its relation to the notochord suppression of adult muscle differentiation.

    PubMed

    Yamane, Hitomi; Nishikawa, Akio

    2013-08-01

    During Xenopus laevis metamorphosis, larval-to-adult muscle conversion depends on the differential responses of adult and larval myogenic cells to thyroid hormone. Essential differences in cell growth, differentiation, and hormone-dependent life-or-death fate have been reported between cultured larval (tail) and adult (hindlimb) myogenic cells. A previous study revealed that tail notochord cells suppress terminal differentiation in adult (but not larval) myogenic cells. However, little is known about the differences in expression patterns of myogenic regulatory factors (MRF) and the satellite cell marker Pax7 between adult and larval myogenic cells. In the present study, we compared mRNA expression of these factors between the two types. At first, reverse transcription polymerase chain reaction analysis of hindlimb buds showed sequential upregulation of myf5, myogenin, myod, and mrf4 during stages 50-54, when limb buds elongate and muscles begin to form. By contrast, in the tail, there was no such increase during the same period. Secondary, these results were duplicated in vitro: adult myogenic cells upregulated myf5, myod, and pax7 in the early culture period, followed by myogenin upregulation and myotube differentiation, while larval myogenic cells did not upregulate these genes and precociously started myotube differentiation. Thirdly, myf5 upregulation and early-phase proliferation in adult myogenic cells were potently inhibited by the presence of notochord cells, suggesting that notochord cells suppress adult myogenesis through inhibiting the transition from Myf5(-) stem cells to Myf5(+) committed myoblasts. All of the data presented here suggest that myf5 upregulation can be a good criterion for the activation of adult myogenesis during X. laevis metamorphosis.

  10. Characterisation and expression of myogenesis regulatory factors during in vitro myoblast development and in vivo fasting in the gilthead sea bream (Sparus aurata).

    PubMed

    García de la serrana, Daniel; Codina, Marta; Capilla, Encarnación; Jiménez-Amilburu, Vanesa; Navarro, Isabel; Du, Shao-Jun; Johnston, Ian A; Gutiérrez, Joaquim

    2014-01-01

    The aim of this study was to characterise a primary cell culture isolated from fast skeletal muscle of the gilthead sea bream. Gene expression profiles during culture maturation were compared with those obtained from a fasting-refeeding model which is widely used to modulate myogenesis in vivo. Myogenesis is controlled by numerous extracellular signals together with intracellular transcriptional factors whose coordinated expression is critical for the appropriate development of muscle fibres. Full-length cDNAs for the transcription factors Myf5, Mrf4, Pax7 and Sox8 were cloned and sequenced for gilthead sea bream. Pax7, sox8, myod2 and myf5 levels were up-regulated during the proliferating phase of the myogenic cultures coincident with the highest expression of proliferating cell nuclear antigen (PCNA). In contrast, myogenin and mrf4 transcript abundance was highest during the differentiation phase of the culture when myotubes were present, and was correlated with increased myosin heavy chain (mhc) and desmin expression. In vivo, 30days of fasting resulted in muscle fibre atrophy, a reduction in myod2, myf5 and igf1 expression, lower number of Myod-positive cells, and decreased PCNA protein expression, whereas myogenin expression was not significantly affected. Myostatin1 (mstn1) and pax7 expression were up-regulated in fasted relative to well-fed individuals, consistent with a role for Pax7 in the reduction of myogenic cell activity with fasting. The primary cell cultures and fasting-feeding experiments described provide a foundation for the future investigations on the regulation of muscle growth in gilthead sea bream. © 2013.

  11. Proceedings of the Annual U.S. Army Operations Research Symposium (13th) , AORS XIII, Held at Fort Lee, Virginia on 29 October - 1 November 1974, Co- Hosted by Army Logistics Center, Fort Lee, Virginia and Army Quartermaster Center and Fort Lee, Virginia. Volume 1

    DTIC Science & Technology

    1974-11-01

    Challenge to Operations Research" 263 Mr. R. H. Adams Mr..F. P. Paca Mr. A. T. Sylvester "A Combat Rates Logistics Analysis...Staff; if we average a tour of duty in the Pentagon as three years, the Army has had eight successive generations of planners and operators in the...doctrine, originally enunciated for Greece and Turkey, brought the Army full tilt into the Military Assistance Program ( MAP ) as this contributed to

  12. Automated Segmentation of Nuclei in Breast Cancer Histopathology Images.

    PubMed

    Paramanandam, Maqlin; O'Byrne, Michael; Ghosh, Bidisha; Mammen, Joy John; Manipadam, Marie Therese; Thamburaj, Robinson; Pakrashi, Vikram

    2016-01-01

    The process of Nuclei detection in high-grade breast cancer images is quite challenging in the case of image processing techniques due to certain heterogeneous characteristics of cancer nuclei such as enlarged and irregularly shaped nuclei, highly coarse chromatin marginalized to the nuclei periphery and visible nucleoli. Recent reviews state that existing techniques show appreciable segmentation accuracy on breast histopathology images whose nuclei are dispersed and regular in texture and shape; however, typical cancer nuclei are often clustered and have irregular texture and shape properties. This paper proposes a novel segmentation algorithm for detecting individual nuclei from Hematoxylin and Eosin (H&E) stained breast histopathology images. This detection framework estimates a nuclei saliency map using tensor voting followed by boundary extraction of the nuclei on the saliency map using a Loopy Back Propagation (LBP) algorithm on a Markov Random Field (MRF). The method was tested on both whole-slide images and frames of breast cancer histopathology images. Experimental results demonstrate high segmentation performance with efficient precision, recall and dice-coefficient rates, upon testing high-grade breast cancer images containing several thousand nuclei. In addition to the optimal performance on the highly complex images presented in this paper, this method also gave appreciable results in comparison with two recently published methods-Wienert et al. (2012) and Veta et al. (2013), which were tested using their own datasets.

  13. Automated Segmentation of Nuclei in Breast Cancer Histopathology Images

    PubMed Central

    Paramanandam, Maqlin; O’Byrne, Michael; Ghosh, Bidisha; Mammen, Joy John; Manipadam, Marie Therese; Thamburaj, Robinson; Pakrashi, Vikram

    2016-01-01

    The process of Nuclei detection in high-grade breast cancer images is quite challenging in the case of image processing techniques due to certain heterogeneous characteristics of cancer nuclei such as enlarged and irregularly shaped nuclei, highly coarse chromatin marginalized to the nuclei periphery and visible nucleoli. Recent reviews state that existing techniques show appreciable segmentation accuracy on breast histopathology images whose nuclei are dispersed and regular in texture and shape; however, typical cancer nuclei are often clustered and have irregular texture and shape properties. This paper proposes a novel segmentation algorithm for detecting individual nuclei from Hematoxylin and Eosin (H&E) stained breast histopathology images. This detection framework estimates a nuclei saliency map using tensor voting followed by boundary extraction of the nuclei on the saliency map using a Loopy Back Propagation (LBP) algorithm on a Markov Random Field (MRF). The method was tested on both whole-slide images and frames of breast cancer histopathology images. Experimental results demonstrate high segmentation performance with efficient precision, recall and dice-coefficient rates, upon testing high-grade breast cancer images containing several thousand nuclei. In addition to the optimal performance on the highly complex images presented in this paper, this method also gave appreciable results in comparison with two recently published methods—Wienert et al. (2012) and Veta et al. (2013), which were tested using their own datasets. PMID:27649496

  14. Lightweight high-performance 1-4 meter class spaceborne mirrors: emerging technology for demanding spaceborne requirements

    NASA Astrophysics Data System (ADS)

    Hull, Tony; Hartmann, Peter; Clarkson, Andrew R.; Barentine, John M.; Jedamzik, Ralf; Westerhoff, Thomas

    2010-07-01

    Pending critical spaceborne requirements, including coronagraphic detection of exoplanets, require exceptionally smooth mirror surfaces, aggressive lightweighting, and low-risk cost-effective optical manufacturing methods. Simultaneous development at Schott for production of aggressively lightweighted (>90%) Zerodur® mirror blanks, and at L-3 Brashear for producing ultra-smooth surfaces on Zerodur®, will be described. New L-3 techniques for large-mirror optical fabrication include Computer Controlled Optical Surfacing (CCOS) pioneered at L-3 Tinsley, and the world's largest MRF machine in place at L-3 Brashear. We propose that exceptional mirrors for the most critical spaceborne applications can now be produced with the technologies described.

  15. Calcineurin signaling and PGC-1alpha expression are suppressed during muscle atrophy due to diabetes.

    PubMed

    Roberts-Wilson, Tiffany K; Reddy, Ramesh N; Bailey, James L; Zheng, Bin; Ordas, Ronald; Gooch, Jennifer L; Price, S Russ

    2010-08-01

    PGC-1alpha is a transcriptional coactivator that controls energy homeostasis through regulation of glucose and oxidative metabolism. Both PGC-1alpha expression and oxidative capacity are decreased in skeletal muscle of patients and animals undergoing atrophy, suggesting that PGC-1alpha participates in the regulation of muscle mass. PGC-1alpha gene expression is controlled by calcium- and cAMP-sensitive pathways. However, the mechanism regulating PGC-1alpha in skeletal muscle during atrophy remains unclear. Therefore, we examined the mechanism responsible for decreased PGC-1alpha expression using a rodent streptozotocin (STZ) model of chronic diabetes and atrophy. After 21days, the levels of PGC-1alpha protein and mRNA were decreased. We examined the activation state of CREB, a potent activator of PGC-1alpha transcription, and found that phospho-CREB was paradoxically high in muscle of STZ-rats, suggesting that the cAMP pathway was not involved in PGC-1alpha regulation. In contrast, expression of calcineurin (Cn), a calcium-dependent phosphatase, was suppressed in the same muscles. PGC-1alpha expression is regulated by two Cn substrates, MEF2 and NFATc. Therefore, we examined MEF2 and NFATc activity in muscles from STZ-rats. Target genes MRF4 and MCIP1.4 mRNAs were both significantly reduced, consistent with reduced Cn signaling. Moreover, levels of MRF4, MCIP1.4, and PGC-1alpha were also decreased in muscles of CnAalpha-/- and CnAbeta-/- mice without diabetes indicating that decreased Cn signaling, rather than changes in other calcium- or cAMP-sensitive pathways, were responsible for decreased PGC-1alpha expression. These findings demonstrate that Cn activity is a major determinant of PGC-1alpha expression in skeletal muscle during diabetes and possibly other conditions associated with loss of muscle mass.

  16. Calcineurin signaling and PGC-1α expression are suppressed during muscle atrophy due to diabetes

    PubMed Central

    Roberts-Wilson, Tiffany K.; Reddy, Ramesh N.; Bailey, James L.; Zheng, Bin; Ordas, Ronald; Gooch, Jennifer L.; Price, S. Russ

    2010-01-01

    PGC-1α is a transcriptional coactivator that controls energy homeostasis through regulation of glucose and oxidative metabolism. Both PGC-1α expression and oxidative capacity are decreased in skeletal muscle of patients and animals undergoing atrophy, suggesting that PGC-1α participates in the regulation of muscle mass. PGC-1α gene expression is controlled by calcium- and cAMP-sensitive pathways. However, the mechanism regulating PGC-1α in skeletal muscle during atrophy remains unclear. Therefore, we examined the mechanism responsible for decreased PGC-1α expression using a rodent streptozotocin (STZ) model of chronic diabetes and atrophy. After 21d, the levels of PGC-1α protein and mRNA were decreased. We examined the activation state of CREB, a potent activator of PGC-1α transcription, and found that phospho-CREB was paradoxically high in muscle of STZ-rats, suggesting that the cAMP pathway was not involved in PGC-1α regulation. In contrast, expression of calcineurin (Cn), a calcium-dependent phosphatase, was suppressed in the same muscles. PGC-1α expression is regulated by two Cn substrates, MEF2 and NFATc. Therefore, we examined MEF2 and NFATc activity in muscles from STZ-rats. Target genes MRF4 and MCIP1.4 were both significantly reduced, consistent with reduced Cn signaling. Moreover, levels of MRF4, MCIP1.4, and PGC-1α were also decreased in muscles of CnAα-/- and CnAβ-/- mice without diabetes indicating that decreased Cn signaling, rather than changes in other calcium- or cAMP-sensitive pathways, were responsible for decreased PGC-1α expression. These findings demonstrate that Cn activity is a major determinant of PGC-1α expression in skeletal muscle during diabetes and possibly other conditions associated with loss of muscle mass. PMID:20359506

  17. Recycling of wood for particle board production: accounting of greenhouse gases and global warming contributions.

    PubMed

    Merrild, Hanna; Christensen, Thomas H

    2009-11-01

    The greenhouse gas (GHG) emissions related to the recycling of wood waste have been assessed with the purpose to provide useful data that can be used in accounting of greenhouse gas emissions. Here we present data related to the activities in a material recovery facility (MRF) where wood waste is shredded and foreign objects are removed in order to produce wood chips for use in the production of particleboard. The data are presented in accordance with the UOD (upstream, operational, downstream) framework presented in Gentil et al. (Waste Management & Research, 27, 2009). The GHG accounting shows that the emissions related to upstream activities (5 to 41 kg CO(2)-equivalents tonne( -1) wood waste) and to activities at the MRF (approximately 5 kg CO(2)-equivalents tonne(-1) wood waste) are negligible compared to the downstream processing (-560 to -120 kg CO(2)equivalents tonne(-1) wood waste). The magnitude of the savings in GHG emissions downstream are mainly related to savings in energy consumption for drying of fresh wood for particleboard production. However, the GHG account highly depends on the choices made in the modelling of the downstream system. The inclusion of saved electricity from avoided chipping of virgin wood does not change the results radically (-665 to -125 kg CO(2)-equivalents tonne(- 1) wood waste). However, if in addition it is assumed that the GHG emissions from combustion of wood has no global warming potential (GWP) and that the energy produced from excess wood due to recycling substitutes energy from fossil fuels, here assumed to be coal, potentially large downstream GHG emissions savings can be achieved by recycling of waste wood (-1.9 to -1.3 tonnes CO(2)-equivalents tonne(- 1) wood waste). As the data ranges are broad, it is necessary to carefully evaluate the feasibility of the data in the specific system which the GHG accounting is to be applied to.

  18. The performance of the new enhanced-resolution satellite passive microwave dataset applied for snow water equivalent estimation

    NASA Astrophysics Data System (ADS)

    Pan, J.; Durand, M. T.; Jiang, L.; Liu, D.

    2017-12-01

    The newly-processed NASA MEaSures Calibrated Enhanced-Resolution Brightness Temperature (CETB) reconstructed using antenna measurement response function (MRF) is considered to have significantly improved fine-resolution measurements with better georegistration for time-series observations and equivalent field of view (FOV) for frequencies with the same monomial spatial resolution. We are looking forward to its potential for the global snow observing purposes, and therefore aim to test its performance for characterizing snow properties, especially the snow water equivalent (SWE) in large areas. In this research, two candidate SWE algorithms will be tested in China for the years between 2005 to 2010 using the reprocessed TB from the Advanced Microwave Scanning Radiometer for EOS (AMSR-E), with the results to be evaluated using the daily snow depth measurements at over 700 national synoptic stations. One of the algorithms is the SWE retrieval algorithm used for the FengYun (FY) - 3 Microwave Radiation Imager. This algorithm uses the multi-channel TB to calculate SWE for three major snow regions in China, with the coefficients adapted for different land cover types. The second algorithm is the newly-established Bayesian Algorithm for SWE Estimation with Passive Microwave measurements (BASE-PM). This algorithm uses the physically-based snow radiative transfer model to find the histogram of most-likely snow property that matches the multi-frequency TB from 10.65 to 90 GHz. It provides a rough estimation of snow depth and grain size at the same time and showed a 30 mm SWE RMS error using the ground radiometer measurements at Sodankyla. This study will be the first attempt to test it spatially for satellite. The use of this algorithm benefits from the high resolution and the spatial consistency between frequencies embedded in the new dataset. This research will answer three questions. First, to what extent can CETB increase the heterogeneity in the mapped SWE? Second, will the SWE estimation error statistics be improved using this high-resolution dataset? Third, how will the SWE retrieval accuracy be improved using CETB and the new SWE retrieval techniques?

  19. Removal of Lattice Imperfections that Impact the Optical Quality of Ti:Sapphire using Advanced Magnetorheological Finishing Techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Menapace, J A; Schaffers, K I; Bayramian, A J

    2007-10-09

    Ti:sapphire has become the premier lasing medium material for use in solid-state femtosecond high-peak power laser systems because of its wide wavelength tuning range. With a tuneable range from 680 to 1100 nm, peaking at 800 nm, Ti:sapphire lasing crystals can easily be tuned to the required pump wavelength and provide very high pump brightness due to their good beam quality and high output power of typically several watts. Femtosecond lasers are used for precision cutting and machining of materials ranging from steel to tooth enamel to delicate heart tissue and high explosives. These ultra-short pulses are too brief tomore » transfer heat or shock to the material being cut, which means that cutting, drilling, and machining occur with virtually no damage to surrounding material. Furthermore, these lasers can cut with high precision, making hairline cuts of less than 100 microns in thick materials along a computer-generated path. Extension of laser output to higher energies is limited by the size of the amplification medium. Yields of high quality large diameter crystals have been constrained by lattice distortions that may appear in the boule limiting the usable area from which high quality optics can be harvested. Lattice distortions affect the transmitted wavefront of these optics which ultimately limits the high-end power output and efficiency of the laser system, particularly when operated in multi-pass mode. To make matters even more complicated, Ti:sapphire is extremely hard (Mohs hardness of 9 with diamond being 10) which makes it extremely difficult to accurately polish using conventional methods without subsurface damage or significant wavefront error. In this presentation, we demonstrate for the first time that Magnetorheological finishing (MRF) can be used to compensate for the lattice distortions in Ti:sapphire by perturbing the transmitted wavefront. The advanced MRF techniques developed allow for precise polishing of the optical inverse of lattice distortions with magnitudes of about 70 nm in optical path difference onto one or both of the optical surfaces to produce high quality optics from otherwise unusable Ti:sapphire crystals. The techniques include interferometric, software, and machine modifications to precisely locate and polish sub-millimeter sites onto the optical surfaces that can not be polished into the optics conventionally. This work may allow extension of Ti:sapphire based systems to peak powers well beyond one petawatt.« less

  20. A two-level generative model for cloth representation and shape from shading.

    PubMed

    Han, Feng; Zhu, Song-Chun

    2007-07-01

    In this paper, we present a two-level generative model for representing the images and surface depth maps of drapery and clothes. The upper level consists of a number of folds which will generate the high contrast (ridge) areas with a dictionary of shading primitives (for 2D images) and fold primitives (for 3D depth maps). These primitives are represented in parametric forms and are learned in a supervised learning phase using 3D surfaces of clothes acquired through photometric stereo. The lower level consists of the remaining flat areas which fill between the folds with a smoothness prior (Markov random field). We show that the classical ill-posed problem-shape from shading (SFS) can be much improved by this two-level model for its reduced dimensionality and incorporation of middle-level visual knowledge, i.e., the dictionary of primitives. Given an input image, we first infer the folds and compute a sketch graph using a sketch pursuit algorithm as in the primal sketch [10], [11]. The 3D folds are estimated by parameter fitting using the fold dictionary and they form the "skeleton" of the drapery/cloth surfaces. Then, the lower level is computed by conventional SFS method using the fold areas as boundary conditions. The two levels interact at the final stage by optimizing a joint Bayesian posterior probability on the depth map. We show a number of experiments which demonstrate more robust results in comparison with state-of-the-art work. In a broader scope, our representation can be viewed as a two-level inhomogeneous MRF model which is applicable to general shape-from-X problems. Our study is an attempt to revisit Marr's idea [23] of computing the 2(1/2)D sketch from primal sketch. In a companion paper [2], we study shape from stereo based on a similar two-level generative sketch representation.

  1. A Bayesian Approach for Determining Protein Side-Chain Rotamer Conformations Using Unassigned NOE Data

    PubMed Central

    Zeng, Jianyang; Roberts, Kyle E.; Zhou, Pei

    2011-01-01

    Abstract A major bottleneck in protein structure determination via nuclear magnetic resonance (NMR) is the lengthy and laborious process of assigning resonances and nuclear Overhauser effect (NOE) cross peaks. Recent studies have shown that accurate backbone folds can be determined using sparse NMR data, such as residual dipolar couplings (RDCs) or backbone chemical shifts. This opens a question of whether we can also determine the accurate protein side-chain conformations using sparse or unassigned NMR data. We attack this question by using unassigned nuclear Overhauser effect spectroscopy (NOESY) data, which records the through-space dipolar interactions between protons nearby in three-dimensional (3D) space. We propose a Bayesian approach with a Markov random field (MRF) model to integrate the likelihood function derived from observed experimental data, with prior information (i.e., empirical molecular mechanics energies) about the protein structures. We unify the side-chain structure prediction problem with the side-chain structure determination problem using unassigned NMR data, and apply the deterministic dead-end elimination (DEE) and A* search algorithms to provably find the global optimum solution that maximizes the posterior probability. We employ a Hausdorff-based measure to derive the likelihood of a rotamer or a pairwise rotamer interaction from unassigned NOESY data. In addition, we apply a systematic and rigorous approach to estimate the experimental noise in NMR data, which also determines the weighting factor of the data term in the scoring function derived from the Bayesian framework. We tested our approach on real NMR data of three proteins: the FF Domain 2 of human transcription elongation factor CA150 (FF2), the B1 domain of Protein G (GB1), and human ubiquitin. The promising results indicate that our algorithm can be applied in high-resolution protein structure determination. Since our approach does not require any NOE assignment, it can accelerate the NMR structure determination process. PMID:21970619

  2. CFD simulation of liquid-liquid dispersions in a stirred tank bioreactor

    NASA Astrophysics Data System (ADS)

    Gelves, R.

    2013-10-01

    In this paper simulations were developed in order to allow the examinations of drop sizes in liquid-liquid dispersions (oil-water) in a stirred tank bioreactor using CFD simulations (Computational Fluid Dynamics). The effects of turbulence, rotating flow, drop breakage were simulated by using the k-e, MRF (Multiple Reference Frame) and PBM (Population Balance Model), respectively. The numerical results from different operational conditions are compared with experimental data obtained from an endoscope technique and good agreement is achieved. Motivated by these simulated and experimental results CFD simulations are qualified as a very promising tool for predicting hydrodynamics and drop sizes especially useful for liquid-liquid applications which are characterized by the challenging problem of emulsion stability due to undesired drop sizes.

  3. Ultra-low roughness magneto-rheological finishing for EUV mask substrates

    NASA Astrophysics Data System (ADS)

    Dumas, Paul; Jenkins, Richard; McFee, Chuck; Kadaksham, Arun J.; Balachandran, Dave K.; Teki, Ranganath

    2013-09-01

    EUV mask substrates, made of titania-doped fused silica, ideally require sub-Angstrom surface roughness, sub-30 nm flatness, and no bumps/pits larger than 1 nm in height/depth. To achieve the above specifications, substrates must undergo iterative global and local polishing processes. Magnetorheological finishing (MRF) is a local polishing technique which can accurately and deterministically correct substrate figure, but typically results in a higher surface roughness than the current requirements for EUV substrates. We describe a new super-fine MRF® polishing fluid whichis able to meet both flatness and roughness specifications for EUV mask blanks. This eases the burden on the subsequent global polishing process by decreasing the polishing time, and hence the defectivity and extent of figure distortion.

  4. Minimizing artifact formation in magnetorheological finishing of chemical vapor deposition ZnS flats.

    PubMed

    Kozhinova, Irina A; Romanofsky, Henry J; Maltsev, Alexander; Jacobs, Stephen D; Kordonski, William I; Gorodkin, Sergei R

    2005-08-01

    The polishing performance of magnetorheological (MR) fluids prepared with a variety of magnetic and nonmagnetic ingredients was studied on four types of initial surface for chemical vapor deposition (CVD) ZnS flats from domestic and foreign sources. The results showed that it was possible to greatly improve smoothing performance of magnetorheological finishing (MRF) by altering the fluid composition, with the best results obtained for nanoalumina abrasive used with soft carbonyl iron and altered MR fluid chemistry. Surface roughness did not exceed 20 nm peak to valley and 2 nm rms after removal of 2 microm of material. The formation of orange peel and the exposure of a pebblelike structure inherent in ZnS from the CVD process were suppressed.

  5. Utilization of Magnetorheological Finishing as a Diagnostic Tool for Investigating the Three-Dimensional Structure of Fractures in Fused Silica

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Menapace, J A; Davis, P J; Steele, W A

    2005-11-11

    We have developed an experimental technique that combines magnetorheological finishing (MRF) and microscopy to examine fractures and/or artifacts in optical materials. The technique can be readily used to provide access to, and interrogation of, a selected segment of a fracture or object that extends beneath the surface. Depth slicing, or cross-sectioning at selected intervals, further allows the observation and measurement of the three-dimensional nature of the sites and the generation of volumetric representations that can be used to quantify shape and depth, and to understand how they were created, how they interact with surrounding material, and how they may bemore » eliminated or mitigated.« less

  6. Force modeling for incision surgery into tissue with haptic application

    NASA Astrophysics Data System (ADS)

    Kim, Pyunghwa; Kim, Soomin; Choi, Seung-Hyun; Oh, Jong-Seok; Choi, Seung-Bok

    2015-04-01

    This paper presents a novel force modeling for an incision surgery into tissue and its haptic application for a surgeon. During the robot-assisted incision surgery, it is highly urgent to develop the haptic system for realizing sense of touch in the surgical area because surgeons cannot sense sensations. To achieve this goal, the force modeling related to reaction force of biological tissue is proposed in the perspective on energy. The force model describes reaction force focused on the elastic feature of tissue during the incision surgery. Furthermore, the force is realized using calculated information from the model by haptic device using magnetorheological fluid (MRF). The performance of realized force that is controlled by PID controller with open loop control is evaluated.

  7. Investigation of rapidly solidified aluminum by using diamond turning and a magnetorheological finishing process

    NASA Astrophysics Data System (ADS)

    Cheng, Yuan-Chieh; Hsu, Wei-Yao; Kuo, Ching-Hsiang; Abou-El-Hossein, Khaled; Otieno, Timothy

    2015-08-01

    The metal mirror has been widely used in optical application for a longtime. Especially the aluminum 6061 is often considered the preferred material for manufacturing optical components for ground-based astronomical applications. One reason for using this material is its high specific stiffness and excellent thermal properties. However, a large amount of data exists for this material and commercially available aluminum 6061 using single point diamond turning (SPDT) and polishing process can achieve surface roughness values of approximately 2 to 4 nm, which is adequate for applications that involve the infrared spectral range, but not for the shorter spectral range. A novel aluminum material, fabricated using a rapid solidification process that is equivalent to the conventional aluminum 6061 alloy grade has been used in optical applications in recent years because of its smaller grain size. In this study, the surface quality of the rapid solidification aluminum after single point diamond turning and followed by magnetorheological finish (MRF) process is investigated and compared with conventional aluminum 6061. Both the surface roughness Ra was evaluated using white light interferometers. Finally, indicators such as optimal fabrication parameter combination and optical performance are discussed.

  8. Combined Advanced Finishing and UV-Laser Conditioning for Producing UV-Damage-Resistant Fused Silica Optics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Menapace, J A; Penetrante, B; Golini, D

    2001-11-01

    Laser induced damage initiation on fused silica optics can limit the lifetime of the components when used in high power UV laser environments. Foe example in inertial confinement fusion research applications, the optics can be exposed to temporal laser pulses of about 3-nsec with average fluences of 8 J/cm{sup 2} and peak fluences between 12 and 15 J/cm{sup 2}. During the past year, we have focused on optimizing the damage performance at a wavelength of 355-nm (3{omega}), 3-nsec pulse length, for optics in this category by examining a variety of finishing technologies with a challenge to improve the laser damagemore » initiation density by at least two orders of magnitude. In this paper, we describe recent advances in improving the 3{omega} damage initiation performance of laboratory-scale zirconium oxide and cerium oxide conventionally finished fused silica optics via application of processes incorporating magnetorheological finishing (MRF), wet chemical etching, and UV laser conditioning. Details of the advanced finishing procedures are described and comparisons are made between the procedures based upon large area 3{omega} damage performance, polishing layer contamination, and optical subsurface damage.« less

  9. Cloud Optimized Image Format and Compression

    NASA Astrophysics Data System (ADS)

    Becker, P.; Plesea, L.; Maurer, T.

    2015-04-01

    Cloud based image storage and processing requires revaluation of formats and processing methods. For the true value of the massive volumes of earth observation data to be realized, the image data needs to be accessible from the cloud. Traditional file formats such as TIF and NITF were developed in the hay day of the desktop and assumed fast low latency file access. Other formats such as JPEG2000 provide for streaming protocols for pixel data, but still require a server to have file access. These concepts no longer truly hold in cloud based elastic storage and computation environments. This paper will provide details of a newly evolving image storage format (MRF) and compression that is optimized for cloud environments. Although the cost of storage continues to fall for large data volumes, there is still significant value in compression. For imagery data to be used in analysis and exploit the extended dynamic range of the new sensors, lossless or controlled lossy compression is of high value. Compression decreases the data volumes stored and reduces the data transferred, but the reduced data size must be balanced with the CPU required to decompress. The paper also outlines a new compression algorithm (LERC) for imagery and elevation data that optimizes this balance. Advantages of the compression include its simple to implement algorithm that enables it to be efficiently accessed using JavaScript. Combing this new cloud based image storage format and compression will help resolve some of the challenges of big image data on the internet.

  10. Identification and Characterization of the Insecticidal Toxin “Makes Caterpillars Floppy” in Photorhabdus temperata M1021 Using a Cosmid Library

    PubMed Central

    Ullah, Ihsan; Jang, Eun-Kyung; Kim, Min-Sung; Shin, Jin-Ho; Park, Gun-Seok; Khan, Abdur Rahim; Hong, Sung-Jun; Jung, Byung-Kwon; Choi, JungBae; Park, YeongJun; Kwak, Yunyoung; Shin, Jae-Ho

    2014-01-01

    Photorhabdus temperata is an entomopathogenic enterobacterium; it is a nematode symbiont that possesses pathogenicity islands involved in insect virulence. Herein, we constructed a P. temperata M1021 cosmid library in Escherichia coli XL1-Blue MRF` and obtained 7.14 × 105 clones. However, only 1020 physiologically active clones were screened for insect virulence factors by injection of each E. coli cosmid clone into Galleria mellonella and Tenebrio molitor larvae. A single cosmid clone, PtC1015, was consequently selected due to its characteristic virulent properties, e.g., loss of body turgor followed by death of larvae when the clone was injected into the hemocoel. The sequence alignment against the available sequences in Swiss-Prot and NCBI databases, confirmed the presence of the mcf gene homolog in the genome of P. temperata M1021 showing 85% homology and 98% query coverage with the P. luminescens counterpart. Furthermore, a 2932 amino acid long Mcf protein revealed limited similarity with three protein domains. The N-terminus of the Mcf encompassed consensus sequence for a BH3 domain, the central region revealed similarity to toxin B, and the C-terminus of Mcf revealed similarity to the bacterial export domain of ApxIVA, an RTX-like toxin. In short, the Mcf toxin is likely to play a role in the elimination of insect pests, making it a promising model for use in the agricultural field. PMID:25014195

  11. SLUDGE BATCH 4 BASELINE MELT RATE FURNACE AND SLURRY-FED MELT RATE FURNACE TESTS WITH FRITS 418 AND 510 (U)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, M. E.; Jones, T. M.; Miller, D. H.

    Several Slurry-Fed Melt Rate Furnace (SMRF) tests with earlier projections of the Sludge Batch 4 (SB4) composition have been performed.1,2 The first SB4 SMRF test used Frits 418 and 320, however it was found after the test that the REDuction/OXidation (REDOX) correlation at that time did not have the proper oxidation state for manganese. Because the manganese level in the SB4 sludge was higher than previous sludge batches tested, the impact of the higher manganese oxidation state was greater. The glasses were highly oxidized and very foamy, and therefore the results were inconclusive. After resolving this REDOX issue, Frits 418,more » 425, and 503 were tested in the SMRF with the updated baseline SB4 projection. Based on dry-fed Melt Rate Furnace (MRF) tests and the above mentioned SMRF tests, two previous frit recommendations were made by the Savannah River National Laboratory (SRNL) for processing of SB4 in the Defense Waste Processing Facility (DWPF). The first was Frit 503 based on the June 2006 composition projections.3 The recommendation was changed to Frit 418 as a result of the October 2006 composition projections (after the Tank 40 decant was implemented as part of the preparation plan). However, the start of SB4 processing was delayed due to the control room consolidation outage and the repair of the valve box in the Tank 51 to Tank 40 transfer line. These delays resulted in changes to the projected SB4 composition. Due to the slight change in composition and based on preliminary dry-fed MRF testing, SRNL believed that Frit 510 would increase throughput in processing SB4 in DWPF. Frit 418, which was used in processing Sludge Batch 3 (SB3), was a viable candidate and available in DWPF. Therefore, it was used during the initial SB4 processing. Due to the potential for higher melt rates with Frit 510, SMRF tests with the latest SB4 composition (1298 canisters) and Frits 510 and 418 were performed at a targeted waste loading (WL) of 35%. The '1298 canisters' describes the number of equivalent canisters that would be produced from the beginning of the current contract period before SB3 is blended with SB4. The melt rate for the SMRF SB4/Frit 510 test was 14.6 grams/minute. Due to cold cap mounding problems with the SMRF SB4/Frit 418 feed at 50 weight % solids that prevented a melt rate determination, this feed was diluted to 45 weight % solids. The melt rate for this diluted feed was 8.9 grams/minute. A correction factor of 1.2 for estimating the melt rate at 50 weight % solids from 45 weight % solids test results (based on previous SMRF testing5) was then used to estimate a melt rate of 10.7 grams/minute for SB4/Frit 418 at 50 weight % solids. Therefore, the use of Frit 510 versus Frit 418 with SB4 resulted in a higher melt rate (14.6 versus an estimated 10.7 grams/minute). For reference, a previous SMRF test with SB3/Frit 418 feed at 35% waste loading and 50 weight % solids resulted in a melt rate of 14.1 grams/minute. Therefore, depending on the actual feed rheology, the use of Frit 510 with SB4 could result in similar melt rates as experienced with SB3/Frit 418 feed in the DWPF.« less

  12. Reverse logistics network for municipal solid waste management: The inclusion of waste pickers as a Brazilian legal requirement

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ferri, Giovane Lopes, E-mail: giovane.ferri@aluno.ufes.br; Diniz Chaves, Gisele de Lorena, E-mail: gisele.chaves@ufes.br; Ribeiro, Glaydston Mattos, E-mail: glaydston@pet.coppe.ufrj.br

    Highlights: • We propose a reverse logistics network for MSW involving waste pickers. • A generic facility location mathematical model was validated in a Brazilian city. • The results enable to predict the capacity for screening and storage centres (SSC). • We minimise the costs for transporting MSW with screening and storage centres. • The use of SSC can be a potential source of revenue and a better use of MSW. - Abstract: This study proposes a reverse logistics network involved in the management of municipal solid waste (MSW) to solve the challenge of economically managing these wastes considering themore » recent legal requirements of the Brazilian Waste Management Policy. The feasibility of the allocation of MSW material recovery facilities (MRF) as intermediate points between the generators of these wastes and the options for reuse and disposal was evaluated, as well as the participation of associations and cooperatives of waste pickers. This network was mathematically modelled and validated through a scenario analysis of the municipality of São Mateus, which makes the location model more complete and applicable in practice. The mathematical model allows the determination of the number of facilities required for the reverse logistics network, their location, capacities, and product flows between these facilities. The fixed costs of installation and operation of the proposed MRF were balanced with the reduction of transport costs, allowing the inclusion of waste pickers to the reverse logistics network. The main contribution of this study lies in the proposition of a reverse logistics network for MSW simultaneously involving legal, environmental, economic and social criteria, which is a very complex goal. This study can guide practices in other countries that have realities similar to those in Brazil of accelerated urbanisation without adequate planning for solid waste management, added to the strong presence of waste pickers that, through the characteristic of social vulnerability, must be included in the system. In addition to the theoretical contribution to the reverse logistics network problem, this study aids in decision-making for public managers who have limited technical and administrative capacities for the management of solid wastes.« less

  13. On the performance of a high head Francis turbine at design and off-design conditions

    NASA Astrophysics Data System (ADS)

    Aakti, B.; Amstutz, O.; Casartelli, E.; Romanelli, G.; Mangani, L.

    2015-01-01

    In the present paper, fully 360 degrees transient and steady-state simulations of a Francis turbine were performed at three operating conditions, namely at part load (PL), best efficiency point (BEP), and high load (HL), using different numerical approaches for the pressure-velocity coupling. The simulation domain includes the spiral casing with stay and guide vanes, the runner and the draft tube. The main target of the investigations is the numerical prediction of the overall performance of the high head Francis turbine model as well as local and integral quantities of the complete machine in different operating conditions. All results were compared with experimental data published by the workshop organization. All CFD simulations were performed at model scale with a new in-house, 3D, unstructured, object-oriented finite volume code within the framework of the open source OpenFOAM library. The novel fully coupled pressure-based solver is designed to solve the incompressible RANS- Equations and is capable of handling multiple references of frame (MRF). The obtained results show that the overall performance is well captured by the simulations. Regarding the local flow distributions within the inlet section of the draft-tube, the axial velocity is better estimated than the circumferential component.

  14. Design and simulation of a new bidirectional actuator for haptic systems featuring MR fluid

    NASA Astrophysics Data System (ADS)

    Hung, Nguyen Quoc; Tri, Diep Bao; Cuong, Vo Van; Choi, Seung-Bok

    2017-04-01

    In this research, a new configuration of bidirectional actuator featuring MR fluid (BMRA) is proposed for haptic application. The proposed BMRA consists of a driving disc, a driving housing and a driven disc. The driving disc is placed inside the driving housing and rotates counter to each other by a servo DC motor and a bevel gear system. The driven shaft is also placed inside the housing and next to the driving disc. The gap between the two disc and the gap between the discs and the housing are filled with MR fluid. On the driven disc, two mutual magnetic coils are placed. By applying currents to the two coils mutually, the torque at the output shaft, which is fixed to the driven disc, can be controlled with positive, zero or negative value. This make the actuator be suitable for haptic application. After a review of MR fluid and its application, configuration of the proposed BMRA is presented. The modeling of the actuator is then derived based on Bingham rheological model of MRF and magnetic finite element analysis (FEA). The optimal design of the actuator is then performed to minimize the mass of the BMRA. From the optimal design result, performance characteristics of the actuator is simulated and detailed design of a prototype actuator is conducted.

  15. The Architecture of an Automatic eHealth Platform With Mobile Client for Cerebrovascular Disease Detection

    PubMed Central

    Wang, Xingce; Bie, Rongfang; Wu, Zhongke; Zhou, Mingquan; Cao, Rongfei; Xie, Lizhi; Zhang, Dong

    2013-01-01

    Background In recent years, cerebrovascular disease has been the leading cause of death and adult disability in the world. This study describes an efficient approach to detect cerebrovascular disease. Objective In order to improve cerebrovascular treatment, prevention, and care, an automatic cerebrovascular disease detection eHealth platform is designed and studied. Methods We designed an automatic eHealth platform for cerebrovascular disease detection with a four-level architecture: object control layer, data transmission layer, service supporting layer, and application service layer. The platform has eight main functions: cerebrovascular database management, preprocessing of cerebral image data, image viewing and adjustment model, image cropping compression and measurement, cerebrovascular segmentation, 3-dimensional cerebrovascular reconstruction, cerebrovascular rendering, cerebrovascular virtual endoscope, and automatic detection. Several key technologies were employed for the implementation of the platform. The anisotropic diffusion model was used to reduce the noise. Statistics segmentation with Gaussian-Markov random field model (G-MRF) and Stochastic Estimation Maximization (SEM) parameter estimation method were used to realize the cerebrovascular segmentation. Ball B-Spline curve was proposed to model the cerebral blood vessels. Compute unified device architecture (CUDA) based on ray-casting volume rendering presented by curvature enhancement and boundary enhancement were used to realize the volume rendering model. We implemented the platform with a network client and mobile phone client to fit different users. Results The implemented platform is running on a common personal computer. Experiments on 32 patients’ brain computed tomography data or brain magnetic resonance imaging data stored in the system verified the feasibility and validity of each model we proposed. The platform is partly used in the cranial nerve surgery of the First Hospital Affiliated to the General Hospital of People's Liberation Army and radiology of Beijing Navy General Hospital. At the same time it also gets some applications in medical imaging specialty teaching of Tianjin Medical University. The application results have also been validated by our neurosurgeon and radiologist. Conclusions The platform appears beneficial in diagnosis of the cerebrovascular disease. The long-term benefits and additional applications of this technology warrant further study. The research built a diagnosis and treatment platform of the human tissue with complex geometry and topology such as brain vessel based on the Internet of things. PMID:25098861

  16. A discriminative model-constrained EM approach to 3D MRI brain tissue classification and intensity non-uniformity correction

    NASA Astrophysics Data System (ADS)

    Wels, Michael; Zheng, Yefeng; Huber, Martin; Hornegger, Joachim; Comaniciu, Dorin

    2011-06-01

    We describe a fully automated method for tissue classification, which is the segmentation into cerebral gray matter (GM), cerebral white matter (WM), and cerebral spinal fluid (CSF), and intensity non-uniformity (INU) correction in brain magnetic resonance imaging (MRI) volumes. It combines supervised MRI modality-specific discriminative modeling and unsupervised statistical expectation maximization (EM) segmentation into an integrated Bayesian framework. While both the parametric observation models and the non-parametrically modeled INUs are estimated via EM during segmentation itself, a Markov random field (MRF) prior model regularizes segmentation and parameter estimation. Firstly, the regularization takes into account knowledge about spatial and appearance-related homogeneity of segments in terms of pairwise clique potentials of adjacent voxels. Secondly and more importantly, patient-specific knowledge about the global spatial distribution of brain tissue is incorporated into the segmentation process via unary clique potentials. They are based on a strong discriminative model provided by a probabilistic boosting tree (PBT) for classifying image voxels. It relies on the surrounding context and alignment-based features derived from a probabilistic anatomical atlas. The context considered is encoded by 3D Haar-like features of reduced INU sensitivity. Alignment is carried out fully automatically by means of an affine registration algorithm minimizing cross-correlation. Both types of features do not immediately use the observed intensities provided by the MRI modality but instead rely on specifically transformed features, which are less sensitive to MRI artifacts. Detailed quantitative evaluations on standard phantom scans and standard real-world data show the accuracy and robustness of the proposed method. They also demonstrate relative superiority in comparison to other state-of-the-art approaches to this kind of computational task: our method achieves average Dice coefficients of 0.93 ± 0.03 (WM) and 0.90 ± 0.05 (GM) on simulated mono-spectral and 0.94 ± 0.02 (WM) and 0.92 ± 0.04 (GM) on simulated multi-spectral data from the BrainWeb repository. The scores are 0.81 ± 0.09 (WM) and 0.82 ± 0.06 (GM) and 0.87 ± 0.05 (WM) and 0.83 ± 0.12 (GM) for the two collections of real-world data sets—consisting of 20 and 18 volumes, respectively—provided by the Internet Brain Segmentation Repository.

  17. A discriminative model-constrained EM approach to 3D MRI brain tissue classification and intensity non-uniformity correction.

    PubMed

    Wels, Michael; Zheng, Yefeng; Huber, Martin; Hornegger, Joachim; Comaniciu, Dorin

    2011-06-07

    We describe a fully automated method for tissue classification, which is the segmentation into cerebral gray matter (GM), cerebral white matter (WM), and cerebral spinal fluid (CSF), and intensity non-uniformity (INU) correction in brain magnetic resonance imaging (MRI) volumes. It combines supervised MRI modality-specific discriminative modeling and unsupervised statistical expectation maximization (EM) segmentation into an integrated Bayesian framework. While both the parametric observation models and the non-parametrically modeled INUs are estimated via EM during segmentation itself, a Markov random field (MRF) prior model regularizes segmentation and parameter estimation. Firstly, the regularization takes into account knowledge about spatial and appearance-related homogeneity of segments in terms of pairwise clique potentials of adjacent voxels. Secondly and more importantly, patient-specific knowledge about the global spatial distribution of brain tissue is incorporated into the segmentation process via unary clique potentials. They are based on a strong discriminative model provided by a probabilistic boosting tree (PBT) for classifying image voxels. It relies on the surrounding context and alignment-based features derived from a probabilistic anatomical atlas. The context considered is encoded by 3D Haar-like features of reduced INU sensitivity. Alignment is carried out fully automatically by means of an affine registration algorithm minimizing cross-correlation. Both types of features do not immediately use the observed intensities provided by the MRI modality but instead rely on specifically transformed features, which are less sensitive to MRI artifacts. Detailed quantitative evaluations on standard phantom scans and standard real-world data show the accuracy and robustness of the proposed method. They also demonstrate relative superiority in comparison to other state-of-the-art approaches to this kind of computational task: our method achieves average Dice coefficients of 0.93 ± 0.03 (WM) and 0.90 ± 0.05 (GM) on simulated mono-spectral and 0.94 ± 0.02 (WM) and 0.92 ± 0.04 (GM) on simulated multi-spectral data from the BrainWeb repository. The scores are 0.81 ± 0.09 (WM) and 0.82 ± 0.06 (GM) and 0.87 ± 0.05 (WM) and 0.83 ± 0.12 (GM) for the two collections of real-world data sets-consisting of 20 and 18 volumes, respectively-provided by the Internet Brain Segmentation Repository.

  18. Mapping and localization for extraterrestrial robotic explorations

    NASA Astrophysics Data System (ADS)

    Xu, Fengliang

    In the exploration of an extraterrestrial environment such as Mars, orbital data, such as high-resolution imagery Mars Orbital Camera-Narrow Angle (MOC-NA), laser ranging data Mars Orbital Laser Altimeter (MOLA), and multi-spectral imagery Thermal Emission Imaging System (THEMIS), play more and more important roles. However, these remote sensing techniques can never replace the role of landers and rovers, which can provide a close up and inside view. Similarly, orbital mapping can not compete with ground-level close-range mapping in resolution, precision, and speed. This dissertation addresses two tasks related to robotic extraterrestrial exploration: mapping and rover localization. Image registration is also discussed as an important aspect for both of them. Techniques from computer vision and photogrammetry are applied for automation and precision. Image registration is classified into three sub-categories: intra-stereo, inter-stereo, and cross-site, according to the relationship between stereo images. In the intra-stereo registration, which is the most fundamental sub-category, interest point-based registration and verification by parallax continuity in the principal direction are proposed. Two other techniques, inter-scanline search with constrained dynamic programming for far range matching and Markov Random Field (MRF) based registration for big terrain variation, are explored as possible improvements. Creating using rover ground images mainly involves the generation of Digital Terrain Model (DTM) and ortho-rectified map (orthomap). The first task is to derive the spatial distribution statistics from the first panorama and model the DTM with a dual polynomial model. This model is used for interpolation of the DTM, using Kriging in the close range and Triangular Irregular Network (TIN) in the far range. To generate a uniformly illuminated orthomap from the DTM, a least-squares-based automatic intensity balancing method is proposed. Finally a seamless orthomap is constructed by a split-and-merge technique: the mapped area is split or subdivided into small regions of image overlap, and then each small map piece was processed and all of the pieces are merged together to form a seamless map. Rover localization has three stages, all of which use a least-squares adjustment procedure: (1) an initial localization which is accomplished by adjustment over features common to rover images and orbital images, (2) an adjustment of image pointing angles at a single site through inter and intra-stereo tie points, and (3) an adjustment of the rover traverse through manual cross-site tie points. The first stage is based on adjustment of observation angles of features. The second stage and third stage are based on bundle-adjustment. In the third-stage an incremental adjustment method was proposed. Automation in rover localization includes automatic intra/inter-stereo tie point selection, computer-assisted cross-site tie point selection, and automatic verification of accuracy. (Abstract shortened by UMI.)

  19. Method and system for processing optical elements using magnetorheological finishing

    DOEpatents

    Menapace, Joseph Arthur; Schaffers, Kathleen Irene; Bayramian, Andrew James; Molander, William A

    2012-09-18

    A method of finishing an optical element includes mounting the optical element in an optical mount having a plurality of fiducials overlapping with the optical element and obtaining a first metrology map for the optical element and the plurality of fiducials. The method also includes obtaining a second metrology map for the optical element without the plurality of fiducials, forming a difference map between the first metrology map and the second metrology map, and aligning the first metrology map and the second metrology map. The method further includes placing mathematical fiducials onto the second metrology map using the difference map to form a third metrology map and associating the third metrology map to the optical element. Moreover, the method includes mounting the optical element in the fixture in an MRF tool, positioning the optical element in the fixture; removing the plurality of fiducials, and finishing the optical element.

  20. Minimizing the bimetallic bending for cryogenic metal optics based on electroless nickel

    NASA Astrophysics Data System (ADS)

    Kinast, Jan; Hilpert, Enrico; Lange, Nicolas; Gebhardt, Andreas; Rohloff, Ralf-Rainer; Risse, Stefan; Eberhardt, Ramona; Tünnermann, Andreas

    2014-07-01

    Ultra-precise metal optics are key components of sophisticated scientific instruments in astronomy and space applications. Especially for cryogenic applications, a detailed knowledge and the control of the coefficient of thermal expansion (CTE) of the used materials are essential. Reflective optical components in IR- and NIR-instruments primarily consist of the aluminum alloy Al6061. The achievable micro-roughness of diamond machined and directly polished Al6061 does not fulfill the requirements for applications in the visible spectral range. Electroless nickel enables the reduction of the mirror surface roughness to the sub-nm range by polishing. To minimize the associated disadvantageous bimetallic effect, a novel material combination for cryogenic mirrors based on electroless nickel and hypereutectic aluminum-silicon is investigated. An increasing silicon content of the aluminum material decreases the CTE in the temperature range to be considered. This paper shows the CTE for aluminum materials containing about 42 wt% silicon (AlSi42) and for electroless nickel with a phosphorous content ranging from 10.5 to 13 %. The CTE differ to about 0.5 × 10-6 K-1 in a temperature range from -185 °C (LN2) to 100 °C. Besides, the correlations between the chemical compositions of aluminum-silicon materials and electroless nickel are shown. A metrology setup for cryo-interferometry was developed to analyze the remaining and reversible shape deviation at cryogenic temperatures. Changes could be caused by different CTE, mounting forces and residual stress conditions. In the electroless nickel layer, the resulting shape deviation can be preshaped by deterministic correction processes such as magnetorheological finishing (MRF) at room temperature.

  1. Influence of parameter settings in voxel-based morphometry 8. Using DARTEL and region-of-interest on reproducibility in gray matter volumetry.

    PubMed

    Goto, M; Abe, O; Aoki, S; Hayashi, N; Miyati, T; Takao, H; Matsuda, H; Yamashita, F; Iwatsubo, T; Mori, H; Kunimatsu, A; Ino, K; Yano, K; Ohtomo, K

    2015-01-01

    To investigate whether reproducibility of gray matter volumetry is influenced by parameter settings for VBM 8 using Diffeomorphic Anatomical Registration Through Exponentiated Lie Algebra (DARTEL) with region-of-interest (ROI) analyses. We prepared three-dimensional T1-weighted magnetic resonance images (3D-T1WIs) of 21 healthy subjects. All subjects were imaged with each of five MRI systems. Voxel-based morphometry 8 (VBM 8) and WFU PickAtlas software were used for gray matter volumetry. The bilateral ROI labels used were those provided as default settings with the software: Frontal Lobe, Hippocampus, Occipital Lobe, Orbital Gyrus, Parietal Lobe, Putamen, and Temporal Lobe. All 3D-T1WIs were segmented to gray matter with six parameters of VBM 8, with each parameter having between three and eight selectable levels. Reproducibility was evaluated as the standard deviation (mm³) of measured values for the five MRI systems. Reproducibility was influenced by 'Bias regularization (BiasR)', 'Bias FWHM', and 'De-noising filter' settings, but not by 'MRF weighting', 'Sampling distance', or 'Warping regularization' settings. Reproducibility in BiasR was influenced by ROI. Superior reproducibility was observed in Frontal Lobe with the BiasR1 setting, and in Hippocampus, Parietal Lobe, and Putamen with the BiasR3*, BiasR1, and BiasR5 settings, respectively. Reproducibility of gray matter volumetry was influenced by parameter settings in VBM 8 using DARTEL and ROI. In multi-center studies, the use of appropriate settings in VBM 8 with DARTEL results in reduced scanner effect.

  2. Development and numerical analysis of low specific speed mixed-flow pump

    NASA Astrophysics Data System (ADS)

    Li, H. F.; Huo, Y. W.; Pan, Z. B.; Zhou, W. C.; He, M. H.

    2012-11-01

    With the development of the city, the market of the mixed flow pump with large flux and high head is prospect. The KSB Shanghai Pump Co., LTD decided to develop low speed specific speed mixed flow pump to meet the market requirements. Based on the centrifugal pump and axial flow pump model, aiming at the characteristics of large flux and high head, a new type of guide vane mixed flow pump was designed. The computational fluid dynamics method was adopted to analyze the internal flow of the new type model and predict its performances. The time-averaged Navier-Stokes equations were closed by SST k-ω turbulent model to adapt internal flow of guide vane with larger curvatures. The multi-reference frame(MRF) method was used to deal with the coupling of rotating impeller and static guide vane, and the SIMPLEC method was adopted to achieve the coupling solution of velocity and pressure. The computational results shows that there is great flow impact on the head of vanes at different working conditions, and there is great flow separation at the tailing of the guide vanes at different working conditions, and all will affect the performance of pump. Based on the computational results, optimizations were carried out to decrease the impact on the head of vanes and flow separation at the tailing of the guide vanes. The optimized model was simulated and its performance was predicted. The computational results show that the impact on the head of vanes and the separation at the tailing of the guide vanes disappeared. The high efficiency of the optimized pump is wide, and it fit the original design destination. The newly designed mixed flow pump is now in modeling and its experimental performance will be getting soon.

  3. New high-precision deep concave optical surface manufacturing capability

    NASA Astrophysics Data System (ADS)

    Piché, François; Maloney, Chris; VanKerkhove, Steve; Supranowicz, Chris; Dumas, Paul; Donohue, Keith

    2017-10-01

    This paper describes the manufacturing steps necessary to manufacture hemispherical concave aspheric mirrors for high- NA systems. The process chain is considered from generation to final figuring and includes metrology testing during the various manufacturing steps. Corning Incorporated has developed this process by taking advantage of recent advances in commercially available Satisloh and QED Technologies equipment. Results are presented on a 100 mm concave radius nearly hemispherical (NA = 0.94) fused silica sphere with a better than 5 nm RMS figure. Part interferometric metrology was obtained on a QED stitching interferometer. Final figure was made possible by the implementation of a high-NA rotational MRF mode recently developed by QED Technologies which is used at Corning Incorporated for production. We also present results from a 75 mm concave radius (NA = 0.88) Corning ULE sphere that was produced using sub-aperture tools from generation to final figuring. This part demonstrates the production chain from blank to finished optics for high-NA concave asphere.

  4. Magnetorheological finishing of chemical-vapor deposited zinc sulfide via chemically and mechanically modified fluids.

    PubMed

    Salzman, Sivan; Romanofsky, Henry J; Giannechini, Lucca J; Jacobs, Stephen D; Lambropoulos, John C

    2016-02-20

    We describe the anisotropy in the material removal rate (MRR) of the polycrystalline, chemical-vapor deposited zinc sulfide (ZnS). We define the polycrystalline anisotropy via microhardness and chemical erosion tests for four crystallographic orientations of ZnS: (100), (110), (111), and (311). Anisotropy in the MRR was studied under magnetorheological finishing (MRF) conditions. Three chemically and mechanically modified magnetorheological (MR) fluids at pH values of 4, 5, and 6 were used to test the MRR variations among the four single-crystal planes. When polishing the single-crystal planes and the polycrystalline with pH 5 and pH 6 MR fluids, variations were found in the MRR among the four single-crystal planes and surface artifacts were observed on the polycrystalline material. When polishing the single-crystal planes and the polycrystalline with the modified MR fluid at pH 4, however, minimal variation was observed in the MRR among the four orientations and a reduction in surface artifacts was achieved on the polycrystalline material.

  5. Noise reduction for low-dose helical CT by 3D penalized weighted least-squares sinogram smoothing

    NASA Astrophysics Data System (ADS)

    Wang, Jing; Li, Tianfang; Lu, Hongbing; Liang, Zhengrong

    2006-03-01

    Helical computed tomography (HCT) has several advantages over conventional step-and-shoot CT for imaging a relatively large object, especially for dynamic studies. However, HCT may increase X-ray exposure significantly to the patient. This work aims to reduce the radiation by lowering the X-ray tube current (mA) and filtering the low-mA (or dose) sinogram noise. Based on the noise properties of HCT sinogram, a three-dimensional (3D) penalized weighted least-squares (PWLS) objective function was constructed and an optimal sinogram was estimated by minimizing the objective function. To consider the difference of signal correlation among different direction of the HCT sinogram, an anisotropic Markov random filed (MRF) Gibbs function was designed as the penalty. The minimization of the objection function was performed by iterative Gauss-Seidel updating strategy. The effectiveness of the 3D-PWLS sinogram smoothing for low-dose HCT was demonstrated by a 3D Shepp-Logan head phantom study. Comparison studies with our previously developed KL domain PWLS sinogram smoothing algorithm indicate that the KL+2D-PWLS algorithm shows better performance on in-plane noise-resolution trade-off while the 3D-PLWS shows better performance on z-axis noise-resolution trade-off. Receiver operating characteristic (ROC) studies by using channelized Hotelling observer (CHO) shows that 3D-PWLS and KL+2DPWLS algorithms have similar performance on detectability in low-contrast environment.

  6. Intercomparison of Martian Lower Atmosphere Simulated Using Different Planetary Boundary Layer Parameterization Schemes

    NASA Technical Reports Server (NTRS)

    Natarajan, Murali; Fairlie, T. Duncan; Dwyer Cianciolo, Alicia; Smith, Michael D.

    2015-01-01

    We use the mesoscale modeling capability of Mars Weather Research and Forecasting (MarsWRF) model to study the sensitivity of the simulated Martian lower atmosphere to differences in the parameterization of the planetary boundary layer (PBL). Characterization of the Martian atmosphere and realistic representation of processes such as mixing of tracers like dust depend on how well the model reproduces the evolution of the PBL structure. MarsWRF is based on the NCAR WRF model and it retains some of the PBL schemes available in the earth version. Published studies have examined the performance of different PBL schemes in NCAR WRF with the help of observations. Currently such assessments are not feasible for Martian atmospheric models due to lack of observations. It is of interest though to study the sensitivity of the model to PBL parameterization. Typically, for standard Martian atmospheric simulations, we have used the Medium Range Forecast (MRF) PBL scheme, which considers a correction term to the vertical gradients to incorporate nonlocal effects. For this study, we have also used two other parameterizations, a non-local closure scheme called Yonsei University (YSU) PBL scheme and a turbulent kinetic energy closure scheme called Mellor- Yamada-Janjic (MYJ) PBL scheme. We will present intercomparisons of the near surface temperature profiles, boundary layer heights, and wind obtained from the different simulations. We plan to use available temperature observations from Mini TES instrument onboard the rovers Spirit and Opportunity in evaluating the model results.

  7. Dynamic and wear study of an extremely bidisperse magnetorheological fluid

    NASA Astrophysics Data System (ADS)

    Iglesias, G. R.; Fernández Ruiz-Morón, L.; Durán, J. D. G.; Delgado, A. V.

    2015-12-01

    In this work the friction and wear properties of five magnetorheological fluids (MRFs) with varying compositions are investigated. Considering that many of the proposed applications for these fluids involve lubricated contact between mobile metal-metal or polymer-metal parts, the relationship between MR response and wear behavior appears to be of fundamental importance. One of the fluids (MR#1) contains only the iron microparticles and base oil; the second and third ones (MR#2 and MR#3) contain an anti-wear additive as well. The fourth one (MR#4) is a well known commercial MRF. Finally, MR#5 is stabilized by dispersing the iron particles in a magnetite ferrofluid. The MR response of the latter fluid is better (higher yield stress and post-yield viscosity) than that of the others. More importantly, it remains (and even improves) after the wear test: the pressure applied in the four-ball apparatus produces a compaction of the magnetite layer around the iron microparticles. Additionally, the friction coefficient is larger, which seems paradoxical in principle, but can be explained by considering the stability of MR#5 in comparison to the other four MRs, which appear to undergo partial phase separation during the test. In fact, electron and optical microscope observations confirm a milder wear effect of MR#5, with almost complete absence of scars from the steel test spheres and homogeneous and shallow grooves on them. Comparatively, MR#2, MR#3 and, particularly, MR#1 produce a much more significant wear.

  8. Evaluation of performance indicators applied to a material recovery facility fed by mixed packaging waste.

    PubMed

    Mastellone, Maria Laura; Cremiato, Raffaele; Zaccariello, Lucio; Lotito, Roberta

    2017-06-01

    Most of the integrated systems for municipal solid waste management aim to increase the recycling of secondary materials by means of physical processes including sorting, shredding and reprocessing. Several restrictions prevent from reaching a very high material recycling efficiency: the variability of the composition of new-marketed materials used for packaging production and its shape and complexity are critical issues. The packaging goods are in fact made of different materials (aluminium, polymers, paper, etc.), possibly assembled, having different shape (flat, cylindrical, one-dimensional, etc.), density, colours, optical properties and so on. These aspects limit the effectiveness and efficiency of the sorting and reprocessing plants. The scope of this study was to evaluate the performance of a large scale Material Recovery Facility (MRF) by utilizing data collected during a long period of monitoring. The database resulted from the measured data has been organized in four sections: (1) data related to the amount and type of inlet waste; (2) amount and composition of output products and waste; (3) operating data (such as worked hours for shift, planned and unscheduled maintenance time, setting parameters of the equipment, and energy consumption for shift); (4) economic data (value of each product, disposal price for the produced waste, penalty for non-compliance of products and waste, etc.). A part of this database has been utilized to build an executive dashboard composed by a set of performance indicators suitable to measure the effectiveness and the efficiency of the MRF operations. The dashboard revealed itself as a powerful tool to support managers and engineers in their decisions in respect to the market demand or compliance regulation variation as well as in the designing of the lay-out improvements. The results indicated that the 40% of the input waste was recovered as valuable products and that a large part of these (88%) complied with the standards of the recycling companies. The evaluation of the indicators led to the decision to modify the layout to improve the interception of some polymers for which the performance indicators were poor. In particular, two additional optical sorters have to be inserted to increase the yield indicator and to the overall performance of the facility. Definitely, the results of the work allowed to: increase the yield and purity of products' flows; ensure the compliance of waste flows; increase the workability. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Impact of climate warming-induced increase in drought stress on successional dynamic of a coniferous forest within a dry inner Alpine environment

    NASA Astrophysics Data System (ADS)

    Schuster, R.; Zeisler, B.; Oberhuber, W.

    2012-04-01

    Climate sensitivity of tree growth will effect the development of forest ecosystems under a warmer and drier climate by changing species composition and inducing shifts in forest distribution. We applied dendroclimatological techniques to determine impact of climate warming on radial stem growth of three native and widespread coniferous tree species of the central Austrian Alps (Norway spruce, Picea abies; European larch, Larix decidua; Scots pine, Pinus sylvestris), which grow intermixed at dry-mesic sites within a dry inner Alpine environment (750 m a.s.l., Tyrol, Austria). Time series of annual increments were developed from > 250 saplings and mature trees. Radial growth response to recent climate warming was explored by means of moving response functions (MRF) and evaluation of trends in basal area increment (BAI) for the period 1911 - 2009. Climate-growth relationships revealed significant differences among species in response to water availability. While precipitation in May - June favoured radial growth of spruce and larch, Scots pine growth mainly depended on April - May precipitation. Spruce growth was most sensitive to May - June temperature (inverse relationship). Although MRF coefficients indicated increasing drought sensitivity of all species, which is most likely related to intensified belowground competition for scarce water with increasing stand density and higher evapotranspiration rates due to climate warming, recent BAI trends strikingly differed among species. While BAI of larch was distinctly declining, spruce showed steadily increasing BAI and quite constant BAI was maintained in drought adapted Scots pine, although at lowest level of all species. Furthermore, more favourable growing conditions of spruce in recent decades are indicated by scattered natural regeneration and higher growth rates of younger trees during first decades of their lifespan. Because human interference and wildlife stock is negligible within the study area, results suggest a competitive advantage of shade-tolerant and shallow-rooted late successional spruce over early successional species, whereby the spruce`s competitive strength is most likely related to synergistic effects of shade-tolerance and efficient uptake of small rainfall events by fine roots distributed primarily in upper soil layers. On the other hand, strikingly decreasing trend in BAI of larch is suggested to be due to negative influence of climate warming on tree water status. We conclude that climate warming-induced increase in drought sensitivity changed competitive strength of co-occurring conifers due to differences in inherent adaptive capacity at a drought-prone inner Alpine site.

  10. A vessel segmentation method for multi-modality angiographic images based on multi-scale filtering and statistical models.

    PubMed

    Lu, Pei; Xia, Jun; Li, Zhicheng; Xiong, Jing; Yang, Jian; Zhou, Shoujun; Wang, Lei; Chen, Mingyang; Wang, Cheng

    2016-11-08

    Accurate segmentation of blood vessels plays an important role in the computer-aided diagnosis and interventional treatment of vascular diseases. The statistical method is an important component of effective vessel segmentation; however, several limitations discourage the segmentation effect, i.e., dependence of the image modality, uneven contrast media, bias field, and overlapping intensity distribution of the object and background. In addition, the mixture models of the statistical methods are constructed relaying on the characteristics of the image histograms. Thus, it is a challenging issue for the traditional methods to be available in vessel segmentation from multi-modality angiographic images. To overcome these limitations, a flexible segmentation method with a fixed mixture model has been proposed for various angiography modalities. Our method mainly consists of three parts. Firstly, multi-scale filtering algorithm was used on the original images to enhance vessels and suppress noises. As a result, the filtered data achieved a new statistical characteristic. Secondly, a mixture model formed by three probabilistic distributions (two Exponential distributions and one Gaussian distribution) was built to fit the histogram curve of the filtered data, where the expectation maximization (EM) algorithm was used for parameters estimation. Finally, three-dimensional (3D) Markov random field (MRF) were employed to improve the accuracy of pixel-wise classification and posterior probability estimation. To quantitatively evaluate the performance of the proposed method, two phantoms simulating blood vessels with different tubular structures and noises have been devised. Meanwhile, four clinical angiographic data sets from different human organs have been used to qualitatively validate the method. To further test the performance, comparison tests between the proposed method and the traditional ones have been conducted on two different brain magnetic resonance angiography (MRA) data sets. The results of the phantoms were satisfying, e.g., the noise was greatly suppressed, the percentages of the misclassified voxels, i.e., the segmentation error ratios, were no more than 0.3%, and the Dice similarity coefficients (DSCs) were above 94%. According to the opinions of clinical vascular specialists, the vessels in various data sets were extracted with high accuracy since complete vessel trees were extracted while lesser non-vessels and background were falsely classified as vessel. In the comparison experiments, the proposed method showed its superiority in accuracy and robustness for extracting vascular structures from multi-modality angiographic images with complicated background noises. The experimental results demonstrated that our proposed method was available for various angiographic data. The main reason was that the constructed mixture probability model could unitarily classify vessel object from the multi-scale filtered data of various angiography images. The advantages of the proposed method lie in the following aspects: firstly, it can extract the vessels with poor angiography quality, since the multi-scale filtering algorithm can improve the vessel intensity in the circumstance such as uneven contrast media and bias field; secondly, it performed well for extracting the vessels in multi-modality angiographic images despite various signal-noises; and thirdly, it was implemented with better accuracy, and robustness than the traditional methods. Generally, these traits declare that the proposed method would have significant clinical application.

  11. Development and validation of segmentation and interpolation techniques in sinograms for metal artifact suppression in CT.

    PubMed

    Veldkamp, Wouter J H; Joemai, Raoul M S; van der Molen, Aart J; Geleijns, Jacob

    2010-02-01

    Metal prostheses cause artifacts in computed tomography (CT) images. The purpose of this work was to design an efficient and accurate metal segmentation in raw data to achieve artifact suppression and to improve CT image quality for patients with metal hip or shoulder prostheses. The artifact suppression technique incorporates two steps: metal object segmentation in raw data and replacement of the segmented region by new values using an interpolation scheme, followed by addition of the scaled metal signal intensity. Segmentation of metal is performed directly in sinograms, making it efficient and different from current methods that perform segmentation in reconstructed images in combination with Radon transformations. Metal signal segmentation is achieved by using a Markov random field model (MRF). Three interpolation methods are applied and investigated. To provide a proof of concept, CT data of five patients with metal implants were included in the study, as well as CT data of a PMMA phantom with Teflon, PVC, and titanium inserts. Accuracy was determined quantitatively by comparing mean Hounsfield (HU) values and standard deviation (SD) as a measure of distortion in phantom images with titanium (original and suppressed) and without titanium insert. Qualitative improvement was assessed by comparing uncorrected clinical images with artifact suppressed images. Artifacts in CT data of a phantom and five patients were automatically suppressed. The general visibility of structures clearly improved. In phantom images, the technique showed reduced SD close to the SD for the case where titanium was not inserted, indicating improved image quality. HU values in corrected images were different from expected values for all interpolation methods. Subtle differences between interpolation methods were found. The new artifact suppression design is efficient, for instance, in terms of preserving spatial resolution, as it is applied directly to original raw data. It successfully reduced artifacts in CT images of five patients and in phantom images. Sophisticated interpolation methods are needed to obtain reliable HU values close to the prosthesis.

  12. Magnetorheological finishing of chemical-vapor deposited zinc sulfide via chemically and mechanically modified fluids

    DOE PAGES

    Salzman, Sivan; Romanofsky, Henry J.; Giannechini, Lucca J.; ...

    2016-02-19

    In this study, we describe the anisotropy in the material removal rate (MRR) of the polycrystalline, chemical-vapor deposited zinc sulfide (ZnS).We define the polycrystalline anisotropy via microhardness and chemical erosion tests for four crystallographic orientations of ZnS: (100), (110), (111), and (311). Anisotropy in the MRR was studied under magnetorheological finishing (MRF) conditions. Three chemically and mechanically modified magnetorheological (MR) fluids at pH values of 4, 5, and 6 were used to test the MRR variations among the four single-crystal planes. When polishing the single-crystal planes and the polycrystalline with pH 5 and pH 6MR fluids, variations were found inmore » the MRR among the four single-crystal planes and surface artifacts were observed on the polycrystalline material. When polishing the single-crystal planes and the polycrystalline with the modified MR fluid at pH 4, however, minimal variation was observed in the MRR among the four orientations and a reduction in surface artifacts was achieved on the polycrystalline material.« less

  13. Extraction of endoscopic images for biomedical figure classification

    NASA Astrophysics Data System (ADS)

    Xue, Zhiyun; You, Daekeun; Chachra, Suchet; Antani, Sameer; Long, L. R.; Demner-Fushman, Dina; Thoma, George R.

    2015-03-01

    Modality filtering is an important feature in biomedical image searching systems and may significantly improve the retrieval performance of the system. This paper presents a new method for extracting endoscopic image figures from photograph images in biomedical literature, which are found to have highly diverse content and large variability in appearance. Our proposed method consists of three main stages: tissue image extraction, endoscopic image candidate extraction, and ophthalmic image filtering. For tissue image extraction we use image patch level clustering and MRF relabeling to detect images containing skin/tissue regions. Next, we find candidate endoscopic images by exploiting the round shape characteristics that commonly appear in these images. However, this step needs to compensate for images where endoscopic regions are not entirely round. In the third step we filter out the ophthalmic images which have shape characteristics very similar to the endoscopic images. We do this by using text information, specifically, anatomy terms, extracted from the figure caption. We tested and evaluated our method on a dataset of 115,370 photograph figures, and achieved promising precision and recall rates of 87% and 84%, respectively.

  14. Parental reflective functioning as a moderator of child internalizing difficulties in the context of child sexual abuse.

    PubMed

    Ensink, Karin; Bégin, Michaël; Normandin, Lina; Fonagy, Peter

    2017-11-01

    The objective was to examine pathways from child sexual abuse (CSA) and maternal mentalizing to child internalizing and externalizing difficulties and to test a model of MRF as a moderator of the relationships between CSA and child difficulties. The sample was comprised of 154 mothers and children aged 2-12 where 64 children had experienced CSA. To assess parental mentalizing the Parental Development Interview was rated with the Parental Reflective Functioning Scale. Child internalizing and externalizing difficulties were assessed with the Child Behavior Checklist (CBCL). Results indicate that there were significant inverse relationships between maternal mentalizing and child internalizing and externalizing difficulties. When maternal mentalizing was considered together with CSA, only maternal mentalizing was a significant predictor of child difficulties. Furthermore, maternal mentalizing moderated the relationship between CSA and child internalizing difficulties. These findings provide evidence of the importance of the parents' mentalizing stance for psychiatric symptoms of children aged 2-12, as well as children's recovery from CSA. The clinical implications of the findings are discussed. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Synthesis, spectroscopic characterization, thermal analysis and electrical conductivity studies of Mg(II), Ca(II), Sr(II) and Ba(II) vitamin B2 complexes

    NASA Astrophysics Data System (ADS)

    Refat, Moamen S.; Moussa, Mohamed A. A.; Mohamed, Soha F.

    2011-05-01

    Riboflavin (RF) complexes of Mg(II), Ca(II), Sr(II) and Ba(II) were successfully synthesized. Structures of metal complexes obtained were confirmed and characterized by elemental analysis, molar conductance, and infrared spectra. DC electrical conductivity measurements indicated that the alkaline earth metal (II) complexes of RF ligand are non-electrolytes. Elemental analysis of chelates suggest that the metal(II) ligand ratio is 1:2 with structure formula as [M(RF) 2( X) 2]· nH 2O. Infrared assignments clearly show that RF ligand coordinated as a bidentate feature through azomethine nitrogen of pyrazine ring and C dbnd O of pyrimidine-2,4-dione. Thermal analyses of Mg(II), Ca(II), Sr(II) and Ba(II) complexes were investigated using (TG/DSC) under atmospheric nitrogen between 30 and 800 °C. The surface morphology of the complexes was studied by SEM. The electrical conductivities of RF and its metal complexes were also measured with DC electrical conductivity in the temperature range from room to 483 K.

  16. Aerodynamic analysis of an isolated vehicle wheel

    NASA Astrophysics Data System (ADS)

    Leśniewicz, P.; Kulak, M.; Karczewski, M.

    2014-08-01

    Increasing fuel prices force the manufacturers to look into all aspects of car aerodynamics including wheels, tyres and rims in order to minimize their drag. By diminishing the aerodynamic drag of vehicle the fuel consumption will decrease, while driving safety and comfort will improve. In order to properly illustrate the impact of a rotating wheel aerodynamics on the car body, precise analysis of an isolated wheel should be performed beforehand. In order to represent wheel rotation in contact with the ground, presented CFD simulations included Moving Wall boundary as well as Multiple Reference Frame should be performed. Sliding mesh approach is favoured but too costly at the moment. Global and local flow quantities obtained during simulations were compared to an experiment in order to assess the validity of the numerical model. Results of investigation illustrates dependency between type of simulation and coefficients (drag and lift). MRF approach proved to be a better solution giving result closer to experiment. Investigation of the model with contact area between the wheel and the ground helps to illustrate the impact of rotating wheel aerodynamics on the car body.

  17. Evaluation of soil-foundation-structure interaction effects on seismic response demands of multi-story MRF buildings on raft foundations

    NASA Astrophysics Data System (ADS)

    Abdel Raheem, Shehata E.; Ahmed, Mohamed M.; Alazrak, Tarek M. A.

    2015-03-01

    Soil conditions have a great deal to do with damage to structures during earthquakes. Hence the investigation on the energy transfer mechanism from soils to buildings during earthquakes is critical for the seismic design of multi-story buildings and for upgrading existing structures. Thus, the need for research into soil-structure interaction (SSI) problems is greater than ever. Moreover, recent studies show that the effects of SSI may be detrimental to the seismic response of structure and neglecting SSI in analysis may lead to un-conservative design. Despite this, the conventional design procedure usually involves assumption of fixity at the base of foundation neglecting the flexibility of the foundation, the compressibility of the underneath soil and, consequently, the effect of foundation settlement on further redistribution of bending moment and shear force demands. Hence the SSI analysis of multi-story buildings is the main focus of this research; the effects of SSI are analyzed for typical multi-story building resting on raft foundation. Three methods of analysis are used for seismic demands evaluation of the target moment-resistant frame buildings: equivalent static load; response spectrum methods and nonlinear time history analysis with suit of nine time history records. Three-dimensional FE model is constructed to investigate the effects of different soil conditions and number of stories on the vibration characteristics and seismic response demands of building structures. Numerical results obtained using SSI model with different soil conditions are compared to those corresponding to fixed-base support modeling assumption. The peak responses of story shear, story moment, story displacement, story drift, moments at beam ends, as well as force of inner columns are analyzed. The results of different analysis approaches are used to evaluate the advantages, limitations, and ease of application of each approach for seismic analysis.

  18. Change detection on LOD 2 building models with very high resolution spaceborne stereo imagery

    NASA Astrophysics Data System (ADS)

    Qin, Rongjun

    2014-10-01

    Due to the fast development of the urban environment, the need for efficient maintenance and updating of 3D building models is ever increasing. Change detection is an essential step to spot the changed area for data (map/3D models) updating and urban monitoring. Traditional methods based on 2D images are no longer suitable for change detection in building scale, owing to the increased spectral variability of the building roofs and larger perspective distortion of the very high resolution (VHR) imagery. Change detection in 3D is increasingly being investigated using airborne laser scanning data or matched Digital Surface Models (DSM), but rare study has been conducted regarding to change detection on 3D city models with VHR images, which is more informative but meanwhile more complicated. This is due to the fact that the 3D models are abstracted geometric representation of the urban reality, while the VHR images record everything. In this paper, a novel method is proposed to detect changes directly on LOD (Level of Detail) 2 building models with VHR spaceborne stereo images from a different date, with particular focus on addressing the special characteristics of the 3D models. In the first step, the 3D building models are projected onto a raster grid, encoded with building object, terrain object, and planar faces. The DSM is extracted from the stereo imagery by hierarchical semi-global matching (SGM). In the second step, a multi-channel change indicator is extracted between the 3D models and stereo images, considering the inherent geometric consistency (IGC), height difference, and texture similarity for each planar face. Each channel of the indicator is then clustered with the Self-organizing Map (SOM), with "change", "non-change" and "uncertain change" status labeled through a voting strategy. The "uncertain changes" are then determined with a Markov Random Field (MRF) analysis considering the geometric relationship between faces. In the third step, buildings are extracted combining the multispectral images and the DSM by morphological operators, and the new buildings are determined by excluding the verified unchanged buildings from the second step. Both the synthetic experiment with Worldview-2 stereo imagery and the real experiment with IKONOS stereo imagery are carried out to demonstrate the effectiveness of the proposed method. It is shown that the proposed method can be applied as an effective way to monitoring the building changes, as well as updating 3D models from one epoch to the other.

  19. Ultra-smooth finishing of aspheric surfaces using CAST technology

    NASA Astrophysics Data System (ADS)

    Kong, John; Young, Kevin

    2014-06-01

    Growing applications for astronomical ground-based adaptive systems and air-born telescope systems demand complex optical surface designs combined with ultra-smooth finishing. The use of more sophisticated and accurate optics, especially aspheric ones, allows for shorter optical trains with smaller sizes and a reduced number of components. This in turn reduces fabrication and alignment time and costs. These aspheric components include the following: steep surfaces with large aspheric departures; more complex surface feature designs like stand-alone off-axis-parabola (OAP) and free form optics that combine surface complexity with a requirement for ultra-high smoothness, as well as special optic materials such as lightweight silicon carbide (SiC) for air-born systems. Various fabrication technologies for finishing ultra-smooth aspheric surfaces are progressing to meet these growing and demanding challenges, especially Magnetorheological Finishing (MRF) and ion-milling. These methods have demonstrated some good success as well as a certain level of limitations. Amongst them, computer-controlled asphere surface-finishing technology (CAST), developed by Precision Asphere Inc. (PAI), plays an important role in a cost effective manufacturing environment and has successfully delivered numerous products for the applications mentioned above. One of the most recent successes is the Gemini Planet Imager (GPI), the world's most powerful planet-hunting instrument, with critical aspheric components (seven OAPs and free form optics) made using CAST technology. GPI showed off its first images in a press release on January 7, 2014 . This paper reviews features of today's technologies in handling the ultra-smooth aspheric optics, especially the capabilities of CAST on these challenging products. As examples, three groups of aspheres deployed in astronomical optics systems, both polished and finished using CAST, will be discussed in detail.

  20. Identification and characterization of an alternative promoter of the human PGC-1{alpha} gene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoshioka, Toyo; Inagaki, Kenjiro; Noguchi, Tetsuya, E-mail: noguchi@med.kobe-u.ac.jp

    2009-04-17

    The transcriptional regulator peroxisome proliferator-activated receptor-{gamma} coactivator-1{alpha} (PGC-1{alpha}) controls mitochondrial biogenesis and energy homeostasis. Although physical exercise induces PGC-1{alpha} expression in muscle, the underlying mechanism of this effect has remained incompletely understood. We recently identified a novel muscle-enriched isoform of PGC-1{alpha} transcript (designated PGC-1{alpha}-b) that is derived from a previously unidentified first exon. We have now cloned and characterized the human PGC-1{alpha}-b promoter. The muscle-specific transcription factors MyoD and MRF4 transactivated this promoter through interaction with a proximal E-box motif. Furthermore, either forced expression of Ca{sup 2+}- and calmodulin-dependent protein kinase IV (CaMKIV), calcineurin A, or the p38 mitogen-activated proteinmore » kinase (p38 MAPK) kinase MKK6 or the intracellular accumulation of cAMP activated the PGC-1{alpha}-b promoter in cultured myoblasts through recruitment of cAMP response element (CRE)-binding protein (CREB) to a putative CRE located downstream of the E-box. Our results thus reveal a potential molecular basis for isoform-specific regulation of PGC-1{alpha} expression in contracting muscle.« less

  1. PKCε as a novel promoter of skeletal muscle differentiation and regeneration.

    PubMed

    Di Marcantonio, D; Galli, D; Carubbi, C; Gobbi, G; Queirolo, V; Martini, S; Merighi, S; Vaccarezza, M; Maffulli, N; Sykes, S M; Vitale, M; Mirandola, P

    2015-11-15

    Satellite cells are muscle resident stem cells and are responsible for muscle regeneration. In this study we investigate the involvement of PKCε during muscle stem cell differentiation in vitro and in vivo. Here, we describe the identification of a previously unrecognized role for the PKCε-HMGA1 signaling axis in myoblast differentiation and regeneration processes. PKCε expression was modulated in the C2C12 cell line and primary murine satellite cells in vitro, as well as in an in vivo model of muscle regeneration. Immunohistochemistry and immunofluorescence, RT-PCR and shRNA silencing techniques were used to determine the role of PKCε and HMGA1 in myogenic differentiation. PKCε expression increases and subsequently re-localizes to the nucleus during skeletal muscle cell differentiation. In the nucleus, PKCε blocks Hmga1 expression to promote Myogenin and Mrf4 accumulation and myoblast formation. Following in vivo muscle injury, PKCε accumulates in regenerating, centrally-nucleated myofibers. Pharmacological inhibition of PKCε impairs the expression of two crucial markers of muscle differentiation, namely MyoD and Myogenin, during injury induced muscle regeneration. This work identifies the PKCε-HMGA1 signaling axis as a positive regulator of skeletal muscle differentiation. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Caater: Arat - Fokker 27, aircraft facility

    NASA Astrophysics Data System (ADS)

    Penazzi, G.; Joussaume, S.

    2003-04-01

    ARAT (Avion de Recherche Atmosphérique et de Télédétection), is owned and operated by IGN (Institut Géographique National) and managed by INSU, an institute of CNRS (Centre National de la Recherche Scientifique). ARAT is a versatile flying laboratory offering several scientific configurations: basic meteorological instrumentation, turbulent flux equipment, radiation measurement (Visible, Red, IR, UV, J(NO_2), radiance, ground temperature), microphysics sensors, in-situ and remote sensing chemistry instruments (NO-NO_2-NOy and PAN, Water Vapour and Ozone Lidars), Aerosol Lidar, Earth Observation Instrumentation (Visible, Microwave, POLDER), etc. Access to ARAT was offered through the EC-funded IHP-ARI contract, under a co-ordinated aircraft project (with MRF, U.K.; DLR, Germany and Meteo France) called CAATER (Co-ordinated Access to Aircraft for Transnational Environmental Research). Since 2000 access to ARAT has been offered to 6 research groups from different EU Member States for about 10 flight hours each. This project is a follow-on to STAAARTE (1996-2000), which gave access to ARAT to 14 user groups for about 8 flight hours per group. A new project, with new aircraft, within the frame of an Integrated Infrastructure Initiative of the Sixth Framework Programme is currently in preparation.

  3. Modeling of gas-liquid mass transfer in a stirred tank bioreactor agitated by a Rushton turbine or a new pitched blade impeller.

    PubMed

    Gelves, Ricardo; Dietrich, A; Takors, Ralf

    2014-03-01

    A combined computational fluid dynamics (CFD) and population balance model (PBM) approach has been applied to simulate hydrodynamics and mass transfer in a 0.18 m(3) gas-liquid stirred bioreactor agitated by (1) a Rushton turbine, and (2) a new pitched blade geometry with rotating cartridges. The operating conditions chosen were motivated by typical settings used for culturing mammalian cells. The effects of turbulence, rotating flow, bubbles breakage and coalescence were simulated using the k-ε, multiple reference frame (MRF), Sliding mesh (SM) and PBM approaches, respectively. Considering the new pitched blade geometry with rotating aeration microspargers, [Formula: see text] mass transfer was estimated to be 34 times higher than the conventional Rushton turbine set-up. Notably, the impeller power consumption was modeled to be about 50 % lower. Independent [Formula: see text] measurements applying the same operational conditions confirmed this finding. Motivated by these simulated and experimental results, the new aeration and stirring device is qualified as a very promising tool especially useful for cell culture applications which are characterized by the challenging problem of achieving relatively high mass transfer conditions while inserting only low stirrer energy.

  4. Is chronic ventilatory support really effective in patients with amyotrophic lateral sclerosis?

    PubMed

    Hazenberg, A; Kerstjens, H A M; Prins, S C L; Vermeulen, K M; Wijkstra, P J

    2016-12-01

    Most patients with amyotrophic lateral sclerosis (ALS) develop respiratory insufficiency in the advanced stage of their disease. Non-invasive ventilation (NIV) is commonly regarded to be a treatment that is effective in reducing these complaints. To assess whether the effect of NIV on gas exchange and quality of life (QOL) is different in patients with ALS versus without ALS. A post hoc analysis was done with data from a previously published trial, in which all patients were instituted on NIV. Arterial blood gasses were assessed next to QOL by generic as well as disease-specific questionnaires. 77 patients started NIV: 30 with ALS and 47 without. Both groups showed significant improvements in blood gasses after 2 and 6 months. Compared to the non-ALS group, the ALS group had significantly worse scores after 6 months in MRF-28, SRI, HADS and SF-36 than the non-ALS group. This study shows that NIV improves gas exchange, both in patients with and without ALS. QOL improves markedly more in patients without ALS than in those with ALS, in whom only some domains improve. Our observation of little or no effect in ALS patients warrants a large study limited to ALS patients only.

  5. Laser damage initiation and growth of antireflection coated S-FAP crystal surfaces prepared by pitch lap and magnetorheological finishing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stolz, C J; Menapace, J A; Schaffers, K I

    Antireflection (AR) coatings typically damage at the interface between the substrate and coating. Therefore the substrate finishing technology can have an impact on the laser resistance of the coating. For this study, AR coatings were deposited on Yb:S-FAP [Yb{sup 3+}:Sr{sub 5}(PO{sub 4}){sub 3}F] crystals that received a final polish by both conventional pitch lap finishing as well as magnetorheological finishing (MRF). SEM images of the damage morphology reveals laser damage originates at scratches and at substrate coating interfacial absorbing defects. Previous damage stability tests on multilayer mirror coatings and bare surfaces revealed damage growth can occur at fluences below themore » initiation fluence. The results from this study suggest the opposite trend for AR coatings. Investigation of unstable HR and uncoated surface damage morphologies reveals significant radial cracking that is not apparent with AR damage due to AR delamination from the coated surface with few apparent cracks at the damage boundary. Damage stability tests show that coated Yb:S-FAP crystals can operate at 1057 nm at fluences around 20 J/cm{sup 2} at 10 ns; almost twice the initiation damage threshold.« less

  6. Unsteady numerical analysis of solid-liquid two-phase flow in stirred tank with double helical ribbon impeller

    NASA Astrophysics Data System (ADS)

    Bai, He; Chen, Xiangshan; Zhao, Guangyu; Xiao, Chenglei; Li, Chen; Zhong, Cheng; Chen, Yu

    2017-08-01

    In order to enhance the mixing process of soil contaminated by oil and water, one kind of double helical ribbon (DHR) impeller was developed. In this study, the unsteady simulation analysis of solid-liquid two-phase flow in stirring tank with DHR impeller was conducted by the the computational fluid dynamics and the multi-reference frame (MRF) method. It was found that at 0-3.0 s stage, the rate of liquid was greater than the rate of solid particles, while the power consumption was 5-6 times more than the smooth operation. The rates of the liquid and the solid particles were almost the same, and the required power was 32 KW at t > 3.0 s. The flow of the solid particles in the tank was a typical axial circle flow, and the dispersed sequence of the solid that was accumulated at the bottom of the tank was: the bottom loop region, the annular region near the wall of the groove and finally the area near axial center. The results show that the DHR impeller was suitable for the mixing of liquid-solid two-phase.

  7. Increased prenatal IGF2 expression due to the porcine intron3-G3072A mutation may be responsible for increased muscle mass.

    PubMed

    Clark, D L; Clark, D I; Beever, J E; Dilger, A C

    2015-05-01

    A SNP (IGF2 G3072A) within intron 3 of disrupts a binding site for the repressor zinc finger BED-type containing 6 (ZBED6), leading to increased carcass lean yields in pigs. However, the relative contributions of prenatal as opposed to postnatal increased IGF2 expression are unclear. As muscle fiber number is set at birth, prenatal and neonate skeletal muscle development is critical in determining mature growth potential. Therefore, the objectives of this study were to determine the contributions of hyperplasia and hypertrophy to increased muscle mass and to delineate the effect of the mutation on the expression of myogenic genes during prenatal and postnatal growth. Sows (IGF2 A/A) were bred to a single heterozygous (IGF2 A/G) boar. For fetal samples, sows were euthanized at 60 and 90 d of gestation (d60 and d90) to obtain fetuses. Male and female offspring were also euthanized at birth (0d), weaning (21d), and market weight of approximately 130 kg (176d). At each sampling time, the LM, psoas major (PM), and semitendinosus (ST) muscles were weighed. Samples of the LM were used to quantify the expression of IGF family members, myogenic regulatory factors (MRF), myosin heavy chain isoforms, and growth factors, myostatin, and . Liver samples were used to quantify and expression. At 176d, weights of LM, PM, and ST muscles were all increased approximately 8% to 14% (P < 0.01) in pigs with paternal A (A(Pat)) alleles compared with those with paternal G (G(Pat)) alleles. Additionally, total muscle fiber number in the ST at 176d tended to be greater (P = 0.10), whereas muscle fiber cross-sectional area tended to be reduced ( P= 0.08) in A(Pat) pigs compared with G(Pat) pigs. In addition to the expected 2.7- to 4.5-fold increase (P ≤ 0.02) in expression in the LM in A(Pat) compared with G(Pat) pigs at postnatal sampling times (21d and 176d), IGF2 expression was also increased (P ≤ 0.06) 1.4- to 1.5-fold at d90 of gestation and at birth. At d90, expression of myogenic factor 5 (MYF5), a MRF expressed in proliferating myoblasts, in the LM was greater (P = 0.01) in A (Pat) pigs than in G(Pat) pigs. Interestingly, at 21d hepatic expression was greater (P = 0.01), whereas expression decreased (P = 0.01) in A(Pat) pigs compared with G(Pat) pigs; however, there were no differences (P ≥ 0.18) in hepatic expression between genotypes at 0d and 176d. These data suggest that prenatal hyperplasia of muscle fibers stimulated by increased IGF2 expression may contribute to increased muscle mass of A(Pat) pigs.

  8. Interval-parameter semi-infinite fuzzy-stochastic mixed-integer programming approach for environmental management under multiple uncertainties.

    PubMed

    Guo, P; Huang, G H

    2010-03-01

    In this study, an interval-parameter semi-infinite fuzzy-chance-constrained mixed-integer linear programming (ISIFCIP) approach is developed for supporting long-term planning of waste-management systems under multiple uncertainties in the City of Regina, Canada. The method improves upon the existing interval-parameter semi-infinite programming (ISIP) and fuzzy-chance-constrained programming (FCCP) by incorporating uncertainties expressed as dual uncertainties of functional intervals and multiple uncertainties of distributions with fuzzy-interval admissible probability of violating constraint within a general optimization framework. The binary-variable solutions represent the decisions of waste-management-facility expansion, and the continuous ones are related to decisions of waste-flow allocation. The interval solutions can help decision-makers to obtain multiple decision alternatives, as well as provide bases for further analyses of tradeoffs between waste-management cost and system-failure risk. In the application to the City of Regina, Canada, two scenarios are considered. In Scenario 1, the City's waste-management practices would be based on the existing policy over the next 25 years. The total diversion rate for the residential waste would be approximately 14%. Scenario 2 is associated with a policy for waste minimization and diversion, where 35% diversion of residential waste should be achieved within 15 years, and 50% diversion over 25 years. In this scenario, not only landfill would be expanded, but also CF and MRF would be expanded. Through the scenario analyses, useful decision support for the City's solid-waste managers and decision-makers has been generated. Three special characteristics of the proposed method make it unique compared with other optimization techniques that deal with uncertainties. Firstly, it is useful for tackling multiple uncertainties expressed as intervals, functional intervals, probability distributions, fuzzy sets, and their combinations; secondly, it has capability in addressing the temporal variations of the functional intervals; thirdly, it can facilitate dynamic analysis for decisions of facility-expansion planning and waste-flow allocation within a multi-facility, multi-period and multi-option context. Copyright 2009 Elsevier Ltd. All rights reserved.

  9. Magnetostatic simulation on a novel design of axially multi-coiled magnetorheological brakes

    NASA Astrophysics Data System (ADS)

    Ubaidillah, Permata, A. N. S.; Wibowo, A.; Budiana, E. P.; Yahya, I.; Mazlan, S. A.

    2016-03-01

    This paper describes the 3D magnetostatic simulation of a novel design axially multi-coiled magnetorheological (MRB). The proposed model is expected to produce a concentrated magnetic flux on the surface of the rotor disk brake. Thus, the braking torque enhancement is expected to be higher than that of conventional big size single-coil-equipped disk-type MRB. The axially multi-coiled MRB design features multiple electromagnetic poles from by several coils placed in the axial direction outside the MRB body. The magnetostatic analysis was developed utilizing finite element software namely ANSOFT-MAXWELL in 3D environment. The distribution of magnetic flux was investigated in a pair of the coil that represents the other pairs of electromagnetic parts. The simulation was done in 0.5 mm gap filled by magnetorheological fluids (MRFs) (MRF-132DG). The simulation was performed in various applied currents i.e. 0.25, 0.5, 0.75, 1, 1.5, and 2 Amperes. The results showed that the axially multi-coiled MRB provides a considerable magnetic flux (maximum of 337 mT/area). The active energizing areas of the MRB are proven to be more intensive than the conventional MRB. The proposed MRB exhibited a compact and robust design for achieving high torque MRB.

  10. The Hippo pathway member Yap plays a key role in influencing fate decisions in muscle satellite cells

    PubMed Central

    Judson, Robert N.; Tremblay, Annie M.; Knopp, Paul; White, Robert B.; Urcia, Roby; De Bari, Cosimo; Zammit, Peter S.; Camargo, Fernando D.; Wackerhage, Henning

    2012-01-01

    Summary Satellite cells are the resident stem cells of skeletal muscle. Mitotically quiescent in mature muscle, they can be activated to proliferate and generate myoblasts to supply further myonuclei to hypertrophying or regenerating muscle fibres, or self-renew to maintain the resident stem cell pool. Here, we identify the transcriptional co-factor Yap as a novel regulator of satellite cell fate decisions. Yap expression increases during satellite cell activation and Yap remains highly expressed until after the differentiation versus self-renewal decision is made. Constitutive expression of Yap maintains Pax7+ and MyoD+ satellite cells and satellite cell-derived myoblasts, promotes proliferation but prevents differentiation. In contrast, Yap knockdown reduces the proliferation of satellite cell-derived myoblasts by ≈40%. Consistent with the cellular phenotype, microarrays show that Yap increases expression of genes associated with Yap inhibition, the cell cycle, ribosome biogenesis and that it represses several genes associated with angiotensin signalling. We also identify known regulators of satellite cell function such as BMP4, CD34 and Myf6 (Mrf4) as genes whose expression is dependent on Yap activity. Finally, we confirm in myoblasts that Yap binds to Tead transcription factors and co-activates MCAT elements which are enriched in the proximal promoters of Yap-responsive genes. PMID:23038772

  11. Thinning of PLZT ceramic wafers for sensor integration

    NASA Astrophysics Data System (ADS)

    Jin, Na; Liu, Weiguo

    2010-08-01

    Characteristics of transparent PLZT ceramics can be tailored by controlling the component of them, and therefore showed excellent dielectric, piezoelectric, pyroelectric and ferroelectric properties. To integrate the ceramics with microelectronic circuit to realize integrated applications, the ceramic wafers have to be thinned down to micrometer scale in thickness. A7/65/35 PLZT ceramic wafer was selected in this study for the thinning process. Size of the wafer was 10×10mm with an initial thickness of 300μm. A novel membrane transfer process (MTP) was developed for the thinning and integration of the ceramic wafers. In the MTP process, the ceramic wafer was bonded to silicon wafer using a polymer bonding method. Mechanical grinding method was applied to reduce the thickness of the ceramic. To minimize the surface damage in the ceramic wafer caused by the mechanical grinding, magnetorheological finishing (MRF) method was utilized to polish the wafer. White light interference (WLI) apparatus was used to monitor the surface qualities of the grinded and ploished ceramic wafers. For the PLZT membrane obtained from the MTP process, the final thickness of the thinned and polished wafer was 10μm, the surface roughness was below 1nm in rms, and the flatness was better than λ/5.

  12. SST-Forced Seasonal Simulation and Prediction Skill for Versions of the NCEP/MRF Model.

    NASA Astrophysics Data System (ADS)

    Livezey, Robert E.; Masutani, Michiko; Jil, Ming

    1996-03-01

    The feasibility of using a two-tier approach to provide guidance to operational long-lead seasonal prediction is explored. The approach includes first a forecast of global sea surface temperatures (SSTs) using a coupled general circulation model, followed by an atmospheric forecast using an atmospheric general circulation model (AGCM). For this exploration, ensembles of decade-long integrations of the AGCM driven by observed SSTs and ensembles of integrations of select cases driven by forecast SSTs have been conducted. The ability of the model in these sets of runs to reproduce observed atmospheric conditions has been evaluated with a multiparameter performance analysis.Results have identified performance and skill levels in the specified SST runs, for winters and springs over the Pacific/North America region, that are sufficient to impact operational seasonal predictions in years with major El Niño-Southern Oscillation (ENSO) episodes. Further, these levels were substantially reproduced in the forecast SST runs for 1-month leads and in many instances for up to one-season leads. In fact, overall the 0- and 1-month-lead forecasts of seasonal temperature over the United States for three falls and winters with major ENSO episodes were substantially better than corresponding official forecasts. Thus, there is considerable reason to develop a dynamical component for the official seasonal forecast process.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Banar, Mufide; Cokaygil, Zerrin; Ozkan, Aysun

    Life cycle assessment (LCA) methodology was used to determine the optimum municipal solid waste (MSW) management strategy for Eskisehir city. Eskisehir is one of the developing cities of Turkey where a total of approximately 750 tons/day of waste is generated. An effective MSW management system is needed in this city since the generated MSW is dumped in an unregulated dumping site that has no liner, no biogas capture, etc. Therefore, five different scenarios were developed as alternatives to the current waste management system. Collection and transportation of waste, a material recovery facility (MRF), recycling, composting, incineration and landfilling processes weremore » considered in these scenarios. SimaPro7 libraries were used to obtain background data for the life cycle inventory. One ton of municipal solid waste of Eskisehir was selected as the functional unit. The alternative scenarios were compared through the CML 2000 method and these comparisons were carried out from the abiotic depletion, global warming, human toxicity, acidification, eutrophication and photochemical ozone depletion points of view. According to the comparisons and sensitivity analysis, composting scenario, S3, is the more environmentally preferable alternative. In this study waste management alternatives were investigated only on an environmental point of view. For that reason, it might be supported with other decision-making tools that consider the economic and social effects of solid waste management.« less

  14. Sinusoidal modulation analysis for optical system MTF measurements.

    PubMed

    Boone, J M; Yu, T; Seibert, J A

    1996-12-01

    The modulation transfer function (MTF) is a commonly used metric for defining the spatial resolution characteristics of imaging systems. While the MTF is defined in terms of how an imaging system demodulates the amplitude of a sinusoidal input, this approach has not been in general use to measure MTFs in the medical imaging community because producing sinusoidal x-ray patterns is technically difficult. However, for optical systems such as charge coupled devices (CCD), which are rapidly becoming a part of many medical digital imaging systems, the direct measurement of modulation at discrete spatial frequencies using a sinusoidal test pattern is practical. A commercially available optical test pattern containing spatial frequencies ranging from 0.375 cycles/mm to 80 cycles/mm was sued to determine the MRF of a CCD-based optical system. These results were compared with the angulated slit method of Fujita [H. Fujita, D. Tsia, T. Itoh, K. Doi, J. Morishita, K. Ueda, and A. Ohtsuka, "A simple method for determining the modulation transfer function in digital radiography," IEEE Trans. Medical Imaging 11, 34-39 (1992)]. The use of a semiautomated profiled iterated reconstruction technique (PIRT) is introduced, where the shift factor between successive pixel rows (due to angulation) is optimized iteratively by least-squares error analysis rather than by hand measurement of the slit angle. PIRT was used to find the slit angle for the Fujita technique and to find the sine-pattern angle for the sine-pattern technique. Computer simulation of PIRT for the case of the slit image (a line spread function) demonstrated that it produced a more accurate angle determination than "hand" measurement, and there is a significant difference between the errors in the two techniques (Wilcoxon Signed Rank Test, p < 0.001). The sine-pattern method and the Fujita slit method produced comparable MTF curves for the CCD camera evaluated.

  15. Expression and interaction of muscle-related genes in the lamprey imply the evolutionary scenario for vertebrate skeletal muscle, in association with the acquisition of the neck and fins.

    PubMed

    Kusakabe, Rie; Kuraku, Shigehiro; Kuratani, Shigeru

    2011-02-01

    Gnathostomes (jawed vertebrates) possess skeletal muscles with unique functional and developmental features that are absent from cyclostomes-i.e., lamprey and hagfish. These gnathostome-specific traits include the epaxial and hypaxial division of myotomes, paired fin/limb muscles, shoulder girdle muscles, and the muscle associated with the tongue and the neck. Many of these muscles are derived from several rostral somites, specifically from their hypaxial myotomic domains. However, it has not been clarified how the complicated morphology of these muscles was acquired in the evolution of vertebrates. Here we describe the expression of lamprey homologs of transcription factor genes, including a myogenic regulatory factor of the Myod family (MRF), Pax3/7, Lbx, and Zic, which play important roles in the development of ep-/hypaxial somitic muscles in gnathostomes, and show that the ventral portion of lamprey somites is comparable to the ventral dermomyotome in gnathostomes. The supra- and infraoptic muscles, derived from the two anterior somites in the lamprey, are molecularly specified before their extensive invasion into the head region. Of these, the infraoptic myotomes are suggested to represent the cucullaris homologue in the lamprey based on their topographical position in the embryonic pattern. Slightly caudal myotomes in the lamprey give rise to the hypobranchial muscle, the developmental homologue of the gnathostome hypobranchial musculature. The dorsal moieties of the lamprey somites express a Zic gene, which in teleosts specifies the epaxial identities of the somites. These evidences suggest that, although the myotomes in the ancestral jawless vertebrates do not exhibit ep-/hypaxial distinction at the morphological level, their dorsoventral specification would have already been present at gene regulatory levels, prior to the cyclostome-gnathostome divergence, which may have functioned as the key innovation to establish the ep-/hypaxial distinction in gnathostomes. Copyright © 2010 Elsevier Inc. All rights reserved.

  16. Magnetorheological fluids and applications to adaptive landing gear for a lightweight helicopter

    NASA Astrophysics Data System (ADS)

    Ahure-Powell, Louise A.

    During hard landing or crash events of a helicopter there are impact loads that can be injurious to crew and other occupants as well as damaging to the helicopter structure. Landing gear systems are the first in line to protect crew and passengers from detrimental crash loads. The main focus of this research is to improve landing gear systems of a lightweight helicopter. Magnetorheological fluids (MRFs) provide potential solutions to several engineering challenges in a broad range of applications. One application that has been considered recently is the use of magnetorheological (MR) dampers in helicopter landing gear systems. In such application, the adaptive landing gear systems have to continuously adjust their stroking load in response to various operating conditions. In order to support this rotorcraft application, there is a necessity to validate that MRFs are qualified for landing gear applications. First, MRF composites, synthesized utilizing three hydraulic oils certified for use in landing gear systems, two average diameters of spherical magnetic particles, and a lecithin surfactant, are formulated to investigate their performance for potential use in a helicopter landing gear. The magnetorheology of these MR fluids is characterized through a range of tests, including (a) magnetorheology (yield stress and viscosity) as a function of magnetic field, (b) sedimentation analysis using an inductance-based sensor, (c) cycling of a small-scale MR damper undergoing sinusoidal excitations (at 2.5 and 5 Hz), and (d) impact testing of an MR damper for a range of magnetic field strengths and velocities using a free-flight drop tower facility. The performance of these MR fluids was analyzed, and their behavior was compared to standard commercial MR fluids. Based on this range of tests used to characterize the MR fluids synthesized, it was shown that it is feasible to utilize certified landing gear hydraulic oils as the carrier fluids to make suitable MR fluids. Another objective of this research is to satisfy the requirement of a helicopter landing gear damper to enable adaptive shock mitigation performance over a desired sink rate range. It was intended to maintain a constant stroking force of 17 793 N (4000 lbf) over a sink rate range of 1.8-7.9 m/s (6-26 ft/s), which is a substantial increase of the high-end of the sink rate range from 3.7 m/s (12 ft/s), in prior related work, to 7.9 m/s (26 ft/s). To achieve this increase in the high-end of the sink rate range, a spiral wave spring-assisted passive valve MR landing gear damper was developed. Drop tests were first conducted using a single MR landing gear damper. In order to maintain the peak stroking load constant over the desired sink rate range, a bang-bang current control algorithm was formulated using a force feedback signal. The controlled stroking loads were experimentally evaluated using a single drop damper test setup. To emulate the landing gear system of a lightweight helicopter, an iron bird drop test apparatus with four spiral wave spring-assisted relief valves MR landing gear dampers, was fabricated and successfully tested. The effectiveness of the proposed adaptive MR landing gear damper was theoretically and experimentally verified. The bang-bang current control algorithm successfully regulated the stroking load at 4000 lbf over a sink rate range of 6-22 ft/s in the iron bird tests, which significantly exceeds the sink rate range of the previous study (6-12 ft/s). The effectiveness of the proposed adaptive MR landing gear damper with a spiral wave spring-assisted passive valve is theoretically and experimentally verified.

  17. Integrated SeismoGeodetic Systsem with High-Resolution, Real-Time GNSS and Accelerometer Observation For Earthquake Early Warning Application.

    NASA Astrophysics Data System (ADS)

    Passmore, P. R.; Jackson, M.; Zimakov, L. G.; Raczka, J.; Davidson, P.

    2014-12-01

    The key requirements for Earthquake Early Warning and other Rapid Event Notification Systems are: Quick delivery of digital data from a field station to the acquisition and processing center; Data integrity for real-time earthquake notification in order to provide warning prior to significant ground shaking in the given target area. These two requirements are met in the recently developed Trimble SG160-09 SeismoGeodetic System, which integrates both GNSS and acceleration measurements using the Kalman filter algorithm to create a new high-rate (200 sps), real-time displacement with sufficient accuracy and very low latency for rapid delivery of the acquired data to a processing center. The data acquisition algorithm in the SG160-09 System provides output of both acceleration and displacement digital data with 0.2 sec delay. This is a significant reduction in the time interval required for real-time transmission compared to data delivery algorithms available in digitizers currently used in other Earthquake Early Warning networks. Both acceleration and displacement data are recorded and transmitted to the processing site in a specially developed Multiplexed Recording Format (MRF) that minimizes the bandwidth required for real-time data transmission. In addition, a built in algorithm calculates the τc and Pd once the event is declared. The SG160-09 System keeps track of what data has not been acknowledged and re-transmits the data giving priority to current data. Modified REF TEK Protocol Daemon (RTPD) receives the digital data and acknowledges data received without error. It forwards this "good" data to processing clients of various real-time data processing software including Earthworm and SeisComP3. The processing clients cache packets when a data gap occurs due to a dropped packet or network outage. The cache packet time is settable, but should not exceed 0.5 sec in the Earthquake Early Warning network configuration. The rapid data transmission algorithm was tested with different communication media, including Internet, DSL, Wi-Fi, GPRS, etc. The test results show that the data latency via most communication media do not exceed 0.5 sec nominal from a first sample in the data packet. Detailed acquisition algorithm and results of data transmission via different communication media are presented.

  18. Lesion segmentation from multimodal MRI using random forest following ischemic stroke.

    PubMed

    Mitra, Jhimli; Bourgeat, Pierrick; Fripp, Jurgen; Ghose, Soumya; Rose, Stephen; Salvado, Olivier; Connelly, Alan; Campbell, Bruce; Palmer, Susan; Sharma, Gagan; Christensen, Soren; Carey, Leeanne

    2014-09-01

    Understanding structure-function relationships in the brain after stroke is reliant not only on the accurate anatomical delineation of the focal ischemic lesion, but also on previous infarcts, remote changes and the presence of white matter hyperintensities. The robust definition of primary stroke boundaries and secondary brain lesions will have significant impact on investigation of brain-behavior relationships and lesion volume correlations with clinical measures after stroke. Here we present an automated approach to identify chronic ischemic infarcts in addition to other white matter pathologies, that may be used to aid the development of post-stroke management strategies. Our approach uses Bayesian-Markov Random Field (MRF) classification to segment probable lesion volumes present on fluid attenuated inversion recovery (FLAIR) MRI. Thereafter, a random forest classification of the information from multimodal (T1-weighted, T2-weighted, FLAIR, and apparent diffusion coefficient (ADC)) MRI images and other context-aware features (within the probable lesion areas) was used to extract areas with high likelihood of being classified as lesions. The final segmentation of the lesion was obtained by thresholding the random forest probabilistic maps. The accuracy of the automated lesion delineation method was assessed in a total of 36 patients (24 male, 12 female, mean age: 64.57±14.23yrs) at 3months after stroke onset and compared with manually segmented lesion volumes by an expert. Accuracy assessment of the automated lesion identification method was performed using the commonly used evaluation metrics. The mean sensitivity of segmentation was measured to be 0.53±0.13 with a mean positive predictive value of 0.75±0.18. The mean lesion volume difference was observed to be 32.32%±21.643% with a high Pearson's correlation of r=0.76 (p<0.0001). The lesion overlap accuracy was measured in terms of Dice similarity coefficient with a mean of 0.60±0.12, while the contour accuracy was observed with a mean surface distance of 3.06mm±3.17mm. The results signify that our method was successful in identifying most of the lesion areas in FLAIR with a low false positive rate. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. Viscosity and sedimentation behaviors of the magnetorheological suspensions with oleic acid/dimer acid as surfactants

    NASA Astrophysics Data System (ADS)

    Yang, Jianjian; Yan, Hua; Hu, Zhide; Ding, Ding

    2016-11-01

    This work deals with the role of polar interactions on the viscosity and sedimentation behaviors of magnetorheological suspensions with micro-sized magnetic particles dispersed in oil carriers. The oleic acid and dimer acid were employed to make an adjustment of the hydrophobicity of iron particles, in the interest of performing a comparative evaluation of the contributions of the surface polarity. The viscosity tests show that the adsorbed surfactant layer may impose a hindrance to the movement of iron particles in the oil medium. The polar attractions between dimer acid covered particles gave rise to a considerable increase in viscosity, indicating flocculation structure developed in the suspensions. The observed plateau-like region in the vicinity of 0.1 s-1 for MRF containing dimer acid is possibly due to the flocculation provoked by the carboxylic polar attraction, in which the structure is stable against fragmentation. Moreover, a quick recovery of the viscosity and a higher viscosity-temperature index also suggest the existence of particle-particle polar interaction in the suspensions containing dimer acid. The sedimentation measurements reveal that the steric repulsion of oleic acid plays a limited role in the stability of suspensions only if a large quantity of surfactant was used. The sedimentation results observed in the dimer acid covered particles confirm that loose and open flocculation was formed and enhanced sedimentation stability.

  20. Multipotency of skeletal muscle stem cells on their native substrate and the expression of Connexin 43 during adoption of adipogenic and osteogenic fate.

    PubMed

    Elashry, Mohamed I; Heimann, Manuela; Wenisch, Sabine; Patel, Ketan; Arnhold, Stefan

    2017-10-01

    Muscle regeneration is performed by resident muscle stem cells called satellite cells (SC). However they are multipotent, being able to adopt adipogenic and osteogenic fate under the correct stimuli. Since SC behavior can be regulated by the extra-cellular matrix, we examined the robustness of the myogenic programme of SC on their native substrate-the surface of a myofiber. We show that the native substrate supports myogenic differentiation judged by the expression of members of the Myogenic Determination Factor (MRF) family. However SC even on their native substrate can be induced into adopting adipogenic or osteogenic fate. Furthermore conditions that support adipose or bone formation inhibit the proliferation of SC progeny as well as their migration. We show that Connexin43 (Cx43), a gap junction complex protein, is only expressed by activated and not quiescent SC. Furthermore, it is not expressed by SC that are in the process of changing their fate. Lastly we show that intact adult mouse muscle contains numerous cells expressing Cx43 and that the density of these cells seems to be related to capillary density. We suggest the Cx43 expression is localized to angioblasts and is more prominent in oxidative slow muscle compared to glycolytic fast muscle. Crown Copyright © 2017. Published by Elsevier GmbH. All rights reserved.

Top