Science.gov

Sample records for field nevada usa

  1. Use of slim holes for reservoir evaluation at the Steamboat Hills Geothermal Field, Nevada, USA

    SciTech Connect

    Combs, Jim; Goranson, Colin

    1994-01-20

    Three slim holes were drilled at the Steamboat Hills Geothermal Field in northwestern Nevada about 15 km south of Reno. The slim holes were drilled to investigate the geologic conditions, thermal regime and productive characteristics of the geothermal system. They were completed through a geologic sequence consisting of alluvium cemented by geothermal fluids, volcaniclastic materials, and granodiorite. Numerous fractures, mostly sealed, were encountered throughout the drilled depth; however, several open fractures in the granodiorite, dipping between 65 and 90{degree}, had apertures up to 13 mm in width. The depths of the slim holes vary from 262 to 277 m with open-hole diameters of 76 mm. Pressure and temperature logs gave bottom-hole temperatures ranging from 163 to 166{degree} C. During injection testing, downhole pressures were measured using capillary tubing with a surface quartz transducer while temperatures were measured with a Kuster temperature tool located below the capillary tubing pressure chamber. No pressure increase was measured at reservoir depths in any of the three slim holes while injecting 11 kg/s of 29{degree}C water indicating a very high permeability in the geothermal reservoir. These injection test results suggested that productive geothermal fluids could be found at depths sufficient for well pumping equipment and at temperatures needed for electrical power production using binary-type conversion technology.

  2. Pliocene to late Pleistocene magmatism in the Aurora Volcanic Field, Nevada and California, USA

    NASA Astrophysics Data System (ADS)

    Kingdon, S.; Cousens, B.; John, D. A.; du Bray, E. A.

    2013-12-01

    The 3.9- 0.1 Ma Aurora Volcanic Field (AVF) covers 325 km2 east and southeast of the Bodie Hills, north of Mono Lake, California, USA. The AVF is located immediately northwest of the Long Valley magmatic system and adjacent and overlapping the Miocene Bodie Hills Volcanic Field (BHVF). Rock types range from trachybasalt to trachydacite, and high-silica rhyolite. The trachybasalts to trachydacites are weakly to moderately porphyritic (1-30%) with variable phenocryst assemblages that are some combination of plagioclase, hornblende, clinopyroxene, and lesser orthopyroxene, olivine, and/or biotite. Microphenocrysts are dominated by plagioclase, and include opaque oxides, clinopyroxene, and apatite. These rocks are weakly to strongly devitrified. The high-silica rhyolites are sparsely porphyritic with trace to 10% phenocrysts of quartz, sanidine, plagioclase, biotite, (+/- hornblende), accessory opaque oxide minerals, titanite, allanite, (+/-apatite, zircon), and have glassy groundmasses. Rocks in the AVF are less strongly porphyritic than those of BHVF. Plagioclase phenocrysts are often oscillatory zoned and many have sieve texture. Amphiboles have distinct black opaque rims. Xenocrystic quartz and plagioclase are rare. AVF lavas have bimodal SiO2 compositions, ranging from 49 to 78 wt%, with a gap between 65 and 75 wt%. They are high-K calc-alkaline to shoshonitic in composition, and are metaluminous to weakly peraluminous. They are enriched in rare earth elements (REE), especially light REEs, compared to the Miocene BHVF rocks. Primordial mantle-normalized incompatible element patterns show arc- or subduction-related signatures, with enrichment in Ba and Pb, and depletion in Nb and Ta. Enrichment in K and Sr and depletion in Ti are less pronounced than in the BHVF rocks. There is no correlation between lead isotope ratios and silica (initial 206Pb/204Pb ratios range from 18.974 to 19.151). Neodymium isotope ratios show a moderate negative correlation with silica

  3. Characterization of injection wells in a fractured reservoir using PTS logs, Steamboat Hills Geothermal Field, Nevada, USA

    SciTech Connect

    Goranson, Colin; Combs, Jim

    1995-01-26

    The Steamboat Hills Geothermal Field in northwestern Nevada, about 15 km south of Reno, is a shallow (150m to 825m) moderate temperature (155 C to 168 C) liquid-dominated geothermal reservoir situated in highly-fractured granodiorite. Three injection wells were drilled and completed in granodiorite to dispose of spent geothermal fluids from the Steamboat II and III power plants (a 30 MW air-cooled binary-type facility). Injection wells were targeted to depths below 300m to inject spent fluids below producing fractures. First, quasi-static downhole pressure-temperature-spinner (PTS) logs were obtained. Then, the three wells were injection-tested using fluids between 80 C and 106 C at rates from 70 kg/s to 200 kg/s. PTS logs were run both up and down the wells during these injection tests. These PTS surveys have delineated the subsurface fracture zones which will accept fluid. The relative injectivity of the wells was also established. Shut-in interzonal flow within the wells was identified and characterized.

  4. Assessing Past Fracture Connectivity in Geothermal Reservoirs Using Clumped Isotopes: Proof of Concept in the Blue Mountain Geothermal Field, Nevada USA

    NASA Astrophysics Data System (ADS)

    Huntington, K. W.; Sumner, K. K.; Camp, E. R.; Cladouhos, T. T.; Uddenberg, M.; Swyer, M.; Garrison, G. H.

    2015-12-01

    Subsurface fluid flow is strongly influenced by faults and fractures, yet the transmissivity of faults and fractures changes through time due to deformation and cement precipitation, making flow paths difficult to predict. Here we assess past fracture connectivity in an active hydrothermal system in the Basin and Range, Nevada, USA, using clumped isotope geochemistry and cold cathodoluminescence (CL) analysis of fracture filling cements from the Blue Mountain geothermal field. Calcite cements were sampled from drill cuttings and two cores at varying distances from faults. CL microscopy of some of the cements shows banding parallel to the fracture walls as well as brecciation, indicating that the cements record variations in the composition and source of fluids that moved through the fractures as they opened episodically. CL microscopy, δ13C and δ18O values were used to screen homogeneous samples for clumped isotope analysis. Clumped isotope thermometry of most samples indicates paleofluid temperatures of around 150°C, with several wells peaking at above 200°C. We suggest that the consistency of these temperatures is related to upwelling of fluids in the convective hydrothermal system, and interpret the similarity of the clumped isotope temperatures to modern geothermal fluid temperatures of ~160-180°C as evidence that average reservoir temperatures have changed little since precipitation of the calcite cements. In contrast, two samples, one of which was associated with fault gauge observed in drill logs, record significantly cooler temperatures of 19 and 73°C and anomalous δ13C and δ18Owater values, which point to fault-controlled pathways for downwelling meteoric fluid. Finally, we interpret correspondence of paleofluid temperatures and δ18Owater values constrained by clumped isotope thermometry of calcite from different wells to suggest past connectivity of fractures among wells within the geothermal field. Results show the ability of clumped isotope

  5. Plumbing of continental basaltic volcanoes from the mantle to the surface, 1: Insights from field relationships at the Lunar Crater Volcanic Field (Nevada, USA)

    NASA Astrophysics Data System (ADS)

    Valentine, G. A.; Cortes, J. A.; Widom, E.; Smith, E. I.

    2011-12-01

    Monogenetic intraplate volcanoes offer unique insights into the linkages between magma sources, crustal ascent, and eruption processes. We focus here on the northernmost part of the Lunar Crater Volcanic Field (LCVF), Nevada, with ~45 monogenetic volcanoes in a 10 km long, 5 km wide band. Within that band, many volcanoes occur in localized clusters with up to 5 volcanoes (of different ages) per square kilometer. Most of the clusters are elongated in a direction that parallels the trend of the LCVF as a whole. Currently it is uncertain whether such clusters are related to faults in the underlying rocks because of the thick, young cover of basaltic volcanic products. However, in other areas, especially along the periphery of the volcanic field, vents often correspond with pre-existing normal faults, and it seems likely that elongated clusters represent areas of repeated (over time scales of ~1-2 Ma) injection of feeder dikes into faults in the shallow crust. The edges of the volcanic field in the northernmost part are defined by sharp boundaries, where there is a sharp transition from high volcano concentration on one side, to no volcanoes on the other. A fundamental question is whether this transition reflects a similar spatial distribution in the mantle source area, or whether it is due entirely to shallow structural controls on magma ascent. The northernmost part of the LCVF provides an ideal case study for testing relationships between physical parameters (volume, fissure length, eruptive style) and geochemistry. We focus on three volcanoes, two of which are closely spaced (~500 m) but occurred at times separated by 100s ka (based upon surface morphology). The older of these two, informally called the OPB volcano (older, phenocryst bearing) is likely mid-Pleistocene in age; the younger is referred to as YMB (younger, megacrysts bearing). The third volcano, previously named Marcath/Black Rock, is the youngest in the volcanic field, located ~4 km southwest of OPB

  6. Commodity Flow Study - Clark County, Nevada, USA

    SciTech Connect

    Conway, S.Ph.D.; Navis, I.

    2008-07-01

    The United States Department of Energy has designated Clark County, Nevada as an 'Affected Unit of Local Government' due to the potential for impacts by activities associated with the Yucca Mountain High Level Nuclear Waste Repository project. Urban Transit, LLC has led a project team of transportation including experts from the University of Nevada Las Vegas Transportation Research Center to conduct a hazardous materials community flow study along Clark County's rail and truck corridors. In addition, a critical infrastructure analysis has also been carried out in order to assess the potential impacts of transportation within Clark County of high level nuclear waste and spent nuclear fuel to a proposed repository 90 miles away in an adjacent county on the critical infrastructure in Clark County. These studies were designed to obtain information relating to the transportation, identification and routing of hazardous materials through Clark County. Coordinating with the United States Department of Energy, the U.S. Department of Agriculture, the U. S. Federal Highway Administration, the Nevada Department of Transportation, and various other stakeholders, these studies and future research will examine the risk factors along the entire transportation corridor within Clark County and provide a context for understanding the additional vulnerability associated with shipping spent fuel through Clark County. (authors)

  7. The Pliocene-Quaternary Buffalo Valley volcanic field, Nevada: Post-extension, intraplate magmatism in the north-central Great Basin, USA

    NASA Astrophysics Data System (ADS)

    Cousens, Brian; Wetmore, Stacey; Henry, Christopher D.

    2013-12-01

    The Buffalo Valley volcanic field consists of Pliocene through Quaternary lava flows and spatter cones located south of Battle Mountain and adjacent to the Fish Creek Mountains, north-central Nevada. The volcanic rocks are split into two groups by age and geochemistry. The Pliocene sequence (4.02 to 2.75 Ma) consists of olivine- and plagioclase-bearing alkali basaltic lava flows with minor pyroclastic deposits, found primarily along the south flank of Battle Mountain and also at the north end of the Fish Creek Mountains and within the Fish Creek Mountains caldera. The Quaternary series (1.99 to 1.14 Ma) includes nearly a dozen trachybasaltic spatter cones with short lava flows erupted along the northwest flank of the Fish Creek Mountains. Normalized rare earth element and incompatible element plots for both groups are light rare earth and Nb-Ta enriched, resembling alkali basalts from ocean islands, but the Quaternary lavas are more light rare earth element-enriched and cross the Pliocene basalt patterns at Eu. Radiogenic and stable isotope ratios are consistent with an asthenospheric mantle source, and the rare earth element patterns indicate a shift from melting in the spinel to garnet peridotite field with time. Basaltic rocks from other intraplate fields in the Great Basin, including the Lunar Crater and Cima fields, only include lavas that originated at depth in the garnet peridotite field. Buffalo Valley is located at the margin of a proposed lithospheric drip (delamination) and within a zone of lithospheric thinning that extends across northern Nevada, both of which may control where melting in the asthenosphere may occur. The proximity to the edge of Precambrian-Phanerozoic lithosphere boundary may also be a factor in melt generation.

  8. Ammonia at Blodgett Forest, Sierra Nevada, USA

    NASA Astrophysics Data System (ADS)

    Fischer, M. L.; Littlejohn, D.

    2007-10-01

    Ammonia is a reactive trace gas that is emitted in large quantities by animal agriculture and other sources in California, which subsequently forms aerosol particulate matter, potentially affecting visibility, climate, and human health. We performed initial measurements of NH3 at the Blodgett Forest Research Station (BFRS) during a two week study in June, 2006. The site is used for ongoing air quality research and is a relatively low-background site in the foothills of the Sierra Nevada. Measured NH3 mixing ratios were quite low (<1 to ~2 ppb), contrasting with typical conditions in many parts of the Central Valley. Eddy covariance measurements showed NH3 fluxes that scaled with measured NH3 mixing ratio and calculated aerodynamic deposition velocity, suggesting dry deposition is a significant loss mechanism for atmospheric NH3 at BFRS. A simple model of NH3 transport to the site supports the hypothesis that NH3 is transported from the Valley to BFRS, but deposits on vegetation during the summer. Further work is necessary to determine whether the results obtained in this study can be generalized to other seasons.

  9. Ammonia at Blodgett Forest, Sierra Nevada, USA

    SciTech Connect

    Fischer, Marc L.; Littlejohn, David

    2007-11-06

    Ammonia is a reactive trace gas that is emitted in large quantities by animal agriculture and other sources in California, which subsequently forms aerosol particulate matter, potentially affecting visibility, climate, and human health. We performed initial measurements of NH{sub 3} at the Blodgett Forest Research Station (BFRS) during a two week study in June, 2006. The site is used for ongoing air quality research and is a relatively low-background site in the foothills of the Sierra Nevada. Measured NH{sub 3} mixing ratios were quite low (< 1 to {approx} 2 ppb), contrasting with typical conditions in many parts of the Central Valley. Eddy covariance measurements showed NH{sub 3} fluxes that scaled with measured NH{sub 3} mixing ratio and calculated aerodynamic deposition velocity, suggesting dry deposition is a significant loss mechanism for atmospheric NH{sub 3} at BFRS. A simple model of NH{sub 3} transport to the site supports the hypothesis that NH{sub 3} is transported from the Valley to BFRS, but deposits on vegetation during the summer. Further work is necessary to determine whether the results obtained in this study can be generalized to other seasons.

  10. Particle Tracking-Based Strategies For Simulating Transport in a Transient Groundwater Flow Field at Yucca Flat, Nevada Test Site, USA

    NASA Astrophysics Data System (ADS)

    Keating, E. H.; Srinivasan, G.; Kang, Q.; Li, C.; Dash, Z.; Kwicklis, E. M.

    2009-12-01

    Developing probabilistic-based calculations of contaminant concentrations over the next 1000 years at Yucca Flat, Nevada Test site, require tremendous computational effort in this highly complex hydrogeologic surface environment. The sources of contamination, underground nuclear tests conducted between 1951 and 1992, not only released radionuclides to the subsurface but also created abrupt, significant changes in rock properties and caused large transients in the measured hydraulic gradients. To efficiently model contaminant migration from these sources we use a particle-based approach within a transient flow field. Here, we present results using two methods; first, an explicit representation of time-varying sources using large numbers of particles introduced at source-specific rates over time, each representing a unique mass of solute. This method provides good results, but is computationally expensive since sensitivity to uncertainty in source term and transport parameters can only be explored with discrete process-model runs. The second method employs a convolution method (PLUMECALC) which can efficiently consider a large number of variations in the source terms and in certain transport parameters with a single process-model run. Implementation of this second approach required extension of the existing methodology to conditions of transient flow. We find very good comparison between the two methods on small test problems and excellent computational advantages when applying the convolution method in the NTS application

  11. Cyanide and migratory birds at gold mines in Nevada, USA

    USGS Publications Warehouse

    Henny, C.J.; Hallock, R.J.; Hill, E.F.

    1994-01-01

    Since the mid-1980s, cyanide in heap leach solutions and mill tailings ponds at gold mines in Nevada has killed a large but incompletely documented number of wildlife ( gt 9,500 individuals, primarily migratory birds). This field investigation documents the availability of cyanide at a variety of 'typical' Nevada gold mines during 1990 and 1991, describes wildlife reactions to cyanide solutions, and discusses procedures for eliminating wildlife loss from cyanide poisoning. Substantial progress has been made to reduce wildlife loss. About half of the mill tailings ponds (some up to 150 ha) in Nevada have been chemically treated to reduce cyanide concentrations (the number needing treatment is uncertain) and many of the smaller heap leach solution ponds and channels are now covered with netting to exclude birds and most mammals. The discovery of a cyanide gradient in mill tailings ponds (concentration usually 2-3 times higher at the inflow point than at reclaim point) provides new insight into wildlife responses (mortality) observed in different portions of the ponds. Finding dead birds on the tops of ore heaps and associated with solution puddling is a new problem, but management procedures for eliminating this source of mortality are available. A safe threshold concentration of cyanide to eliminate wildlife loss could not be determined from the field data and initial laboratory studies. New analytical methods may be required to assess further the wildlife hazard of cyanide in mining solutions.

  12. Estimating recharge at Yucca Mountain, Nevada, USA: Comparison of methods

    USGS Publications Warehouse

    Flint, A.L.; Flint, L.E.; Kwicklis, E.M.; Fabryka-Martin, J. T.; Bodvarsson, G.S.

    2002-01-01

    Obtaining values of net infiltration, groundwater travel time, and recharge is necessary at the Yucca Mountain site, Nevada, USA, in order to evaluate the expected performance of a potential repository as a containment system for high-level radioactive waste. However, the geologic complexities of this site, its low precipitation and net infiltration, with numerous mechanisms operating simultaneously to move water through the system, provide many challenges for the estimation of the spatial distribution of recharge. A variety of methods appropriate for arid environments has been applied, including water-balance techniques, calculations using Darcy's law in the unsaturated zone, a soil-physics method applied to neutron-hole water-content data, inverse modeling of thermal profiles in boreholes extending through the thick unsaturated zone, chloride mass balance, atmospheric radionuclides, and empirical approaches. These methods indicate that near-surface infiltration rates at Yucca Mountain are highly variable in time and space, with local (point) values ranging from zero to several hundred millimeters per year. Spatially distributed net-infiltration values average 5 mm/year, with the highest values approaching 20 mm/year near Yucca Crest. Site-scale recharge estimates range from less than 1 to about 12 mm/year. These results have been incorporated into a site-scale model that has been calibrated using these data sets that reflect infiltration processes acting on highly variable temporal and spatial scales. The modeling study predicts highly non-uniform recharge at the water table, distributed significantly differently from the non-uniform infiltration pattern at the surface.

  13. Estimating recharge at yucca mountain, nevada, usa: comparison of methods

    SciTech Connect

    Flint, A. L.; Flint, L. E.; Kwicklis, E. M.; Fabryka-Martin, J. T.; Bodvarsson, G. S.

    2001-11-01

    Obtaining values of net infiltration, groundwater travel time, and recharge is necessary at the Yucca Mountain site, Nevada, USA, in order to evaluate the expected performance of a potential repository as a containment system for high-level radioactive waste. However, the geologic complexities of this site, its low precipitation and net infiltration, with numerous mechanisms operating simultaneously to move water through the system, provide many challenges for the estimation of the spatial distribution of recharge. A variety of methods appropriate for and environments has been applied, including water-balance techniques, calculations using Darcy's law in the unsaturated zone, a soil-physics method applied to neutron-hole water-content data, inverse modeling of thermal profiles in boreholes extending through the thick unsaturated zone, chloride mass balance, atmospheric radionuclides, and empirical approaches. These methods indicate that near-surface infiltration rates at Yucca Mountain are highly variable in time and space, with local (point) values ranging from zero to several hundred millimeters per year. Spatially distributed net-infiltration values average 5 mm/year, with the highest values approaching 20 nun/year near Yucca Crest. Site-scale recharge estimates range from less than I to about 12 mm/year. These results have been incorporated into a site-scale model that has been calibrated using these data sets that reflect infiltration processes acting on highly variable temporal and spatial scales. The modeling study predicts highly non-uniform recharge at the water table, distributed significantly differently from the non-uniform infiltration pattern at the surface. [References: 57

  14. Contrasts between deformation accommodated by induced seismic and aseismic processes revealed by combined monitoring of seismicity and surface deformations: Brady Geothermal Field, Nevada, USA

    NASA Astrophysics Data System (ADS)

    Davatzes, N. C.; Ali, S. T.; Mellors, R. J.; Foxall, W.; Wang, H. F.; Feigl, K. L.; Drakos, P. S.; Zemach, E.

    2013-12-01

    Fluid pressure change accompanying pumping in the Brady Geothermal Field is associated with two easily measureable deformation responses: (1) surface deformations and 2) seismic slip. Surface deformation can be imaged by InSAR and appears to correspond to volume change at depth. Seismic slip on fractures is likely induced by either changes in effective normal stress or solid stress with minimal impact to volume. Both responses have potential impact on permeability structure due to dilation or compaction along natural fractures. We present an integrated data set that compares pumping records with these deformation responses to investigate their coupling and to constrain the geometry and rheology of the reservoir and surrounding crust. We also seek to clarify the relationship between induced seismicity and pumping. Currently, the dominant pumping signal is pressure reduction resulting from on-going production since 1992. Surface subsidence extends over a region of approximately 5 km by 2 km with the long axis along the strike of the major normal faults associated with the reservoir. Smaller approximately 1 km length-scale regions of intense subsidence are associated bends or intersections among individual normal fault segments. Modeling of the deformation source indicates that the broader subsidence pattern is consistent with the majority of fluid extraction from a reservoir at a depth of approximately 1 km and extending along the entire length of the mapped Brady normal fault. The more intense subsidence is consistent with fluid extraction along steep conduits from shallower depths that extend to the main reservoir. These results indicate a reservoir much larger than would be expected from the footprint of the production wells. In contrast, seismicity is primarily concentrated along a narrow path between injecting and producing wells, but outside the regions of most intense subsidence. Overall, seismicity represents only a small fraction of the strain energy

  15. Catastrophic rockfalls and rockslides in the Sierra Nevada, USA

    USGS Publications Warehouse

    Wieczorek, Gerald F.; Evans, Stephen G.; DeGraff, Jerome V.

    2002-01-01

    Despite having a low recorded historical incidence of landsliding, the Sierra Nevada has undergone large prehistoric and historical rockfalls and rockslides that could be potentially catastrophic if they occurred today in the more densely populated parts of the region. Several large documented rockfall and rockslides have been triggered either by strong seismic shaking or long periods of unusually wet weather; however, in several instances no obvious triggering event can be identified. The glaciated topography of the higher elevations of the SierraNevada has produced many relatively small falls and slides within relatively hard, massively jointed, granitic rocks; however, where exposed to weathering for long periods after glaciation, the oversteepened rock slopes are prone to uncommonly large falls and slides. At lower elevations on the nonglaciated slopes of the Sierra Nevada, rockslides commonly occur within more weathered granitic rocks, where the strength of the rock mass is typically affected by joint weathering and alteration of the intact rock to saprolite. Historical large rock-falls and rockslides in the Sierra Nevada have created additional secondary natural hazards, including debris flows and floods from the breaching of landslide dams that can be as hazardous as the initial rockfalls and rockslides.

  16. Foundering lithosphere imaged beneath the southern Sierra Nevada, California, USA.

    PubMed

    Boyd, Oliver S; Jones, Craig H; Sheehan, Anne F

    2004-07-30

    Seismic tomography reveals garnet-rich crust and mantle lithosphere descending into the upper mantle beneath the southeastern Sierra Nevada. The descending lithosphere consists of two layers: an iron-rich eclogite above a magnesium-rich garnet peridotite. These results place descending eclogite above and east of high P wave speed material previously imaged beneath the southern Great Valley, suggesting a previously unsuspected coherence in the lithospheric removal process.

  17. Geology and thermal regime, geothermal test USA No. 11-36, Grass Valley, Nevada

    SciTech Connect

    Wilde, Walter R.; Koenig, James B.

    1980-08-01

    This report summarizes the results of drilling of an 8,565 foot geothermal test near Leach Hot Springs, Pershing County, Nevada, by Sunoco Energy Development Company. USA No.11-36 is located 500 feet south and 500 feet east of the northwest corner of Section 36, T. 32 N., R. 38 E (Mount Diablo Meridian), elevation 4,573 feet. It was drilled between May 15 and July 2, 1980. USA No.11-36 was deemed unsuccessful, having encountered no temperature higher than 270 F and no significant permeability, and was plugged and abandoned without testing prior to releasing the rig.

  18. Vertebrate paleontology, stratigraphy, and paleohydrology of Tule Springs Fossil Beds National Monument, Nevada (USA)

    USGS Publications Warehouse

    Springer, Kathleen; Pigati, Jeffery S.; Scott, Eric

    2017-01-01

    Tule Springs Fossil Beds National Monument (TUSK) preserves 22,650 acres of the upper Las Vegas Wash in the northern Las Vegas Valley (Nevada, USA). TUSK is home to extensive and stratigraphically complex groundwater discharge (GWD) deposits, called the Las Vegas Formation, which represent springs and desert wetlands that covered much of the valley during the late Quaternary. The GWD deposits record hydrologic changes that occurred here in a dynamic and temporally congruent response to abrupt climatic oscillations over the last ~300 ka (thousands of years). The deposits also entomb the Tule Springs Local Fauna (TSLF), one of the most significant late Pleistocene (Rancholabrean) vertebrate assemblages in the American Southwest. The TSLF is both prolific and diverse, and includes a large mammal assemblage dominated by Mammuthus columbi and Camelops hesternus. Two (and possibly three) distinct species of Equus, two species of Bison, Panthera atrox, Smilodon fatalis, Canis dirus, Megalonyx jeffersonii, and Nothrotheriops shastensis are also present, and newly recognized faunal components include micromammals, amphibians, snakes, and birds. Invertebrates, plant macrofossils, and pollen also occur in the deposits and provide important and complementary paleoenvironmental information. This field compendium highlights the faunal assemblage in the classic stratigraphic sequences of the Las Vegas Formation within TUSK, emphasizes the significant hydrologic changes that occurred in the area during the recent geologic past, and examines the subsequent and repeated effect of rapid climate change on the local desert wetland ecosystem.

  19. Measurement of surface mercury fluxes at active industrial gold mines in Nevada (USA).

    PubMed

    Eckley, C S; Gustin, M; Marsik, F; Miller, M B

    2011-01-01

    Mercury (Hg) may be naturally associated with the rock units hosting precious and base metal deposits. Active gold mines are known to have point source releases of Hg associated with ore processing facilities. The nonpoint source release of Hg to the air from the large area (hundreds to thousands of hectares) of disturbed and processed material at industrial open pit gold mines has not been quantified. This paper describes the field data collected as part of a project focused on estimating nonpoint source emissions of Hg from two active mines in Nevada, USA. In situ Hg flux data were collected on diel and seasonal time steps using a dynamic flux chamber from representative mine surfaces. Hg fluxes ranged from <1500 ng m(-2) day(-1) for waste rock piles (0.6-3.5 μg g(-1)) to 684,000 ng m(-2) day(-1) for tailings (2.8-58 μg g(-1)). Releases were positively correlated with material Hg concentrations, surface grain size, and moisture content. Highest Hg releases occurred from materials under active cyanide leaching and from tailings impoundments containing processed high-grade ore. Data collected indicate that as mine sites are reclaimed and material disturbance ceases, emissions will decline. Additionally local cycling of atmospheric Hg (deposition and re-emission) was found to occur.

  20. Excess plutonium in soil near the Nevada Test Site, USA.

    PubMed

    Turner, Mary; Rudin, Mark; Cizdziel, James; Hodge, Vernon

    2003-01-01

    Two soil profiles were collected from undisturbed areas near the Nevada Test Site (NTS). The activity of 137Cs in the surface layer of the downwind Queen City Summit profile is three times higher than at the upwind site at Searchlight, NV (41.1+/-0.6 mBq/g vs. 13.0+/-0.4 mBq/g), and the 239,240Pu activity is 100 times greater (51+/-2 mBq/g vs. 0.52+/-0.03 mBq/g). An examination of the literature suggests that the 137Cs/239,240Pu and the 239,240Pu/238Pu activity ratios in soils and sediments from the northern hemisphere, due to fallout from atmospheric atomic weapons testing, have generalized values of 36+/-4 and 30+/-4, respectively (as of 1 July 1995). Deviations from these values may indicate possible contamination by sources other than fallout. Data from the surface soil of the downwind Queen City Summit profile yield a 137Cs/239,240Pu ratio of 0.81+/-0.02 and a 239,240Pu/238Pu ratio of 78+/-6. Clearly, an increase in 239,240Pu relative to 137Cs or 238Pu can account for these observations. There is compelling evidence that this "excess" 239,240Pu came from activities at the NTS during the aboveground testing of nuclear devices, more than likely from safety tests, some 40 years ago, and/or during the interim by the wind-driven resuspension of contaminated surface soil on the NTS and its transport off-site. Moreover, the two concentration profiles show that high percentages of both of these elements are retained for decades in the upper few centimeters of soil in Nevada's desert environment.

  1. Blue Mountain, Humboldt County, Nevada, U.S.A

    SciTech Connect

    Ted Fitzpatrick, Brian D. Fairbank

    2005-04-01

    The report documents the drilling of well Deep Blue No.2, the second deep geothermal test hole at the Blue Mountain Geothermal Area, Humboldt County, Nevada. The well was drilled by Noramex Corp, a Nevada company, with funding support from the US Department of Energy, under the DOE’s GRED II Program. Deep Blue No.2 was drilled as a ‘step-out’ hole from Deep Blue No.1, to further evaluate the commercial potential of the geothermal resource. Deep Blue No.2 was designed as a vertical, slim observation test hole to a nominal target depth of 1000 meters (nominal 3400 feet). The well tests an area of projected high temperatures at depth, from temperature gradients measured in a group of shallow drill holes located approximately one kilometer to the northeast of observation hole Deep Blue No.1. The well is not intended for, or designed as, a commercial well or a production well. Deep Blue No.2 was spudded on March 25, 2004 and completed to a total depth of 1127.76m (3700 ft) on April 28, 2004. The well was drilled using conventional rotary drilling techniques to a depth of 201.17 m (660 ft), and continuously cored from 201.17m (660 ft) to 1127.76m (3700 ft). A brief rig-on flow-test was conducted at completion to determine basic reservoir parameters and obtain fluid samples. A permeable fracture zone with measured temperatures of 150 to 167°C (302 to 333°F) occurs between 500 to 750m (1640 to 2461ft). The well was left un-lined in anticipation of the Phase III - Flow and Injection Testing. A further Kuster temperature survey was attempted after the well had been shut in for almost 3 weeks. The well appears to have bridged off at 439m (1440ft) as the Kuster tool was unable to descend past this point. Several attempts to dislodge the obstruction using tube jars were unsuccessful. Deep Blue No.2 encountered variably fractured and veined, fine-grained rocks of the Singas Formation, and intruded by minor strongly altered fine-grained felsic dikes, and less altered

  2. Practical post-calibration uncertainty analysis: Yucca Mountain, Nevada, USA

    NASA Astrophysics Data System (ADS)

    James, S. C.; Doherty, J.; Eddebbarh, A.

    2009-12-01

    The values of parameters in a groundwater flow model govern the precision of predictions of future system behavior. Predictive precision, thus, typically depends on an ability to infer values of system properties from historical measurements through calibration. When such data are scarce, or when their information content with respect to parameters that are most relevant to predictions of interest is weak, predictive uncertainty may be high, even if the model is “calibrated.” Recent advances help recognize this condition, quantitatively evaluate predictive uncertainty, and suggest a path toward improved predictive accuracy by identifying sources of predictive uncertainty and by determining what observations will most effectively reduce this uncertainty. We demonstrate linear and nonlinear predictive error/uncertainty analyses as applied to a groundwater flow model of Yucca Mountain, Nevada, the US’s proposed site for disposal of high-level radioactive waste. Both of these types uncertainty analysis are readily implemented as an adjunct to model calibration with medium to high parameterization density. Linear analysis yields contributions made by each parameter to a prediction’s uncertainty and the worth of different observations, both existing and yet-to-be-gathered, toward reducing this uncertainty. Nonlinear analysis provides more accurate characterization of the uncertainty of model predictions while yielding their (approximate) probability distribution functions. This paper applies the above methods to a prediction of specific discharge and confirms the uncertainty bounds on specific discharge supplied in the Yucca Mountain Project License Application. Furthermore, Monte Carlo simulations confirm that hydrogeologic units thought to be flow barriers have probability distributions skewed toward lower permeabilities.

  3. Investigating ozone in rural Nevada, USA: Results from the first year of the Nevada Rural Ozone Initiative (NVROI)

    NASA Astrophysics Data System (ADS)

    Gustin, M. S.; Fine, R.; Miller, M. B.; Peterson, C.; Burley, J. D.; Jaffe, D. A.

    2013-12-01

    Ozone has been measured at Great Basin National Park, located in a rural area of eastern Nevada, USA, since 1993. Observations at the Park indicate that the area likely will not be able to meet a revised U.S. National Ambient Air Quality Standard (NAAQS) of ≤ 70 ppbv. Routine ozone monitoring outside of the Park in Nevada has been limited to the two major metropolitan areas in the state, Reno and Las Vegas, and surrounding communities. To address this limitation, a research project, the Nevada Rural Ozone Initiative (NVROI), was put into place. The NVROI goals are to characterize ozone concentrations, and to determine the sources contributing to observed concentrations in Nevada, and regions of the western United States. The first year of the project focused on establishing a network of ozone monitoring sites. Based on the measurements from 5 sites across the state where data were collected from July 2011 to June 2012, seasonal mean (× s) concentrations ranged from 39×15 to 54×9 ppbv (spring); 36×14 to 54×8 ppbv (summer); 27×13 to 44×6 ppbv (fall); and 23×11 to 41×5 ppbv (winter) across the state, with higher mean concentrations observed at the high elevation sites. The average daily maximum 1-hour concentrations of ozone (× s) were similar across these sites ranging from 58×6 to 69×7 ppbv (spring); 53×6 to 62×9 ppbv (summer); 44×7 to 49×6 ppbv (fall); and 37×5 to 45×4 ppbv (winter). Periods of elevated ozone were observed at these 5 NVROI network sites (1513 to 2082 m above sea level (asl)). There were 15, 28, and 81 days with at least one NVROI site experiencing a Maximum Daily 8-hour Average (MDA8) greater than 70, 65, and 60 ppbv, respectively. Events (MDA8 > 60 ppbv) were coincident with (1) passage of frontal systems (spring and early summer events), or (2) the presence of smoke generated by regional wildfires and an area of low pressure over Nevada (summer events). Atmospheric turbulence and vertical lifting is associated with frontal

  4. Gaseous Oxidized Mercury Flux from Substrates Associated with Industrial Scale Gold Mining in Nevada, USA

    NASA Astrophysics Data System (ADS)

    Miller, M. B.

    2015-12-01

    Gaseous elemental and oxidized mercury (Hg) fluxes were measured in a laboratory setting from substrate materials derived from industrial-scale open pit gold mining operations in Nevada, USA. Mercury is present in these substrates at a range of concentrations (10 - 40000 ng g-1), predominantly of local geogenic origin in association with the mineralized gold ores, but altered and redistributed to a varying degree by subsequent ore extraction and processing operations, including deposition of Hg recently emitted to the atmosphere from large point sources on the mines. Waste rock, heap leach, and tailings material usually comprise the most extensive and Hg emission relevant substrate surfaces. All three of these material types were collected from active Nevada mine sites in 2010 for previous research, and have since been stored undisturbed at the University of Nevada, Reno. Gaseous elemental Hg (GEM) flux was previously measured from these materials under a variety of conditions, and was re-measured in this study, using Teflon® flux chambers and Tekran® 2537A automated ambient air analyzers. GEM flux from dry undisturbed materials was comparable between the two measurement periods. Gaseous oxidized Hg (GOM) flux from these materials was quantified using an active filter sampling method that consisted of polysulfone cation-exchange membranes deployed in conjunction with the GEM flux apparatus. Initial measurements conducted within greenhouse laboratory space indicate that in dry conditions GOM is deposited to relatively low Hg cap and leach materials, but may be emitted from the much higher Hg concentration tailings material.

  5. Nevada Test Site field trip guidebook 1984

    SciTech Connect

    Dockery, H.A.; Byers, F.M. Jr.; Orkild, P.P.

    1985-04-01

    The Nevada Test Site (NTS), located in southern Nevada, was established in 1950 as an area for testing nuclear devices. Various geologic studies performed in conjunction with these activities as well as recent work on a proposed radioactive waste repository are reported in detail in this guidebook and include studies on the structure, stratigraphy, geochemistry, and physical properties of the rocks at NTS. The oldest sequence of rocks exposed in the NTS region is comprised of late Precambrian to Permian miogeoclinal rocks which were subsequently deformed during Jura-Cretaceous contraction, probably related to the Sevier orogeny. These rocks were then locally intruded by late Mesozoic (approx.93 m.y.BP) plutonic rocks related to the Sierra Nevada batholith. Voluminous calcalkaline ash-flow tuffs and associated volcanic rocks originating from the Timber Mountain-Oasis Valley caldera complex were extruded over much of NTS and adjacent areas from approx.16 to 10 m.y.BP. Peralkaline rocks intercalated in the volcanic sequence issued from both Silent Canyon (15 to 13 m.y.BP) and Black Mountain (9 to 7 m.y.BP) volcanic centers. The youngest igneous rocks at NTS are composed of basaltic rocks, primarily hawaiite, the older of which are associated with the evolving silicic volcanic centers and the younger associated with Cenozoic regional extension. Late Tertiary to Recent alluvium derived from the ranges form large, coalescing fans which fill the basins with sediments and reach thicknesses of over 1 km. 45 refs., 21 figs.

  6. USA Track & Field Coaching Manual. USA Track & Field.

    ERIC Educational Resources Information Center

    USA Track and Field, Inc., Indianapolis, IN.

    This book presents comprehensive, ready-to-apply information from 33 world-class coaches and experts about major track and field events for high school and college coaches. The volume features proven predictive testing procedures; detailed event-specific technique instruction; carefully crafted training programs; and preparation and performance…

  7. Antiparasitic and antimicrobial indolizidines from the leaves of Prosopis glandulosa var glandulosa from Nevada and Texas USA

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A new indolizidine alkaloid, named (Delta) 1,6-juliprosopine (1), together with previously known indolizidine analogs (2-6), was isolated from the leaves of Prosopis glandulosa var. glandulosa, collected from Nevada, USA; while two other known indolizidines juliprosopine (6) and juliprosine (7) were...

  8. MDA8 O3 Values at Rural Surface Sites in Nevada, USA: Results from Two Years of the Nevada Rural Ozone Initiative (NVROI)

    NASA Astrophysics Data System (ADS)

    Gustin, M. S.; Fine, R.; Miller, M. B.; Burley, J. D.; Jaffe, D. A.; Pierce, R. B.; Lin, M.

    2014-12-01

    Local anthropogenic emissions are limited in Nevada (USA); however, data collected at Great Basin National Park (GBNP), which is located in rural eastern Nevada, indicate that ozone (O3) routinely exceeds the threshold proposed for a more stringent National Ambient Air Quality Standard (NAAQS). Here, we focused on data collected between July 2011 and June 2013. For this period, the maximum daily 8-h average (MDA8) O3 at GBNP exceeded the current NAAQS threshold (75 ppb) 7 times. Our analyses indicate that a combination of sources including emissions from regional wildfires and urban areas of southern California as well as stratospheric intrusions and long-range transport of Asian pollution contributed to elevated O3 observed at GBNP. Although MDA8 O3 measured at GBNP was well correlated with that measured at 5 other rural Nevada sites during this period, MDA8 O3 was 3.1 to 12.6 ppb greater at GBNP than at these other rural sites which emphasizes the need for spatially detailed measurements particularly in areas of complex terrain. The maximum MDA8 O3 at these 6 rural NV sites ranged from 68 to 80 ppb. GBNP was the only rural site to exceed the current NAAQS threshold during the period considered; however, when lower thresholds were considered the spatial and temporal extent of exceedances in rural Nevada increased indicating that interstate and international cooperation will be necessary to reduce ambient O3 concentrations in rural Nevada. MDA8 O3 at rural Nevada sites were significantly correlated with measurements at urban Nevada (r = 0.64 to 0.82; p < 0.05) and rural California (r = 0.61 to 0.83; p = 0.00) sites suggesting that common mechanisms influence O3 observed throughout the region.

  9. Dust emission by off-road driving: Experiments on 17 arid soil types, Nevada, USA

    NASA Astrophysics Data System (ADS)

    Goossens, Dirk; Buck, Brenda

    2009-06-01

    Field experiments were conducted in Nellis Dunes Recreational Area (Clark County, Nevada, USA) to investigate emission of dust produced by off-road driving. Experiments were carried out with three types of vehicles: 4-wheelers (quads), dirt bikes (motorcycles) and dune buggies, on 17 soil types characteristic for a desert environment. Tests were done at various driving speeds, and emissions were measured for a large number of grain size fractions. This paper reports the results for two size fractions of emissions: PM10 (particles < 10 μm) and PM60 (particles < 60 μm). The latter was considered in this study to be sufficiently representative of the total suspendable fraction (TSP). Off-road driving was found to be a significant source of dust. However, the amounts varied greatly with the type of soil and the characteristics of the top layer. Models predicting emission of dust by off-road driving should thus consider a number of soil parameters and not just one key parameter. Vehicle type and driving speed are additional parameters that affect emission. In general, 4-wheelers produce more dust than dune buggies, and dune buggies, more than dirt bikes. Higher speeds also result in higher emissions. Dust emitted by off-road driving is less coarse than the parent sediment on the road surface. Off-road driving thus results in a progressive coarsening of the top layer. Exceptions to this are silty surfaces with no, or almost no, vegetation. For such surfaces no substantial differences were observed between the grain size distribution of road dust and emitted dust. Typical emission values for off-road driving on dry desert soils are: for sandy areas, 30-40 g km - 1 (PM10) and 150-250 g km - 1 (TSP); for silty areas, 100-200 g km - 1 (PM10) and 600-2000 g km - 1 (TSP); for drainages, 30-40 g km - 1 (PM10) and 100-400 g km - 1 (TSP); and for mixed terrain, 60-100 g km - 1 (PM10) and 300-800 g km - 1 (TSP). These values are for the types of vehicles tested in this study and

  10. Determinants of atmospheric mercury concentrations in Reno, Nevada, U.S.A.

    PubMed

    Lyman, Seth N; Gustin, Mae Sexauer

    2009-12-20

    Concentrations of gaseous elemental mercury (GEM), gaseous oxidized mercury (GOM) and particulate-bound mercury (PBM) were measured along with ancillary variables 9 km east of downtown Reno, Nevada, U.S.A. from November 2006 through March 2009. Mean two-year (February 2007 through January 2009) GEM, GOM, and PBM concentrations were 2.0+/-0.7 ng m(-3) (+/-standard deviation), 18+/-22 pg m(-3), and 7+/-7 pg m(-3), respectively. Data collected were compared with observations made at another location just north of the city at 169 m higher elevation. At both locations higher concentrations of GEM and PBM occurred in periods with little atmospheric mixing, indicating that local sources were important for enhancing GEM and PBM concentrations in Reno above that considered continental background. Concentrations of GOM were higher (maximum of 177 pg m(-3)) during periods with higher temperature and lower dew point. Higher GOM concentrations at the higher elevation site with less urban impact relative to the valley site, along with other data trends, support the hypothesis that in northern Nevada subsiding dry air from the free troposphere is a source of GOM to the surface.

  11. Paleoenvironmental reconstruction of ~40ka stromatolites from the ancient Lake Lahontan, Nevada, USA

    NASA Astrophysics Data System (ADS)

    van Maldegem, L.; Chou, L.; Buongiorno, J.; Zinke, L. A.; Petryshyn, V. A.; Shapiro, R. S.; Piazza, O.; Loyd, S. J.; Tripati, A.; Spear, J. R.; Corsetti, F. A.

    2015-12-01

    During the Late Pleistocene, present day Walker Lake, Nevada was part of Lake Lahontan, an extensive lake covering large portions of northwestern Nevada, USA. The water level of Lake Lahontan has fluctuated significantly over time, reaching maximum high stands during the last glacial maxima (MIS stages 2 and 4). Fossil stromatolites are found sixty meters above the present day shoreline of Walker Lake. Like other lacustrine sedimentary features, stromatolites are laminated and may preserve a geochemical record of their environment of formation. As accretionary growth structures, stromatolites also have the potential to preserve in situ lake conditions that constrain water depth. Preliminary petrographic analysis of Walker Lake stromatolites suggests that they have undergone minimal diagenesis and appear to contain predominantly abiogenic features. Using radiocarbon dating, we found a formation age from ~41,460 to ~35,680 (calibrated YBP, IntCal13) over 14 cm, placing the age of formation within late MIS 3--a time noted for severe climatic shifts including Dansgaard-Oeschger (DO) events. Clumped isotope (Δ₄₇) analysis revealed large temperature fluctuation of the surrounding water column during formation of the stromatolites. Using geochemical data of conservative trace metals we modeled the fluctuation of volume of Walker Lake to be almost 50% over the course of the ~5780 years of stromatolite accretion. The Walker Lake stromatolites formed under dynamic temperature and lake level conditions. Based on both the fine laminations and overall complexity of macrostructure, the Walker Lake stromatolites show more similarities to stromatolites formed in the Proterozoic then to modern day stromatolites. Therefore, the Walker Lake stromatolites offer an interesting and unique analog for studying stromatolite formation, climate dynamics and water chemistry in the Proterozoic.

  12. Magmatic construction and duration of solidification of Searchlight pluton, Eldorado Mountains, Nevada (USA)

    NASA Astrophysics Data System (ADS)

    Miller, J. S.; Cates, N. L.; Miller, C. F.; Wooden, J. L.; Means, M. A.; Ericksen, S.

    2003-12-01

    The process of chamber construction and the residence time of magma in mid- to upper crustal magma bodies have been illuminated by recent advances in high-resolution geochronology. Most work has so far concentrated on young volcanic systems; few geochrononlogic data have addressed magma chamber longevity and history from studying plutons. Plutons offer an important complementary record of magma processing and solidification, and can therefore reveal much about the internal workings of magma chambers. The Miocene Searchlight pluton (Nevada, USA) is a spectacular example of a very thick magma chamber (10-12 km). Crystal accumulation (mafic quartz monzonite cumulate), coupled with roof-down solidification (upper quartz monzonite) resulted in segregation of evolved felsic melt in the chamber interior (middle granite). Initially horizontal and gradational internal contacts and coplanar magmatic fabrics between all major units, geochemical mass balance, and very limited isotopic variation among major units, suggest that the entire pluton was molten at one time. However, the time inteval over which the chamber solidified was not well known. New TIMS and in situ ion microprobe U/Pb dating of zircon, combined with our earlier and ongoing field and isotopic studies, now appear to document a protracted magma chamber history. TIMS and ion microprobe dating (Stanford/USGS SHRIMP-RG) was done on two samples, and a third sample was dated by ion microprobe only. A multi-grain, multi-fraction discordia lower intercept age of 16.7+/-0.5 Ma (MSWD=22) was obtained by TIMS from the lower mafic quartz monzonite cumulate. Ion probe dating of zircons from the same sample yielded a 206Pb/238U age of 16.9+/-0.2 Ma (MSWD=1.3; N=24) in agreement with the TIMS lower intercept age. A discordia lower intercept age of 15.7+/-0.4 Ma (MSWD=3.7, one concordant point at 15.8 Ma) was obtained from the middle granite unit. Ion probe dating of zircons from the same sample yielded a 206Pb/238U age of 16

  13. Surface and Airborne Arsenic Concentrations in a Recreational Site near Las Vegas, Nevada, USA

    PubMed Central

    Goossens, Dirk

    2015-01-01

    Elevated concentrations of arsenic, up to 7058 μg g-1 in topsoil and bedrock, and more than 0.03 μg m-3 in air on a 2-week basis, were measured in the Nellis Dunes Recreation Area (NDRA), a very popular off-road area near Las Vegas, Nevada, USA. The elevated arsenic concentrations in the topsoil and bedrock are correlated to outcrops of yellow sandstone belonging to the Muddy Creek Formation (≈ 10 to 4 Ma) and to faults crossing the area. Mineralized fluids moved to the surface through the faults and deposited the arsenic. A technique was developed to calculate airborne arsenic concentrations from the arsenic content in the topsoil. The technique was tested by comparing calculated with measured concentrations at 34 locations in the NDRA, for 3 periods of 2 weeks each. We then applied it to calculate airborne arsenic concentrations for more than 500 locations all over the NDRA. The highest airborne arsenic concentrations occur over sand dunes and other zones with a surficial layer of aeolian sand. Ironically these areas show the lowest levels of arsenic in the topsoil. However, they are highly susceptible to wind erosion and emit very large amounts of sand and dust during episodes of strong winds, thereby also emitting much arsenic. Elsewhere in the NDRA, in areas not or only very slightly affected by wind erosion, airborne arsenic levels equal the background level for airborne arsenic in the USA, approximately 0.0004 μg m-3. The results of this study are important because the NDRA is visited by more than 300,000 people annually. PMID:25897667

  14. Surface and Airborne Arsenic Concentrations in a Recreational Site near Las Vegas, Nevada, USA.

    PubMed

    Goossens, Dirk; Buck, Brenda J; Teng, Yuanxin; McLaurin, Brett T

    2015-01-01

    Elevated concentrations of arsenic, up to 7058 μg g(-1) in topsoil and bedrock, and more than 0.03 μg m(-3) in air on a 2-week basis, were measured in the Nellis Dunes Recreation Area (NDRA), a very popular off-road area near Las Vegas, Nevada, USA. The elevated arsenic concentrations in the topsoil and bedrock are correlated to outcrops of yellow sandstone belonging to the Muddy Creek Formation (≈ 10 to 4 Ma) and to faults crossing the area. Mineralized fluids moved to the surface through the faults and deposited the arsenic. A technique was developed to calculate airborne arsenic concentrations from the arsenic content in the topsoil. The technique was tested by comparing calculated with measured concentrations at 34 locations in the NDRA, for 3 periods of 2 weeks each. We then applied it to calculate airborne arsenic concentrations for more than 500 locations all over the NDRA. The highest airborne arsenic concentrations occur over sand dunes and other zones with a surficial layer of aeolian sand. Ironically these areas show the lowest levels of arsenic in the topsoil. However, they are highly susceptible to wind erosion and emit very large amounts of sand and dust during episodes of strong winds, thereby also emitting much arsenic. Elsewhere in the NDRA, in areas not or only very slightly affected by wind erosion, airborne arsenic levels equal the background level for airborne arsenic in the USA, approximately 0.0004 μg m(-3). The results of this study are important because the NDRA is visited by more than 300,000 people annually.

  15. Three-Dimensional Geologic Characterization of Geothermal Systems: Astor Pass, Nevada, USA

    SciTech Connect

    Siler, Drew L; Mayhew, Brett; Faulds, James E

    2012-09-30

    Geothermal systems in the Great Basin, USA, are controlled by a variety of fault intersection and fault interaction areas. Understanding the specific geometry of the structures most conducive to geothermal circulation is crucial in order to both mitigate the costs of geothermal exploration (especially drilling) and to identify blind geothermal systems (no surface expression). Astor Pass, Nevada, one such blind geothermal system, lies near the boundary between two distinct structural domains, the Walker Lane and the Basin and Range, and exhibits characteristics of each setting. Both northwest-striking, left-stepping dextral faults of the Walker Lane and kinematically linked northerly striking normal faults associated with the Basin and Range are present at Astor Pass. Previous studies identified a blind geothermal system controlled by the intersection of northwest-striking dextral and north-northwest-striking normal faults. Wells drilled into the southwestern quadrant of the fault intersection yielded 94°C fluids, with geothermometers suggesting significantly higher maximum temperatures. Additional data, including reprocessed 2D seismic data and petrologic analysis of well cuttings, were integrated with existing and reinterpreted geologic maps and cross-sections to aid construction of a 3D geologic model. This comprehensive 3D integration of multiple data sets allows characterization of the structural setting of the Astor Pass blind geothermal system at a level of detail beyond what independent data interpretation can provide. Our analysis indicates that the blind geothermal system is controlled by two north- to northwest-plunging fault intersections.

  16. Tracing long-term vadose zone processes at the Nevada Test Site, USA.

    PubMed

    Hunt, James R; Tompson, Andrew F B

    2005-11-15

    The nuclear weapons testing programme of the USA has released radionuclides to the subsurface at the Nevada Test Site. One of these tests has been used to study the hydrological transport of radionuclides for over 25 years in groundwater and the deep unsaturated zone. Ten years after the weapon's test, a 16 year groundwater pumping experiment was initiated to study the mobility of radionuclides from that test in an alluvial aquifer. The continuously pumped groundwater was released into an unlined ditch where some of the water infiltrated into the 200 m deep vadose zone. The pumped groundwater had well-characterized tritium activities that were utilized to trace water migration in the shallow and deep vadose zones. Within the near-surface vadose zone, tritium levels in the soil water are modelled by a simple one-dimensional, analytical wetting front model. In the case of the near-surface soils at the Cambric Ditch experimental site, water flow and salt accumulation appear to be dominated by rooted vegetation, a mechanism not included within the wetting front model. Simulation results from a two-dimensional vadose groundwater flow model illustrate the dominance of vertical flow in the vadose zone and the recharge of the aquifer with the pumped groundwater. The long-time series of hydrological data provides opportunities to understand contaminant transport processes better in the vadose zone with an appropriate level of modelling.

  17. Tracing long-term vadose zone processes at the Nevada Test Site, USA

    NASA Astrophysics Data System (ADS)

    Hunt, James R.; Tompson, Andrew F. B.

    2005-11-01

    The nuclear weapons testing programme of the USA has released radionuclides to the subsurface at the Nevada Test Site. One of these tests has been used to study the hydrological transport of radionuclides for over 25 years in groundwater and the deep unsaturated zone. Ten years after the weapon's test, a 16 year groundwater pumping experiment was initiated to study the mobility of radionuclides from that test in an alluvial aquifer. The continuously pumped groundwater was released into an unlined ditch where some of the water infiltrated into the 200 m deep vadose zone. The pumped groundwater had well-characterized tritium activities that were utilized to trace water migration in the shallow and deep vadose zones. Within the near-surface vadose zone, tritium levels in the soil water are modelled by a simple one-dimensional, analytical wetting front model. In the case of the near-surface soils at the Cambric Ditch experimental site, water flow and salt accumulation appear to be dominated by rooted vegetation, a mechanism not included within the wetting front model. Simulation results from a two-dimensional vadose groundwater flow model illustrate the dominance of vertical flow in the vadose zone and the recharge of the aquifer with the pumped groundwater. The long-time series of hydrological data provides opportunities to understand contaminant transport processes better in the vadose zone with an appropriate level of modelling. Copyright

  18. Tracing long-term vadose zone processes at the Nevada Test Site, USA

    PubMed Central

    Hunt, James R.; Tompson, Andrew F. B.

    2010-01-01

    The nuclear weapons testing programme of the USA has released radionuclides to the subsurface at the Nevada Test Site. One of these tests has been used to study the hydrological transport of radionuclides for over 25 years in groundwater and the deep unsaturated zone. Ten years after the weapon’s test, a 16 year groundwater pumping experiment was initiated to study the mobility of radionuclides from that test in an alluvial aquifer. The continuously pumped groundwater was released into an unlined ditch where some of the water infiltrated into the 200 m deep vadose zone. The pumped groundwater had well-characterized tritium activities that were utilized to trace water migration in the shallow and deep vadose zones. Within the near-surface vadose zone, tritium levels in the soil water are modelled by a simple one-dimensional, analytical wetting front model. In the case of the near-surface soils at the Cambric Ditch experimental site, water flow and salt accumulation appear to be dominated by rooted vegetation, a mechanism not included within the wetting front model. Simulation results from a two-dimensional vadose groundwater flow model illustrate the dominance of vertical flow in the vadose zone and the recharge of the aquifer with the pumped groundwater. The long-time series of hydrological data provides opportunities to understand contaminant transport processes better in the vadose zone with an appropriate level of modelling. PMID:21785525

  19. Fuel deposition rates of montane and subalpine conifers in the central Sierra Nevada, California, USA

    USGS Publications Warehouse

    van Wagtendonk, J.W.; Moore, P.E.

    2010-01-01

    Fire managers and researchers need information on fuel deposition rates to estimate future changes in fuel bed characteristics, determine when forests transition to another fire behavior fuel model, estimate future changes in fuel bed characteristics, and parameterize and validate ecosystem process models. This information is lacking for many ecosystems including the Sierra Nevada in California, USA. We investigated fuel deposition rates and stand characteristics of seven montane and four subalpine conifers in the Sierra Nevada. We collected foliage, miscellaneous bark and crown fragments, cones, and woody fuel classes from four replicate plots each in four stem diameter size classes for each species, for a total of 176 sampling sites. We used these data to develop predictive equations for each fuel class and diameter size class of each species based on stem and crown characteristics. There were consistent species and diameter class differences in the annual amount of foliage and fragments deposited. Foliage deposition rates ranged from just over 50 g m-2 year-1 in small diameter mountain hemlock stands to ???300 g m-2 year-1 for the three largest diameter classes of giant sequoia. The deposition rate for most woody fuel classes increased from the smallest diameter class stands to the largest diameter class stands. Woody fuel deposition rates varied among species as well. The rates for the smallest woody fuels ranged from 0.8 g m-2 year-1 for small diameter stands of Jeffrey pine to 126.9 g m-2 year-1 for very large diameter stands of mountain hemlock. Crown height and live crown ratio were the best predictors of fuel deposition rates for most fuel classes and species. Both characteristics reflect the amount of crown biomass including foliage and woody fuels. Relationships established in this study allow predictions of fuel loads to be made on a stand basis for each of these species under current and possible future conditions. These predictions can be used to

  20. Holocene dune formation at Ash Meadows National Wildlife Area, Nevada, USA

    NASA Astrophysics Data System (ADS)

    Lancaster, Nicholas; Mahan, Shannon A.

    2012-09-01

    Small isolated dune fields in the northern Mojave Desert are important centers of biodiversity and archaeological occupation sites. Currently dunes at Ash Meadows, Nevada, are stabilized by vegetation and are experiencing erosion of their upwind margins, indicating a negative sediment budget. New OSL ages from dunes at Ash Meadows indicate continuous eolian accumulation from 1.5 to 0.8 ka, with further accumulation around 0.2 ka. Prior studies (e.g., Mehringer and Warren, 1976) indicate periods of dune accumulation prior to 3.3 ka; 1.9-1 ka; and after 0.9 ka. These periods of eolian accumulation are largely synchronous with those identified elsewhere in the Mojave Desert. The composition of the Ash Meadows dunes indicates their derivation from regional fluvial sources, most likely during periods when axial washes were active as a result of enhanced winter precipitation.

  1. Morphology and genesis of carbonate soils on the Kyle Canyon fan, Nevada, U.S.A.

    USGS Publications Warehouse

    Reheis, M.C.; Sowers, J.M.; Taylor, E.M.; McFadden, L.D.; Harden, J.W.

    1992-01-01

    The physical and chemical properties of soils formed in an arid climate on calcareous alluvium of the Kyle Canyon alluvial fan, southern Nevada, were studied in order to infer the rates and relative importance of various soil-forming processes. These studies included field and microscopic observations and analyses of thin sections, major oxides, extractable iron, and clay minerals. The results are interpreted to reflect five major pedogenic processes: (1) The calcic horizons and calcretes of Kyle Canyon soils form by precipitation of CaCO3, derived from eolian dust and alluvium, as clast coats, matrix cement, and massive layers. (2) The A and uppermost B horizons are essentially dust-derived, for they contain large amounts of detrital material not present in the alluvial parent material, and their major-oxide content is similar to that of modern dust. (3) Clay particles are translocated from A into B horizons. (4) Iron-bearing minerals in the near-surface B horizons are slowly oxidized. (5) Carbonate and aluminosilicate grains are both displaced and replaced by pedogenic CaCO3; the silica released by replacement of aluminosilicates may be locally precipitated as amorphous or opaline silica and (or) incorporated into newly formed palygorskite and sepiolite. Rates of soil development at Kyle Canyon are approximate due to uncertainties in age estimates. Some soil field properties change at rates that are similar to rates for soils formed in rhyolitic parent material near Mercury, Nevada. The rate of accumulation of CaCO3 (3-5 g m-2 yr-1) at Kyle Canyon is an order of magnitude faster than that near Mercury, but is comparable to rates calculated for soils in southern New Mexico and Utah. ?? 1992.

  2. Competing risks and the development of adaptive management plans for water resources: Field reconnaissance investigation of risks to fishes and other aquatic biota exposed to endocrine disrupting chemicals (edcs) in lake mead, Nevada USA

    USGS Publications Warehouse

    Linder, G.; Little, E.E.

    2009-01-01

    The analysis and characterization of competing risks for water resources rely on a wide spectrum of tools to evaluate hazards and risks associated with their management. For example, waters of the lower Colorado River stored in reservoirs such as Lake Mead present a wide range of competing risks related to water quantity and water quality. These risks are often interdependent and complicated by competing uses of source waters for sustaining biological resources and for supporting a range of agricultural, municipal, recreational, and industrial uses. USGS is currently conducting a series of interdisciplinary case-studies on water quality of Lake Mead and its source waters. In this case-study we examine selected constituents potentially entering the Lake Mead system, particularly endocrine disrupting chemicals (EDCs). Worldwide, a number of environmental EDCs have been identified that affect reproduction, development, and adaptive behaviors in a wide range of organisms. Many EDCs are minimally affected by current treatment technologies and occur in treated sewage effluents. Several EDCs have been detected in Lake Mead, and several substances have been identified that are of concern because of potential impacts to the aquatic biota, including the sport fishery of Lake Mead and endangered razorback suckers (Xyrauchen texanus) that occur in the Colorado River system. For example, altered biomarkers relevant to reproduction and thyroid function in fishes have been observed and may be predictive of impaired metabolism and development. Few studies, however, have addressed whether such EDC-induced responses observed in the field have an ecologically significant effect on the reproductive success of fishes. To identify potential linkages between EDCs and species of management concern, the risk analysis and characterization in this reconnaissance study focused on effects (and attendant uncertainties) that might be expressed by exposed populations. In addition, risk reduction

  3. Cluster Analysis of vents in monogenetic volcanic fields, Lunar Crater Volcanic Field (Nevada)

    NASA Astrophysics Data System (ADS)

    Tadini, A.; Cortes, J. A.; Valentine, G. A.; Johnson, P. J.; Tibaldi, A.; Bonali, F. L.

    2012-12-01

    Monogenetic volcanic fields pose a serious risk to human activities and settlements due to their high occurrence around the world and because of the type of eruptive activity that they exhibit. The need of adequate tools to better undertake volcanic hazard assessment for volcanic fields, especially from a spatial point of view, is of key importance at the time of mitigate such hazard. Among these tools, a better understanding of the spatial distribution of cones and vents and any structural/tectonical relationship are essential to understand the plumbing system of the field and thus help to predict the likelihood location of future eruptions. In this study we have developed a spatial methodology, which is the combination of various methodologies developed for volcanic textures and other clustering goals [1,2], to study the clustering of volcanic vents and their relation with structural features from satellite images. The methodology first involves the statistical identification and removal of spatial outliers using a predictive elliptical area [2] and the generation of randomly distributed points in the same predictive area. A comparison of the Near Neighbor Distance (NND) between the generated data and the data measured in a volcanic field is used to determine whether the vents are clustered or not. If the vents are clustered, a combination of hierarchical clustering and K-means [3] is then used to identify the clusters and their related vents. Results are then further constrained with the study of lineaments and other structural features that can be affected and related with the clusters. The methodology was tested in the Lunar Crater Volcanic Field, Nevada (USA) and successfully has helped to identify tectonically controlled lineaments from those that are resultant of geomorphological processes such the drainage control imposed by the cone clusters. Theoretical approaches has been developed before to constrain the plumbing of a volcanic field [4], however these

  4. Paleotransport of lanthanides and strontium recorded in calcite compositions from tuffs at Yucca Mountain, Nevada, USA

    NASA Astrophysics Data System (ADS)

    Vaniman, David T.; Chipera, Steve J.

    1996-11-01

    Secondary calcite occurs in both saturated and unsaturated hydrologic zones (SZ and UZ, respectively) in the tuffs at Yucca Mountain, Nevada, USA. In the upper UZ, the major constituents of the calcite crystal structure (C, O) have surface origins. At greater depth there is a “barren zone,” straddling the water table, where calcite is rare and mixing of surface and subsurface sources may occur. Deep in the SZ, distinctive Mn calcites reflect deep sources, including Ca released as analcime or albite formed and carbonates derived from underlying Paleozoic rocks. In the UZ and in the barren zone, above the deep Mn calcites, variations in calcite lanthanide chemistry can be used to distinguish rhyolitic from quartz-latitic sources. Lanthanide ratios and Sr contents of calcites record the chemical evolution of waters flowing through the UZ and upper SZ. Variations in calcite chemistry in the UZ and in the barren zone show that (1) Sr, which is readily exchanged with clays or zeolites, is essentially removed from some flowpaths that are in contact with these minerals and (2) traces of Mn oxides found in the tuffs have a significant effect on groundwater chemistry in the UZ and in the barren zone by removing almost all Ce from solution (evidenced by characteristic Ce depletions in calcite throughout this zone). Extreme Ce removal may be a result of Ce oxidation (Ce 3+→ Ce 4+) at the surfaces of some Mn oxides, particularly rancieite. Higher Sr contents and lack of Ce depletions in the deeper Mn calcites reflect different ages, origins, and transport systems. The calcite record of lanthanide and Sr transport in the UZ shows that minor minerals (clays and zeolites) and even trace minerals (Mn oxides) will affect the compositions of groundwaters that flow over distances greater than a few tens of meters.

  5. Multiple Magmatic Events Over 40 Ma in the Fish Creek Mountains, North-central Great Basin, Nevada, USA

    NASA Astrophysics Data System (ADS)

    Cousens, B.; Henry, C. D.; Stevens, C.; Varve, S.

    2011-12-01

    basalt to rhyolite and rare trachyte. These rocks are linked to the Columbia River flood basalt event. Along the northwestern margin of the Fish Creek Mountains and in the center of the caldera complex are exposed late Pliocene to Quaternary lava flows and cinder cones of the Buffalo Valley volcanic field. The Buffalo Valley volcanic rocks are alkalic basalts that are locally vesicular, with rare plagioclase and olivine phenocrysts as well as plagioclase megacrysts up to several centimeters in size. Trace element and isotopic characteristics are similar to those of the Pliocene-Pleistocene Lunar Craters volcanic field in central Nevada. Ongoing geochemical analyses will outline variations in mantle sources and post-melting processes in the multiple volcanic systems of north-central Nevada.

  6. The status of childhood lead poisoning and prevention in Nevada, USA.

    PubMed

    Rothweiler, Anne M; Cabb, Elena E; Gerstenberger, Shawn L

    2007-03-30

    One of the first steps in addressing the problem of childhood lead poisoning is to identify the possible sources of exposure in specific communities and target high-risk populations with appropriate interventions. Due to several factors, such as lack of funding and lack of blood lead reporting, little information exists regarding the occurrence of childhood lead poisoning and the prevalence of potential exposure sources in the state of Nevada. Following the recent establishment of a Nevada-based Lead Poisoning Program, we compiled the most current information available on Nevadans, and use this knowledge to suggest future research objectives and outreach activities for the state. Accordingly, we identify the characteristics of the vulnerable Nevada populations, explore possible sources of lead exposure unique to Nevada, and summarize the existing data on childhood lead poisoning. Emerging data indicates that Nevada is an area of rapid population growth, characterized by increasing immigration from Latin America, increasing numbers of children from low-income families with no health insurance. Also, childhood lead poisoning may arise from exposure to non-paint sources of lead. After presenting the Nevada statistics, we propose and recommend a set of research and outreach strategies that best suit the needs of Nevada residents.

  7. Polychlorinated biphenyls and toxaphene in Pacific tree frog tadpoles (Hyla regilla) from the California Sierra Nevada, USA.

    PubMed

    Angermann, Jeffrey E; Fellers, Gary M; Matsumura, Fumio

    2002-10-01

    Pacific tree frog (Hyla regilla) tadpoles were collected throughout the Sierra Nevada mountain range, California, USA, in 1996 and 1997 and analyzed for the presence of polychlorinated biphenyls (PCBs) and toxaphene. Whole-tadpole sigma PCB levels ranged from 244 ng/g (wet wt) at lower elevations on the western slope to 1.6 ng/g high on the eastern slope, whereas sigma toxaphene levels ranged from 15.6 to 1.5 ng/g. Linear regression of PCB and toxaphene residue levels versus elevation indicated a significant relationship, with an r2 value of 0.33 for PCB and 0.45 for toxaphene indicating a significant elevation effect on PCB and toxaphene bioaccumulation in Sierra Nevada H. regilla. Tadpole samples from sites in east-facing versus west-facing drainage basins showed significant differences in PCB and toxaphene residue levels, suggesting the possibility of a rain-shadow effect in the long-range atmospheric transport of these contaminants to the Sierra Nevada Mountains.

  8. Polychlorinated biphenyls and toxaphene in Pacific tree frog tadpoles (Hyla regilla) from the California Sierra Nevada, USA

    USGS Publications Warehouse

    Angermann, Jeffrey E.; Fellers, Gary M.; Matsumura, Fumio

    2002-01-01

    Pacific tree frog (Hyla regilla) tadpoles were collected throughout the Sierra Nevada mountain range, California, USA, in 1996 and 1997 and analyzed for the presence of polychlorinated biphenyls (PCBs) and toxaphene. Whole-tadpole Σ PCB levels ranged from 244 ng/g (wet wt) at lower elevations on the western slope to 1.6 ng/g high on the eastern slope, whereas Σ toxaphene levels ranged from 15.6 to 1.5 ng/g. Linear regression of PCB and toxaphene residue levels versus elevation indicated a significant relationship, with an r2 value of 0.33 for PCB and 0.45 for toxaphene indicating a significant elevation effect on PCB and toxaphene bioaccumulation in Sierra Nevada H. regilla. Tadpole samples from sites in east-facing versus west-facing drainage basins showed significant differences in PCB and toxaphene residue levels, suggesting the possibility of a rain-shadow effect in the long-range atmospheric transport of these contaminants to the Sierra Nevada Mountains.

  9. Digital field trip to the Central Nevada Thrust Belt

    SciTech Connect

    Chamberlain, A.K.; Hook, S.C.; Frost, K.R.

    1996-12-31

    Hydrocarbon exploration in the Central Nevada Thrust Belt is still in its infancy. However, this thrust belt contains all the elements necessary for hydrocarbon accumulations: thick, organically-rich shales; reefs, regional unconformities, karst surfaces, porous sandstones, and extensive and pervasive fractures; anticlines tens of miles long by miles wide; thrust faults that juxtapose potential source and reservoir rocks; and oil seeps. Along a fairway from Las Vegas to Elko, for example, thick Mississippian shales contain 4-6% total organic carbon and are oil-prone and thermally mature. This presentation from a laptop computer and LCD projector is a multimedia version of our October 12-14, 1995 field trip to document the hydrocarbon potential of the thrust belt in Clark, Lincoln, and Nye Counties. Outcrop images were recorded by a digital camera that has a resolution equivalent to a 14 inch computer screen; these images were then downloaded to the computer. All of the images were processed digitally on location to enhance picture quality and color contrast. Many were annotated on location with our observations, measurements, and interpretations. These field annotations are supplemented in this presentation by laboratory analyses. The presentation includes full-color, annotated outcrop images, sounds, and animations. The results show the viability of the new, inexpensive digital cameras to geologic field work in which a multimedia report, ready for presentation to management, can be generated in the field.

  10. Origin and evolution of the Steamboat Springs siliceous sinter deposit, Nevada, U.S.A.

    NASA Astrophysics Data System (ADS)

    Lynne, Bridget Y.; Campbell, Kathleen A.; Moore, Joseph; Browne, P. R. L.

    2008-10-01

    Siliceous hot spring deposits from Steamboat Springs, Nevada, U.S.A., record a complex interplay of multiple, changing, primary environmental conditions, fluid overprinting and diagenesis. Consequently these deposits reflect dynamic geologic and geothermal processes. Two surface sinters were examined—the high terrace, and the distal apron-slope, as well as 13.11 m (43 ft) of core material from drill hole SNLG 87-29. The high terrace sinter consists of vitreous and massive-mottled silica horizons, while the distal deposit and core comprise dominantly porous, indurated fragmental sinters. Collectively, the three sinter deposits archive a complete sequence of silica phase diagenetic minerals from opal-A to quartz. X-ray powder diffraction analyses and infrared spectroscopy of the sinters indicate that the distal apron-slope consists of opal-A and opal-A/CT mineralogy; the core yielded opal-A/CT and opal-CT with minor opal-A; and the high terrace constitutes opal-C, moganite, and quartz. Mineralogical maturation of the deposit produced alternating nano-micro-nano-sized silica particle changes. Based on filament diameters of microbial fossils preserved within the sinter, discharging thermal outflows fluctuated between low-temperatures (< 35 °C, coarse filaments) and mid-temperatures (˜ 35-60 °C, fine filaments). Despite transformation to quartz, primary coarse and fine filaments were preserved in the high terrace sinter. AMS 14C dating of pollen from three horizons within core SNLG 87-29, from depths of 8.13 to 8.21 m (26'8″ to 26'11″), 10.13 to 10.21 m (33'3″ to 33'6″), and 14.81 to 14.88 m (48'7″ to 48'10″), yielded dates of 8684 ± 64 years, 11,493 ± 70 years and 6283 ±60 years, respectively. In the upper section of the core, the stratigraphically out-of-sequence age likely reflects physical mixing of younger sinter with quartzose sinter fragments derived from the high terrace. Within single horizons, mineralogical and morphological components of

  11. Climate and hillslope degradation vary in concert; 85 ka to present, eastern Sierra Nevada, CA, USA

    NASA Astrophysics Data System (ADS)

    Madoff, Risa D.; Putkonen, Jaakko

    2016-08-01

    Degradation in the landscape results when the interactions of climate, substrate, and biota dislodge and transport sediment that is mantling landforms. Rates of degradation through time control landform stability and resiliency. Therefore, records of past degradation rates can be used to inform us on how a given landscape responded to significant changes in past climates. For example, climate has varied at many temporal scales, and some of the largest recent shifts enabled the glacial advances and retreats in time scales of 20-100 ka. Therefore, it is reasonable to expect that the rate of landscape degradation has also varied at similar time scales. However, the general hillslope diffusion equation that is commonly used to model cross-profiles of hillslopes on time scales of thousands to tens of thousands of years typically relies on a constant and optimized rate parameter to generate a model cross-profile approximating the current observed landform cross-profile. Using a time-varying diffusivity parameter, we generated three separate degradation scenarios for the Mono Basin moraine in the eastern Sierra Nevada, CA, USA, in order to assess the potential impact of varying past climates on sediment transport. We used published paleoclimate records in the study area and modern rates of surface degradation from climates that correspond broadly to those paleoclimates. The results indicate that, in this case, the climate driven and, therefore, time-dependent degradation model produces a good fit between the modeled and observed landform profiles. Results showed that, when the surface elevations of the reference case (constant optimized diffusivity) were compared through time to the surface elevations of the time-dependent model, the differences were relatively small. The largest deviation was found to occur during the Last Glacial Maximum (LGM). We found that for investigations into the geological effects of climate change in glacial and polar regions, the use of time

  12. Paleomagnetism and Anisotropy of Magnetic Susceptibility study of the Miocene Jack Springs Tuff (Nevada, USA)

    NASA Astrophysics Data System (ADS)

    Shields, S.; Petronis, M. S.; Pluhar, C. J.; Gordon, L.

    2014-12-01

    The mid-Miocene Jack Springs Tuff (JST) outcrops across the western Mina Deflection accommodation zone, west-central Nevada and into eastern California. Previously, the source location for the JST was unknown, yet recent studies northwest of Mono Lake, CA have identified a relatively un-rotated structural block in which to reference the paleomagnetic data. Although new studies have indicated that this block may be rotated up to 13º, we argue that the probable source area is located near the Bodie Hills, CA. At this site, the paleomagnetic reference direction is D = 353°, I = 43°, α95 = 7.7° (Carlson et al, 2013). Based on these data, the JST can be used to measure absolute vertical-axis rotation as well as enable reconstruction of the paleo-topography using the corrected anisotropy of magnetic susceptibility (AMS) data. A total of 19 sites were sampled to constrain Cenozoic to recent vertical axis rotation within the region and AMS experiments were conducted to determine the flow direction of the JST. Curie point estimates indicate that the JST ranges in titanium concentration from 0.042 to 1.10, indicating a low to moderate titanomagnetite phase (Akimoto, 1962). Demagnetization experiments reveal mean destructive fields of the NRM ranging between 15mT and 40mT suggesting that both multi-domain to pseudo-single domain grains are the dominant ferromagnetic phases that carry the remanence and AMS fabric. Preliminary paleomagnetic data yield stable single component demagnetization behavior for most sites that, after structural correction, indicate clockwise vertical axis rotation ranging from +20°± 10° to +60°± 11° between multiple fault blocks. The uncorrected AMS data yield oblate magnetic fabrics that can be used to infer the transport direction, source region, and paleovalley geometry of the JST. These data are tentatively interpreted to indicate west to east transport of the JST across the Mono Basin region into the Mina Deflection that was erupted and

  13. Simulation of gas phase transport of carbon-14 at Yucca Mountain, Nevada, USA

    USGS Publications Warehouse

    Lu, N.; Ross, B.

    1994-01-01

    We have simulated gas phase transport of Carbon-14 at Yucca Mountain, Nevada. Three models were established to calculate travel time of Carbon-14 from the potential repository to the mountain surface: a geochemical model for retardation factors, a coupled gas-flow and heat transfer model for temperature and gas flow fields, and a particle tracker for travel time calculation. The simulations used three parallel, east-west cross-sections that were taken from the Sandia National Laboratories Interactive Graphics Information System (IGIS). Assuming that the repository is filled with 30- year-old waste at an initial areal power density of 57 kw/acre, we found that repository temperatures remain above 60??C for more than 10,000 years. For a tuff permeability of 10-7 cm2, Carbon-14 travel times to the surface are mostly less than 1,000 years, for particles starting at any time within the first 10,000 years. If the tuff permeability is 10-8 cm2, however, Carbon- 14 travel times to the surface range from 3,000 to 12,000 years, for particle starting within the 10,000 years.

  14. Spectral anomaly over Railroad Valley oil field, Nevada

    SciTech Connect

    Feldman, S.C. ); Honey, F.R. ); Ballew, G.I. )

    1990-05-01

    Oil was first discovered in Railroad Valley, south-central Nevada in 1954. Since that time, over 195 wells have been drilled and six oil fields have been found: Bacon Flat, Currant, Trap Spring, Eagle Springs, Grant Canyon and Kate Spring. Two wells in the Grant Canyon field had flows between 2,480 and 4,108 bbl/day in 1987 and may be the most prolific wells onshore in the continental US. Production in the Railroad Valley fields is from Oligocene volcanic and sedimentary rocks and Paleozoic carbonate formations. Traps are structural or structural and stratigraphic, and reservoir seals are indurated or clayey valley fill, weathered tuff, and shales in Tertiary sediments. Reservoir temperatures range between 95 and 309{degree}F. Previous workers have identified a statistically significant positive correlation between hydrocarbon microseepage and vegetation anomalies over the Railroad Valley oil fields with Landsat Multispectral Scanner (MSS) imagery. Several flight lines of high spectral and spatial resolution imagery in the visible, near infrared, shortwave infrared, and thermal infrared regions of the spectrum were flown with Geoscan's MkII Airborne Multispectral Scanner to determine if there was a mineralogical signature associated with the oil fields. The 24-channel scanner collected 8-m resolution picture elements over a swath of about 8 km. Image processing strategies were developed from a knowledge of the spectral curves of minerals in the laboratory. The results from processing Geoscans MkII data were also compared with those obtained from processing Landsat Thematic Mapper (TM) imagery over the same area. An 8 {times} 6 km carbonate and iron anomaly was detected on the processed MkII imagery over the Trap Spring oil field. This anomaly may be related to hot spring activity, reported by other workers, that has formed extensive calcite deposits along faults.

  15. Geotechnical field measurements: G-tunnel, Nevada test site

    NASA Astrophysics Data System (ADS)

    Zimmerman, R. M.; Vollendorf, W. C.

    1982-05-01

    The FY81 geotechnical measurements focused on borehole measurements in the Grouse Canyon welded tuff in G-tunnel on the Nevada Test Site. These ambient temperature measures were taken to: (1) establish baseline reference field data, and (2) gain field testing experience in welded tuff. The in situ state of stress was obtained using the three-hole overcoring method with the US Bureau of Mines three-component borehole deformation gage. The orthogonal horizontal stresses were 5.5 and 0.3 MPa and the nominal vertical was 8.5. Biaxial tests were performed on recovered cores and the average modulus of deformation was 31 GPa. The modulus of deformation using the borehole jack (Goodman) had an average value of 12 GPa. This value is not corrected for effective bearing contact area. Two orthogonal boreholes were used to determine the range of hydraulic conductivities. The range was from 0.022 cm/s (22 Darcy's) to 1.923 cm/s (1988 Dracy's).

  16. Geotechnical field measurements: G-tunnel, Nevada Test Site

    SciTech Connect

    Zimmerman, R.M.; Vollendorf, W.C.

    1982-05-01

    The FY81 geotechnical measurements focused on borehole measurements in the Grouse Canyon welded tuff in G-tunnel on the Nevada Test Site. These ambient temperature measurements were taken to: (1) establish baseline reference field data, and (2) gain field testing experience in welded tuff. The in situ state of stress was obtained using the three-hole overcoring method with the US Bureau of Mines three-component borehole deformation gage. The orthogonal horizontal stresses were 5.5 and 0.3 MPa and the nominal vertical was 8.5. Biaxial tests were performed on recovered cores and the average modulus of deformation was 31 GPa. The modulus of deformation using the borehole jack (Goodman) had an average value of 12 GPa. This value is not corrected for effective bearing contact area. Two orthogonal boreholes were used to determine the range of hydraulic conductivities. The range was from 0.022 cm/s (22 Darcy`s) to 1.923 cm/s (1988 Darcy`s).

  17. Quantifying natural source mercury emissions from the Ivanhoe Mining District, north-central Nevada, USA

    NASA Astrophysics Data System (ADS)

    Engle, Mark A.; Gustin, Mae Sexauer; Zhang, Hong

    In order to assess the importance of mercury emissions from naturally enriched sources relative to anthropogenic point sources, data must be collected that characterizes mercury emissions from representative areas and quantifies the influence of various environmental parameters that control emissions. With this information, we will be able to scale up natural source emissions to regional areas. In this study in situ mercury emission measurements were used, along with data from laboratory studies and statistical analysis, to scale up mercury emissions for the naturally enriched Ivanhoe Mining District, Nevada. Results from stepwise multi-variate regression analysis indicated that lithology, soil mercury concentration, and distance from the nearest fault were the most important factors controlling mercury flux. Field and lab experiments demonstrated that light and precipitation enhanced mercury emissions from alluvium with background mercury concentrations. Diel mercury emissions followed a Gaussian distribution. The Gaussian distribution was used to calculate an average daily emission for each lithologic unit, which were then used to calculate an average flux for the entire area of 17.1 ng Hg m -2 h -1. An annual emission of ˜8.7×10 4 g of mercury to the atmosphere was calculated for the 586 km 2 area. The bulk of the Hg released into the atmosphere from the district (˜89%) is from naturally enriched non-point sources and ˜11% is emitted from areas of anthropogenic disturbance where mercury was mined. Mercury emissions from this area exceed the natural emission factor applied to mercury rich belts of the world (1.5 ng m -2 h -1) by an order of magnitude.

  18. Map showing the Elko crater field, Elko County, Nevada

    USGS Publications Warehouse

    Ketner, Keith B.; Roddy, David J.

    1980-01-01

    The Elko crater field consists of two arrays of rimmed craters in the valleys of Dorsey, Susie, and McClellan Creeks, 30 to 50 km north of Elko, Nevada. In the principal array, more the 165 craters are scattered irregularly in an area 3 km wide and 20 km long. Most of the the craters are circular but some, formed by overlap, are oval or irregular. They range from 5 m to 250 m in diameter and the relief of the largest ones, from the sedimentary floor of the cater to the top of the rim, is at least 6 m. The surficial material of the rims is principally gravel similar to that in the surrounding terrane. The surficial material inside the craters is primarily silt, probably blown in by the wind, and pebbles, apparently washed in from the rims. There is also a later of volcanic ash at a depth of about 2 m. This ash was identified by its physical and mineralogical composition as the Mazama ash (R. E. Wilcox, oral commun., 1976), a ±6600 year old ash bed also present in the alluvium of Dorsey and Susie Creeks. The craters are presently interpreted as having been formed by a meteor shower although no meteor material has been discovered. Investigation is continuing.

  19. Carbon isotope chemostratigraphy and precise dating of middle Frasnian (lower Upper Devonian) Alamo Breccia, Nevada, USA

    USGS Publications Warehouse

    Morrow, J.R.; Sandberg, C.A.; Malkowski, K.; Joachimski, M.M.

    2009-01-01

    At Hancock Summit West, Nevada, western USA, uppermost Givetian (upper Middle Devonian) and lower and middle Frasnian (lower Upper Devonian) rocks of the lower Guilmette Formation include, in stratigraphic sequence, carbonate-platform facies of the conodont falsiovalis, transitans, and punctata Zones; the type Alamo Breccia Member of the middle punctata Zone; and slope facies of the punctata and hassi Zones. The catastrophically deposited Alamo Breccia and related phenomena record the ~ 382??Ma Alamo event, produced by a km-scale bolide impact into a marine setting seaward of an extensive carbonate platform fringing western North America. Re-evaluation of conodonts from the lower Guilmette Formation and Alamo Breccia Member, together with regional sedimentologic and conodont biofacies comparisons, now firmly locates the onset of the Johnson et al. (1985) transgressive-regressive (T-R) cycle IIc, which occurred after the start of the punctata Zone, within a parautochthonous megablock low in the Alamo Breccia. Whole-rock carbon isotope analyses through the lower Guilmette Formation and Alamo Breccia Member reveal two positive ??13Ccarb excursions: (1) a small, 3??? excursion, which is possibly correlative with the falsiovalis Event previously identified from sections in Western Europe and Australia, occurs below the breccia in the Upper falsiovalis Zone to early part of the transitans Zone; and (2) a large, multi-part excursion, dominated by a 6??? positive shift, begins above the start of the punctata Zone and onset of T-R cycle IIc and continues above the Alamo Breccia, ending near the punctata- hassi zonal boundary. This large excursion correlates with the punctata Event, a major positive ??13C excursion previously recognized in eastern Laurussia and northern Gondwana. Consistent with previous studies, at Hancock Summit West the punctata Event is apparently not associated with any regional extinctions or ecosystem reorganizations. In the study area, onset of the

  20. Recognition of Macluritella ( Gastropoda) from the Upper Cambrian of Missouri and Nevada ( USA).

    USGS Publications Warehouse

    Yochelson, E.L.; Stinchcomb, B.L.

    1987-01-01

    Open-coiled euomphalacean gastropods have been identified for the first time in the Upper Cambrian Eminence Dolomite of Missouri. These gastropods have a triangular whorl profile and are conspecific with Hyolithes walcotti described from the Upper Cambrian of Nevada. That species is questionably reassigned to the gastropod genus Macluritella, hitherto known only from the Lower Ordovician of Colorado. -Authors Ordovician Colorado

  1. Mercury in Tadpoles Collected from Remote Alpine Sites in the Southern Sierra Nevada Mountains, California, USA

    EPA Science Inventory

    Amphibians in alpine wetlands of the Sierra Nevada mountains comprise key components of an aquatic-terrestrial food chain, and mercury contamination is a concern because concentrations in fish from this regin exceed thresholds of risk to piscivorous wildlife. Total mercury conc...

  2. Bottom Sediment as a Source of Organic Contaminants in Lake Mead, Nevada, USA

    EPA Science Inventory

    Treated wastewater effluent from Las Vegas, Nevada and surrounding communities’ flow through Las Vegas Wash (LVW) into the Lake Mead National Recreational Area at Las Vegas Bay (LVB). Lake sediment is a likely sink for many hydrophobic synthetic organic compounds (SOCs); however,...

  3. Characterizing the extreme 2015 snowpack deficit in the Sierra Nevada (USA) and the implications for drought recovery

    NASA Astrophysics Data System (ADS)

    Margulis, Steven A.; Cortés, Gonzalo; Girotto, Manuela; Huning, Laurie S.; Li, Dongyue; Durand, Michael

    2016-06-01

    Analysis of the Sierra Nevada (USA) snowpack using a new spatially distributed snow reanalysis data set, in combination with longer term in situ data, indicates that water year 2015 was a truly extreme (dry) year. The range-wide peak snow volume was characterized by a return period of over 600 years (95% confidence interval between 100 and 4400 years) having a strong elevational gradient with a return period at lower elevations over an order of magnitude larger than those at higher elevations. The 2015 conditions, occurring on top of three previous drought years, led to an accumulated (multiyear) snowpack deficit of ~ -22 km3, the highest over the 65 years analyzed. Early estimates based on 1 April snow course data indicate that the snowpack drought deficit will not be overcome in 2016, despite historically strong El Niño conditions. Results based on a probabilistic Monte Carlo simulation show that recovery from the snowpack drought will likely take about 4 years.

  4. ORGANIC POLLUTANT DEPOSITION TO THE SIERRA NEVADA (CALIFORNIA, USA) SNOWPACK AND ASSOCIATED LAKE AND STREAM ECOSYSTEM

    EPA Science Inventory

    High elevation ecosystems in the western USA and Canada are receiving deposition of persistent organic pollutants (POPs) that presumably originate in the USA as well as outside its borders. In April 1992 we obtained paired snowpack samples from each of two watersheds located in t...

  5. Near-field modeling in Frenchman Flat, Nevada Test Site

    SciTech Connect

    Pohlmann, K.; Shirley, C.; Andricevic, R.

    1996-12-01

    The US Department of Energy (DOE) is investigating the effects of nuclear testing in underground test areas (the UGTA program) at the Nevada Test Site. The principal focus of the UGTA program is to better understand and define subsurface radionuclide migration. The study described in this report focuses on the development of tools for generating maps of hydrogeologic characteristics of subsurface Tertiary volcanic units at the Frenchman Flat corrective Action Unit (CAU). The process includes three steps. The first step involves generation of three-dimensional maps of the geologic structure of subsurface volcanic units using geophysical logs to distinguish between two classes: densely welded tuff and nonwelded tuff. The second step generates three-dimensional maps of hydraulic conductivity utilizing the spatial distribution of the two geologic classes obtained in the first step. Each class is described by a correlation structure based on existing data on hydraulic conductivity, and conditioned on the generated spatial location of each class. The final step demonstrates the use of the maps of hydraulic conductivity for modeling groundwater flow and radionuclide transport in volcanic tuffs from an underground nuclear test at the Frenchman Flat CAU. The results indicate that the majority of groundwater flow through the volcanic section occurs through zones of densely welded tuff where connected fractures provide the transport pathway. Migration rates range between near zero to approximately four m/yr, with a mean rate of 0.68 m/yr. This report presents the results of work under the FY96 Near-Field Modeling task of the UGTA program.

  6. Holocene tephra stratigraphy in four lakes in southeastern Oregon and northwestern Nevada, USA

    NASA Astrophysics Data System (ADS)

    Foit, Franklin F.; Mehringer, Peter J.

    2016-03-01

    To better understand the regional tephra stratigraphy and chronology of northern Nevada and southern Oregon, tephras in archived cores, taken as part of the Steens Mountain Prehistory Project from four lakes, Diamond Pond, Fish and Wildhorse lakes in southeastern Oregon and Blue Lake in northwestern Nevada, were reexamined using more advanced electron microprobe analytical technology. The best preserved and most complete core from Fish Lake along with Wildhorse Lake hosted two tephras from Mt. Mazama (Llao Rock and the Climactic Mazama), a mid-Holocene basaltic tephra from Diamond Craters, Oregon, two Medicine Lake tephras and an unexpected late Holocene Chaos Crags (Mt. Lassen volcanic center) tephra which was also found in the other lakes. Blue Lake was the only lake that hosted a Devils Hill tephra from the Three Sisters volcano in west central Oregon. Another tephra from the Three Sisters Volcano previously reported in sediments of Twin Lakes in NE Oregon, has now been confirmed as Rock Mesa tephra. The Chaos Crags, Devils Hill and Rock Mesa tephras are important late Holocene stratigraphic markers for central and eastern Oregon and northwestern Nevada.

  7. A Holocene pollen record of persistent droughts from Pyramid Lake, Nevada, USA

    USGS Publications Warehouse

    Mensing, S.A.; Benson, L.V.; Kashgarian, Michaele; Lund, S.

    2004-01-01

    Pollen and algae microfossils preserved in sediments from Pyramid Lake, Nevada, provide evidence for periods of persistent drought during the Holocene age. We analyzed one hundred nineteen 1-cm-thick samples for pollen and algae from a set of cores that span the past 7630 years. The early middle Holocene, 7600 to 6300 cal yr B.P., was found to be the driest period, although it included one short but intense wet phase. We suggest that Lake Tahoe was below its rim for most of this period, greatly reducing the volume and depth of Pyramid Lake. Middle Holocene aridity eased between 5000 and 3500 cal yr B.P. and climate became variable with distinct wet and dry phases. Lake Tahoe probably spilled intermittently during this time. No core was recovered that represented the period between 3500 and 2600 cal yr B.P. The past 2500 years appear to have had recurrent persistent droughts. The timing and magnitude of droughts identified in the pollen record compares favorably with previously published ??18O data from Pyramid Lake. The timing of these droughts also agrees with the ages of submerged rooted stumps in the Eastern Sierra Nevada and woodrat midden data from central Nevada. Prolonged drought episodes appear to correspond with the timing of ice drift minima (solar maxima) identified from North Atlantic marine sediments, suggesting that changes in solar irradiance may be a possible mechanism influencing century-scale drought in the western Great Basin. ?? 2004 University of Washington. All rights reserved.

  8. An Investigation of Summertime Inland Water Body Temperatures in California and Nevada (USA): Recent Trends and Future Projections

    NASA Astrophysics Data System (ADS)

    Healey, Nathan; Hook, Simon; Piccolroaz, Sebastiano; Toffolon, Marco; Radocinski, Robert

    2016-04-01

    Inland water body temperature has been identified as an ideal indicator of potential climate change. Understanding inland water body temperature trends is important for forecasting impacts to limnological, biological, and hydrological resources. Many inland water bodies are situated in remote locations with incomplete data records of in-situ monitoring or lack in-situ observations altogether. Thus, the utilization of satellite data is essential for understanding the behavior of global inland water body temperatures. Part of this research provides an analysis of summertime (July-September) temperature trends in the largest California/Nevada (USA) inland water bodies between 1991 and 2015. We examine satellite temperature retrievals from ATSR (ATSR-1, ATSR-2, AATSR), MODIS (Terra and Aqua), and VIIRS sensors. Our findings indicate that inland water body temperatures in the western United States were rapidly warming between 1991 and 2009, but since then trends have been decreasing. This research also includes implementation of a model called air2water to predict future inland water body surface temperature through the sole input of air temperature. Using projections from CMIP5-CCSM4 output, our model indicates that Lake Tahoe (USA) is expected to experience an increase of roughly 3 °C by 2100.

  9. Potential environmental effects of pack stock on meadow ecosystems of the Sierra Nevada, USA

    USGS Publications Warehouse

    Ostoja, Steven M.; Brooks, Matthew L.; Moore, Peggy E.; Berlow, Eric L.; Robert Blank,; Roche, Jim; Chase, Jennifer T.; Sylvia Haultain,

    2014-01-01

    Pack and saddle stock, including, but not limited to domesticated horses, mules, and burros, are used to support commercial, private and administrative activities in the Sierra Nevada. The use of pack stock has become a contentious and litigious issue for land management agencies in the region inter alia due to concerns over effects on the environment. The potential environmental effects of pack stock on Sierra Nevada meadow ecosystems are reviewed and it is concluded that the use of pack stock has the potential to influence the following: (1) water nutrient dynamics, sedimentation, temperature, and microbial pathogen content; (2) soil chemistry, nutrient cycling, soil compaction and hydrology; (3) plant individuals, populations and community dynamics, non-native invasive species, and encroachment of woody species; and (4) wildlife individuals, populations and communities. It is considered from currently available information that management objectives of pack stock should include the following: minimise bare ground, maximise plant cover, maintain species composition of native plants, minimise trampling, especially on wet soils and stream banks, and minimise direct urination and defecation by pack stock into water. However, incomplete documentation of patterns of pack stock use and limited past research limits current understanding of the effects of pack stock, especially their effects on water, soils and wildlife. To improve management of pack stock in this region, research is needed on linking measurable monitoring variables (e.g. plant cover) with environmental relevancy (e.g. soil erosion processes, wildlife habitat use), and identifying specific environmental thresholds of degradation along gradients of pack stock use in Sierra Nevada meadows.

  10. Radionuclides in bats using a contaminated pond on the Nevada National Security Site, USA

    DOE PAGES

    Warren, Ronald W.; Hall, Derek B.; Greger, Paul D.

    2014-01-03

    In this study, perched groundwater percolating through radionuclide contamination in the E Tunnel Complex on the Nevada National Security Site, formerly the Nevada Test Site, emerges and is stored in a series of ponds making it available to wildlife, including bats. Since many bat species using the ponds are considered sensitive or protected/regulated and little information is available on dose to bats from radioactive water sources, bats were sampled to determine if the dose they were receiving exceeded the United States Department of Energy dose limit of 1.0E-3 Gy/day. Radionuclide concentrations in water, sediment, and flying insects were also measuredmore » as input parameters to the dose rate model and to examine trophic level relationships. The RESRAD-Biota model was used to calculate dose rates to bats using different screening levels. Efficacy of RESRAD-Biota and suggested improvements are discussed. Finally, dose to bats foraging and drinking at these ponds is well below the dose limit set to protect terrestrial biota populations.« less

  11. Radionuclides in bats using a contaminated pond on the Nevada National Security Site, USA

    SciTech Connect

    Warren, Ronald W.; Hall, Derek B.; Greger, Paul D.

    2014-01-03

    In this study, perched groundwater percolating through radionuclide contamination in the E Tunnel Complex on the Nevada National Security Site, formerly the Nevada Test Site, emerges and is stored in a series of ponds making it available to wildlife, including bats. Since many bat species using the ponds are considered sensitive or protected/regulated and little information is available on dose to bats from radioactive water sources, bats were sampled to determine if the dose they were receiving exceeded the United States Department of Energy dose limit of 1.0E-3 Gy/day. Radionuclide concentrations in water, sediment, and flying insects were also measured as input parameters to the dose rate model and to examine trophic level relationships. The RESRAD-Biota model was used to calculate dose rates to bats using different screening levels. Efficacy of RESRAD-Biota and suggested improvements are discussed. Finally, dose to bats foraging and drinking at these ponds is well below the dose limit set to protect terrestrial biota populations.

  12. Radionuclides in bats using a contaminated pond on the Nevada National Security Site, USA.

    PubMed

    Warren, Ronald W; Hall, Derek B; Greger, Paul D

    2014-03-01

    Perched groundwater percolating through radionuclide contamination in the E Tunnel Complex on the Nevada National Security Site, formerly the Nevada Test Site, emerges and is stored in a series of ponds making it available to wildlife, including bats. Since many bat species using the ponds are considered sensitive or protected/regulated and little information is available on dose to bats from radioactive water sources, bats were sampled to determine if the dose they were receiving exceeded the United States Department of Energy dose limit of 1.0E-3 Gy/day. Radionuclide concentrations in water, sediment, and flying insects were also measured as input parameters to the dose rate model and to examine trophic level relationships. The RESRAD-Biota model was used to calculate dose rates to bats using different screening levels. Efficacy of RESRAD-Biota and suggested improvements are discussed. Dose to bats foraging and drinking at these ponds is well below the dose limit set to protect terrestrial biota populations.

  13. Mineralogy and geochemistry of two metamorphosed sedimentary manganese deposits, Sierra Nevada, California, USA

    USGS Publications Warehouse

    Flohr, M.J.K.; Huebner, J.S.

    1992-01-01

    Laminated to massive rhodochrosite, hausmannite, and Mn-silicates from the Smith prospect and Manga-Chrome mine, Sierra Nevada, California were deposited as ocean floor sediments associated with chert and shale. The principal lithologies at Smith are chert, argillite, rhodochrosite-, hausmannite- and chlorite-rich layers, and relatively uncommon layers of jacobsite. The Manga-Chrome mine also contains layers rich in manganoan calcite and caryopilite. Tephroite, rhodonite, spessartine, and accessory alleghanyite and sonolite formed during metamorphism. Volcaniclastic components are present at Manga-Chrome as metavolcanic clasts and as Mn-poor, red, garnet- and hematite-rich layers. There is no evidence, such as relict lithologies, that Mn was introduced into Mn-poor lithologies such as chert, limestone or mudstone. Replacement of Mn-poor phases by Mn-rich phases is observed only in the groundmass of volcanic clasts that appear to have fallen into soft Mn-rich mud. Manganiferous samples from the Smith prospect and Manga-Chrome mine have high Mn Fe and low concentrations of Ni, Cu, Zn, Co, U, Th and the rare-earth elements that are similar to concentrations reported from other ancient Mn deposits found in chert-greenstone complexes and from manganiferous sediments and crusts that are forming near modern sea floor vents. The Sierra Nevada deposits formed as precipitates of Mn-rich sediments on the sea floor, probably from mixtures of circulating hydrothermal fluids and seawater. The composition of a metabasalt from the Smith prospect is consistent with those of island-arc tholeiites. Metavolcanic clasts from the Manga-Chrome mine are compositionally distinct from the Smith metabasalt and have alkaline to calc-alkaline affinities. A back-arc basin is considered to be the most likely paleoenvironment for the formation of the Mn-rich lenses at the Manga-Chrome mine and, by association, the Smith prospect. Layers of rhodochrosite, hausmannite and chert preserve the

  14. Mercury methylation at mercury mines in the Humboldt River Basin, Nevada, USA

    USGS Publications Warehouse

    Gray, J.E.; Crock, J.G.; Lasorsa, B.K.

    2002-01-01

    Total Hg and methylmercury concentrations were measured in mine-waste calcines (retorted ore), sediment, and water samples collected in and around abandoned mercury mines in western Nevada to evaluate Hg methylation at the mines and in the Humboldt River Basin. Mine-waste calcines contain total Hg concentrations as high as 14 000 ??g g-1. Stream-sediment samples collected within 1 km of the mercury mines contain total Hg concentrations as high as 170 ??g g-1, whereas stream sediments collected at a distance >5 km from the mines, and those collected from the Humboldt River and regional baseline sites, contain total Hg concentrations 8 km from the nearest mercury mines. Our data indicate little transference of Hg and methylmercury from the sediment to the water column due to the lack of mine runoff in this desert climate.

  15. Where is iron in erionite? A multidisciplinary study on fibrous erionite-Na from Jersey (Nevada, USA)

    NASA Astrophysics Data System (ADS)

    Gualtieri, Alessandro F.; Gandolfi, Nicola Bursi; Pollastri, Simone; Pollok, Kilian; Langenhorst, Falko

    2016-11-01

    Fibrous erionite is a mineral fibre of great concern but to date mechanisms by which it induces cyto- and geno-toxic damage, and especially the role of iron associated to this zeolite species, remain poorly understood. One of the reasons is that we still don’t know exactly where iron is in natural erionite. This work is focused on fibrous erionite-Na from Jersey (Nevada, USA) and attempts to draw a general model of occurrence of iron in erionite and relationship with toxicity mechanisms. It was found that iron is present as 6-fold coordinated Fe3+ not part of the zeolite structure. The heterogeneous nature of the sample was revealed as receptacle of different iron-bearing impurities (amorphous iron-rich nanoparticles, micro-particles of iron oxides/hydroxides, and flakes of nontronite). If iron is not part of the structure, its role should be considered irrelevant for erionite toxicity, and other factors like biopersistence should be invoked. An alternative perspective to the proposed model is that iron rich nano-particles and nontronite dissolve in the intracellular acidic environment, leaving a residue of iron atoms at specific surface sites anchored to the windows of the zeolite channels. These sites may be active later as low nuclearity groups.

  16. Where is iron in erionite? A multidisciplinary study on fibrous erionite-Na from Jersey (Nevada, USA)

    PubMed Central

    Gualtieri, Alessandro F.; Gandolfi, Nicola Bursi; Pollastri, Simone; Pollok, Kilian; Langenhorst, Falko

    2016-01-01

    Fibrous erionite is a mineral fibre of great concern but to date mechanisms by which it induces cyto- and geno-toxic damage, and especially the role of iron associated to this zeolite species, remain poorly understood. One of the reasons is that we still don’t know exactly where iron is in natural erionite. This work is focused on fibrous erionite-Na from Jersey (Nevada, USA) and attempts to draw a general model of occurrence of iron in erionite and relationship with toxicity mechanisms. It was found that iron is present as 6-fold coordinated Fe3+ not part of the zeolite structure. The heterogeneous nature of the sample was revealed as receptacle of different iron-bearing impurities (amorphous iron-rich nanoparticles, micro-particles of iron oxides/hydroxides, and flakes of nontronite). If iron is not part of the structure, its role should be considered irrelevant for erionite toxicity, and other factors like biopersistence should be invoked. An alternative perspective to the proposed model is that iron rich nano-particles and nontronite dissolve in the intracellular acidic environment, leaving a residue of iron atoms at specific surface sites anchored to the windows of the zeolite channels. These sites may be active later as low nuclearity groups. PMID:27892512

  17. Pesticides in mountain yellow-legged frogs (Rana muscosa) from the Sierra Nevada Mountains of California, USA

    USGS Publications Warehouse

    Fellers, G.M.; McConnell, L.L.; Pratt, D.; Datta, S.

    2004-01-01

    In 1997, pesticide concentrations were measured in mountain yellow-legged frogs (Rana muscosa) from two areas in the Sierra Nevada Mountains of California, USA. One area (Sixty Lakes Basin, Kings Canyon National Park) had large, apparently healthy populations of frogs. A second area (Tablelands, Sequoia National Park) once had large populations, but the species had been extirpated from this area by the early 1980s. The Tablelands is exposed directly to prevailing winds from agricultural regions to the west. When an experimental reintroduction of R. muscosa in 1994 to 1995 was deemed unsuccessful in 1997, the last 20 (reintroduced) frogs that could be found were collected from the Tablelands, and pesticide concentrations in both frog tissue and the water were measured at both the Tablelands and at reference sites at Sixty Lakes. In frog tissues, dichlorodiphenyldichloroethylene (DDE) concentration was one to two orders of magnitude higher than the other organochlorines (46 ?? 20 ng/g wet wt at Tablelands and 17 ?? 8 Sixty Lakes). Both ??-chlordane and trans-nonachlor were found in significantly greater concentrations in Tablelands frog tissues compared with Sixty Lakes. Organophosphate insecticides, chlorpyrifos, and diazinon were observed primarily in surface water with higher concentrations at the Tablelands sites. No contaminants were significantly higher in our Sixty Lakes samples.

  18. Where is iron in erionite? A multidisciplinary study on fibrous erionite-Na from Jersey (Nevada, USA).

    PubMed

    Gualtieri, Alessandro F; Gandolfi, Nicola Bursi; Pollastri, Simone; Pollok, Kilian; Langenhorst, Falko

    2016-11-28

    Fibrous erionite is a mineral fibre of great concern but to date mechanisms by which it induces cyto- and geno-toxic damage, and especially the role of iron associated to this zeolite species, remain poorly understood. One of the reasons is that we still don't know exactly where iron is in natural erionite. This work is focused on fibrous erionite-Na from Jersey (Nevada, USA) and attempts to draw a general model of occurrence of iron in erionite and relationship with toxicity mechanisms. It was found that iron is present as 6-fold coordinated Fe(3+) not part of the zeolite structure. The heterogeneous nature of the sample was revealed as receptacle of different iron-bearing impurities (amorphous iron-rich nanoparticles, micro-particles of iron oxides/hydroxides, and flakes of nontronite). If iron is not part of the structure, its role should be considered irrelevant for erionite toxicity, and other factors like biopersistence should be invoked. An alternative perspective to the proposed model is that iron rich nano-particles and nontronite dissolve in the intracellular acidic environment, leaving a residue of iron atoms at specific surface sites anchored to the windows of the zeolite channels. These sites may be active later as low nuclearity groups.

  19. Comparison of the native antimony-bearing Paiting gold deposit, Guizhou Province, China, with Carlin-type gold deposits, Nevada, USA

    NASA Astrophysics Data System (ADS)

    Xie, Zhuo-Jun; Xia, Yong; Cline, Jean S.; Yan, Bao-Wen; Wang, Ze-Peng; Tan, Qin-Ping; Wei, Dong-Tian

    2017-01-01

    The Paiting gold deposit, Guizhou Province, China, has been regarded as a Carlin-type gold deposit by several researchers. Alteration and ore-related minerals from the Paiting deposit were examined, and results were compared with the Cortez Hills Carlin-type gold deposit, Nevada, USA. Similarities include the structural and stratigraphic controls on the orebodies in both deposits and the occurrence of invisible gold ionically bound in arsenian pyrite. Significant differences include the following: (1) The gold-bearing mineral in Nevada is arsenian pyrite. However, gold-bearing minerals in the Paiting deposit include arsenopyrite, arsenian pyrite, and trace pyrrhotite. Also, euhedral or subhedral gold-bearing arsenian pyrite at Paiting contains significantly less As, Cu, and Hg than gold-bearing pyrite from Nevada. (2) Alteration in the Paiting deposit displays significantly less decarbonatization. Instead, dolomite precipitation, which has not been described in Nevada deposits, is associated with deposition of gold-bearing sulfide minerals. (3) Stibnite and minor native antimony typify Paiting late-ore-stage minerals, whereas in Nevada, realgar, orpiment, and calcite are common late-ore-stage minerals. Precipitation of native antimony in the Paiting deposit reflects the evolution of a late-ore fluid with unusually low sulfur and oxygen fugacities. Some characteristics of the Paiting gold deposit, including formation of ore-stage dolomite and precipitation from CO2-rich ore fluids at temperatures in excess of 250 °C, are more typical of orogenic deposits than Nevada Carlin deposits. The presence of similarities in the Paiting deposit to both Carlin type and orogenic deposits is consistent with formation conditions intermediate to those typical of Carlin type and orogenic systems.

  20. Bottom sediment as a source of organic contaminants in Lake Mead, Nevada, USA

    USGS Publications Warehouse

    Alvarez, David A.; Rosen, Michael R.; Perkins, Stephanie D.; Cranor, Walter L.; Schroeder, Vickie L.; Jones-Lepp, Tammy L.

    2012-01-01

    Treated wastewater effluent from Las Vegas, Nevada and surrounding communities' flow through Las Vegas Wash (LVW) into the Lake Mead National Recreational Area at Las Vegas Bay (LVB). Lake sediment is a likely sink for many hydrophobic synthetic organic compounds (SOCs); however, partitioning between the sediment and the overlying water could result in the sediment acting as a secondary contaminant source. Locating the chemical plumes may be important to understanding possible chemical stressors to aquatic organisms. Passive sampling devices (SPMDs and POCIS) were suspended in LVB at depths of 3.0, 4.7, and 6.7 (lake bottom) meters in June of 2008 to determine the vertical distribution of SOCs in the water column. A custom sediment probe was used to also bury the samplers in the sediment at depths of 0–10, 10–20, and 20–30 cm. The greatest number of detections in samplers buried in the sediment was at the 0–10 cm depth. Concentrations of many hydrophobic SOCs were twice as high at the sediment–water interface than in the mid and upper water column. Many SOCs related to wastewater effluents, including fragrances, insect repellants, sun block agents, and phosphate flame retardants, were found at highest concentrations in the middle and upper water column. There was evidence to suggest that the water infiltrated into the sediment had a different chemical composition than the rest of the water column and could be a potential risk exposure to bottom-dwelling aquatic organisms.

  1. Contractional deformation of porous sandstone: Insights from the Aztec Sandstone, SE Nevada, USA

    NASA Astrophysics Data System (ADS)

    Fossen, Haakon; Zuluaga, Luisa F.; Ballas, Gregory; Soliva, Roger; Rotevatn, Atle

    2015-05-01

    Contractional deformation of highly porous sandstones is poorly explored, as compared to extensional deformation of such sedimentary rocks. In this work we explore the highly porous Aztec Sandstone in the footwall to the Muddy Mountain thrust in SE Nevada, which contains several types of deformation bands in the Buffington tectonic window: 1) Distributed centimeter-thick shear-enhanced compaction bands (SECBs) and 2) rare pure compaction bands (PCBs) in the most porous parts of the sandstone, cut by 3) thin cataclastic shear-dominated bands (CSBs) with local slip surfaces. Geometric and kinematic analysis of the SECBs, the PCBs and most of the CSBs shows that they formed during ∼E-W (∼100) shortening, consistent with thrusting related to the Cretaceous to early Paleogene Sevier orogeny of the North American Cordilleran thrust system. Based on stress path modeling, we suggest that the compactional bands (PCBs and SECBs) formed during contraction at relatively shallow burial depths, before or at early stages of emplacement of the Muddy Mountains thrust sheet. The younger cataclastic shear bands (CSBs, category 3), also related to E-W Sevier thrusting, are thinner and show larger shear offsets and thus more intense cataclasis, consistent with the initiation of cataclastic shear bands in somewhat less porous materials. Observations made in this work support earlier suggestions that contraction lead to more distributed band populations than what is commonly found in the extensional regime, and that shear-enhanced compaction bands are widespread only where porosity (and permeability) is high.

  2. Potential contaminant transport in the regional Carbonate Aquifer beneath Yucca Mountain, Nevada, USA

    NASA Astrophysics Data System (ADS)

    Bredehoeft, John; King, Michael

    2010-05-01

    Yucca Mountain, Nevada is the site of the proposed US geologic repository for spent nuclear fuel and high-level radioactive waste. The repository is to be a mine, sited approximately 300 m below the crest of the mountain, in a sequence of variably welded and fractured mid-Miocene rhylolite tuffs, in the unsaturated zone, approximately 300 m above the water table. Beneath the proposed repository, at a depth of 2 km, is a thick sequence of Paleozoic carbonate rocks that contain the highly transmissive Lower Carbonate Aquifer. In the area of Yucca Mountain the Carbonate Aquifer integrates groundwater flow from north of the mountain, through the Amargosa Valley, through the Funeral Mountains to Furnace Creek in Death Valley, California where the groundwater discharges in a set of large springs. Data that describe the Carbonate Aquifer suggest a concept for flow through the aquifer, and based upon the conceptual model, a one-layer numerical model was constructed to simulate groundwater flow in the Carbonate Aquifer. Advective transport analyses suggest that the predicted travel time of a particle from Yucca Mountain to Death Valley through the Carbonate Aquifer might be as short as 100 years to as long 2,000 years, depending upon the porosity.

  3. A serosurvey of Greater Sage-grouse (Centrocercus urophasianus) in Nevada, USA

    USGS Publications Warehouse

    Sinai, Nancy L; Coates, Peter S.; Andrle, Katelyn M.; Jefferis, Chad; Sentíes–Cué, C. Gabriel; Pitesky, Maurice E.

    2017-01-01

    To better understand the potential avian diseases in Greater Sage-grouse (Centrocercus urophasianus) in the Great Basin in Nevada, we collected 31 blood samples March–April 2014 and tested for antibodies to eight viruses and two bacteria. Specifically, sera were tested for antibodies to avian leukosis virus type A, B, and J (ALV-A, ALV-B, and ALV-J, respectively), infectious bursal disease virus, infectious bronchitis virus, reticuloendothelial virus, avian influenza virus (AIV), West Nile virus, Pasteurella multocida (PM), and Salmonella enterica serovar Pullorum. Serum antibodies against ALV-A and -B (1/31, 3%), ALV-J (5/31, 16%), PM (1/31, 3%), and AIV (2/31, 6%) were detected by enzyme-linked immunosorbent assay (ELISA). While ELISA tests used have only been validated in domestic poultry, the serologic data should be used as a potential indicator of the range of bacterial and viral infectious agents that can infect the Greater Sage-grouse.

  4. Thermoluminescence dating of soils in a semi-arid environment, Yucca Mountain area, Southern Nevada, USA

    SciTech Connect

    Mahan, S.A.; Paces, J.B.; Peterman, Z.E.

    1995-12-31

    Yucca Mountain, Nevada, is currently being investigated as a potential nuclear waste repository. Because radionuclides must be isolated over a ten to several hundred thousand year time span, an assessment of the performance depends in part on accurate reconstruction of the Quaternary geologic and hydrologic history of the mountain. Reliable geochronology in an oxidizing environment dominated by coarse-grained, clastic surficial deposits has become a central issue for several studies including paleoseismic reconstruction, determination of rates of erosion and deposition, and the history of regional water-table fluctuations documented by ground-water discharge deposits. Thermoluminescence (TL) dating of polymineralic silt fractions in a variety of surface deposits has become an important component of the Quaternary dating strategy, along with uranium-series disequilibrium dating of secondary carbonate and opaline silica, and to a lesser extent, radiocarbon dating of carbonate components. Although the complex mineralogy of these materials contributes to greater amounts of scatter in their TL response relative to typical quartzofeldspathic loess and dune deposits, the derived ages are reproducible, consistent with internal stratigraphy, and generally concordant with other available geochronology.

  5. A Serosurvey of Greater Sage-Grouse ( Centrocercus urophasianus ) in Nevada, USA.

    PubMed

    Sinai, Nancy L; Coates, Peter S; Andrle, Katelyn M; Jefferis, Chad; Sentíes-Cué, C Gabriel; Pitesky, Maurice E

    2017-01-01

    To better understand the potential avian diseases in Greater Sage-grouse ( Centrocercus urophasianus ) in the Great Basin in Nevada, US, we collected 31 blood samples March-April 2014 and tested for antibodies to eight viruses and two bacteria. Specifically, sera were tested for antibodies to avian leukosis virus type A, B, and J (ALV-A, ALV-B, and ALV-J, respectively), infectious bursal disease virus, infectious bronchitis virus, reticuloendothelial virus, avian influenza virus (AIV), West Nile virus, Pasteurella multocida (PM), and Salmonella enterica serovar Pullorum. Serum antibodies against ALV-A and -B (1/31, 3%), ALV-J (5/31, 16%), PM (1/31, 3%), and AIV (2/31, 6%) were detected by enzyme-linked immunosorbent assay (ELISA). While ELISA tests used have only been validated in domestic poultry, the serologic data should be used as a potential indicator of the range of bacterial and viral infectious agents that can infect the Greater Sage-grouse.

  6. Environmental geochemistry of abandoned mercury mines in West-Central Nevada, USA

    USGS Publications Warehouse

    Gray, J.E.; Crock, J.G.; Fey, D.L.

    2002-01-01

    The Humboldt River is a closed basin and is the longest river in Nevada. Numerous abandoned Hg mines are located within the basin, and because Hg is a toxic heavy metal, the potential transport of Hg from these mines into surrounding ecosystems, including the Humboldt River, is of environmental concern Samples of ore, sediment, water, calcines (roasted ore), and leachates of the calcines were analyzed for Hg and other heavy metals to evaluate geochemical dispersion from the mines. Cinnabar-bearing ore samples collected from the mines contain highly elevated Hg concentrations, up to 6.9 %, whereas calcines collected from the mines contain up to 2000 mg Hg/kg. Stream-sediment samples collected within 1 km of the mines contain as much as 170 mg Hg/kg, but those collected distal from the mines (> 5 km) contain 8 km from the Humboldt River, and Hg is transported and diluted through a large volume of pediment before it reaches the Humboldt River. ?? 2002 Elsevier Science Ltd. All rights reserved.

  7. Calibrating Late Quaternary terrestrial climate signals: radiometrically dated pollen evidence from the southern Sierra Nevada, USA

    USGS Publications Warehouse

    Litwin, Ronald J.; Smoot, Joseph P.; Durika, Nancy J.; Smith, George I.

    1999-01-01

    We constructed a radiometrically calibrated proxy record of Late Pleistocene and Holocene climate change exceeding 230,000 yr duration, using pollen profiles from two cores taken through age-equivalent dry lakes - one core having greater age control (via 230Th alpha mass-spectrometry) and the other having greater stratigraphic completeness. The better dated of these two serial pollen records (Searles Lake) served as a reference section for improving the effective radiometric age control in a nearby and more complete pollen record (Owens Lake) because they: (1) are situated ~90 km apart in the same drainage system (on, and immediately leeward of, the eastern flank of the Sierra Nevada), and (2) preserved strikingly similar pollen profiles and concordant sequences of sedimentological changes. Pollen assemblages from both lakes are well preserved and diverse, and document serial changes in Late Pleistocene and Holocene plant zone distribution and composition in the westernmost Great Basin; they consist of taxa now inhabiting montane forest, woodland, steppe, and desert-scrub environments. The studied core intervals are interpreted here to be the terrestrial equivalent of marine δ18O stages 1 through 9; these pollen profiles now appear to be among the best radiometrically dated Late Pleistocene records of terrestrial climate change known.

  8. Late Holocene lake-level fluctuations in Walker Lake, Nevada, USA

    USGS Publications Warehouse

    Yuan, F.; Linsley, B.K.; Howe, S.S.; Lund, S.P.; McGeehin, J.P.

    2006-01-01

    Walker Lake, a hydrologically closed, saline, and alkaline lake, is situated along the western margin of the Great Basin in Nevada of the western United States. Analyses of the magnetic susceptibility (??), total inorganic carbon (TIC), and oxygen isotopic composition (??18O) of carbonate sediments including ostracode shells (Limnocythere ceriotuberosa) from Walker Lake allow us to extend the sediment record of lake-level fluctuations back to 2700??years B.P. There are approximately five major stages over the course of the late Holocene hydrologic evolution in Walker Lake: an early lowstand (> 2400??years B.P.), a lake-filling period (??? 2400 to ??? 1000??years B.P.), a lake-level lowering period during the Medieval Warm Period (MWP) (??? 1000 to ??? 600??years B.P.), a relatively wet period (??? 600 to ??? 100??years B.P.), and the anthropogenically induced lake-level lowering period (< 100??years B.P.). The most pronounced lowstand of Walker Lake occurred at ??? 2400??years B.P., as indicated by the relatively high values of ??18O. This is generally in agreement with the previous lower resolution paleoclimate results from Walker Lake, but contrasts with the sediment records from adjacent Pyramid Lake and Siesta Lake. The pronounced lowstand suggests that the Walker River that fills Walker Lake may have partially diverted into the Carson Sink through the Adrian paleochannel between 2700 to 1400??years B.P. ?? 2006 Elsevier B.V. All rights reserved.

  9. Bottom sediment as a source of organic contaminants in Lake Mead, Nevada, USA.

    PubMed

    Alvarez, David A; Rosen, Michael R; Perkins, Stephanie D; Cranor, Walter L; Schroeder, Vickie L; Jones-Lepp, Tammy L

    2012-07-01

    Treated wastewater effluent from Las Vegas, Nevada and surrounding communities' flow through Las Vegas Wash (LVW) into the Lake Mead National Recreational Area at Las Vegas Bay (LVB). Lake sediment is a likely sink for many hydrophobic synthetic organic compounds (SOCs); however, partitioning between the sediment and the overlying water could result in the sediment acting as a secondary contaminant source. Locating the chemical plumes may be important to understanding possible chemical stressors to aquatic organisms. Passive sampling devices (SPMDs and POCIS) were suspended in LVB at depths of 3.0, 4.7, and 6.7 (lake bottom) meters in June of 2008 to determine the vertical distribution of SOCs in the water column. A custom sediment probe was used to also bury the samplers in the sediment at depths of 0-10, 10-20, and 20-30cm. The greatest number of detections in samplers buried in the sediment was at the 0-10cm depth. Concentrations of many hydrophobic SOCs were twice as high at the sediment-water interface than in the mid and upper water column. Many SOCs related to wastewater effluents, including fragrances, insect repellants, sun block agents, and phosphate flame retardants, were found at highest concentrations in the middle and upper water column. There was evidence to suggest that the water infiltrated into the sediment had a different chemical composition than the rest of the water column and could be a potential risk exposure to bottom-dwelling aquatic organisms.

  10. Aerosol Light Absorption and Scattering at Four Sites in and Near Mexico City: Comparison with Las Vegas, Nevada, USA

    NASA Astrophysics Data System (ADS)

    Arnott, W. P.; Miranda, G. P.; Gaffney, J. S.; Marley, N. A.

    2007-05-01

    Four photoacoustic spectrometers (PAS) for aerosol light scattering and absorption measurements were deployed in and near Mexico City in March 2006 as part of the Megacity Impacts on Regional and Global Environments (MIRAGE). The four sites included: an urban site at Instituto Mexicano del Petroleo (Mexican Oil Institute, denoted by IMP); a suburban site at the Technological University of Tecamac; a rural site at "La Biznaga" ranch; and a site at the Paseo de Cortes (altitude 3,810 meters ASL) in the rural area above Amecameca in the State of Mexico, on the saddle between the volcanoes Popocatepetl and Iztaccihuatl. A similar campaign was held in Las Vegas, Nevada, USA in January-February, 2003. The IMP site gave in-situ characterization of the Mexico City plume under favorable wind conditions while the other sites provided characterization of the plume, mixed in with any local sources. The second and third sites are north of Mexico City, and the fourth site is south. The PAS used at IMP operates at 532 nm, and conveniently allowed for characterization of gaseous absorption at this wavelength as well. Instruments at the second and third sites operate at 870 nm, and the one at the fourth site at 780 nm. Light scattering measurements are accomplished within the PAS by the reciprocal nephelometery method. In the urban site the aerosol absorption coefficient typically varies between 20 and 180 Mm-1 during the course of the day and significant diurnal variation of the aerosol single scattering albedo was observed probably as a consequence of secondary aerosol formation. Comparisons with TSI nephelometer scattering at the T0 site will be presented. We will present the diurnal variation of the scattering and absorption as well as the single scattering albedo and fraction of absorption due to gases at the IMP site and compare with Las Vegas diurnal variation. Mexico City 'breaths' more during the course of the day than Las Vegas, Nevada in part because the latitude of

  11. Tree-Ring Extension of Precipitation Variability for Eastern Nevada: Implications for Drought Analysis in the Great Basin Region, USA

    NASA Astrophysics Data System (ADS)

    Biondi, F.; Strachan, S. D.

    2011-12-01

    In the Great Basin of North America, ecotonal environments characterized as lower forest border sites are ideally suited for tree-ring reconstructions of hydroclimatic variability. A network of 22 tree-ring chronologies, some longer than 800 years, from single-leaf pinyon (Pinus monophylla) tree-ring samples for eastern Nevada, in the central Great Basin of North America was used to analyze long-term precipitation variability. The period in common among all tree-ring chronologies, i.e. 1650-1976, was used to reconstruct October-May total precipitation using the Line of Organic Correlation (LOC) method. Individual site reconstructions were then combined using spatio-temporal kriging to produce annual maps of drought on a 12x12 km grid. Hydro-climatic episodes were numerically identified and modeled using their duration, magnitude, and peak, to estimate the likelihood of severe and sustained drought in this region. According to a numerical scoring rule explained in detail by Biondi et al. 2008, the most remarkable episode in the entire reconstruction was the early 1900s pluvial, followed by the late 1800s drought. The 1930s 'Dust Bowl' drought was in 8th position, making it one of the more remarkable episodes in the past few centuries. This result is consistent with other studies that show how regional drought severity varies going from western to eastern Nevada, and directly addresses the needs of water managers with respect to planning for 'worst case' scenarios of drought duration and magnitude. For instance, it is possible to analyze which geographical areas and hydrographic basins are more likely to be impacted during the most extreme droughts, at the annual (see Figure) or multiannual timescale. In the semi-arid western USA, multi-century long dendroclimatic records with km-scale spatial resolution can therefore provide water managers with a quantitative evaluation of climate episodes well beyond the envelope of instrumental records, thereby increasing the

  12. Using Dissolved Organic Carbon Isotopes for Groundwater Age Dating in Southern Nevada, USA

    NASA Astrophysics Data System (ADS)

    Thomas, James; Hershey, Ronald; Fereday, Wyatt

    2016-04-01

    Dissolved organic carbon (DOC) 14C offers a method to calculate groundwater ages that is more straightforward than dissolved inorganic carbon (DIC) 14C. To obtain corrected DIC 14C groundwater ages requires models that account for chemical and physical processes that affect both 13C and 14C. This is especially true in carbonate-rock aquifers where a fair amount of dissolution and precipitation of carbonate minerals can occur. A first important step in calculating 14C DOC groundwater ages is to determine the initial 14C DOC (A0) values of the groundwater recharge. For this study, recharge area groundwater samples of DOC 14C, collected from 14 different sites, were used to determine the recharge DOC 14C values. These values ranged from 96 to 120 percent modern carbon (pmc), with an average value of 106.2 pmc. These 14C A0 values support the use of a 100 pmc 14C A0 pre-bomb value to calculate DOC 14C groundwater ages for southern Nevada. Several conditions to successfully use DOC 14C to date groundwater need to be met. First, soluble organic carbon content of aquifers needs to be low, so that little DOC is added to the groundwater as it flows from recharge areas down gradient in an aquifer. For this study, volcanic and carbonate aquifer outcrop rocks showed that these rocks contained low soluble organic carbon. Second, it is important that the DOC does not change character down a flow path, which could indicate transformation of DOC along a flow path and/or addition of DOC to the groundwater. Although specific DOC compounds could not be identified for samples collected at four sites, all four groundwater sample spectra show the same general shape over the duration of the HPLC run indicating that the DOC compound composition of groundwater does not significantly change from up-gradient to down-gradient. Third, another factor that could greatly affect DOC 14C groundwater age calculations is matrix diffusion/adsorption of DOC 14C. Laboratory experiments showed that

  13. Unraveling the volcanic and post-volcanic history at Upsal Hogback, Fallon, Nevada, USA

    NASA Astrophysics Data System (ADS)

    Anderson, E.; Cousens, B.

    2013-12-01

    Upsal Hogback is a < 25 ka phreatomagmatic volcanic center situated near Fallon, Nevada. The volcano neighbors two other young volcanic complexes: the Holocene Soda Lakes maars and Rattlesnake Hill, a ~ 1 Ma volcanic neck (Shevenell et al., 2005). These volcanoes lie on the transition between the Sierra Nevada and the Basin and Range province, as well as on the edge of the Walker Lane. Upsal Hogback includes two to four vents, fewer than mapped by Morrison (1964), and can be divided into north (one vent) and south (three potential vents) complexes. The vents all produced phreatomagmatic eruptions resulting in tuff rings composed primarily of coarse, indurated lapilli tuffs with abundant volcanic bombs. Ash tuffs are infrequent, as are structures such as crossbedding. The bombs and lapilli include olivine and plagioclase phenocrysts. The basalts are alkaline and have intraplate-type normalized incompatible element patterns. Both complexes are enriched in LREE compared to HREE, though the north complex overall has lower concentrations of the REE. The flat HREE pattern is indicative of spinel peridotite mantle source. Epsilon Nd values for the north complex are +2.50+/-0.02 and for the south complex are +2.83+/-0.02. The magmas appear to have an enriched asthenospheric mantle source. Bomb samples show that eruptions from the two complexes are geochemically distinguishable both in major and trace elements, suggesting that the two complexes tapped different magma types during eruptions that likely occurred at slightly different times. The proximity of Upsal Hogback to Fallon makes constraining its age important to characterize the hazard to the city. It lies above the Wono ash bed, dated at 25,000 years (Fultz et al., 1983), and tufa deposited over the edifice is dated at 11,100 +/- 100 and 8,600 +/- 200 years (Benson et al., 1992; Broecker and Kaufman, 1965). 40Ar/39Ar total gas age by Shevenell et al. (2005) dated the volcano at 0.60 +/- 0.09 Ma, but with no plateau

  14. Earthquake Interactions at Different Scales: an Example from Eastern California and Western Nevada, USA.

    NASA Astrophysics Data System (ADS)

    Verdecchia, A.; Carena, S.

    2015-12-01

    Earthquakes in diffuse plate boundaries occur in spatially and temporally complex patterns. The region east of the Sierra Nevada that encompasses the northern Eastern California Shear Zone (ECSZ), Walker Lane (WL), and the westernmost part of the Basin and Range province (B&R) is such a kind of plate boundary. In order to better understand the relationship between moderate-to major earthquakes in this area, we modeled the evolution of coseismic, postseismic and interseismic Coulomb stress changes (∆CFS) in this region at two different spatio-temporal scales. In the first example we examined seven historical and instrumental Mw ≥ 6 earthquakes that struck the region around Owens Valley (northern ECSZ) in the last 150 years. In the second example we expanded our study area to all of the northern ECSZ, WL and western B&R, examining seventeen paleoseismological and historical major surface-rupturing earthquakes (Mw ≥ 6.5) that occurred in the last 1400 years. We show that in both cases the majority of the studied events (100% in the first case and 80% in the second) are located in areas of combined coseismic and postseismic positive ∆CFS. This relationship is robust, as shown by control tests with random earthquake sequences. We also show that the White Mountain fault has accumulated up to 30 bars of total ∆CFS (coseismic + postseismic + interseismic) in the last 150 years, and the Hunter Mountain, Fish Lake Valley, Black Mountain, and Pyramid Lake faults have accumulated 40, 45, 54 and 37 bars respectively in the last 1400 years. Such values are comparable to the average stress drop in a major earthquake, and all these faults may be therefore close to failure.

  15. 150 Years of Coulomb Stress History Along the California-Nevada Border, USA.

    NASA Astrophysics Data System (ADS)

    Carena, S.; Verdecchia, A.

    2014-12-01

    The temporal and spatial correlation among earthquakes in diffuse plate boundary zones is not well understood yet. The region north of the Garlock fault between the Sierra Nevada and Death Valley is part of a diffuse plate boundary zone, which absorbs a significant fraction of the plate motion between Pacific and North America. This area has experienced at least eight Mw ≥ 6 earthquakes in historical times, beginning with the 1872 Mw 7.5 Owens Valley earthquake. Furthermore, since 1978 Long Valley caldera has been undergoing periods of unrest, with earthquake swarms and resurgence. Our goal is to determine whether the 1872 Owens Valley earthquake has influenced the seismicity and volcanic activity in the area. We model the evolution of coseismic, interseismic and postseismic Coulomb stress (ΔCFS) in the region due to both earthquakes and caldera activity in the last 150 years. Our results show that the 1872 Owens Valley earthquake strongly encourages faulting in northern Owens Valley. In addition, there is a correlation among smaller events, in the form of a west-to-east migration of earthquakes from Long Valley caldera toward the White Mountains immediately following the 1978 caldera inflation event. The last event in this sequence, the 1986 Mw 6.3 Chalfant Valley earthquake, controls the location of over 80% of its own aftershocks, which occur in areas of positive ΔCFS and reach Mw 5.7. We also calculate the cumulative ΔCFS on several major active faults in the region. Stresses up to 30 bars and 10 bars respectively have accumulated on the White Mountains (Central section) and Deep Springs faults, comparable to the expected stress drop in an average earthquake. Because no surface ruptures more recent than 1.8 ka have been identified on these faults [dePolo, 1989; Lee et al., 2001], we consider them as likely candidates for the next major earthquake in the region.

  16. Mercury Methylation at Mercury Mines In The Humboldt River Basin, Nevada, USA

    SciTech Connect

    Gray, John E.; Crock, James G.; Lasorsa, Brenda K. )

    2002-12-01

    Total Hg and methylmercury concentrations were measured in mine-waste calcines (retorted ore), sediment, and water samples collected in and around abandoned mercury mines in western Nevada to evaluate Hg methylation at the mines and in the Humboldt River basin. Mine-waste calcines contain total Hg concentrations as high as 14 000?g/g. Stream-sediment samples collected within 1 km of the mercury mines contain total Hg concentrations as high as 170?g/g, whereas stream sediments collected>5 km from the mines, and those collected from the Humboldt River and regional baseline sites, contain total Hg concentrations<0.5?g/g. Similarly, methylmercury concentrations in mine-waste calcines are locally as high as 96 ng/g, but methylmercury contents in stream-sediments collected downstream from the mines and from the Humboldt River are lower, ranging from<0.05 to 0.95 ng/g. Stream-water samples collected below two mines studied contain total Hg concentrations ranging from 6 to 2000 ng/L, whereas total Hg in Humboldt River water was generally lower ranging from 2.1 to 9.0 ng/L. Methylmercury concentrations in the Humboldt River water were the lowest in this study (<0.02-0.27 ng/L). Although total Hg and methylmercury concentrations are locally high in mine-waste calcines, there is significant dilution of Hg and lower Hg methylation down gradient from the mines, especially in the sediments and water collected from the Humboldt River, which is> 8 km from any mercury mines. Our data indicate little transference of Hg and methylmercury from the sediment to the water column due to the lack of mine runoff in this desert climate.

  17. Distribution of total and methyl mercury in sediments along Steamboat Creek (Nevada, USA)

    USGS Publications Warehouse

    Stamenkovic, J.; Gustin, M.S.; Marvin-DiPasquale, M. C.; Thomas, B.A.; Agee, J.L.

    2004-01-01

    In the late 1800s, mills in the Washoe Lake area, Nevada, used elemental mercury to remove gold and silver from the ores of the Comstock deposit. Since that time, mercury contaminated waste has been distributed from Washoe Lake, down Steamboat Creek, and to the Truckee River. The creek has high mercury concentrations in both water and sediments, and continues to be a constant source of mercury to the Truckee River. The objective of this study was to determine concentrations of total and methyl mercury (MeHg) in surface sediments and characterize their spatial distribution in the Steamboat Creek watershed. Total mercury concentrations measured in channel and bank sediments did not decrease downstream, indicating that mercury contamination has been distributed along the creek's length. Total mercury concentrations in sediments (0.01-21.43 ??g/g) were one to two orders of magnitude higher than those in pristine systems. At 14 out of 17 sites, MeHg concentrations in streambank sediments were higher than the concentrations in the channel, suggesting that low banks with wet sediments might be important sites of mercury methylation in this system. Both pond/wetland and channel sites exhibited high potential for mercury methylation (6.4-30.0 ng g-1 day-1). Potential methylation rates were positively correlated with sulfate reduction rates, and decreased as a function of reduced sulfur and MeHg concentration in the sediments. Potential demethylation rate appeared not to be influenced by MeHg concentration, sulfur chemistry, DOC, sediment grain size or other parameters, and showed little variation across the sites (3.7-7.4 ng g-1 day-1). ?? 2003 Elsevier B.V. All rights reserved.

  18. The relative contributions of summer and cool-season precipitation to groundwater recharge, Spring Mountains, Nevada, USA

    NASA Astrophysics Data System (ADS)

    Winograd, Isaac J.; Riggs, Alan C.; Coplen, Tyler B.

    A comparison of the stable-isotope signatures of spring waters, snow, snowmelt, summer (July thru September) rain, and cool season (October thru June) rain indicates that the high-intensity, short-duration summer convective storms, which contribute approximately a third of the annual precipitation to the Spring Mountains, provide only a small fraction (perhaps 10%) of the recharge to this major upland in southern Nevada, USA. Late spring snowmelt is the principal means of recharging the fractured Paleozoic-age carbonate rocks comprising the central and highest portion of the Spring Mountains. Daily discharge measurements at Peak Spring Canyon Creek during the period 1978-94 show that snowpacks were greatly enhanced during El Niño events. Résumé La comparaison des signatures isotopiques stables des eaux de sources, de neige, de fonte de neige, des pluies d'été (juillet à septembre) et de saison froide (octobre à juin) montre que les précipitations convectives d'été de forte intensité et de courte durée, apportant un tiers des précipitations annuelles reçues par les Monts Spring, ne participent que pour une faible part (10%) à la recharge de cette importante zone d'altitude du sud du Nevada (États-Unis). La fonte tardive de la neige au printemps constitue l'essentiel de la recharge des roches carbonatées fracturées d'âge paléozoïque formant la partie centrale et la plus haute des Monts Spring. Les données journalières de débit sur la rivière du canyon de Peak Spring, entre 1978 et 1994, montrent que les hauteurs de neige ont été plus élevées pendant les événements El Niño. Resumen La comparación entre las marcas isotópicas de aguas de manantiales, nieve, deshielo, lluvias de verano (julio a septiembre) y resto de lluvias (octubre a junio) indican que las tormentas de verano, de corta duración y gran intensidad, las cuales suponen alrededor de un tercio de la precipitación total anual en las Spring Mountains, proporcionan sólo una

  19. 3-Dimensional Geologic Modeling Applied to the Structural Characterization of Geothermal Systems: Astor Pass, Nevada, USA

    SciTech Connect

    Siler, Drew L; Faulds, James E; Mayhew, Brett

    2013-04-16

    Geothermal systems in the Great Basin, USA, are controlled by a variety of fault intersection and fault interaction areas. Understanding the specific geometry of the structures most conducive to broad-scale geothermal circulation is crucial to both the mitigation of the costs of geothermal exploration (especially drilling) and to the identification of geothermal systems that have no surface expression (blind systems). 3-dimensional geologic modeling is a tool that can elucidate the specific stratigraphic intervals and structural geometries that host geothermal reservoirs. Astor Pass, NV USA lies just beyond the northern extent of the dextral Pyramid Lake fault zone near the boundary between two distinct structural domains, the Walker Lane and the Basin and Range, and exhibits characteristics of each setting. Both northwest-striking, left-stepping dextral faults of the Walker Lane and kinematically linked northerly striking normal faults associated with the Basin and Range are present. Previous studies at Astor Pass identified a blind geothermal system controlled by the intersection of west-northwest and north-northwest striking dextral-normal faults. Wells drilled into the southwestern quadrant of the fault intersection yielded 94°C fluids, with geothermometers suggesting a maximum reservoir temperature of 130°C. A 3-dimensional model was constructed based on detailed geologic maps and cross-sections, 2-dimensional seismic data, and petrologic analysis of the cuttings from three wells in order to further constrain the structural setting. The model reveals the specific geometry of the fault interaction area at a level of detail beyond what geologic maps and cross-sections can provide.

  20. Isotope-Geochmical Evidence For Uranium Retardation in Zeolitized Tuffs at Yucca Mountain, Nevada, USA

    SciTech Connect

    L.A. Neymark; J.B. Paces

    2007-02-14

    Retardation of radionuclides by sorption on minerals in the rocks along downgradient groundwater flow paths is a positive attribute of the natural barrier at Yucca Mountain, Nevada, the site of a proposed high-level nuclear waste repository. Alteration of volcanic glass in nonwelded tuffs beneath the proposed repository horizon produced thick, widespread zones of zeolite- and clay-rich rocks with high sorptive capacities. The high sorptive capacity of these rocks is enhanced by the large surface area of tabular to fibrous mineral forms, which is about 10 times larger in zeolitic tuffs than in devitrified tuffs and about 30 times larger than in vitric tuffs. The alteration of glass to zeolites, however, was accompanied by expansion that reduced the matrix porosity and permeability. Because water would then flow mainly through fractures, the overall effectiveness of radionuclide retardation in the zeolitized matrix actually may be decreased relative to unaltered vitric tuff. Isotope ratios in the decay chain of {sup 238}U are sensitive indicators of long-term water-rock interaction. In systems older than about 1 m.y. that remain closed to mass transfer, decay products of {sup 238}U are in secular radioactive equilibrium where {sup 234}U/{sup 238}U activity ratios (AR) are unity. However, water-rock interaction along flow paths may result in radioactive disequilibrium in both the water and the rock, the degree of which depends on water flux, rock dissolution rates, {alpha}-recoil processes, adsorption and desorption, and the precipitation of secondary minerals. The effects of long-term water-rock interaction that may cause radionuclide retardation were measured in samples of Miocene-age subrepository zeolitized tuffs of the Calico Hills Formation (Tac) and the Prow Pass Tuff (Tcp) from borehole USW SD-9 near the northern part of the proposed repository area (sampled depth interval from 451.1 to 633.7 m; Engstrom and Rautman, 1996). Mineral abundances and whole

  1. Quantifying cambial activity of high-elevation conifers in the Great Basin, Nevada, USA

    NASA Astrophysics Data System (ADS)

    Ziaco, E.; Biondi, F.; Rossi, S.; Deslauriers, A.

    2013-12-01

    Understanding the physiological mechanisms that control the formation of tree rings provides the necessary biological basis for developing dendroclimatic reconstructions and dendroecological histories. Studies of wood formation in the Great Basin are now being conducted in connection with the Nevada Climate-ecohydrological Assessment Network (NevCAN), a recently established transect of valley-to-mountaintop instrumented stations in the Snake and Sheep Ranges of the Great Basin. Automated sensors record meteorological, soil, and vegetational variables at these sites, providing unique opportunities for ecosystem science, and are being used to investigate the ecological implications of xylogenesis. We present here an initial study based on microcores collected during summer 2013 from mountain and subalpine conifers (including Great Basin bristlecone pine, Pinus longaeva) growing on the west slope of Mt. Washington. Samples were taken from the mountain west (SM; 2810 m elevation) and the subalpine west (SS, 3355 m elevation) NevCAN sites on June 16th and 27th, 2013. The SS site was further subdivided in a high (SSH) and a low (SSL) group of trees, separated by about 10 m in elevation. Microscopic analyses showed the effect of elevation on cambial activity, as annual ring formation was more advanced at the lower (mountain) site compared to the higher (subalpine) one. At all sites cambium size showed little variations between the two sampling dates. The number of xylem cells in the radial enlargement phase decreased between the two sampling dates at the mountain site but increased at the subalpine site, confirming a delayed formation of wood at the higher elevations. Despite relatively high within-site variability, a general trend of increasing number of cells in the lignification phase was found at all sites. Mature cells were present only at the mountain site on June 27th. Spatial differences in the xylem formation process emerged at the species level and, within

  2. Nutrient and mercury deposition and storage in an alpine snowpack of the Sierra Nevada, USA

    NASA Astrophysics Data System (ADS)

    Pearson, C.; Schumer, R.; Trustman, B. D.; Rittger, K.; Johnson, D. W.; Obrist, D.

    2015-01-01

    Bi-weekly snowpack core samples were collected at seven sites along two elevation gradients in the Tahoe Basin during two consecutive snow years to evaluate total wintertime snowpack accumulation of nutrients and pollutants in a high elevation watershed of the Sierra Nevada. Additional sampling of wet deposition and detailed snow pit profiles was conducted the following year to compare wet deposition to snowpack storage and assess the vertical dynamics of snowpack chemicals. Results show that on average organic N comprised 48% of all snowpack N, while nitrate (NO3--N) and TAN (total ammonia nitrogen) made up 25 and 27%, respectively. Snowpack NO3--N concentrations were relatively uniform across sampling sites over the sampling seasons and showed little difference between seasonal wet deposition and integrated snow pit concentrations in agreement with previous studies that identify wet deposition as the dominant source of wintertime NO3--N deposition. However, vertical snow pit profiles showed highly variable concentrations of NO3--N within the snowpack indicative of additional deposition and in snowpack dynamics. Unlike NO3--N, snowpack TAN doubled towards the end of winter and in addition to wet deposition, had a strong dry deposition component. Organic N concentrations in snowpack were highly variable (from 35 to 70%) and showed no clear temporal or spatial dependence throughout the season. Integrated snowpack organic N concentrations were up to 2.5 times higher than seasonal wet deposition, likely due to microbial immobilization of inorganic N as evident by coinciding increases of organic N and decreases of inorganic N, in deeper, aged snowpack. Spatial and temporal deposition patterns of snowpack P were consistent with particulate-bound dry deposition inputs and strong impacts from in-basin sources causing up to 6 times enrichment at urban locations compared to remote sites. Snowpack Hg showed little temporal variability and was dominated by particulate

  3. Modeling Potential Climatic Treeline of Great Basin Bristlecone Pine in the Snake Mountain Range, Nevada, USA

    NASA Astrophysics Data System (ADS)

    Bruening, J. M.; Tran, T. J.; Bunn, A. G.; Salzer, M. W.; Weiss, S. B.

    2015-12-01

    Great Basin bristlecone pine (Pinus longaeva) is a valuable paleoclimate resource due to the climatic sensitivity of its annually-resolved rings. Recent work has shown that low growing season temperatures limit tree growth at the upper treeline ecotone. The presence of precisely dated remnant wood above modern treeline shows that this ecotone shifts at centennial timescales; in some areas during the Holocene climatic optimum treeline was 100 m higher than at present. A recent model from Paulsen and Körner (2014, doi:10.1007/s00035-014-0124-0) predicts global potential treeline position as a function of climate. The model develops three parameters necessary to sustain a temperature-limited treeline; a growing season longer than 94 days, defined by all days with a mean temperature >0.9 °C, and a mean temperature of 6.4 °C across the entire growing season. While maintaining impressive global accuracy in treeline prediction, these parameters are not specific to the semi-arid Great Basin bristlecone pine treelines in Nevada. In this study, we used 49 temperature sensors arrayed across approximately one square kilometer of complex terrain at treeline on Mount Washington to model temperatures using topographic indices. Results show relatively accurate prediction throughout the growing season (e.g., July average daily temperatures were modeled with an R2 of 0.80 and an RMSE of 0.29 °C). The modeled temperatures enabled calibration of a regional treeline model, yielding different parameters needed to predict potential treeline than the global model. Preliminary results indicate that modern Bristlecone pine treeline on and around Mount Washington occurs in areas with a longer growing season length (~160 days defined by all days with a mean temperature >0.9 °C) and a warmer seasonal mean temperature (~9 °C) than the global average. This work will provide a baseline data set on treeline position in the Snake Range derived only from parameters physiologically relevant to

  4. Episodic growth of a Late Cretaceous and Paleogene intrusive complex of pegmatitic leucogranite, Ruby Mountains core complex, Nevada, USA

    USGS Publications Warehouse

    Howard, K.A.; Wooden, J.L.; Barnes, C.G.; Premo, W.R.; Snoke, A.W.; Lee, S.-Y.

    2011-01-01

    Gneissic pegmatitic leucogranite forms a dominant component (>600 km3) of the midcrustal infrastructure of the Ruby Mountains-East Humboldt Range core complex (Nevada, USA), and was assembled and modified episodically into a batholithic volume by myriad small intrusions from ca. 92 to 29 Ma. This injection complex consists of deformed sheets and other bodies emplaced syntectonically into a stratigraphic framework of marble, calc-silicate rocks, quartzite, schist, and other granitoids. Bodies of pegmatitic granite coalesce around host-rock remnants, which preserve relict or ghost stratigraphy, thrusts, and fold nappes. Intrusion inflated but did not disrupt the host-rock structure. The pegmatitic granite increases proportionally downward from structurally high positions to the bottoms of 1-km-deep canyons where it constitutes 95%-100% of the rock. Zircon and monazite dated by U-Pb (sensitive high-resolution ion microprobe, SHRIMP) for this rock type cluster diffusely at ages near 92, 82(?), 69, 38, and 29 Ma, and indicate successive or rejuvenated igneous crystallization multiple times over long periods of the Late Cretaceous and the Paleogene. Initial partial melting of unexposed pelites may have generated granite forerunners, which were remobilized several times in partial melting events. Sources for the pegmatitic granite differed isotopically from sources of similar-aged interleaved equigranular granites. Dominant Late Cretaceous and fewer Paleogene ages recorded from some pegmatitic granite samples, and Paleogene-only ages from the two structurally deepest samples, together with varying zircon trace element contents, suggest several disparate ages of final emplacement or remobilization of various small bodies. Folded sills that merge with dikes that cut the same folds suggest that there may have been in situ partial remobilization. The pegmatitic granite intrusions represent prolonged and recurrent generation, assembly, and partial melting modification of a

  5. Does prescribed fire promote resistance to drought in low elevation forests of the Sierra Nevada, California, USA?

    USGS Publications Warehouse

    van Mantgem, Phillip J.; Caprio, Anthony C.; Stephenson, Nathan L.; Das, Adrian J.

    2016-01-01

    Prescribed fire is a primary tool used to restore western forests following more than a century of fire exclusion, reducing fire hazard by removing dead and live fuels (small trees and shrubs).  It is commonly assumed that the reduced forest density following prescribed fire also reduces competition for resources among the remaining trees, so that the remaining trees are more resistant (more likely to survive) in the face of additional stressors, such as drought.  Yet this proposition remains largely untested, so that managers do not have the basic information to evaluate whether prescribed fire may help forests adapt to a future of more frequent and severe drought.During the third year of drought, in 2014, we surveyed 9950 trees in 38 burned and 18 unburned mixed conifer forest plots at low elevation (<2100 m a.s.l.) in Kings Canyon, Sequoia, and Yosemite national parks in California, USA.  Fire had occurred in the burned plots from 6 yr to 28 yr before our survey.  After accounting for differences in individual tree diameter, common conifer species found in the burned plots had significantly reduced probability of mortality compared to unburned plots during the drought.  Stand density (stems ha-1) was significantly lower in burned versus unburned sites, supporting the idea that reduced competition may be responsible for the differential drought mortality response.  At the time of writing, we are not sure if burned stands will maintain lower tree mortality probabilities in the face of the continued, severe drought of 2015.  Future work should aim to better identify drought response mechanisms and how these may vary across other forest types and regions, particularly in other areas experiencing severe drought in the Sierra Nevada and on the Colorado Plateau.

  6. 500,000 years of water table fluctuations recorded in Devils Hole 2 cave from southwestern Nevada, USA

    NASA Astrophysics Data System (ADS)

    Wendt, Kathleen A.; Moseley, Gina E.; Dublyansky, Yuri V.; Spötl, Christoph; Edwards, R. Lawrence

    2016-04-01

    Evidence for large reoccurring Pleistocene lakes in the Great Basin region of North America suggests that this modern day arid landscape underwent drastic climate fluctuations in the past. We aim to reconstruct the history of water table fluctuations in the discharge area of the Ash Meadow groundwater flow system since 500 ka BP. To do so, we have analyzed a series of carbonate cores drilled at varying elevations above the modern day water table from the walls of Devils Hole 2 cave in southwest Nevada, USA. Petrographic and morphologic differences between calcite precipitated below (mammillary calcite) or at (folia) the water table in this cave record past variations in water table elevation. A total of ten cores were drilled between 0.8 and 15.1 m above the modern day water table. Each core includes alternations between mammillary calcite to folia, with an increasing occurrence of folia in higher elevation cores, suggesting multi-meter variations in past water table elevation. Over 50 high-precision 230Th dates have been measured at the mammillary calcite to folia boundaries of each core. Preliminary results show multi-meter water table fluctuations which appear to follow interglacial-glacial cycles from 500 ka to present day, such that water table high-stands coincide with glacial periods. Observed maxima in water table levels are likely correlated to periods of increased precipitation within the catchment area during glacial (pluvial) periods, which is consistent with paleoclimate records in this region. Preliminary results suggest water table levels peaked (reaching +5.5 m or higher than present day water table) at 461 kyr, between 320 and 250 kyr, between 196 and 137 kyr, and between 67 and 20 kyr BP, largely coinciding with glacial periods. Periods in which water table levels reached the lowest elevation sampled (+0.8 m) occurred at 240 kyr, 116 kyr, and 5.7 kyr BP, largely coinciding with interglacial periods.

  7. Episodic growth of a Late Cretaceous and Paleogene intrusive complex of pegmatitic leucogranite, Ruby Mountains core complex, Nevada, USA

    USGS Publications Warehouse

    Howard, Keith A.; Wooden, J.L.; Barnes, C.G.; Premo, W.R.; Snoke, A.W.; Lee, S.-Y.

    2011-01-01

    Gneissic pegmatitic leucogranite forms a dominant component (>600 km3) of the midcrustal infrastructure of the Ruby Mountains–East Humboldt Range core complex (Nevada, USA), and was assembled and modified episodically into a batholithic volume by myriad small intrusions from ca. 92 to 29 Ma. This injection complex consists of deformed sheets and other bodies emplaced syntectonically into a stratigraphic framework of marble, calc-silicate rocks, quartzite, schist, and other granitoids. Bodies of pegmatitic granite coalesce around host-rock remnants, which preserve relict or ghost stratigraphy, thrusts, and fold nappes. Intrusion inflated but did not disrupt the host-rock structure. The pegmatitic granite increases proportionally downward from structurally high positions to the bottoms of 1-km-deep canyons where it constitutes 95%–100% of the rock. Zircon and monazite dated by U-Pb (sensitive high-resolution ion microprobe, SHRIMP) for this rock type cluster diffusely at ages near 92, 82(?), 69, 38, and 29 Ma, and indicate successive or rejuvenated igneous crystallization multiple times over long periods of the Late Cretaceous and the Paleogene. Initial partial melting of unexposed pelites may have generated granite forerunners, which were remobilized several times in partial melting events. Sources for the pegmatitic granite differed isotopically from sources of similar-aged interleaved equigranular granites. Dominant Late Cretaceous and fewer Paleogene ages recorded from some pegmatitic granite samples, and Paleogene-only ages from the two structurally deepest samples, together with varying zircon trace element contents, suggest several disparate ages of final emplacement or remobilization of various small bodies. Folded sills that merge with dikes that cut the same folds suggest that there may have been in situ partial remobilization. The pegmatitic granite intrusions represent prolonged and recurrent generation, assembly, and partial melting modification of a

  8. Thermal history of the unsaturated zone at Yucca Mountain, Nevada, USA

    USGS Publications Warehouse

    Whelan, J.F.; Neymark, L.A.; Moscati, R.J.; Marshall, B.D.; Roedder, E.

    2008-01-01

    Secondary calcite, silica and minor amounts of fluorite deposited in fractures and cavities record the chemistry, temperatures, and timing of past fluid movement in the unsaturated zone at Yucca Mountain, Nevada, the proposed site of a high-level radioactive waste repository. The distribution and geochemistry of these deposits are consistent with low-temperature precipitation from meteoric waters that infiltrated at the surface and percolated down through the unsaturated zone. However, the discovery of fluid inclusions in calcite with homogenization temperatures (Th) up to ???80 ??C was construed by some scientists as strong evidence for hydrothermal deposition. This paper reports the results of investigations to test the hypothesis of hydrothermal deposition and to determine the temperature and timing of secondary mineral deposition. Mineral precipitation temperatures in the unsaturated zone are estimated from calcite- and fluorite-hosted fluid inclusions and calcite ??18O values, and depositional timing is constrained by the 207Pb/235U ages of chalcedony or opal in the deposits. Fluid inclusion Th from 50 samples of calcite and four samples of fluorite range from ???35 to ???90 ??C. Calcite ??18O values range from ???0 to ???22??? (SMOW) but most fall between 12 and 20???. The highest Th and the lowest ??18O values are found in the older calcite. Calcite Th and ??18O values indicate that most calcite precipitated from water with ??18O values between -13 and -7???, similar to modern meteoric waters. Twenty-two 207Pb/235U ages of chalcedony or opal that generally postdate elevated depositional temperatures range from ???9.5 to 1.9 Ma. New and published 207Pb/235U and 230Th/Uages coupled with the Th values and estimates of temperature from calcite ??18O values indicate that maximum unsaturated zone temperatures probably predate ???10 Ma and that the unsaturated zone had cooled to near-present-day temperatures (24-26 ??C at a depth of 250 m) by 2-4 Ma. The evidence

  9. Nutrient and mercury deposition and storage in an alpine snowpack of the Sierra Nevada, USA

    NASA Astrophysics Data System (ADS)

    Pearson, C.; Schumer, R.; Trustman, B. D.; Rittger, K.; Johnson, D. W.; Obrist, D.

    2015-06-01

    Biweekly snowpack core samples were collected at seven sites along two elevation gradients in the Tahoe Basin during two consecutive snow years to evaluate total wintertime snowpack accumulation of nutrients and pollutants in a high-elevation watershed of the Sierra Nevada. Additional sampling of wet deposition and detailed snow pit profiles were conducted the following year to compare wet deposition to snowpack storage and assess the vertical dynamics of snowpack nitrogen, phosphorus, and mercury. Results show that, on average, organic N comprised 48% of all snowpack N, while nitrate (NO3--N) and TAN (total ammonia nitrogen) made up 25 and 27%, respectively. Snowpack NO3--N concentrations were relatively uniform across sampling sites over the sampling seasons and showed little difference between seasonal wet deposition and integrated snow pit concentrations. These patterns are in agreement with previous studies that identify wet deposition as the dominant source of wintertime NO3--N deposition. However, vertical snow pit profiles showed highly variable concentrations of NO3--N within the snowpack indicative of additional deposition and in-snowpack dynamics. Unlike NO3--N, snowpack TAN doubled towards the end of winter, which we attribute to a strong dry deposition component which was particularly pronounced in late winter and spring. Organic N concentrations in the snowpack were highly variable (from 35 to 70%) and showed no clear temporal, spatial, or vertical trends throughout the season. Integrated snowpack organic N concentrations were up to 2.5 times higher than seasonal wet deposition, likely due to microbial immobilization of inorganic N as evident by coinciding increases in organic N and decreases in inorganic N in deeper, aged snow. Spatial and temporal deposition patterns of snowpack P were consistent with particulate-bound dry deposition inputs and strong impacts from in-basin sources causing up to 6 times greater enrichment at urban locations compared

  10. Variability and sources of surface ozone at rural sites in Nevada, USA: Results from two years of the Nevada Rural Ozone Initiative.

    PubMed

    Fine, Rebekka; Miller, Matthieu B; Burley, Joel; Jaffe, Daniel A; Pierce, R Bradley; Lin, Meiyun; Gustin, Mae Sexauer

    2015-10-15

    Ozone (O3) has been measured at Great Basin National Park (GBNP) since September 1993. GBNP is located in a remote, rural area of eastern Nevada. Data indicate that GBNP will not comply with a more stringent National Ambient Air Quality Standard (NAAQS) for O3, which is based upon the 3-year average of the annual 4th highest Maximum Daily 8-h Average (MDA8) concentration. Trend analyses for GBNP data collected from 1993 to 2013 indicate that MDA8 O3 increased significantly for November to February, and May. The greatest increase was for May at 0.38, 0.35, and 0.46 ppb yr(-1) for the 95th, 50th, and 5th percentiles of MDA8 O3 values, respectively. With the exception of GBNP, continuous O3 monitoring in Nevada has been limited to the greater metropolitan areas. Due to the limited spatial detail of O3 measurements in rural Nevada, a network of rural monitoring sites was established beginning in July 2011. For a period ranging from July 2011 to June 2013, maximum MDA8 O3 at 6 sites occurred in the spring and summer, and ranged from 68 to 80ppb. Our analyses indicate that GBNP, in particular, is ideally positioned to intercept air containing elevated O3 derived from regional and global sources. For the 2 year period considered here, MDA8 O3 at GBNP was an average of 3.1 to 12.6 ppb higher than at other rural Nevada sites. Measured MDA8 O3 at GBNP exceeded the current regulatory threshold of 75 ppb on 7 occasions. Analyses of synoptic conditions, model tracers, and air mass back-trajectories on these days indicate that stratospheric intrusions, interstate pollution transport, wildfires, and Asian pollution contributed to elevated O3 observed at GBNP. We suggest that regional and global sources of ozone may pose challenges to achieving a more stringent O3 NAAQS in rural Nevada.

  11. Origin and Evolution of Li-rich Brines at Clayton Valley, Nevada, USA

    NASA Astrophysics Data System (ADS)

    Munk, L. A.; Bradley, D. C.; Hynek, S. A.; Chamberlain, C. P.

    2011-12-01

    Lithium is the key component in Li-ion batteries which are the primary energy storage for electric/hybrid cars and most electronics. Lithium is also an element of major importance on a global scale because of interest in increasing reliance on alternative energy sources. Lithium brines and pegmatites are the primary and secondary sources, respectively of all produced Li. The only Li-brine in the USA that is currently in production exists in Clayton Valley, NV. The groundwater brines at Clayton Valley are located in a closed basin with an average evaporation rate of 142 cm/yr. The brines are pumped from six aquifer units that are composed of varying amounts of volcanic ash, gravel, salt, tufa, and fine-grained sediments. Samples collected include spring water, fresh groundwater, groundwater brine, and meteoric water (snow). The brines are classified as Na-Cl waters and the springs and fresh groundwater have a mixed composition and are more dilute than the brines. The Li content of the waters in Clayton Valley ranges from less than 1 μg/L (snow) up to 406.9 mg/L in the lower ash aquifer system (one of six aquifers in the basin). The cold springs surrounding Clayton Valley have Li concentrations of about 1 mg/L. A hot spring located just east of Clayton Valley contains 1.6 mg/L Li. The Li concentration of the fresh groundwater is less than 1 mg/L. Hot groundwater collected in the basin contain 30-40 mg/L Li. Water collected from a geothermal drilling north of Silver Peak, NV, had water with 4.9 mg/L Li at a depth of >1000m. The δD and δ18O isotopic signatures of fresh groundwater and brine form an evaporation path that extends from the global meteoric water line toward the brine from the salt aquifer system (the most isotopically enriched brine with ave. δD = -3.5, ave. δ18O = -67.0). This suggests that mixing of inflow water with the salt aquifer brine could have played an important role in the evolution of the brines. Along with mixing, evaporation appears to

  12. Field trip report: Observations made at Yucca Mountain, Nye County, Nevada. Special report No. 2

    SciTech Connect

    Hill, C.A.

    1993-03-01

    A field trip was made to the Yucca Mountain area on December 5-9, 1992 by Jerry Frazier, Don Livingston, Christine Schluter, Russell Harmon, and Carol Hill. Forty-three separate stops were made and 275 lbs. of rocks were collected during the five days of the field trip. Key localities visited were the Bare Mountains, Yucca Mountain, Calico Hills, Busted Butte, Harper Valley, Red Cliff Gulch, Wahmonie Hills, Crater Flat, and Lathrop Wells Cone. This report only describes field observations made by Carol Hill. Drawings are used rather than photographs because cameras were not permitted on the Nevada Test Site during this trip.

  13. Field guide to geologic excursions in southwestern Utah and adjacent areas of Arizona and Nevada

    USGS Publications Warehouse

    Lund, William R.; Lund, William R.

    2002-01-01

    This field guide contains road logs for field trips planned in conjunction with the 2002 Rocky Mountain Section meeting of the Geological Society of America held at Southern Utah University in Cedar City, Utah. There are a total of eight field trips, covering various locations and topics in southwestern Utah and adjacent areas of Arizona and Nevada. In addition, the field guide contains a road log for a set of Geological Engineering Field Camp Exercises run annually by the University of Missouri at Rolla in and around Cedar City. Two of the field trips address structural aspects of the geology in southwestern Utah and northwestern Arizona; two trips deal with ground water in the region; and along with the Field Camp Exercises, one trip, to the Grand Staircase, is designed specifically for educators. The remaining trips examine the volcanology and mineral resources of a large area in and around the Tusher Mountains in Utah; marine and brackish water strata in the Grand Staircase-Escalante National Monument; and the Pine Valley Mountains, which are cored by what may be the largest known laccolith in the world. The "Three Corners" area of Utah, Arizona, and Nevada is home to truly world-class geology, and I am confident that all of the 2002 Rocky Mountain Section meeting attendees will find a field trip suited to their interests.

  14. Using classification and NDVI differencing methods for monitoring sparse vegetation coverage: a case study of saltcedar in Nevada, USA.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A change detection experiment for an invasive species, saltcedar, near Lovelock, Nevada, was conducted with multi-date Compact Airborne Spectrographic Imager (CASI) hyperspectral datasets. Classification and NDVI differencing change detection methods were tested, In the classification strategy, a p...

  15. Method development and strategy for the characterization of complexly faulted and fractured rhyolitic tuffs, Yucca Mountain, Nevada, USA

    SciTech Connect

    Karasaki, K.; Galloway, D.

    1990-10-01

    Field experimental and analytical methods development is underway to define the hydraulic and transport properties of a thick saturated zone that underlies the planned high-level nuclear waste repository at Yucca Mountain, Nevada. The characterization strategy for the highly heterogeneous hydrology is that of hypothesis testing and confidence building. Three test wells, the UE-25c-holes, have been drilled and preliminary data have been collected. Hydro-mechanical analyses indicate formation fluid at depth is hydraulically connected to the water table. Preliminary hydraulic tests indicate highly localized, fracture-controlled transmissivity. Cross-hole seismic tomography is planned to assess the inter-borehole structure of fractures and faults. Multi-level cross-hole hydraulic interference and tracer tests are planned using up to 5 packed-off zones in each of the c-holes to assess the hydraulic conductivity and transport structure in a crude tomographic fashion. An equivalent discontinuum model conditioned with the observed hydraulic measurements will be applied to interpret the hydraulic test responses. As an approach to the scale problem the tests will be designed and analyzed to examine the hypothesis that the flow system may be represented by fractal geometry. 12 refs., 4 figs.

  16. Dust dynamics in off-road vehicle trails: Measurements on 16 arid soil types, Nevada, USA.

    PubMed

    Goossens, Dirk; Buck, Brenda

    2009-08-01

    Soil analyses and measurements with the Portable In Situ Wind Erosion Laboratory (PI-SWERL) were conducted on 16 soil types in an area heavily affected by off-road vehicle (ORV) driving. Measurements were performed in ORV trails as well as on undisturbed terrain to investigate how ORV driving affects the vulnerability of a soil to emit PM10 (particles<10microm), during the driving as well as during episodes of wind erosion. Particular attention is paid to how the creation of a new trail affects those properties of the topsoil that determine its capability to emit PM10. Also, recommendations are given for adequate management of ORV-designed areas. The type of surface (sand, silt, gravel, drainage) is a key factor with respect to dust emission in an ORV trail. Trails in sand, defined in this study as the grain size fraction 63-2000microm, show higher deflation thresholds (the critical wind condition at which wind erosion starts) than the surrounding undisturbed soil. Trails in silt (2-63microm) and in drainages, on the other hand, have lower deflation thresholds than undisturbed soil. The increase in PM10 emission resulting from the creation of a new ORV trail is much higher for surfaces with silt than for surfaces with sand. Also, the creation of a new trail in silt decreases the supply limitation in the top layer: the capacity of the reservoir of emission-available PM10 increases. For sand the situation is reversed: the supply limitation increases, and the capacity of the PM10 reservoir decreases. Finally, ORV trails are characterized by a progressive coarsening of the top layer with time, but the speed of coarsening is much lower in trails in silt than in trails in sand or in drainages. The results of this study suggest that, to minimize emissions of PM10, new ORV fields should preferably be designed on sandy terrain rather than in silt areas or in drainages.

  17. Fine Resolution Tree Height Estimation from Lidar Data and Its Application in SRTM DEM Correction across Forests of Sierra Nevada, California, USA

    NASA Astrophysics Data System (ADS)

    Su, Y.; Guo, Q.; Ma, Q.; Li, W.

    2015-12-01

    Sierra Nevada (SN) is a mountain range located in the northeastern California, USA, covering an area of 63,100 km2. As one of the most diverse temperate conifer forests on the Earth, forests of SN serve a series of ecosystem functions and are valuable natural heritages for the region and even the country. The still existed gap of accurate fine-resolution tree height estimation has lagged ecological, hydrological and forestry studies within the region. Moreover, the Shuttle Radar Topography Mission (SRTM) digital elevation model (DEM), as one of the most frequently used land surface elevation product in the region, has been proved systematically higher than actual land surface in vegetated mountain areas due to the absorption and reflection effects of canopy on the SRTM radar signal. An accurate fine resolution tree height product across the region is urgently needed for developing models to correct SRTM DEM. In this study, we firstly developed a method to estimate SN tree height distribution (defined by Lorey's height) through the combination of airborne lidar data, spaceborne lidar data, optical imagery, climate surfaces, and field measurements. Over 5 470 km2airborne lidar data and 1 000 plot measurements were collected across the SN to address this mission. Our method involved three main steps: 1) estimate tree heights within airborne lidar footprints using step-wise regression; 2) link the airborne lidar derived tree height to spaceborne lidar data and compute tree heights at spaceborne lidar footprints; 3) extrapolate tree height estimation from spaceborne lidar footprints to the whole region using Random Forest. The obtained SN tree height product showed good correspondence with independent field plot measurements. The coefficient of determination is higher than 0.65, and the root-mean-square error is around 5 m. With the obtained tree height product, we further explored the possibility of correcting SRTM DEM. The results showed that the obtained tree height

  18. Soil Science as a Field Discipline - Experiences in Iowa, USA

    NASA Astrophysics Data System (ADS)

    Burras, C. Lee

    2015-04-01

    Effective field understanding of soils is crucial. This is true everywhere but especially so in Iowa, a 15 million hectare state in the central USA's "corn belt." Iowa is intensely farmed and almost exclusively privately owned. Many regions of Iowa have had over 90% of their land area in row crops for the past 60 years. In these regions two very common land management strategies are tile drainage (1.5 million km total) and high rates of fertilization (e.g., 200 kg N/ha-yr for cropland) Iowa also has problematic environmental issues including high rates of erosion, excessive sediment and nutrient pollution in water bodies and episodic catastrophic floods. Given the preceding the Agronomy, Environmental Science and Sustainable Agriculture programs at Iowa State University (ISU) offer a strong suite of soil science classes - undergraduate through graduate. The objective of this presentation is to review selected field based soil science courses offered by those programs. This review includes contrasting and comparing campus-based and immersion classes. Immersion classes include ones offered at Iowa Lakeside Laboratory, as "soil judging" and internationally. Findings over the past 20 years are consistent. Students at all levels gain soil science knowledge, competency and confidence proportional to the amount of time spent in field activities. Furthermore their professional skepticism is sharpened. They are also preferentially hired even in career postings that do not require fieldwork. In other words, field learning results in better soil science professionals who have highly functional and sought after knowledge.

  19. Sans Spring Field Exploration Model, Nye County, Nevada

    SciTech Connect

    Mitchell, M.H.

    1995-06-01

    The existing model for Oligocene volcanic reservoir production in Railroad Valley was expanded with the discovery of oil at Sans Spring field by CENEX, et. al in March, 1993. Prior to drilling the CENEX No. 5-14 Federal (SWNW, section 14, T7N-R56E), economic production had only been established along the east and west borders of the valley, in structures associated with large offset normal faults. The location of Sans Spring field is on an east-west structural high that separates the productive central Railroad Valley sub-basin from the as yet unproductive southern sub-basin. Gravity, regional and detailed conventional 2-D seismic data coverage was employed to define the structure. This geophysical data further suggested that the structure had remained relatively undeformed, providing seal and trap integrity, during the post Oligocene extensional structural development of Railroad Valley. The location also met a critical criterion of being along a potential hydrocarbon migration pathway for oil generated by the Mississippian Chainman shale source rocks. The discovery well found reservoir development in a moderately welded and altered rhyolitic ignimbrite, with an IPF 1253 BOPD. The trap is an angular unconformity, with truncation to the west that has been modified and complicated by cut and fill channeling and faulting. Definition of the structural configuration, fault geometries and offsets has been greatly enhanced with the acquisition of a 3-D seismic survey. However, the data volume does not as yet provide an unambiguous solution to stratigraphic variations.

  20. Geochemistry of natural components in the near-field environment, Yucca Mountain, Nevada

    USGS Publications Warehouse

    Peterman, Z.E.; Oliver, T.A.

    2007-01-01

    The natural near-field environment in and around the emplacement drifts of the proposed nuclear waste repository at Yucca Mountain, Nevada, includes the host rock, dust, seepage, and pore water. The chemical compositions of these components have been determined for assessing possible chemical and mineralogical reactions that may occur after nuclear waste is emplaced. The rock hosting the proposed repository is relatively uniform as shown by a mean coefficient of variation (CV) of 9 percent for major elements. In contrast, compositional variations of dust (bulk and water-soluble fractions), pore water, and seepage are large with mean CVs ranging from 28 to 64 percent. ?? 2007 Materials Research Society.

  1. A tracer test at the Beowawe geothermal field, Nevada, using fluorescein and tinopal CBS

    SciTech Connect

    Rose, P.E.; Adams, M.C.; Benoit, D.

    1995-12-31

    An interwell tracer test using fluorescein and tinopal CBS was performed at the Beowawe geothermal field in north-central Nevada in order to assess the effects of recent changes to the injection strategy. Fluorescein return curves established injection-production flow patterns and verified that produced water is being reinjected into a region of the reservoir that is in excellent communication with the production wells. An analysis of the tinopal CBS return curves indicated that tinopal CBS was apparently strongly adsorbed onto the reservoir rock. The fluorescein return curves were used to estimate the overall (fractures and matrix) reservoir volume.

  2. A look at Bacon Flat, Grant Canyon oil fields of Railroad Valley, Nevada

    SciTech Connect

    Johnson, E.H. )

    1993-05-17

    The prolific wells at Grant Canyon, and the puzzling geology, have intrigued explorationists and promoters. Many a Nevada prospect has been touted as 'another Grand Canyon.' But what processes formed Grant Canyon, and can others be found Last August, Equitable Resources Energy Co,'s Balcron Oil Division spudded a well at Bacon Flat, a mile west of Grant Canyon. A one well field, Bacon Flat had been abandoned in 1988. But just 900 ft north of the field opener, Balcron's well tested oil at a rate or 5,400 b/d. It turns out that Bacon Flat and Grant Canyon fields have a common geological history and, in fact, share the same faulted horst. However, they formed by an unusual combination of events that may be unique to those fields. This paper describes the geologic history, well logging interpretations, structures, the Jebco C seismic line, a geologic cross section, and the author's conclusions.

  3. Placing the 2012-2015 California-Nevada drought into a paleoclimatic context: Insights from Walker Lake, California-Nevada, USA

    NASA Astrophysics Data System (ADS)

    Hatchett, Benjamin J.; Boyle, Douglas P.; Putnam, Aaron E.; Bassett, Scott D.

    2015-10-01

    Assessing regional hydrologic responses to past climate changes can offer a guide for how water resources might respond to ongoing and future climate change. Here we employed a coupled water balance and lake evaporation model to examine Walker Lake behaviors during the Medieval Climate Anomaly (MCA), a time of documented hydroclimatic extremes. Together, a 14C-based shoreline elevation chronology, submerged subfossil tree stumps in the West Walker River, and regional paleoproxy evidence indicate a ~50 year pluvial episode that bridged two 140+ year droughts. We developed estimates of MCA climates to examine the transient lake behavior and evaluate watershed responses to climate change. Our findings suggest the importance of decadal climate persistence to elicit large lake-level fluctuations. We also simulated the current 2012-2015 California-Nevada drought and found that the current drought exceeds MCA droughts in mean severity but not duration.

  4. Spatial patterns of atmospherically deposited organic contaminants at high elevation in the southern Sierra Nevada mountains, California, USA

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Airborne contaminants in the Sierra Nevada mountains of California have been implicated as a factor adversely affecting biological resources like amphibians and fish, yet the distributions of contaminants within the mountains are poorly known, particularly at high elevation. we evaluated contaminan...

  5. Geophysical framework of the southwestern Nevada volcanic field and hydrogeologic implications

    SciTech Connect

    Grauch, V.J.S.; Sawyer, D.A.; Fridrich, C.J.; Hudson, M.R.

    2000-06-08

    Gravity and magnetic data, when integrated with other geophysical, geological, and rock-property data, provide a regional framework to view the subsurface geology in the southwestern Nevada volcanic field. The authors have loosely divided the region into six domains based on structural style and overall geophysical character. For each domain, they review the subsurface tectonic and magmatic features that have been inferred or interpreted from previous geophysical work. Where possible, they note abrupt changes in geophysical fields as evidence for potential structural or lithologic control on ground-water flow. They use inferred lithology to suggest associated hydrogeologic units in the subsurface. The resulting framework provides a basis for investigators to develop hypotheses for regional ground-water pathways where no drill-hole information exists. The authors discuss subsurface features in the northwestern part of the Nevada Test Site and west of the Nevada Test Site in more detail to address potential controls on regional ground-water flow away from areas of underground nuclear-weapons testing at Pahute Mesa. Subsurface features of hydrogeologic importance in these areas are (1) the resurgent intrusion below Timber Mountain, (2) a NNE-trending fault system coinciding with western margins of the Silent Canyon and Timber Mountain caldera complexes, (3) a north-striking, buried fault east of Oasis Mountain extending for 15 km, which they call the Hogback fault, and (4) an east-striking transverse fault or accommodation zone that, in part, bounds Oasis Valley basin on the south, which they call the Hot Springs fault. In addition, there is no geophysical nor geologic evidence for a substantial change in subsurface physical properties within a corridor extending from the northwestern corner of the Rainier Mesa caldera to Oasis Valley basin (east of Oasis Valley discharge area). This observation supports the hypothesis of other investigators that regional ground water

  6. Geochemical and C, O, Sr, and U-series isotopic evidence for the meteoric origin of calcrete at Solitario Wash, Crater Flat, Nevada, USA

    USGS Publications Warehouse

    Neymark, L.A.; Paces, J.B.; Marshall, B.D.; Peterman, Z.E.; Whelan, J.F.

    2005-01-01

    Calcite-rich soils (calcrete) in alluvium and colluvium at Solitario Wash, Crater Flat, Nevada, USA, contain pedogenic calcite and opaline silica similar to soils present elsewhere in the semi-arid southwestern United States. Nevertheless, a ground-water discharge origin for the Solitario Wash soil deposits was proposed in a series of publications proposing elevation-dependent variations of carbon and oxygen isotopes in calcrete samples. Discharge of ground water in the past would raise the possibility of future flooding in the unsaturated zone at Yucca Mountain, Nevada, site of a proposed high-level nuclear waste repository. New geochemical and carbon, oxygen, strontium, and uranium-series isotopic data disprove the presence of systematic elevation-isotopic composition relations, which are the main justification given for a proposed ground-water discharge origin of the calcrete deposits at Solitario Wash. Values of ??13C (-4.1 to -7.8 per mil [???]), ??18O (23.8-17.2???), 87Sr/ 86Sr (0.71270-0.71146), and initial 234U/238U activity ratios of about 1.6 in the new calcrete samples are within ranges previously observed in pedogenic carbonate deposits at Yucca Mountain and are incompatible with a ground-water origin for the calcrete. Variations in carbon and oxygen isotopes in Solitario Wash calcrete likely are caused by pedogenic deposition from meteoric water under varying Quaternary climatic conditions over hundreds of thousands of years. ?? Springer-Verlag 2005.

  7. Integration of genotoxicity and population genetic analyses in kangaroo rats (Dipodomys merriami) exposed to radionuclide contamination at the Nevada Test Site, USA.

    PubMed

    Theodorakis, C W; Bickham, J W; Lamb, T; Medica, P A; Lyne, T B

    2001-02-01

    We examined effects of radionuclide exposure at two atomic blast sites on kangaroo rats (Dipodomys merriami) at the Nevada Test Site, Nevada, USA, using genotoxicity and population genetic analyses. We assessed chromosome damage by micronucleus and flow cytometric assays and genetic variation by randomly amplified polymorphic DNA (RAPD) and mitochondrial DNA (mtDNA) analyses. The RAPD analysis showed no population structure, but mtDNA exhibited differentiation among and within populations. Genotoxicity effects were not observed when all individuals were analyzed. However, individuals with mtDNA haplotypes unique to the contaminated sites had greater chromosomal damage than contaminated-site individuals with haplotypes shared with reference sites. When interpopulation comparisons used individuals with unique haplotypes, one contaminated site had greater levels of chromosome damage than one or both of the reference sites. We hypothesize that shared-haplotype individuals are potential migrants and that unique-haplotye individuals are potential long-term residents. A parsimony approach was used to estimate the minimum number of migration events necessary to explain the haplotype distributions on a phylogenetic tree. The observed predominance of migration events into the contaminated sites supported our migration hypothesis. We conclude the atomic blast sites are ecological sinks and that immigration masks the genotoxic effects of radiation on the resident populations.

  8. Integration of genotoxicity and population genetic analyses in kangaroo rats (Dipodomys merriami) exposed to radionuclide contamination at the Nevada Test Site, USA

    USGS Publications Warehouse

    Theodorakis, Christopher W.; Bickham, John W.; Lamb, Trip; Medica, Philip A.; Lyne, T. Barrett

    2001-01-01

    We examined effects of radionuclide exposure at two atomic blast sites on kangaroo rats (Dipodomys merriami) at the Nevada Test Site, Nevada, USA, using genotoxicity and population genetic analyses. We assessed chromosome damage by micronucleus and flow cytometric assays and genetic variation by randomly amplified polymorphic DNA (RAPD) and mitochondrial DNA (mtDNA) analyses. The RAPD analysis showed no population structure, but mtDNA exhibited differentiation among and within populations. Genotoxicity effects were not observed when all individuals were analyzed. However, individuals with mtDNA haplotypes unique to the contaminated sites had greater chromosomal damage than contaminated-site individuals with haplotypes shared with reference sites. When interpopulation comparisons used individuals with unique haplotypes, one contaminated site had greater levels of chromosome damage than one or both of the reference sites. We hypothesize that shared-haplotype individuals are potential migrants and that unique-haplotype individuals are potential long-term residents. A parsimony approach was used to estimate the minimum number of migration events necessary to explain the haplotype distributions on a phylogenetic tree. The observed predominance of migration events into the contaminated sites supported our migration hypothesis. We conclude the atomic blast sites are ecological sinks and that immigration masks the genotoxic effects of radiation on the resident populations.

  9. Application of an extreme winter storm scenario to identify vulnerabilities, mitigation options, and science needs in the Sierra Nevada mountains, USA

    USGS Publications Warehouse

    Albano, Christine M.; Dettinger, Michael; McCarthy, Maureen; Schaller, Kevin D.; Wellborn, Toby; Cox, Dale A.

    2016-01-01

    In the Sierra Nevada mountains (USA), and geographically similar areas across the globe where human development is expanding, extreme winter storm and flood risks are expected to increase with changing climate, heightening the need for communities to assess risks and better prepare for such events. In this case study, we demonstrate a novel approach to examining extreme winter storm and flood risks. We incorporated high-resolution atmospheric–hydrologic modeling of the ARkStorm extreme winter storm scenario with multiple modes of engagement with practitioners, including a series of facilitated discussions and a tabletop emergency management exercise, to develop a regional assessment of extreme storm vulnerabilities, mitigation options, and science needs in the greater Lake Tahoe region of Northern Nevada and California, USA. Through this process, practitioners discussed issues of concern across all phases of the emergency management life cycle, including preparation, response, recovery, and mitigation. Interruption of transportation, communications, and interagency coordination were among the most pressing concerns, and specific approaches for addressing these issues were identified, including prepositioning resources, diversifying communications systems, and improving coordination among state, tribal, and public utility practitioners. Science needs included expanding real-time monitoring capabilities to improve the precision of meteorological models and enhance situational awareness, assessing vulnerabilities of critical infrastructure, and conducting cost–benefit analyses to assess opportunities to improve both natural and human-made infrastructure to better withstand extreme storms. Our approach and results can be used to support both land use and emergency planning activities aimed toward increasing community resilience to extreme winter storm hazards in mountainous regions.

  10. Groundwater nanoparticles in the far-field at the Nevada Test Site: mechanism for radionuclide transport.

    PubMed

    Utsunomiya, Satoshi; Kersting, Annie B; Ewing, Rodney C

    2009-03-01

    Colloid-like nanoparticles in groundwater have been shown to facilitate migration of several radionuclides: (239,240)Pu, 137Cs, (152,154, 155)Eu, and 60Co. However, the exact type of nanoparticle and the speciation of the associated radionuclides has remained unknown. We have investigated nanoparticles sampled from the far-field at the Nevada Test Site, Nevada, utilizing advanced electron microscopytechniques, including high-angle annular dark-field scanning TEM (HAADF-STEM). Fissiogenic elements: Cs, rare earth elements (REE), activation elements: Co; and actinides: U and Th, were detected. Cesium is associated with U-forming cesium uranate with a Cs/U atomic ratio of approximately 0.12. Light REEs and Th are associated with phosphates, silicates, or apatite. Cobalt occurs as a metallic aggregate, associated with Cr, Fe, Ni, and +/-Mo. Uranyl minerals; Na-boltwoodite and oxide hydrates are also present as colloids. Because of these chemical associations with nanoscale particles, in the size range <100 nm, these particles may facilitate transport, and a variety of trace nanoscale phases may be responsible for the migration of fissiogenic and actinide elements in groundwater. To accurately model the transport of these contaminants, predictive transport models should include consideration of nanoparticle-facilitated transport.

  11. Geophysical framework of the southwestern Nevada volcanic field and hydrogeologic implications

    USGS Publications Warehouse

    Grauch, V.J.; Sawyer, David A.; Fridrich, Chris J.; Hudson, Mark R.

    1999-01-01

    Gravity and magnetic data, when integrated with other geophysical, geological, and rock-property data, provide a regional framework to view the subsurface geology in the southwestern Nevada volcanic field. The region has been loosely divided into six domains based on structural style and overall geophysical character. For each domain, the subsurface tectonic and magmatic features that have been inferred or interpreted from previous geophysical work has been reviewed. Where possible, abrupt changes in geophysical fields as evidence for potential structural lithologic control on ground-water flow has been noted. Inferred lithology is used to suggest associated hydrogeologic units in the subsurface. The resulting framework provides a basis for investigators to develop hypotheses from regional ground-water pathways where no drill-hole information exists.

  12. Contributions to Astrogeology: Geology of the lunar crater volcanic field, Nye County, Nevada

    NASA Technical Reports Server (NTRS)

    Scott, D. H.; Trask, N. J.

    1971-01-01

    The Lunar Crater volcanic field in east-central Nevada includes cinder cones, maars, and basalt flows of probably Quaternary age that individually and as a group resemble some features on the moon. Three episodes of volcanism are separated by intervals of relative dormancy and erosion. Changes in morphology of cinder cones, degree of weathering, and superposition of associated basalt flows provide a basis for determining the relative ages of the cones. A method has been devised whereby cone heights, base radii, and angles of slope are used to determine semiquantitatively the age relationships of some cinder cones. Structural studies show that cone and crater chains and their associated lava flows developed along fissures and normal faults produced by tensional stress. The petrography of the basalts and pyroclastics suggests magmatic differentiation at depth which produced interbedded subalkaline basalts, alkali-olivine basalts, and basanitoids. The youngest flows in the field are basanitoids.

  13. The remarkable occurrence of large rainfall-induced debris flows at two different locations on July 12, 2008, Southern Sierra Nevada, CA, USA

    USGS Publications Warehouse

    DeGraff, J.V.; Wagner, D.L.; Gallegos, A.J.; DeRose, M.; Shannon, C.; Ellsworth, T.

    2011-01-01

    On July 12, 2008, two convective cells about 155 km apart produced a brief period of intense rainfall triggering large debris flows in the southern Sierra Nevada. The northernmost cell was centered over Oak Creek Canyon, an east-flowing drainage, and its tributaries near Independence, CA, USA. About 5:00 P.M., debris flows passed down the South Fork and North Fork of Oak Creek to merge into a large single feature whose passage affected the historic Mt. Whitney Fish hatchery and blocked California State Highway 395. At about the same time, the southernmost cell was largely centered over Erskine Creek, a main tributary of the west-flowing Kern River. Debris flows issued from several branches to coalesce into a large debris flow that passed along Erskine Creek, through the town of Lake Isabella, CA, USA and into the Kern River. It was observed reaching Lake Isabella about 6:30 P.M. Both debris flows caused significant disruption and damage to local communities. ?? 2011 Springer-Verlag.

  14. Time scales of pulsatory magmatic construction and solidification in Miocene subvolcanic magma systems, Eldorado Mountains, Nevada (USA)

    NASA Astrophysics Data System (ADS)

    Miller, J. S.; Miller, C. F.; Cates, N. L.; Wooden, J. L.; Means, M. A.; Ericksen, S.

    2004-05-01

    Recent advances in high-resolution geochronology applied to volcanic rocks have illuminated residence times of magma in subvolcanic magma chambers, and thereby provided valuable constraints on the evolution of upper crustal magmatic systems. Subvolcanic plutons record an important complementary physical and temporal record of magma processing and solidification of shallowly emplaced magma bodies. Our detailed field, geochemical, and isotopic investigations of the Miocene Aztec Wash and Searchlight plutons (Eldorado Mountains, Nevada) have shown that both systems experienced mafic and felsic input, both solidified primarily by vertical accumulation of solidified products, and both were vented during their life spans. However, the final captured records are different in that Searchlight is dominated by relatively homogeneous felsic cumulates, whereas Aztec Wash records repeated input and mingling of mafic and felsic magmas. New in situ ion microprobe U/Pb dating (Stanford/USGS SHRIMP-RG) of zircon (partially corroborated by U/Pb TIMS), combined with our earlier and ongoing field and isotopic studies, now reveal clear differences in the magmatic life spans and lifecycles of the two systems. U/Pb ion probe ages of 123 zircon spots from 5 samples from Aztec Wash document 200 ky of construction. Three samples from the lower middle part of the pluton are all 15.8 Ma (1σ ) errors for individual samples ~0.15 Ma; MSWD's ~1.0), and a single sample at the top is 15.6±0.2 Ma (MSWD 0.3); a late dike is 15.5±0.1 Ma (MSWD 1.0). Ages from 136 spots from 6 samples from the Searchlight pluton record 2 million years of construction (all age errors are 1σ )). The oldest dated unit is a mafic pod from lower Searchlight pluton that yielded a 206Pb/238U age of 17.7±0.3 Ma (MSWD 0.6). A granite from a thick felsic sheet in the interior of Searchlight pluton, interpreted to be the last material to crystallize, yielded a 206Pb/238U age of 16.2±0.2 (MSWD 3.5), but has a distinct 15

  15. Effect of Tree-to-Shrub Type Conversion in Lower Montane Forests of the Sierra Nevada (USA) on Streamflow

    PubMed Central

    Tague, Christina L.; Moritz, Max A.

    2016-01-01

    Higher global temperatures and increased levels of disturbance are contributing to greater tree mortality in many forest ecosystems. These same drivers can also limit forest regeneration, leading to vegetation type conversion. For the Sierra Nevada of California, little is known about how type conversion may affect streamflow, a critical source of water supply for urban, agriculture and environmental purposes. In this paper, we examined the effects of tree-to-shrub type conversion, in combination with climate change, on streamflow in two lower montane forest watersheds in the Sierra Nevada. A spatially distributed ecohydrologic model was used to simulate changes in streamflow, evaporation, and transpiration following type conversion, with an explicit focus on the role of vegetation size and aspect. Model results indicated that streamflow may show negligible change or small decreases following type conversion when the difference between tree and shrub leaf areas is small, partly due to the higher stomatal conductivity and the deep rooting depth of shrubs. In contrast, streamflow may increase when post-conversion shrubs have a small leaf area relative to trees. Model estimates also suggested that vegetation change could have a greater impact on streamflow magnitude than the direct hydrologic impacts of increased temperatures. Temperature increases, however, may have a greater impact on streamflow timing. Tree-to-shrub type conversion increased streamflow only marginally during dry years (annual precipitation < 800 mm), with most streamflow change observed during wetter years. These modeling results underscore the importance of accounting for changes in vegetation communities to accurately characterize future hydrologic regimes for the Sierra Nevada. PMID:27575592

  16. A detailed 2,000-year late holocene pollen record from lower Pahranagat Lake, Southern Nevada, USA

    SciTech Connect

    Hemphill, M.L.; Wigand, P.E.

    1995-09-01

    Preliminary analysis of 128 pollen samples and seven radiocarbon dates from a 5-meter long, 10-cm diameter sediment core retrieved from Lower Pahranagat Lake (elevation - 975 in), Lincoln County, Nevada, gives us a rare, continuous, record of vegetation change at an interval of every 14 years over the last 2,000 years. During this period increasing Pinus (pine) pollen values with respect to Juniperus Ouniper pollen values reflect the increasing dominance of pinyon in southern Nevada woodlands during the last 2,000 years. Today Pinus pollen values indicate that pinyon pine is more frequent in the southern Great Basin since the end of the Neoglacial 2,000 years ago. During the same time frame, a general decrease in Poaceae (grass) pollen values with respect to Artemisia (sagebrush) pollen values reflect the general trend of increasing dominance of steppe and desert scrub species with respect to grasses. Variations in these two species reflect not only the generally more xeric nature of climate during the last 2,000 years, but also periods of summer shifted rainfall - 1,500 years ago that encouraged both a period of grass and pinyon expansion. The ratio of aquatic to littoral pollen types indicates generally deeper water conditions 2 to 1 ka and more variable, but predominately more marshy, conditions at the site during most of the last 1 ka. Investigation of ostracodes from the same record being conducted by Dr. R. Forester at the USGS corroborate the pollen record by evidencing shifts between open and closed hydrologic systems including lake, marsh and even stream habitats. Analysis of an additional 10 meters of core recovered in the summer of 1994 with a basal date of 5.6 ka promises to provide the best record of middle through late Holocene vegetation and climate history for southern Nevada.

  17. Effect of Tree-to-Shrub Type Conversion in Lower Montane Forests of the Sierra Nevada (USA) on Streamflow.

    PubMed

    Bart, Ryan R; Tague, Christina L; Moritz, Max A

    2016-01-01

    Higher global temperatures and increased levels of disturbance are contributing to greater tree mortality in many forest ecosystems. These same drivers can also limit forest regeneration, leading to vegetation type conversion. For the Sierra Nevada of California, little is known about how type conversion may affect streamflow, a critical source of water supply for urban, agriculture and environmental purposes. In this paper, we examined the effects of tree-to-shrub type conversion, in combination with climate change, on streamflow in two lower montane forest watersheds in the Sierra Nevada. A spatially distributed ecohydrologic model was used to simulate changes in streamflow, evaporation, and transpiration following type conversion, with an explicit focus on the role of vegetation size and aspect. Model results indicated that streamflow may show negligible change or small decreases following type conversion when the difference between tree and shrub leaf areas is small, partly due to the higher stomatal conductivity and the deep rooting depth of shrubs. In contrast, streamflow may increase when post-conversion shrubs have a small leaf area relative to trees. Model estimates also suggested that vegetation change could have a greater impact on streamflow magnitude than the direct hydrologic impacts of increased temperatures. Temperature increases, however, may have a greater impact on streamflow timing. Tree-to-shrub type conversion increased streamflow only marginally during dry years (annual precipitation < 800 mm), with most streamflow change observed during wetter years. These modeling results underscore the importance of accounting for changes in vegetation communities to accurately characterize future hydrologic regimes for the Sierra Nevada.

  18. Identifying sources of ozone to three rural locations in Nevada, USA, using ancillary gas pollutants, aerosol chemistry, and mercury.

    PubMed

    Miller, Matthieu B; Fine, Rebekka; Pierce, Ashley M; Gustin, Mae S

    2015-10-15

    Ozone (O3) is a secondary air pollutant of long standing and increasing concern for environmental and human health, and as such, the US Environmental Protection Agency will revise the National Ambient Air Quality Standard of 75 ppbv to ≤ 70 ppbv. Long term measurements at the Great Basin National Park (GBNP) indicate that O3 in remote areas of Nevada will exceed a revised standard. As part of the Nevada Rural Ozone Initiative, measurements of O3 and other air pollutants were made at 3 remote sites between February 2012 and March 2014, GBNP, Paradise Valley (PAVA), and Echo Peak (ECHO). Exceptionally high concentrations of each air pollutant were defined relative to each site as mixing ratios that exceeded the 90th percentile of all hourly data. Case studies were analyzed for all periods during which mean daily O3 exceeded the 90th percentile concurrently with a maximum 8-h average (MDA8) O3 that was "exceptionally high" for the site (65 ppbv at PAVA, 70 ppbv at ECHO and GBNP), and of potential regulatory significance. An MDA8 ≥ 65 ppbv occurred only five times at PAVA, whereas this occurred on 49 and 65 days at GBNP and ECHO, respectively. The overall correlation between O3 and other pollutants was poor, consistent with the large distance from significant primary emission sources. Mean CO at these locations exceeded concentrations reported for background sites in 2000. Trajectory residence time calculations and air pollutant concentrations indicate that exceedances at GBNP and ECHO were promoted by air masses originating from multiple sources, including wildfires, transport of pollution from southern California and the marine boundary layer, and transport of Asian pollution plumes. Results indicate that the State of Nevada will exceed a revised O3 standard due to sources that are beyond their control.

  19. Manganoan fayalite [(Fe,Mn){sub 2}SiO{sub 4}]: A new occurrence in rhyolitic ash-flow tuff, southwestern Nevada, U.S.A.

    SciTech Connect

    Mills, J.G. Jr.; Rose, T.P.

    1991-01-01

    Manganoan fayalite is usually found associated with sedimentary iron-manganese ore deposits. Phenocrysts of manganoan fayalite were recently discovered in high-silica rhyolite pumice fragments from the Ammonia Tanks Member of the Timber Mountain Tuff in the Southwestern Nevada Volcanic Field. Twenty-one electron microprobe analyses (major-element oxides, NiO, BaO) are reported for the newly discovered phenocrysts. The slightly zoned phenocrysts range in composition from Fa{sub 63}Fo{sub 0}Te{sub 37}La{sub 0.2} to Fa{sub 72}Fo{sub 0.2}Te{sub 28}La{sub 0.1}.

  20. Investigating the Seismicity and Stress Field of the Truckee -- Lake Tahoe Region, California -- Nevada

    NASA Astrophysics Data System (ADS)

    Seaman, Tyler

    The Lake Tahoe basin is located in a transtensional environment defined by east-dipping range--bounding normal faults, northeast--trending sinistral, and northwest-trending dextral strike-slip faults in the northern Walker Lane deformation belt. This region accommodates as much as 10 mm/yr of dextral shear between the Sierra Nevada and Basin and Range proper, or about 20% of Pacific-North American plate motion. There is abundant seismicity north of Lake Tahoe through the Truckee, California region as opposed to a lack of seismicity associated with the primary normal faults in the Tahoe basin (i.e., West Tahoe fault). This seismicity study is focused on the structural transition zone from north-striking east-dipping Sierran Range bounding normal faults into the northern Walker Lane right-lateral strike-slip domain. Relocations of earthquakes between 2000-2013 are performed by initially applying HYPOINVERSE mean sea level datum and station corrections to produce higher confidence absolute locations as input to HYPODD. HYPODD applies both phase and cross-correlation times for a final set of 'best' event relocations. Relocations of events in the upper brittle crust clearly align along well-imaged, often intersecting, high-angle structures of limited lateral extent. In addition, the local stress field is modeled from 679 manually determined short-period focal mechanism solutions, between 2000 and 2013, located within a fairly dense local seismic network. Short-period focal mechanisms were developed with the HASH algorithm and moment tensor solutions using long-period surface waves and the MTINV code. Resulting solutions show a 9:1 ratio of strike-slip to normal mechanisms in the transition zone study area. Stress inversions using the application SATSI (USGS Spatial And Temporal Stress Inversion) generally show a T-axis oriented primarily E-W that also rotates about 30 degrees counterclockwise, from a WNW-ESE trend to ENE-WSW, moving west to east across the California--Nevada

  1. Preliminary investigation of scale formation and fluid chemistry at the Dixie Valley Geothermal Field, Nevada

    SciTech Connect

    Bruton, C.J.; Counce, D.; Bergfeld, D.; Goff, F.; Johnson, S.D.; Moore, J.N.; Nimz, G.

    1997-06-27

    The chemistry of geothermal, production, and injection fluids at the Dixie Valley Geothermal Field, Nevada, was characterized to address an ongoing scaling problem and to evaluate the effects of reinjection into the reservoir. Fluids generally followed mixing-dilution trends. Recharge to the Dixie Valley system apparently originates from local sources. The low-pressure brine and injection waters were saturated with respect to amorphous silica, which correlated with the ongoing scaling problem. Local shallow ground water contains about 15% geothermal brine mixed with regional recharge. The elevated Ca, Mg, and HCO{sub 3} content of this water suggests that carbonate precipitation may occur if shallow groundwater is reinjected. Downhole reservoir fluids are close to equilibrium with the latest vein mineral assemblage of wairakite-epidote-quartz-calcite. Reinjection of spent geothermal brine is predicted to affect the region near the wellbore differently than it does the region farther away.

  2. Reservoir-scale fracture permeability in the Dixie Valley, Nevada, geothermal field

    SciTech Connect

    Barton, C.A.; Zoback, M.D.; Hickman, S.; Morin, R.; Benoit, D.

    1998-08-01

    Wellbore image data recorded in six wells penetrating a geothermal reservoir associated with an active normal fault at Dixie Valley, Nevada, were used in conjunction with hydrologic tests and in situ stress measurements to investigate the relationship between reservoir productivity and the contemporary in situ stress field. The analysis of data from wells drilled into productive and non-productive segments of the Stillwater fault zone indicates that fractures must be both optimally oriented and critically stressed to have high measured permeabilities. Fracture permeability in all wells is dominated by a relatively small number of fractures oriented parallel to the local trend of the Stillwater Fault. Fracture geometry may also play a significant role in reservoir productivity. The well-developed populations of low angle fractures present in wells drilled into the producing segment of the fault are not present in the zone where production is not commercially viable.

  3. The Central Sierra Nevada Volcanic Field: A Geochemical Study of a Transitional Arc

    NASA Astrophysics Data System (ADS)

    Jean, M. M.; Putirka, K.; Busby, C.; Hagan, J.

    2006-12-01

    The Central Sierra Nevada (CSN) offers evidence about the effects of an arc/post-arc transition, which occurred in the middle to late Miocene. With passage of the Mendocino Triple Junction (MTJ), there should be a reflection of this new tectonic regime in the geochemistry of the resulting volcanic rocks. We conducted a search for systematic changes in magma chemistry, with regard to time and/or geography that may yield clues regarding tectonic origin, post 6 M.a. Major oxide and trace element analysis of 42 volcanic rock samples from the Sierra Nevada have been collected to assess the characteristics of ancestral Cascade volcanism. Major oxide element variation of 35 samples displayed high total alkalis (Na2O + K2O), medium to high K calc-alkaline compositions, and lavas that range from 50-75 wt% SiO2; all key signatures for Cascade volcanism. The remaining 7 samples displayed tholeiitic affinities. We looked for distinct chemical signatures to examine whether CSN volcanism was indicative of arcs. Spider-diagrams assisted in illustrating that the CSN suite is enriched in large ion lithophile elements (LILE) and depleted in high field strength elements (HFSE). Arcs contain Ba/Nb between 52 and 151 (Lange et. al., 1996), low Zr/Ba ratios, Y + Nb from 10 to 100 ppm, and high Sr/P2O5 ratios. The CSN volcanic field has geochemical characteristics that agree with each of these criteria that define subduction-related lavas. Two models were tested to explain the evolution of the CSN suite: fractional crystallization (FC) and combined assimilation-fractional crystallization (AFC). FC better explains both major oxide and trace element variations, compared to AFC. Our initial magma crystallized along the following liquid line of descent: ol+cpx, ol+cpx+plag, ol+cpx+plag+opx+hbl, ol+cpx+plag+opx+hbl+mag+ap.

  4. An evaluation of lead contamination in plastic toys collected from day care centers in the Las Vegas Valley, Nevada, USA.

    PubMed

    Greenway, Joseph A; Gerstenberger, Shawn

    2010-10-01

    Childhood exposure to environmental lead continues to be a major health concern. This study examined lead content within the plastic of children's toys collected from licensed day care centers in the Las Vegas valley, Nevada. It was hypothesized that the use of lead as a plastics stabilizer would result in elevated lead (≥600 ppm) in polyvinyl chloride plastics (PVC) compared to non-PVC plastics. It was also hypothesized that, due to the use of lead chromate as a coloring agent, yellow toys would contain higher concentrations of lead (≥600 ppm) than toys of other colors. Toy samples were limited to those found in day care centers in Las Vegas, Nevada. 10 day care centers were visited and approximately 50 toy samples were taken from each center. Of the 535 toys tested, 29 contained lead in excess of 600 parts per million (ppm). Of those 29 toys, 20 were PVC and 17 were yellow. Both of the two hypotheses were strongly supported by the data.

  5. Geology and geothermal origin of Grant Canyon and Bacon Flat Oil Fields, Railroad Valley, Nevada

    SciTech Connect

    Hulen, J.B. ); Goff, F. ); Ross, J.R. ); Bortz, L.C. ); Bereskin, S.R. )

    1994-04-01

    Eastern Nevada's Grant Canyon and Bacon Flat oil fields show strong evidence of formation in a still-active, moderate-temperature geothermal system. Modern manifestations of this system include unusually elevated oil-reservoir temperature at shallow depth, 116-122[degrees]C at 1.1-1.6 km, and dilute Na-HCO[sub 3]Cl thermal waters directly associated with hot oil. Hydrogen and oxygen isotopic compositions indicate that these thermal waters are meteoric in origin, but were probably recharged prior to the Holocene (before 10 ka). The waters apparently ascended to oil-reservoir elevations after deep heating in response to the normal regional thermal gradient; there is no evidence for a modern magmatic heat source. The beginning of oil-reservoir evolution at both fields is recorded by late-stage, fracture-filling quartz in the vuggy, brecciated, Paleozoic dolostone reservoir rocks. Oil and aqueous solutions were trapped as fluid inclusions in the quartz at temperatures comparable to those now prevailing in the reservoirs. Present day and fluid-inclusion temperatures define essentially coincident isothermal profiles through and beneath the oil-reservoir interval, a phenomenon consistent with near-constant convective heat transfer since inception of the geothermal system. Some basin and range oil fields have arisen as valuable byproducts of actively circulating geothermal systems and blending this concept into current exploration stratigies could hasten discovery of the 100 mbbl fields many geologists believe remain to be found in this region. 100 refs., 13 figs., 5 tabs.

  6. Projected changes in seasonal drought and flood conditions in the Sierra Nevada and Colorado River basins (USA)

    NASA Astrophysics Data System (ADS)

    Stewart-Frey, Iris; Ficklin, Darren; Carrillo, Carlos; McIntosh, Russell

    2014-05-01

    The Sierra Nevada and Colorado River mountain ranges are the principal source of water for large urban and agricultural demands in the North American Southwest. In this region, GCM ensemble output suggests varying and modest precipitation changes, while air surface temperatures are expected to increase by several degrees by the end of the century. This study used the downscaled output of an ensemble of 16 GCMs and 2 emission scenarios to drive the SWAT watershed model, and to assess the impact of projected climatic changes on water availability and water quality through 2100. We then assess the changes in likelihood of occurrence of high (> 125%, > 150%) and low (< 75%, 150% of historic averages in high elevation regions and in main channels. The occurrence of extreme low flows are likely to significantly increase for the spring and summer seasons, with low flows of

  7. Early impacts of biological control on canopy cover and water use of the invasive saltcedar tree (Tamarix spp.) in western Nevada, USA

    USGS Publications Warehouse

    Pattison, R.R.; D'Antonio, C. M.; Dudley, T.L.; Allander, K.K.; Rice, B.

    2011-01-01

    The success of biological control programs is rarely assessed beyond population level impacts on the target organism. The question of whether a biological control agent can either partially or completely restore ecosystem services independent of population level control is therefore still open to discussion. Using observational and experimental approaches, we investigated the ability of the saltcedar leaf beetle [Diorhabda carinulata (Brull??) (Coleoptera: Chrysomelidae)] to reduce the water use of saltcedar trees (Tamarix ramosissima Ledeb.) in two sites (Humboldt and Walker Rivers) in Nevada, USA. At these sites D. carinulata defoliated the majority of trees within 25 and 9 km, respectively, of the release location within 3 years. At the Humboldt site, D. carinulata reduced the canopy cover of trees adjacent to the release location by >90%. At a location 4 km away during the first year of defoliation, D. carinulata reduced peak (August) stem water use by 50-70% and stand transpiration (July to late September) by 75% (P = 0. 052). There was, however, no reduction in stem water use and stand transpiration during the second year of defoliation due to reduced beetle abundances at that location. At the Walker site, we measured stand evapotranspiration (ET) in the center of a large saltcedar stand and found that ET was highest immediately prior to D. carinulata arrival, dropped dramatically with defoliation, and remained low through the subsequent 2 years of the study. In contrast, near the perimeter of the stand, D. carinulata did not reduce sap flow, partly because of low rates of defoliation but also because of increased water use per unit leaf area in response to defoliation. Taken together, our results provide evidence that in the early stages of population expansion D. carinulata can lead to substantial declines in saltcedar water use. The extent of these declines varies spatially and temporally and is dependent on saltcedar compensatory responses along with D

  8. Spectral reflectance analysis of hydrothermal alteration in drill chips from two geothermal fields, Nevada

    NASA Astrophysics Data System (ADS)

    Lamb, A. K.; Calvin, W. M.

    2010-12-01

    We surveyed drill chips with a lab spectrometer in the visible-near infrared (VNIR) and short-wave infrared (SWIR) regions, 0.35-2.5 μm, to evaluate hydrothermal alteration mineralogy of samples from two known geothermal fields in western Nevada. Rock is fractured into small pieces or “chips” during drilling and stored in trays by depth interval. The drill chips are used to determine subsurface properties such as lithology, structure, and alteration. Accurately determining alteration mineralogy in the geothermal reservoir is important for indicating thermal fluids (usually associated with fluid pathways such as faults) and the highest temperature of alteration. Hydrothermal minerals, including carbonates, iron oxides, hydroxides, sheet silicates, and sulfates, are especially diagnostic in the VNIR-SWIR region.. The strength of reflectance spectroscopy is that it is rapid and accurate for differentiating temperature-sensitive minerals that are not visually unique. We examined drill chips from two western Nevada geothermal fields: Hawthorne (two wells) and Steamboat Springs (three wells) using an ASD lab spectrometer with very high resolution. The Steamboat Hills geothermal field has produced electricity since 1988 and is well studied, and is believed to be a combination of extensional tectonics and magmatic origin. Bedrocks are Cretaceous granodiorite intruding into older metasediments. Hot springs and other surface expressions occur over an area of about 2.6 km2. In contrast, the Hawthorne geothermal reservoir is a ‘blind’ system with no surface expressions such as hot springs or geysers. The geothermal field is situated in a range front fault zone in an extensional area, and is contained in Mesozoic mixed granite and meta-volcanics. We collected spectra at each interval in the chip trays. Interval length varied between 10’ and 30’. - Endmember analysis and mineral identification were performed -using standard analysis approaches used to map mineralogy

  9. Calcite growth-rate inhibition by fulvic acids isolated from Big Soda Lake, Nevada, USA, The Suwannee River, Georgia, USA and by polycarboxylic acids

    USGS Publications Warehouse

    Reddy, Michael M.; Leenheer, Jerry

    2011-01-01

    Calcite crystallization rates are characterized using a constant solution composition at 25°C, pH=8.5, and calcite supersaturation (Ω) of 4.5 in the absence and presence of fulvic acids isolated from Big Soda Lake, Nevada (BSLFA), and a fulvic acid from the Suwannee River, Georgia (SRFA). Rates are also measured in the presence and absence of low-molar mass, aliphatic-alicyclic polycarboxylic acids (PCA). BSLFA inhibits calcite crystal-growth rates with increasing BSLFA concentration, suggesting that BSLFA adsorbs at growth sites on the calcite crystal surface. Calcite growth morphology in the presence of BSLFA differed from growth in its absence, supporting an adsorption mechanism of calcite-growth inhibition by BSLFA. Calcite growth-rate inhibition by BSLFA is consistent with a model indicating that polycarboxylic acid molecules present in BSLFA adsorb at growth sites on the calcite crystal surface. In contrast to published results for an unfractionated SRFA, there is dramatic calcite growth inhibition (at a concentration of 1 mg/L) by a SRFA fraction eluted by pH 5 solution from XAD-8 resin, indicating that calcite growth-rate inhibition is related to specific SRFA component fractions. A cyclic PCA, 1, 2, 3, 4, 5, 6-cyclohexane hexacarboxylic acid (CHXHCA) is a strong calcite growth-rate inhibitor at concentrations less than 0.1 mg/L. Two other cyclic PCAs, 1, 1 cyclopentanedicarboxylic acid (CPDCA) and 1, 1 cyclobutanedicarboxylic acid (CBDCA) with the carboxylic acid groups attached to the same ring carbon atom, have no effect on calcite growth rates up to concentrations of 10 mg/L. Organic matter ad-sorbed from the air onto the seed crystals has no effect on the measured calcite crystal-growth rates.

  10. High abundances of potentially active ammonia-oxidizing bacteria and archaea in oligotrophic, high-altitude lakes of the Sierra Nevada, California, USA.

    PubMed

    Hayden, Curtis J; Beman, J Michael

    2014-01-01

    Nitrification plays a central role in the nitrogen cycle by determining the oxidation state of nitrogen and its subsequent bioavailability and cycling. However, relatively little is known about the underlying ecology of the microbial communities that carry out nitrification in freshwater ecosystems--and particularly within high-altitude oligotrophic lakes, where nitrogen is frequently a limiting nutrient. We quantified ammonia-oxidizing archaea (AOA) and bacteria (AOB) in 9 high-altitude lakes (2289-3160 m) in the Sierra Nevada, California, USA, in relation to spatial and biogeochemical data. Based on their ammonia monooxygenase (amoA) genes, AOB and AOA were frequently detected. AOB were present in 88% of samples and were more abundant than AOA in all samples. Both groups showed >100 fold variation in abundance between different lakes, and were also variable through time within individual lakes. Nutrient concentrations (ammonium, nitrite, nitrate, and phosphate) were generally low but also varied across and within lakes, suggestive of active internal nutrient cycling; AOB abundance was significantly correlated with phosphate (r(2) = 0.32, p<0.1), whereas AOA abundance was inversely correlated with lake elevation (r(2) = 0.43, p<0.05). We also measured low rates of ammonia oxidation--indicating that AOB, AOA, or both, may be biogeochemically active in these oligotrophic ecosystems. Our data indicate that dynamic populations of AOB and AOA are found in oligotrophic, high-altitude, freshwater lakes.

  11. High Abundances of Potentially Active Ammonia-Oxidizing Bacteria and Archaea in Oligotrophic, High-Altitude Lakes of the Sierra Nevada, California, USA

    PubMed Central

    Hayden, Curtis J.; Beman, J. Michael

    2014-01-01

    Nitrification plays a central role in the nitrogen cycle by determining the oxidation state of nitrogen and its subsequent bioavailability and cycling. However, relatively little is known about the underlying ecology of the microbial communities that carry out nitrification in freshwater ecosystems—and particularly within high-altitude oligotrophic lakes, where nitrogen is frequently a limiting nutrient. We quantified ammonia-oxidizing archaea (AOA) and bacteria (AOB) in 9 high-altitude lakes (2289–3160 m) in the Sierra Nevada, California, USA, in relation to spatial and biogeochemical data. Based on their ammonia monooxygenase (amoA) genes, AOB and AOA were frequently detected. AOB were present in 88% of samples and were more abundant than AOA in all samples. Both groups showed >100 fold variation in abundance between different lakes, and were also variable through time within individual lakes. Nutrient concentrations (ammonium, nitrite, nitrate, and phosphate) were generally low but also varied across and within lakes, suggestive of active internal nutrient cycling; AOB abundance was significantly correlated with phosphate (r2 = 0.32, p<0.1), whereas AOA abundance was inversely correlated with lake elevation (r2 = 0.43, p<0.05). We also measured low rates of ammonia oxidation—indicating that AOB, AOA, or both, may be biogeochemically active in these oligotrophic ecosystems. Our data indicate that dynamic populations of AOB and AOA are found in oligotrophic, high-altitude, freshwater lakes. PMID:25402442

  12. Sphene and zircon in the Highland Range volcanic sequence (Miocene, southern Nevada, USA): Elemental partitioning, phase relations, and influence on evolution of silicic magma

    USGS Publications Warehouse

    Colombini, L.L.; Miller, C.F.; Gualda, G.A.R.; Wooden, J.L.; Miller, J.S.

    2011-01-01

    Sphene is prominent in Miocene plutonic rocks ranging from diorite to granite in southern Nevada, USA, but it is restricted to rhyolites in coeval volcanic sequences. In the Highland Range volcanic sequence, sphene appears as a phenocryst only in the most evolved rocks (72-77 mass% SiO2; matrix glass 77-78 mass% SiO2). Zr-in-sphene temperatures of crystallization are mostly restricted to 715 and 755??C, in contrast to zircon (710-920??C, Ti-in-zircon thermometry). Sphene rim/glass Kds for rare earth elements are extremely high (La 120, Sm 1200, Gd 1300, Lu 240). Rare earth elements, especially the middle REE (MREE), decrease from centers to rims of sphene phenocrysts along with Zr, demonstrating the effect of progressive sphene fractionation. Whole rocks and glasses have MREE-depleted, U-shaped REE patterns as a consequence of sphene fractionation. Within the co-genetic, sphene-rich Searchlight pluton, only evolved leucogranites show comparable MREE depletion. These results indicate that sphene saturation in intruded and extruded magmas occurred only in highly evolved melts: abundant sphene in less silicic plutonic rocks represents a late-stage 'bloom' in fractionated interstitial melt. ?? 2011 Springer-Verlag.

  13. Chemical evolution of shallow playa groundwater in response to post-pluvial isostatic rebound, Honey Lake Basin, California-Nevada, USA

    NASA Astrophysics Data System (ADS)

    Mayo, Alan L.; Henderson, Rachel M.; Tingey, David; Webber, William

    2010-05-01

    The 1,750-km2 endorheic Honey Lake basin (California-Nevada, USA) was part of the 22,000-km2 Pleistocene Lake Lahontan pluvial lake system which existed between 5,000 and 40,000 years BP. The basin consists of two subbasins separated by a low elevation divide. Groundwater in the western subbasin has a maximum total dissolved solids (TDS) content of only ˜1,300 mg/L; however eastern subbasin groundwater has a maximum TDS of ˜46,000 mg/L. This TDS distribution is unexpected because 94% of surface water TDS loading is to the western subbasin. In situ reactions and upwelling thermal groundwater contributing to groundwater chemistry were modeled using NETPATH. The TDS difference between the subbasins is attributed to post-Lake Lahontan isostatic rebound about 13,000 years ago. Prior to rebound the subbasins did not exist and the low point of the basin was in the eastern area where hydraulic isolation from the larger Lake Lahontan and frequent desiccation of the basin surface water resulted in evaporite mineral deposition in accumulating sediments. After rebound, the terminal sink for most surface water shifted to the western subbasin. Although most closed basins have not been impacted by isostatic rebound, results of this investigation demonstrate how tectonic evolution can impact the distribution of soluble minerals accumulating in shallow basins.

  14. Radionuclides in ground water of the Carson River Basin, western Nevada and eastern California, U.S.A.

    USGS Publications Warehouse

    Thomas, J.M.; Welch, A.H.; Lico, M.S.; Hughes, J.L.; Whitney, R.

    1993-01-01

    Ground water is the main source of domestic and public supply in the Carson River Basin. Ground water originates as precipitation primarily in the Sierra Nevada in the western part of Carson and Eagle Valleys, and flows down gradient in the direction of the Carson River through Dayton and Churchill Valleys to a terminal sink in the Carson Desert. Because radionuclides dissolved in ground water can pose a threat to human health, the distribution and sources of several naturally occurring radionuclides that contribute to gross-alpha and gross-beta activities in the study area were investigated. Generally, alpha and beta activities and U concentration increase from the up-gradient to down-gradient hydrographic areas of the Carson River Basin, whereas 222Rn concentration decreases. Both 226Ra and 228Ra concentrations are similar throughout the study area. Alpha and beta activities and U concentration commonly exceed 100 pCi/l in the Carson Desert at the distal end of the flow system. Radon-222 commonly exceeds 2,000 pCi/l in the western part of Carson and Eagle Valleys adjacent to the Sierra Nevada. Radium-226 and 228Ra concentrations are <5 pCi/l. Four ground water samples were analyzed for 210Po and one sample contained a high concentration of 21 pCi/l. Seven samples were analyzed for 210Pb; six contained <3 pCi/l and one contained 12 pCi/l. Thorium-230 was detected at concentrations of 0.15 and 0.20 pCi/l in two of four samples. Alpha-emitting radionuclides in the ground water originated from the dissolution of U-rich granitic rocks in the Sierra Nevada by CO2, oxygenated water. Dissolution of primary minerals, mainly titanite (sphene) in the granitic rocks, releases U to the water. Dissolved U is probably removed from the water by adsorption on Fe- and Mn-oxide coatings on fracture surfaces and fine-grained sediment, by adsorption on organic matter, and by coprecipitation with Fe and Mn oxides. These coated sediments are transported throughout the basin by fluvial

  15. Middle Devonian to Early Carboniferous event stratigraphy of Devils Gate and Northern Antelope Range sections, Nevada, U.S.A

    USGS Publications Warehouse

    Sandberg, C.A.; Morrow, J.R.; Poole, F.G.; Ziegler, W.

    2003-01-01

    The classic type section of the Devils Gate Limestone at Devils Gate Pass is situated on the eastern slope of a proto-Antler forebulge that resulted from convergence of the west side of the North American continent with an ocean plate. The original Late Devonian forebulge, the site of which is now located between Devils Gate Pass and the Northern Antelope Range, separated the continental-rise to deep-slope Woodruff basin on the west from the backbulge Pilot basin on the east. Two connections between these basins are recorded by deeper water siltstone beds at Devils Gate; the older one is the lower tongue of the Woodruff Formation, which forms the basal unit of the upper member of the type Devils Gate, and the upper one is the overlying, thin lower member of the Pilot Shale. The forebulge and the backbulge Pilot basin originated during the middle Frasnian (early Late Devonian) Early hassi Zone, shortly following the Alamo Impact within the punctata Zone in southern Nevada. Evidence of this impact is recorded by coeval and reworked shocked quartz grains in the Northern Antelope Range and possibly by a unique bypass-channel or megatsunami-uprush sandy diamictite within carbonate-platform rocks of the lower member of the type Devils Gate Limestone. Besides the Alamo Impact and three regional events, two other important global events are recorded in the Devils Gate section. The semichatovae eustatic rise, the maximum Late Devonian flooding event, coincides with the sharp lithogenetic change at the discordant boundary above the lower member of the Devils Gate Limestone. Most significantly, the Devils Gate section contains the thickest and most complete rock record in North America across the late Frasnian linguiformis Zone mass extinction event. Excellent exposures include not only the extinction shale, but also a younger. Early triangularis Zone tsunamite breccia, produced by global collapse of carbonate platforms during a shallowing event that continued into the next

  16. Integrating remote sensing techniques at Cuprite, Nevada: AVIRIS, Thematic Mapper, and field spectroscopy

    NASA Technical Reports Server (NTRS)

    Hill, Bradley; Nash, Greg; Ridd, Merrill; Hauff, Phoebe L.; Ebel, Phil

    1992-01-01

    The Cuprite mining district in southwestern Nevada has become a test site for remote sensing studies with numerous airborne scanners and ground sensor data sets collected over the past fifteen years. Structurally, the Cuprite region can be divided into two areas with slightly different alteration and mineralogy. These zones lie on either side of a postulated low-angle structural discontinuity that strikes nearly parallel to US Route 95. Hydrothermal alternation at Cuprite was classified into three major zones: silicified, opalized, and argillized. These alteration types form a bulls-eye pattern east of the highway and are more linear on the west side of the highway making a striking contrast from the air and the imagery. Cuprite is therefore an ideal location for remote sensing research as it exhibits easily identified hydrothermal zoning, is relatively devoid of vegetation, and contains a distinctive spectrally diagnostic mineral suite including the ammonium feldspar buddingtonite, several types of alunite, different jarosites, illite, kaolinite, smectite, dickite, and opal. This present study brings a new dimension to these previous remote sensing and ground data sets compiled for Cuprite. The development of a higher resolution field spectrometer now provides the capability to combine extensive in-situ mineralogical data with a new geologic field survey and detailed Airborne Visible/Infrared Imaging Spectrometers (AVIRIS) images. The various data collection methods and the refinement of the integrated techniques are discussed.

  17. The aqueous geochemistry of uranium in a drainage containing uraniferous organic-rich sediments, Lake Tahoe area, Nevada, USA

    USGS Publications Warehouse

    Zielinski, R.A.; Otton, J.K.; Wanty, R.B.; Pierson, C.T.

    1988-01-01

    Anomalously uraniferous waters occur in a small (4.2 km2) drainage in the west-central Carson Range, Nevada, on the eastern side of Lake Tahoe. The waters transport uranium from local U-rich soils and bedrock to organic-rich valley-fill sediments where it is concentrated, but weakly bound. The dissolved U and the U that is potentially available from coexisting sediments pose a threat to the quality of drinking water that is taken from the drainage. The U concentration in samples of 6 stream, 11 spring and 7 near-surface waters ranged from 0.1 V). Possible precipitation of U(IV) minerals is predicted under the more reducing conditions that are particularly likely in near-surface waters, but the inhibitory effects of sluggish kinetics or organic complexing are not considered. These combined results suggest that a process such as adsorption or ion exchange, rather than mineral saturation, is the most probable mechanism for uranium fixation in the sediments. -Authors

  18. Coulomb stress evolution in a diffuse plate boundary: 1400 years of earthquakes in eastern California and western Nevada, USA

    NASA Astrophysics Data System (ADS)

    Verdecchia, Alessandro; Carena, Sara

    2016-08-01

    Diffuse plate boundaries are characterized by deformation distributed over a wide area in a complex network of active faults and by relatively low strain rates. These characteristics make it difficult to understand the spatial and temporal distribution of seismicity. The area east of the Sierra Nevada, between longitudes 121°W and 116°W, is part of a diffuse plate boundary. At least 17 major surface-rupturing earthquakes have happened here in the last 1400 years. Our purpose is to determine whether these events influence each other or whether they are randomly distributed in time and space. We model the evolution of coseismic and postseismic Coulomb failure stress changes (ΔCFS) produced by these earthquakes, and we also model interseismic stresses on the entire fault network. Our results show that 80% of the earthquake ruptures are located in areas of combined coseismic and postseismic ΔCFS ≥ 0.2 bar. This relationship is robust, as shown by the control tests that we carried out using random earthquake sequences. We also show that the Fish Lake Valley, Pyramid Lake, and Honey Lake faults have accumulated 45, 37, and 27 bars, respectively, of total ΔCFS (i.e., coseismic + postseismic + interseismic) in the last 1400 years. Such values are comparable to the average stress drop in a major earthquake, and these three faults may be therefore close to failure.

  19. Reconnaissance estimates of natural recharge to desert basins in Nevada, U.S.A., by using chloride-balance calculations

    USGS Publications Warehouse

    Dettinger, M.D.

    1989-01-01

    A chloride-balance method for estimating average natural recharge to groundwater basins in the Basin and Range Province of the western United States may be a useful alternative or complement to current techniques. The chloride-balance method, as presented in this paper, equates chloride in recharge water and runoff to chloride deposited in mountainous recharge-source areas by precipitation and dry fallout. Given estimates of annual precipitation on these source areas and chloride concentrations of bulk precipitation and recharge water, the rate of recharge can be estimated providing that: (1) no other major sources of chloride exist; (2) direct runoff to discharge areas in the basin is small or can otherwise be taken in account in the balance; and (3) the recharge sources for the basin are correctly delineated. The estimates are sensitive to the estimated rate of input of chloride from the atmosphere; this is the greatest data need for future applications of the method. Preliminary applications of the method to sixteen basins in Nevada, including Las Vegas Valley, indicate that the method can be a useful tool for hydrologists and resource managers. Correlation coefficients between recharge efficiencies for the basins - estimated on the basis of recharge estimates that use the chloride-balance method and two other currently used techniques - range from 0.54 to 0.95, depending on assumptions about where the method may be applied. ?? 1989.

  20. Terminal Pleistocene/Early Holocene Environmental Change at the Sunshine Locality, North-Central Nevada, U.S.A.

    NASA Astrophysics Data System (ADS)

    Huckleberry, Gary; Beck, Charlotte; Jones, George T.; Holmes, Amy; Cannon, Michael; Livingston, Stephanie; Broughton, Jack M.

    2001-05-01

    Sedimentological, faunal, and archaeological investigations at the Sunshine Locality, Long Valley, Nevada reveal a history of human adaptation and environmental change at the last glacial-interglacial transition in North America's north-central Great Basin. The locality contains a suite of lacustrine, alluvial, and eolian deposits associated with fluvially reworked faunal remains and Paleoindian artifacts. Radiocarbon-dated stratigraphy indicates a history of receding pluvial lake levels followed by alluvial downcutting and subsequent valley filling with marsh-like conditions at the end of the Pleistocene. A period of alluvial deposition and shallow water tables (9,800 to 11,000 14C yr B.P.) correlates to the Younger Dryas. Subsequent drier conditions and reduced surface runoff mark the early Holocene; sand dunes replace wetlands by 8,000 14C yr B.P. The stratigraphy at Sunshine is similar to sites located 400 km south and supports regional climatic synchroneity in the central and southern Great Basin during the terminal Pleistocene/early Holocene. Given regional climate change and recurrent geomorphic settings comparable to Sunshine, we believe that there is a high potential for buried Paleoindian features in primary association with extinct fauna elsewhere in the region yet to be discovered due to limited stratigraphic exposure and consequent low visibility.

  1. Thermal modeling of step-out targets at the Soda Lake geothermal field, Churchill County, Nevada

    NASA Astrophysics Data System (ADS)

    Dingwall, Ryan Kenneth

    Temperature data at the Soda Lake geothermal field in the southeastern Carson Sink, Nevada, highlight an intense thermal anomaly. The geothermal field produces roughly 11 MWe from two power producing facilities which are rated to 23 MWe. The low output is attributed to the inability to locate and produce sufficient volumes of fluid at adequate temperature. Additionally, the current producing area has experienced declining production temperatures over its 40 year history. Two step-out targets adjacent to the main field have been identified that have the potential to increase production and extend the life of the field. Though shallow temperatures in the two subsidiary areas are significantly less than those found within the main anomaly, measurements in deeper wells (>1,000 m) show that temperatures viable for utilization are present. High-pass filtering of the available complete Bouguer gravity data indicates that geothermal flow is present within the shallow sediments of the two subsidiary areas. Significant faulting is observed in the seismic data in both of the subsidiary areas. These structures are highlighted in the seismic similarity attribute calculated as part of this study. One possible conceptual model for the geothermal system(s) at the step-out targets indicated upflow along these faults from depth. In order to test this hypothesis, three-dimensional computer models were constructed in order to observe the temperatures that would result from geothermal flow along the observed fault planes. Results indicate that the observed faults are viable hosts for the geothermal system(s) in the step-out areas. Subsequently, these faults are proposed as targets for future exploration focus and step-out drilling.

  2. Predator Force Structure Changes at Indian Springs Air Force Auxiliary Field, Nevada Environmental Assessment

    DTIC Science & Technology

    2003-07-01

    the North Las Vegas Library (Main Branch), the Indian Springs Library, and online at www.cevp.com and www.nellis.af.mil. A Notice of Availability...USGS (U.S. Geological Survey). 2001. Online Table of Seismic Hazards. http://geohazards.cr.usgs.gov/eq/faults/fsrpage11.html Predator Force...Sincerely, __ ~~~-~ Heather K. Elliott Nevada State Clearinghouse/ SPOC NEVADA STATE CLEARINGHOUSE Department of Administration Budget and Planning

  3. Zircon and apatite (U-Th)/He evidence for Paleogene and Neogene extension in the Southern Snake Range, Nevada, USA

    NASA Astrophysics Data System (ADS)

    Evans, Sarah L.; Styron, Richard H.; Soest, Matthijs C.; Hodges, Kip V.; Hanson, Andrew D.

    2015-10-01

    Despite decades of study, the timing, rates, and magnitude of extension in the Basin and Range are poorly quantified in some areas. This study integrates new zircon and apatite (U-Th)/He analyses (ZrnHe and ApHe) with published thermochronologic data to quantify these extensional parameters in the Southern Snake Range (SSR) of east-central Nevada. The new ZrnHe dates range from 40.7 ± 4.9 Ma in the western SSR to 21.0 ± 3.3 Ma near the present-day trace of the Southern Snake Range Décollement (SSRD), and the ApHe dates range from 15.1 ± 2.4 Ma in the central SSR to 13.6 ± 0.7 Ma closest to the SSRD trace. These new and previously published low-temperature thermochronologic cooling ages were inverted for the extensional history of the SSR using a Bayesian Monte Carlo method incorporating Pecube. The posterior extensional histories indicate three significant pulses of extension occurred during the Paleogene and Neogene: (1) ~50-45 to ~38 Ma (Eocene), (2) ~33-30 to ~23 Ma (Oligocene), and (3) ~23-20 to ~10-8 Ma (Miocene). Modeled rates of extension were low at ≤ 0.5 mm a-1; however, more rapid rates possibly occurred during the Eocene and the Miocene based on posterior histories. Net cumulative extension from posterior histories is 19.8 to 34.9 km, with a mean of 29.7 km. About 10-18 km of extension occurred during the Eocene and Oligocene. Model results indicate no relationship between extension and magmatism in the SSR. Our new model results and interpretations also indicate extensional collapse of the Nevadaplano initiated prior to ~17 Ma.

  4. Reference Directions, Rotations, and Magnetostratigraphy: Utilization of Oligocene Ignimbrite Paleomagnetism to Better Understand Walker Lane Tectonics, Western Nevada, USA

    NASA Astrophysics Data System (ADS)

    Carlson, C. W.; Faulds, J. E.

    2015-12-01

    The Walker Lane accommodates ~20% of dextral strain between the Pacific and North American Plates on discontinuous sets of predominately northwest-striking right- and easterly striking left-lateral faults. Located west of dextral faults of the central Walker Lane and east of the Sierra Nevada frontal fault system is a region of normal faults and asymmetric basins where geodetic studies define ~5 mm/yr of northwest-directed dextral strain. As this region is devoid of major strike-slip fault systems, how strain is accommodated is poorly understood. To elucidate the long-term tectonic development of this region, we are compiling paleomagnetic data from late Oligocene ash-flow tuffs to determine magnitudes of vertical-axis rotation. This data set will be compared with ongoing and complementary studies of subsurface basin geometry and recent fault-slip motions to ultimately understand the tectonic development of this enigmatic part of the Walker Lane.Paleomagnetic directions were collected from structural-blocks where multiple ash-flow tuffs crop out in stratigraphic succession, and at least one sampled unit has a previously established reference direction. This approach will allow for determination of the magnitude of vertical-axis rotation at each locality and provide an opportunity to infer paleomagnetic reference directions for other ash-flow tuffs. Preliminary paleomagnetic data have identified statistically-significant magnitudes of vertical-axis rotation (~20-50° clockwise) west of central Walker Lane dextral faults. Magnetostratigraphic correlations to the geomagnetic time scale have refined ages for several ash-flow tuffs, and span ~5 Ma of the late Oligocene (chrons: 6Cn.3n-10r). The results of this research will not only elucidate the manner in which dextral shear is accommodated in this portion of the Walker Lane, but also provide an extensive data set for establishing Oligocene ash-flow tuff paleomagnetic reference directions and regional correlations.

  5. The influence of faults in basin-fill deposits on land subsidence, Las Vegas Valley, Nevada, USA

    NASA Astrophysics Data System (ADS)

    Burbey, Thomas

    2002-07-01

    The role of horizontal deformation caused by pumping of confined-aquifer systems is recognized as contributing to the development of earth fissures in semiarid regions, including Las Vegas Valley, Nevada. In spite of stabilizing water levels, new earth fissures continue to develop while existing ones continue to lengthen and widen near basin-fill faults. A three-dimensional granular displacement model based on Biot's consolidation theory (Biot, MA, 1941, General theory of three-dimensional consolidation. Jour. Applied Physics 12:155-164) has been used to evaluate the nature of displacement in the vicinity of two vertical faults. The fault was simulated as (1) a low-permeability barrier to horizontal flow, (2) a gap or structural break in the medium, but where groundwater flow is not obstructed, and (3) a combination of conditions (1) and (2). Results indicate that the low-permeability barrier greatly enhances horizontal displacement. The fault plane also represents a location of significant differential vertical subsidence. Large computed strains in the vicinity of the fault may suggest high potential for failure and the development of earth fissures when the fault is assumed to have low permeability. Results using a combination of the two boundaries suggest that potential fissure development may be great at or near the fault plane and that horizontal deformation is likely to play a key role in this development. Résumé. On considère que la déformation horizontale provoquée par un pompage dans un aquifère captif joue un rôle dans le développement des fissures du sol en régions semi-arides, comme la vallée de Las Vegas (Nevada). Malgré des niveaux d'eau stabilisés, de nouvelles fissures du sol continuent de se développer en longueur et en largeur au voisinage de failles dans les bassins sédimentaires. Un modèle de déplacement granulaire tri-dimensionnel, basé sur la théorie de la consolidation de Biot (Biot, M A, 1941, General theory of three

  6. Mapping variations in weight percent silica measured from multispectral thermal infrared imagery - Examples from the Hiller Mountains, Nevada, USA and Tres Virgenes-La Reforma, Baja California Sur, Mexico

    USGS Publications Warehouse

    Hook, S.J.; Dmochowski, J.E.; Howard, K.A.; Rowan, L.C.; Karlstrom, K.E.; Stock, J.M.

    2005-01-01

    Remotely sensed multispectral thermal infrared (8-13 ??m) images are increasingly being used to map variations in surface silicate mineralogy. These studies utilize the shift to longer wavelengths in the main spectral feature in minerals in this wavelength region (reststrahlen band) as the mineralogy changes from felsic to mafic. An approach is described for determining the amount of this shift and then using the shift with a reference curve, derived from laboratory data, to remotely determine the weight percent SiO2 of the surface. The approach has broad applicability to many study areas and can also be fine-tuned to give greater accuracy in a particular study area if field samples are available. The approach was assessed using airborne multispectral thermal infrared images from the Hiller Mountains, Nevada, USA and the Tres Virgenes-La Reforma, Baja California Sur, Mexico. Results indicate the general approach slightly overestimates the weight percent SiO2 of low silica rocks (e.g. basalt) and underestimates the weight percent SiO2 of high silica rocks (e.g. granite). Fine tuning the general approach with measurements from field samples provided good results for both areas with errors in the recovered weight percent SiO2 of a few percent. The map units identified by these techniques and traditional mapping at the Hiller Mountains demonstrate the continuity of the crystalline rocks from the Hiller Mountains southward to the White Hills supporting the idea that these ranges represent an essentially continuous footwall block below a regional detachment. Results from the Baja California data verify the most recent volcanism to be basaltic-andesite. ?? 2005 Elsevier Inc. All rights reserved.

  7. Evaluation of Pleistocene groundwater flow through fractured tuffs using a U-series disequilibrium approach, Pahute Mesa, Nevada, USA

    USGS Publications Warehouse

    Paces, James B.; Nichols, Paul J.; Neymark, Leonid A.; Rajaram, Harihar

    2013-01-01

    Groundwater flow through fractured felsic tuffs and lavas at the Nevada National Security Site represents the most likely mechanism for transport of radionuclides away from underground nuclear tests at Pahute Mesa. To help evaluate fracture flow and matrix–water exchange, we have determined U-series isotopic compositions on more than 40 drill core samples from 5 boreholes that represent discrete fracture surfaces, breccia zones, and interiors of unfractured core. The U-series approach relies on the disruption of radioactive secular equilibrium between isotopes in the uranium-series decay chain due to preferential mobilization of 234U relative to 238U, and U relative to Th. Samples from discrete fractures were obtained by milling fracture surfaces containing thin secondary mineral coatings of clays, silica, Fe–Mn oxyhydroxides, and zeolite. Intact core interiors and breccia fragments were sampled in bulk. In addition, profiles of rock matrix extending 15 to 44 mm away from several fractures that show evidence of recent flow were analyzed to investigate the extent of fracture/matrix water exchange. Samples of rock matrix have 234U/238U and 230Th/238U activity ratios (AR) closest to radioactive secular equilibrium indicating only small amounts of groundwater penetrated unfractured matrix. Greater U mobility was observed in welded-tuff matrix with elevated porosity and in zeolitized bedded tuff. Samples of brecciated core were also in secular equilibrium implying a lack of long-range hydraulic connectivity in these cases. Samples of discrete fracture surfaces typically, but not always, were in radioactive disequilibrium. Many fractures had isotopic compositions plotting near the 230Th-234U 1:1 line indicating a steady-state balance between U input and removal along with radioactive decay. Numerical simulations of U-series isotope evolution indicate that 0.5 to 1 million years are required to reach steady-state compositions. Once attained, disequilibrium 234U/238U

  8. Hazard area and recurrence rate time series for determining the probability of volcanic disruption of the proposed high-level radioactive waste repository at Yucca Mountain, Nevada, USA

    NASA Astrophysics Data System (ADS)

    Ho, Chih-Hsiang

    2010-03-01

    The post-12-Ma volcanism at Yucca Mountain (YM), Nevada, a potential site for an underground geologic repository of high-level radioactive waste in the USA, is assumed to follow a Poisson process and is characterized by a sequence of empirical recurrence rate time series. The last ten time series are used as a prediction set to check the predictive ability of the candidate model produced by a training sample using autoregressive integrated moving average modeling techniques. The model is used to forecast future recurrence rates that, in turn, are used to develop a continuous mean function of the volcanic process, which is not only required to evaluate the probability of site disruption by volcanic activity but accommodates a long period of compliance. At the model validation stage, our candidate model forecasts a mean number of 6.196 eruptions for the prediction set which accounts for seven volcanic events of the 33 post-12-Ma eruptions at the YM site. For a full-scaled forecasting, our fitted model predicts a waning volcanism producing only 3.296 new eruptions in the next million years. We then present the site disruption probability as the chance that a new eruption will occur in the “hazard area” based on a model developed for licensing commercial space launch and reentry operations in the space transportation industry. The results of the site disruption probability and sensitivity analysis are summarized with a numerical table generated from a simple equation sufficient for practical use. We also produce three-dimensional plots to visualize the nonlinearity of the intensity function associated with the underlying model of a nonhomogeneous Poisson process and emphasize that the interpretation of site disruption probability should always be accompanied by a compliance period.

  9. A comparison of in-situ aircraft measurements of carbon dioxide to GOSAT data measured over Railroad Valley playa, Nevada, USA

    NASA Astrophysics Data System (ADS)

    Tadić, J. M.; Loewenstein, M.; Frankenberg, C.; Iraci, L. T.; Yates, E. L.; Gore, W.; Kuze, A.

    2012-08-01

    In this paper we report vertical profiles of CO2 measured with a cavity ring-down spectrometer (CRDS, Picarro, Inc., 2301-m) on a research aircraft from near ground level to 8 km above mean sea level (a.m.s.l.). The airborne platform employed in this study is an Alpha Jet aircraft operated from NASA Ames Research Center. Flights were undertaken to Railroad Valley, Nevada, USA, to coincide with overpasses of the Greenhouse Gases Observing Satellite (GOSAT). Ground based CO2 was simultaneously measured using CRDS, also at the time and location of the airborne and satellite measurements. Results of three GOSAT coordinated aircraft profiles and ground based measurements in June 2011 are presented and discussed in this paper. The accuracy of the CO2 measurements has been determined based upon laboratory calibrations (WMO traceable standard) and pressure/temperature flight simulations in a test chamber. The 2-σ error bars for the CO2 data presented here are ± 0.4 ppm. Our column CO2 measurements, which include about 85% of the tropospheric mass, are extrapolated, using two different techniques, to include the remainder of the tropospheric and stratospheric CO2. The data are then analyzed using the ACOS (Atmospheric CO2 observations from space; JPL algorithm used to analyze XCO2 from GOSAT data) averaging kernels. ACOS version 2.9 is used to interpret the GOSAT data in a collaborative effort between JPL and the GOSAT team. Column averaged CO2, XCO2, measured by GOSAT and analyzed from our data ranged from 388.1 to 390.5 ppm. Values of XCO2 determined from our Alpha Jet measurements and from the GOSAT on three overflight days agree within 1 ppm or better (<0.3%).

  10. Early impacts of biological control on canopy cover and water use of the invasive saltcedar tree (Tamarix spp.) in western Nevada, USA.

    PubMed

    Pattison, Robert R; D'Antonio, Carla M; Dudley, Tom L; Allander, Kip K; Rice, Benjamin

    2011-03-01

    The success of biological control programs is rarely assessed beyond population level impacts on the target organism. The question of whether a biological control agent can either partially or completely restore ecosystem services independent of population level control is therefore still open to discussion. Using observational and experimental approaches, we investigated the ability of the saltcedar leaf beetle [Diorhabda carinulata (Brullé) (Coleoptera: Chrysomelidae)] to reduce the water use of saltcedar trees (Tamarix ramosissima Ledeb.) in two sites (Humboldt and Walker Rivers) in Nevada, USA. At these sites D. carinulata defoliated the majority of trees within 25 and 9 km, respectively, of the release location within 3 years. At the Humboldt site, D. carinulata reduced the canopy cover of trees adjacent to the release location by >90%. At a location 4 km away during the first year of defoliation, D. carinulata reduced peak (August) stem water use by 50-70% and stand transpiration (July to late September) by 75% (P = 0.052). There was, however, no reduction in stem water use and stand transpiration during the second year of defoliation due to reduced beetle abundances at that location. At the Walker site, we measured stand evapotranspiration (ET) in the center of a large saltcedar stand and found that ET was highest immediately prior to D. carinulata arrival, dropped dramatically with defoliation, and remained low through the subsequent 2 years of the study. In contrast, near the perimeter of the stand, D. carinulata did not reduce sap flow, partly because of low rates of defoliation but also because of increased water use per unit leaf area in response to defoliation. Taken together, our results provide evidence that in the early stages of population expansion D. carinulata can lead to substantial declines in saltcedar water use. The extent of these declines varies spatially and temporally and is dependent on saltcedar compensatory responses along with D

  11. Anthropogenic impacts on mercury concentrations and nitrogen and carbon isotope ratios in fish muscle tissue of the Truckee River watershed, Nevada, USA.

    PubMed

    Sexauer Gustin, Mae; Saito, Laurel; Peacock, Mary

    2005-07-15

    The lower Truckee River originates at Lake Tahoe, California/Nevada (NV), USA and ends in the terminal water body, Pyramid Lake, NV. The river has minimal anthropogenic inputs of contaminants until it encounters the cities of Reno and Sparks, NV, and receives inflows from Steamboat Creek (SBC). SBC originates at Washoe Lake, NV, where there were approximately six mills that used mercury for gold and silver amalgamation in the late 1800s. Since then, mercury has been distributed down the creek to the Truckee River. In addition, SBC receives agricultural and urban nonpoint source pollution, and treated effluent from the Reno-Sparks water reclamation facility. Fish muscle tissue was collected from different species in SBC and the Truckee River and analyzed for mercury and stable isotopes. Nitrogen (delta(15)N) and carbon (delta(13)C) isotopic values in these tissues provide insight as to fish food resources and help to explain their relative Hg concentrations. Mercury concentrations, and delta(15)N and delta(13)C values in fish muscle from the Truckee River, collected below the SBC confluence, were significantly different than that found in fish collected upstream. Mercury concentrations in fish tissue collected below the confluence for all but three fish sampled were significantly greater (0.1 to 0.65 microg/g wet wt.) than that measured in the tissue collected above the confluence (0.02 to 0.1 microg/g). Delta(15)N and delta(13)C isotopic values of fish muscle collected from the river below the confluence were higher and lower, respectively, than that measured in fish collected up river, most likely reflecting wastewater inputs. The impact of SBC inputs on muscle tissue isotope values declined down river whereas the impact due to Hg inputs showed the opposite trend.

  12. Simmonsite, Na2LiAlF6, a new mineral from the Zapot amazonite-topazzinnwaldite pegmatite, Hawthorne, Nevada, U.S.A

    USGS Publications Warehouse

    Foord, E.E.; O'Connor, J. T.; Hughes, J.M.; Sutley, S.J.; Falster, A.U.; Soregaroli, A.E.; Lichte, F.E.; Kile, D.E.

    1999-01-01

    Simmonsite, Na2LiAlF6, a new mineral of pegmatitic-hydrothermal origin, occurs in a late-stage breccia pipe structure that cuts the Zapot amazonite-topaz-zinnvvaldite pegmatite located in the Gillis Range, Mineral Co., Nevada, U.S.A. The mineral is intimately intergrown with cryolite, cryolithionite and trace elpasolite. A secondary assemblage of other alumino-fluoride minerals and a second generation of cryolithionite has formed from the primary assemblage. The mineral is monoclinic, P21 or P21/m, a = 7.5006(6) A??, b = 7.474(1) A??, c = 7.503(1) A??, ??= 90.847(9) ??, V=420.6(1) A??3, Z = 4. The four strongest diffraction maxima [d(A??), likl, I/I100] are (4.33, 111 and 111, 100); (1.877, 400 and 004, 90); (2.25, 13T, 113, 131 and 311, 70); and (2.65, 220, 202, 022, 60). Simmonsite is pale buff cream with white streak, somewhat greasy, translucent to transparent, Mohs hardness of 2.5-3, no distinct cleavage, subconchoidal fracture, no parting, not extremely brittle, Dm is 3.05(2) g/cm3, and Dc is 3.06(1) g/cm3. The mineral is biaxial, very nearly Isotropie, N is 1.359(1) for ?? = 589 nm, and birefringence is 0.0009. Electron microprobe analyses gave (wt%) Na = 23.4, Al = 13.9, F = 58.6, Li = 3.56 (calculated), with a total of 99.46. The empirical formula (based on 6 F atoms) is Na1.98Li1.00 ooAl|ooF6. The crystal structure was not solved, presumably because of unit-cell scale twinning, but similarities to the perovskite-type structure exist. The mineral is named for William B. Simmons, Professor of Mineralogy and Petrology, University of New Orleans, New Orleans.

  13. Cluster analyses of 20th century growth patterns in high elevation Great Basin bristlecone pine in the Snake Mountain Range, Nevada, USA

    NASA Astrophysics Data System (ADS)

    Tran, T. J.; Bruening, J. M.; Bunn, A. G.; Salzer, M. W.; Weiss, S. B.

    2015-12-01

    Great Basin bristlecone pine (Pinus longaeva) is a useful climate proxy because of the species' long lifespan (up to 5000 years) and the climatic sensitivity of its annually-resolved rings. Past studies have shown that growth of individual trees can be limited by temperature, soil moisture, or a combination of the two depending on biophysical setting at the scale of tens of meters. We extend recent research suggesting that trees vary in their growth response depending on their position on the landscape to analyze how growth patterns vary over time. We used hierarchical cluster analysis to examine the growth of 52 bristlecone pine trees near the treeline of Mount Washington, Nevada, USA. We classified growth of individual trees over the instrumental climate record into one of two possible scenarios: trees belonging to a temperature-sensitive cluster and trees belonging to a precipitation-sensitive cluster. The number of trees in the precipitation-sensitive cluster outnumbered the number of trees in the temperature-sensitive cluster, with trees in colder locations belonging to the temperature-sensitive cluster. When we separated the temporal range into two sections (1895-1949 and 1950-2002) spanning the length of the instrumental climate record, we found that most of the 52 trees remained loyal to their cluster membership (e.g., trees in the temperature-sensitive cluster in 1895-1949 were also in the temperature sensitive cluster in 1950-2002), though not without exception. Of those trees that do not remain consistent in cluster membership, the majority changed from temperature-sensitive to precipitation-sensitive as time progressed. This could signal a switch from temperature limitation to water limitation with warming climate. We speculate that topographic complexity in high mountain environments like Mount Washington might allow for climate refugia where growth response could remain constant over the Holocene.

  14. Assessing field-scale migration of mobile radionuclides at the Nevada Test Site

    SciTech Connect

    Hu, Q; Rose, T P; Smith, D K; Moran, J E; Zavarin, M

    2006-09-26

    Numerous long-lived radionuclides, including {sup 99}Tc (technetium) and {sup 129}I (iodine), are present in groundwater at the Nevada Test Site (NTS) as a result of 828 underground nuclear weapons tests conducted between 1951 and 1992. We synthesize a body of groundwater data collected on the distribution of a number of radionuclides ({sup 3}H, {sup 14}C, {sup 36}Cl, {sup 99}Tc and {sup 129}I), which are presumably mobile in the subsurface and potentially toxic to down-gradient receptors, to assess their migration at NTS, at field scales over distances of hundreds of meters and for durations of more than thirty years. Qualitative evaluation of field-scale migration of these radionuclides in the saturated zone provides an independent approach to validating their presumably conservative transport in the performance assessment of the proposed geological repository at Yucca Mountain, which is located on the western edge of NTS. The analyses show that the interaction of {sup 3}H with a solid surface via an isotopic exchange with clay lattice hydroxyls may cause a slight delay in the transport of {sup 3}H. The transport of {sup 14}C could be retarded by its isotopic exchange with carbonate minerals, and the exchange may be more pronounced in the alluvial aquifer. In particular, {sup 99}Tc may not necessarily exist as a mobile and conservative species {sup 99}TcO{sub 4}{sup -}, as commonly assumed for NTS groundwater. This is corroborated with recent in situ redox potential measurements, both across and near Yucca Mountain, showing that groundwater at multiple locations is not oxidizing. Speciation of iodine and its associated reactivity and mobility is also complex in the groundwater at the NTS and deserves further attention. The assumption of no retardation for the transport of {sup 99}Tc (especially) and {sup 129}I, used at the performance assessment of Yucca Mountain repository, is probably overly conservative and results in unrealistically high estimated doses for

  15. A review of aerial radiological surveys of Nevada Test Site fallout fields 1951 through 1970

    SciTech Connect

    1987-12-01

    Aerial surveys of offsite fallout radiation fields from the Nevada Test Site began in the early 1950s and continued throughout the above-ground testing period. The results of the aerial surveys were used to support ground data in determining the extent of the fallout patterns. For the series of tests conducted in 1953 and 1955, the primary uncertainty of the results was knowing the location of the aircraft. Navigation was made from aeronautical charts of a scale 1:1,000,000, and errors in location of several miles were experienced. Another problem was that exposure rate readings made in the aircraft of 1 milliroentgen per hour or lower were not reliable. Exposure rate measurements above 1 milliroentgen per hour were more accurate, however, and are considered reliable to within a factor of two or three in predicting 3-foot exposure rate levels. For the 1957 series, the aircraft position data were quite accurate. Ground-level exposure rates predicted from aerial data obtained by the United States Geological Survey aircraft for the five-detector array were considered reliable to within +-40% or better for most of the surveys. When the single detector was used, the accuracy decreased to about a factor of two. Relative count rates obtained by the aircraft operated by the Atomic Energy Commission, Raw Materials Division, are probably valid, but quantitative determination of 3-foot exposure rates are not. The Aerial Radiological Monitoring System performed all the aerial surveys in the 1960s. However, the air-to-ground conversion factors used were too low. Using a corrected conversion factor, the predicted 3-foot exposure rates should be valid to +-40% in most fallout fields if all other parameters are considered. 40 refs., 30 figs., 6 tabs.

  16. Hazards of Monogenetic Volcanic Fields in the USA

    NASA Astrophysics Data System (ADS)

    Amin, J.

    2012-12-01

    A map has been compiled of the monogenetic volcanic fields which have erupted within 100 ka in the conterminous United States. Many of these fields are currently not monitored despite the fact that twenty-two of them have had a Holocene eruption. The spectrum of processes that take place in monogenetic fields can pose a great and immediate danger to life within 5 km of an erupting vent. While there is a recognized nonhomogeneity in the spatial and temporal recurrence rate of eruptions within monogenetic fields, a reasonable first-order estimate of a hazard zone for a volcanic field is obtained by extending a 5 km buffer around the limits of the currently mapped volcanic products for a given field. Using Census 2010 "zip-code" level data and a 5 km buffer around the mapped volcanic fields, there are over 100,000 people living in these high-risk zones. Eruptions within monogenetic fields can also produce sustained plumes that pose an aviation threat. There are 16 regional airports and many regularly-traveled flight paths between international airports that fall within a 50 km buffer of the mapped volcanic fields.

  17. Differential tolerance of native and nonnative fish exposed to ultraviolet radiation and fluoranthene in Lake Tahoe (California/Nevada), USA.

    PubMed

    Gevertz, Amanda K; Tucker, Andrew J; Bowling, Anna M; Williamson, Craig E; Oris, James T

    2012-05-01

    Within Lake Tahoe (CA/NV), USA, multiple environmental stressors are present that can affect both native and nonnative fish species. Stressors include natural ultraviolet radiation (UVR) and polycyclic aromatic hydrocarbons (PAHs). Many PAHs, such as fluoranthene (FLU) are phototoxic to aquatic organisms in the presence of UVR. Decreasing levels of UVR due to eutrophication and increasing levels of PAHs due to recreational activities may combine to affect the relative ability of native versus nonnative fish species to survive in the lake. The objective of the present study was to examine the differential effects of exposure to different levels of UVR and phototoxic FLU in native and nonnative fish species. Responses to these changes in the native Lahontan redside minnow (Richardsonius egregius) and the nonnative warm-water bluegill sunfish (Lepomis macrochirus) were compared during toxicity tests, which were conducted in controlled outdoor exposures. Physiological defenses were also investigated in an attempt to elucidate ways each species may tolerate UVR and UVR + FLU exposures. It was determined that the native redside minnow is more tolerant to UVR and UVR + FLU exposure when compared to the nonnative bluegill. In addition, a natural UVR coping mechanism, increased pigmentation, is exhibited to a greater extent in the native redside. The present study will help determine the potential for a future successful invasion of the bluegill and similar species in Lake Tahoe and other oligotrophic, montane lakes that are susceptible to habitat alteration, nutrient inputs, and recreational activity.

  18. Modeling spatial and temporal variations in temperature and salinity during stratification and overturn in Dexter Pit Lake, Tuscarora, Nevada, USA

    USGS Publications Warehouse

    Balistrieri, L.S.; Tempel, R.N.; Stillings, L.L.; Shevenell, L.A.

    2006-01-01

    This paper examines the seasonal cycling of temperature and salinity in Dexter pit lake in arid northern Nevada, and describes an approach for modeling the physical processes that operate in such systems. The pit lake contains about 596,200 m3 of dilute, near neutral (pHs 6.7-9) water. Profiles of temperature, conductivity, and selected element concentrations were measured almost monthly during 1999 and 2000. In winter (January-March), the pit lake was covered with ice and bottom water was warmer (5.3 ??C) with higher total dissolved solids (0.298 g/L) than overlying water (3.96 ??C and 0.241 g/L), suggesting inflow of warm (11.7 ??C) groundwater with a higher conductivity than the lake (657 versus 126-383 ??S/cm). Seasonal surface inflow due to spring snowmelt resulted in lower conductivity in the surface water (232-247 ??S/cm) relative to deeper water (315-318 ??S/cm). The pit lake was thermally stratified from late spring through early fall, and the water column turned over in late November (2000) or early December (1999). The pit lake is a mixture of inflowing surface water and groundwater that has subsequently been evapoconcentrated in the arid environment. Linear relationships between conductivity and major and some minor (B, Li, Sr, and U) ions indicate conservative mixing for these elements. Similar changes in the elevations of the pit lake surface and nearby groundwater wells during the year suggest that the pit lake is a flow-through system. This observation and geochemical information were used to configure an one-dimensional hydrodynamics model (Dynamic Reservoir Simulation Model or DYRESM) that predicts seasonal changes in temperature and salinity based on the interplay of physical processes, including heating and cooling (solar insolation, long and short wave radiation, latent, and sensible heat), hydrologic flow (inflow and outflow by surface and ground water, pumping, evaporation, and precipitation), and transfers of momentum (wind stirring

  19. A 2 Million Year History of Plutonism and Volcanism in the Searchlight Magma System, Eldorado Mountains, Nevada (USA)

    NASA Astrophysics Data System (ADS)

    Miller, J.; Miller, C.; Wooden, J.; Perrault, D.; Hodge, K.; Faulds, J.; Cates, N.; Means, M.

    2006-12-01

    Subvolcanic plutons provide an important record of magma processing and solidification of upper crustal magma bodies but rarely can they be compared with volcanic output from the same magma system. In the Colorado River extensional corridor of southern Nevada, steep tilting caused by crustal extension has exposed outstanding examples of large intrusions that have complementary volcanic output. One of the best examples is the 12 km thick Searchlight pluton and its overlying volcanic cover. Earlier work in the pluton documented vertical growth, wherein crystal accumulation (mafic quartz monzonite cumulate) and roof-down solidification (upper quartz monzonite) resulted in segregation of evolved felsic melt in the chamber interior (middle granite). This general evolutionary sequence is mirrored by lava flow stratigraphy in steeply tilted volcanic sections that are structurally above the roof of Searchlight pluton. We have obtained more than 400 ion microprobe U/Pb zircon ages (Stanford/USGS SHRIMP-RG) on more than 20 samples for the pluton and overlying volcanic rocks in order to temporally link the volcanic rocks with the intrusive rocks. The oldest unit from Searchlight pluton is a gabbro pod near the northern margin of the lower Searchlight quartz monzonite that yielded a 206Pb/238U age of 17.7±0.3 Ma (all age errors reported are 1σ; MSWD ~1 or lower except where noted) but the main lower quartz monzonite from structurally deep has a 206Pb/238U age of 16.9±0.2 Ma. This age is the same age as trachydacite porphyry dikes and pods (16.6±0.3 Ma) that intrude upper Searchlight (but not lower Searchlight) and an identical trachydacite lava flow from near the base of a sequence of trachydacite flows above the pluton (16.9±0.4 Ma; MSWD 1.9). Samples of the middle granite and a gabbro that interacts with the granite are interpreted to be the last materials to solidify in the pluton and have 206Pb/238U ages ranging from 15.9-16.2 Ma but with MSWD's >3. Distinct age peaks

  20. Eruption of Deep Mushy Magma from the Searchlight Magma System, Southern Nevada (USA): a Crystal Size Distribution and Geochemical Analysis

    NASA Astrophysics Data System (ADS)

    Bazar, D.; Miller, J.; Miller, C.; Dodge, M.; Hodge, K.; Faulds, J.

    2006-12-01

    The Miocene Searchlight pluton and overlying volcanic rocks are exposed in the Eldorado Mountains of southern Nevada within the Colorado River Extensional Corridor. Steep tilting of the pluton and its cover provides an exceptional opportunity to study the magmatic plumbing system from bottom to top, including possible eruptions of magma from the Searchlight magma system. The pluton is approximately 10 km thick and divided into three compositionally distinct units that solidified in monotonic fashion: a 2 km thick upper fine-grained quartz monzonite (solidification front), a 6 km thick lower, more mafic quartz monzonite (cumulate), and a 2 km thick middle granite (extracted melt) [ref]. In addition, near E-W-striking rhyolite and trachydacite porphyry dikes intrude the upper quartz monzonite unit (but not the lower or middle units), and identical trachydacite porphyries (locally > 45 vol. % crystals) occur as irregular pods and masses in the roof area. The trachydacite porphyries superficially resemble trachydacite lavas in part of the overlying volcanic section. Ion probe zircon ages are identical within error for the upper unit, the lower unit, and the trachydacite dikes and pods (206Pb/238U age for samples of each ranging from 16.6±0.3 Ma to 16.9±0.2 Ma 2σ). Ages for the middle granite unit and rhyolite dikes are consistently younger (15.8-16.0 Ma). Crystal size distribution (CSD) analysis on plagioclase has been undertaken on samples from the upper Searchlight and overlying volcanic rocks in order to establish and corroborate linkages between the volcanic and intrusive units and to better understand the growth and solidification history of the Searchlight magma system. The CSD's for the intermediate porphyry dikes and pods that intrude upper Searchlight pluton are identical to trachydacite lava flows and domes erupted onto Proterozoic gneiss and earlier lava flows that comprise the roof of the pluton. The CSD's for these rocks are distinctly concave up and

  1. Electric and Magnetic Fields | RadTown USA | US EPA

    EPA Pesticide Factsheets

    2016-05-31

    Electromagnetic fields (EMF) are a combination of electric and magnetic fields of energy that surround any electrical device when it is plugged in and turned on. Scientific experiments have not clearly shown whether or not exposure to EMF increases cancer risk. Scientists continue to study the issue.

  2. Development of a mercury speciation, fate, and biotic uptake (BIOTRANSPEC) model: Application to Lahontan Reservoir (Nevada, USA)

    USGS Publications Warehouse

    Gandhi, N.; Bhavsar, S.P.; Diamond, M.L.; Kuwabara, J.S.; Marvin-DiPasquale, M.; Krabbenhoft, D.P.

    2007-01-01

    A mathematically linked mercury transport, speciation, kinetic, and simple biotic uptake (BIOTRANSPEC) model has been developed. An extension of the metal transport and speciation (TRANSPEC) model, BIOTRANSPEC estimates the fate and biotic uptake of inorganic (Hg(II)), elemental (Hg(0)) and organic (MeHg) forms of mercury and their species in the dissolved, colloidal (e.g., dissolved organic matter [DOM]), and particulate phases of surface aquatic systems. A pseudo-steady state version of the model was used to describe mercury dynamics in Lahontan Reservoir (near Carson City, NV, USA), where internal loading of the historically deposited mercury is remobilized, thereby maintaining elevated water concentrations. The Carson River is the main source of total mercury (THg), of which more than 90% is tightly bound in a gold-silver-mercury amalgam, to the system through loadings in the spring, with negligible input from the atmospheric deposition. The speciation results suggest that aqueous species are dominated by Hg-DOM, Hg(OH)2, and HgClOH. Sediment-to-water diffusion of MeHg and Hg-DOM accounts for approximately 10% of total loadings to the water column. The water column acts as a net sink for MeHg by reducing its levels through two competitive processes: Uptake by fish, and net MeHg demethylation. Although reservoir sediments produce significant amounts of MeHg (4 g/d), its transport from sediment to water is limited (1.6 g/d), possibly because of its adsorption on metal oxides of iron and manganese at the sediment-water interface. Fish accumulate approximately 45% of the total MeHg mass in the water column, and 9% of total MeHg uptake by fish leaves the system because of fishing. Results from this new model reiterate the previous conclusion that more than 90% of THg input is retained in sediment, which perpetuates elevated water concentrations. ?? 2007 SETAC.

  3. Field trips in the southern Rocky Mountains, USA

    SciTech Connect

    Nelson, E.P.; Erslev, E.A.

    2004-07-01

    The theme of the 2004 GSA Annual Meeting and Exposition, 'Geoscience in a Changing World' covers both new and traditional areas of the earth sciences. The Front Range of the Rocky Mountains and the High Plains preserve an outstanding record of geological processes from Precambrian through Quaternary times, and thus served as excellent educational exhibits for the meeting. The chapters in this field guide all contain technical content as well as a field trip log describing field trip routes and stops. Of the 25 field trips offered at the Meeting. 14 are described in the guidebook, covering a wide variety of geoscience disciplines, with chapters on tectonics (Precambrian and Laramide), stratigraphy and paleoenvironments (e.g., early Paleozoic environments, Jurassic eolian environments, the K-T boundary, the famous Oligocene Florissant fossil beds), economic deposits (coal and molybdenum), geological hazards, and geoarchaeology. Two papers have been abstracted separately for the Coal Abstracts database.

  4. Caldanaerovirga acetigignens gen. nov., sp. nov., an anaerobic xylanolytic, alkalithermophilic bacterium isolated from Trego Hot Spring, Nevada, USA.

    PubMed

    Wagner, Isaac D; Ahmed, Sibtain; Zhao, Weidong; Zhang, Chuanlun L; Romanek, Christopher S; Rohde, Manfred; Wiegel, Juergen

    2009-11-01

    An anaerobic thermophilic bacterium, designated strain JW/SA-NV4(T), was isolated from a xylan-supplemented enrichment culture from Trego hot spring located within the Black Rock Desert (NV, USA). Cells were generally straight or slightly bent rod-shaped, 0.4-0.8 microm in width and 3-6 microm in length during exponential growth. Cells from stationary phase were variable in size and shape, showing curved or bent morphology. Motility was not seen and flagella were not observed in electron micrographs. Sporulation was not observed. Strain JW/SA-NV4(T) stained Gram-negative but is phylogenetically Gram-type positive. Growth occurred at pH(25 degrees C) 6.8-8.8, with optimum growth at pH 8.4; no growth occurred at pH 9.0 or above or at 6.5 or below. With glucose or xylose as the carbon source, strain JW/SA-NV4(T) grew at 44-74 degrees C; no growth occurred at 76 degrees C or above or at 42 degrees C or below. However, the optimum temperature was 62 and 66 degrees C when grown on glucose and xylose, respectively. The shortest doubling time observed with glucose was approximately 4 h, and with xylose approximately 3.4 h. Strain JW/SA-NV4(T) tolerated an atmosphere containing up to 0.1 % O(2); no growth occurred at a gas atmosphere of 0.2 % O(2). Chemo-organotrophic growth occurred with xylose, glucose, mannose, xylan, pyruvate, fructose, ribose, Casamino acids, mannitol, tryptone, peptone, cellobiose and yeast extract. When grown in mineral media containing 1 g yeast extract l(-1) as an electron donor, thiosulfate and sulfur were reduced to sulfide. The G+C content of the DNA was 38.6 mol% (HPLC). 16S rRNA gene sequence analysis placed strain JW/SA-NV4(T) within the order Thermoanaerobacterales and within the Thermoanaerobacterales Incertae Sedis Family III, specifically between taxa classified within the genera Thermosediminibacter and Thermovenabulum. The closest phylogenetic neighbours were Thermosediminibacter oceani JW/IW-1228P(T) (94.2 % 16S rRNA gene sequence

  5. The total column of CO2 and CH4 measured with a compact Fourier transform spectrometer at NASA Armstrong Flight Research Center and Railroad Valley, Nevada, USA

    NASA Astrophysics Data System (ADS)

    Kawakami, S.; Shiomi, K.; Suto, H.; Kuze, A.; Hillyard, P. W.; Tanaka, T.; Podolske, J. R.; Iraci, L. T.; Albertson, R. T.

    2014-12-01

    The total columns of carbon dioxide (XCO2) and methane (XCH4) were measured with a compact Fourier transform spectrometer (FTS) at NASA Armstrong Flight Research Center (AFRC) and Railroad Valley, Nevada, USA (RRV) during a vicarious calibration campaign in June 2014. The campaign was performed to estimate changes in the radiometric response of the Thermal and Near Infrared Sensor for carbon Observations Fourier Transform Spectrometer (TANSO-FTS) and the Cloud and Aerosol Imager (TANSO-CAI) aboard Greenhouse gases Observing SATellite (GOSAT). TANSO-FTS measures spectra of radiance scattered by the Earth surface with high- and medium-gain depending on the surface reflectance. At high reflectance areas, such as deserts over north Africa and Australia, TANSO-FTS collects spectra with medium-gain. There was differences on atmospheric pressure and XCO2 retrieved from spectra obtained between high-gain and medium-gain. Because the retrieved products are useful for evaluating the difference of spectral qualities between high- and medium-gain, this work is an attempt to collect validation data for spectra with medium-gain of TANSO-FTS at remote and desert area with a compact and medium-spectral resolution instrument. As a compact FTS, EM27/SUN was used. It was manufactured and newly released on April 1, 2014 by Bruker. It is robust and operable in a high temperature environment. It was housed in a steel box to protect from dust and rain and powered by Solar panels. It can be operated by such a remote and desert area, like a RRV. Over AFRC and RRV, vertical profiles of CO2 and CH4 were measured using the Alpha Jet research aircraft as part of the Alpha Jet Atmospheric eXperiment (AJAX) of ARC, NASA. The values were calibrated to standard gases. To make the results comparable to WMO (World Meteorological Organization) standards, the retrieved XCO2 and XCH4 values are divided by a calibration factor. This values were determined by comparisons with in situ profiles measured by

  6. Use of Weighted Regressions on Time, Discharge, and Season to Assess Effectiveness of Agricultural and Environmental Best Management Practices in California and Nevada, USA

    NASA Astrophysics Data System (ADS)

    Domagalski, J. L.; Schlegel, B.; Hutchins, J.

    2014-12-01

    Long-term data sets on stream-water quality and discharge can be used to assess whether best management practices (BMPs) are restoring beneficial uses of impaired water as required under the Clean Water Act. In this study, we evaluated a greater than 20-year record of water quality from selected streams in the Central Valley (CV) of California and Lake Tahoe (California and Nevada, USA). The CV contains a mix of agricultural and urbanized land, while the Lake Tahoe area is mostly forested, with seasonal residents and tourism. Because nutrients and fine sediments cause a reduction in water clarity that impair Lake Tahoe, BMPs were implemented in the early 1990's, to reduce nitrogen and phosphorus loads. The CV does not have a current nutrient management plan, but numerous BMPs exist to reduce pesticide loads, and it was hypothesized that these programs could also reduce nutrient levels. In the CV and Lake Tahoe areas, nutrient concentrations, loads, and trends were estimated by using the recently developed Weighted Regressions on Time, Discharge, and Season (WRTDS) model. Sufficient data were available to compare trends during a voluntary and enforcement period for seven CV sites within the lower Sacramento and San Joaquin Basins. For six of the seven sites, flow-normalized mean annual concentrations of total phosphorus and nitrate decreased at a faster rate during the enforcement period than during the earlier voluntary period. Concentration changes during similar years and ranges of flow conditions suggest that BMPs designed for pesticides also reduced nutrient loads in the CV. A trend analysis using WRTDS was completed for six streams that enter Lake Tahoe during the late 1980's through 2008. The results of the model confirm that nutrient loading is influenced strongly by season, such as by spring runoff from snowmelt. The highest nutrient concentrations in the late 1980's and early 1990's correlate with high flows, followed by statistically significant decreases

  7. Phase-equilibrium geobarometers for silicic rocks based on rhyolite-MELTS—Part 3: Application to the Peach Spring Tuff (Arizona-California-Nevada, USA)

    NASA Astrophysics Data System (ADS)

    Pamukcu, Ayla S.; Gualda, Guilherme A. R.; Ghiorso, Mark S.; Miller, Calvin F.; McCracken, Reba G.

    2015-03-01

    Establishing the depths of magma accumulation is critical to understanding how magmas evolve and erupt, but developing methods to constrain these pressures is challenging. We apply the new rhyolite-MELTS phase-equilibria geobarometer—based on the equilibrium between melt, quartz, and two feldspars—to matrix glass compositions from Peach Spring Tuff (Arizona-California-Nevada, USA) high-silica rhyolite. We compare the results to those from amphibole geothermobarometry, projection of glass compositions onto the haplogranitic ternary, and glass SiO2 geobarometry. Quartz + 2 feldspar rhyolite-MELTS pressures span a relatively small range (185-230 MPa), consistent with nearly homogeneous crystal compositions, and are similar to estimates based on projection onto the haplogranitic ternary (250 ± 50 MPa) and on glass SiO2 (255-275 MPa). Amphibole geothermobarometry gives much wider pressure ranges (temperature-independent: ~65-300 MPa; temperature-dependent: ~75-295 MPa; amphibole-only: ~80-950 MPa); average Anderson and Smith (Am Mineral 80:549-559, 1995) + Blundy and Holland (Contrib Miner Petrol 104:208-224, 1990) or Holland and Blundy (Contrib Miner Petrol 116:433-447, 1994—Thermometer A, B) pressures are most similar to phase-equilibria results (~220, 210, 190 MPa, respectively). Crystallization temperatures determined previously with rhyolite-MELTS (742 °C), Zr-in-sphene (769 ± 20 °C), and zircon saturation (770-780 °C) geothermometry are similar, but temperatures from amphibole geothermometry (~450-955 °C) are notably different; the average Anderson and Smith + Holland and Blundy (1994—Thermometer B; ~710 °C) temperature is most consistent with previous estimates. The rhyolite-MELTS geobarometer effectively culls glass compositions affected by alteration or analytical issues; Peach Spring glass compositions that yield pressure estimates reveal a tight range of plausible Na2O and K2O contents, suggesting that low Na2O and high K2O contents of many

  8. Uranium in Holocene valley-fill sediments, and uranium, radon, and helium in waters, Lake Tahoe-Carson Range area, Nevada and California, U.S.A.

    USGS Publications Warehouse

    Otton, J.K.; Zielinski, R.A.; Been, J.M.

    1989-01-01

    Uraniferous Holocene sediments occur in the Carson Range of Nevada and California, U.S.A., between Lake Tahoe and Carson Valley. The hosts for the uranium include peat and interbedded organic-rich sand, silt, and mud that underly valley floors, fens, and marshes along stream valleys between the crest of the range and the edge of Lake Tahoe. The known uranium accumulations extend along the Carson Range from the area just southeast of South Lake Tahoe northward to the area just east of Carson City; however, they almost certainly continue beyond the study area to the north, west, and south. Due to the young age of the accumulations, uranium in them is in gross disequilibrium with its highly radioactive daughter products. These accumulations have thus escaped discovery with radiation detection equipment in the past. The uranium content of these sediments approaches 0.6 percent; however, the average is in the range of 300-500 ppm. Waters associated with these sediments locally contain as much as 177 ppb uranium. Modest levels of helium and radon also occur in these waters. Uraniferous waters are clearly entering the private and public water supply systems in some parts of the study area; however, it is not known how much uranium is reaching users of these water supplies. Many of the waters sampled in the study area exceed the published health effects guidance level of the Environmental Protection Agency. Regulatory standards for uranium in waters have not been published, however. Much uranium is stored in the sediments along these stream valleys. Estimates for a marsh and a fen along one drainage are 24,000 and 15,000 kg, respectively. The potential effects of man-induced environmental changes on the uranium are uncertain. Laboratory studies of uraniferous sediment rich in organic matter may allow us to evaluate the potential of liberating uranium from such sediments and creating transient increases in the level of uranium moving in water in the natural environment

  9. High Field Magnet R&D in the USA

    SciTech Connect

    Gourlay, Stephen A.

    2003-06-24

    Accelerator magnet technology is currently dominated by the use of NbTi superconductor. New and more demanding applications for superconducting accelerator magnets require the use of alternative materials. Several programs in the US are taking advantage of recent improvements in Nb{sub 3}Sn to develop high field magnets for new applications. Highlights and challenges of the US R&D program are presented along with the status of conductor development. In addition, a new R&D focus, the US LHC Accelerator Research Program, will be discussed.

  10. High Field Magnet R&D in the USA

    SciTech Connect

    Gourlay, S.A.

    2003-10-01

    Accelerator magnet technology is currently dominated by the use of NbTi superconductor. New and more demanding applications for superconducting accelerator magnets require the use of alternative materials. Several programs in the US are taking advantage of recent improvements in Nb{sub 3}Sn to develop high field magnets for new applications. Highlights and challenges of the US R and D program are presented along with the status of conductor development. In addition, a new R and D focus, the US LHC Accelerator Research Program, will be discussed.

  11. Field-based description of rhyolite lava flows of the Calico Hills Formation, Nevada National Security Site, Nevada

    USGS Publications Warehouse

    Sweetkind, Donald S.; Bova, Shiera C.

    2015-01-01

    In the area south of the Rainier Mesa caldera, surface and subsurface geologic data are combined to interpret the overall thickness of the Calico Hills Formation and the proportion of lava flow lithology across the study area. The formation is at least 500 meters (m) thick and contains the greatest proportion of rhyolite lava flow to the northeast of Yucca Mountain in the lower part of Fortymile Canyon. The formation thins to the south and southwest where it is between 50 and 200 m thick beneath Yucca Mountain and contains no rhyolite lavas. Geologic mapping and field-based correlation of individual lava flows allow for the interpretation of the thickness and extent of specific flows and the location of their source areas. The most extensive flows have widths from 2 to 3 kilometers (km) and lengths of at least 5–6 km. Lava flow thickness varies from 150 to 250 m above interpreted source vents to between 30 and 80 m in more distal locations. Rhyolite lavas have length-to-height ratios of 10:1 or greater and, in one instance, a length-to-width ratio of 2:1 or greater, implying a tongue-shaped geometry instead of circular domes or tabular bodies. Although geologic mapping did not identify any physical feature that could be positively identified as a vent, lava flow thickness and the size of clasts in subjacent pyroclastic deposits suggest that primary vent areas for at least some of the flows in the study area are on the east side of Fortymile Canyon, to the northeast of Yucca Mountain.

  12. Molecular identification and pathogenic behavior of Albugo sp., a potential bioherbicide of perennial pepperweed in northern Nevada

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Perennial pepperweed (PPW, Lepidium latifolium) is a cruciferous plant native to Eurasia that is a noxious weed in the western USA. In northern Nevada, PPW plants in the field are commonly infected with white rust fungus (Albugo sp.), exhibiting white pustules on the leaves and stems of mature plan...

  13. An Irregularly Shaped Maar in the Lunar Crater Volcanic Field, Nevada

    NASA Astrophysics Data System (ADS)

    Amin, J.; Valentine, G. A.

    2011-12-01

    A maar is a volcanic feature that is characterized by a central crater cut into the pre-eruptive ground and that is surrounded by an ejecta ring, and underlain by a diatreme [White and Ross, 2011]. Craters are typically bowl-shaped, and the intersection of the crater and the pre-eruptive ground typically are circular to elliptical. Some maars have more complex shapes; here we describe a maar informally named Bea's Crater, in the Lunar Crater Volcanic Field, Nevada. This maar has an irregular shape. Our study seeks to address whether this shape records a complex collapse history, coalescence of multiple eruptive vents, or other processes such as post-eruptive faulting. The largest dimension of the maar in plan view is 1.2 km. The crater depth (measured from the lowest point in the crater to the highest part of its rim) is 147 m, and the crater floor is 40 m below the surrounding terrain. The crater is surrounded by scoria cones or remnants of scoria cones. A tuff breccia distributed around the crater rim provides evidence for explosive magma-water interaction. This, and the lack of clear post-volcanic faults in the vicinity of the crater, indicates that eruptive processes rather than faulting created the crater. Detailed field mapping has revealed a complete eruptive sequence. The tuff breccia overlies, and is overlain by, magmatic products. This could be related to variations in the magma-water ratio throughout the eruption, with explosive magma-water interaction only occurring when the ratio is within a certain range. Furthermore, there are many large juvenile bombs within parts of the tuff breccia sequence. The juveniles may represent switching between phreatomagmatic and magmatic activity, or they could be the result of coeval magmatic activity from a separate vent. The scoria cone on the north east flank of the crater is the likely source of any coeval activity. It is impinging upon the crater floor, with the elevation of the impinging section much lower than

  14. Composition of modern sand and Cretaceous sandstone derived from the Sierra Nevada, California, USA, with implications for Cenozoic and Mesozoic uplift and dissection

    NASA Astrophysics Data System (ADS)

    Ingersoll, Raymond V.

    2012-12-01

    The California Sierra Nevada represents the roots of a primarily Cretaceous magmatic arc that is presently being dissected extensively in the south and to a lesser degree in the north, where it is covered by Cenozoic volcanic rocks. The Cenozoic magmatic arc built on top of the Cretaceous arc has been dissected concurrently with northward migration of the Mendocino triple junction, south of which the magmatic arc is inactive. A north-to-south transect from the modern Cascade arc along the Sierra Nevada, therefore, acts as a proxy for evolution from an active undissected magmatic arc to a transitional arc to a dissected arc to intensely uplifted basement. Discriminant analysis of Cascade and Sierra Nevada modern alluvial sand defines four compositional groups and clearly distinguishes volcaniclastic undissected-arc and plutoniclastic uplifted-basement end members. Two intermediate compositional groups are primarily volcaniplutoniclastic and metamorphiplutoniclastic. The former group represents Dickinson's (1985) "transitional arc;" the latter represents "dissected arc." Sand composition in the southern Sierra Nevada reflects significant uplift, resulting from a combination of latest Cretaceous-Paleogene uplift and late Cenozoic Basin and Range extension (footwall uplift of the western rift shoulder), possibly enhanced by mantle-lithosphere delamination. High concentrations of quartz and feldspar, and near absence of aphanitic lithic fragments are typical of the southern Sierra Nevada and are characteristic of Dickinson's "basement uplift." Cretaceous sandstone petrofacies of the Great Valley Group (GVG) of western California document dissection of the Cretaceous magmatic arc, as well as erosion of residual orogenic highlands (analogous to modern Taiwan) formed during latest Jurassic arc-continent collision (Nevadan orogeny). When Cretaceous petrofacies data are entered into the modern-sand discriminant analysis as unknowns, they are classified into the modern

  15. Geochemistry of Natural Components in the Near-Field Environment, Yucca Mountain, Nevada

    SciTech Connect

    Z.E. Peterman; T.A. Oliver

    2006-06-19

    The natural near-field environment in and around the emplacement drifts of the proposed nuclear waste repository at Yucca Mountain, Nevada, includes the host rock, dust, seepage water, and pore water. The chemical compositions of these components have been analyzed to provide a basis for assessing possible chemical and mineralogical reactions that may occur in and around the emplacement drifts during the heating and cooling cycle. The crystal-poor rhyolite of the Topopah Spring Tuff of Miocene age with an average silica (SiO{sub 2}) content of 76 percent will host the proposed repository. Samples of the rhyolite are relatively uniform in chemical composition as shown by an average coefficient of variation (CV) of 8.6 percent for major elements. The major component of underground dust is comminuted tuff generated during construction of the tunnel. Average CVs for major elements of dust samples collected from the main tunnel (Exploratory Studies Facility, ESF) and a cross drift (Enhanced Characterization of the Repository Block, ECRB) are 25 and 28 percent, respectively. This increased variability is due to a variable amount of dust derived from trachyte with SiO{sub 2} contents as low as 66 percent (from overlying crystal-rich members) and from surface dust with an even lower average SiO{sub 2} content of 60 percent (from the abundance of trachyte in outcrop and carbonate dust derived from nearby ranges). The composition of the water-soluble fraction of dust is of interest with regard to possible salt deliquescence on waste canisters. The nitrate-to-chloride (NO{sub 3}{sup -}/Cl{sup -}) ratio (weight) is used to assess the potential corrosive nature of the salts because an excess of NO{sub 3}{sup -} over Cl{sup -} may inhibit the formation of the more corrosive calcium chloride brines in deliquescing salts. The soluble fractions of dust samples typically have NO{sub 3}{sup -}/Cl{sup -} ratios between 1 and 10. About 30 samples of seepage into the south ramp of the

  16. Some New Constraints On The Stratigraphic And Structural Setting Of The Soda Lake Geothermal Field, Churchill County, Nevada - McLACHLAN, Holly S. and FAULDS, James E., Nevada Bureau of Mines and Geology, University of Nevada, Reno, NV 89557

    NASA Astrophysics Data System (ADS)

    McLachlan, H. S.

    2012-12-01

    Our research group is currently conducting a regional survey to identify favorable structural settings of producing and prospective geothermal fields in the Great Basin. The Soda Lake geothermal field - one of the oldest consistently producing fields in this study region - is located in west-central Nevada near the heart of the Carson Sink. Producing and prospective geothermal fields in the surrounding highlands are hosted in 1) fault termination zones (Desert Queen), 2) accommodation zones (Brady's Hot Springs) and 3) fault step-overs (Desert Peak). However, the structural setting is challenging to identify at the Soda Lake field, because it lies in the central part of a large basin with no nearby bedrock exposures. The well field at Soda Lake is centered ~3.5 km NNE of the Holocene Soda Lake maar, from which it takes its name. The geothermal field was identified serendipitously during the drilling of an irrigation survey well in the early 20th century. Modern exploratory drilling at the field began in the mid-1970s and has continued sporadically to the present. There are currently more than 28 500+ m wells at and near the production site. The exceptional drilling density at Soda Lake allows for comparatively reliable correlation of stratigraphy in the subsurface below the feature-poor Carson Sink. Stratigraphy in the Soda Lake geothermal area is relatively "layer cake" at the scale of the well field. Unconsolidated sediments extend more than 1000 m below surface. The upper few hundred meters are composed of fluvial and lacustrine sediments derived from Sierran batholith source rocks. The deeper basin fill derives from more proximal mafic to felsic Miocene volcanic rocks along the basin margins. At ~450-650 m depth, basin sediments are interrupted by a 5.11 Ma trachytic basalt of restricted lateral extent and variable thickness. Most wells intercept ~50-250 m of fine lacustrine sediments below this basalt body before intercepting the basin floor. Basin floor rocks

  17. Potential for bias in using hybrids between common carp (Cyprinus carpio) and goldfish (Carassius auratus) in endocrine studies: a first report of hybrids in Lake Mead, Nevada, U.S.A

    USGS Publications Warehouse

    Goodbred, Steven L.; Patino, Reynaldo; Orsak, Erik; Sharma, Prakash; Ruessler, Shane

    2013-01-01

    During a 2008 study to assess endocrine and reproductive health of common carp (Cyprinus carpio) in Lake Mead, Nevada (U.S.A.) we identified two fish, one male and one female, as hybrids with goldfish (Carassius auratus) based on morphology, lateral line scale count, and lack of anterior barbels. Gross examination of the female hybrid ovaries indicated presence of vitellogenic ovarian follicles; whereas histological evaluation of the male hybrid testes showed lobule-like structures with open lumens but without germ cells, suggesting it was sterile. Because common carp/goldfish hybrids are more susceptible to gonadal tumors and may have different endocrine profiles than common carp, researchers using common carp as a model for endocrine/reproductive studies should be aware of the possible presence of hybrids.

  18. Testing the 14C ages and conservative behavior of dissolved 14C in a carbonate aquifer in Yucca Flat, Nevada (USA), using 36Cl from groundwater and packrat middens

    NASA Astrophysics Data System (ADS)

    Kwicklis, Edward; Farnham, Irene

    2014-09-01

    Corrected groundwater 14C ages from the carbonate aquifer in Yucca Flat at the former Nevada Test Site (now the Nevada National Security Site), USA, were evaluated by comparing temporal variations of groundwater 36Cl/Cl estimated with these 14C ages with published records of meteoric 36Cl/Cl variations preserved in packrat middens (piles of plant fragments, fecal matter and urine). Good agreement between these records indicates that the groundwater 14C ages are reasonable and that 14C is moving with chloride without sorbing to the carbonate rock matrix or fracture coatings, despite opposing evidence from laboratory experiments. The groundwater 14C ages are consistent with other hydrologic evidence that indicates significant basin infiltration ceased 8,000 to 10,000 years ago, and that recharge to the carbonate aquifer is from paleowater draining through overlying tuff confining units along major faults. This interpretation is supported by the relative age differences as well as hydraulic head differences between the alluvial and volcanic aquifers and the carbonate aquifer. The carbonate aquifer 14C ages suggest that groundwater velocities throughout much of Yucca Flat are about 2 m/yr, consistent with the long-held conceptual model that blocking ridges of low-permeability rock hydrologically isolate the carbonate aquifer in Yucca Flat from the outlying regional carbonate flow system.

  19. Investigating the influence of long-range transport on surface O3 in Nevada, USA, using observations from multiple measurement platforms.

    PubMed

    Fine, Rebekka; Miller, Matthieu B; Yates, Emma L; Iraci, Laura T; Gustin, Mae Sexauer

    2015-10-15

    The current United States (US) National Ambient Air Quality Standard (NAAQS) for O3 (75 ppb) is expected to be revised to between 60 and 70 ppb. As the NAAQS becomes more stringent, characterizing the extent of O3 and precursors transported into the US is increasingly important. Given the high elevation, complex terrain, and location in the Intermountain West, the State of Nevada is ideally situated to intercept air transported into the US. Until recently, measurements of O3 and associated pollutants were limited to areas in and around the cities of Las Vegas and Reno. In 2011, the Nevada Rural Ozone Initiative began and through this project 13 surface monitoring sites were established. Also in 2011, the NASA Ames Alpha Jet Atmospheric eXperiment (AJAX) began making routine aircraft measurements of O3 and other greenhouse gases in Nevada. The availability of aircraft and surface measurements in a relatively rural, remote setting in the Intermountain West presented a unique opportunity to investigate sources contributing to the O3 observed in Nevada. Our analyses indicate that stratosphere to troposphere transport, long-range transport of Asian pollution, and regional emissions from urban areas and wildfires influence surface observations. The complexity of sources identified here along with the fact that O3 frequently approaches the threshold being considered for a revised NAAQS indicate that interstate and international cooperation will be necessary to achieve compliance with a more stringent regulatory standard. Further, on a seasonal basis we found no significant difference between daily 1-h maximum O3 at surface sites, which ranged in elevation from 888 to 2307 m, and aircraft measurements of O3 <2500 m which suggests that similar processes influence daytime O3 across rural Nevada and indicates that column measurements from Railroad Valley, NV are useful in understanding these processes.

  20. Comparative geology and geochemistry of sedimentary-rock-hosted (Carlin Type) gold deposits in the People's Republic of China and in Nevada, USA

    USGS Publications Warehouse

    Li, Zhiping; Peters, Stephen G.

    1998-01-01

    Sedimentary-rock-hosted (Carlin-type) gold deposits have been considered economically significant and geologically distinct since the early 1960's. This report consists of a nine-part text and an interactive database. This small database is to help Western companies get more information about these gold deposits in China, and to help geologists who are interested in world Carlin-type deposits conduct research on them. Because of their economic significance and geological distinctiveness, these deposits have caught the interest of economic geologists all over the world since the early 1960's. Similar deposits have been discovered in China, Australia, Dominican Republic, Spain, and Russia besides Nevada. Perhaps most significant are the 165 Carlin-type gold deposits that were found in southwest China during the past 15 years. Of these, at least 19 deposits have proven to be of substantial tonnage, making China the second leading country to exploit such deposits. With the increasing interest in Chinese Carlin-type gold deposits, some western companies and geologists desire to get more information about these Chinese deposits. This seems to have been very difficult because the literature was in Chinese. It is estimated that several hundred scientific publications (including papers, books, and technical reports) have been published. This database of Chinese Carlin-type Gold deposits is built on the documentation published during the most recent 10 years and includes six subjects, which consist of 165 records and 30 fields. A new Proterozoic-age sedimentary-rock-hosted gold deposit in northeastern P.R. China also is described. Note that for the old version 1.1 on the CD-ROM, the latitude and longitude locations of the mineral occurrences have been estimated from sketch maps and journal articles and are not intended for digital analysis. One of the improvements in this version 1.2 is the accuracy of geographic data. Version 1.3 updates to the database and includes maps

  1. Estimates of deep percolation beneath native vegetation, irrigated fields, and the Amargosa-River Channel, Amargosa Desert, Nye County, Nevada

    USGS Publications Warehouse

    Stonestrom, David A.; Prudic, David E.; Laczniak, Randell J.; Akstin, Katherine C.; Boyd, Robert A.; Henkelman, Katherine K.

    2003-01-01

    The presence and approximate rates of deep percolation beneath areas of native vegetation, irrigated fields, and the Amargosa-River channel in the Amargosa Desert of southern Nevada were evaluated using the chloride mass-balance method and inferred downward velocities of chloride and nitrate peaks. Estimates of deep-percolation rates in the Amargosa Desert are needed for the analysis of regional ground-water flow and transport. An understanding of regional flow patterns is important because ground water originating on the Nevada Test Site may pass through the area before discharging from springs at lower elevations in the Amargosa Desert and in Death Valley. Nine boreholes 10 to 16 meters deep were cored nearly continuously using a hollow-stem auger designed for gravelly sediments. Two boreholes were drilled in each of three irrigated fields in the Amargosa-Farms area, two in the Amargosa-River channel, and one in an undisturbed area of native vegetation. Data from previously cored boreholes beneath undisturbed, native vegetation were compared with the new data to further assess deep percolation under current climatic conditions and provide information on spatial variability. The profiles beneath native vegetation were characterized by large amounts of accumulated chloride just below the root zone with almost no further accumulation at greater depths. This pattern is typical of profiles beneath interfluvial areas in arid alluvial basins of the southwestern United States, where salts have been accumulating since the end of the Pleistocene. The profiles beneath irrigated fields and the Amargosa-River channel contained more than twice the volume of water compared to profiles beneath native vegetation, consistent with active deep percolation beneath these sites. Chloride profiles beneath two older fields (cultivated since the 1960?s) as well as the upstream Amargosa-River site were indicative of long-term, quasi-steady deep percolation. Chloride profiles beneath the

  2. Field Performance of Asphalt Pavements with New Technologies in Northern Nevada

    NASA Astrophysics Data System (ADS)

    Faeth, Benjamin Michael

    The Regional Transportation Commission (RTC) of the Washoe Valley Area has been tasked to determine if three advanced asphalt pavement technologies and one modified aggregate gradation are suitable for implementation within Reno, Stead, and Sparks Nevada. This was accomplished through research and test roads and Intersections to determine if Recycled Asphalt Pavement (RAP), Warm Mix Asphalt (WMA), Polymer-Modified Asphalt Binder, and the Type 2-R aggregate gradation were succeeding in their design plans. Over the course of several years the streets being used by RTC to test the technologies are succeeding within their design lifespans, and the Intersections being used to test the Type 2-R aggregate gradation are showing significant resistance to rutting. Due to the roads and Intersections not being more than 10 years old, these conclusions are subject to change over time.

  3. Growth of plutons by incremental emplacement of sheets in crystal-rich host: Evidence from Miocene intrusions of the Colorado River region, Nevada, USA

    USGS Publications Warehouse

    Miller, C.F.; Furbish, D.J.; Walker, B.A.; Claiborne, L.L.; Koteas, G.C.; Bleick, H.A.; Miller, J.S.

    2011-01-01

    Growing evidence supports the notion that plutons are constructed incrementally, commonly over long periods of time, yet field evidence for the multiple injections that seem to be required is commonly sparse or absent. Timescales of up to several million years, among other arguments, indicate that the dominant volume does not remain largely molten, yet if growing plutons are constructed from rapidly solidifying increments it is unlikely that intrusive contacts would escape notice. A model wherein magma increments are emplaced into melt-bearing but crystal-rich host, rather than either solid or crystal-poor material, provides a plausible explanation for this apparent conundrum. A partially solidified intrusion undoubtedly comprises zones with contrasting melt fraction and therefore strength. Depending on whether these zones behave elastically or ductilely in response to dike emplacement, intruding magma may spread to form sheets by either of two mechanisms. If the melt-bearing host is elastic on the relevant timescale, magma spreads rather than continuing to propagate upward, where it encounters a zone of higher rigidity (higher crystal fraction). Similarly, if the dike at first ascends through rigid, melt-poor material and then encounters a zone that is weak enough (poor enough in crystals) to respond ductilely, the ascending material will also spread because the dike tip ceases to propagate as in rigid material. We propose that ascending magma is thus in essence trapped, by either mechanism, within relatively crystal-poor zones. Contacts will commonly be obscure from the start because the contrast between intruding material (crystal-poorer magma) and host (crystal-richer material) is subtle, and they may be obscured even further by subsequent destabilization of the crystal-melt framework. Field evidence and zircon zoning stratigraphy in plutons of the Colorado River region of southern Nevada support the hypothesis that emplacement of magma replenishments into a

  4. Snowmelt sensitivity to warmer temperatures: a field-validated model analysis, southern Sierra Nevada, California

    NASA Astrophysics Data System (ADS)

    Musselman, K. N.; Molotch, N. P.; Margulis, S. A.

    2014-12-01

    We present model simulations of climate change impacts on snowmelt processes over a 1600 km2 area in the southern Sierra Nevada, including western Sequoia National Park. The domain spans a 3600 m elevation gradient and ecosystems ranging from semi-arid grasslands to giant sequoia groves to alpine tundra. Three reference years were evaluated: a moderately dry snow season (23% below average SWE), an average snow season (7% above average SWE), and a moderately wet snow season (54% above average SWE). The Alpine3D model was run for the reference years and results were evaluated against data from a multi-scale measurement campaign that included repeated manual snow courses and basin-scale snow surveys, dozens of automated snow depth sensors, and automated SWE stations. Compared to automated measurements, the model represented the date of snow disappearance within two days. Compared to manual measurements, model SWE RMSE values for the average and wet snow seasons were highly correlated (R2=0.89 and R2=0.73) with the distance of SWE measurements from the nearest precipitation gauge used to force the model; no significant correlation was found with elevation. The results suggest that Alpine3D is highly accurate during the melt season and that precipitation uncertainty may critically limit snow model accuracy. The air temperature measured at 19 regional stations for the three reference years was modified by +1°C to +6°C to simulate the impact of warmer temperatures on snowmelt dynamics over the 3600 m elevation gradient. For all years, progressively warmer temperatures caused the seasonal SWE centroid to shift earlier and higher in elevation. At forested middle elevations, 70 - 80% of the present-day snowpack volume is lost in a +2°C scenario; 30 - 40% of that change is a result of precipitation phase shift and the remainder is due to enhanced melt. At all elevations, spring and fall snowpack was most sensitive to warmer temperatures; mid-winter sensitivity was least

  5. Recurring features of mid-Miocene transitional geomagnetic field behavior: Observations from NE Nevada and SE Oregon

    NASA Astrophysics Data System (ADS)

    Bogue, S. W.; Glen, J. M. G.

    2014-12-01

    Paleomagnetic results from a 150m thick stack of 15.2 my old lava flows in the Sheep Creek Range (north central Nevada; 40.7N, 243.2E) show that distinctive aspects of the reversing geomagnetic field can recur after 1.5 million years. The Sheep Creek lavas preserve a partial record of what is likely the C5Br-C5Bn geomagnetic reversal. That event occurred 1.5 million years and five polarity switches after reversal (C5Cr-C5Cn) recorded in great detail at Steens Mountain in SE Oregon. During both transitions, the VGP made repeat visits to low latitude positions in South America and near Africa although in different order. This behavior implies a control that varies over a timescale much longer that associated with flow in the outer core (~60 yrs), presumably lateral variations in lower mantle temperature or topography on the core-mantle boundary. Furthermore, the field in both reversals moved from clearly transitional to normal-polarity-like (i.e., down and north) directions before "rebounding" to intermediate directions. It has been suggested recently (Valet et al., Nature 2012) that this kind of behavior (i.e., directional change in the form of precursor- main polarity switch-rebound) may be a systematic aspect of transitional field behavior, a suggestion reinforced by these new observations. The distinctive, two component magnetization of a particular lava flow in the Sheep Creek section has been interpreted by Bogue and Glen (GRL, 2010) as evidence of directional change (~1 deg/week) orders of magnitude faster than normal secular variation. If the field was strong at the end of the directional change, then a large change in the local geomagnetic field vector is implied by the directional data for any initial field strength. Preliminary paleointensity experiments aimed at resolving this aspect of the record are in progress.

  6. Field studies of the potential for wind transport of plutonium- contaminated soils at sites in Areas 6 and 11, Nevada Test Site

    SciTech Connect

    Lancaster, N.; Bamford, R.; Metzger, S.

    1995-07-01

    This report describes and documents a series of field experiments carried out in Areas 6 and 11 of the Nevada Test Site in June and July 1994 to determine parameters of boundary layer winds, surface characteristics, and vegetation cover that can be used to predict dust emissions from the affected sites. Aerodynamic roughness of natural sites is determined largely by the lateral cover of the larger and more permanent roughness elements (shrubs). These provide a complete protection of the surface from wind erosion. Studies using a field-portable wind tunnel demonstrated that natural surfaces in the investigated areas of the Nevada Test Site are stable except at very high wind speeds (probably higher than normally occur, except perhaps in dust devils). However, disturbance of silty-clay surfaces by excavation devices and vehicles reduces the entrainment threshold by approximately 50% and makes these areas potentially very susceptible to wind erosion and transport of sediments.

  7. Shallow subsurface temperature surveys in the basin and range province-II. Ground temperatures in the upsal hogback geothermal area, West-Central Nevada, U.S.A.

    USGS Publications Warehouse

    Olmsted, F.H.; Ingebritsen, S.E.

    1986-01-01

    Numerous temperature surveys at a depth of 1 m were made in 1973-1985 in the Upsal Hogback and Soda Lakes geothermal areas in west-central Nevada. Whereas the surveys effectively delineated temperature at depth and heat flow within the relatively intense Soda Lakes thermal anomaly, they were not effective at the diffuse Upsal Hogback anomaly, where several perturbing factors that affect shallow subsurface temperatures are exceedingly variable. Albedo is the most important factor in the Upsal Hogback area, even at a depth of 30 m. All possible perturbing factors should be considered when designing a shallow temperature-based prospecting scheme. ?? 1986.

  8. Site exploration for rock-mechanics field tests in the Grouse Canyon Member, Belted Range Tuff, U12g Tunnel Complex, Nevada Test Site

    SciTech Connect

    Langkopf, B.S.; Eshom, E.

    1982-02-01

    This report describes site exploration work completed in support of planned rock-mechanics field tests in the Grouse Canyon Member of the Belted Range Ruff at Nevada Test Site`s, G-Tunnel. As part of this work, the Rock Mechanics Drift (RMD) and the Rock Mass Property Alcove (RMPA) were mined and three coreholes drilled. The results of mapping and corehole logging are displayed, described, and analyzed.

  9. Field and geochemical investigations of the Peach Springs Tuff, southeastern California, western Arizona, and southern Nevada

    SciTech Connect

    Buesch, D.C.

    1992-01-01

    Three separate studies are presented that involve the 18.5 Ma Peach Springs Tuff (PST), a wide-spread ignimbrite exposed in southeastern California, western Arizona, and southern Nevada. In Chapter I, electron microprobe analyses of feldspar phenocrysts in the PST and three other ignimbrites show that the feldspar geochemistry can distinguish the tephra units. Chapter 2 presents a detailed physical volcanology study of the formation of multiple lithic breccia horizons in the PST at a location at least 140 km from the proposed vent area. A model is proposed whereby (1) locally derived lithic fragments are incorporated into the boundary layer of the ash-rich pyroclastic flow, (2) the boundary layer decouples from the ash-rich pyroclastic flow, (3) lithic-laden density driven pyroclastic flows sweep down local topography, and (4) intermingle with the ash-rich pyroclastic flow in the valley bottoms. The lithic breccias are very similar in grain size, texture, and structure to breccias located in near vent regions and care must be taken when interpreting ancient breccia deposits. The influence on sedimentation in post-PST depositional environments is evaluated in Chapter 3. Criteria are used to infer that deposition was (1) shortly after deposition, or (2) an indeterminate amount of time after deposition of the PST. Lithofacies in pre- and post-PST sedimentary rocks show there is a thinning and fining upward trend in nearly all environments, except in narrow valleys adjacent to areas of high relief. The inferred shifts in depositional environments resulted from the lowering of the local base level in response to filling basins with ignimbrite. Formation of partially to densely welded tuff, and development of a vapor-phase lithified cap of nonwelded tuff (1) reduces incision by streams, (2) promotes lateral cutting of the streams and subsequent stripping of the nonwelded nonlithified tuff, and (3) significantly reduces the amount of tephra that can be eroded.

  10. Twelve Months of Air Quality Monitoring at Ash Meadows National Wildlife Refuge, Southwestern Rural Nevada, U.S.A (EMSI April 2007)

    SciTech Connect

    Engelbrecht, Johann P; Shafer, David S; Campbell, Dave; Campbell, Scott; McCurdy, Greg; Kohl, Steven D; Nikolich, George; Sheetz, Larry

    2011-08-01

    The one year of air quality monitoring data collected at the Ash Meadows National Wildlife Refuge (NWR) was the final part of the air quality "Scoping Studies" for the Environmental Monitoring Systems Initiative (EMSI) in southern and central Nevada. The objective of monitoring at Ash Meadows was to examine aerosol and meteorological data, seasonal trends in aerosol and meteorological parameters as well as to examine evidence for long distance transport of some constituents. The 9,307 hectare refuge supports more than 50 springs and 24 endemic species, including the only population of the federally listed endangered Devil’s Hole pupfish (Cyprinodon diabolis) (U.S. Fish and Wildlife Service, 1990). Ash Meadows NWR is located in a Class II air quality area, and the aerosol measurements collected with this study are compared to those of Interagency Monitoring of Protected Visual Environments (IMPROVE) sites. Measurements taken at Ash Meadows NWR over a period of 12 months provide new baseline air quality and meteorological information for rural southwestern Nevada, specifically Nye County and the Amargosa Valley.

  11. Time-series analysis of surface deformation at Brady Hot Springs geothermal field (Nevada) using interferometric synthetic aperture radar

    SciTech Connect

    Ali, S. T.; Akerley, J.; Baluyut, E. C.; Cardiff, M.; Davatzes, N. C.; Feigl, K. L.; Foxall, W.; Fratta, D.; Mellors, R. J.; Spielman, P.; Wang, H. F.; Zemach, E.

    2016-05-01

    We analyze interferometric synthetic aperture radar (InSAR) data acquired between 2004 and 2014, by the ERS-2, Envisat, ALOS and TerraSAR-X/TanDEM-X satellite missions to measure and characterize time-dependent deformation at the Brady Hot Springs geothermal field in western Nevada due to extraction of fluids. The long axis of the ~4 km by ~1.5 km elliptical subsiding area coincides with the strike of the dominant normal fault system at Brady. Within this bowl of subsidence, the interference pattern shows several smaller features with length scales of the order of ~1 km. This signature occurs consistently in all of the well-correlated interferometric pairs spanning several months. Results from inverse modeling suggest that the deformation is a result of volumetric contraction in shallow units, no deeper than 600 m, likely associated with damaged regions where fault segments mechanically interact. Such damaged zones are expected to extend downward along steeply dipping fault planes, providing a high permeability conduit to the production wells. Using time series analysis, we test the hypothesis that geothermal production drives the observed deformation. We find a good correlation between the observed deformation rate and the rate of production in the shallow wells. We also explore mechanisms that could potentially cause the observed deformation, including thermal contraction of rock, decline in pore pressure and dissolution of minerals over time.

  12. Deformation at Brady Hot Springs (Nevada) geothermal field measured by time series analysis of InSAR data

    NASA Astrophysics Data System (ADS)

    Ali, S. T.; Davatzes, N. C.; Feigl, K. L.; Wang, H. F.; Foxall, W.; Mellors, R. J.; Akerley, J.; Spielman, P.; Zemach, E.

    2014-12-01

    We analyze interferometric synthetic aperture radar (InSAR) data acquired between 1997 and 2014 (by the ERS, Envisat, ALOS and TerraSAR-X/TanDEM-X satellite missions) to measure and characterize time-dependent deformation at the Brady Hot Springs geothermal field in Western Nevada due to net extraction of fluids. The long axis of the ~4 km by ~1.5 km oval shaped subsiding region coincides with the strike of the predominant normal fault system at Brady. Within this bowl of subsidence, the interference pattern shows several smaller features with length scales of the order of ~1 km. These smaller features are spatially associated with the intersections and overlaps of some of the mapped fault segments. This type of signature occurs consistently in all of the well-correlated interferometric pairs spanning several months. To model the deformation, we explore several different observable quantities, including the spatial derivative of the range change (dimensionless), and the (unwrapped) range change (in mm). The results from inverse modeling suggest that the deformation is a result of compaction associated with a decline in pore-fluid pressure. This phenomenon occurs in shallow lithologic units and/or highly damaged regions where fault segments mechanically interact. Such damaged zones are expected to be vertically extensive along the faults, providing a high permeability conduit to the deep reservoir tapped by production wells. Using time series analysis, we test the hypothesis that changes in the net rate of geothermal production drive the observed deformation.

  13. Laboratory and Field Studies Related to Radionuclide Migration at the Nevada Test Site

    SciTech Connect

    B. A. Martinez; D. L. Finnegan; Joseph L. Thompson; K. S. Kung

    1999-03-01

    In this report, we describe the work done in FY 1998 at Los Alamos National Laboratory as part of the Hydrologic Resources Management Program (HRMA) funded by the Nevada Operations Office of the US Department of Energy (DOE/NV). The major part of our research effort was to measure radionuclides present in water or soil samples collected from near nuclear tests. We report our measurements for materials collected in both saturated and unsaturated horizons adjacent to nuclear test cavities or collapse chimneys and from within several cavities. Soil samples collected from above the cavities formed by the Halfbeak, Jerboa, and Bobac tests contained no radioactivity, although a test similar to Bobac in the same area had been contaminated with {sup 137}Cs. Water samples from near the Shoal test contained no measurable radionuclides, whereas those from near Faultless and Aleman had concentrations similar to previous measurements. Water from the Tybo-Benham site was similar to earlier collections at that site; this year, we added {sup 241}Am to the list of radionuclides measured at this location. Two Bennett pumps in tandem were used to extract water from the piezometer tube in the cavity of the Dalhart event. This extraction is a significant achievement in that it opens the possibility of purging similar tubes at other locations on the NTS. The Cheshire post shot hole was reconfigured and pumped from two horizons for the first time since mid-1980. We are especially interested in examining water from the level of the working point to determine the hydrologic source term in a cavity filled with groundwater for over 20 years. We devoted much time this year to examining the colloid content of NTS groundwater. After developing protocols for collecting, handling, and storing groundwater samples without altering their colloid content, we analyzed water from the Tybo-Benham and from the Cheshire sites. Whereas the colloid concentration did not vary much with depth at Tybo

  14. Holocene environmental changes inferred from biological and sedimentological proxies in a high elevation Great Basin lake in the northern Ruby Mountains, Nevada, USA

    USGS Publications Warehouse

    Wahl, David B.; Starratt, Scott W.; Anderson, Lysanna; Kusler, Jennifer E.; Fuller, Christopher C.; Addison, Jason A.; Wan, Elmira

    2015-01-01

    Multi-proxy analyses were conducted on a sediment core from Favre Lake, a high elevation cirque lake in the northern Ruby Mountains, Nevada, and provide a ca. 7600 year record of local and regional environmental change. Data indicate that lake levels were lower from 7600-5750 cal yr BP, when local climate was warmer and/or drier than today. Effective moisture increased after 5750 cal yr BP and remained relatively wet, and possibly cooler, until ca. 3750 cal yr BP. Results indicate generally dry conditions but also enhanced climatic variability from 3750-1750 cal yr BP, after which effective moisture increased. The timing of major changes in the Favre Lake proxy data are roughly coeval and in phase with those recorded in several paleoclimate studies across the Great Basin, suggesting regional climatic controls on local conditions and similar responses at high and low altitudes.

  15. Ecology, distribution, and predictive occurrence modeling of Palmers chipmunk (Tamias palmeri): a high-elevation small mammal endemic to the Spring Mountains in southern Nevada, USA

    USGS Publications Warehouse

    Lowrey, Chris E.; Longshore, Kathleen; Riddle, Brett R.; Mantooth, Stacy

    2016-01-01

    Although montane sky islands surrounded by desert scrub and shrub steppe comprise a large part of the biological diversity of the Basin and Range Province of southwestern North America, comprehensive ecological and population demographic studies for high-elevation small mammals within these areas are rare. Here, we examine the ecology and population parameters of the Palmer’s chipmunk (Tamias palmeri) in the Spring Mountains of southern Nevada, and present a predictive GIS-based distribution and probability of occurrence model at both home range and geographic spatial scales. Logistic regression analyses and Akaike Information Criterion model selection found variables of forest type, slope, and distance to water sources as predictive of chipmunk occurrence at the geographic scale. At the home range scale, increasing population density, decreasing overstory canopy cover, and decreasing understory canopy cover contributed to increased survival rates.

  16. Socioecological transitions trigger fire regime shifts and modulate fire-climate interactions in the Sierra Nevada, USA, 1600-2015 CE.

    PubMed

    Taylor, Alan H; Trouet, Valerie; Skinner, Carl N; Stephens, Scott

    2016-11-29

    Large wildfires in California cause significant socioecological impacts, and half of the federal funds for fire suppression are spent each year in California. Future fire activity is projected to increase with climate change, but predictions are uncertain because humans can modulate or even override climatic effects on fire activity. Here we test the hypothesis that changes in socioecological systems from the Native American to the current period drove shifts in fire activity and modulated fire-climate relationships in the Sierra Nevada. We developed a 415-y record (1600-2015 CE) of fire activity by merging a tree-ring-based record of Sierra Nevada fire history with a 20th-century record based on annual area burned. Large shifts in the fire record corresponded with socioecological change, and not climate change, and socioecological conditions amplified and buffered fire response to climate. Fire activity was highest and fire-climate relationships were strongest after Native American depopulation-following mission establishment (ca. 1775 CE)-reduced the self-limiting effect of Native American burns on fire spread. With the Gold Rush and Euro-American settlement (ca. 1865 CE), fire activity declined, and the strong multidecadal relationship between temperature and fire decayed and then disappeared after implementation of fire suppression (ca. 1904 CE). The amplification and buffering of fire-climate relationships by humans underscores the need for parameterizing thresholds of human- vs. climate-driven fire activity to improve the skill and value of fire-climate models for addressing the increasing fire risk in California.

  17. A long term meander evolution simulation: A model evaluation using the field data from Quinn River, Nevada

    NASA Astrophysics Data System (ADS)

    Matsubara, Y.; Howard, A. D.; Burr, D. M.; Moore, J. M.; Williams, R. M.

    2011-12-01

    Despite the ubiquity of meandering streams, there have been few field-based studies of the temporal evolution of meander planforms, including modeling of channel migration and spatial patterns of floodplain. The Quinn River, located in the east branch of the Black Rock Desert, Nevada is a sinuous channel that flows through lacustrine sediments on the floor of paleolake Lahontan where vegetation cover is sparse. It is still active and aerial photographs taken over the past 50 years show that significant modifications including meander cutoffs have occurred in the past 40 years. This provides good basis for testing the ability of flow and bank erosion models (e.g., Johannesson and Parker [1989]) to predict meander evolution pattern. Meander model developed by Howard [1992, 1996], which has its base on the Johannesson and Parker [1989] linearized model of flow through bends, was used to simulate forward evolution of the Quinn River starting from the 1972 centerline. The Quinn River lacks bars and has a nearly canal-like cross-section with a flat bed, thus it is an ideal channel to test predictions of bend evolution. The model was calibrated by using various data such as meander wavelength, channel cross-sectional shape, measurements of flow resistance based upon the field work, and timing of meander cutoffs to find the model results that best match the 2010 centerline. We also formulated and calibrated the flood plain sediment deposition model using high resolution topography data from LiDAR. Our results show that the model well predicts the meander evolution pattern over historical time period. Also the short term simulations show a good correlation between the predicted inner and outer bend flow velocity ratio and the ratio of inner and outer channel bank slope ratio.

  18. Alkaline Basalts of The Quaternary Buffalo Valley Volcanic Field, NW Fish Creek Mountains, North-central Nevada, Great Basin

    NASA Astrophysics Data System (ADS)

    Cousens, B.; Henry, C. D.

    2008-12-01

    The Buffalo Valley volcanic field, 5 km southwest of Battle Mountain, consists of approximately 11 cinder cones and associated flows. Youthful volcanoes are rare in the region, and thus this field offers the opportunity to investigate mantle sources currently beneath the central Great Basin. Most of the eruptive centers are distributed along the northwestern margin of the Fish Creek Mountains, a mid-Tertiary caldera complex, along a 13-km-long northeasterly trend that is perpendicular to the regional stress field (or GPS velocity field), suggesting fault control or eruption from a now-buried fissure. The cones are geomorphologically youthful, with well-defined, commonly breached craters. At least one cone, situated slightly east of the main trend, consists of only a thin mantle of scoria and bombs overlying grey Paleozoic limestone. Previous K-Ar and Ar-Ar dating indicate that the cones are between 1.29 and 0.95 Ma in age. Two other nearby Quaternary volcanic centers lie northeast of the Fish Creek Mountains (K-Ar date of 3.3 Ma) and in the center of the Fish Creek caldera (age unknown). Rare Tertiary basalts and more common Tertiary andesites lie around the margin of the caldera. Lavas from the Buffalo Valley cones have vesicular flow tops and more massive interiors. All Quaternary centers are similar petrographically, including 1-2% olivine phenocrysts and megacrysts up to 1 cm in size, and characteristic plagioclase megacrysts that are rarely up to 4 cm long, commonly in a glassy matrix. Two cone samples are alkalic basalt and tephrite with Mg numbers of 0.55, high TiO2 (2.4%), K2O (2.0%), light REE, Nb (60 ppm), but low Cr and Ni (80 ppm), Pb (2 ppm), Ba (450 ppm) and 87Sr/86Sr (0.70375) compared to Late Pliocene/Quaternary volcanic rocks from the western Great Basin near Reno/Carson City/Fallon. The Buffalo Valley cones are similar chemically to lavas from the Pliocene-Quaternary Lunar Craters volcanic field in central Nevada, and are melts of mantle that is

  19. Petroleum geology of Kate Spring field, Railroad Valley, Nye County, Nevada

    SciTech Connect

    French, D.E.

    1991-06-01

    Kate Spring field was opened by Marathon Oil Company at the 1 Kate Spring well in December 1985. Because of poor market conditions and production problems, the well was not produced and the field was not confirmed until the Evans 1 Taylor well was completed in October 1987. As of August 1990, five wells have produced over 575,000 bbl of oil and have the capacity to flow at rates of several hundred to several thousand barrels per day. The oil is 10-12{degrees} API and is saturated with gas. The oil is used for road asphalt which limits its marketability. Production is from landslide blocks of Paleozoic and lower Tertiary strata that were emplaced in Miocene-Pliocene time, during the structural development of the Railroad Valley basin. The slide blocks are overlain by valley fill and probably correspond to similar blocks encountered within the valley fill at Eagle Springs field, adjacent to the north. The pay is at a depth of 4,500 ft. Kate Spring is a part of the fault-block bench that contains Eagle Springs field and is situated on the east flank of the Railroad Valley graben. There is east-west closure on the structure of the field, but the north end of the field has not been defined. The accumulation is sealed by the unconformity at the slide block-valley fill contact. The nature of the reservoir implies that the production is controlled by fractures and precludes useful extrapolation of any measurable matrix porosity. Based on volumetric calculations, the field will probably produce 2-3 million bbl of oil.

  20. Field and Laboratory Dissipation of the Herbicide Fomesafen in the Southern Atlantic Coastal Plain (USA).

    PubMed

    Potter, Thomas L; Bosch, David D; Strickland, Timothy C

    2016-06-29

    To control weeds with evolved resistance to glyphosate, Southeastern (USA) cotton farmers have increased fomesafen (5-(2-chloro-α,α,α-trifluoro-p-tolyloxy)-N-mesyl-2-nitrobenzamide) use. To refine fomesafen risk assessments, data are needed that describe its dissipation following application to farm fields. In our study, relatively low runoff rates and transport by lateral subsurface flow, <1.0 and 0.15% of applied respectively, were observed. The low runoff rate was linked to postapplication irrigation incorporation and implementation of a common conservation tillage practice. Moderate soil persistence (t1/2 = 100 days) was indicated in laboratory incubations with surface soil, however, analysis of soil cores from treated plots showed that ≈3% of fomesafen applied persisted in subsoil >3 years after application. Findings suggest low potential for fomesafen movement from treated fields, however, the fate of fomesafen that accumulated in subsoil and the identity of degradates are uncertain. Soil and water samples were screened for degradates, but, none were detected.

  1. Comparative Plutonium-239 Dose Assessment for Three Desert Sites: Maralinga, Australia; Palomares, Spain; and the Nevada Test Site, USA - Before and After Remedial Action

    SciTech Connect

    Church, B W; Shinn, J; Williams, G A; Martin, L J; O'Brien, R S; Adams, S R

    2000-07-14

    for their similarities to make comparisons. The sites are all desert in nature i.e., have low rainfall (all receive about 20 cm per year), have minimal vegetative ground cover, and have high summer temperatures. These sites are Palomares, Spain; the Nevada Test Site (NTS); and the Maralinga site in Australia. One significant difference, however, is that the Palomares site has been used continuously for residential and agriculture purposes since the plutonium remediation was completed. Maralinga is being remediated with the objective of returning the land to its former owners, but it will have some use restrictions for the remaining contaminated areas. Any decision to return the land being remediated by the United States Department of Energy (USDOE) at its Nevada sites, for public use, is in the distant future.

  2. FIDO Prototype Mars Rover Field Trials, May 2000, Black Rock Summit, Nevada

    NASA Technical Reports Server (NTRS)

    Seelos, F. P.; Arvidson, R. E.; Squyres, S. W.; Baumgartner, E. T.; Schenker, P. S.; Jolliff, B. L.; Niebur, C. S.; Larsen, K. W.; Snider, N. O.

    2001-01-01

    Results of May 2000 field testing of the FIDO prototype Mars rover are summarized. Tests included remote science operations and simulated aspects of the Athena payload for 2003 MER (Mars Exploration Rovers). Additional information is contained in the original extended abstract.

  3. FY 1991 environmental research programs for the DOE Field Office, Nevada: Work plan and quarterly reports, fourth quarter report

    SciTech Connect

    1991-10-01

    This research includes a wide range of research and support activities associated with the Weapons Testing Program conducted at the Nevada Test Site (NTS). Ongoing and new environmental research programs to be conducted by DRI over the period of this contract include archaeological studies, site mitigation plans, compliance activities, and historical research; offsite community radiation monitoring support; environmental compliance activities related to state and federal regulations; hydrologic assessment of containment of underground nuclear detonations; hydrology/radionuclide investigations designed to better understand and predict the possible subsurface movement of radionuclides at the NTS; and support of various statistical and data management and design, laboratory, field, and administrative activities. In addition to these, archaeological site characterization, flood hazards for rail transportation, and paleofaunal investigations will be carried out in support of the Yucca Mountain Project. Other areas of the overall program which required DRI support are classified security activities, radiation safety and training, quality assurance and control, computer protection and historical data management, review and classification of DRI documents, and preparation of any special reports, e.g., quarterly reports, not included in the requirements of the individual projects. A new set of programs funded by the Office of Technology Development will be in place by the third quarter of FY 1991. These projects will address environmental restoration and waste management concerns, among other related topics. In accordance with specific contract requirements for each activity, DRI will produce summary, status and final reports and, in some cases, journal articles which will present the results of specific research efforts. This document contains the work plan, including project descriptions, tasks, deliverables and quarterly progress reports on each project for FY 1991.

  4. Mineralogy and clinoptilolite K/Ar results from Yucca Mountain, Nevada, USA: A potential high-level radioactive waste repository site

    SciTech Connect

    WoldeGabriel, G.; Broxton, D.E.; Bish, D.L.; Chipera, S.J.

    1993-11-01

    The Yucca Mountain Site Characterization Project is investigating Yucca Mountain, Nevada, as a potential site for a high-level nuclear waste repository. An important aspect of this evaluation is to understand the geologic history of the site including the diagenetic processes that are largely responsible for the present-day chemical and physical properties of the altered tuffs. This study evaluates the use of K/Ar geochronology in determining the alteration history of the zeolitized portions of Miocene tuffs at Yucca Mountain. Clinoptilolite is not generally regarded as suitable for dating because of its open structure and large ion-exchange capacity. However, it is the most abundant zeolite at Yucca Mountain and was selected for this study to assess the feasibility of dating the zeolitization process and/or subsequent processes that may have affected the zeolites. In this study we examine the ability of this mineral to retain all or part of its K and radiogenic Ar during diagenesis and evaluate the usefulness of the clinoptilolite K/Ar dates for determining the history of alteration.

  5. FIDO prototype Mars rover field trials, Black Rock Summit, Nevada, as test of the ability of robotic mobility systems to conduct field science

    NASA Astrophysics Data System (ADS)

    Arvidson, R. E.; Squyres, S. W.; Baumgartner, E. T.; Schenker, P. S.; Niebur, C. S.; Larsen, K. W.; SeelosIV, F. P.; Snider, N. O.; Jolliff, B. L.

    2002-08-01

    The Field Integration Design and Operations (FIDO) prototype Mars rover was deployed and operated remotely for 2 weeks in May 2000 in the Black Rock Summit area of Nevada. The blind science operation trials were designed to evaluate the extent to which FIDO-class rovers can be used to conduct traverse science and collect samples. FIDO-based instruments included stereo cameras for navigation and imaging, an infrared point spectrometer, a color microscopic imager for characterization of rocks and soils, and a rock drill for core acquisition. Body-mounted ``belly'' cameras aided drill deployment, and front and rear hazard cameras enabled terrain hazard avoidance. Airborne Visible and Infrared Imaging Spectrometer (AVIRIS) data, a high spatial resolution IKONOS orbital image, and a suite of descent images were used to provide regional- and local-scale terrain and rock type information, from which hypotheses were developed for testing during operations. The rover visited three sites, traversed 30 m, and acquired 1.3 gigabytes of data. The relatively small traverse distance resulted from a geologically rich site in which materials identified on a regional scale from remote-sensing data could be identified on a local scale using rover-based data. Results demonstrate the synergy of mapping terrain from orbit and during descent using imaging and spectroscopy, followed by a rover mission to test inferences and to make discoveries that can be accomplished only with surface mobility systems.

  6. Sixth International Limnogeology Congress: field trip guidebook, Reno, Nevada, June 15-19, 2015

    USGS Publications Warehouse

    Rosen, Michael R.

    2015-01-01

    The U.S. Geological Survey has sponsored each ILIC that has been held in the United States because of the importance of understanding paleoclimate and contaminant histories of lakes, two main themes of the Congress. This field trip guide provides a permanent record of some of the wide variety of studies that are being conducted in modern lakes and ancient lake deposits in western North America, and it provides a starting point for any one desiring to visit these exceptional sites or begin work in these areas.

  7. Mortality in Subalpine Forests of the Sierra Nevada, California, USA: Differential Response of Pines (Pinus albicaulis and P. flexilis) to Climate Variability

    NASA Astrophysics Data System (ADS)

    Millar, C. I.; Westfall, R. D.; Delany, D. L.

    2010-12-01

    Widespread forest mortality in high-elevation forests has been increasing across western North American mountains in recent years, with climate, insects, and disease the primary causes. Subalpine forests in the eastern Sierra Nevada, by contrast, have experienced far less mortality than other ranges, and mortality events have been patchy and episodic. This situation, and lack of significant effect of non-native white-pine blister rust, enable investigation of fine-scale response of two subalpine Sierran species, whitebark pine (Pinus albicaulis, PiAl) and limber pine (P. flexilis, PiFl), to climate variability. We report similarities and differences between the two major mortality events in these pines in the last 150 years: 1988-1992 for PiFl and 2006-ongoing for PiAl. In both species, the events occurred within monotypic, closed-canopy, relatively young stands (< 200 yrs PiAl, < 300 yrs in PiFl); were localized to central-eastern Sierra Nevada; and occurred at 2740-2840 m along the eastern edge of the escarpment on north/northeast aspects with slopes > 40%. Mortality patches averaged 40-80 ha in both species, with mean stand mortality of trees > 10 cm diameter 91% in PiAl and 60% in PiFl. The ultimate cause of tree death was mountain pine beetle (Dendroctonus ponderosae) in both species, with increasing 20th/21st C minimum temperatures combined with drought the pre-conditioning factors. Overall growth in the past 150 years suggests that PiFl is more drought hardy than PiAl but responds sensitively to the combined effects of drought and increasing warmth. After the 1988-1992 drought, surviving PiFl recovered growth. PiAl trees grew very poorly during that drought, and continued poor growth in the years until 2006 when the mortality event occurred in PiAl. A significant species effect is the apparent difference in levels of within-stand genetic diversity for climate factors. Differential growth between 19th C (cool, wet) and 20th/21st C (warming, drying) of Pi

  8. New Insights into Strain Accumulation and Release in the Central and Northern Walker Lane, Pacific-North American Plate Boundary, California and Nevada, USA

    NASA Astrophysics Data System (ADS)

    Bormann, Jayne M.

    The Walker Lane is a 100 km-wide distributed zone of complex transtensional faulting that flanks the eastern margin of the Sierra Nevada. Up to 25% of the total Pacific-North American relative right-lateral plate boundary deformation is accommodated east of the Sierra Nevada, primarily in the Walker Lane. The results of three studies in the Central and Northern Walker Lane offer new insights into how constantly accumulating plate boundary shear strain is released on faults in the Walker Lane and regional earthquake hazards. This research is based on the collection and analysis of new of geologic and geodetic datasets. Two studies are located in the Central Walker Lane, where plate boundary deformation is accommodated on northwest trending right-lateral faults, east-northeast trending left-lateral faults, and north trending normal faults. In this region, a prominent set of left-stepping, en-echelon, normal fault-bounded basins between Walker Lake and Lake Tahoe fill a gap in Walker Lane strike slip faults. Determining how these basins accommodate shear strain is a primary goal of this research. Paleoseismic and neotectonic observations from the Wassuk Range fault zone in the Walker Lake basin record evidence for at least 3 Holocene surface rupturing earthquakes and Holocene/late Pleistocene vertical slip rates between 0.4-0.7 mm/yr on the normal fault, but record no evidence of right-lateral slip along the rangefront fault. A complementary study presents new GPS velocity data that measures present-day deformation across the Central Walker Lane and infers fault slip and block rotation rates using an elastic block model. The model results show a clear partitioning between distinct zones of strain accommodation characterized by (1) right-lateral translation of blocks on northwest trending faults, (2) left-lateral slip and clockwise block rotations between east and northeast trending faults, and (3) right-lateral oblique normal slip with minor clockwise block rotations

  9. Above treeline shrub-chronologies on the eastern Sierra Nevada crest, Mono Co., California, USA contain records of precipitation and large-scale ocean and atmospheric conditions

    NASA Astrophysics Data System (ADS)

    Franklin, R. S.

    2010-12-01

    Herb- or shrub- chronology, a technique adapted from dendrochronology, is the study of the annual growth rings in roots of certain perennial dicotyledonous plants. The presence of annual growth increments in high-elevation plants is significant as it highlights the importance of herbchronology for climatic, ecological and geomorphologic applications in alpine and extra-arboreal regions. For an above-treeline site on the eastern crest of the Sierra Nevada range at the Barney Lake Rock Glacier (37.56466N, 118.96554W), I will discuss the dendrochronological potential of several species colonizing this rock glacier with a focus on the ring-width chronology and climate response of the species Linanthus pungens (Torr.) J.M. Porter & L.A. Johnson. Commonly known as Granite Gilia, this species is a low-branching shrub (10 - 20 cm H) native to California and is found throughout the arid mountainous western US and British Columbia at elevations ranging from 1500 - 3700 m. The Barney Lake Rock Glacier (BLRG) chronology is 112 years in length with sufficient sample replication (EPS>0.85) from 1952 through 2008. In an exploration of the BLRG chronology, I will 1) discuss the preferential presence of these plants on specific periglacial landforms; 2) present an analysis of correlations with PRISM climate data, SNOTEL April snow water equivalent (SWE), Palmer Drought Severity Index (PDSI), Multivariate ENSO Index (MEI), Pacific Decadal Oscillation (PDO) and local climate station temperature and precipitation records; and 3) discuss the change in response of the BLRG chronology to these variables that occurs across the 1975/1976 shift from a “cool regime” to a “warm regime” of the California Current, related to the PDO.

  10. Microbial ooids and cortoids from the Lower Triassic (Spathian) Virgin Limestone, Nevada, USA: Evidence for an Early Triassic microbial bloom in shallow depositional environments

    NASA Astrophysics Data System (ADS)

    Woods, Adam D.

    2013-06-01

    Lower Triassic sedimentary rocks contain a variety of unusual facies and fabrics, with microbialites being a distinctive component of many carbonates deposited following the Permian-Triassic mass extinction. Coated grains are common in shallow water facies from the upper Lower Triassic (Spathian) Virgin Limestone (Moenkopi Formation) in southern Nevada, and were investigated in order to determine their origin. Petrographic analysis reveals that the majority of the coated grains found within the Virgin Limestone are micritic ooids with a concentric fabric, or with a homogenous fabric composed of dense, often cloudy micrite. In addition, asymmetric ooids, aggregate grains, and distorted ooids are also locally common in some oolitic units; low-Mg calcite ooids and bimineralic ooids composed of low-Mg calcite and dense, cloudy micrite are less commonly found, but are also documented from the Virgin Limestone. Cortoids (i.e., grains that are coated with constructive micrite envelopes) are a minor component of oolitic grainstones and packstones (typically 10-15% of the grains), although they may also comprise entire beds. The cortoids are coated with micrite similar to that which comprises the ooid cortices, and may be finely laminated or dense and cloudy in nature. The micrite ooids and constructive micrite envelopes are interpreted as microbial in origin based on the finely laminated or cloudy, dense nature of the micrite, as well as coatings that are uneven, or often of greater thickness on one side of elongate nuclei, such as bivalve shells or phylliod algae blades. The origin of the low-Mg calcite ooids and layers is less certain, but may also be microbial. The results of this study suggest that a microbial bloom occurred in shallow water environments, which was the result of 3 factors: (1) the unusual chemistry of Early Triassic oceans; (2) runoff of nutrient-rich waters, which enhanced microbialite growth; and, (3) wave agitation and warm waters that led to CO2

  11. Zircon trace element, and O and Hf isotopic records of magma sources and pluton assembly in the Sierra Crest intrusions (Sierra Nevada batholith, USA)

    NASA Astrophysics Data System (ADS)

    Miller, J. S.; Lackey, J. S.; Davies, G. R.; Sendek, C.

    2014-12-01

    The Sierra Crest Intrusions of the Sierra Nevada Batholith are the last major magmatic pulse associated with the Cretaceous flare-up. They are characterized by long assembly times (several 106 years), and are normally zoned from marginal, horblende-biotite granodiorites to more felsic, K-feldspar megacrystic, biotite granodiorites. Combined trace element and O and Hf isotopes on zircon are presented from the major Sierra Crest Intrusions. Zircon saturation temperatures (TZrc,sat) are similar and low (ca. 700°C) for most of the individual units, but Ti-in-zircon temperatures (TZrn,Ti) and trace element ratios contrast strongly between outer marginal units and inner megacrystic units (low TZrn,Ti ≈ TZrc,sat, high Yb/Gd, low Th/U, high and similar Hf, and high Eu/Eu*). Zircon O and Hf isotopes vary markedly across the suite (ΔɛHf = 15; Δδ18O = 2.5‰). Individual intrusive suites (gabbro to high-silica granite) record variable O-Hf variations; no correlation (John Muir), subtle binary or ternary arrays (e.g., Whitney, Sonora), or bimodal distribution of values (Tuolumne). In some cases single hand samples (small-volume mafic or felsic units), may record the entire variability within a suite. Inner megacrystic units generally have lower ɛHf than outer marginal units. Whole rock geochemical data for the intrusive suites also show an increase in the "garnet signature" with time (higher Sr/Y and Dy/Yb). The isotopic data are consistent with variable mantle sources and progressively cooler, more water-rich magmatism with a simultaneous shift to greater crustal involvement, and deepening of the magma sources. Magmatic underplating and intraplating of mafic arc magmas produced increasing crustal assimilation but under PT conditions that allowed production of more felsic, zircon-saturated, magmas. The isotopic variability requires that plutons are amalgams of many magmas mixed at varying scales before final solidification.

  12. Improved spatial resolution for U-series dating of opal at Yucca Mountain, Nevada, USA, using ion-microprobe and microdigestion methods

    USGS Publications Warehouse

    Paces, J.B.; Neymark, L.A.; Wooden, J.L.; Persing, H.M.

    2004-01-01

    Two novel methods of in situ isotope analysis, ion microprobe and microdigestion, were used for 230Th/U and 234U/238U dating of finely laminated opal hemispheres formed in unsaturated felsic tuff at Yucca Mountain, Nevada, proposed site for a high-level radioactive waste repository. Both methods allow analysis of layers as many as several orders of magnitude thinner than standard methods using total hemisphere digestion that were reported previously. Average growth rates calculated from data at this improved spatial resolution verified that opal grew at extremely slow rates over the last million years. Growth rates of 0.58 and 0.69 mm/m.y. were obtained for the outer 305 and 740 ??m of two opal hemispheres analyzed by ion microprobe, and 0.68 mm/m.y. for the outer 22 ??m of one of these same hemispheres analyzed by sequential microdigestion. These Pleistocene growth rates are 2 to 10 times slower than those calculated for older secondary calcite and silica mineral coatings deposited over the last 5 to 10 m.y. dated by the U-Pb method and may reflect differences between Miocene and Pleistocene seepage flux. The microdigestion data also imply that opal growth rates may have varied over the last 40 k.y. These data are the first indication that growth rates and associated seepage in the proposed repository horizon may correlate with changes in late Pleistocene climate, involving faster growth during wetter, cooler climates (glacial maximum), slower growth during transition climates, and no growth during the most arid climate (modern). Data collected at this refined spatial scale may lead to a better understanding of the hydrologic variability expected within the thick unsaturated zone at Yucca Mountain over the time scale of interest for radioactive waste isolation. ?? 2004 Elsevier Ltd.

  13. Successful Project Based Learning (PBL) Across Disciplines Geared Towards Middle School: An Example from a Wetlands PBL Unit in Reno, Nevada, USA

    NASA Astrophysics Data System (ADS)

    Howard, K. L.; Suchy-Mabrouk, A.; Noble, P. J.; Mensing, S. A.; Ewing-Taylor, J.

    2014-12-01

    A growing need for broad dissemination of current scientific research and improved scientific literacy requires new models of professional development that allow for direct collaboration between educators and university researchers. One example is a project funded by the National Science Foundation (NSF) as part of a study titled, "Reconstructing 2500 years of environmental change at the periphery of Rome: Integrating paleoecology and socioeconomic history to understand human response to climate." This project involves a team of middle school teachers working with researchers at the University of Nevada, Reno (UNR) to gain first-hand knowledge in multidisciplinary research connecting science and society, and applies a similar approach in the classroom. In 2013, the team's science teacher traveled to Italy as a member of the science research group. A series of workshops introduced the remaining teachers to the research project. Teachers collaborated to develop a Project Based Learning (PBL) unit that incorporated Next Generation Science Standards and encompassed English, Social Studies, Math, and Science curricula using a pedagogical approach different from the single subject-based PBL's usually taught in their school district. The PBL unit draws on the NSF study and focuses on exploring the balance between economic and environmental issues surrounding local wetlands. In May 2014, 160 middle school students worked in groups to create and test a question about physio-chemical parameters in a nearby wetland and used these data to discuss local economic development. Initially, students claimed polarized views of environmental issues or economic development interests; however, during a multimedia session showcasing results, students communicated more informed perspectives that clearly incorporated knowledge gained from their own research. Some students were able to make recommendations for good practices involving planned economic development near the wetland

  14. Understanding the Chemical and Structural Dynamics of a Geothermal System Using Hyperspectral Imaging and Field Observations, Dixie Meadows, Nevada

    NASA Astrophysics Data System (ADS)

    Kennedy-Bowdoin, T. J.; Silver, E. A.; Martini, B. A.; Pickles, W. L.

    2003-12-01

    Dixie Valley hosts the largest geothermal plant in the state of Nevada. As part of an exploration program to evaluate other geothermal sites we mapped a 16 km swath of the eastern front of the Stillwater Range, including the Dixie Valley Fault system (Caskey et al. 1996) and Dixie Hot Springs. This visibly hydrothermally altered portion of the range front is located 25 km south of the existing plant and 10 km north of a major bend in the Dixie Valley Fault System. We used hyperspectral (HyMAP) data to locate outcrops of high temperature, hydrothermally altered minerals (including alunite, kaolinite, dickite, jarosite, and hematite). Several outcrops of these altered minerals exist in the mapped region, and one area of roughly 1 square kilometer shows abundant high temperature alteration. We also utilized an ASD field spectrometer to ground-truth our image interpretation and to map more subtle mineral distributions. These spectra support the locations of the mapped high temperature mineralization based on the hyperspectral data, and show that other high temperature minerals, such as vein chalcedony are present on scales below the spectral resolution of the HyMap data (3 m). At active fumaroles near the range front, acidic vapor-phase mineralization is occurring, and we measured ground temperatures of up to 94 §C. Approximately 1 km into the valley, at Dixie Valley Hot Springs, we measured alkaline liquid discharge to have a pH of 8.4 and a temperature of 75 §C. We also carried out structural analysis using a DEM, hyperspectral-based mineral mapping, and field observations. We find that this outcrop is bounded on all sides by a set of cross-cutting faults. We hypothesize that extension related to the release of the bend to the south has resulted in increased permeability, and as result, greater geothermal activity. Both the intense alteration in this area, including the presence of active fumeroles and hotsprings, and the high permeability introduced by cross

  15. Regional hydrology of the Dixie Valley geothermal field, Nevada: preliminary interpretations of chemical and isotopic data

    SciTech Connect

    Counce, D; Dunlap, C; Goff, F; Huebner, M; Janik, C; Johnson, S; Nimz, G

    1999-08-16

    Chemical and isotopic analyses of Dixie Valley regional waters indicate several distinct groups ranging in recharge age from Pleistocene (<20 ka) to recent (<50a). Valley groundwater is older than water from perennial springs and artesian wells in adjacent ranges, with Clan Alpine range (east) much younger (most <50a) than Stillwater range (west; most >1000a). Geothermal field fluids ({approximately}12-14 ka) appear derived from water similar in composition to non-thermal groundwater observed today in valley artesian wells (also -14 ka). Geothermal fluid interaction with mafic rocks (Humboldt Lopolith) appears to be common, and significant reaction with granodiorite may also occur. Despite widespread occurrence of carbonate rocks, large scale chemical interaction appears minor. Age asymmetry of the ranges, more extensive interaction with deep-seated waters in the west, and distribution of springs and artesian wells suggest the existence of a regional upward hydrologic gradient with an axis in proximity to the Stillwater range.

  16. Regional hydrology of the Dixie Valley geothermal field, Nevada: preliminary interpretations of chemical and isotopic data

    USGS Publications Warehouse

    Nimz, Gregory; Janik, Cathy; Goff, Fraser; Dunlap, Charles; Huebner, Mark; Counce, Dale; Johnson, Stuart D.

    1999-01-01

    Chemical and isotopic analyses of Dixie Valley regional waters indicated several distinct groups ranging in recharge age from Pleistocene (1000a). Geothermal field fluids (~12-14 ka) appear derived from water similar in composition to non thermal groundwater observed today in valley artesian well (also ~14 ka). Geothermal fluid interaction with mafic rocks (Humboldt Lopolith) appears to be common, and significant reaction with granodiorite may also occur. Despite widespread occurrence of carbonate rocks, large scale chemical interaction appears minor. Age asymmetry of the range, more extensive interaction with deep seated waters in the west, and distribution of springs and artesian wells suggest the existence of a regional upward hydrologic gradient with an axis in proximity to the Stillwater range.

  17. Geothermal Resource Analysis and Structure of Basin and Range Systems, Especially Dixie Valley Geothermal Field, Nevada

    SciTech Connect

    David Blackwell; Kenneth Wisian; Maria Richards; Mark Leidig; Richard Smith; Jason McKenna

    2003-08-14

    Publish new thermal and drill data from the Dizie Valley Geothermal Field that affect evaluation of Basin and Range Geothermal Resources in a very major and positive way. Completed new geophysical surveys of Dizie Valley including gravity and aeromagnetics and integrated the geophysical, seismic, geological and drilling data at Dizie Valley into local and regional geologic models. Developed natural state mass and energy transport fluid flow models of generic Basin and Range systems based on Dizie Valley data that help to understand the nature of large scale constraints on the location and characteristics of the geothermal systems. Documented a relation between natural heat loss for geothermal and electrical power production potential and determined heat flow for 27 different geothermal systems. Prepared data set for generation of a new geothermal map of North American including industry data totaling over 25,000 points in the US alone.

  18. Group II Xenoliths from Lunar Crater Volcanic Field, Central Nevada: Evidence for a Kinked Geotherm

    NASA Astrophysics Data System (ADS)

    Roden, M.; Mosely, J.; Norris, J.

    2015-12-01

    Group II xenoliths associated with the 140 Ka Easy Chair Crater, Lunar Crater volcanic field, NV, consist of amphibole rich-inclusions including amphibolites, pyroxenites, and gabbros. Abundant minerals in these inclusions are kaersutite, aluminous (7.3-9.7 wt% Al2O3), calcic clinopyroxene, primarily diopside, and olivine (Mg# 69-73) with accessory spinel, sulfide and apatite. Although most apatites are fluor-hydroxyapatite solid solutions, one xenolith contains Cl- and OH-rich apatite suggesting that Cl may have been an important constituent in the parent magma(s) . The xenoliths show abundant evidence for equilibration at relatively low temperatures including amphibole and orthopyroxene exsolution in clinopyroxene, and granules of magnetite in hercynite hosts. If latter texture is due to exsolution, then this particular Group II xenolith equilibrated at temperatures near or below 500oC or at a depth of about 15 km along a conductive geotherm. It may be that all the Group II xenoliths equilibrated at low temperatures given the abundant exsolution textures although Fe-Mg exchange relations suggest equilibration at temperatures in excess of 800oC. Low equilibration temperatures are in conflict with the unusually high equilibration temperatures, >1200oC (Smith, 2000) displayed by Group I xenoliths from this same volcanic field. Taken at face value, the geothermometric results indicate unusually high temperatures in the upper mantle, normal temperatures in the crust and the possibility of a kinked geotherm in the region. Curiously the LCVF lies in an area of "normal" heat flow, south of the Battle Mountain area of high heat flow but the number of heat flow measurements in the Lunar Crater area is very low (Humphreys et al., 2003; Sass, 2005). References: Humphreys et al., 2003, Int. Geol. Rev. 45: 575; Sass et al., 2005, http://pubs.usgs.gov/of/2005/1207/; Smith, 2000, JGR 105: 16769.

  19. Field Utilization and Analysis of AIS 128-channel Imagery Using Microcomputers: Application to Yerington, Nevada Field Area

    NASA Technical Reports Server (NTRS)

    Lyon, R. J. P.; Lanz, K.

    1985-01-01

    Geologists in exploration need to be able to determine the mineral composition of a given outcrop, and then proceed to another in order to carry out the process of geologic mapping. Since April 1984 researchers have been developing a portable microcomputer-based imaging system (with a grey-scale of 16 shades of amber), which were demonstrated during the November 1984 GSA field trip in the field at Yerington, NV. A color-version of the same technology was recently demonstrated. The portable computer selected is a COLBY 10-Megabyte, hard disk-equipped repackaged-IBM/XT, which operates on either 110/220 VAC or on 12VDC from the cigarette lighter in a field vehicle. A COMPAQ PLUS or an IBM Portable will also work on modified software. The underlying concept is that the atmospheric transmission and surface albedo/slope terms are multiplicative, relating the spectral irradiance to the spectral color of the surface materials. Thus, the spectral color of a pixel remains after averaged log-albedo and log-irradiance have been estimated. All these steps can be carried out on the COLBY microcomputer, using 80 image lines of the 128-channel, 12-bit imagery. Results are shown for such an 80-line segment, showing the identification of an O-H bearing mineral group (of slightly varying specific characters) on the flight line.

  20. Major element and oxygen isotope geochemistry of vapour-phase garnet from the Topopah Spring Tuff at Yucca Mountain, Nevada, USA

    USGS Publications Warehouse

    Moscati, Richard J.; Johnson, Craig A.

    2014-01-01

    Twenty vapour-phase garnets were studied in two samples of the Topopah Spring Tuff of the Paintbrush Group from Yucca Mountain, in southern Nevada. The Miocene-age Topopah Spring Tuff is a 350 m thick, devitrified, moderately to densely welded ash-flow tuff that is zoned compositionally from high-silica rhyolite to latite. During cooling of the tuff, escaping vapour produced lithophysae (former gas cavities) lined with an assemblage of tridymite (commonly inverted to cristobalite or quartz), sanidine and locally, hematite and/or garnet. Vapour-phase topaz and economic deposits associated commonly with topaz-bearing rhyolites (characteristically enriched in F) were not found in the Topopah Spring Tuff at Yucca Mountain. Based on their occurrence only in lithophysae, the garnets are not primary igneous phenocrysts, but rather crystals that grew from a F-poor magma-derived vapour trapped during and after emplacement of the tuff. The garnets are euhedral, vitreous, reddish brown, trapezohedral, as large as 2 mm in diameter and fractured. The garnets also contain inclusions of tridymite. Electron microprobe analyses of the garnets reveal that they are almandine-spessartine (48.0 and 47.9 mol.%, respectively), have an average composition of (Fe1.46Mn1.45Mg0.03Ca0.10)(Al1.93Ti0.02)Si3.01O12 and are comparatively homogeneous in Fe and Mn concentrations from core to rim. Composited garnets from each sample site have δ18O values of 7.2 and 7.4‰. The associated quartz (after tridymite) has δ18O values of 17.4 and 17.6‰, values indicative of reaction with later, low-temperature water. Unaltered tridymite from higher in the stratigraphic section has a δ18O of 11.1‰ which, when coupled with the garnet δ18O values in a quartz-garnet fractionation equation, indicates isotopic equilibration (vapour-phase crystallization) at temperatures of ~600°C. This high-temperature mineralization, formed during cooling of the tuffs, is distinct from the later and commonly recognized

  1. The Tulare Lake Project: A 35,000-year record of lake level constraining precipitation and stream discharge from the southern Sierra Nevada of California, USA

    NASA Astrophysics Data System (ADS)

    Negrini, R. M.

    2015-12-01

    Building upon earlier works by Harding (1949), Atwater et al. (1986) and Davis (1999), research centered at CSU Bakersfield over the past 15 years has generated a high resolution paleoclimate history with water resource implications for one of the world's great agricultural centers, the San Joaquin Valley of California. Lake level is based upon aerial mapping of geomorphological features (e.g., sand spits and shorelines), lithologic features exposed in trenches from opposite sides of the lake basin (e.g., marsh deposits), and proxy data from core (e.g., clay %). Age control was provided by radiocarbon dating of charcoal, mussel shells, and bulk organic matter and by paleomagnetic secular variation dating. From oldest to youngest, highlights include: 1. millennial-scale variations at the base of the record, 2. evidence for avulsion of the Kings River into Tulare Lake at or near the time of maximum glaciation in the Sierra Nevada as predicted by Weissman et al. (2005), 3. lake-level changes during the early and middle Holocene that vary in tune with eastern Pacific sea-surface temperatures from marine core records. This includes an unusually wet period starting at 12,500 cal B.P. followed by a dramatic, rapid drop in lake level at 7,500 cal B.P. Evidence for the former feature includes geochemical (leaf wax n-alkane markers for grass) and petrographic (grass phytolith) data. The latter feature represents an abrupt decrease in Sierran Stream discharge equal to several millions of acre-ft/yr. 4. A centuries-long increase in lake level commencing in the 13th or 14th century based on both lake-level reconstructions from the LBDA of Cook et al. (2010) and dated fine-grained sediments exposed in high-elevation trenches (Negrini et al., 2006), 5. A flood deposit identified in the uppermost sediments exposed in the southeastern edge of the lake that has a radiocarbon age consistent with that of an early 17th century flood found in the sediments of the Santa Barbara Channel

  2. Evaluation of MODIS columnar aerosol retrievals using AERONET in semi-arid Nevada and California, U.S.A., during the summer of 2012

    NASA Astrophysics Data System (ADS)

    Loría-Salazar, S. Marcela; Holmes, Heather A.; Patrick Arnott, W.; Barnard, James C.; Moosmüller, Hans

    2016-11-01

    Satellite characterization of local aerosol pollution is desirable because of the potential for broad spatial coverage, enabling transport studies of pollution from major sources, such as biomass burning events. However, retrieval of quantitative measures of air pollution such as Aerosol Optical Depth (AOD) from satellite measurements is challenging over land because the underlying surface albedo may be heterogeneous in space and time. Ground-based sunphotometer measurements of AOD are unaffected by surface albedo and are crucial in enabling evaluation, testing, and further development of satellite instruments and retrieval algorithms. Columnar aerosol optical properties from ground-based sunphotometers (Cimel CE-318) as part of AERONET and MODIS aerosol retrievals from Aqua and Terra satellites were compared over semi-arid California and Nevada during the summer season of 2012. Sunphotometer measurements were used as a 'ground truth' to evaluate the current state of satellite retrievals in this spatiotemporal domain. Satellite retrieved (MODIS Collection 6) AOD showed the presence of wildfires in northern California during August. During the study period, the dark-target (DT) retrieval algorithm appears to overestimate AERONET AOD by an average factor of 3.85 in the entire study domain. AOD from the deep-blue (DB) algorithm overestimates AERONET AOD by an average factor of 1.64. Low AOD correlation was also found between AERONET, DT, and DB retrievals. Smoke from fires strengthened the aerosol signal, but MODIS versus AERONET AOD correlation hardly increased during fire events (r2∼0.1-0.2 during non-fire periods and r2∼0-0.31 during fire periods). Furthermore, aerosol from fires increased the normalized mean bias (NMB) of MODIS retrievals of AOD (NMB∼23%-154% for non-fire periods and NMB∼77%-196% for fire periods). Ångström Extinction Exponent (AEE) from DB for both Terra and Aqua did not correlate with AERONET observations. High surface reflectance and

  3. Workforce: Nevada

    ERIC Educational Resources Information Center

    Western Interstate Commission for Higher Education, 2006

    2006-01-01

    In Nevada, the demand for well-educated employees will only increase over the next several years. In the decade leading up to 2012, healthcare occupations will see growth of 47 percent. Teachers will be in demand: over 1,100 new primary and secondary educators will need to be hired each year. Managers will see their ranks swell by 44 percent, with…

  4. Evaporative Evolution of a Na-Cl-NO3-K-Ca-SO4-Mg-Si Brine at 95(degree)C: Experiments and Modeling relevant to Yucca Mountain, Nevada, USA

    SciTech Connect

    Alai, M; Sutton, M; Carroll, S A

    2004-08-24

    A synthetic Topopah Spring Tuff water representative of one type of pore water at Yucca Mountain, Nevada (USA) was evaporated at 95 C in a series of experiments to determine the geochemical controls for brines that may form on, and possibly impact upon the long-term integrity of waste containers and drip shields at the designated high-level, nuclear-waste repository. Solution chemistry, condensed vapor chemistry, and precipitate mineralogy were used to identify important chemical divides and to validate geochemical calculations of evaporating water chemistry using a high temperature Pitzer thermodynamic database. The water evolved towards a complex ''sulfate type'' brine that contained about 45 mol% Na, 40 mol% Cl, 9 mol% NO{sub 3}, 5 mol% K, and less than 1 mol% each of SO{sub 4}, Ca, Mg, {Sigma}CO{sub 2}(aq), F, and Si. All measured ions in the condensed vapor phase were below detection limits. The mineral precipitates identified were halite, anhydrite, bassanite, niter and nitratine. Trends in the solution composition and identification of CaSO{sub 4} solids suggest that fluorite, carbonate, sulfate, and magnesium-silicate precipitation control the aqueous solution composition of sulfate type waters by removing fluoride, calcium, and magnesium during the early stages of evaporation. In most cases, the high temperature Pitzer database, used by EQ3/6 geochemical code, sufficiently predicts water composition and mineral precipitation during evaporation. Predicted solution compositions are generally within a factor of two of the experimental values. The model predicts that sepiolite, bassanite, amorphous silica, calcite, halite and brucite are the solubility controlling mineral phases.

  5. Generation of Magmas Within the Southwest Nevada Volcanic Field: Constraints Based on Trace Element Concentrations in Melt Inclusions and Sanidine

    NASA Astrophysics Data System (ADS)

    Tefend, K. S.; Vogel, T. A.; Patino, L. C.

    2004-12-01

    The southwest Nevada volcanic field contains four large compositionally zoned ash-flow tuffs, which are among the best studied in the world. This study presents trace element data from melt inclusions and sanidines in order to evaluate interpretations that the compositional zoning is due to the emplacement of discrete magma batches. The earlier ash-flows are the Topopah Spring (13.4 Ma, 1200 km3) and the Tiva Canyon (12.9 Ma, ~900 km3) tuffs. The later ash-flow tuffs are the Rainier Mesa (11.6 Ma, 1200 km3) and the Ammonia Tanks tuff (11.4 Ma, 900 km3), which erupted following a period of major extension that occurred within this region of the southern Great Basin. Each unit consists of a lower portion, dominated by rhyolitic pumice fragments and an upper portion dominated by more mafic pumice fragments - each of these contain distinct Sr, Nd and δ 18O isotopic compositions. These data are inconsistent with fractional crystallization relating the rhyolitic and mafic portions within each ash-flow tuff. In addition, the compositional variation among ash-flow units cannot be related by fractional crystallization. All melt inclusions within phenocrysts from the more mafic pumice fragments of each tuff have identical trace element concentrations. Furthermore, melt inclusions within the high-silica pumice fragments of each tuff also have identical trace element concentrations, except for a group of high-Rb, high-Nb inclusions from Rainier Mesa. Magma mixing occurred during evolution of each tuff, and is recorded in both the melt inclusions and in the host sanidines. These mixing events are subtle in the Topopah Spring tuff, but extensive mixing produced magmas of intermediate composition within the Tiva Canyon, Rainier Mesa, and Ammonia Tanks tuffs. The chemical analyses of pumice fragments from the Topopah Spring, Tiva Canyon, and Ammonia Tanks tuffs are consistent with their generation from a common source. However, Rainier Mesa magmas are different, having been

  6. Historic American engineering record. Nevada national security site, Bren Tower Complex. Written historical and descriptive data and field records

    SciTech Connect

    Edwards, Susan R.; Goldenberg, Nancy

    2013-08-01

    The BREN (Bare Reactor Experiment, Nevada) Tower Complex is significant for its role in the history of nuclear testing, radiation dosimetry studies, and early field testing of the Strategic Missile Defense System designs. At the time it was built in 1962, the 1,527 ft (465 m) BREN Tower was the tallest structure west of the Mississippi River and exceeded the height of the Empire State Building by 55 ft (17 m). It remains the tallest ever erected specifically for scientific purposes and was designed and built to facilitate the experimental dosimetry studies necessary for the development of accurate radiation dose rates for the survivors of Hiroshima and Nagasaki. The tower was a key component of the Atomic Bomb Casualty Commission’s (ABCC) mission to predict the health effects of radiation exposure. Moved to its current location in 1966, the crucial dosimetry studies continued with Operation HENRE (High Energy Neutron Reactions Experiment). These experiments and the data they generated became the basis for a dosimetry system called the Tentative 1965 Dose or more commonly the T65D model. Used to estimate radiation doses received by individuals, the T65D model was applied until the mid-1980s when it was replaced by a new dosimetry system known as DS86 based on the Monte Carlo method of dose rate calculation. However, the BREN Tower data are still used for verification of the validity of the DS86 model. In addition to its importance in radiation heath effects research, the BREN Tower Complex is also significant for its role in the Brilliant Pebbles research project, a major component of the Strategic Defense Initiative popularly known as the “Star Wars” Initiative. Instigated under the Reagan Administration, the program’s purpose was to develop a system to shield the United States and allies from a ballistic missile attack. The centerpiece of the Strategic Defense System was space-based, kinetic-kill vehicles. In 1991, BREN Tower was used for the tether tests

  7. INCREASING OIL RECOVERY THROUGH ADVANCED REPROCESSING OF 3D SEISMIC, GRANT CANYON AND BACON FLAT FIELDS, NYE COUNTY, NEVADA

    SciTech Connect

    Eric H. Johnson; Don E. French

    2001-06-01

    Makoil, Inc., of Orange, California, with the support of the U.S. Department of Energy has reprocessed and reinterpreted the 3D seismic survey of the Grant Canyon area, Railroad Valley, Nye County, Nevada. The project was supported by Dept. of Energy Grant DE-FG26-00BC15257. The Grant Canyon survey covers an area of 11 square miles, and includes Grant Canyon and Bacon Flat oil fields. These fields have produced over 20 million barrels of oil since 1981, from debris slides of Devonian rocks that are beneath 3,500 to 5,000 ft of Tertiary syntectonic deposits that fill the basin of Railroad Valley. High-angle and low-angle normal faults complicate the trap geometry of the fields, and there is great variability in the acoustic characteristics of the overlying valley fill. These factors combine to create an area that is challenging to interpret from seismic reflection data. A 3D seismic survey acquired in 1992-93 by the operator of the fields has been used to identify development and wildcat locations with mixed success. Makoil believed that improved techniques of processing seismic data and additional well control could enhance the interpretation enough to improve the chances of success in the survey area. The project involved the acquisition of hardware and software for survey interpretation, survey reprocessing, and reinterpretation of the survey. SeisX, published by Paradigm Geophysical Ltd., was chosen as the interpretation software, and it was installed on a Dell Precision 610 computer work station with the Windows NT operating system. The hardware and software were selected based on cost, possible addition of compatible modeling software in the future, and the experience of consulting geophysicists in the Billings area. Installation of the software and integration of the hardware into the local office network was difficult at times but was accomplished with some technical support from Paradigm and Hewlett Packard, manufacturer of some of the network equipment. A

  8. A protocol for coordinating post-tsunami field reconnaissance efforts in the USA

    USGS Publications Warehouse

    Wilson, Rick I.; Wood, Nathan J.; Kong, Laura; Shulters, Michael V.; Richards, Kevin D.; Dunbar, Paula; Tamura, Gen; Young, Edward J.

    2015-01-01

    In the aftermath of a catastrophic tsunami, much is to be learned about tsunami generation and propagation, landscape and ecological changes, and the response and recovery of those affected by the disaster. Knowledge of the impacted area directly helps response and relief personnel in their efforts to reach and care for survivors and for re-establishing community services. First-hand accounts of tsunami-related impacts and consequences also help researchers, practitioners, and policy makers in other parts of the world that lack recent events to better understand and manage their own societal risks posed by tsunami threats. Conducting post-tsunami surveys and disseminating useful results to decision makers in an effective, efficient, and timely manner is difficult given the logistical issues and competing demands in a post-disaster environment. To facilitate better coordination of field-data collection and dissemination of results, a protocol for coordinating post-tsunami science surveys was developed by a multi-disciplinary group of representatives from state and federal agencies in the USA. This protocol is being incorporated into local, state, and federal post-tsunami response planning through the efforts of the Pacific Risk Management ‘Ohana, the U.S. National Tsunami Hazard Mitigation Program, and the U.S. National Plan for Disaster Impact Assessments. Although the protocol was designed to support a coordinated US post-tsunami response, we believe it could help inform post-disaster science surveys conducted elsewhere and further the discussion on how hazard researchers can most effectively operate in disaster environments.

  9. LiDAR-based volume assessment of the origin of the Wadena drumlin field, Minnesota, USA

    NASA Astrophysics Data System (ADS)

    Sookhan, Shane; Eyles, Nick; Putkinen, Niko

    2016-06-01

    The Wadena drumlin field (WDF; ~ 7500 km2) in west-central Minnesota, USA, is bordered along its outer extremity by the till-cored Alexandria moraine marking the furthest extent of the southwesterly-flowing Wadena ice lobe at c. 15,000 kyr BP. Newly available high-resolution Light Detection and Ranging (LiDAR) data reveal new information regarding the number, morphology and extent of streamlined bedforms in the WDF. In addition, a newly-developed quantitative methodology based on relief curvature analysis of LiDAR elevation-based raster data is used to evaluate sediment volumes represented by the WDF and its bounding end moraine. These data are used to evaluate models for the origin of drumlins. High-resolution LiDAR-based mapping doubles the streamlined footprint of the Wadena Lobe to ~ 16,500 km2 increases the number of bedforms from ~ 2000 to ~ 6000, and most significantly, reclassifies large numbers of bedforms mapped previously as 'drumlins' as 'mega-scale glacial lineations' (MSGLs), indicating that the Wadena ice lobe experienced fast ice flow. The total volume of sediment in the Alexandria moraine is ~ 71-110 km3, that in the drumlins and MSGLs is ~ 2.83 km3, and the volume of swales between these bedforms is ~ 74.51 km3. The moraine volume is equivalent to a till layer 6.8 m thick across the entire bed of the Wadena lobe, suggesting drumlinization and moraine formation were accompanied by widespread lowering of the bed. This supports the hypothesis that drumlins and MSGLs are residual erosional features carved from a pre-existing till; swales represent 'missing sediment' that was eroded subglacially and advected downglacier to build the Alexandria Moraine during fast ice flow. Alternatively, the relatively small volume of sediment represented by subglacial bedforms indicates they could have formed rapidly by depositional processes.

  10. Are endocrine and reproductive biomarkers altered in contaminant-exposed wild male Largemouth Bass (Micropterus salmoides) of Lake Mead, Nevada/Arizona, USA?

    USGS Publications Warehouse

    Goodbred, Steven L.; Patino, Reynaldo; Torres, Leticia; Echols, Kathy R.; Jenkins, Jill A.; Rosen, Michael R.; Orsak, Erik

    2015-01-01

    Male Largemouth Bass were sampled from two locations in Lake Mead (USA), a site influenced by treated municipal wastewater effluent and urban runoff (Las Vegas Bay), and a reference site (Overton Arm). Samples were collected in summer (July '07) and spring (March '08) to assess general health, endocrine and reproductive biomarkers, and compare contaminant body burdens by analyzing 252 organic chemicals. Sperm count and motility were measured in spring. Contaminants were detected at much higher frequencies and concentrations in fish from Las Vegas Bay than Overton Arm. Those with the highest concentrations included PCBs, DDTs, PBDEs, galaxolide, and methyl triclosan. Fish from Las Vegas Bay also had higher Fulton condition factor, hepatosomatic index, and hematocrit, and lower plasma 11-ketotestosterone concentration (KT). Gonadosomatic index (GSI) and sperm motility did not differ between sites, but sperm count was lower by nearly 50% in fish from Las Vegas Bay. A positive association between KT and GSI was identified, but this association was nonlinear. On average, maximal GSI was reached at sub-maximal KT concentrations. In conclusion, the higher concentration of contaminant body burdens coupled with reduced levels of KT and sperm count in fish from Las Vegas Bay suggest that male reproductive condition was influenced by contaminant exposures. Also, the nonlinear KT-GSI association provided a framework to understand why GSI was similar between male bass from both sites despite their large difference in KT, and also suggested the existence of post-gonadal growth functions of KT at high concentrations.

  11. Are endocrine and reproductive biomarkers altered in contaminant-exposed wild male Largemouth Bass (Micropterus salmoides) of Lake Mead, Nevada/Arizona, USA?

    PubMed

    Goodbred, Steven L; Patiño, Reynaldo; Torres, Leticia; Echols, Kathy R; Jenkins, Jill A; Rosen, Michael R; Orsak, Erik

    2015-08-01

    Male Largemouth Bass were sampled from two locations in Lake Mead (USA), a site influenced by treated municipal wastewater effluent and urban runoff (Las Vegas Bay), and a reference site (Overton Arm). Samples were collected in summer (July '07) and spring (March '08) to assess general health, endocrine and reproductive biomarkers, and compare contaminant body burdens by analyzing 252 organic chemicals. Sperm count and motility were measured in spring. Contaminants were detected at much higher frequencies and concentrations in fish from Las Vegas Bay than Overton Arm. Those with the highest concentrations included PCBs, DDTs, PBDEs, galaxolide, and methyl triclosan. Fish from Las Vegas Bay also had higher Fulton condition factor, hepatosomatic index, and hematocrit, and lower plasma 11-ketotestosterone concentration (KT). Gonadosomatic index (GSI) and sperm motility did not differ between sites, but sperm count was lower by nearly 50% in fish from Las Vegas Bay. A positive association between KT and GSI was identified, but this association was nonlinear. On average, maximal GSI was reached at sub-maximal KT concentrations. In conclusion, the higher concentration of contaminant body burdens coupled with reduced levels of KT and sperm count in fish from Las Vegas Bay suggest that male reproductive condition was influenced by contaminant exposures. Also, the nonlinear KT-GSI association provided a framework to understand why GSI was similar between male bass from both sites despite their large difference in KT, and also suggested the existence of post-gonadal growth functions of KT at high concentrations.

  12. Multiple episodes of hydrothermal activity and epithermal mineralization in the southwestern Nevada volcanic field and their relations to magmatic activity, volcanism and regional extension

    SciTech Connect

    Weiss, S.I.; Noble, D.C.; Jackson, M.C.

    1994-12-31

    Volcanic rocks of middle Miocene age and underlying pre-Mesozoic sedimentary rocks host widely distributed zones of hydrothermal alteration and epithermal precious metal, fluorite and mercury deposits within and peripheral to major volcanic and intrusive centers of the southwestern Nevada volcanic field (SWNVF) in southern Nevada, near the southwestern margin of the Great Basin of the western United States. Radiometric ages indicate that episodes of hydrothermal activity mainly coincided with and closely followed major magmatic pulses during the development of the field and together spanned more than 4.5 m.y. Rocks of the SWNVF consist largely of rhyolitic ash-flow sheets and intercalated silicic lava domes, flows and near-vent pyroclastic deposits erupted between 15.2 and 10 Ma from vent areas in the vicinity of the Timber Mountain calderas, and between about 9.5 and 7 Ma from the outlying Black Mountain and Stonewall Mountain centers. Three magmatic stages can be recognized: the main magmatic stage, Mountain magmatic stage (11.7 to 10.0 Ma), and the late magmatic stage (9.4 to 7.5 Ma).

  13. Petrogenesis of mid-Miocene rhyolites from the Idaho-Oregon-Nevada region, USA: Implications from feldspar Sr and Pb isotope data

    NASA Astrophysics Data System (ADS)

    Wypych, A.; Hart, W. K.

    2012-12-01

    The Idaho-Oregon-Nevada (ION) region provides an excellent natural laboratory for studying the complex processes that form continental crust. During the Oligocene-Miocene, the ION region underwent widespread extension and volcanism with bimodal (silicic and mafic) volcanism dominating the mid-Miocene [1]. This bimodal volcanism is temporally related to the main Columbia River flood basalt activity to the north, and initiated with mafic eruptions at ~17 Ma, followed closely by silicic magmatism at ~16.5 Ma. This intimate link between mafic and silicic activity continued until ~13 Ma. The ION region is situated on a boundary between Proterozoic cratonic lithosphere to the east and Mesozoic accreted terrains to the west as defined by Sr and Nd isotopic compositions. In this region, however, the boundary is not sharp and distinctive, but rather forms a heterogeneous "transitional zone" between the two lithospheric domains. Another feature adding to the complexity of this region is the fact that it lies at the junction of two major volcanic trends: the Snake River Plain- Yellowstone (SRP-Y) progressing in time and space to the northeast and the High Lava Plains - Newberry (HPL-N) progressing to the northwest. The ION region volcanism as well as the SRP-Y and HLP-N volcanic trends is caused by mantle upwelling behind the subducting Juan de Fuca slab, voluminous mafic magma injections into the crust, melting of spatially, temporally, and compositionally heterogeneous crust, and mixing of the primitive and more evolved products [1,2,3]. An ongoing petrographic, major and trace element and Sr-Nd-Pb-Hf isotope investigation of 24 pairs of glass separates and whole rock samples from five ION silicic centers representing a west (off-craton) to east (on-craton) transect across this zone of transitional lithosphere provides evidence of open system processes involved in the production of the silicic material as well as spatial, temporal and compositional diversity within and

  14. Field and laboratory fomesafen dissipation in the southern Atlantic Coastal Plain (USA)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Glyphosate resistant Palmer amaranth (Amaranthus palmeri) was discovered in central Georgia (USA) in 2006. Subsequent spread of this highly problematic weed throughout the region prompted growers and registrants to seek labels for herbicides that can provide cost-effective control. To this end, the...

  15. Field and laboratory dissipation of the herbicide fomesafen in the southern Atlantic Coastal Plain (USA)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    To control weeds with evolved resistance to glyphosate, cotton farmers in the Southeastern USA have rapidly increased fomesafen (5-(2-chloro-a, a, a-trifluoro-p-tolyloxy)-N-mesyl-2-nitrobenzamide) use. Its properties suggest potential for soil persistence, runoff, and leaching that may contribute to...

  16. Mixing and melt sources in the Miocene Aztec Wash pluton (Nevada, USA) as revealed by zircon Hf and O and whole rock Sr, Nd, and Hf isotopes

    NASA Astrophysics Data System (ADS)

    Ryan, M.; Miller, J. S.; Miller, C. F.; Bromley, S.; Davies, G. R.; Schmitt, A. K.

    2011-12-01

    The 15.6 Ma Aztec Wash Pluton (AWP) is one of several Miocene intrusions located within the northern Colorado River extensional corridor. Extensive E-W tilting of fault blocks has exposed the pluton from the roof to 5 km structural depth. Earlier field and petrologic studies subdivided the AWP into two distinct zones: (1) a Granite Zone (GZ) comprised of relatively homogeneous granite with subtle differences in textures and mineralogy; (2) a Heterogeneous Zone (HZ), which interfingers the GZ, contains evidence for mafic and felsic magma input with a wide compositional range (42-78 wt% SiO2), and abundant field evidence for hybridization. Previous whole rock geochemistry and zircon trace element analyses indicated that compositional variation was produced by multi-component mixing between mafic and felsic melts within the HZ. New whole rock Sr, Nd, and Hf isotope data from the HZ show that all rocks (including high-silica granites) formed by mixing Precambrian crust and enriched mantle, with mixtures having a large mantle fraction (≥50%). New Hf (n=189) and O (n=241) isotope analyses of zircon from samples in the HZ confirm these melt sources and provide a broader perspective on hybridization processes within the AWP. Zircon grains from all samples show heterogeneous Hf and O isotopic compositions (-5 to -18 ɛHf; 4.5-7.5% δ18O), but despite the clear signature of Precambrian crust in the whole rock data, obvious Precambrian zircons (or cores) were mostly absent; only one zircon was clearly Precambrian (ɛHf = -25). Resolvable intragrain variability is relatively limited (including the Precambrian grain, which is unzoned). Zircons from hand samples and from compositional groups also show heterogeneous ɛHf and δ18O values, although the spreads are more restricted than in the whole data set (6-10 ɛHf in granites, 5-7 ɛHf in intermediate "hybrids", 5-6 ɛHf in gabbro/diorite sheets). Oxygen isotope values for the zircons also show intra-handsample heterogeneity

  17. Intermediate composition magma production in an intracontinental setting: Unusual andesites and dacites of the mid-Miocene Santa Rosa-Calico volcanic field, Northern Nevada

    NASA Astrophysics Data System (ADS)

    Brueseke, Matthew E.; Hart, William K.

    2009-11-01

    The mid-Miocene Santa Rosa-Calico volcanic field (SC) of northern Nevada provides an outstanding example of the role open-system magmatic processes play in producing calc-alkaline and tholeiitic andesite-dacite magmas in an intracontinental setting. SC volcanism commenced at ˜ 16.7 Ma and is associated with the initial manifestations of the Yellowstone hotspot, the Columbia River-Steens flood basalt event(s), and the formation of the Northern Nevada rift. Locally a diverse package of magmatic products ranging from tholeiitic basalt to high-Si rhyolite was produced during an ˜ 2 myr duration. Within this package are the products of at least four distinct intermediate composition magmatic systems that may represent as much as 40% of the SC volcanic pile. These help differentiate the SC from contemporaneous Oregon Plateau volcanic fields (e.g. McDermitt, Lake Owyhee, Northwest Nevada) that are dominated by bimodal basalt-rhyolite assemblages. All SC intermediate units are characterized by textural and mineralogic complexities including xenoliths and xenocrysts of local crust and crystal clots of plagioclase ± clinopyroxene ± orthopyroxene ± oxide. SC intermediate units are dominantly tholeiitic, but include lava flows with transitional to calc-alkaline affinities. Relative to locally erupted Steens Basalt, SC intermediate lava flows have similar elemental enrichments and depletions, but dissimilar Sr and Nd isotopic compositions. These isotopic differences, coupled with the abundant disequilibrium features and variable incompatible element ratios, indicate that open system magmatic processes played a major role in the genesis of the intermediate units. SC silicic magmas were produced primarily via upper crustal melting of chemically and isotopically heterogeneous Cretaceous granitoid. Interaction between fractionating mafic Steens flood basalt magmas and the more evolved crustal melts ± assimilation of local upper crust provides a general template for the

  18. Production data from five major geothermal fields in Nevada analysed using a physiostatistical algorithm developed for oil and gas: temperature decline forecasts and type curves

    NASA Astrophysics Data System (ADS)

    Kuzma, H. A.; Golubkova, A.; Eklund, C.

    2015-12-01

    Nevada has the second largest output of geothermal energy in the United States (after California) with 14 major power plants producing over 425 megawatts of electricity meeting 7% of the state's total energy needs. A number of wells, particularly older ones, have shown significant temperature and pressure declines over their lifetimes, adversely affecting economic returns. Production declines are almost universal in the oil and gas (O&G) industry. BetaZi (BZ) is a proprietary algorithm which uses a physiostatistical model to forecast production from the past history of O&G wells and to generate "type curves" which are used to estimate the production of undrilled wells. Although BZ was designed and calibrated for O&G, it is a general purpose diffusion equation solver, capable of modeling complex fluid dynamics in multi-phase systems. In this pilot study, it is applied directly to the temperature data from five Nevada geothermal fields. With the data appropriately normalized, BZ is shown to accurately predict temperature declines. The figure shows several examples of BZ forecasts using historic data from Steamboat Hills field near Reno. BZ forecasts were made using temperature on a normalized scale (blue) with two years of data held out for blind testing (yellow). The forecast is returned in terms of percentiles of probability (red) with the median forecast marked (solid green). Actual production is expected to fall within the majority of the red bounds 80% of the time. Blind tests such as these are used to verify that the probabilistic forecast can be trusted. BZ is also used to compute and accurate type temperature profile for wells that have yet to be drilled. These forecasts can be combined with estimated costs to evaluate the economics and risks of a project or potential capital investment. It is remarkable that an algorithm developed for oil and gas can accurately predict temperature in geothermal wells without significant recasting.

  19. 234U/238U evidence for local recharge and patterns of groundwater flow in the vicinity of Yucca Mountain, Nevada, USA

    USGS Publications Warehouse

    Paces, J.B.; Ludwig, K. R.; Peterman, Z.E.; Neymark, L.A.

    2002-01-01

    Uranium concentrations and 234U/238U ratios in saturated-zone and perched ground water were used to investigate hydrologic flow and downgradient dilution and dispersion in the vicinity of Yucca Mountain, a potential high-level radioactive waste disposal site. The U data were obtained by thermal ionization mass spectrometry on more than 280 samples from the Death Valley regional flow system. Large variations in both U concentrations (commonly 0.6-10 ??g 1-1) and 234U/238U activity ratios (commonly 1.5-6) are present on both local and regional scales; however, ground water with 234U/238U activity ratios from 7 up to 8.06 is restricted largely to samples from Yucca Mountain. Data from ground water in the Tertiary volcanic and Quaternary alluvial aquifers at and adjacent to Yucca Mountain plot in 3 distinct fields of reciprocal U concentration versus 234U/238U activity ratio correlated to different geographic areas. Ground water to the west of Yucca Mountain has large U concentrations and moderate 234U/238U whereas ground water to the east in the Fortymile flow system has similar 234U/238U, but distinctly smaller U concentrations. Ground water beneath the central part of Yucca Mountain has intermediate U concentrations but distinctive 234U/238U activity ratios of about 7-8. Perched water from the lower part of the unsaturated zone at Yucca Mountain has similarly large values of 234U/238U. These U data imply that the Tertiary volcanic aquifer beneath the central part of Yucca Mountain is isolated from north-south regional flow. The similarity of 234U/238U in both saturated- and unsaturated-zone ground water at Yucca Mountain further indicates that saturated-zone ground water beneath Yucca Mountain is dominated by local recharge rather than regional flow. The distinctive 234U/238U signatures also provide a natural tracer of downgradient flow. Elevated 234U/238U in ground water from two water-supply wells east of Yucca Mountain are interpreted as the result of induced

  20. Calibration and validation of the relative differenced Normalized Burn Ratio (RdNBR) to three measures of fire severity in the Sierra Nevada and Klamath Mountains, California, USA

    USGS Publications Warehouse

    Miller, J.D.; Knapp, E.E.; Key, C.H.; Skinner, C.N.; Isbell, C.J.; Creasy, R.M.; Sherlock, J.W.

    2009-01-01

    Multispectral satellite data have become a common tool used in the mapping of wildland fire effects. Fire severity, defined as the degree to which a site has been altered, is often the variable mapped. The Normalized Burn Ratio (NBR) used in an absolute difference change detection protocol (dNBR), has become the remote sensing method of choice for US Federal land management agencies to map fire severity due to wildland fire. However, absolute differenced vegetation indices are correlated to the pre-fire chlorophyll content of the vegetation occurring within the fire perimeter. Normalizing dNBR to produce a relativized dNBR (RdNBR) removes the biasing effect of the pre-fire condition. Employing RdNBR hypothetically allows creating categorical classifications using the same thresholds for fires occurring in similar vegetation types without acquiring additional calibration field data on each fire. In this paper we tested this hypothesis by developing thresholds on random training datasets, and then comparing accuracies for (1) fires that occurred within the same geographic region as the training dataset and in similar vegetation, and (2) fires from a different geographic region that is climatically and floristically similar to the training dataset region but supports more complex vegetation structure. We additionally compared map accuracies for three measures of fire severity: the composite burn index (CBI), percent change in tree canopy cover, and percent change in tree basal area. User's and producer's accuracies were highest for the most severe categories, ranging from 70.7% to 89.1%. Accuracies of the moderate fire severity category for measures describing effects only to trees (percent change in canopy cover and basal area) indicated that the classifications were generally not much better than random. Accuracies of the moderate category for the CBI classifications were somewhat better, averaging in the 50%-60% range. These results underscore the difficulty in

  1. Airborne LiDAR analysis and geochronology of faulted glacial moraines in the Tahoe-Sierra frontal fault zone reveal substantial seismic hazards in the Lake Tahoe region, California-Nevada USA

    USGS Publications Warehouse

    Howle, James F.; Bawden, Gerald W.; Schweickert, Richard A.; Finkel, Robert C.; Hunter, Lewis E.; Rose, Ronn S.; von Twistern, Brent

    2012-01-01

    We integrated high-resolution bare-earth airborne light detection and ranging (LiDAR) imagery with field observations and modern geochronology to characterize the Tahoe-Sierra frontal fault zone, which forms the neotectonic boundary between the Sierra Nevada and the Basin and Range Province west of Lake Tahoe. The LiDAR imagery clearly delineates active normal faults that have displaced late Pleistocene glacial moraines and Holocene alluvium along 30 km of linear, right-stepping range front of the Tahoe-Sierra frontal fault zone. Herein, we illustrate and describe the tectonic geomorphology of faulted lateral moraines. We have developed new, three-dimensional modeling techniques that utilize the high-resolution LiDAR data to determine tectonic displacements of moraine crests and alluvium. The statistically robust displacement models combined with new ages of the displaced Tioga (20.8 ± 1.4 ka) and Tahoe (69.2 ± 4.8 ka; 73.2 ± 8.7 ka) moraines are used to estimate the minimum vertical separation rate at 17 sites along the Tahoe-Sierra frontal fault zone. Near the northern end of the study area, the minimum vertical separation rate is 1.5 ± 0.4 mm/yr, which represents a two- to threefold increase in estimates of seismic moment for the Lake Tahoe basin. From this study, we conclude that potential earthquake moment magnitudes (Mw) range from 6.3 ± 0.25 to 6.9 ± 0.25. A close spatial association of landslides and active faults suggests that landslides have been seismically triggered. Our study underscores that the Tahoe-Sierra frontal fault zone poses substantial seismic and landslide hazards.

  2. Evaluation of the Radiochemistry of Near-Field Water Samples at the Nevada Test Site Applied to the Definition of a Hydrologic Source Term

    SciTech Connect

    Smith, D K

    2002-07-05

    Effective management of available groundwater resources and strategies for remediation of water impacted by past nuclear testing practices depend on knowledge about the migration of radionuclides in groundwater away from the sites of the explosions. A primary concern is to assess the relative mobilities of the different radionuclide species found near sites of underground nuclear tests and to determine the concentration, extent, and speed of this movement. Ultimately the long term transport behavior of radionuclides with half-lives long enough that they will persist for decades, their interaction with groundwater, and the resulting flux of these contaminants is of paramount importance. As part of a comprehensive approach to these assessments, more than three decades of site-specific sites studies have been undertaken at the Nevada Test Site (NTS) which have focused on the means responsible for the observed or suspected movement of radionuclides away from underground nuclear tests (RNM, 1983). More recently regional and local models of groundwater flow and radionuclide transport have been developed as part of a federal and state of Nevada program to assess the long-term effects of underground nuclear testing on human health and environment (e.g., U.S. DOE/NV, 1997a; Tompson et al., 1999; Pawloski et al., 2001). Necessary to these efforts is a reliable measure of the hydrologic source term which is defined as those radionuclides dissolved in or otherwise transported by groundwater (Smith et al., 1995). Measurement of radionuclides in waters sampled near the sites of underground nuclear test provides arguably the best opportunity to bound the hydrologic source term. This empirical approach was recognized early and concentration data has been collected annually since mid-1970's. Initially three sites were studied at the NTS; over the years the program has been expanded to include more than fifteen study locations. As part of various field programs, Lawrence Livermore

  3. Late Pleistocene ages for the most recent volcanism and glacial-pluvial deposits at Big Pine volcanic field, California, USA, from cosmogenic 36Cl dating

    USGS Publications Warehouse

    Vazquez, Jorge A.; Woolford, Jeff M

    2015-01-01

    The Big Pine volcanic field is one of several Quaternary volcanic fields that poses a potential volcanic hazard along the tectonically active Owens Valley of east-central California, and whose lavas are interbedded with deposits from Pleistocene glaciations in the Sierra Nevada Range. Previous geochronology indicates an ∼1.2 Ma history of volcanism, but the eruption ages and distribution of volcanic products associated with the most-recent eruptions have been poorly resolved. To delimit the timing and products of the youngest volcanism, we combine field mapping and cosmogenic 36Cl dating of basaltic lava flows in the area where lavas with youthful morphology and well-preserved flow structures are concentrated. Field mapping and petrology reveal approximately 15 vents and 6 principal flow units with variable geochemical composition and mineralogy. Cosmogenic 36Cl exposure ages for lava flow units from the top, middle, and bottom of the volcanic stratigraphy indicate eruptions at ∼17, 27, and 40 ka, revealing several different and previously unrecognized episodes of late Pleistocene volcanism. Olivine to plagioclase-pyroxene phyric basalt erupted from several vents during the most recent episode of volcanism at ∼17 ka, and produced a lava flow field covering ∼35 km2. The late Pleistocene 36Cl exposure ages indicate that moraine and pluvial shoreline deposits that overlie or modify the youngest Big Pine lavas reflect Tioga stage glaciation in the Sierra Nevada and the shore of paleo-Owens Lake during the last glacial cycle.

  4. Railroad Valley, Nevada

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Information from images of Railroad Valley, Nevada captured on August 17,2001 by the Advanced Spaceborne Thermal Emission and Reflection Radiometer(ASTER) may provide a powerful tool for monitoring crop health and maintenance procedures.

    These images cover an area of north central Nevada. The top image shows irrigated fields, with healthy vegetation in red. The middle image highlights the amount of vegetation. The color code shows highest vegetation content in red, orange, yellow, green, blue, and purple and the lowest in black. The final image is a thermal infrared channel, with warmer temperatures in white and colder in black.

    In the thermal image, the northernmost and westernmost fields are markedly colder on their northwest areas, even though no differences are seen in the visible image or the second, Vegetation Index image. This can be attributed to the presence of excess water, which can lead to crop damage.

    The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER)is an imaging instrument that is flying on Terra, a satellite launched in December 1999 as part of NASA's Earth Observing System (EOS). The instrument is being used to obtain detailed maps of land surface temperature, emissivity, reflectance and elevation. The Earth Observing System (EOS) platforms are part of NASA's Earth Science Enterprise, whose goal is to obtain a better understanding of the interactions between the biosphere, hydrosphere, lithosphere and atmosphere.

    NASA's Jet Propulsion Laboratory is a division of the California Institute of Technology, Pasadena.

  5. GPS Imaging of Sierra Nevada Uplift

    NASA Astrophysics Data System (ADS)

    Hammond, W. C.; Blewitt, G.; Kreemer, C.

    2015-12-01

    Recent improvements in the scope and precision of GPS networks across California and Nevada have allowed for uplift of the Sierra Nevada to be observed directly. Much of the signal, in the range of 1 to 2 mm/yr, has been attributed to lithospheric scale rebound following massive groundwater withdrawal in the San Joaquin Valley in southern California, exacerbated by drought since 2011. However, natural tectonic deformation associated with long term uplift of the range may also contribute to the observed signal. We have developed new algorithms that enhance the signal of Sierra Nevada uplift and improve our ability to interpret and separate natural tectonic signals from anthropogenic contributions. We apply our new Median Interannual Difference Adjusted for Skewness (MIDAS) algorithm to the vertical times series and a inverse distance-weighted median spatial filtering and Delaunay-based interpolation to despeckle the rate map. The resulting spatially continuous vertical rate field is insensitive to outliers and steps in the GPS time series, and omits isolated features attributable to unstable stations or unrepresentative rates. The resulting vertical rate field for California and Nevada exhibits regionally coherent signals from the earthquake cycle including interseismic strain accumulation in Cascadia, postseismic relaxation of the mantle from recent large earthquakes in central Nevada and southern California, groundwater loading changes, and tectonic uplift of the Sierra Nevada and Coast Ranges. Uplift of the Sierra Nevada extends from the Garlock Fault in the south to an indefinite boundary in the north near the latitude of Mt. Lassen to the eastern Sierra Nevada range front in Owen's Valley. The rates transition to near zero in the southern Walker Lane. The eastern boundary of uplift coincides with the highest strain rates in the western Great Basin, suggesting higher normal fault slip rates and a component of tectonic uplift of the Sierra Nevada.

  6. Nevada National Security Site Environmental Report 2013

    SciTech Connect

    Wills, C.

    2014-09-09

    This report was prepared to meet the information needs of the public and the requirements and guidelines of the U.S. Department of Energy (DOE) for annual site environmental reports. It was prepared by National Security Technologies, LLC (NSTec), for the U.S. Department of Energy, National Nuclear Security Administration Nevada Field Office (NNSA/NFO) (formerly designated as the Nevada Site Office [NNSA/NSO]). The new field office designation occurred in March 2013. Published reports cited in this 2013 report, therefore, may bear the name or authorship of NNSA/NSO. This and previous years’ reports, called Annual Site Environmental Reports (ASERs), Nevada Test Site Environmental Reports (NTSERs), and, beginning in 2010, Nevada National Security Site Environmental Reports (NNSSERs), are posted on the NNSA/NFO website at http://www.nv.energy.gov/library/publications/aser.aspx.

  7. Comparison of Near-field and Far-field Air Monitoring of Plutonium-contaminated Soils from the Tonopah Test Range, Nevada

    SciTech Connect

    John L. Bowen; David S. Shafer

    2001-05-01

    Operation Roller Coaster, a series of nuclear material dispersal experiments, resulted in three areas (Clean Slates 1, 2, and 3) of widespread surface soil plutonium (Pu) contamination on the Tonopah Test Range (TTR), located 225 miles northwest of Las Vegas, Nevada. The State's Division of Environmental Protection raised concerns that dispersal of airborne Pu particles from the sites could result in undetected deposition further downwind that the background monitoring stations. Air monitoring data from different distances from the Clean Slate sites but during the same period of time were compared. From the available data, there is no indication that airborne PM10 particles are being transported to the farther distance,however, the data are statistically insufficient to conclude whether there is a difference in transport of respirable Pu particles to the closer verses the farther sites from the Clean Slate sites.

  8. Hydrothermal systematics, alteration, and mineralization in the Grant Canyon, Bacon Flat, and Blackburn Oil Fields, Nevada - Intriguing Parallels with Carlin-Type gold deposits

    SciTech Connect

    Hulen, J.B.; Nielson, D.L. )

    1993-08-01

    Nevada's three known thermally active oil reservoirs-Blackburn, Bacon Flat, and Grand Canyon-share a surprisingly long list of essential attributes with the Carlin-type, low-grade, sediment-hosted gold deposits, particularly those of the Alligator Ridge mining district. Like these rich precious-metal ore bodies, the three fields (1) are hosted by Paleozoic carbonate and calcareous silici-clastic strata; (2) occur in structural or structural/stratigraphic traps sealed beneath shales or hydrothermally argillized and silicified tuffs and epiclastic debris, (3) have undergone intense fracturing and brecciation, as well as massive hydrothermal decalcification as major porosity-creating processes; (4) occupy rocks partly altered to or veined by the secondary-mineral assemblage quartz-kaolin-barite-pyrite-marcasite; (5) have a direct geothermal connection; (6) are enriched in the elements arsenic, antimony, mercury, thallium, and even contain significant traces of gold-up 50 ppb in altered Mississippian Chainmain Shale in the Blackburn field. Moreover, measured temperatures, as well as late-stage, fluid-inclusion homogenization temperatures (T[sub h]) at the fields-all in the range 100-135[degrees]C-fall within the fluid-inclusion T[sub h] span of 90-165[degrees]C recorded for multiple Alligator Ridge deposits. Fracture-controlled live oil and oil-bearing fluid inclusions in some of the Alligator Ridge ores provide further evidence of genetic similarities with the oil reservoirs. The authors suggest that the three oil fields could represent either weakly mineralized analogs of the gold deposits or an incipient phase in their evolution ultimately leading to ore mineralization.

  9. Basque Diaspora in the USA and Language Maintenance

    ERIC Educational Resources Information Center

    Lasagabaster, David

    2008-01-01

    The Basques first immigrated on a large scale to the USA during the Gold Rush of 1848. After immigrating to the USA, they settled in pockets throughout the West, especially in California, Nevada and Idaho, and it is currently estimated that more than 35,000 Basque-Americans live in these three states. This represents one of the largest…

  10. Timing and development of the Heise volcanic field, Snake River Plain, Idaho, western USA

    USGS Publications Warehouse

    Morgan, L.A.; McIntosh, W.C.

    2005-01-01

    The Snake River Plain (SRP) developed over the last 16 Ma as a bimodal volcanic province in response to the southwest movement of the North American plate over a fixed melting anomaly. Volcanism along the SRP is dominated by eruptions of explosive high-silica rhyolites and represents some of the largest eruptions known. Basaltic eruptions represent the final stages of volcanism, forming a thin cap above voluminous rhyolitic deposits. Volcanism progressed, generally from west to east, along the plain episodically in successive volcanic fields comprised of nested caldera complexes with major caldera-forming eruptions within a particular field separated by ca. 0.5-1 Ma, similar to, and in continuation with, the present-day Yellowstone Plateau volcanic field. Passage of the North American plate over the melting anomaly at a particular point in time and space was accompanied by uplift, regional tectonism, massive explosive eruptions, and caldera subsidence, and followed by basaltic volcanism and general subsidence. The Heise volcan ic field in the eastern SRP, Idaho, represents an adjacent and slightly older field immediately to the southwest of the Yellowstone Plateau volcanic field. Five large-volume (>0.5 km3) rhyolitic ignimbrites constitute a time-stratigraphic framework of late Miocene to early Pliocene volcanism for the study region. Field relations and high-precision 40Ar/39Ar age determinations establish that four of these regional ignimbrites were erupted from the Heise volcanic field and form the framework of the Heise Group. These are the Blacktail Creek Tuff (6.62 ?? 0.03 Ma), Walcott Tuff (6.27 ?? 0.04 Ma), Conant Creek Tuff (5.51 ?? 0.13 Ma), and Kilgore Tuff (4.45 ?? 0.05 Ma; all errors reported at ?? 2??). The fifth widespread ignimbrite in the regions is the Arbon Valley Tuff Member of the Starlight Formation (10.21 ?? 0.03 Ma), which erupted from a caldera source outside of the Heise volcanic field. These results establish the Conant Creek Tuff as a

  11. Comparison of three field screening techniques for delineating petroleum hydrocarbon plumes in groundwater at a site in the southern Carson Desert, Nevada

    SciTech Connect

    Smuin, D.R.

    1993-01-01

    Three types of field screening techniques used in the characterization of potentially contaminated sites at Naval Air Station Fallon, Nevada, are compared. The methods and results for each technique are presented. The three techniques include soil-gas surveys, electromagnetic geophysical surveys, and groundwater test hole screening. Initial screening at the first study site included two soil-gas surveys and electromagnetic geophysical studies. These screening methods identified I areas of contamination; however, results were inconclusive. Therefore groundwater test hole screening was performed. Groundwater screening consisted of auger drilling down to the shallow alluvial aquifer. Groundwater samples were collected from the open drill hole with a bailer. On-site head-space analyses for volatile organic compounds (VOCS) were performed using a portable gas chromatograph (GC). Five areas of floating petroleum hydrocarbon product were identified along with the overall dissolved contaminant plume boundaries. Well placement was re-evaluated, and well sites were relocated based on the screening information. The most effective technique for identification of petroleum hydrocarbon-contaminant plumes was groundwater test hole screening. Groundwater screening was subsequently performed at 19 other sites. A total of 450 test holes were analyzed resulting in the delineation of six plumes.

  12. Effects of wildlife of ethyl and methyl parathion applied to California USA rice fields

    USGS Publications Warehouse

    Custer, T.W.; Hill, E.F.; Ohlendorf, H.M.

    1985-01-01

    Selected rice fields on the Sacramento National Wildlife Refuge Complex were aerially sprayed one time during May or June 1982 with either ethyl (0.11 kg Al/ha) or methyl (0.84 kg AI/ha) parathion for control of tadpole shrimp, Triops longicaudatus. No sick or dead vertebrate wildlife were found or adjacent to the treated rice fields after spraying. Specimens of the following birds and mammals were assayed for brain cholinesterase (ChE) activity to determine exposure to either form of parathion; house mouse, Mus musculus; black-tailed jackrabbit, Lepus californicus; mallard, Anas platyrhynchos; ring-necked pheasant, Phasianus colchicus; American coot, Fulica americana; and red-winged blackbird, Agelaius phoeniceus. Both mice and pheasants from methyl parathion-treated fields had overall mean ChE activities that were significantly (P < 0.05) inhibited compared with controls, and 7, 40, 54 and 57% of individual blackbirds, pheasant, mice, and coots, respectively, had inhibited brain ChE activities (i.e., less than -2 SD of control mean). Although no overall species effect was detected for ethyl parathoid treatment, pheasants (43%), coots (33%), and mice (37%) had significantly inhibited brain ChE activities. Neither of the parathion treatment appeared acutely hazardous to wildlife in or adjacent to rice fields, but sufficient information on potential hazards was obtained to warrant caution in use of these chemicals, especially methyl parathion, in rice fields.

  13. Investigation of high-temperature, igneous-related hydraulic fracturing as a reservoir control in the Blackburn and Grant Canyon/Bacon Flat oil fields, Nevada

    SciTech Connect

    Hulen, J.B.

    1991-01-01

    Research in progress to evaluate natural, igenous-related hydrothermal fracturing as a reservoir control in two eastern Nevada oil fields has revealed evidence of a far more comprehensive role for moderate- to high-temperature hydrothermal systems in Basin-and-Range oil-reservoir evolution. Fluid-inclusion and petrographic studies have shown that (now) oil-bearing dolomite breccias of the Blackburn field (Pine Valley, Eureka County) were formed when overpressured, magmatically-heated, high-temperature (>350{degrees}C) hydrothermal brines explosively ruptured their host rocks; similar studies of texturally identical breccias of the Grant Canyon/Bacon Flat field (Railroad Valley, Nye County) so far do not support such an explosive origin. At Grant Canyon, however, hydrothermal, breccia-cementing quartz hosts primary oil, aqueous/oil, and aqueous fluid inclusions (homogenization temperature = 120{degrees}C) which document a direct geothermal connection for oil migration and entrapment. Moreover, at both Blackburn and Grant Canyon/Bacon Flat, the oil reservoirs are top- and side-sealed by hydrothermally altered Tertiary ignimbrites and epiclastic rocks. Contemporary geothermal activity is also apparent at grant Canyon/Bacon Flat, where subsurface water temperatures reach 171{degrees}C, and at Blackburn, above which a petroleum-providing hot spring issues at a temperature of 90{degrees}C. We suggest that in the Basin and Range province, hydrothermal systems may have: (1) matured oil from otherwise submature source rocks; (2) transported oil to ultimate entrapment sites by convection in moderate-to high-temperature fluids; and (3) sealed reservoir traps through hydrothermal alteration of overlying Tertiary caprocks. 69 refs., 11 figs., 1 tab.

  14. 75 FR 7518 - Notice of Public Meeting: Sierra Front Northwestern Basin Resource Advisory Council, Nevada

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-19

    ...: 14X1109] Notice of Public Meeting: Sierra Front Northwestern Basin Resource Advisory Council, Nevada... Great Basin Resource Advisory Council (RAC), will meet in Carson City, Nevada. The meeting is open to... Mill Road, Carson City, Nevada. A field trip to locations in Storey and Washoe counties will occur...

  15. Holocene coastal dune fields used as indicators of net littoral transport: West Coast, USA

    NASA Astrophysics Data System (ADS)

    Peterson, Curt D.; Stock, Errol; Hart, Roger; Percy, David; Hostetler, Steve W.; Knott, Jeffrey R.

    2010-03-01

    Between Point Grenville, Washington, and Point Conception, California (1500 km distance) 21 dune fields record longshore transport in 20 littoral cells during the late Holocene. The direction of predominant littoral transport is established by relative positions of dune fields (north, central, or south) in 17 representative littoral cells. Dune field position is north of cell midpoints in northernmost Oregon and Washington, but is south of cell midpoints in southern Oregon and California. Downdrift sand trapping occurs at significant changes in shoreline angle and/or at bounding headlands that project at least 2.5 km seaward from the general coastal trend. Sand bypassing occurs around small headlands of less than 0.5 km in projection distance. A northward shift of the winter low-pressure center in the northeast Pacific Ocean is modeled from 11 ka to 0 ka. Nearshore current forcing in southern Oregon and northern California switched from northward in earliest Holocene time to southward in late Holocene time. The late Holocene (5-0 ka) is generally characterized by net northward littoral drift in northernmost Oregon and Washington and by net southward littoral drift in southernmost Oregon and California. A regional divergence of net transport direction in central Oregon, i.e. no net drift, is consistent with modeled wind and wave forcing at the present time (0 ka).

  16. Holocene coastal dune fields used as indicators of net littoral transport: West Coast, USA

    USGS Publications Warehouse

    Peterson, C.D.; Stock, E.; Hart, R.; Percy, D.; Hostetler, S.W.; Knott, J.R.

    2010-01-01

    Between Point Grenville, Washington, and Point Conception, California (1500 km distance) 21 dune fields record longshore transport in 20 littoral cells during the late Holocene. The direction of predominant littoral transport is established by relative positions of dune fields (north, central, or south) in 17 representative littoral cells. Dune field position is north of cell midpoints in northernmost Oregon and Washington, but is south of cell midpoints in southern Oregon and California. Downdrift sand trapping occurs at significant changes in shoreline angle and/or at bounding headlands that project at least 2.5 km seaward from the general coastal trend. Sand bypassing occurs around small headlands of less than 0.5 km in projection distance. A northward shift of the winter low-pressure center in the northeast Pacific Ocean is modeled from 11 ka to 0 ka. Nearshore current forcing in southern Oregon and northern California switched from northward in earliest Holocene time to southward in late Holocene time. The late Holocene (5-0 ka) is generally characterized by net northward littoral drift in northernmost Oregon and Washington and by net southward littoral drift in southernmost Oregon and California. A regional divergence of net transport direction in central Oregon, i.e. no net drift, is consistent with modeled wind and wave forcing at the present time (0 ka). ?? 2009 Elsevier B.V.

  17. A surface vitrinite reflectance anomaly related to Bell Creek oil field, Montana, U.S.A.

    USGS Publications Warehouse

    Barker, C.E.; Dalziel, M.C.; Pawlewicz, M.J.

    1983-01-01

    Vitrinite reflectance measurements from surface samples of mudrock and coal show anomalously high values over the Bell Creek oil field. The average vitrinite reflectance (Rm) increases to a maximum of 0.9 percent over the field against background values of about 0.3 percent. The Rm anomaly coincides with a geochemical anomaly indicated by diagenetic magnetite in surface rocks and a geobiologic anomaly indicated by ethane-consuming bacteria. These samples were taken from the Upper Cretaceous Hell Creek and Paleocene Fort Union Formations which form an essentially conformable sequence. The depositional environment is similar in both formations, and we expect little variation in the source and composition of the organic matter. The surface R m should be approximately constant because of a uniform thermal history across the field. Temperature studies over local oil fields with similar geology suggest the expected thermal anomaly would be less than 10?C (50?F), which is too small to account for the significantly higher rank over the field. Coal clinkers are rare in the vicinity of Bell Creek and an Rm anomaly caused by burning of the thin, discontinuous coal seams is unlikely. The limited topographic relief, less than 305 m (1,000 ft), over the shallow-dipping homoclinal structure and the poor correlation between Rm and sample locality elevation (r = -0.2) indicate that the Rm anomaly is not due to burial, deformation and subsequent erosion. We conjecture that activity by petroleum-metabolizing bacteria is a possible explanation of the Rm anomaly. Microseepage from oil reservoirs supports large colonies of these organisms, some of which can produce enzymes that can cleave hydrocarbon side-chains on the kerogen molecule. The loss of these side chains causes condensation of the ring structures (Stach and others, 1982) and consequently increases its reflectance. These data indicate that vitrinite reflectance may be a useful tool to explore for stratigraphic traps in the

  18. Time-Dependent Deformation at Brady Hot Springs Geothermal Field (Nevada) Measured With Interferometric Synthetic Aperture Radar and Modeled with Multiple Working Hypotheses of Coupled Behavior

    NASA Astrophysics Data System (ADS)

    Feigl, K. L.; Ali, S. T.; Akerley, J.; Baluyut, E.; Cardiff, M. A.; Davatzes, N. C.; Foxall, W.; Fratta, D.; Kreemer, C.; Mellors, R. J.; Lopeman, J.; Spielman, P.; Wang, H. F.

    2015-12-01

    To measure time-dependent deformation at the Brady Hot Springs geothermal field in western Nevada, we analyze interferometric synthetic aperture radar (InSAR) data acquired between 2004 and 2014 by five satellite missions, including: ERS-2, Envisat, ALOS, TerraSAR-X, and TanDEM-X. The resulting maps of deformation show an elliptical subsiding area that is ~4 km by ~1.5 km. Its long axis coincides with the strike of the dominant normal-fault system at Brady. Within this bowl of subsidence, the interference pattern shows several smaller features with length scales of the order of ~1 km. This signature occurs consistently in all of the well-correlated interferometric pairs spanning several months. Results from inverse modeling suggest that the deformation is a result of volumetric contraction in shallow units, no deeper than 600 m, that are probably associated with damaged regions where faults interact via thermal (T), hydrological (H), mechanical (M), and chemical (C) processes. Such damaged zones are expected to extend downward along steeply dipping fault planes, providing high-permeability conduits to the production wells. Using time series analysis, we test the hypothesis that geothermal production drives the observed deformation. We find a good correlation between the observed deformation rate and the rate of production in the shallow wells. We explore first-order models to calculate the time-dependent deformation fields produced by coupled processes, including: thermal contraction of rock (T-M coupling), decline in pore pressure (H-M coupling), and dissolution of minerals over time (H-C-M coupling). These processes are related to the heterogeneity of hydro-geological and material properties at the site. This work is part of a project entitled "Poroelastic Tomography by Adjoint Inverse Modeling of Data from Seismology, Geodesy, and Hydrology" (PoroTomo) http://geoscience.wisc.edu/feigl/porotomo.

  19. History and geology of the giant Elk-Poca field, West Virginia, USA

    SciTech Connect

    Patchen, D.G. ); Bruner, K.R.; Noald, M.T. )

    1991-03-01

    The 165,000 acre Elk-Poca field was discovered in 1933 when a wildcat well tested the Oriskany Sandstone (Lower Devonian) on the Milliken Anticline in Elk District, Kanawha County. Rapid expansion occurred northward, along the anticline, and westward into Poca District on the Sissonville high. Begun as a structural play, it soon became an exploration program for thick, well-developed clean sandstones. Elk-Poca is a combination stratigraphic and structural trap. In Jackson County, salt water is present downdip, and updip production is limited by a loss of highly permeable beds. The reservoir was developed in clean, highly permeable sandstones in the upper part of the Oriskany. The average pay section is 30 ft thick, and characterized by high permeabilities, and consistent, but low porosities. High initial flow rates for both natural wells and wells stimulated by shooting correlate with areas of thick sandstone. Nearly 1200 wells were drilled in the field, and more than 1100 produced gas. Since 1933, nearly 1 tcf of gas have been produced, with the best wells in areas of thick sandstone. Production decline was rapid, due to the high permeability and moderate porosity. This giant field is in the only area in West Virginia where a certain set of geologic factors coincide. The north-south structural strike is paralleled by an east-west decrease in sandstone thickness, and a westeast increase in thickness of the organic-rich Devonian shales. Gas migrated from the shales into the permeable Oriskany before compaction and cementation by carbonate eliminated all porosity and permeability. The presence of gas in open pores may have retarded further cementation.

  20. Effect of field edges on dispersal and distribution of colonizing stink bugs across farmscapes of the southeast USA.

    PubMed

    Tillman, P G; Cottrell, T E; Mizell, R F; Kramer, E

    2014-02-01

    Stink bugs (Heteroptera: Pentatomidae), including Nezara viridula (L.), Euschistus servus (Say), and Chinavia hilaris (Say), are economic pests in farmscapes where they move within and between closely associated crop and non-crop habitats. Thus, field edges in these farmscapes include not only crop-to-crop interfaces but also those edges adjoining non-crop habitats. We examined the influence of field edges on colonization of stink bugs in southeastern USA farmscapes composed of typical combinations of corn, peanut, and cotton. For E. servus and N. viridula, egg-to-adult development and presence of both sexes on all crops indicated that the crops served as reproductive plants. Adult C. hilaris were rarely found on corn and on crops associated with it, and they were present mainly in cotton in peanut-cotton farmscapes. Mature crop height was significantly higher for corn than for cotton and significantly higher for cotton over peanut, and an edge effect in dispersal of stink bugs into a crop was detected up to 4.6, 8.2, and 14.6 m from the crop-to-crop interface in corn, cotton, and peanut, respectively. These results suggest that stink bug dispersal into a crop decreases as crop height increases. The first stink bug-infested crop at the crop-to-crop interface was the most significant contributor of colonizing stink bugs to an adjacent crop. An edge effect in dispersal of stink bug adults was detected in corn next to non-woodlands and woodlands and in cotton adjacent to woodlands. Edge effects were never detected in side edges of peanut. Overall, our results indicate that both plant height and host plant suitability can influence edge-mediated dispersal of stink bugs at field edges.

  1. Analysis of stress and geomechanical properties in the Niobrara Formation of Wattenberg Field, Colorado, USA

    NASA Astrophysics Data System (ADS)

    Grazulis, Alexandra K.

    In Wattenberg Field the Niobrara Formation is the primary productive zone for horizontal drilling and completions. It is an unconventional reservoir made up of alternating chalk and marl layers which require hydraulic fracturing for completion. The main study area for this project is a four square mile region where time-lapse multicomponent seismic surveys have been acquired. This area includes the Wishbone section, where 11 horizontal wells have been drilled, and is the focus of dynamic reservoir characterization. The primary goal of this research study is to investigate relationships between geomechanics, stress and fractures. Determining the geomechanical properties of the reservoir is essential for better reservoir management. Geology is the main driver controlling production, due to the presence of fault compartmentalization in the field. The central graben, within the Wishbone section, causes geologic heterogeneity and displays signs of high net pressure. This is due to a larger increase in pore pressure, ultimately decreasing effective stress. Outside of the graben, naturally fractured areas, displaying decreasing net pressure trends, will maximize fracture network surface area during completions. This allows for a larger volume of rock to be stimulated, and a greater chance of opening pre-existing fractures. As far as re-fracturing efforts are concerned, areas outside of the graben which are brittle and have low stress anisotropy should be targeted to create complex fracture networks. Geomechanical and stress information about the reservoir is vital for predicting fracture propagation. After investigation of fracture characterization trends, we have a better understanding of stimulated areas within the Wishbone section. Specific completion techniques can be applied to stages based on geomechanical properties and geologic location. Fracture networks defined through the integrated dynamic reservoir characterization process provide targets for future re

  2. Lag times of bank filtration at a well field, Cincinnati, Ohio, USA

    USGS Publications Warehouse

    Sheets, R.A.; Darner, R.A.; Whitteberry, B.L.

    2002-01-01

    Wells placed next to surface-water bodies to induce infiltration have come under scrutiny because of the presence of the potential pathogens in surface water. Removal of pathogens and other contaminants by bank filtration is assumed, but regulatory agencies question the effectiveness of this process. To investigate transport processes of biological constituents, advective groundwater traveltimes to production wells under the influence of surface water need to be established first to determine appropriate water-quality sampling schedules. This paper presents the results of a study of bank filtration at a well field in southwestern Ohio. Field parameters such as water level, specific conductance, and water temperature were measured at least hourly at a streamflow gaging station and at five monitoring wells each at two separate sites, corresponding to two nearby production wells. Water-quality samples also were collected in all wells and the streamflow gaging station. Specific conductance is directly related to concentration of chloride, a chemically conservative constituent. Cross-correlation methods were used to determine the average traveltime from the river to the monitoring wells. Traveltimes based on specific conductance ranged from approximately 20 h to 10 days at one site and 5 days to 3 months at the other site. Calculated groundwater flow velocities ranged from 2.1 ?? 10-3 to 6.0 ?? 10-3 cm/s and 3.5 ?? 10-4 to 7.1 ?? 10-4 cm/s at the two sites. Data collected when a production well is continuously pumping reveal shorter and more consistent traveltimes than when the same well is pumped intermittently. ?? 2002 Elsevier Science B.V. All rights reserved.

  3. Gold-silver mining districts, alteration zones, and paleolandforms in the Miocene Bodie Hills Volcanic Field, California and Nevada

    USGS Publications Warehouse

    Vikre, Peter G.; John, David A.; du Bray, Edward A.; Fleck, Robert J.

    2015-09-25

      Based on volcanic stratigraphy, geochronology, remnant paleosurfaces, and paleopotentiometric surfaces in mining districts and alteration zones, present landforms in the Bodie Hills volcanic field reflect incremental construction of stratovolcanoes and large- to small-volume flow-domes, magmatic inflation, and fault displacements. Landform evolution began with construction of the 15–13 Ma Masonic and 13–12 Ma Aurora volcanic centers in the northwestern and northeastern parts of the field, respectively. Smaller volcanoes erupted at ~11–10 Ma in, between, and south of these centers as erosional detritus accumulated north of the field in Fletcher Valley. Distally sourced, 9.7–9.3 Ma Eureka Valley Tuff filled drainages and depressions among older volcanoes and was partly covered by nearly synchronous eruptives during construction of four large 10–8 Ma volcanoes, in the southern part of the field. The lack of significant internal fault displacement, distribution of Eureka Valley Tuff, and elevation estimates derived from floras, suggest that the Bodie Hills volcanic field attained present elevations mostly through volcano construction and magmatic inflation, and that maximum paleoelevations (>8,500 ft) at the end of large volume eruptions at ~8 Ma are similar to present elevations.

  4. Field testing of immunocontraception on white-tailed deer (Odocoileus virginianus) on Fire Island National Seashore, New York, USA.

    PubMed

    Naugle, R E; Rutberg, A T; Underwood, H B; Turner, J W; Liu, I K M

    2002-01-01

    Application of contraception for the control of suburban populations of white-tailed deer (Odocoileus virginianus) has been much debated, but few data are available on field applications and even fewer on population effects. Between 1993 and 1997, 74-164 individually known female deer living on Fire Island, New York, USA, were treated remotely with an initial shot of 65 microg porcine zona pellucida (PZP) in Freund's complete adjuvant followed by booster injections of 65 microg PZP in Freund's incomplete adjuvant. Starting in 1996, progressively increasing numbers of deer were treated with vaccinating/marking darts. Estimates of population density and composition, using distance sampling methods, began in 1995 in selected portions of the study area. Between 1993 and 1997, fawning rates among individually known, treated adult females decreased by 78.9% from pretreatment rates. Population density in the most heavily treated area increased by 11% per year from 1995 to March 1998 and then decreased at 23% per year to October 2000. In 1999-2000 surveys, fawns comprised 13-14% of the total population in the most heavily treated area, versus 16-33% in nearby untreated areas. These results show that PZP can be delivered effectively to sufficient deer to affect population density and composition in some environments, but that technical and logistical improvements are needed before contraception can be used widely to manage suburban deer populations.

  5. Effects of nutrient enrichment on Prymnesium parvum population dynamics and toxicity: Results from field experiments, Lake Possum Kingdom, USA

    USGS Publications Warehouse

    Roelke, D.L.; Errera, R.M.; Riesling, R.; Brooks, B.W.; Grover, J.P.; Schwierzke, L.; Urena-Boeck, F.; Baker, J.; Pinckney, J.L.

    2007-01-01

    Large fish kills associated with toxic populations of the haptophyte Prymnesium parvum occur worldwide. In the past 5 yr, incidences of P. parvum blooms in inland water bodies of Texas (USA) have increased dramatically, where cell densities in excess of 1 ?? 107 cells l-1 are typically observed. We conducted field experiments (Lake Possum Kingdom) during the fall and early spring of 28 d duration using 24 enclosures of 1.57 m 3 each. The experiments investigated the effect of nutrient enrichment, immigration of P. parvum and addition of barley straw extract on phytoplankton biomass and assemblage structure, P. parvum population density, zooplankton biomass and assemblage structure, bacteria, and toxicity. Nutrient enrichment stimulated P. parvum population growth beyond bloom proportions (>1 ?? 107 cells l-1). However, P. parvum did not dominate the assemblage under these conditions, as it does during natural blooms. Instead, euglenophytes and chlorophytes dominated. Toxicity, estimated using fish (Pimephales promelas) and cladoceran (Daphnia magna) bioassays and which is linked to P. parvum's allelopathic and mixotrophic effectiveness, was greatly reduced (eliminated in many cases) under conditions of nutrient enrichment. The suppression of toxicity by nutrient addition suggested that targeted and time-limited nutrient manipulations might be used to mitigate the effects of P. parvum blooms. Immigration of P. parvum into natural assemblages and addition of barley straw extract had no significant effect on plankton dynamics. ?? Inter-Research 2007.

  6. Field testing of immunocontraception on white-tailed deer (Odocoileus virginianus) on Fire Island National Seashore, New York, USA

    USGS Publications Warehouse

    Naugle, R.E.; Rutberg, A.T.; Underwood, H.B.; Turner, J.W.; Liu, I.K.; Kirkpatrick, J.F.; Lasley, B.L.; Allen, W.R.; Doberska, C.

    2002-01-01

    Application of contraception for the control of suburban populations of white-tailed deer (Odocoileus virginianus) has been much debated, but few data are available on field applications and even fewer on population effects. Between 1993 and 1997, 74-164 individually known female deer living on Fire Island, New York, USA, were treated remotely with an initial shot of 65 microg porcine zona pellucida (PZP) in Freund's complete adjuvant followed by booster injections of 65 microg PZP in Freund's incomplete adjuvant. Starting in 1996, progressively increasing numbers of deer were treated with vaccinating/marking darts. Estimates of population density and composition, using distance sampling methods, began in 1995 in selected portions of the study area. Between 1993 and 1997, fawning rates among individually known, treated adult females decreased by 78.9% from pretreatment rates. Population density in the most heavily treated area increased by 11% per year from 1995 to March 1998 and then decreased at 23% per year to October 2000. In 1999-2000 surveys, fawns comprised 13-14% of the total population in the most heavily treated area, versus 16-33% in nearby untreated areas. These results show that PZP can be delivered effectively to sufficient deer to affect population density and composition in some environments, but that technical and logistical improvements are needed before contraception can be used widely to manage suburban deer populations.

  7. Waste Burial in Arid Environments--Application of Information From a Field Laboratory in the Mojave Desert, Southern Nevada

    USGS Publications Warehouse

    Andraski, B.J.; Prudic, David E.; Nichols, William D.

    1995-01-01

    Because of the potentially harmful effect of improper waste disposal on water resources in the arid West, comprehensive laboratory and field studies are critical to identifying likely contaminant-release pathways and the potential for waste migration at arid sites. However, the quandary for those charged with assessment of the suitability of potential disposal sites is that site characterization and evaluation must be accomplished in a relatively short period of time-only 1 to 2 years. Data collection at the Mojave Desert field laboratory provides the needed long-term benchmark against which short-term data from proposed arid sites can be compared. The data base and monitoring facilities developed at the field laboratory also provide an excellent foundation upon which to build collaborative efforts with universities and local, State, and other Federal agencies to further the study and understanding of hydrologic processes in an arid environment.

  8. Heteromorphism and crystallization paths of katungites, Navajo volcanic field, Arizona, USA

    SciTech Connect

    Laughlin, A.W.; Charles, R.W.; Aldrich, M.J. Jr.

    1986-01-01

    A swarm of thin, isochemical but heteromorphic dikes crops out in the valley of Hasbidito Creek in NE Arizona. The swarm is part of the dominantly potassic, mid-Tertiary Navajo volcanic field of the Colorado Plateau. Whole-rock chemical analyses of five samples from four of the dikes indicate that they are chemically identical to the katungites of Uganda. These dikes show the characteristic seriate-porphyritic texture of lamprophyres. Samples of an olivine-melilitite dike from the same swarm lack this texture and the chemical analysis, while similar to those of the other dikes, shows effects from the incorporation of xenocrystic olivine. Over 20 mineral phases have been identified in the Arizona samples and as many as 18 phases may occur in a single sample. The major phases are phlogopite, olivine, perovskite, opaque oxides, +- melilite and +- clinopyroxene. Based upon the modal mineralogies and textures of ten dike samples, we recognize five general non-equilibrium assemblages. Comparison of these assemblages with recent experimental results shows that they represent various combinations of complete and incomplete reactions. Reaction relations were determined by entering melt and phase compositions into the computer program GENMIX to obtain balanced reactions. By combining petrographic observations with mineral chemical data, balanced reactions from GENMIX, and the recently determined phase diagrams we are able to trace crystallization paths for the katungite magma.

  9. Marine tephrochronology of the Mt. Edgecumbe volcanic field, southeast Alaska, USA

    USGS Publications Warehouse

    Addison, Jason A.; Beget, James E.; Ager, Thomas A.; Finney, Bruce P.

    2010-01-01

    The Mt. Edgecumbe Volcanic Field (MEVF), located on Kruzof Island near Sitka Sound in southeast Alaska, experienced a large multiple-stage eruption during the last glacial maximum (LGM)-Holocene transition that generated a regionally extensive series of compositionally similar rhyolite tephra horizons and a single well-dated dacite (MEd) tephra. Marine sediment cores collected from adjacent basins to the MEVF contain both tephra-fall and pyroclastic flow deposits that consist primarily of rhyolitic tephra and a minor dacitic tephra unit. The recovered dacite tephra correlates with the MEd tephra, whereas many of the rhyolitic tephras correlate with published MEVF rhyolites. Correlations were based on age constraints and major oxide compositions of glass shards. In addition to LGM-Holocene macroscopic tephra units, four marine cryptotephras were also identified. Three of these units appear to be derived from mid-Holocene MEVF activity, while the youngest cryptotephra corresponds well with the White River Ash eruption at not, vert, similar 1147 cal yr BP. Furthermore, the sedimentology of the Sitka Sound marine core EW0408-40JC and high-resolution SWATH bathymetry both suggest that extensive pyroclastic flow deposits associated with the activity that generated the MEd tephra underlie Sitka Sound, and that any future MEVF activity may pose significant risk to local population centers.

  10. Local magnetic fields, uplift, gravity, and dilational strain changes in Southern California ( USA).

    USGS Publications Warehouse

    Johnston, M.J.S.

    1986-01-01

    Measurements of regional magnetic field near the San Andreas fault at Cajon, Palmdale and Tejon are strongly correlated with changes in gravity, areal strain, and uplift in these regions during the period 1977-1984. Because the inferred relationships between these parameters are in approximate agreement with those obtained from simple deformation models, the preferred explanation appeals to short-term strain episodes independently detected in each data set. Transfer functions from magnetic to strain, gravity, and uplift perturbations, obtained by least-square linear fits to the data, are -0.98 nT/ppm, -0.03 nT/mu Gal, and 9.1 nT/m respectively. Tectonomagnetic model calculations underestimate the observed changes and those reported previously for dam loading and volcano-magnetic observations. A less likely alternative explanation of the observed data appeals to a common source of meteorologically generated crustal or instrumental noise in the strain, gravity, magnetic, and uplift data.-from Author

  11. USC Undergraduate Team Research, Geological Field Experience and Outdoor Education in the Tuolumne Batholith and Kings Canyon, High Sierra Nevada

    NASA Astrophysics Data System (ADS)

    Culbert, K. N.; Anderson, J. L.; Cao, W.; Chang, J.; Ehret, P.; Enriquez, M.; Gross, M. B.; Gelbach, L. B.; Hardy, J.; Paterson, S. R.; Ianno, A.; Iannone, M.; Memeti, V.; Morris, M.; Lodewyk, J.; Davis, J.; Stanley, R.; van Guilder, E.; Whitesides, A. S.; Zhang, T.

    2009-12-01

    Within four years, USC’s College of Letters, Arts and Sciences and Earth Science department have successfully launched the revolutionary undergraduate team research (UTR) program “Geologic Wonders of Yosemite at Two Miles High”. A diverse group of professors, graduate students and undergraduates spent two weeks mapping the Boyden Cave in Kings Canyon National Park, the Iron Mountain pendants south of Yosemite, the Western Metamorphic belt along the Merced River, and the Tuolumne Batholith (TB) in June and August 2009. During their experience in the field, the undergraduates learned geologic field techniques from their peers, professors, and experienced graduate students and developed ideas that will form the basis of the independent and group research projects. Apart from teaching undergraduates about the geology of the TB and Kings Canyon, the two weeks in the field were also rigorous exercise in critical thinking and communication. Every day spent in the field required complete cooperation between mentors and undergraduates in order to successfully gather and interpret the day’s data. Undergraduates were to execute the next day’s schedule and divide mapping duties among themselves. The two-week field experience was also the ideal setting in which to learn about the environmental impacts of their work and the actions of others. The UTR groups quickly adapted to the demanding conditions of the High Sierra—snow, grizzly bears, tourists, and all. For many of the undergraduates, the two weeks spent in the field was their first experience with field geology. The vast differences in geological experience among the undergraduates proved to be advantageous to the ‘team-teaching’ focus of the program: more experienced undergraduates were able to assist less experienced undergraduates while cementing their own previously gained knowledge about geology. Over the rest of the academic year, undergraduates will learn about the research process and scientific

  12. Quantifying atmospheric stability conditions at a swine facility and an adjacent corn field in Iowa, USA

    NASA Astrophysics Data System (ADS)

    Hernandez-Ramirez, Guillermo; Sauer, Thomas J.; Hatfield, Jerry L.; Prueger, John H.

    2011-10-01

    Atmospheric stability conditions in the atmospheric surface layer control the distance and direction of transport of air contaminants. Near confined animal facilities, transport processes significantly impact air quality as these sites typically act as point sources of dust and odor constituents; however, little information is available on atmospheric stability effects. This study was conducted to assess year-round temporal patterns of atmospheric stability at a swine production facility and an adjacent commercial corn field (CF) in the US Midwest. Two towers of 10 and 20 m heights for continuous micrometeorological measurements were deployed within a CF and between swine buildings (BSB), respectively. Each tower was equipped with an eddy-covariance system at 6.8 m height, infrared thermometers, and six cup anemometers with thermocouples installed at log-distributed heights. Overall results from gradient Richardson number and Monin-Obukhov (z/L) calculations revealed a greater prevalence of unstable conditions for BSB compared with CF. During the 13-month measurement period, unstable cases (z/L ranging from -1 to -0.01) occurred 1.4 times more frequently for BSB than CF (52 vs. 39%, respectively), while stable cases (0.011-0.2) were 1.8 times more frequent for CF than BSB (24 vs. 14%, respectively). These patterns were partly associated with higher surface radiometric temperatures for BSB. Relatively greater diurnal heat capture at BSB (ground and roof surfaces) and a cooling effect in CF through active canopy transpiration during the daytime explain these z/L and radiometric temperature results. Prevalent diurnal atmospheric instability at BSB suggests enhanced ascendant vertical transport of air pollutants perhaps causing greater mixing/dilution with the atmospheric layer and/or their facilitated transport over greater distances when sorbed onto particles. This enhanced understanding of the spatio-temporal patterns of atmospheric stability can be subsequently

  13. River solute fluxes reflecting active hydrothermal chemical weathering of the Yellowstone Plateau Volcanic Field, USA

    USGS Publications Warehouse

    Hurwitz, S.; Evans, William C.; Lowenstern, J. B.

    2010-01-01

    In the past few decades numerous studies have quantified the load of dissolved solids in large rivers to determine chemical weathering rates in orogenic belts and volcanic areas, mainly motivated by the notion that over timescales greater than ~100kyr, silicate hydrolysis may be the dominant sink for atmospheric CO2, thus creating a feedback between climate and weathering. Here, we report the results of a detailed study during water year 2007 (October 1, 2006 to September 30, 2007) in the major rivers of the Yellowstone Plateau Volcanic Field (YPVF) which hosts Earth's largest "restless" caldera and over 10,000 thermal features. The chemical compositions of rivers that drain thermal areas in the YPVF differ significantly from the compositions of rivers that drain non-thermal areas. There are large seasonal variations in river chemistry and solute flux, which increases with increasing water discharge. The river chemistry and discharge data collected periodically over an entire year allow us to constrain the annual solute fluxes and to distinguish between low-temperature weathering and hydrothermal flux components. The TDS flux from Yellowstone Caldera in water year 2007 was 93t/km2/year. Extensive magma degassing and hydrothermal interaction with rocks accounts for at least 82% of this TDS flux, 83% of the cation flux and 72% of the HCO3- flux. The low-temperature chemical weathering rate (17t/km2/year), calculated on the assumption that all the Cl- is of thermal origin, could include a component from low-temperature hydrolysis reactions induced by CO2 ascending from depth rather than by atmospheric CO2. Although this uncertainty remains, the calculated low-temperature weathering rate of the young rhyolitic rocks in the Yellowstone Caldera is comparable to the world average of large watersheds that drain also more soluble carbonates and evaporates but is slightly lower than calculated rates in other, less-silicic volcanic regions. Long-term average fluxes at

  14. Peralkaline ash flow tuffs and calderas of the McDermitt volcanic field, southeast Oregon and north central Nevada.

    USGS Publications Warehouse

    Rytuba, J.J.; McKee, E.H.

    1984-01-01

    This volcanic field covers an area of 20 000 km2 and consists of seven large-volume ash-flow sheets that vented 16.1-15 m.y. ago. The volcanic field is characterized by peralkaline, high-silica rhyolite, and all but one of the sheets are comendites. Each ash-flow sheet resulted in the formation of a large collapse caldera. Thickening of the ash-flow sheets, monoclinal warping outside the caldera ring-fault and tilting-in towards the caldera of blocks bounded by curvilinear faults all indicate regional subsidence prior to caldera collapse. The McDermitt caldera complex is highly mineralized; it contains ore deposits of Hg, Sb, Cs, Li and U. The peralkaline tuffs have high contents of these elements and were the source rocks from which metals were leached by hydrothermal systems developed during the last stage of caldera-related volcanism. (Following abstract) -W.H.B.

  15. Partial record of a Miocene geomagnetic field excursion: Paleomagnetic data from the Paiute Ridge volcanic center, southern Nevada

    SciTech Connect

    Ratcliff, C.D.; Geissman, J.W.; Perry, F.V. ); Crowe, B.M. )

    1993-04-01

    In the Palute Ridge area, northern Halfpint Range, a complex system of late Miocene (about 8.5 Ma) intrusive and extrusive alkaline mafic rocks crops out over an area of about 25km[sup 2]. Post-magmatic faulting and erosion have resulted in excellent exposure of this sub-volcanic center, allowing for a detailed study of mechanisms and timing of magma emplacement. Paleomagnetic data have been obtained from over 50 sites in mafic rocks, and host ash-flow tuffs and carbonate strata, to better understand the duration of magmatic activity. Magnetizations, isolated in progressive alternating field and thermal demagnetization, for most of the sites at Palute Ridge deviate significantly from expected directions for a time-averaged late Miocene field. Demagnetization data show that there are two types of sample behavior. First, samples with close to expected reverse polarity directions (e.g., the chilled margin of a sill, D=209.2, l=[minus]36.4, [alpha]95=13.2, N=5, k=34.8). Second, and far more common, are samples giving magnetizations of southwest to northwest declination, with both shallow to moderate positive and negative inclination. Within this second grouping are several sites, including syenite pods which differentiated in situ from a large lopolith, having mean declinations that are due west and of shallow inclination. Contact tests performed at several sites are positive and show a clear correlation between sample position and isolated remanence direction. The authors preferred interpretation of the anomalously directed magnetization is that these rocks acquired a TRM during either a high amplitude excursion, or the transitional portion of a field reversal. Thermal models based on larger intrusions [+-] 10m thick at Paiute Ridge indicate that the magmas could cool through estimated magnetization blocking temperatures within weeks or months of emplacement.

  16. The role of active and ancient geothermal systems in evolution of Grant Canyon oil field, Railroad Valley, Nye County, Nevada

    SciTech Connect

    Hulen, J.B. ); Bereskin, S.R. ); Bortz, L.C.

    1991-06-01

    Since discovery in 1983, the Grant Canyon field has been among the most prolific oil producers (on a per-well basis) in the US. Production through June 1990 was 12,935,630 bbl of oil, principally from two wells which in tandem have consistently yielded more than 6,000 bbl of oil per day. The field is hosted by highly porous Devonian dolomite breccia loosely cemented with hydrothermal quartz. Results of fluid-inclusion and petrographic research in progress at Grant Canyon suggest that paleogeothermal and perhaps currently circulating geothermal systems may have played a major role in oil-reservoir evolution. For example, as previously reported, the breccia-cementing quartz hosts primary aqueous, aqueous/oil, and oil fluid inclusions which were trapped at about 120C (average homogenization temperature) and document initial oil migration and entrapment as droplets or globules dispersed in dilute (< 2.2 wt.% equivalent NaCl) aqueous solutions. Additional evidence of geothermal connection is that the horst-block trap at Grant Canyon is top and side sealed by valley-fill clastic and volcanic rocks which are locally hydrothermally altered and calcite flooded. These secondary seals are enhanced by disseminated, solid asphaltic residues locally accounting for 23% (volume) of the rock. Current reservoir temperatures at Grant Canyon (120C) and the adjacent Bacon Flat field (171C) attest to vigorous contemporary geothermal activity. Based on results of the authors' Grant Canyon work to date, they suggest that active and paleohydrothermal systems could be viable petroleum exploration targets in otherwise favorable terrain elsewhere in the Basin and Range.

  17. WHEELER PEAK ROADLESS AREA, NEVADA.

    USGS Publications Warehouse

    Whitebread, Donald H.; Kluender, Steven E.

    1984-01-01

    Field investigations to evaluate the mineral-resource potential of the Wheeler Peak Roadless Area in east-central Nevada were conducted. The field studies included geologic mapping, geochemical sampling, geophysical surveys, and a survey of mines and prospects. Several areas in the sedimentary and granitic rocks in the lower plate of the Snake Range decollement have probable mineral-resource potential for tungsten, beryllium, and lead. A small area of gravels near the north border of the area has a probable mineral-resource potential for placer gold. The geologic setting is not conducive for the occurrence of energy resources.

  18. Oligocene caldera complex and calc-alkaline tuffs and lavas of the Indian Peak volcanic field, Nevada and Utah

    USGS Publications Warehouse

    Best, M.G.; Christiansen, E.H.; Blank, H.R.

    1989-01-01

    The Indian Peak volcanic field is representative of the more than 50 000 km3 of ashflow tuff and tens of calderas in the Great Basin that formed during the Oligocene-early Miocene "ignimbrite flareup' in southwestern North America. These dominantly high-K calc-alkaline rocks are a record of the birth, maturation, and death of a large, open, continental magma system that was probably initiated and sustained by influx of mafic magma derived from a southward-migrating locus of magma production in the mantle. Recurrent production of very large batches (some greater than 3000 km3) of quite uniform dacite magmas appears to have required combination of andesite magma and crustal silicic material in vigorously convecting chambers. Compositional data indicate that rhyolites are polygenetic. As the main locus of mantle magma production shifted southward, trachydacite magma could have been produced by fractionation of andesitic magma within the crust. -from Author

  19. Geochemistry of stream-sediment samples from the Santa Renia Fields and Beaver Peak quadrangles, northern Carlin Trend, Nevada

    USGS Publications Warehouse

    Theodore, Ted G.; Kotlyar, Boris B.; Berger, Vladimir I.; Moring, Barry C.; Singer, Donald A.; Edstrom, Sven A.

    1999-01-01

    A broad west-to-east increase of many metal concentrations has been found in stream sediments during a reconnaissance investigation conducted in conjunction with geologic studies in the Santa Renia Fields and Beaver Peak 7–1/2 minute quadrangles near the northern end of the Carlin trend of gold deposits in the Tuscarora Mountains. This regional increase in metal concentrations coincides with a dramatic change in landform wherein high concentrations of metals in stream sediments appear to correlate directly with areas of high elevations and steep slopes in the Beaver Peak quadrangle. Robust erosion combined with high flow rates in streams from these higher elevations are envisaged to have contributed significantly to increased metal concentrations in the stream sediments by an enhanced presence of minerals with high specific gravities and a correspondingly diminished presence of minerals with low specific gravities. Minerals with low specific gravities probably have been preferentially flushed down stream because of high transporting capacities for sediment by streams in the Beaver Peak quadrangle. In addition, the Carlin trend, a generally northwest-alignment of gold deposits in the Santa Renia Fields quadrangle, is well outlined by arsenic concentrations that include a maximum of approximately 54 parts per million. Further, a weakly developed distal-to-proximal metal zonation towards these gold deposits appears to be defined respectively in plots showing distributions of thallium, arsenic, antimony, and zinc. A broad area of high metal concentrations—including sharply elevated abundances of Ag, As, Au, Cd, Co, Cu, Mn, Ni, P, Sb, Sc, Te, V, and especially Zn—near the southeast corner of the Beaver Peak quadrangle primarily could be the result of stratiform mineralized rocks in the Ordovician Vinini Formation or Devonian Slaven Chert, or the result of a subsequent Mesozoic or Tertiary epigenetic overprint.

  20. 40Ar/39Ar geochronology, paleomagnetism, and evolution of the Boring volcanic field, Oregon and Washington, USA

    USGS Publications Warehouse

    Fleck, Robert J.; Hagstrum, Jonathan T.; Calvert, Andrew T.; Evarts, Russell C.; Conrey, Richard M.

    2014-01-01

    The 40Ar/39Ar investigations of a large suite of fine-grained basaltic rocks of the Boring volcanic field (BVF), Oregon and Washington (USA), yielded two primary results. (1) Using age control from paleomagnetic polarity, stratigraphy, and available plateau ages, 40Ar/39Ar recoil model ages are defined that provide reliable age results in the absence of an age plateau, even in cases of significant Ar redistribution. (2) Grouping of eruptive ages either by period of activity or by composition defines a broadly northward progression of BVF volcanism during latest Pliocene and Pleistocene time that reflects rates consistent with regional plate movements. Based on the frequency distribution of measured ages, periods of greatest volcanic activity within the BVF occurred 2.7–2.2 Ma, 1.7–0.5 Ma, and 350–50 ka. Grouped by eruptive episode, geographic distributions of samples define a series of northeast-southwest–trending strips whose centers migrate from south-southeast to north-northwest at an average rate of 9.3 ± 1.6 mm/yr. Volcanic activity in the western part of the BVF migrated more rapidly than that to the east, causing trends of eruptive episodes to progress in an irregular, clockwise sense. The K2O and CaO values of dated samples exhibit well-defined temporal trends, decreasing and increasing, respectively, with age of eruption. Divided into two groups by K2O, the centers of these two distributions define a northward migration rate similar to that determined from eruptive age groups. This age and compositional migration rate of Boring volcanism is similar to the clockwise rotation rate of the Oregon Coast Range with respect to North America, and might reflect localized extension on the trailing edge of that rotating crustal block.

  1. Hydraulic Stimulation of Fracture Permeability in Volcanic and Metasedimentary Rocks at the Desert Peak Geothermal Field, Nevada

    NASA Astrophysics Data System (ADS)

    Hickman, S.; Davatzes, N. C.; Zemach, E.; Stacey, R.; Drakos, P. S.; Lutz, S.; Rose, P. E.; Majer, E.; Robertson-Tait, A.

    2011-12-01

    An integrated study of fluid flow, fracturing, stress and rock mechanical properties is being conducted to develop the geomechanical framework for creating an Enhanced Geothermal System (EGS) through hydraulic stimulation. This stimulation is being carried out in the relatively impermeable well 27-15 located on the margins of the Desert Peak Geothermal Field, in silicified rhyolite tuffs and metamorphosed mudstones at depths of ~0.9 to 1.1 km and ambient temperatures of ~180 to 195° C. Extensive drilling-induced tensile fractures seen in image logs from well 27-15 indicate that the direction of the minimum horizontal principal stress, Shmin, is 114±17°. This orientation is consistent with normal faulting on ESE- and WNW-dipping normal faults also seen in these image logs. A hydraulic fracturing stress test conducted at 931 m indicates that the magnitude of Shmin is 13.8 MPa, which is ~0.61 of the calculated vertical stress, Sv. Coulomb failure calculations using these stresses and friction coefficients measured on core indicate that shear failure should be induced on pre-existing fractures once fluid pressures are increased ~2.5 MPa or more above the ambient formation fluid pressure. The resulting activation of faults well-oriented for shear failure should generate a zone of enhanced permeability propagating to the SSW, in the direction of nearby geothermal injection and production wells, and to the NNE, into an unexploited part of the field. Stimulation of well 27-15 began in August 2010, and is being monitored by flow-rate/pressure recording, a local seismic network, periodic temperature-pressure-flowmeter logging, tracer tests and pressure transient analyses. An initial phase of shear stimulation was carried out over 110 days at low pressures (< Shmin) and low injection rates (< 380 l/min), employing stepwise increases in pressure to induce shear failure along pre-existing natural fractures. This phase increased injectivity by one order of magnitude

  2. Role of Accessory Phase Crystallization Within the High-Silica Magma Batches of the Rainier Mesa Tuff, Southwest Nevada Volcanic Field

    NASA Astrophysics Data System (ADS)

    Tefend, K. S.; Vogel, T. A.; Patino, L. C.

    2004-05-01

    Compositionally zoned ignimbrites from the Timber Mountain/Oasis Valley magmatic system, Southwest Nevada Volcanic Field (SWNVF), represent open system processes as opposed to in situ differentiation within a single magma chamber. The large chemical variation of the pumice fragments in the ash-flow sheets are due to emplacement of different magma batches into the magma chamber prior to eruption1,2. The 11.6 Ma Rainier Mesa tuff is a large (1200 km3) ignimbrite containing low-silica pumice fragments, and two distinct high-silica rhyolitic pumice fragments, distinguished by the Th/Nb ratios1. Based on trace element modeling, Mills et al. (1997) concluded that these were three separate magma batches. Recent δ 18O data from minerals separated from pumice fragments are consistent with this interpretation for the independent origin of the high- and low-silica magmas, and that these represent distinct magma types that erupted coevally1,3. However, chemical data from melt inclusions and glass matrix from the two high-silica magma types do not support the model that these are unrelated. Melt inclusion and glass matrix compositions were obtained from the high-Th/Nb, high-silica and low-Th/Nb, high-silica pumice fragments. The two groups of pumice fragments have identical glass matrix major and trace element compositions, and both high-silica groups have identical melt inclusion compositions. In both high-silica groups, Th and Th/Nb increase with increasing La within the melt inclusions. The two high-silica magma types have identical major phase minerals of similar compositions, indicating that the trace element signature of the whole pumice is controlled by accessory phase fractionation. Analyses of monazite, apatite, and zircon from both high-silica pumice groups show similar compositions, with La and Th concentrated in the monazite. Our interpretation is that the high-Th/Nb, high-silica magma represents accessory phase (monazite) accumulation, resulting in a compositional

  3. Soil-water movement under natural-site and waste-site conditions: A multiple-year field study in the Mojave Desert, Nevada

    USGS Publications Warehouse

    Andraski, B.J.

    1997-01-01

    Soil-water movement under natural-site and simulated waste-site conditions were compared by monitoring four experimental sites in the Mojave Desert, Nevada, during a 5-year period: one vegetated soil profile, one soil profile where vegetation was removed, and two nonvegetated test trenches. Precipitation ranged from 14 to 162 mm/yr. Temporal changes in water content measured by neutron probe were limited to the upper 0.5-1 m; values ranged from 0.01 to 0.19 m3/m3. Water potential and temperature were measured by thermocouple psychrometers; 77% remained operable for ???4.5 years. For vegetated soil, precipitation that accumulated in the upper 0.75 m of soil was removed by evapotranspiration: water potentials decreased seasonally by 4 to >8 MPa. During 2 years with below-average precipitation, water potentials below the apparent root zone decreased by 2.3 (1.2-m depth) to 0.4 MPa (5-m depth), and the gradients became predominantly upward. Water potentials then rebounded during 2 years with near-and above-average precipitation, and seasonally variant water: potential gradients were reestablished above the 4.2-m depth. Under nonvegetated Waste-site conditions, data indicated the long-term accumulation and shallow, but continued, penetration of precipitation: water potentials showed moisture penetration to depths of 0.75-1.85 m. The method of simulated-waste drum placement (stacked versus random) and the associated differences m subsidence showed no measurable influence on the water balance of the trenches: subsidence totaled ???13 mm during the study. Water potentials below the trenches and below the 2-m depth ???13 the nonvegetated soil remained low (???-5.5 to -7.5 MPa) and indicated the persistence of typically upward driving forces for isothermal water flow. Water fluxes estimated from water potential and temperature data suggested that isothermal liquid, isothermal vapor, and nonisothermal vapor flow need to be considered in the conceptualization of unsaturated

  4. Elevated carbon dioxide flux at the Dixie Valley geothermal field, Nevada; relations between surface phenomena and the geothermal reservoir

    USGS Publications Warehouse

    Bergfeld, D.; Goff, F.; Janik, C.J.

    2001-01-01

    In the later part of the 1990s, a large die-off of desert shrubs occurred over an approximately 1 km2 area in the northwestern section of the Dixie Valley (DV) geothermal field. This paper reports results from accumulation-chamber measurements of soil CO2 flux from locations in the dead zone and stable isotope and chemical data on fluids from fumaroles, shallow wells, and geothermal production wells within and adjacent to the dead zone. A cumulative probability plot shows three types of flux sites within the dead zone: Locations with a normal background CO2 flux (7 g m-2 day-1); moderate flux sites displaying "excess" geothermal flux; and high flux sites near young vents and fumaroles. A maximum CO2 flux of 570 g m-2 day-1 was measured at a location adjacent to a fumarole. Using statistical methods appropriate for lognormally distributed populations of data, estimates of the geothermal flux range from 7.5 t day-1 from a 0.14-km2 site near the Stillwater Fault to 0.1 t day-1 from a 0.01 -km2 location of steaming ground on the valley floor. Anomalous CO2 flux is positively correlated with shallow temperature anomalies. The anomalous flux associated with the entire dead zone area declined about 35% over a 6-month period. The decline was most notable at a hot zone located on an alluvial fan and in the SG located on the valley floor. Gas geochemistry indicates that older established fumaroles along the Stillwater Fault and a 2-year-old vent in the lower section of the dead zone discharge a mixture of geothermal gases and air or gases from air-saturated meteoric water (ASMW). Stable isotope data indicate that steam from the smaller fumaroles is produced by ??? 100??C boiling of these mixed fluids and reservoir fluid. Steam from the Senator fumarole (SF) and from shallow wells penetrating the dead zone are probably derived by 140??C to 160??C boiling of reservoir fluid. Carbon-13 isotope data suggest that the reservoir CO2 is produced mainly by thermal decarbonation of

  5. 78 FR 13374 - Notice of Public Meetings: Sierra Front-Northwestern Great Basin Resource Advisory Council, Nevada

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-27

    ..., Nevada AGENCY: Bureau of Land Management, Interior. ACTION: Notice of public meetings. SUMMARY: In...-Northwestern Great Basin Resource Advisory Council (RAC), will hold two meetings in Nevada in fiscal year 2013..., 5665 Morgan Mill Road in Carson City, Nevada and a field trip on April 5; August 8-9 at the...

  6. Quantitative seismic reservoir characterization of tight sands (granite wash) play at Stiles Ranch field in the Anadarko Basin, Texas (USA)

    NASA Astrophysics Data System (ADS)

    Durrani, Muhammad Zahid Afzal

    The main objective of this study is to conduct quantitative seismic reservoir characterization study of the Granite Wash (Marmaton-tight sand) play at Stiles Ranch field in the Anadarko Basin, Texas (USA). The proposed methodology incorporates seismic petrophysics, rock physics, Amplitude Variation with Offset (AVO) analysis and seismic pre-stack simultaneous elastic impedance inversion. In addition, it utilizes geostatistical technique to improve the reservoir property estimation and quantify uncertainty in seismic lithology and fluid prediction. The general objective encompasses several more specific goals to study: well data conditioning and prediction of essential petrophysical properties (e.g., porosity, permeability and saturation), and their relationship to the elastic properties. Due to the multidisciplinary nature of seismic petrophysics, only three core aspects are focused on that cover the desired objectives: 1) porosity modeling, 2) shear wave prediction, and (3) fluid substitution. The rock types are characterized by Rock Physics Diagnostic (RPD) approach conducted on well log data calibrated with core data and thin sections. The Granite Wash reservoir elastic properties are upscaled from log to seismic scale using Backus averaging to obtain a more coarsely (upscaled) sampled data set equivalent to the seismic scale. Anisotropy parametric (epsilon, gamma and delta) log curves are estimated consistent with seismic measurements using rock properties, seismic velocity and clay volume (Vsh) as a function of depth. The reservoir elastic properties are related to both the depositional environment and burial history through rock physics depth trends as function of depth. Furthermore, based on the practical aspects two separate inversion approaches; AVO and Elastic Impedance (EI) are evaluated prior to their application to real seismic. Various AVO derived attribute volumes such as intercept (A), gradient (B) and reflection coefficients (scaled Poisson's ratio

  7. Western USA

    Atmospheric Science Data Center

    2014-05-15

    ... to the east of the Continental Divide, the Snake to the west, and the Colorado, which wends across Utah and Arizona. The Colorado ... southwestern portion of the image, California's San Joaquin Valley and the Mojave Desert of California and Nevada give way to the Los ...

  8. Eruptive conditions and depositional processes of Narbona Pass Maar volcano, Navajo volcanic field, Navajo Nation, New Mexico (USA)

    NASA Astrophysics Data System (ADS)

    Brand, Brittany D.; Clarke, Amanda B.; Semken, Steven

    2009-01-01

    Phreatomagmatic deposits at Narbona Pass, a mid-Tertiary maar in the Navajo volcanic field (NVF), New Mexico (USA), were characterized in order to reconstruct the evolution and dynamic conditions of the eruption. Our findings shed light on the temporal evolution of the eruption, dominant depositional mechanisms, influence of liquid water on deposit characteristics, geometry and evolution of the vent, efficiency of fragmentation, and the relative importance of magmatic and external volatiles. The basal deposits form a thick (5-20 m), massive lapilli tuff to tuff-breccia deposit. This is overlain by alternating bedded sequences of symmetrical to antidune cross-stratified tuff and lapilli tuff; and diffusely-stratified, clast-supported, reversely-graded lapilli tuffs that pinch and swell laterally. This sequence is interpreted to reflect an initial vent-clearing phase that produced concentrated pyroclastic density currents, followed by a pulsating eruption that produced multiple density currents with varying particle concentrations and flow conditions to yield the well-stratified deposits. Only minor localized soft-sediment deformation was observed, no accretionary lapilli were found, and grain accretion occurs on the lee side of dunes. This suggests that little to no liquid water existed in the density currents during deposition. Juvenile material is dominantly present as blocky fine ash and finely vesiculated fine to coarse lapilli pumice. This indicates that phreatomagmatic fragmentation was predominant, but also that the magma was volatile-rich and vesiculating at the time of eruption. This is the first study to document a significant magmatic volatile component in an NVF maar-diatreme eruption. The top of the phreatomagmatic sequence abruptly contacts the overlying minette lava flows, indicating no gradual drying-out period between the explosive and effusive phases. The lithology of the accidental clasts is consistent throughout the vertical pyroclastic

  9. NNWSI unit evaluation at Yucca Mountain, Nevada Test Site: Near field mechanical calculations using a continuum jointed rock moel in the JAC code

    SciTech Connect

    Thomas, R.K.

    1987-05-01

    The Nevada Nuclear Waste Storage Investigations (NNWSI) Project, managed by the Nevada Operations Office of the US Department of Energy, is examining the feasibility of siting a repository for high level nuclear wastes at Yucca Mountain on and adjacent to the Nevada Test Site (NTS). The work reported herein was done to support the selection, on a technical basis, of a single target repository horizon upon which to concentrate future activities. Presented in this report are the results of a comparative study between two candidate horizons: the devitrified Topopah Spring member of the Paintbrush Tuff and the nonwelded, zeolitized Tuffaceous Beds of Calico Hills. Performance of a repository sited in each candidate horizon was assessed by conducting structural calculations using a two-dimensional room-and-pillar geometry and average and limit material properties. The computer code JAC, with a constitutive model for jointed rock masses, was used to make the calculations. Based on analyses of the confining pressures in the pillar and the joint movement near the room, it is concluded that the Topopah Spring unit is more suitable than the Calico Hills unit for the placement of a nuclear waste repository. Finally, a comparison is made with a similar mine geometry sited in the Grouse Canyon Tuff, a horizon of known performance characteristics, using properties from G-Tunnel at NTS.

  10. HIGHLAND RIDGE ROADLESS AREA, NEVADA.

    USGS Publications Warehouse

    Whitebread, Donald H.; Brown, S. Don

    1984-01-01

    The mineral-resource potential of the Highland Ridge Roadless Area, Nevada was evaluated on the basis of results from field investigations. One area along the west border of the Highland Ridge Roadless Area has substantiated mineral-resource potential for tungsten. Several other areas are classed as having probable mineral-resource potential, based mainly upon anomalously high values of tungsten, lead, silver, and zinc in concentrates of stream sediments. Most of the roadless area is underlain by rocks in the upper plate of the Snake Range decollement, and is considered to have little promise for the occurrence of mineral resources. No energy resource potential was identified in the area.

  11. Towards the Improved Estimates of Mountain Snow Water Equivalent Using Space-borne Passive Microwave Measurements: an Ensemble Kalman Batch Reanalysis over the Upper Kern Basin, Sierra Nevada, USA

    NASA Astrophysics Data System (ADS)

    Li, D.; Durand, M. T.; Margulis, S. A.

    2014-12-01

    Improving the estimate of snow water equivalent (SWE) in the Sierra Nevada has merit for California, given the ongoing drought that has lasted for years. In this study, we carried out an experiment to estimate SWE in the Upper Kern Basin, Sierra Nevada, by assimilating AMSR-E observed brightness temperatures (Tb) into a coupled hydrology and radiative transfer model using an ensemble Kalman batch reanalysis. The data assimilation framework merges the complementary SWE information from modeling and observations for an improved SWE estimate. The novelty of this assimilation study is that both the modeling and the radiance data processing were specifically improved to provide more information about SWE. With the enhanced SWE signals in both simulation and observation, the batch reanalysis should stand a better chance of successfully improving the SWE estimates. The modeling was at a very high resolution (90m) and spanned a range of mountain environmental factors to better characterize the effects of the mountain environment on snow distribution and radiance emission. We have developed a dynamic snow grain size module to improve the radiance modeling during the intense snowfall events. The AMSR-E 37GHz V-pol observed Tb was processed at its native footprint resolution at ~100 km2. In the batch assimilation, the model predicted the prior SWE and Tb; the prior estimate of an entire year was then updated by the dry-season observations at one time. One advantage of this is that the prior SWE of a certain period is updated using the observations both before and after this period, which takes advantage of the temporally continuous signal of the seasonal snow accumulation in the observations. We found the posterior SWE estimates showed improved accuracy and robustness. During the study period of 2003 to 2008, at point-scale, the average bias of the six-year April 1st SWE was reduced from -0.17 m to -0.01m, the average temporal SWE RMSE of the dry season and the entire year

  12. Special Nevada report

    SciTech Connect

    1991-09-23

    This report is submitted to Congress by the Secretary of the Air Force, the Secretary of the Navy, and the Secretary of the Interior pursuant to Section 6 of the Military Lands Withdrawal Act of 1986. It contains an analysis and evaluation of the effects on public health and safety resulting from DOD and Department of Energy (DOE) military and defense-related uses on withdrawn public lands in the State of Nevada and in airspace overlying the State. This report describes the cumulative impacts of those activities on public and private property in Nevada and on plants, fish and wildlife, cultural, historic, scientific, recreational, wilderness and other resources of the public lands of Nevada. An analysis and evaluation of possible measures to mitigate the cumulative effects of the withdrawal of lands and the use of airspace in Nevada for defense-related purposes was conducted, and those considered practical are listed.

  13. Oral rabies vaccination in raccoons: comparison of ONRAB® and RABORAL V-RG® vaccine-bait field performance in Québec, Canada and Vermont, USA.

    PubMed

    Mainguy, Julien; Fehlner-Gardiner, Christine; Slate, Dennis; Rudd, Robert J

    2013-01-01

    The control of rabies in raccoons (Procyon lotor) and striped skunks (Mephitis mephitis) in North America has been conducted mainly through aerial distribution of oral vaccine-baits. The effectiveness of the vaccine-bait used is therefore of prime importance for disease eradication. In a previous field comparison between the ONRAB(®) bait in the province of New Brunswick, Canada, and RABORAL V-RG(®) bait in the state of Maine, USA, the ONRAB bait produced a higher percentage of antibody-positive raccoons under nearly identical bait distribution for the two vaccines. The main objective of the present study was to conduct a similar cross-border comparison of these two vaccine-baits using raccoon sera collected during post-oral rabies vaccination monitoring in Québec, Canada, and Vermont, USA, where ONRAB and V-RG, respectively, were distributed aerially at a targeted density of 150 baits/km(2). A comparison of the equivalency of two serologic tests used in Canada and the USA was also conducted using sera from raccoons and striped skunks. Rabies virus neutralization assay (USA) yielded similar results to the competitive enzyme-linked immunosorbent assay (Canada), with agreement between the two tests of 92% for raccoon sera and 96% for skunk sera. With both assays, the percentage of antibody-positive raccoons was greater with ONRAB (51%, n=265) than with V-RG (38%, n=66). These new results support the conclusion from the previous study, that ONRAB vaccine-baits may be more effective for the control of rabies in raccoons.

  14. Temporal and Spatial Variation of Atmospherically Deposited Organic Contaminants at High Elevation in Yosemite National Park, California, USA

    EPA Science Inventory

    Atmospherically deposited organic contaminants in the Sierra Nevada mountains of California, USA, have exceeded some thresholds of concern, but the spatial and temporal distributions of contaminants in the mountains are not well known. The present study evaluated (1) whether the...

  15. Summary of the Second International Planetary Dunes Workshop: Planetary Analogs - Integrating Models, Remote Sensing, and Field Data, Alamosa, Colorado, USA, May 18-21, 2010

    USGS Publications Warehouse

    Fenton, L.K.; Bishop, M.A.; Bourke, M.C.; Bristow, C.S.; Hayward, R.K.; Horgan, B.H.; Lancaster, N.; Michaels, T.I.; Tirsch, D.; Titus, T.N.; Valdez, A.

    2010-01-01

    The Second International Planetary Dunes Workshop took place in Alamosa, Colorado, USA from May 18-21, 2010. The workshop brought together researchers from diverse backgrounds to foster discussion and collaboration regarding terrestrial and extra-terrestrial dunes and dune systems. Two and a half days were spent on five oral sessions and one poster session, a full-day field trip to Great Sand Dunes National Park, with a great deal of time purposefully left open for discussion. On the last day of the workshop, participants assembled a list of thirteen priorities for future research on planetary dune systems. ?? 2010.

  16. Central Nevada Test Area, Nevada Fact Sheet

    SciTech Connect

    2009-04-01

    The Central Nevada Test Area (CNTA) is in the Hot Creek Valley of south-central Nevada, approximately 70 miles northeast of Tonopah. The CNTA consists of three parcels totaling 2,560 acres. The parcels are spaced approximately 3 miles apart along a roughly north-south line. The total acreage is currently withdrawn from all forms of appropriation associated with mining laws and leasing. The U.S. Atomic Energy Commission, a predecessor agency of the U.S. Department of Energy (DOE), acquired the CNTA in the early 1960s to develop alternative sites to the Nevada National Security Site (formerly known as the Nevada Test Site) for underground nuclear testing. Three emplacement boreholes (UC-1, UC-3, and UC-4) were drilled on the three parcels at the CNTA for underground nuclear testing. The initial underground nuclear test at CNTA, Faultless, was conducted in borehole UC-1 at a depth of 3,199 feet below ground surface on January 19, 1968. The yield of the Faultless test was estimated to be 0.2 to 1 megaton. Its purpose was to evaluate the environmental and structural effects that might be expected if subsequent, higher-yield underground nuclear tests were conducted in this vicinity. The test resulted in a down-dropped fault block visible at land surface. In addition, seismic results supported the indication that the site was not favorable for larger detonations. The nuclear detonation created a cavity with a radius of approximately 328 feet. The Faultless test did not release any radioactivity at the surface, and no additional tests were conducted at the CNTA.

  17. Pseudotachylyte in the Bench Canyon Shear Zone, central Sierra Nevada, California: Frictional melting in the brittle and semi-brittle fields

    SciTech Connect

    McNulty, B.A. )

    1993-04-01

    Many aspects of pseudotachylyte are controversial, particularly whether it is the product of intense comminution (e.g. ultracataclasite'') or frictional melting. Ubiquitous exposures of pseudotachylyte in the Bench Canyon shear Zone (BCSZ), central Sierra Nevada, California, provide an excellent opportunity for further study. Scanning electron microscopy (SEM) reveals vesicles, amygdules, crystallites and embayments of microxenocrysts, textures which are supportive of a melt origin for pseudotachylyte in the BCAZ. EDS and microprobe analyses indicate strong compositional contrasts between pseudotachylyte and granodiorite host; one explanation for this is preferential melting in order of individual mineral melting points.

  18. Field screening of water quality, bottom sediment, and biota associated with irrigation drainage in and near Walker River Indian Reservation, Nevada 1994-95

    USGS Publications Warehouse

    Thodal, Carl E.; Tuttle, Peter L.

    1996-01-01

    A study was begun in 1994 to determine whether the quality of irrigation drainage from the Walker River Indian Reservation, Nevada, has caused or has potential to cause harmful effects on human health or on fish and wildlife, or may adversely affect the suitability of the Walker River for other beneficial uses. Samples of water, bottom sediment, and biota were collected during June-August 1994 (during a drought year) from sites upstream from and on the Walker River Indian Reservation for analyses of trace elements. Other analyses included physical characteristics, major dissolved constituents, selected species of water-soluble nitrogen and phosphorus, and selected pesticides in bottom sediment. Water samples were collected again from four sites on the Reservation in August 1995 (during a wetterthan- average year) to provide data for comparing extreme climatic conditions. Water samples collected from the Walker River Indian Reservation in 1994 equaled or exceeded the Nevada water-quality standard or level of concern for at least one of the following: water temperature, pH, dissolved solids, unionized ammonia, phosphate, arsenic, boron, chromium, lead, and molybdenum; in 1995, only a single sample from one site exceeded a Nevada water-quality standard for molybdenum. Levels of concern for trace elements in bottom sediment collected in 1994 were equaled or exceeded for arsenic, iron, manganese, and zinc. Concentrations of organochiorine pesticide residues in bottom sediment were below analytical reporting limits. Levels of concern for trace-elements in samples of biota were equaled or exceeded for arsenic, boron, copper, and mercury. Results of toxicity testing indicate that only water samples from Walker Lake caused a toxic response in test bacteria. Arsenic and boron concentrations in water, bottom sediment, and biological tissue exceeded levels of concern throughout the Walker River Basin, but most commonly in the lower Walker River Basin. Mercury also was elevated

  19. Resource Conservation and Recovery Act Industrial Sites quality assurance project plan: Nevada Test Site, Nevada

    SciTech Connect

    Not Available

    1994-06-01

    This quality assurance project plan (QAPjP) describes the measures that shall be taken to ensure that the environmental data collected during characterization and closure activities of Resource Conservation and Recovery Act (RCRA) Industrial Sites at the Nevada Test Site (NTS) are meaningful, valid, defensible, and can be used to achieve project objectives. These activities are conducted by the US Department of Energy Nevada Operations Office (DOE/NV) under the Nevada Environmental Restoration (ER) Project. The Nevada ER Project consists of environmental restoration activities on the NTS, Tonopah Test Range, Nellis Air Force Range, and eight sites in five other states. The RCRA Industrial Sites subproject constitutes a component of the Nevada ER Project. Currently, this QAPjP is limited to the seven RCRA Industrial Sites identified within this document that are to be closed under an interim status and pertains to all field-investigation, analytical-laboratory, and data-review activities in support of these closures. The information presented here supplements the RCRA Industrial Sites Project Management Plan and is to be used in conjunction with the site-specific subproject sampling and analysis plans.

  20. GPS Imaging of vertical land motion in California and Nevada: Implications for Sierra Nevada uplift.

    PubMed

    Hammond, William C; Blewitt, Geoffrey; Kreemer, Corné

    2016-10-01

    We introduce Global Positioning System (GPS) Imaging, a new technique for robust estimation of the vertical velocity field of the Earth's surface, and apply it to the Sierra Nevada Mountain range in the western United States. Starting with vertical position time series from Global Positioning System (GPS) stations, we first estimate vertical velocities using the MIDAS robust trend estimator, which is insensitive to undocumented steps, outliers, seasonality, and heteroscedasticity. Using the Delaunay triangulation of station locations, we then apply a weighted median spatial filter to remove velocity outliers and enhance signals common to multiple stations. Finally, we interpolate the data using weighted median estimation on a grid. The resulting velocity field is temporally and spatially robust and edges in the field remain sharp. Results from data spanning 5-20 years show that the Sierra Nevada is the most rapid and extensive uplift feature in the western United States, rising up to 2 mm/yr along most of the range. The uplift is juxtaposed against domains of subsidence attributable to groundwater withdrawal in California's Central Valley. The uplift boundary is consistently stationary, although uplift is faster over the 2011-2016 period of drought. Uplift patterns are consistent with groundwater extraction and concomitant elastic bedrock uplift, plus slower background tectonic uplift. A discontinuity in the velocity field across the southeastern edge of the Sierra Nevada reveals a contrast in lithospheric strength, suggesting a relationship between late Cenozoic uplift of the southern Sierra Nevada and evolution of the southern Walker Lane.

  1. GPS Imaging of vertical land motion in California and Nevada: Implications for Sierra Nevada uplift

    NASA Astrophysics Data System (ADS)

    Hammond, William C.; Blewitt, Geoffrey; Kreemer, Corné

    2016-10-01

    We introduce Global Positioning System (GPS) Imaging, a new technique for robust estimation of the vertical velocity field of the Earth's surface, and apply it to the Sierra Nevada Mountain range in the western United States. Starting with vertical position time series from Global Positioning System (GPS) stations, we first estimate vertical velocities using the MIDAS robust trend estimator, which is insensitive to undocumented steps, outliers, seasonality, and heteroscedasticity. Using the Delaunay triangulation of station locations, we then apply a weighted median spatial filter to remove velocity outliers and enhance signals common to multiple stations. Finally, we interpolate the data using weighted median estimation on a grid. The resulting velocity field is temporally and spatially robust and edges in the field remain sharp. Results from data spanning 5-20 years show that the Sierra Nevada is the most rapid and extensive uplift feature in the western United States, rising up to 2 mm/yr along most of the range. The uplift is juxtaposed against domains of subsidence attributable to groundwater withdrawal in California's Central Valley. The uplift boundary is consistently stationary, although uplift is faster over the 2011-2016 period of drought. Uplift patterns are consistent with groundwater extraction and concomitant elastic bedrock uplift, plus slower background tectonic uplift. A discontinuity in the velocity field across the southeastern edge of the Sierra Nevada reveals a contrast in lithospheric strength, suggesting a relationship between late Cenozoic uplift of the southern Sierra Nevada and evolution of the southern Walker Lane.

  2. Nevada National Security Site Environmental Report 2012

    SciTech Connect

    Wills, Cathy

    2013-09-11

    This report was prepared to meet the information needs of the public and the requirements and guidelines of the U.S. Department of Energy (DOE) for annual site environmental reports. It was prepared by National Security Technologies, LLC (NSTec), for the U.S. Department of Energy, National Nuclear Security Administration Nevada Field Office (NNSA/NFO) (formerly designated as the Nevada Site Office [NNSA/NSO]). The new field office designation occurred in March 2013. Published reports cited in this 2012 report, therefore, may bear the name or authorship of NNSA/NSO. This and previous years’ reports, called Annual Site Environmental Reports (ASERs), Nevada Test Site Environmental Reports (NTSERs), and, beginning in 2010, Nevada National Security Site Environmental Reports (NNSSERs), are posted on the NNSA/NFO website at http://www.nv.energy.gov/library/publications/aser.aspx. This NNSSER was prepared to satisfy DOE Order DOE O 231.1B, “Environment, Safety and Health Reporting.” Its purpose is to (1) report compliance status with environmental standards and requirements, (2) present results of environmental monitoring of radiological and nonradiological effluents, (3) report estimated radiological doses to the public from releases of radioactive material, (4) summarize environmental incidents of noncompliance and actions taken in response to them, (5) describe the NNSA/NFO Environmental Management System and characterize its performance, and (6) highlight significant environmental programs and efforts. This NNSSER summarizes data and compliance status for calendar year 2012 at the Nevada National Security Site (NNSS) (formerly the Nevada Test Site) and its two support facilities, the North Las Vegas Facility (NLVF) and the Remote Sensing Laboratory–Nellis (RSL-Nellis). It also addresses environmental restoration (ER) projects conducted at the Tonopah Test Range (TTR) and the Nevada Test and Training Range (NTTR). Through a Memorandum of Agreement, NNSA/NFO is

  3. A field test and comparison of acute and chronic sediment toxicity tests with the estuarine amphipod Leptocheirus plumulosus in Chesapeake Bay, USA.

    PubMed

    McGee, Beth L; Fisher, Daniel J; Wright, David A; Yonkos, Lance T; Ziegler, Gregory P; Turley, Steven D; Farrar, J Daniel; Moore, David W; Bridges, Todd S

    2004-07-01

    A 28-d partial life-cycle test with the estuarine amphipod Leptocheirus plumulosus was developed in response to the need for an assay to mimic chronic exposure to sediment-associated contaminants. To ensure that toxicity tests have environmental relevance, it is essential to evaluate the relationship between laboratory responses and field measures of contamination. Consequently, one objective of the study was to compare the results of the chronic sediment toxicity test with L. plumulosus to gradients of sediment contamination and the in situ benthic community in its native Chesapeake Bay. Chronic tests were conducted by two laboratories, the Army Corps of Engineers Waterways Experiment Station ([WES]; Vicksburg, MS, USA) and the University of Maryland ([UM] College Park, MD, USA) using different feeding regimes, providing the opportunity to evaluate the effect of this variable on response sensitivity. A second objective was to compare the relative sensitivity of acute and chronic tests with L. plumulosus with field-collected sediments. Overall, there was good agreement between the toxicological response of acute and chronic tests with L. plumulosus and field measures of contamination. Survival in the acute test and chronic test conducted by WES was negatively correlated with concentrations of sediment-associated contaminants. Survival in acute exposures was significantly reduced in sediments from 8 of 11 stations. Indigenous L. plumulosus were found only at two of the three stations that did not exhibit acute toxicity. An unexpected finding was the difference in responsiveness of the two chronic tests. Survival in tests conducted by UM and WES was significantly reduced in sediments from 4 and 6 of 11 stations, respectively. No additional sublethal toxicity was detected in the UM chronic test, but the WES test detected reproductive effects at two additional stations. We believe the observed differences were related to the test diet used. Partly as a result of our

  4. NEVADA GEOSPATICAL DATA BROWSER

    EPA Science Inventory

    The Nevada Geospatial Data Browser was developed by the Landscape Ecology Branch of the U.S. Environmental Protection Agency (Las Vegas, NV) with the assistance and collaboration of the University of Idaho (Moscow, ID) and Lockheed-Martin Environmental Services Office (Las Vegas,...

  5. Geothermal energy in Nevada

    SciTech Connect

    Not Available

    1980-01-01

    The nature of goethermal resources in Nevada and resource applications are discussed. The social and economic advantages of utilizing geothermal energy are outlined. Federal and State programs established to foster the development of geothermal energy are discussed. The names, addresses, and phone numbers of various organizations actively involved in research, regulation, and the development of geothermal energy are included. (MHR)

  6. In-situ growth of calcite at Devils Hole, Nevada--Comparison of field and laboratory rates to a 500,000 year record of near-equilibrium calcite growth

    USGS Publications Warehouse

    Plummer, L. Niel; Busenberg, Eurybiades; Riggs, Alan C.

    2000-01-01

    Calcite grew continuously for 500,000 years on the submerged walls of an open fault plane (Devils Hole) in southern Nevada, U.S.A. at rates of 0.3 to 1.3 mm/ka, but ceased growing approximately 60,000 years ago, even though the fault plane remained open and was continuously submerged. The maximum initial in-situ growth rate on pre-weighed crystals of Iceland spar placed in Devils Hole (calcite saturation index, SI, is 0.16 to 0.21 at 33.7 °C) for growth periods of 0.75 to 4.5 years was 0.22 mm/ka. Calcite growth on seed crystals slowed or ceased following initial contact with Devils Hole groundwater. Growth rates measured in synthetic Ca-HCO3 solutions at 34 °C, CO2 partial pressures of 0.101, 0.0156 (similar to Devils Hole groundwater) and 0.00102 atm, and SI values of 0.2 to 1.9 were nearly independent of PCO2, decreased with decreasing saturation state, and extrapolated through the historical Devils Hole rate. The results show that calcite growth rate is highly sensitive to saturation state near equilibrium. A calcite crystal retrieved from Devils Hole, and used without further treatment of its surface, grew in synthetic Devils Hole groundwater when the saturation index was raised nearly 10-fold that of Devils Hole water, but the rate was only 1/4 that of fresh laboratory crystals that had not contacted Devils Hole water. Apparently, inhibiting processes that halted calcite growth in Devils Hole 60,000 years ago continue today.

  7. In-situ growth of calcite at Devils Hole, Nevada: Comparison of field and laboratory rates to a 500,000 year record of near-equilibrium calcite growth

    USGS Publications Warehouse

    Plummer, L.N.; Busenberg, E.; Riggs, A.C.

    2000-01-01

    Calcite grew continuously for 500,000 years on the submerged walls of an open fault plane (Devils Hole) in southern Nevada, U.S.A. at rates of 0.3 to 1.3 mm/ka, but ceased growing approximately 60,000 years ago, even though the fault plane remained open and was continuously submerged. The maximum initial in-situ growth rate on pre-weighed crystals of Iceland spar placed in Devils Hole (calcite saturation index, SI, is 0.16 to 0.21 at 33.7??C) for growth periods of 0.75 to 4.5 years was 0.22 mm/ka. Calcite growth on seed crystals slowed or ceased following initial contact with Devils Hole groundwater. Growth rates measured in synthetic Ca-HCO3 solutions at 34??C, CO2 partial pressures of 0.101, 0.0156 (similar to Devils Hole groundwater) and 0.00102 atm, and SI values of 0.2 to 1.9 were nearly independent of P(CO)(2), decreased with decreasing saturation state, and extrapolated through the historical Devils Hole rate. The results show that calcite growth rate is highly sensitive to saturation state near equilibrium. A calcite crystal retrieved from Devils Hole, and used without further treatment of its surface, grew in synthetic Devils Hole groundwater when the saturation index was raised nearly 10-fold that of Devils Hole water, but the rate was only 1/4 that of fresh laboratory crystals that had not contacted Devils Hole water. Apparently, inhibiting processes that halted calcite growth in Devils Hole 60,000 years ago continue today.

  8. Self-revegetation of disturbed ground in the deserts of Nevada and Washington

    SciTech Connect

    Rickard, W.H.; Sauer, R.H.

    1982-01-01

    Plant cover established without purposeful soil preparation or seeding was measured on ground disturbed by plowing in Washington and by aboveground nuclear explosions in Nevada. After a time lapse of three decades in Washington and two decades in Nevada, fewer species were self-established on the disturbed ground than the nearby undisturbed ground. Alien annual plants were the dominants on the disturbed ground. Cheatgrass (Bromus tectorum) dominated abandoned fields in Washington, and filaree (Erodium cicutarium) dominated disturbed ground in Nevada. Perennial grasses and shrubs appeared to be more successful as invaders in Nevada than in Washington. This distinction is attributed to the superior competitive ability of cheatgrass in Washington.

  9. Fuel bed characteristics of Sierra Nevada conifers

    USGS Publications Warehouse

    van Wagtendonk, J.W.; Benedict, J.M.; Sydoriak, W.M.

    1998-01-01

    A study of fuels in Sierra Nevada conifer forests showed that fuel bed depth and fuel bed weight significantly varied by tree species and developmental stage of the overstory. Specific values for depth and weight of woody, litter, and duff fuels are reported. There was a significant positive relationship between fuel bed depth and weight. Estimates of woody fuel weight using the planar intercept method were significantly related to sampled values. These relationships can be used to estimate fuel weights in the field.

  10. DISTRIBUTIONS OF AIRBORNE AGRICULTURAL CONTAMINANTS RELATIVE TO AMPHIBIAN POPULATIONS IN THE SOUTHERN SIERRA NEVADA, CA

    EPA Science Inventory

    The Sierra Nevada mountain range lies adjacent to one of the heaviest pesticide use areas in the USA, the Central Valley of California. Because of this proximity, concern has arisen that agricultural pesticides, in addition to other contaminants, are adversely affecting the natur...

  11. A predictive penetrative fracture mapping method from regional potential field and geologic datasets, southwest Colorado Plateau, U.S.A

    USGS Publications Warehouse

    Gettings, M.E.; Bultman, M.W.

    2005-01-01

    Some aquifers of the southwest Colorado Plateau, U.S.A., are deeply buried and overlain by several impermeable units, and thus recharge to the aquifer is probably mainly by seepage down penetrative fracture systems. This purpose of this study was to develop a method to map the location of candidate deep penetrative fractures over a 120,000 km2 area using gravity and aeromagnetic anomaly data together with surficial fracture data. The resulting database constitutes a spatially registered estimate of recharge location. Candidate deep fractures were obtained by spatial correlation of horizontal gradient and analytic signal maxima of gravity and magnetic anomalies vertically with major surficial lineaments obtained from geologic, topographic, side-looking airborne radar, and satellite imagery. The maps define a sub-set of possible penetrative fractures because of limitations of data coverage and the analysis technique. The data and techniques employed do not yield any indication as to whether fractures are open or closed. Correlations were carried out using image processing software in such a way that every pixel on the resulting grids was coded to uniquely identify which datasets correlated. The technique correctly identified known deep fracture systems and many new ones. Maps of the correlations also define in detail the tectonic fabrics of the Southwestern Colorado Plateau. Copyright ?? The Society of Geomagnetism and Earth, Planetary and Space Sciences (SGEPSS); The Seismological Society of Japan; The Volcanological Society of Japan; The Geodetic Society of Japan; The Japanese Society for Planetary Sciences; TERRAPUB.

  12. Architecture and emplacement of flood basalt flow fields: case studies from the Columbia River Basalt Group, NW USA

    NASA Astrophysics Data System (ADS)

    Vye-Brown, C.; Self, S.; Barry, T. L.

    2013-03-01

    The physical features and morphologies of collections of lava bodies emplaced during single eruptions (known as flow fields) can be used to understand flood basalt emplacement mechanisms. Characteristics and internal features of lava lobes and whole flow field morphologies result from the forward propagation, radial spread, and cooling of individual lobes and are used as a tool to understand the architecture of extensive flood basalt lavas. The features of three flood basalt flow fields from the Columbia River Basalt Group are presented, including the Palouse Falls flow field, a small (8,890 km2, ˜190 km3) unit by common flood basalt proportions, and visualized in three dimensions. The architecture of the Palouse Falls flow field is compared to the complex Ginkgo and more extensive Sand Hollow flow fields to investigate the degree to which simple emplacement models represent the style, as well as the spatial and temporal developments, of flow fields. Evidence from each flow field supports emplacement by inflation as the predominant mechanism producing thick lobes. Inflation enables existing lobes to transmit lava to form new lobes, thus extending the advance and spread of lava flow fields. Minimum emplacement timescales calculated for each flow field are 19.3 years for Palouse Falls, 8.3 years for Ginkgo, and 16.9 years for Sand Hollow. Simple flow fields can be traced from vent to distal areas and an emplacement sequence visualized, but those with multiple-layered lobes present a degree of complexity that make lava pathways and emplacement sequences more difficult to identify.

  13. Biogeochemistry of a soil catena in the eastern Sierra Nevada Range, NV

    Technology Transfer Automated Retrieval System (TEKTRAN)

    As a field/lab project, students in the Soil Biogeochemistry class of the University of Nevada, Reno described and characterized five pedons at Little Valley, NV, at the eastern edge of the Sierra Nevada. Developed largely from granite, the catena encompassed five pedons, which from high to low elev...

  14. Use of vegetated agricultural drainage ditches to decrease pesticide transport from tomato and alfalfa fields in California, USA

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Irrigation and storm water runoff from agricultural fields has the potential to cause impairment to downstream aquatic receiving systems. Over the last several years, scientists have discovered the benefit of using edge-of-field practices, such as vegetated agricultural drainage ditches, in the mit...

  15. A Mantle Cross-Section Through Western And Central Nevada From Young Basaltic Magmas In The Sierra Nevada And Western Great Basin

    NASA Astrophysics Data System (ADS)

    Gupta, V.; Cousens, B. L.; Henry, C. D.

    2007-12-01

    The geochemistry of basaltic magmas erupted in the Basin and Range province of the western USA has demonstrated that at least two mantle sources exist, one with a subduction signature and another with an "ocean island basalt" (OIB) signature. Here we investigate the distribution of these two sources during the Pleistocene and Holocene in a 250 km-long transect from the eastern Sierra Nevada near Reno, NV, into central Nevada. Samples were collected from young, dated mafic lava flows from the Carson Range (2.5 to 1.4 Ma), Steamboat Hills (2.6 Ma), Virginia City and Chalk Hills (1.5 to 1.44 Ma), east of Carson City (1.36 Ma), Rattlesnake Hill (1.2 to 0.9 Ma), Buffalo Valley (1.1 to 0.95 Ma), Upsal Hogback (0.6 Ma), and Soda Lake (Holocene). With the exception of Carson Range andesites, all of the lavas are alkaline basalts and basaltic trachyandesites with K2O/Na2O > 0.4. Incompatible element abundances, incompatible element ratios, and radiogenic isotope ratios vary widely between locations. Many key incompatible element ratios, such as Ce/Pb, Sr/P, Ba/Nb, and Nb/La, and isotopic ratios vary as a function of age and longitude. Lavas less than 1 Ma in age have low Ba/Nb, Sr/P, 87Sr/86Sr, 206Pb/204Pb, and high Ce/Pb and Nd/La compared to lavas greater than 1Ma in age. These ratios vary more strongly as a function of longitude, from high Ba/Nb, Sr/P, 206Pb/204Pb, 87Sr/86Sr and low Ce/Pb and Nb/La (subduction signature mantle) lavas in the Sierra Nevada margin to lavas with the opposite characteristics (OIB signature mantle) in central Nevada. La/Sm does not vary with either age or longitude. The relationship with longitude indicates that two mantle sources currently exist beneath western Nevada, subduction-modified mantle to the west and OIB-type mantle to the east, and that these two mantle types probably taper in thickness towards one another. The termination of subduction beneath the Reno area at 5-3 Ma, in conjunction with 87Sr/86Sr greater than modern Cascade arc

  16. Title V Evaluation Reports - Nevada

    EPA Pesticide Factsheets

    Title V Operating Permit Program Evaluation Final Reports: Nevada Department of Conservation & Natural Resources, Division of Environmental Protection, Bureau of Air Pollution Control and Clark County

  17. Nevada's Children: Selected Educational and Social Statistics. Nevada and National.

    ERIC Educational Resources Information Center

    Horner, Mary P., Comp.

    This statistical report describes the successes and shortcomings of education in Nevada and compares some statistics concerning education in Nevada to national norms. The report, which provides a comprehensive array of information helpful to policy makers and citizens, is divided into three sections. The first section presents statistics about…

  18. More than a century of bathymetric observations and present-day shallow sediment characterization in Belfast Bay, Maine, USA: Implications for pockmark field longevity

    USGS Publications Warehouse

    Brothers, L.L.; Kelley, J.T.; Belknap, D.F.; Barnhardt, W.A.; Andrews, B.D.; Maynard, M.L.

    2011-01-01

    Mechanisms and timescales responsible for pockmark formation and maintenance remain uncertain, especially in areas lacking extensive thermogenic fluid deposits (e.g., previously glaciated estuaries). This study characterizes seafloor activity in the Belfast Bay, Maine nearshore pockmark field using (1) three swath bathymetry datasets collected between 1999 and 2008, complemented by analyses of shallow box-core samples for radionuclide activity and undrained shear strength, and (2) historical bathymetric data (report and smooth sheets from 1872, 1947, 1948). In addition, because repeat swath bathymetry surveys are an emerging data source, we present a selected literature review of recent studies using such datasets for seafloor change analysis. This study is the first to apply the method to a pockmark field, and characterizes macro-scale (>5 m) evolution of tens of square kilometers of highly irregular seafloor. Presence/absence analysis yielded no change in pockmark frequency or distribution over a 9-year period (1999-2008). In that time pockmarks did not detectably enlarge, truncate, elongate, or combine. Historical data indicate that pockmark chains already existed in the 19th century. Despite the lack of macroscopic changes in the field, near-bed undrained shear-strength values of less than 7 kPa and scattered downcore 137Cs signatures indicate a highly disturbed setting. Integrating these findings with independent geophysical and geochemical observations made in the pockmark field, it can be concluded that (1) large-scale sediment resuspension and dispersion related to pockmark formation and failure do not occur frequently within this field, and (2) pockmarks can persevere in a dynamic estuarine setting that exhibits minimal modern fluid venting. Although pockmarks are conventionally thought to be long-lived features maintained by a combination of fluid venting and minimal sediment accumulation, this suggests that other mechanisms may be equally active in

  19. Understanding the interaction of injected CO2 and reservoir fluids in the Cranfield enhanced oil recovery (EOR) field (MS, USA) by non-radiogenic noble gas isotopes

    NASA Astrophysics Data System (ADS)

    Gyore, Domokos; Stuart, Finlay; Gilfillan, Stuart

    2016-04-01

    Identifying the mechanism by which the injected CO2 is stored in underground reservoirs is a key challenge for carbon sequestration. Developing tracing tools that are universally deployable will increase confidence that CO2 remains safely stored. CO2 has been injected into the Cranfield enhanced oil recovery (EOR) field (MS, USA) since 2008 and significant amount of CO2 has remained (stored) in the reservoir. Noble gases (He, Ne, Ar, Kr, Xe) are present as minor natural components in the injected CO2. He, Ne and Ar previously have been shown to be powerful tracers of the CO2 injected in the field (Györe et al., 2015). It also has been implied that interaction with the formation water might have been responsible for the observed CO2 loss. Here we will present work, which examines the role of reservoir fluids as a CO2 sink by examining non-radiogenic noble gas isotopes (20Ne, 36Ar, 84Kr, 132Xe). Gas samples from injection and production wells were taken 18 and 45 months after the start of injection. We will show that the fractionation of noble gases relative to Ar is consistent with the different degrees of CO2 - fluid interaction in the individual samples. The early injection samples indicate that the CO2 injected is in contact with the formation water. The spatial distribution of the data reveal significant heterogeneity in the reservoir with some wells exhibiting a relatively free flow path, where little formation water is contacted. Significantly, in the samples, where CO2 loss has been previously identified show active and ongoing contact. Data from the later stage of the injection shows that the CO2 - oil interaction has became more important than the CO2 - formation water interaction in controlling the noble gas fingerprint. This potentially provides a means to estimate the oil displacement efficiency. This dataset is a demonstration that noble gases can resolve CO2 storage mechanisms and its interaction with the reservoir fluids with high resolution

  20. Eleven years of runoff and phosphorus losses from two fields with and without manure application, Iowa, USA

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Monitoring runoff at field edges can show how cropping systems and conservation practices affect runoff hydrology and water quality. Multi-year records are needed to measure these effects, because of the variable, ephemeral nature of rainfall-runoff events. This study compared runoff and phosphorus ...

  1. Tephra sequences as indicators of magma evolution: 40Ar/ 39Ar ages and geochemistry of tephra sequences in the southwest Nevada volcanic field

    NASA Astrophysics Data System (ADS)

    Huysken, K. T.; Vogel, T. A.; Layer, P. W.

    2001-04-01

    Changes in rock chemistry with 40Ar/ 39Ar ages in tephra layers record the temporal and magmatic history of two volcanic systems in southwestern Nevada. Tephra layers from the Post-Grouse Canyon tephra sequence record three distinct groups. These groups are chemically distinct and have 40Ar/ 39Ar ages of 13.52±0.06, 13.31±0.18, and 12.95±0.10 Ma. The age groups correspond to three distinct chemical groups based on trace element distributions. These chemical groups cannot be related by any reasonable fractional crystallization or magma mixing model and are interpreted as distinct magma batches. The Pre-Rainier Mesa tephra sequence records two 40Ar/ 39Ar ages (12.79±0.10 and 11.84±0.18 Ma). The upper portion of this sequence is equivalent in age and chemistry to part of the overlying Rainier Mesa ash-flow sheet. The lower portion of the sequence is equivalent in age to the underlying Tiva Canyon ash-flow sheet but is chemically distinct from this sheet. The formation of this chemical group is consistent with mixing of low silica Tiva Canyon and high silica, low Th, Rainier Mesa magma. Post-Grouse Canyon magmas were most likely emplaced as a series of small, unrelated magma bodies, which allowed them to evolve independently. The mixed Pre-Rainier Mesa magma was produced by infilling of the Tiva Canyon magma chamber with Rainier Mesa-like magma after eruption of the Tiva Canyon ash-flow sheet at approximately 12.8 Ma. The upper portion of the Pre-Rainier Mesa tephra sequence represents eruption of Rainier Mesa magma less than 0.3 My. before that of the voluminous (1200 km 3) Rainier Mesa ash-flow sheet at approximately 11.71 Ma.

  2. Pre-Shot Simulations of Far-Field Ground Motions for the Source Physics Experiment (SPE) Explosions at the Climax Stock, Nevada National Security Site

    SciTech Connect

    Rodgers, A J; Wagoner, J; Petersson, N A; Sjogreen, B

    2010-11-07

    The Source Physics Experiment (SPE) will involve a series of explosions in various geologic and emplacement conditions to validate numerical simulation methods to predict behavior of seismic wave excitation and propagation for nuclear test monitoring. The first SPE's currently underway involve explosions in the Climax Stock (granitic geology) at the Nevada National Security Site (NNSS). Detailed geologic data and published material properties for the major lithologic units of the NNSS and surrounding region were used to build three-dimensional models for seismic wave propagation simulations. The geologic structure near the SPE shot point is quite varied including granitic, carbonate, tuff and alluvium lithologies. We performed preliminary ground motion simulations for a near-source domain covering 8 km x 8 km at the surface centered on the shot point to investigate various source and propagation effects using WPP, LLNL's anelastic seismic wave finite difference code. Simulations indicate that variations in wave propagation properties of the sub-surface will generate strongly path-dependent response once the energy has left the relatively small granitic geology of the near-surface Climax Stock near the SPE shot point. Rough topography to the north and west of SPE shot point causes additional complexity in the signals including energy on the transverse components. Waves propagate much faster through the granitic and carbonate formations and slower through the tuff and alluvium. Synthetic seismograms for a pure explosion source in a 3D geologic structure show large amplitudes on transverse component. For paths to the south sampling the granite, tuff and alluvium lithologies transverse component amplitudes are as high as 50% of that on the vertical and radial components.

  3. Monogenetic volcanoes fed by interconnected dikes and sills in the Hopi Buttes volcanic field, Navajo Nation, USA

    USGS Publications Warehouse

    Muirhead, James D.; Van Eaton, Alexa R.; Re, Giuseppe; White, James D. L.; Ort, Michael H.

    2016-01-01

    Although monogenetic volcanic fields pose hazards to major cities worldwide, their shallow magma feeders (<500 m depth) are rarely exposed and, therefore, poorly understood. Here, we investigate exposures of dikes and sills in the Hopi Buttes volcanic field, Arizona, to shed light on the nature of its magma feeder system. Shallow exposures reveal a transition zone between intrusion and eruption within 350 m of the syn-eruptive surface. Using a combination of field- and satellite-based observations, we have identified three types of shallow magma systems: (1) dike-dominated, (2) sill-dominated, and (3) interconnected dike-sill networks. Analysis of vent alignments using the pyroclastic massifs and other eruptive centers (e.g., maar-diatremes) shows a NW-SE trend, parallel to that of dikes in the region. We therefore infer that dikes fed many of the eruptions. Dikes are also observed in places transforming to transgressive (ramping) sills. Estimates of the observable volume of dikes (maximum volume of 1.90 × 106 m3) and sills (minimum volume of 8.47 × 105 m3) in this study reveal that sills at Hopi Buttes make up at least 30 % of the shallow intruded volume (∼2.75 × 106 m3 total) within 350 m of the paeosurface. We have also identified saucer-shaped sills, which are not traditionally associated with monogenetic volcanic fields. Our study demonstrates that shallow feeders in monogenetic fields can form geometrically complex networks, particularly those intruding poorly consolidated sedimentary rocks. We conclude that the Hopi Buttes eruptions were primarily fed by NW-SE-striking dikes. However, saucer-shaped sills also played an important role in modulating eruptions by transporting magma toward and away from eruptive conduits. Sill development could have been accompanied by surface uplifts on the order of decimeters. We infer that the characteristic feeder systems described here for the Hopi Buttes may underlie monogenetic fields elsewhere

  4. MAP OF ECOREGIONS OF NEVADA

    EPA Science Inventory

    USEPA NHEERL-WED scientists, in collaboration with staff from EPA Region 9, the Nevada Division of Environmental Protection, the USDA Natural Resources Conservation Service, the Nevada Natural Heritage Program, the USDA Forest Service, and the USDI Bureau of Land Management have ...

  5. Nevada Underserved Science Education Program

    SciTech Connect

    Nicole Rourke; Jason Marcks

    2004-07-06

    Nevada Underserved Science Education Program (NUSEP) is a project to examine the effect of implementing new and innovative Earth and space science education curriculum in Nevada schools. The project provided professional development opportunities and educational materials for teachers participating in the program.

  6. Addendum to the Closure Report for Corrective Action Unit 547: Miscellaneous Contaminated Waste Sites, Nevada National Security Site, Nevada

    SciTech Connect

    2013-07-31

    This addendum to the Closure Report for Corrective Action Unit 547: Miscellaneous Contaminated Waste Sites, Nevada National Security Site, Nevada, DOE/NV--1480, dated July 2012, documents repairs of erosion and construction of engineered erosion protection features at Corrective Action Site (CAS) 02-37-02 (MULLET) and CAS 09-99-06 (PLAYER). The final as-built drawings are included in Appendix A, and photographs of field work are included in Appendix B. Field work was completed on March 11, 2013.

  7. Review of magnetic and electric field effects near active faults and volcanoes in the U.S.A.

    USGS Publications Warehouse

    Johnston, M.J.S.

    1989-01-01

    Synchronized measurements of geomagnetic field have been recorded along 800 km of the San Andreas fault and in the Long Valley caldera since 1974, and during eruptions on Mount St. Helens since 1980. For shorter periods of time, continuous measurements of geoelectric field measurements have been made on Mount St. Helens and near the San Andreas fault where moderate seismicity and fault slip frequently occurs. Significant tectonic and volcanic events for which nearby magnetic and electric field data have been obtained include: (1) two moderate earthquakes (ML > 5.8) for which magnetometers were close enough to expect observable signals (about three source lengths), (2) one moderate earthquake (MS 7.3) for which magnetometers were installed as massive fluid outflow occurred during the post-seismic phase, (3) numerous fault creep events and moderate seismicity, (4) a major explosive volcanic eruption and numerous minor extrusive eruptions, and (5) an episode of aseismic uplift. For one of the two earthquakes with ML > 5.8, seismomagnetic effects of -1.3 and -0.3 nT were observed. For this event, magnetometers were optimally located near the epicenter and the observations obtained are consistent with simple seismomagnetic models of the event. Similar models for the other event indicate that the expected seismomagnetic effects are below the signal resolution of the nearest magnetometer. Precursive tectonomagnetic effects were recorded on two independent instruments at distances of 30 and 50 km from a ML 5.2 earthquake. Longer-term changes were recorded in one region in southern California where a moderate ML 5.9 earthquake has since occurred. Surface observations of fault creep events have no associated magnetic or electrical signature above the present measurement precision (0.25 nT and 0.01%, respectively) and are consistent with near-surface fault failure models of these events. Longer-term creep is sometimes associated with corresponding longer-term magnetic field

  8. Nevada National Security Site Waste Acceptance Criteria

    SciTech Connect

    none,

    2013-06-01

    This document establishes the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Field Office (NNSA/NFO), Nevada National Security Site Waste Acceptance Criteria (NNSSWAC). The NNSSWAC provides the requirements, terms, and conditions under which the Nevada National Security Site (NNSS) will accept the following: • DOE hazardous and non-hazardous non-radioactive classified waste • DOE low-level radioactive waste (LLW) • DOE mixed low-level waste (MLLW) • U.S. Department of Defense (DOD) classified waste The LLW and MLLW listed above may also be classified waste. Classified waste is the only waste accepted for disposal that may be non-radioactive and shall be required to meet the waste acceptance criteria for radioactive waste as specified in this document. Classified waste may be sent to the NNSS as classified matter. Section 3.1.18 provides the requirements that must be met for permanent burial of classified matter. The NNSA/NFO and support contractors are available to assist the generator in understanding or interpreting this document. For assistance, please call the NNSA/NFO Environmental Management Operations (EMO) at (702) 295-7063, and the call will be directed to the appropriate contact.

  9. Intra-vent peperites related to the phreatomagmatic 71 Gulch Volcano, western Snake River Plain volcanic field, Idaho (USA)

    NASA Astrophysics Data System (ADS)

    Németh, Károly; White, Craig M.

    2009-05-01

    The western Snake River Plain volcanic field in SW Idaho contains up to 400 basaltic vents and centers that produced lava shields, pahoehoe lava fields, scoria cones, and a great variety of phreatomagmatic volcanoes between late Miocene and middle Pleistocene time. Tephra deposits produced by phreatomagmatic eruptions are particularly well exposed in the walls of the Snake River canyon, where thick accumulations of pyroclastic rocks indicate widespread phreatomagmatic eruptive events throughout most of the volcanic history of the region. Previously, many of the phreatomagmatic deposits were considered to be the products of subaqueous eruptions that took place on the floor of one or more large freshwater intra-continental lakes. Recent field based observations confirm the presence of widespread phreatomagmatic pyroclastic rocks; however, some that had been interpreted as being subaqueous exhibit textural features that are more consistent with subaerial depositional environments. Intrusive and extrusive magmatic bodies with features associated with peperite formation have also been identified. Most of these peperites can be attributed to magma-sediment mixing in intra-crater/conduit or vent settings, and therefore they can only be used as widespread paleoenvironmental indicators with limitations to demonstrate magma and surface water (e.g. lake) non-explosive interaction. One of the studied sites ("71 Gulch Volcano") was previously used to indicate the presence of a shallow lake. At this site there is clear field evidence that peperitic feeder dykes contacted muddy, sandy siliciclastic sediments forming globular peperite. The peperitic feeder dykes transition to pillowed, ponded lava up section. The ponded lavas are partially surrounded by a ~ 5-m-thick unit composed of gently dipping, dune bedded, volcanic glass shard-rich, unsorted, tuff and lapilli tuff containing abundant impact sags caused by volcanic lithics. We suggest that the 3D architecture of the erosional

  10. MISR Sees the Sierra Nevadas in Stereo

    NASA Technical Reports Server (NTRS)

    2000-01-01

    These MISR images of the Sierra Nevada mountains near the California-Nevada border were acquired on August 12, 2000 during Terra orbit 3472. On the left is an image from the vertical-viewing (nadir) camera. On the right is a stereo 'anaglyph' created using the nadir and 45.6-degree forward-viewing cameras, providing a three-dimensional view of the scene when viewed with red/blue glasses. The red filter should be placed over your left eye. To facilitate the stereo viewing, the images have been oriented with north toward the left.

    Some prominent features are Mono Lake, in the center of the images; Walker Lake, to its left; and Lake Tahoe, near the lower left. This view of the Sierra Nevadas includes Yosemite, Kings Canyon, and Sequoia National Parks. Mount Whitney, the highest peak in the contiguous 48 states (elev. 14,495 feet), is visible near the righthand edge. Above it (to the east), the Owens Valley shows up prominently between the Sierra Nevada and Inyo ranges.

    Precipitation falling as rain or snow on the Sierras feeds numerous rivers flowing southwestward into the San Joaquin Valley. The abundant fields of this productive agricultural area can be seen along the lower right; a large number of reservoirs that supply water for crop irrigation are apparent in the western foothills of the Sierras. Urban areas in the valley appear as gray patches; among the California cities that are visible are Fresno, Merced, and Modesto.

    MISR was built and is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Office of Earth Science, Washington, DC. The Terra satellite is managed by NASA's Goddard Space Flight Center, Greenbelt, MD. JPL is a division of the California Institute of Technology.

  11. Underground Test Area Activity Communication/Interface Plan, Nevada National Security Site, Nevada, Revision 0

    SciTech Connect

    Farnham, Irene; Rehfeldt, Kenneth

    2016-10-01

    The purpose of this plan is to provide guidelines for effective communication and interfacing between Underground Test Area (UGTA) Activity participants, including the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Field Office (NNSA/NFO) and its contractors. This plan specifically establishes the following: • UGTA mission, vision, and core values • Roles and responsibilities for key personnel • Communication with stakeholders • Guidance in key interface areas • Communication matrix

  12. GPS Imaging of vertical land motion in California and Nevada: Implications for Sierra Nevada uplift

    PubMed Central

    Blewitt, Geoffrey; Kreemer, Corné

    2016-01-01

    Abstract We introduce Global Positioning System (GPS) Imaging, a new technique for robust estimation of the vertical velocity field of the Earth's surface, and apply it to the Sierra Nevada Mountain range in the western United States. Starting with vertical position time series from Global Positioning System (GPS) stations, we first estimate vertical velocities using the MIDAS robust trend estimator, which is insensitive to undocumented steps, outliers, seasonality, and heteroscedasticity. Using the Delaunay triangulation of station locations, we then apply a weighted median spatial filter to remove velocity outliers and enhance signals common to multiple stations. Finally, we interpolate the data using weighted median estimation on a grid. The resulting velocity field is temporally and spatially robust and edges in the field remain sharp. Results from data spanning 5–20 years show that the Sierra Nevada is the most rapid and extensive uplift feature in the western United States, rising up to 2 mm/yr along most of the range. The uplift is juxtaposed against domains of subsidence attributable to groundwater withdrawal in California's Central Valley. The uplift boundary is consistently stationary, although uplift is faster over the 2011–2016 period of drought. Uplift patterns are consistent with groundwater extraction and concomitant elastic bedrock uplift, plus slower background tectonic uplift. A discontinuity in the velocity field across the southeastern edge of the Sierra Nevada reveals a contrast in lithospheric strength, suggesting a relationship between late Cenozoic uplift of the southern Sierra Nevada and evolution of the southern Walker Lane. PMID:27917328

  13. Style and age of late Oligocene-early Miocene deformation in the southern Stillwater Range, west central Nevada: Paleomagnetism, geochronology, and field relations

    USGS Publications Warehouse

    Hudson, Mark R.; John, David A.; Conrad, James E.; McKee, Edwin H.

    2000-01-01

    Paleomagnetic and geochronologic data combined with geologic mapping tightly restrict the timing and character of a late Oligocene to early Miocene episode of large magnitude extension in the southern Stillwater Range and adjacent regions of west central Nevada. The southern Stillwater Range was the site of an Oligocene to early Miocene volcanic center comprising (1) 28.3 to 24.3 Ma intracaldera ash flow tuffs, lava flows, and subjacent plutons associated with three calderas, (2) 24.8 to 20.7 Ma postcaldera silicic dikes and domes, and (3) unconformably overlying 15.3 to 13.0 Ma dacite to basalt lava flows, plugs, and dikes. The caldera-related tuffs, lava flows, and plutons were tilted 60°-70° either west or east during the initial period of Cenozoic deformation that accommodated over 100% extension. Directions of remanent magnetization obtained from these extrusive and intrusive, caldera-related rocks are strongly deflected from an expected Miocene direction in senses appropriate for their tilt. A mean direction for these rocks after tilt correction, however, suggests that they were also affected by a moderate (33.4° ± 11.8°) component of counterclockwise vertical axis rotation. Paleomagnetic data indicate that the episode of large tilting occurred during emplacement of 24.8 to 20.7 Ma postcaldera dikes and domes. In detail, an apparent decrease in rotation with decreasing age of individual, isotopically dated bodies of the postcaldera group indicates that most tilting occurred between 24.4 and 24.2 Ma. The onset of tilting immediately following after the final caldera eruptions suggests that the magmatism and deformation were linked. Deformation was not driven by magma buoyancy, however, because tilting equally affected the caldera systems of different ages, including their plutonic roots. It is more likely that regional extension was focused in the southern Stillwater Range due to magmatic warming and reduction of tensile strength of the brittle crust

  14. Pre-shot simulations of far-field ground motion for the Source Physics Experiment (SPE) Explosions at the Climax Stock, Nevada National Security Site: SPE2

    SciTech Connect

    Mellors, R J; Rodgers, A; Walter, W; Ford, S; Xu, H; Matzel, E; Myers, S; Petersson, N A; Sjogreen, B; Hauk, T; Wagoner, J

    2011-10-18

    The Source Physics Experiment (SPE) is planning a 1000 kg (TNT equivalent) shot (SPE2) at the Nevada National Security Site (NNSS) in a granite borehole at a depth (canister centroid) of 45 meters. This shot follows an earlier shot of 100 kg in the same borehole at a depth 60 m. Surrounding the shotpoint is an extensive array of seismic sensors arrayed in 5 radial lines extending out 2 km to the north and east and approximately 10-15 to the south and west. Prior to SPE1, simulations using a finite difference code and a 3D numerical model based on the geologic setting were conducted, which predicted higher amplitudes to the south and east in the alluvium of Yucca Flat along with significant energy on the transverse components caused by scattering within the 3D volume along with some contribution by topographic scattering. Observations from the SPE1 shot largely confirmed these predictions although the ratio of transverse energy relative to the vertical and radial components was in general larger than predicted. A new set of simulations has been conducted for the upcoming SPE2 shot. These include improvements to the velocity model based on SPE1 observations as well as new capabilities added to the simulation code. The most significant is the addition of a new source model within the finite difference code by using the predicted ground velocities from a hydrodynamic code (GEODYN) as driving condition on the boundaries of a cube embedded within WPP which provides a more sophisticated source modeling capability linked directly to source site materials (e.g. granite) and type and size of source. Two sets of SPE2 simulations are conducted, one with a GEODYN source and 3D complex media (no topography node spacing of 5 m) and one with a standard isotropic pre-defined time function (3D complex media with topography, node spacing of 5 m). Results were provided as time series at specific points corresponding to sensor locations for both translational (x,y,z) and rotational

  15. Use of vegetated agricultural drainage ditches to decrease toxicity of irrigation runoff from tomato and alfalfa fields in California, USA.

    PubMed

    Werner, Inge; Deanovic, Linda A; Miller, Jeff; Denton, Debra L; Crane, David; Mekebri, Abdou; Moore, Matthew T; Wrysinski, Jeanette

    2010-12-01

    The current study investigated the potential of vegetated drainage ditches for mitigating the impact of agricultural irrigation runoff on downstream aquatic ecosystems. Water column toxicity to larval fathead minnow (Pimephales promelas),and the amphipod Hyalella azteca was measured for 12 h or less at the ditch inflow and outflow, using custom-built in situ exposure systems. In addition, water and sediment samples were subject to standard toxicity tests with Ceriodaphnia dubia and H. azteca, respectively. No acute toxicity to larval fathead minnow was observed; however, runoff was highly toxic to invertebrates. Passage through a 389- to 402-m section of vegetated ditch had a mitigating effect and reduced toxicity to some degree. However, runoff from an alfalfa field treated with chlorpyrifos remained highly toxic to both invertebrate species, and runoff from a tomato field treated with permethrin remained highly toxic to H. azteca after passage through the ditch. Predicted toxic units calculated from insecticide concentrations in runoff and 96-h median lethal concentration (LC50) values generally agreed with C. dubia toxicity measured in the laboratory but significantly underestimated in situ toxicity to H. azteca. Sediments collected near the ditch outflow were toxic to H. azteca. Results from the current study demonstrate that experimental vegetated ditches were unable to eliminate the risk of irrigation runoff to aquatic ecosystems. In addition, protective measures based on chemical concentrations or laboratory toxicity tests with C. dubia do not ensure adequate protection of aquatic ecosystems from pyrethroid-associated toxicity.

  16. Strontium isotope systematics of mixing groundwater and oil-field brine at Goose Lake in northeastern Montana, USA

    USGS Publications Warehouse

    Peterman, Zell E.; Thamke, Joanna N.; Futa, Kiyoto; Preston, Todd

    2012-01-01

    Groundwater, surface water, and soil in the Goose Lake oil field in northeastern Montana have been affected by Cl−-rich oil-field brines during long-term petroleum production. Ongoing multidisciplinary geochemical and geophysical studies have identified the degree and local extent of interaction between brine and groundwater. Fourteen samples representing groundwater, surface water, and brine were collected for Sr isotope analyses to evaluate the usefulness of 87Sr/86Sr in detecting small amounts of brine. Differences in Sr concentrations and 87Sr/86Sr are optimal at this site for the experiment. Strontium concentrations range from 0.13 to 36.9 mg/L, and corresponding 87Sr/86Sr values range from 0.71097 to 0.70828. The local brine has 168 mg/L Sr and a 87Sr/86Sr value of 0.70802. Mixing relationships are evident in the data set and illustrate the sensitivity of Sr in detecting small amounts of brine in groundwater. The location of data points on a Sr isotope-concentration plot is readily explained by an evaporation-mixing model. The model is supported by the variation in concentrations of most of the other solutes.

  17. Corrective Action Decision Document/Closure Report for Corrective Action Unit 567: Miscellaneous Soil Sites - Nevada National Security Site, Nevada

    SciTech Connect

    Matthews, Patrick

    2014-12-01

    This Corrective Action Decision Document/Closure Report presents information supporting the closure of Corrective Action Unit (CAU) 567: Miscellaneous Soil Sites, Nevada National Security Site, Nevada. The purpose of this Corrective Action Decision Document/Closure Report is to provide justification and documentation supporting the recommendation that no further corrective action is needed for CAU 567 based on the implementation of the corrective actions. The corrective actions implemented at CAU 567 were developed based on an evaluation of analytical data from the CAI, the assumed presence of COCs at specific locations, and the detailed and comparative analysis of the CAAs. The CAAs were selected on technical merit focusing on performance, reliability, feasibility, safety, and cost. The implemented corrective actions meet all requirements for the technical components evaluated. The CAAs meet all applicable federal and state regulations for closure of the site. Based on the implementation of these corrective actions, the DOE, National Nuclear Security Administration Nevada Field Office provides the following recommendations: • No further corrective actions are necessary for CAU 567. • The Nevada Division of Environmental Protection issue a Notice of Completion to the DOE, National Nuclear Security Administration Nevada Field Office for closure of CAU 567. • CAU 567 be moved from Appendix III to Appendix IV of the FFACO.

  18. Prehistoric Agriculture and Soil Fertility on Lava Flows in Northern Arizona, USA: Results from the San Francisco Volcanic Field REU

    NASA Astrophysics Data System (ADS)

    Broadman, E.; Anderson, K. C.

    2013-12-01

    The San Francisco Volcanic Field in northern Arizona is home to ~600 cinder cones, the youngest of which is Sunset Crater (erupted ~AD 1100). This study documents trends in available phosphate and nitrate content with time, testing whether lowered soil pH from the addition of Sunset cinders increased soil fertility and became a factor in Anasazi agricultural success. Soil fertility is examined both before and after Sunset's eruption in soils of different ages that have developed from eolian deposition on top of lava flows. An increase in phosphate and nitrate levels following acidification would suggest that the presence of Sunset cinders brought the soils to the optimal pH for mobilization of these nutrients. The combined effects of the cinder layer retaining nutrients and water, wetter climates, and increases in phosphate and nitrate (both limiting nutrients for plant growth), would have contributed to Anasazi agricultural success after Sunset's eruption. Samples for this study were taken from eolian-derived soils of different ages atop lava flows in the San Francisco Volcanic Field. OSL data from these soils on Strawberry and SP Craters' lava flows yielded age estimates of ~12.3 ka (Strawberry) and ~32.7 ka (SP), on which a soil chronosequence was based. Results from the chronosequence supported these OSL ages, indicating that soils on the SP flow are older than those on the Strawberry flow. Field descriptions, Harden Development Indices, particle size analysis, and nutrient content analysis were used for this aspect of the project. An experimental acid wash method will be used to simulate the addition of Sunset's acidic cinders, and will yield data for phosphate and nitrate content after Sunset erupted. Preliminary results indicate that phosphate and nitrate accumulate in upper, eolian-derived horizons (Av, Bw) and in more deeply buried carbonate horizons (Bk). Higher concentrations of phosphate and nitrate were found in older (SP) soils than younger

  19. Nevada GPW Fact Sheet

    SciTech Connect

    2001-10-01

    Nevada holds the largest amount of untapped geothermal resources in the U.S., with apotential of 2,500 to 3,700 megawatts of electricity (MWe). (1 MWe powers approximately 1,000 homes.) Wells and springs exist over the entire state, offering extensive opportunities for development of low- and high-temperature resources for direct use or power generation. As U.S. Senator Harry Reid said at the inauguration of GeoPowering the West (see reverse), "This modest investment by the Federal government...

  20. Geothermal aquaculture in Nevada

    SciTech Connect

    Birk, S.

    1987-06-01

    Work in geothermal aquaculture and vertically integrated agriculture is undertaken by Washoe Aquaculture Limited, Gourmet Prawnz Inc., General Managing Partners. This approach to agriculture is researched at the integrated Prototype Aquaculture Facility (IPAF) at Hobo Hot Springs, Nevada. The principal objective at the IPAF is to use geothermal aquifers to commercially raise food, plants, and ornamental fish. At the IPAF, the feasibility of geothermal aquaculture has been demonstrated. The company has implemented many demonstration projects, including the cultivation of freshwater prawns, native baitfish, exotic tropical species, and commercially important aquatic plants.

  1. Gravity data of Nevada

    USGS Publications Warehouse

    Ponce, David A.

    1997-01-01

    Gravity data for the entire state of Nevada and adjacent parts of California, Utah, and Arizona are available on this CD-ROM. About 80,000 gravity stations were compiled primarily from the National Geophysical Data Center and the U.S. Geological Survey. Gravity data was reduced to the Geodetic Reference System of 1967 and adjusted to the Gravity Standardization Net 1971 gravity datum. Data were processed to complete Bouguer and isostatic gravity anomalies by applying standard gravity corrections including terrain and isostatic corrections. Selected principal fact references and a list of sources for data from the National Geophysical Data Center are included.

  2. The role of active and ancient geothermal processes in the generation, migration, and entrapment of oil in the basin and Range Province, western USA. Final technical report

    SciTech Connect

    Hulen, J.B.; Collister, J.W.; Curtiss, D.K.

    1997-06-01

    The Basin and Range (B&R) physiographic province of the western USA is famous not only for its geothermal and precious-metal wealth, but also for its thirteen oil fields, small but in some cases highly productive. The Grant Canyon field in Railroad Valley, for example, for years boasted production of more than 6000 barrels of oil (BO) per day from just two wells; aggregate current production from the Blackburn field in Pine Valley commonly exceeds 1000 BO per day. These two and several other Nevada oil fields are unusually hot at reservoir depth--up to 130{degrees}C at depths as shallow as 1.1 km, up to three times the value expected from the prevailing regional geothermal gradient.

  3. Trace organic contaminants, including toxaphene and trifluralin, in cotton field soils from Georgia and South Carolina, USA.

    PubMed

    Kannan, K; Battula, S; Loganathan, B G; Hong, C S; Lam, W H; Villeneuve, D L; Sajwan, K; Giesy, J P; Aldous, K M

    2003-07-01

    Residues of organic contaminants--including toxaphene, DDT, trifluralin, hexachlorocyclohexanes, polychlorinated biphenyls, polycyclic aromatic hydrocarbons (PAHs) and nonylphenol--were measured in 32 cotton field soils collected from South Carolina and Georgia in 1999. Toxaphene, trifluralin, DDT and PAHs were the major contaminants found in these soils. The maximum concentration of toxaphene measured was 2,500 ng/g dry weight. Trifluralin was detected in all the soils at concentrations ranging from 1 to 548 ng/g dry weight. Pesticide residues were not proportional to soil organic carbon content, indicating that their concentrations were a reflection of application history and dissipation rates rather than air-soil equilibrium. Soil extracts were also subjected to in vitro bioassays to assess dioxinlike, estrogenic, and androgenic/glucocorticoid potencies. Relatively more polar fractions of the soils elicited estrogenic and androgenic/glucocorticoid activities, but the magnitude of response was much less than those found in coastal marine sediments from industrialized locations.

  4. Mechanical and thermal control of cleating and shearing in coal: examples from the Alabama coalbed methane field, USA

    USGS Publications Warehouse

    Pashin, Jack; Carroll, R.E.; Hatch, Joseph R.; Goldhaber, Martin B.

    1999-01-01

    Natural fractures provide most of the interconnected macroporosity in coal. Therefore, understanding the characteristics of these fractures and the associated mechanisms of formation is essential for effective coalbed methane exploration and field management. Natural fractures in coal can be divided into two general types: cleat and shear structures. Cleat has been studied for more than a century, yet the mechanisms of cleat formation remain poorly understood (see reviews by Close, 1993; Laubach et al.,1998). An important aspect of cleating is that systematic fracturing of coal is takes place in concert with devolatization and concomitant shrinkage of the coal matrix during thermal maturation (Ammosov and Eremin, 1960). Coal, furthermore, is a mechanically weak rock type that is subject to bedding-plane shear between more competent beds like shale, sandstone, and limestone. Yet, the significance of shear structures in coal has only begun to attract scientific interest (Hathaway and Gayer, 1996; Pashin, 1998).

  5. Emergency response and field observation activities of geoscientists in California (USA) during the September 29, 2009, Samoa Tsunami

    NASA Astrophysics Data System (ADS)

    Wilson, Rick I.; Dengler, Lori A.; Goltz, James D.; Legg, Mark R.; Miller, Kevin M.; Ritchie, Andy; Whitmore, Paul M.

    2011-07-01

    State geoscientists (geologists, geophysicists, seismologists, and engineers) in California work closely with federal, state and local government emergency managers to help prepare coastal communities for potential impacts from a tsunami before, during, and after an event. For teletsunamis, as scientific information (forecast model wave heights, first-wave arrival times, etc.) from NOAA's West Coast and Alaska Tsunami Warning Center is made available, federal- and state-level emergency managers must help convey this information in a concise, comprehensible and timely manner to local officials who ultimately determine the appropriate response activities for their jurisdictions. During the September 29, 2009 Tsunami Advisory for California, government geoscientists assisted the California Emergency Management Agency by providing technical assistance during teleconference meetings with NOAA and other state and local emergency managers prior to the arrival of the tsunami. This technical assistance included background information on anticipated tidal conditions when the tsunami was set to arrive, wave height estimates from state-modeled scenarios for areas not covered by NOAA's forecast models, and clarifying which regions of the state were at greatest risk. Over the last year, state geoscientists have started to provide additional assistance: 1) working closely with NOAA to simplify their tsunami alert messaging and expand their forecast modeling coverage; 2) creating "playbooks" containing information from existing tsunami scenarios for local emergency managers to reference during an event; and, 3) developing a state-level information "clearinghouse" and pre-tsunami field response team to assist local officials as well as observe and report tsunami effects. Activities of geoscientists were expanded during the more recent Tsunami Advisory on February 27, 2010, including deploying a geologist from the California Geological Survey as a field observer who provided

  6. Comparison of the Eastern and Western Kentucky coal fields (Pennsylvanian), USA-why are coal distribution patterns and sulfur contents so different in these coal fields?

    USGS Publications Warehouse

    Greb, S.F.; Eble, C.F.; Chesnut, D.R.

    2002-01-01

    More than 130 Mt of Pennsylvanian coal is produced annually from two coal fields in Kentucky. The Western Kentucky Coal Field occurs in part of the Illinois Basin, an intercratonic basin, and the Eastern Kentucky Coal Field occurs in the Central Appalachian Basin, a foreland basin. The basins are only separated by 140 km, but mined western Kentucky coal beds exhibit significantly higher sulfur values than eastern Kentucky coals. Higher-sulfur coal beds in western Kentucky have generally been inferred to be caused by more marine influences than for eastern Kentucky coals. Comparison of strata in the two coal fields shows that more strata and more coal beds accumulated in the Eastern than Western Kentucky Coal Field in the Early and Middle Pennsylvanian, inferred to represent greater generation of tectonic accommodation in the foreland basin. Eastern Kentucky coal beds exhibit a greater tendency toward splitting and occurring in zones than time-equivalent western Kentucky coal beds, which is also inferred to represent foreland accommodation influences, overprinted by autogenic sedimentation effects. Western Kentucky coal beds exhibit higher sulfur values than their eastern counterparts, but western Kentucky coals occurring in Langsettian through Bolsovian strata can be low in sulfur content. Eastern Kentucky coal beds may increase in sulfur content beneath marine zones, but generally are still lower in sulfur than mined Western Kentucky coal beds, indicating that controls other than purely marine influences must have influenced coal quality. The bulk of production in the Eastern Kentucky Coal Field is from Duckmantian and Bolsovian coal beds, whereas production in the Western Kentucky Coal Field is from Westphalian D coals. Langsettian through Bolsovian paleoclimates in eastern Kentucky were favorable for peat doming, so numerous low-sulfur coals accumulated. These coals tend to occur in zones and are prone to lateral splitting because of foreland tectonic and

  7. Gully annealing by aeolian sediment: field and remote-sensing investigation of aeolian-hillslope-fluvial interactions, Colorado River corridor, Arizona, USA

    NASA Astrophysics Data System (ADS)

    Sankey, Joel B.; Draut, Amy E.

    2014-09-01

    Processes contributing to development of ephemeral gully channels are of great importance to landscapes worldwide, and particularly in dryland regions where soil loss and land degradation from gully erosion pose long-term land-management problems. Whereas gully formation has been relatively well studied, much less is known of the processes that anneal gullies and impede their growth. This study of gully annealing by aeolian sediment, spanning 95 km along the Colorado River corridor in Glen, Marble, and Grand Canyon, Arizona, USA, employed field and remote sensing observations, including digital topographic modelling. Results indicate that aeolian sediment activity can be locally effective at counteracting gully erosion. Gullies are less prevalent in areas where surficial sediment undergoes active aeolian transport, and have a greater tendency to terminate in active aeolian sand. Although not common, examples exist in the record of historical imagery of gullies that underwent infilling by aeolian sediment in past decades and evidently were effectively annealed. We thus provide new evidence for a potentially important interaction of aeolian-hillslope-fluvial processes, which could affect dryland regions substantially in ways not widely recognized. Moreover, because the biologic soil crust plays an important role in determining aeolian sand activity, and so in turn the extent of gully development, this study highlights a critical role of geomorphic-ecologic interactions in determining arid-landscape evolution.

  8. Gully annealing by aeolian sediment: field and remote-sensing investigation of aeolian-hillslope-fluvial interactions, Colorado River corridor, Arizona, USA

    USGS Publications Warehouse

    Sankey, Joel B.; Draut, Amy E.

    2014-01-01

    Processes contributing to development of ephemeral gully channels are of great importance to landscapes worldwide, and particularly in dryland regions where soil loss and land degradation from gully erosion pose long-term land-management problems. Whereas gully formation has been relatively well studied, much less is known of the processes that anneal gullies and impede their growth. This study of gully annealing by aeolian sediment, spanning 95 km along the Colorado River corridor in Glen, Marble, and Grand Canyon, Arizona, USA, employed field and remote sensing observations, including digital topographic modelling. Results indicate that aeolian sediment activity can be locally effective at counteracting gully erosion. Gullies are less prevalent in areas where surficial sediment undergoes active aeolian transport, and have a greater tendency to terminate in active aeolian sand. Although not common, examples exist in the record of historical imagery of gullies that underwent infilling by aeolian sediment in past decades and evidently were effectively annealed. We thus provide new evidence for a potentially important interaction of aeolian–hillslope–fluvial processes, which could affect dryland regions substantially in ways not widely recognized. Moreover, because the biologic soil crust plays an important role in determining aeolian sand activity, and so in turn the extent of gully development, this study highlights a critical role of geomorphic–ecologic interactions in determining arid-landscape evolution.

  9. Underground Test Area (UGTA) Closure Report for Corrective Action Unit 98: Frenchman Flat Nevada National Security Site, Nevada, Revision 1 ROTC-1

    SciTech Connect

    Farnham, Irene

    2016-08-01

    This Closure Report (CR) has been prepared for Corrective Action Unit (CAU) 98, Frenchman Flat, Nevada National Security Site (NNSS), Nevada. The Frenchman Flat CAU was the site of 10 underground nuclear tests, some of which have impacted groundwater near the tests. This work was performed as part of the U.S. Department of Energy, National Nuclear Security Administration Nevada Field Office (NNSA/NFO) Underground Test Area (UGTA) Activity in accordance with the Federal Facility Agreement and Consent Order (FFACO). This CR describes the selected corrective action to be implemented during closure to protect human health and the environment from the impacted groundwater

  10. Field tracer investigation of unsaturated zone flow paths and mechanisms in agricultural soils of northwestern Mississippi, USA

    USGS Publications Warehouse

    Perkins, K.S.; Nimmo, J.R.; Rose, C.E.; Coupe, R.H.

    2011-01-01

    In many farmed areas, intensive application of agricultural chemicals and withdrawal of groundwater for irrigation have led to water quality and supply issues. Unsaturated-zone processes, including preferential flow, play a major role in these effects but are not well understood. In the Bogue Phalia basin, an intensely agricultural area in the Delta region of northwestern Mississippi, the fine-textured soils often exhibit surface ponding and runoff after irrigation and rainfall as well as extensive surface cracking during prolonged dry periods. Fields are typically land-formed to promote surface flow into drainage ditches and streams that feed into larger river ecosystems. Downward flow of water below the root zone is considered minimal; regional groundwater models predict only 5% or less of precipitation recharges the heavily used alluvial aquifer. In this study transport mechanisms within and below the root zone of a fallow soybean field were assessed by performing a 2-m ring infiltration test with tracers and subsurface monitoring instruments. Seven months after tracer application, 48 continuous cores were collected for tracer extraction to define the extent of water movement and quantify preferential flow using a mass-balance approach. Vertical water movement was rapid below the pond indicating the importance of vertical preferential flow paths in the shallow unsaturated zone, especially to depths where agricultural disturbance occurs. Lateral flow of water at shallow depths was extensive and spatially non-uniform, reaching up to 10. m from the pond within 2. months. Within 1. month, the wetting front reached a textural boundary at 4-5. m between the fine-textured soil and sandy alluvium, now a potential capillary barrier which, prior to extensive irrigation withdrawals, was below the water table. Within 10. weeks, tracer was detectable at the water table which is presently about 12. m below land surface. Results indicate that 43% of percolation may be through

  11. Data Preparation and Analysis for Annex III, USA/PRC Cooperation in the Field of Atmospheric Trace Gases

    SciTech Connect

    Easterling, D.R.; Karl, T.R.

    1999-04-13

    The National Climatic Data Center (NCDC) has been a long-time and very active participant in the joint research program on the Greenhouse Effect created by the bilateral agreement Annex III to the Protocol on Fossil Energy Research and Development on Cooperation in the Field of Atmospheric Trace Gases. This agreement between the US Department of Energy (DOE) and the People's Republic of China, Chinese Academy of Sciences (CAS) has fostered a large amount of data set development and research (Riches et al., 1992) as well as science exchange between the two countries. Within the agreement there have been four basic tasks: (1) to analyze general circulation models, (2) to prepare, validate, and analyze data, (3) analyze the relationship between large scale and local climate, and (4) atmospheric trace gas measurements, particularly methane (Riches et al. 1992). Within this framework the NCDC has had two basic tasks in this program: to develop, validate, analyze and exchange long-term climate data sets suitable for analyzing past climate change, and to perform research into past climate change and linking large-scale and regional climates. Following is a brief review of NCDC's accomplishments in the project.

  12. Marine origin of pyritic sulfur in the Lower Bakerstown coal bed, Castleman coal field, Maryland (U.S.A.)

    USGS Publications Warehouse

    Lyons, P.C.; Whelan, J.F.; Dulong, F.T.

    1989-01-01

    The amount, kind, distribution, and genesis of pyrite in the Lower Bakerstown coal bed in a 150 ?? 15 m area of the Bettinger mine, Castleman coal field, Maryland, were studied by various analytical techniques. The mined coal, which had a nonmarine roof rock, contained 1.4-2.8 wt.% total sulfur, generally much lower than the high-sulfur coal (> 3.0 wt.% total S) to the north, which is associated with marine roof rocks. Small-scale systematic and nonsystematic variations in total sulfur and pyrite distribution were found in the mined area. In the column sample, most of the pyrite was found in the upper 9 cm of the 69-cm-thick mined coal and occurred mainly as a pyrite lens containing cell fillings in seed-fern tissue (coal ball). As-bearing pyrite was detected by laser microprobe techniques in the cell walls of this tissue but not elsewhere in the column sample. This may indicate that the As was derived from decomposition of organic matter in the cell walls. The sulfur isotopic composition and distribution of pyrite in the coal are consistent with introduction of marine sulfate shortly after peat deposition, followed by bacterial reduction and pyrite precipitation. Epigenetic cleat pyrite in the coal is isotopically heavy, implying that later aqueous sulfate was 34S-enriched. ?? 1989.

  13. 75 FR 7291 - Northeastern Great Basin Resource Advisory Council Meetings, Nevada

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-18

    ... N. Industrial Way, Ely, Nevada. Approximate meeting times are 8 a.m. to 4 p.m. However, meetings..., energy, and sustainable development Managers' reports of field office activities will be given at...

  14. Implications of seismic reflection and potential field geophysical data on the structural framework of the Yucca Mountain-Crater Flat region, Nevada

    USGS Publications Warehouse

    Brocher, T.M.; Hunter, W.C.; Langenheim, V.E.

    1998-01-01

    Seismic reflection and gravity profiles collected across Yucca Mountain, Nevada, together with geologic data, provide evidence against proposed active detachment faults at shallow depth along the pre-Tertiary-Tertiary contact beneath this potential repository for high-level nuclear waste. The new geophysical data show that the inferred pre-Tertiary-Tertiary contact is offset by moderate- to high-angle faults beneath Crater Flat and Yucca Mountain, and thus this shallow surface cannot represent an active detachment surface. Deeper, low-angle detachment surface(s) within Proterozoic-Paleozoic bedrock cannot be ruled out by our geophysical data, but are inconsistent with other geologic and geophysical observations in this vicinity. Beneath Crater Flat, the base of the seismogenic crust at 12 km depth is close to the top of the reflective (ductile) lower crust at 14 to 15 km depth, where brittle fault motions in the upper crust may be converted to pure shear in the ductile lower crust. Thus, our preferred interpretation of these geophysical data is that moderate- to high-angle faults extend to 12-15-km depth beneath Yucca Mountain and Crater Flat, with only modest changes in dip. The reflection lines reveal that the Amargosa Desert rift zone is an asymmetric half-graben having a maximum depth of about 4 km and a width of about 25 km. The east-dipping Bare Mountain fault that bounds this graben to the west can be traced by seismic reflection data to a depth of at least 3.5 km and possibly as deep as 6 km, with a constant dip of 64????5??. Within Crater Flat, east-dipping high-angle normal faults offset the pre-Tertiary-Tertiary contact as well as a reflector within the Miocene tuff sequence, tilting both to the west. The diffuse eastern boundary of the Amargosa Desert rift zone is formed by a broad series of high-angle down-to-the-west normal faults extending eastward across Yucca Mountain. Along our profile the transition from east- to west-dipping faults occurs at or

  15. Paleoslumps in coal-bearing strata of the Breathitt Group (Pennsylvanian), Eastern Kentucky Coal Field, U.S.A

    USGS Publications Warehouse

    Greb, S.F.; Weisenfluh, G.A.

    1996-01-01

    The benefits of geologic analysis for roof-control studies and hazard prediction in coal mines are well documented. Numerous case studies have illustrated the importance of recognizing geologic features such as paleochannels, coal riders, and kettlebottoms in mine roofs. Relatively understudied features, in terms of mining, are paleoslumps. Paleoslumps represent ancient movement and rotation of semi-consolidated sediment. Because bedding in paleoslumps is deformed or inclined, these features cause instability in mine roofs, haul roads, surface highwalls, and other excavations. Various types of paleoslumps above coals in the Eastern Kentucky Coal Field were studied in order to aid in their recognition and prediction in mines. The paleoslumps studied all showed characteristic slump-deformation features, although some differences in magnitude of deformation and overall slump size were noted. Coals beneath slumps often exhibited folding, reverse displacements, truncation, clastic dikes, and locally increased thickness. Slumps are inferred to have been triggered by a wide range of mechanisms, such as loading of water-saturated sediment on rigid substrates, synsedimentary faulting, and over-pressurization of channel margin and bar slopes. Analysis of paleoslumps in underground mines, where paleoslumps are viewed from beneath rather than in profile is difficult, since characteristic bed rotation may not be conspicuous. Sudden increases in bed-dip angle inferred from changes in rock type or bedding contacts in the roof; occurrence of bounding, polished rotation surfaces; or roof irregularity and occurrence of loading features may indicate the presence of paleoslumps. Another key to recognition may be the sudden appearance of over-thickened coal, which can occur because of slump-created paleotopography, synsedimentary faults, and slump-generated overthrusting. In addition, steeply inclined, folded, or transported coal marginal to paleoslumps can create apparent increases in

  16. Sr Isotopic Variation in Plagioclase Phenocrysts of the Heise Volcanic Field, Eastern Snake River Plain, Idaho USA

    NASA Astrophysics Data System (ADS)

    Phillips, W. M.; Schwartz, D. M.; Ellis, B. S.

    2012-12-01

    Feldspars within single eruptive units of rhyolites of the central Snake River Plain are tightly grouped into unimodal Sr isotope populations. Wolff et al. (2011) suggested that this Sr isotopic homogeneity is characteristic of Snake River-type rhyolitic volcanism, and reflects unusually high magma temperatures and low water contents. We test this hypothesis with new Sr data from plagioclase phenocrysts from the Heise Volcanic Field, a large nested caldera complex in the eastern Snake River Plain. We sampled the oldest unit (Tuff of Blacktail Creek, 6.6 Ma) and youngest unit (Kilgore Tuff, 4.5 Ma) at their type sections. To assess within unit variability, we also sampled widely separated exposures of the units across the caldera complex. Plagioclase crystals were separated magnetically and by hand-picking. Sr isotopes were analyzed in 9 to 66 grains per sample by LA-MC-ICPMS at the Washington State University GeoAnalytical Lab. Blacktail Creek samples have tight unimodal distributions with 87Sr/86Sr modes between 0.7126 and 0.7128 that support the Wolff et al. hypothesis. The Kilgore samples show considerably more variability. While all Kilgore samples have a similar principal mode between 0.7116 and 0.7118, additional minor modes are generally present. The Kilgore results are surprising given oxygen isotope evidence for magma homogeneity prior to eruption, crystal residence times of ~110 kyr, and magma temperatures of ~800-900°C (Watts et al., 2011). Under such temperatures, Sr isotopic homogeneity in plagioclase is likely achieved in 5 mm grains within <10 kyr. The observed Sr isotope heterogeneity in Kilgore may result from isolation of magma batches until shortly before eruption. References: Wolff et al., 2011, Geology 39(10), 931-934; Watts et al. 2011, J. Petrology 52(5), 857-890.

  17. Comparing ONRAB® AND RABORAL V-RG® oral rabies vaccine field performance in raccoons and striped skunks, New Brunswick, Canada, and Maine, USA.

    PubMed

    Fehlner-Gardiner, Christine; Rudd, Robert; Donovan, Dennis; Slate, Dennis; Kempf, Libby; Badcock, Jacqueline

    2012-01-01

    Control of rabies in mesocarnivore reservoirs through oral rabies vaccination (ORV) requires an effective vaccine bait. Oral rabies vaccine performance in the field may be affected by a variety of factors, including vaccine bait density and distribution pattern, habitat, target species population density, and the availability of competing foods. A field study in which these covariates were restricted as much as possible was conducted along the international border of the state of Maine (ME), USA, and the province of New Brunswick (NB), Canada, to compare the performance of two oral rabies vaccines in raccoons (Procyon lotor) and striped skunks (Mephitis mephitis). RABORAL V-RG(®) (vaccinia-rabies glycoprotein recombinant oral vaccine in fishmeal-coated sachet) or ONRAB(®) (adenovirus-rabies glycoprotein recombinant oral vaccine in Ultralite bait matrix) were distributed in ME and NB, respectively, by fixed-wing aircraft at a density of 75 baits/km(2) along parallel flight lines spaced 1.0 km apart. Sera were collected from live-trapped raccoons and skunks 5-7 wk post-ORV and assayed to determine antibody prevalence in each area. Duplicate serum samples were provided blind to two different laboratories for analyses by rabies virus serum neutralization assays (at both laboratories) and a competitive enzyme-linked immunosorbent assay (at one laboratory). There was no significant difference in the proportion of antibody-positive animals determined by the three serologic methods, nor was there a significant difference between ONRAB and RABORAL V-RG in the proportion of antibody-positive striped skunks observed post-ORV. In contrast, the proportion of antibody-positive raccoons was significantly higher in the ONRAB- versus the RABORAL V-RG-baited areas (74% vs. 30%; χ(2)=89.977, df=5, P<0.0001). These data support that ONRAB may serve as an effective tool for raccoon rabies control.

  18. Nevada Transportatoion Options Study

    SciTech Connect

    P. GEHNER; E.M. WEAVER; L. FOSSUM

    2006-05-25

    This study performs a cost and schedule analysis of three Nevada Transportation options that support waste receipt at the repository. Based on the U.S. Department of Energy preference for rail transportation in Nevada (given in the Final Environmental Impact Statement), it has been assumed that a branch rail line would be constructed to support waste receipt at the repository. However, due to potential funding constraints, it is uncertain when rail will be available. The three Nevada Transportation options have been developed to meet a varying degree of requirements for transportation and to provide cost variations used in meeting the funding constraints given in the Technical Direction Letter guidelines for this study. The options include combinations of legal-weight truck, heavy-haul truck, and rail. Option 1 uses a branch rail line that would support initial waste receipt at the repository in 2010. Rail transportation would be the primary mode, supplemented by legal weight trucks. This option provides the highest level of confidence in cost and schedule, lowest public visibility, greatest public acceptability, lowest public dose, and is the recommended option for support of waste receipt. The completion of rail by 2010 will require spending approximately $800 million prior to 2010. Option 2 uses a phased rail approach to address a constrained funding scenario. To meet funding constraints, Option 2 uses a phased approach to delay high cost activities (final design and construction) until after initial waste receipt in 2010. By doing this, approximately 95 percent of the cost associated with completion of a branch rail line is deferred until after 2010. To support waste receipt until a branch rail line is constructed in Nevada, additional legal-weight truck shipments and heavy-haul truck shipments (on a limited basis for naval spent nuclear fuel) would be used to meet the same initial waste receipt rates as in Option 1. Use of heavy-haul shipments in the absence

  19. Influence of the Pacific decadal oscillation on the climate of the Sierra Nevada, California and Nevada

    USGS Publications Warehouse

    Benson, L.; Linsley, B.; Smoot, J.; Mensing, S.; Lund, S.; Stine, S.; Sarna-Wojcicki, A.

    2003-01-01

    Mono Lake sediments have recorded five major oscillations in the hydrologic balance between A.D. 1700 and 1941. These oscillations can be correlated with tree-ring-based oscillations in Sierra Nevada snowpack. Comparison of a tree-ring-based reconstruction of the Pacific Decadal Oscillation (PDO) index (D' Arrigo et al., 2001) with a coral-based reconstruction of Subtropical South Pacific sea-surface temperature (Linsley et al., 2000) indicates a high degree of correlation between the two records during the past 300 yr. This suggests that the PDO has been a pan-Pacific phenomena for at least the past few hundred years. Major oscillations in the hydrologic balance of the Sierra Nevada correspond to changes in the sign of the PDO with extreme droughts occuring during PDO maxima. Four droughts centered on A.D. 1710, 1770, 1850, and 1930 indicate PDO-related drought reoccurrence intervals ranging from 60 to 80 yr. ?? 2003 Elsevier Science (USA). All rights reserved.

  20. Nevada`s role in the hydrogen economy

    SciTech Connect

    Vaeth, T.

    1997-12-31

    The paper discusses the promise of hydrogen and its possible applications, barriers to its development, the role that the Nevada Test Site could play if it were made more available to public and private institutions for research, and the ``clean city`` concept being developed jointly with California, Utah, and Nevada. This concept would create a ``clean corridor`` along the route from Salt Lake City through Reno to Sacramento, Los Angeles, Las Vegas, and back to Salt Lake City.

  1. Contemporaneous trachyandesitic and calc-alkaline volcanism of the Huerto Andesite, San Juan Volcanic Field, Colorado, USA

    USGS Publications Warehouse

    Parat, F.; Dungan, M.A.; Lipman, P.W.

    2005-01-01

    Locally, voluminous andesitic volcanism both preceded and followed large eruptions of silicic ash-flow tuff from many calderas in the San Juan volcanic field. The most voluminous post-collapse lava suite of the central San Juan caldera cluster is the 28 Ma Huerto Andesite, a diverse assemblage erupted from at least 5-6 volcanic centres that were active around the southern margins of the La Garita caldera shortly after eruption of the Fish Canyon Tuff. These andesitic centres are inferred, in part, to represent eruptions of magma that ponded and differentiated within the crust below the La Garita caldera, thereby providing the thermal energy necessary for rejuvenation and remobilization of the Fish Canyon magma body. The multiple Huerto eruptive centres produced two magmatic series that differ in phenocryst mineralogy (hydrous vs anhydrous assemblages), whole-rock major and trace element chemistry and isotopic compositions. Hornblende-bearing lavas from three volcanic centres located close to the southeastern margin of the La Garita caldera (Eagle Mountain - Fourmile Creek, West Fork of the San Juan River, Table Mountain) define a high-K calc-alkaline series (57-65 wt % SiO2) that is oxidized, hydrous and sulphur rich. Trachyandesitic lavas from widely separated centres at Baldy Mountain-Red Lake (western margin), Sugarloaf Mountain (southern margin) and Ribbon Mesa (20 km east of the La Garita caldera) are mutually indistinguishable (55-61 wt % SiO2); they are characterized by higher and more variable concentrations of alkalis and many incompatible trace elements (e.g. Zr, Nb, heavy rare earth elements), and they contain anhydrous phenocryst assemblages (including olivine). These mildly alkaline magmas were less water rich and oxidized than the hornblende-bearing calc-alkaline suite. The same distinctions characterize the voluminous precaldera andesitic lavas of the Conejos Formation, indicating that these contrasting suites are long-term manifestations of San Juan

  2. Mining geology of the Pond Creek seam, Pikeville Formation, Middle Pennsylvanian, in part of the Eastern Kentucky Coal Field, USA

    USGS Publications Warehouse

    Greb, S.F.; Popp, J.T.

    1999-01-01

    The Pond Creek seam is one of the leading producers of coal in the Eastern Kentucky Coal Field. The geologic factors that affect mining were investigated in several underground mines and categorized in terms of coal thickness, coal quality, and roof control. The limits of mining and thick coal are defined by splitting along the margin of the coal body. Within the coal body, local thickness variation occurs because of (1) leader coal benches filling narrow, elongated depressions, (2) rider coal benches coming near to or merging with the main bench, (3) overthrust coal benches being included along paleochannel margins, (4) cutouts occuring beneath paleochannels, and (5) very hard and unusual rock partings occuring along narrow, elongated trends. In the study area, the coal is mostly mined as a compliance product: sulfur contents are less than 1% and ash yields are less than 10%. Local increases in sulfur occur beneath sandstones, and are inferred to represent post-depositional migration of fluids through porous sands into the coal. Run-of-mine quality is also affected by several mine-roof conditions and trends of densely concentrated rock partings, which lead to increased in- and out-of-seam dilution and overall ash content of the mined coal. Roof control is largely a function of a heterolithic facies mosaic of coastal-estuarine origin, regional fracture trends, and unloading stress related to varying mine depth beneath the surface. Lateral variability of roof facies is the rule in most mines. The largest falls occur beneath modern valleys and parallel fractures, along paleochannel margins, within tidally affected 'stackrock,' and beneath rider coals. Shale spalling, kettlebottoms, and falls within other more isolated facies also occur. Many of the lithofacies, and falls related to bedding weaknesses within or between lithofacies, occur along northeast-southwest trends, which can be projected in advance of mining. Fracture-related falls occur independently of

  3. Preliminary digital map of cryptocrystalline occurrences in northern Nevada

    USGS Publications Warehouse

    Moyer, Lorre A.

    1999-01-01

    The purpose was to identify potential cryptocrystalline material sources for tools used by indigenous people of the northern Nevada portion of the Great Basin. Cryptocrystalline occurrence data combed from the U.S. Geological Survey's Mineral Resources Data System (MRDS, 1995) were combined with sites described in Nevada rockhound guides and entered into a geographic information system (GIS). The map area encompasses northern Nevada (fig.1). This open-file report describes the methods used to convert cryptocrystalline occurrence data into a digital format, documents the file structures, and explains how to download the digital files from the U.S. Geological Survey's World Wide Web site. Uses of the spatial dataset include, but are not limited to, natural and cultural resource management, interdisciplinary activities, recreational rockhounding, and gold exploration. It is important to note that the accuracy of the spatial data varies widely, and for some purposes, field checks are advised.

  4. State Emergency Response and Field Observation Activities in California (USA) during the March 11, 2011, Tohoku Tsunami

    NASA Astrophysics Data System (ADS)

    Miller, K. M.; Wilson, R. I.; Goltz, J.; Fenton, J.; Long, K.; Dengler, L.; Rosinski, A.; California Tsunami Program

    2011-12-01

    This poster will present an overview of successes and challenges observed by the authors during this major tsunami response event. The Tohoku, Japan tsunami was the most costly to affect California since the 1964 Alaskan earthquake and ensuing tsunami. The Tohoku tsunami caused at least $50 million in damage to public facilities in harbors and marinas along the coast of California, and resulted in one fatality. It was generated by a magnitude 9.0 earthquake which occurred at 9:46PM PST on Thursday, March 10, 2011 in the sea off northern Japan. The tsunami was recorded at tide gages monitored by the West Coast/Alaska Tsunami Warning Center (WCATWC), which projected tsunami surges would reach California in approximately 10 hours. At 12:51AM on March 11, 2011, based on forecasted tsunami amplitudes, the WCATWC placed the California coast north of Point Conception (Santa Barbara County) in a Tsunami Warning, and the coast south of Point Conception to the Mexican border in a Tsunami Advisory. The California Emergency Management Agency (CalEMA) activated two Regional Emergency Operation Centers (REOCs) and the State Operation Center (SOC). The California Geological Survey (CGS) deployed a field team which collected data before, during and after the event through an information clearinghouse. Conference calls were conducted hourly between the WCATWC and State Warning Center, as well as with emergency managers in the 20 coastal counties. Coordination focused on local response measures, public information messaging, assistance needs, evacuations, emergency shelters, damage, and recovery issues. In the early morning hours, some communities in low lying areas recommended evacuation for their citizens, and the fishing fleet at Crescent City evacuated to sea. The greatest damage occurred in the harbors of Crescent City and Santa Cruz. As with any emergency, there were lessons learned and important successes in managing this event. Forecasts by the WCATWC were highly accurate

  5. The effects of sediment and mercury mobilization in the South Yuba River and Humbug Creek Confluence Area, Nevada County, California: Concentrations, speciation, and environmental fate-Part 1: Field characterization

    USGS Publications Warehouse

    Fleck, Jacob A.; Alpers, Charles N.; Marvin-DiPasquale, Mark; Hothem, Roger L.; Wright, Scott A.; Ellett, Kevin; Beaulieu, Elizabeth; Agee, Jennifer L.; Kakouros, Evangelos; Kieu, Le H.; Eberl, Dennis D.; Blum, Alex E.; May, Jason T.

    2011-01-01

    Millions of pounds of mercury (Hg) were deposited in the river and stream channels of the Sierra Nevada from placer and hard-rock mining operations in the late 1800s and early 1900s. The resulting contaminated sediments are relatively harmless when buried and isolated from the overlying aquatic environment. The entrained Hg in the sediment constitutes a potential risk to human and ecosystem health should it be reintroduced to the actively cycling portion of the aquatic system, where it can become methylated and subsequently bioaccumulated in the food web. Each year, sediment is mobilized within these fluvial systems during high stormflows, transporting hundreds of tons of Hg-laden sediment downstream. The State of California and resource-management agencies, including the Bureau of Land Management (BLM) and the U.S. Forest Service, are concerned about additional disturbances, such as from suction gold dredging activities, which have the potential to mobilize Hg associated with buried sediment layers elevated in Hg that are otherwise likely to remain buried under normal storm conditions. The BLM initiated a study looking at the feasibility of removing Hg-contaminated sediment at the confluence of the South Yuba River and Humbug Creek in the northern Sierra Nevada of California by using standard suction-dredge technology. Additionally, the California State Water Resources Control Board (SWRCB) supported a comprehensive characterization of the intended dredge site. Together, the BLM and SWRCB supported a comprehensive characterization of Hg contamination at the site and the potential effects of sediment disturbance at locations with historical hydraulic mining debris on downstream environments. The comprehensive study consisted of two primary components: field studies and laboratory experiments. The field component, described in this report, had several study elements: 1) a preliminary, small-scale, in-stream dredge test; 2) comprehensive characterization of grain

  6. Magma evolution and ascent at the Craters of the Moon and neighboring volcanic fields, southern Idaho, USA: implications for the evolution of polygenetic and monogenetic volcanic fields

    USGS Publications Warehouse

    Putirka, Keith D.; Kuntz, Mel A.; Unruh, Daniel M.; Vaid, Nitin

    2009-01-01

    The evolution of polygenetic and monogenetic volcanic fields must reflect differences in magma processing during ascent. To assess their evolution we use thermobarometry and geochemistry to evaluate ascent paths for neighboring, nearly coeval volcanic fields in the Snake River Plain, in south-central Idaho, derived from (1) dominantly Holocene polygenetic evolved lavas from the Craters of the Moon lava field (COME) and (2) Quaternary non-evolved, olivine tholeiites (NEOT) from nearby monogenetic volcanic fields. These data show that NEOT have high magmatic temperatures (1205 + or - 27 degrees C) and a narrow temperature range (50 degrees C). Prolonged storage of COME magmas allows them to evolve to higher 87Sr/86Sr and SiO2, and lower MgO and 143Nd/144Nd. Most importantly, ascent paths control evolution: NEOT often erupt near the axis of the plain where high-flux (Yellowstone-related), pre-Holocene magmatic activity replaces granitic middle crust with basaltic sills, resulting in a net increase in NEOT magma buoyancy. COME flows erupt off-axis, where felsic crustal lithologies sometimes remain intact, providing a barrier to ascent and a source for crustal contamination. A three-stage ascent process explains the entire range of erupted compositions. Stage 1 (40-20 km): picrites are transported to the middle crust, undergoing partial crystallization of olivine + or - clinopyroxene. COME magmas pass through unarmored conduits and assimilate 1% or less of ancient gabbroic crust having high Sr and 87Sr/86Sr and low SiO2. Stage 2 (20-10 km): magmas are stored within the middle crust, and evolve to moderate MgO (10%). NEOT magmas, reaching 10% MgO, are positively buoyant and migrate through the middle crust. COME magmas remain negatively buoyant and so crystallize further and assimilate middle crust. Stage 3 (15-0 km): final ascent and eruption occurs when volatile contents, increased by differentiation, are sufficient (1-2 wt % H2O) to provide magma buoyancy through the

  7. Processed seismic motion records from Little Skull Mountain, Nevada earthquake of June 29, 1992, recorded at stations in southern Nevada

    SciTech Connect

    Lum, P.K.; Honda, K.K.

    1992-12-31

    As part of the contract with the US Department of Energy, Nevada Field Office (DOE/NV), URS/John A. Blume & Associates, Engineers (URS/Blume) maintains a network of seismographs in southern Nevada to monitor the ground motion generated by the underground nuclear explosions (UNEs) at the Nevada Test Site (NTS). The seismographs are located in the communities surrounding the NTS and the Las Vegas valley. When these seismographs are not used for monitoring the UNE generated motions, a limited number of seismographs are maintained for monitoring motion generated by other than UNEs (e.g. motion generated by earthquakes, wind, blast). During the subject earthquake of June 29, 1992, a total of 20 of these systems recorded the earthquake motions. This report contains the recorded data.

  8. Mud Pit Identification Report, Nevada Test Site, Nevada (September 2001, Rev. No. 0)

    SciTech Connect

    NNSA /NV

    2001-09-20

    The U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Operations Office (NNSA/NV) and the Nevada Division of Environmental Protection completed the Mud Pit Strategy, Nevada Test Site (NTS), Nevada (DOE/NV, 2001) to document a systematic process for identifying and categorizing potentially contaminated mud pits located on the NTS, and systematically evaluating them for inclusion in the Federal Facility Agreement and Consent Order (FFACO). The objectives of this report are to summarize the process used to define the six mud pit categories, identify mud pits, discuss the mud pits that do not meet FFACO entry criteria, identify mud pits for proposed FFACO entry, and describe the general mud pit distribution. Underground nuclear testing conducted since 1951 at the NTS has produced mud pits that were used for the transfer and collection of drilling mud, rock cuttings, and drilling fluids. This report documents the execution of the strategy document by examining the identification process and documenting these results. For clarification purposes, this document uses the term ''entry'' to indicate inclusion of mud pits into the FFACO and ''exclusion'' to indicate those mud pits which do not meet the ''entry'' criteria defined in this report. Based on this criteria, 257 mud pits identified that have been proposed for FFACO entry were found in 14 separate areas of the NTS. Each of the 257 mud pits proposed for FFACO entry will need to be located in the field, photographed, and documented during future Industrial Sites Project, Preliminary Assessment activities. If the field review determines that a mud pit was misidentified or improperly categorized, the appropriate FFACO modification request will be submitted for review and approval.

  9. Corrective Action Plan for Corrective Action Unit 417: Central Nevada Test Area Surface, Nevada

    SciTech Connect

    K. Campbell

    2000-04-01

    This Corrective Action Plan provides methods for implementing the approved corrective action alternative as provided in the Corrective Action Decision Document for the Central Nevada Test Area (CNTA), Corrective Action Unit (CAU) 417 (DOE/NV, 1999). The CNTA is located in the Hot Creek Valley in Nye County, Nevada, approximately 137 kilometers (85 miles) northeast of Tonopah, Nevada. The CNTA consists of three separate land withdrawal areas commonly referred to as UC-1, UC-3, and UC-4, all of which are accessible to the public. CAU 417 consists of 34 Corrective Action Sites (CASs). Results of the investigation activities completed in 1998 are presented in Appendix D of the Corrective Action Decision Document (DOE/NV, 1999). According to the results, the only Constituent of Concern at the CNTA is total petroleum hydrocarbons (TPH). Of the 34 CASs, corrective action was proposed for 16 sites in 13 CASs. In fiscal year 1999, a Phase I Work Plan was prepared for the construction of a cover on the UC-4 Mud Pit C to gather information on cover constructibility and to perform site management activities. With Nevada Division of Environmental Protection concurrence, the Phase I field activities began in August 1999. A multi-layered cover using a Geosynthetic Clay Liner as an infiltration barrier was constructed over the UC-4 Mud Pit. Some TPH impacted material was relocated, concrete monuments were installed at nine sites, signs warning of site conditions were posted at seven sites, and subsidence markers were installed on the UC-4 Mud Pit C cover. Results from the field activities indicated that the UC-4 Mud Pit C cover design was constructable and could be used at the UC-1 Central Mud Pit (CMP). However, because of the size of the UC-1 CMP this design would be extremely costly. An alternative cover design, a vegetated cover, is proposed for the UC-1 CMP.

  10. Nevada Test Site Wetlands Assessment

    SciTech Connect

    D. J. Hansen

    1997-05-01

    This report identifies 16 Nevada Test Site (NTS) natural water sources that may be classified by the U.S. Army Corps of Engineers (USACE) as jurisdictional wetlands and identifies eight water sources that may be classified as waters of the United States. These water sources are rare, localized habitats on the NTS that are important to regional wildlife and to isolated populations of water tolerant plants and aquatic organisms. No field investigations on the NTS have been conducted in the past to identify those natural water sources which would be protected as rare habitats and which may fall under regulatory authority of the Clean Water Act (CWA) of 1997. This report identifies and summarizes previous studies of NTS natural water sources, and identifies the current DOE management practices related to the protection of NTS wetlands. This report also presents management goals specific for NTS wetlands that incorporate the intent of existing wetlands legislation, the principles of ecosystem management, and the interests of regional land managers and other stakeholders.

  11. Nevada Test Site seismic: telemetry measurements

    SciTech Connect

    Albright, J N; Parker, L E; Horton, E H

    1983-08-01

    The feasibility and limitations of surface-to-tunnel seismic telemetry at the Nevada Test Site were explored through field measurements using current technology. Range functions for signaling were determined through analysis of monofrequency seismic signals injected into the earth at various sites as far as 70 km (43 mi) from installations of seismometers in the G-Tunnel complex of Rainier Mesa. Transmitted signal power at 16, 24, and 32 Hz was measured at two locations in G-Tunnel separated by 670 m (2200 ft). Transmissions from 58 surface sites distributed primarily along three azimuths from G-Tunnel were studied. The G-Tunnel noise environment was monitored over the 20-day duration of the field tests. Noise-power probability functions were calculated for 20-s and 280-s seismic-record populations. Signaling rates were calculated for signals transmitted from superior transmitter sites to G-Tunnel. A detection threshold of 13 dB re 1 nm/sup 2/ displacement power at 95% reliability was demanded. Consideration of field results suggests that even for the frequency range used in this study, substantially higher signaling rates are likely to be obtained in future work in view of the present lack of information relevant to hardware-siting criteria and the seismic propagation paths at the Nevada Test Site. 12 references.

  12. Subterranean fragmentation of magma during conduit initiation and evolution in the shallow plumbing system of the small-volume Jagged Rocks volcanoes (Hopi Buttes Volcanic Field, Arizona, USA)

    NASA Astrophysics Data System (ADS)

    Re, Giuseppe; White, James D. L.; Muirhead, James D.; Ort, Michael H.

    2016-08-01

    Monogenetic volcanoes have limited magma supply and lack long-lived sustained magma plumbing systems. They erupt once, often from multiple vents and sometimes over several years, and are rarely or never re-activated. Eruptive behavior is very sensitive to physical processes (e.g., volatile exsolution, magma-water interaction) occurring in the later stages of magma ascent at shallow crustal depths (<1 km), which yield a spectrum of eruptive styles including weak to moderate explosive activity, violent phreatomagmatism, and lava effusion. Jagged Rocks Complex in the late Miocene Hopi Buttes Volcanic field (Arizona, USA) exposes the frozen remnants of the feeding systems for one or a few monogenetic volcanoes. It provides information on how a shallow magmatic plumbing system evolved within a stable non-marine sedimentary basin, and the processes by which magma flowing through dikes fragmented and conduits were formed. We have identified three main types of fragmental deposits, (1) buds (which emerge from dikes), (2) pyroclastic massifs, and (3) diatremes; these represent three different styles and intensities of shallow-depth magma fragmentation. They may develop successively and at different sites during the evolution of a monogenetic volcano. The deposits consist of a mixture of pyroclasts with varying degrees of welding and country-rock debris in various proportions. Pyroclasts are commonly welded together, but also reveal in places features consistent with phreatomagmatism, such as blocky shapes, dense groundmasses, and composite clasts (loaded and cored). The extent of fragmentation and the formation of subterranean open space controlled the nature of the particles and the architecture and geometry of these conduit structures and their deposits.

  13. Geologic Map of Nevada

    USGS Publications Warehouse

    Crafford, A. Elizabeth Jones

    2007-01-01

    The purpose of the Geologic Map of Nevada is to provide an integrated set of digital geologic information that can be used for regional geologic and rigorous spatial analysis. Two components of this map represent new information that has not been published in this form before. The new geology layer was created by merging into a single file individual digital Nevada county geologic maps (Hess and Johnson, 1997), published at a scale of 1:250,000. A new regional interpretation was created to unify all of the different county rock units, and then appropriate edits and modifications were made to the file to reflect additional geologic information and more current geologic interpretations. All possible sources of information were not utilized in the scope of this project, but rather the goal was to create a consistent Statewide 1:250,000-scale map that would facilitate regional geologic interpretation and be a foundation for future spatial analyses of digital data. Secondly, a new database of conodont biostratigraphic data compiled and analyzed by Anita Harris is also incorporated into the map. Information about many, but not all, of these conodont samples have been published separately elsewhere over the years, but they have not been presented together in a single digital database. Other previously published data layers are used in this map to enhance the usefulness of the geologic information. These layers include mineral deposit locations, oil well locations, and cartographic layers such as county boundaries, roads, towns, cities, rivers, water bodies, township, range and section grids, quadrangle grids, and topography. A summary of these components is given below, and complete descriptions of each layer are provided in the digital metadata.

  14. Nevada Test Site Waste Acceptance Criteria

    SciTech Connect

    U.S. Department of Energy, Nevada Operations Office, Waste Acceptance Criteria

    1999-05-01

    This document provides the requirements, terms, and conditions under which the Nevada Test Site will accept low-level radioactive and mixed waste for disposal; and transuranic and transuranic mixed waste for interim storage at the Nevada Test Site.

  15. Libraries in Nevada: MedlinePlus

    MedlinePlus

    ... this page: https://medlineplus.gov/libraries/nevada.html Libraries in Nevada To use the sharing features on ... page, please enable JavaScript. Elko Great Basin College Library 1500 College Parkway Elko, NV 89801 775-753- ...

  16. Supplemental Investigation Plan for FFACO Use Restrictions, Nevada Test Site, Nevada, Revision 0

    SciTech Connect

    Lynn Kidman

    2008-02-01

    This document is part of an effort to re-evaluate all FFACO URs against the current RBCA criteria (referred to in this document as the Industrial Sites [IS] RBCA process) as defined in the Industrial Sites Project Establishment of Final Action Levels (NNSA/NSO, 2006a). After reviewing all of the existing FFACO URs, the 12 URs addressed in this Supplemental Investigation Plan (SIP) could not be evaluated against the current RBCA criteria as sufficient information about the contamination at each site was not available. This document presents the plan for conducting field investigations to obtain the needed information. This SIP includes URs from Corrective Action Units (CAUs) 326, 339, 358, 452, 454, 464, and 1010, located in Areas 2, 6, 12, 19, 25, and 29 of the Nevada Test Site, which is approximately 65 miles northwest of Las Vegas, Nevada; and CAU 403, located in Area 3 of the Tonopah Test Range, which is approximately 165 miles north of Las Vegas, Nevada.

  17. Trophic transfer and effects of DDT in male hornyhead turbot (Pleuronichthys verticalis) from Palos Verdes Superfund site, CA (USA) and comparisons to field monitoring.

    PubMed

    Crago, Jordan; Xu, Elvis Genbo; Kupsco, Allison; Jia, Fang; Mehinto, Alvine C; Lao, Wenjian; Maruya, Keith A; Gan, Jay; Schlenk, Daniel

    2016-06-01

    High concentrations of DDT and metabolites (ΣDDT) have been detected in sediment and the demersal flatfish hornyhead turbot (Pleuronichtys verticalis) collected from Palos Verdes (PV), California, USA, a site contaminated with over 100 metric tons of DDT throughout 1960s-70s. This study was conducted to assess the transfer of ΣDDT from PV-sediment into polychaetes (Neanthes arenaceodentata) and hornyhead turbot, and to investigate if the responses in turbots from two different laboratory exposures mimic those in turbots caught in PV (PV-turbot). Turbot fed PV-sediment-contaminated polychaete for 7 days had liver concentrations of ΣDDT similar to PV-turbot. After 28 days, ΣDDT also accumulated in livers of turbot gavaged with a ΣDDT mixture. In vitro cell bioassays indicated significant increases of 17β-estradiol equivalents (EEQ) in turbot bile extracts as compared to the control in the 7-day study. These responses corresponded to those measured in PV-fish. Glucocorticoid receptor (GR), anti-androgen receptor (anti-AR), estrogen receptor (ER) or aryl hydrocarbon receptor (AhR) activities were also observed in extracts of PV-sediment, and PV-sediment-exposed worm. Anti-AR, AhR and GR activities were significantly higher in PV-sediment than reference sediment (San Diego, SD). Higher transcripts of hepatic VTG, ERα and ERβ were found in PV-turbot than SD-turbot, but were unaltered in fish exposed to sediment-contaminated worms for the 7-day study. In contrast, liver extracts from the 28-day treatment of ΣDDT showed lower EEQ but similar hepatic VTG and ERβ transcripts relative to those of PV-turbot. These data indicated that trophic transfer of sediment-associated DDT in 7-day exposures corresponded to field measurements of DDT residues and in vitro ER bioactivities, but failed to mimic in vivo biological effects observed in field fish. In contrast, treatment with ΣDDT alone for 28 days mimicked in vivo biological effects of DDTs in PV fish, but did not

  18. Recent Progress in Understanding a Paleomagnetic Record of Rapid Transitional Field Change in the Sheep Creek Transition Zone (Miocene), North Central Nevada

    NASA Astrophysics Data System (ADS)

    Bogue, S. W.; Glen, J. M.; Harmon, L.

    2011-12-01

    New field, laboratory, and modeling results from the Sheep Creek transition zone suggest that a directional change with an average rate of at least 0.1 °/day occurred during a 15 month long interval toward the end of this 15.2 Ma reverse-to-normal geomagnetic polarity switch. The evidence for this brief episode of rapid transitional field change comes from a 3.9 m thick lava flow ("Flow 20") that erupted and began to acquire a primary thermoremanence while the geomagnetic field was pointing east and down. Flow 20 was then buried, reheated, and partially remagnetized in a north-down direction by the 8.2 m thick lava ("Flow 21") that succeeded it. After correction for the difference between natural and laboratory cooling rates, the unblocking temperatures of the secondary thermoremanence provide estimates of the maximum temperatures reached at each level in Flow 20 as it was rewarmed by heat conducting downward from Flow 21. This reheating increased the temperature at the base of Flow 21 to about 315°C. To better model this thermal behavior, we improved the conductive cooling calculation of Bogue and Glen (2010) by incorporating a temperature and porosity dependent thermal diffusivity and simulating in several ways the release of latent heat as the lavas crystallize. We find that the observed thermal remagnetization could not have occurred unless Flow 21, an andesitic basalt, was unrealistically hot (>1300°C). Assuming that Flow 21 was closer to 1100°C at emplacement, the intensity of the observed reheating implies that Flow 20 was still warm (about 125°C near its base) when buried. In other words, the interval between the eruptions of Flows 20 and 21 was short, of the order of a few years. One source of uncertainly is the extent to which heat produced by post-emplacement crystallization of Flow 21 contributed to the baking of Flow 20. Nonetheless, the calculations show that maximum baking temperatures in the lower part of Flow 20 change by only 20°C when the

  19. Geothermal areas as analogues to chemical processes in the near-field and altered zone of the potential Yucca Mountain, Nevada repository

    SciTech Connect

    Bruton, C.J.; Glassley, W.E.; Meike, A.

    1995-02-01

    The need to bound system performance of the potential Yucca Mountain repository for thousands of years after emplacement of high-level nuclear waste requires the use of computer codes. The use of such codes to produce reliable bounds over such long time periods must be tested using long-lived natural and historical systems as analogues. The geothermal systems of the Taupo Volcanic Zone (TVZ) in New Zealand were selected as the site most amenable to study. The rocks of the TVZ are silicic volcanics that are similar in composition to Yucca Mountain. The area has been subjected to temperatures of 25 to 300 C which have produced a variety of secondary minerals similar to those anticipated at Yucca Mountain. The availability of rocks, fluids and fabricated materials for sampling is excellent because of widespread exploitation of the systems for geothermal power. Current work has focused on testing the ability of the EQ3/6 code and thermodynamic data base to describe mineral-fluid relations at elevated temperatures. Welfare starting long-term dissolution/corrosion tests of rocks, minerals and manufactured materials in natural thermal features in order to compare laboratory rates with field-derived rates. Available field data on rates of silica precipitation from heated fluids have been analyzed and compared to laboratory rates. New sets of precipitation experiments are being planned. The microbially influenced degradation of concrete in the Broadlands-Ohaaki geothermal field is being characterized. The authors will continue to work on these projects in FY 1996 and expand to include the study of naturally occurring uranium and thorium series radionuclides, as a prelude to studying radionuclide migration in heated silicic volcanic rocks. 32 refs.

  20. Environmental overview of geothermal development: northern Nevada

    SciTech Connect

    Slemmons, D.B.; Stroh, J.M.; Whitney, R.A.

    1980-08-01

    Regional environmental problems and issues associated with geothermal development in northern Nevada are studied to facilitate environmental assessment of potential geothermal resources. The various issues discussed are: environmental geology, seismicity of northern Nevada, hydrology and water quality, air quality, Nevada ecosystems, noise effects, socio-economic impacts, and cultural resources and archeological values. (MHR)

  1. Nevada Test Site Waste Acceptance Criteria (NTSWAC)

    SciTech Connect

    NNSA /NSO Waste Management Project

    2008-06-01

    This document establishes the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office, Nevada Test Site Waste Acceptance Criteria (NTSWAC). The NTSWAC provides the requirements, terms, and conditions under which the Nevada Test Site will accept low-level radioactive (LLW) and LLW Mixed Waste (MW) for disposal.

  2. Nevada Kids Count Data Book, 1998.

    ERIC Educational Resources Information Center

    Ford, Paula R.

    This Kids Count report provides information on statewide trends affecting children and families in Nevada. The report is comprised of eight sections: an overview; Nevada's demographic profile; key facts regarding children in the state; Nevada's comparison to the rest of the United States; trends in the state; indicators of child well-being;…

  3. Geologic Map of the Bodie Hills Volcanic Field, California and Nevada: Anatomy of Miocene Cascade Arc Magmatism in the Western Great Basin

    NASA Astrophysics Data System (ADS)

    John, D. A.; du Bray, E. A.; Blakely, R. J.; Box, S.; Fleck, R. J.; Vikre, P. G.; Rytuba, J. J.; Moring, B. C.

    2011-12-01

    The Bodie Hills Volcanic Field (BHVF) is a >700 km2, long-lived (~9 Ma) but episodic, Miocene eruptive center in the southern part of the ancestral Cascade magmatic arc. A 1:50,000-scale geologic map based on extensive new mapping, combined with 40Ar/39Ar dates, geochemical data, and detailed gravity and aeromagnetic surveys, defines late Miocene magmatic and hydrothermal evolution of the BHVF and contrasts the subduction-related BHVF with the overlying, post-subduction, bimodal Plio-Pleistocene Aurora Volcanic Field (AVF). Important features of the BHVF include: Eruptions occurred during 3 major eruptive stages: dominantly trachyandesite stratovolcanoes (~14.7 to 12.9 Ma), mixed silicic trachyandesite, dacite, and rhyolite (~11.3 to 9.6 Ma), and dominantly silicic trachyandesite to dacite domes (~9.2 to 8.0 Ma). Small rhyolite domes were emplaced at ~6 Ma. Trachyandesitic stratovolcanoes with extensive debris flow aprons form the outer part of BHVF, whereas silicic trachyandesite to rhyolite domes are more centrally located. Geophysical data suggest that many BHVF volcanoes have shallow plutonic roots that extend to depths ≥1-2 km below the surface, and much of the Bodie Hills may be underlain by low density plutons presumably related to BHVF volcanism. BHVF rocks contain ~50 to 78% SiO2 (though few rocks have <55% SiO2), have high-K calc-alkaline compositions, and have negative Ti-P-Nb-Ta anomalies and high Ba/Nb, Ba/Ta, and La/Nb typical of subduction-related continental margin arcs. BHVF rocks include mafic trachyandesite/basaltic andesite (50%), silicic trachyandesite-dacite (40%), and rhyolite (10%). Approximately circular, polygenetic volcanoes and scarcity of dikes suggest a low differential horizontal stress field during formation of BHVF. Subduction ceased beneath the Bodie Hills at ~10 Ma, but the composition and eruptive style of volcanism continued unchanged for 2 Ma. However, kinematic data for veins and faults in mining districts suggest a change

  4. Corrective Action Investigation Plan for Corrective Action Unit 554: Area 23 Release Site, Nevada Test Site, Nevada, Rev. No.: 0

    SciTech Connect

    David A. Strand

    2004-10-01

    This Corrective Action Investigation Plan (CAIP) contains project-specific information for conducting site investigation activities at Corrective Action Unit (CAU) 554: Area 23 Release Site, Nevada Test Site, Nevada. Information presented in this CAIP includes facility descriptions, environmental sample collection objectives, and criteria for the selection and evaluation of environmental samples. Corrective Action Unit 554 is located in Area 23 of the Nevada Test Site, which is 65 miles northwest of Las Vegas, Nevada. Corrective Action Unit 554 is comprised of one Corrective Action Site (CAS), which is: 23-02-08, USTs 23-115-1, 2, 3/Spill 530-90-002. This site consists of soil contamination resulting from a fuel release from underground storage tanks (USTs). Corrective Action Site 23-02-08 is being investigated because existing information on the nature and extent of potential contamination is insufficient to evaluate and recommend corrective action alternatives. Additional information will be obtained by conducting a corrective action investigation prior to evaluating corrective action alternatives and selecting the appropriate corrective action for this CAS. The results of the field investigation will support a defensible evaluation of viable corrective action alternatives that will be presented in the Corrective Action Decision Document for CAU 554. Corrective Action Site 23-02-08 will be investigated based on the data quality objectives (DQOs) developed on July 15, 2004, by representatives of the Nevada Division of Environmental Protection; U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office; and contractor personnel. The DQO process was used to identify and define the type, amount, and quality of data needed to develop and evaluate appropriate corrective actions for CAU 554.

  5. Hillslope Sediment Size Distributions Linked to Geomorphic Process Regimes in a Steep Mountain Catchment: Field Data from Inyo Creek, Sierra Nevada, California

    NASA Astrophysics Data System (ADS)

    Genetti, J. R.; Sklar, L. S.; Leclere, S.

    2014-12-01

    The size of sediments produced on hillslopes and supplied to channels regulates river incision and thus landscape evolution in steep mountain catchments, yet the controls on sediment size are poorly understood. Analysis using cosmogenic nuclides and detrital thermochronometry on samples collected at the outlet of Inyo Creek, California, has quantified spatial variation in the size of sediment produced on hillslopes, however field data are needed to validate and explain the findings. We report on a field campaign to measure hillslope grain size distributions, and correlate size variations with topographic, geomorphic, and climatic attributes, across an elevation gradient in this steep catchment. We begin by mapping hillslope geomorphic process regimes, which in this watershed, underlain by granodiorite, are: bare bedrock that erodes by spallation and landsliding, angle of repose slopes of talus, landslide and debris flow deposits, and at lower elevations, soil-mantled convex hillslopes. For each process regime, we select sampling sites to span a wide elevation range. We use tape transects to measure the size of particles >100 mm, the extent of bedrock exposure, and density of vegetation. For finer sediments we collect bulk samples for sieve analysis in the lab. On bare bedrock, we measure joint spacing to infer the size of rock fragments produced. For steep, inaccessible areas we analyze photographs, scaled by objects of known size. Early results suggest that sediment production occurs primarily on bare bedrock surfaces that supply regolith-covered surfaces below, which serve as transport pathways and storage reservoirs. At lower elevations in the catchment, size distributions are bimodal, with only large boulders and fine-gravel and sand. At higher elevations, slopes near the channel have a more continuous distribution, including gravel, cobbles, and small boulders. Results to-date are broadly consistent with the geochemical analysis, which found that higher

  6. The Oldest Known Caldera Associated with the Yellowstone Hotspot: New Geologic Mapping, Geochemistry, and 40Ar/39Ar Geochronology for the Northern McDermitt Volcanic Field, Northern Nevada and Southeastern Oregon

    NASA Astrophysics Data System (ADS)

    Benson, T. R.; Mahood, G. A.

    2015-12-01

    McDermitt Volcanic Field (MVF) of Nevada and Oregon is one of three major caldera centers associated with Mid-Miocene Steens/Columbia River flood basalts. Pioneering geologic mapping of MVF by Rytuba and McKee (1984) and subsequent work established four main ignimbrites within the field. Our new 40Ar/39Ar ages (FCT=28.02 Ma) are 16.41±0.02 (±2σ) Ma for Tuff of Oregon Canyon, 16.35±0.04 Ma for Tuff of Trout Creek Mountains, 16.30±0.04 Ma for Tuff of Long Ridge, and 15.56±0.08 Ma for Tuff of Whitehorse Creek. We have mapped two previously unrecognized overlapping calderas that we interpret as sources for Tuff of Oregon Canyon and Tuff of Trout Creek. These ~20-km diameter calderas lie north of the well-known McDermitt Caldera; a smaller 7-km caldera that formed on eruption of the Tuff of Whitehorse Creek is nested within them. Argon ages and geochemistry of alkali rhyolite lava domes in the northern MVF define two populations: ~16.6-16.3 Ma associated with the newly recognized calderas, and ~15.5-15.3 Ma outlining the margins of the younger Whitehorse Caldera. Consistent with both ignimbrites erupting from the same evolving magma system, the high-silica alkali rhyolite Tuff of Oregon Canyon lies on compositional trends defined by the Tuff of Trout Creek, which is zoned from a moderately crystal-rich high-silica alkali rhyolite to a strongly porphyritic low-silica alkali rhyolite. They both are distinguished from the Tuff of Long Ridge from McDermitt Caldera by their higher Zr/Rb, and relatively high FeO* concentrations distinguish all MVF ignimbrites from ignimbrites from the nearby High Rock Caldera Complex, where the oldest caldera formed on eruption of the Idaho Canyon Tuff at 16.38±0.02 Ma (Coble and Mahood, in review). The Tuff of Trout Creek rests conformably on the Tuff of Oregon Canyon west and southwest of the calderas, where they overlie a thick stack of Steens Basalt lavas. To the east and southeast the two ignimbrites are separated by as much as

  7. Mineral-Scale Sr and Pb Isotopic Variations as Recorders of Magma Differentiation Processes in the Fish Canyon Magmatic System, San Juan Volcanic Field, U.S.A.

    NASA Astrophysics Data System (ADS)

    Charlier, B. L.; Davidson, J. P.; Bachmann, O.; Dungan, M. A.

    2003-12-01

    The use of crystal isotope microstratigraphy, through microanalysis for Sr and more recently Pb isotopes, shows that inter- and intra-crystalline isotopic and compositional heterogeneities exist within many volcanic rocks. Here we report preliminary Sr and Pb isotope data for sanidine, plagioclase and biotite (Sr only) crystals separated from representative samples of the 5000km3, 28Ma Fish Canyon Tuff and the pre-caldera Pagosa Peak Dacite, from the La Garita Caldera, San Juan Volcanic Field, U.S.A. Age-corrected whole-rock 87Sr/86Sr values define a small range (0.7063 to 0.7065), whereas plagioclase values range from 0.7063 to 0.7072 and sanidines define a more limited range 0.7063 to 0.7067. These ranges in 87Sr/86Sr cannot be solely attributed to radiogenic ingrowth during residence in the Fish Canyon magma reservoir, as the 87Rb/86Sr values (plagioclase; 0.003 to 0.011, sanidine; 0.30 to 0.73) are too low to significantly affect 87Sr/86Sr over magmatic timescales. Biotites exhibit a much greater range in initial Sr isotope ratios (0.7202 to 0.7295), but with even higher 87Rb/86Sr ratios of 8 to 12, more than 50 Myrs would be needed to evolve such ratios from the whole-rock ratio. Similarly, large ranges of Pb isotope ratios in sanidines and plagioclase, cannot be produced given the U/Pb ratios of these phases on any geologically reasonable timescale. We interpret the isotopic variations to represent open system processes in the generation of the Fish Canyon magma either by 1) crystallisation from heterogeneous isotopically modified (ultimately mantle-derived) magmas during interaction with old, heterogeneous crust, and/or 2) the direct incorporation of xenocrystic phases from the crust to produce an isotopically heterogeneous magma (and rock) at the mineral scale. Small but significant variations in 39Ar/40Ar total fusion ages for each of the studied phases, are consistent with the latter interpretation, suggesting that the crystal population is a mixture of

  8. Field evaluation of yield effects on the U.S.A. heirloom sweet potato cultivars infected by sweet potato leaf curl virus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The incidence of Sweet potato leaf curl virus (SPLCV), a Begomovirus, infection of sweetpotato Ipomoea batatas (L.) Lam. (Convolvulaceae) in South Carolina, USA has increased rapidly in recent years. This is likely due to the use of infected propagating materials and the increasing population of it...

  9. Radioactive deposits of Nevada

    USGS Publications Warehouse

    Lovering, T.G.

    1954-01-01

    Thirty-five occurrences of radioactive rocks had been reported from Nevada prior to 1952. Twenty-five of these had been investigated by personnel of the U. S. Geological Surveyor of the U. S. Atomic Energy Commission. Of those investigated, uranium minerals were identified at 13 sites; two sites contained a thorium mineral (monazite); the source of radioactivity on nine properties was not ascertained, and one showed no abnormal radioactivity. Of the other reported occurrences, one is said to contain uraniferous hydrocarbons and nine are placers containing thorian monazite. Pitchblende occurs at two localities, the East Walker River area, and the Stalin's Present prospect, where it is sparsely disseminated in tabular bodies cutting granitic rocks. Other uranium minerals found in the state include: carnotite, tyuyamunite, autunite, torbernite, gummite, uranophane, kasolite, and an unidentified mineral which may be dumontite. Monazite is the only thorium mineral of possible economic importance that has been reported. From an economic standpoint, only four of the properties examined showed reserves of uranium ore in 1952; these are: the Green Monster mine, which shipped 5 tons of ore to Marysvale, Utah, during 1951; the Majuba Hill mine; the Stalin's Present prospect; and the West Willys claim in the Washington district. No estimate has been made of thorium reserves and no commercial deposits of thorium are known.

  10. Radioactive deposits of Nevada

    USGS Publications Warehouse

    Lovering, T.G.

    1953-01-01

    Thirty-five occurrences of radioactive rocks had been reported from Nevada prior to 1952. Twenty-five of these had been investigated by the U. S. Geological Survey and the U. S. Atomic Energy Commission. Of those investigated, uranium minerals were identified in 13; two contained a thorium mineral (monazite); the source of radioactivity on 7 properties was not ascertained; and one showed no abnormal radioactivity. Of the other reported occurrences, one is said to contain uraniferous hydrocarbons and 9 are placers containing thorian monazite. Pitchblende occurs at two localities; the East Walker River area, and the Stalin's Present prospect, where it is sparsely disseminated in tabular bodies cutting granitic rocks. Other uranium minerals found in the state include: carnotite, tyuyamunite, autunite, torbernite, gummite, uranophane, kasolite, and an unidentified mineral which may be dumontit. Monazite is the only thorium mineral of possible economic importance that has been reported. From an economic standpoint 9 only 4 of the properties examined showed reserves of uranium ore in 1952; these are: the Green Monster mine, which shipped 5 tons of ore to Marysvale, Utah, during 1951, the Majuba Hill mine, the Stalin's Present prospect, and the West Willys claim in the Washington district. Reserves of ore grade are small on all of these properties and probably cannot be developed commercially unless an ore-buying station is set up nearby. No estimate has been made of thorium reserves and no commercial deposits of thorium are known.

  11. Measurement and scaling of air-surface mercury exchange from substrates in the vicinity of two Nevada gold mines.

    PubMed

    Miller, Matthieu B; Gustin, Mae S; Eckley, Chris S

    2011-09-01

    The state of Nevada has extensive mineral resources, and is the largest producer of gold in the USA as well as fourth in world gold production. Mercury (Hg) is often present in the hydrothermal systems that produce gold deposits, and can be found in elevated concentrations in gold ore. As a result, mining of gold ore in Nevada has been shown to release Hg to the atmosphere from point and non-point sources. This project focused on measurement of air-soil Hg exchange associated with undisturbed soils and bedrock outcrops in the vicinity of two large gold mines. Field and laboratory data collected were used to identify the important variables controlling Hg flux from these surfaces, and to estimate a net flux from the areas adjacent to the active mines as well as that occurring from the mined area pre-disturbance. Mean daily flux by substrate type ranged from 9 ng m(-2) day(-1) to 140 ng m(-2) day(-1). Periods of net deposition of elemental Hg were observed when air masses originating from a mine site moved over sampling locations. Based on these observations and measured soil Hg concentrations we suggest that emissions from point and non-point sources at the mines are a source of Hg to the surrounding substrates with the amount deposited not being of an environmental concern but of interest mainly with respect to the cycling of atmospheric elemental Hg. Observations indicate that while some component of the deposited Hg is sequestered in the soil, this Hg is gradually released back to the atmosphere over time. Estimated pre-disturbance emissions from the current mine footprints based on field data were 0.1 and 1.7 kg yr(-1), compared to that estimated for the current non-point mining sources of 19 and 109 kg yr(-1), respectively.

  12. Corrective Action Investigation Plan for Corrective Action Unit 565: Stored Samples, Nevada Test Site, Nevada, Rev. No.: 0

    SciTech Connect

    Wickline, Alfred; McCall, Robert

    2006-08-01

    Corrective Action Unit (CAU) 565 is located in Area 26 of the Nevada Test Site, which is 65 miles northwest of Las Vegas, Nevada. Corrective Action Unit 565 is comprised of one corrective action site (CAS) listed--CAS 26-99-04, Ground Zero Soil Samples. This site is being investigated because existing information on the nature and extent of potential contamination is insufficient to evaluate and recommend closure of CAU 565. Additional information will be obtained by conducting a corrective action investigation before evaluating closure objectives and selecting the appropriate corrective action. The results of the field investigation will support closure and waste management decisions that will be presented in the Corrective Action Decision Document/Closure Report. The site will be investigated based on the data quality objectives (DQOs) developed on June 1, 2006, by representatives of the Nevada Division of Environmental Protection; U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office; Stoller-Navarro Joint Venture; and Bechtel Nevada. The DQO process was utilized to identify and define the type, amount, and quality of data needed to develop and evaluate closure for CAU 565. Appendix A provides a detailed discussion of the DQO methodology and the DQOs specific to this CAS. The scope of the corrective action investigation for CAU 565 includes the following activities: (1) Remove stored samples, shelves, and debris from the interior of Building 26-2106. (2) Perform field screening on stored samples, shelves, and debris. (3) Dispose of stored samples, shelves, and debris. (4) Collect samples of investigation-derived waste, as needed, for waste management purposes. (5) Conduct radiological surveys of Building 26-2106 in accordance with the requirements in the ''NV/YMP Radiological Control Manual'' to determine if there is residual radiological contamination that would prevent the release of the building for unrestricted use. This

  13. Experimental Infrasound Studies in Nevada

    NASA Astrophysics Data System (ADS)

    Herrin, E. T.; Negraru, P. T.; Golden, P.; Williams, A.

    2009-12-01

    An experimental propagation study was carried out in Nevada in June 2009 on Julian days 173-177. During this field experiment we deployed 16 single channel digital infrasound recorders to monitor the munitions disposal activities near Hawthorne, NV. The sensors were deployed in a single line and placed approximately 12 km apart at distances ranging from 2 to 177 km. A four element semi-permanent infrasound array named FNIAR was installed approximately 154 km north of the detonation site in line with the individual temporary recorders. Tropospheric arrivals were observed during all days of the experiment, but during day 176 the observed arrivals had very large amplitudes. A large signal was observed at 58 km from the detonation site with amplitude as large as 4 Pascals, while at 94 km no signal was observed. At FNIAR the amplitude of the tropospheric arrival was 1 Pascal. During this day meteorological data acquired in the propagation path showed a strong jet stream to the north. On day 177 we were not able to identify tropospheric arrivals beyond 34 km, but at stations beyond 152 km we observed stratospheric arrivals. Continuous monitoring of these signals at FNIAR shows that stratospheric arrivals are the most numerous. In a two month period, from 06/15/2009 to 08/15/2009 there were 35 operational days at the Hawthorne disposal facility resulting in 212 explosions with known origin times. Based on the celerity values there were 115 explosions that have only stratospheric arrivals (celerities of 300-275 m/s), 72 explosions with both tropospheric (celerities above 330 m/s) and stratospheric arrivals, 20 explosions that were not detected and five explosions that have only tropospheric arrivals.

  14. Geothermal systems of northern Nevada

    USGS Publications Warehouse

    Hose, Richard Kenneth; Taylor, Bruce Edward

    1974-01-01

    Hot springs are numerous and nearly uniformly distributed in northern Nevada. Most occur on the flanks of basins, along Basin and Range (late Miocene to Holocene) faults, while some occur in the inner parts of the basins. Surface temperatures of the springs range from slightly above ambient to, boiling; some springs are superheated. Maximum subsurface water temperatures calculated on the basis of quartz solubility range as high as 252?C, although most are below 190?C. Flows range from a trickle to several hundred liters per minute. The Nevada geothermal systems differ markedly from the power-producing system at The Geysers, Calif., and from those areas with a high potential, for power production (e.g., Yellowstone Park, Wyo.; Jemez Mountains, N. Mex.). These other systems are associated with Quaternary felsic volcanic rocks and probably derive their heat from cooling magma rather high in the crust. In northern Nevada, however, felsic volcanic rocks are virtually all older than 10 million years, and. analogous magmatic heat sources are, therefore, probably lacking. Nevada is part of an area of much higher average heat flow than the rest of the United States. In north-central Nevada, geothermal gradients are as great as 64?C per kilometer in bedrock and even higher in basin fill. The high gradients probably result from a combination of thin crust and high temperature upper mantle. We suggest that the geothermal systems of northern Nevada result from circulation of meteoric waters along Basin and Range faults and that their temperature chiefly depends upon (1) depth of circulation and (2) the geothermal gradient near the faults.

  15. Detailed Geophysical Fault Characterization in Yucca Flat, Nevada Test Site, Nevada

    USGS Publications Warehouse

    Asch, Theodore H.; Sweetkind, Donald S.; Burton, Bethany L.; Wallin, Erin L.

    2009-01-01

    Yucca Flat is a topographic and structural basin in the northeastern part of the Nevada Test Site (NTS) in Nye County, Nevada. Between the years 1951 and 1992, 659 underground nuclear tests took place in Yucca Flat; most were conducted in large, vertical excavations that penetrated alluvium and the underlying Cenozoic volcanic rocks. Radioactive and other potential chemical contaminants at the NTS are the subject of a long-term program of investigation and remediation by the U.S. Department of Energy (DOE), National Nuclear Security Administration, Nevada Site Office, under its Environmental Restoration Program. As part of the program, the DOE seeks to assess the extent of contamination and to evaluate the potential risks to humans and the environment from byproducts of weapons testing. To accomplish this objective, the DOE Environmental Restoration Program is constructing and calibrating a ground-water flow model to predict hydrologic flow in Yucca Flat as part of an effort to quantify the subsurface hydrology of the Nevada Test Site. A necessary part of calibrating and evaluating a model of the flow system is an understanding of the location and characteristics of faults that may influence ground-water flow. In addition, knowledge of fault-zone architecture and physical properties is a fundamental component of the containment of the contamination from underground nuclear tests, should such testing ever resume at the Nevada Test Site. The goal of the present investigation is to develop a detailed understanding of the geometry and physical properties of fault zones in Yucca Flat. This study was designed to investigate faults in greater detail and to characterize fault geometry, the presence of fault splays, and the fault-zone width. Integrated geological and geophysical studies have been designed and implemented to work toward this goal. This report describes the geophysical surveys conducted near two drill holes in Yucca Flat, the data analyses performed, and the

  16. Detailed Geophysical Fault Characterization in Yucca Flat, Nevada Test Site, Nevada

    SciTech Connect

    Theodore H. Asch; Donald Sweetkind; Bethany L. Burton; Erin L. Wallin

    2009-02-10

    Yucca Flat is a topographic and structural basin in the northeastern part of the Nevada Test Site (NTS) in Nye County, Nevada. Between the years 1951 and 1992, 659 underground nuclear tests took place in Yucca Flat; most were conducted in large, vertical excavations that penetrated alluvium and the underlying Cenozoic volcanic rocks. Radioactive and other potential chemical contaminants at the NTS are the subject of a long-term program of investigation and remediation by the U.S. Department of Energy (DOE), National Nuclear Security Administration, Nevada Site Office, under its Environmental Restoration Program. As part of the program, the DOE seeks to assess the extent of contamination and to evaluate the potential risks to humans and the environment from byproducts of weapons testing. To accomplish this objective, the DOE Environmental Restoration Program is constructing and calibrating a ground-water flow model to predict hydrologic flow in Yucca Flat as part of an effort to quantify the subsurface hydrology of the Nevada Test Site. A necessary part of calibrating and evaluating a model of the flow system is an understanding of the location and characteristics of faults that may influence ground-water flow. In addition, knowledge of fault-zone architecture and physical properties is a fundamental component of the containment of the contamination from underground nuclear tests, should such testing ever resume at the Nevada Test Site. The goal of the present investigation is to develop a detailed understanding of the geometry and physical properties of fault zones in Yucca Flat. This study was designed to investigate faults in greater detail and to characterize fault geometry, the presence of fault splays, and the fault-zone width. Integrated geological and geophysical studies have been designed and implemented to work toward this goal. This report describes the geophysical surveys conducted near two drill holes in Yucca Flat, the data analyses performed, and the

  17. Isonymy structure of USA population.

    PubMed

    Barrai, I; Rodriguez-Larralde, A; Mamolini, E; Manni, F; Scapoli, C

    2001-02-01

    The isonymy structure of the 48 states of the continental United States of America was studied using the surname distributions of 18 million telephone users, distributed in 247 towns. The shortest linear distance between nearest neighbor towns included in the sample was 12.0 km. The largest distance was 4,577 km. The number of different surnames found in the whole analysis was 899,585. Lasker's distance was found to be significantly but weakly correlated with the geographic distance, with r = 0.21 +/- 0.01. A dendrogram of the 48 states was built from the matrix of isonymy distances: it divides the US into several clusters, in general correlated with geography. A notable exception is California and New Jersey, which cluster together. Wisconsin is separated from all other states. An important cluster is formed by Texas, Colorado, New Mexico, Nevada, and Arizona, together with Illinois and Florida. It was observed that Hispanic surnames are among the most frequent in Illinois, as they are in New Jersey and California. No main distinction among the states clearly attributable to surnames of French origin was detected; however, New Hampshire, Vermont, and Maine which have a considerable number of these surnames belong to the same northeastern cluster. From the present analysis, the great mobility of the US population emerges clearly, and it seems relevant that the practical absence of isolation by distance is seen also considering only small towns. It appears that groups of different origin are well-mixed over the whole area of the United States. The values of isonymy indicate that the south-central area of the USA has the highest level of inbreeding. In fact, the heterogeneity in surname composition is greater in the coastal areas, particularly on the East Coast, than anywhere else in the USA.

  18. Nevada Test Site Sensor Test Facility

    SciTech Connect

    Gomez, B.J.; Boyer, W.B.

    1996-12-01

    A Sensor Test Facility (STF) was recently established at the Department of Energy`s Nevada Test Site (NTS). It has been used for a series of sensor tests that have demonstrated the usefulness of the testbed. The facility consists of a cut-and-cover bunker complex and the two square mile surrounding area. The STF was developed as a scientific testbed optimized for the development and evaluation of advanced sensor systems, including ground sensor systems designed to identify and detect hardened underground facilities. This was accomplished by identifying a facility in a remote location where seismic, acoustic, and electromagnetic interference would be minimal, establishing a testbed that would be accommodating to field testing, and conducting a thorough geophysical characterization of the area surrounding the facility in order to understand the local geology and its effects on geophysical signals emanating from the facility. The STF is representative of a number of cut-and-cover bunkers around the world that are used for the manufacture and/or storage of weapons of mass destruction. This paper provides a general description of the Nevada Test Site, the Sensor Test Facility, and the Geophysical Site Characterization.

  19. Corrective Action Investigation Plan for Corrective Action Unit 374: Area 20 Schooner Unit Crater Nevada Test Site, Nevada, Revision 0

    SciTech Connect

    Patrick Matthews

    2010-02-01

    Corrective Action Unit 374 is located in Areas 18 and 20 of the Nevada Test Site, which is approximately 65 miles northwest of Las Vegas, Nevada. Corrective Action Unit 374 comprises the five corrective action sites (CASs) listed below: • 18-22-05, Drum • 18-22-06, Drums (20) • 18-22-08, Drum • 18-23-01, Danny Boy Contamination Area • 20-45-03, U-20u Crater (Schooner) These sites are being investigated because existing information on the nature and extent of potential contamination is insufficient to evaluate and recommend corrective action alternatives (CAAs). Additional information will be obtained by conducting a corrective action investigation before evaluating CAAs and selecting the appropriate corrective action for each CAS. The results of the field investigation will support a defensible evaluation of viable CAAs that will be presented in the Corrective Action Decision Document. The sites will be investigated based on the data quality objectives (DQOs) developed on October 20, 2009, by representatives of the Nevada Division of Environmental Protection and the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office. The DQO process was used to identify and define the type, amount, and quality of data needed to develop and evaluate appropriate corrective actions for CAU 374.

  20. Corrective Action Investigation Plan for Corrective Action Unit 560: Septic Systems, Nevada Test Site, Nevada with ROTC1, Revision 0

    SciTech Connect

    Grant Evenson

    2008-05-01

    Corrective Action Unit (CAU) 560 is located in Areas 3 and 6 of the Nevada Test Site, which is approximately 65 miles northwest of Las Vegas, Nevada. Corrective Action Unit 560 is comprised of the seven corrective action sites (CASs) listed below: • 03-51-01, Leach Pit • 06-04-02, Septic Tank • 06-05-03, Leach Pit • 06-05-04, Leach Bed • 06-59-03, Building CP-400 Septic System • 06-59-04, Office Trailer Complex Sewage Pond • 06-59-05, Control Point Septic System These sites are being investigated because existing information on the nature and extent of potential contamination is insufficient to evaluate and recommend corrective action alternatives. Additional information will be obtained by conducting a corrective action investigation before evaluating corrective action alternatives and selecting the appropriate corrective action for each CAS. The results of the field investigation will support a defensible evaluation of viable corrective action alternatives that will be presented in the Corrective Action Decision Document. The sites will be investigated based on the data quality objectives (DQOs) developed on January 22, 2008, by representatives from the Nevada Division of Environmental Protection; U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office; Stoller-Navarro Joint Venture; and National Security Technologies, LLC. The DQO process was used to identify and define the type, amount, and quality of data needed to develop and evaluate appropriate corrective actions for CAU 560.

  1. Corrective Action Investigation plan for Corrective Action Unit 546: Injection Well and Surface Releases, Nevada Test Site, Nevada, Revision 0

    SciTech Connect

    Alfred Wickline

    2008-03-01

    Corrective Action Unit (CAU) 546 is located in Areas 6 and 9 of the Nevada Test Site, which is approximately 65 miles northwest of Las Vegas, Nevada. Corrective Action Unit 546 is comprised of two Corrective Action Sites (CASs) listed below: •06-23-02, U-6a/Russet Testing Area •09-20-01, Injection Well These sites are being investigated because existing information on the nature and extent of potential contamination is insufficient to evaluate and recommend corrective action alternatives. Additional information will be obtained by conducting a corrective action investigation (CAI) before evaluating corrective action alternatives and selecting the appropriate corrective action for each CAS. The results of the field investigation will support a defensible evaluation of viable corrective action alternatives that will be presented in the Corrective Action Decision Document. The sites will be investigated based on the data quality objectives (DQOs) developed on November 8, 2007, by representatives of the Nevada Division of Environmental Protection and U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office. The DQO process has been used to identify and define the type, amount, and quality of data needed to develop and evaluate appropriate corrective actions for CAU 546.

  2. Mineral-Resource Assessment of Northern Nye County, Nevada - A Progress Report

    USGS Publications Warehouse

    Ludington, Steve; John, David A.; Muntean, John L.; Hanson, Andrew D.; Castor, Stephen B.; Henry, Christopher D.; Wintzer, Niki; Cline, Jean S.; Simon, Adam C.

    2009-01-01

    The U.S. Geological Survey (USGS), University of Nevada, Las Vegas (UNLV), and Nevada Bureau of Mines and Geology (NBMG), which is a part of the University of Nevada, Reno (UNR), have completed the first year of data collection and analysis in preparation for a new mineral- and energy-resource assessment of northern Nye County, Nevada. This report provides information about work completed before October 1, 2009. Existing data are being compiled, including geology, geochemistry, geophysics, and mineral-deposit information. Field studies are underway, which are primarily designed to address issues raised during the review of existing information. In addition, new geochemical studies are in progress, including reanalyzing existing stream-sediment samples with modern methods, and analyzing metalliferous black shales.

  3. Indians of Nevada: Volume 3.

    ERIC Educational Resources Information Center

    Dunn, Helen

    As part of a continuing program designed to provide Nevada's school population with information that will facilitate greater awareness and understanding of both past and present Native Nevadan lifestyles and contributions, this generalized curriculum guide might constitute a social studies unit on religion for upper elementary and/or junior high…

  4. THE NEVADA GEOSPATIAL DATA BROWSER

    EPA Science Inventory

    The Nevada Geospatial Data Browser was developed by the Landscape Ecology Branch of the U.S. Environmental Protection Agency (Las Vegas, NV) with the assistance and collaboration of the University of Idaho (Moscow, ID) and Lockheed-Martin Environmental Services (Las Vegas, NV).

  5. THE NEVADA GEOSPATIAL DATA BROWSER

    EPA Science Inventory

    The Landscape Ecology Branch of the U.S. Environmental Protection Agency (Las Vegas, NV) has developed the Nevada Geospatial Data Browser, a spatial data archive to centralize and distribute the geospatial data used to create the land cover, vertebrate habitat models, and land o...

  6. Indians of Nevada: Volume 2.

    ERIC Educational Resources Information Center

    Dunn, Helen

    Designed to provide Nevada's school population with information that will facilitate awareness and understanding of past and present Native Nevadan lifestyles and contributions, this generalized curriculum guide might constitute a social studies unit for upper elementary and/or junior high schools. Emphasis is on the cultural-historical influence…

  7. Indians of Nevada: Volume 1.

    ERIC Educational Resources Information Center

    Dunn, Helen

    As part of a continuing program designed to provide Nevada's school population with information that will facilitate greater awareness and understanding of both past and present Native Nevadan lifestyles and contributions, this generalized curriculum guide might constitute a social studies unit for the upper levels of elementary and/or junior high…

  8. Indians of Nevada: Volume 5.

    ERIC Educational Resources Information Center

    Dunn, Helen

    As part of a continuing program designed to provide Nevada's school population with information that will facilitate greater awareness and understanding of past and present Native Nevadan lifestyles and contributions, this generalized curriculum guide might constitute a social studies unit for upper elementary and/or junior high schools. Areas…

  9. Indians of Nevada: Volume 4.

    ERIC Educational Resources Information Center

    Dunn, Helen

    As part of a continuing program designed to provide Nevada's school population with information that will facilitate greater awareness and understanding of both past and present Native Nevadan lifestyles and contributions, this generalized curriculum guide might constitute a social studies unit on early Indian culture for upper elementary and/or…

  10. Antidote: Civic Responsibility. Nevada Law.

    ERIC Educational Resources Information Center

    Phi Alpha Delta Law Fraternity International, Washington, DC.

    Designed for middle school through high school students, this unit contains eight lesson plans that focus on Nevada state law. The state lessons correspond to lessons in the volume, "Antidote: Civic Responsibility. Drug Avoidance lessons for Middle School & High School Students." Developed to be presented by educators, law student,…

  11. Indians of Nevada: Volume 7.

    ERIC Educational Resources Information Center

    Dunn, Helen

    As part of a continuing program designed to provide Nevada's school population with information that will facilitate greater awareness and understanding of past and present Native Nevadan lifestyles and contributions, this curriculum guide might constitute a social studies unit for upper elementary and/or junior high schools. This guide deals with…

  12. Devils Hole, Nevada: revisited

    NASA Astrophysics Data System (ADS)

    Spötl, C.; Dublyansky, Y.

    2012-04-01

    Among the ever increasing number of caves visited and studied by paleoclimate scientists around the globe one site is special for a number of reasons. First described in the literature in 1988, Devils Hole is a geometrically simple cave developed along an extensional fracture in the Amargosa Desert of SW Nevada. The deeper portion of this cavity is phreatic and part of a regional aquifer whose lowest discharge point is Death Valley. Landmark studies by Ike Winograd's team examined thick calcite crusts present on the walls of this and a neighboring cave (termed Devils Hole #2) and retrieved one of the most remarkable (and thought-provoking) isotope proxy records covering the last half million of years (1992). More recently, Coplen (2007) scrutinized the stable isotope systematics at Devils Hole. His results suggest that this setting represents a rare example of inorganic calcite precipitation essentially at isotopic equilibrium. We obtained permission from the Death Valley National Park Service to study and sample Devils Hole #2. While previous studies were based on samples from the phreatic zone we cored the calcite crust just above the groundwater table in an attempt to extend the original record further back in time and to obtain direct paleowater isotope data. Stable isotope data obtained along one core show a very high degree of similarity with the published DH11 core and a first set of U-series dates confirms the stratigraphy down to 476 ka. Older calcite also shows glacial-interglacial oscillations in both carbon and oxygen isotopes. A tentative correlation with Antarctic and deep-sea isotope records suggests that the lower part of the calcite is ca. 800 ka old (i.e. MIS 20). The cores show petrographic evidence of falling groundwater levels during MIS 9, 7 and 5e, but there are no indications of major hiati. Interestingly, growth at our drill location ended shortly after 20 ka BP, i.e. much later than at the subaqueous site in Devils Hole proper where DH11

  13. Success For Nevada: Success For All Schools In Nevada Gain On Nevada Criterion-Referenced Assessment

    ERIC Educational Resources Information Center

    Success for All Foundation, 2004

    2004-01-01

    Success for All is the most extensively researched of all comprehensive reform models for Title I elementary schools. It incorporates scientifically based principles of reading, cooperative learning, professional development, tutoring, and family support. Nevada elementary schools implementing the Success for All reading program made outstanding …

  14. Corrective Action Decision Document for Corrective Action Unit 417: Central Nevada Test Area Surface, Nevada

    SciTech Connect

    U.S. Department of Energy Nevada Operations Office

    1999-04-02

    This Corrective Action Decision Document (CADD) identifies and rationalizes the U.S. Department of Energy, Nevada Operations Office's selection of a recommended corrective action alternative (CAA) appropriate to facilitate the closure of Corrective Action Unit (CAU) 417: Central Nevada Test Area Surface, Nevada, under the Federal Facility Agreement and Consent Order. Located in Hot Creek Valley in Nye County, Nevada, and consisting of three separate land withdrawal areas (UC-1, UC-3, and UC-4), CAU 417 is comprised of 34 corrective action sites (CASs) including 2 underground storage tanks, 5 septic systems, 8 shaker pad/cuttings disposal areas, 1 decontamination facility pit, 1 burn area, 1 scrap/trash dump, 1 outlier area, 8 housekeeping sites, and 16 mud pits. Four field events were conducted between September 1996 and June 1998 to complete a corrective action investigation indicating that the only contaminant of concern was total petroleum hydrocarbon (TPH) which was found in 18 of the CASs. A total of 1,028 samples were analyzed. During this investigation, a statistical approach was used to determine which depth intervals or layers inside individual mud pits and shaker pad areas were above the State action levels for the TPH. Other related field sampling activities (i.e., expedited site characterization methods, surface geophysical surveys, direct-push geophysical surveys, direct-push soil sampling, and rotosonic drilling located septic leachfields) were conducted in this four-phase investigation; however, no further contaminants of concern (COCs) were identified. During and after the investigation activities, several of the sites which had surface debris but no COCs were cleaned up as housekeeping sites, two septic tanks were closed in place, and two underground storage tanks were removed. The focus of this CADD was to identify CAAs which would promote the prevention or mitigation of human exposure to surface and subsurface soils with contaminant

  15. Corrective Action Investigation Plan for Corrective Action Unit 145: Wells and Storage Holes, Nevada Test Site, Nevada, Rev. No.: 0

    SciTech Connect

    David A. Strand

    2004-09-01

    This Corrective Action Investigation Plan (CAIP) contains project-specific information for conducting site investigation activities at Corrective Action Unit (CAU) 145: Wells and Storage Holes. Information presented in this CAIP includes facility descriptions, environmental sample collection objectives, and criteria for the selection and evaluation of environmental samples. Corrective Action Unit 145 is located in Area 3 of the Nevada Test Site, which is 65 miles northwest of Las Vegas, Nevada. Corrective Action Unit 145 is comprised of the six Corrective Action Sites (CASs) listed below: (1) 03-20-01, Core Storage Holes; (2) 03-20-02, Decon Pad and Sump; (3) 03-20-04, Injection Wells; (4) 03-20-08, Injection Well; (5) 03-25-01, Oil Spills; and (6) 03-99-13, Drain and Injection Well. These sites are being investigated because existing information on the nature and extent of potential contamination is insufficient to evaluate and recommend corrective action alternatives. Additional information will be obtained by conducting a corrective action investigation (CAI) prior to evaluating corrective action alternatives and selecting the appropriate corrective action for each CAS. The results of the field investigation will support a defensible evaluation of viable corrective action alternatives that will be presented in the Corrective Action Decision Document. One conceptual site model with three release scenario components was developed for the six CASs to address all releases associated with the site. The sites will be investigated based on data quality objectives (DQOs) developed on June 24, 2004, by representatives of the Nevada Division of Environmental Protection; U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office; Stoller-Navarro Joint Venture; and Bechtel Nevada. The DQOs process was used to identify and define the type, amount, and quality of data needed to develop and evaluate appropriate corrective actions for CAU 145.

  16. Corrective Action Investigation Plan for Corrective Action Unit 139: Waste Disposal Sites, Nevada Test Site, Nevada, Rev. No.: 0

    SciTech Connect

    Grant Evenson

    2006-04-01

    Corrective Action Unit (CAU) 139 is located in Areas 3, 4, 6, and 9 of the Nevada Test Site, which is 65 miles northwest of Las Vegas, Nevada. Corrective Action Unit 139 is comprised of the seven corrective action sites (CASs) listed below: (1) 03-35-01, Burn Pit; (2) 04-08-02, Waste Disposal Site; (3) 04-99-01, Contaminated Surface Debris; (4) 06-19-02, Waste Disposal Site/Burn Pit; (5) 06-19-03, Waste Disposal Trenches; (6) 09-23-01, Area 9 Gravel Gertie; and (7) 09-34-01, Underground Detection Station. These sites are being investigated because existing information on the nature and extent of potential contamination is insufficient to evaluate and recommend corrective action alternatives with the exception of CASs 09-23-01 and 09-34-01. Regarding these two CASs, CAS 09-23-01 is a gravel gertie where a zero-yield test was conducted with all contamination confined to below ground within the area of the structure, and CAS 09-34-01 is an underground detection station where no contaminants are present. Additional information will be obtained by conducting a corrective action investigation (CAI) before evaluating corrective action alternatives and selecting the appropriate corrective action for the other five CASs where information is insufficient. The results of the field investigation will support a defensible evaluation of viable corrective action alternatives that will be presented in the Corrective Action Decision Document. The sites will be investigated based on the data quality objectives (DQOs) developed on January 4, 2006, by representatives of the Nevada Division of Environmental Protection; U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office; Stoller-Navarro Joint Venture; and Bechtel Nevada. The DQO process was used to identify and define the type, amount, and quality of data needed to develop and evaluate appropriate corrective actions for CAU 139.

  17. 19. Historic American Buildings Survey Photocopy Credit: Nevada State Archives ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    19. Historic American Buildings Survey Photocopy Credit: Nevada State Archives ARCHITECT'S DRAWINGS, 1869. FIRST FLOOR PLAN - Nevada State Capitol, Plaza at Carson Street, Carson City, Carson City, NV

  18. 11. Historic American Buildings Survey, Photocopy: Credit: Nevada Historical Society ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    11. Historic American Buildings Survey, Photocopy: Credit: Nevada Historical Society FORMER COMPTROLLER'S OFFICE, JUNE 13, 1900 - Nevada State Capitol, Plaza at Carson Street, Carson City, Carson City, NV

  19. 18. Historic American Buildings Survey Photocopy Credit: Nevada State Archives ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    18. Historic American Buildings Survey Photocopy Credit: Nevada State Archives ARCHITECT'S DRAWINGS, 1869. FACADE, ELEVATION - Nevada State Capitol, Plaza at Carson Street, Carson City, Carson City, NV

  20. 20. Historic American Buildings Survey Photocopy Credit: Nevada State Archives ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    20. Historic American Buildings Survey Photocopy Credit: Nevada State Archives ARCHITECT'S DRAWINGS, 1869. SECOND FLOOR PLAN - Nevada State Capitol, Plaza at Carson Street, Carson City, Carson City, NV

  1. Temporal and spatial variation of atmospherically deposited organic contaminants at high elevation in Yosemite National Park, California, USA

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Atmospherically deposited organic contaminants in the Sierra Nevada Mountains of California, USA, have exceeded some thresholds of concern, yet the distributions of contaminants in the mountains are not well known and there is little knowledge of temporal variation. The present study, (1) evaluated...

  2. Devils Hole, Nevada--A Primer

    USGS Publications Warehouse

    Landwehr, Jurate M.; Winograd, Isaac J.

    2012-01-01

    This fact sheet summarizes the multifaceted research of the U.S. Geological Survey—published in diverse outlets—that focuses on the subaqueous cavern Devils Hole in Nevada. Questions addressed in the fact sheet are: What is Devils Hole? Why is Devils Hole of interest to paleoclimatologists? How was the isotopic record from the Devils Hole vein calcite dated? What paleoclimate phenomena are recorded by the Devils Hole stable isotopic time series? Where can one find the isotopic records? What contributions has Devils Hole research made to the field of paleoclimatology, paleohydrology, and geochemistry? What does Devils Hole reveal about how long we can expect the present interglaciation to last? What are some practical applications of the Devils Hole findings? Why is Devils Hole of interest to zoologists?

  3. Regional Water-Resources Studies in Nevada

    USGS Publications Warehouse

    Bauer, Eva M.; Watermolen, Shannon C.

    2007-01-01

    Introduction: Water-resources information for the State of Nevada should be readily accessible to community planners and the general public in a user-friendly web environment and should be actively managed and maintained with accurate historic and current hydrologic data. The USGS, in cooperation with State of Nevada and local government agencies, has established a data framework that provides critical hydrologic information to meet the challenges of water resources planning for Nevada.

  4. Corrective Action Investigation Plan for Corrective Action Unit 190: Contaminated Waste Sites Nevada Test Site, Nevada, Rev. No.: 0

    SciTech Connect

    Wickline, Alfred

    2006-12-01

    Corrective Action Unit (CAU) 190 is located in Areas 11 and 14 of the Nevada Test Site, which is 65 miles northwest of Las Vegas, Nevada. Corrective Action Unit 190 is comprised of the four Corrective Action Sites (CASs) listed below: (1) 11-02-01, Underground Centrifuge; (2) 11-02-02, Drain Lines and Outfall; (3) 11-59-01, Tweezer Facility Septic System; and (4) 14-23-01, LTU-6 Test Area. These sites are being investigated because existing information is insufficient on the nature and extent of potential contamination to evaluate and recommend corrective action alternatives. Additional information will be obtained before evaluating corrective action alternatives and selecting the appropriate corrective action for each CAS by conducting a corrective action investigation (CAI). The results of the field investigation will support a defensible evaluation of viable corrective action alternatives that will be presented in the Corrective Action Decision Document. The sites will be investigated based on the data quality objectives (DQOs) developed on August 24, 2006, by representatives of the Nevada Division of Environmental Protection; U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office; Stoller-Navarro Joint Venture, and National Security Technologies, LLC. The DQO process was used to identify and define the type, amount, and quality of data needed to develop and evaluate appropriate corrective actions for CAU 190. The scope of the CAU 190 CAI includes the following activities: (1) Move surface debris and/or materials, as needed, to facilitate sampling; (2) Conduct radiological and geophysical surveys; (3) Perform field screening; (4) Collect and submit environmental samples for laboratory analysis to determine whether contaminants of concern (COCs) are present; (5) If COCs are present, collect additional step-out samples to define the lateral and vertical extent of the contamination; (6) Collect samples of source material, if present

  5. University of Nevada (UNLV): Las Vegas, Nevada (Data)

    DOE Data Explorer

    Stoffel, T.; Andreas, A.

    2006-03-18

    A partnership with the University of Nevada and U.S. Department of Energy's National Renewable Energy Laboratory (NREL) to collect solar data to support future solar power generation in the United States. The measurement station monitors global horizontal, direct normal, and diffuse horizontal irradiance to define the amount of solar energy that hits this particular location. The solar measurement instrumentation is also accompanied by meteorological monitoring equipment to provide scientists with a complete picture of the solar power possibilities.

  6. Nevada Power: Clark Station; Las Vegas, Nevada (Data)

    DOE Data Explorer

    Stoffel, T.; Andreas, A.

    2006-03-27

    A partnership with the University of Nevada and U.S. Department of Energy's National Renewable Energy Laboratory (NREL) to collect solar data to support future solar power generation in the United States. The measurement station monitors global horizontal, direct normal, and diffuse horizontal irradiance to define the amount of solar energy that hits this particular location. The solar measurement instrumentation is also accompanied by meteorological monitoring equipment to provide scientists with a complete picture of the solar power possibilities.

  7. Nevada may lose nuclear waste funds

    SciTech Connect

    Marshall, E.

    1988-06-24

    The people of Nevada are concerned that a cut in DOE funding for a nuclear waste repository at Yucca Mountain, Nevada will result in cuts in the state monitoring program, e.g. dropping a seismic monitoring network and a sophisticated drilling program. Economic and social impact studies will be curtailed. Even though a provision to curtail local research forbids duplication of DOE`s work and would limit the ability of Nevada to go out and collect its own data, Nevada State University at Las Vegas would receive a nice plum, a top-of-the-line supercomputer known as the ETA-10 costing almost $30 million financed by DOE.

  8. Erosion rates as a potential bottom-up control of forest structural characteristics in the Sierra Nevada Mountains.

    PubMed

    Milodowski, David T; Mudd, Simon M; Mitchard, Edward T A

    2015-01-01

    The physical characteristics of landscapes place fundamental constraints on vegetation growth and ecosystem function. In actively eroding landscapes, many of these characteristics are controlled by long-term erosion rates: increased erosion rates generate steeper topography and reduce the depth and extent of weathering, limiting moisture storage capacity and impacting nutrient availability. Despite the potentially important bottom-up control that erosion rates place on substrate characteristics, the relationship between the two is largely unexplored. We investigate spatial variations in aboveground biomass (AGB) across a structurally diverse mixed coniferous/deciduous forest with an order of magnitude erosion-rate gradient in the Northern Californian Sierra Nevada, USA, using high resolution LiDAR data and field plots. Mean basin slope, a proxy for erosion rate, accounts for 32% of variance in AGB within our field area (P < 0.001), considerably outweighing the effects of mean annual precipitation, temperature, and bedrock lithology. This highlights erosion rate as a potentially important, but hitherto unappreciated, control on AGB and forest structure.

  9. Corrective Action Investigation Plan for Corrective Action Unit 541: Small Boy Nevada National Security Site and Nevada Test and Training Range, Nevada with ROTC 1

    SciTech Connect

    Matthews, Patrick

    2014-09-01

    Corrective Action Unit (CAU) 541 is co-located on the boundary of Area 5 of the Nevada National Security Site and Range 65C of the Nevada Test and Training Range, approximately 65 miles northwest of Las Vegas, Nevada. CAU 541 is a grouping of sites where there has been a suspected release of contamination associated with nuclear testing. This document describes the planned investigation of CAU 541, which comprises the following corrective action sites (CASs): 05-23-04, Atmospheric Tests (6) - BFa Site; 05-45-03, Atmospheric Test Site - Small Boy. These sites are being investigated because existing information on the nature and extent of potential contamination is insufficient to evaluate and recommend corrective action alternatives (CAAs). Additional information will be obtained by conducting a corrective action investigation before evaluating CAAs and selecting the appropriate corrective action for each CAS. The results of the field investigation will support a defensible evaluation of viable CAAs that will be presented in the investigation report. The sites will be investigated based on the data quality objectives (DQOs) developed on April 1, 2014, by representatives of the Nevada Division of Environmental Protection; U.S. Air Force; and the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Field Office. The DQO process was used to identify and define the type, amount, and quality of data needed to develop and evaluate appropriate corrective actions for CAU 541. The site investigation process also will be conducted in accordance with the Soils Activity Quality Assurance Plan, which establishes requirements, technical planning, and general quality practices to be applied to this activity. The potential contamination sources associated with CASs 05-23-04 and 05-45-03 are from nuclear testing activities conducted at the Atmospheric Tests (6) - BFa Site and Atmospheric Test Site - Small Boy sites. The presence and nature of

  10. Magnetotelluric Data, Southern Yucca Flat, Nevada Test Site, Nevada

    SciTech Connect

    J.M. Williams; B.D. Rodriguez, and T.H. Asch

    2005-11-23

    Nuclear weapons are integral to the defense of the United States. The U.S. Department of Energy, as the steward of these devices, must continue to gauge the efficacy of the individual weapons. This could be accomplished by occasional testing at the Nevada Test Site (NTS) in Nevada, northwest of Las Vegas. Yucca Flat Basin is one of the testing areas at the NTS. One issue of concern is the nature of the somewhat poorly constrained pre-Tertiary geology and its effects on ground-water flow in the area subsequent to a nuclear test. Ground-water modelers would like to know more about the hydrostratigraphy and geologic structure to support a hydrostratigraphic framework model that is under development for the Yucca Flat Corrective Action Unit (CAU). During 2003, the U.S. Geological Survey (USGS) collected and processed Magnetotelluric (MT) and Audio-magnetotelluric (AMT) data at the Nevada Test Site in and near Yucca Flat to help characterize this pre-Tertiary geology. That work will help to define the character, thickness, and lateral extent of pre-Tertiary confining units. In particular, a major goal has been to define the upper clastic confining unit (UCCU) in the Yucca Flat area. Interpretation will include a three-dimensional (3-D) character analysis and two-dimensional (2-D) resistivity model. The purpose of this report is to release the MT sounding data for Southern Yucca Flat, Profile 4, as shown in Figure 1. No interpretation of the data is included here.

  11. Magnetotelluric Data, Northern Frenchman Flat, Nevada Test Site Nevada

    SciTech Connect

    J.M. Williams; B.D. Rodriguez, and T. H. Asch

    2005-11-23

    Nuclear weapons are integral to the defense of the United States. The U.S. Department of Energy, as the steward of these devices, must continue to gauge the efficacy of the individual weapons. This could be accomplished by occasional testing at the Nevada Test Site (NTS) in Nevada, northwest of Las Vegas. Yucca Flat Basin is one of the testing areas at the NTS. One issue of concern is the nature of the somewhat poorly constrained pre-Tertiary geology and its effects on ground-water flow in the area subsequent to a nuclear test. Ground-water modelers would like to know more about the hydrostratigraphy and geologic structure to support a hydrostratigraphic framework model that is under development for the Yucca Flat Corrective Action Unit (CAU). During 2003, the U.S. Geological Survey (USGS) collected and processed Magnetotelluric (MT) and Audio-magnetotelluric (AMT) data at the Nevada Test Site in and near Yucca Flat to help characterize this pre-Tertiary geology. That work will help to define the character, thickness, and lateral extent of pre-Tertiary confining units. In particular, a major goal has been to define the upper clastic confining unit (UCCU) in the Yucca Flat area. Interpretation will include a three-dimensional (3-D) character analysis and two-dimensional (2-D) resistivity model. The purpose of this report is to release the MT sounding data for Frenchman Flat Profile 3, as shown in Figure 1. No interpretation of the data is included here.

  12. Magnetotelluric Data, Central Yucca Flat, Nevada Test Site, Nevada

    SciTech Connect

    J.M. Williams; B.D. Rodriguez, and T.H. Asch

    2005-11-23

    Nuclear weapons are integral to the defense of the United States. The U.S. Department of Energy, as the steward of these devices, must continue to gauge the efficacy of the individual weapons. This could be accomplished by occasional testing at the Nevada Test Site (NTS) in Nevada, northwest of Las Vegas. Yucca Flat Basin is one of the testing areas at the NTS. One issue of concern is the nature of the somewhat poorly constrained pre-Tertiary geology and its effects on ground-water flow in the area subsequent to a nuclear test. Ground-water modelers would like to know more about the hydrostratigraphy and geologic structure to support a hydrostratigraphic framework model that is under development for the Yucca Flat Corrective Action Unit (CAU). During 2003, the U.S. Geological Survey (USGS) collected and processed Magnetotelluric (MT) and Audio-magnetotelluric (AMT) data at the Nevada Test Site in and near Yucca Flat to help characterize this pre-Tertiary geology. That work will help to define the character, thickness, and lateral extent of pre-Tertiary confining units. In particular, a major goal has been to define the upper clastic confining unit (UCCU) in the Yucca Flat area. Interpretation will include a three-dimensional (3-D) character analysis and two-dimensional (2-D) resistivity model. The purpose of this report is to release the MT sounding data for Central Yucca Flat, Profile 1, as shown in figure 1. No interpretation of the data is included here.

  13. A population model of the lizard Uta stansburiana in southern Nevada

    SciTech Connect

    Turner, F.B.; Medica, P.A.; Bridges, K.W.; Jennrich, R.I.

    1982-01-01

    Population densities, reproduction, and survival of the lizard Uta stansburiana were measured at the Nevada Test Site in southern Nevada, USA, between 1964 and 1974. These data were used to develop a model of the population dynamics of this species. Results of irrigation experiments in 0.4-ha enclosures near Mercury, Nevada, were used to formulate multiple-regression equations predicting frequency and size of clutches laid by two age-classes of females in terms of winter rainfall, March air temperatures and Uta population density. Densities of Uta in these enclosures were manipulated, and age-specific survival modeled in terms of spring densities of Uta. Experiments in which an important predator on Uta (the leopard lizard, Crotaphytus wislizeni) was removed from enclosures were used to estimate the influence of the predator on basic survival rates of hatchling and older Uta. The model was generally developed from data acquired in the small enclosures, but predictions were compared with actual observations of changes in Uta populations in Rock Valley (19 km west of Mercury, Nevada) between 1966 and 1972. The basic model included three density-dependent parameters: clutch frequency, clutch size, and adult survival. It was concluded that processes relating to egg production were modeled more effectively than those influencing survival, and that improvement of the model will depend on more detailed studies of the impact of predation on age-specific survival rates of Uta.

  14. Nevada resource assessment